Zhiming Liu
Keijiro Araki (Eds.)

Theoretical Aspects
of Computing -
ICTAC 2004

First International Colloquium
Guiyang, China, September 2004
Revised Selected Papers

LNCS 3407

@_ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3407

Zhiming Liu Keijiro Araki (Eds.)

Theoretical Aspects
of Computing —
ICTAC 2004

First International Colloquium
Guiyang, China, September 20-24, 2004
Revised Selected Papers

@ Springer

Volume Editors

Zhiming Liu

United Nations University

International Institute for Software and Technology
UNU-IIS, Macao SAR, China

E-mail: z.liu@iist.unu.edu

Keijiro Araki

Kyushu University

Department of Computer Science and Communication Engineering
Graduate School of Information Science and Electrical Engineering
6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581 Japan

E-mail: araki @csce.kyusyu-u.ac.jp

Library of Congress Control Number: 2005921895

CR Subject Classification (1998): F.1, F3,F4,D.3,D.2,C.2.4

ISSN 0302-9743
ISBN 3-540-25304-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11407058 06/3142 543210

Preface

This volume contains the proceedings of ICTAC 2004, the 1st International
Colloquium on Theoretical Aspects of Computing, which was held in Guiyang,
China on 20-24 September 2004.

ICTAC was founded by the International Institute for Software Technology
of the United Nations University (UNU-IIST). Its aim is to bring together prac-
titioners and researchers from academia, industry, and government to present
research results, and exchange experience, ideas, and solutions for their prob-
lems in theoretical aspects of computing. The geographic focus of the ICTAC
events is on developing countries to help to strengthen them in their research,
teaching, and development in computer science and engineering, to encourage
research cooperation among developing countries, and to improve the links be-
tween developing countries and industrial countries.

The Program Committee of ICTAC 2004 received 111 submissions from over
30 countries and regions. Each paper was reviewed, mostly by at least three ref-
erees working in relevant fields, but by two in a few cases. Borderline papers were
further discussed during an online meeting of the Program Committee. Thirty-
four papers were accepted based on originality, technical soundness, presentation
and relevance to software engineering and formal methods. We sincerely thank all
the authors who submitted their work for consideration. We thank the Program
Committee members and the other referees for their great effort and professional
work in the reviewing and selecting process. Their names are listed on the follow-
ing pages. In addition to the contributed papers, the proceedings also includes
contributions from the invited speakers: José Luiz Fiadeiro, He Jifeng, Huimin
Lin and Rustan Leino.

Six very good tutorials were selected as affiliated events of ICTAC 2004. We
express our thanks to all those who submitted tutorial proposals. We have also
included the abstracts of the tutorials in the proceedings.

We thank the Organizing Committee Chair, Danning Li, the Finance Chair,
Dan Li, and the Publicity Chair, Bernhard Aichernig, for their great collab-
orative effort and hard work that made the event so successful and enjoyable.
We are truly grateful to the Advisory Committee members for their advice and
suggestions. We particularly thank Kitty Iok Sam Chan and Anna UnLai Chan
of UNU-IIST for their hard work in maintaining the conference administration
system. All the members of staff at UNU-IIST helped in many ways. In partic-
ular, the Acting Director, Chris George, actively supported the organization of
ICTAC.

ICTAC 2004 was organized and sponsored by UNU-IIST and the Academy
of Sciences of Guizhou Province, China.

December 2004 Keijiro Araki and Zhiming Liu

Organization

ICTAC 2004 was organized by the International Institute for Software Tech-
nology of the United Nations University (UNU-IIST) and Guizhou Academy of
Sciences, China.

Conference Chairs

Program Co-chairs Keijiro Araki (Kyushu University, Japan)
Zhiming Liu (UNU-IIST, Macau SAR, China)

Organizing Committee Chair Danning Li (Guizhou Academy of Sciences)
Finance Chair Dan Li (Guizhou Academy of Sciences)
Publicity Co-chairs Bernhard K. Aichernig (UNU-IIST,
Macau SAR, China)
Dan Li (Guizhou Academy of Sciences)

Advisory Committee

Dines Bjgrner Technical University of Denmark, Denmark
Manfred Broy Technische Universitat Miinchen, Germany
José Luiz Fiadeiro University of Leicester, UK

Jifeng He UNU-IIST, Macau SAR, China

Shaoying Liu Hosei University, Japan

Zhiming Liu UNU-IIST, Macau SAR, China

Jim Woodcock York University, UK

Program Committee

Luis S. Barbosa University of Minho, Portugal

Gabriel Baum National University of La Plata, Argentina
Hubert Baumeister LMU, Munich, Germany

Jonathan Bowen London South Bank University, UK
Cristian S. Calude University of Auckland, New Zealand

Ana Cavalcanti University of York, UK

Yifeng Chen University of Leicester, UK
Wei Ngan Chin NUS, Singapore
Jim Davies Oxford University, UK

Henning Dierks University of Oldenburg, Germany
Jin Song Dong NUS, Singapore

Wan Fokkink CWI, the Netherlands

Susanne Graf VERIMAG, France

VIII Organization

Michael R. Hansen
James Harland
Jozef Hooman

Guoxing Huang
Purush Iyer
Ryszard Janicki
Michael Johnson
Fabrice Kordon
Maciej Koutny
Kung-Kiu Lau
Antonia Lopes
Jian Lu
Huaikou Miao
Paritosh Pandya
Zongyan Qiu
Anders P. Ravn
Gianna Reggio
Riadh Robbana
Augusto Sampaio
Bernhard Schétz

Andrea Maggiolo-Schettini

Irek Ulidowski
Miroslav Velev
Ji Wang

Wang Yi

Jian Zhang
Mingyi Zhang
Weiqing Zhang
Hongjun Zheng

DTU, Denmark

RMIT University, Australia

Embedded Systems Institute,
Eindhoven, the Netherlands

ECNU, Shanghai, China

North Carolina State University, USA

McMaster University, Ontario, Canada

Macquarie University, Sydney, Australia

University of Paris VI, France

University of Newcastle upon Tyne, UK

Manchester University, UK

University of Lisbon, Portugal

Nanjing University, China

Shanghai University, China

TIFR, Mumbai, India

Peking University, Beijing, China

Aalborg University, Denmark

University of Genoa, Italy

LIP2/EPT, Tunisia

Federal Univ. of Pernambuco, Recife, Brazil

TU Miinchen, Germany
University of Pisa, Italy
University of Leicester, UK
Carnegie Mellon University, USA
National Laboratory for Parallel

and Distributed Processing, China
Uppsala University, Sweden
Institute of Software, CAS, China
Guizhou Academy of Sciences, China
SWNU, Chongging, China
Semantics Designs Inc., USA

External Referees

The Program Committee members and the external referees listed below did an
excellent job in reviewing an unexpectedly big number of submissions under the
pressure of a very tight deadline.

Referees

Farhad Arbab Egidio Astesiano Richard Banach
Marco Bellia Adel Benzina Sergey Berezin
Eike Best Roderick Bloem Chiara Bodei
Roberto Bruni Marzia Buscemi Elena Calude
Jacques Carette Jessica Chen Yihai Chen

Organization

Michael J. Dinneen Perla Velasco Elizondo Ramanathan Guha

Shui-Ming Ho Alan Jeffrey

R.K. Joshi Wolfram Kahl

Hanna Klaudel Alexander Knapp

Piotr Kosiuczenko Moez Krichen
Mark Lawford

Guangyuan Li Donggang Liu
Xinxin Liu Quan Long
Victor Marek Marius Minea
Isabel Nunes G. Paun
Geguang Pu Shengchao Qin
Hasna Riahi James Riely
Andrei Sabelfeld Jonathan Shapiro
Andrei Stefan Jason Steggles
S.P. Suresh Tayssir Touili
Tiejun Wang Heike Wehrheim

Hans Zantema Jianjun Zhao

Qingguang Ji
George Karakostas
John Knudsen
Mojmir Kretinsky
Ryan Leduc

Jing Liu

Jinwen Ma

Nebut Mirabelle
Alessandra Di Pierro
Thomas Quillinan
David Rydeheard
Jeremy Sproston
Jing Sun

Vasco T. Vasconcelos
Rui Xue

Belhassen Zouari

IX

Table of Contents

Invited Speakers

Software Services: Scientific Challenge or Industrial Hype?
J0s€ Luiz Fiadeiro

Integrating Variants of DC
He Jifeng, Jin Naiyongoo e

Challenges in Increasing Tool Support for Programming
K. Rustan M. Letnot e

A Predicate Spatial Logic and Model Checking for Mobile Processes
Huimian Lino

Concurrent and Distributed Systems

Object Connectivity and Full Abstraction for a Concurrent Calculus of
Classes

Erika Abmhdm, Marcello M. Bonsangue,

Frank S. de Boer, Martin Steffen i i i

Specifying Software Connectors
Marco Antonio Barbosa, Luis Soares Barbosa......................

Replicative - Distribution Rules in P Systems with Active Membranes
Tseren-Onolt Ishdorj, Mihai Iomescuc.ccoiiiiiiino...

A Generalisation of a Relational Structures Model of Concurrency
Ryszard Janicki

A Logical Characterization of Efficiency Preorders
Neelesh Korade, S. Arun-Kumar,

Inherent Causal Orderings of Partial Order Scenarios
Bill Mitchell

Atomic Components
Steve Reeves, David Streader

XII Table of Contents
Towards an Optimization-Based Method for Consolidating Domain

Variabilities in Domain-Specific Web Services Composition
Jun-Feng Zhao, Lu Zhang, Ya-Sha Wang, Ying Jiang,

Model Integration and Theory Unification

A Formal Framework for Ontology Integration Based on a Default
Extension to DDL

Yinglong Ma, Jun Wei, Beihong Jin, Shaohua Liw 154
A Predicative Semantic Model for Integrating UML Models

Jing Yang, Quan Long, Zhiming Liu, Xiaoshan Li 170
An Automatic Mapping from Statecharts to Verilog

Viet-Anh Vu Tran, Shengchao Qin, Wei Ngan Chin 187
Reverse Observation Equivalence Between Labelled State Transition
Systems

Yanjun Wen, Ji Wang, Zhichang Qi, 204

Program Reasoning and Testing

Minimal Spanning Set for Coverage Testing of Interactive Systems

Fevzi Belli, Christof J. Budnik i, 220
An Approach to Integration Testing Based on Data Flow Specifications

Yuting Chen, Shaoying Liu, Fumiko Nagoya 235
Combining Algebraic and Model-Based Test Case Generation

Li Dan, Bernhard K. Aichernig............ .. 250
Verifying OWL and ORL Ontologies in PVS

Jin Song Dong, Yuzhang Feng, Yuan Fang Li 265
Verification

Symbolic and Parametric Model Checking of Discrete-Time Markov
Chains
Conrado Daws 280

Verifying Linear Duration Constraints of Timed Automata
Pham Hong Thai, Dang Van Hung 295

Table of Contents XIII

Idempotent Relations in Isabelle/HOL
Florian Kammdiller, J W. Sanders 310

Program Verification Using Automatic Generation of Invariants
Enric Rodriguez-Carbonell, Deepak Kapur....... 325

Theories of Programming and Programming
Languages

Random Generators for Dependent Types
Peter Dybjer, Haiyan Qiao, Makoto Takeyama 341

A Proof of Weak Termination Providing the Right Way to Terminate
Olivier Fissore, Isabelle Gnaedig, Héléne Kirchner 356

Nelson-Oppen, Shostak and the Extended Canonizer:
A Family Picture with a Newborn
Silvio Ranise, Christophe Ringeissen, Duc-Khanh Tran 372

Real Time Reactive Programming in Lucid Enriched with Contexts
Kaiyu Wan, Vasu Alagar, Joey Paquet 387

Revision Programs with Explicit Negation
Yisong Wang, Mingyi Zhang 403

Real-Time and Co-design

An Algebraic Approach for Codesign
Marc Aiguier, Stefan Béroff, Pierre-Yves Schobbens 415

Duration Calculus: A Real-Time Semantic for B
Samuel Colin, Georges Mariano, Vincent Poirriez 431

An Algebra of Petri Nets with Arc-Based Time Restrictions
Apostolos NIQOUTTS . ..o v vt e e e 447

A Calculus for Shapes in Time and Space
Andreas Schéifer 463

A Framework for Specification and Validation of Real-Time Systems
Using Circus Actions
Adnan Sherif, He Jifeng, Ana Cavalcanti,
Augusto Sampaio 478

X1V Table of Contents

Automata Theory and Logics

Switched Probabilistic I/O Automata

Ling Cheung, Nancy Lynch, Roberto Segala, Frits Vaandrager

Decomposing Controllers into Non-conflicting Distributed Controllers

Padmanabhan Krishnan

Reasoning About Co—Biichi Tree Automata

Salvatore La Torre, Aniello Muranoc..cccuieein...

Foundations for the Run-Time Monitoring of Reactive Systems -
Fundamentals of the MaC Language

Mahesh Viswanathan, Moonzoo Kimc.cccuiiien...

Tutorials at ICTAC 2004

A Summary of the Tutorials at ICTAC 2004

Zhiming Lit oo

Author Index

Software Services:
Scientific Challenge or Industrial Hype?

José Luiz Fiadeiro

Department of Computer Science, University of Leicester,
University Road, Leicester LE1 7RH, UK
jose@fiadeiro.org

Abstract. Web-services keep making headlines, not only in technical journals
but also in the wider media like The Economist. Is this just a sales plot of the
fragile software industry targeted to the companies and organisations that want
to operate in the new economy as enabled by the internet and wireless commu-
nication? Or is there a new paradigm as far as software development is con-
cerned? Should we, scientists, regard this as a challenge? Or dismiss it as
hype? In this paper, we analyse these questions in the context of the notions of
complexity that arise in software development and the methods and techniques
that can be offered to address them.

1 Introduction

component (n): a constituent part

complex (a): composed of two or more parts

architecture (n):
1 : formation or construction as, or as if, the result of conscious act;
2 : a unifying or coherent form or structure

Hardly anybody working in computer science or software engineering can claim to be
immune to the hype that surrounds “web services”. However, in spite (or because...)
of all the frenzy, it is not clear whether there is any room for a real scientific discus-
sion. After all, it is the big companies that have been driving most of the activity in
this area. This is why many people in academia and research are asking if this isn’t
just a sales plot of the software industry targeted to the companies and organisations
that want to operate in the internet... Is there really a new paradigm as far as software
development is concerned? Should we, scientists, regard this as a challenge? Or
dismiss it as mere industrial hype?

One of arguments made in favour of a new discipline, and a line that one could en-
visage pursuing in a scientific debate, opposes “components” to “services”. How-
ever, the term “component” is being used more and more frequently in software engi-
neering, at the expense of conveying less and less meaning. People are also drawing
analogies with the use of these concepts in arts, science, and engineering without a
clear sense of purpose. This is raising more confusion and less confidence in the us-
age of methods and tools being advertised for component-based development or soft-
ware architecture design.

Z. Liu and K. Araki (Eds.): ICTAC 2004, LNCS 3407, pp. 1-13, 2005.
© Springer-Verlag Berlin Heidelberg 2005

2 J.L. Fiadeiro

Nevertheless, bringing the term component into the arena is important because it
points a finger to one of the crucial dimensions of (software) engineering: complexity.
Decomposition of a problem into sub-problems is the best (only?) way that humans
have found to tackle complexity. Every discipline of decomposition leads to, or is in-
trinsically based on, a notion of component and composition: ¢a va de soi! The way
we decompose a problem, or the discipline that we follow in the decomposition, fur-
ther leads to an architecture, or architectural style, that identifies the way the problem
is structured in terms of sub-problems and the mechanisms through which they relate
to one another.

This remark can hardly be classified as a deep insight but the fact is that the differ-
ences that we can witness in the use of the terms “software component” and “software
architecture” can be attributed to the simple fact they address different notions of
complexity that arise in the process of engineering software systems. Hence, can we
frame the debate on services in the context of complexity? Are services the compo-
nents of a new architectural approach? If so, for which notion of complexity?

In our opinion, any answer to this question requires an analysis of the forces that
have made software development practice evolve over the past 50 years or so, as well
as the recognition of some of the fundamental milestones of this evolution. The pur-
pose of this paper is, precisely, to guide the reader through a journey in the history of
software engineering, hoping that, at the end, a clear case for a new paradigm will
have emerged. In this process, we will make use of the following figure borrowed
from [24]:

2 In the Beginning...

Fig. 1 makes clear the fact that, in the early days, software development took place
“in-the-head” of a person (a term that we prefer to “any-which-way”). That person
had a problem that, typically, consisted of some complex computation needed to ob-
tain some important result (e.g. the next best move during a game of chess) that the
person would consume upon termination. To solve that problem, the person would
develop a program to run on a particular machine.

2.1 From Programming ““in-the-head” to “in-the-small”

Programming took place “in-the-head” in the sense that it did not concern anybody
else except the programmer: only the results of the execution were needed, the pro-
gram being just a means to that end. The program thus built would reflect very
closely the architecture of the machine available to run it. The programmer would of-
ten have to resort to all sorts of “tricks” to get around the limitations of memory and
speed. This is why it seems unjust to qualify this activity as programming “any-
which-way” as it often required a deep knowledge of the target machine. In any case,
programming was a one-off activity best performed by virtuosi in absolute control of
the execution infrastructure and with the final result of the execution as the primary
goal of the activity.

This changed when, instead of the result of the execution, the programmer had the
solution (as embodied in the program itself) as a business goal. For instance, instead

1960 + 5
Programming-
any-which-way

Mnemonics,
precise use of
prose

Emphasis on small
programs

Representing
structure, sym-
bolic information

Elementary
understanding of
control flow

Software Services: Scientific Challenge or Industrial Hype?

1970 + 5
Programming-
in-the-small

Simple input-
output
specifications

Emphasis on
algorithms

Data structures
and types

Programs
execute once and
terminate

1980 + 5
Programming-
in-the-large

Systems with
complex
specifications

Emphasis on
system structure,
management

Long-lived

databases

Program systems
execute continually

1990 + 5
Programming-
in-the-world

Distributed systems
with open-ended,
evolving specs

Emphasis on
subsystem
interactions

Data & computation
independently
created, come and go

Suites of
independent
processes cooperate

Fig. 1

of a chess fanatic developing a program for his pocket calculator to compute the next
move on a given configuration, we are now talking of a scenario in which a chess-
playing program is developed to be sold to clients who will run it themselves on their
machines for their own purposes. A crucial landmark is thus reached: programs, in-
stead of the results of their executions become the goods. In other words, software
becomes a product.

In order to make commercial sense, it is essential to develop programs that can be
run in different machines. Programming becomes an activity that cannot be purely
conducted “in-the-head” as it needs to take into account that the resulting software is
to be commercialised. The separation between program and code executable on a
particular computer is supported by machine-independent programming languages
and compilers. In fact, this separation consists of an abstraction step in which the
program written by the programmer is seen as a higher-level abstraction of the code
that runs on the machine.

A crucial aspect of this abstraction process is the ability to work with data struc-
tures that do not necessarily mirror the organisation of the memory of the machine in
which the code will run. This process can be taken even further by allowing the data
structures to reflect the organisation of the solution to the problem, even if they are
not available in the target programming language. Specification languages support
the definition of such data structures and the high-level programs that use them.

Program development methodologies [6,] further address the problem of develop-
ing “real” programs from such high-level descriptions. They help the software devel-
oper arrive to a solution to the original problem regardless of the fact that the resulting
program is for self-consumption of for sale. For instance, in the 70s, so-called struc-
tured programming provided abstractions for controlling execution that introduced a
totally new discipline into software development by separating control flow from the
text of programs. Before, control flow was largely defined in terms of GOTO state-

4 J.L. Fiadeiro

ments that transfer execution to a label in the program text. Structured programming
provides constructs such as "if-then-else" and "while-do" for creating a variety of con-
trol execution patterns that can be understood independently of the order in which the
program text is written.

2.2 Program Architectures

Through methods supporting programming in-the-small we are led to notions of pro-
gram component and architecture that allow us to tackle the complexity of controlling
the flow of execution. In Fig. 2, we present the architecture of a run length encoder' in
JSP [15], one of the methods that introduced structured programming. In JSP, pro-
gram development follows a top-down approach in the sense that blocks are identified
and put together according to given control structures (sequential composition, itera-
tion, etc). Each block is then developed in the same way, independently of the other
blocks. The criteria for decomposition derive from the structure of the data manipu-
lated by the program.

The advantage of this architectural representation is that it decomposes control
flow according to the structure of the input data into well-identified components.
Each of these can be individually programmed and put together using the primitives
of the specific programming language that is chosen for a particular implementation.
Different methodologies lead to different architectures, of course.

In what concerns the software industry, it is clear that programming methodologies
have a significant impact in the delivery time and cost of the final product. By allow-
ing the programmer to work at higher levels of abstraction, results from the theory of
algorithms and complexity can be used for controlling performance in space and time,
which is an important factor of quality. When seconded by mathematical semantics, a
method and associated language can even assist the proof of the correctness of the
product with respect to a high-level specification of its functionality as given, for in-
stance, through input/output specifications. This further adds to the quality of the fi-
nal product.

It is not our purpose in this paper to promote any specific such language and
method, especially because the debate on what consists good support for program
construction is not closed and new methods/languages keep being proposed. Never-
theless, we would like to mention artificial intelligence as a methodology that pro-
vides abstractions for programming that derive from the way humans solve problems,
and object-oriented programming as a discipline based on the packaging of data and
functionality together into units called objects.

Finally, we would like to point out that we have been discussing abstractions for
handling the complexity of solving a given problem in terms of a computer program.
In this activity, the complexity lies more in the nature of the problem that needs to be
understood and the process of coding it than in the resulting solution (application).
For instance, programs that play chess, unlike some of their mechanical ancestors, are

' A run length encoder is a program that takes as input a stream of bytes and outputs a stream
of pairs consisting of a byte along with a count of the byte's consecutive occurrences in the
input stream.

Software Services: Scientific Challenge or Industrial Hype? 5

Encode un
lengths

Encode nun
length

Count remaining

Count first byte bytes

Qutput byte Output count

*

Count remaining
byte

Fig. 2

not known for the complexity of their structure in terms of the modules/parts that they
are assembled from. They give headaches to coders, not to project managers and their
maintenance groups. Indeed, chess playing is seen more as a testing ground for artifi-
cial intelligence than software engineering.

3 The “Software Crisis”

In September 1994, an article in the Scientific American alerted to the “Software’s
chronicle crisis”: software was recognised to be manufactured as in a “cottage indus-
try” and not according to the “industrial standards of mass production and reliability.
The article identifies the underlying problem as being one of “complexity”:

The challenge of complexity is not only large but also growing. [...]. To
keep up with such demand, programmers will have to change the way that
they work. "You can't build skyscrapers using carpenters," Curtis quips.

3.1 Programming in-the-large

The problem identified in this article was known for many years when it was pub-
lished, certainly since the famous 1968 NATO conference in Garmisch-
Partenkirschen. What is significant about this article is the fact that it appeared in the
Scientific American, a publication that reaches an audience much wider than com-
puter scientists and software engineers. The reason it deserved being published in

6 J.L. Fiadeiro

such a journal was that the general public had just been hit by one of the most famous
software-related failures: the luggage delivery system that kept the brand new Denver
airport shut for months at a huge expense. In other words, it is not that the problem
had suddenly started to give headaches to software developers but that it became clear
that it was hurting the economy, i.e. reaching into people’s pockets.

Indeed, as the scope and role of software in business grew, so did the size of pro-
grams: software applications were (and still are) demanded to perform more and
more tasks in the business domain and, as a consequence, they grew very quickly into
millions of lines of code. Sheer size compromised quality: delivery times started to
suffer and so did performance and correctness due to the fact that applications became
unmanageable for the lone programmer. The analogy with building skyscrapers using
carpenters is a very powerful one. Engineering principles were quickly identified to
be required to face the complexity of the product and the term programming “in-the-
large” was coined to reflect the fact that software development needed another activ-
ity to be supported: one that could break the task into manageable pieces [5].

We distinguish the activity of writing large programs from that of writing
small ones. By large programs we mean systems consisting of many small
programs (modules), possibly written by different people.][...]

’

We argue that structuring a large collection of modules to form a "system'
is an essentially distinct and different intellectual activity from that of con-
structing the individual modules. That is, we distinguish programming-in-
the-large from programming-in-the-small.

This is where a second important landmark in the history of Software Engineering
is normally placed. Please note that these are just milestones: the columns in Fig. 1
should not be taken as disjoint periods in this history. In fact, one should ignore the
reference to the decades (60s, 70s, 80s and 90s) as they are neither accurate nor iden-
tifiers of periods in the history of Software Engineering. Indeed, there is still a role
for programming-in-the-small, as recognised above, and for programming-in-the-
head, e.g. for software embedded in some critical systems.

3.2 Module Interconnection Languages

It should be clear that programming in-the-large addresses an altogether different no-
tion of complexity, one that occurs at “design” or “compile” time. We are not so
much concerned with the flow of execution of a computation but with “workflow” in
a development process.

A different kind of decomposition is, therefore, at stake: one that addresses the
global structure of a software application in terms of what its modules and resources
are and how they fit together in the system. The resulting components (modules) are
interconnected not to ensure that the computation progresses towards the required
output, but that, in the final system, all modules are provided with the resources they
need (e.g. the parsing module of a compiler is connected to the symbol table). In
other words, it is the flow of resources among modules that is of concern. Therefore,
one tends to use primitives such as export/provide/originate and import/require/use
when designing individual modules.

Software Services: Scientific Challenge or Industrial Hype? 7

The conclusions of Parnas’ landmark paper [20] are even clearer in distinguishing
program complexity/architecture from the complexity that is associated with pro-
gramming “in-the-large”:

We have tried to demonstrate by these examples that it is almost always
incorrect to begin the decomposition of a system into modules on the basis
of a flowchart. We propose instead that one begins with a list of difficult
design decisions or design decisions which are likely to change. Each
module is then designed to hide such a decision from the others. Since, in
most cases, design decisions transcend time of execution, modules will not
correspond to steps in the processing. To achieve an efficient implementa-
tion we must abandon the assumption that a module is one or more sub-
routines, and instead allow subroutines and programs to be assembled
collections of code from various modules.

That is to say, we cannot hope and should not attempt to address the complexity of
software systems as products with the mechanisms that were developed for structur-
ing complex computations. That is why so-called module interconnection languages
(MILs) were developed for programming in-the-large [22].

In the architectures that are described in such languages, dependencies between
components concern access to and usage of resources, not control flow. Whereas pro-
gram architectures make it much simpler to understand and prove the correctness of
the code with respect to input/output specifications, module interconnection archi-
tectures are essential for project management, namely for testing and maintenance
support: they enforce system integrity and inter-modular compatibility; they support
incremental modification as modules can be independently compiled and linked, and
thus full recompilation of a modified system is not needed; and they enforce version
control as different versions (implementations) of a module can be identified and used
in the construction of a system.

We should also make clear that problems of “size” do not just arise during software
design. Even if specification languages can factor down the size of code by at least
one order of magnitude, they do not factor out complexity altogether. For instance, in
algebraic specifications, which consist of sets of sentences (axioms) in a given logic
[17], the need to structure these sets in manageable pieces was recognised as early as
1977 in a famous article by Burstall and Goguen whose title is, precisely, “putting
theories together to make specifications” [4]. This concern for the complexity of
specifications signalled the advent of category theory [8] as a mathematical toolbox
offering techniques for structuring logical theories into what became known as the
“theory of institutions” [14]. Modularisation principles were extensively explored in
this setting that contributed to the maturation of software development as an engineer-
ing discipline [13,25].

Other problems of “size” are also reflected in Fig. 1, e.g. in the data that some
software applications are required to manipulate, which led to the development of da-
tabase technologies. The same applies to control structures in the sense that termina-
tion ceased to be a correctness factor and properties of on-going execution like re-
sponsiveness started to emerge in applications such as operating and air traffic control
systems.

8 J.L. Fiadeiro

3.3 The Case for Object-Oriented and Component-Based Development

The article in the Scientific American goes one step further and offers possible ways
out of the crisis:

Musket makers did not get more productive until Eli Whitney figured out
how to manufacture interchangeable parts that could be assembled by any
skilled workman. In like manner, software parts can, if properly standard-
ized, be reused at many different scales. [...]

In April [1994], NIST announced that it was creating an Advanced Tech-
nology Program to help engender a market for component-based software.

Indeed, the publication of this article is also marked by the advent of object-
oriented (OO) and component-based development. In the context of the
“small”/”large” divide, OO makes important contributions:

» State encapsulation provides a criterion for modularising code: software is organ-
ised in classes that group together in methods all the operations that are allowed on
a given piece of the system state.

* Programming-in-the-small is used within a class to define its methods.

* Clientship is used for interconnecting objects: an object can be declared to be a cli-
ent of another object, and methods of the client can invoke the execution of meth-
ods of the server as part of their code.

 Inheritance is used for classifying and organising classes in hierarchies that facili-
tate reuse.

Object-orientation cannot be taken primarily as a means of “programming-in-the-
large”. In fact, one can argue that, in spite of grouping functionalities in classes, OO
development could do with additional mechanisms for managing huge collections of
classes... Organising classes in inheritance hierarchies is a step in that direction but
many would argue that it does not take software development deep enough into an
engineering practice.

Still, one has to recognise that OO software development has brought a significant
improvement to the management of the complexity of software development. When
one considers alternative mechanisms for modularising imperative programming such
as those introduced over Pascal to produce Modula, it is clear that OO is much richer
in “methodological” contents in the sense that classes as software modules and inter-
connection via clientship, even if providing only for a rather fine grain of decomposi-
tion, organise systems according to structures that can be recognised in the problem
domain.

4 The Crisis 10 Years Later

In spite of the recognised progress towards the management of the complexity of con-
structing large applications, an article published in May 2003 alerted to the fact that
software was still under a “crisis”:

Software Services: Scientific Challenge or Industrial Hype? 9

Computing has certainly got faster, smarter and cheaper, but it has also
become much more complex. Ever since the orderly days of the main-
frame, which allowed tight control of IT, computer systems have become
ever more distributed, more heterogeneous and harder to manage. |[...]

In the late 1990s, the internet and the emergence of e-commerce “broke
IT’s back”. Integrating incompatible systems, in particular, has become a
big headache. A measure of this increasing complexity is the rapid growth
in the IT services industry. [...]

Computing is becoming a utility and software a service. This will pro-
foundly change the economics of the IT industry. [...]

For software truly to become a service, something else has to happen:
there has to be a wide deployment of web services. [...]

Applications will no longer be a big chunk of software that runs on a com-
puter but a combination of web services.

4.1 Programming in-the-world

One has to recognise that a different notion of complexity is involved here. The arti-
cle is very explicit in saying that the problem now is not one of size — “large chunks
of software” — but that the complexity lies in the fact that systems are ever more dis-
tributed and heterogeneous, and that software development requires the integration
and combination of possibly “incompatible” systems. Societal and economical impli-
cations of this notion of complexity are not any smaller. The fact that this article ap-
peared not in the Scientific American but in a wider circulation publication — The
Economist — shows that the debate now concerns a much more general public.

In our opinion, one can realise that this crisis is of a different nature in the fact that
the discussion is no longer around the complexity of building a large application that
one needs to deliver, in time and budget, to a client, but of managing an open-ended
structure of autonomous components, possibly distributed and highly heterogeneous.
This means developing software components that are autonomous and can be inter-
connected with other components, software or otherwise, and managing the intercon-
nections themselves as new components may be required to join in and other to be
removed.

In software engineering, the term software architecture [3,10,21,24] has recently
been reserved to this different kind of complexity. Components are treated as inde-
pendent entities that may interact with each other along well-defined lines of commu-
nication called architectural connectors [19]. By focusing on particular kinds of com-
ponents and connectors, one can identify different architectural styles. One can even
compare the architectures induced by different styles on the same system and discuss
system properties without having to analyse the code.

In a sense, we are going back to the kind of architecture provided by structured
programming but at a higher level of abstraction, one which often involves abstrac-
tions not directly provided by the underlying programming language: pipes, filters,
event broadcast, client-server protocols, etc. In other words, it is not so much the
flow of control that we want to structure but the flow of interactions.

10 J.L. Fiadeiro

It is interesting to note that, from a mathematical point of view, category theory
[8], as the mathematics of “structure”, still plays a fundamental role in formalising
these architectural principles and techniques [9]. However, instead of structuring
large specifications, as discussed in Sect 3.2, we are now interested in run-time con-
figurations of complex systems [12] and in the properties that emerge from the inter-
actions within them [7].

Notice that, in this context, object-orientation can be clearly identified with an ar-
chitectural style among many others. In this respect, the article in The Economist
challenges us to identify an architectural style that can address the complexity of the
new generation of systems that is emerging from the internet, mobile communication,
and other such “global computers™ in what one could label programming “in-the-
world” [24]. In this context, one can indeed debate the merits of an object-oriented
style and discuss the role and status of services.

4.2 The Case for Services

Object-oriented techniques offer little support for the kind of decomposition, organi-
sation and architectural style required for programming in-the-world. Interactions in
OO are based on identities [16], in the sense that, through clientship, objects interact
by invoking the methods of specific objects (instances) to get something specific
done: to use another object’s services, an object needs to have the server’s identity to
send it a message or call the required service. This implies that any unanticipated
change on the collaborations that an object maintains with other objects needs to be
performed at the level of the code that implements that object and, possibly, of the ob-
jects with which the new collaborations are established [23].

This in why some people claim that OO brought GOTOs back into fashion. One
cannot but recognise that, indeed, clientship through feature calling and method invo-
cation works for interactions in the same way as GOTOs worked for control flow.
Indeed, one often has the feeling that HyperText and URLs in web-based IT applica-
tions tend to become the web designers' version of spaghetti code.

Hence, in our opinion, the challenges raised in The Economist show that a differ-
ent paradigm is required to address what is clearly a different form of software com-
plexity. This is, precisely, the paradigm that started to emerge in the guise of web
services [1].

Web services have been often characterised as “self-contained, modular applica-
tions that can be described, published, located, and invoked over a network, generally
the web” [27]. Building applications under this new paradigm is a dynamic process
that consists in locating services that provide the basic functionalities that are re-
quired, and “orchestrating” them, i.e. establishing collaborations between them, at
run-time, so that the desired global properties of the application can emerge from their
joint behaviour, just in time.

% “A global computer is a programmable computational infrastructure distributed at worldwide
scale and available globally. It provides uniform services with variable guarantees for com-
munication, cooperation and mobility, modalities and disciplines for resource usage, security
policies and mechanisms, and more.” [26].

Software Services: Scientific Challenge or Industrial Hype? 11

“Integration” is another keyword in this process, often found married to “orchestra-
tion” or “marshalling”: application building in service-oriented architectures is based
on the composition of services that have to be discovered and “marshalled” dynami-
cally at run-time. Therefore, one of the characteristics of the service-oriented para-
digm is, precisely, the ability that it requires for interconnections to be established and
revised dynamically, in run-time, without having to suspend execution, i.e. without
interruption of “service”. This is what is usually called “late” or “just-in-time” inte-
gration (as opposed to compile or design time integration).

What marks the difference between this aspect of the complexity of software from
the one addressed by programming-in-the-large is, precisely, the fact that software is
not being treated as a product but as a service, as the article of The Economist makes
clear. It is interesting to note that this shift from object/product to service-oriented in-
teractions mirrors what has been happening already in the economy: more and more,
business relationships are established in terms of acquisition of services (e.g. 1000
Watts of lighting for your office) instead of products (10 lamps of 100 Watts each for
the office). That is, software engineering is just following the path being set for the
economy in general and, thus, shifting somewhat away from the more traditional “in-
dustrial” technologies oriented to the production of goods to exhibit the problems that
are characteristic of more “social” domains.

5 Concluding Remarks

We hope that the previous sections made clear that, in our opinion, the case for a new
service-oriented paradigm rests, essentially, in the recognition that there is more than
one dimension of complexity in the engineering of software intensive systems.

Indeed, even in our everyday life, we use the term “complex” in a variety of ways.
Many times, we apply it to entities or situations that are “complicated” in the sense
that they offer great difficulty in understanding, solving, or explaining. There is noth-
ing necessarily wrong or faulty in them; they are just the unavoidable result of a nec-
essary combination of parts or factors. For instance, the human body is a complex en-
tity; none of its organs operates autonomously if separated from the whole but we
know which vital functions each provides as part of the body, and can understand how
the functioning of each of them depends on the rest to the extent that we can replace
them by others of the same type.

In other circumstances, complexity derives more from the number and “open” na-
ture of interactions that involve “autonomic” parts. Social systems are inherently
complex in the sense that it is very difficult to predict what properties can emerge
from the behaviours of the parts and their interactions. Regulations and regulators
can be superposed to influence the way the parts interact or induce properties that one
would like to see emerge, but complete control is hard to achieve.

Knowledge of the physiological structure of a part does not necessarily help in un-
derstanding how it can contribute to the functioning of a social system. For instance,
the social behaviour of human beings is essentially independent of their physiology.
One does not go to a psychiatrist because of a toothache (even if the toothache is driv-
ing us mad), or to the dentist complaining with stress. A car will usually have a
driver’s manual explaining how it can be used for social purposes (i.e. driving) and a

12 J.L. Fiadeiro

technical manual that a mechanic can use for fixing a faulty part: one does not consult
the technical manual to find out where to switch the headlights and the mechanic does
not need the driver’s manual to replace a bulb. A mechanic does not need a driver’s
licence to repair a car, and knowing that one should stop at the red light is not some-
thing that derives from the structure of the car.

Having said this, we should point out something equally obvious: that they can very
well be related. We all know that a speech impediment is likely to influence one’s
ability to socialise and that, without brakes, a car cannot be stopped at a red light.

In our opinion, this distinction applies to software as well. Programming in-the-
large is concerned with the physiological complexity of software systems. Program-
ming in-the-world with their social complexity. As such, the methods and techniques
that best apply to one do not necessarily serve the other in the best possible way. We
see component-based development as addressing in-the-large issues, as highlighted in
the article of the Scientific American. We see services as addressing social complex-
ity, as the article of The Economist clearly suggests.

Service-oriented architectures are still very much in their infancy, and still too
much bound to the internet, in the guise of web services, or other specific global com-
puters like the grid, in what are known as grid services. Service-based computing and
software development is being uptaken by the IT industry in an ad-hoc and undisci-
plined way, raising the spectrum of a society and economy dependent on applications
that have the ability to "talk" to each other but without "understanding” what they are
talking about.

This scenario suggests very clearly that a scientific challenge is there to provide the
mathematical, methodological and technological foundations that are required for the
new paradigm to be used effectively and responsibly in the development of the gen-
eration of systems that will operate the Information Society of tomorrow. Such is the
challenge that a consortium of European universities, research institutes and compa-
nies chose to address under the IST-FET-GC?2 integrated project SENSORIA (Soft-
ware Engineering for Service-Oriented Overlay Computers). SENSORIA is address-
ing the social complexity involved in service-oriented development precisely through
some of the technologies that characterise programming “in-the-world”: coordination
languages and models [2,11], distributed reconfigurable systems [18], and software
architectures [10,21,24].

References

1. G. Alonso, F. Casati, H. Kuno, V. Machiraju (2004) Web Services. Springer, Berlin Hei-
delberg New York

2. F. Arbab (1998) What do you mean, coordination? In: Bulletin of the Dutch Association
for Theoretical Computer Science (NVTI), March 1998

3. L.Bass, P.Clements, R. Kasman (1998) Software Architecture in Practice. Addison-
Wesley, Reading MA

4. R. Burstall, J. Goguen (1977) Putting theories together to make specifications. In:
R. Reddy (ed) Proc. Fifth International Joint Conference on Artificial Intelligence, August
1977, Cambridge, MA, pp 1045-1058

5. F.DeRemer, H.Kron (1976) Programming-in-the-Large versus programming-in-the-
small. IEEE Transactions on Software Engineering SE-2(2): 321-327

~ o

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
217.

Software Services: Scientific Challenge or Industrial Hype? 13

E. Dijkstra (1976) A Discipline of Programming. Prentice Hall, London

J. L. Fiadeiro (1996) On the emergence of properties in component-based systems. In:
M. Wirsing, M. Nivat (eds) Algebraic Methodology and Software Technology. LNCS, vol
1101. Springer, Berlin Heidelberg New York, pp 421-443

J. L. Fiadeiro (2004) Categories for Software Engineering. Springer, Berlin Heidelberg
New York

J. L. Fiadeiro, A.Lopes (1997) Semantics of architectural connectors. In: M. Bidoit,
M. Dauchet (eds) Theory and Practice of Software Development. LNCS, vol 1214.
Springer, Berlin Heidelberg New York, pp 505-519

D. Garlan, D. Perry (1994) Software architecture: practice, potential, and pitfalls. In: Proc.
16th International Conference on Software Engineering. IEEE Computer Society Press,
Silver Spring MD, pp 363-364

D. Gelernter, N. Carriero (1992) Coordination languages and their significance. Communi-
cations ACM 35(2):97-107

J. Goguen (1973) Categorical foundations for general systems theory. In: F. Pichler,
R. Trappl (eds) Advances in Cybernetics and Systems Research. Transcripta Books, New
York, pp 121-130

J. Goguen (1986) Reusing and interconnecting software components. [EEE Computer
19(2):16-28

J. Goguen, R. Burstall (1992) Institutions: abstract model theory for specification and pro-
gramming. Journal ACM 39(1):95-146

M. Jackson (1975) Principles of Program Design. Academic Press, New York

W. Kent (1993) Participants and performers: a basis for classifying object models. In:
Proc. OOPSLA 1993 Workshop on Specification of Behavioral Semantics in Object-
Oriented Information Modeling

J. Loeckx, H.-D. Ehrich, M. Wolf (1996) Specification of Abstract Data Types. Wiley,
New York

J. Magee, J. Kramer, M. Sloman (1989) Constructing distributed systems in Conic. /[EEE
TOSE 15(6):663-675

N. Mehta, N. Medvidovic, S. Phadke (2000) Towards a taxonomy of software connectors.
In: Proc. 22nd International Conference on Software Engineering. IEEE Computer Soci-
ety Press, Silver Spring MD, pp 178-187

D. Parnas (1972) On the criteria for decomposing systems into modules. In: Communica-
tions of the ACM 15(12):1053-1058

D. Perry, A. Wolf (1992) Foundations for the study of software architectures. ACM
SIGSOFT Software Engineering Notes 17(4):40-52

R. Prieto-Diaz, J. Neighbors (1986) Module interconnection languages. Journal of Systems
and Software 6(4):307-334

M. Shaw (1996) Procedure calls are the assembly language of software interconnection:
connectors deserve first-class status. In: D. A. Lamb (ed) Studies of Software Design.
LNCS, vol 1078. Springer, Berlin Heidelberg New York, pp 17-32

M. Shaw (1996) Three patterns that help explain the development of software engineering
(position paper), Dagstuhl Workshop on Software Architecture

Y. Srinivas, R.lJiillig (1995) Specware™: formal support for composing software. In:
B. Moller (ed) Mathematics of Program Construction. LNCS, vol 947. Springer, Berlin
Heidelberg New York, pp 399-422

FET-GC2 Workprogramme text. www.cordis.lu/ist/fet/gc.htm#what
www.ibm.com/developerworks/web/library

Integrating Variants of DC*

He Jifeng!** and Jin Naiyong?

! International Institute for Software Technology, United Nations University, Macau
hjf@iist.unu.edu
2 SEI of East China Normal University, Shanghai, China

1 Introduction

Duration Calculus (DC) [22] was introduced as a logic to specify real-time re-
quirements of computing systems. It has been used successfully in a number
of case studies. Moreover, many variants of DC were proposed to deal with
various real-time systems, including communicating processes [24], sequential
hybrid systems [19, 23]. imperative programming languages (2,17, 18, 24], finite
divergence [6] and liveness properties [1,25]. This paper aims to integrate those
variants, and provides a logical framework for DC-based programming, and a
design calculus for mixed hardware/software systems.
The main contribution of this paper includes some novel features

(1) Weak chop inverse constructs (I =)\ A and A/(l =), which can be used
to specify liveness properties of real-time programs, and to define the neighbour-
hood operators ¢; and ¢, introduced in [1].

(2) Higher order quantifier 3V to describe the behaviour of local program vari-
ables of real-time programs.

(3) A formal definition of substitution of state variables A[JW/V] which enables
us to define super-dense computations.

(4) A super-dense chop operator o, defined by the hiding operator and sub-
stitution, is used to model sequential composition of imperative programming
languages [24].

The language is a conservative extension of DC in the sense that it adopts
the same semantic definition for all the elements of DC, and preserves all the
laws of variants of DC (including Neighbourhood Logic [1], Duration Calculus
with iteration [2], Higher-order Duration Calculus [26], DC with super-dense
chop [24], Recursive Duration Calculus [17]).

Like most of interval logical languages, our language contains

(1) a set of global variables z, y, ..., z.

(2) a set of state variables V, W, ..., Z.

* The work is partially supported by the 211 Key Project of the MoE, and the 973
project (no. 2002CB312001) of the MoST of China.
** On leave from the SEI of East China Normal University, Shanghai.

Z. Liu and K. Araki (Eds.): ICTAC 2004, LNCS 3407, pp. 14-34, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Integrating Variants of DC 15

(3) a set of temporal variables. In addition to the length temporal variable I, we
associate with every state variable V' the following temporal variables

— point values bV and eV

— neighbourhood values 17 and 17

(4) a set of propositional temporal letters.
(5) a set of relation symbols.
(6) a set of function symbols.

Global variables and temporal variables are terms. If f is an n-place function
symbol, and t1, ... 1, are terms, then f(t1, ...,t,) is also a term.
The syntax of formulae is defined as follows

Fiu= AF |-F|FAF|F~F|(l=x)\F | F/(l=x)|
JreF |V eF | FIW/V]| \VF

where the atomic formulae AF are of kinds P and R(¢1, ..., t,) where P is a
propositional temporal letter, and R is n-place relation symbol, and F stands
for a set of formulae.

The remaining of the paper is organised as follows. Section 2 is devoted
to the primitive features of the logical language, including logical connectives,
chop operator, temporal variable [and quantifier over global variables. Section
3 introduces the weak chop inverse operators and discusses its properties. In
section 4 we illustrate how to formalise the neighbourhood operators [1] in our
language. Section 5 deals with state variables and the induced temporal variables
point values and neighbourhood values. We tackle higher order quantifiers and
substitution operators in Section 6. Section 7 introduces the super-dense chop
operator. Section 8 presents the infinite disjunction operator, which enables us
to model iterative constructs of real-time programming languages , and handle
the recursive DC formulae [17]. Section 9 shows how to treat DC* [2] as one of
sub-languages. The paper ends with a short concluding section.

2 The Primitive Features
2.1 Time Domain
We adopt continuous time represented by reals
T =4 Real
The set I of intervals is defined by
I =4 {[be]|b,ecTAb<e}
We use the temporal variable [: I — Real to represent the length of interval

Mp, (1) =4 (e—)

16 J. He and N. Jin

2.2 Connectives

Let A and B be formulae. Let M be a model, define
M, (ANB) =g My, ¢(A)and My, (B)
Mip, (7 A) =4 not My,)(A)

where {and, not} are the connectives of the propositional logic. As usual, we
define AV B =df —|(—|A A —|B).

2.3 Chop
Definition 2.1
Let A and B be formulae. Define their composition A ~ B by
M, (A~ B) =4 3m: [b,] @ (Mp 1m)(A) and My, (B)) O
The chop operator enjoys the following properties.
(—-1) (associativity) (A—~B)~C < A~ (B~ C)
(—-2) (unit) (l=0)0~A e As A~ (=0
(—-3) (zero) false ~ A < false < A — false
(—-4) (distributivity) (A1v A2) ~ B & (A1~ B)V (42~ B)
A~ (B1vB2) & (A~ Bl)V (A~ B2)
(—-5) (monotonicity) If A1 = A2, then
(A1 ~ B) = (A2 ~ B)
(B~ Al) = (B~ A2)

The validity of the above laws is based on the following facts:
(1) the chop operator is defined as the lift of the catenation operator of intervals.
(2) the catenation operator is associative, and has the point intervals as its unit.

2.4 Temporal Variable [

The temporal variable [is governed by the following laws
(I-1) 1 >0,

(-2)z,y>0=((=2)~(l=y) < (I=z+y)
Definition 2.2
Let ¢ > 0. Define

Fact 2.3 Mp,_. ¢(Lc(A)
(LcRe-1) (Injectiveness) L.(A) = L.(B) iff A= B
Ro(A) = R.(B) iff A= B

Integrating Variants of DC 17

Proof not(A = B) {Def of =1}
= IM,b, ee (Mp, ¢(A) =tt) and (M, (B) = ff) {Fact 2.3}
o AMb, e (M epq(Re(A)) = t) and (M o(Re(B)) = £1)
{Def of =}
= not(R.(A) = R.(B)) O

(L:Re-2) (Conjunctivity) R(AAB) < R.(A) AR.(B)
LAANB) & LA)NL.(B)

Theorem 2.4

R.(A) & false iff A < false iff £L.(A) < false

Proof From (—-3) L.(false) < false < R.(false). The conclusion follows from
(LcRe-1). O

Theorem 2.5
(1) Re(mA) & (1 2 ¢) A =Re(A)
(2) L(—A) = (1> c) ANL(A)

Proof R.(—A) {(L:R. — 2) and Theorem 2.4}
& Re(—A) A R(A) {Predicate Logic}
& (Re(A) VRe(A)) A=Re(A) {(,\ _4)}
S (> e)NRe(A) O

2.5 Quantifier
Definition 2.6
Let « be a global variable. Define

My, (T e A) =t if M’ e M[/b,e](A) =ttand M =, M’
where M =, M" =4 Yy#xzeM(y)=M'(y) a
(3-1) (Extension of the scope) If x is not free in A then

Jre(A~B) & A~ (3xeB)

Jre(B~A) & (JxeB)~ A

3 Inverse of Chop

Definition 3.1 (Weak Chop Inverse)
Let ¢ > 0. Define
Mip,e(A/ (I =¢)) =ar Mpp, et (A)
Mip, (= c)\A) =ar Mp—c,¢)(A) o

18 J. He and N. Jin

The following law shows that /(I = ¢) (\(I = ¢) resp.) is the inverse of R, (L.

resp).

(WCL1) ¢ > 0 = Ro(A/(= >
c>0 = L(Il=0c\A) & AN(I>0¢)

Proof My, (R:(A/(l=c))) =1t {Def 2.1}
iff e>b+cAMpcq(A/(l=c)) =tt {Def 3.1}
iff e>b+cAMp (A)=tt {Def of AN B}
iff Mp, (AN >c)) =1t O
Theorem 3.2

(1) Re(X) = Aiff X = A/(l = c)

(2) Re(A)AB & false iff AA(B/(l=c¢)) < false
B) U=y\R(AAN(Zy)) & Ra(l=y)\(AN(Z=y))
4) A/ =2)/(l=y) & All=2z+y)

Proof of (1) R.(X)= A {(~-5)}
= Re(X)= (AN (1 >¢) {(WCI-1) and (LR.—1)}
= X=A/(1=c¢) {(~ =5) and (WCI-1)}
= Re(X)= A

(2) (AN (B/(l=¢c)) < false {Theorems 2.4}
&= Re(A) AR(B/(l =¢)) < false {(WCI-1)}
& R[(A)ANBA(l>c) < false {(— =5}
& R:(A)NB < false

) X=A/(l=2)/(l=y) {Conclusion (1)}
& (X~ (U=y)~(=2)=A {(~-1), (1-2)}
&= X~(l=2+y) =4 {Conclusion (1)}
S X=(A/l=2+y)

Theorem 3.3

D) L(X)=AMff X = (I=c)\A

(2) LAZA)AB < false iff AA((I=c¢)\B) < false

B3) Lo((ANTZy))/(I=y) & L(ANTZy))/(l=y))

4) I=y\(=2)\A) & (=z+y\A o

Integrating Variants of DC 19

Theorem 3.4 (distributivity)
(1) true/(Il =¢) & true

(2) (AAB)/(l=¢c) & (A/(l=0c)) AN (B/(l=c))
(3) ~(A/(l=c)) & (-4)/(=c)

(4) (FzeA)/(l=c)) & Tze(A/(l=10))

(5)

5 (A~ (BA(l>d)/(l=d) & A~ (BA({>d))/(l=4d)), whered >0
Proof of (3) R.(—(4/(l=¢)) {Theorem 2.5(1)}
& (I>c)N"R(A/(l=¢)) {(wWcCI-1)}
= (I>c)AN=(AN(>c)) {Predicative logic}
& (A A1 =0 {wcr—1)}
& Re(~A/(l =) o

Corollary 3.5

(1) false/(l = ¢) < false
(2) (AVB)/(l=¢) & (A/(l=c))V (B/(l=c))
Proof From Theorem 3.4 (1)-(3). ad

Theorem 3.6

(1) (I = ¢)\true < true

(2) (1= \ANB) & (I =c\A)A((L=c)\B)
3) ~(I=cNA) & (I =c\(-

(4) (1= \Bred) & Twe((l
(5)

A)
5) l=c)\((AAN(l>¢))~B) & (O\(AA(l>c¢))) ~ B, where c>0 O

Corollary 3.7
(1) (I =c)\false < false

(2) (=c\(AVB) & (=c\A)V((=0c)\B) o
Theorem 3.8

(=2)\(4/(I=y) < (=2)\A)/(=y)

Proof From (~ —1), Theorems 3.2(1) and 3.3(1). O

4 Neighbourhood Logic

This section illustrates how to define the neighbourhood operators [1] in our
framework.

20 J. He and N. Jin

Definition 4.1
Define
opA =g true ~ (Jc> 00 ((AN(l=0))/(l=0)))

oA =g (Fce>00(l=c)\(AN({=¢c))) ~ true
Define O0; =4 —o;—and O, =g -0, -
(0-1) If z > 0 then

op(l =)

ol =)

Proof o.(l =) {Def 4.1}
Strue ~de>0e ((I=2)AN(=0)/(l=0)) {Corollary 3.5(1)}
< true ~ (I=2)/(l=2x)) {(LR.—1)}
< true ~ (1=0) {(—=2)}
< true O

(0-2) o (AVB) & oAV o(DB)
Ol(A\/B) & oAV Ol(B)

Proof From (—~ —4) and Corollary 3.5(2).
(0-3) If A= B, then ¢,(A) = ¢,(B) and ¢;(A) = o(B)

Proof From (— —5).
(0-4) o (JreAd) & Jrec,. A
o(dreA) & JrecA

Proof From Theorems 3.4(4) and 3.6(4).

Lemma 4.2
(1) ANo,B & Jx>0e (A~ (BA(l=2))/(l=2x)
(2) ANoyB & dx>0e(l=x)\((BA(l=2x)) A)

Proof AAo¢.B {Def 4.1 and (3 —1)}
< AANTJr>0e(true ~ (BA(l=2))/(l==x) {Predicative logic}

< Jr>0e AN ((true ~ (BA(Il=2x))/(l=1x)) {Theorem 3.4(5)}

& Jr>0e((A~(I=2))/(=x)A
((true ~ (BA(l==x))/(l =x)) {Theorem 3.4(2)}

< x>0 (A~ (BA(l=2)))/(l=2) O

Integrating Variants of DC 21

(0-5) oo, A = Oyo. A
orol A = 0,0 A

Proof ¢;0, (A)
{Def 4.1}
< Jx>0e(l=x)\(op(A) A (Il=2)) ~ true
{Lemma 4.2 and Theorem 3.6(4)}
& 3z, y>0e (I =2)\((=2) ~ (AN (I =y))/(=y)) ~ true
{Theorems 3.6(5) and 3.8}
< Jr,y>0e((AN(I=y)/(l=y)) — true
{Predicative logic}
& Fy>0e((ANI=y)/0=y) ~ true
{Theorem 3.4(2) and (— —5)}
= Jy=0e(=((mA) A (I =y))/(=y))) ~ true
In a similar way we can show that
-0,0,A & Vy>0e (((mA)A(Il=y))/(l=y)) ~ true

from which it follows the conclusion. O

(06) (=2)= (A & oo (AN(=2)))
(l=2)= (A & o (AN =2)))

Proof (I =x) Aojo,. (AN (Il = 1)) {Lemma 4.2}
< Ju>0e(l=u)\((os(AN(I=2)A(l=u))~ (I=2))
{Lemma4.2}
< Ju,v>0e (1 =u)\
((I=w) =~ (AAN(I=2) AN (I =))/(I=v))~ (=1))
{Theorem 3.5(1)}
& Juz0e(l=u)\(I=u)~ (AN =1))/(=2)~ (=2
{(WCI-1), Thm 3.8}
s AN(Il=2x) O

Lemma 4.3
() or(AN(I=a+y) & o (AA(I=a+y)/(=1y)) where z, y > 0
2) w(AN(I=z+y)) & a(l=y\AA({I=2+y))

22 J. He and N. Jin

Proof o.(AAN(l=2+vy)) {Def 4.1}
< Jz>0e(true ~ (AAN(I=z4+y)A(l=2))/(==2)
{(— —=3), and Corollary 3.5(1)}
& (true ~ (AAN(l=z+y))/(l=x+y)
{Theorems 3.2(4) and 3.4(5)}
& (true ~ (AAN(I=2+vy)/(I=y)))/l=1) {Theorem 3.4(2)}
& (true ~ (AN (=2 +9)/(=) Al =2))/0=2)
{(— =3), Theorem 3.5(2)}
& 32200 (true ~ (AN (=2 +9)/(=y)AQ=2)/0=2)

{Def 4.1}

& o((AN(I=2z+y))/(l=y)) O

Theorem 4.4 (Nested neighbourhood)

(1) o, (AAN©.B) = . (A~ B)

(2) (AN B) = ¢ (B~ A)

Proof o¢.(AA¢.B) {Lemma 4.2}
S op(Fx>0e (A~ (BA(l=2))/(l=21)) {(¢ —4)}
< Jx>0e0. (A~ (BA(l=1x)))/(=21)) {Lemma 4.3}
< Jr>0e0. (A~ (BAL=12x) {(¢—4)}
S op(Jz >0 (A~ (BA(l=12)))) {3-1)}
& o (4 (BA(L>0))) {Theorem 2.8}
& o (A~ B) O

(o-7) If 2, y > 0, then

(1) op((l = 2) Aor(I =) Aoy A)) & o (L= +1) Ao A)

@) (1= 2) Aor((l = y) Aord)) & o (1= + 1) Aord)

Proof o.((l=z)Ao.((l=y) AopA)) {Theorem 4.4}
< or((l=x)No((l=y) ~ A)) {Theorem 4.4}
& o(l=2)~((I=y) ~A4) {(= =1) and (1 - 2)}
< on((l=x+y) ~ A {Theorem 4.4}
S o(l=x+y) Ao A) O

Theorem 4.5 (Conjunctivity)
(1) or(AN(I=2))Nop(BA(l=2)) & o (ANBA(l=2x))
2) o (AN(I=2x2) Ay (BA(l=2x)) & o (ANBA(l=1x))

Integrating Variants of DC 23

Proof o.(AAN(l=2z))Aop(BA(l=1x)) {Theorem 3.5(1) and Def 4.1}

& ((true ~ (AN (L= 2)))/(L = 2)) A ((brue ~ (B A (1 = 2)))/(1 = 2))
{Theorems 3.4(2)}

S true ~ (AANBA(l=2))/(l=2)) {Theorems 3.5(1)}
<o (ANBA(l=2)) O
(0-8) or(l=2)NA) =0, (I =2) = A)
o(l=z)NA) =01 =2)= A)
Proof o ((I=xz)NA)A-O.((=2z)=A) {Def 4.1}
< op((l=x)NA)ANop((l =) N—A) {Theorem 4.5}
& op(false) {Corollary 3.5(1)}
& false a
Theorem 4.6

(1) A~ (BAop(C)) & (A~ B)Aop(C)
(2) (AAo,(C) ~ (BA(I=0)) & (A~ (BA(I=0)Ao(C)

Proof A~ (BAo.C) {Lemma 4.2}
& A~ (Fr =00 (B~ (CA(=2))/(=2) {B-1}
< Jz>0e A~ (B~ (CA(l=1x)))/(l=2x)) {Theorem 3.4(5)}
& Jx>0e(A~B~ (CA(l=2x)))/(=21) {Lemma 4.2}
< (A~ B)ANo.C a
Theorem 4.7
(1) (;i(C)NA) ~ B < o (C)AN(A~ B)
(2) (AAN(I=0))~ (x(C)AB) & < (C)AN(AN(1=0))~ B) O

5 Induced Temporal Variables

5.1 Point Value
Definition 5.1 (Point value)
Let V' be a state variable. Define
My, (bV) =g M(V)(b)
M,) (eV) =ar M(V)(e) m
(point-1) (AAp(eV)) ~B < A~ (p(bV)AB)

24 J. He and N. Jin

Theorem 5.2

(1) (p(bV) A A) ~ B & p(bV) A (A~ B)

(2) (p(BV) A A)/(1 =) & p(bV) A (A/(I = 0))
(3) 1 =0= p(bv) & p(ev)

Proof of (1) (p(bV)A A) ~ B) {(— =2) and (point — 1)}

& (I=0Ap(eV))~A) ~B {(— —1) and (point — 1)}

N (=0) = (p(bV) A (A~ B)) {(==2)}

N p(bv) A (A~ B)

(2) Re(p(bV) A (A/(l = c))) {(1) and (WCIL-1)}

& p(BV)YANANA(l>¢) {(WCI-1)}

& Re(p(bV) A A)
which together with (£.R.-1) implies the conclusion. ad
Theorem 5.3

(1) A~ (BAp(eV)) & (A~ B)Ap(eV)

(2) (I=c\(AAp(eV)) & (I =c)\A)ApeV)

Proof Dual to Theorem 5.2.]
(point-2) Let S1 and S2 be Boolean state variables.

If S1 = 52, then bS1 = bS2 and eS1 = e52.

Remark 5.4

The following laws related to the point value of Boolean state variables are part
of the mathematical theory which underlies the logical framework discussed in
this paper.

b(S1V S2) =bS1V bsS2
b(S1 A S2) =bS1 AbS2
b(=S) =-bS
Definition 5.5
We lift a Boolean state variable S to a formula by defining
1S] =ar —((>0) ~b(=5) ~ (1> 0)) o

Theorem 5.6
(1) [true] < true
(2) | false] & (I1=0)
(3) [S1AS2] & [S1]A[S2]
4) [5] < 8(ls]))

Integrating Variants of DC
Proofof (4) 0O([S]) {Def of O}
&= —(true ~ (=|S]) ~ true) {Def 5.5 and (— —1)}
= =((Il>0) ~b-S~(1>0)) {Def 5.5}
= LS] O

5.2 Neighbourhood Value
Definition 5.7 (Finite variability)

25

A state variable V' has finite variability if its value can only change finite number

of times in any interval, i.e., the formula
OFceo([V=c|])ATdeo.(|V =d]))
holds.

Definition 5.8 (Neighbourhood values)
Let V' be a state variable with finite variability. Define

M[b,e](;) =df C if 36>00M[e’e+6](|_‘/:cj>:tt
M[b,e](V) =df C if 36>00M[b75’b](l_V:cj):tt

The neighbourhood values are captured by the following law:

(nbhood-1) V=c & o, (|V =c])
V=ec & o(V=c)

Theorem 5.9 (Left neighbourhood value)

(1) (p(V) A A) ~ B & p(V) A (A~ B)

(2) (AA(I=0)~ (p(V)AB) & p(V)A((AA(I=0)~ B)

Proof of (1) (p({7) NA)~ B {Predicate Calculus}
& (Jeep(c)AV=cAA)~B (3-
& Jee(p(e) A((V=cAA) ~ B)) {(nbhood —
& dee (p(e) A((¢1([V =¢])ANA) ~ B)) {Theorem 4.7(1
& dee (p(e) Aoi([V =¢])) AN(A~ B) {(nbhood —
& p(V)A(A-B)

Theorem 5.10 (Right neighbourhood value)
(1) A~ (BAp(V)) & (A~ B)Ap(V)
(2) (AAp(V) ~ (BA(I=0)) & (A~ (BA(I=0)Ap(V)

26 J. He and N. Jin

Proof From Theorem 4.6 and (nbhood-1). O
Theorem 5.11 (Removal of neighbourhood value)
(1) (AA(V=0)) ~ (BA(I>0)) & A~ (BA(V =c|*;true))

2) (AN(1>0) ~ (V=c)AB) < (AA|V =c|*;true)) ~ B
where |S]T =4 (I >0)A|S] O

6 Higher Order Quantifiers

6.1 Local State Variable
Definition 6.1
Let V be a state variable. Define
My, BV o F) =g tt if IM' e My (F) = tt and M =y M’ O
(hiding-1) (Extension of the scope) If V is not free in A, then
Ve(A~B) & A~ (IVeDB)

WVe(B~A) « (IVeB)~ A
Theorem 6.2
(1)IVe(A/(l=¢)) & (FTVeA)/(l=rc)
(2) Ve ((I=0c)\A) & (I=0c)\(FV e A)

Proof of (1) R (LHS) {(hiding-1)}
& W eR. (A/(=c)) {(WCI-1)}
= FVe(AN(l>0¢)) {Predicate Calculus}
& (FV e A) (1>¢) {(WCI-1)}
= R.(RHS) O

Corollary 6.3

(1) W e (A) & ¢ (FTV e A)

(2) W eo.(A) & o.(FVeA) |

From Lemma 4.2 and Theorem 4.6 and 4.7, we will confine ourselves in the

following laws to those formulae which do not use the weak inverse operators

(I =c¢)\ and /(I = ¢) and their derived operators ¢; and ¢, in the remaining of

this paper.

(hiding-2) (Match of point values) If neither A nor B uses V and 17, then
FWVe(A~B) & Jce(IVeANeV =c¢)~ (IVeBADV =¢)

(hiding-3) (Separation of neighbourhood values) If A does not refer to X7, and

B does not mention V/, then

Integrating Variants of DC 27

(1) IV e (p(V)AA) & @V ep(V))AEV o A)

— —

(2) IV e(p(V)AB) & (FVep(V)) A (IV e B)

(hiding-4) (Separation of point values) If A does not use bV, and B does not
refer to eV, then

(1) IV e(pbV)A(AAN(1>0) & AV epbV)A(FVeAA(l>0)

(2) IV e((BA(I>0)ApeV)) & (Ve (BA(l>0))A(FTVepeV))

Theorem 6.4
If neither A nor B uses bV, eV, ‘7, and 177 then
FWVe(A~B) & (IVeA) ~(IVeDB)

Proof 3V e (A ~ B) {(hiding — 2)}
& Jdece(IVeANeV =c¢) ~ (FVebV =cAB)
{(hiding — 3) & (hiding — 4)}
< Je(FVeANTVeeV =c¢)) ~ (3VebV =c)A(IV e B)
{Predicate Calculus}
< (Ve A)~ (FVeB) O

The axioms (HD1) and (HD2) for higher-order quantifications in [26] follow di-
rectly from (hiding-3). We will establish the axiom (HD3) in the next section.

6.2 Substitution
Definition 6.5 (Substitution)

Let W be a state variable. The notation A[W/V] stands for the result of substi-
tuting all free occurrences of V' in A by W.

Mp, (A[W/V]) =g ttif

IM e Mj, (A) = ttand M' =y M and M'(V) = M(W) O
(sub-1) A[V/V] & A
(sub-2) AW/V] < 3V e (AANeq(V, W))

where W is distinct from V, and
eq(U, W) =4 U=W A |U=W| A U=W
HSH =df bS A _SJ A eS

Theorem 6.6

(1) eq(U, W) = (A[U/V] < A[W/V])

(2) (VV e A) = A[W/V]

28 J. He and N. Jin

Proof Direct from (sub-1) and (sub-2). O

Corollary 6.7
Let W be a fresh state variable not used in A.
(1) A & 3W o (AW/V] A ea(W, V),
(2) If A does not use ‘7, then

A & AW e (AW/VIA V=W AV = W|)
(3) If A does not mention {7, then

A & JW e (A[W/VIA V=W AV = W)
(4) If neither V nor V occurs in A, then

A & AW e (A[W/V]A [V =W])

Proof From Theorem 6.6 and (hiding-3). a
Now we are going to show (HD3) in [26].

Theorem 6.8 If neither A nor B mentions point values bV and eV, then

((EIV-A/\ (true ~ |V = 21| *) A (V= 22)) ~

_ = Ve (A~ B)
(Ve BA(|V =a2|t ~ true) A (V= 21)))

Proof Define Al =4 3W o A[W/V]A [W = V|| A (V=V) A (W= 22)
Bl =g IW e BIW/V]A W = V| A(V=V) A (W= 1)

From Corollary 6.7 it follows that

(c1) (AA (V=122)) & (AL A (V=122))

(c2) (BA (V=21)) & (BLA (V= 21))
RHS {Pred. Calculus}

& Ve ((AA (true ~ |V = 21]|T) A (V= 122)) ~
(BA([V =22]* ~ true) A (V= z1))) {(c1) and (c2)}
(

& dVe((ALA (true ~ |V =x21]T) A ({7: x2)) ~
(LA ([V = 22]* ~ true) A (V= z1))) {Theorem 5.11}
& dV e ((ALA (true ~ |V =21]1)) ~ (B1A(|V = 22|T ~ true)))

{Theorem 6.4}
& (AW e Al A (true ~ |V =21]T)) ~
(IV e B1A(|V = x2|* ~ true))) {Pred. Calculus}

Integrating Variants of DC 29

< (AV e AL A (true ~ |V = 21]*) A (V= 22)) ~
(3V e BLA(|V = 22|* ~ true) A (V= z1)) {(c1) and (c2)}
< LHS a

7 Chopping Points

Definition 7.1 (Super-dense chop)
Let V' be the state variables used by formulae A and B. Define

Ao B =df 333,‘/17 ‘/20
(AVi/V] A IV =W A (V=) A (Vi=2)) ~
(BIVa/V] A [V =Val| A (V=V) A (Vo= 2)) =

The chop operator — is used to compose the continuously evolving hybrid
systems, whereas the relational composition operator is used to model the se-
quential composition of imperative programming languages. The following the-
orem states that o can be seen as the product of the chop operator — and the
relational composition operator.

Theorem 7.2
If 17 and 17 do not occur in A and B, then

—

(AAD(V, V) o (a(V,V)AB) = (A~B) A 3ze (p(V,) Mgz, V))

Proof LHS {(hiding — 3)}
=4 3.’13.(3‘/1.([VI/V]AI_IV:‘/IH)/\
Wi e (V=1A) A (Vi=2) Ap(Vi, TA)) ~
(Ve (B[Vz/V} AV =Va[)A
Wy e (V=Va) A (Vo= 2) A q(Va, V2))) {Corollary 6.7}
< Jre((AN (x)) ~ (B Ag(z, 17))) {Theorems 5.9-5.10}
< RHS 0

Theorem 7.3 (o and —)

If A does not refer to 17 and B does not use \7, then
AoB = A~ B

30 J. He and N. Jin
Proof Ao B {(hiding — 3)}
& 3z e 3V e (AVi/VIA |V = Vi A (V=V1)) A
@V o (Vi=2))) ~ (3Va (B[Va/V]A [V = Va|JA

(V=Va)) A (3Va e (Vo= 2))) {Corollary 6.7}
< Jz e (A~ B) {z is not free in A and B}
< A~B O

o also enjoys the following familiar algebraic laws:

Theorem 7.4
(1) (associativity) (Ao B)oC < Ao (Bo()

(2) (unit) Aol & A & IoF, where I =4 (I1=0) A (17217)
(3) (disjunctivity) Ao (B1V B2) < (Ao Bl)V (Ao B2)

(A1V A2)0o B « (AloB) V (A20 B)
4) (zero) Ao false < false < falseo A
5) (initial stable state) (p(V°) NA)oB & p(V) (Ao B)

consistency) (A A r({7)) oB & Ao (r({?) A B)

(4) (
(5) (
(6) (final stable state) Ao (BAg(V)) < (Ao B)Aq(V)
(7) (
(®) (

8) (invisible stable state) If A does not use 17 and B does not mention <I7

(AN(V=1y)oB & A~B
Ao(V=y)AB) & A~B
(AN(V=y)o((V=2AB) & (A~B)A(y =)
Proof (AA(V=y))o((V=2)A B) {(hiding — 3)}
&3z e (FVie (AV/VIAV = Vi A (V=V1))
A @Vie (Vi=y) A (Vi=2)))) ~
(V2 o (BVa/VIA |V = Val| A (V=Va))))

A((FVs e (Va=) A (Vo= 2))) {Corollary 6.7}
S (Fre((z=y)AN(x=2))) N (A~ B) {Pred. cal}
S(y=2 N (A~ B) 0

Integrating Variants of DC 31

8 Infinite Disjunction

Definition 8.1
Let A be a set of formulae. Define
My g(VA) =t if3A€ Ao My, 4(A) =t
Define (AA) =q ~(V{-A]| A€ A}). o

\/ A is the greatest lower bound of A with respect to the order = as shown in
the following two laws.

(\V-1) (lower bound) If A€ A, then A=V A
(\V-2) (greatest lower bound) If A = B for all members A of A, then \/ A= B
The following laws enable us to push \/ outwards.
V-3) (VA ~B & V{(A~B)|AcA}
Bi(VA) & V {(B~4)| e A}
(\V-4) FJze(V A & V{JxeAd|Ac A}
We(VA) & V{TVeAd|Ac A}

Theorem 8.2
(VA = B iff VA€ Ae (A= B)

Proof (\/A) =B {(\/ —1) transitivity of =}
— VAcAeA=B {(V-2)}
= (VA =18 O
Theorem 8.3

W)V A/l=c) & VA{A/l=c)[Ac A}
2) I=c\(V A) & VA{l=0c\A]Ac A}

Proof From (WCI-1). a

Definition 8.4 (Weakest fixed point)

Let F be a monotonic mapping on formulae. Define
uX o F =y V{A| A= F(A) :

Theorem 8.5
(1) uXeoF & F(uXeF)
(2) If A= F(A), then A= uX o F a

32 J. He and N. Jin

9 Duration Calculus with Iteration

This section shows how to embed DC* [2] into our framework.

Definition 9.1 (Tteration)

Define A* =4 \{A" | ne NAT}

where A° =4 (I=0) and A" =5 A~ A"]
(DCY) (1=0) = A*

Proof From (\/ —1). a

(DC3) (A" ~ A) = A*.

Proof A"~ A {(V-3)}
&V A{A™! | ne NAT} {(V-1) and (V -2)}
= A" O

(DC%) (A*AB) ~ true = (BAl=0) ~ true V (((A*A-B) ~ A)AB) — true
Proof (A"*! A B) ~ true {(—-4)}
= (((A" A=B) ~ A)AB) ~true V ((A" AB) ~ A) A B) ~ true
{(V—1) and (~ —5)}
= (((A*A—-B) ~ A)AB) ~ true V
((A™ A B) ~ true) A true) — true {(——=2) and (— —5)}
= RHS V ((A" A B) ~ true)
By induction and the fact that (A° A B) ~ true = RHS we conclude that for
all n € NAT
(A" A B) ~ true = RHS
from which and (\/ —3)(1) follows the conclusion. a

Theorem 9.2 (Induction)
If {=0)= Band (A~ B)= B, then A*= B

Proof We are going to show that A” = B for alln € NAT.

n = 0: From the assumption.

n=1: A {(—~-2)}
) o)
= A~B {assumption}
= B

Integrating Variants of DC 33

n=k+1: A1 {Def of AF+1}
& A~ Ak {(— —5) and induction hypothesis}
= B O

Corollary 9.3
A* & (I=0)vA~- A"

Proof From (DC*-1) and (DC*-2) it follows that RHS = LHS. The opposite
inequation follows from Theorem 9.2. O

10 Conclusion

This paper presents a logical language which integrates many variants of DC, and
acts a wide spectrum language covering specification, design and programming
of real-time computing systems. We have investigated the links of our language
with some well-known variants of DC in the previous sections. Our language
provides a mathematically sound basis for real-time refinement calculus and as
well as proof systems for time-critical computing systems. It has been successfully
used in formalising a specification language TRSL [10], mixed hardware/software
systems [7] and Sequential Hybrid Systems [8].

References

1. Rana Barua and Zhou Chanchen. Neighbourhood Logics. UNU/IIST Report No
120, (1997)

2. Dang Van Hung and D.P. Guelev. Completeness and Decidability of a Fragment
of Duration Calculus with Iteration. LNCS 1742, 139-150, (1999)

3. E.W. Dijkstra. A Discipline of Programming. Prentice Hall, (1976).

4. Mike Gordon. The Semantic Challenge of Verilog HDL. in Proc. of LICS’95, San
Diego, California. (1995).

5. Mike Gordon. FEwvent and Cyclic Semantics of Hardware Description Languages
Technical Report of the Verilog Formal Equivalence Project of Cambridge Com-
puting Laboratory, (1995).

6. M. Hansen, P. Pandya and Zhou Chaochen. Finite divergence Theoretical Com-
puter Science 138, 113-139, (1995).

7. He Jifeng A Common Framework for Mixed Hardware/Software Systems. In Proc.
of IFM’99, Springer-Verlag, 1-25, (1999).

8. He Jifeng and Xu Qiwen. Advance Features of DC and their applications in Se-
quential Hybrid Systems Formal Aspect of Computing 15: 84-99, (2003)

9. C.A.R. Hoare and He Jifeng Unifying Theories of Programming. Prentice Hall,
(1998)

10. Li Li and He Jifeng A DC Semantic for Timed RSL. In Proc. of RTCSA’99, 492-
504, (1999)

11. O. Maler, Z. Manna and A. Pnueli. From timed to hybrid systems. LNCS 600,
(1992).

34

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

J. He and N. Jin

Carroll Morgan Programming from Specifications. Second Edition. Prentice Hall,
(1994).

B.C. Moszkowski. A temporal logic for multi-level reasoning about hardware IEEE
Computer 18(2), 10-19.

B.C. Moszkowski. Executing Temporal Logic Programs. Cambridge University
Press, (1986).

B.C. Moszkowski. Compositional reasoning about projected and infinite time. In
Proc. of the First IEEE International Conference on Engineering of Complex Com-
puter Systems, 238-245, (1995).

Open Verilog International (OVI). Verilog Hardware Description Language Refer-
ence Manual. Version 1, (1994)

P. Pandya and Y. Ramakrishna. A recursive duration calculus Technical Report,
CS-95/3, Computer Science Group, TIFR, Bombay, (1995)

P. Pandya and V.H. Dang. Duration calculus with weakly monotonic time. In Proc.
of FTRTFT’98, LNCS 1486, (1998)

P. Pandya, H.P. Wang and Q.W. Xu. Towards a Theory of Sequential Hybrid
Programs. In Proc. of IFIP Conference, Chapman & Hall, (1998).

A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Jour-
nal of Mathematics Vol 5: 285-309, (1955)

D.E. Thomas and P. Moorby. The VERILOG Hardware Description Language.
Kluwer Publisher, (1991).

Zhou Chaochen, C.A.R. Hoare and A.P. Ravn. A calculus of duration. Information
Processing Letters 40(5): 269-275, (1991).

Zhou Chaochen, A. Ravn and M. Hansen. An extended duration calculus for hybrid
systems Lecture Notes for Computer Sciences 736, 36-59, (1993)

Zhou Chaochen and Li Xiaoshan. A Mean Value Calculus of Durations. In AW
Roscoe (ed): “A Classical Mind: Essays in Honour of C.A.R. Hoare”, Prentice-Hall,
431-451, (1994)

Zhou Chaochen and M. Hansen. Chopping a point. In Proc. of BCS FACS 7th Re-
finement Workshop, Electronic Workshop in Computer Sciences, Springer-Verlag,
(1996).

Zhou Chaochen, D.P. Guelev and Zhan Naijun. A Higher-Order Duration Calculus.
In J.Davies et al (eds) “Millennial Perspectives in Computer Science”, 407-416,
(1999)

Challenges in Increasing Tool Support for
Programming

K. Rustan M. Leino

Microsoft Research, Redmond, WA, USA
leino@microsoft.com

Abstract. Programming in the large is difficult, in part because the
number of details that one must get right is enormous. Various tools
can assist programmers in managing the details. These tools include a
methodology that formalizes useful programming idioms, a language in
which programmer design decisions can be expressed, and static and
dynamic checkers that look for errors or attempt to prove the absence
thereof. In this talk, I will discuss challenges in each of these areas. I will
also give a short demo of a prototype of the Spec# programming system,
which takes on these challenges and is designed to be used in practice.
Joint work with Mike Barnett, Robert DeLine, Manuel Fahndrich,
Peter Miiller, David A. Naumann, Wolfram Schulte, and Herman Venter.

Z. Liu and K. Araki (Eds.): ICTAC 2004, LNCS 3407, p. 35, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Predicate Spatial Logic and
Model Checking for Mobile Processes*

Huimin Lin

Laboratory for Computer Science,
Institute of Software, Chinese Academy of Sciences
lhm@ios.ac.cn

Abstract. Mobile processes involve not only in time but also in space.
Traditionally model checking has mainly concerned with temporal prop-
erties of processes, but recently proposals have been put forwarded to
check spatial properties as well. In this talk we shall first present a modal
logic for describing temporal as well as spatial properties of mobile pro-
cesses expressed in the asynchronous w-calculus. The logic is first-order
and has quantifies including the fresh name quantifier for handling the
name restriction construct in the m-calculus. The novelty of the logic is
that fixpoint formulas are constructed as predicates which are functions
from names to propositions. The semantics of the logic is developed and
shown to be monotonic, thus guarantees the existence of fixpoints. We
then propose an algorithm to automatically check if a process has prop-
erties described as formulas in the logic, and establish its correctness.

* Supported by research grants from Natural Science Foundation of China and Chinese
Academy of Sciences.

Z. Liu and K. Araki (Eds.): ICTAC 2004, LNCS 3407, p. 36, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Object Connectivity and Full Abstraction
for a Concurrent Calculus of Classes*

— Extended Abstract —

Erika Abrahdm?, Marcello M. Bonsangue?,
Frank S. de Boer?, and Martin Steffen’

L Christian-Albrechts-University Kiel, Germany
2 University Freiburg, Germany
3 University Leiden, The Netherlands
4 CWI Amsterdam, The Netherlands

Abstract. The concurrent object calculus has been investigated as a
core calculus for imperative, object-oriented languages with multithread-
ing and heap-allocated objects. The combination of this form of concur-
rency with objects corresponds to features known from the popular lan-
guage Java. One distinctive feature, however, of the concurrent object
calculus is that it is object-based, whereas the mainstream of object-
oriented languages is class-based.

This work explores the semantical consequences of introducing classes
to the calculus. Considering classes as part of a component makes in-
stantiation a possible interaction between component and environment.
A striking consequence is that to characterize the observable behavior
we must take connectivity information into account, i.e., the way objects
may have knowledge of each other. In particular, unconnected environ-
ment objects can neither determine the absolute order of interaction and
furthermore cannot exchange information to compare object identities.

We formulate an operational semantics that incorporates the con-
nectivity information into the scoping mechanism of the calculus. As
instantiation itself is unobservable, objects are instantiated only when
accessed for the first time (“lazy instantiation”).

Furthermore we use a corresponding trace semantics for full abstrac-
tion wrt. a may-testing based notion of observability.

Keywords: multithreading, class-based object-oriented languages, for-
mal semantics, full abstraction.

1 Introduction

The notion of component is well-advertised as structuring concept for software
development. Even if there is not too much agreement about what constitutes a

* Part of this work has been financially supported by the IST project Omega (IST-
2001-33522) and the NWO/DFG project Mobi-J (RO 1122/9-1/2).

Z. Liu and K. Araki (Eds.): ICTAC 2004, LNCS 3407, pp. 37-51, 2005.
© Springer-Verlag Berlin Heidelberg 2005

38 E. Abrahdm et al.

component in concrete software engineering terms, one aspect should go undis-
puted: At the bottom line, a component means a “program fragment” being
composed, which raises the question what the semantics of a component is. A
natural approach is to take an observational point of view: two components are
observably equivalent, when no observing context can tell them apart.

In the context of concurrent, object-based programs and starting from may-
testing as a simple notion of observation, Jeffrey and Rathke [7] provide a fully
abstract trace semantics for the language. Their result roughly states that, given
a component as a set of objects and threads, the fully abstract semantics consists
of the set of traces at the boundary of the component, where the traces record
incoming and outgoing calls and returns. At this level, the result is as one would
expect, since intuitively in the chosen setting, the only possible way to observe
something about a set of objects and threads is by exchanging messages.

The result in [7] is developed within the concurrent object calculus [5], an
extension of the sequential v-calculus [10] which stands in the tradition of various
object calculi [1] and also of the m-calculus [9,11]. The chosen language has
been proposed as core calculus for imperative, object-oriented languages with
multithreading and heap-allocated objects, but distinctive feature is that it is
object-based, which in particular means that there are no classes as templates for
new objects. This is in contrast to the mainstream of object-oriented languages
where the code is organized in classes, one well-known example being Java. This
work addresses therefore the following question:

What changes when switching from an object-based to a class-based
setting, a setting which corresponds to features as found in a language
like multithreaded Java or C#?

Considering the observable behavior of a component, we have to take into
account that in addition to objects, which are the passive entities containing
the instance state, and threads, which are the active entities, classes come into
play. Classes serve as a blueprint for their instances and can be conceptually
understood as particular objects supporting just a method which allows to gen-
erate instances. Indeed, ultimately, the observer consists only of classes since the
program code is structured into classes, and objects exist only at run-time.

Crucial in our context is that now the division between the program frag-
ment under observation and its environment also separates classes: There are
classes internal to the component and those belonging to the environment. As a
consequence, not only calls and returns are exchanged at the interface between
component and environment, but instantiation requests, as well. This possibility
of cross-border instantiation is absent in the object-based setting: Objects are
created by directly providing the code of their implementation, not referring to
the name of a class, which means that the component creates only component-
objects and dually the environment only environment objects.

To understand the bearing of this change on what is observable, we con-
centrate on the issue of instantiation across the demarcation line between com-
ponent and its environment. The environment is considered as the observing
context which tries to determine the behavior of the component or program

Object Connectivity and Full Abstraction for a Concurrent Calculus 39

under observation. So imagine that the component creates an instance of an en-
vironment class, and the first question is: does this yield a component object or
an environment object? As the code of the object is in the hand of the observer,
namely being provided by the external class, the further interaction between
the component and the newly created object can lead to observable effects and
must thus be part of the behavior at the component’s interface. In other words,
instances of environment classes belong to the environment, and dually those of
internal classes to the component.

To obtain a semantics which is abstract enough, it is crucial not just to cover
all possible interface behavior —there is little doubt that sequences of calls,
returns, and instantiations with enough information at the labels would do—
but to capture it ezactly, i.e., to exclude impossible environment interaction.
As an obvious example: two consecutive calls from the same thread without
outgoing communication in between cannot be part of the component behavior.

Whereas in the above situation, the object is instantiated to be part of the
environment, the reference to it is kept at the creator, for the time being. So
in case an object of the program, say o) instantiates two objects oo and o3 of
the environment, the situation informally looks as shown in Figure 1, where the
dotted bubbles indicate the scope of 0s, respectively of o3.

In this situation, an incoming call from
program environment the environment carrying both names o
1 C2 C3 and o3 is impossible, as the only entity
: aware of both references is 01. Unless the
component gives away the references to
the environment, oo, and o3 are and re-
main completely separated.
; . Thus, to exclude impossible combina-
N3 tions of object references in the commu-
B nication labels, the component must keep
track of which objects of the environ-
ment are connected. The component has,
of course, by no means full information
about the complete system; after all it can at most trace what happens at the
interface, and the objects of the environment can exchange information “be-
hind the component’s back”. Therefore, the component must conservatively over-
approximate the potential knowledge of objects in the environment, i.e., it must
make worst-case assumptions concerning the proliferation of knowledge, which
means it must assume that

Fig. 1. Instances of external classes

1. once a name is out, it is never forgotten, and
2. if there is a possibility that a name is leaked from one environment object
to another, this will happen.

Sets of environment objects which can possibly be in contact with each other
form therefore equivalence classes of names —we call them cliques— and the
formulation of the semantics must contain a representation of them. New cliques
can be created, as new objects can be instantiated without contact to others, and

40 E. Abrahdm et al.

furthermore cliques can merge, if the component leaks the identity of a member
of one clique to a member of another.

This paper investigates a class-based variant of the object calculus, formal-
izing the ideas sketched above about cliques of objects. Instantiation itself, even
across the environment-program boundary, is unobservable, since the calculus
does not have constructor methods. In the semantics, an externally instantiated
object is created only at the point when it is actually accessed the for the first
time, which we call “lazy instantiation”. For want of space, we concentrate here
on the intuition and stress the differences to the object-based setting. For deeper
coverage we refer to the technical reports [2] and [3].

The paper is organized as follows. Section 2 contains the syntax of the calcu-
lus in which the result is presented, and a sketch of its semantics. In particular,
the notions of lazy instantiation and connectivity of objects are formalized. Af-
terwards, Section 3 elaborates on the trace semantics, Section 4 fixes the notion
of observability, and Section 5 states the full abstraction result. Finally in Sec-
tion 6, we discuss related work.

2 A Concurrent Class Calculus

In this section, we present the calculus used in our development. As we con-
centrate on the semantical issues of connectivity of objects and the interface
behavior of a component, we only sketch the syntax, ignore typing issues and
also omit structural equivalence rules, as they are rather standard. As mentioned,
the reader will find details in the accompanying technical report.

The calculus is a syntactic extension of the concurrent object calculus from
[5,7]. The basic change is the introduction of classes, where a class is a named
collection of methods. In contrast to object references, class names are literals
introduced when defining the class; they may be hidden using the v-binder but
unlike object names, the scopes for class names are static. Object names, on the
other hand, are first-order citizens of the calculus in that they can be stored
in variables, passed to other objects as method parameters, making the scoping
dynamic, and especially they can be created freshly by instantiating a class.

A program is given by a collection of classes. A class c[O) carries a name ¢
and defines the implementation of its methods and fields. An object o[e, F] stores
the current value of the fields or instance variables and keeps a reference to the
class it instantiates. A method ¢(n:c). A(x1:T1,. .., 2,:Tk).t provides the method
body abstracted over the ¢-bound “self” parameter and the formal parameters of
the method [1]. Besides named objects and classes, the dynamic configuration of
a program can contain as active entities named threads n(t), which, like objects,
can be dynamically created. Unlike objects, threads are not instantiated by some
statically named entity (a “thread class” as in Java), but directly created by
providing the code. A thread basically is either a value (especially a reference
to another named entity) or a sequence of expressions, notably method calls
(written o.l(v)) and creation of new objects and new threads (new ¢ and new(t)
where ¢ is a class name and t a thread). We will generally use n and its syntactic

Object Connectivity and Full Abstraction for a Concurrent Calculus 41

Table 1. Abstract syntax

C:=0|C|C|v(nT).C|n[O)]|nln,F]|n(t) program
O : , F object
M = l m,...,l=m method suite
Fuo=l=f...,l= f fields
m = ¢(n T) (as T,....,2:T).t method
f = <(T)AQ field
t = | stop | letx:T =eint thread
eu=t|ifv=vtheneelsee expr.
| vl(v,...,v) | nl:=v| currentthread
| newn | new(t)
vi=z|n values

variants as name for threads (or just in general for names), o for objects, and ¢
for classes. Furthermore we will use f specifically for instance variables or fields,
we use f = v for field variable declaration, field access is written as =.f, and
field update® as f.z := v.

Concerning the operational semantics of the calculus, the basic steps are
mainly given in two levels: internal steps whose effect is confined within a com-
ponent, and those with external effect. Interested mainly in the external behavior
we elide the definition of the internal steps.

The external behavior of a component is given in terms of labeled transi-
tions describing the communication at the interface of an open program. For the
completeness of the semantics, it is crucial ultimately to consider only commu-
nication traces realizable by an actual program context which, together with the
component, yields a well-typed closed program.

The concentration on actually realizable traces has various aspects, e.g., the
transmitted values need to adhere to the static typing assumptions, only publicly
known objects can be called from the outside, and the like. Being concerned with
the dynamic relationship among objects, we omit also these aspects here. Besides
that, this part is rather standard and also quite similar to the one in [7].

2.1 Connectivity Contexts and Cliques

The informal discussion in the introduction argued that in the presence of in-
ternal and external classes and cross-border instantiation, the component must
keep track of which identities it gives away to which objects in order to exclude
impossible behavior as described for instance in connection with Figure 1. The
external semantics is formalized as labeled transitions between judgments of
the form

AEAREC:0;FEg (1)

where A; Ea are the assumptions about the environment of the component C
and O; Fg the commitments; alternative names are the required and the pro-

! We don’t use general method update as in the object-based calculus.

42 E. Abrahdm et al.

vided interface of the component. The assumptions consist of a part A concerning
the existence (plus static typing information) of named entities in the environ-
ment. For the book-keeping of which objects of the environment have been told
which identities, a well-typed component must take into account the relation
of object names from the assumption context A amongst each other, and the
knowledge of objects from A about those exported by the component, i.e., those
from ©. 2 In analogy to the name contexts A and ©, E 4 expresses assumptions
about the environment, and Fg commitments of the component:

EACAx(A+0). (2)

and dually Eg C O x (O 4+ A). We write 0; — 02 (“01 may know 05”) for pairs
from these relations. As mentioned, the component does not have full informa-
tion about the complete system and thus it must make worst-case assumptions
concerning the proliferation of knowledge. These worst-case assumptions are
represented as the reflezive, transitive, and symmetric closure of the <—-pairs of
objects from A the component maintains. Given A, @, and F, we write = for
this closure, i.e.,

=2 (=laU—|a) CAXA. (3)

Note that we close — only wrt. environment objects, but not wrt. objects at
the interface, i.e., the part of — C A x @. We also need the union = U =; <
C A x (A + ©), where the semicolon denotes relational composition. We write
=< for that union. As judgment, we use A; Eo b v; = vy : O, respectively
A;EabF vy == vy 0. For O, Eg, and A, the definitions are applied dually.

The relation = is an equivalence relation on the objects from A and partitions
them into equivalence classes. As a manner of speaking, we call a set of object
names from A (or dually from @) such as for all objects 0; and o2 from that
set, A; Ea o1 = 09 : O, a clique, and if we speak of the clique of an object we
mean the whole equivalence class.

2.2 External Steps

The external semantics is given by transitions between A; Ex F C' : ©; Eg judg-
ments (cf. Table 3). Besides internal steps a component exchanges information
with the environment via calls and returns. Using a lazy instantiation scheme for
cross-border object creation, there are no separate external labels for new-steps.
Thus, core labels « are of the form n{call 0.l(v)) and n(return(v)). Names may
occur bound in a label v(n:T').7, and receiving and sending labels are written as
~7 and 4!. In this extended abstract, we omit the typing premises in the opera-
tional rules (“only values consistent with the static typing assumptions may be

2 Besides the relationships amongst objects, we need to keep one piece of information
concerning the “connectivity” of threads. To exclude situations where a known thread
leaves the component into one clique of objects but later returns to the component
coming from a different clique without connection to the first, we remember for each
thread that has left the component the object from A it has left into.

Object Connectivity and Full Abstraction for a Concurrent Calculus 43

Table 2. Labels

== n(call 0.l(v)) | n{return(v)) | v(n:T).y basic labels
ax=~7]~! receive and send labels

2

Table 3. External steps

a=v(A,0). n(call 02.l(v))? dom(A ,0) C fn(n(call 02.1(v)))
6;EBo = O0;Ee + (0 ;1 03 —v) AjEa=AEa+ A0 (A,0)\n

A; EA Fn=o =< v,0s: [c] tylocked = let x T = o, blocks for oy int

CALLI,
A;Ea b= C || ntyiocked) : O3 BFo —

A;E‘A FC | CO)| n{letx:T = 02.1(v) in 0og return to o1 x; thiocked) : é;E‘@

a=v(0,A). n(return(v))! ©e,A)=)N b=ad\(6,4)
AEAn=A;Ea+ A i(n— o1 —) 6;Eo =O0;Eo + O ;E(C’,@)\n

RETO
A;Ea b v(®).(C || n{let x:T = oa return to o1 vint)): O; Eg —

A;Ex b v(d).(C | nit)) : 6; Eo

a=v(O0 ,A). n{call o2.l(v))! (@ ,A) = fn(n{call oz.l(v)) NP
b=d\(O,A) o€ dom(4)
A;EA =A;Ea+ A (n e 0y — v) 6;E0 =0;Eo +60 ;E(C,0)\n

CALLO
A;Ea b v(®).(C || n{let x:T = [01] 02.l(v) int)) : O; Eg —

A;Ex b v($).(C || n{let x:T = o1 blocks for osint)) : ©; Ee

a=v(A,0). n{return(v))? dom(A ,0) C fn(v)
O;Eo =0;Eo + O ,(n— 01 — v) AiEa=A;Ea+ A, (02— (A,0)\n
A BaAF 0s = v: 0

RETI
A;Epx b C || n{leto:T = o0y blocks for oz int) : ©@; Eo —» A; Ea b C || n(tlv/z]) : ©; Ee

c € dom(A)

NEWO 42y
A;Ea b n(letzic = newcint) : ©;Eg ~ A; Ea b v(oz:c).n(letxic = oz int) : O; Eg

received” and the like) as they are straightforward and we concentrate on the
novel aspects, namely the connectivity information.

Connectivity Assumptions and Commitments. As for the relationship of
communicated values, incoming and outgoing communication play dual roles: Eg
overapproximates the actual connectivity of the component, while the assump-
tion context F A is consulted to exclude impossible combinations of incoming
values. Incoming calls update the commitment context Fg in that it remem-
bers that the callee 03 now knows (or rather may know) the arguments v, and
furthermore that the thread n has entered o2. For incoming communication (cf.

44 E. Abrahdm et al.

rules CALLI; and RETI)? we require that the sender be acquainted with the
transmitted arguments.

For the role of the caller identity o1, a few more words are in order. The
antecedent of the call-rules requires, that the caller o; is acquainted with the
callee 0o and with all of the arguments. However, the caller is not transmitted
in the label which means that it remains anonymous to the callee.* To gauge,
whether an incoming call is possible and to adjust the book-keeping about the
connectivity appropriately, in particular when returning later, the transition
chooses among possible sources of the call. With the sole exception of the initial
(external) step, the scope of at least one object of the calling clique must have
escaped to the component, for otherwise there would be now way of the caller to
address oy as callee. In other words, for at least one object o1 from the clique of
the actual caller (which remains anonymous), the judgment A F o;:c holds prior
to the call. Furthermore it must be checked that the incoming thread originates
from a group of objects in connection with the one to which the thread had left
the component the last time: A; Eat n= o :6. Once chosen, the assumed
identity of the caller is remembered as part of the return-syntax.

It is worth mentioning that in rule RETI the proviso that the callee 02 knows
indirectly the caller oy, i.e., A; Ea F 05 =< 01 : @ is not needed. Neither is it
necessary to require in analogy to the situation for the incoming call that the
thread is acquainted with the callee. If fact, both requirements will be automat-
ically assured for traces where calls and returns occur in correct manner.

A commonality for incoming communications from a thread n is that the
(only) pair n < o for some object reference o is removed from F, for which
we write Ea\n. While Ex imposes restrictions for incoming communication,
the commitment context Fg is updated when receiving new information. For
instance in CALLIy, the commitment E@ after reception marks that now the
callee 09 is acquainted with the received arguments and furthermore that the
thread n is visiting (for the time being) the callee 0y. For outgoing communica-
tion, the Ex and Eg play dual roles. In the respective rules, E(C, ©’) stands
for the actual connectivity of the component after the step, which needs to
be made public in the commitment context, in case new names escape to the
environment.

Scoping and Lazy Instantiation. In the explanation so far, we omitted the
handling of bound names, in particular bound object references. In the presence
of classes, a possible interaction between component and environment is in-
stantiation. Without constructor methods and assuming an infinite heap space,

3 We omit rules dealing with the initial situation where the first thread crosses the
interface between environment and component.

4 Of course, the caller may transmit its identity to the callee as part of the arguments,
but this does not reveal to the callee who “actually” called. Indeed, the actual
identity of the caller is not needed; it suffices to know the cligue of the caller. As
representative for the clique, an equivalence class of object identities, we simply pick
one object.

Object Connectivity and Full Abstraction for a Concurrent Calculus 45

instantiation itself has no immediate, observable side-effect. An observable effect
is seen only at the point when the object is accessed.

Rule NEWO,;, describes the local instantiation of an external class. Instead
of exporting the newly created name of the object plus the object itself immedi-
ately to the environment, the name is kept local until, if ever, it gets into contact
with the environment. When this happens, the new instance will not only be-
come known to the environment, but the object will also be instantiated in the
environment.

For incoming calls, for instance, the binding part is of the form (4’, ©') where
we mean by convention, that A’ are the names being added to A, and analogously
for ©" and ©. For object names, the distinction is based on the class types. For
thread names, the reference is contained in A’ and @', and class names are never
transmitted. For the object names in the incoming communication A’ contains
the external references which are freshly introduced to the component by scope
extrusion. @’ on the other hand are the objects which are lazily instantiated as
side-effect of this step, and which are from then on part of the component. In
the rules, the newly instantiated objects are denoted as C(©0’).

Note that whereas the acquaintance of the caller with the arguments trans-
mitted free is checked against the current assumption, acquaintance with the
ones transmitted bound is added to the assumption context.

3 Trace Semantics and Ordering on Traces

Next we present the semantics for well-typed components, which, as in the
object-based setting, takes the sequences of external steps of the program frag-
ment as starting point.

Not surprisingly, a major complication now concerns the connectivity of ob-
jects. In this context, the caller identity, while not visible by the callee, plays
a crucial role in keeping track of assumed connectivity, in particular to connect
the effect of a return to a possible caller clique. To this end, the operational
semantics hypothesizes about the originator of incoming calls and remembers
the guess as “auxiliary” annotation in the code for return (cf. rule L-CALLIy
from Table 3).

The (hypothetical) connectivity of the environment influences what is observ-
able. Very abstractly, the fact the observer falls into a number of independent
cliques increases the “uncertainty of observation”. We can point to two reasons
responsible for this effect. One is that separate observer cliques cannot deter-
mine the relative order of events concerning only one of the environment cliques.
To put it differently: a clique of objects can only observe the order of events
projected to its own members. We will worry about this later when describing
the all possible reorderings or interleavings of a given trace. Secondly, separate
observers cannot cooperate to compare identities. This means, as long as sep-
arated, the observers cannot find out whether identities sent to each of them
separately are the same or not. In terms of projections to the observing clique
it means that local projections are considered up to a-conversion, only.

46 E. Abrahdm et al.

The above discussion should not mislead us to think that the behavior of
two observing cliques is completely independent. One thing to keep in mind is
that the observers can merge. This means that identities, separate and local
prior to the merge, become comparable, and the now joint clique can find out
whether local interaction of the past used the same identities or not. The ab-
solute order of local events of the past, however, cannot be reconstructed after
merging.

Another more subtle point, independent from merging of observers, is that to
a certain degree, the events local to one clique do influence interaction concerning
another clique. This in other words implies that considering only the separate
local projections of a global behavior to the observers is too abstract to be
sound.

To understand the point, consider as informal example a situation of a com-
ponent C7 with two observing cliques in the environment and a sequence s of
labels at the interface of the component being observed. Assume further that s;
is the projection of s to the first observer and s, the projection to the second,
and assume that s = s152 meaning that s; precedes so when considered as global
behavior. For sake of the argument, assume additionally that C; is not able to
perform the interaction in the swapped order sys1. Given a second component
C being more often successful, i.e., that C7 T4y Co, what does this imply
for Cy’s behavior? The definition of may-preorder is given in Section 4. For the
moment, being successful can be thought of being able to reach some predefined
point which counted as success.

Since the environment can be programmed in such a way that it reports
success only after completing s; resp. so, it is intuitively clear that Cy must
be able to exhibit s resp. so. But the environment cannot observe whether Co
performs s; and so in the same run, as does C7. We can only be sure that
there is a run of Cy which is able to do s; and a (potentially different) one
which does so, each of which is taken as independent sign of success. This does
not mean, however, that the order of s;so does not play a role at all. Consider
for illustration the situation where C5 can perform sss; but not syse as Cy:
In this case, C1 Lmay Ca, i-e., Cy is not successful while C; is, namely in an
environment where s is possible and reports success but sy can be hindered from
completion. In other words, taking the behavior s;s5 of C] as starting point we
cannot consider in isolation the fact that so is possible by C5 as well, the order
of s1 preceding sy is important inasmuch as it s; can prevent success for so. So
C1 Zmay C2 and the fact that C; performs the sequence sisp means, that Cs
can perform s, after a prefix of s;. Since the common environment has already
proven in cooperation with C; that it is able to perform s;, it cannot prevent
success of Cy by blocking.

To sum up and independently of the details: to capture the observable be-
havior appropriately, we need to be able to define the projection of the external
steps to the observer cliques. Now the labels for method calls in the external se-
mantics do not contain information concerning the caller, which means given a

Object Connectivity and Full Abstraction for a Concurrent Calculus 47

trace as a sequence of labels, we have no indication for incoming calls concerning
the originating environment clique.®

A way to remedy this lack of information is to augment the labels as recorded
in the traces by the missing information. So instead of the call label described in
Section 2.2, we use n([o1]call 02.1(v)) as annotated call label, where 0; denotes
the caller, respectively the clique of the caller. The augmented transitions are
generated simply by using the caller rules from Table 3 where the caller is added
to the transition labels in the obvious way.

A trace of a well-typed component is a sequence s of external steps, where
we write A1; Ea, F Oy : O1; B9, == Ag; Ea, - Cy : O9;FEg,. For Ay; Ea, F
Cy : 01; Eg, = Ag; En, B Oy Og; Eg,, we write shorter Ay; Ea, F Cy -
@1;E@1 — AQ;EA2 FCs: QQ;EQZ.

With this information we can define the projection of a trace onto a clique
as the part of the sequence containing all the labels with objects from that
clique. Remember that a clique of an object o € @ consists of all objects from
O acquainted with o. Thus the equivalence = partitions © into equivalence
classes, and formally we could write [o],,_ or [o],_ for that equivalence class.
For simplicity, we often just write [o].

The definition of projection of an (augmented) trace onto a clique of environ-
ment objects is straightforward, one simply jettisons all actions not belonging to
that clique. One only has to be careful dealing with exchange of bound names,
i.e., scope extrusion, since names sent for the first time to a clique are to be
considered as locally fresh, even if the name may globally be known to other
environment cliques.

We can now define the order on traces as follows.

Definition 1. A; Ea F Cy : O;Eg Cirace A; Ea F Cy 0 O; Eg, if the following
holds. If A;Ex = Cy : ©;FBg =% A;E'\ - Cf : ©';El, then AjEA = Cy
0;Eo == A" ENECY - 0" EY such that

— t ljo 1= sa ljo,) for some clique [0"] according to ©"; Eg and when [o,] is
the environment clique to which label a belongs, and

— for all cliques [0"] according to A”; E'}, there exists a clique [0'] according
to A'; E'y such that t |, 1< sa ljo1.

4 Notion of Observation

Full abstraction is a comparison between two semantics, where the reference
semantics to start from is traditionally contextually defined and based on a
some notion of observability.

5 For outgoing calls, the relevant environment clique is mentioned explicitly as the
receiver of the call. Concerning returns, the concerned environment clique is deter-
mined by the matching call.

48 E. Abrahdm et al.

As starting point we choose, as [7], a (standard) notion of semantic equiva-
lence or rather semantic implication —one program allows at least the observa-
tions of the other— based on a particular, simple form of contextual observation:
being put into a context, the component, together with the context, is able to
reach a defined point, which is counted as the successful observation. A context
C[.] is a program “with a hole”. In our setting, the hole is filled with a program
fragment consisting of a component C' in the syntactical sense, i.e., consisting of
the parallel composition of (named) classes, named objects, and named threads,
and the context is the rest of the programs such that C[C] gives a well-typed
closed program A; Ea F C' : ©; Eg, where closed means that it can be typed in
the empty contexts, i.e., = C": ().

To report success, we assume an external class with a particular success-
reporting method. So assume a class ¢, of type [(succ : () — none), abbre-
viated as barb. A component C strongly barbs on ¢, written C |, if C =
v(n:T, b:e,).C" || n(let z:none = b.succ() int), i.e., the call to the success-method
of an instance of ¢ is enabled. Furthermore, C' barbs on ¢y, written C' |.,, if it
can reach a point which strongly barbs on ¢, i.e., C = C’ |.,. We can now
define may testing preorder [6] as in [7].

Definition 2 (May testing). Assume A; EA F Cy: ©;Eg and A; EA F Csy
O;Eg. Then A; Ep - Cy Cray Co: 5 Eg, if (Cy1 || C) e, implies (Ca || C) Jo,
for all @, cy:barb; Eg = C : A; EA.

5 Full Abstraction

The proof that may-testing coincides with order on traces given in Definition 1
has two directions: compared to T4y, the relation Ty is neither too abstract
(soundness) nor too concrete (completeness).

For lack of space, we simply state the soundness result here. The proof is
rather similar to the one for the object-based case 7] and rests on the ability to
compose a component and an environment, performing complementary traces,
into one global program (plus the dual property of decomposition). We refer to
the full version [3] for details.

Proposition 1 (Soundness). If A;Ea B Cy @ ©;FE9 Cirgee A;EA F Cy
O; Eg, then A; EAF C1 Ty Cr 1 O; Eo.

Completeness asserts the reverse direction:

Proposition 2 (Completeness). If A;Ex = Cp Ty Co @ O;Eg, then
A;EA [Cl : @;E@ Etmce A;EA = Cg . @;E@.

Concerning completeness, we sketch here one core aspect part of the argu-
ment. At the heart, completeness is a constructive argument: given a trace s,
construct a component Cy that exhibits the trace s and not simply realize the
trace, but realize it exactly, up-to unavoidable reordering and prefixing.

Object Connectivity and Full Abstraction for a Concurrent Calculus 49

Table 4. Legal traces

L-EmpPTY

A;Ea 7> e:trace ©; Eg
a=v(A,0). n{call 02.l(v))? At o1 e AFrp>a:O
@,;E,@:@;E@+(@;n<—>02;>’v) A';EA:A;EA+A;01<—>(A,@)\7L
A’;EA'_TL‘:,Oll:,‘—"U,OQZé A’;EAI—TaOIDS:traceé;E’@

L-CaLLl
A;Ea 7> as: trace ©; Eg
a=v(0 ,A). n{return(v))! popnr=v(A ,0). n(loi]call 0s.l(v))?
AiEpa=A;Ea+Ain—o0, —v O;Ec=06;FEe 4+ 6 50— (0,A)\n
é;E"(_)FOQ‘:,‘—WU:AI A’;E"Akrabs:traceé;E"@
L-RETO

A;EabEr>as: trace ©; Eg

Legal Traces. To do so, we must first characterize which traces (the “legal”
ones) can occur at all, and again the crucial difference to the object-based case
is to take connectivity into account to exclude impossible combinations of trans-
mitted object names and threads.

The legal traces are specified by a system for judgments of the form A; Ea F
r > s : trace O; Fg stipulating that under the type and relational assumptions
A and Fa and with the commitments © and Fg, the trace s is legal. Three ex-
emplary rules for legal traces are shown in Table 4; not shown are two dual rules
for outgoing calls and incoming returns, and furthermore two rules specifying
the situation for the initial calls, which are similar to L-CALLI. For simplicity,
we omit premises dealing with static aspects of typing, as we did for the exter-
nal semantics. As in the operational semantics, the caller identity, even if not
part of the label, is guessed and remembered, here in the history . The premise
AFr>a: O asserts that after r, the action a is enabled, and pop n r picks the
call matching the return in question. See [3] for details.

6 Conclusion

Inspired by the work of [7], we presented an operational semantics of a class-
based, object-oriented calculus with multithreading. The seemingly innocent step
from an object-based setting as in [7] to a framework with classes requires quite
some extension in the operational semantics to characterize the possible behav-
ior of a component. In particular it is necessary to keep track of the potential
connectivity of objects of the environment to exclude impossible communication
labels. It is therefore instructive, to review the differences in this conclusion,
especially to try to understand how the calculus of [7] can be understood as a
special case of the framework explored here.

The fundamental dichotomy underlying the observational definition of equiv-
alence is the one between the inside and the outside: program or component vs.
environment or observer, or in game-theoretical terms, player vs. opponent. This

50 E. Abrahdm et al.

leads to the crucial difference between object-based languages, instantiating from
objects, and class-based language, instantiating from classes: In the class-based
setting, instantiation may cross the demarcation line between component and
environment, while in the object-based setting, this is not possible: the program
only instantiates program objects, and the environment only objects belonging
to the environment. All other complications follow from this difference, the most
visible being that it is necessary to represent the dynamic object structure into
the semantics, or rather an approximation of the connectivity of the environ-
ment objects. Another way to see it is, that in the setting of [7], there is only
one clique in the environment, i.e., in the worst case, which is the relevant one,
all environment objects are connected with each other. Since the component
cannot create environment objects (or vice versa), new isolated cliques are never
created. The object-based case can therefore be understood by invariantly (and
trivially) taking Eao = A x (A 4+ ©), while in our setting, Fo may be more
specific.

Further Related Work. [12] investigates the full abstraction problem in an
object calculus with subtyping. The setting is a bit different from the one as
used here as the paper does not compare a contextual semantics with a denota-
tional one, but a semantics by translation with a direct one. The paper considers
neither concurrency nor aliasing. [4] presents a full abstraction result for the -
calculus, the standard process algebra for name passing and dynamically chang-
ing process structures. The extensional semantics is given as a domain-theoretic,
categorical model, and using bisimulation equivalence as starting point, not may
testing resp. traces as here. [13] gives equational full abstraction for standard
translation of the polyadic m-calculus into the monadic one. Without additional
information, the translation is not fully abstract, and [13] introduces graph-types
as an extension to the m-calculus sorting to achieve full abstraction. The graph
types abstract the dynamic behavior of processes. In capturing the dynamic be-
havior of interaction, Yoshida’s graph types are rather different from the graph
abstracting the connectivity of objects presented here. Recently, Jeffrey and
Rathke [8] extended their work on trace-based semantics from an object-based
setting to a core of Java (called Java Jr.), including classes and subtyping. How-
ever, their semantics avoids the issue of object connectivity by using a notion
of package.

Acknowledgements. We thank Andreas Griiner for careful reading, discussing,
helping to clarify and improving a number of half-baken previous versions of the
document. Likewise Karsten Stahl and Harald Fecher for “active listening” even
to the more Byzantine details and dead ends of all this. We are also indepted
to Ben Lukoschus for helping with some of the more arcane TEX-stunts and to
Willem-Paul de Roever for spotting a number of sloppy points. Finally, we thank
the reviewers for their insightful remarks.

Object Connectivity and Full Abstraction for a Concurrent Calculus 51

References

1.

2.

10.

11.

12.

13.

M. Abadi and L. Cardelli. A Theory of Objects. Monographs in Computer Science.
Springer, 1996.

E. Abrahém, M. M. Bonsangue, F. S. de Boer, and M. Steffen. A structural opera-
tional semantics for a concurrent class calculus. Technical Report 0307, Institut fiir
Informatik und Praktische Mathematik, Christian-Albrechts-Universitat zu Kiel,
Aug. 2003.

. E. Abrahém, M. M. Bonsangue, F. S. de Boer, and M. Steffen. Object connectivity

and full abstraction for a concurrent calculus of classes. Preliminary technical
report, Institut fiir Informatik und Praktische Mathematik, Christian-Albrechts-
Universitat zu Kiel, Jan. 2005.

M. Fiore, E. Moggi, and D. Sangiorgi. A fully-abstract model for the m-calculus
(extended abstract). In Proceedings of LICS '96, pages 43-54. IEEE, Computer
Society Press, July 1996.

A. D. Gordon and P. D. Hankin. A concurrent object calculus: Reduction and
typing. In U. Nestmann and B. C. Pierce, editors, Proceedings of HLCL 98,
volume 16.3 of Electronic Notes in Theoretical Computer Science. Elsevier Science
Publishers, 1998.

M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.

A. Jeffrey and J. Rathke. A fully abstract may testing semantics for concurrent
objects. In Proceedings of LICS ’02. IEEE, Computer Society Press, July 2002.
A. Jeffrey and J. Rathke. Java Jr.: A fully abstract trace semantics for a core Java
language. 2005. Submitted for publication.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part I/II.
Information and Computation, 100:1-77, Sept. 1992.

A. M. Pitts and D. B. Stark. Observable properties of higher-order functions that
dynamically create local names, or: What’s new. In A. M. Borzyszkowski and
S. Sokotowski, editors, Proceedings of MFCS ’93, volume 711 of Lecture Notes in
Computer Science, pages 122—141. Springer-Verlag, Sept. 1993.

D. Sangiorgi and D. Walker. The m-calculus: a Theory of Mobile Processes. Cam-
bridge University Press, 2001.

R. Viswanathan. Full abstraction for first-order objects with recursive types and
subtyping. In Proceedings of LICS ’98. IEEE, Computer Society Press, July 1998.
N. Yoshida. Graph types for monadic mobile processes. In V. Chandru and
V. Vinay, editors, Proceedings of FSTTCS ’96, volume 1180 of Lecture Notes in
Computer Science, pages 371-386. Springer-Verlag, 1996. Full version as Technical
Report ECS-LFCS-96-350, University of Edinburgh.

Specifying Software Connectors

Marco Antonio Barbosa and Luis Soares Barbosa

Departamento de Informética — Universidade do Minho,
Campus de Gualtar 4710-057 — Braga — Portugal
{marco.antonio, 1lsb}@di.uminho.pt

Abstract. Orchestrating software components, often from independent
suppliers, became a central concern in software construction. Actually,
as relevant as components themselves, are the ways in which they can
be put together to interact and cooperate in order to achieve some com-
mon goal. Such is the role of the so-called software connectors: external
coordination devices which ensure the flow of data and enforce synchroni-
zation constraints within a component’s network. This paper introduces
a new model for software connectors, based on relations extended in time,
which aims to provide support for light inter-component dependency and
effective external control.

1 Introduction

The expression software connector was coined by software architects to repre-
sent the interaction patterns among components, the latter regarded as basic
computational elements or information repositories. Their aim is to mediate the
communication and coordination activities among components, acting as a sort
of glueing code between them. Examples range from simple channels or pipes,
to event broadcasters, synchronisation barriers or even more complex structures
encoding client-server protocols or hubs between databases and applications.

Although component-based development [19,25,15] became accepted in in-
dustry as a new effective paradigm for Software Engineering and even considered
its cornerstone for the years to come, there is still a need for precise ways to
document and reason about the high-level structuring decisions which define a
system’s software architecture.

Conceptually, there are essentially two ways of regarding component-based soft-
ware development. The most wide-spread, which underlies popular technologies
like, e.g., CORBA [24], DCOM [14] or JAVABEANS [16], reflects what could be called
the object orientation legacy. A component, in this sense, is essentially a collec-
tion of objects and, therefore, component interaction is achieved by mechanisms
implementing the usual method call semantics. As F. Arbab stresses in [3] this

induces an asymmetric, unidirectional semantic dependency of users
(of services) on providers (...) which subverts independence of compo-
nents, contributes to the breaking of their encapsulation, and leads to
a level of inter-dependence among components that is no looser than
that among objects within a component.

Z. Liu and K. Araki (Eds.): ICTAC 2004, LNCS 3407, pp. 52-67, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Specifying Software Connectors 53

An alternative point of view is inspired by research on coordination languages
[13,21] and favors strict component decoupling in order to support a looser
inter-component dependency. Here computation and coordination are clearly
separated, communication becomes anonymous and component interconnection
is externally controlled. This model is (partially) implemented in JAVASPACES
on top of JINI [20] and fundamental to a number of approaches to component-
ware which identify communication by generic channels as the basic interaction
mechanism — see, e.g., REO [3] or P1ccoLa [23,18].

Adopting the latter point of view, this paper focuses on the specification of
software connectors either as relations over a temporarily labelled data domain
(representing the flow of messages) or as relations extended in time, i.e., defined
with respect to a a memory of past computations encoded as an internal state
space. The latter model extends the former just as a labelled transition system
extends a simple relation. Formally, we resort to coalgebraic structures [22] to
model such extended relations, pursuing a previous line of research on applying
coalgebra theory to the semantics of component-based software development
(see, eg, [5,6,17].).

The paper is organized as follows: a semantic model for software connectors
is introduced in section 2 and illustrated with the specification of one of the
most basic connectors: the asynchronous channel. The model is further devel-
oped in section 3 which introduces a systematic way of building connectors by
aggregation of ports as well as two combinators encoding, respectively, a form of
concurrent composition and a generalization of pipelining. Section 4 illustrates
the expressiveness of this model through the discussion of some typical examples
from the literature. Finally, section 5 summarizes what has been achieved and
enumerates a few research questions for the future.

Notation. The paper resorts to standard mathematical notation emphasizing a
pointfree specification style (as in, e.g., [9]) which leads to more concise descrip-
tions and increased calculation power. The underlying mathematical universe is
the category of sets and set-theoretic functions whose composition and identity
are denoted by - and id, respectively. Notation (¢ — f, ¢g) stands for a con-
ditional statement: if ¢ then apply function f else g. As usual, the basic set
constructs are product (A x B), sum, or disjoint union, (A + B) and function
space (B*). We denote by m : A x B — A the first projection of a product
and by ¢1 : A — A + B the first embedding in a sum (similarly for the oth-
ers). Both x and + extend to functions in the usual way and, being universal
constructions, a canonical arrow is defined to A x B from any set C and, sym-
metrically, from A + B to any set C, given functions f: C — A,g: C — B
and [: A — C,h : B — (|, respectively. The former is called a split and
denoted by (f,g), the latter an either and denoted by [I, h], satisfying

k=(f9) & m-k=fAm-k=g (1)
]{J:[l,h} &S kety=IlNk-wa=h (2)

Notation B4 is used to denote function space, i.e., the set of (total) functions
from A to B. It is also characterized by an universal property: for all function

54 M.A. Barbosa and L.S. Barbosa

f: Ax C — B, there exists a unique f : A — BY, called the curry of f, such
that f = ev - (f x C). Finally, we also assume the existence of a few basic sets,
namely (), the empty set and 1, the singleton set. Note they are both ‘degener-
ate’ cases of, respectively, sum and product (obtained by applying the iterated
version of those combinators to a nullary argument). Given a value v of type
X, the corresponding constant function is denoted by v : 1 — z. Of course
all set constructions are made up to isomorphism. Therefore, set B = 1 4+ 1 is
taken as the set of boolean values true and false. Finite sequences of X are de-
noted by X*. Sequences are observed, as usual, by the head (head) and tail (tail)
functions, and built by singleton sequence construction (singl) and concatena-
tion (—).

2 Connectors as Coalgebras

2.1 Connectors

According to Allen and Garlan [1] an expressive notation for software connec-
tors should have three properties. Firstly, it should allow the specification of
common patterns of architectural interaction, such as remote call, pipes, event
broadcasters, and shared variables. Secondly, it should scale up to the description
of complex, eventually dynamic, interactions among components. For example,
in describing a client—server connection we might want to say that the server
must be initialized by the client before a service request becomes enabled. Fi-
nally, it should allow for fine-grained distinctions between small variations of
typical interaction patterns.

In this paper a connector is regarded as a glueing device between software
components, ensuring the flow of data and synchronization constraints. Software
components interact through anonymous messages flowing through a connec-
tor network. The basic intuition, borrowed from the coordination paradigm, is
that connectors and components are independent devices, which make the latter
amenable to external coordination by the former.

Connectors have interface points, or ports, through which messages flow. Each
port has an interaction polarity (either input or output), but, in general, con-
nectors are blind with respect to the data values flowing through them. Con-
sequently, let us assume D as the generic type of such values. The simplest
connector one can think of — the synchronous channel — can be modelled just
as a function [e——>e] : D — D. The corresponding temporal constraint
— that input and output occur simultaneously — is built-in in the very notion
of a function. Such is not the case, however, of an asynchronous channel whose
synchronization constraints entails the need for the introduction of some sort
of temporal information in the model. Therefore, we assume that, on crossing
the borders of a connector, every data value becomes labelled by a time stamp
which represents a (rather weak) notion of time intended to express order of oc-
currence. As in [3], temporal simultaneity is simply understood as atomicity, in
the sense that two equally tagged input or output events are supposed to occur
in an atomic way, that is, without being interleaved by other events.

Specifying Software Connectors 55

In such a setting, the semantics of a connector C', with m input and n output
ports, is given by a relation

[C]:(DxT)" — (DxT)™ (3)
The asynchronous channel, in particular, is specified by
[e——=e] C DxT)x (DxT) = {((dt),(d,t))|d=d Nt >t}

This simple model was proposed by the authors in [7], where its expressive
power and reasoning potential is discussed. Note that with the explicit represen-
tation of a temporal dimension one is able to model non trivial synchronization
restrictions. Relations, on the other hand, cater for non deterministic behaviour.
For example, a lossy channel, i.e., one that can loose information, therefore mod-
eling unreliable communication, is specified by a correflexive relation over D x T,
i.e., a subset of the identity Idpyr.

On the other hand it seems difficult to express in this model the FIFO require-
ment usually associated to an asynchronous channel. The usual way to express
such constraints, requiring a fine-grain control over the flow of data, resorts to
infinite data structures, typically streams, i.e., infinite sequences, of messages (as
in [4,3] or [8]). An alternative, more operational, approach, to be followed in the
sequel, is the introduction of some form of internal memory in the specification
of connectors. Let U be its type, which, in the asynchronous channel example,
is defined as a sequence of D values, i.e., U = D*, representing explicitly the
buffering of incoming messages. The asynchronous channel is, then, given by the
specification of two ports to which two operations over D*, corresponding to the
reception and delivery of a D value, are associated. The rationale is that the
operations are activated by the arrival of a data element (often referred to as a
message) to the port. Formally,

receive : D* x D — D*
= ~ -(id x singl)
deliver : D* — D* x (D+1)
= (tl,hd)

Grouping them together leads to a specification of the channel as an elementary
transition structure over D*, i.e., a pointed coalgebra ([] € D*, ¢ : D* — (D* x
(D + 1)) P+ where

z = D* ~ (D+ 1) dr ID)* % D+D* receive-+deliver]D)* +]D)* « (D+ 1)

lidx 12,id]
=

— = L D*x14+D*x (D+1) D* x (D +1)

Note how this specification meets all the exogenous synchronization con-
straints, including the enforcing of a strict FIFO discipline. The temporal di-
mension, however, is no more explicit, but built-in in coalgebra dynamics. We
shall come back to this in section 5. For the moment, however, let us elaborate on
this example to introduce a general model of software connectors as coalgebras.

56 M.A. Barbosa and L.S. Barbosa

2.2 The General Model

A software connector is specified by an interface which aggregates a number of
ports represented by operations which regulate its behaviour. Each operation
encodes the port reaction to a data item crossing the connector’s boundary. Let
U be the type of the connector’s internal state space and D a generic data domain
for messages, as before. In such a setting we single out three kinds of ports with
the following signatures:

post : U — UP
read : U — (D+1)
get : U—Ux(D+1)

—
W
=

—~
D Ot
=

where

— post is an input operation analogous to a write operation in conventional
programming languages (see e.g., [2,21,3]). Typically, a post port accepts
data items and store them internally, in some form.

— read is a non-destructive output operation. This means that through a read
port the environment might ‘observe’” a data item, but the connector’s state
space remains unchanged. Of course read is a partial operation, because there
cannot be any guarantee that data is available for reading.

— get is a destructive variation of the read port. In this case the data item is
not only made externally available, but also deleted from the connector’s
memory.

As mentioned above, connectors are formed by the aggregation of a number
of post, read and get ports. According to their number and types one specific
connectors with well-defined behaviours may be defined. Let us consider some
possibilities.

Sources and Sinks. The most elementary connectors are those with a unique
port. According to its orientation they can be classified as

— Data sources, specified by a single read operation
O = (deD,t; :D—D+1) (7)

defined over state space U = D and initialized with value d.

— Data sinks, ie, connectors which are always willing to accept any data item,
discarding it immediately. The state space of data sinks is irrelevant and,
therefore, modeled by the singleton set 1 = {x}. Formally,

¢ = (xc1,!:1 -1 (8)

where ! is the (universal) map from any object to the (final) set 1.

Specifying Software Connectors 57

Binary Connectors. Binary connectors are built by the aggregation of two
ports, assuming the corresponding operations are defined over the same state
space. This, in particular, enforces mutual execution of state updates.

— Consider, first, the aggregation of two read ports, denoted by read; and reads,
with possibly different specifications. Both of them are (non destructive)
observers and, therefore, can be simultaneously offered to the environment.
The result is a coalgebra simply formed by their split:

¢ = (ueU,((reads,ready) : U — (D+1) x (D + 1)) 9)
— On the other hand, aggregating a post to a read port results in
¢ = (u €U, (post,read) : U — UP x (D + 1)) (10)

— Replacing the read port above by a get one requires an additive aggregation
to avoid the possibility of simultaneous updates leading to

c=(weUn.:U— (Ux(D+1)"*) (11)

where!

e =UxD+1) &, yyp+v 22U g LuxD+1)

[id X 2,id]
_

— =S Ux1+Ux(D+1) Ux(D+1)

Channels of different kinds are connectors of this type. Recall the asyn-
chronous channel example above: ports identified by receive and deliver have
the same signature of a post and a get, respectively. An useful variant is the
filter connector which discards some messages according to a given predicate
¢ : 2 «— . The get port is given as before, i.e., (tl, hd), but post becomes
conditional on predicate ¢, i.e.,

post = ¢ — —~ -(id x singl),id
— A similar scheme is adopted for the combination of two post ports:
c = (uel,n,:U—UPHD) (12)
where

e =UxD+D) — ¥ UxD+UxD

post, +post,
_—

U+U —L U

! In the sequel dr is the right distributivity isomorphism and V the codiagonal function
defined as the either of two identities, i.e., V = [id, id].

58 M.A. Barbosa and L.S. Barbosa

The General Case. Examples above lead to the specification of the following
shape for a connector built by aggregation of P post, G get and R read ports:

¢ = (weU (Ye,pe) : U — (U x (D+1)P>PFHE 5 (D +1)F) (13)
where p. is the split the R read ports, i.e.,
pe: U— D+1)xMD+1)x...x (D+1) (14)

and, 7. collects ports of type post or get, which are characterized by the need
to perform state updates, in the uniform scheme explained above for the binary
case. Note that this expression can be rewritten as

U= _U"+> UxD+1)x [[(+1) (15)

ieP jea kER

which is, however, less amenable to symbolic manipulation in proofs.

3 Combinators

In the previous section, a general model of software connectors as pointed coal-
gebras was introduced and their construction by port aggregation discussed. To
obtain descriptions of more complex interaction patterns, however, some forms
of connector composition are needed. Such is the topic of the present section
in which two combinators are defined: a form of concurrent composition and a
generalisation of pipelining capturing arbitrary composition of post with either
read or get ports.

3.1 Concurrent Composition

Consider connectors ¢; and ¢y defined as
ci = (u; € Uy, (yi, pi) « (U x (D + 1))FixP+Gi (D + 1)Ri)

with P; ports of type post, R; of type read and G; of type get, for i = 1,2.
Their concurrent composition, denoted by c¢; X c5 makes externally available
all ¢; and ¢ single primitive ports, plus composite ports corresponding to the
simultaneous activation of post (respectively, get) ports in the two operands.
Therefore, P’ :P1+P2+P1 XPQ, G’ :G1+G2+G1 XGQ and R,:R1+R2
become available in ¢; K ¢y as its interface sets. Formally, define

e My U — (U/ ~ (D+ 1))P xD+G % (D+ l)R (16)

where

Ye1Mey = Uy > Ug > (P1 + Py + Py > Pp) <D+ (G1 + Ga + G1 > Ga) =
(Up > (Pp *D+4 Gyp) > Up + Uy > Up > (Py xD+ Gp) + Uy > (P <D+ Gy) > U > (P <D+ Gy)

id+-id
DTEHEIEINIIZ () = (D4 1)) = Ug + Up = (Ug < (0 + 1) + (U1 = (O + 1)) x (U= (D + 1))

v +id

— Uy =< Ug = (D4 1) + Uy =< Ug = (D + 1) + Uy < Uy x (D4 1)2

Uy > Ug =< (D4 1) + Uy > Ug =< (D4 1) > Ug(D + 1) = Uy > U > ((D+ 1)+ (D+1))2

Specifying Software Connectors 59
and
PeBe, =Up x Uy 222, D+ 1)B x (D+1)F2 —=— (D4 1)Br+Re

3.2 Hook

The hook combinator plugs ports with opposite polarity within an arbitrary
connector

= (e U, (Ye,pe) : U — (U x (D + 1)) x (D +1)F)

There are two possible plugging situations:

1. Plugging a post port p; to a read r; one, resulting in

pc*lf;i = <T1,...7Tj,1,7"j+1,...,TR>

0><|d

Ux(P-1)xD+@G)

[P1,-Pi—1,Dit 150, Pp)F+[915--,9G]

Yeaps Ux((P-1)xD+G) ——

—— YpUxD+3sU

U4+Ux(D+1) —— Ux1+Ux (D+1)
[idx¢2,id]

Ux (D+1)
where 0 : U — U

0=y 2 . UxU 2, UxD+1

Pi+id

— = L UxD+U 2T, U+U—>U

2. Plugging a post port p; to a get g; one, resulting in
pc‘"l,lz; = Pc
T = Ux ((P—1)xD+(G-1)) 22,
Ux((P-1)xD+(G-1))
—— Y UxD+Y U

[P1ysPim1,Pit 150, Pp) [G150 195 —1,95+1,--,9G]

U4+Ux(D+1) —— Ux1+Ux (D+1)
[idXLQ,id] U % (ID)+ 1)
where 0 : U — U
0 =U 25 Ux(D+1) —=— UxD+U
RN § Y § S N

60 M.A. Barbosa and L.S. Barbosa

Note that, according to the definition above, if the result of a reaction at a
port of type read or get is of type 1, which encodes the absence of any data item
to be read, the associated post is not activated and, consequently, the interaction
does not become effective.

Such unsuccessful read attempt can alternatively be understood as a pend-
ing read request. In this case the intended semantics for interaction with the
associated post port is as follows: successive read attempts are performed un-
til communication occurs. This version of hook is denoted by r'? ¢ and easily
obtained by replacing, in the definition of 8 above, step

UxD+U 21 vtu

by

UxD+U 2% y4+vU

Both forms of the hook combinator can be applied to a whole sequence of
pairs of opposite polarity ports, the definitions above extending as expected.

The two combinators introduced in this section can also be put together to
define a form of sequential composition in situations where all the post ports of
the second operand (grouped in in) are connected to all the read and get ports of
the first (grouped in out). It is assumed that hooks between two single ports ex-
tend smoothly to any product of ports (as arising from concurrent composition)
in which they participate. Formally, we define by abbreviation

c13Co abv (c1 M) ﬁf,ﬁt (17)
and .
c1 X co ay r’if;t (61 D Cg) (18)

4 Examples

This section discusses how some typical software connectors can be defined in
the model proposed in this paper.

4.1 Broadcasters and Mergers

Our first example is the broadcaster, a connector which replicates in each of its
two (output) ports, any input received in its (unique) entry as depicted bellow.
There are two variants of this connector denoted, respectively, by < and <. The
first one corresponds to a synchronous broadcast, in the sense that the two get
ports are activated simultaneously. The other one is asynchronous, in the sense
that both of its get ports can be activated independently. The definition of < is
rather straightforward as a coalgebra over U = ID + 1 and operations

post : UXxD — U = 1179
gety,geto, : U — Ux (D+1) =A

Specifying Software Connectors 61

get:
post —— e

geto

Fig. 1. The broadcaster connector

where A is the diagonal function, defined by A= (id,id). The synchronous case,
however, requires the introduction of two boolean flags initialized to (false, false)
to witness the presence of get requests at both ports. The idea is that a value is
made present at both the get ports if it has been previously received, as before,
and there exists two reading requests pending. Formally, let U = (D+1) x (B xB)
and define

post : UxD — U = (11 -mg,ma+m)
get; : U - Ux(D+1) = (= -m — (id,m), getauxy)
where

getaux; = (mo - w2 — ((12 - *) X (false x false), 1), (id x (true x id), 2 - x))

Le., if there is no information stored flag * is returned and the state left un-
changed. Otherwise, an output is performed but only if there is a previous re-
quest at the other port. If this is not the case the reading request is recorded at
the connector’s state. This definition precludes the possibility of a reading unless
there are reading requests at both ports. The fact that both requests are served
depends on their interaction with the associated post ports, i.e., on the chosen
hook discipline (see the synchronization barrier example in subsection 4.3). The
definition of get, is similar but for the boolean flags update:

getauxy = (m - m — ((t2 - %) x (false x false), 71}, (id x (id x true), o - *))

Dual to the broadcaster connector is the merger which concentrates messages
arriving at any of its two post ports. The merger, denoted by >, is similar to
posti

N

o |— get

posta
Fig. 2. The merger connector

62 M.A. Barbosa and L.S. Barbosa

an asynchronous channel, as given in section 2, with two identical post ports.
Another variant, denoted by B, accepts one data item a time, after which disables
both post ports until get is activated. This connector is defined as a coalgebra
over U =D + 1 with

post; =posty : UxD — U
= (=* ‘T —>7T1,L1°7T2)
get : U — Ux(D+1)
= (=«— (A,id), {19 - *,id))

4.2 Drains

A drain is a symmetric connector with two inputs, but no output, points. Op-
erationally, every message arriving to an end-point of a drain is simply lost. A
drain is synchronous when both post operations are required to be active at the
same time, and asynchronous otherwise. In both case, no information is saved
and, therefore U = 1. Actually, drains are used to enforce synchronisation in the
flow of data. Formally, an asynchronous drain is given by coalgebra

[[.}L|0]] : 1 —— 1D+D

where both post ports are modelled by the (universal) function to 1, i.e., post; =
luxp = posty. The same operations can be composed in a product to model
the synchronous variant:

II ° % °]] U —— U]D)X]D)
defined by

post | Xpost 5 1x1 | 1
_ R —

IxMxD) —— 1xDx1xD
There is an important point to make here. Note that in this definition two
post ports were aggregated by a product, instead of resorting to the more com-
mon additive context. Such is required to enforce their simultaneous activation
and, therefore, to meet the expected synchrony constraint. This type of port
aggregation also appears as a result of concurrent composition. In general, when
presenting a connector’s interface, we shall draw a distinction between single
and composite ports, the latter corresponding to the simultaneous activation of
two or more of the former.

Composite ports, on the other hand, entail the need for a slight generalisation
of hook. In particular it should cater for the possibility of a post port requiring,
say, two values of type D be plugged to two (different) read or get ports. Such a
generalisation is straightforward and omitted here (but used below on examples
involving drains).

Specifying Software Connectors 63

4.3 Synchronization Barrier

In the coordination literature a synchronization barrier is a connector used to
enforce mutual synchronization between two channels (as o7 and oo below).
This is achieved by the composition of two synchronous broadcasters with two
of their get ports connected by a synchronous drain. As expected, data items
read at extremities 0; and o5 are read simultaneously. The composition pattern
is depicted in figure 3, which corresponds to the following expression:

(48 €) 50 (o =0) B (orTve) R (er-Zm0)) (19)
0|L>01

/
/

i ———e
\\\
Ny
//.
| /
12 ———e
\\
N,

Fig. 3. A synchronization barrier

4.4 The Dining Philosophers

Originally posed and solved by Dijkstra in 1965, the dinning philosophers prob-
lem provides a good example to experiment an exogenous coordination model of
the kind proposed in this paper?. In the sequel we discuss two possible solutions
to this problem.

A Merger-Drain Solution. One possible solution assumes the existence of
five replicas of a component Phi(losopher), each one with four get ports, two on
the lefthand side and another two on the righthand side. The port labeled left;

2 The basic version reads as follows. Five philosophers are seated around a table. Each
philosopher has a plate of spaghetti and needs two forks to eat it. When a philosopher
gets hungry, he tries to acquire his left and right fork, one at a time, in either order.
If successful in acquiring two forks, he eats for a while, then puts down the forks
and continues to think.

64 M.A. Barbosa and L.S. Barbosa

is activated by Phi; to place a request for the left fork. On the other hand, port
leftf; is activated on its release (and similarly for the ports on the right). Coor-
dination between them is achieved by a software connector Fork with four post
ports, to be detailed below. The connection between two adjacent philosophers
through a Fork is depicted below which corresponds to the following expression
in the calculus

(Phi; K Fork; [Phi;) qri el it (20)

l’ighti I’ightfi |efti+1 Ieftfi+1

left; » righti oo Ir; Iefti+1 « » righti+1
Phll Forki Ph’iprl

leftf; <« » rightf; rfi § 1 |f; Ieftf;+1 « » rightfi+1

Fig. 4. Dining Philosophers (1)

The synchronization constraints of the problem are dealt by connector Fork built
from two blocking mergers and a synchronous drain depicted in figure 5 and given
by expression

(b EP); o——e (21)

p1 2

N

® | o} { ® | ®

/ AN

D2 23

Fig.5. A Fork connector (1)

A Token Solution. Another solution is based on a specification of Fork as
an ezchange token connector. Such a connector is given as a coalgebra over
U = {mh} + 1, where M is a token representing the (physical) fork. From the
point of view of a philosopher requesting a fork equivales to an attempt to
remove (M from the connector state space. Dually, a fork is released by returning
it to the connector state space. In detail, a fork request at a philosopher port,
say right, which is a post port hooked to (the get port) rr of the connector is only

Specifying Software Connectors 65

successful if the token is available. Otherwise the philosopher must wait until a
fork is released. The port specifications for Fork are as follows

Again, the Fork connector is used as a mediating agent between any two
philosophers as depict in figure 6. The corresponding expression is

(Phi; ¥ Fork; K Phiyy) T i left i (22)

rrg rightfi Ir¢+1 Ieftle

left; 4 right; i <« » i leftit1 o rightiy1
Phii FOI’ki Phi¢+1

leftf; <« » I’ightfi rf; a1 |f; Ieftf;+1 « » rightf;+1

Fig. 6. Dining Philosophers (2)

5 Conclusions and Future Work

This paper discussed the formalization of software connectors, adopting a
coordination oriented approach to support looser levels of inter-component de-
pendency. Two alternative models were mentioned: relations on time-tagged
domains (detailed in [7]) and (polynomial) coalgebras, regarded as relations ex-
tended in time, which is the basic issue of this paper. The close relation between
the two models is still object of on-going work. In particular, how does the re-
lational model lifts to a coalgebraic one when more complex notions of time are
adopted? Note that, in most cases, the usual set-theoretic universe underlying
coalgebras as used here lacks enough structure to extend such relations over
(richly structured) timed universes.

Resorting to coalgebras to specify software connectors has the main advan-
tage of being a smooth extension of the previous relational model. Actually, any
relation can be seen as a coalgebra over the singleton set, i.e., U = 1. Moreover,
techniques of coalgebraic analysis, namely bisimulation, can be used to reason
about connectors and, in general, architectural design descriptions. In fact, al-
though in this paper the emphasis was placed on connector modeling and ex-
pressiveness, the model supports a basic calculus in which connector equivalence

66 M.A. Barbosa and L.S. Barbosa

and refinement can be discussed (along the lines of [17]). The model compares
quite well to the more classic stream-based approaches (see e.g., [10, 8, 3]), which
can be recovered as the final interpretation of the coalgebraic specifications pro-
posed here.

A lot of work remains to be done. Our current concerns include, in particu-
lar, the full development of a calculus of software connectors emerging from the
coalgebraic semantic framework and its use in reasoning about typical software
architectural patterns [1,12] and their laws. How easily this work scales up to
accommodate dynamically re-configurable architectures, as in, e.g., [11] or [26],
remains an open challenging question. We are also currently working on the de-
velopment of an HASKELL based platform for prototyping this model, allowing
the user to define and compose, in an interactive way, his/her own software con-
nectors.

Acknowledgements. This research was carried on in the context of the PURE
Project supported by FcT, the Portuguese Foundation for Science and Technol-
ogy, under contract POSI/ICHS/44304/2002.

References

1. R. Allen and D. Garlan, A formal basis for architectural connection, ACM TOSEM
6 (1997), no. 3, 213-249.

2. F. Arbab, Reo: A channel-based coordination model for component composition,
Mathematical Structures in Computer Science, 14 (2004), no. 3, 329-366.

, Abstract behaviour types: a foundation model for components and their
composition, Proc. First International Symposium on Formal Methods for Compo-
nents and Objects (FMCO’02) (F. S. de Boer, M. Bonsangue, S. Graf, and W.-P.
de Roever, eds.), Springer Lect. Notes Comp. Sci. (2852), 2003, pp. 33-70.

4. F. Arbab and J. Rutten, A coinductive calculus of component connectors, CWI
Tech. Rep. SEN-R0216, CWI, Amsterdam, 2002, To appear in the proceedings of
WADT’02.

5. L. S. Barbosa, Components as processes: An exercise in coalgebraic modeling,
FMOODS’2000 - Formal Methods for Open Object-Oriented Distributed Systems
(S. F. Smith and C. L. Talcott, eds.), Kluwer Academic Publishers, September
2000, pp. 397-417.

, Towards a Calculus of State-based Software Components, Journal of Uni-

versal Computer Science 9 (2003), no. 8, 891-909.

7. M.A. Barbosa and L.S. Barbosa, A Relational Model for Component Interconnec-
tion, Journal of Universal Computer Science 10 (2004), no. 7, 808-823.

8. K. Bergner, A. Rausch, M. Sihling, A. Vilbig, and M. Broy, A Formal Model for
Componentware, Foundations of Component-Based Systems (Gary T. Leavens and
Murali Sitaraman, eds.), Cambridge University Press, 2000, pp. 189-210.

9. R. Bird and O. Moor, The algebra of programming, Series in Computer Science,
Prentice-Hall International, 1997.

10. M. Broy, Semantics of finite and infinite networks of communicating agents, Dis-

tributed Computing (1987), no. 2.
11. G. Costa and G. Reggio, Specification of abstract dynamic data types: A temporal
logic approach, Theor. Comp. Sci. 173 (1997), no. 2.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

253.

26.

Specifying Software Connectors 67

J. Fiadeiro and A. Lopes, Semantics of architectural connectors, Proc. of TAP-
SOFT’97, Springer Lect. Notes Comp. Sci. (1214), 1997, pp. 505-519.

D. Gelernter and N. Carrier, Coordination languages and their significance, Com-
munication of the ACM 2 (1992), no. 35, 97-107.

R. Grimes, Profissional dcom programming, Wrox Press, 1997.

He Jifeng, Liu Zhiming, and Li Xiaoshan, A contract-oriented approach to
component-based programming, Proc. of FACS’03, (Formal Approaches to Com-
ponent Software) (Pisa) (Z. Liu, ed.), Spetember 2003.

V. Matena and B Stearns, Applying entreprise javabeans: Component-based devel-
opment for the j2ee platform, Addison-Wesley, 2000.

Sun Meng and L. S. Barbosa, On refinement of generic software components,
10th Int. Conf. Algebraic Methods and Software Technology (AMAST) (Stirling)
(C. Rettray, S. Maharaj, and C. Shankland, eds.), Springer Lect. Notes Comp. Sci.
(3116), 2004, pp. 506-520.

O. Nierstrasz and F. Achermann, A calculus for modeling software components,
Proc. First International Symposium on Formal Methods for Components and
Objects (FMCO’02) (F. S. de Boer, M. Bonsangue, S. Graf, and W.-P. de Roever,
eds.), Springer Lect. Notes Comp. Sci. (2852), 2003, pp. 339-360.

O. Nierstrasz and L. Dami, Component-oriented software technology, Object-
Oriented Software Composition (O. Nierstrasz and D. Tsichritzis, eds.), Prentice-
Hall International, 1995, pp. 3-28.

S. Oaks and H. Wong, Jini in a nutshell, O’Reilly and Associates, 2000.

G. Papadopoulos and F. Arbab, Coordination models and languages, Advances in
Computers — The Engineering of Large Systems, vol. 46, 1998, pp. 329-400.

J. Rutten, Elements of stream calculus (an extensive exercise in coinduction), Tech.
report, CWI, Amsterdam, 2001.

J.-G. Schneider and O. Nierstrasz, Components, scripts, glue, Software Architec-
tures - Advances and Applications (L. Barroca, J. Hall, and P. Hall, eds.), Springer-
Verlag, 1999, pp. 13-25.

R. Siegel, CORBA: Fundamentals and programming, John Wiley & Sons Inc, 1997.
C. Szyperski, Component software, beyond object-oriented programming, Addison-
Wesley, 1998.

M. Wermelinger and J. Fiadeiro, Connectors for mobile programs, IEEE Trans. on
Software Eng. 24 (1998), no. 5, 331-341.

Replicative - Distribution Rules in P Systems
with Active Membranes

Tseren-Onolt Ishdorj*? and Mihai Tonescu?

Y Computer Science and Information Technology School,
Mongolian State University of Education,
Baga Toiruu-14, 210648 Ulaanbaatar, Mongolia
2 Research Group on Mathematical Linguistics,
Rovira i Virgili University,
PL. Imperial Tarraco 1, 43005 Tarragona, Spain

Abstract. P systems (known also as membrane systems) are biologi-
cally motivated theoretical models of distributed and parallel comput-
ing. The two most interesting questions in the area are completeness
(solving every solvable problem) and efficiency (solving a hard problem
in feasible time). In this paper we define a general class of P systems
covering some biological operations with membranes. We introduce a
new operation, called replicative-distribution, into P systems with active
membranes. This operation is well motivated from a biological point of
view, and elegant from a mathematical point of view. It is both com-
putationally powerful and efficient. More precisely, the P systems with
active membranes using replicative-distribution rules can compute ex-
actly what Turing machines can compute, and can solve NP-complete
problems, particularly SAT, in linear time.

1 Introduction

Traditionally, theoretical computer science has played the role of a scout that
explores novel approaches towards computing well in advance of other sciences.
This did also occur in the case of membrane computation.

In the history of computing, electronic computers are only the latest in a
long chain of man’s attempts to use the best technology available for doing
computations. While it is true that their appearance, some 50 years ago, has
revolutionized computing, computing does not start with electronic computers,
and there is no reason why it should end with them. Indeed, even electronic
computers have their limitations: there is only so much data they can store and
their speed thresholds determined by physical laws will soon be reached. The
latest attempt to break down these barriers is to replace, once more, the tools
for doing computations: instead of electrical use biological ones.

An important achievement in this direction was brought by Leonard Adle-
man in 1994, [1], when he surprised the scientific community by using the tools
of molecular biology to solve a hard computational problem. Adleman’s exper-

Z. Liu and K. Araki (Eds.): ICTAC 2004, LNCS 3407, pp. 68-83, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Replicative - Distribution Rules in P Systems with Active Membranes 69

iment, solving an instance of the Directed Hamiltonian Path Problem by ma-
nipulating DNA strands marked the first instance of a mathematical problem
being solved by biological means. The experiment provoked an avalanche of com-
puter science/molecular biology/biochemistry/physics research, while generating
at the same time a multitude of open problems.

The understanding of computations in nature — evolutionary computing,
neural computing, and molecular computing — belong to the emerging area of
natural computing, which is concerned with computing which go on in nature or
is inspired by nature.

Membrane computing is a novel emerging branch of natural computing, in-
troduced by Gheorghe Paun in [10]. This area starts from the observation that
certain processes which take place in the complex structure of living cells can be
considered as computations. P systems are a class of distributed parallel com-
puting devices of a biochemical type, which can be seen as a general computing
architecture where various types of objects can be processed by various opera-
tions. For a detailed description of various P system models we refer to [12].

In membrane computing, P systems with active membranes have a special
place, because they provide biologically inspired tools to solve computationally
hard problems. Using the possibility to divide or separate membranes, one can
create an exponential working space in linear time, which can then be used in
a parallel computation for solving, e.g., NP-complete problems in polynomial
or even linear time. Details can be found in [2,11,12], as well as in the com-
prehensive page from the web address http://psystems.disco. unimib.it.
Informally speaking, in P systems with active membranes one uses the following
types of rules: (ag) multiset rewriting rules, (bg) rules for introducing objects
into membranes, (cy) rules for sending objects out of membranes, (dy) rules for
dissolving membranes, (eg) rules for dividing elementary membranes, and (fy)
rules for dividing non-elementary membranes, see [3]. In these rules, a single ob-
ject is involved. The following rules are introduced in [2]: (gp) membrane merging
rules, (hg) membrane separation rules, and (ip) membrane release rules, whose
common feature is that they involve multisets of objects.

In this paper, we introduce a new developing rule in P systems, called
replicative-distribution rule, which is motivated from the specific structure and
functioning of living neural-cell (neuron). The universality and efficiency related
to replicative-distribution rules are investigated here.

Let us briefly mention the biological background of our new developing rules.
A neuron has a body, the dendrites, which form a very fine filamentary bush
around the body of the neuron, and the azon, a unique, long filament, which in
turn also ends with a fine filamentous bush; each of the filaments from the end of
the axon is terminated with a small bulb. It is by means of these end-bulbs and
the dendrites that the neurons are linked to each other: the impulses are sent
through the axon, from the body of the neuron to the end-bulbs, and the end-
bulbs transmit the impulses to the neurons whose dendrites they touch. Such
a contact junction between an end-bulb of an axon and dendrites of another
neuron is called cleft. An end-bulb releases an impulse into cleft, the impulse is

70 T.-O. Ishdorj and M. Ionescu

replicated in the cleft and distributed into the connected dendrites. Moreover, in
the axon of the neuron, chemicals are replicated at the so-called Ranvier nodes
and transmitted to the adjacent nodes in opposite directions through the axon.
For more details about neural biology, we refer to [17].

2 Preliminaries

We assume the reader to be familiar to the fundamentals of formal language
theory and complexity theory, for instance, from [9,15,16], as well as to the
basics of membrane computing, from [12]. We only mention here some notions
and results from formal language theory, complexity theory, as well as from
membrane computing, which are used in this paper.

2.1 Formal Languages

An alphabet is a finite set of symbols (letters), and a word (string) over an
alphabet X' is a finite sequence of letters from 3. We denote the empty word
by A, the length of a word w by |w|, and the number of ocuurences of a symbol
a in w by |w|,. The concatenation of two words = and y is denoted by x - y or
simply xy.

A language over X is a (possibly infinite) set of words over X. The language
consisting of all words over X is denoted by X*, and YT denotes the language
2 —{A}. A set of languages containing at least one language not equal to @ or
{A} is also called a family of languages.

We denote by REG, LIN, CF, CS, RE the families of languages generated by
regular, linear, context-free, context-sensitive, and of arbitrary grammars, re-
spectively (RE stands for recursively enumerable languages). By FIN we denote
the family of finite languages. The following strict inclusions hold:

FIN C REG C LIN C CF C CS C RE.

This is the Chomsky hierarchy.

For a family FL of languages, NFL denotes the family of length sets of lan-
guages in FL. Therefore, NRE is the family of Turing computable sets of natural
numbers. For ¢ € X and x € X* we denote by |z|, the number of occurrences
of a in x. Then, for ¥ = {ay,---,a,}, the Parikh mapping associated with X
is the mapping on X* defined by ¥s(z) = (|z|s,, -, |7]s,) for each z € X*.
The Parikh images of languages RE is denoted by PsRE (this is the family of all
recursively enumerable sets of vectors of natural numbers).

The multisets over a given finite support (alphabet) are represented by strings
of symbols. The order of symbols does not matter, because the number of copies
of an object in a multiset is given by the number of occurrences of the corre-
sponding symbol in the string. Clearly, using strings is only one of many ways
to specify multisets. We suggest the readers refer to [4].

We will now introduce the notion of matrix grammars, used below in proofs.

Replicative - Distribution Rules in P Systems with Active Membranes 71

A matriz grammar with appearance checking is a computationally universal
rewriting system. Details can be found in [5]. For each matrix grammar there is
an equivalent matrix grammar in the binary normal form.

A matrix grammar G = (N, T, S, M, F) is in the binary normal form if N =
Ny U Ny U{S,#}, with these three sets mutually disjoint, and the matrices in
M are in one of the following forms:

1. (S—>XA), WithXENl,AENQ,

2. (X =Y, A—ux),with X,;)Y € Nj,A€ Ny, € (NyUT)*, || <2,
3. (X =Y, A— #), with XY € N;, A € Ny,

4. (X = N\ A —x), with X € Ny, A€ Ny, and x € T*, |z| < 2.

Moreover, there is only one matrix of type 1 (that is why one uses to write
it in the form (S — XjnitAinit), in order to fix the symbols X, A present in it),
and F' consists exactly of all rules A — # appearing in matrices of type 3; # is
a trap-symbol, because once introduced, it is never removed. A matrix of type
4 is used only once, in the last step of a derivation.

For w,z € (N UT)* we write w = z if there is a matrix in m € M such
that applying once each rule of m to w one can obtain z. A rule can be skipped
if it is in F' and it is not applicable.

The language generated by G is defined by L(G) = {w € T* | S =* w}.
The family of languages of this form is denoted by M AT,.. It is known that
MAT,. = RE.

2.2 P Systems with Active Membranes

In this subsection, we describe P systems with active membranes following the
concept defined in [12], where more details can also be found.

A membrane structure is represented by a Venn diagram and is identified by a
string of correctly matching parentheses, with a unique external pair of parenthe-
ses; this external pair of parentheses corresponds to the external membrane, called
the skin. A membrane without any other membrane inside is said to be elemen-
tary. For instance, the structure in Figure 1 contains 8 membranes; membranes 3,
5, 6 and 8 are elementary. The string of parentheses identifying this structure is

p=1[1]5[]6]2[]3“[}8]7]4]1'

All membranes are labeled; we have used here the numbers from 1 to 8. We
say that the number of membranes is the degree of the membrane structure,
while the height of the tree associated in the usual way with the structure is its
depth. In the example above we have a membrane structure of degree 8 and of
depth 3. The membranes delimit regions precisely identified by the membranes
(the region of a membrane is delimited by the membrane and all membranes
placed immediately inside it, if such a membrane exists). In these regions we
place objects, which are represented by symbols of an alphabet. Several copies of
the same object can be present in a region, so we work with multisets of objects.

We will now define the model which we work with: P systems with active
membranes. A P system with active membranes (without electrical charges) is a
construct

72

where:

T.-O. Ishdorj and M. Ionescu

1
2 3 4
7
5

Fig. 1. A membrane structure and its associated tree

I = (O7H7M7w1a"'7wmaR)7

— m > 1 is the initial degree of the system;

— O is the alphabet of objects;

— H is a finite set of labels for membranes;

— 1 is a membrane structure, consisting of m membranes, labeled (not neces-
sarily in a one-to-one manner) with elements of H;

- Wi, .

.., W, are strings over O, describing the multisets of objects placed in

the m regions of y;
— R is a finite set of developmental rules, of the following forms:

(ao)

(fo)

[a—],, forhe HacO,veO*

(object evolution rules, associated with membranes and depending on
the label, but not directly involving the membranes, in the sense that
the membranes are neither taking part in the application of these rules
nor are they modified by them);

al], —[b],,for he€ H a,b €O

(communication rules; an object is introduced in the membrane during
this process);

[a], = [],b for he Ha,becO

(communication rules; an objects sent out of the membrane during this
process);

[a], — b, for h€ Ha,beO

(dissolving rules; in reaction with an object, a membrane can be dis-
solved, while the object specified in the rule can be modified);

[a], — [b],[c],, for he H a,bcecO

(division rules for elementary membranes; in reaction with an object,
the membrane is divided into two membranes with the same label; the
object specified in the rule is replaced in the two new membranes by
possibly new objects; and the remaining objects are duplicated);

[a], —[b],[c|,,for he H a,b,ceO

(division rules for non-elementary membranes; in reaction with an object,
the membrane is divided into two membranes with the same label; the
object specified in the rule is replaced in the two new membranes by

Replicative - Distribution Rules in P Systems with Active Membranes 73

possibly new objects; the remaining objects and membranes contained
in this membrane are duplicated, and then are part of the contents of
both new copies of the membrane);

(90) th[]hg - Hh3’ for hy € H,1<i<3
(merging rules for elementary membranes; in reaction of two membranes,
they are merged into a single membrane; the objects of the former mem-
branes are put together in the new membrane);

(ho) [O], = [U],[O=U],,forhe HUCO
(separation rules for elementary membranes; the membrane is separated
into two membranes with the same labels; the objects from U are placed
in the first membrane, those from U — O are placed in the other mem-
brane);

(io) [[O]hl]hz — []hQO, for hi,ho € H
(release rule; the objects in a membrane are released out of a membrane,
surrounding it, while the first membrane disappears).

The rules of types (aop), (bo), (co), (do), (e0), and (fp) are the polarizationless
version of the corresponding rules in [12]; the rules of (go), (ho), and (ig) are
introduced in [2]. (In all cases, the subscript 0 indicates the fact that we do not
use polarization for membranes; in [11], [13] the membranes can have one of the
”electrical charges negative, positive, neutral, represented by —, +, 0, respec-
tively. Note that, following [3], we have omitted the label of the left parenthesis
from a pair of parentheses which identifies a membrane.)

The rules of type (ag) are applied in the parallel way (all objects which can
evolve by such rules have to evolve), while the rules of types (by), (co), (do), (€0),
(fo0), (g0), (ho), and (ig) are used sequentially, in the sense that one membrane
can be used by at most one rule of these types at a time. In total, the rules
are used in the non-deterministic maximally parallel manner: all objects and all
membranes which can evolve, should evolve.

The result of a halting computation is the vector of natural numbers de-
scribing the multiplicity of objects expelled into the environment during the
computation; the set of vectors computed in this way by all possible halting
computations of IT is denoted by Ps(II). A P system is called deterministic if
there is a single computation. A P system is called confluent if all of its compu-
tations reach the same halting configuration.

By PsOP,,(r) we denote the family of sets Ps(II) computed as described
above by P systems with at most m membranes using rules of types listed in r.

When the rules of a given type (ag) are able to change the label(s) of the
involved membranes, then we denote that type of rules by («g).

P systems with certain combinations of these rules are universal and efficient.
Further details can be found in [2, 3, 8].

To understand what solving a problem in a semi-uniform/uniform way means,
we briefly recall here some related notions. Consider a decisional problem X.
A family IIx = (IIx(1),IIx(2),---) of P systems (with active membranes in
our case) is called semi-uniform (uniform) if its elements are constructible in
polynomial time starting from X (n) (from n, respectively), where X (n) denotes

74 T.-O. Ishdorj and M. Ionescu

the instance of size n of X. We say that X can be solved in polynomial (linear)
time by the family ITx if the system ITx(n) will always stop in a polynomial
(linear, respectively) number of steps, sending out the object yes if and only
if the instance X (n) has a positive answer. For more details about complexity
classes for P systems see [12, 13].

3 Replicative-Distribution Rules

The biological motivations of replicative-distribution operations are mentioned in
Section 1. Mathematically, we capture the idea of replicative-distribution rules
as following:

(ko) al]y, [1,, = [uly, [v],,, for hi,he € Hya € O,u,v € O
(replicative-distribution rule (for sibling membranes); an object is replicated
and distributed into inner two adjacent membranes);

(lo) [al],]n, = [1u]y]y,0 for hi he € Hya € O,u,v € O
(replicative-distribution rule (for nested membranes); an object is replicated
and distributed into a directly inner membrane and outside the directly
surrounding membrane).

The rules are applied non-deterministically, in the maximally parallel manner.
Note that the multisets v and v might be empty.

As we have mentioned before, we use the primed versions to indicate the fact
that the labels of membranes can be changed. The primed versions of replicative-
distribution rules are of the following form:

(k§) a[]hl[]h2 — [u]hB[v]h4 for h, € H,1<i<4

(the label of both or only one membrane can be changed);
(15) [a[]hl]h2 — [[u]hs]h4v’ for h; e H1<i<4
(the label of both or only one membrane can be changed).

3.1 Computational Universality

P systems with active membranes and with particular combinations of several
types of rules can reach universality. Here, we show that P systems with active
membranes and with only one type of rules, namely (I()), is Turing complete. The
proof is based on the simulation of matrix grammars with appearance checking.

Theorem 1. PsOP,(l) = PsRE.

Proof. 1t is enough to prove that any recursively enumerable set of vectors of
non-negative integers can be generated by a P system with active membranes
using rules of type (If)) and four membranes.

Consider a matrix grammar G = (N, T, S, M, F') with appearance checking,
in the binary normal form, hence with N = N; U Ny U {S,#} and with the
matrices of the four forms introduced in Section 2.1. Assume that all matrices
are injectively labeled with elements of a set B. Replace the rule X — X from
matrices of type 4 by X — f, where f is a new symbol.

Replicative - Distribution Rules in P Systems with Active Membranes 75

We construct the P system of degree 4

I = (OaHaﬂ7w07w1aw27inme)’
O=TUNyU{A,, | A€ Nyym € ByU{e,c, ", "\ #},
H=NU{X,,| X €eN,meB}U{0,1,2, f},

p=1110 L)y o
wo = CAinitvmeit =wp =wy = A

and the set R containing the rules below.

The simulation of a matrix m : (X — Y, A — x), with X € N1,Y € NyU{f},
and A € Ns, is done in two steps, using the following replicative-distribution
rules:

L[A[]y = [[Amly, JoA
2 [Aul]y, —>[[M1y$

m

The first rule of the matrix is simulated by the change of the label of membrane
X, and the correctness of this operation is obvious (one cannot simulate one rule
of the matrix without simulating at the same time also the other rule).

The simulation of a matrix m : (X — Y, A — #), with X,Y € Ny, and
A € Ns, is done in four steps, using the rules:

8. 1e Tl = L1y Joh
4 [Ty, = LTy
5. AL 1y o — [1#] 1%,
[1oy = ([N,
6. []1]y — []ye

By using rule 3, object ¢ replicates to ¢’ and A which are distributed, in the same
time, as follows: ¢’ enters membrane X changing its label to Y}, and X is send
out of the skin membrane. The second step (rule 4) makes ¢’ to evolve to A and
"y ¢ will be sent to membrane 1 and A gets out of membrane Y,, changing it
to Y, . In the next step, if any copy of A is present, then, it introduces the trap-
object # and the computation never stops. Otherwise, ¢’ following the same
replicative-distribution rule transforms into A and ¢’”/, which enter membranes 1
and Y, | respectively. The last computational step produces the result we were
looking for by replicating ¢’’’ to A and ¢ and distributing A to membrane 1 and ¢
to the skin membrane, changing label Y;, to Y. Now, the process can be iterated
having ¢ in the skin membrane as in its initial configuration.

We also consider the following rules (applicable in the case A is present in
the skin membrane):

The equality Y7 (L(G)) = Ps(II) easily follows from the above explanations.
O

76 T.-O. Ishdorj and M. Ionescu

3.2 Efficiency Result Using Pre-computed Resources

The SAT problem (satisfiability of propositional formula in the conjunctive nor-
mal form) is probably the most known NP-complete problem [6]. It asks whether
or not for a given formula in the conjunctive normal form there is a truth-
assignment of variables such that the formula assumes the value true.

Let us consider a propositional formula in the conjunctive normal form:

6201/\"'/\Cm,
Ci=vyi1 V- Vyi,, 1 <i<m, where
Yik € {zj,mz; |1 <j<n}, 1<i<m,1<k<I.

The instance § of SAT will be encoded in the rules of P system by multisets
v; and v} of symbols, corresponding to the clauses satisfied by true and false
assignment of xz;, respectively:

vi={cilzj €{yin |1 <k<[}1<i<m},1<j<n,
v ={ci | wj e {yin [1<k <I[;},1<i<m},1<j<n.

A computation in a P systems with active membranes always starts from
a given initial configuration, and we usually create an exponential workspace
in linear time by membrane division, membrane creation, string replication, and
membrane separation (all of them with biological motivation). In this subsection
we use a different strategy (which is already discussed in [12]): we start from
an arbitrarily large initial membrane structure, without objects placed in its
regions, and we trigger a computation by introducing objects related to a given
problem in a specified membrane. We use object replicative-distribution rules,
as discussed in the previous sections. In this way, the number of objects can
increase exponentially.

Theorem 2. P systems with rules of types (k) and (I})), constructed in a semi-
uniform manner, can solve SAT in linear time.

Proof. Given a propositional formula § as above, we construct the P system

IT = (O, H, j1,Wq, Why We, Wy We, W, W1, Wy Wap45—ms Wan+6,), With

O={aq; |0<i<n}U{d;|1<i<m}U{e;|0<i<4dn+m+1}
U{ti, fi |1 <i<njU{e; |1 <i<m}U{yes,no,d,\},

O O O P Y L A 1 1 PR Y I O P B R P P

2nt442

Wo = g, We = €0, W] = W2 = Wy = Wp = Wq = We = Win+5-m = Win+6 = A,
H= {0,--~,4n—|—6,a,b,c,d,e}.
The membrane structure has to be a complete binary tree with n + 2 internal

levels for the constructions of truth value assignments except the membranes
for global counting. In the skin membrane, 3 “nested” membranes with labels

Replicative - Distribution Rules in P Systems with Active Membranes 7

a, b, and ¢ are used to count the computations of the system. The “sibling
membranes”, those placed in the same upper membrane, directly under it, are
labeled with 1 and 2. We consider the skin membrane as being level 0 (root) of
our binary tree. It is obvious that on level 1 we have 2 (2!) membranes, on level
2 we have 4 (22) membranes, and so on. The membranes on levels 1,---,n are
labeled 1 and 2, of level n+1 are labeled 4n+5 —m and 4n+ 6, and elementary
membranes are labeled by d and e. The skin membrane is labeled 0.
We give the set of rules R accompanying them with their use explanations:

— Global control:

EL [e]]y]. = [[€ira]y] A
E2. [ef],], = [[A,]eir1,0 <i<dn+m—1,

The control variables e; count the computing steps in the “nested” control mem-
branes. As we shall see at the end of the description of the whole algorithm, after
4n + m derivation steps in the corresponding P system II the answer yes ap-
pears outside the skin membrane if the given satisfiability problem has a solution,
whereas in the case that no solution exits, in one or two more steps the answer
no appears in the environment.

The main task of the algorithm is accomplished in the generation phase
where, for each possible truth assignment to the n variables. After 2n — 1 steps
it will contain all the informations needed to decide whether it represents a
solution to the given problem or not:

— Generation phase:
Gl a;i[|1[]y = [aipativa] sl aiv1fiza] ;0 <i<n—1,
G2 bl |10l ling = il jal Bl s
il lipol ligs = [filipal fil 51 <0<,
Starting the computation (rule G1 in skin membrane), object aq is replicated
into objects a;t; and aj fi, which are distributed into direct inner membranes
with label 1 and 2 of level 2, changing the labels to 3 and 4.

Let us consider step ¢ of the generation phase: By applying rule G1 in the
membranes of level 4, 2° number of couples of objects a;t; and a; f; are produced
and took place in the 2¢ number of membranes, which will change the label
from 1 or 2 to 3 or 4, respectively. Each membrane among the 2¢~7 membranes
on levels i — j, 1 < j < [i/2] of hierarchal binary tree structure contains
couple of objects p;,—; and ¢;, (pr,qr € {ty, fr}), 1 < j < [/2] if jis an
odd number. Otherwise, in the membranes of | /2] th level only objects p;_;
are placed. Up to now, t1,---,t;, f1,---, fi, and a; different 2¢ number of objects
have been produced and distributed in the membranes of levels between ¢ — j and
i, 1 < j <[i/2] presenting the truth value assignments for variables z1,-- -, x;
of 5. Objects tx, 1 < k < i correspond to the true value of variables xj, and
objects fi correspond to the false value of variables zp, 1 < k < i. In the next
step, rule G1 is applied and objects a;41t;41 and a; 41 f;11 are produced and
took place in inner membranes, changing the labels of them to 3 and 4. At the
same time, rules

ti[}k+2[]k+3 = [tk}k+4[tx] k45

78 T.-O. Ishdorj and M. Ionescu

fxl }kjuz[]k+3 — | fk]k+4[fk]k+5

are applied simultaneously in each membranes of levels i — j, 1 < j < [1i/2]
objects t and fj are replicated and distributed in one deeper level. Membrane
labels are changed from k+2 and k+3 to k+4 and k+5, respectively, which guar-
antees that in each step only a single object, t; or fi, enters into a membrane,
since active membranes work in sequential manner.

At the nth step of the computation, 2 number of couple objects a,pn, pn €
{tn, fn}, were in 2" membranes with label 3 and 4 on nth level, then rule G1
will not apply anymore since there is no membrane with label 1 and 2 at the
next level. The iteration is continued n — 1 more steps, all objects tx, fr, 1 <
k < n — 1 are within the membranes of level n, then, those membranes’ label
being 2n+ 1 and 2n + 2. Therefore all possible 2" truth assignments of variables
r1,Ta,- -+, T, are generated and placed in the corresponding 2" membranes.
Objects t; correspond to the true value of variables z;, and objects f; correspond
to the false value of variables x;.

G3. 4]]4n+5—m[]4n+6 — [i 4n+5—m[d] 4n+6

il lant5-—ml lante = [7] 4n+5—m[d] anier L ST

By using rule G3, in n steps, every object ¢; and f; evolve into objects ¢; (cor-
responding to clauses C;, satisfied by the true or false values chosen for x;)
and “dummy” object d, then they are distributed into membranes with label
4n + 5 —m and 4n + 6 in one deeper level, respectively.

— Checking phase:

CL [l gluntacmes = L6l ungs_mpidin 1 S i <m.

In the checking phase, by using rule C1, object ¢;,1 < ¢ < n, is placed in
membranes labeled 4n + 5 — m of level n + 1, and replicated into object ¢; and
counter object d;. Object ¢; is sent into the direct inner elementary membrane
with label d, which is on the deepest level (n 4 2) of our membrane structure,
and object d; is sent out the surrounding membrane on nth level. Meanwhile, the
label of the surrounding membrane is incremented by one. If at the beginning
of the checking phase ¢1,- -+, ¢; are present (1 < i < m), and ¢;41 is absent, in
the membrane, after ¢ + 1 steps rule C1 will no longer be applicable and the
membrane will never change the label again. If all objects ¢;,1 < i < m, are
present in some membrane, then after m steps, objects d,, are produced into the
membranes with label 2n + 1 and 2n + 2 of level n.

— Output phase:

O1. [dn| }2n+5+21% 1420 [[d] 2n+5+2i]2n+3+2idm’
—

02. [dm[}2n+6+2i 2423 2n+6+42i1 2n4-44-2¢

i <i1<n
03. [dm[}2n+5]0 - [d] 2n+5] 1yes,

If 8 has solutions, the process starts when objects d,, are placed in membranes
with label 2n 4+ 1 and/or 2n + 2 of level n. Object d,, is replicated to objects d
and d,,, object d,, is sent out the current membrane, and “dummy” object d is
sent into the inner membrane with label 2n 4 5 4 2i. The process is recurrently

Replicative - Distribution Rules in P Systems with Active Membranes 79

done following objects d,, through levels n---1 in n steps by using rule O1 and
02. During the output phase, in each membranes with label 1 + 2¢ and 2 + 2:
possible taken at most two objects d,,, then one of them non-deterministically
chosen send out the surrounding membrane, while membrane label is changed to
2n+3+2i and 2n+4+2¢. Then, in membranes 2n+ 34 2¢ and 2n+4+ 2i no rule
can be applied. Thus, the system works fine in a sequential manner. However, in
n steps, totally speaking in the (4n+m — 1)th step of the computation, at most
two objects d,,, arrive in the skin membrane. Then rule O3 is applied, an object
d,, ejects positive answer yes and changes skin membrane label to 1 in order
to prevent further output. Thus, the formula is satisfiable and the computation
stops. That was the (4n + m)th step of the whole computation.

E3. [eanim-1)[1p]. = [[Al] c€antm(+1)s
E4. [e4n+m(+1)[]C]O - [[)‘] c] oho-

If B has no solution and if 4n+m—1 is an odd step, counter object €4y, 4,1 must
be placed in the membrane a, then rules E3 and E4 are applied in two steps,
the counter object €4, 4m+1 Will eject the correct answer no to the environment.
Otherwise after one more step object ey, 4., Will eject the correct answer no to
the environment by applying rule E4. Since rule O3 did not apply (the case in
which 3 has no solution), the label of the skin membrane is still 0, so rule E3 is
applicable. The 3 “nested” control membranes guarantee that no object tries to
cross the skin membrane at the same time with yes.

The labels of membranes of level ¢, in the constructing phase, are 3+ 2(: — 1)
and 44+ 2(i — 1), 1 <4 < n, and in the output phase it would be 3 + 2(i + n)
and 4+2(i+n),1<i<n. O

Theorem 3. P systems with rules of types (k{)) and (c})), constructed in a semi-
uniform manner, can solve SAT in linear time.

Proof. The proof of the theorem follows the idea of Theorem 2. Since rules of
type (I()) are not used in the proof, we do not need membranes of level n + 2 in
the checking phase, and we change the “nested” couple membrane structure by
“eyes” structure for the global control.

We now construct the P system

II = (O, H, pt, W, Wh, Wo, W1, W2, Wap+-5—ms Wan+6, K), with
O={aq; |0<i<n}U{d;|1<i<m}U{e;|0<i<4dn+m+1}
U{ti,fi|1<i<n}U{¢|1<i<m}U{yes,no,d,\},

n= [Ha[]b[“'H4n+5—m[]4n+6”']1[”'[]4n+5—m[]4n+6'“]2]0’

2w,+3+1
Wy = Agep, W1 = W3 = Wq = Wp = Wint5-—m = Wint6 = A,
H=1{0,---,4n+ 6,a,b}.

80 T.-O. Ishdorj and M. Ionescu

The global control rules are as following;:

— Global control in skin membrane:

EL e[J,[], = [eia] [Al
E2. [e], = [],€i41,0 <i<dn+m+1,

Here we use rules of types (ko) and (cg) for counting the computation steps
of the system.

— Generation phase:

We reuse rules G1-G3 of the generation phase in Theorem 2, then generate 2"
number of truth-assignments in level n of the membrane structure.

— Checking phase:

Cl. [¢] di,1 <i<m.

An+4—m-+1 - []4n+5 m+1

In the checking phase of satisfiability truth-assignments of propositional for-
mula, rules of type (¢)) are used instead of rules (I()).

— Output phase:

Ol [dim]110i = [langaiidm _
2. [d]2+2z ontaroidm, 1 <1<m
3. [dm]y — [] ves,
3. [eantm +1)]0 []Ono.

If 8 has solutions, in n steps, totally speaking in (4n + m — 1)th step of the
computation, at most two objects d,,, arrive in the skin membrane by using rules
O1 and 02, then rule O3 is applied, an object d,, ejects positive answer yes and
changes the skin label to 1 in order to prevent further output. Thus, the formula
is satisfiable and the computation stops. That was the (4n + m)th step of the
whole computation.

If 8 has no solution and if 4n +m — 1 is an odd step, after two more steps
the counter object e4,m+1 Will eject the correct answer no to the environment.
Otherwise, after one more step object e4y,4,, Will perform this operation. Since
rule O3 did not apply (the case in which § has no solution), the label of the skin
membrane is still 0, so rule E3 is applicable. O

3.3 Efficiency Result Using Membrane Division to Obtain
Exponential Work Space

In Theorem 2 and Theorem 3 we have shown that the NP-complete problem
SAT can be decided by a P system with active membranes in linear time with
replicative-distribution rules of types (k{) and (I) and replicative-distribution
rules of type (k{) and communication rules of type (), respectively, using pre-
computed exponential work space.

Here, we reuse the most investigated way to obtain exponential work space—
membrane division. The following theorem shows that SAT can be solved by P
systems with active membranes using the rules of types (fy) and (1)), in linear
time. We recall here the propositional formula 3 in Section 3.2.

Replicative - Distribution Rules in P Systems with Active Membranes 81

Theorem 4. P systems with rules of types (fo),(l}), constructed in a semi-
uniform manner, can deterministically solve SAT in linear time with respect to
the number of the variables and the number of clauses.

Proof. We construct the P system

II = (0,H, p,wg, -, wr, R), with
O={d;|1<i<m}U{a;|1<i<n}

U{e [1<i<m}u{b|0<i<n}

U{e |0<i<2n+m+4}U{yes,no}

U{ti, fil1<i<n},
M:[[H]3]4]2[[[}6]7]5]07
Wo = a1 -+ - Apbo, W5 = €g, Wy = W3 = Wy = Wg = W7 = A
H={i|0<i<9},

and the following rules (we accompany them with explanations about their use):
The global control rules are as follows:

— Global control:

EL [ef 5 = [[ea])M
E2. [eif Jgl; = [[Alglreir1,0<i<2n4+m+1,

The “nested” membranes with label 5,7, and 6 are used only to globally control
of the computation, and rules E1 and E2 are used to count the computation
steps as we used in the proof of Theorem 2.

— Generation phase:
Gl. [ai]Q — [ti]Z[fi}gv 1 S 7 S n,

Using rule G1, with a; non-deterministically chosen, we produce the truth
values true and false assigned to variable x;, placed in two separate copies of
membrane 2. In this way, in n steps we assign truth values to all variables, hence
we get all 2™ truth-assignments, placed in 2™ separate copies of membrane 2.

G2. [bi[1,0y = [[big1],JoN

[0l 13]y = [[Als]4big1, forall 0 <i<n-—1,
G3 [bn[]3]4_)[[)\]3]1)\7
G4 [bal 1,05 = [[ML)

Initially, object by is placed in membrane 2. Rule G2 works simultaneously with
division and increment the subscript of b; by one in each step. If in the nth step
of the computation, object b,, takes place in membrane 2, it was an odd number.
If it was an even number, object b, takes place in membrane 4. In the next step
rule G3 or G4 perform, and change the label of membrane 4 to 1, while object
b,, disappears. This ensure rule G5 will perform.

G5. [t]1]2*>[['Ui]1]2>‘a
f’[]1}2%[[U£]1}2)‘71§i§n-

82 T.-O. Ishdorj and M. Ionescu

— Checking phase:
Cl [al J4]; = [lelg]qdi 1 <i<m.

The checking phase idea is the same from the proof of Theorem 2.

— Output phase:

OL [dm[]m+1}2 - [[)\] m+1}8dm’
02. [dm[Jglog = [[Alglgyes,

If B has solutions, after 2n 4+ m + 2 steps, objects d,, appear in the skin
membrane using rules O1, and again one object d,,,, non-deterministically chosen,
ejects object yes into environment, while the skin label changes to 9 using rule
02 in order to prevent further output. Thus, the formula is satisfiable and the
computation stops. That was the (2n+m + 3)th step of the whole computation.

E3. [€2n+m+2(3)[]7]5 - [[)‘] 7]562n+m+3(4)7
E4. | 62n-0—m+3(4)[]5]0 — [)‘]5}0110'

If 3 has no solution and if 2n 4+ m + 2 is an odd step, after two more steps
the counter object ey, +my4 Will eject the correct answer no to the environment.
Otherwise, after one more step object €, 11,43 Will perform this operation. Since
rule O2 did not apply (the case in which £ has no solution), the label of the skin
membrane is still 0, so rule E4 is applicable. a

4 Final Remarks

We have considered a new type of rules in P systems with active membranes: (ko)
and (1{)) replicative-distribution rules with deep relations to cell biology. We have
illustrated here how this type of rules can solve NP-complete problems in linear
time using pre-computed resources and obtaining an exponential work space
during the computation, by membrane division. Universality was also shown
here, but we want to emphasize that we have used only one type of rules in
our proof. However, in the efficiency results, we have used very few types of
rules compared to the previous results in [2, 3,7, 8, 11]. This reveals the fact that
replicative-distribution type of rules is a powerful and efficient tool in P systems.
The following problems are expecting a future work: What simulations of other
classes of P systems with active membranes using these new types of rules can
be obtained? What other computational hard problems can be solved with these
types of rules in feasible time and space?

Acknowledgments. The first author acknowledges the State Training Fund of
the Ministry of Science, Technology, Education and Culture of Mongolia. The
work of second author was supported by the FPU fellowship from the Spanish
Ministry of Education, Culture and Sport.

Replicative - Distribution Rules in P Systems with Active Membranes 83

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

L.M. Adlmen, Molecular computation of solutions to combinatorial problems, Sci-
ence v.266, Nov.1994, 1021-1024.

A. Alhazov, T.-O. Ishdorj, Membrane Operations in P Systems with Active Mem-
branes, In: Gh. Paun, et all (eds.) Second Brainstorming Week on Membrane Com-
puting, Sevilla, 2-7 February, 2004, Research Group in Natural Computing TR
01/2004, University of Sevilla, 37-44.

A. Alhazov, L. Pan, Gh. Paun, Trading Polarizations for Labels in P Systems with
Active Membranes, submitted, 2003.

C. Calude, Gh. Paun, G. Rozenberg, A. Salomaa (eds.): Multiset Processing, LNCS
2235, Springer-Verlag, Berlin, 2001.

J. Dassow, Gh. Paun, Regulated Rewriting in Formal Language Theory, Springer-
Verlag, Berlin, 1989.

M.R. Garey, D.J. Johnson: Computers and Intractability. A Guide to the Theory
of NP-Completeness. W. H. Freeman, San Francisco, 1979.

L. Pan, A. Alhazov, T.-O. Ishdorj, Further Remarks on P Systems with Active
Membranes, Separation, Merging and Release Rules, Soft Computing, 8(2004),
1-5.

L. Pan, T.-O. Ishdorj, P Systems with Active Membranes and Separation Rules,
Journal of Universal Computer Science, 10(5)(2004), 630-649.

Ch. P. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, MA,
1994.

Gh. Paun, Computing with membranes, Journal of Computer and Sys-
tem Sciences, 61(1), (2000), 108-143, and TUCS Research Report 208, 1998
(http://www.tucs.fi).

Gh. Paun, P Systems with Active Membranes: Attacking NP-Complete Problems,
Journal of Automata, Languages and Combinatorics, 6, 1 (2001), 75-90.

Gh. Paun, Computing with Membranes: An Introduction, Springer-Verlag, Berlin,
2002.

M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, Complexity Classes
in Models of Cellular Computation with Membranes, Natural Computing, 2, 3
(2003), 265-285.

M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, Teoria de la Com-
plejidad en Modelos de Computation Celular con Membranas, Editorial Kronos,
Sevilla, 2002.

A. Salomaa, Formal Languages, Academic Press, New York, 1973.

A. Salomaa, G. Rozenberg (eds.), Handbook of Formal Languages, Springer-Verlag,
Berlin, 1997.

G.M. Shepherd, Neurobiology, Oxford University Press, NY Oxford, 1994.

A Generalisation of a Relational Structures
Model of Concurrency*

Ryszard Janicki

Department of Computing and Software, McMaster University,
Hamilton, Ontario, Canada L8S 4K1
janicki@mcmaster.ca

Abstract. We show how complex concurrent behaviours can be mod-
elled by relational structures (X, <>, C), where X is a set (of event oc-
currences), <> (interpreted as commutativity), C (interpreted as weak
causality) are binary relations on X. The paper is a continuation of the
approach initiated in [6, 18, 1, 9], substantially developed in [10,12], and
recently partially generalized in [7]. For the first time an axiomatic model
for the most general case is given. The results can be interpreted as a
generalisation of Szpilrajn Theorem® [25].

1 Introduction

The classical “true concurrency” model semantics make the assumption that all
relevant behavioural properties of non-sequential systems can be adequately ex-
pressed in terms of causal partial orders. This assumption is arbitrary and the
model, although very successful in the majority of applications, is unable to prop-
erly describe some aspects of systems with priorities, error recovery systems, in-
hibitor nets, time testing etc (see for instance [12, 10,13, 19, 26] and many others).
The solution, first introduced by Lamport [18] (improved by Abraham, Ben-
David and Magodor [1]), Gaifman and Pratt [6], and Janicki and Koutny [9], later
fully developed by Janicki and Koutny [10,12], is to use relational structures,
(X,<,C), with two relations. The first relation, denoted by “<” in [10,12],
is “causality” (i.e. an abstraction of “earlier than”), the second, denoted by
“C” in [10,12] is called “weak causality” and is an abstraction of “not later
than” relation. The classical “interleaving” and “true concurrency” models are
distinctive special cases. The papers [10, 12] provide the theoretical foundations
of the model (results of [18,6, 1] are special cases) and prove its soundness.
The model has been successfully applied to inhibitor systems [11,2,14,17],
priority systems [13, 16], asynchronous races [28,29], synthesis [22,24], and has
influenced many other approaches [3,27]. It was shown in Janicki and Koutny
[10] that relational structures of the type (X, <,) still cannot model the most
general case and that the most general case requires relational stuctures of the

* Partially supported by NSERC of Canada Grant.
! Every partial order is the intersection of all its total order extensions.

Z. Liu and K. Araki (Eds.): ICTAC 2004, LNCS 3407, pp. 84-98, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

A Generalisation of a Relational Structures Model of Concurrency 85

type (X, <>,C), where <>, called “commutativity”, is an abstraction of “inter-
leaving” relation, and < =<> N LC.

An axiomatic model for the structures of the type (X, <>,C) was recently
proposed by Guo and Janicki [7]. The model of [7] is restricted, it assumes that all
the observations (runs, executions) are modelled by stratified partial orders (or,
equivalently, step sequences). In this paper an axiomatic model for the structures
of the type (X, <>, C) with no restrictions is given.

To illustrate the main ideas, let us consider the following four, very simple
programs, which nonetheless are reflective of the essence of the problem. All
of the programs are written using a mixture of cobegin, coend and a version of
(concurrent) guarded commands

P1: begin int x;
a: x:=0;
cobegin b: x:=x+1, c: x:=x+2 coend
end P1.
P2: begin int x,y;
a: begin x:=0; y:=0 end;
cobegin
b: x=0 — y:=y+1, c: x:=x+1,
coend
end P2.
P3: begin int x,y;
a: begin x:=0; y:=0 end;
cobegin
b:y=0 — x:=x+1, c: x=0 — y:=y+1
coend
end P3.
P4: begin int x,y;
a: begin x:=0; y:=0 end;
cobegin b: x:=x+1, c: y:=y+1 coend
end P4.

Each program is a different composition of three events (actions) called a,
b and c respectively (a;, b;, ¢;, ¢ = 1,...,4, to be exact, but a restriction to
a, b, ¢, does not change the validity of the analysis below, while simplifying
the notation).

What concurrent behaviours (concurrent histories) are generated by the above
programs? Let us concentrate on the behaviours that involve all three actions
{a, b, ¢} (sometimes such behaviours are called proper). Let obs(P;) denote the set
of all program runs involving the actions {a, b, c} that can be observed. Assume
that simultaneous executions can be observed. In this simple case all runs can be
modelled by step-sequences (or equivalently stratified orders), with simultaneous
execution of ay,...,a, denoted by {ai,...,a,}. Let us denote 01 = abe, 02 = ach,
03 = a{b, c}. Bach o; can be seen as a partial order o; = ({a, b, c}, 2), where, less
formally: 0y =a 3053 c,00 =a 3 ¢ 3 b, 03 =a 22 bAa 2 ¢. We can now write

obs(Py) = {o1,02}, 0bs(Py) = {01,03}, obs(P3) = {03}, obs(Py) = {01, 02,03}

86 R. Janicki

Note that for each obs(P;) all runs from obs(F;) yield to exactly the same outcome
(so this justify to call obs(P;)’s as concurrent histories).

An abstract model of such outcome is called a concurrent behaviour, but
what entity constitutes such a model? Let us start with the set obs(Ps). We
may say that in this case for each run, a always precedes both b and ¢, and
there is no casual relationship between b and c. This causality relation, <, is
a partial order defined as < = {(a,b), (a,c)}. Formally < is defined as x < y
iff for each run o we have 2 - 5. One may notice that < is an intersection of
01, 0 and o3, and that {o1,092,03} is the set of all stratified extensions of the
relation? <. Thus in this case the causality relation < can model the concurrent
behaviour that corresponds to the set of (equivalent) runs obs(P,). This is a
classical case of “true” concurrency approach, where concurrent behaviours are
modelled by causality relations. Before considering the remaining cases, note
that the causality relation < is exactly the same in all four cases, i.e. <; =
{(a,b), (a,c)}, for i = 1,...,4, so we may omit the index i. Let us consider now
the set obs(Py).

The causality relation < does not model the concurrent behaviour correctly®
since o3 does not belong to obs(Py). Let <> be a symmetric relation, called
commutativity, defined as = <> y iff for each run o either z = y or y > z.
For the set obs(Py), the relation <>1= {(a,b), (b, a), (a,c), (¢,a), (b,¢),(c,b)}. A
set of relations {<>1,<} and the set obs(P;) are equivalent in the sense that
each one defines another (the set obs(P;) can be defined as the greatest set PO
of partial orders built from a, b and ¢ satisfying z <1 y = Yo € PO. z >
yVy > zandz <y=VYoe PO.z >y). We may say that in this case the
relations {<>1, <} model the concurrent behaviour described by obs(P;). Note
also that <>;=< U <! fori = 2,3,4, so the set {<>4, <} models the concurrent
behaviour described by obs(Py) as well.

To deal with obs(P>) and obs(Ps;) we need another relation, T, called weak
causality, and defined as z C y iff for each run o we have —~(y % x) (x is never
executed after y). For our four cases we have Ca= {(a,b),(a,c),(b,c)}, C3=
{(a,b), (a,c), (b,c),(c,b)}, and C1=C4=<. One may observe that for i = 2,3, a
set of relations {<, ;} and the set 0bs(P;) are equivalent in the sense that each
one defines another (the set obs(P;) can be defined as the greatest set PO of
partial orders built from a, b and ¢ satisfying z < y = Yo € PO. x > y and
r C; y = Yo € PO. =(y 2 x)). We may say that in this case the relations —;,
i = 2,3, models the concurrent behaviour described by obs(P;). Note that —;
alone is not sufficient, for instance obs(P2) and obs(Pz) U {{a,b, c}} define the
same . The relations <, <>, C are not independent, it can be proven ([10])
that <=<> N C.

2 The fact that < equals to Aisa coincidence, there are not so many partial orders
built from three elements. No order is interpreted differently, it means no causal
relationship for < and simultaneous execution for 2.

3 Unless we assume that simultaneity is not allowed, or not observed, in such a case
obs(Py1) = obs(Py) = {01, 02), obs(P2) = {01}, obs(Ps) = (0.

A Generalisation of a Relational Structures Model of Concurrency 87

Summing up we have:

1. all obs(F;), for i = 1,2,3,4 are modelled by appropriate pairs of relations
{<i ok

2. obs(P;), for i = 2,3, 4 can also be modelled by appropriate pairs of relations
{<7 Ei}v

3. 0bs(Py) can be modelled by the relation < alone.

The theory developed in [10] provides a hierarchy of models of concurrency,
where each model corresponds to a so called “paradigm”, or general rule about
the structures of concurrent histories. In principle, a paradigm says how si-
multaneity is handled in concurrent histories. The paradigms are denoted by
w1 through mg. It appears only paradigms 7y, w3, and g are interesting from
the point of view of concurrency theory. The most general paradigm, m, as-
sumes no additional restrictions for concurrent histories. The most restrictive
paradigm, 7g, simply says that if a set of partial orders A is a concurrent his-
tory then (3o € A. 2 S y) <= (o€ Az 2 y)A(Foec A y >),
where <% denotes simultaneity, i.e. 2 <> y <= =(z > y) A =(y > z). The
paradigm, 73, assumes that if a set of partial orders A is a concurrent history
then (Jo€e Az 2 y)A(Foec Ay > 2)= (Foc A zSy).

In the case of Py, Py, P3, P, programs, obviously all obs(P;), i = 1,2,3,4,
conform to paradigm 71, 0bs(Ps), obs(Ps), obs(Py), conform to paradigm 7s, and
0bs(Py) conforms to 7s. It can be proven [10] that 73 implies <> =< U <71,
and 7g implies <> =< U <! and < equals to .

The most restrictive case, g, corresponds to the classical “true concurrency”
model where causal partial orders are sufficient to model all aspects of concurrent
behaviour. In the “true concurrency” model, an equivalence of the formula that
defines 7 is called a ”Diagonal Property” [4,5].

The problem is: What azioms the triples (X, <>,C) or (X, <,T) must satisfy
to be considered as models of concurrent behaviours?

The paradigm 7; is only one of the factors shaping concurrent histories (i.e.
the sets obs(P;) for our example). Another important factor is the kind of partial
orders that observable runs are allowed to be. It is argued in [10] that observable
runs of (discrete) software systems should be modelled by initially finite interval
orders, however the results of [12] cover general partial orders as well. Observable
runs are frequently assumed to be stratified orders or even total orders. This
makes the modelling simpler, and such assumptions are often justified. It appears
that the axioms for (X, <>,C) and (X, <,C) depend heavily on what kind of
partial orders the observable runs are allowed to be. Under the assumption that
only totally ordered runs are allowed, all paradigms are equivalent, < alone
models concurrent behaviour and the relationship between sets of runs and the
relation < follows directly from Szpilrajn theorem [25]. A detailed discussion
of triples (X, <,C) that model concurrent behaviours under the assumption of
paradigm 73, is given in [12].

A solution to the case (X, <>,), i.e. paradigm 71, but under the assumption
that all runs must be stratified orders was recently presented in [7]. In this
paper two remaining solutions to the case (X,<>,C) are given, first, under the

88 R. Janicki

assumption that all runs are interval orders, and second, runs are just general
partial orders.

There are two major different attitudes towards abstracting non-sequential
behaviour, one based on interleaving abstraction (for instance [21]), and another
based on partially ordered causality (for instance [4, 5, 20] etc.). Both models have
been very successful. The interleaving models are very structured and composi-
tional, the partial order models can handle fairness, confusion, etc. Both models
are mathematically much less complex, far more developed than the models
with two relations, and they sufffice in the majority of standard applications.
Nevertheless some aspect of concurrent behaviour are difficult or almost impos-
sible to tackle by both interleaving and partially ordered causality based models.
E.g., specification of priorities, error recovery, time testing, proper treatment of
simultaneity, are in some circumstances problematic [12,10, 13,19, 26].

From the purely mathematical viewpoint the results of this paper can be seen
as an extension of the Szpilrajn Theorem [25] to orders that are not necessary
total. Alternatively, the results show how sets of equivalent partial orders can
be represented by two relations.

2 Relational Structure Model of Concurrency

In order to make this paper self-contained, we briefly recall all the main results
of [10,12].

A partial order, is a pair po = (X, <) such that X is a non-empty set and <
is an irreflexive and transitive relation on X. We say taat X is the domain of po.
Sometime we also say that < is a partial order in X. Two distinct incomparable
elements a and b of X will be denoted by a ~ b, and we will write a <™ b if
a<bora~b.

A partial order (X, <) is said to be

e total if for all a,b € X, either a < bor b < aor a=">0.

o stratified if ~ U idy, where idy is identity on X, is an equivalence relation?;
e interval’ if for all a,b,c,d € X, a <bAc<d=a<dVc<b.

e initially finite if for every a € X, {b| b <™ a} is finite.

It is easy to see that a total order is a stratified order and a stratified order
is an interval one. Stratified orders correspond to step sequences. Modelling
concurrency usually assume some form of discreteness, for instance the number
of predecessors is finite, etc. This is captured by the concept of initial finiteness. It
turns out many results need separate proofs under initial finiteness assumption.
In general, if C is a class of partial orders we will denote by C;r the subclass of
all initially finite partial orders in C. A partial order p; is an extension of another
partial order py if they have the same domain and <,,C<,,.

4 An equivalent definition: a poset (X, <) is a stratified order iff there exists a total
order (Y, <) and a mapping ¢ : X — Y such that Va,b € X. a <b < ¢(a) < &(b).
® The name and intuition follow from Fishburn Theorem [8], see Theorem 3.3 in the
next section. Very often Fishburn Theorem is used as a definition of interval orders.

A Generalisation of a Relational Structures Model of Concurrency 89

A run (observation, instance of concurrent behaviour) is an abstract model of
the execution of a concurrent system. It was argued in [10] that an observation
must be an initially finite, either total, or stratified, or interval order. The results
of [12] are valid for all kinds of partial orders, not necessarily initially finite
nor interval, however separate proofs are frequently required for different cases.
Following [10, 12], we will make a distinction in notation between general posets
and those used as runs. We will use o = (X, —,) rather than po = (X, <) to
denote a generic run, and use <, rather than ~ to denote incomparability.

A complete set of equivalent runs is a concurrent history®. To explain the
concept assume that all runs are total orders. A set A = {abe,cba} is not a
concurrent history, since it implies that there is no causal relationship between
a, b, and ¢ (as the intersection of abc and cba, denoted by <, is empty). Let
A be the set of all total extensions of A, i.e. A% = {abc, bac, acb, bca, cab, aba}.
The set A is complete as it is the set of all total extensions of <a= 0}, so it
can be considered as a concurrent history.

If runs are not all total orders, a definition of concurrent histories requires
using two intrinsic characteristics of the runs. Let A be a set of partial orders
with a common domain X.

Define the relations <> and CAoC X x X as

o Ty = YoeA (zZyvy>a),

o Ay <= YocA (xZyvedy).

We say that a partial order (run) o = (X, %) is an extension of <>, if and
only if

o VryeXz<oay=(r2yvy >
and it is an extension of C 4 if and only if

o VoyeXazCay=(z2yvaedy).

Let A be the set of all posets 0o = (X,-2%) that are extensions of both <>
and C a.

Definition 2.1. A set of runs A is a concurrent history iff A = A, o

All 0bs(P;), i =1, ..., 4, satisfy obs(P;) = obs(P;)°. For detailed discussion of
the above definition, see [10,12].

The problem is how to find axioms for the relations <> and C such that their
partial order extensions could be interpreted as some A°. To solve this problem
the notion of a paradigm has been introduced.

As we mentioned earlier, a paradigm is a superposition or a statement about
the structure of a history involving a treatment of simultaneity. For instance,
let A be a concurrent history. The classical causality based approach usually
stipulates that if there is a run o € A such that a <> b, then there must be a
run such a precedes b and a run such that b precedes a. Formally, paradigms,
w € Par, are defined by

6 The term “concurrent history” has been used by many authors, e.g., [5, 15, 20] and oth-
ers, to denote formally different concepts (atlhough intuitively close) in the idea of con-
currency. The concept used in this paper was inroduced in [9] and is close to that of [20].

90 R. Janicki

w = true| false|¥ |Ws| P3| ~w|w V w|w A wlw = w,

where ¥1(3,7) = Jo. B % v, (B3,7) = Jo. B < ~ and ¥3(B3,7) = Jo. B < v,
where 3, v are some variables.

A history A satisfies a paradigm w € Par if for all distinct a,b € dom(A),
w(a, b) holds. It can be shown (see [10]) that in the study of concurrent histories,
we only need to consider 8 paradigms, denoted by 7y, - - -, ws. From those eight,
only 71, w3 and 7g are important. The most general paradigm, m; = true, admits
all concurrent histories. The most restrictive paradigm, 7g, admits concurrent
histories A such that

FocA xSy & (FocArZyAr(FocAx2y).

It was proven that in this case causality, <, suffices to fully describe A, so the
use of it to model concurrent behaviour is justified. The paradigm 73, which is
general enough to deal with most problems that cannot be dealt with under g,
admits concurrent histories A such that

(FocAzZyYn(FocA xSy = (FocAxsy).

It was proven that in this case, causality, <, and weak causality (an abstraction
of “not later than”), , suffice to fully describe A. The axioms for relational
structures (X, <,), such that the sets of their partial order extensions can be
interpreted as concurrent histories A°, were provided in [12]. We briefly show
them below.

Definition 2.2. A two relation structure, or simply a structure, is a triple
S = (X,<,C) where X is a non-empty set and <,C are two irreflexive bi-
nary relations on X such that for all a,b€ X, a < b= -bLC a. O

Note that at this point we do not assume any other properties of < and L.
Until further notice < and C do not have any interpretation. For any irreflexive
relation R, let R~ be defined as xR~y < —(yRx).

Definition 2.3. Let S = (X, <, C) be a structure. An irreflexive relation R over
X is an extension of S, i.e. R € ext(S5), if and only if for all z,y € X, we have
(x<y = zRy) N(zCy = xR™y). O

Let © be a non-empty class of structures and let S = (X,<,C) € 6. We
define exto(S) = {R| R € ext(S) N (X,R,R~) € O}.

Definition 2.4. A class of structures © is extension complete if for every S =
(X,<,C) €0,

o cexto(S) #0,

® <= mRGext@(S) R, and

° L= mRGext@(S) R™. o

Let 7 be a class of structures defined as follows S = (X,<,C) € 7 iff <
is a partial order and < equals to C, i.e. S = (X, <, <). One may easily show

A Generalisation of a Relational Structures Model of Concurrency 91

that for each S € T, ext7(S) consists of total orders only (if R = R~ and R is
a partial order, then R must be a total order). By Szpilrajn theorem [25], T is
extension complete. The class 7 is called total order structures. This class is not
very interesting, as its members are just partial orders but it creates a bottom
of the hierarchy developed in [12].

Definition 2.5. A relational structure S = (X, <,) is called a stratified, inter-
val and partial order structure if the following conditions S1-S4, I11-16 and P1-P4
are satisfied respectively:

Sl alZa S3aCbCc=alCcVa=c
S2 a<b=alb S4aCb<cVa<bCc=a<ec

Il alZ a I4 a<bCcVaCb<c=alCc
12 a<b=alCb I5 a<bCe<d=a<d
I3 a<b<c=a<c I6 aCb<cCd=aCdVa=d

Pl atZa P3 a<b<c=a<c
P2 a<b=aCb PiaCb<cVa<bCe=alCec

O

We will denote by S, Z and P respectively the class of stratified, interval and
partial order structures. One may verify easily that 7 € S € Z C P. It was
proven in [12] that

e for every S € S, all elements of exts(S) are stratified orders,
e for every S € Z, all elements of extz(S) are interval orders,
e for every S € P, all elements of extp(S) are partial orders

which justifies the names. A discussion of differences between the above axioms
(from [12]) and those of [18, 6] can be found in [12].

A structure (X, <,C) is said to be initially finite if {b | b <™ a} is finite
for all @ € X. As with partial orders, if @ is a class of structures, we denote
by @;r C O the subclass consisting of initially finite structures. The relational
structures Sy = ({a,b,c}, <,C2) and S35 = ({a,b,c}, <,C3) that correspond to
the programs P, and Pj from the Introduction belong to Syr, and exts, . (S;) =
obs(P;) for i = 2,3.

The main result of [12] is the following theorem.

Theorem 2.1 [12] The classes of ordered structures: 7, S, Z, P, Trr, Str, Z1F,
Prr are extension complete. O

This means the ordered structures (i.e. the triples (X,<,C)) represent
uniquely appropriate sets of partial orders, i.e. concurrent histories, so they can
be used to model concurrent behaviours conforming to paradigm 3. It is im-
portant to point out that the result of [12, 18, 6] are only valid under 7, which
suffices for most of the application, but it is not the most general case. Under w3
we have to model the program P; by two sequential behaviours instead of more
natural one concurrent behaviour.

92 R. Janicki

3 Generalized Order Structures

This chapter is devoted to the new results. We start with refining and adapting
some definitions from [7].

Definition 3.1. A generalised structure is a triple G = (X, <>,C) such that
X # 0, <> and C are two irreflexive relations on X, <> is symmetric, and
Se = (X, <g,C), where <g=<> N L[, is a structure. O

Definition 3.2. Let G = (X, <>, C) be a generalized structure. An irreflexive
relation R over X is an extension of G, i.e. R € gext(Q), iff for all z,y € X, we
have (r <>y = 2(RUR Ny A(zCy = xR™y). |

Let © be a non-empty class of generalized structures and let G = (X, <>, C)
is in ©. We define gexto(G) = {R | R € gext(G) A (X, R, R™) € O}.

Definition 3.3. A class of generalized structures @ is extension complete if for
every G = (X, <>, C) € O,

o gexto(S) # 0,

b < = ﬂRGgezt@(S)(R U R_1)7 and

b L= nRGgemt(_)(S) R U

Let GT be a class of generalized structures defined as G = (X, <>,C) € GT
if and only if < = {(z,y) | x,y € X Ax # y} and C is a partial order. One
may easily show that for each G € G7, gextgr(G) consists of total orders only
(the same argument as for ext7 (S) before), so by Szpilrajn theorem [25], G7 is
extension complete. The class G7 is called generalized total order structures, its
members are just partial orders in disguise, and it creates a bottom of our new
hierarchy.

Definition 3.4. A generalized structure G = (X, <>, C) is called a stratified, in-
terval, partial order generalized structure and initially finite generalized structure
if the structure S = (X, <g,C), where <g =<> N L[, is stratified (axioms
S1-S4), interval (axioms I1-16), partial order structure (axioms P1-P4), and ini-
tially finite, respectively.]

We shall use G7', GS, GZ and GP to denote respectively the classes of total,
stratified, interval and partial order generalized structures. One may verify easily
that G7 € GS C G C GP. If @ is a class of generalized structures, we denote
by Orr C O the subclass consisting of initially finite generalized structures. The
relational structure G7 = ({a,b, ¢}, <>1,C1) corresponding to the program Py
from the Introduction belong to GS;r, and gextgs,.(G1) = obs(Py).

The following lemma (a generalization of Lemma 3 in [7]) gives some neces-
sary and sufficient conditions for extension completeness.

Lemma 3.1. Let G = (X, <>, C) be a generalized structure and (2 is any set
of relations that extends G. Then, <> = (pco(RUR™), and C = e, R™ if
and only if for all distinct a,b € X we have:

A Generalisation of a Relational Structures Model of Concurrency 93

(a) —(z < y) = JdR € 2. =(xRy) N ~(yRx)
(b) -(x Cy)= 3R € N. yRu.

Proof. (Sketch) Similarly as the proof of Lemma 3 in [7]. O

The above lemma is used in proofs of our main results. The main result of
[7] is the following theorem.

Theorem 3.1.[7] The classes of generalized ordered structures G7, GS, G7 1p,
GSr are extension complete. O

The main result of this paper is the following.

Theorem 3.2. The classes of generalized ordered structures GZ, GP, GZ;p,
GPr are extension complete. =]

Theorem 3.1 was proven using a technique developed in [12] to prove Theo-
rem 2.1. It seems this technique is not enough to prove Theorem 3.2. In order
to prove Theorem 3.2 we need the following results from [1, 8, 25].

Lemma 3.2.[25] Let po = (X, <) be a partial order and a,b € X, a ~ b. Define
Y={a}U{yly<a}, Z={b}U{z]|b< z}.
Then (X, <) = (X,< UY xZ) is a partial order and a < b. a

Theorem 3.3.[8]([10] for initially finite case) A partial order po = (X, <) is
interval (interval and initially finite) iff there exists a total (total and initially
finite) order (7, <) and two mappings ¢,v : X — T such that for all a,b € X,
vla) < YP(a) and a < b < (a) < @(b). O

Usually ¢(a) is interpreted as the beginning and ¢ (a) as the end of an inter-
val a.

Theorem 3.4.[1] Let S = (X, <,) be an interval order structure. Then there is
a partial order (7', <) and two mappings ¢, ¥ : X — T such that for all a,b € X,
v(a) < Y(a) and:

a<b <= ¢Y(a) < ¢(b)

aCb < pla) <9(b) Ve(a) = P(b). =

It turns out the results of Theorem 3.4 also hold under additional assumption
of initial finiteness.

Theorem 3.5. Let S = (X, <, C) be an initially finite interval order structure.
Then there is an initially finite partial order (T, <) and two mappings ¢, v :
X — T such that for all a,b € X, ¢(a) < ¥(a) and:

a<b <= 9(a) < o)

aCb <= pa) <) Vela) =1(D).

94 R. Janicki

Proof. (Sketch) We take (T, <) from Theorem 3.4 and show that initial finiteness
of S implies initial finiteness of (7, <). a

The results of Thorems 3.4 and 3.5 can be extended to generalized structures.

Theorem 3.6. Let G = (X, <>,C) be a generalized interval order structure.
Then there is a partial order (T, <), two mappings ¢,1 : X — T, and an acyclic
relation < C T'x T such that for all a,b € X, p(a) < ¢(a) and:

(a) a<>b <= ¢P(a)ap(b) VY (b) ap(a)

(b) a<gb <= y(a) < ¢(b), where <g=<>NC

() aCb <= ¢la) <)V ela)=Y(b).
Furthermore, if G is initially finite then (7', <) is also initially finite.

Proof.(Sketch) Let <; be any total extension of <¢. Define R, =<> N <;. Note
that <>= R;UR; " and <gC R;. Let < be any relation that satisfies (b) and (c).
Its existence follows from Theorem 3.4 or Theorem 3.5. First we set < equal to
<. Let (a,b) € Ry— <g= Ry— C. In such case we extend < by setting 1 (a)<¢(b).
O

At this point we can prove the first half of our main result.

Theorem 3.7. The class of generalized interval order structures GZ and the
class of generalized initially finite interval order structures GZ;p are extension
complete.

Proof.(Sketch) Let G = (X, <>,C) be a generalized interval order structure,
and let {2 be the set of interval orders that extend G. Let < be a relation from
Theorem 3.6, <* be its transitive closure and let (7', <;) be any total extension
of (T,<t). We define 0 = (X, %) as a > b <= v(a) < ¢(b). By Theorem 3.3,
o0 is an interval order. Using Theorem 3.6 we can prove that o is an extension
of G, i.e. 0 € 2 # (), so it suffices to show that the conditions (a) and (b) of
Lemma 3.1. are satisfied. To prove this we need to use Theorem 3.6, Theorem
3.3 and Lemma 3.2. The reasoning for initially finite case is very similar. O

The second half of our main result requires a separate proof and the following
lemma.

Lemma 3.3. Let (Q, <) be an upper semi-lattice”, and {S, | » € Q}, where
S, = (X,<,,C,), be a class of partial order structures such that r; < ro =
(< C<py A Cr,CCpy). Then S = (X, <,C), where < = (J,co <r and C =
UTEQ C,, is also a partial order structure.

Proof. (Sketch) We show that the axioms P1-P4 are satisfied. O

Theorem 3.8. The class of generalized partial order structures GP and the class
of generalized initially finite partial order structures GP; are extension complete.

" A partial order (X, <) is an upper semi-lattice if for any x,y € X there is z € X
such that x < z Ay < z. In particular any total order is an upper semi-lattice.

A Generalisation of a Relational Structures Model of Concurrency 95

Proof.(Sketch) Let G = (X, <>, C) be a generalized partial order structure, and
let = be the set of partial orders that extend G. Let R; be a relation from the
proof of Theorem 3.6, R;" be its transitive closure. We can show that o = (X, R;")
belongs to =. By using Lemmas 3.2 and 3.3, we can prove that the conditions
(a) and (b) of Lemma 3.1 are satisfied, which proves extension completeness of
GP. For GPr we proceed similarly. O

The proofs are generally much longer and more complex that it might appear
from the sketches. Transfinite induction and the axiom of well-ordering are used.

By merging Theorem 3.1([7]) and Theorem 3.2 we obtain generalisations
of Szpilrajn Theorem for various types of partial orders, including the most gen-
eral case.

For the sake of putting all the results together we formulate them as a
theorem.

Theorem 3.9. (Generalisations of Szpilrajn Theorem) The classes of
generalized structures: G7, GS, GZ, GP, G7T ;r, GSiry, GL1r, GPr are
extension complete. O

It is intuitively obvious that in some cases both ordered structures and gen-
eralized ordered structures generate the same set of extensions. According to
[10] such cases conform to paradigm 73, but this property can also be expressed
without introducing explicitly the concept of paradigm (in the sense of [10]).

Theorem 3.10. For every generalized structure G = (X, <>, C):
< =<gU<g" < gext(G) = ext(Sg).

Proof. (Sketch) Standard, by definition manipulation. a

4 Generalized Order Structures and Concurrent
Histories

Below we discuss axiomatic representations of histories satisfying mq, i.e. no
restriction at all. Our main result is that every (initially finite or not) total,
stratified, interval, or partial generalized order structure corresponds in a natu-
ral way to a concurrent history. It was argued in [10] that runs (observations)
should be initially finite interval orders at most. The argument was based on the
laws of Physics under the assumption that observers work alone, from purely
mathematical viewpoint this assumption is not necessary. It was shown in [23]
that teams of observers can see runs modelled by arbitrary posets, so below we
do not impose the restrictions from [10].

Let 7O, SO, TO, PO denote the class of total, stratified, interval and partial
orders respectively. Recall that G7, GS, GZ, GP denote the classes of generalized
total, stratified, interval and partial order structures, respectively, while 7, S,
7, P denote the classes of total, stratified, interval and partial order structures.

96 R. Janicki

Let us devide the set {70,80,70,PO,GT,GS,GI,GP,T,S,Z,P} into the
following partitions: {70,G7,7}, {S0O,GS,S8}, {ZO,GZ,1I}, {PO,GP, P},
{TO}IF, GT1r,Tir}, {SO1r, G817, S1r}, {IO017,9Z1r7, I1r}, {POrr,GPrF,
Prr}.

We say that two classes are related if ther belong to the same partition.

For every set of partial orders A with a common domain X, define
Ga = (X, <A, EA), and Sp = (X, <A, EA) by

° >A= ﬂoeA(i) U &)’
o

° <a= m(JGA)

o CamMea>US).

The main result of this section can now be formulated as follows.

Theorem 4.1. Let A be a non-empty set of partial orders with common domain.
Then:

A=ACY «— (GA S @/\gemt@(GA) =A),
where X' is a class of partial orders, © is a class of generalized order structures,
and (X, O) are related.

Proof. (Sketch) Standard, using definitions and Theorem 3.9. a

Under the paradigm 73 ordered structures and generalized ordered structures
describe the same behaviour, which can be formally described as follows.

Theorem 4.2. Let A be a non-empty set of partial orders with common domain
conforming to paradigm s, X be a class of partial orders, = be a class of ordered
structures, © be a class of generalized order structures, and (X, =, ©) are related.
Then the following are equivalent:

(a) A=AdC Xy

(b) Sa € ENext=z(Sa) = A

(c) Ga € O Agerto(Ga)=A

Proof. (Sketch) Tt was proven in [10] that 73 implies <> =< U <,'. Next we
can use Theorem 3.10. o

5 Final Comment

In this paper, we refined the notion of generalized structures introduced in [7],
and proved that various classes of generalized structures are extension complete.
From purely mathematical point of view the results of this paper can be seen
as a generalization of Szpilrajn Theorem [25], from total orders to stratified,
interval and general partial orders.

An immediate application of the obtained results seems to be in the concur-
rent system synthesis problem area. We believe that the approach introduced in
[22] could now, after employing the results of this paper, handle the cases like
the program P; from the introduction.

A Generalisation of a Relational Structures Model of Concurrency 97

The main result of this paper, Theorem 3.9, although highly motivated by
concurrency theory, is entirely independent of any particular interpretation.

Acknowledgements

I would like to thanks especially one anonymous referee for detailed comments
and very helpful suggestions.

References

1. U. Abraham, S. Ben-David, M. Magodor, On global-time and inter-process com-
munication, in Semantics for Concurrency, Workshops in Computing, Springer
1990, 311-323.

2. P. Baldan, N. Busi, A. Corradini, M. Pinna, Functorial Concurrent Semantics for
Petri Nets with Read and Inhibitor Arcs, Theoretical Computer Science, to appear.

3. E. Best, F. de Boer, C. Palamedissi, Partial Order and SOS Semantics for Linear
Constraint Programs, Lecture Notes in Computer Science 1282, Springer 1997,
256-273.

4. E. Best, M. Koutny, Operational and Denotational Semantics for the Box Algebras,
Theoretical Computer Science 211 (1999), 1-83.

5. P. Degano, U. Montanari, Concurrent histories; a basis for observing distributed
systems, J. Comput. System Sci. 34 (1987), 422-467.

6. H. Gaifman, V. Pratt, Partial order models of concurrency and the computation
of functions, Proc. of LICS’87, 72-85.

7. G. Guo, R. Janicki, Modelling Concurrent Behaviours by Commutativity and Weak
Causality Relations, Proc. of AMAST 02, Lecture Notes in Computer Science 2422
(2002), 178-191.

8. P. C. Fishburn, Intransitive indifference with unequal indifference intervals, J.
Math. Psych. 7 (1970) 144-149.

9. R. Janicki, M. Koutny, Invariants and Paradigms of Concurrency Theory. Proc. of
PARLE’91, Lecture Notes in Computer Science 506 (1991), 59-74.

10. R. Janicki, M. Koutny, Structure of Concurrency, Theoretical Computer Science
112 (1993), 5-52.

11. R. Janicki, M. Koutny, Semantics of Inhibitor Nets, Information and Computation,
123, 1(1995), 1-16.

12. R. Janicki, M. Koutny, Fundamentals of modelling concurrency using discrete re-
lational structures, Acta Informatica, 34 (1997), 367-388.

13. R. Janicki, M. Koutny, On Causality Semantics of Nets with Priorities, Fundamenta
Informaticae, 38 (1999), 222-255.

14. G. Juhés, R. Lorentz, C. Neumair, Synthesis of Controlled Behaviour with Mod-
ules of Signal Nets, Proc. of ATPN’04, Lecture Notes in Computer Science 3099,
Springer 2004, 233-257.

15. S. Katz, D. Peled, Defining conditional independence using collapses, in Semantics
for Concurrency, Workshops in Computing, Springer 1990, 262-290.

16. H. Klaudel, F. Pommereau, A Class of Composable and Preemptible High-Level
Petri Nets witn and Application to a Multi-Tasking System, Fundamenta Infor-
maticae, 50 (2002), 33-55.

98

17

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

R. Janicki

J. Kleijn, M. Koutny, Process Semantics of P/T-Nets with Inhibitor Arcs, Lecture
Notes in Computer Science 1825, Springer 2000, 261-281.

L. Lamport, The mutual exclusion problem: Part I - a theory of interprocess com-
munication; Part II - statements and solutions, Journal of ACM 33,2 (1986) 313-
326.

L. Lamport, What It Means for a Concurrent Programm to Satisfy a Specification:
Why No One Has Specified Priority, Proc. 12th ACM Symp. on Programming
Languages, 1985, 78-83.

A. Mazurkiewicz, Trace Theory, Lecture Notes in Computer Science 225, Springer
1986, 297-324.

R. Milner, Operational and Algebraic Semantics of Concurrent Processes, in J. van
Leuween (ed.), Handbook of Theoretical Computer Science,vol. 2, Elsevier 1993,
1201-1242.

M. Pietkiewicz-Koutny, The Synthesis Problem for Elementary Net Systems, Fun-
damenta Informaticae 40,2,3 (1999) 310-327.

G. Plotkin, V. Pratt, Teams can see pomsets, Unpublished Memo, Stanford Uni-
versity, 1990.

O. H. Roux, D. Lime, Time Petri Nets with Inhibitor Arcs. Formal Semantics and
State Space Complexity, Proc. of ATPN’04, Lecture Notes in Computer Science
3099, Springer 2004, 370-390.

E. Szpilrajn, Sur lextension de l'ordre partial, Fundamenta Mathematicae 16
(1930), 386-389.

W. Vogler, Timed Testing of Concurrent Systems, Information and Computation
121 (1995), 149-171.

W. Vogler, Partial Order Semantics and Inhibitor Arcs, Lecture Notes in Computer
Science 1295, Springer 1997, 508-517.

R. Wollowski, J. Beister, Precise Petri Net Modelling of Critical Races in Asyn-
chronous Arbiters and Synchronizers, Proc. 15 Workshop on Hardware Design and
Petri Nets, Lisbon 1998, 46-65.

R. Wollowski, J. Beister, Comprehensive Causal Specification of Asynchronous
Controller and Arbiter Behaviour, in A. Yakovlev, L. Gomes, L. Lavagno (eds.)
Hardware Design and Petri Nets, Kluwer 2000.

A Logical Characterization of Efficiency
Preorders

Neelesh Korade! and S. Arun-Kumar?*

! Persistent Systems Private Limited, “Bhageerath”,
402, Senapati Bapat Road, Pune 411016, India
neelesh_korade@persistent.co.in
2 Department of Computer Science and Engineering,
Indian Institute of Technology, Delhi,

Hauz Khas, New Delhi 110016, India
sakQcse.iitd.ernet.in

Abstract. In this paper we present logical characterizations of two pre-
orders, within the framework of Hennessy-Milner Logics. The two pre-
orders (loosely termed bisimulation-based efficiency preorders) are on
processes represented as labelled transition systems. The characteriza-
tions are particularly interesting as they explore preorders lying between
strong and weak bisimilarity, guided by a principle of containment which
is explained in the Introduction. Even though the proofs of the charac-
terizations use standard methods, there are various subtleties introduced
by the nature of the preorders and the logical operators needed to char-
acterize them. The authors have not previously encountered the use of
such operators in such simple logics.

Keywords: Concurrency, transition systems, bisimulation, efficiency pre-
orders, process efficiency, Hennessy-Milner Logic.

1 Introduction

In [5] a modal logic for reasoning about labelled transition systems was first
defined which characterized the notions of simulations, strong and weak bisim-
ulations. Subsequently the logic has been extended in various ways to include
the modal p-calculus and various behavioural equivalences and preordering re-
lations on labelled transition systems. For a comprehensive account, the reader
is referred to [12].

In all such formulations, a process is identified by the set of formulas of a logic
that it satisfies. Given a behavioural equivalence relation on processes, a logical
language L characterizes this equivalence relation precisely when two equivalent
processes satisfy the same set of formulas of the logic.

Formally therefore, if P is a set of processes and L is a logic then we may
identify each process p € P with the set of formulas of L that it satisfies, i.e.

* Corresponding author.

Z. Liu and K. Araki (Eds.): ICTAC 2004, LNCS 3407, pp. 99-112, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

100 N. Korade and S. Arun-Kumar

L(p) = {¢ € L | p E ¢} denotes the set of formulas of L that p satisfies.
A behavioural equivalence = on P is characterized by L whenever p = ¢ iff
L(p) = L(g). Similarly a behavioural preorder < on P is characterized by L
whenever p < ¢ iff L(p) C L(q) or p S ¢ iff L(q) € L(p).

Van Glabeek [14] has used precisely such formulations to characterize the
various behavioural relations on concrete processes. In several instances, it has
been shown that one behavioural relation R is coarser than another S, by show-
ing that a less expressive logic characterizes R or that a more expressive logic
characterizes S.

Such a formulation may actually be traced back to [5]. In it the authors
present two modal logics - the stronger or more expressive one (subsequently
referred to in the literature as Hennessy-Milner Logic or HML) characterizing
strong bisimulation equivalence and the weaker or less expressive one (referred
to by Stirling [12] as Observable Hennessy-Milner Logic or OHML) character-
izing observational equivalence. The paper [5] also showed the characterization
of trace equivalence and simulation equivalence in terms of sub-logics of HML,
thus establishing that both trace equivalence and the simulation equivalence are
coarser than bisimulation. The authors actually showed that for image-finite
processes, HML with finitary conjunctions captured strong bisimilarity whereas
HML without negation characterized simulation equivalence. Trace equivalence
was characterized by removing both negation and conjunction from the logic.

In this paper we provide such logical characterizations for behavioural rela-
tions that lie strictly between strong and weak bisimilarity by defining modified
Hennessy-Milner Logics for the purpose. We use the following properties as guid-
ing principles in the design of the logics.

1. For any behavioural preorder < and logical language L characterizing <,
p < ¢ iff L(p) C L(q). It then follows that the kernel of the preorder is
an equivalence relation and is characterized by equality on sets of satisfying
formulae. That is, p < ¢ and ¢ < p if and only if L(p) = L(q).

2. Given preorders <7, and <, characterized respectively by logics L1 and Lo,
<y C <y iff L1y < Lo where Ly < Lo denotes that Ly is more expressive
than Lo (and hence can allow for finer distinctions to be made).

While adhering to these principles, it may be pointed out that so far the spec-
trum of behavioural relations that lie strictly between strong and weak bisimilar-
ity has not really been explored in the literature. This includes some preorders
defined by Milner and others ([11], [10], [3], [2]). In this paper we provide a
characterization of the preorders defined in [3] and [2]. As we will show, the
characterization of these preorders requires reasoning about linear orders within
logics whose expressive power lies strictly between HML and OHML.

Efficiency-based preorders have been of interest to various people since they
were first introduced in [1]. Several other authors have worked on obtaining
similar preorders within the framework of extensionality (see [13], [6], [7], [8], [4])-
Some of these works are based on extent theories such as testing and bisimulation
in process algebra and Petri nets.

A Logical Characterization of Efficiency Preorders 101

The paper is organized as follows. In the next section we review HML and
OHML and show the characterizations of strong and weak bisimilarity respec-
tively. Section 3 presents the logical characterization of the elaboration preorder
[3] using an appropriately modified OHML. In this section we also highlight
the principal differences between the elaboration preorder and weak bisimilar-
ity and hence the need for a more expressive logic than OHML to characterize
elaboration. In section 4, we present the characterization of the efficiency pre-
order relation. Though the proofs in these sections are standard the operators
introduced to characterize the two preorders are not standard. Section 5 is the
conclusion and highlights further properties of the new modal operators that
have been introduced to enrich OHML so as to characterize these preorders.

2 Modal Characterizations of Strong and Weak
Bisimilarity

Here we review Hennessy-Milner Logic (HML) and Observable Hennessy-Milner
Logic (OHML) and show how they characterize strong and weak bisimilarity
respectively.

Let V be a set of wvisible actions, T ¢ V a distinguished invisible action and
Act =V U {7} the set of actions. A labelled transition system (LTS) is a 3-tuple
(P, Act,—), where P is a set of process states or processes and —C P x Act x P
is the transition relation. We use the notation p — ¢ to denote (p,a,q) €E—
and refer to ¢ as a strong a-derivative of p.

2.1 Strong Bisimulation

Definition 1. A binary relation R C P x P is a strong simulation (SS)
if for every (p,q) € R and a € Act:

p——p = 3¢ :q—"q Ap'Rq
It is a strong bisimulation (SB)if both R and R 'are strong simulations.
We write p ~ q if there exists a strong bisimulation R such that pRq. The

relation ~ is called strong bisimilarity.

The relation ~ is itself a strong bisimulation, and in fact, the largest one.
In [9] the author gives a comprehensive account of the modal logic (HML) that
characterizes strong bisimilarity. It is defined as follows.

Definition 2. The class Lsg of strong bisimulation formulas over Act is given
by the following grammar (I is an indezing set, not necessarily finite).

pu= <a>@| Neryi | e

tt € Lsp where tt =)\, ;. Similarly, ff € Lsp where ff = —it.

102 N. Korade and S. Arun-Kumar

Definition 3. The satisfaction relation F C P x Lgp is defined recursively as
follows:

p E tt for all p € P.

—pE<a>q foracActifIp' €P :p - p and p' E .
—PFE Nierpi if pE @i forallicl.

—pEopifpko.

The set SB(p) is defined as SB(p) = {¢ € Lsp | p F ¢}. We write p Cgp
q iff SB(p) € SB(q) and we write p =gp ¢ iff SB(p) = SB(q). The negation
operator collapses the preorder Cgp to =gp as the following proposition shows.

Proposition 1 (Van Glabeek [14]). p Csp ¢ <= p =35 ¢.

Proof. If ¢ € SB(q) — SB(p) then —¢p € SB(p) — SB(q). Hence, p Cgp ¢ <
b =sB q- O

Theorem 1 (Van Glabeek [14]). p ~ ¢ < p =55 ¢.

Proof. (=) By induction on the structure of . Since p ~ ¢, there exists a
strong bisimulation R such that pRq.

- Let p E<a> . Then there exists a p’ € P with p—+p’ and p’ E . Since
pRg, there must be a ¢/ € P with ¢——¢’ and p’R¢’. So by induction ¢’ E ¢
and hence g F<a> ¢.

By symmetry, one also obtains ¢ F< a > ¢ = pFE<a > p.

induction,

-pENcrpie=Viel(pF o) = Viel(qF i) <= qF \;c; i
-pEp<=pF cpm%{mq#@@ qFE .
(«<=) To prove that p =gp ¢ = p ~ ¢, it suffices to establish that =gp is a
strong bisimulation. If however, we show that Cgp is a strong simulation, then
proposition 1 implies that =g = LCgp = Eg}g is a strong bisimulation.
We proceed to show that Cgp is a strong simulation.

Suppose, p Cgp q and p——p’. Then p E< a > tt and p Cgp ¢ implies ¢ has
at least one strong a-derivative. We have to show that 3¢’ € P with ¢——¢’ and
p' Csp ¢ Let

Q={¢"€P|q¢—q"Np' Lsp q"}
For every ¢” € @ there is a formula ¢, € SB(p’) — SB(¢"). Now < a >
Ny co¥a € SB(p) € SB(q). Therefore there must be a ¢ € P with —q
and ¢’ F /\q cQ Pq » which implies q ¢ Q.]

With negation in the logic, we may define the duals of the operators in Lgp
as derived ones.

lalp = - <a> -y Vier vi =~ Nier i

We may then define a negation-free language Lgp .

A Logical Characterization of Efficiency Preorders 103

Definition 4. The class Lsp of negation-free strong bisimulation formulas over
Act is given by the following grammar

pu=<a> g | /\iejsﬁz‘ | [ale | \/z‘elwi

with tt = N\, cp i and ff =V, cp ¢i-

Definition 5. The satisfaction relation E CP x Lgg is defined recursively as
in the case of Lgp with the clause for negation being replaced by the following
clauses.

— pEff fornopeP.
— pElalp forac Act ifVp €eP:p "5 p = p'Eo.
— pE\V,crvi if pF i for some i€ 1.
It is clear that —=—¢ is equivalent to . It may be shown (refer [12]) that Lsp
and Lgp are expressively equivalent and characterize the same equivalence.

2.2 Weak Bisimulation

We may define several other derived operators. Some of the relevant ones are
given below.

<a>p=¢p <a>"tl p=<a><a>m p,meN
<> @ =V, <T>" g KA @ = ES<a>ES @
[Nl =-<>-p [lal)e = [lal[[N)e

The last four operators correspond to the weak transition relation = which is
the smallest relation on processes such that

— p = p for all processes p, and
— p—» qand ¢ = r implies p = r

Further for any a € Act,

— p == qif p =-"= ¢, and ¢ is called a weak a-derivative or simply an
a-derivative of p.

— p== ¢ denotes p = ¢ if a = 7 and p == ¢ otherwise.

— <K a>> denotes <<>> if a = 7 and << a>> otherwise.

Definition 6. A binary relation R C P x P is a weak simulation if for every
(p,q) € R and a € Act,

p-p — 3 :q== ¢ APR{

R is a weak bisimulation (WB) if both R and R~ are weak simulations. We
write p &= q if there exists a weak bisimulation R such that pRq.

104 N. Korade and S. Arun-Kumar

Definition 7. The class Lwp of weak bisimulation formulae over Act is defined
by the following BNF.

pu= Ka>> | Ncrei | -p
where a € V.

Note that in the light of our discussion on derived operators, Ly g is entirely
contained in Lgp. It is also less expressive in the sense that it cannot express
properties relating to the number of invisible moves a process might be able to
make.

Definition 8. The satisfaction relation E C P X Lyp is defined recursively by:
— pEtt for all p € P.
pE<a> g foracVifdp :p==p Ap Ep

7p':/\i6190i if pE; foralliel.
—pE-pifpk .

The set of all formulae that a process p satisfies is defined as WB(p) = {p €
Lwp | pF ¢}. We write p Ty p ¢ iff WB(p) C WB(gq) and we write p =wp ¢
ifft WB(p) = WB(q). The proofs that p Cywp ¢ implies p =wp ¢ and that
p = qiff p=wp q (i.e. that Ly p characterizes weak bisimilarity) are similar
to the corresponding proofs for strong bisimilarity and hence are omitted. It is
also possible to define a negation-free logic Ly p (analogous to Lgp) which
characterizes weak bisimilarity.

3 Elaboration

In this section we give a logical characterization of the elaboration preorder
defined in [3]. This logic builds upon Ly g and exhibits controlled use of counting.

Definition 9.4 binary relation R C P x P is an elaboration iff for every
(p,q) € R the following conditions hold for every action a € Act.

p-Sp = 3¢ ¢=5q AP Rq (1)
q—=q = 3" : p==p' Ap'Rq (2)
We write p 5 q if there exists an elaboration R such that pRq.

Loosely speaking, if p 5 ¢, then p ~ ¢ and for every execution sequence of p,
there exists a possibly shorter execution sequence of ¢ which exhibits the same
visible behaviour. In [3] the authors illustrate this feature with a small example.
They also show in the equational axiomatization of the corresponding precon-
gruence (and congruence) for finite CCS processes, that it differs from that of
observational congruence in just one equation. Whereas observational congru-
ence satisfies the equation a.7.p = a.p, in the case of elaboration, a.7.p 5 a.p but

A Logical Characterization of Efficiency Preorders 105

the converse a.p $ a.7.p does not always hold. In that sense the precongruence
is closer to observational congruence than any other relation defined so far in
the literature.

It is easy to show from the above definition that every elaboration is a weak
bisimulation. In particular, the only difference from that of weak bisimulation

is in clause (2), where the —= is replaced by ==. We state without proof, a
result (see [3]) that we use in the proof of lemma 4.

Lemma 1. If R C PxP is an elaboration then for every (p,q) € R the following
conditions hold for every action a € Act.

p=%p = 3¢ :q==q¢ Ap'R¢ (3)
g==q = I :p==p APR{ (4)

From lemma 1 it is clear that any HML-style characterization that is in
accordance with the principles laid out in section 1 would enrich observable
HML slightly in order to characterize the preorder. We define the following two-
level grammar, whose lower level (defined by the meta-variable ¢) is Ly g. The
higher level (defined by the meta-variable 7) expresses a certain weak form of
counting. It introduces a new operator ¢*, (where k is a positive integer) but
does not permit negation to precede any occurrence of €*. The operator << a >>
excludes << 7 >>. Where counting of 7 actions is not important, the lack of
negation is compensated by the derived operators [[...]] and \/.

Definition 10. The class Lg of Elaboration formulae over Act is given by the
following two-level grammar, where o € V and a € A.

= <<a>><p| /\ieI‘Pi \ -
Tu= | a7 || [[a]]n | Nicrmi | Vier i

Definition 11. The satisfaction relation E C P x Lg is defined recursively in
a manner that should be obvious by now for all operators drawn from Lwpg. So
we restrict ourselves to the definitions of the operators << a >>, €* and [[a]]
respectively.

— pEKa> 7w for a € Act, if Ip' € P :p:d>p//\p’|:7r.

— pEén fork >0, ipr’e]P.'pT—]>p’/\p’l=7r:>j<k
— pE[a]l7 for a € Act if for allp’ €P : p == p' = p' E .

D -, p’ denotes that p may evolve to p” after performing j consecutive invisible
actions. E(p) ={r € Lg | pE 7w} and Ewp(p) ={p € Lwp | p F ¢}. We write
p Cp qiff E(p) C E(q) and p =5 ¢ iff E(p) = E(q). Similarly, p Cp,,, ¢ iff
Ewg(p) C Ewg(q) and p =g, , ¢ it Ewg(p) = Ewr(q).

To gain a deeper understanding, we give below some examples that illustrate
the expressive power of L.

106 N. Korade and S. Arun-Kumar

Ezxzample 1.

— The statement “p is stable” i.e. p cannot perform a 7 action, may be expresed
as e'tt. More generally, p E €*tt if and only if p may perform no more than
(k — 1) consecutive 7 actions.

— The statement “p converges” i.e. p cannot perform an infinite sequence of 7
actions, is expressed as \/, - eFtt.

— The statement “p diverges’ is however not expressible in the language since
p diverges iff p i \/ ;.. €"tt.

— The statement p E €°ff means that “p can perform 7™ for all m > k”.
However, this statement does not necessarily imply that p diverges, unless p
is also finitely branching.

— € logically implies €*7 for all 0 < j < k.

— For any j > 0, /\k>j e*r is logically equivalent to /7.

— Statements such as “p can do at least two consecutive T actions’ are not
expressible since there is no operator which can express lower bounds on the
number of consecutive T actions!.

We now proceed to prove the characterization theorem. We begin with the
following lemma which is clearly implied by the fact that every elaboration is a
weak bisimulation and that Cg,, , and =g, , coincide.

Lemma 2. p S q = p=pg,, q and hencep S ¢ = pLpg,, q. O

Theorem 2. The characterization. p < ¢ iff p Cg g.]

We split the proof of theorem 2 into two parts.
Lemma 3. p Cg g implies p < q.

Proof. We show that Cg is an elaboration. Let E(p) C E(q). We need to prove
both parts (1) and (2) of definition 9.

Part (1). Consider p —% p’ where a € Act. Then p E<<a>> for any 7 € E(p’)
and ¢ F << a>>m which implies 3¢’ : q:d>q' A ¢' E m. We need to show that
3¢ :q==q¢ NE@®) C E(¢).
Let X
Q={d"1a==d"NEW) L E(")}
Then for each ¢” € Q, there exists a formula 7, € E(p’) — E(¢"”). This implies
P'FN, eqgmq - Hence p F m where 7 =<<a> A, o7y - Thatis, 7 € E(p) C

E(q). Hence 3¢’ : ¢ N NG F N, cogmq and ¢ ¢ Q, which shows that
E(p') C E(¢’), which needed to be proved.

! To be able to express such statements, would require either the power of negation
or the dual of ¢*. But allowing such operators would make the logic equivalent to
Lsg, something we wish to avoid.

A Logical Characterization of Efficiency Preorders 107

Part (2). Suppose ¢ 25 ¢’. We claim 3p’ : p == p’. Suppose not. If a € V
then for some ¢ € Ewg(q'), ¢ F<< a > ¢ and p #<< a >> ¢. This implies
pE - <<a>> ¢ and ¢ ¥ - << a>> ¢ which contradicts Ewg(p) € Ewg(g). On
the other hand, if a = 7, then p #= implies p E e'tt. But since ¢ — ¢/, q # €'tt
which contradicts F(p) C E(q).

Now, we need to show that Hp’ p =7 /\ E(p') € E(q'). Suppose there
is no such p’. Then Vp' : p == p’ = E(p') € E(¢'). Then for each weak
a-derivative p” of p, there exists a m, € E ("y — E(¢"). Choose one such for

each weak a-derivative p” of p and collect them in a set II. Then we have
E [[a]](V IT), but ¢ ¥ [[a]](\/ IT), which contradicts E(p) C E(q). Hence Jp’ :
p==p'ANE(p') C E(d). =

Lemma 4. p < ¢q implies p Cg q i.e. E(p) C E(q).

Proof. We need to show p 5 ¢ = (p F m = ¢ F 7). We prove this by induction
on the structure of 7

— pFE . Then ¢ F ¢ follows from lemma 2.
— pE<xa>> 7, a € Act. Then Jp’ : p:d>p’ A p' E 7 and since p 5 ¢, 3¢

q:d>q’ Ap" < ¢'. Therefore, by induction hypothesis, ¢' F 7 = ¢ F<<a>>
.
— pE €éfn. Then Vp' - pT—]>p’/\p’ Fm = j < k.Since p § ¢, we have, for every

such p’ and j there exist ¢’ and m respectively, such that ¢ —— ¢’ A p’ =S4
Therefore by the induction hypothesis, ¢’ E 7. We claim that, m > k is
impossible. Suppose not; then g——q’ A p’ < ¢ where m > k, for some ¢

and m. Then Jp” : pT—]>p” Ap" £ ¢ for some j > m > k. But then p ¥ *r
which is a contradiction. Hence ¢ F €*r.
— pFE [[a]]x. Then Vp' : p == p/ = p' E 7. Since p S g, we have, for every

such p’, 3¢’ : ¢ == ¢’ Ap’ S ¢. By the induction hypothesis F(p') C F(¢')
and ¢’ E 7. We now claim that there does not exist any ¢’ such that ¢ == ¢
and ¢ ¥ m. Suppose the claim is false. Then we have 3¢’ : ¢ == ¢ A
¢’ ¥ m. This implies (by lemma 1) 3p’ : p == p' Ap' S ¢’ ¥ 7. Again by
induction hypothesis E(p’) C E(q') and hence p’ ¥ . But this contradicts
the assumption p E [[a]]w. Hence the claim is false.

—pE /\iel ;. Then p E m; for all i+ € I and by the induction hypothesis,
q F m; for all i € I which implies ¢ & A, 7

—pE Vie ; mi. Then p F m; for at least one ¢ € I and by induction hypothesis

it follows that ¢ F \/,.; a

The above proof has been presented in detail to highlight the steps for the
operators at the higher level, especially the operator €®. Note that the proof
would not go through if we allowed << 7>> in the logic.

108 N. Korade and S. Arun-Kumar

4 Efficiency Prebisimulation

As we did for elaboration in the previous section, we now present a logical charac-
terization for efficiency prebisimulation [2] using a logic which is more expressive
than Lg but not as expressive as Lgp.

The following formulation [2] gives a simple definition of the efficiency pre-
order. Closely related preorders have been defined independently by Milner in
[10] and [11], though neither their algebraic nor logical characterizations have
been presented.

Definition 12. A binary relation R C Px P is an efficiency prebisimulation
(EP) iff for every (p,q) € R, a € V, a € Act the following conditions are
satisfied.

p——p = 3¢ : ¢—=¢ NP'Rq (5)
p—p' = p'RqV (3¢' : ¢—q Np'Rq) (6)
q——q = 3p' : p==p' A\P'R¢ (7)

We write p < q if there exists an efficiency prebisimulation R such that pRq.

Intuitively, p < ¢ means that for every execution sequence that p may per-
form, it is possible to find a possibly shorter sequence that ¢ may perform with
the same visible content, and conversely, for any sequence that ¢ may perform it
is possible to find a possibly longer sequence that p may perform with the same
visible content. In general, both the preorders < and $ represent comparisons
between observationally equivalent processes and order them differently on the
amount of internal computation they may perform. We refer to both preorders
as efficiency-based preorders, but < having been christened “efficiency preorder”
earlier we continue to refer to it by the same name. We refer the reader to [2]
and [1] for intuitively appealing examples and for the axiomatization of finite
CCS processes.

In [3] it has been shown that ~ C < C £ C & (where all the containments are
strict). This suggests that we require a logic that is more expressive than Lg, but
less than Lgp. This logic is very similar in structure to the logic for elaboration
and is again defined in two levels with the lower level of weak formulae being
the same.

Definition 13. The class Lgp of efficiency prebisimulation formulae over Act
s given by the following grammar. As before, we use « to denote a visible action
and a to denote any action.

pu= Ka> | Nerwi | o

Tiu= | <a>n | (T)r | fn | [lallm | Nieymi | Vier m

A Logical Characterization of Efficiency Preorders 109

Note that the index set I may be infinite. Also negation (—) as in the case
of Lp, is available only for weak formulae. The language Lgp is the set of all
formulae 7 and the language Ly p is the set of all weak formulae . Note that
Lwp C Lep.

Definition 14. The satisfaction relation E C P X Lgp is defined recursively. As
before, we omit those clauses which have been previously presented and restrict
ourselves to defining the clauses for the new operators.

— pE<a>mn forae V if for somep' €P :p —=p andp' Ew
— pE(n)TifpET or for somep' €P :p—=p and p' Ew

EP(p) ={m € Lgp | pF 7} and EPwgp(p) = {¢ € Lwp | p F ¢}. Further,

p Cpp q iff EP(p) C EP(q), and p =gp q iff EP(p) = EP(q). As before,

p Eepy s ¢ iff EPwg(p) € EPwg(q) and p =gpy, , ¢ iff EPwg(p) = EPws(q).
As for the expressiveness of this language, notice that

— we allow the “strong possibility” modality (“<a>") from Lgp, but neither
negation nor “strong necessity” (“[a]”).

— The operator “<7>" is replaced by the weaker prefix operator “(7)” .

— The operator €* in the formula ¢*m excludes the possibility of a process
being able to perform more than k& — 1 initial 7 actions and reaching a state
satisfying .

— On the other hand, p satisfying the formula (7)*7, k > 0 (obtained by
prefixing 7 by k occurrences of (7)) asserts the existence of a 77 derivative
of p (for some j, 0 < j < k) which satisfies 7.

There are no formulae in Lgp equivalent to the HML formula = <7><7> ¢.
Even a statement such as “p has a strong 72-derivative that satisfies 7 can only
be inferred if it is known that p ¥ 7, p¥ (7)7 and p F (7)?~.

We now proceed to give a proof outline of the characterization theorem. We
begin with the following lemma which is clearly implied by the fact that every
efficiency prebisimulation is a weak bisimulation and that Cgp,, , and =gp,, ,
coincide.

Lemma 5. p S q¢ = p=gp,, ¢ and hencep S q¢ = p Cgpy, q- a

Theorem 3. The characterization. p < ¢ iff p Cgp q. O

We prove this theorem in two parts. We omit most of the routine details and
concentrate on only the operators that have been newly introduced.

Lemma 6. p Cgp g implies p < q.

Proof. We show that Cgp is an efficiency prebisimulation. We prove the various
parts viz. (5), (6) and (7) of definition (12), assuming EP(p) C EP(q).

Part (5). Suppose p —— p/, a € V. Then p E< a > = for each 7 € EP(p').

Clearly ¢ F<a > 7 and there exists ¢’ such that ¢ — ¢’ and ¢’ £ 7. We need

110 N. Korade and S. Arun-Kumar

to show 3¢ : ¢ - ¢’ AN EP(p') C EP(q'). We use an argument that has now
become routine viz. consider the set Q = {¢"|¢ — ¢’ NEP(p') € EP(q")} and
proceed as before.

Part (6). Suppose p — p', then for each 7 € EP(p') we have p E (1) and

q F (7)m. Then if ¢ ¥ 7 there must exist a ¢’ such that ¢ — ¢’ and ¢’ F 7. Tt
then suffices to show that 3¢’ : ¢ — ¢’ A EP(p') C EP(q'). We may show this
in a manner similar to that of Part 5.

Part (7). The proof of this part is similar to Part (2) of the proof of
lemma 3. o

Lemma 7. p < ¢ impliesp Cpp q.

Proof. Assume p < gq. We again use induction on the structure of formulae. For
any formula ¢ from F Py g, lemma 5 assures us that p F ¢ implies ¢ F ¢. Of the
rest of the cases from the language Lgp — Lgp,, , we consider only the following:

— pE<a>m, a € V. Then for some p/, we have p — p’ and p’ E . Hence
3¢ q = ¢ Ap' < ¢. By the induction hypothesis, EP(p') C EP(q') and
so we get g F<a> 7.

— pE (7)7. If p E 7 then by the induction hypothesis ¢ F 7 and so it follows

that ¢ = (7)m. On the other hand, if p ¥ 7, then Ip’ : p — p’ Ap’ E 7. From
p < q we have, either p’ <qgor 3¢ :q——= ¢ Ap <S¢ . Ifp <qthenp Ex
implies ¢ F 7 by the induction hypothesis. If p’ £ g then p’ F 7 implies ¢’ E 7
by the induction hypothesis and it follows that ¢ E (7)7.

— pE€*m, k> 0. This is again proved in a manner analogous to the corre-
sponding proof for elaboration. O

5 Conclusion

In the foregoing sections we have introduced two new operators into Hennessy-
Milner Logic (HML) viz. ¢* and (7). We have shown and characterized preorders
lying strictly between strong and weak bisimilarity using versions of HML and
OHML with these new operators.

At the outset, we would first of all like to be convinced that their introduction
into Lgp does not in any way alter the expressive power of HML. It is easy to
see from their semantics that these operators enjoy the following equivalences.
For any formula 7 in Ly or Lgp, let & denote the equivalent formula in Lgp.
We then have

(Mr=7V <7>7 (8)
r = /\ [7]9 =7 9)
Jjzk

While (8) is obvious from its semantics, it is fairly easy to derive (9) by noting

that p ¥ ¢*7 precisely when 3p’ : p -, pPAF>EAN (pET).

A Logical Characterization of Efficiency Preorders 111

These operators also satisfy some other properties. For example, any formula
7 € Lgp logically implies (7)7. And for any k& > 0 we have (7)*7 = \/j<k(7’)j7r.
Further, (1)*7 == (7)**!'x. Similarly, in both Lg and Lgp, for any k > 0,
we have éfr = €*lr. For any set S of positive integers, let inf(S) and
sup(S) denote the minimum and maximum (provided it exists) elements of S
respectively. We then have the following identities.

/\jeS(T)jTr = (T)inf(s)ﬂ') /\jeS dr=enfSg and
Vjes(T)jW = (7')5““’(5)7T , \/jes e = esuP(S) g if S is finite.

These properties enable us to follow the guiding principle that a preorder
should be characterized by containment on sets of formulae.

If we were to extend the language to allow €’ as an operator, we would have
that p E €7 implies p # 7. Then we would also be able to express the statement
“p diverges” by the formula p E €° Viso e*tt and the statement “p can perform
at least two T actions” by ®e%tt.

The results that we have presented in this paper offer interesting technical
insights into the construction of logical characterizations of preorders guided by
the principles enunciated in section 1. As far as we are aware, in the literature,
there are no logical characterizations of behavioural relations that lie strictly
between strong and weak bisimilarity.

In future work, we hope to study and understand more about these operators
and explore their interactions with fixpoint operators within a modal p-calculus
setting.

Acknowledgements. We are grateful to Sanjiva Prasad and Astrid Kiehn for
pointing out various simplifications and corrections in the design of our logics,
and for their patient reading and other constructive suggestions. In particular
Sanjiva Prasad also pointed out that € would allow the full power of negation.
We also thank Jamshid Bahgerzadeh for his valuable inputs and suggestions.

This work was partly supported by a research grant from MHRD, Govern-
ment of India, under the Scheme of Research and Development in Technical
Education (File No. F.26-1/2002-TS.V dated 19 March 2002).

References

1. S. Arun-Kumar and M. Hennessy: An Efficiency Preorder for Processes. Proceed-
ings Theoretical Aspects of Computer Software, Sendai 1991, Lecture Notes in Com-
puter Science 526, 152-175, Springer-Verlag 1991.

2. S. Arun-Kumar and M.Hennessy: An Efficiency Preorder for Processes. Acta In-
formatica, 29, 737-760, Springer-Verlag, 1992.

3. S. Arun-Kumar and V. Natarajan: Conformance: A Precongruence Close to Bisimi-
larity. Proceedings Structures in Concurrency Theory, Springer Workshops in Com-
puter Science Series, 1995.

4. F. Corradini and R. Gorrieri and M. Rocetti: Performance Preorder and Compet-
itive Equivalence. Acta Informatica, 34, 805-835, 1997.

112

5.

6.

10.
11.
12.
13.

14.

N. Korade and S. Arun-Kumar

M. Hennessy and R. Milner: Algebraic Laws for Nondeterminism and Concurrency.
Journal of ACM, 32, 137-161, 1985.

Kamal Jain and S. Arun-Kumar: Testing Processes for Efficiency. Proceedings
Fondations of Software Technology €& Theoretical Computer Science 16, Lecture
Notes in Computer Science 1180, 100-110, Springer-Verlag, 1996.

L. Jenner and W. Vogler: Comparing the Efficiency of Asynchronous Systems.
Technical Report 1998-3, Universitdt Augsburg, December 1998.

G. Luettgen and W. Vogler: A Faster than relation for Asynchronous Processes.
Proceedings CONCUR 2001, Lecture Notes in Computer Science 2154, 262276,
R. Milner: Communication and Concurrency, Prentice-Hall International,
1989.

R. Milner: Contractions, Handwritten notes, 1990.

R. Milner: Expansions. Handwritten notes, 1990

C. Stirling: Modal and Temporal Properties of Processes, Springer-Verlag
2001.

V. Natarajan and R. Cleaveland: An Algebraic Theory of Process Efficiency. Pro-
ceedings Logic in Computer Science 96, IEEE Computer Society Press 1996.

R. J. van Glabeek: The Linear Time — Branching Time Spectrum I. The Semantics
of Concrete, Sequential Processes. In Handbook of Process Algebra, (eds.)
J. A. Bergstra, A. Ponse and S. A. Smolka, Elsevier Science B. V., Netherlands.,
2001.

Inherent Causal Orderings of
Partial Order Scenarios

Bill Mitchell

Department of Computing, University of Surrey,
Guildford, Surrey GU2 7XH, UK
w.mitchell@surrey.ac.uk

Abstract. Scenario based requirements specifications are the industry
norm for defining communication protocols. Basic scenarios captured
as UML sequence diagrams, Message Sequence Charts (MSCs) or Live
Sequence Charts (LSC) have partial order semantics that characterize
system traces by restricting the possible order of events within those
traces. The semantic partial order of the scenario specification is called
the causal ordering.

Semantic inconsistencies often occur in partial order scenarios between
the specified causal ordering and the order that events can occur in prac-
tice. Such inconsistencies are known as race conditions. The paper proves
that there is a unique race free partial order that is a minimal weakening
of the causal ordering. In other words, there is a canonical generaliza-
tion of the requirements that corrects all race conditions. Hence any race
free generalization of the original scenario is in fact a generalization of
the canonical scenario. The paper also proves the dual result, there is
a unique race free partial order that is a minimal strengthening of the
causal order. L.e. there is a canonical refinement of the requirements that
corrects all race conditions.

1 Introduction

UML sequence diagrams [19], Message Sequence Charts (MSCs) [18], and Live
Sequence Charts (LSCs) [7] are popular for defining wireless and mobile com-
munication protocols. The semantics of a basic scenario diagram defined with
any of these languages can be given in terms of a partial order on the events in
the scenario. The partial order restricts the order in which events can occur in
any system trace. This partial order is called the causal ordering. We refer to
any basic scenario diagram with such a semantics as a partial order scenario.

Although scenario specification languages have become quite sophisticated
and have expressive powers beyond partial order scenarios, such scenarios are
still the mainstay of industrial specifications. Consequently the study of partial
order scenarios is still an active topic of research [5,13,12,16]. Synthesizing
various types of system models directly from these partial order scenarios is also
an active area [1,3,4,11,15,17]. Research into automatic test generation from
partial order scenarios is another active research area [2,6, 14].

Z. Liu and K. Araki (Eds.): ICTAC 2004, LNCS 3407, pp. 113-127, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

114 B. Mitchell

Industrial requirements specifications often contain inconsistencies between
the specified causal ordering and the order that events can occur in practice. Race
conditions are amongst the most common of these inconsistencies. Essentially a
race condition asserts a particular order of events will occur as a consequence of
the causal ordering, when in practise this order can not be guaranteed to occur. See
[9, 10] for the original formal description of the problem within the MSC context.

It is possible to directly analyze the causal ordering to automatically detect
race conditions [10]. This still leaves the onerous task of actually correcting the
race conditions. Case studies such as [20] have shown that around a third of sig-
nificant defects in SDL specifications are caused by poor requirements specifica-
tions. Since many SDL specifications are refined from MSCs and UML sequence
diagrams this suggests a significant number of errors arise because of poor qual-
ity in partial order scenarios. Hence the ability to automatically correct race
conditions would be of practical value.

In the paper we prove that given a causal ordering there exists a unique mini-
mal weakening of that order which does not contain any race conditions, and which
is itself the causal ordering of some scenario (Theorem 10). We call this weakening
the inherent causal ordering, and the scenario to which it corresponds the inherent
causal scenario. We prove the inherent causal scenario is canonical up to simula-
tion equivalence of system behaviour. Therefore any race free generalization of the
original scenario must be a generalization of the inherent causal scenario. Hence
there is an optimal generalization of a partial order scenario that corrects all race
conditions. In section 7 we describe an example MSC scenario from an industrial
case study that illustrates how the inherent causal order can be of value in practise.

The paper also proves that there is a unique minimal strengthening of a causal
order that corrects all race conditions, and which is equivalent to the causal
ordering of some scenario (Theorem 18). We call this the inherent refinement
ordering. As might be expected we prove the inherent refinement scenario is
canonical up to simulation equivalence. Hence there is an optimal refinement
of a partial order scenario that corrects all race conditions. The results can
be generalized to scenarios that extend the basic partial order semantics with
iteration and branching, as is the case with HMSCs. However, we do not prove
that here due to lack of space.

Although our results are perfectly general and apply to any basic scenario
diagram language such as basic UML sequence diagrams, MSCs or LSCs, we
will use MSC as the central language for the paper. The MSC standard [18]
is stable and MSCs are common in industry. Also MSC 2000 is being adopted
within UML 2.0 [19]. In addition MSCs allow the most general form of causal
ordering since it is possible for an MSC causal order to be almost any irreflexive
transitive partial order.

2 Basic Partial Order Specifications

In this section we define the causal ordering semantics for partial order scenarios
(e.g. basic MSCs). We use the same message semantics as the MSC 2000 standard

Inherent Causal Orderings of Partial Order Scenarios 115

[18]. Hence, a partial order scenario defines a set of message exchanges between
processes with asynchronous communication channels. Also we do not assume
any type of buffering with the channels. However, the results in the paper do
hold for both synchronous and FIFO channels.

Let P be a set of processes. A message m between processes is a pair (Im, 7m)
where !m is the send event for m, and ?m is the receive event for m. We regard
Im as belonging to the sending process, and ?m as belonging to the receiving
process. Let E be the set of all send and receive events between all processes.
Each event has a label, let [: E — L be the labelling function. For a message
m, I(!m) = I(?m). Within the MSC standard there are many other kinds of
events such as action boxes and condition symbols, but here we only consider
message events to simplify proofs as much as possible. It is straightforward to
generalize the results to include these other events.

Definition 1. A partial order scenario on processes P is

— a collection of disjoint sets E(P) C E, for each P € P that defines the
message events belonging to P,

— and a set of irreflexive partial orders <p, where <p is a partial order on
E(P) that defines the local ordering of events for process P.

These local partial orders must be subject to the constraint that for each send
event !m in a set E(P) the corresponding receive event ?m occurs in some set
E(Q). Note messages are allowed to be sent from a process to itself, so we allow
P = Q. We treat a partial order as a binary relation that can be represented as
the set of pairs that are ordered by the relation. Hence we can take the union
of partial orders, which is just the set theoretic union of the sets that represent
the relevant order relations. It is important to note the local orders are not
necessarily total, but can be any irreflexive partial order. In the literature it is
sometimes assumed basic scenario diagrams have total local orderings, so it is
worth emphasizing this does not have to be the case.

Let Msg be the set of messages defined as the set of send and receive event
pairs:

{(le, ?e) |le € E(P) and
Te € E(Q) for some P, Q € P}

Definition 2. The causal ordering <¢ on a partial order scenario is the tran-
sitive closure of the relation given by

(U <m)umse

Pep

From now on we will assume that all partial orders are transitive and irreflexive
without loss of generality. We will also assume that all causal orderings are
irreflexive, so that messages must be received after they are sent. We also, as is
the norm, rule out message overtaking as shown in figure 2. The MSC standard
includes a general ordering construct, which is a simple graphical notation that

116 B. Mitchell

Fig. 2. Message Overtaking, which is prohibited

explicitly forces one event to occur before another event in the causal order. A
general order construct is depicted as a dashed arrow between the events to be
ordered, with arrow head placed in the middle of the arrow. In combination with
the coregion construct that means a process order <p defined by an MSC can
be any arbitrary irreflexive transitive partial order on the events E(P).

The causal ordering defines the set of all possible system traces that are given
by the partial order scenario. A system trace is any total order extension of <.
Recall a total order on a set S is a partial order < on S where for any distinct
elements z, y € S, either x < y or y < x.

Definition 3. The set of system traces defined by a causal ordering <c is the
set of total order extensions of <c.

Consider the MSC depicted graphically in figure 1. Each vertical line describes
the time-line for a process, where time increases down the page. The distance
between two events on a time-line does not represent any literal measurement
of time, only that non-zero time has passed. Events on the same time-line are
ordered linearly down the page, except where they occur within a coregion.
Within a coregion events are not locally ordered unless that is directly imposed
by a general order construct. Coregions are depicted with a dashed line. For
process B events 7c and ?7d are unordered as they occur within a coregion. The
local partial orders defined by this MSC are given in figure 3 where we draw
the ordering downwards, so that la <pg!b for example. In this case the causal
ordering <¢ is given in figure 4.

Inherent Causal Orderings of Partial Order Scenarios 117

b la 7a
h

'd d ¢ Ic

A B <

Fig. 3. Process Partial Orders

'b 7a
b

'ﬁ \ Ic
v i
2d 7c

Fig. 4. Causal Ordering

Figure 1 illustrates a race condition. The causal ordering asserts that !b <¢
?c. If this MSC is taken as a specification it asserts that after C receives a it
must send ¢ so that it arrives after b is sent. It is not possible for C' to know
for sure when !b occurs without querying B. Hence it is quite possible if this
scenario is implemented naively that ¢ will arrive before b is sent, contradicting
the specification. This error can occur even though each of the processes A and
C locally implements the specification correctly.

Fig. 5. Three basic types of race condition

118 B. Mitchell

Definition 4. Define a partial order < on E to be race free when for every event
x and message e:
r<le= (z<le or x=le)

We define an MSC' to be race free when its causal ordering is race free.

That is < is race free if the following holds. When < orders an event = before
the receive event of some message e, then it also orders x to be before the send
event of e.

Note that figure 1 is not race free since b <¢?¢, but b £¢!c. The three basic
types of race are illustrated in figure 5. In the first example we have 7a <¢7b,
but =(?a <c¢!b). In the second example we have la <¢7b, but —(la <¢!b). In the
last example we have 7a <¢7¢, but =(7a <c!c). The third race example is the
only one of the three that can be avoided by forcing messages to be synchronous.
Hence the first two examples will cause semantic inconsistencies in synchronous
and asynchronous scenarios.

3 Partial Order Processes

In this section we define a process algebra term that characterizes the traces that
are defined by a causal ordering. This is a standard result for partial orders, but
we present it in a slightly non-standard format for ease of use later in the paper.
The process algebra term also characterizes the system behaviour up to strong
bisimulation equivalence.

First we set up some notation for defining sets of events that are important
in generating system and process traces. Let < be a partial order on a set of
events F. For a set S C E define

n(S,<) ={zxe€E|IyeS:y<u,
and "3z € F:y<z<uz}

m(S,<) ={zxeS|-JyeS:y<a}

af(a, 5, <) = m((S - {a}) Un({a}, <), <)

The set n(S, <) are those events that are a least upper bound for some element
in S. The set m(S, <) is just the set of minimal elements of S.

The set af(a, S, <) characterizes how events may follow a in an execution
trace, where S describes the set of all events that are eligible to occur concur-
rently with a. Suppose we have an execution trace ¢ that is a total extension
of <. Let a be some event in t, so that ¢ is of the form ¢y - a - t; (where - de-
notes concatenation). Let S be the set of minimal events from the set of all
events in t1. Then ¢; must be of the form b - to where b € af(a, S, <). The first
element that can occur in a trace that is a total extension of < has to come
from m(FE, <). Hence we can define the system behaviour for a causal ordering
as follows.

Inherent Causal Orderings of Partial Order Scenarios 119

Definition 5. For a set S C E define a recursive process algebra term by

P(S,<)= Y a-P(af(a,S.<),<)
{a€S}

and P(0,<) = 0.

Where a - P denotes the usual sequential composition of action and process,
and the summation is nondeterministic choice (as standard in both CCS and
CSP).

Definition 6. Define the observable behaviour for causal ordering <c to be the

process:
P(M) = P(m(E, <c),<c)

In [8] they define a process algebra term for M that defines the system traces for
<c. Let P*(M) denote this process. Process P(M) is strong bisimulation equiv-
alent to P*(M). Hence P(M) defines the system traces of the global behaviour
for the processes defined by M.

Suppose that MSC M contains processes P; for 1 < i < n. Then a parallel
composition of the P(m(E(P;), <p,),<p;) for 1 < i < n is strong bisimulation
equivalent to P(M) (which follows from an analogous result in [8]). However, we
will not need to use that result here.

4 Inherent Causal Behaviour

A partial order < on events preserves the message ordering when le <7e for
every message e. Let <¢ be the causal ordering for a partial order scenario.

Definition 7. Define the inherent causal ordering <; of <c¢ to be the transitive
closure of the following partial order relation <. For every event x and message
e define:

1. z<le < x<cle
2. le<?e

Note that when regarding a partial order as a set of pairs, we have

(<1) € (<c)

The inherent ordering is the causal order of some partial order scenario. This
follows from the next lemma.

Lemma 8. The inherent causal ordering <j; of a partial order scenario with
processes P is the transitive closure of the following partial order relation.

1. v <le <= IP € P such that x <ple
2. le<?e

120 B. Mitchell

la

o
'b 7a

v
B
'ti Ic
v i
2d ¢

Fig. 6. Inherent Ordering

A LB J[Lce JjjLa B | [LC |
| .
a b
RN —
b *: ‘5\‘&-\
(—-—I “\‘\C*\\
I C d <
d — >
e — | 4
—— ; I | | N N

Fig. 7. Inherent Causal Ordering, and Inherent Refinement Ordering as MSCs

Figure 6 gives a graphical depiction of the inherent ordering for figure 1.

Since we are able to impose general orderings on events within MSC diagrams
we can represent this inherent ordering as an MSC. That is we can define a second
MSC who’s causal ordering is in fact the inherent ordering of figure 1. This is
the leftmost MSC in figure 7. Notice that the coregion for process B now covers
all the events in F(B). In order to assert that !a must occur before b we have
added a general ordering construct between these events. This is the dashed
arrow, with arrow head placed at the mid point of the arrow. Wherever such
a general ordering arrow occurs in an MSC from events x to y this explicitly
defines x <¢ y. Thus definition 2 of <¢ has to be extended so that it includes
the set of pairs given by the general ordering construct.

5 Canonical Inherent Processes

Recall in section 3 we defined the observable process behaviour P(M) of a partial
order scenario M.

Definition 9. Define the inherent process behaviour of a partial order scenario

M to be Pr(M) =P(m(E,<;),<r1)

Let 1 denote the standard simulation relation for process algebras. That is
POQiff

Inherent Causal Orderings of Partial Order Scenarios 121

for every transition Q —— @',
there exists a transition P —— P’ where P’ 1 Q'

Theorem 10

- (<[) - (<c), and PI(M) j P(M)

— For any race free partial order < that preserves message ordering, let P. =
P(m(E, <), <).
Then P« 7 P(M) iff (<) C (<1) C (<¢) and P« 0 P;(M)

That is Pr(M) is the canonical process that simulates P(M) and is race free. To
say that (<1) C (<2) means that for every x and y in E, when x <y y then
T <g2Yy.

This theorem proves that the order <; describes the maximal ordering with
respect to simulation equivalence that is a race free weakening of <j,;. Hence
constructing an MSC that has partial order semantics given by <; defines a new
MSC that corrects any race conditions in M, and weakens the causal ordering
of M as little as possible. It is straightforward to construct such an MSC.

The theorem is a consequence of the following lemmas. For any partial order
< (which is not necessarily race free) let T(<) be the set of total extensions of
<. Lemma 11 follows immediately from our initial observations concerning the
definition of af(a, S, <).

Lemma 11. The set of traces of P< is exactly T(<), the set of total order
extensions of <.

Lemma 12. For partial orders <, and <o where
P, TP,
then (<1) - (<2)

Proof. Note that z < y iff for every trace in T(<), x occurs before y in the
trace. When P, 1 P., then the set of traces for P., is contained in the set of
traces for P., that is T(<2) C T(<1).

x <1y = x occurs before y in every trace of T'(<y)
= x occurs before y in every trace of T'(<2)
=T <2UY

Hence (<1) C (<2), which concludes the proof.
Lemma 13. Given two partial orders <y and <s,
T(<1) € T(<2) iff P<, € Pe,

Proof. Note that T(<;) C T(<2) iff (<2) C (<1). Given
(<2) € (<1), to prove Po, T P.,, it is enough to prove that for any S C E
and a € F,

af(a, S, <) C af(a, S, <2) (1)

122 B. Mitchell

Let
mi =m((S —{a}) Un({a}, <1),<1)
ma =m((S — {a}) Un({a}, <2), <2)

We write U < V for sets U, V C E, when for each u € U, there is some v € V
such that u < wv. Note that since (<2) C (<1) then n({a}, <2) < n({a}, <1).

For a contradiction suppose that z € m; and x & msy. This implies there is
some y € my such that = <5 y. First consider if y € S —{a}. Then x <y y € S—
{a}, hence = ¢ my. This is a contradiction, hence we must have y € n({a}, <2).
Since n({a}, <2) < n({a},<1), there is some y’ € n({a}, <1) such that z <,
y <1 y'. Therefore z <1 v’ € n({a}, <1), and so z € m;. Again a contradiction
as required to complete the proof of equation 1. The proof that T'(<;) C T(<2)
implies P., C P.,, is completed once we note that m(F, <1) C m(E, <3).

The converse implication is straightforward. It is true for any processes P
and @ that if P J @ then the set of traces of () is contained in the set of traces
for P. Since the traces of P, are exactly T'(<;), the result is then immediate.
That completes the proof of the lemma. o

Lemma 14. For a partial order < that preserves message ordering and is race
free,

(9 € <)) = (9 € (=) € (<))

Proof. For this it is enough to prove that whenever = < y then x <; y. The proof
splits into cases depending on whether y is a receive or send event. First suppose
that y =le for some message e. Then = <le implies x <cle since (<) C (<¢).
By definition of <j, z <cle implies = </le.

The other case is where y =7e for some message e. Since < is race free, © <7e
implies that z <le. As above this implies x <jle. The ordering <; preserves
message ordering, and hence x <;7e. This completes the proof of the lemma. O

6 Inherent Refinement Behaviour

In this section we prove the dual result of theorem 10, where instead of general-
izing the causal ordering we refine it.

Definition 15. Define the inherent refinement ordering <g of a causal ordering
<c to be the transitive closure of the following partial order <. For every event
x and message e define:

—r<le < x <%
—le<?e

First note that <p is race free. Since it is clear from the definition that
x <g?e implies that <pgle or z =le. Also notice that the refinement order only
extends <¢ by forcing particular send events to be delayed so that other events
may occur first, and hence is implementable.

Inherent Causal Orderings of Partial Order Scenarios 123

If the partial order scenario is an MSC then the inherent refinement ordering
can be constructed by adding suitable general orderings to the MSC, which cause
appropriate send events to wait until the relevant receive events have occurred.
For example the rightmost MSC of figure 7 gives the inherent refinement order
for the partial order scenario in figure 1.

The use of general orderings is acceptable so long as they can be implemented
in asynchronous distributed systems. We only use them to delay send events, and
this effect can always be achieved by adding further messages to the partial order
scenario. To force a general ordering = <¢le, where z € E(P) and le € E(Q), we
can add a new coordination message ¢ with lc € E(P) and ?c € E(Q). We then
alter the local orderings by adding the pairs z <p!c and ?c <gle. Processes
P and @ can enforce these orderings locally since they only have to delay send
events to do so.

However, the choice of implementation is for the system designers who may
use other mechanisms which are more appropriate for their particular circum-
stances. The goal of the solution presented here is to correct the semantics for
the scenario in an optimal manner without altering the given message content
of the scenario and without imposing any assumptions about communication
channel semantics.

Lemma 16

(<e) € (<r)

Proof. To prove this suppose = <¢ y. If y =le for some e, then y <¢7e. Hence
from the definition = <¢7e and hence x <gle. That is x <g y.

When y =7e, then x <gle. Also le <g7e, hence by transitive closure, z <g
?7e = y. This completes the proof of the lemma. O

Lemma 17. For any race free transitive partial order < that preserves messages
and where (<¢) C (<), then

(<e) € (<r) € ()

Proof. To prove this first consider an event x and message e where x #7¢ and
x <c?e. That is & <gle. Since (<¢) C (<), we have x <?e. Since < is race
free we have x <le. Hence, if <gle then = <le. Since < preserves messages it
trivially follows that le <g7e implies le <7e. Hence as < is transitive we have
proved that (<g) C (<). O

Given the lemmas already proved in section 5 we have thus proved the fol-
lowing theorem, which is the dual to theorem 10.

Theorem 18. Let Pr(M) = P(m(E,<gr),<g), then
— (<¢) € (<gr), and P(M) 3 Pr(M)
— For any race free partial order < that preserves message ordering, let Pe =
P(m(E,<),<).
Then P(M) 3 P< iff (<¢) € (<r) C (<) and Pr(M) O P-

Hence <pg is the canonical refinement of the causal order that corrects all race
conditions in the specification.

124 B. Mitchell

7 Industrial Case Study Example

In collaboration with Motorola Research Labs, we have been conducting a num-
ber of case studies [6, 11] into automating pathology detection in MSC telecom-
munication specifications. Figure 8 is an anonymized example from a Motorola
case study, which contains multiple race conditions. The original diagram is a
UML 2.0 sequence diagram that describes traffic channel allocation and activa-
tion between various processes for a telecommunication protocol. Process A has
delegated the task of determining what resource to allocate to process B.

A parallel construct in a MSC/UML sequence diagram, denoted by PAR,
describes a set of concurrent threads that occur in the diagram. Dotted lines
delineate the different threads. Hence, events from one thread are not causally
ordered with respect to events from any other thread. Figure 8 contains two
parallel constructs. The first parallel construct contains messages a, b and ¢ in
separate threads, which can therefore occur in any order. The bounding box of
a parallel construct has no effect on the ordering of events, it solely delineates
the scope of the concurrent threads. Note an MSC/UML sequence diagram con-
taining solely messages, coregions and parallel constructs still defines a partial
order scenario in the sense of definition 1.

An inline reference, denoted by REF, is a place holder for another sequence
diagram. The reference can be replaced by the contents of the other sequence

b2

Fig. 8. UML 2.0 case study example with multiple race conditions

Inherent Causal Orderings of Partial Order Scenarios 125

(a] [B] [e] [>] [e] [F] [c&]
al
PAR a
al
,,,,,,,,,,,,,,,,, b,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
bl
[another_sequence_diagram]
b2
,,,,,,,,,,,,,,,,,,,,,; ,,,,,,,,,,,,,,,,,,,,,, _
cl
c2
4
I I I I I I I

Fig. 9. Inherent Causal Scenario for Figure 8 as MSC

diagram if desired. The reference is weakly composed with the referring diagram
when inlined. Figure 8 contains an inline reference spanning processes A through
D. We will assume for this example that the inline reference is some linear
ordering of events in order to simplify our calculations.

In total we have the following six race conditions in figure 8. Event 7al is
in a race with b and also with lc. Event 7¢2 is in a race with la and also with
1b. Also event 7b2 is in a race with !a and also with !c. It may be that the
authors implicitly assumed the downlink latency from B is much shorter than
the uplink latency for the other processes. If this were true it may be possible in
practise for the specification to be realizable. However it is far safer to rewrite
the specification without these race conditions.

One way to remove these races would be to regroup the messages within a
single parallel construct. Messages a and al could be grouped within the same
thread of a parallel construct. Similarly b, b1, b2 and the inline reference could
be grouped in a second thread. Finally ¢, ¢l and ¢2 could be grouped in the
third thread. Figure 9 depicts this solution. It seems reasonable to suppose this
will not contradict what the authors originally intended.

Figure 9 is exactly the inherent causal scenario of figure 8. In this case the
inherent causal order for figure 8 would seem to represent the specification in-
tended by the authors, rather than the causal order of figure 8 itself.

The UML 2.0 case study also contained cases of sequence diagrams where a
more intuitively ‘correct’ specification was given by the inherent refinement or-
dering, rather than the inherent causal ordering. Hence, we are not proposing ei-
ther inherent ordering as some kind of panacea. However, providing practitioners

126 B. Mitchell

with both inherent orderings in the form of MSCs (or UML sequence diagrams)
will give them a better understanding of what specifications are possible.

8 Conclusion

The paper has proved that there is a canonical solution for correcting all race
conditions within a partial order scenario by weakening the causal relationship.
Moreover the solution can be easily automated via lemma 8. The inherent causal
ordering that defines the solution can also be presented in MSC format by use of
the MSC coregion, parallel and general ordering constructs. Section 7 gave an ex-
ample from an industrial case study where the inherent causal ordering captured
the intended behaviour of a specification containing multiple race conditions.

The paper has also proved the dual result, that there is a canonical refine-
ment of the specifications that corrects all race conditions. This is the inherent
refinement ordering. This also can be presented in MSC format, which can be
constructed automatically. Together these inherent orderings provide a useful
insight into the semantically consistent specifications that are possible for a dis-
tributed system.

References

1. R. Alur, K. Etessami, M. Yannakakis, Inference of Message Sequence Charts, Pro-
ceedings 22nd International Conference on Software Engineering, pp 304-313, 2000.

2. M. Beyer, W. Dulz, F. Zhen, Automated TTCN-3 Test Case Generation by Means
of UML Sequence Diagrams and Markov Chains, Proceedings of 12th Asian Test
Symposium (ATS’03), IEEE 2003.

3. Yves Bontemps, Pierre-Yves Schobbens, Synthesis of Open Reactive Systems from
Scenario-Based Specifications, (ACSD’03)

4. Yves Bontemps, Patrick Heymens, Turning high-level live sequence charts into
automata, Proc of Scenarios and State Machines: Models Algorithms and tools,
24th International Conf. on Software Engineering, May 2002, ACM.

5. E. Gunter, A. Muscholl, D. Peled, Compositional Message Sequence Charts,
TACAS 2001.

6. P. Baker, P. Bristow, C. Jervis, D. King, B. Mitchell, Automatic Generation of Con-
formance Tests From Message Sequence Charts, Proceedings of 3rd SAM Workshop
2002, The Broader Applicability of MSC and SDL, pp 170-198, LNCS 2599.

7. David Harel, Werner Damm LSCs: Breathing Life into Message Sequence Charts,
Formal Methods in System Design, 19, 45-80, 2001

8. T. Gehrke, M. Hilhn, H. Wehrkeim, An algebraic semantics for message sequence
chart documents. In FORTE/PSTV‘98, pages 3-18. Kluwer Academic Publishers,
1998.

9. Gerard J. Holzmann, Doron A. Peled, Message Sequence Chart Analyzer, United
States Patent, 5,812,145.

10. Gerard J. Holzmann, Doron A. Peled, and Margaret H. Redberg, An analyzer for
message sequence charts, Software Concepts and Tools, 17(2), 1996.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

Inherent Causal Orderings of Partial Order Scenarios 127

B. Mitchell, R. Thomson, C. Jervis, Phase Automaton for Requirements Scenar-
ios, Feature Interactions in Telecommunications and Software Systems VII, 77-84,
2003, IOS Press.

A. Muscholl, D. Peled: From Finite State Communication Protocols to High-Level
Message Sequence Charts. ICALP 2001, 720-731.

D. Peled: Specification and Verification using Message Sequence Charts. Electronic
Notes in Theoretical Computer Science 65, No 7, 2002.

E. Rudolph, I. Schieferdecker, J. Grabowski: Development of a MSC/UML Test
Format. 153-164, Formale Beschreibungstechniken fur verteilte Systeme, 2000. Ver-
lag Shaker 2000, ISBN 3-8265-7491-5.

J. Schumann, J. Whittle, Generating Statechart Designs From Scenarios, Proceed-
ings 22nd international conference on on Software engineering, 2000.

A. Tsiolakis, Integrating Model Information in UML Sequence Diagrams, Elec-
tronic Notes in Theoretical Computer Science, June 2001.

S. Uchitel, J. Kramer, J. Magee, Synthesis of Behavioral Models from Scenarios,
IEEE Transactions on Software Engineering, vol. 29, no. 2, February 2003

7.120 (11/99)ITU-T Recommendation - Message Sequence Chart (MSC)

Object Management Group (OMG), Unified Modeling Language (UML): Super-
structure, Version 2.0, 2003. Available from http://www.omng.org.

E. Wong, J. R. Horgan, W. Zage, D. Zage and M. Syring, Applying Design Metrics
to a Large-Scale Software System, (Motorola), Proceedings of the 9th International
Symposium on Software Engineering Reliability (ISSRE "98), Paderborn, Germany,
November 4-7, 1998.

Atomic Components

Steve Reeves and David Streader

Department of Computer Science, University of Waikato, Hamilton, New Zealand
{dstr, stever}@cs.waikato.ac.nz

Abstract. The operational definition of observational congruence in CCS and
ACP can be split into two parts: one, the definition of an observational semantics
(i.e. abstraction); and two, the definition of a strong congruence. In both cases
this “separation of concerns” has been applied with abstraction that is implicitly
“fair”. We define a novel (if obvious) observational semantics with no implicit
“fairness”. When combining this observational semantics with failure equality
the resulting observational semantics is shown to be equal, other than for mi-
nor details, to NDFD semantics. We also combine our observational semantics
with singleton failure semantics and we establish congruence results for this new
observational equality.

1 Introduction

Industry is looking to create a market in reliable “plug-and-play” components. To do
this the interface [1] of a component needs to be defined in a way that makes it safe to
substitute components with the same interface.

Microsoft approaches this issue using Abstract State Machines (ASM) as a starting
point and have noted [2] that it would be very useful to combine the event-based pro-
cess algebras, which have modular reasoning built in, with the descriptive ability of the
state-based ASM. To this end some process algebra features have been added to ASM
[2] but many conceptual difficulties remain. An alternative approach is to start with a
process algebra and enrich its descriptive ability to be more like ASM while retain-
ing the desired modularity. The work of [3] can be interpreted as an example of this
approach.

The field of Discrete Event Systems (DES, Ramadge and Wonham [4]) also lacks
modularity in the style of process algebra and the work of Heymann and Meyer [5, 6]
adds some process algebraic features to a DES formalism.

Here we work in the other direction and look for a process algebraic formalism that
would be suitable basis for a state and event formalism.

We are going to consider only simple components with atomic states and atomic
actions. Because of the simple semantics of our components they are easily recognis-
able as a small extension of processes. To take advantage of the well-known [7, 8§, 9]
isomorphism between state-based relational semantics and event-based operational se-
mantics we focus our attention on the operational rather than denotational semantics of
processes.

Out of all the many semantics, we focus on failure semantics for process and sin-
gleton failures for abstract data types (ADT) because they: one, have a very realistic

Z. Liu and K. Araki (Eds.): ICTAC 2004, LNCS 3407, pp. 128-139, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Atomic Components 129

testing characterisation [10, 11, 12]; two, are congruent; and three, the removal of all
7 actions is sound. Hoare and He say [13][p.198] “The main distinguishing feature of
CSP is to define a hiding operator that succeeds in total concealment of internal ac-
tions.”

There is, from an operational perspective, a natural “separation of concerns” that
allows a decomposition of observational equivalences into two parts: one, abstraction
(the construction of the observational semantics); and two, a definition of a strong,
i.e. non-observational, equivalence (see Section 2.3). This approach is taken in [14, 15]
where choice is implicitly assumed to be “fair”.

We define a novel (if obvious) observational semantics modelling divergence where
choice is not assumed to be fair. When combining this observational semantics with
strong failure equivalence the resulting observational equivalence is, other than for mi-
nor details, NDFD equivalence [16].

Our definition of abstraction models divergence independently of any given strong
equality. By applying our definition of abstraction and singleton failures equivalence
[12] we construct an observational semantics for state-based definitions of components
that is congruent with respect to composition and hiding.

Our model of components consists of two distinct parts, an interface that is public
and an internal part that is private. Both states and events can be in either. We define an
observational equality that “preserves” the interface and is congruent with respect to
composition and hiding (abstraction).

When considering the start and end states to be in the interface and all other states
to be internal then the standard operational approach to building congruences w.r.t.
choice, as found in [14, 15], is to keep the internal actions that cross the internal - in-
terface boundary. The standard denotational approach to building congruences w.r.t.
choice, as found in [17, 18, 19], is to add stability. These two “standard” approaches re-
sult in slightly different equalities. Indeed the only difference between our operationally
defined equality and the denotationally defined NDFD is that we adopt the standard op-
erational approach to congruences (see Section 4.1).

It is possible to take previously defined models, one for states and one for events,
and then glue them together [20, 8,21]. This has the advantage of making tool reuse
easy but requires accepting each model on an all-or-nothing basis. We are trying to
define a model that treats states and events on an equal footing by taking what best fits
our needs from a range of models.

We take an operational approach [14, 15] with failure [17, 18] or singleton failure
[12] semantics and apply a novel operational definition of hiding that models diver-
gence. To be consistent with our intention of distinguishing states in the interface and
internal states we have used choice from [22] and not the more well-known process
algebras [17, 18, 11, 14, 15]. We also reject CSP’s external choice as hiding (and opera-
tionally _75) does not distribute through this definition of choice.

The discussion above has been rather general and conceptual, but our motivation
has been to provide a semantics that permits modular reasoning in practice. So, in an
attempt to give some assurance that our framework is of practical use, we use it (in
Section 3) to model and reason about a simple example and briefly compare our model
with well-known models from the literature.

130 S. Reeves and D. Streader

2 Component Specifications

Components consist of atomic states and events. Both can either be a part of the com-
ponent’s interface or are internal to the component.
We will write A,B... for components and will assume a universe of observable

. . . def

action names @,b ... € Act and 7 for internal actions and Act” = ActU {7} and we
letX,y... € Act™. We use a set of state propositions IT where {s, e} C IT to define the
state component of the interface (unlike [3]).

Definition 1. Component transition system (CTS)

A (Na, Osa, Tp) is a CTS where

Na is a finite set of nodes - representing states,
Ta a set of transitions Tn C {(n,X,m) | n,m € Npo A X € Act™ }- representing events,
Osp : Np — 2™ (the observable states of A).)

By referring to a state as “observable” all that we mean is that the state is a part of

the interface. We use our two special state propositions {s, e} to encode a set of start

states s {n | s € Osa(n)} and a set of end states ep def {n|eec Osa(n)}.

In figures will use s for start nodes, e for end nodes and se for nodes that are both (see
Fig. 1). The transitions of nonterminating components can be defined using a set of
linear recursive equations, e.g. {X = aX + bY, Y = cZ} (see [15]).

The above set of equalities can be interpreted as

giving a mutually recursive definition of {X,Y,Z}. s A g B o
Alternatively {X, Y, Z} can simply be interpreted as AN ~

a set of states and an equality can be interpreted as d y a\b ¢
defining the set of actions with the same pre-state. ¢ ¢ 6

Each 'pair of the name and state on the right of th'e Fig. 1. A and B
equality defines the name and post-state of a transi-

tion. For example B in Fig. 1 can be defined by Ng def {X,Y,Z} (seen as {s,0,se}),
8 X Zhes ¥ (Z}andTg ¥ {X=aY, ¥ =cZZ=by}.

If Osa(n) = @ then n is an internal state, else it is a part of the interface. We write
n—"sm for (n,x,m) € T and n—— for 3, .(n,X,m) € Th.

We define the ready set of a state 7(s) def {x | s—=} and alphabet of a process
def

asa(A) = {x|n—ome Tp}.
Processes are Special Components. A process can easily be seen as a component with
state propositions restricted to propositions for the start and end of the process. Clearly
process (Na, Osa, Ta) defines a labelled transition system (LTS) (Na, sa, ea, Ta). So,
we can say that every CTS can be viewed as an LTS, which we shall do in the sequel,
especially when being able to relate back to the standard world of LTS is desirable.
Although we regard our atomic components as a minor extension of processes these
processes are slightly different from those of CSP, CCS and ACP in that they have a set
of start states.

Atomic Components 131

2.1 A Component Algebra

The congruence of process algebraic equivalences give them their much sought-after
modularity. With this in mind we define component operators, taken from the process
literature, in order that our observational equivalences are congruent. We adopt the oper-
ators from the process literature: [internal choice; ¢ choice; ; sequential composition;
and ||, parallel composition.

How we would wish operators to affect state propositions depends upon the meaning
of the propositions. Thus operators parameterised by “proposition rules” would seem
appropriate (as in [3]). Here we only model what is neededfor start and end states.

Choice has been defined ([15,22]) on operational semantics with one start state
by gluing the two start states together. Here we glue together two sets of start states.
The reason for this generalisation is that we wish to model components that, like CSP
processes, can immediately be nondeterministic; but unlike CSP we wish hiding (ab-
straction) to distribute through choice.

Let ' = {s|,s5,...,s,} and S = {s1,59,...,s,} then define {{S/S x S'}} to be
the n substitutions {s;/{“(si,s1)”,...,“(si,s,,)"}} for s; € S and define {{S'/S x S'}}
to be the m substitutions {s;/{"(s1,5})”,...,"(sx,5;)"}} for s; € S’. We use quotes to
indicate that “(sq1,s J) is a name and any subsequent substltutlon must match on the
whole name not just part of it such as “s;”.

We define {{SS’/SxS'}} to be the n+m substitutions {{S/Sx S} }U{{S"/Sx S'}}.
The first n substitutions replaces each element of {sq,ss,...,s,} with m nodes and
the last m substitutions replaces each element of {s/,s5, ..., m} with n nodes. Conse-
quently {{sasg/sa xsg}} will identify the two sets of nodes sa and sg as sa{{sasg/sa X
sg}} and sg{{sas/sa X sg}} are both the n x m set of nodes sp X sg.

First we define what it means to have a set of nodes in a transition:

X def X
n—{s1,...,8:} (n"551,. .., n—s,}
Using this we can apply our node substitutions, e.g. {{sasg/sa X sg}}, to sets of tran-
sitions by applying the substitutions to the two nodes in each transition in the set. Con-

squently, applying {{sasg/sa xsg}} to all the components of A and B will glue together
the two sets of states.

Definition 2. Operations &, ; Ty ds and ||, on CISs A and B, where v is a partial
function from Act x Act to Act, S C Act and X € Act™.

de

def f .
Na|.B = Na x Ng, Osa|,8((n,m)) = Osa(n) N Osg(m), Ta.p is defined by:
n—=san', 0 € Ng m——gm’, 0 € Na n—2san, mingm', v(a,b)=c

(n,0)==(n',0) (0,m)——(o,m’) (n,m)—=(n’,m’)

Nar, = Na, Osprg(n) = Osa(n), n——pan',x €S n—2spn’,a€S n——pn/,x¢&S
Nasg = Na, Ospsg(n) = Osa(n), n25p o/ n—spr;n’ n—ps.1’

ANB « (Na U Ng, Osars(n) def if n € Na then Osp(n) else Osg(n), Ta U Tg)

AeB Y (ANB){{sass/sa x SB}}

Let sy = {sf | si € sg} and s*efy = {s7 | s; € sg Nep} and Osps(n) o ifn e
Na then Osp(n) elseif n € Ng then OSB() else if n = s¥ then Osg(s;)

132 S. Reeves and D. Streader

AB ¥ (NAUNgUsp, Ospg, TAUTg U {sF ——n| s; € sg A si——n}){{enss/ea x s5}}

and then abstracting them. The details are obviously dependent upon how the actions
based on that from [22] where the start states of
In the example A;B(Fig. 2) the transitions b
The details of sequential composition are de-
nation differently. Our definitions are based on

Hiding actions in the set S can be defined in terms of renaming the actions in S to 7
are abstracted. We return to this in Section 2.3.

Our definition of choice, see A @ B Fig. 2, is AGB AB
both processes are simply glued together. This is ‘ i\
unlike that of ACP where the processes are first]
rootunwound. We amend the definition of [22] in B \
the obvious way to cope with a set of start states. '3.1 b o

.

with dotted arrows have been added by our def- o oo 4
inition of sequential composition. \\i)
pendent upon the details of successful termina-
tion but CSP and ACP treat successful termi- Fig.2. A© B, AB (ABinFig. 1)
ACP not CSP (adding the actions {n——s|e € ea A s € sg A n——e} would result in a
more CSP-like definition). For further discussion see Section 4.2 later.

2.2 Strong Equivalences

A common denotational approach is to define processes without any 7 actions and to de-
fine hiding as removing some actions. Here we adopt a more operational approach and
rename some actions as 7 actions and then define an abstraction function that removes
the 7 actions.

Failures are usually defined with traces that are sequences of action names. But we

wish to take account of state observation and the fact that we have a set of start states.
Os(n1)X10s(n2)Xa.. Xk 0s(ng41)

We write n; ngy1 when 3 A(n1,X1,n2) € Ta,
.« (ng, X, np1) € Ta and let 6 range over alternating sequences of state observations
Os(n;) and actions X; € Act”.

Tr(A) 2 (0| m—Lon A s € Osa(m)}

X
FIA) < {00,%) | m—Sn A s € Osa(m) A Vyex n7-}
X

SF(A) © 10, {x}) | m—Ssn A s € Osp(m) A n——).

A=rB & F(A) = F(B) A =g B < SF(A) = SF(B)
If we restrict our components to having only start and end predicates and further

restrict them so that no transition enters a start node nor leaves an end node then our
definition of failures on processes without 7 actions is the same as that in CSP.

2.3 Component Abstraction

The CTSs in Definition 1 take no account of 7 actions being unobservable, so we would
call it a strong semantics (—) and an equivalence based on it a strong equivalence
(=x, where X is the sort of equivalence, e.g. failure).

Atomic Components 133

Definition 3. ==, isa predicate where:

T def T T T
S1==>S;, = So—51,51— 52, Sp—1——8 A Vi, .0s(sp) = Os(s;)
a def a
n==,m = n==n',n'—m',m'==m A (a € ActV Os(n') # Os(m’))
We define a parameterised abstraction function from a strong semantics:

Abs.(A) % (N, Osa, {(n.x,m) € Ta | n==.m})

Here the parameter 7 tells us, as we will see, what sort of (observational) semantics we
are dealing with, i.e. whether it disregards divergent behaviour etc. If A is a component
then Abs,(A) is its interface, i.e.defines how it can interact with any context.

A method of abstraction Abs, is well defined w.r.t. a strong equivalence =x when:

if A =x C then Abs,(A) =x Abs,(C)

We define observational equivalences (=.x) as:
A=xC % Abs.(A) =y Abs.(C). .
We will use a lower case prefix to depict the abstraction function and an upper case
suffix to depict the strong equivalence (e.g. F for failure), so for example we have:

A=, C % Abs,(A) =F Abs,(C)

The effect of our defini-

tion of abstraction acts on 7 S— @ "O\ c—e S_\a"o c—¢€
actions that are not connected A %\ Q \b -

to any state .in tl}e interfac.e o—p —e Abs,(A) o—b e
can be seen in Fig. 3 and is

normal [18,19] for failure Fig. 3. Action abstraction

style semantics. Keeping 7

labelled transitions that are connected to the start and end states is the usual opera-
tional technique [14, 15] to define observational congruences with respect to choice and
sequential composition.

Different versions of hiding can be derived from different definitions of abstraction

since A/ .H def Abs,(Aty). CSP’s denotational semantics has no 7 actions and hiding,

for terminating processes, [18-Ch.3] can be formalised by A/,H def Abs,(Aty),

whereas with CSP’s operational semantics [18—Ch.7] and NDFD semantics [23] hiding
is defined by _7x and the observational semantics is defined by ==,

Is Divergence Observable? Although we believe divergence not to be directly observ-
able we will show that the distinction between livelock and deadlock it is a consequence
of the interleaving assumption and the unfairness of choice.

The interleaving assumption equates concurrent processes to a sequential process.
We write P ||z Q for P in parallel with but not synchronising with Q. We assume
that choice can behave unfairly in that a process P (see Fig. 4) which can diverge, i.e.
P=5P, can prevent all other actions of P from being performed.

When interleaving and unfair choice are combined the divergence of P in P ||z Q
is able to stop Q from performing any action. Had P deadlocked Q would continue. We
will refer to this feature as divergence leakage. Divergence leaking can be regarded as

134 S. Reeves and D. Streader

counter intuitive as my computer performing an unlimited internal chatter should not,
we believe, affect an unrelated computer on your desk.

We extend Abs, in order to define congruences with R
nonterminating components by replacing 7 loops with non- q 2

a
determinism. Because of ““ divergence leakage” we need to £ x/ \)
X
distinguish livelock from deadlock. This we do by includ- “\—"1 | N
ing x* —Tx* in Definition 4. P ? ? Abs.(P)
e e

Process P in Fig. 4 is an example of what we call
optional divergence. It could either act fairly and always
eventually perform b or alternatively it could stay forever
in the X state. What is more which it does is not deter-
mined by any outside agent. Hence we model this divergence as the nondeterministic
choice between performing b and being trapped in the divergent state x* (see Fig. 4).

Fig. 4. Divergence

Definition 4. Let A déf (NA, OSA, TA), NTA = NA U {x* | x:T>x},
A+ & (N-a, Osa, Ta U {n—5x* | @ € Act, A x==x A n——x}),

Tea E Tup,ar) U {s"—s" | =5} and

Osa(s) ef if s € N then Osa(s) else OSTA(S(*_l)) .

Then Abs.(A) def (N:p, Os-a, Tra) °

Theorem 1. =y and =,sp are congruent w.r.t. {1, ;,®, ||, ds, /+S}.

3 Z Components

__Desp_tea

We will use Z schemas to define both — Stat
operations and state. Unfortunately Z push tea but —oate
leaves as informal any attempt to lo- e teag'\‘;e tea | st:{s1,52,53}
calise state or action, so here we infor- o= s€ __push_tea_but__
mally follow the convention of sim- —int— | Agiate
ply allowing schemas to be grouped State
together. This is the approach taken in m 5 st =51 A\ st =s3
Object-Z [7, 8]. give_tea

We define a Z-Component to be — final [AS ta;e -
(State, SS, OP) where State is a state State
schema, SS a set of state schemas such — st =s3 A
that init € SS and final € SS and OP St =151V St= 52 st =51 Vst = s9

a set of named operation schemas (see
Fig. 5 for an example).

By restricting State to be a finite
set of observations of enumerated type
the normal evaluation function will map Z-Components to CTS. This is a small gener-
alisation of LTS semantics of Z found in [7, 8, 24, 9].

Fig. 5. Desp_tea

Example. A vending machine accepts an electronic money card, then allows the user
to request cups of tea if the card has sufficient funds, and finally to remove the card.

Atomic Components 135

We formalise the vending machine using components: one - Insert_card; two -
Desp_tea; and three - Remove_card. We then define the vending machine as the se-
quential composition of the three components.

We define Desp_tea Fig. 5 with two

initial states, i.e. sufficient funds or insuf- Insert card___ —Remove_card_
ficient funds. Our definition of sequen- __insert_card. — remove_card
tial composition (Definition 2) then in- AState AState
troduces the nondeterministic branching — ;

. . . st=sAst =e st=sN\st =e
of the previous insert_card action.

This definition of Desp_tea would not
be possible had we used the CCS, ACP or Fig. 6
CSP semantics because, as we explain in
Section 4.1, they equate processes with their root unwinding.

For brevity, in Fig. 6 and Fig. 7, we assume the existance of both State, defined as

. o def , def
the obvious enumerated data type and init = [State | st = s] and final = [State |

st =el.

The operational semantics of Insert_card; Desp_tea; Remove_card can be con-
structed by evaluation and then simplified by pruning unreachable operations and iden-
tifying bisimilar nodes, resulting in the CTS VM in Fig. 7. The Z text is constructed
from this CTS by using as state a single observation of enumerated type that ranges
over the set of nodes Nyp.

To verify that two cards cannot be inserted without an intervening removal of a
card we can simplify VM (as all we are interested in are the actions insert_card and
remove_card) by hiding the other actions.

Analysis by hiding is conceptually different from the hiding of “private communi-
cation”. In analysis actions can be hidden that need not be observed, but can still be
controlled. In CSP [18—p296] the hiding of “private communication” is modelled by
eager abstraction and hiding in analysis is modelled by lazy abstraction. Because we do
not model divergence as chaotic behaviour we can use the same definition of hiding in
analysis as in the hiding of “private communication”.

— VM
__push_tea_but
>~
$ push tea but 52 AState
insert c:i/rd inseljt ird gi;e tea st =51 A St = 8o
i< give tea 5

__remove_card

remove card remove J
¥ / AState

. st=s1Vst=s3)Ast =e
__insert_card (! 3)

AState __give_tea
AState

st==sA (st' =51V st =s3)

st=s2 A (st' =51 V st' = s3)

Fig.7. VM

136 S. Reeves and D. Streader

4 Comparison

Action-based approaches frequently use a single syntactic class (of actions) and use
recursion to define nonterminating components, which are given a fixed point seman-
tics. The need to have a unique fixed point semantics has had a strong influence on the
semantics of CSP [18—p215] and unifying theories of programming [13-2.6, 2.7]. Al-
ternatively, a very powerful argument, for state-based systems, has been made [25] in
support of using refinement semantics rather than fixed point semantics.

When modelling State-and-Action systems it is natural to use two syntactic classes,
one for states and one for actions. Using such a formalism, recursion and fixed points
are not needed to define nonterminating components that have finite state and alphabet.

4.1 Choice
In CSP (but not a

T N
CCS/ACP)T actions - / /»F \ /?e
s——no and sLml \l \ / \ /

can model “the pro-
cess couldbe in state
ny or ny but we can- Fig.8. CSP O and ACP +

not know which”(see

a b in Fig. 8). We interpret CSP external choice O and ACP choice + to be the
same and use the different role of 7 actions in CSP and ACP/CCS to explain why
AOc # A+ cin Fig. 8.

CSP, CFFD and NDFD all use the standard denotational approach to define con-
gruence w.r.t. choice, i.e. stability, whereas CCS, ACP and this paper use the standard
operational approach to define congruence, i.e. keep spo—o. Although we believe this
to be of little conceptual importance it does introduce small discrepancies in what would
otherwise be the same equivalences.

The renaming of observable actions as 7 actions, 7(a}, does not distribute through
CSP choice, whereas T{a} does distribute through CCS/ACP choice and our .

Root Unwinding or Not. We have motivated our congruence by using distinguishing
states that are in the interface from those that are not. This introduces a question: what
happens if a process returns to one of the start states that is in the interface?

Choice as defined in [23, 15] is +
(see Fig. 9) and first root unwinds the A Unw(A) B A+B O AGE

LTS then identifies start states. Root a . S a
unwinding allows us to view loops as
£ p s > s b>o 5/a o & b>o

mere “sugar” for their true meaning as ~ $
an acyclic LTS.

Here choice is modelled by gluing
together the root nodes of two CTSs
without performing root unwinding. This is not new: it appears in [22] where such a
definition of choice is given as limits in categories of labelled transition systems and
Petri nets.

Fig. 9. Choice + or &

Atomic Components 137

By changing the definition of choice, what is required of a congruence is changed.
With the semantics in [22] A # Unw(A), as we would expect from our desire to distin-
guish states that are in the interface from those that are not.

4.2 Sequential Composition

Sequential composition is defined using an explicit representation of the successful zer-
mination of a process. In CSP termination SK/P “can always be chosen” when offered,
i.e. SKIPOa — STOP = (SKIPOa — STOP) M SKIP. This is quite different from ACP
termination € which cannot always be chosen. This can be seen in the construction of
((ase) +€) || (ase) (see [15] [p. 76]) where the ability of one of the components to
initially terminate is simply lost. Because of these differences we will avoid comparing
congruence w.r.t. sequential composition from CSP and our definition which follows
that of ACP.

4.3 NDFD Divergence Without Chaos

In [19,23]' they construct a denotational semantics without interpreting divergence as
chaos. Stability sta and divergence div are defined on the strong operational semantics.
Failure semantics is defined on the observational semantics (=-,) and finally stability,
divergence and failures are all used in the definition of NDFD.

Let A and B be CTSs.

T

sta(A) Vesn $7 and
div(A) def {6 | s=Zson A s € Sa A n——s n}

fail(A) et {(6,X) 13, s=25,n A s € sa A Vyex n;aX&%}
dfail(A) < {(0,X) | (6,X) € fail(A) V 0 € div(A)}
A =yprp B % sta(A) =sta(B) A dfail(A) =dfail(B) A div(A) =div(B)

A CTS is well-terminating if n—— implies n & ep.

Lemma 1. For stable, unwound and well-terminating processes.
A=:rB< A=xprp B

We have provided an operational interpretation of action abstraction that transforms
divergence into nondeterminism. The above result tells us that computing failure equiv-
alence on the observational semantics gives the same result as computing NDFD equiv-
alence on the strong semantics. The restriction to stable, unwound processes is ex-
plained in Section 4.1 and the restriction to well-terminating processes is explained in
Section 4.2.

5 Conclusion

To model components we give an equal status to states and events. We require that
our components have an interface and that components with the same interface are

' We do not need traces as we consider only finite state processes.

138 S. Reeves and D. Streader

“observationally” equivalent. In particular we allow both states and events to be a part
of the interface. To this end we use two syntactic classes, one for states and one for
events, and consequently we do not need recursion or unique fixed points to define the
semantics of nonterminating components that have finite state and alphabet.

In order to preserve a component’s interface we reject the root unwinding built into
the semantics of many process algebras. In this regard our approach is based on that of
Winskel and Nielson [22]. We demonstrate some practical advantages of this approach
in Section 3.

To take advantage of the well-known [7, 8, 9] isomorphism between state-based re-
lational semantics and event-based operational semantics we use operational rather than
denotational semantics. There is a natural way of defining observational equivalences
in two steps: first, apply abstraction to build an observational semantics from the strong
semantics; then, apply a strong equivalence to the newly built observational semantics
Section 2.3. We take advantage of this and define abstraction that models what can be
observed of divergent processes.

In [12] they define a singleton failures semantics for ADTs but hiding has to be
restricted to exclude the possibility of considering divergent ADTs. We can extend this
work to consider nonterminating processes by first applying our definition of abstraction
and then applying their definitions to the resulting observational semantics. This results
in =,gr, a singleton version of NDFD equivalence.

The work in [9] gives testing characterisations that “explain” the difference between
several known refinements including LOTOS’s extension [26], conformance [27], may
and must testing [11], failure refinement and singleton failure refinement [12]. But all
these refinements ignore divergence and hence, if we require congruence with respect
to our operators, can only by applied to terminating processes. We can construct the
observational semantics defined here and subsequently apply the work in [9] to the ob-
servational semantics. This extends the original work to cover nonterminating processes
where divergence is not ignored.

References

1. Barnett, M., Schulte, W.: The ABCs of Specification: AsmL, Behavior, and Components.
Informatica 25 (2001)

2. Bolognesi, T., Borger, E.: Abstract State Processes. In Borger, E., Gargantini, A., Riccobene,
E., eds.: Abstract State Machines, Advances in Theory and Practice, 10th International Work-
shop, ASM 2003, Taormina, Italy, March 3-7, Proceedings. Volume 2589 of Lecture Notes
in Computer Science. (2003) 218-228

3. Hansen, H., Virtanen, H., Valmari, A.: Merging state-based and action-based verification. In:
Proceedings of the Third International Conference on Application of Concurrency to System
Design (ACSD’03), Guimaraes, Portugal, IEEE Computer Society (2003)

4. Ramadge, P.J.G., Wonham, W.M.: The control of discrete event systems. Proceedings of
IEEE 77(1) (1989) 81-98

5. Heymann, M., Meyer, G.: Algebra of discrete event processes (1991)

6. Heymann, M.: Concurrency and Discrete Event Control. IEEE Control Systems Magazine
10 (1990) 103-112

10.

11.
12.

14.
15.

16.

17.

18.

20.

21.

22.

23.

24,

25.

26.

27.

Atomic Components 139

Smith, G.: A Semantic Integration of Object-Z and CSP for the Specification of Concurrent
Systems. In Fitzgerald, J., Jones, C.B., Lucas, P., eds.: FME’97: Industrial Applications
and Strengthened Foundations of Formal Methods (Proc. 4th Intl. Symposium of Formal
Methods Europe, Graz, Austria, September 1997). Volume 1313., Springer-Verlag (1997)
62-81

Derrick, J., Boiten, E.: Refinement in Z and Object-Z: Foundations and Advanced Applica-
tions. Formal Approaches to Computing and Information Technology. Springer (2001)
Reeves, S., Streader, D.: Comparison of Data and Process Refinement. In Dong, J.S., Wood-
cock, J.C.P, eds.: ICFEM 2003. LNCS 2885. Springer-Verlag (2003) 266-285

de Nicola, R., Hennessy, M.: Testing equivalences for processes. Theoretical Computer
Science 34 (84)

Hennessy, M.: Algebraic Theory of Processes. The MIT Press (1988)

Bolton, C., Davies, J.: A singleton failures semantics for Communicating Sequential Pro-
cesses. Research Report PRG-RR-01-11, Oxford University Computing Laboratory (2001)

. Hoare, C., Jifeng, H.: Unifying Theories of Programming. Prentice Hall International Series

in Computer Science (1998)

Milner, R.: Communication and Concurrency. Prentice-Hall International (1989)

Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge Tracts in Theoretical Computer
Science 18 (1990)

Kaivola, R., Valmari, A.: The Weakest Compositional Semantic Equivalence Preserving
Nexttime-less Linear temporal logic. In: International Conference on Concurrency Theory.
(1992) 207-221

Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall International Series in
Computer Science (1985)

Roscoe, A.: The Theory and Practice of Concurrency. Prentice Hall International Series in
Computer Science (1997)

. Valmari, A., Tienari, M.: An improved failure equivalence for finite-state systems with a

reduction algorithm. In: Protocol Specification, Testing and Verification. IFIP XI, North-
Holland (1991)

Smith, G.: A Fully Abstract Semantics of Classes for Object-Z. Formal Aspects of Comput-
ing 7 (1995) 289-313

Woodcock, J.C.P., Cavalcanti, A.L.C.: The Semantics of Circus. In Didier Ber, Jonathan
P. Bowen, M.C.H., Robinson, K., eds.: ZB 2002 Formal Specification and Development in Z
and B LNCS 2272. Springer-Verlag (2002) 184-203

Winskel, G., Nielsen, M.: Models for concurrency. Technical Report DAIMI PB 429, Com-
puter Science Dept. Aarhus University (1992)

Valmari, A., Tienari, M.: Compositional Failure-based Semantics Models for Basic LOTOS.
Formal Aspects of Computing 7 (1995) 440-468

Reeves, S., Streader, D.: State-based and process-based value passing. In: Proceedings of
St.Eve @ FM’03. (2003) Available at www.cs.waikato.ac.nz/ stever/06-Reeves-Streader.pdf.
Hehner, E.C.R., Gravell, A.M.: Refinement semantics and loop rules. In: World Congress
on Formal Methods (2). (1999) 1497-1510

Brinksma, E., Scollo, G.: Formal notions of implementation and conformance in LOTOS.
Technical Report INF-86-13, Twente University of Technology, Department of Informatics,
Enschede, The Netherlands (1986)

Brinksma, E., Scollo, G., Steenbergen, C.: LOTOS specifications, their implementation and
their tests. In Sarikaya, B., Bochmann, G.V., eds.: Protocol Specification, Testing and Veri-
fication. Volume VI., North-Holland (1986) 349-360

Towards an Optimization-Based Method for
Consolidating Domain Variabilities in
Domain-Specific Web Services Composition

Jun-Feng Zhao, Lu Zhang, Ya-Sha Wang, Ying Jiang, and Bing Xie

Software Institute, School of Electronics Engineering and Computer Science,
Peking University, Beijing, 100871, P. R. China
{zhaojf, zhanglu, wangys, jiangy, xiebing}@sei.pku.edu.cn

Abstract. In this paper, we put forward an automatic method of acquir-
ing the specific system composition model from a domain composition
model and requirements for the specific system in domain-specific Web
services composition. This is referred to as the variability consolidation
problem in this paper. To achieve this goal, we designed a language to de-
scribe domain properties for Web services composition. The basis of our
approach is to transform the domain composition model and the require-
ments for the specific system into a mathematical optimization problem,
which can be solved by existing algorithms. Thus, this method is fully
automatic and not prone to human errors. Our preliminary experimental
results show that our method is quite feasible for solving problems with
real world sizes.

1 Introduction

In recent years, using Web services to construct new applications has become an
emerging paradigm of integrating Web applications across the Internet [2][15][19].
A Web service is a software application identified by a URI, whose interface and
bindings are capable of being identified and discovered by XML artifacts and
support direct interactions with other software applications using XML-based
messages via Internet-based protocols [3]. From the perspective of software reuse,
Web services composition can be viewed as an Internet version of component-
based software development [18].

As Web services are usually prone to interruptions on the Internet, the non-
functional properties of Web services (which are often referred to as quality
of service in the literature on Web services [12]) have to be considered very
seriously in the composition. A common way of dealing with this problem is
to employ several services fulfilling the same functionality but with different
quality of service (QoS) as candidates competing for one place in the composed
application [22]. Therefore, Web services composition also includes the selection
among the candidate Web services. Actually, researchers outside the software
engineering community (e.g. the authors of [22]) may even view Web services
composition merely as candidate Web services selection.

Z. Liu and K. Araki (Eds.): ICTAC 2004, LNCS 3407, pp. 140-153, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Towards an Optimization-Based Method 141

According to the literature, component reuse is typically beneficial when it
is confined to a special domain [13][16]. As Web services can be viewed as a
kind of reusable components, it should also be preferable to reuse Web services
within a particular domain. In this paper, our interest focuses on domain-specific
Web services composition, in which the composition can be guided by a domain
composition model containing domain variabilities. Thus, an important problem
in this kind of composition is to consolidate the variabilities and/or select the
proper candidate services in the domain composition model according to the
functional and non-functional requirements for constructing a particular system
in the domain.

Traditionally, the consolidation of variabilities in domain-specific composition
is performed by developers according to the requirements with the help of domain
specialists and system analysts. Although this does not seem to be a challenging
task, the manual nature may make it tedious and prone to errors, especially when
there are many candidate services and many constraints to be considered. For
example, if the system consists of ten types of services to be integrated, and each
service has 10 candidates, then there should be 10! different ways to compose
the system. Obviously, it is impossible for developers to achieve the optimal or
sub-optimal composition via considering all these possibilities. Therefore, it is
in need of introducing an automatic or automated method to help developers to
decide which Web services is the proper services.

In this paper, we propose a method to solve the above problem using math-
ematical optimization (please refer to [8][14] for information on mathematical
optimization). In our approach, we use a way similar to the domain engineering
approach to describe domain variabilities in the domain composition model. In
the model, Web services selection can be represented as a special case of variabil-
ity consolidation. Based on the domain composition model, we can formalize the
above problem as an optimization problem, which can be solved using existing
algorithms.

The remainder of this paper is organized as follows. Section 2 presents some
preliminary knowledge used in this paper. Section 3 presents a language for
describing domain variabilities in the domain composition model. In section 4,
we propose our method to consolidate domain variabilities for constructing a
particular system in the domain. In section 5, we present some empirical results
on the feasibility of our method. Section 6 discusses some related research, and
section 7 concludes this paper.

2 Preliminaries

2.1 QoS of Web Services

The nature of Web services determines the importance of quality of service (QoS)
for both constituent Web services and the application composed of Web services.
In the literature, there have been quite a few papers discussing quality-related
issues of Web services (see e.g. [12][17]). In the following, we just list some

142 J.-F. Zhao et al.

frequently discussed quality attributes for Web services: reliability, availability,
execution time, and cost.

e Reliability

Reliability is an overall measure of a Web service to maintain its service
quality. In this paper, we adopt the definition that the reliability of a Web
service is the probability that the service responds correctly. In practice, we can
use Time-to-Fails (TTF) to measure the reliability of the service. TTF means
the running Web service’s mean time to fail.

e Availability

Availability defines the extent to which a Web service is ready for immediate
consumption. In this paper, we adopt the definition that the availability is the
probability that the service is accessible. Associated with availability is Time-
to-Repair (TTR). TTR represents the time it takes to repair the Web Service.

e Execution Time

The execution time is the time taken by a Web Service to finish its task. It
can be measured by the average response time of a certain Web service.

e Cost

The cost of a Web service is the amount of money that a service requests or
has to be paid for executing the service.

The QoS affects Web services composition in the following way. When using
Web services to compose a new application, we may have some non-functional
or quality requirements for the overall application. Therefore, we should select
the Web services with proper quality attributes and determine the proper inter-
connections of the selected services to achieve a system that satisfies the target
quality requirements.

2.2 Domain Engineering

Domain engineering (see e.g. [13][16]) is aiming at systematically managing vari-
ability within a domain. In a typical domain engineering process, several existing
systems in the domain are analyzed to acquire a domain composition model con-
taining some variabilities, which is usually termed as the domain-specific soft-
ware architecture (DSSA) in the domain engineering community. When a new
task of constructing a new system in the domain arises, the domain composi-
tion model is customized into a composition model for the particular system. As
the main task in the customization is to consolidate the variabilities contained in
the domain composition model, we refer to this customization process as domain
variability consolidation in this paper.

In a domain composition model, domain variability is usually described as the
characteristics of the constituents in the model and the relationships between the
constituents [6][9][11][20][24]. There are mainly three characteristics identified in
the literature:

e Mandatory

Mandatory constituents embody the essence and/or common requirements
within the domain. When consolidating the variabilities, all the mandatory con-
stituents should be included in the composition model for the specific system.

Towards an Optimization-Based Method 143

e Optional

Optional constituents are those that appear in some systems in the domain,
but are not required in all the systems. During variability consolidation, we
should determine which optional constituents would be included in the specific
system.

e Alternative

Alternative constituents are a set of optional constituents that satisfy the
following condition during variability consolidation. Any system in the domain
should include one and only one of these constituents. Actually, the relationship
between a set of alternative constituents is the mutually exclusive relationship
discussed below.

The relationships between constituents identified in the literature are listed
below:

e Dependent

Constituent p is said to be dependent on constituent ¢, if and only if any
system in the domain containing p should also contain g. Therefore, we should
avoid including p without including ¢ in the specific system when consolidating
the variabilities.

e Mutually Exclusive

Two constituents are said to be mutually exclusive, if and only if the two
constituents cannot both exist in any system in the domain. Obviously, any two
constituents among a set of alternative constituents are mutually exclusive.

Given a domain composition model and the requirements for a particular
system in the domain, variability consolidation is to produce the system’s com-
position model satisfying both the variability constraints described in the domain
composition model and the system requirements. When the domain composition
model is small and/or the variability constraints are simple, this variability con-
solidation can be fulfilled by developers manually. However, this manual consol-
idation can be quite time-consuming and prone to errors in a complex domain.
The situation could be even worse when we are consolidating variabilities for
composition of Web services, because the services selection problem discussed
above is intertwined with the variability consolidation problem. Below, we will
present a method to automatically select Web services and consolidate domain
variability for domain-specific Web services composition.

3 Describing Domain Properties for Web Services
Composition

In a commercial Web services composition language (such as [1][10]), the prim-
itive composition unit is usually an operation within a Web service. For the
simplicity of presentation, we treat Web services as primitive units in this pa-
per. Therefore, a Web service in this paper is corresponding to an operation in
a commercial language.

In order to describe the domain properties in a domain composition model,
we define the Domain Specific Web Services Composition Language (DSWSCL)

144 J.-F. Zhao et al.

(DomainProperties)::=(ServiceProperties) (RelationProperties)

(ServicePropeties)::={(SingleServiceProperties) } { (AlternativeServicesProperties) }
(SingleServiceProperties)::=SERVICE (ServiceID)(DomainProperty)
(DomainProperty)::=MANDATORY|OPTIONAL_.THROUGH|OPTIONAL_IGNORANCE

(AlternativeServicesProperties)::=ALTERNATIVE (ServiceID), (ServiceID) {,(ServicelD)}
(RelationProperties)::={(DependentRelation) |(MutexRelation) }
(DependentRelation)::=(ServicelD) DEPENDS_ON (ServiceID)
(MutexRelation)::=MUTEX (ServiceID), (ServicelD)

Fig. 1. Definition of DSWSCL

to work with a Web services composition language. Therefore, a domain compo-
sition model includes two parts: the domain part and the composition part. The
domain part is written in DSWSCL, containing all the domain commonalities
and variabilities. The composition part is written in a Web services composi-
tion language, containing all the possible Web services and all the possible links.
Here a link refers to the order in which the linked two services will have to be
performed. Please note that the composition part here is usually not a valid com-
position model, and some consolidation according to the domain part is needed
to obtain a valid composition model from the composition part. The definition
of the DSWSCL is depicted in Fig.1.

The description of the domain properties includes that of the Web services
and that of the relations between Web services. The description of Web ser-
vices indicates whether a Web service is mandatory, optional, or alternative. We
distinguish two types of optional Web services. The first type includes those
Web services whose deselection means that the inputs will be directly con-
nected to the outputs. This situation is identified by the reserved word OP-
TIONAL_THROUGH. The second type includes those Web services whose des-
election means that all the inputs and outputs will be ignored. This situation is
identified by the reserved word OPTIONAL_IGNORANCE.

SERVICE A MANDATORY

SERVICE D MANDATORY

SERVICE I MANDATORY

SERVICE E OPTIONAL IGNORANCE
SERVICE C OPTIONAL_THROUGH
SERVICE E OPTIONAL IGNORANCE
SERVICE F OPTIONAL IGNOFRANCE
SERVICE & OPTIONAL_IGNORANCE
SERVICE H OPTIONAL IGNORANCE
HDEPENDS ON &

MUTEX E, C

MUTEX F, &

(a) (b)

Fig. 2. An example of the domain properties in DSWSCL

Towards an Optimization-Based Method 145

Fig. 3. An example of domain variability consolidation

For example, we have a domain model that includes nine services: A, B, C,
D, E, F, G, H and I. Services A, D and I are mandatory, while services B,
C, E, F, G and H are optional. The relationship between B and C and that
between F and G are mutually exclusive. The properties of B, E, F G and H are
OPTIONAL_IGNORANCE and the property of C is OPTIONAL_THROUGH.
Service H is dependent on service G. We can describe the domain properties in
Fig. 2(a).

Supposing the possible Web services and their links (we use a circle to repre-
sent the service and a directed edge to show the order between two services) are
depicted in Fig. 2(b), three possible specific composition models are depicted in
(a), (b) and (c) of Fig. 3. From the above constraints, B and C cannot be both
selected, F and G cannot be both selected, and the selection of H implies the
selection of G. Fig. 3(a) represents the selection of C, E, G and H; Fig. 3(b)
represents the selection of B, E, G and H; and Fig. 3(c) represents the selection
of B, E and F. All the three satisfy the domain constraints.

4 The Method

The basic idea of our approach is to formalize the variability consolidation and/or
the Web services selection as a mathematical optimization problem, which has
been studied for quite a long time and can be solved using existing algorithms.
To treat variability consolidation and Web services selection in a uniform way,
we transform the latter into the former before formalization. Thus, the central
part of our method focuses on how to turn the variability consolidation problem
into a form of optimizing a subjective function under certain constraints.

4.1 Transforming Web Services Selection to Variability
Consolidation

To simplify the formalization, we treat Web services selection as a special case
of variability consolidation. For the Web services selection problem, we have a

146 J.-F. Zhao et al.

set of candidate services competing for one place in the composed system. This
situation satisfies the condition for a set of alternative Web services. Therefore,
we can treat a set of competing candidate Web services as a set of alternative
Web services, and thus we can solve the Web services selection problem in the
same way of solving the variability consolidation problem.

4.2 Formalizing Variability Consolidation as Optimization

Given a set of variables (denoted as x1, xa, ...xy), a set of constraints on the
values of a set function of the variables and a subjective function of the vari-
ables, an optimization problem is to find a set of values for the variables that
satisfy the constraints and maximize or minimize the subjective function. In
our method, we use one variable to represent the selection of one corresponding
Web service. Therefore, if there are n Web services in the domain composition
model, there will be n selection variables in the formalized optimization problem.
Each variable can be of the value 0 (representing deselection) or 1 (representing
selection).

The variabilities described in the domain composition model will be for-
malized as a set of constraints (which are referred to as domain constraints).
The functional and non-functional requirements for the specific system will
also be formalized as a set of constraints (which are referred to as require-
ment constraints). To obtain the subject function, we can transform one re-
quirement constraint into the subject function. For example, we can transform
the constraint on the cost of the composed system into the form of minimiz-
ing the cost. Thus, a solution of the optimization problem (denoted as a set
of values for the variables) represents the consolidation of the domain variabil-
ities.

In the following, we assume that there are totally n Web services in the
domain composition model. We use WS;o1q;r = {1, 2, ...n} to denote the set of
all the n Web services, and we use i to denote the ith Web services in W S;ota;
and x; denote its corresponding selection variable (i € W Sioa). A variable
in the formalized optimization problem is denoted as a lower case letter with
possible subscripts and a constant is denoted as an upper case letter with possible
subscripts.

4.2.1 Formalizing Domain Constraints
For each mechanism of describing domain variability discussed above, the corre-
sponding formalization is as follows.

e Mandatory Web Services

Supposing the set of mandatory Web services in the domain composition
model is W.S,,an, for each element in the set, the equation in (1) will be added
as a constraint. This equation can ensure that the Web service appear in the
composition model for the target system.

2 = 1(i € WSman) (1)

Towards an Optimization-Based Method 147

e Optional Web Services

As the value of the corresponding selection variable for a Web service can
deter-mine whether the Web service will appear in the composition model for the
target system, simply no constraint will ensure the Web service to be optional.

e Alternative Web Services

For a set of alternative Web services W Sy, the equation in (2) can ensure
one and only one of them will be selected into the composition model for the
target system.

> oa=1 (2)

€W Sait

e Dependent Relationships

For two Web services p and ¢, supposing p is dependent on ¢, and the corre-
sponding variable of p is x;, and that of ¢ is x4, the inequity in (3) can ensure
that if p is selected, ¢ will also be selected. In inequity (3), if the value of x, is
1, then the value of =, have to be 1 to satisfy the inequity.

T, —xy <0 (3)

e Mutually Exclusive Relationships

For two mutually exclusive Web services p and ¢, supposing the corresponding
variable of p is x;, and that of ¢ is 4, the inequity in (4) can ensure that not both
services be selected. As this relationship allows the situation in which neither of
the two services is selected, we should use an inequity rather than an equation
similar to that in (2).

Tp+ g <1 (4)

4.2.2 Formalizing Requirement Constraints

When constructing a specific system based on the domain composition model,
the construction will also follow some functional and non-functional require-
ments. In our method, theses requirements will be formalized as constraints in
the optimization problem.

¢ Functional Requirements

Firstly, functional requirements in this domain-specific Web services compo-
sition may be represented as requiring some optional and/or alternative services
to be included in the target system composition model. This means that those
services will be treated as mandatory in the composition. Therefore, some more
constraints like those in (1) will also be added.

Secondly, when there is some freedom of choosing services, we may want the
selected services to fulfill as much functionality as possible. In such a case, we
can assign a value of functionality to each service, and require the total value
of functionality to be higher than a threshold. The value we assign to each Web
Service is depended on a subjective way. We make a questionnaire and let the
user give the score of functionality satisfaction of each service. The mean value

148 J.-F. Zhao et al.

of these scores is the value of functionality of each service. Supposing F; is the
corresponding value of functionality for Web service i (i € W Siorar), and Fioa; is
the threshold value of total functionality, the requirements of total functionality
can be represented as the constraint in (5).

Y. FXi > Foa (5)
1€EW Stotal

e Non-functional Requirements

There may also be non-functional requirements on the QoS of the composed
system. In the following, we demonstrate how these requirements on the above-
discussed QoS factors can be transformed into constraints. Similar ways of trans-
forming non-functional requirements into constraints can be found in [22]. We
believe that this kind of transformation can be extended to support requirements
on other QoS factors discussed in the literature.

Firstly, the requirements on the total cost can be transformed into a con-
straint as follows. Supposing the cost for Web service i is C; (i € WStotar), and
the requirement on the total cost is no greater than Ciytq;, the constraint on the
total cost can be formalized in (6).

Z CzXz S C'total (6)

1€W Stotal

Secondly, the transformation for the requirement on the maximum execution
time is as follows. In this transformation, we introduce two new variables (s; and
e;) for Web service ¢ representing the starting time and the ending time of the
service (i € WSiotar). Note that the values of variables s; and e; are not confined
to 0 and 1, but any positive real numbers. The formalization is according to the
type of the Web service.

For a set of alternative Web services WSy, these services will share the
same proceeding services (denoted as WS,,,) and succeeding services (denoted
as WSsue). Sup-posing the execution time of service i is Ti (i € WSy), the
constraints can be represented in (7), (8) and (9). Constraints in (7) ensure
that any service in W.S,;; will start after the ending of any proceeding services.
Similarly, constraints in (8) ensure that any succeeding services will start after
the ending of any service in W.Sy;;. In (9), T is a sufficient large number, which
ensures that each constraint in (9) is effective only when the corresponding Web
service 17 is selected. In such a case, the effective constraint ensures that there is
enough time for the selected Web service to be executed.

S; Z €j(Z S WSalt,j S WSPTD) (7)
e; < si(i € WS, k € WSsue) (8)

El'i S (61' — Si) -+ T(]. — QCZ)(Z S WSalt) (9)

Towards an Optimization-Based Method 149

For an optional Web service o, the proceeding services and the succeeding
services of o are denoted as WS, and W S, respectively.

If the deselection of o represents directly connecting its input flows to its
output flows, Web service o is actually an alternative service competing with a
service with no execution time. Thus, this situation can be formalized the same
as the formalization for alternative Web services.

If the deselection of o represents the ignorance of its input flows and output
flows, the formalization is denoted in (10), (11) and (12). Constraints in (10)
and (11) ensure the starting time of o is no earlier than the ending time of any
its proceeding services, and its ending time no later than the starting time of
any its succeeding services. In (12), To is the execution time of o, and T is a
sufficient large number. Therefore, if Web service o is selected (i.e. , = 1), the
constraint in (12) ensures that there is enough time for o to be executed, and if o
is deselected (i.e. ¢, = 0), the constraint in (12) actually represents no constraint
at all.

S0 2 €j (J € WS;DTO) (10)
€o S Sk(k‘ S WSsuc) (11)
€o— 8o >T,—T(1—x,) (12)

Supposing the Web services connecting to the starting point are WSgat,
and the Web services connecting to the ending point are W.S,,,4, we also need
the constraints in (13), (14) and (15), where t4ctua; is the actual execution time
of the composed Web service, and T}, is the maximum allowed execution time
for the composed Web service. In fact, the introduction of tactual is for the ease
of transforming the constraint on execution time to the subjective function.

S Z 0(7/ S Wssta'rt) (13)
€ S tactual (,7 S WSend) (14)
tactual < Ttotal (15)

Thirdly, as the reliability is modelled as the probability of correct responding,
the incorrectness of any selected Web services will result in the incorrectness of
the composed Web service. Therefore, supposing the reliability of Web service
i is R;, the reliability of the composed Web service is denoted in (16), and
the constraint on reliability is denoted in (17), where Riptq; is the minimum
reliability.

[r (16)

i€W Stotal

Z l’fL(RZ)IL'7, Z ln(Rtotal) (17)
i€W Stotal

150 J.-F. Zhao et al.

Fourthly, the transformation of the requirements on the total availability is
similar to that of reliability. Supposing the availability of Web service i is Ai and
the minimum availability is Ayprar, the constraint is in (18).

Z ln<Al)x’L > ln(Atotal) (18)
1€W Stotal

4.2.3 Determining the Subjective Function

We can transform one of the constraints in (5), (6), (15), (17) and (18) into the
subjective function. Therefore, the candidate subjective functions are in (19),
(20), (21), (22) and (23) respectively.

max(Z Fix;) (19)

ieWStotaI

min(Z Cix;) (20)

ieWStot,al

min(tactual) (21)

max(Y In(R)w;) (22)

1€W Stotal

max(Y In(A)z;) (23)

1€W Siotal

4.3 Solving the Optimization Problem

The problem formalized above is actually a special case of a mixed integer linear
programming problem. Therefore, we can adopt existing algorithms to solve the
problem. In this paper, we adopt the branch and bound method to solve this
problem (see [8][14] for details on this issue).

4.4 Generating the System Composition Model

After we acquire a solution of the formalized optimization problem, we can use
the result to generate the system composition model from the domain com-
position model. This generation is actually to eliminate those deselected Web
services and corresponding links from the composition part of the domain com-
position model. As there are tags in a Web services composition language, it is
not difficult to find the targets for elimination.

Towards an Optimization-Based Method 151

5 Preliminary Empirical Results on Complexity

As algorithms for mix integer linear programming problems could be exponential
in the worst case, we conduct an experiment to see whether our method is feasible
for problems of the size the same with real problems.

For a given number of services contained in the system and a given number
of average candidates for each service, we generate a domain composition model
with sparse domain constraints. Then we generate the mix integer linear pro-
gramming problem with some random domain requirements as input. Finally, we
use the branch and bound method to solve this problem. The entire experiment
is conducted on a PC with a 2GHz Pentium 4 processor and 512M RAM.

The results of our experiment are depicted in Fig. 4, in which, (a) depicts
the number of iterations and (b) depicts the execution time for solving each
optimization problem. In both (a) and (b), the x-coordinate represents the num-
ber of services that a target system contains, and the y-coordinate is the average
number of iterations or the average execution time in milliseconds. Different lines
represent different average numbers of candidates for each service. From Fig. 4,
when the number of services is 40 and each service has 12 candidates, the exe-
cution time is still less than 25 seconds. Actually this size is larger than many
current Web services composition problems. Although our experiment is still
preliminary, the advantage of our approach is obvious compared to the tedious
manual variability consolidation.

3.5E406 -
*
3. OE406 : »
/ 2. DE+04 7
2. 5E+06 K/ f“
/ -2 / ——
— 4 ——4 1, 58404 f ——d
.-’f - Il —-—
. /
/ . 3
1. SE+06 7 «—10| 1.0B+0d F — 1
. /s 12 / - [
. " I -
7 A
y .
y g / 5. 0E+03 "f
5 0E+05 - _ Py - -~ r A
' P . L
0. QE+00 == —

2, SE+04

. QE+00

Fig. 4. Performance of our approach

6 Related Work

Web services composition has become a very active research area. There are
several languages for describing composition models for Web services, including
WSFL [10], BPEL4WS [1]. These works are actually foundations for our ap-
proach and other related works. The works most related to ours are those on

152 J.-F. Zhao et al.

addressing service selection in Web services composition, such as eFlow [5], ME-
TEOR [4] and SELF-SERV [22][23]. The eFlow approach is put forward by HP
lab, which focuses on optimizing service selection at the task level. In this ap-
proach, the selection is mainly based on execution time and budget without con-
sidering other QoS factors. METEOR has more considerations for QoS factors,
but it concentrates on analyzing, predicting, and monitoring QoS of workflow
processes. The SELF-SERV approach concentrates on service selection based on
QoS factors. While eFlow and METEOR use local optimization strategies for
service selection, SELF-SERV adopts the global optimization strategy. In this
paper, we extend the idea in SELF-SERV to tackle the problem of variability
consolidation in domain engineering. As a result, our approach can automat-
ically calculate system models rather than mere selecting among functionally
identical services.

7 Conclusions and Future Work

Composing Web services to form new applications on the Internet provides chal-
lenges for existing component-based approaches, as the QoS issues can play an
important role in the composition. In this paper, we propose an approach to
consolidating variabilities within the domain-specific Web service composition
model. The central idea of our method is to formalize the variability consolida~
tion problem as a mix integer linear programming problem and apply existing
algorithms to solve it. Our preliminary results show that our approach is obvi-
ously superior over manual variability consolidation.

The work reported in this paper is still an ongoing one. In the future, we
will conduct more experiments, especially those with real world background,
to further evaluate our approach. Furthermore, we plan to extend our method
to tackle traditional component composition and/or composition with less do-
main knowledge.

Acknowledgements. The work is supported by the National High-Tech Re-
search and Development Plan (No. 2001AA113070) of China and the National
Grand Fundamental Research 973 Program of China (No. 2002CB312003).

References

1. Andrews T., Curbera F., Dholakia H., Goland Y.: Specification: Business
Process Execution Language for Web Services Version 1.1. http://www-
106.ibm.com/developerworks/webservices/library /ws-bpel/. (2003)

2. Aoyama, M., Weerawarana, S., Maruyama, H., Szyperski, C., Sullivan, K., and
Lea, D.:Web Services Engineering: Promises and Challenges.Proceedings of 24th
International Conference on Software Engineering. (2002) 647-648

3. Austin D., Barbir A., Garg S.: Web Services Architecture Requirements.
http://www.w3.org/TR/2002/WD-wsa-reqs-20020429. (2002)

4. Cardoso J.: Quality of Service and Semantic Composition of Workflows.Ph.D. The-
sis,University of Georgia.(2002)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Towards an Optimization-Based Method 153

Casati F.Ilnicki S., Jin L.-J., Krishnamoorthy V., Shan M.C.: eFlow: a Platform
for Developing and Managing Composite e-Services.Technical Report HPL-2000-
36, HP Laboratories, Palo Alto. (2000)

Chen Z.L.: Research on Domain Application Variability Control Mechanism and
Technology(in Chinese).Ph.D. Thesis, Peking University. (2003)

Frakes W., Prieto-Diaz R., and Fox E.: Domain Analysis and Reuse Environment.
Annals of Software Engineering. 5 (1998)125-141

Harvey M. Salkin and Kamlesh Mathur.: Foundations of Integer Programming.
North-Holland.(1989)

Kang, K., Cohen, S., Hess, J., Novak, W., and Peterson, A.: Feature-Oriented
Domain Analysis (FODA) Feasibility Study (CMU/SEI-90-TR-021). Software En-
gineering Institute, CMU. (1990)

Leymann F.: Web services Flow Language (WSFL 1.0). http://www-
106.ibm.com/developerworks/webservices. (2001)

Li K.Q.: Research on Object Oriented Domain Engineering Method. Ph.D. Thesis,
Peking University. (2001)

Mani A., and Nagarajan A.: Understanding Quality of Service for web services.
http://www-106.ibm.com/developerworks/webservices/library /ws-quality.html.
(2002)

Mili H., Mili F. and Mili A.: Reusing Software: Issues and Research Directions.
IEEE Transactions on Software Engineering. 21 (1995) 528-562

Nembhauser G. L. and Wolsey L. A.: Integer and Combinatorial Optimization. John
Wiley and Sons, New York. (1988)

Pahl, C. and Casey, M.: Ontology Support for Web Service Processes. Pro-
ceeding of 11th ACM Symposium on Foundations of Software Engineering,
Finland.(2003)208-216

Prieto-Diaz R: DDomain Analysis for Reusability. Proceedings of COMPSAC’87,
Tokyo, Japan. (1987)23-29

Rajesh S., Arulazi D.: Quality of Service for Web
services-Demystification, Limitations, and Best Practices.
http://www.developer.com/java/web/article.php/2248251 (2002)

Stal, M.: Web Services: Beyond Component-Based Computing. Communications
of the ACM. 45 (2002)71-76

Van Den Heuvel, W. and MaamarMoving, Z.: Toward a Framework to Compose
Intelligent Web Services. Communications of the ACM. 46 (2003)103-109

Van Gurp, J., Bosch, J. and Svahnberg, M.: On the Notion of Variability in Soft-
ware Product lines. Working IEEE/IFIP Conference on Software Architecture
(WICSA’01)Amsterdam, The Netherlands. (2001)45-54

Weiss, D. and Lai, R.: Software Product Line Engineering. Addison-Wesley. (1999)
Zeng L.Z., Benatallah B. and Dumas M.: Quality Driven Web Services Composi-
tion. WWW2003, Budapest, Hungary. (2003)411-421

Zeng LZ., Benatallah B., Lei H., Ngu AHH., Flaxer D. and Chang H.: Flexible
Composition of Enterprise Web Services. International Journal of Electronic Com-
merce and Business Media. 13 (2003)

Zhang W.J.: Research on Software Component Model and Corresponding Tech-
niques to Support Variability(in Chinese). Ph.D. Thesis, Peking University. (2002)

A Formal Framework for Ontology Integration Based on
a Default Extension to DDL

Yinglong Ma, Jun Wei, Beihong Jin, and Shaohua Liu

Technology Center of Software Engineering, Institute of Software,
Chinese Academy of Science, P.O.Box.8718, Beijing 100080, P.R. China
{m_y_long, wj, jbh, ham liu}@otcaix.iscas.ac.cn

Abstract. The information society demands complete information from
multiple sources, where available information is often heterogeneous and
distributed. Because of semantic heterogeneities among ontologies of different
information sources, it is rather difficult to integrate these local ontologies and
get completely available information. In this paper, we propose a formal
framework for integration of multiple ontologies from distributed information
sources. To achieve this goal, implicit default information is extensively
considered. We make a default extension to distributed description logics
(DDL) for ontology integration and complete information query. A complete
information query based on the integrated ontologies can boil down to checking
default satisfiability of complex concept in accord with the query. Default
satisfiability can be detected through an adapted tableau algorithm. Based on
the proposed formal framework, a prototype system is developed, which can
integrate strict as well as default information from multiple distributed
information sources and global semantic information query can be performed.

Keywords: Ontology integration, distributed description logics, default
extension, Tableau algorithm, semantic query.

1 Introduction

The use of ontology for the explication of implicit and hidden knowledge is one of
approaches to overcome the semantics heterogeneity of multiple information sources
[1, 2]. More importantly, in the last few years, there has been a lot of effort put in the
development of techniques that aim at the Semantic Web [3], which will enable
computers to partly “understand” the information on the Internet. A lot of those newly
developed techniques require and enable the specification of ontologies on the Web
[4]. With the increased availability of large and specialized online ontologies, the
questions about the integration of independently deployed ontologies have become
even more important.

Description Logic (DL) [5] is formalism for knowledge representation and
reasoning. It’s very useful for defining, integrating, and maintaining ontology, which
provide the Semantic Web with a common understanding of the basic semantic
concepts used to annotate Web pages. It’s also ideal candidates for ontology
languages [6]. RDF [14], RDFS [15], DAML+OIL [7] are clear examples of
Description Logics.

Z. Liu and K. Araki (Eds.): ICTAC 2004, LNCS 3407, pp. 154-169, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Formal Framework for Ontology Integration Based on a Default Extension to DDL 155

Distinguished from with DL, Distributed Description Logics (DDL) [8] can better
present heterogeneous distributed systems by modeling relations between objects and
relations between concepts contained in different heterogeneous information sources.
A DDL are composed of a collection of “distributed” DLs, each of which represents a
subsystem of the whole system. All of DLs in DDL are not completely independent
from one another as the same piece of knowledge might be presented from different
points of view in different DLs. Each DL autonomously represents and reasons about
a certain subset of the whole knowledge. A DDL might be regarded as a global
integrated ontology, which is connected with a global DL, which encodes the
information available in local DLs.

For integration of heterogeneous information sources, there are some problems that
require to be solved. In some situations, only incomplete information can be got.
These happen sometime as unavailability of pieces of information, sometime as
semantic heterogeneities of information sources. Another problem is that there always
exist some exceptional facts, which conflict with commonsense information. For
example, commonly bird can fly, penguin belongs to bird, but penguin couldn’t fly. In
these situations, information reasoning should be based on default rules. This form of
reasoning is called default reasoning, which is non-monotonic. Little attention,
however, has been paid to the problem of endowing these logics above with default
reasoning capabilities. It is a solution to model distributed information systems using
DDL and further make a default extension to DDL for default reasoning. Then, a
complete information query based on the integrated ontologies with default
information can boil down to checking default satisfiability of the complex concept in
accord with the query.

For these reasons above, we propose a formal framework for distributed ontologies
integration based on a default extension of DDL. The framework provides a
mathematic basis for querying complete information from integrated ontologies. To
get complete information from multiple sources, we add default information into a
distributed knowledge base derived from integrated ontologies.

In section 2 we introduce Description Logics and Distributed Description Logics
briefly. The approach for default extension to DDL is presented in section 3. We
make default extension to DDL using default rules, and introduce the definition of
extended default distributed knowledge base (EDDK) by adding default rules into
original distributed knowledge base. In Section 4, to check default satisfiability of a
concept and perform default reasoning based on a distributed knowledge base with
default rules, we adapt classical Tableau algorithm. Some examples are provided to
explain our formal definition and default distributed reasoning. In Section 5, based on
the formal framework, we develop a prototype system called OISDI for integrating
strict ontology information as well as default information from distributed
information sources. The system architecture and its main components are depicted,
and the semantic query performed by the system is introduced. At the end, we discuss
the related work in Section 6 and make a conclusion in Section 7.

2 Formalism Related to DL

Formalisms related to Description Logics have been used in a wide range of
applications, which are usually given a declarative semantics. Unlike other

156 Y. Ma et al.

formalisms, one of the characteristics of formalisms related to Description Logics is
that they are equipped with a formal, logic-based semantics. Another distinguished
feature is the emphasis on reasoning as a central service.

2.1 Description Logics

Description Logics view the world as being populated by individuals. The basic
notations in a DL are the notation of concept embracing some individuals on a
domain of individuals, and roles representing binary relations on the domain of
individuals. A specific DL provides a specific set of “constructors” for building more
complex concept and role. The syntax and semantics of ALC DL are listed as
Figure 1. Then one can make several kinds of assertions using these descriptions.
There exist two kinds of assertions: subsumption assertions and assertions about
individuals. The collection of subsumption assertions is called Tbox, which specifies
the terminology used to describe some application domain. The collection of
assertions about individuals forms Abox, which describes some states of world. A DL
knowledge base K=(T, A), where T and A are Tbox and Abox in DL respectively.

Constructor Syntax Semantic
primitive concepts C NN
primitive roles R RcAXA!
top T Al
bottom L %)
conjunction CriD c'np’
disjunction CuD c'up’
negation —C AN
existential restriction JR.C {x13y. (x, y) eR’ aye C’}
value restriction VR.C {x1Vy. (x,y) eR'=yeC}

Fig. 1. Syntax and semantics of the ALC DL

An interpretation for DL I=<A! o> where A’is a domain of objects and ¢ T the
interpretation function. The interpretation function maps roles into subsets of /A’xA’,

concepts into subsets of A’ and individuals into elements of A",
Satisfaction and entailment in DL Tbox will be described using following
notations:

IECEDiff C'c D

I=T, iff for all CED in T, I=EC=ED

CED, iff for all possible interpretations /, /[=FCED
T=CED, iff for all interpretations I, I=CED, such that I=T
K=CED, iff for all interpretations I, I=CED such that /=K

M S

These definitions are extended to Aboxes according to the following rules:

—_—

I=C(a), iff d'e C’
I=p(a, b), iff (a', bep'

N

A Formal Framework for Ontology Integration Based on a Default Extension to DDL 157

3. IEA, iff for every assertion in form of &= C(a) or & =p(a, b) in A, I .
4. [=Kiff =T and IFA
5. KrC(a), iff for all interpretations I, I=C(a) such that /=K

K=p(a, b), iff for all interpretations I, I=p(a, b) such that I=K

2.2 Distributed Description Logics

A DDL consists of a collection of DLs, which is written {DL;}c;, every local DL in
DDL is distinguished by different subscripts. The constraint relations between
different DLs are described by using so-called “bridge rules” in an implicit manner,
while the constraints between the corresponding domains of different DLs are
described by introducing the so-called ‘“‘semantics binary relations”. In order to
support directionality, the bridge rules from DL; to DL; will be viewed as describing
“flow of information” from DL; to DL; from the point of view of DL;. In DDL, i:C
denotes the concept C in DL;, i:CED denotes subsumption assertion CED in DL;, and
i:x denotes that x is individual in DL;, j:{y,yi,y2..} denotes that y, y;, y,, ...are
individuals in DL;.

A bridge rule from i to j is described according to following two forms:
i:C—=—j:D and i:C—2—j:D. The former is called into-bridge rule, and the latter
called onto-bridge rule. An individual correspondence from i to j is expressed as
following two forms: i:Xx—j:y and i:x—: {y,.y,,.}. The first is called a partial

individual correspondence, which shows the binary semantics relation 1 (X, y) holds.

The second is called a complete individual correspondence, which shows that for

every element z in j:{y,,y»,..}, the relation A (x, z) holds.

Similar to DL, DDL also embraces a set of subsumption assertions and a set of
assertions about individuals, which are called DTB and DAB, respectively. A
distributed Tbox (DTB) is defined based on Tboxes in all of local DLs and bridge
rules between these Tboxes. A DTB DT=<{T;};c1, B>, where T; is Tbox in DL;, and
for every i#e€l, B={B;}, where By is a set of bridge rules from DL; to DL;. The
definition of a distributed Abox (DAB) is based on Aboxes in all of local DLs and
their partial and complete correspondence between these Aboxes. A DAB
DA=<{A;}ic1,C >, where A; is Abox in DL;, and for every i#jel, C={Cj}, where Cj; is
a set of partial and complete individual correspondences from DL; to DL;.

The semantics for distributed description logics are provided by using local
interpretation for individual DL and connecting their domains using semantics binary

relations I A distributed interpretation J=<{I}ic, r> of DT consists of

interpretations ; for DL; over domain A", and a function r associating to each i, jeI a
binary relation ryc A"xA". rid)={d € A"l <d, d>€ r; }, and for any DC A",
r;(D)= Uden r;(d).

A distributed interpretation 3 d-satisfies (written 3k=,) the elements of DTB
DT=<{T;}ic1, B> according to following clauses: For every i, jel

158 Y. Maetal.

1.8F,i:c—=j:D,if r;j (C")cD"

2.3F,i:C—=5j:D, if rj (C")2D"

3.3k,i: CED, if [=CED

4.3, T, if for all CED in T;, such that ;=CED

5.3k, DT, if for every i, je I, 3=, T;, and S=,b, for every be U B;;

6.DT =, i:CED, if for every distributed interpretation 3, =, DT=>3 =, 1:C=D

A distributed interpretation 3d-satisfies the elements of DAB DA=<{A;}ic;, C >
according to following clauses: For every i, jeI

1.8, it x = jiy,if yie rg(x")

2.8F4 it x—=ji {yYo 1 i r(xXD={y, 0y,)

3.3=,1:C(a), if = C(a)
S=qi:pla, b), if I; = p(a, b)

4. 3=, A, if for all @=C(a) or & = p(a, b) in A}, 3=, o

5.3k, DA, if for every ic I, 3=, A;, and S, ¢, for every ce U Cj;

6. DA=,1:C(a), if for every distributed interpretation 3, 3=, DA=>3 =,1:C(a)
DA 4i:p(a, b), if for every distributed interpretation S, S =, DA=>3=,i:p(a, b)

A distributed knowledge base for distributed description logics DK=(DT, DA),
where DT is a DTB, DA a DAB.

3 Default Extension to DDL

Our default extension approach is operated on a distributed knowledge base. A
distributed knowledge base originally embraces only some strict information. So there
also exists the satisfiability problem of elements in distributed knowledge base. Based
on semantic interpretation of DDL, we define the satisfiability of elements in a
distributed knowledge base.

Definition 1. A distributed interpretation S d-satisfies (written =,) the elements of
DK=(DT, DA) according to following clauses: For every i, jel

1. 3,DK, if 3=,DT and 3=, DA
2. DK E=4i:CED, if for every distributed interpretation 3, 3= ,DK=>3 =,1:CED
3. DK &4i:C(a), if for every distributed interpretation 3, St=, DK=>3 =, 1:C(a)
DK =,1i:p(a, b), if for every distributed interpretation 3, S=, DK=>3 =, i:p(a, b)
4. DK =, DT, if for all distributed interpretation S, S =,DK=>3 =, DT
DKE=, DA, if for all distributed interpretation 3, S=,DK=>3 =, DA
Default information is useful for getting complete information from multiple

distributed information sources. To be able toinclude default information in a distributed
knowledge base, we firstly introduce the notation description of a default rule.

A Formal Framework for Ontology Integration Based on a Default Extension to DDL 159

Definition 2. A default rule is an expression of the form P(x):J;(x),J»(x),....Jy(X)/C(x),
where P, C and J; are concept names (1<i<n), and x is a variable. P(x) is called the
prerequisite of the default, all of Ji(x) are called the justifications of the default, and
C(x) is called the consequent of the default. The meaning of default rule
P(x):J1(x),J2(x),...,Ju(x)/C(x) can be expressed as follows: If there exists an
interpretation / such that / satisfies P(x) and doesn’t satisfy every Ji(x) (1<i<n), then /
satisfies C(x). Otherwise, if I satisfies every J;(x) (1<i<n), then [satisfies —=C(x).

For example, to state that a person can speak except if s/he is a dummy, we can use
the default rule Person(x):Dummy(x)/CanSpeak(x). If there is a individual named
John in a domain of individuals, then the closed default rule is
Person(John):Dummy(John)/CanSpeak(John).

Then, to deal with strict taxonomies information as well as default information in
distributed knowledge base, the definition of distributed knowledge base should be
extended for including a set of default rules.

Definition 3. A default distributed knowledge base DDK=(DT, DA, D), where DT and
DA are DTB and DAB respectively, D is a set of default rules.

An example of a DDK is shown in figure 2. The DDK is based on two local DLs,
named DL1 and DL2 respectively. The DTB, DAB and D of the DDK are shown in
Figure 2(a). Figure 2(b) provides a distributed interpretation of the DDK.

DT={{T:={PARROTCBIRD, SPARROWEBIRD},
T,={PARROT=FLYING_ANIMAL, GOAT=E—SPEAKING_ANIMAL}},
B={1:PARROTCZ2:PARROT}}

DA={{A,={PARROT (parrotl), PARROT(parrot2)}, A,= (PARROT(parrot)} }, C=0}

D={BIRD(x):PARROT(x)/=SPEAKING_ANIMAL(x)}

(a) DTB, DTA and D of the DDK

A" ={parrotl, parrot2, sparrow, swan} A" ={parrot, goat, butterfly}
PARROT" ={parrotl, parrot2} PARROT" ={parrot}
BIRD" ={parrot], parrot2, sparrow, swan} GOAT" ={goat}
SPARROW ={sparrow} FLYING_ANIMAL" ={parrot, butterfly}
—SPEAKING_ANIMAL" ={goat}
rip={(parrot1, parrot), (parrot2, parrot)}

(b) Distributed interpretation of the DDK

Fig. 2. A DDK and its distributed interpretation

Similar to DK, There exists satisfaction (written ;) problem of elements in DDK.
So we call satisfiability of elements in DDK default satifiability. Default satisfiability
serves as a complement of satisfiability definition in a distributed knowledge base
with default rules.

Definition 4. A distributed interpretation S dd-satisfies (written ;) the elements of
DDK=(DT, DA, D), according to following clauses: For every default rule 6 in D,
EP(x):J1(x), Ix(x), ..., J,(X)/C(x), and every i, je I

1. 3':ddDDK, lfS':dDKands':dé‘

2. s':ddDT, 1f3|=dDTand3|=d5

3. 3l=ddDA, ifS':dDa and3l=d§

160 Y. Maetal.

4. SE, 6, if =,P=EC =>there doesn’t exist 3, such that SEJ,E—C, (1<k<n)
5. S8k, PEC, if i#, such that S, it PEC or Sk, i:P—=—j:C or

SkE4i:C—=2>j:P
6. DDKE 4, DT, if for all distributed interpretation 3, S =4y DDK=>3 =4, DT
DDK=4, DA, if for all distributed interpretation 3, S, DDK=>3 & ;; DA

In a distributed knowledge base, default information may have been used during
reasoning, but a DDK is difficult to operate and not really helpful for reasoning with
default information in a distributed knowledge base. Some additional information
with respect to default rules should be included explicitly into DT and DA
respectively. A closed default rule P(x):J;(x),J2(X), ..., Ju(x)/C(x) can be divided into
two parts: P(x)—C(x) and J;(x)—>—C(x), (1<i<n). We call the first part fulfilled rule,
and the second exceptional rules. A rule of the form A(x)—B(x) means for every
(distributed) interpretation I, xe Al then xe B', i.e. ACB, where A and B are concept
names, and X denotes an individual.

Definition 5. An extended distributed knowledge base EDDK is constructed based on
a DDK=(DT, DA, D), according to the following clauses: For every default rule & in
D,5 =P(x): J;(x), Io(x), ..., J,(x)/C(x),

1) Dividing & into two parts which embrace fulfilled rule and exceptional rules,
respectively. The fulfilled rule denotes that it holds in most cases until the
exception facts appear, while the exceptional rules denote some exceptional
facts.

2) Adding PEC and J,E—C into DT (1<i<n), which are the assertions
corresponding to fulfilled rule and exceptional rules, respectively.

3) Setting the priorities of different rules for selecting appropriate rules during
reasoning. The assertions corresponding to exceptional rules have the highest
priority, while original strict information has normal priority. The assertions
corresponding to fulfilled rules are given the lowest priority.

In the course of constructing an EDDK, default information has been added into
distributed knowledge base for default reasoning, because these default information
may have been used during reasoning. Exceptional information has been assigned the
highest priority to avoid conflicting with some strict information, while fulfilled rules
would be used only in the situation that no other strict information can be used, its
priority is least. A simplified view of the EDDK based on the DDK (shown in Figure
2) can be found in Figure 3.

In Figure 3, The default rule BIRD(x):PARROT(x)/-SPEAKING_ANIMAL(x) is
divided into one fulfilled rule and one exceptional rule. The fulfilled rule
BIRDE-SPEAKING_ANIMAL and the exceptional rule PARROT=ESPEAKING_
ANIMAL has been added into EDDK. In fact, an EDDK can be recognized as a
collection of integrated ontologies with explicitly expressed default information.
Default reasoning can be performed based on an EDDK.

A Formal Framework for Ontology Integration Based on a Default Extension to DDL 161

K1 K2

parrott parrot1 ,BIRD—|— — — =71 SPEAKING_ANIMAL FLYIING_ANIMAL

~

swan |
sparrow \}‘ arrot butterfly

|
SPARROW PARROT- PARROT goat——GOAT

————» subsumpton @=Z0 ————— +» fulfilled
————> membership —_—— 7/— — exceptional
"""""""""""" > bridge rule

Fig. 3. An EDDK

4 Reasoning with Default Information

Reasoning with default information provides integrated ontologies with stronger
query capability. A query based on integrated ontologies can boil down to checking
default satisfiability of complex concept in accord with the query. Based on
description logics, satisfiability of a complex concept is decided in polynomial time
according to Tableau algorithm for ALC [5, 9]. To a certain extent, a DDL is
connected with a global DL, which encodes the information available in local DLs.
This would allow us to transfer theoretical results and reasoning techniques from the
extensive current DL literatures. So in my opinion, detecting default satisfiability of a
DDL is just detecting the default satisfiability of the global DL in accord with the
DDL. A default extension to Tableau algorithm for ACL DL can be used for detecting
default satisfiability of ACL concepts based on an EDDK.

Definition 6. A constraint set S consists of constraints of the form C(x), p(X, y),
where C and p are primitive concept and primitive role, respectively. Both x and y are
variables.

An [-assignment maps a variable x into a element of A", If x'e C’, the I-assignment
satisfies C(x). If (x', y) €p’, the I-assignment satisfies p(x, y). If the I-assignment
satisfies every element in constraint set S, it satisfies S. If there exist an interpretation
I and an [-assignment such that the I-assignment satisfies the constraint set S, S is
satisfiable. S is satisfiable iff all the constraints in S are satisfiable.

It will be convenient to assume that all concept descriptions in EDDK are in
negation normal form (NNF). Using de-Morgan’s rules and the usual rules for
quantifiers, any ALC concept description can be transformed into an equivalent

description in NNF. For example, the assertion description SPARROWEBIRD can be

transformed the form =SPARROWLIBIRD.

To check satisfiability of concept C, our extended algorithm starts with constraint
set S={—C(x)}, and applies transformation rules in an extended distributed knowledge
base. The concept C is satisfiable iff the constraint set S is unsatisfiable. In applying
transformation rules, if there exist all obvious conflicts (clashes) in S, S is
unsatisfiable, which means the concept C is satisfiable. Otherwise, S is unsatisfiable.
The transformation rules are derived from concepts and assertions in EDDK. If the
constraint set S before the action is satisfiable, S after the action is also satisfiable.
The adapted extension algorithm are shown as follows:

162 Y. Maetal.

Begin
Step 1: Exceptional rules:
Condition: there exists a default rule of the form P(x):J;(x), Jo(x),...,J,(X)/C(x),
and {J;(x)}<S, (1<i<n) in set of default rules.
Action: S=S{—C(x)}
Step 2: Strict rules
M rule: Condition: {(CrD)(x)}<S, but S doesn’t contain both C(x) and D(x).
Action: S=SU{C(x), D(x)}

LI rule: Condition: {(CUD)(x)}<S and {C(x),D(x)}NS=D.
Action: S=SU{C(x)} or S=SU{D(x)}

3 rule: Condition: {(IR.C)(x)} <S, and there doesn’t exist y such that S

contains C(y) and R(x, y).

Action: S=SU {C(y), R(x, y)}

V rule: Condition: {(VR.C)(x), R(X, y)} =S, and S doesn’t contain C(y).
Action: S=SU {C(y)}

Step 3: Fulfilled rule[’

Condition: no other transformation rules can be applied, there exists a default
rule of the form P(x):J1(x), Jo(x), ..., J.(x)/C(x), and {P(x)}cS, S
doesn’t contain {J;(x)} (1<i<n).

Action: S=SU {C(x)}

End

When the adapted algorithm is used for detecting default satisfiability of ALC
concepts, every action must preserve satisfiability. Because if an action don’t preserve
satifiability, we cannot ensure the condition that if the constraint set before the action
is satisfiable then the set after the action is satisfiabile. In the extension algorithm, we
must prove the actions preserve satisfiability.

Theorem 1. Every action in the extension algorithm preserves satisfiability.

Proof. In the extension algorithm, every step probably embraces some actions, so we
must prove that all of actions in these steps preserve satisfiability. Because the actions
in the second step are originally derived from the classical Tableau algorithm, we
have known they preserve satisfiability [5]. The remainder of the proof will only
consider the actions in the first step and the third step.

1) In the first step, the action condition is that there exists a default rule of the form
P(x):J1(x),J2(x),...,J,(X)/C(x), and {J;(x)}<=S, (1<i<n) in set of default rules. If there
exists an interpretation / makes all J;(x) (1<i<n) hold, then according to the Definition
2, we know [satisfies —C(x). If the constraint set S before the action is satisfiable,
then there exists an interpretation / such that / satisfies all of elements of S. Because
{J;(x)}<S, then [satisfies Ji(x), (1<i<n). Then because [satisfies both —C(x) and S,
we get [satisfies SU {—~C(x)} after the action.

2) In the third step, the action condition is that {P(x)}cS, S doesn’t contain {J;(x)}
(1<i<n) and no other transformation rules can be applied. If there exists a

A Formal Framework for Ontology Integration Based on a Default Extension to DDL 163

interpretation / makes all J;(x) (1<i<n) doesn’t hold but P(x) hold, then according to
the Definition 2, we know I satisfies C(x). If the constraint set S before the action is
satisfiable, then there exists an interpretation / such that [satisfies all of elements of
S. Because {P(x)}cS, then [satisfies P(x). Furthermore, we know I doesn’t satisfy
Ji(x) (1<i<n), otherwise, there would exist some exceptional rules which can be
applied.So from Definition 2, we get I satisfies C(x). Because [satisfies both S and
C(x), we get [satisfies SU {C(x)}.

From above proofs, we can conclude that every action in the extension algorithm
preserves satisfiability.

The default extension algorithm is divided into three steps. In the first step, we
apply exceptional rules to constraint set because they have the highest priority. If
exceptional rules can be used for the detected concept, strict rules will not be used.
Otherwise, if no exceptional rules can be used, the strict rules can be applied to
constraint set (step 2). The reason why we do like this is to avoid conflicting with
some strict information. Another reason is to save reasoning time. In step three, only
in the situation that no other strict information can be used, could fulfilled rules be
used. The default extension algorithm either stops because all actions fail with
obvious conflicts, or it stops without further used rules.

The algorithm is also applied to detect subsumption assertions. As usual, a

subsumption assertion AEB is satisfiable iff the concept AM—B is not satisfiable. The
following example shown in Figure 4 demonstrates the algorithm with a tree-like
diagram.

Sy={(SPARROWMSPEAKING_ANIMAL)(x)}

;
S,= SoU {SPARROW(x), SPEAKING_ANIMAL(x)}

ROW(x)LI (X)

S,= S, U {— SPARROW ()} S,= S, U {BIRD(x)}
/IClash 1/B4KD/(X) L SSREAKING_ANIMAL(x)
S=S,U{-BIRD)] Sy=S,U (~SPEAKING_ANIMAL(x)}
//Clash //Clash

Fig. 4. Detecting default satisfiability of complex concept

In figure 4, we want to know whether the subsumption assertion
SPARROWCE—-SPEAKING_ANIMAL is satisfiable in the EDDK shown in figure 3.

That is to say, we should detect that the concept SPARROWTSPEAKING_ANIMAL
is unsatisfiable. The concept is firstly transformed into constrain set Sy. Considering
the default rule BIRD(x):PARROT(x)/-SPEAKING_ANIMAL(x) , we know that
PARROT(x) isn’t contained in Sj, Then, in the first step, the exceptional rule

—PARROT(x)LUSPEAKING_ANIMAL(X) can not be applied to S,. In the following
steps, we apply strict rules, the reasoning continues until it stops with obvious

164 Y. Maetal.

conflicts. Finally, the leaf node of every branch in this tree-like diagram is notated

using “Clash” tag. So we know the constraint SPARROWTMSPEAKING_ANIMAL is
not satisfiable. That is to say, the subsumption assertion

SPARROWE—-SPEAKING_ANIMAL is satisfiable.
Please note that the extension algorithm can tackle both general subsumption
assertions and assertions about exceptional facts. In another example, We want to

check whether the subsumption assertion PARROT(x)ESPEAKING_ANIMAL(x) is
satisfiable, that is to say, we check the satisfiability of the concept

PARROT(x)I"1-SPEAKING_ANIMAL(x), which transformed into a constrain set. In

the first step, when the exceptional rule =PARROT(X)LISPEAKING_ANIMAL(x) is
applied to constraint set, the complete conflicts occur. So we know the concept

PARROT(x)I"1-SPEAKING_ANIMAL(X) is not satisfiable, which means that the

subsumption assertion PARROT(x)ESPEAKING_ANIMAL(x) is satisfiable. Then
reasoning process stops without applying other transformation rules. This can be
served as an example of reasoning for an exceptional fact.

5 Prototype System for Semantic Information Integration

Based on the formal framework, we develop a prototype system using Hewlett-
Packard Company’s Jena Semantic Web Toolkits [16] for integrating strict ontology
information as well as default information from multiple distributed information
sources. In the ontology integration system with default information (OISDI), We use
specific ontology language such as RDF and RDFS for describing and organizing
ontology information and knowledge. The component and logical architecture of the
system OISDI and its semantic query are introduced in this section.

5.1 System Architecture

The architectures of the prototype system OISDI are described from two perspectives:
component architecture and logical architecture. The component architecture of the
case system is shown in figure 5. The whole distributed system is constructed by
multiple local information sources, each of which describes and classifies local
knowledge objects. In order to meet the need of ontology information sharing and
integration, the ontology information and knowledge objects of each local information
source are formally described and classified by RDF and RDFS ontology languages.
As a result, it forms different local personalized ontologies and local knowledge
bases. RDF is a semi-structured data model. Data is encoded using so called resource-
property-value triples, which are also called statements. RDFS introduces classes and
a subsumption hierarchy on classes for specifying metadata information such as
classes, properties and hierarchy of knowledge objects. The metadata support
provides the ability to describe, organize and associate knowledge objects, and
promotes their interoperability.

The EDDK is implemented by the global ontology and the global knowledge base,
which are created on a server module for describing and classifying the integrated

A Formal Framework for Ontology Integration Based on a Default Extension to DDL 165

knowledge objects from different local information sources. The global ontology can
integrate different terminology of ontologies through a common vocabulary, which
provides global semantic query capability based on integrated ontologies.

We use RDF documents or RDFDB database [19] to store ontology data and
metadata information. Using RDF query language, RDF files can be used for
ontology information query. This way is simple and easily operated. But if the case
system embraces a large amount of information data, it is quite difficult to use RDF
files for storage of ontology information and semantic query, which causes very low
query efficiency. RDFDB can be used to tackle this problem, and allows users to load
RDF files from URIs into the database without any adaptation to them. RDFDB is a
lightweight RDF database server, which supports RDF query language for performing
semantic query.

@/EMi q
I,’

Global KB

Local KB

Fig. 5. Component architecture of the prototype system

The logical architecture of the prototype system OISDI is mainly considered for
providing better capability of information interchange and interoperability. There are
several kinds of information data such as individual knowledge objects, metadata and
binary relations between different metadata, etc. The ontology representation
combining RDF with RDFS can specify and organize these different kinds of
information data. Based on these ontology representations, we can construct ontology
inference model for semantic queries of application level. The logical architecture is
considered into four levels: data description, metadata description, semantic
description and application. Because a local knowledge base doesn’t need to integrate
local ontology information from other local knowledge bases, its logical architecture
is simpler and easier than that of the global knowledge base on the server module.
Here, we mainly pay attention to the logical architecture of the global ontology and
the global knowledge base, which is described in Figure 6.

The global ontology and a global knowledge base are maintained on the server
module. Each local user publishes their some personalized information that needs
to share to the server module, and maps their personal metadata to certain
categories of the global ontology. The information is described using RDF and
RDFS languages. Model Integrator component is constructed for integrating local

166 Y. Maetal.

‘ Shared Semantic Query ‘ Application
8 Global Ontology Inference Model
‘a — Description
s ‘ Global Ontology Model ‘ ‘ Reasoner
~N—d @, | . —c-—cr—occ—occ—ooc—oo—cor—on——osc—ooc——on—o [—
= 5
L} = 0
Z 5 Model 1 Model2 | ... | Modell 2 3 = Description
) z) A A z Eo|| £
= - £ _1__ =l £ = —_——
=) Z A \ \ & = £ £
2 RDF RDF RD = 5= B
S = = o Data
o] Model 1 ‘ Model 2 ‘ Model n s § 5 Description
\ 4 Model Anegramr A /
Y Y

- "

Fig. 6. Logical architecture of the server

ontologies information and forming the Global Ontology Model. Mapping Table
component is constructed for terminology (e.g. concepts, properties) mapping
between local sources and server module, where maintains a mapping table. The
concepts of classes and properties from local information sources are either sub-
concepts and sub-properties or equivalent concepts and properties of the global
concepts and properties, respectively. Consistency Checker is used to detect some
kinds of consistencies such as type, domains or range of properties. The default
information of the whole system is organized and managed by Default Information
Manager component and further is added into the global ontology model. Exception
Handling component may tackle some exceptions such as terminology inconsistencies
and query exceptions, etc. Using Reasoner component (Jena can provide different
types of reasoners), the implicit information hidden in global ontology model can be
explicitly expressed and added into Global Ontology Inference Model, which provides
the capability for global semantic query of application level. Using RDF query
language, user can perform global semantic query of application level based on
Shared Semantic Query Component. The Query Interface component provides a
semantic query interface for users.

5.2 Performing Semantic Query of Application Level

Semantic queries of application level are performed based on the global ontology
inference. According to RDF semantic specification [18], the so-called semantics
based on ontology involves primarily computation of transitive closure of the classes
and property hierarchies, computation of all implicit members of classes and
properties. The same is done for domains and range of properties. For example, an
instance of subclass of a class (property) is still instance of the class (property), etc.
The system allows local users to perform semantic query based on local information
sources. If users want to get complete information from multiple information sources,
they can execute global semantic query based on global ontology.

A Formal Framework for Ontology Integration Based on a Default Extension to DDL 167

In order to execute semantic query of application level, we use RDQL query
language [17] as query language for ontology information. RDQL is an SQL-like
syntax, and regards RDF model as a set of triple data. RDQL is programmable for
semantic query in Jena toolkit.

6 Related Work

In the description logics community, a number of approaches to extend description
logics with default reasoning have been proposed. Baader and Hollunder [10]
investigated the problems about open default in detail and defined a preference
relation. The approach is not restricted to simple normal default. Two kinds of default
rules were introduced by Straccia [11]. The first kind is similar to the fulfilled rules in
our approach. The second kind of rules allows for expressing default information of
fillers of roles. Lambrix [12] presented a default extension to description logics for
use in an intelligent search engine, Dwebic. Besides the standard inferences, Lambrix
added a new kind of inference to description logic framework to describe whether an
individual belongs to a concept from a knowledge base. Calvanese [13] proposed a
formal framework to specify the mapping between the global and the local ontologies.
Maedche [21] also proposed a framework for managing and integrating multiple
distributed ontologies. McGuinness [20] proposed a new merging and diagnostic
ontology environment. Davies [22], Huynh [23] and Nejdl [24] develop some
platforms built on metadata and/or ontologies for describing Web information and
achieving information sharing and interoperability. However, default information was
not considered in these different frameworks and systems.

An important feature of our formal framework distinguished from other work is
that our default extension approach is based on DDL. To our best knowledge, little
work has been done to pay attention to default extension to DDL.

7 Conclusion

In this paper, a formal framework is presented for integrating distributed ontologies
with default information. The framework provides a mathematic foundation for
querying complete information from integrated ontologies. To get complete
information from multiple information sources, in which available information is
often heterogeneous and distributed, we add default information into distributed
knowledge base derived from integrated ontologies. The framework is based on
default extension to DDL. The distributed knowledge base is originally used to
present strict information. To perform default reasoning based on DDL, strict as well
as default information is taken into account. Then, all of default information above is
added into an EDDK, which is constructed from a distributed knowledge base with
default rules. The default Tableau algorithm is used on EDDK where different rules
have different priority: exceptional rules have the highest priority, and fulfilled rules
the least. Based on the formal framework, we develop a prototype system called
OISDI using Hewlett-Packard’s Jena semantic web toolkits for integrating both strict
ontology information and default information from multiple distributed information

168 Y. Maetal.

sources. The component and logical architectures of the system and its semantic query
are introduced. Based on the system, users can perform global shared semantic query
for getting complete information from multiple information sources.

Acknowledgements

This research is partially supported by the National Grand Fundamental Research
Program of China under Grant No.TG1999035805, 2002CB312005, the Chinese
National “863” High-Tech Program under Grant No.2001AA113010.

References

1. Wache, H., et al.: Ontology-Based Integration of Information—A Survey of Existing
Approaches. In proceedings of IICAI’01 Workshop: Ontologies and Information Sharing,
USA, (2001) 108-117

2. Visser, P. R. S., et al.: An Analysis of Ontology Mismatches; Heterogeneity Versus
Interoperability. In AAAI 1997 Spring Symposium on Ontological Engineering, Stanford,
USA, (1997) 164-172

3. Berners-Lee, T., et al.: The Semantic Web. Scientific American, Vol. 284, (2001) 34-43

4. Gruber, T.R.: A translation approach to portable ontology specifications. Knowledge
Acquisition, Vol.5, (1993) 199-220

5. Baader, F., et al.: The Description Logic Handbook: Theory, Implementation and
Applications, Cambridge University Press, Cambridge, (2003)

6. Baader,F., Horrocks, I. and Sattler, U.: Description logics as ontology languages for the
semantic web. Lecture Notes in Artificial Intelligence, Springer, 2003

7. Horrocks, L., et al.: Reviewing the design of DAML+OIL: language for the Semantic Web.
In proceedings of AAAI’02, Cannada, (2002) 792-797

8. Borgida, A., et al.: Distributed Description Logics: Directed Domain Correspondences in
Federated Information Sources. In Journal of Data Semantics, Vol.1, Springer Verlag,
(2003) 153-184

9. Schimidt-schauf, M., Smolka, G.: Attributive concept descriptions with complements. In
Artificial Intelligence, Vol.48, (1991) 1-26

10. Baader, F., Hollunder, B.: Embedding Defaults into Terminological Representation
Systems. In Journal of Automated Reasoning, Vol.14, (1995) 149-180

11. Straccia, U.: Default Inheritance Reasoning in Hybrid KL-ONE-style Logics. In
proceedings of the International Joint Conference on Artificial Intelligence (IJCAI’93),
(1993) 676-681

12. Lambrix, P., et al.: A Default Extension to Description Logics for use in an Intelligent
Search Engine. In proceedings of 31st Annual Hawaii International Conference on System
Sciences, Vol.5, USA, (1998) 28-35

13. Calvanese, D., et al.. A Framework for ontology Integration. In I1.Cruz, S.Decker,
J.Euzenat, and D.McGuinness, (eds.), The Emerging Semantic Web _ Selected Papers
from the First Semantic Web Working Symposium, (2002) 201-214

14. W3C (World Wide Web Consortium).: Resource Description Framework (RDF) Model
and Syntax Specification. (1999) http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

15. W3C (World Wide Web Consortium).: Resource Description Framework (RDF) Schema
Specification 1.0. (2002) http://www.w3.0org/TR/2000/CR-rdf-schema-20000327/

16. Hewlett-Packard Semantic Web Lab.: Jena Semantic Web Framework. (2004)
http://www.hpl.hp.com/semweb/

A Formal Framework for Ontology Integration Based on a Default Extension to DDL 169

17.

18.
19.
20.

N
\S}

23.

24.

HP Semantic Web Lab.: RDQL-RDF Data Query Language. (2004)
http://www.hpl.hp.com/semweb/rdql.htm

Hayes, P., et al.: RDF Semantics. (2004) http://www.w3.org/TR/rdf-mt/

Guha, R.V.: RDFDB: An RDF Database. (2004) http://www.guha.com/rdfdb/
McGuinness, D.L., et al.: An environment for merging and testing large ontologies. In:
Cohn, A.G., Giunchiglia, F., and Selman, B. (eds.): In KR2000: Principles of Knowledge
Representation and Reasoning. San Francisco, (2000) 483—493

. Maedche, A., et al.: Managing multiple and distributed ontologies on the Semantic Web.

In The VLDB Journal-Digital Object Identifier (DOI). Vol.12. (2003) 286-302

. Davies, J., Duke, A., Stonkus, A.: OntoShare: Using Ontologies for Knowledge Sharing.

In Proceedings of WWW’02 International Workshop on the Semantic Web. Hawaii.
(2002)

Huynh, D., Karger, D., Quan, D.: Haystack: A Platform for Creating, Organizing and
Visualizing Information Using RDF. In Proceedings of WWW’02 International Workshop
on the Semantic Web, Hawaii, (2002)

Nejdl, W., et al.: EDUTELLA: Searching and Annotating Resources within an RDF-based
P2P Network. In Proceedings of WWW’02 International Workshop on the Semantic Web,
Hawaii, (2002)

A Predicative Semantic Model for
Integrating UML Models

Jing Yang!2, Quan Long!3, Zhiming Liu®*, and Xiaoshan Li*

! International Institute for Software Technology, The United Nations University, Macau
{vj, longguan, lzm}@iist.unu.edu
2 Department of Computer Science, Guizhou University, Guiyang, China 550025
3 LMAM, Department of Informatics, School of Mathematical Sciences,
Peking University, Beijing, China 100871
4 Faculty of Science and Technology, University of Macau, Macau, SAR, China
xsl@umac.mo

Abstract. This paper presents a predicative semantic model for integrating mod-
els from UML class diagrams and sequence diagrams. The integrated model is
used for dealing with consistency problems of UML class diagrams and sequence
diagrams. We also define the notion of consistent refinement of these integrated
models.

Keywords: UML, Formal semantics, Refinement, Model integration.

1 Introduction

In a UML-based development process, such as the RUP [26, 14], several kinds of UML
models are used to represent and analysis the artifacts created in a certain phase of the
system development, which reflect the multiple views of UML:

— Static view: class diagram for static analysis.

Interactive view: sequence diagrams and collaboration diagrams for interactions
between objects.

Behavioral view: state machines for dynamic behavioral specification and validation.
Functional view: OCL [27] specifications for functionalities of objects.

Under the multiple views of UML, the developers can decompose a software design
into smaller parts of manageable scales. However, several challenging issues inevitably
arise from such a multi-view approach [24]:

— Consistency: the models of various views need to be syntactically and semantically
compatible with each other (i.e. horizontal consistency) [15,9, 1].

— Transformation and evolution: a model must be semantically consistent with its
refinement (i.e. vertical consistency) [9, 1].

— Traceability: a change in the model of a particular view leads to corresponding
consistent changes in the models of other views.

— Integration: models of different views need to be seamlessly integrated before soft-
ware production.

* On leave from the Department of Computer Science, the University of Leicester, UK.

Z. Liu and K. Araki (Eds.): ICTAC 2004, LNCS 3407, pp. 170-186, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

A Predicative Semantic Model for Integrating UML Models 171

Consistency checking and formal analysis of UML models have been widely stud-
ied in recent years [6,4,9,25,1]. A formal semantic model is needed for precise and
intensive treatment of the problems. The informal semantics of UML is deliberately
left flexible and extendable in order to allow UML to be used for different purposes,
such as for requirement analysis, refinement of designs, and for code generation and
testing.

The majority of the existing works on formal support to UML-based development,
e.g. [7,2,6,5,10,25], focus on the formalization of individual diagrams and only treat
the consistency of the models of one or two views. Another phenomenon in research on
formal use of UML is that different communities intend to emphasize different notations
and use the full or even extended power of, say sequence diagrams or state machines. This
would lose the advantages of the multiple-view modelling. It also leads to the increase
in the complexity of a certain kind of models and the reduction of the role that the other
kinds of UML models can play. To our knowledge, there is little work on consistent
refinement of complete UML models of systems. A complete model of a system here
means a family of models for the different views of the system.

This paper is towards the development of a semantic model of UML. The primary
use of this model is for model integration, refinement and code generation [23]. The
integration is based on the Relational Calculus of Object Systems (rCOS) defined in
[12] that is designed for object-oriented system development in general.! The refine-
ment calculus for rCOS [11, 12] will be used to define consistent refinement of UML
models. The refinement process will preserve the consistency and the correctness of
the system. The proposed techniques are also intended to support model-driven de-
velopment [24] for executable UML models. As a starting work towards UML model
integration and code generation, in this paper we only consider sequential software sys-
tems for which the UML class diagrams and sequence diagrams are powerful enough.
The future work will extend this approach to deal with concurrent systems for which
we need the other UML models, i.e. component diagrams, activity diagrams and state-
charts.

The rest of the paper is organized as follows. Section 2 describes the theoretical basics
of programming and presents an overview of rCOS . Section 2.2 provides formalization
of UML diagrams and system models using rCOS semantics with the definition of
model consistency. We show how a model is refined consistently in Section 4. Finally,
concluding remarks are given in Section 5.

2 The Theoretical Basics

2.1 Unifying Theories of Programming

Our work is based on Hoare and He’s Unifying Theories of Programming [13], in which
a program or a program command is identified as a design, which is represented by a
pair («, P), where

! In early publications, such as [12], the calculus for object-oriented design was named as OOL.
I'COS is produced by LaTex command {\large r}\textsc{COS}.

172 J. Yang et al.

— «a denotes the set of variables of the program, called the alphabet of the design.
— P, called the contract of the design, is a predicate of the form
n def / /
p(z) b R(z,z') = (ok Ap(z)) = (k' A R(z,z"))
where

e x and 2’ stand for the initial and final values of program variables z in «,

e predicate p, called the precondition of the program, characterizes the initial
states in which the activation of the program will lead its execution to termina-
tion,

e predicate R, called the post-condition of the program, relates the initial states
of the program to its final states, and

e we describe the termination behavior of a program by the Boolean variables ok
and ok’, where the former is true if the program is properly activated and the
latter becomes true if the execution of the program terminates successfully.

Please see the details in [13].

2.2 Our Relational Calculus of Object Systems

rCOS [12] is an object-oriented language with a rich variety of features including sub-
types, reference types, visibility, inheritance, dynamic binding, polymorphism and lo-
cal variable nested declarations. The language is designed for reasoning about object-
oriented software at different levels of abstraction including specifications, designs and
programs. The syntax of rCOS includes object-oriented systems, class declarations,
commands and expressions. The main part of the syntax is very similar to Java. Further-
more I'COS is equipped with an observation-oriented semantics which is based on UTP
[13]. Due to the page limit, we neglect the content in this paper. Please see the details
in [12].

3 A Formal Syntax and Semantics of UML Models

In this section, firstly we will give the syntax of the class diagram and sequence dia-
grams. After that we will describe the requirement model and design model in our frame-
work. Finally we will investigate the conditions on the consistent issues and present the
rCOS semantics of a consistent model.

3.1 Syntax of Class Diagrams

A class diagram I" (see Fig.1 and 5) identifies the following information.

1. The first part provides the static information on classes and their inheritance rela-
tionships:
— CN: the finite set of classes has always been identified.
— super: this is the direct generalization relation over the set CN.

A Predicative Semantic Model for Integrating UML Models 173

2. The second part describes the structures of classes. For each C € CN, we use
attr(C) to denote the set

{<a: Ty >, <am: Ty >}

of primitive attributes of C, where T; stands for the type of attribute a; of class C.
3. The third part provides the information about associations among classes: the finite
set in which elements are of the forms:

< Cy, mq, Ass, ma, Co > | (Cq, mq, Ass, ma, Cs)

The first notation represents a direct association Ass from C; to Cs. The second
notation indicates a undirect association Ass between classes C; and C,. Here m;
and mq are of the forms: 1| 0..1 | | 1..x, indicating multiplicities respectively.
We call undirect association conceptual association, and direct association design

association.
4. For each C € CN, method(C) identifies the set of all methods of class C.

Catalog Store Sale

LogsCompleted date
address : R time
1 1 name isComplete

| | |

Contains

Uses

Has IsPaidBy

L.* L.* 1

ProductSpecification Lineltem Payment

Describes

price 1 *1 quantity amount
upe

Fig. 1. A conceptual class diagram for an automated checking out system in a shop

The main condition of the well-formedness of a class diagram is that the inheritance
relation does not introduce cycles between classes. Also we do not deal with multiple
inheritance in a class diagram. The other issues are mainly naming problems.

In our framework, the class diagram defines the system state space allowed by the
application, and each system state encompasses some objects and all links among these
objects. Therefore, the class diagram plays the role as declarations of classes, types and
variables in a program. A system state is a well-typed state of the variables. We can
therefore easily specify (or translate) a class diagram I” into a declaration section cdecl
in rCOS later.

3.2 Syntax of Sequence Diagrams

A sequence diagram consists of objects and ordered messages that describe how the ob-
jects communicate. An interaction occurs when one object invokes a method of another.

174 J. Yang et al.

We now give the syntactic definition of sequence diagrams. We will allow call back
messages in a sequence diagram (e.g. message “(5)" in Fig.2). The definition covers
most features of UML 2.0 including combined fragments (except for the PAR one) [3],
references to other sequence diagrams and nested sequence diagrams. The object “: B"
in Fig.2 represents a nested sequence diagram.

A sequence diagram SD consists of two parts:

1. A sequence of objects: (obj,, 0bj,, - - - ,0bj,). Each object obj; has the following
structure:

— Each object obj is associated with a type, denoted by type(obj), which is
either a class name C in CN or a sequence diagram SD;.

— For each object obj, the property multiob(obj) equals frue if obj is a multi-
object (e.g. : C in Fig.2), otherwise multiob(obj) is false. Multi-objects rep-
resent one-to-many associations in a class diagram.

— Foreach object obj there is a sequence of time-points (p1, pa, - - -, p,,) Which are
totally ordered and represent the time points when an event occurs during the
lifetime of the object. These points represent the ordering of messages sending
and receiving, the combination fragments and the references to other sequence
diagrams.

We have a function event for each time-point p and event(p) describes what
happens at time-point p. For each time-point p, event(p) can be one of the
elements in the following set

{send, ack, receive, receiveack, option, loop, endfrag, ref, endref}

2. A set MSG of messages: each message msg is one of the forms (src, m, 1gt), (m, 1gt)
or (src, m) where

— src, denoted by source(msg), is a pair (obj, p) of an object and a time-point, and
source(msg) = (obj, p) means that object obj is the source of the message that
occurs at time-point p, and we use (0bj, p).object to denote obj and (obj, p).point
to denote p.

— 1gt is a pair (obj, p) of an object and a time-point, represented by rarget(msg)
and

— m, denoted by method(msg), is any command in rCOS . Therefore, m can
be a method call of the form (ass, method()) (sometimes it is simply written
as ass.m()), which represents that method() of the target object is called by
the source object via the association ass. Also, m can be a command, such
as a design, an assignment, or any composite command of other kinds, but we
require in this case the source object and the target object must be the same. This
represents the execution of an internal action of the object. Finally, a message
can be a return signal and in this case m is denoted as return.

— A message (m, tgt) represents an incoming message to the sequence diagram
and in this case m must be a method call. A message (src, m) shows an outgoing
message from the sequence diagram and in this case m must be return.

We do not show return in the diagram.

Fig.2 is an example of a sequence diagram in which

A Predicative Semantic Model for Integrating UML Models 175

Fig. 2. An example sequence diagram

— event(p) = send shows a message is sent from this position of the current object.
Similarly, receive means a message is reached at this position of the object. The
message between a send point and a receive point will be drawn in a solid line with
arrow to the receive point in the graph. For example, the message “(1)" and “(4)" in
Fig.2.

— ack and receiveack points are used to denote a return message which are drawn
in dotted line with open arrowhead back to the lifeline of the source object. For
example, the message “(2)" and “(7)" in Fig.2.

— If an event of a point is option or loop, it will be equipped with another function,

guard, which maps the point to its guard that is Boolean expression of the source
object’s attributes.
The option combination fragment is used to represent a sequence that will be ex-
ecuted if the guard condition holds. An option combination fragment is used to
model a “conditional choice” statement. The loop combination fragment is used to
represent a repeated sequence. The body of the fragment will continue to be exe-
cuted repeatedly until the guard condition becomes false. The event(p) = endfrag
represents the end of a combination fragment.

— event(p) is ref means that from point p the current sequence diagram begins to call
another sequence diagram and endref represents the end of the call. A ref point will
be equipped with a name representing the sequence diagram it calls.

3.3 Well-Formedness of Sequence Diagrams

We need to ensure that a sequence diagram is well-formed. The well-formedness is
concerned with the following conditions:

— For each message msg in the sequence diagram, the event of the source point of
msg must be a send or ack and the event of target point of msg must be a receive or
receiveack, respectively.

176 J. Yang et al.

— If a point p; represents the beginning of combined fragments, i.e. loop or option,
there must be one and exactly one corresponding endfrag point p, on the same object
such that po is later than p;.

— For a point p; with event(p;) = ref, there must be point ps on the same object such
that event(py) = endref and ps is later than p; . The well-formedness of the referred
sub-sequence diagram is checked recursively.

— If obj is a nested sequence diagram, then for every matched pair of sending and re-
turning messages (src, m, (obj, p1)) and ((obj, p2), m’, 1gt), there is a corresponding
matched pair of messages (m, tgt;) and (scri,m’) of source-less (incoming) mes-
sage and target-less (outgoing) message in the sub-sequence diagram type(oby).
The order of these message is preserved in the sub-sequence diagram and the sub-
sequence has to be well-formed.

The well-formedness of a sequence diagram has also to ensure the sequence diagram
indeed represents a scenario of method calls. This means that 1). order of the message
sending and receiving must be consistent, and for all messages from the same object,
the earlier it is sent the earlier it is received by the target object; 2). if a message msg
invokes message msg;, then msg,; must return before msg does.

For a sequence diagram, let action be the set of all its messages, combined fragments,
and referred sub-sequence diagrams. For actions actiong and action; from the same
object, we use the notation

returned(actiony, actiony)

representing that the execution of actiong is finished before the execution of action; .

In particular, if actiong is a message with a method call meth, then its corresponding

return message must be received by the object before the the execution of action; .
Using the above notations, we give the following definitions for future use.

Definition 1 (Directly invoke). Let msg, be a message in a sequence diagram SD.

— message. Message msg, directly invokes msg,, denoted by Invoke(msg,, msg,) if
target(msg,).object = source(msg,).object and target(msg,).point is the latest
point in the set

{plp € target(msg,).Points \ p < source(msg,).point \ —returned(msg,, msg,)}

where farget(msg,).Points is the time-points of the target object of msg,, in SD.
— fragment. Let freg be a combined fragment and (obj, p) is the beginning point

for freg. We say msg, directly invokes freg, denoted by Invoke (msg,freg), if

target(msg,).object = obj and target(msg,).point is the latest point in the set

{t|t € target(msg,).Points ANt < p A\ —returned(msg,, freg) }

— ref. Let SD; be another sequence diagram and rf = (0bj, p) is the ref point where
SD; is called. We say msg,, directly invokes rf, denoted by Invoke(msg,, rf), if
target(msg,).object = rf.object and target(msg,).point is the latest point in the set

{plp € target(msg,).Points A p < rf.point \ —returned(msg,, 1f) }

A Predicative Semantic Model for Integrating UML Models 177

Definition 2 (Directly follow). Letmsg,,msg, be two messages, source(msg,).object =
source(msg,).object. We say msg, directly follows msg, denoted as Follow(msg, msg,),
if source(msg,).point is the smallest element of the set

{plp € source(msg,).Points A p > source(msg).point A returned(msg, msg,)}

The directly follow relationship between other actions (fragments or the references
to other sequence diagrams) is similar to the message case in Definition 2.

3.4 Requirement Models in UML

As in [16, 19], the development cycle of a software system starts with the construction
of a requirement model RM. In UML, requirements are captured and described by a con-
ceptual class diagram and some use cases. Conceptual class diagram is a class diagram
in which every class has no method, and the associations are conceptual (i.e. undirect).
Informally, such requirement model consists of a number of UML models, including a
conceptual class diagram I',., ause-case diagram U,., a family A,. of use-case (or system)
sequence diagrams (one for each use case), and some activity diagrams if concurrency
is concerned. In this paper, we do not consider concurrency?. We can thus denote the
requirement model by a triple RM = (I, U,, A,.). Each use case U is modelled as a
use-case controller class U-Controller (see Fig. 3).

Class U-Controller {

private T z;

method opi (< Th 21 >, < Thay1 >, <>){ar };
Opn(< Tnl In >7 < Tn2 Yn >, <>){Cn}

}

where the attributes z may include state control variables which are private to the con-
troller class. For each method of the form op; (< Tj1 ©; >, < T; y; >, <>){c;}, z;isa
list of value parameters, y; a list of result parameters, and c¢; is a command.

This formalization implies that all attributes and associations in other classes are
directly visible to all the use-case controller classes. The use-case diagram also provides
the information about the design associations among the use-case controller classes.
If use case U; includes use case Us in the use-case diagram, then there is an associa-
tion from Uy-Controller to Us-Controller. Use-case sequence diagrams A, (see Fig.4),
describe the the interaction between the actors and the system. Following the facade
controller pattern in [16], for the operations in a use-case sequence diagram we declare
the signatures in the corresponding use-case controller class. In a use-case sequence
diagram, the receiver of each message is an object of the use-case controller class, and
the sender is either an actor or an object of another use-case controller class.

Therefore, for each use case U, U-Controller declares the operations that appear in
the use-case sequence diagram and the body of each method in U-Controller is defined
from the system sequence diagram of the U-Controller class. Following the idea above,

% It is often not recommended to consider concurrency at this early stage in an iterative develop-
ment process.

178 J. Yang et al.

Buyltems -Controller %
Buyltems -Controll

Bool new=true Cashier
Bool isComplete =false |
Quantity balance=0
Quantity total=0

enterltem ()
endSale ()

enterltem (upc ,quantity)

I
I
I
I

I
I

I
I

I
I

I
| I
i

I
! |
1 endSale () |
1

I
I

I
I

I
I

I
.]
i

I
I

I
I

makePayment () makePayment (amount)
Fig.3. The controller class Fig. 4. The use-case sequence diagram for use
for Buyltems case Buyltems

given a UML requirement model RM = (I, U,., A,.), the normal form specification in
1rCOS for RM is:

d
[RM] :efcdeclsF,,,; U;-Controller; . . . ; Up-Controller

U;,1=1,...,n, are the use cases of RM.
We will give the details of the meaning of [-] later.

3.5 Design Models in UML

In UML, a design model DM should consist of a design class diagram I'; (see Fig.5),
a family Ay of object interaction or sequence diagrams, at least one for each method in
U-Controller. We can thus define a design model as an ordered couple DM = (I'y, Ay).

Object sequence diagrams A, operate on the design class diagram I';. In general
sequence diagrams do not contain many details for describing the functionality of the
system. In an informal UML-based development, other means, such as textual descrip-
tion, is used to describe the functionality of the system. In our formal framework, we
provide formal specification of the body of the methods that will ensure the behavior
required by the sequence diagrams.

Therefore, a design model DM is also specified as the normal form specification in
rCoS:

d
[DM] :efcdecll; -+~ cdecl,

In next subsection we will give the details of the definition of [-].

3.6 rCOS Semantics for UML Models

In this subsection we will give the TCOS semantics for a UML model. A UML model is
an ordered couple (I, A). If it is a requirement model, then I = I, UU,., A = A,; if
it is a design model, then I' = 'y, A = A,.

The semantics of a UML model (I", A}, is a sequence of class declarations in TCOS .

A Predicative Semantic Model for Integrating UML Models 179

Store ProductCatalog ProductSpecification

Uses description: Text
Has | price: Amount

address: Address

name: Text 1 1 L | upc: UPC
— 1 1.
1 addsale() find()
specification()
1 loadProdSpects()
1 ItemsContainer
u items:Lineltem
ouses
ILooks] "
ooksin Contains 1 2440
1
1 1 1 e Consists
Buyltems-Controller Sale Lineltem
quantity:Quantity
Records D
Qate. _ale subtotal()
1 1| time: Time
inC lete: Bool

endSale() inComplete: Boo »

enterltem() becomeComplete() sPaidBy Payment
makePayment() makeLineltem() | 1

makePayment() amount:Amount
LogsCompleted * | total()

Fig. 5. A design class diagram for use case Buyltems

Specification

:Buyltems-Controller

enterItem: :Sale Q(‘wntainer :Lineltem
(upc.qty) i !

|

1 new ! !

!
!
1
1
!
1
1
!
1
1
-

: ' | ! find(upe)!
| 1
S K :
madkeLina : : : :
Item() !
! 1 :11=new() : : :
1 ' [M | 1
[} |<7———|——7777,,J 1 |
\ ' add(li) : : !
! 1
Lo L :
1 ' 1 : : :
: ! 1 \
! 1 : | !

Fig. 6. Sequence diagram for enterltem()

Before giving the semantics from a class diagram and a set of sequence diagrams,
we need to ensure that these diagrams are consistent.

For a well-formed class diagram and well-formed sequence diagrams, we give the
following items as the definition of consistency. A violation of any of them will be
considered as an inconsistency.

180 J. Yang et al.

— Association. For each msg € MSG, there must be a corresponding association in
the class diagram. Notice, this is static as it cannot ensure that the object which is
sending the message in a particular state during the execution is currently associated
with the target object of the message.

— Class Name. For the above-mentioned association, each of the two related classes
in the class diagram must have the same name with the object related to msg in the
sequence diagram.

— Method. Each method signature in the sequence diagram must be the same as the
one in the class diagram. Furthermore, if m/() is the method of a message sent from
: Cto : D in the sequence diagram, then m() must be a method of class D in the
class diagram.

— Attribute. The variables used in the guard of a message should be directly accessible
by the source object.

— Multiplicity. If an association in class diagram is one-to-many, the corresponding
object in the sequence diagram must be a multi-object. Notice that multiplicity
and other general class invariants should be ensured by the design of the sequence
diagram, not by the consistency checking.

Now we give the semantics of consistent model (I, A), denoted by [(I", A)], as follows:

— Class. A class C in I is declared as a skeleton of class declaration cdecl in [{I', A)]
with their attributes and method signatures. All attributes are declared to be public.

— Association. For association role name a from C; to C; in I', if the multiplicity
of C; is 0..1 or 1, cdecl; for C; has an attribute a with the type C;; and if the
multiplicity of C; is 1..x or *, cdecl; for C; has an attribute a of type C; and an
attribute a-set of type of the powerset PC;.

— Constraints: Constraints, such as invariants, multiplicity and aggregation, are spec-
ified in terms of pre-post conditions of methods in rCOS .

— Reference attributes: For a sequence diagram SD € A, a method of an object of
type C; is called by an object of type C, there will be an attribute with the reference
type of Cj in the class declaration for Cs.

— Method bodies: The method bodies in each class will be determined by the scenarios
of method call in sequence diagrams A. We will consider the following two items:

e Directly invoked actions: For a message either msg = (src, m,1gt) € A or
msg = (m,tgt) € A, if m is a method signature, SD is a particular sequence
diagram in which m is called, then the following sequence of actions, denoted
by bodygp., is a path of the execution of an invocation of m;

actiony; actions; - - - actiony,
where Invoke(msg,actiony) and Follow(action;, action; 1) foreachi : 0 < ¢ <
n, and no more actions directly follow action,, .

e Method appears in several sequence diagrams. If a method m appears in several

sequence diagrams, say, SD1,SDs, - --,SD,, € A and

bodygsp,,bodysp,. - -+, bodysp,,
are the corresponding method bodies in these sequence diagrams. Then the body
of m is the non-determined choice of them:

m(){l_lzlzlbOdySDi}

A Predicative Semantic Model for Integrating UML Models 181

The overall well-formedness of the class diagram and the sequence diagrams and their
consistency are ensured by the well-formedness of the rCOS specification [12] obtained
from the above definition. This translation can be automated and we have designed an
algorithm in [23] for this purpose.

Example 1. The model composed of the class diagramin Fig.5 and the sequence diagram
in Fig.6 has the semantics in rCOS as follows.

Class Store {
public Address address, Text name, ProductCatalog prod,

PSale sli, Sale s, Buyltems-Controller buyctr;
method addSale()

}

Class ProductCatalog {
public PProductSpeci fication proli, ProductSpecification pro;
method specification(U PC upc, ProductSpeci fication spec){
pro. find(upc)

loadProdSpects()
}

Class ProductSpecification {
public Text description, Quantity price, U PC upc, PLineltem li, Lineitem [;
method find(UPC upc)

}

Class Buyltems — Controller {
private ProductCatalog p, Sale sale;
method endsale();
enterItem(U PC upc, Quantity qty){
sale := Sale.new();
var spec := p.speci fication(upc);
sale.makeLineltem(spec, qty)

}

makePayment(Amount amount, Amount balance)

}

Class Sale {
public Date date, T'ime time, Bool inComplete, [temContainer icont,
PLineltem lset, Lineltem lineltem, Payment p;
method new(){
lineitem := Lineltem.new()
}
makeLineltem(ProductSpecification spec, Amount total){
var [i := lineltem.new();
icont.add(li)
}
makePayment(Amount amount, Amount balance);
becomeComplete();
total()

182 J. Yang et al.

Class Lineltem {
public Quantity quantity;
method subtotal(Quantity quantity, Quantity price, Amount subtotal)

}

Class Payment {
public Amount amount;
method

}

Class ItemContainer {
public PLineitem items, Lineitem item;
method add(Lineltem item,PLineltme items)

}

4 Model Refinement

Having given the definition of the semantics [-] for UML models in the above section,
now we can define the refinement and correct relationship between UML models.
Firstly, let us recall the following two refinement definitions in rCOS [12].

Definition 3 (Refinement between object systems). Let S; and S5 be object programs
which the same set of global variables glb. S is a refinement of S», denoted by S7 Ty
So, if the behavior of S is more predictable and controllable than that of Ss.

S1 Jeys Sg = Vsc 2, ok, ok" - (S1 = S3) where x are the variables in glb.

This means the external behavior of S, i.e.the pair of pre- and post-global states, is a
subset of that of Ss.

Definition 4 (Refinement between declaration sections). Let cdecls; and cdeclss be
two declaration sections. cdecls; is a refinement of cdecls,, denoted by cdecls; Jeigss
cdeclss, if the former can replace the latter in any object system:

cdeclsy Dypgss cdeclsy = “lyp. (cdecls; ® P gy cdeclsy @ P)

where P stands for a main method (glb, ¢).
Intuitively, it states that cdecls; supports at least the same set of service as cdeclss.
Now we provide the definitions of model refinement and correctness.

Definition 5 (Model refinement). Let (17, A1) and (I, Ay) be two UML models.
(I'y, Ag) is refined by (I, A1), denoted by (I't, A1) Timoder (2, As)if the former’s
semantics refines the latter’s:

(I't, A1) Dimodet <F2742> = [[<F17A1>]] Tetass [(I2, A2)]

Definition 6 (Correct Design Model). A design model DM is correct with respect to
the requirement model RM, denoted by Correct(DM, RM) if it is a model refinement
of RM:

def

Correct(DM, RM) = [DM] Jioder [RM]

A Predicative Semantic Model for Integrating UML Models 183

As before-mentioned, the normal form specifications in TCOS for requirement model

and design model only concern the class declaration in an object program and its main
method corresponds to the application program using services which are provided by the
methods of the classes in the design model. Thus, in this article, we are only interested
in refinement relation between declaration sections. We allow the following refinement
rules to a declaration section within the UML framework.

1.

2.

11.

12.

Adding a class declaration: this corresponds to adding a class into the class diagram,
the methods of the new class into sequence diagrams.

Introducing a fresh attribute to a class: this corresponds to adding a fresh attribute of
primitive type to the class or adding a design association from the class to another.
Introducing inheritance. If none of the attribute of class V is appeared in class M
or any superclass of M, we can make M a direct superclass of N.

Moving some attributes from a class to its direct superclass: if all subclasses of class
N have a common attribute, the common attribute can be moved to class N from
all of its subclasses.

Data encapsulation: Suppose class M has a public attribute, and no method of
other classes accesses this attribute except those of subclasses of M, we change the
visibility of this attribute from public to protected. Suppose class M has a protected
attribute, and no method of its subclasses accesses this attribute, we change the
visibility of this attribute from protected to private.

Adding afresh method into a class: This approach allows us to add a method signature
into the class in the class diagram, and add a sequence diagram.

. Refining the body command of a method m(){c} in a declared class. This may lead

to the replacement of the subsequence diagrams involving with m().

Moving a method from a class to its direct superclass if the method body does not
access any protected or private attribute of the class.

Copying a method from a class to its direct subclass.

. Delegating some tasks of a class to its associated classes. If a method of a class

contains a sub-command that can be realized by a method of another class, we can
replace that sub-command with a method invocation to the latter class. Notice the
sequence diagrams involved the method should be refined too.

Removing unused attributes: for a private attribute, it can be dropped if it does not
appear in any method of the class; for a protected attribute, it can be dropped if it
does not appear in any method of the class and its subclasses; for a public attribute,
it can be dropped if it does not appear in any method of any class.

Removing unused methods: if a method is not called by other method or the main
method in the object program, the method can be removed.

Example 2. The conceptual class diagram in Fig.1, the system sequence diagram in
Fig.4 together with the use-case diagram Buyltems-Controller in Fig.3 form a require-
ment model. We can apply the refinement calculus to this model for the design of the
method enterltem() (similarly to methods endSale and makePayment) according to the
design class diagram in Fig.5, then achieve the object sequence diagram in Fig.6 step
by step:

184 J. Yang et al.

1. Buyltems-Controller delegates the responsibility of creating a new sale to Sale,

2. Buyltems-Controller delegates the job of finding the specification using upc match-
ing to Catalog, which delegates the job further to the multi-object with type of
ProductSpecification,

3. Buyltems-Controller delegates the task of making a line item to Sale.

5 Conclusions and Future Works

This work is towards a formal foundation for component and object systems development
based on the formal object-oriented specification notation TCOS and its refinement cal-
culusin[12, 11]. InrCOS , normal form specification of an object system is a sequence of
class declarations and a main method. Each class declaration consists of some attributes,
method signatures and method-body definitions, which has corresponding notations in
UML. In this paper, we focused on the formalization of UML class diagrams and se-
quence diagrams in TCOS . With this formalization, we can integrate these two kinds
of UML models and carry out consistent refinement of these diagrams. The consistency
conditions between these two kinds UML models are treated as the well-formedness
conditions of their corresponding integrated specification in rCOS .

Compared to most exitsing work, e.g. [6,4,9, 25, 1], our approach is also transfor-
mational. However, we also provide integration of UML models. Furthermore, because
different sections in arCOS specification clearly corresponding different UML diagrams,
the formal specification of the integrated model can be transformed back to UML dia-
grams, i.e. the transformation is reversible. This is very important, as this allows us to
obtain refined UML diagrams from a refined rCOS specification. Thus, this approach
also supports re-engineering.

In our formalization, the horizontal consistency is mainly static: the syntactic consis-
tency can be checked statically using an algorithm, while the invariants can be verified
with model-checking tools. Vertical consistency (of refinement) is mainly semantic. This
has fully justified our use of predicates in meeting the challenge of UML formalization
[7]. Fundamental techniques of program and data refinement can be applied to UML
transformation. This also supports UML-based model-driven development [8, 24].

Our future work will also include the integration of activity diagrams (for con-
currency) in the framework and the extension of rCOS with the notation of compo-
nents to support component diagrams in UML2.0. Tools have also been developed using
this framework [17].

In our related works, general transition systems are introduced to provide an inte-
grated model of conceptual class diagrams and use cases (without the treatment of se-
quence diagrams, state machines and use-case diagrams) [22]. A version of rCOS without
reference types is presented in [11] and used in [21] for the specification of the integrated
model of [22]. Article [18] uses rCOS for the specification of design class diagram and
sequence diagrams, but without rules for model transformation. In [20], we show how
rCOS is used a the foundation for a rigorous approach to object-oriented in general, and
to UML-Base development in particular.

A Predicative Semantic Model for Integrating UML Models 185

Acknowledgement. We would like show our appreciation to Yifeng Chen and Yuxin
Cheng for their comments on earlier versions of the paper.

References

1.

2.

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

R. Back, A. Mikhajlova, and J. von Wright. Class refinement as semantics of correct object
substitutability. Formal Aspects of Computing, 2:18-40, 2000.

R.J.R. Back, L. Petre, and L.P. Paltor. Formalizing UML use cases in the refinement calculus.
In Proc. UML’99. Springer-Verlag, 1999.

. Donald Bell. UML’s sequence diagram. Technical Report 3101, IBM, 2004.
. S.Tyszberowicz B.Litvak and A.Yehudai. Behavioral consistency validation of uml diagrams.

In Ist IEEE International Conference on Software Engineering and Formal Methods(SEFM),
pages 118-125. IEEE Computer Society, 2003.

. A. Egyed. Scalable consistency checking between diagrams: The Viewintegra approach. In

Proc. 16th IEEE ASE, San Diego, USA, 2001.

. G. Engels, et al. A methodology for specifying and analyzing consistency of object-oriented

behavioral models. In The Proc. FSE-10, Austria, 2001.

. A. Evans, et al. Developing the UML as a formal modelling notation. In Proc. UML’9S,

LNCS 1618. Springer-Verlag, 1998.

. M. Fowler. What is the point of UML. In P. Srevens, J. Whittle, and G. Booch, editors,

<<UML>> 2003 -The Unified Modeling Language, 6th International Conference, LNCS
2863, San Fancisco, CA, USA, 2003. Springer.

. J.M.Kuester G.Engels and L.Groenewegen. Consistent interaction of software components.

In IDPT2002, 2002.

D. Harel and B. Rumpe. Modeling languages: Syntax, semantics and all that stuff - part I:
The basic stuff. Technical Report MCS00-16, The Weizmann Institute of Science, Israel,
September 2000.

J. He, Z. Liu, and X. Li. Towards a refinement calculus for object-oriented systems (invited
talk). In Proc. ICCI02, Alberta, Canada. IEEE Computer Society, 2002.

J. He, Z. Liu, X. Li, and S. Qin. A relational model for object-oriented designs. In Pro.
APLAS’2004, LNCS, Taiwan, 2004. Springer.

C.A.R. Hoare and J. He. Unifying Theories of Programming. Prentice-Hall, 1998.

P. Kruchten. The Rational Unified Process — An Introduction (2nd Edition). Addison-Wesly,
2000.

L. Kuzniarz, G. Reggio, J.L. Sourruille, and Z. Huzar. Consistency problems in uml-based
software development. In Consistency Problems in UML-based Software Development: Work-
shop Materials, 2002.

C. Larman. Applying UML and Patterns. Prentice-Hall International, 2001.

X. Li, Z. Liu, J. He, and Q. Long. Generating a prototype from a UML model of system
requirements. In International Conference on Distributed Computing and Internet Technolo-
gies, (ICDCIT’04), LNCS 3347, Bhubaneswar, India, 1999. Springer.

J. Liu, Z. Liu, J. He, and X. Li. Linking UML models of design and requirement. In Pro.
ASWEC 2004, Melbourne, Australia, 2004. IEEE Computer Sciety.

Z. Liu. Object-oriented software development in UML. Technical Report UNU/IIST Report
No. 259, UNU/IIST, P.O. Box 3058, Macau, SAR, P.R. China, July 2002.

Z. Liu, J. He, and X. Li. A rigorous approach to UML-base development. In A. Mota
and A. Moura, editors, Brazilian symposuim on Formal Formal Methods (SBMFO04),, Recife,
Brazil, 2004. Editora Universitaria UFPE.

186

21.

22.

23.

24.

25.

26.

217.

J. Yang et al.

Z. Liu, J. He, X. Li, and Y. Chen. A relational model for formal requirements analysis in
UML. In J.S. Dong and J. Woodcock, editors, Formal Methods and Software Engineering,
ICFEMO03, LNCS 2885, pages 641-664. Springer, 2003.

Z. Liu, X. Li, and J. He. Using transition systems to unify uml models. Technical report,
Dept. of Maths and Computer Science, the University of Leicester, England., May 2002.

Q. Long, Z. Liu, X. Li, and J. He. Consistent code generation from UML models. In Pro.
of Australian Software Engineering Conference (ASWEC’2005), Brisbane, Australia, 2005.
IEEE Computer Sciety.

S.J. Mellor and M.J. Balcer. Executable UML: a foundation for model-driven architecture.
Addison-Wesley, 2002.

G. Reggio, et al. Towards a rigorous semantics of UML supporting its multiview approach.
In H. Hussmann, editor, Proc. FASE 2001, LNCS 2029. Springer, 2001.

J.Rumbaugh, I. Jacobson, and G. Booch. The Unified Modelling Language Reference Manual.
Addison-Wesley, 1999.

J. Warmer and A. Kleppe. The Object Constraint Language: precise modeling with UML.
Addison-Wesley, 1999.

An Automatic Mapping from Statecharts to Verilog

Viet-Anh Vu Tran', Shengchao Qin?3, and Wei Ngan Chin?-

! Vietsoftware Company, Hanoi, Vietnam
tran.vu.viet.anh@vietsoftware.com
2 Singapore-MIT Alliance
3 National University of Singapore
{ginsc, chinwn}@comp.nus.edu.sg

Abstract. Statecharts is a visual formalism suitable for high-level system spec-
ification, while Verilog is a hardware description language that can be used for
both behavioural and structural specification of (hardware) systems. This paper
implements a semantics-preserving mapping from Graphical Statecharts to Ver-
ilog programs, which, to the best of our knowledge, is the first algorithm to bridge
the gap between Statecharts and Verilog, and can be embedded into the hard-
ware/software co-specification process [19] as a front-end.

1 Introduction

Statecharts [6, 7] is a visual formalism catering for high-level behaviourial specification
of embedded systems. Its hierarchical structure, orthogonal and broadcast communica-
tion features make the system specification compact and intuitive to understand. It is
a very good candidate for executable specification in system design [8]. Moreover, the
semantics of Statecharts has been extensively investigated [9, 12, 14, 15, 13] in recent
years. Some works also attempt to provide tools for formal verification of Statecharts
specifications [4], [14], [20].

Verilog [22], [17] is a widely used language for hardware description in industry [2],
[5], [11], [10] and also in research. Verilog is used to model the structure and behaviour
of digital systems ranging from simple hardware building block to complete systems.
Verilog semantics is based on the scheduling of events and the propagation of changes.
One early attempt to investigate the semantics of Verilog is the work of Gordon [5] which
explains how top-level modules can be simulated.

A Verilog program (or specification, as it is more frequently referred to) is a descrip-
tion of a device or process rather similar to a computer program written in C or Pascal.
However, Verilog also includes constructs specifically chosen to describe hardware. One
major difference from a language like C is that Verilog allows processes to run in parallel.
This is obviously very desirable if one is to exploit the inherently parallel behaviour of
hardware. In this work, we will make use of abstract Verilog [10], [18], that is described
in the next chapter.

On the other hand, Verilog is a hardware description language that has been widely
used by hardware designers. Its rich features make it a good candidate for low—level
system specifications. The formal semantics of Verilog was first given by Gordon [5] in
terms of simulation cycles. It has been thoroughly investigated afterwards [25], [24].

Z. Liu and K. Araki (Eds.): ICTAC 2004, LNCS 3407, pp. 187-203, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

188 V.-A. Vu Tran, S. Qin, and W.N. Chin

As the advantages of Statecharts and Verilog in embedded system design process
are complementary to each other, a natural question that can be raised is, can we make
use of both of them in system design? That is, can we use Statecharts as the high level
specification, while use Verilog as the low level description? This question has motivated
our work and this paper shall provide a positive answer by bridging the gap between
Statecharts and Verilog. The compilation from Statecharts to Verilog can be embedded
into the hardware/software co-specification process [19]. A mapping algorithm will be
given in the following sections, where the soundness has been given in Qin and Chin [18].

The rest of this paper is organized as follows. Sec 2 gives a brief introduction to
Statecharts and Verilog. Sec 3 presented the formal definition of the mapping function,
followed by its implementation in Sec 4. Sec 5 illustrates our mapping results using two
examples, while Sec 6 concludes the paper.

2 Preliminaries

2.1 Formal Syntax of Statecharts

Statecharts is a specification language derived from finite-state machines. The lan-
guage is rather rich in features including state hierarchy and concurrency. Transitions
can perform nontrivial computations unlike finite-state machines where they contain at
most input/output pairs. In this section we will describe Statecharts presented by David
Harel [6], [7], [9].

Statechart diagrams capture the behaviour of entities capable of dynamic behaviour
by specifying their responses to the event occurrences. Typically, it is used for describing
the behaviour of classes, but statecharts may also describe the behaviour of other model
entities such as use cases, actors, subsystems, operations, or methods.

We use a simple textual representation of Statecharts, while our system can automat-
ically translate a graphical representation to the textual representation. The statecharts
language we adopt has some features that are not present in UML statecharts. For exam-
ple, broadcast communication is supported in our language but not in UML statecharts.

As already mentioned in previous section, Statecharts is extensible by hierarchy,
orthogonality or broadcast communication. In this paper, we use the formal syntax of
statechart from [7] and [18]. The syntax of Statecharts formula is defined as follows
(quoting from [18]):

S 1 a set of names used to denote Statecharts. This is expected to be large enough to
prevent name conflicts.

1. : a set of all abstract events (signals). We also introduce another set II. to denote
the set of negated counterparts of events in 11, ,i.e. II, =4 {€|e € II.}, where @
denotes the negated counterpart of event e, and we assume € = e.

11, : a set of all assignment actions of the form v = exp.

o : Var — Val is the valuation function for variables, where Var is the set of all
variables, Val is the set of all possible values for variables. A snapshot for variables v
is o (D).

T : a set of transitions, which is a subset of S x 2/Ulle » oMUl » B x S,
where B, is the set of boolean expressions.

An Automatic Mapping from Statecharts to Verilog 189

A term-based syntax of statecharts was introduced in [18] and [14], [15]. We re-
introduce it here for the benefit of the reader. The set SC is a set of Statecharts terms that
is constructed by the following inductively defined functions.

Basic:S — SC

Basic(s) =4 |[s]|

0r:S x [SC] x 7 — SC

OI‘(S, [p17 ws PLy ---7pn]7pl’T) —df |[5 . [pl,~-~7pl7~-~7pn]’pl7TH
And: S x 25¢ — sC

And(s, {p1,..,Pn}) =ar |[s : {p1, - P}l

Note that:

—Basic(s) : denotes a basic statechart named s.

— 0r(s,[p1s .-y D1y -y Pul, P1, T) : represents an Or-statechart with a set of sub-states
{p1,...,Pn}, where p; is the default sub-state, p; is the current active sub-state, 7" is
composed of all possible transitions among immediate sub-states of s.

— And(s, {p1, ..., pn}) is an And-statechart named s, which contains a set of orthogonal
(concurrent) sub-states {p1,...,Dn} -

In this paper we use sub-state interchangeable as children of Or-state. Correspond-
ingly, we use children and region of And-state interchangeably. For statecharts that we
adopted in this work, we shall assume that each And-state will have at least two regions.
Furthermore, each region shall be an Ox-state.

We shall take the textual representation of statecharts as input data for our core
mapping program. Our front-end algorithm will translate graphic charts to textual rep-
resentation automatically. As an example, we give below a simple graphical Statechart
and its corresponding textual representation.

PO PO = |[s1: P1, P2 1]
P1 Pl = |[s2: [Pla, Plb], Pla, tl1]|
”:a("“e) P2 = |[S3: [P2a, P2b, P2c], P2a, t2, t3 1|
Pla = |[S4 1]
Plb = |[S5 1]
P2a = |[s6 1|
2 P2b = |[S7 1]
P2a P2c = |[S8 1|
t21b (true)
t3: ¢ (true) tl = < Pla, a , , true, Plb >
(PZb] (ch] t2 = < P2a, b, , true, P2a >
t3 = < P2b, c true, P2c >

Fig. 1. A simple example of a Statechart and its textual representation

2.2 Verilog

Verilog is a hardware description language that has been widely used in industry. Al-
though the Verilog IEEE standard [22] was released around ten years ago, the formal
semantics based on simulation cycles [5] has not been well-investigated until recently,
e.g. [11], [10]. In our work, we shall use a behaviourial subset of Verilog introduced in

190 V.-A. Vu Tran, S. Qin, and W.N. Chin

[10] and [18]. This more abstract version of Verilog can be used to express designs at
various levels of hardware behaviour. Such an abstract design can be gradually refined
into an equivalent counterpart in the Verilog HDL which can provide a closer match to
the underlying architecture of the hardware. This process may be repeated until the de-
sign is at a sufficiently lower level such that the hardware device can be synthesised from
it. There are two main features in abstract Verilog that are not present in Verilog HDL,
namely guarded choice extension and recursion. The translation from general guarded
choices to parallel composition in normal Verilog is achievable, although nontrivial.
The conversion of recursion to iteration is harder but there exists standard conversion
techniques to realise some subsets of them. Furthermore, for bounded recursion, it is
possible to inline the abstract Verilog code so as to remove recursion.

A Verilog program can be a parallel or a sequential process, but only parallel process
may contain sequence processes, not vice-versa. Here are some categories of syntactic
elements:

1. Parallel process
P:=S|P|P
where, S is a sequential process.
2. Sequential process can be formally described as following

S = PC (primitive command) | S;S (sequential composition)
| s < b > S (condition) | b * S (iteration)
| (b&g S)] ... [] (b&g S) (guarded choice) | fiz X o S (recursion)

where, b is boolean condition, and
PC ::= skip | sink | L | — n (output event) | v = ex (assignment)
g ==— n|Q(x =wv) (assignment guard))
| #1 (time delay) | eg (event control)
eg ==nleg&egleg& —eg
n =71 v (valuerising) | | v (value falling) | e (a set of abstract events)

Recall that a Verilog program can only be a parallel process at the top level, a
sequential process cannot contain a parallel process. However, most real systems contain
many parallel processes possibly organised hierarchically. To solve this restriction, we
shall use algebraic laws [10] to expand a parallel process into a sequential one.

Here are some simple code examples:

- (e & (= [) sink) [| (g & (= h) sink)

- puXe(e(fX))
- (a& (—e) sink) || (b& (— f) sink)

3 Semantic-Preserving Mapping

Our algorithm that takes as input graphical statecharts and generates as output Verilog
code is based on the theoretical result presented in [18]. This mapping algorithm works
in a top-down manner starting from the root of the statechart and then moving to its
children. Each time, we consider the input statechart (each part of Statecharts) as a
singleton statechart and continue until no further applicable.

An Automatic Mapping from Statecharts to Verilog 191

We present the mapping function L as originally proposed in [18] which produces
result based on the type of the source statechart:

Definition of Mapping Function L:
L :3C — Verilog

maps any statechart description into a corresponding Verilog process. It keeps unchanged
the set of variables employed by the source description, i.e.,

Vsc € SC e vars(L(sc)) = vars(sc)
and it is inductively defined as follows.

— For a statechart sc = |[s]| constructed by Basic, L maps its input into an idle
program sink which can do nothing but let time advance, i.e.,
L(sc) =45 sink
— For a statechart sc¢ = |[s : {p1, ..., pn }]| constructed by And, L maps its input into
a parallel construct in Verilog.
L(sc) =4 ll1<i<n L(pi)
— For a statechart sc = |[s : [p1, ..., Pn), D1, T]| constructed by Or, we define L by
exhaustively figuring out the first possible transitions of sc if any, otherwise it returns

sink. ki T (s¢) = 0
sink it T*(sc) =
Lisc) =a {P otherwise
where
P =it llozksordepis) [{br & g7, & (Lo<jr hy) & g7, Lirese(ry, sc)) |
7 € T(active®(sc)) A sre(m) = activeF 1 (sc) A
hj = &{~gt | T € T(active’ ' (sc)) A src(t) = active’ (sc)}}

and
active®(sc) =g sc
active'(sc) =g active(sc)

active’ (sc) =g active(active’(sc))

For each statechart, we always assume each of its variables has bounded range, and the
set of possible events is finite, which implies that the set of its configurations is finite.
Therefore, the set of configurations (under transition relation) forms a well-founded
quasi order, which indicates the mapping function L is terminating.

Following are some formal notations used in the above definition. Firstly, the function
or-depth : SC — N to calculate the “or—depth” of a statechart, which is defined as
follows:

- for a statechart sc = |[s]| constructed by Basic, or-depth(sc) =4 0;
-forastatechart sc = [[s : [p1, ..., pn), D1, T constructed by Or, or-depth(sc) =4y
or-depth(p;) + 1;

-forastatechart sc = |[s : {p1, ..., pn }|| constructed by And, or-depth(sc) =45 1.
The or-depth of an Or-chart just records the depth of the path transitively along its active
Or-sub-states. We stop going further once an And-state is encountered. The or-depth of
an And-chart is simply 1.

Secondly, the source and target state functions, src(7) and tgt(7), respectively repre-
sent the source and target state of a transition 7. Given a transition 7 = &1<p<m7i, € T,

192 V.-A. Vu Tran, S. Qin, and W.N. Chin

where 7;, € T*(p;,,),forl < k < m,andiy, ..., i, is apermutation of 1, ..., n, we define
its source and target state as follow:

sre(T) =af (q1,.-.,qn), Where q;, = src(r,), for 1 < k < m, and ¢;, =
active(p;,), form < k <mn;

tgt(t) =g (r1,...,mn), Where r;, = tgt(r;,), for 1 < k < m, and r;, =
active(p;,), form < k < mn.

Note that 7*(p) contains all possible transitions inside p along its transitive active
sub-state chain, i.e., T*(p) =gy {7 | 7 € T Asrc(r) = p }UT*(pi). And active(sc) de-
notes a current active sub-state of sc. With an Or-statechart sc = [[s : [p1, ..., pn], p1, T,
we have active(sc) = p;. With an And-statechart sc¢ = [[s : {p1, ..., D }]|, we have the
active state as a vector of the active states of these constituents, i.e., active(sc) =af
(active(py), ..., active(py,)).

Thirdly, we need to know the resulting statechart after a transition is taken. When
a transition 7 occurs, any involved statechart can have changes in its (transitive) active
sub-states. We use a function:

resc: 7 x SC — SC
to return the modified statechart after performing a transition in a statechart. It is defined
inductively with regard to the type of the statechart.

- for a Basic-statechart sc, and any transition 7, resc(r, sc) =g SC;
- for an Or-statechart sc = |[s : [p1, ..., Pn], p1, T]|, and a transition T,

5CU—a2d(tgt(r)) if T € T A sre(T) = pi;

’I"BSC(T, SC) =df SCll—resc(t,p;)]s ifrer” (pl);
sc, otherwise.

, and a transition T,

- for an And-statechart sc = |[s : {p1, ..., pn }]

B s, it T = &1<p<mmi, € T(sc);
rese(r, s¢) =q {sc, otherwise.
where sc¢; = sc[q1/p1, -+, ¢n/Pn] is the statechart obtained from sc via replac-
ing p; by ¢;,for 1 <4 < n,q;, =resc(r;,,pi,).forl <k <m,andgq;, =p;,,
form < k <n.

The function a2d(sc) is used to change the active sub-state of sc into its default
sub-state, and the same change is applied to its new active sub-state. This function is
defined as:

- a2d(|[s]]) =qr [[s]]
- a2d(]
|

[S : [pla 7pn]7pl7T]|) =df |[8 : [plv"'vpn]7a2d(p1)vTH
-a2d(|[s : {p1, -, pn}l]) =ar |[s : {a2d(p1), ..., a2d(pn)}]|
The substitution scp, ., 1 for an Or-statechart sc = |[[s : [p1, ..., pn], p1, T| is defined

by 5C{1p,] =df IS [P1s s Puls P, T1|

An Automatic Mapping from Statecharts to Verilog 193

4 Implementation

Our implementation consists of two parts: a statechart editor (called Statechart E, is a
stencil of MS Visio) and a mapping program from statechart into abstract Verilog (called
AMSV-Automatic Mapping of Statechart into Verilog).

S;?;ec-:a;n Mapping ger?;r‘;‘f.on abstract
Wi i X
(Statechart_E) (AMSV) (AMSv) Verilog

texture
representation

Fig. 2. Structure of the implementation

Fig. 2 shows the stages of using our system. Users first draw their statecharts, using
Statechart_E, which also automatically generates the corresponding textual represen-
tations. AMSYV will then generate abstract Verilog code from textual representation of
these statecharts. In next two sections, we will discuss about Statechart_E, AMSYV, and
some other techniques used in the system.

4.1 Statechart Editor
Statechart_E is built with three main purposes:

— First, of course is for editing Statechart diagrams. The editor should be convenient
to use and easy to draw.

— Second, it should also be easy to export textual representation of statechart. This is
used by the mapping algorithm which converts statechart to abstract Verilog.

— Last, it should be easy to save the statecharts to other graphical formats (like bmp,
ipg, ps, eps, etc) This is important for portability and for documentation.

From these requirements, we built Statechart_E as an add-on/embedded stencil in
Microsoft Visio. We make use of MS. Visio because Visio is a very powerful graphical
editor tool for drawing diagrams. Visio also supports many graphical formats for export-
ing our diagrams. Moreover, using Visio, we can not only draw statechart components
but also other shapes from suitable drawing types or stencils.

Features of Statechart_E:

— A menu named Statechart is added to the menu bar of Visio. This menu contains
two functions, namely: Generate statechart and Add new statechart page. The first
function is used to export the current statechart to a textual file. This file is used as
input for the mapping program which to transform to abstract Verilog. The second
function is used to add a new page for current statechart diagram. To enable this menu
and its functions, users must allow a macro to be accepted when opening the stencil.

— A set of masters is added to the stencil and this is used for constructing statecharts.
It consists of a state master, a default master (common for all kind of states), 8

194 V.-A. Vu Tran, S. Qin, and W.N. Chin

transition masters (to help build complex statecharts), and vertical/horizontal sepa-
rators for And-state.

— Each master is accompanied by a program written in Visual Basic for Application
(VBA) to check data, events and perform actions of each master. Some masters are
linked to a window to allow input of needed data. This program also partially checks
the supplied data such as duplicate name, etc.

— We also allow users to build hierarchical statecharts. Users can easily extend a given
statechart by adding a new page (using the second function in menu Statechart) and
continue to extend the current statechart in a hierarchical manner in the new page.
Note that the generate function will read all components in all pages of the statechart.

4.2 AMSYV - Core Mapping Program

The second part, called AMSV (Automatic Mapping of Statechart into Verilog), is es-
sentially a Java program.

DFS Algorithm. As presented in section 3, the mapping algorithm has to deal with
each state; Basic, And, and Or states. It can construct the corresponding Verilog
code after the mapping algorithm has been applied to all states of the source state-
chart. Nevertheless, how do we traverse all states of the input statechart? In the AMSV,
we make use of depth—first—search (DFS) algorithm [3] to reach all states of the
statechart.

However, DFS works on each tree of nodes. To apply DFS we have to reconstruct
the source statechart into a tree of states. Fig. 3 shows an example of hierarchy tree
(b) for a simple statechart (a). Here, dashed arrows denote the children of an And-state
(like arrow from PO to P1, P2), while the doted arrows point to the active sub-states
of Or-state (like arrow from P1 to P3 or P2 to P6). The solid arrows represent the
transitions.

Fig. 3. Hierarchy tree. a) Statechart example, b) hierarchy tree, and c¢) DFS route

After reconstructing each statechart into a hierarchy tree, we apply a recursive func-
tion which maps each statechart to abstract Verilog. At each time, we only consider one
state, called the current state. Through this recursive function, we apply the mapping

An Automatic Mapping from Statecharts to Verilog 195

algorithm to all states of the source statechart to obtain Verilog process code. These
codes are kept in a hash table for latter use. After that, we gather the output code (from
sub-states or from target states of all transitions to the current state) to generate final
abstract Verilog process.

For example, in the Fig. 3, first we start from the root state (like P0). After that, we
invoke the function itself if it is possible to go to current state’s children (P1, P2) or
target states of transitions (P3 to P4, P5). A systematic way of finding the next state is
described below. Fig. 3 ¢ shows the route taken by our DFS traversal:

— each state is the target of transition: If there exists any transition from the current
state, go to the target state of the transition. Like transitions from P3 to P4 or P5. The
information of the transition will be memorized to generate output code. If there
are more than one transitions from current state, process it one by one. The order
between these transitions is not important.

— each state is a child of the And-state: If the current state is And-state, go to all
children. Like from PO to P1 or P2. Information of children in that And-state will
be memorized during code generation, as acquired by the Verilog language.

— state is sub-state of Or-state: Just go to active state and continue as before. For
example, P3 and P6 are the active states of P1 and P2.

Recursion. During the traversal to the states of a given statechart, it is possible for a
transition to re-occur. This may be due to non-termination. To solve this problem we use
a boolean array to remember all states which the program has already encountered. If
a program reaches a marked state, it just uses that information to generate a loop, and
then go back to previous state. This is meant to terminate a recursive transition.

Parallel Expansion. Recall from early discussion in Sec 2, we shall take into account
the parallel expansion of And-state. Whenever an And-state is reached, all information
(guards, conditions, etc) of the children of a current state are used for expansion. The
only exception is when the current state is the root. In this case we generate Verilog code
from all its children and gather it using the parallel operation (||). This situation was
discussed in [23].

S Examples

In this section, we illustrate the mapping algorithm via the following examples: a CD
player and a washing machine.

5.1 CD-Player

Specification. Fig. 4 shows the graphical statechart of a CD-player. It contains two or-
thogonal regions: Play control (PlayCtr) and Track information (TrackCtr), which
are used to control the playing mode and record the track information respectively. The
first region contains Stop, Play, Pause sub-states to control the playing mode,

196 V.-A. Vu Tran, S. Qin, and W.N. Chin

while the second one contains only a sub-state, Track. Three buttons, Next, Prev,
and select a track, are associated with the Track state. The variable ct (that is,
current track) is used to keep record of the current position of the CD being played. We
assume ct is initially O whenever the CD-player is switched on.

In this model, Stop and Track are respectively two default sub-states of two
orthogonal regions. So when the CD-Player is switched on, both of them are entered
simultaneously. Upon the arrival of event Play_pressed (that is, the Play button is
pressed), transition ¢1 is taken and state PlayingCtr is entered, where the default
sub-state Playing becomes active. Transitions t4 and t3 are used to alter between
state Playing and Paused. Transition t2 connects state PlayingCtr with state
Stop. When the control is in state P1layingCtr (either Playing or Paused), and
t2 is enabled, it will yield the Stop state (that is, the CD-player will stop).

In the orthogonal state TrackCtr, upon the arrival of events Next_ pressed or
Prev_pressed, the variable ct (current track) will be changed according to the event.
Conditions (¢t > 1) and (¢t < Max(track)) are used to check the range of the ct. The
transition ¢7 is taken if users select any track in the range.

CD-Player-ON
PlayCtr R TrackCtr
o® ! PlayingCtr

o : .
A ?\d/ 5 Playing - t5: Next_pressed / ct=ct+1 3 N
v 3 i (ct<max(track)) g
: 3 N 38

O~ =& 3
53 R Track 23
_g'c 23 5 (‘3
o @ v e

- 2 =
] §_ t6: Prev_pressed / T ﬁ
Paused ct=ct-1 (ct>1) =3

Fig. 4. CD player with track information (ct)

For simplicity, we only added track information in this specification of a CD-player.
A real CD-player may contain other functionalities, like timer, forward, rewind, etc. We

can add these setting as parallel regions in a similar way.
After drawing the statechart specification in Statechart_E, the following textual rep-

resentation is automatically generated:

CD-Player-ON = |[S1: { PlayCtr, TrackCtr } 1|

PlayCtr = |[S2: [Stop, PlayingCtr], Stop, { tl, t2 } 1]
TrackCtr = |[S3: [Track], Track, { t5, t7, té6 } 1]

Stop = |[s4 1]

PlayingCtr = |[S5: [Playing, Paused], Playing, { t3, t4 } 1|
Playing = |[S6 1|

Paused = |[S7 1|

Track = |[S8 1|

An Automatic Mapping from Statecharts to Verilog 197

tl = < Stop, { Play pressed }, { ct=1 }, true, PlayingCtr >

t2 = < PlayingCtr, { Stop_pressed }, { ct=1 }, true, Stop >

t3 = < Paused, { Play_pressed }, { }, true, Playing >

t4d = < Playing, { Pause_pressed }, { 1}, true, Paused >

t5 = < Track, { Next_pressed }, { ct=ct+l }, ct<max(track),
Track >

t7 = < Track, { Track_select }, { ct=trsl }, O<ct<max(track)+1,
Track >

t6 = < Track, { Prev_pressed }, { ct=ct-1 }, ct>1l, Track >

The first 8 lines are information of states. The rest are transitions.

Result. The textual representation given in last section is taken as the input of our
algorithm AMSY, the output we obtain is the following code in abstract Verilog:

Result:
L_PlayCtr || L_TrackCtr
Where:
I PlayCtr = fix X0. (L_Stop)
L_TrackCtr = fix X2. (
(((Next_pressed & @(ct=ct+1l) & (ct<max(track)) X2)
[1 (Track_select & @(ct=trsl) & (O<ct<max(track)+l) X2))
[l (Prev_pressed & @(ct=ct-1) & (ct>1) X2)))
L_Stop = ((Play pressed & @(ct=1))
((Stop_pressed & @(ct=1) X0) [] fix X1. (L_Playing)))
I._Playing = ((Pause_pressed & not Stop_pressed)
(((Play_pressed & not Stop_pressed) X1)
[1 (Stop_pressed & @(ct=1) X0)))

note that we use fiz (rather than p) to denote the recursion. L_state is the corresponding
result from state.

Here we can see that the L_PlayCtrl and L_TrackCtr are processes which are running
in parallel, where the recursive identifiers X0, X1, X2 represent three loop points.

5.2 Washing Machine

Specification. In this subsection, we discuss a washing machine with five setting func-
tions; Timer,Hot water,Rinse level,Water level,andPre-wash.Fig.5
shows the user interface of the washing machine. Fig. 6 gives the statechart specification
of the washing machine corresponding to the interface, while Fig. 7 zooms into the sub-
state Washing-Ctr. Statechart in Fig. 6 contains six parallel regions corresponding to
five setting functions and the washing progress (Wash-Ctr). Each setting region contains
a sub-statechart to change the value of its function. For example, in the Timer-Ctxr
region, the variable ¢m denotes the time that the washing machine has to wait before it
starts to wash. It can be changed by Inc or Dec buttons. Other variables hw (hot water),
rl (rinse level), wl (water level) and pw (pre-wash) are similar, and can be changed via
pressing corresponding buttons. The default values of these variables are shown in Fig. 5
with black circles (hw = 0, vl = 0, wl = 0, and pw = 0) and default timer is 0.

198 V.-A. Vu Tran, S. Qin, and W.N. Chin

{Pre-} [-ngé}\g (Rinse!
iwash j i Llevel j | L "}

@ No @ Normal | @ Light
O Yes |O Half O Medium
O Full O Extra

Fig. 5. Interface of the washing machine

Washing-machine-ON

Rinse-Ctr
Wash-Ctr t7: Rinse-pressed /

e

t1: Start { washing=true

Water-Ctr t10: Water-
pressed / wi=1

0 (true)

t4: Hot-water /
hw:

Timer-Ctr
Prewash-Ctr
t5: imer-increase / tm=tm+1 t13: Pre-yvash / pw=1
(tm<10 & washing=false) (washing=false)
et
(Frewno)
~N_ 7
t6: timer-decrease / tm=tm-1 t14: Pre-wash / pw=0
(tm>1 & washing=false) (washing=false)

Fig. 6. Main statechart of a washing machine

The Washing-Ctr is an Or-state as given in Fig. 7. The state Check-wait is
activated once state Washing-Ctr is entered. If ¢m is greater than 0, the machine
keeps waiting for ¢m time before the control moves to Pre-wash state. The transition
t18 calculates the value of the variable washtime based on the pre-wash setting. For
example, if pw is 0 then washtime = 1. The variable washtime is used to keep record
of the time that the clothes have been washed so far. It is explained as follows:

washtime = 0: if pw = 1, need pre-wash.

— washtime = 1: if pw = 0, no need pre-wash, need powder, no spin.
washtime = 2 or 3: wash without powder, spin.

washtime > 3: finish.

An Automatic Mapping from Statecharts to Verilog 199

t15: / timer-cal

Check-wait
t17: /d

heck-pre-wash

Pre-wash

t18: / washtime=]-pw (true)

- o
Washing 20: /get'powdemn
] (washihnme:U

start-wash
true)

t28: / washtimeswashtime+1 (true)

t29: / start-ppin (washtime>1)
Spin

t31:|/ Beep-finish A
- —TreWd
(washtime=4) 20 |

L opmes
Wash-end

(wes
Fig. 7. Statechart of Washing-Ctr in the washing machine

n
&)

Upon finishing, the machine beeps to inform the user.
The textual representation generated from Statechart_E is printed in [23].

Result. We then run the AMSV algorithm to generate the Verilog program for the
washing machine. We only give some part of the target code here.

First of all, let us regard Washing-Ctr as a basic state (before we zoom into it). We
have the following Verilog program:

Result:

L_Wash-Ctr || L_Timer-Ctr || L_Water-Ctr || L_Prewash-Ctr ||
L_Hotwater-Ctr || L_Rinse-Ctr

Where:

L_Wash-Ctr = L_Idle
I, Idle = (Start & @(washing=true) sink)
L_Timer-Ctr =
fix X0. (((timer-increase & @(tm=tm+1l) &
(tm<10 & washing=false) X0)
[1 (timer-decrease & @(tm=tm-1) &
(tm>1 & washing=false) X0)))

200 V.-A. Vu Tran, S. Qin, and W.N. Chin

L_Water-Ctr = fix X1. (L_Normal)
L_Normal = ((Water-pressed & @(wl=1)) L_Half)
L_Half = ((Water-pressed & @(wl=2))

(Water-pressed & @(wl=0) X1))
I_Light = ((Rinse-pressed & @(rl=1)) L_Medium)
I_Medium = ((Rinse-pressed & @(rl=2))

(Rinse-pressed & @(rl=0) X4))

I._Prewash-Ctr = fix X2. (L_Pre-w-no

)
L_Pre-w-no = (Pre-wash & @(pw=1l) & (washing=false))
&

(
(Pre-wash & @(pw=0) (washing=false) X2))

I._Hotwater-Ctr fix X3. (L_Cold)

L Cold = ((Hot-water & @(hw=1)) L_Warm)

L_Warm = ((Hot-water & @(hw=2)) (Hot-water & @(hw=0) X3))
I_Rinse-Ctr = fix X4. (L_Light)

The sink process in L_Tdle is used to denote the Washing-Ctrl process, as we
regard it as a basic state. On the other hand, if we consider Washing-Ctr as a stand-
alone statechart, the corresponding code for it is as follows:

Result:
L_Check-wait =
(((& @(timer-cal) & (tm>0)) L_Wait)
[1 ((& @(check-pre-wash) & (tm=0)) L_Pre-wash))
L_Start-washing =
(((fill-water & (washtime!=1)) L_water-in
(& @(rewash) & (washtime<4) X0))
[1] ((&@(get-powder-in) & (washingtime=1)) L_Powder-in
(& @(rewash) & (washtime<4) X0)))
L_Wait = ((& @(check-pre-wash) & (tm=0)) L_Pre-wash)
I Pre-wash = ((& @(washtime=l-pw))
fix X0. (((& @(rewash) & (washtime<4) X0)

[] L_Start-washing)))
IL_water-in =
((((& @(check-wl) & (hw=0)) L_cold-w
(& @(rewash) & (washtime<4) X0))
(& @(check-wl) & (hw=2)) L_hot-w
(& @(rewash) & (washtime<4) X0)))
[T ((& @(check-wl) & (hw=1)) L_warm-w
(& @(rewash) & (washtime<4) X0)))
IL_cold-w = ((& @(start-wash)) L_washing
(& @(rewash) & (washtime<4) X0))
((& @(start-wash)) L_washing
(@(rewash) & (washtime<4) X0))
L_hot-w = ((@(start-wash)) L_washing
(& @(rewash) & (washtime<4) X0))
I,._washing = ((& @(washtime=washtime+l)) L_water-out
(
(

L_warm-w

&
&

& @(rewash) & (washtime<4) X0))
I,_water-out = (& @(start-spin) & (washtime>1)) L_Spin
(& @(rewash) & (washtime<4) X0))
(

fill-water) L_water-in

1l
—

L_Powder-in

An Automatic Mapping from Statecharts to Verilog 201

(& @(rewash) & (washtime<4) X0))
IL_Spin = (& @(Beep-finish) & (washtime=4) sink
(& @(rewash) & (washtime<4) X0))

In the final code, the sink process in L_Idle is replaced by the process
L_Check-wait.

6 Conclusion

In this paper we proposed an automatic mapping algorithm to translate high-level Stat-
echarts into low-level Verilog specifications. Our algorithm has been proved sound ear-
lier [18].

The system that we have built in Java provides a graphical interface for users to
draw their statecharts in MS Visio. Our mapping algorithm thus translates the graphical
representation into a textual representation, and then generates the corresponding Verilog
programs.

Some of related works on connecting Statecharts with other formalisms are pre-
sented in [1,4, 16,21, 20]. Beauvais et.al. [1] and Seshia et.al. [21] translate STATE-
MATE Statecharts to synchronous languages Signal and Esterel respectively, aiming
to use supporting tools provided in the target formalisms for formal verification pur-
poses. However, all these translations are based on the informal semantics [9] lacking
correctness proofs. The authors of [4, 16] transform variants of Statecharts into hier-
archical timed automata and use tools (UPPAAL, SPIN) to model check Statecharts
properties. More recently, a translation from Statecharts to B/AMN is reported in [20].
However, no correctness issue has been addressed. In comparison, the translation from
Statecharts to Verilog in this paper aims at code generation for system design. The
mapping function that we implement in this paper is constructed based on formal se-
mantics for both the source and target formalisms and has been proven to be semantics-
preserving [18].

Our compilation from Statecharts into Verilog can be used as a front-end of hardware
design or hardware/software co-design. After translating the input statechart specifica-
tion into abstract Verilog code, we can proceed to obtain lower level descriptions, as
a prelude to hardware implementation, or we can pass the Verilog specification to a
hardware/software partitioning system [19].

In order to provide the concrete Verilog programs to users, future works include
guarded choices elimination and the replacement of the other structures of abstract
Verilog, so that the AMSV can generate also concrete Verilog program. This should
make our tool especially useful for hardware designer.

References

1. J.-R. Beauvais, et. al. A Translation of Statecharts to Signal/DC+. Technical report, IRISA,
1997.

2. J.P.Bowen, J.-F. He, and Q.-W. Xu. An Animatable Operational Semantics of the VERILOG
Hardware Description Language. In Proc. ICFEM2000: 3rd IEEE International Conference
on Formal Engineering Methods, IEEE Computer Society Press, York, UK, September 2000.

202

3.

4.

e}

10.

11.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

V.-A. Vu Tran, S. Qin, and W.N. Chin

T. H. Cormena, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT
Press; 2nd edition, September 2001.

A. David, M. Oliver Moller, and Wang Y. Formal Verification of UML Statecharts with Real-
time Extensions. In Proc. of Fundamental Approaches to Software Engineering, number 2306
in Springer LNCS, 2002.

. M. J. C. Gordon. The Semantic Challenge of Verilog HDL. In Proc. Tenth Annual IEEE

Symposium on Logic in Computer Science, IEEE Computer Society Press, pages 136145,
June 1995.

. D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science of Computer

Programming, 8, 1987.

. D. Harel. On Visual Formalisms. Communications of the ACM, 31(5), 1988.
. D. Harel and E. Gery. Executable Object Modeling with Statecharts. Computer, 30(7), 1997.
. D. Harel and A. Naamad. The STATEMATE Semantics of Statecharts. ACM Transactions

on Software Engineering and Methodology, 5(4), October 1996.

J.-F. He. An Algebraic Approach to the VERILOG Programming. In Proc. of 10th Anniversary
Colloguium of the United Nations University / International Institute for Software Technology
(UNU/IIST). Springer, 2002.

J.-F. He and H. Zhu. Formalising Verilog. In Proc. IEEE International Conference on
Electronics, Circuits and Systems, IEEE Computer Society Press, Lebanon, December 2000.

. J.J.M. Hooman, S. Ramesh, and W.P. de Roever. A Compositional Axiomatization of State-

charts. Theoretical Computer Science, 101, 1992.

Q.Long, Z.Y. Qiu, and S.C. Qin. The Equivalence of Statecharts. In International Conference
on Formal Engineering Methods, number 2885 in Springer LNCS, Singapore, November
2003.

G. Liittgen, M. von der Beeck, and R. Cleaveland. A Compositional Approach to Statecharts
Semantics. Technical Report 200012, NASA/CR2000210086, ICASE Report, March 2000.
A.Maggiolo-Schettini, A. Peron, and S. Tini. Equivalences of Statecharts. In 7th International
Conference on Concurrency Theory (CONCUR’96), number 1119 in Springer LNCS, Pisa,
Italy, August 1996.

E. Mikk, Y. Lakhnech, M. Siegel, and G. Holzmann. Implementing Statecharts in
Promela/SPIN. In the 2nd IEEE Workshop on Industrial-Strength Formal Specification Tech-
niques. IEEE Computer Society, 1999.

Open Verilog International (OVI). Verilog Hardware Description Language Reference Man-
ual.

S.C. Qin and W.N. Chin. Mapping Statecharts to Verilog for Hardware/Software Co-
Specification. In K. Araki, S. Gnesi, and D. Mandrioli, editors, Formal Methods: International
Symposium of Formal Methods Europe, volume 2805, pages 282—-299. Springer, 2003.

S.C. Qin, J.E. He, Z.Y. Qiu, and N.X. Zhang. Hardware/Software Partitioning in Verilog. In
International Conference on Formal Engineering Methods, number 2495 in Springer LNCS,
Shanghai, China, October 2002.

E. Sekerinski and R. Zurob. Translating Statecharts to B. In B. Butler, L. Petre, , and K. Sere,
editors, Proc. of the 3rd International Conference on Integrated Formal Methods, number
2335 in Springer LNCS, Turku, Finland, 2002.

S. Seshia, R. Shyamasundar, A. Bhattacharjee, and S. Dhodapkar. A Translation of Statecharts
to Esterel. InJ. Wing, J. Woodcock, and J. Davies, editors, FM99: World Congress on Formal
Methods, number 1709 in Springer LNCS, 1999.

IEEE Standard. [EEE Standard Hardware Description Language based on the Verilog®
Hardware Description Language. 1995.

23.

24.

25.

An Automatic Mapping from Statecharts to Verilog 203

V.-A. V. Tran. Automatic Mapping from Statecharts to Verilog. Master’s Thesis, School of
Computing, The National University of Singapore, 2004.

H.Zhu, J. P. Bowen, and J.-F. He. Deriving Operational Semantics from Denotational Seman-
tics for Verilog. Technical report, Technical Report SBU-CISM-01-16, South Bank University,
London, UK, June 2001.

H. Zhu, J. P. Bowen, and J.-F. He. From Operational Semantics to Denotational Semantics for
Verilog. In Proc. CHARME 2001: 11th Advanced Research Working Conference on Correct
Hardware Design and Verification Methods, number 2144 in Springer LNCS, Livingston,
Scotland, September 2001.

Reverse Observation Equivalence Between
Labelled State Transition Systems*

Yanjun Wen, Ji Wang, and Zhichang Qi

National Laboratory for Parallel and Distributed Processing,
Hunan 410073, P.R. China
{y.j.wen, ji.wang}@263.net

Abstract. Labelled state transition system (LSTS) is a formalism in-
tended to combine the benefits of both state-based and action-based
models. However, its existent equivalence preserves many properties with
the cost of poor reduction effects. A new equivalence is presented, namely
called reverse observation equivalence which is defined in the opposite di-
rection to observation equivalence and orients the invariant checking of
LSTS. Experiments show that the new semantics is efficient in the con-
text of compositional reachability analysis.

1 Introduction

Labelled state transition system (LSTS) is introduce in [1] as a formalism which
combines labelled transitions systems (LTSs) with atomic state propositions and
provides a way to benefit from both state-based and action-based models. Con-
cretely, similar to Kripke structures [2], the states of LSTSs are labelled with the
possible interpretations to the propositions. A notable characteristic of LSTS is
that the state propositions do not affect synchronization between LSTSs. That
is to say, LSTSs communicate only by the actions, as same as LTSs do.

Invariants are the simplest but most important kind of system requirements
[3]. Tt predicates that all the reachable states of a system satisfy some property,
which is in the form of boolean expressions.

Compositional reachability analysis (CRA) is a kind of hierarchy-based incre-
mental analysis approach [4, 5, 6, 7]. The mechanism of “intermediate simplifica-
tion during composition” in CRA can significantly increase the size of systems
which are analyzable with given computer resources [8,9]. In CRA, the simplifi-
cation is usually based on some equivalence semantics, such as strong bisimilarity,
weak bisimilarity (or observation equivalence), and the failure-divergence model
of CSP [10]. In the chosen semantics, the final model gotten by CRA is equiva-
lent to the one gotten by the direct “all-at-once” approach [6] (called traditional
reachability analysis in [5]).

* Supported by National Natural Science Foundation of China under the grants
60233020, 90104007, and 60303013, and by the National Hi-Tech Programme of
China under the grant 2001AA113202.

Z. Liu and K. Araki (Eds.): ICTAC 2004, LNCS 3407, pp. 204-219, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Reverse Observation Equivalence Between Labelled State Transition Systems 205

In [1], a semantic model, CFFD (choas free failures divergence) is presented
for LSTS, which is an extension to the CFFD model of LTS. In the extension, the
state propositions of LSTSs are encoded via an attachment to actions. CFFD is
the weakest congruence that preserves deadlocks and all the properties that can
be expressed with next-state free LTL [1]. Thus, of course, it preserves invari-
ants. Although CFFD preserves many properties, it brings only small reduction
(see Section 5). For invariant checking of LSTS, some more efficient equivalence
semantics should be possible and necessary.

At a glance, one may think of observation equivalence, which can bring sig-
nificant reduction for the CRA of LTSs. Indeed, it is feasible to define the obser-
vation equivalence of LSTS similarly as the CFFD-equivalence of LSTS. In this
way, we must also encode the state propositions via an attachment to actions.
That is to say, we must extend the notion of actions to include the information
of the change of states propositions as transitions triggered. Thus the action
set will be enlarged and accordingly, the effect of reduction based on observa-
tion equivalence will be decreased. Fortunately, with a slight extension to LSTS,
we may define an equivalence relation in the opposite direction to observation
equivalence, and the invariant properties can be preserved without extending
the notion of actions. We call such a new equivalence as reverse observation
equivalence (ROE).

We have implemented a reduction algorithm based on reverse observation
equivalence in the framework of TVT toolkit [1]. The experiments show that the
new equivalence is much more efficient than CFFD-equivalence with respect to
the invariant checking of LSTS in the context of CRA. For example, in the tests
of a token ring system with 6 nodes, the largest subsystem generated by CRA
based on ROE contains only 1793 states and 9177 transitions while the largest
subsystem generated by the CRA based on CFFD contains 266805 states and
1581601 transitions.

The rest of the paper is organized as follows. After Section 2 gives some con-
cepts of LTS and LSTS, Section 3 presents the reverse observation equivalence.
Then, Section 4 formalizes the CRA based on reverse observation equivalence
and Section 5 makes a case study. The conclusion is summarized finally.

2 Labelled State Transition Systems

Labelled transition system is a fundamental formal model that can be used to
model the behavior of many systems. It’s widely used in the literature. Many
formal models use LTS as their semantic basis. Notable examples are the many
variants of automata, and process algebras such as CCS [11], CSP [12].

Definition 1 (Labelled Transition System). A labelled transition
system(LTS) is a quadruple

P =< VP7AP,AP7qP >

206 Y. Wen, J. Wang, and Z. Qi

where

— Vp is a set of states;

Ap = aPU{7}, where aP denotes the communicating alphabet of P which

does not contain the internal action 7;

— Ap C Vp x Ap x Vp, denotes a transition relation that maps from a state
and an action onto another state;

— q, s a state in Vp which indicates the initial state of P.

For an LTS P, two states s1,s2 € Vp, an action a € Ap, and two finite
action sequences « = ajas---a, € (Ap)" and B = biby---b, € (aP)", we
define operator a and several relations as follows.

—a=¢ if a=7,and a=a otherwise, where“c” denotes the empty action
sequence. & = aids - - - dy,.
a .
— 81 —p sy iff (s1,a,80) € Ap.
o . al a Qn, . £
— $1 —p sy iff 8§ —p——p -+ —5p sy. Especially, s; —p 7.
€ . T
— 81 =—>p S iff 31(—>p)*32.
a . 15 a €
— 81 =—p S9 iff s = p—p=—p s9.

B . b b b,
— 81 ==p sy iff 51 = p=p - =p so.

where * is reflexive and transitive closure and juxtaposition is a composition of
relations.
The parallel composition of two LTSs is defined [5] similar to that used in CSP.

Definition 2 (Parallel Composition of LTSs). The parallel composition
P || Q of two LTSs P and Q is defined as LTS R =< Vg, Ar, AR, q,, > where

—Ve=VpxVy, Ap=ApUAg, and q, = (qP,qQ).
— Apg is given by the following three transition rules:

a
S i}p 3}/: (a%aQ) SQ —Q SQ
(Spst) i>R (5}/9 75@) <SP>SQ) —R (SP,Sé)
Sp L’P 51/9 Sq i’Q Sé(

(SP’SQ) i>R (Sé 7Sé

r

a € aPNaQ)

External actions of an LTS can be hidden and become unobservable.

Definition 3 (Hiding of LTS). The hiding of LTS P on action set L (1 ¢ L)
is defined as LTS P\L =< Vp,Ap\L, Ap\1,q, > where Ap\r, is given by the
following two transition rules:

a / a /
S —p S S —p S

(acl) (a¢ L)

T / a /
§ —7P\L S S —2P\L S

Labelled state transition system is introduce in [1] as a formalism which
augments LTS with atomic state propositions and has the features of both state-
based and action-based models. In this paper, we make a slight extension to it:
several possible evaluations are allowed in a state.

Reverse Observation Equivalence Between Labelled State Transition Systems 207

Definition 4 (Labelled State Transition System). A labelled state transi-
tion system (LSTS) is a tuple

P =< VP,AP7AP,QP;HP,TP,'UCL1P >

where LTS PXTS = < Vp, Ap, Ap,q, > is augmented with the set of proposi-

tions Ilp, evaluation function val, : Vp — 22" , and the set Tp of permanent
propositions for which Tp C Ilp.

The evaluation function tells which interpretations of the propositions are
possible in a state of the system. In the original definition of LSTS, val, is
a function of type Vp — 277 rather than Vp — 22"7. We make this change
to benefit the merging of states when reducing models according to the equiva-
lence semantics. The permanent propositions are used by the generalized parallel
composition operator of LSTS (see below).

Figure 1 presents the LSTS of a client in a token-ring system that is intro-
duced in [1]. Some adaption has been made. We will present in more detail in
Section 5.

Fig. 1. LSTS of the clients

A remarkable characteristic of LSTS is that propositions do not affect syn-
chronization. That is, when composed, several LSTSs communicate only by the
actions, which is as same as LTSs. Concretely, the generalized parallel composi-
tion of LSTS is defined in [1], which is more capable than the parallel composition
of LTS. It can do exactly the same transformations as the traditional parallel
composition, hiding, and multiple renaming combined, when applied to LTSs [1].
In this paper, for the sake of simplicity, we introduce basic parallel composition.

Definition 5 (Basic Parallel Composition of LSTSs). Given two LSTSs
P and @, their basic parallel composition P || Q is defined as the LSTS R =<
Vr,ARr, AR, q,; I r,Tr,val, > where

o RLTS =< VR,AR,AR,QR S = PLTS ” QLTS'I
— HRZHPUHQ,TRZTPUTQ.
—wal,((55,8,)) ={2p U g | 2p cval,(s,) N 2q €val,(s,)}.

L 4|7 is the parallel composition operator of LTS.

208 Y. Wen, J. Wang, and Z. Qi

It can be seen that the basic parallel composition is consistent with the gen-
eralized parallel composition, which integrates the power of the basic parallel
composition, hiding, multiple renaming and etc. In the following, the basic par-
allel composition will be called parallel composition shortly.

Similarly, we can define the hiding operator of LSTS.

Definition 6 (Hiding of LSTS). The hiding of LSTS P on action set L
(T & L) is defined as LSTS P\L =< Vp, Ap\L, Ap\1,,q,;IIp,Yp,val, > where
< Vp,Ap\L,Ap\1,q, >= PETS\ L2

The multiple renaming operator of LSTS can be defined similar to that of
LTS [13]. Given an LTS or LSTS P, we denote the set of all the reachable states
of P as Vi,

Definition 7 (Invariant). Consider an LSTS P. Let ¢ be a boolean expression
over the set Ilp. Then ¢ is an invariant of P if for all states s € VE" and all
evaluations §2 € val,(s), ¢ is satisfied under the interpretation I defined as
follows.

True if qe€ 2

False otherwise

VqEHp. IQ(q) :{

3 Reverse Observation Equivalence

Observation equivalence [14] is a concept to identify a pair of processes or LTSs
which cannot be distinguished by an observer who is not able to observe internal
T-actions. It can be used in compositional reachability analysis to reduce the size
of intermediate models. For our purpose of checking invariants of LSTS, it might
be inappropriate to use a direct extension of observation equivalence of LTS if
not extending the notion of actions, because it could not be a congruence again
with respect to the parallel composition of LSTS while preserving invariants.

We find that the requirement can be satisfied if we define an equivalence
relation in the reverse direction to observation equivalence. We call the new
equivalence relation “reverse observation equivalence”.

As observation equivalence is based on weak bisimulations, firstly we intro-
duce the notion of reverse weak bisimulation between LSTSs. In the following,
we assume that all LSTSs have the property “root-unwound” [14], that is, the
initial state is not the destination of any transitions. For those LSTSs where
the property does not hold, a simple adaptation can be made: add a state as
the new initial state and a transition from the new state to the old initial state.
Obviously, the adaptation does not affect the invariant checking of LSTS.

Firstly, we define several shorthands. Given a binary relation R C M x N,
m € M and n € N, we denote the set of all the images of R as R[«], the set of
all the inverseimages of R as R™![], the set of all the images of m in relation R

? “\" is the hiding operator of LTS.

Reverse Observation Equivalence Between Labelled State Transition Systems 209

as R[m], and the set of all the inverseimages of n in relation R as R™'[n]. Their
formal definitions are as follows.

Rlx| =g {s € N |3 € M. (¢,s) € R}

R7's] =4 {s€ M |3 €N.(s,s)€R}
Rim| =g {s € N | (m,s) € R}

R7[n] =4 {s € M | (s,n) € R}

If saying that weak bisimulation is a relation that “looks forward”, then
reverse weak bisimulation is a relation that “looks backward”.

Definition 8 (Reverse Weak Bisimulation between LSTSs). Given two
LSTSs P and @, let R C VPECh X Vé%h be a binary relation. If aP = aQ,
IIp = HQ7 Tp = TQ; (QP7qQ) € R, R[*] = VQRCh; Ril[*] = ;Ch, and fOT’ all
(55,8,) € R the following three conditions are satisfied, then R is a reverse weak
bisimulation between P and Q.

1. If s, —p s, and s/, € VE then s/ :a>Q s, for some s/, € Vgc’b such
that (s}, ,s/) € R.

2. If s, —q s, and s/ € Vf“h, then s, ==p s, for some s}, € VEN such

that (s, ,s}) € R.

3. wal,(s,) C USQGR[SP] val, (s},) and val,(s,,) C UsPeRﬂ[SQ] val . (s}).

LSTSs P and @ are reverse observation equivalent, if there is a reverse weak
bisimulation between them. When this is the case, we write P =, Q. It is easy
to prove that =, is an equivalence relation, which we called reverse observation
equivalence (shortly ROE). Furthermore, states s, € Vp and s, € Vg are re-
verse weak bisimilar, or reverse observation equivalent, if there is a reverse weak
bisimulation R between P and @ such that (s,,s,) € R.

In the definition of reverse weak bisimulation, we have borrowed the idea
of backward simulation [15] of I/O automata. However, it is worth noting that
ROE is not a trivial extension of backward simulation in the context of LSTS.
To preserve invariant properties, a special form of constraint on the atomic state
propositions is added to the definition.

From the definition above, it can be seen that two reverse observation equiv-
alent states are undistinguishable in how the states can be reached from the

0 init 1,2,5.6

(b} (d.(8})

Fig. 2. LSTS of the clients after ROE reduction

210 Y. Wen, J. Wang, and Z. Qi

initial states as to observers that can not see the internal actions of the system.
So in a sense, reverse observation equivalence focuses on the “history”, while
observation equivalence focuses on the “future”. It is worth noting that in the
definition we require that R[] = VQRCh and R7![+] = V" That is, only reach-
able states can be simulated and all the reachable states must be simulated.
Figure 2 shows the ROE-reduced LSTS of the client in Figure 1 after hiding the
action “bye” firstly. Because the states 1, 2, 5, and 6 of the original LSTS are
reverse observation equivalent after the hiding, they are merged to a single state
in the ROE-reduced LSTS.

The following theorem illustrates the intuition that reverse weak bisimula-
tion preserves invariants of LSTS. It can be proved straightforwardly from the
definition of reverse observation equivalence.

Theorem 1. Given two reverse observation equivalent LSTSs P and @, let {2 €
21Tr (or 2 € 212), and ¢ be a boolean expression over IIp (or Ilg). Then the
following two propositions hold:

1. (3s, € V. Qe val,(s,)) < (3s, € VgCh. 2 €wval,(s,)).
2. ¢ is an invariant of P iff ¢ is an invariant of Q.

The next lemma describes the essential property of =,..

Lemma 1. Consider two LSTSs P and Q that are reverse observation equiva-
lent. Let ~ be a reverse weak bisimulation between them. Let states s, € VAh
and s, € Vé{Ch which satisfy s, ~ s, (that is, (s,,s,) € ~). Let action se-
quence o = a1as...a, € (aP)*, B = biby...b, € (aQ)*. Then the following

propositions hold:

1. If s}, ==p s, and s}, € V", then s ==¢ s, for some s/, € V& such

that s;,~ s/, .
2. If s, :'6>Q s, and s, € VA", then s, :’8>p s, for some s!, € VE" such
that s;,~ s/, .
Proof. We only prove the proposition 1, since the other can be proved similarly.
Suppose s., ==>p s, and s, € VE. Then by the definition of “=", there
must exist an action sequence v = r72...7, € (Ap)* and a group of states
N ’ Tit1 .
80,815+ 8m € Vp such that ¥ = a, s9 = s, , $m = s, and s; —p s;41 (Vi €
[0...m—1]). For s/, € VA" we have s; € V" (Vi € [0...m)]). Since 5,1 ~p
Sm and s, ~ s, (that is, s, ~ s,), by the definition of ~ we know there exists
a state s, _; € V5" such that s, =20 s, and Sp,_1 ~ s,,_;. Similarly, by

/

T—1 .
Sm—2 ——p Sm_1 and S$;,_1 & s, _;, we know that there exists a state s/, 5 €

VQRCh such that s, , rmz_lQ Sm—1 and S;,—o &~ s, _,. Deducing recursively, it
can be known that there exists a group of states sj, si,...s, € ng‘ such that
and s; ~ s A (s} m:JriQ siy1) (Vi € [0...m — 1]). Therefore, we have

~ o I ! ;& I~ o
o and s = 5. Let s/, = s;. Then we have s, =q s, and s, ~ s/. O

Reverse Observation Equivalence Between Labelled State Transition Systems 211

Since all the LSTSs have the property “root-unwound”, those states that are
reverse weak bisimilar with the initial state have a special property, as shown in
the following lemma.

Lemma 2. Given two reverse observation equivalent LSTSs P and Q, two states
€ VAeh and 5q € Vé{Ch, let = be a reverse weak bisimulation between them.
Then the following two propositions hold:

1. If s, = q,, then q, =p s,
2. If q, = s, then q, :E>Q E

Proof. We only prove proposition 1. Because s, € Vlﬁzc”, there exists an action
sequence o = ajas...a, € (aP)* such that g, ==p s,. Suppose s, ~ o
Then by Lemma 1 there must exist a state s/, € VgCh such that s/, :a>Q q, and
qp = s/,. By the assumptlon about “root-unwound” property, we know s/, = q,,

anda—s. Thus ¢, ==p s, - ad

As to parallel composition and hiding, =, is a congruence. The following
theorem makes it clear.

Theorem 2. Given LSTSs P, P', Q, Q' and an action set L that does not
contain the internal action T, the following propositions hold:

1. P~ P =P\Lw, P'\L.
2. P PAQ=.Q =P|Q~ P|Q.

Proof. Obviously, the proposition 1 is true. We only prove the proposition 2.
Suppose P ~, P' A Q ~, Q. According to the definition of ~,., there exist
reverse weak bisimulations ~p between P and P’, and ~¢ between @ and Q’. We
construct a binary relation ~p| g between P || Q and P’ || Q" as the following set:

{((SP7SQ)’(SP »Sg)) € VPHQ x Vp [Q |(SpySp) ce~rpA (SQ’SQ) EQQ}' (1)

It is sufficient to prove that ~p| is a reverse weak bisimulation between P || Q
and P’ || Q'. We prove it according to the definition of reverse weak bisimulation.

VRch

1. Firstly, we prove ~p|oC V}ﬁf@ PO - Given any pair of states

((sps50): (5,155) € 2pjq, we will prove ((s,,54), (s, 15,)) € V(G *

Vlfc‘cl% By the definition of ~p|q, we have ((s,,5,), (s, ,5,)) € VRHCCSL

Veiq, (8p,5,) €~p and (sq,8,) € zQ So it is sufficient to prove that

P’ P
Rch
(5,.8,)€Vp T\Q Because (s, s,,) € VA HQ’ there exists an action sequence

@ = ajas...a, € (P UaQ)* such that (¢,,q,) =>p|q (Sp,s,). Thus

alap ala@
4p = p s, 2 and q, =>¢ s,,. Because (s,,s,) € ~p and (59:5,) €=q,

by Lemma 1 we know there exist states s/, € Vi s ’ S Vé%h such that

3 a|np denotes the projection of a on aP.

212

Y. Wen, J. Wang, and Z. Qi

; olap ~ / d s’ ala@ ~ B ~ /
S, =P S,,0qp ®p s, and s, =@ S, , 4, ~FqQ S, Because ¢, ~p s,

!

and q, ~q sc’?, by Lemma 2 we know ¢, =, s and 0, :E>Q st

Combining with the previous result, it can be known that ¢, ‘i”; p s, and

alag

4, =q S, - By the assumption that P ~, P'AQ =, @, it can be known

Q

that aP = P’ and aQ = aQ'. Thus q,, ‘ép s, and g, agQ s, - By

the property of parallel composition of LTSs, we know (q, 14,) =p 1Q
Rch

(s, +8,). Therefore, (s, ,s,) € e Vi HQ Thus ~p|oC VPHQ x Voo Frf)m

the result, we know that ~p|g can be defined equivalently as the followmg

set:

{((50,50), (5, 55)) € VEG X VEG (50,5,) €8P Asg,5,) €~} (2)

Furthermore, by symmetry we know that ~p| g can also be defined equiva-
lently as the following set:

{((SPVSQ)7(SP »Sq)) € VPHQXVP [ts} |(SpySp) €Exp /\(S Q) zQ}' (3)

. By P~, P'ANQ =, @, it can be known that aP = oP’, aQ = aQ’, IIp =

IIp ,IIg =1g ,Tp =7p ,and T = Y . Thus aPUaQ = aP’'UaQ’, that
iS, O[(P || Q) = Oé(P/ H Q/) Similar1y7 HPHQ = Hp 1Q and TPHQ = Tp Q -
By the algorithm of constructing ~p g, it can be known straightforwardly
that ((¢,,49,), (4, .4,)) €=p|q- In the following proof, we use R as an alias

of ~p|q. Next we will prove R7![] = V" and R[x] = Vlf”ﬁ}b Since in the

HQ
above we have proved that ~p|oC VP”Q X Vlf”ﬂ'b , thus R71[x] C Vﬁ‘fg

and R[] C Vﬁ’?i’b So it is sufficient to prove that R7'[x] D Vlﬁ,?l'lcg and

R[x] D VR‘cl}é Given any state pair (s,,s,) € VP”Q, we have s, € Vi

and s, € VQ};Ch. By the definition of reverse weak bisimulation, we know
~p [¥] = VA and zél [] = VgCh. Thus there exist states s, € V" and
5, € VQI;”Ch such that s, ~p s, and s, ~q s, . By the equation (1), we
have ((s,,5,), (5, ,5,)) €=p|qg- S0 (55,5,) € R L[*]. Therefore, R[] D

Pr°Q P %0
ngg On the other hand, because ~p| can also be defined equivalently in

VRch

the form of equation (3), it can be proved symmetrically that R[] O V2 o -

. Next, we will prove that for all ((s,,s,), (s, ,s,)) € ~p|q, the following

Pr°Q P °Q

three propositions hold:
(a) If (s}, s)) —=p|q (55,5,) and (s}, Q) € VRHC& then there exists a state

(5,8) € VE such that (s’,s”) =2 lQ (s, .8,) and

P/7 Ql /P ”Q P’ Q
((s7.589), (s5.555)) € =pjq-
(b) If (s}.,s,) “p o (s, 18,) and (s, s) RTIhQ , then there exists a
state (s;,,s/.) € V}f”Ch such that (s}, s)) ==p|o (s5,5,) and

((31/378&’(8;3’8@)) ~PlQ-

Reverse Observation Equivalence Between Labelled State Transition Systems 213

(c) val, o((sr,54)) € Uy erys p)] val, , (t') and val, ((s.,s,)) C
UtERfl[(sP .8 o] 'Ual ()

By the symmetry?, it is sufficient to prove only (a) and (c). Suppose

(s} ,sl) —=piq (55,5,) and (s).,s)) € Vlfé‘rg Then we have s/, gp Sp
d‘aQ

5L,==20 84, 5p€ VH" and s/ € V" Because ((sp,s,), (s, s o)) ERp|Q;

we have (s,,s,) € Vﬁfg, (s, ,SQ) Vﬁﬂ’b, » ~p s, and s, ~q s,

By Lemma 1, there exist states s/, VRCh and 8:2 VRCh such that

lar

a
=20 s, and s(,~q s,,. Therefore, s, =% p s

alap alag
ﬁp S, s SpRP Sy, 8],

and s, %Q C

known that (s’,, Q):>p lQ (s, .8,)- Because (s} ,s)) € Vg‘%, s,Rp s,

P

By the property of parallel composition of LTS, it can be

and s/, ~q sQ by the algorithm of constructing ~p g it can be known that
((s5,80),(s.,8,,)) € ~p|q- Since it has been proved that ~p|oC VI?IICS X

Vlﬁzﬂ’é , we know (s;,sé) Vﬁﬂ% Thus the proposition (a) holds. Next,

we will prove the proposition (c). By the definition of ~, and =, we have:

P

(1) valP(SP> - UtP e(zp[sp]) Ualp (tp)
(2) val,(s,) € U, E(mglso)) val,, (t,).

Q
By (1), (2) and the definition of P || @, we have:

(3) val, ,((sp,845)) ={2pUNq | 2p €val,(s,) N g €val,(s,)}
Q{QPUQQ‘QPEUtPE(N [s)val ()/\
)

g € UtQ Elrglsg pval, (t,
By the definitions of R and P’ || Q’, we have:

(4) R[(Spv%)] = (=p [s5]) X (=q [sq])
(B)val, , ((t,.t,))={02p ULy | 2p Gval (t,) A f2q €val, (t,)}

P

where (¢ €Vpo.Lett' =(t By (4) and (5), we know:

P’Q)

Jval, () =120 Uq |3, €(~pls,)). 1, €Rq [s,):
(2p cwal, (t,) N2 Eval (t,)}

—{Qp Uf2g |Qp EUt e(xplsp)) valP (t P YA

¢ EUtQ e(~ols)valQ (t,)}

Furthermore, by (3) and (6) it can be concluded that:

val, o((sp:50)) Ut ER|(s

P’Q)

(6) Ut eryes

PSQ

o) val, . ().
S

4 Noting that ~Rp|q can be defined equivalently in the forms of the equation (1) or
(3), which are symmetrical.

214 Y. Wen, J. Wang, and Z. Qi

Symmetrically, it can be proved that:

val, o ((s,,8,)) C UteRfl[(Sp s

Thus proposition (c¢) holds.

9 val,, ().
Q

To sum up, the proposition 2 holds. a

As to reverse observation equivalence, several hiding operations can be merged.
The following theorem illustrates it, which can be proved according to the defi-
nitions.

Theorem 3. Given LSTSs P, Q and action sets Ly, Lo that do not contain the
internal action T, the following propositions hold:
1. P\Ll\L2 ~, P\(Ll ULQ)
2. If (@PNLy)=(aPNLy)=(L1NLy) =10, then (P\ L) || (Q\ L2) =, (P ||
Q) \ (L1 U Ly).

4 Compositional Reachability Analysis Based on Reverse
Observation Equivalence

Compositional reachability analysis (CRA) is a kind of hierarchy-based incre-
mental analysis approach [4, 5, 6, 7]. Given a hierarchy of models, it incrementally
composes, hides and reduces subsets of the models according to the hierarchy,
and finally produces a model that is equivalent to the one produced by the
straightforward all-at-once approach, i.e. composing all the models simultane-
ously and then hiding all unobservable actions. Because the intermediate mod-
els can be reduced in CRA, the final model produced by CRA is usually much
smaller than the one gotten by the “all-at-once” approach. The CRA approach
is called compositional LTS construction in [10], and incremental composition
and reduction method in [16]. In this section, we formalize the theory of CRA of
LSTS based on reverse observation equivalence.

A hierarchy of LSTSs denotes a set of LSTSs with a hierarchy structure.
Formally, we can define recursively a hierarchy H of LSTSs in BNF format:

Hu= (Hy | Hy |- | H)\L | LSTS\L

where LST'S denotes an LSTS and L denotes an action set (7 ¢ L). Intuitively,
a hierarchy is either the composition of a set of sub-hierarchies or simply an
LSTS, with the actions in L hidden.

Given an LSTS P and a hierarchy H of LSTSs, let red(P) denote a reduction
operation to P based on reverse observation equivalence (that is, red(P) =, P),
and cra(H) denote the final LSTS of CRA of H based on reverse observation
equivalence. Then the algorithm of CRA can be represented as follows.

cra(H) = {red«H,’;l cra(Hi))\L) if H = (Hy || Hy || --- || Hi)\L
red(P\L) if H=P\L

where [, cra(H;) denotes cra(Hy) || cra(Hs) || -+ || cra(Hy).

Reverse Observation Equivalence Between Labelled State Transition Systems 215

In order to illustrate the principle of CRA based on reverse observation equiv-
alence, we define recursively several operators on hierarchies: lsts(H), act(H)
and hid(H), which denote respectively all LSTSs, all the actions and all the
hidden actions of the hierarchy H. Their formal definitions are as follows.

tsts(ir) — { Ui Ists(EL) 56 H = (Hy | Hy |- | H)\L
{P} if H=P\L

_ JUiiyact(Hy) if H=(H | Hy | --- || Ho)\L
act(H) = {aP it H=P\L

oy = Uing hid(Hi)) UL i H = (Hy || Hy || -+ || Ho)\L
hid(H) = {L if H=P\L
In the following discussion, we make an assumption that for all hierarchies
H=(H, | Ha||--- || H,)\L, the below formula holds.

Vi,j € [L...n]. (i # j) — ((hid(H;) Nact(H;)) = (hid(H;) N hid(H,)) = 0) (4)

The aim of the assumption is to avoid the possible disturbance when deferring
the hiding operations in CRA (see below). Obviously, when the assumption is
not satisfied, renaming operations can be made to turn the assumption satisfied,
without changing the behaviors of the LSTSs. So, the restriction does not cause
any loss of generality.

Given a hierarchy H, let Ists(H) = {T1,T5,...,T,}. We denote the LSTS
produced by the “all-at-once” approach as once(H), that is:

n .
once(H) =4 (I_LZ1 T;)\hid(H).
The next lemma shows that once(H) can also be calculated compositionally.

Lemma 3. Given a hierarchy of LSTSs H = (Hy || Ha || -+ || Hu)\L, then
once(H) = ([}, once(H;))\L.

Proof. Let Ists(H;) = {T},T7,...,T;" }, and []lsts(H;) =qr T[]}, T7. Then we
deduce as follows.

[Liz T sts(Hi)\((Ui=, hid(H;))UL)
Hlsts(i) \hid(H;)

[T, (TTlsts(H;))\hid(H;)))\L
[Ty [Tists(Hi)\(Ui=, hid(H;))\L
IT- 1H58t8(DN\(Ui= 1hld(Hi))UL)

once(H) = (

once(H;) = (

(ITi—y once(H))\L = (

(ITi=y ((TTists(Hq))\hid(Hy))\L = E

(by assumption (4) and Theorem 3)

once(H) = ([[;_, once(H;))\L
O

The following theorem presents the essential principle of CRA based on re-
verse observation equivalence, i.e. the CRA approach and all-at-once approach
coincide in the semantics of reverse observation equivalence.

216 Y. Wen, J. Wang, and Z. Qi

Theorem 4. For a hierarchy H of LSTSs, cra(H) =, once(H).

Proof. We prove recursively according to the definition of hierarchy as follows.

1. If H = P\L where P is an LSTS, then cra(H) = red(P\L) and once(H) =
P\L. Because red(P\L) ~, P\L, cra(H) =, once(H) holds.

2. H=(H | Ha || - || H,)\L where H; (i € [1...n]) is the sub-hierarchy
of H and satisfies cra(H;) ~, once(H;), then we deduce as follows.

H' =g (cra(Hy)||era(Hy)]| - -+ |lera(Hn))\L

cra(H) = red(([]}, cra(H;))\L) by definition
(1) cra(H) = red(H')
(2) red(H') =, H’
cra(H) =, H’ by (1),(2)
once(H) = ([[i., once(H;))\L by Lemma 3
(3) cra(H;) =, once(H;)(i€[1...n]) by premise
[T, cra(H;) =, [[i_, once(H;) by Theorem 2 and (3)
(ITizy era(H)\L = (IT;=; once(H;)\L
H' =, once(H)
cra(H) =, once(H)
To sum up, we have cra(H) =, once(H). O

5 Case Study

We have implemented a ROE-reduction algorithm in the framework of TVT
toolkit. To show its actual effects, we give a simple example, a demand-driven
token ring system for mutual exclusion which was introduced in [1]. We check
the mutual exclusion property (an invariant property) of the system by three
different approaches: CRA based on ROE, CRA based on CFFD, and the “all-
at-once” approach. A comparison is made between them.

The system is depicted in Figure 3. It can be seen that there are n clients and
n servers in the system. A client interacts with a server when intending to access
the mutual exclusive resources. The servers are organized in a ring structure, in
which one single token is passed clockwise (¢r for sending and ¢l for receiving)
and the demands for the token are passed counterclockwise (dl for sending and
dr for receiving) [1]. The LSTS of clients have been presented in Figure 1 and
the LSTS of servers can be found in [1]. It is worthy to mention that the LSTSs
are adapted to satisfy the “root-unwound” property.

Our experiments show that the mutual exclusion property can be checked
successfully whenever the models are correct or not by using the above three
approaches. Figure 4 shows a hierarchy of the system with 3 clients and 3 servers,
whose models are correct. Results are represented in the figure when adopting
the approach of CRA based on ROE.

Reverse Observation Equivalence Between Labelled State Transition Systems 217

Fig. 3. Topology of a simplified token-ring system

before reduction

T4
(after reduction) — > (1/0)
43/143
(30/92) Nodel2

Server3
(9/22) (9/22) 717 12/30
(4/4) /

|Clieml Serverl | Client2 | Server2 # states
1 12/30 11 12/30 # transitions
(4/4) (4/4)

Fig. 4. A hierarchy of the token-ring system for CRA based on ROE

Comparing with the CRA based on ROE, a similar test is made by the
approach of CRA based on CFFD (the original LSTSs are adopted without
adaption for “root-unwound” property). The results are shown in Figure 5. It
can be seen that the largest subsystem Nodel2 that is generated by CRA based
on ROE contains 43 states and 143 transitions, while the largest subsystem
Nodel23 that is generated by CRA based on CFFD contains 482 states and
1255 transitions. Thus, for invariant checking of LSTS, the former approach can
produce much smaller models than the latter one.

Table 1 shows the sizes of the largest subsystems generated by CRA based
on hierarchies similar to Figure 4 when the system contains 2 ~ 6 nodes (one
node contains a client and a server). From the table, it can be seen that ROE is
much more efficient than CFFD when checking invariants of LSTS.

218 Y. Wen, J. Wang, and Z. Qi

334/1065 Nodel P

482/1255
(192/528) Nodel23
(191/603)

23/65 Nodel Node2 23/65 Server3
(23/53) (23/56) 6/6 11/29
(5/5)

|C11ent1 Serverl | Chent2 Server2
6/6 11/29 6/6 11/29
(5/5) (5/5)

Fig. 5. A hierarchy of the token-ring system for CRA based on CFFD

Table 1. The largest subsystems generated by CRA and All-at-once approaches

CRA based on ROE |[CRA based on CFFD All-at-once
##nodes F#states|#transitions|#states| #transitions |#states|#transitions
2 13 21 90 176 110 288
3 43 143 482 1255 825 2820
4 153 593 3075 12244 5500 23200
5 525 2367 27999 138242 34375 172500
6 1793 9177 266805 1581601 | 206250 | 1200000

6 Conclusion

The paper presents a new equivalence, reverse observation equivalence, which
orients the invariant checking of LSTS. It is proved that the new equivalence is a
congruence with respect to the basic parallel composition. The experiments show
that ROE is quite efficient for the invariant checking of LSTS in the context of
compositional reachability analysis.

Our future work will consider checking the deadlock and livelock properties
of LSTS by combining the approaches based on observation equivalence and
reverse observation equivalence.

References

1. Hansen, H., Virtanen, H., Valmari, A.: Merging state-based and action-based
verification. In: Proceedings of the Third International Conference on Application
of Concurrency to System Design (ACSD’03). (2003) 150-156

2. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)

Reverse Observation Equivalence Between Labelled State Transition Systems 219

10.

11.
12.

13.

14.

15.

16.

Alur, R., Henzinger, T.A.: Computer-Aided Verification: An Introduction to Model
Building and Model Checking for Concurrent Systems. (1998)

. Cheung, S.C., Kramer, J.: Checking subsystem safety properties in compositional

reachability analysis. In: Proceedings of the 18th international conference on Soft-
ware engineering, IEEE Computer Society (1996) 144-154

Cheung, S.C., Kramer, J.: Enhancing compositional reachability analysis with
context constraints. In: Proceedings of the 1st ACM SIGSOFT symposium on
Foundations of software engineering, ACM Press (1993) 115-125

Tai, K.C., Koppol, V.: Hierarchy-based incremental reachability analysis of com-
munication protocols. In: Proceedings of the IEEE International Conference on
Network Protocols. (1993)

Yeh, W.J., Young, M.: Compositional reachability analysis using process algebra.
In: Proceedings of the symposium on Testing, analysis, and verification, ACM Press
(1991) 49-59

Valmari, A.: Compositionality in state space verification methods. In: Proc. 17th
International Conference in Application and Theory of Petri Nets (ICATPN’96),
Osaka, Japan. Volume 1091 of LNCS., Springer-Verlag (1996) 29-56

Cheung, S.C., Kramer, J.: Context constraints for compositional reachability anal-
ysis. ACM Trans. Softw. Eng. Methodol. 5 (1996) 334-377

Valmari, A.: Compositional state space generation. Technical Report A-1991-5,
Department of Computer Science, University of Helsinki, Finland (1991)

Milner, R.: Communication and concurrency. Prentice-Hall, Inc. (1989)

Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. Journal of the ACM (JACM) 31 (1984) 560-599

Karsisto, K.: A New Parallel Composition Operator for Verification Tools. PhD
thesis, Tampere University of Technology Publications 420, Tampere, Finland
(2003)

van Gabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation
semantics. Journal of the ACM (JACM) 43 (1996) 555-600

Lynch, N., Vaandrager, F.: Forward and backward simulations part 1: Untimed
systems. Information and Computation 121 (1995) 214-233

Sabnani, K., Lapone, A., Uyar, M.: An algorithmic procedure for checking safety
properties of protocols. IEEE Trans. Commun. 37 (1989) 940-948

Minimal Spanning Set for Coverage Testing of
Interactive Systems

Fevzi Belli and Christof J. Budnik

University of Paderborn, Warburger Str., 100, 33098 Paderborn, Germany
{belli, budnik}@adt.upb.de

Abstract. A model-based approach for minimization of test sets for interactive
systems is introduced. Test cases are efficiently generated and selected to cover
the behavioral model and the complementary fault model of the system under
test (SUT). Results known from state-based conformance testing and graph the-
ory are used and extended to construct algorithms for minimizing the test sets,
considering also structural features of the SUT.

1 Introduction

Testing is the traditional validation method in the software industry. There is no justi-
fication, however, for any assessment on the correctness of the SUT based on the suc-
cess (or failure) of a single test, because there can potentially be an infinite number of
test cases, even for very simple programs. To overcome this shortcoming of testing,
formal methods have been proposed, which introduce models that represent the rele-
vant features of the SUT. The modeled, relevant features are either functional behav-
ior or the structural issues of the SUT, leading to specification-oriented testing or im-
plementation-oriented testing, respectively. This paper is on specification-oriented
testing; i.e., the underlying model represents the system behavior interacting with the
user’s actions. The system’s behavior and user’s actions will be viewed here as
events, more precisely, as desirable events if they are in accordance with the user ex-
pectations. Moreover, the approach includes modeling of the faults as undesirable
events as, mathematically spoken, a complementary view of the behavioral model.

Based on [3], this paper introduces a novel, graphical representation of both the
behavioral model and the fault model of the SUT. Algorithms are introduced for the
coverage of these models by a minimal set of test cases (minimal spanning set for
coverage testing). The next section summarizes the related work before Section 3 in-
troduces the fault model and the test process. The optimization of the test case set is
discussed in Section 4. Section 5 considers the structure of the SUT to avoid unneces-
sary and/or infeasible tests. Supporting tools are introduced in Section 6. Section 7
summarizes the results and sketches the research work planned.

2 Related Work

Methods based on finite-state automata have been used for almost four decades for
the specification and testing of system behavior, e.g., for specification of software

Z. Liu and K. Araki (Eds.): ICTAC 2004, LNCS 3407, pp. 220-234, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Minimal Spanning Set for Coverage Testing of Interactive Systems 221

systems [8], as well as for conformance and software testing [6, 1, 20, 18]. Also, the
modeling and testing of interactive systems with a state-based model has a long tradi-
tion [19, 13, 21, 25]. These approaches analyze the SUT and model the user require-
ments to achieve sequences of user interaction (UI), which then are deployed as test
cases. [25] introduced a simplified state-based, graphical model to represent Uls; this
model has been extended in [3] to consider not only the desirable situations, but also
the undesirable ones. This strategy is quite different from the combinatorial ones, e.g.,
pairwise testing, which requires that for each pair of input parameters of a system,
every combination of these parameters’ valid values must be covered by at least one
test case. It is, in most practical cases, not feasible [22] to test Uls.

A similar fault model as in [3] is used in the mutation analysis and testing approach
which systematically and stepwise modifies the SUT using mutation operations [10].
This approach has been well understood, is widely used and, thus, has become quite
popular. Although originally applied to implementation-oriented unit testing, muta-
tion operations have also been extended to be deployed at more abstract, higher lev-
els, e.g., integration testing, state-based testing, etc. [9]. Such operations have also
been independently proposed by other authors, e.g., “state control faults” for fault
modeling in [7], or for “transition-pair coverage criterion” and “complete sequence
criterion” in [18]. However, the latter two notions have been precisely introduced in
[3] and [25], respectively, earlier than in [18].

Another state-oriented group of approaches to test case generation and coverage
assessment is based on model checking, e.g., the Software Cost Reduction method, as
described in [12]. These approaches identify negative and positive scenarios to gener-
ate and select test cases automatically from formal requirements specifications. A dif-
ferent approach, especially for graphical user interface (GUI) testing, has been intro-
duced in [16]; it deploys methods of knowledge engineering to generate test cases,
test oracles, etc., and to deal with the test termination problem. All of these ap-
proaches use some heuristic methods to cope with the state explosion problem.

This paper also presents a method for test case generation and test case selection.
Moreover, it addresses test coverage aspects for test termination, based on [3], which
introduced the notion of “minimal spanning set of complete test sequences”, similar to
“spanning set”, that was also discussed in [15]. The present paper considers existing
approaches to optimize the round trips, i.e., the Chinese Postman Problem [1], and at-
tempts to determine algorithms of less complexity for the spanning of walks, rather
than tours, related to [24, 17].

3 Fault Model and Test Process

This work uses Event Sequence Graphs (ESG) for representing the system behavior and,
moreover, the facilities from the user’s point of view to interact with the system. Basi-
cally, an event is an externally observable phenomenon, such as an environmental or a
user stimulus, or a system response, punctuating different stages of the system activity.

3.1 Preliminaries

Definition 1. An Event Sequence Graph ESG=(V,E) is a directed graph with a finite
set of nodes (vertices) V # & and a finite set of arcs (edges) E < VXV.

222 F. Belli and C.J. Budnik

For representing user-system interactions, the nodes of the ESG are interpreted as
events. The operations on identifiable components of the UI are controlled/perceived
by input/output devices, i.e., elements of windows, buttons, lists, checkboxes, etc.
Thus, an event can be a user input or a system response; both of them are elements of
V and lead interactively to a succession of user inputs and system outputs.

Definition 2. Let V, E be defined as in Def. 1. Then any sequence of nodes (vy,...,v;)
is called an (legal) event sequence (ES) if (v;, viy;)€ E, for i=0,....k-1.

Furthermore, « (initial) and @ (end) are functions to determine the initial node and
end node of an ES, i.e., A ES)=vy, & ES)=v,. Finally, the function / (length) of an ES
determines the number of its nodes. In particular, if [(ES)=1 then ES=(v;) is an ES of
length 1. An ES=(v;, v;) of length 2 is called an event pair (EP).

The assumption is made that there is an ES from the single node & to all other
nodes, and from all nodes there is an ES to the single node y(g y & V). €is called the
entry and yis called the exir of the ESG.

Fig. 1. An ESG with [as entry and] as exit

The entry and exit, represented by ‘[’ and ‘]’, respectively, are not included in V.
They enable a simpler representation of the algorithms to construct minimal spanning
test case sets (Section 4).

Definition 3. An ES is called a complete ES (Complete Event Sequence, CES), if
o ES)=¢is the entry and (fES)= yis the exit.

CESs represent walks from the entry ‘[* of the ESG to its exit ‘]’.

Definition 4. The node w is a successor event of v and the node v is a predecessor
event of w if (v, w)e E. The difference of a node ue V diff{u) is defined as the number
of predecessor events reduced by the number of successor events.

Definition 5. Let two ESGs be defined as ESG; = (V;, E;), i = 1,2. ESG] is a subgraph
of ESG,if V; cV,and E; c E,. ESG; is an induced subgraph by a set of nodes.

3.2 Fault Model and Test Terminology

Definition 6. For an ESG=(V, E), its completion is defined as ESG =(V,lA?) with
E=VxV.

Definition 7. The inverse (or complementary) ESG is then defined as ESG =(V.E)
with E = E\E (\: set difference operation).

Minimal Spanning Set for Coverage Testing of Interactive Systems 223

Fig. 2. The completion ESG and inversion ESG ofFig. 1

Note: Entry and exit are not considered while constructing the ESG .
Definition 8. Any EP of the ESG is a faulty event pair (FEP) for ESG.

Definition 9. Let ES=(vy,...,v;) be an event sequence of length k+/ of an ESG and
FEP=(vy, v, a faulty event pair of the according ESG . The concatenation of the ES
and FEP forms then a faulty event sequence FES={vy,...,Vi, V).

Definition 10. An FES will be called complete (Faulty Complete Event Sequence,
FCES) if {FES)=¢is the entry. The ES as part of a FCES is called a starter.

3.3 Test Process

Definition 11. A test case is an ordered pair of an input and expected output of the
SUT. Any number of test cases can be compounded to a fest set (or, a test suite).

Once a test set has been constructed, tests can be run applying the test cases to the
SUT. If it behaves as expected, the SUT succeeds the test, otherwise it fails the test.
The approach introduced in this paper uses event sequences, more precisely CES, and
FCES, as test inputs. If the input is a CES, the SUT is supposed to proceed it and thus,
to succeed the test. Accordingly, if a FCES is used as a test input, a failure is expected
to occur. The latter case represents an exception that must be properly handled by the
system, i.e., the SUT is supposed to refuse the proceeding and produce a warning. The
test process is sketched in Algorithm 1.

Algorithm 1. Test Process

n :=number of the functional units (modules) of the system that fulfill a well-
defined task
length := required length of the test sequences

FOR functionl TO n DO
Generate appropriate ESG and ESG
FOR k:=2 TO length DO //Section 4.3
Cover all ESs of length k by means of CESs
subject to minimizing the number and total length of the CES //Section 4.1
Cover all FEPs of by means of FCESs
subject to minimizing the total length of the FCESs //Section 4.2
Apply the test set to the SUT
Observe the system output to determine whether the system response is in
compliance with the expectation

224 F. Belli and C.J. Budnik

To determine the point in time in which to stop testing, a criterion is necessary to
systematize the test process and to judge the efficiency of the test cases. The ap-
proach converts this problem into the coverage of the ES and FES of length k of the
ESG .

The test costs are given by the minimized total length of the CESs and FCESs. The
length of the ESs can be increased stepwise. This enables a scalability of the test costs
which are proportional to the length of the ESs.

4 Minimizing the Spanning Set

The union of the sets of CESs of minimal total length to cover the ESs of a required
length is called Minimal Spanning Set of Complete Event Sequences (MSCES).

If a CES contains all EPs at least once, it is called an entire walk. A legal entire
walk is minimal if its length cannot be reduced. A minimal legal walk is ideal if it
contains all EPs exactly once. Legal walks can easily be generated for a given ESG as
CESs, respectively. It is not, however, always feasible to construct an entire walk or
an ideal walk. Using some results of the graph theory [24], MSCESs can be con-
structed as follows:

o Check whether an ideal walk exists.

e If not, check whether entire walks exist. If yes, construct a minimal one.

e If there is no entire walk, construct a set of walks with minimal total length to
cover all ES.

4.1 An Algorithm to Determine Minimal Spanning Complete Event Sequence

A similar problem to the determination of MSCESs is the Directed Chinese Postman
Problem [23]. In the following, some results are summarized that are relevant to de-
termine the test costs and enable scalability of the test process.

The Algorithm 2 determines a set of walks with the minimal total length to cover
all EPs and requires that this graph be strongly connected, which can be done through
an additional arc from the final to the entry (Fig. 3). The figures within the nodes in
Fig. 3 indicate the calculated differences (Definition 4) of these nodes. These balance
values determine the number of additional EPs that will be identified by searching the
all-shortest-path and solving the optimization problem by the Hungarian method [14].
The problem can then be transferred to the construction of the Euler tour for this
graph [24].

Fig. 3. Transferring walks into tours and balancing the nodes

Minimal Spanning Set for Coverage Testing of Interactive Systems

225

Input: ESG=(V, E); &, =]
Output: MSCES

addArc (ESG, (v,€)) ;
sets A,B,M,MSCES := {J

FOR EACH veV DO
IF (diff(v)>0) THEN

A := AU {v, |ie{1,.
IF (diff(v)<0) THEN
B := B U {v, |i1e{1,.
m := |A| i = |B|;

D[1..m][1..m];

Algorithm 2. Determination of the MSCES

//insert arc from] to [
//empty sets

L, diff(v))}

L, diff(v))}

//cardinality
//distance matrix D

FOR EACH veA DO /lcompute all shortest paths from v to all be B
computeShortestPaths (v, B, D) ; //shortest distances are saved in D
M := solveAssignmentProblem (D) ;
/IM = {(i, j) | one-to-one mapping: i€ {1,...m}—je {1,...m} } by Hungarian
method
FOR EACH (i,3j)€M DO
Path := getShortestPath(i,j);
FOR EACH eePath DO
addArc (ESG, e) ;
EulerTourList := computeEulerTour (ESG); //tour startsin €
//BulerTourList = (€,...,V,&,..., ", ..., T,E)

start := 1;
FOR 1:=2 TO length(EulerTourList)-1 DO
IF (getElement (EulerTourList,i) = 7y) THEN
MSCES := MSCES U get-
PartList (EulerTourList, start,i);
start := i+1; //MSCES = {(g,...,7),(&,...,7),(E,....7),... }

RETURN MSCES;

The function addArc (ESG, (u,v)) inserts a new arc from the node u to the
node v of the ESG. The function computeShortestPath () determines all short-
est paths from a node v to all b € B with BFS algorithm and stores these shortest dis-
tances in the matrix D for later usage by the function getShortestPath (). The
function solveAssignmentProblem () returns a one-to-one mapping of the un-
balanced nodes. The function computeEulerTour () determines the Euler tour of
the ESG. The euler tour will be decomposed into subsequences by the function get -
PartList ().

In Algorithm 2, the ESG is represented by its adjacency matrix. The algorithm
consists of three sections:

e Determination of all-shortest-paths by Floyds algorithm with the complexity
O(IVI3) [2]. However, because the ESG is a non-weighted digraph, the complexity
can be decreased by using the Breadth-First-Search down to O(IVI-IEl). This results
from the fact that:

226 F. Belli and C.J. Budnik

— Breadth-First-Search algorithm determines the shortest path from one node of
the ESG to all other ones in O(IEl) as |EI>IVI+1.
— Breadth-First-Search algorithm iterates |VI times to handle all nodes.
e The optimizing problem, which is solved in accordance with [14] by the Hungarian
method, with the complexity O(IVI3).
e Computation of an Euler tour with the complexity of O(IVI-IEl) [24].

To sum up, the MSCES can be solved in O(IVP) time. Note that no entire walk ex-
ists for the example. Therefore, an ideal walk cannot be constructed.

4.2 Minimal Spanning Set for the Coverage of Faulty Event Sequences

The union of the sets of FCESs of the minimal total length to cover the FESs of a re-
quired length is called Minimal Spanning Set of Faulty Complete Event Sequences
(MSFCES).

In comparison to the interpretation of the CESs as legal walks, illegal walks are re-
alized by FCESs that never reach the exit. An illegal walk is minimal if its starter can-
not be shortened.

Assuming that an ESG has n nodes and d arcs as EPs to generate the CESs, then
exactly u:=n’-d arcs are FEPs. Thus, at most u FCESs of minimal length, i.e., of
length 2, are available; those FCESs emerge when the node(s) after entry is (are) fol-
lowed immediately by a faulty input. The number of FCESs is precisely determined
by the number of FEPs. FEPs that represent FCES are of constant length 2; thus, they
also cannot be shortened. It remains to be noticed that only the starters of the re-
maining FEPs can be minimized, e.g., using the algorithm given in [11].

While constructing the MSCESs one can exclude the ESs that are already used to
form starters to construct MSFCESs. This can help save costs if the test budget is very
limited, as is very often the case in practice.

4.3 Generating Event Sequences with Length > 2

A phenomenon in testing interactive systems most testers are familiar with, is that
faults can be frequently detected and reproduced only in some context. This makes a
test sequence of a length>2 necessary since repetitive occurrences of some subse-
quences are needed to cause an error to occur/re-occur.

o‘@‘@
O-GLE0D)
Fig. 4. Static faults vs. dynamic faults

Consider the following scenario: Based on the ESG given in Fig. 4, the tester as-
sumedly observes that the EP given by BC always reveals a fault, no matter if exe-
cuted within [ABC], [ABABC], or [ABDCBC], i.e., the test cases containing BC al-

Minimal Spanning Set for Coverage Testing of Interactive Systems 227

ways detect the fault in any context. In this case, the fault is said to be a static one, as
it can be detected without a context. Furthermore, the same scenario (so the assump-
tion) demonstrates that the EP BA reveals another fault, but only in the context of
[ABCBAC], and never within [ABAC], or [ABACBDC], etc. In this case the fault is
said to be a dynamic one.

Such observations clearly indicate that the test process must be applied to longer
ESs than 2 (EPs).

Therefore an ESG can be transformed into a graph in which the nodes can be used
to generate test cases of length > 2, in the same way that the nodes of the original
ESG are used to generate EPs and to determine the appropriate MSCES.

Fig. 5 illustrates the generation of ESs of length=3. In this example adjacent nodes
of the extended ESG are concatenated, e.g., AB is connected with BD, leading to
ABBD. The shared event, i.e., B, occurs only once producing ABD as an ES of
length=3. In case ESs of length=4 are to be generated, the extended graph must be ex-
tended another time using the same algorithm.

Fig. 5. Extending the ESG for covering ESs of length=3

The common valid of this approach is given by Algorithm 3. Therein the notation
ES (ESG, 1) represents the identifier, e. g., AB, of the node i of the ESG. This identi-
fier can be concatenated with another identifier ES (ESG, j) of the node j, e.g., CD.
This is represented by AB @ CD, or ES (ESG, 1) @ ES(ESG, j), resulting in the
new identifier ABCD. Note that the identifiers of the newly generated nodes to extend
the ESG will be made up using the identifiers of the existing nodes. The function
addNode () inserts a new ES of length k. Following this step, a node u is connected
with a node v if the last n-/ events that are used in the identifier of u are the same as
the first n-/ events that are included in the identifier of v. The function addArc ()
inserts an arc, connecting u# with v in the ESG. The pseudo nodes [,] are connected
with all the extensions of the nodes with which they were connected before the exten-
sion. In order to avoid traversing the entire matrix, arcs which are already considered
are to be removed by the function removeArc ().

Apparently, the Algorithm 3 has a complexity of O(IVI?) because of the nested
FOR-loops to determine the arcs in the ESG’. A further algorithm to generate FESs of
length > 2 is not necessary because such faulty sequences will be constructed through
the concatenation of the appropriate starters with the FEPs. Algorithm 2 can be ap-
plied to the outcome of the Algorithm 3, i.e., to the extended ESG, to determine the
MSCES for I[(ES) > 2.

228 F. Belli and C.J. Budnik

Algorithm 3. Generating ESs and FESs with length > 2

Input: ESG=(V, E); £ =, y= 1. ESG'=(V', E") with V'=@ , &'=[, y=];
Output: ESG’=(V", E’), £'=[, 7=1;

FOR EACH (i,j)e E with (i<>g) AND (j<>Yy) DO
addNode (ESG’, (ES(ESG,i) @ (ES(ESG,3J)));
removeArc (ESG, (1,3));

FOR EACH i€ V' with (i<>g’) AND (i<>'y‘) DO
FOR EACH je V' with (j<>&’) AND (j<>'y‘) DO

IF(ES(ESG’,1) @ o (ES(ESG’,3j)) =
o (ES(ESG’,1)) @ (ES(ESG’,j)) THEN
addArc (ESG’, (1,3));
FOR EACH (k,1)€eE with k=& DO
IF(ES(ESG’,1) = ES(ESG,l) @ (ES(ESG’,1)) THEN
addArc (ESG', (e’ ,1)) ;
FOR EACH (k,1)e E with 1=y DO
IF(ES(ESG’,1) = o (ES(ESG’,1)) @ ES(ESG,k) THEN
addArc (ESG’, (1,7'));
RETURN ESG’;

5 Exploiting the Structural Features

The approach has been applied to the testing and analysis of the GUIs of different
kind of systems, leading to a considerable amount of practical experience. A great
deal of test effort could be saved considering the structural features of the SUT. Thus,
there is further potential for the reduction of the cost of the test process.

5.1 A Practical Example

Fig 6 depicts a small part of the GUI of an MS WordPad-like word processing sys-
tem. This GUI will usually be active when a text portion is to be loaded from a file, or
to be manipulated by cutting, copying, or pasting. The GUI will also be used for sav-
ing the text to the current file (or to another one). The optional events are abbreviated
in the Fig. 7 with capital letters. There are still more window components, but they
will not be explained here further. The described components are used to traverse
through the entries of the menu and sub-menus, creating many combinations and ac-
cordingly, many applications.

The GUI represented in Fig. 6 is transferred to an ESG (Fig. 7). is easy to under-
stand, but an informal and imprecise presentation of the GUI, while Fig. 7 is a for-
mal presentation that neglects some aspects, e.g., the hierarchy, while still being
precise.

The conversion of Fig. 6 into Fig. 7 is the most abstract step of the approach that
must be done manually, requiring some practical experience and theoretical skill in

Minimal Spanning Set for Coverage Testing of Interactive Systems 229

designing GUIs. Example 1 lists the FCESs to cover the FEPs of the ESGs
Main/Open given in Fig. 7.

Main Frame
______ = e
A: Filg K: Cut | L: Copy ! M: Paste! H: Help h
B: Open
Open Help
E: Select S: Search
D: Name
H: OK |F: Cancel]
|X: Close

Fig. 6. Top-level GUI of WordPad, modal/modeless windows

Fig. 7. ESG of the GUI represented in

Example 1. AD, AE, AF, AH, ABA, ABB, ABH, ABDA, ABDB, ABEA, ABEB,
ABFB, ABFF, ABFE, ABFD, ABFH, AB(E+D)HA, AB(E+D)HB, AB(E+D)HD,
AB(E+D)HE, AB(E+D)HF, AB(E+D)HH

5.2 Modal and Modeless Windows

Analysis of the structure of the GUIS, e.g., the example GUI in Fig. 6., delivers the
following features:

e Windows of commercial systems are nowadays mostly hierarchically structured,
i.e., the root window invokes children windows that can invoke further (grand)
children, etc.

e Some children windows can exist simultaneously with their siblings and parents;
they will be called modeless (or non-modal) windows. Other children, however,
must “die”, i.e., close, in order to resume their parents (rmodal windows).

230 F. Belli and C.J. Budnik

For the main frame of the WordPad, the child window Help is a modeless win-
dow; the other child window, Open, is a modal one. Fig. 8 represents these windows
as a “family tree”. In this tree, a unidirectional edge indicates a modal parent-child re-
lationship. A bidirectional edge indicates a modeless one.

moday — |K modeless

Open Help

Fig. 8. Modal windows vs. modeless windows

Modal windows must be closed before any other window can be invoked. There-
fore, modal windows can be tested without taking the other windows into account, i.e.,
it is not necessary to consider the combinations of the ESs and FESs of the parent and
children. Thus, similar to the strong-connectedness and symmetrical features [21], the
modality feature is extremely important for testing since it avoids unnecessary test ef-
forts. Note that this is true only for the FCESs and MSFCESs as test inputs considering
the structure information might impact the structure of the ESG, but not the number of
the CESs and MSCESs as test inputs. Fig. 9 represents the modified ESG of the Word-
Pad. The modification, which separates the events A and B from Open, takes the mo-
dality into account that avoids unnecessary combinations of EPs and FEPs. Example 2
lists the MSFCESs to cover FEPs of the sub-graph Open given in Fig. 9.

Fig. 9. Modified ESG of the GUI in Fig. 8, taking the modality feature into account

Example 2. (E+D)FD, (E+D)FE, (E+D)FF, (E+D)FH, (E+D)HF, (E+D)HD,
(E+D)HF, (E+D)HH

Already this example, i.e., the comparison of Example 1 (22 FEPs) with Example 2
(8 FEPs), demonstrates the efficiency increase through the exploitation of the struc-
tural features of the SUT.

Minimal Spanning Set for Coverage Testing of Interactive Systems 231

6 Tool Support

The determination of the MSCESs/MSFCESs can be very time consuming when car-
ried out manually. Also, the gaining of the structural information that is necessary to
reduce the number of MSFCESs is frequently a rather costly process. Thus, tools of
different categories are necessary for both purposes.

A good software engineering practice ensures that the system behavior has been
modeled during the system design. Otherwise the model has to be constructed manu-
ally afterwards, according to the specification.

6.1 Test Case Generation

For the generation of test cases the tool GenPath [5] has been developed to accept the
adjacency matrix of the ESG as input. The user can, however, input several ESGs
which can also be subgraphs of the vertices of the ESG itself under consideration. Fig.
10 represents the GUI of GenPath which generates MSCESs for ESs of required
length. Moreover, it represents the ESG under consideration and marks its EPs with
the underlying algorithm traces.

. GenPath - [Graph_1_2.pth] g [3]

B Fles Edit Tools View Pages 7 =18 x|

IR TEIED

AZ"I:]SHM "“;:‘gCES . Graph_1_2.net B =10
{3‘3’“% e File Edt View Mabrix ?

{?;g;;{ E’:g =|E| =R & %] Ol LA2)E M7
[l]j4:2] B->D

2.1.1] D3¢

[1.6.2] C>A

2.1.1] A>D

[1.4.0) D->C [additional arc]
(251 C>

MSCES=ACBABDCADCD

Bereit

Bereit [T [2

Fig. 10. GenPath to generate MSCES

6.2 Generation of GUI Structure

Section 5 explained the necessity to consider the specific information on the structure
of the SUT in order to reduce the number of test cases. This structural information can
be obtained with a commercially available Capture-Playback facility, as to WinRun-
ner of Mercury Interactive [26] delivers.

This tool can identify all available windows of a GUI-application and generates
automatically information on the windows hierarchy that can be assembled to deter-
mine modal/modeless windows of the SUT. Fig. 11 represents a part of WordPad that
the test environment has traced. The keyword opened_by identifies the child win-
dow Open. The parent window can be traced via the keyword
menu_select_item().

232

F. Belli and C.J. Budnik

Open:

{class: window,
label: Open,
enabled: 1,

nchildren: 17
}
{ rtree_state: open,
Itree_state: open,

Irn_app_stat: done,

}

module name: "C:\Windows\\Tool\WordPad.exe",

parent_win: "WordPad - [Document 1]",
opened_by: "menu_select_item(\"Open... Strg+O\");"|

Fig. 11. Excerpt out of the WinRunner file with information on a GUI structure

7 Validation

A separate study has applied the proposed approach to a selected significant function of
the personal music management system RealJukebox (RJB), Version 2, of RealNet-
works. This function enables the user to load a CD, select a track, and play it. The user
can then change the mode, replay the track, or remove the CD, load another one, etc.

Table 1. Reducing the number of test cases

Length #CES #MSCES Cost Reduction ES
2 40 15 62.5 %
3 183 62 66.1 %
4 849 181 78.7 %
Sum 1072 258 76.0 %
st #MSFCES withoqt struc- #MSFCES with. structural Cost Reduction MSECES
tural information information
2 75 58 22.7 %
3 339 218 35.7 %
4 1587 632 60.2 %
Sum 2001 908 54.6 %

For a comprehensive testing, several strategies have been developed with varying
characteristics of the test inputs, i.e.,

e the length and number of the test sequences, and

e the type of the test sequences, i.e., CES- and FCESs-based.
This study delivered following findings:

e The test cases of the length 4 were more effective in revealing dynamic faults than
the test cases of the lengths 2 and 3. They were, however, considerably more ex-
pensive in terms of costs per detected fault.

e The CES-based test cases as well as the FCES-based cases were effective in detect-

ing faults.

Minimal Spanning Set for Coverage Testing of Interactive Systems 233

To summarize the test process, one student tester, who acted also as oracle, carried
out 1166 tests semi-automatically over a period of 2 days, working, on average, 8
hours per day, thus spending a total of 78560 seconds. These figures result in ap-
proximately 67 seconds per test. A total of 32 faults were detected.

The results of the research for minimizing the spanning set of the test cases
(MSCES and MSFCES), as described in Section 4, has been applied to the testing of
the selected significant function. Table 1 summarizes that the algorithmic minimiza-
tion (Section 4.1 and 4.2) could save about 75 % of the test costs, while the exploita-
tion of the structural information of the SUT could save up to almost 50%!

A more detailed discussion about the benefits, e.g., concerning the number of de-
tected errors in dependency of the length of the test cases, is given in [4].

8 Conclusion and Future Work

This paper has introduced an integrated approach to coverage testing of interactive
systems, incorporating modeling of the system behavior with fault modeling and
minimizing the test sets for the coverage of these models. The framework is based on
the concept of “event sequence graphs (ESG)”. Event sequences (ES) represent the
human-computer interactions. An ES is complete (CES) if it produces desirable, well-
defined and safe system functionality. The notion of complete faulty event sequences
mathematically complements this view.

The objective of testing is the construction of a set of CESs of minimal total length
that covers all ESs of a required length. A similar optimization problem arises for the
validation of the SUT under exceptional, undesirable situations which are modeled by
faulty event sequences (FESs) and complete FESs (FCESs). The paper applied and
modified some algorithms known from graph theory to these problems. Furthermore,
it was shown how the structure of interactive systems can be algorithmically exploited
by a commercial test tool to reduce the test sets by infeasible and/or unnecessary test
cases.

In the case of safety, the threat originates from within the system due to potential
failures and its spillover effects causing potentially extensive damage to its environ-
ment. The goal for future work is to design defense actions, which is an appropriately
enforced sequence of events, to prevent faults that could potentially lead to such fail-
ures. Further future work concerns cost reduction through automatic, or semiautomatic
modification of a given ESG in order to consider modality of interaction structures.

References

1. A. V. Aho, A. T. Dahbura, D. Lee, M. U. Uyar, “An Optimization Technique for Protocol
Conformance Test Generation Based on UIO Sequences and Rural Chinese Postman
Tours”, IEEE Trans. Commun. 39, pp. 1604-1615, 1991

2. R. K. Ahuja, T. L. Magnanti, J. B. Orlin, “Network Flows-Theory, Algorithms and Appli-
cations”, Prentice Hall, 1993.

3. F. Belli, “Finite-State Testing and Analysis of Graphical User Interfaces”, Proc. 12th
ISSRE, pp. 34-43, 2001

234

4.

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

F. Belli and C.J. Budnik

F. Belli, N. Nissanke, Ch. J. Budnik, “A Holistic, Event-Based Approach to Modeling,
Analysis and Testing of System Vulnerabilities”; Technical Report TR 2004/7, Univ. Pad-
erborn, 2004

Ch. J. Budnik, A. Hollmann, R. Moge, ,,GenPath — A Tool to Generate Paths of different
Lengths of an Event Sequence Graph”, Technical Report TR 2004/9, Univ. Paderborn,
2004

R.V. Binder, “Testing Object-Oriented Systems”, Addison-Wesley, 2000

G. V. Bochmann, A. Petrenko, “Protocol Testing: Review of Methods and Relevance for
Software Testing”, Softw. Eng. Notes, ACM SIGSOFT, pp. 109-124, 1994

Tsun S. Chow, “Testing Software Designed Modeled by Finite-State Machines”, IEEE
Trans. Softw. Eng. 4, pp. 178-187, 1978

M.E. Delamaro, J.C. Maldonado, A. Mathur, “Interface Mutation: An Approach for Inte-
gration Testing”, IEEE Trans. on Softw. Eng. 27/3, pp. 228-247, 2001

R.A. DeMillo, R.J. Lipton, F.G. Sayward, “Hints on Test Data Selection: Help for the
Practicing Programmer”, Computer 11/4, pp. 34-41, 1978

Edsger. W. Dijkstra, “A note on two problems in connexion with graphs.”, Journal of Nu-
merische Mathematik, Vol. 1, pp. 269-271, 1959

A. Gargantini, C. Heitmeyer, ,,Using Model Checking to Generate Tests from Re-
quirements Specification”, Proc. ESEC/FSE ’99, ACM SIGSOFT, pp. 146-162, 1999

J. Jorge, N.J. Nunes, J.F. Cunha (Eds.), “Interactive Systems — Design, Specification, and
Verification”, LNCS 2844, Springer-Verlag, 2003

D.E. Knuth, “The Stanford GraphBase”, Addison-Wesley, 1993

M. Marré, A. Bertolino, “Using Spanning Sets for Coverage Testing”, IEEE Trans. on
Softw. Eng. 29/11, pp. 974-984, 2003

A. M. Memon, M. E. Pollack and M. L. Soffa, “Automated Test Oracles for GUIs”,
SIGSOFT 2000, pp. 30-39, 2000

S. Naito, M. Tsunoyama, “Fault Detection for Sequential Machines by Transition Tours”,
Proc. FTCS, pp. 238-243, 1981

J. Offutt, L. Shaoying, A. Abdurazik, and Paul Ammann, “Generating Test Data From
State-Based Specifications”, The Journal of Software Testing, Verification and Reliability,
13(1):25-53, Medgeh 2003.

D.L. Parnas, “On the Use of Transition Diagrams in the Design of User Interface for an In-
teractive Computer System”, Proc. 24th ACM Nat’l. Conf., pp. 379-385, 1969

B. Sarikaya, “Conformance Testing: Architectures and Test Sequences”, Computer Net-
works and ISDN Systems 17, North-Holland, pp. 111-126, 1989

R. K. Shehady and D. P. Siewiorek, “A Method to Automate User Interface Testing Using
Finite State Machines”, in Proc. Int. Symp. Fault-Tolerant Computing FTCS-27, pp. 80-
88, 1997

K. Tai, Y. Lei, “A Test Generation Strategy for Pairwise Testing”, IEEE Trans. On Softw.
Eng. 28/1, pp. 109-111, 2002

H. Thimbleby “The Directed Chinese Postman Problem”, School of Computing Science,
Middlesex University, London

D.B. West, “Introduction to Graph Theory”, Prentice Hall, 1996

L. White and H. Almezen, “Generating Test Cases for GUI Responsibilities Using Com-
plete Interaction Sequences”, in Proc ISSRE, IEEE Comp. Press, pp. 110-119, 2000
WinRunner, Mercury Interactive, http: //www.mercuryinteractive.com

An Approach to Integration Testing Based on
Data Flow Specifications*

Yuting Chen, Shaoying Liu, and Fumiko Nagoya

Faculty of Computer and Information Sciences, Hosei University,
Koganei-shi, Tokyo 184-8584, Japan
{104t9001, sliu, i02t9012}@k.hosei.ac.jp

Abstract. Integration testing of programs based on formal specifica-
tions can benefit considerably from the comprehensibility of specifica-
tions. In this paper, we describe an approach to testing programs based
on data-flow-oriented specifications by analyzing data flow paths and dis-
cussing criteria for test case generation. This approach suggests a specific
way to generate test cases directly from formalized data flow diagrams
and the associated textual specifications. We apply the approach in a
case study of testing part of an ATM system to evaluate its effectiveness
in fault detection and to uncover its weakness for further improvement.

Keywords: data flow diagrams, specification-based testing, SOFL, test
cases generation.

1 Introduction

Testing programs based on formal specifications is an effective way to uncover
faults leading to violation of their specifications and to therefore enhance their
reliability [1][2]. The advance of research in this area also contributes to the
spreading of application of formal specification techniques in industry due to the
additional value provided by formal specifications serving as a firm foundation
for program testing.

It is worth noticing that much work on specification-based testing so far has
focused on operation level (i.e., unit testing) where an operation is defined using
pre and postconditions [3][4][5][6][7][8]. An important reason for this situation is
that test cases can be rigorously generated based on the pre and postconditions of
an operation, and a test oracle can be easily derived for test result analysis from
the specification. However, when we try to apply this principle to integration
testing of a program composed of many operations (e.g., procedures, methods),
two major problems will inevitably arise. Firstly, test cases can no longer be
easily generated from a pre-post expression, because there is usually no explicit

* This work is supported by the Ministry of Education, Culture, Sports, Science and
Technology of Japan under Grant-in-Aid for Scientific Research on Priority Areas
(No.16016279).

Z. Liu and K. Araki (Eds.): ICTAC 2004, LNCS 3407, pp. 235-249, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

236 Y. Chen, S. Liu, and F. Nagoya

pre-post expression for an integrated specification based on which the entire
program is implemented. In many cases, derivation of a pre-post expression for
an integrated specification (e.g., Z, VDM) is extremely difficult, if not impossible.
Secondly, assuming test cases have been generated properly, evaluation of the
test results becomes a difficulty, since no test oracle can be easily derived from
an integrated specification for this purpose.

Although some of researchers, including ourselves, have experienced a way
to generate test cases based on path coverage criteria in finite state machines
[9][10][11][12][13], this does not resolve the problem with test results analysis:
there is still a lack of effective way to derive a test oracle. In this particular
case, a practical solution is to let human being (e.g., customer or the analyst) to
act as an oracle. To this end, the comprehensibility of the formal specification
becomes important, because a specification with poor understandability would
not facilitate the human being to make correct judgments.

In accordance with our past experience of using both control flow and data
flow specification languages, data flow specifications, such as SOFL (Structured
Object-Oriented Formal Language) [14][15], is more understandable for ordinary
customers or end-users than control flow specifications because of the similarity
in concepts and functional representations between data flow specifications and
their real world systems. For this reason, we believe that adopting data flow
specifications in software development can be more effective in requirements ac-
quisition and validation. While there have been studies on test case generation
for integration testing of programs based on formal control flow specifications,
there is few research on test case generation on the basis of data flow specifi-
cations. According to our experience, it is extremely difficult to correctly select
data flow paths and to generate test cases based on a conventional data flow
diagram that has no precise operational semantics.

In this paper, we describe a path oriented approach to integration testing
of programs based on a formalized data flow diagram, known as condition data
flow diagram (or CDFD for short), which is employed in the SOFL specifica-
tion language [15]. In a SOFL specification, CDFDs are adopted to describe
the architecture of the entire specification, while mathematically-based formal
notation is used to define its components in the associated modules. CDFDs
distinguish from the classical data flow diagrams in that they may use struc-
tures for controlling data flows conditionally, and nondeterministic processes to
express alternative data flows. The essential idea of our approach is to select
paths from a CDFD to cover all branches of the control structures and process
functions, and then to generate test cases using the constraints defined by the
associated textual specifications. Thus, test cases can experience the data tran-
sitions among processes in the CDFD, which are intuitive for testers to analyze
the path coverage and the test results, and to make correct judgments on the
existence of faults in the systems.

The remainder of this paper is organized as follows. Section 2 provides a brief
introduction to the SOFL specification language. Section 3 describes an approach
to test case generation for integration testing of programs based on a SOFL

An Approach to Integration Testing Based on Data Flow Specifications 237

specification. Section 4 presents a case study of testing part of an Automated
Teller Machine (ATM) system to evaluate the proposed approach. Section 5
introduces the related work on testing based on data flow diagrams. Finally, in
Section 6, we conclude the paper and point out future research.

2 Brief Introduction to SOFL

A SOFL specification is composed of a set of related modules in a hierarchy of
condition data flow diagrams (CDFDs), as illustrated in Figure 1.

A CDFD (e.g., Al in Figure 1(a)) is a formalized DFD that specifies how
processes work together to provide functional behaviors. A CDFD usually con-
sists of control structures (conditional nodes, merging or separating nodes, and
diverging nodes), processes, data flows, and data stores. A data flow, which
represents a data transmission between two processes, is labeled with a vari-
able. A process consists of five parts: name, input ports, output ports, pre-
condition, and postcondition. It performs an action to transform input data
flows satisfying precondition into output data flows that satisfy the postcon-
dition. A conditional node denoted by a diamond or box allows a choice in
moving data items between processes. A merging node composes input data
flows into a single composite data flow, while a separating node is opposite to
the merging node in that it breaks up the composite data flow into its com-
ponents. A diverging node transforms an input data flow to either one of the
output data flows or all of the output data flows, depending on the type of
the diverging structure. The graphical constructs of control structures are given
in Figure 2.

In Figure 2, (a) is a binary choice and the data flow x will flow along the
upper branch when the condition C(x) is satisfied by x, otherwise x will flow

s-module A1
Constant, type, class, and/or

variable declarations
| ~Condition processl R R R Il 4}
Condition process2 i

/|, Condition process3 L
(Condition process4

| [Constant, type, class, andvor EEN
l variable declarations = —»|
Condition processl.1
Condition process1.2
\ Condition process1.3
Condition process1.4 A2 [
I

\ (a) Hierarchical Condition Data Flow Diagram

s-module A3 <.___________I

Constant, type, class, and/or

variable declarations
Condition process3.1
Condition process3.2
Condition process3.3

(b) Hierarchical Structure of Specification Modules

Fig. 1. Structure of a SOFL system

238 Y. Chen, S. Liu, and F. Nagoya

— o) s
a 2(x) R2—>
Cn(x) n—>
> mH—>
(a) ®)
\”\L‘ J_/k/i\/
/{5}/_‘ /Hl\ﬁ\
(c) (d)
/)1/
/\,\X\ —
(e) (f)
Fig. 2. Control structures in SOFL
\1‘/\ *\/
—x— Yy — H [¢ i""ﬂ
H A —z—> x4 B H 2y
—y &~ P o J'.?\

@ ®) ©

Fig. 3. Process with multiple ports

along the lower arc. (b) is a multiple selection structure and data from x will
flow along a corresponding branch when x satisfy C;(x), i = 1...n, otherwise it
will flow along the lowest level arc as x,41. (¢) is a merging node to compose
input data flows x1, x2, and x3 into a single composite data flow x, and (d) is
a separating node to break up x into x1, x2, and x3. (e) and (f) are diverging
nodes, in which the data flow x is nondeterministic to flow along one of the
following arcs in (e), and (f) is a broadcasting node and x will flow along all of
the output data flow arcs.

A process in a CDFD is different from that in the conventional DFDs in that
it allows nondeterministic inputs and outputs; it may denote an abstraction of
multiple functions. Figure 3 shows an example of nondeterministic processes.

Process A has two input ports receiving data flow x or y, and one output
port holding the data flow z. When either x or y is available, process A takes x
or y, but not both, as input, and produces z as output. Process B has one input
port receiving data flow x, and produces either y or z, but not both. Process C
supports inputs and outputs nondeterministically.

For each CDFD, a specification module (e.g., module A1 in Figure 1(b)) is
provided to define necessary types, related variables, and the functions of all the
processes occurring in the CDFD.

An Approach to Integration Testing Based on Data Flow Specifications 239

3 A Path Coverage Approach

Assuming a SOFL specification is both internally consistent and valid, we intro-
duce a path oriented approach to integration testing of a program based on its
specification. This approach suggests the following steps:

1. Use the formal module as a foundation for eliminating nondeterministic pro-
cesses in the CDFD;

2. Determine a set of data flow paths to cover all control branches and sub-
processes in the CDFD. Here a data flow path is a sequence of data flows
satisfying a certain condition;

3. Generate test cases from the formal module to ensure that every path is
necessarily traversed and effectively tested;

4. Test the program and evaluate the testing results.

3.1 Processes Decomposition

The goal of decomposing a process is to divide a nondeterministic process into a
set of deterministic subprocesses, each defining a single function of the original
process. Thus, testing of the nondeterministic process can be divided into testing
of its subprocesses, which is less complex and more controllable in accordance
with the “divide and conquer” principle.

To facilitate discussions in this paper, we express a process, say P, in a SOFL
specification as a 4-tuple (I, O, pre, post) where

1. I is a finite set of inputs. If P is nondeterministic and has m input ports, we
write I = I1|...|L,,, denoting its input ports where
(a) I;(1 < i< m) is the set of inputs received by the ' input port;
(b) NI =¢ (1<4,j<m,i#j, ¢isthe empty set);

2. O is a finite set of outputs. If P has n output ports, we write O = O4]...|O,,
where
(a) O;(1 < i< n) is the set of outputs produced from the i*" output port;
(b) O:NO; =¢ (1 <4, j<ni#j)

3. pre and post are predicate expressions, denoting the pre and postconditions
of process P, respectively. Pre may involve the variables defined in I, while
post allows all the variables defined in both I and O to be used.

P can be divided into a set of deterministic subprocesses {sp1, spa, ..., sp},
and we represent it as P — sp1|spz|...|spx, where
1. sp; is called a sibling of sp; (1 <1, j < k,i # j).
2. each subprocess is deterministic to represent a single function of P. A sub-
process sp; is as well defined as sp; = (I, O, pret, post’) where
(a) I E {Il, ...,Im}, Oi S {017 ...,On};
(b) pre’ is a predicate expression denoting the precondition of sp,; it involves
only the variables defined in I*;
(c) post® is a predicate expression denoting the postcondition of sp,; it may
involve the variables defined in both I and O°.

240 Y. Chen, S. Liu, and F. Nagoya

Consider the following definition of process C in Figure 3(c):

I: {1’1} ‘ {iCQ,SIJ;j}
O: A} [{y2 y3}
pre: x1>10or 1 <5 or 2 > x3 and (22 > 100 or z3 < 50)

post 1yl >xl+1oryl <aloryl >a2and yl >az3 or y2 >zl
and y3 < zl or y2 > 2 or y3 > y2

then, process C is divided into the following four subprocesses

IY, O, pret, post!

sp1 = ()
Sp2 = (12a027pr€2ap05t2)
sps = (I3, 03, pre3, post®)
spy = (14, O*, pre*, post4)
where

- I8 12 a1}

- 13714 : {LL‘Q,LL‘S}

- 01703 : {yl}

- 02a04 : {yQayi’)}
- prel,pre? izl >100r 21 <5

- pre?,pre* : 2 > 23 and (22 > 100 or x3 < 50)
- postt iyl >zl +1oryl <l

- post? :y2 >zl and y3 < x1 or y3 > y2
- post® : yl > 22 and y1 > 23

- post* : y2 > 22 or y3 > y2

3.2 Path Selection

After all the nondeterministic processes are decomposed into deterministic sub-
processes, the next important issue to address is how to define data flow paths
for testing and how to select them in a CDFD. The classical Yourdon DFDs are
not widely used for testing in industry since that these diagrams do not support
the conditional controls and formal semantics explicitly, and therefore they are
intricate for test paths selection. In SOFL, a CDFD is an extended data flow di-
agram holding control structures, as well formalized notations are used to define
the processes in the CDFD. Thus independent data flow paths can be effectively
extracted for testing by using these control structures and its module. In our
approach, a data flow path is defined as a deterministic sequence of data flows
with its processes that lead to output data flows of the CDFD from an input
data flow sets. Formally, we have the following criteria for test path selection:

Criterion 1. Each data flow of a CDFD is covered by the set of test paths.
Criterion 2. Each subprocess is used at least in one path.

An Approach to Integration Testing Based on Data Flow Specifications

Lz,
' / ey
x2
}‘ P x7 e
= Nl NS
%4 x x16
x9 i ‘ x17
—_— P4 —
(@)
| = — —
______‘\(\‘ o oy x11
I | x

Fig.4. A CDFD and its deterministic CDFD

241

Criterion 1 is a mutation of the general control structure testing, but considers
more types of control structures for test path selection:

Each data flow is transferred to the correct process/subprocess/control node;

Every branch of a conditional node should be tested at least once;

If a merging node is traversed, all of its input flows should be covered by the

given test path;

When a separating or a broadcasting node is added to a data flow path, the
path may cover part of its output flows for testing if they are not affected

by the others during the following execution;

— When a nondeterministic node is added to a test path, we select one of its

output flows to traverse.

Criterion 2 is to ensure that every function in a process will be tested. Each
function of a process is represented by a subprocess, and testing of the process
needs to cover all of its subprocesses. For example, the nondeterministic processes

P1, P2, P3 and P4 in Figure 4(a) are decomposed as follows (Figure 4(b)):

P1 — sply|splalspls|spla|spls|sple|sply
P2 — sp2;[sp2a[sp2;

P3 — sp31|sp32

P4 — spd;[spda|spds

242 Y. Chen, S. Liu, and F. Nagoya

7 Sy
R

sp2 M—>
x1 Xl—>
SV

+7.

spl
x1>10 and

x1420
or x1<6

Fig. 5. A data flow path

In this CDFD, we identify twelve simple data flow paths, which cover all
the subprocesses occurring in the diagram. These paths and the corresponding
subprocesses covered are given as follows in the format: path — subprocess set.

a1, {x5, 26}, 211] — {sply, sp2;}
x1, {x5, 26}, 212] — {sply, sp22}
xl,{x5, 26}, 213] — {sply, sp23}
xl, 27, 214] — {spla, sp31}
x1,27,{x15,216}] — {spla, sp32}
xl, 28, x17) — {spls, spd1 }

{22, 23}, {x5, 26}, x11] — {sply, sp21}
{22, 23}, 27, 214] — {spls, sp31}
{x2, 23}, 28,217 — {sple, spd1}
x4, {x5, 26}, 212] — {sply, sp22}
x9,217) — {spda}

x10,217] — {spds}

© ® N oW

—_ =
— O

H
ok

3.3 Test Cases Generation

Having selected paths to satisfy Criterion 1 and Criterion 2, it is reasonable to
generate test cases so that they will execute through every branch or subprocess
in the CDFD.

The control nodes and the specifications of the subprocesses in a path provide
a set of ordered constraints on the execution of the path by the selected test cases.
The goal of test case generation is therefore to meet these constraints. The
strategies for generating test cases to meet the specification include boundary
value analysis, domain testing, and so on.

For example, the data flow path in Figure 5 covers subprocesses (spl,sp2),
as well two conditional nodes and a broadcasting node. Suppose spl and sp2 are
defined as follows:

subprocess spl(x1: real)x2: real | subprocess sp2(x2, x3: real)x4: real
pre TRUE pre x3 > x2 and x3 < x2 4+ 10

post x2 =x1+2 post x4 = x3 + x2

end end

An Approach to Integration Testing Based on Data Flow Specifications 243

X3 4

12

2 [! ! >
5 6 10 20 x1

Fig. 6. The test points of T1

The set of exterior inputs in Figure 5 is {x1, x3}, and its constraints, T'1, can
be computed by using conditional constraints, precondition and postcondition
of subprocesses, as:

x1>5and (21 > 10 and 1 < 20 or 21 < 6) and (23 > 21+2 and 23 < x1+12)

The domain of the data flow path is illustrated in Figure 6, and we select the
following points as test cases

(z1,23) = {
(5.001,7.001),

(5.001,12.001),
(10.001,17.001),
(

10.001, 12.001),
1.

To enhance the usability of this approach, we are working on a software tool to
support the automation of selecting data flow paths and generating test cases in
accordance with the path coverage criterion. Since it is still a primitive prototype,
we will report it in our future publication after it is completed properly.

5.001,16.999), (5.999,8.001), (5.999,17.999),

((

5.999,12.999), (5.500,7.501), (5.500,17.499),

15.000, 17.001), (19.999, 26.999), (15.000, 26.999),
((

10.001,21.999), (19.999, 22.001), (19.999, 31.999),

o~~~ o~

4 Case Study

In order to evaluate the effectiveness of the suggested testing approach, we ap-
plied our approach to testing part of an ATM (Automated Teller Machine) sys-
tem implemented based on a formal specification written using the SOFL spec-
ification language by the second author [16]. The ATM system includes 5 basic

244 Y. Chen, S. Liu, and F. Nagoya

Select_
Password_
Services

p_sel

neka* Change_ ,s/noﬂce‘@
Current_

Password | [—warning11 9@

al -
_—
- .< _—"] 2 | savings_accounts

\

— 2
Decde 1~ _®_ __ _fT Change_ || s notice2->(5)
Account [@/y Savings_ ing12
f—warning
~ ~ | Password @
~ ~. 3 foreign_currency
9B~ _accounts
~
foreign_inf 4/ Change_ || ¢ nouceB%.
\3; Foreign_ - e
S© Password | [—Wwarnin,

4 all_used-
passwords

Display_
Success_

®\
Oy Message
@/
@D\»
@/

\ output_device

i Display_

Warning_
Message

Fig. 7. The CDFD of Change_Password_Decom module

functional services: (1) operations on current account, (2) operations on sav-
ing account, (3) transfer money between accounts, (4) manage foreign currency
account, and (5) change password. The entire specification contains sixty-nine
pages of descriptions. For the sake of space, we choose only one of its modules,
Change_Password_Decom, for the case study.

The Change_Password_Decom module includes the three primary functions:

1. Change password for the current account;
2. Change password for the savings account;
3. Change password for the foreign currency account.

The CDFD of the Change_Password_Decom module is shown in Figure 7. In
this module, process Select_Password_Services receives a command for chang-
ing a password of the current account, savings account, or foreign currency ac-
count, and passes it to process Decide_Account. Process Decide_Account then
determines to send a control data flow to processes Change_Current_Password,
Change_Savings_Password, or Change_Foreign_Password. If the new password
provided is satisfactory according to the criterion, one of these three processes
will send a successful message to process Display_Success_Message for display-

An Approach to Integration Testing Based on Data Flow Specifications 245

Select_
Password_
Services -
l 1 [current_accountsl l 5 [output_device l
o sl /
new_pass1 Change_ || s notice1—>|| Display_
Current_ H || Success_
o _w|| Password Message

R L~
Decide_ H

Account H

. all_used-
4
passwords

Fig. 8. A path of the CDFD of Change_Password_Decom

ing on an output device; otherwise, a warning message will be sent to process
Display-Warning-Message for displaying.

4.1 Generating Test Cases

We generate test cases before the implementation of the specification. The mod-
ule includes the following processes: Select_Password_Services, Decide_Account,
Change_Current_Password, Change_Savings_Password, Change_Foreign_Pass-
word, Display-Success-Message, and Display-Warning-Message. Some of the
processes in the Change_Password_Decom module take input data flows or pro-
duce output data flows nondeterministically (e.g., Select_Password_Services).
The tester decomposes them into eighteen equivalent deterministic subprocesses.
When generating test cases for integration testing, we extract six paths from
the original CDFD by using the data flow path coverage strategy. Each of these
paths defines how outputs are generated from the related inputs. One of the
paths representing the successful change of current password is shown in Fig-
ure 8. The inputs and external variables consumed by processes are {change_pass,
change_current, new_passl, current_inf, current_accounts, all_used_passwords,
output_device}. The constraints enforced by the path are as follows:

(bound (change current) and p sel = <1>) and
(p sel = <1> and bound(ql)) and
(let old pass = current inf.pass in
if current inf inset dom(current accounts)
then
current accounts = override (domrb({current inf}, “current accounts)
{modify(current inf, pass > new passl) >
“current accounts(current inf) }) and
all used passwords = diff(Tall used passwords, {old pass}) and
s noticel = “successful”) and
(bound (s noticel) and output device = conc(Toutput device, [s noticell))

246 Y. Chen, S. Liu, and F. Nagoya

We generate twelve test cases for that cover all the possible paths, but for
the sake of space, we present only some of the test cases below. Since the Cur-
rent_accounts is an external file that may consist of millions of account records
and output_device represents a physical output device, we omit the concrete
values of those data structures for brevity.

1 change_pass=<!>, change_current=<!>,
current_inf=<1000000,00000>, new_pass1=<00001>,
current_accounts_file=<..\Records\currents1.dat>,
all_used_passwords=<00000,00001, ...>, output_device=<...>;

2 change_pass=<!>, change_current=<!>,
current_inf=<1000000,00000>, new_pass1=<33333>,
current_accounts_file=<..\Records\currents1.dat>,
all_used_passwords=<...>, output_device=<...>;

3 change_pass=<!>, change_current=<!>,
current_inf=<1000000,00000>, new_pass1=<00000>,
current_accounts_file=<..\Records\currents1.dat>,
all_used_passwords=<...>, output_device=<...>;

4 change_pass=<!>, change_current=<!>,
current_inf=<1000000,00000>, new_pass1=<99999>,
output_device=<...>;

4.2 Test Results Analysis

Test cases generated from a formal specification need to be translated into a form
suitable for being used to execute the program that implements the specification
in a specific programming language. In this case study, we implement the pro-
gram in C++ and a third party deliberately insert twenty nine errors in it, most
of which are errors on the condition predicates and the domain errors of each
process. Table 1 summarizes the results of the testing. The error detection rate
indicates that 73% of the errors inserted independently are found. In addition,
the tester detects forty three errors of the original program by this test.

Table 1. Testing results analysis

. inserted errors original
inserted .
process errors | detection errors
errors
found rates found
Select_Password_Services 6 4 67% 3
Decide_Account 3 3 100% 1
Change_Current_Password 7 2 28% 8
Change_Savings_Password 3 2 67% 8
Change_Foreign_Password 2 2 100% 8
Display_ Success_Message| 4 4 100% 8
Display_Warning_Message 4 4 100% 9
Amount 29 21 73% 43

The results of our case study demonstrates that our proposed testing ap-
proach and strategies are relatively effective in detecting predicate violations

An Approach to Integration Testing Based on Data Flow Specifications 247

and domain errors, while they are less effective in detecting the errors violating
invariants defined in the specification.

5 Related Work

There exist many methods for testing programs from the data flow point of
view [17][18], but almost none of them utilizes data flow information from the
specifications of the programs. Rather, they derive data flow information from
the control flow structures of programs, and therefore they are still techniques
for structural testing. Since the final goal of testing is to ensure that programs
satisfy their specifications, functional testing based on specifications is extremely
important [19].

Since only a few of formal specification languages (e.g., SOFL [15] and FO-
CUS [20]) and semi-formal specification languages (e.g., the activity diagrams
in UML) are designed on the basis of data flow notion, most of the research on
specification-based testing so far are focused on the use of control flow speci-
fications. Aynur Abdurazik and Jeff Offutt provided a set of strategies and a
Rose-based test data generation tool from state-based specifications, which is
applicable to the activity diagrams in the UML [21]. F. Basanieri developed a
Cow_Suite tool in which the derivation of test cases was based on the software
analysis and design document, and used the UML-based original test method-
ology UIT (Use Interaction Test) [22][23]. Chris Rudram extended the syntax
and semantics of Activity Diagrams with Formal Activity Diagrams (FAD) to
show user interaction with system, and then divided a FAD into segments for
testing [24]. However, the Activity Diagrams provide the whole structure of a
system with the collaborations of the other diagrams (e.g., Use Case Diagrams),
and we need to consider the infections of these factors for testing. Furthermore,
the diagrams in the UML do not describe the precise semantics of a system,
and therefore the corresponding test cases are less rigorously generated. The ac-
tivity diagrams in UML do not support nondeterministic mechanism useful for
modeling of systems either.

6 Conclusions and Future Work

In this paper we have described an approach to integration testing of programs
based on their data flow specifications. The essential idea of this approach is to
test programs using test cases generated based on the data flow path coverage
in their specifications. We have provided two criteria for test case generation
and presented a case study of testing part of an ATM system written in SOFL
to evaluate the effectiveness of the suggested testing approach. The case study
result shows that the approach is effective in detecting faults leading to predicate
and domain violations.

As future work, we plan to establish more powerful strategies and coverage
criteria to discover greater classes of errors. In addition, we will try to address

248 Y. Chen, S. Liu, and F. Nagoya

some difficult issues concerned with program testing based on data flow specifi-
cations, such as invariants checking, recursive functions, and data flow loops. We
are also interested in investigating techniques for automatic test case generation
and in constructing an effective tool to enhance the degree of automation.

References

1. McDermid, J., ed.: Software Engineering’s Reference Book. Butterworth-
Heinemann Ltd, Linacre House, Jordan Hill, Oxford OX2 8DP (1991)

2. Ghezzi, C., Jazayeri, M., Mandrioli, D.: Fundamentals of Software Engineering.
Prentice Hall, 2nd edition (2002)

3. Hoffman, D.M., Strooper, P.: Automated module testing in prolog. IEEE Trans-
actions on Software Engineering 17 (1991) 934-943

4. Chang, J., Richardson, D.J., Sankar, S.: Structural speicifcation-based testing with
ADL. In: Proceedings of the 1996 International Symposium on Software Testing
and Analysis. (1996)

5. Stocks, P., Carrington, D.: A framework for specification-based testing. IEEE
Transactions on Software Engineering 22 (1996) 777-793

6. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy.
ACM Computing Surveys (CSUR) 29 (1997) 366427

7. Stocks, P.: Applying Formal Methods to Software Testing. PhD thesis, the De-
partment of Computer Science, the University of Queensland (1993)

8. Offutt, J., Liu, S.: Generating Test Data from SOFL Specifications. Journal of
Systems and Software 49 (1999) 49-62

9. Chow, T.: Testing software designs modeled by finite-state machines. IEEE Trans-
actions on Software Engineering 4 (1978) 178-187

10. Fujiwara, S., Bochman, G., Khendek, F., Amalou, M., Ghedasmi, A.: Test selection
based on finite state models. IEEE Transactions on Softare Engineering 17 (1991)
591-603

11. Turner, C.D., Robson, D.J.: The state-based testing of object-oriented programs.
In: Proceedings of the 1993 IEEE Conference on Software Maintenance (CSM-93),
Montreal, Quebec, Canada (1993)

12. Gargantini, A., Riccobene, E.: ASM-based testing: Coverage criteria and automatic
test sequence generation. Journal of Universal Computer Science (2001)

13. Offutt, J., Liu, S., Abdurazik, A., Ammann, P.: Generating test data from state-
based specifications. Software Testing, Verification and Reliability 13 (2003) 25-53

14. Liu, S., Offutt, A.J., Ho-Stuart, C., Sun, Y., Ohba, M.: SOFL: a formal engi-
neering methodology for industrial applications. IEEE Transactions on Software
Engineering 24 (1998) 337-344 Special Issue on Formal Methods.

15. Liu, S.: Formal Engineering for Industrial Software Development using the SOFL
Method. Springer-Verlag (2004)

16. Liu, S.: A case study of modeling an ATM using SOFL. Technical report HCIS-
2003-01, http://cis.k.hosei.ac.jp/tr/, Faculty of Computer and Information Sci-
ences, Hosei University, Tokyo, Japan (2003)

17. Beizer, B.: Software Testing Techniques. second edn. Van Nostrand Reinhold, New
York (1990)

18. C.Jorgensen, P.: Software Testing: A Craftsman’s Approach. second edn. CRC
Press LLC, 2000 NW Corporate Boulevard, Boca Raton, Florida 33431, USA
(2002)

19.
20.

21.

22.

23.

24.

An Approach to Integration Testing Based on Data Flow Specifications 249

Beizer, B.: Black-Box Testing. Wiley (1995)

Broy, M., Stolen, K.: Specification and Development of Interactive Systems: Focus
on Streams, Interfaces, and Refinement. Springer-Verlag (2001)

Offutt, J., Abdurazik, A.: Generating Tests from UML Specifications. In: Proceed-
ings of the Second International Conference on the Unified Modeling Language
(UML’99), Fort Collins, CO, Springer-Verlag, LNCS (1999) 416-429

F.B., et al: An automated test strategy based on UML diagrams. In: Ericsson
Rational User Conference, Upplands Vasby Sweden (2001)

Basanieri, F., Bertolino, A., Marchetti, E.: The cow suite approach to planning
and deriving test suites in UML projects. In: Proc. Fifth International Conference
on the Unified Modeling Language - the Language and its Applications UML 2002,
LNCS 2460, Dresden, Germany (2002) 383-397

Rudram, C.: O poGenerating test cases from UML. (2000)

Combining Algebraic and Model-Based Test
Case Generation

Li Dan''* and Bernhard K. Aichernig?

! Guizhou Academy of Sciences, Guiyang,
Guizhou, 550001, China
lidan_gz@163.com
2 The United Nations University,
International Institute for Software Technology,
P.O. Box 3058, Macau

bka@iist.unu.edu

Abstract. The classical work on test case generation and formal meth-
ods focuses either on algebraic or model-based specifications. In this
paper we propose an approach to derive test cases in the RAISE method
whose specification language RSL combines the model-based and alge-
braic style. Our approach integrates the testing techniques of algebraic
specifications and model-based specifications. In this testing strategy,
first, every function definition is partitioned by Disjunctive Normal Form
(DNF) rewriting and then test arguments are generated. Next, sequences
of function calls are formed. Finally, the test cases are built by replacing
the variables, on both sides of the axioms, with the sequences of functions
calls. These kinds of test cases not only provide the data for testing, but
also serve as test oracles. Based on this combined approach, a test case
generation tool has been developed.

Keywords: Test case generation, RAISE, RSL, formal method.

1 Introduction

Designing test cases is difficult, expensive and tedious. Recently, formal spec-
ifications have played an important role in test case generation for black-box
software testing. Specification-based testing is concerned with deriving testing
information from a specification, rather than from source code. The formal spec-
ification of the test object forms the basis for a systematic selection of test data,
the sequencing of test cases, and the evaluation of the test results.

Currently, a lot of research is going on in the area of specification-based
software testing. For model-based formal specification languages, such as VDM,
Z and B, the work focuses on partition techniques that generate Disjunctive

* The work is partly supported by research grant (#3010) of Science and Technology
Foundation of Guizhou Province, 2001.

Z. Liu and K. Araki (Eds.): ICTAC 2004, LNCS 3407, pp. 250-264, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Combining Algebraic and Model-Based Test Case Generation 251

Normal Form (DNF) and how to construct a Finite State Model (FSM) from
a DNF [10,15,5,3]. On the other hand, for algebraic specification languages,
like Larch and CASL, people pay more attention to the techniques of applying
term rewriting rules and how to judge the observational equivalence of abstract
objects [14, 8, 11]. There is a clear distinction between methods used for model-
based specifications and algebraic specifications.

The Raise Specification Language (RSL) [16] is a language suitable for formal
specification and development of software systems. RSL is a “wide spectrum”
language. This means that it has features allowing its use for very abstract,
initial specifications and also for more concrete developments of an initial speci-
fication that can be easily (or even automatically) translated into a programming
language. RSL can be taken as a combination of model-based and algebraic spec-
ification languages. The ability to mix different styles within the same module
is very helpful in test case generation.

In this paper, we propose an approach to derive test cases from an RSL spec-
ification that has both a model-based part and an algebraic part. The approach
is based on the ideas that we choose some techniques which are suitable for RSL
and easy to implement from both model-based and algebraic testing techniques,
and combine them together. In this approach, roughly speaking, first partition
analysis is applied to functions and test calls corresponding to sub-domains are
extracted, then terms are constructed through iterative invocations of the test
calls, and test cases are generated by instantiating the variables in the left-hand
side and right-hand side of an axiom. The test cases can be executed and the
results are compared to check whether the test passes. A tool has been developed
to derive test cases from RSL specifications using this approach.

In Section 2 of this paper, we give the basic concepts used in our work. Section
3 describes the approach that derives test cases from RSL specifications. Section
4 is devoted to compare our work with other related work. The tool is briefly
described in Section 5. In Section 6, we conclude our work and make suggestions
for future work.

2 Basic Concepts

The RAISE Specification Language (RSL) is a modular language. Specifications
are in general collections of related modules. A scheme is the basic unit for
constructing modules through class expressions. In applicative style, a scheme
module S is defined as a triple:

=(T,V,A)

where 7 is the type declaration and T = (Ty,...,T,), T; (O <i<n)is called a
type definition. V is the Value declaration and V = (Vi,...,V,,) Vi (0<i<m)
is a value definition. A is the axioms declaration and A = (A ., Ap). We say
A; (0 <i<1)is an aziom of the module.

The specification in Figure 1 is an example of RSL module that describes a
“first in — first out” queue buffer with input and output characters (represented

252 L. Dan and B.K. Aichernig

scheme buffer =
class
type Buff = Int”*

value
empty : Buff = (),

input : Int x Buff — Buff
input(i, b) =
ifi > 32 A1 <126 then
ifi > 97 Ai< 122 then
letj=i—32inb ™ (j) end
else b ~ (i) end
else b end,

output : Buff — Int x Buff
output(b) = case b of
empty — (0, empty),
(h) 7t — (h, t)
end,

count : Buff — Int
count(b) = len (b),

has_value : Buff — Bool
has_value(m) = m # empty,

first_value : Buff — Int
first_value(b) = case b of
empty — 0,
(h) "t —h
end,

last_value : Buff — Int
last_value(b) = if len(b) > 1 then last_value(tl b)
else first_value(b) end
axiom
[a1]
Vi:Int, b: Buff -
count(let (j, m) = output(input(i, b)) in m end) <
count(b),
[a2]
Vi:Int, b: Buff -
input(i, b) = b prei < 32 Vi> 126
end

Fig. 1. RSL specification of an input-output buffer for ASCII characters

Combining Algebraic and Model-Based Test Case Generation 253

by their ASCII values). The buffer accepts valid characters (with ASCIT values
between 32 to 126), changes small case letters to upper case letters (transfer
ASCII values 97-122 to 65-90, respectively) and delivers the characters stored in
it when required. This module is a model-based specification which is developed
from an algebraic specification but some axioms remained in the module.

In RSL, there are three kinds of types [16]: built-in data types, abstract data
types and compound data types. In a RSL module, there may be many type
definitions, but only few of them are really modeling the system state, these
types can be referred as type of interest [12]. In this paper, we call the type of
interest a magor type which represents the state of a module. State information
should be minimal in a module. Thus, there should be only one major type in a
well designed RSL module [12].

The following is the definition of major type:

Definition 1. Suppose T = {T1,...,T,} are type definitions of module S. A
type definition Ty depends on type definition T; if T; appears in the type expres-
sion of Ty, where 1 < k, I < n. A type definition T; (1 < i < n) is called a
major type of S if and only if none of the type definitions in T depend on T;.
The major type is denoted as T,,.

In RSL, there are two kinds of value definitions: function and constant. For the
purpose of this paper, we take constant as a special kind of function which has no
input variable and only one output variable. So we consider all value definitions
as functions. RSL allows the user to describe functions either implicity, in terms
of their interfaces, or explicity, in terms of the details of their operations.

We define a function V €V as:

V=(Z,0,P,R)

where 7 are input parameters and Z = (iy : I1,. .., i, : I,,). Each input parameter
here is an input variable i; of type I; where I; € 7. O are output parameters and
O = (01 :01,...,0m : On). Each output parameter here is an output variable
oj of type O; where O; € T.Z and O represent the interface of the function V.
P is a value expression which describe the precondition of the function. R is the
body part of the function in explicit style, or the postcondition of the function
in implicit style.

The concept of dividing operations into different categories is an important
idea in the testing of algebraic specifications [7,8]. Inspired by [4], we give the
definition of creator, modifier and observer which are used to classify the func-
tions in RSL modules.

Definition 2. Suppose T, is a major type of an RSL module. A function V
is called a creator of T, if T,, appears in the output parameters and does not
appear in the input parameters of V.. If T, appears in both input parameters and
output parameters of V., V is called a modifier of type T,,. A function V is
called an observer of T,, if T,, appears in the input parameters and does not
appear in the output parameters of V.

254 L. Dan and B.K. Aichernig

We use V¢ to represent a creator, V" to represent a modifier, V° to represent
an observer.

In the example shown in Figure 1, for instance, the function empty is a cre-
ator; input, output are modifiers; and the functions count, has_value, first_value
and last_value are observers.

The creator functions give us a way to build a new sample of type T, and
modifiers provide the methods to handle the type. If T}, is an abstract type,
observers provide the only way for us to query the content of T,,.

If there is only one major type T}, in the module, we can call the creators of
type T}, the creators of the module. So for modifiers and observers.

The word term has been used to define a sequence of operations in algebraic
specification languages. In the following part, we will give the definition of a
constructive term for this paper.

Definition 3. A sequence of function invocations, starting from the invocation
of a creator, followed by iterative invocations of modifiers through replacing the
input variables of major type Ty, with the previous invocation sequence, is called
a constructive term of type T,,. The length of a constructive term is the
number of functions invoked in the term. A constructive term is called a ground
constructive term if all variables in the term are instantiated with concrete
values.

In RSL, a function may return more than one result. For the purpose of
constructing terms, we have to invoke a function in a special way that project
it to return only single value. In here, the value is of type T),. For example, an
invocation of function output shown in Figure 1 that only returns one value of
type Buff can be expressed as:

Let (i,b,) =output(d;) in b, end

A constructive term can be referred as a function with output of type T5,. Let
m(V;) represent the invocation of function V; involving a projection to a single
return value. Then the general form of a constructive term is as follows:

cons = w(Vi™ (., w(Va" ooy eV (o m(VE))))))

n

Definition 4. An invocation of an observer function, through instantiating the
iput variables of major type T, with a constructive term, is called an observ-
able term. The length of an observable term is the number of functions
invoked in the term. An observable term is called ¢ ground observable term
if all variables in the term are instantiated by concrete values.

An observable term can be referred as a function with one return value whose
type is other than type T;,. So the observable term obs will take the form :

obs = V(oo (Vi (s m(VE" oy, eV (VED))))))

Combining Algebraic and Model-Based Test Case Generation 255

An axiom itself is a Boolean expression which, by definition, must evaluate
to true. We denote an axiom as follows:

A= (U;,Op,U,, Pre)

where U; and U, are value expressions representing the left-hand side and right-
hand side of the axiom definition. Pre is the precondition of the axiom that is
also a value expression. Op is an operator which defines the way how to compare
U, with U,.

A value expression can be evaluated (or, synonymously, executed) to return
a value of definite type. The type of return value for Pre in above axiom must
be Boolean. If it is true, the precondition is satisfied and the evaluation of value
expressions U; and U, will be conducted. The return values, they are of the same
data type, are compared using Op to check whether the axiom holds. If the type
of U; and U, is primitive, like built-in types, the comparison could be easily
carried out. But for abstract data types, there are no straightforward methods
to judge the relationship of two values automatically.

In our case, if the type of U; and U, is a major type T}, and the operator Op
is equivalence, then we can apply an invocation of observer V¢ to this axiom A
to generate a variation of the axiom:

A™ = (m(V(U))), Op, n(V°(U,)), Pre)

Because the data type of return value for m(V°(U;)) and 7(V°(U,.) is no longer
the abstract data type T),, it is possible for us to check whether the axiom holds.
This idea gives us the inspiration in the construction of test cases.

Consider the axiom ay in Figure 1. Since the right-hand side of a5 is of major
type, in order to derive test cases from this axiom, an observer, say last_value,
is applied to ag, transforming axiom as into a variation a,

axiom

[a5]
Vi:Int, b: Buff -
last_value(input(i,b)) = last_value(b)
prei <32Vi> 126

3 Test Case Generation

In this section we present our approach to generate test cases by creating test
calls, sequencing them, and solving the oracle problem. For simplicity, we require
that the input specification should be well-formed, only one major type which
is considered as abstract data type exist in the module and there is at least one
creator, one modifier, and one observer in the module.

The whole process can be broken down into the following steps:

1. Analyse the specification, decide the major type and divide the functions
into three categories: creator, modifier, observer. This step is easy to be
conducted according to Definition 1 and Definition 2.

256 L. Dan and B.K. Aichernig

2. For each function, apply partition analysis and divide the input domain into
subdomains. On each subdomain, instantiate the input variables except the
major type’s. Thus, we get a set of test calls for this function.

3. Decide an integer k and produce a collection of constructive terms and ob-
servable terms whose length is less than or equal to k by constructing from
the test calls of different functions.

4. Use axioms as test oracle by replacing the variables of the axiom itself or
a variation of the axiom with constructive terms and observable terms and
execute the left-hand side and right-hand side of the axiom separately. The
two results will be compared to decide whether the test passes or not.

Steps 2-4 will now be described in detail.

3.1 Partition Analysis

For a function V = (Z,0,P,R), we collect the two parts of precondition and
function body (or postcondition) together to form a large value expression £ =
P A'R. Then partition analysis is carried out on E.

We adopt the well-know strategy proposed by [6] to partition the expressions
into their DNF. In [13], Meudec gives many coarse partitioning rules and refine-
ment rules for VDM-SL specification. Most of these rules and methods are used
in our work after amendment and extension.

After applying partition analysis, a partition P = {D,..., D, } for function
V' is produced. Each subdomain D; is represented by a set of predicates that
give the constraint over input variables. We use Cp, = p1 A ... A pm,, wWhere p;
(1 <j <m) is a predicate, to denote this constraint.

Consider a finite list of values DT = {41,...,14,} where n > 1, with respective
types T = (T4,...,T,) on subdomains D;, while DT satisfies the constraint Cp, .
We say that DT is a solution to constraint Cp, and V(DT) is a test call of V.
DT is also referred as a test data of V. If no DT can be found for Cp,, then we
say subdomain D; is infeasible for V.

The job of instantiating at this stage is only for the input variables which
are not of major type. As an abstract data type, the major type could not be
instantiated directly in most cases. The approach to instantiate a major type
will be discussed in the next step.

A simple “generate and test” strategy, where a solution candidate is first
generated, then tested against the constraint for consistency, is adopted in our
work, because the predicates are quite simple in most situations. The constraint
Cp, = p1 A ...\ Dp is first reordered by the number of variables contained in
each predicate p; so that the predicate with less variables will appear in front of
the constraint. Then, the variables in predicate p; will be instantiated to ensure
p1 holds. The variables values instantiated in prior predicate will be checked
whether they meet the requirement of the current predicate, if not, or there
are no values for the variables of this predicate, new values will be calculated
for variables. This process continues until the last predicate has been coped.
Then, the set of obtained values will be evaluated against the whole constraint.

Combining Algebraic and Model-Based Test Case Generation 257

If the evaluation is not successful, all values will be abandoned and the whole
process starts again. This procedure repeats until a set of values which satisfy
the constraint is found or the number of repetition exceeds a given limit. In this
case, it is assumed that this constraint is infeasible. As a future extension the
connection with a constraint solver as in [3] is envisaged.

Faults may either affect the behavior within a subdomain (computation fault)
or affect the boundaries of the subdomains (domain faults) [9]. Computation
faults are detected by choosing one or more test calls from each subdomain.
Domain faults are detected by testing around subdomain boundaries. So in our
approach, if possible, we construct several test calls from each subdomain D;,
one or more are around the boundaries and one is within the subdomain by
random selection.

For example, if we conduct partition analysis on function input in Figure 1, 7
subdomains will be generated. After resolving the constraints using our strategy
and instantiate values for each subdomain, we get 13 test calls from 5 feasible
subdomains. Note that input variable b is of major type and will be handled at
the next step.

1>97 A1 <122 input(97,b); input(101,b); input(122,b)
<97 A 1>122 %)
1>32 N i<97 input(32,b); input(49,b); input(96,b)
i>122 A <126 » = < input(123,b); input(125,b); input(126,b)
1< 32AN1>126 1%
i< 32 input(31,b); input(-1032,b)
1> 126 input(127,b); input(1782,b)

3.2 Term Construction

Test calls for every function are now available. Input variables in each test call
have been replaced by concrete values except the ones of major type. Following
the categories of their functions, test calls can also be divided into three groups
: creator, modifier and observer.

The idea of using a sequence of invocations of functions, so called terms,
rather than test cases for individual functions, in the testing process was dis-
cussed in many papers [7,4,8]. An invocation to function V' that only returns a
single value of major type T}, is denoted by 7™ (V). The invocation to function
V' that returns a single value other than of major type is denoted by 7° (V).

Let {7™ (V) }, {7 (V;")}, {m°(V|?)} represent sets of invocations of test calls
whose functions correspond to creator, modifier and observer, respectively. In
order to build constructive terms, we start from a 7™ (V,®) to construct the
term, then we select a 7™ (V") and replace the input variables of major type
with the prior built term. This process continues until the length of the term
reaches the positive integer k. There are no un-instantiated variables, either of
a major type or of other data types, existing in the terms. So these constructive
terms are also ground constructive terms. Selecting a 7°(V,°) and replacing the
input variables of major type with a constructive term, an observable term is

258 L. Dan and B.K. Aichernig

generated. For observable terms, the situation is the same, they are also ground
observable terms.

For the purpose of illustration suppose the positive integer k = 4. From the
set of test calls built in the above step, a group of ground constructive terms with
length less than or equal to k is induced through replacing the input variables
of major type with the prior term.

1. empty

2. input(101, empty)

3. input(49, input(101, empty))

4. Let (i,,b,) = output(input(49, input(101, empty))) in b, end

In the same way, a group of ground observable terms and their data types is
shown as :

1. has_value(empty) : Bool
2. count(input(101, empty)) : Int
3. first walue(input (49, input(101, empty))) : Int

3.3 Build Test Case

Let {CT;} (1 <i < n) be the set of constructive terms, and {OT};} (1 < j <m)
be the set of observable terms, where n,m > 1. An axiom in the specification is
denoted as A = (U;, Op, U,., Pre). We derive test cases from the axiom using the
algorithm shown in Figure 2.

In this algorithm, it is clear that if the return value of U; and U, of A
is of the major type T, and the Op is equivalence (=), a variation of axiom
A™ = (n(Ve(U;)),Op, m(V°(U,)), Pre), instead of A itself, is actually used in
the process of generating test cases.

After the last step, a finite set of test cases is generated from the specification.
Each test case is denoted as a tuple T'c = (T'¢;, Op, T¢c,, Pre) which includes two
value expressions T'c;, T'c, and their relationship Op under precondition Pre. The
test cases not only provide the test data to be executed, but also serve as test oracles.

For instance, consider to derive a test case from axiom as of the specification
given in Figure 1. It should be noted that the return value of left-hand side or
right-hand side of the axiom is of major type, thus, a variation of the axiom, aj,
which can be found at the end of Section 2, is used in deriving test cases.

Note that axiom af has a precondition (i < 32 Vi > 126) that contains a
variable ¢ which still is not instantiated. It is quite easy to select an integer i,
for instance ¢ = 17, which satisfies the condition (i < 32V ¢ > 126). By replacing
variable b in the axiom a) with a constructive term: input(49, input(101, empty)),
we can generate a test case from the axiom:

Tc = (last_value(input (17, input (49, input(101, empty)))),

last_value(input(49, input(101, empty))),
17 <32V 17 >126)

Combining Algebraic and Model-Based Test Case Generation 259

To apply the test case Tc = (T¢;,Op,Tec,, Pre) to an implementation, we
should map each function in T'¢;, T'c,, and Pre to a method in the implementa-
tion program. As a result, this mapping generates three method sequences M,
M, and M,,. in the program corresponding to T'c;,T'c, and Pre, respectively.
For a complete implementation, this mapping exists and can be indicated man-
ually by the implementation designer or can be derived automatically from the
specification. After executing M;, M, and My,. in the program and obtaining
results Oy, O, and Oppe, if Opy¢ is true, we compare O; with O, with relation Op.
If it is satisfied, the test is passed, otherwise a implementation error is revealed
by test case T'c = (T¢;, Op, Tc,., Pre).

GenerateTestCase
Begin
Select axiom A = (U, Op, U, Pre) € A
Tep:=U, ; Te,:=U, ; Pre:= Pre
Select CT; € {CT;}
For each variable of major type in T'¢;, Tc,, Pre
Tc; := T replace the variable with CT;
Tec, := Tec, replace the variable with C'T;
Pre := Pre replace the variable with C'T;
End For
For each variable of other data types in T'¢;, Tc,, Pre
If type of the variable is T’
Select OT; € {OT}} of data type T
Tc; := Tc; replace the variable with OT;
Tc, := Te, replace the variable with OT;
Pre := Pre replace the variable with OT;
End If
End For
If result of T'¢; is of major type and Op is =
Select ©°(Vy) € {m°(V{)}

Tc; := 7°(V)?) replace major type input variable with T'¢;
Te, := w°(V?) replace major type input variable with Tc,
End If
Return T, = (T'¢;, Op, T¢c,, Pre)

End

Fig. 2. Algorithm to derive test cases from axioms

3.4 Discussion

We have described every step of our approach to derive test cases from RSL
specification and use these test cases as test oracles. However, there are still
things remain unclear : determine the positive integer k and which individual
function test calls should be selected in constructing terms. These are equal to
the problems of how many test cases should be created for the testing process
and how the coverage of the test cases should be taken.

260 L. Dan and B.K. Aichernig

Practically, we adopt the following criteria:

— The above positive integer £ may be determined by first asking the user
give an acceptable value according to his understanding that major type
implemented in the program, such as the maximum sizes of arrays, or the
boundary values of variables. If the user does not wish to give the value, the
k will be default set to the number of functions in the specification plus 1.
This default & provides the possibility that every function could appear in
longest constructive terms;

— Each test call of creator or modifier should appear in the constructive terms
at least once. Each test call of observers should appear in the observable
terms at least once;

— Each constructive term and observable term should be tested at least once;

— Each axiom should be used to generate test cases at least once if the axiom
is capable to derive test cases.

4 Related Work

In the world of formal specification languages, model-based and algebraic speci-
fications are frequently regarded as separate and so are their testing techniques.
For testing of model-based specifications, as in VDM and Z, partition analysis is
a standard method that the work of Dick and Faivre [6] was a major contribu-
tion to. This method has been adapted and ameliorated in many other research
works [13,2]. There are two major steps in the method.

1. Partition an operation’s input domain by reducing the input expression to
disjunctive normal form (DNF) and then derive test case from each DNF.

2. Construct a Finite Sate Automaton (FSA) from the specification by analysis
of the state space and operations. The FSA can be used to sequence the test
cases.

For partition analysis, it is quite difficult to solve the problem of test se-
quencing because of the characteristics of model-based specification. In the Dick
and Faivre paper, only generation of DNF (Step 1) was automated. Currently,
there is still no proposal which automates the full process [3]. At Step 2, there is
possible state explosion and the non-discovery problem which makes it difficult
to determine all the FSA states and transitions.

On the other hand, there are also many works on deriving test cases from
algebraic specifications. Testing code against algebraic specification consists of
showing that the final system satisfies the axioms in the specification][8].

In the ASTOOT approach [7], the concept of equivalent terms which are
valid sequences of invocations of operations has been presented and the idea
of using pairs of equivalent terms, rather than individual operations, as test
cases was adopted. The equivalent terms are generated by term rewriting of the
axioms of the specification. A test case consists of pairs of terms and a flag
indicating the relationship between the terms (equivalent or not). A strategy of

Combining Algebraic and Model-Based Test Case Generation 261

“approximate check” for object observational equivalent was proposed, known
as the EQN method.

Motivated by the work of ASTOOT, Chen et al [4] used fundamental pairs,
which are pairs of equivalent ground terms formed by replacing all the variable
on both sides of an axiom by normal forms, as test cases. They also gave a new
algorithm referred as “relevant observable context approach® for determining
the observational equivalence of two objects.

Using algebraic specifications, it is easy to create test data and to solve
the oracle problem. But the algebraic style is often criticized as rather restric-
tive and cumbersome to use in practice. Some important features of programs,
for example non-termination and higher-order functions, are difficult to model
in algebras; equations are often not expressive enough to conveniently capture
properties which one may want to state as requirements.

Our test approach is based on RSL, which can be considered as a combination
of an algebraic specification language and a model-based specification language,
that allows the development of an implementation to be based on the model-
based specification while providing the additional capability of algebraic specifi-
cation for validating the specification. So our approach can hopefully inherit the
above advantages from both algebraic and model-based testing techniques, and
overcome the problems within those techniques.

Concerning the experience in the above papers, we take Dick and Faivre’s
partition analysis technique to construct disjunctive normal form (DNF) and
derive the test calls from these DNF and we do not need to build a Finite State
Automaton (FSA) in our approach. We adapt the ideas of ASTOOT [7] and
Chen et al [4] that sequences of operations and axioms are used in building test
cases to our approach. However, there are still few distinctions between their
approaches and ours:

1. The approaches of ASTOOT and Chen impose many restrictions on the
axioms that can be used to produce pairs of equivalent terms. For example,
the axiom must be an equational axiom, the variables which occur in one
side of the axiom should also appear on the other side and the return value
of left hand side or right hand side of the axiom will be the main class[4].
These restrictions mean only a few axioms can be used to derive test cases
with. In contrast, our approach puts no restrictions on axioms. Almost every
axiom is able to be used to generate test cases.

2. The concept of observational equivalence of two abstract objects is not
adopted in our approach and so we do not have any complicated algorithms,
neither coarse nor accurate, to determine if objects are observational equiv-
alence. In our approach, the return values of test cases are always of simple
data types which are easy to compare. If the return value of the left hand
side or right hand side of an axiom is of abstract data type, a variety of
the original axiom, which has the simple return data type, will be used to
generate test cases.

262 L. Dan and B.K. Aichernig

5 The Tool

The tool that implements the automatic generation test cases from RSL speci-
fications is based on the approach described in the above sections. It has been
written using the Gentle Compiler Construction System, a modern toolkit for
compiler writers and implementors of domain specific languages, and amounts to
a little more than ten thousand lines of Gentle code. The tool itself is integrated
in the “rsltc” RAISE tools which provide type checking, pretty-printing, gener-
ation of confidence conditions, showing module dependencies, and translation to
Standard ML and to C++.

The tool hooks onto the back of the RSL type checker to extract represen-
tations of RSL specifications in the form of abstract syntax trees and Gentle
environment variables as the tool’s input and produces as output a separate file
containing the test cases, or includes the test cases into the original RSL file.
That means the tasks of reading RSL files, analysing the structures and check-
ing their syntax are performed by the RSL type checker. We can also use the
C++ translator to translate the RSL specification and its test cases into a C+-+
program and execute the program immediately in order to evaluate the effect of
the test cases.

Test case declarations are a new extension to RSL to support interpretation
and translation. A test case declaration starts with the keyword test_case and
followed by one or more test case definitions. Using the specification in Figure 1
as input, the test case generation tool produces as output a RSL test_case
declaration. Two of those test cases are presented as follows:

test_case

[t1ldeft] count(let (j, m) = output(input(first_value(input(49,
input(101, empty))), input(49, input(101, empty))))
in m end),

[t1right] count(input(49, input(101, empty))),

[t1result] count(let (j, m) = output(input(first_value(input(49,
input (49, input(101, empty))),input(49, input(101, empty))))
in m end) < count(input(49, input(101, empty))),

[t21eft] last_value(input(17, input(49, input(101, empty)))),

[t2_right] last_value(input(49, input(101, empty))),

[t2_pre] 17 < 32V 17 > 126,

[t2result] last_value(input(17, input(49, input(101, empty)))) =
last_value(input(49, input(101, empty)))

Appending the RSL test_case declaration generated by the tool to the original
specification in Figure 1, a new version of the specification is created. The C++
translator is applied to translate the new specification into a C++ file. After
compiling the C++ file and executing it, we get the final testing results. The
testing results of the above two test cases are shown as follows:

Combining Algebraic and Model-Based Test Case Generation 263

tileft] 2
tlright]| 2
tlresult] true

[

[

[

[t2_left] 49
[t2_right] 49
[t2pre| true
[t2_result]| true

The tool can be seen at the web site: http://www.gzas.org/rslweb.

6 Conclusion

In this paper, we have presented an approach to generate test cases from RSL
specifications. In contrast to other’s work, our approach combines the techniques
for testing algebraic specifications and model-based specifications. This approach
can be fully automatic and we design a tool to derive test cases from RSL
specifications using our approach. The overall aim of our work is to make RSL
being actually used in industrial software development through building a series
of tools that could be helpful to this process. Our approach, in order to be
implemented as the test cases generating tool, must be based on techniques
which should be very effective, reliable and practical.

In order to make the application of our approach to non-trivial specification
practical, there are many issues remaining unsolved. While we have focused so
far on module-testing, there are also many interesting questions pertaining to
how to extend our approach to system level. In RSL, a system is a collection
of modules organized in a hierarchy through class extending or instantiating
children modules as objects in parents [12]. We shall also consider to introduce
mutation testing technique [1] to our approach to examine whether our test cases
have enough coverage to find the errors in a mutant specification. In the future,
we also hope to do some research work on how to apply coalgebra theory, which is
a relatively new research field, to the test cases generation of RSL specifications.
Ultimately, we hope to use the results of these work to expand and improve
our tool.

References

1. Bernhard K. Aichernig. Contract-based mutation testing in the refinement calcu-
lus. In REFINE 2002, the British Computer Society - Formal Aspects of Computing
refinement workshop. Elsevier, July 2002.

2. Salimeh Behnia and Hélene Waeselynck. Test Criteria Definition for B Models. In
Jeannette M. Wing, Jim Woodcock, and Jim Davies, editors, F'M’99 — Formal
Methods, World Congress on Formal Methods in the Development of Computing
Systems, Toulouse, France, September 1999, Proceedings, Volume I, volume 1709
of Lecturen Notes in Computer Science, pages 509-529. Springer, 1999.

264

10.

11.

12.

13.

14.

15.

16.

L. Dan and B.K. Aichernig

Fabien Peureux Bruno Legeard and Mark Utting. Automated Boundary Tesing
from Z and B. In FME 2002:Formal Methods Getting IT Right, International
Symposium of Formal Methods Europe, pages 21-40. Springer-Verlag, July 2002.

. Huo Yan Chen, T.H. Tse, F.T. Chan, and T.Y. Chen. In Black and White: An

Integrated Approach to Class-Level Testing of Object-Oriented Programs. ACM
Transactions on Software Engineering and Methodology, 7(3):250-295, July 1998.
John Derrick and Eerke Boiten. Testing Refinements of State-based Formal Spec-
ifications. Software Testing, Verification and Reliability, (9):27-50, July 1999.
Jeremy Dick and Alain Faivre. Automating the Generation and Sequencing of
Test Cases from Model-Based Specifications. In J.C.P. Woodcock and P.G. Larsen,
editors, FME’93: Industrial-Strength Formal Methods. Springer-Verlag, April 1993.
Roong-Ko Doong and Phyllis G. Frankl. The ASTOOT Approach to Test-
ing Object-Oriented Programs. ACM Transactions on Software Engineering and
Methodology, 3(2):101-130, January 1994.

Marie-Claude Gaudel and Perry R. James. Testing Algebraic Data Types and
Processes: A Unifying Theory. Formal Aspects of Computing, 10(5 & 6):436-451,
1998.

Rob Hierons, Mark Harman, Chris Fox, Lahcen Ouarbya, and Mohammed Daoudi.
Conditional slicing supports partition testing. Software Testing, Verification and
Reliability, 12:23-28, 2002.

Robert M. Hierons. Testing from a Z Specification. Software Testing, Verification
and Reliability, 7:19-33, 1997.

Merlin Hughes and David Stotts. Daistish: Systematic Algebraic Testing for OO
Programs in the Presence of Side-effects. In ISSTA’96, 1996.

Tomasz Janowski Hung Dang Van, Chris George and Richard Moore. Specification
Case Studies in RAISE. FACIT series. Springer, 2002.

Christophe Meudec. Automatic Generation of Software Test Cases From Formal
Specifications. PhD thesis, The Queen’s University of Belfast, May 1998.

Ccile Peraire, Stphane Barbey, and Didier Buchs. Test Selection for Object-
Oriented Software Based on Formal Specifications.

A. Pretschner, O. Slotosch, H. otzbeyer, E. Aiglstorfer, and S. Kriebel. Model
Based Testing for Real: The Inhouse Card Case Study, 2001.

The RAISE Language Group. The RAISE Specification Language. BCS Practi-
tioner Series. Prentice Hall, 1992.

Verifying OWL and ORL Ontologies in PVS

Jin Song Dong, Yuzhang Feng*, and Yuan Fang Li

School of Computing, National University of Singapore
{dongjs, fengyz, liyf}@comp.nus.edu.sg

Abstract. The Semantic Web vision is being realized to reach the full
potential of the Web. Semantic data modeling is the foundation of the
Semantic Web. The Web Ontology Language (OWL) and OWL Rules
Language (ORL) provides basic machinery to the semantic mark-up for
data. However, there is limited tool support for OWL and no tool sup-
port currently for ORL. In this paper, we propose to model OWL and
ORL language semantics in PVS specification language so that OWL
and ORL ontologies can be transformed and verified in the Prototype
Verification System (PVS). PVS user-defined proof strategies are also
developed to automate the proof process.

Keywords: PVS, Semantic Web, OWL, ORL, reasoning.

1 Introduction

Unlike conventional web as we have now, the Semantic Web (SW) [2] is a plat-
form for inter-machine data and information exchange, filtering, integration, etc.,
across organizational boundaries without human supervision. It extends the cur-
rent web and reaches its full potential by making it truly ubiquitous and ready
for the machines. The Web Ontology Language (OWL) [7], a Recommendation
by World Wide Web Consortium (W3C), defines the basic vocabulary for de-
scribing data on the web and is a layer on which Web Services can be developed.
In a way, modeling of data using OWL is an important part of requirements
engineering for Semantic Web.

In order for intelligent software agents to automatedly process data on the
web, ontology languages such as DAML+OIL and (part of) OWL were originally
designed to be decidable [19, 22]. However, the trade-off is the limited expressive-
ness, which forbids some very desirable properties to be specified. To partially
overcome this limitation of OWL, the OWL Rules Language (ORL) [12] has
recently been proposed by Horrocks & Patel-Schneider.

Reasoning tool support for OWL is limited at the moment. Moreover, cur-
rently there is no tool support for ORL. SW reasoning tools such as FaCT [11]
and RACER [10] have been developed to be fully automated; hence they can-
not support ORL without major modification. However, as it can be foreseen

* Author for correspondence: fengyz@comp.nus.edu.sg.

Z. Liu and K. Araki (Eds.): ICTAC 2004, LNCS 3407, pp. 265-279, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

266 J.S. Dong, Y. Feng, and Y.F. Li

that ORL be integrated into the ontology languages hierarchy, the correctness
of OWL and ORL ontologies is crucial to establishing trust in Semantic Web.

SW can be regarded as an emerging area from the knowledge representation
and the web communities. The software engineering community can also play
an important role in the SW development. Software verification techniques can
be applied to check SW ontology related properties. We believe SW will be
a new research and application domain for software engineering, especially for
software verification techniques. In this paper, we propose to develop reasoning
environment in PVS for OWL and ORL.

The rest of the paper is organized as follows. We briefly introduce the Se-
mantic Web, ontology languages, tools and PVS in Section 2. In Section 3, we
present PVS semantics for OWL with ORL axioms. In Section 4, we concisely
discuss transformation from ORL to PVS. Reasoning support for OWL and ORL
using PVS theorem prover is presented through a few case studies in Section 5.
Section 6 presents related works, summarizes our contribution and discusses
possible future works.

2 Overview

2.1 Semantic Web, Languages and Tools

Semantic Web. Although the traditional World Wide Web (WWW) was origi-
nally designed for machine processing, it ends up to be consumed only by human,
i.e., web contents are only visually marked-up for humans to read. To reach the
its full potential, it is necessary to make the web a platform for intelligent soft-
ware agents to interact with each other to accomplish complex tasks without
human supervision. To achieve this goal, data on the web must be given struc-
tured and precise meaning so that software agents can process data cooperatively
and autonomously. The Semantic Web [2] was proposed by Tim Berners-Lee as
the next generation of the web and it is now a W3C activity in its second phase.

Ontology Languages. Data in SW are represented by ontologies, which define
their concepts and relationships. Ontology languages provide vocabularies for
expressing ontologies.

Built on top of XML, the Resource Description Framework (RDF) [14] is a
model of metadata defining a mechanism for describing resources without as-
sumptions about a particular application domain. RDF describes web resources
in a simple triplet format: (subject predicate object), where subject is the resource
of interest, predicate is one the properties of this resource and object states the
value of this property. RDF Schema [4] provides facilities to describe RDF data.
RDF Schema allows structured and semi-structured data to be mixed together,
which makes them hard for machines to process.

The syntactic ambiguity and relatively limited expressiveness of RDF Schema
is partially overcome by the DARPA Agent Markup Language (DAML) [19],
which is built on top of RDF Schema and based on description logics. DAML
pooled effort with the Ontology Inference Layer project [5] to produce the ontol-

Verifying OWL and ORL Ontologies in PVS 267

ogy language DAML+OIL. It provides a richer set of language primitives to de-
scribe classes and properties than RDF Schema and allows only structured data.

In 2004, a new ontology language based on DAML+OIL, the Web Ontology
Language (OWL) [21] became the W3C Recommendation. It consists of three sub-
languages: OWL Lite, DL & Full, with increasing expressiveness. These languages
are designed for user groups with different requirements. OWL Lite & DL are de-
cidable but Full is generally not. The undecidability of OWL Full comes from re-
laxing certain constraints from OWL DL. For example, OWL Full does not enforce
the mutual exclusiveness between classes, properties, data values and individuals.

Although the design of OWL has taken into consideration of the different
expressiveness needs of different user groups, it is still not expressive enough.
Some very desirable properties cannot be expressed even in OWL Full. An im-
portant reason for this is that although the language provides a relatively rich
set of language primitives for describing classes, it does not provide as many
primitives for describing properties. For example, it does not support property
composition. In the light of this weakness, Horrocks and Patel-Schneider [12]
proposed an extension to OWL, the OWL Rules Language (ORL), in a syntac-
tically and semantically coherent manner. ORL incorporates Horn clause rules
into OWL and makes rules part of axioms that can be used to express more
complex classes and properties.

The major extensions of ORL are the inclusion of Horn clause rules and vari-
able declarations. The rules are in the form of antecedent — consequent, where
both antecedent and consequent are conjunctions of atoms: class membership,
property membership, individual (in)equalities. Informally, a rule means that if
the antecedent holds, then the consequent must also hold. A simple example rule
shown below states that if 7b is a parent of 7a and ?7c¢ is a brother of ?b, then
?c¢ is an uncle of ?a.

parent(?a,?b) A brother(?b,?c¢) — uncle(?a,?c)

Ontology Tools. Various ontology tools have been built to support the de-
velopment of the SW, such as ontology design, creation, management, merging,
maintenance, publishing, reasoning, etc. In the rest of this section, we will briefly
introduce a few reasoning tools.

FaCT (Fast Classification of Terminologies) [11] is a description logics clas-
sifier developed at University of Manchester. FaCT supports automated concept-
level reasoning (concept subsumption and satisfiability testing), but not instance-
level reasoning. Currently FaCT supports DAML+OIL and OWL.

RACER (Renamed ABox and Concept Expression Reasoner) [10] is a rea-
soner for the description logic ALCOHZxz+(D)~ [9]. It has a much richer set
of functionalities compared to that of FaCT, including ontology creation, query,
retrieval and evaluation, knowledge base conversion to DAML4OIL/OWL, etc.

2.2 PVS

The Prototype Verification System (PVS) is an integrated environment for the
development of formal specifications written in the PVS specification language

268 J.S. Dong, Y. Feng, and Y.F. Li

[17]. Tt supports a wide range of activities in specification development: creation,
documentation, type-checking, theorem-proving, etc. The distinguishing feature
of PVS is its synergistic integration of an very expressive specification language
and powerful theorem-proving capabilities.

PVS provides an expressive specification language that augments classical
higher-order logic with a sophisticated type system with predicate subtypes and
dependent types, and with parameterized theories and a mechanism for defining
abstract data types such as lists and trees.

PVS specifications are organized into theories, which define data types, ax-
ioms, theorems and conjectures that can be reused by other theories.

PVS has a powerful interactive theorem prover/proof checker [16]. The ba-
sic deductive steps in PVS are large compared with many other systems: there
are atomic commands for induction, quantifier reasoning, automatic condition
rewriting, simplification, etc. User-defined proof strategies can be used to en-
hance the automation in the proof checker.

The proof goal in PVS is represented as a sequent which consists of a list
of formulas called antecedents and a list of formulas called consequents. The
interpretation of a sequent is that the conjunction of the antecedents implies
the disjunction of the consequents. Either or both of the antecedents and conse-
quents may be empty. An empty antecedent is equivalent to true, and an empty
consequent is equivalent to false, so if both are empty the sequent is false. Every
proof in PVS starts with a single consequent. It can be seen that the structure
of sequents in PVS very much resembles that of the rules in ORL except that
in ORL the conjunction of antecedents implies the conjunction of consequents.
But as pointed out in [12] that an ORL rule of multiple consequents can be
easily transformed into multiple rules each with a single consequent. Therefore
we believe PVS is a natural reasoner for ORL.

3 PVS Semantics for OWL and ORL

In order to use PVS to verify and reason ontologies with ORL axioms, it is
necessary to define the PVS semantics for OWL & ORL. This semantic model
forms the reasoning environment for verification using PVS theorem prover. In
this section, we present a PVS specification for a subset of OWL Full language
primitives and the newly proposed ORL. The complete model can be found
online?.

3.1 PVS Semantics for OWL Constructs

Basic Concepts

Everything in Semantic Web is a Resource. So we model it by defining a non-
empty type in PVS.

RESOURCE: TYPE+

! http://www-appn.comp.nus.edu.sg/ rpfm/0RL2PVS

Verifying OWL and ORL Ontologies in PVS 269

In OWL Full the universe of individuals consists of all resources. Thus we
define Individual to be a type equivalent to Resource.

INDIVIDUAL: TYPE+ = RESOURCE

Each class in OWL is a resource, which has a number of individuals associated
with it: the instances of this class. So we model Class as a subtype of Resource
and define a function instances that maps a class to a set of individuals.

CLASS: TYPE+ FROM RESOURCE
instances: [CLASS -> set[INDIVIDUAL]]

A property relates resources to resources. So we model Property as a predicate
over a tuple of two resources.

PROPERTY: TYPE = pred[[RESOURCE,RESOURCE]]

Class Relationships

The property subClassOf is defined as a boolean function from two classes. For
a class c1 to be the sub-class of class c2, the instances of c1 must be a subset
of the instances of c2.

subClass0f?(c1,c2:CLASS): bool =

(

subset?(instances(cl),instances(c2))

)

Other class relationship properties such as disjoint With and equivalentClass
are similarly defined.

Class and Property

The property allValuesFrom attempts to establish a maximal set of individuals
as a class. It defines a class c1 of all individuals i1 for which it holds that if the
pair (i1,i2) is in the property p implies that 12 is an instance of class c2. So
we model it as a function from a property p and a class c2 to a class c1 and
specify its meaning as an axiom as follows.

allValuesFrom: [PROPERTY, CLASS -> CLASS]
allValuesFrom_ax: AXIOM FORALL (c1,c2:CLASS), (p:PROPERTY):
(allValuesFrom(p,c2) = c1 IMPLIES FORALL (i1:INDIVIDUAL):
member (il,instances(c1)) IFF FORALL (i2:INDIVIDUAL):
(p(i1,i2) IMPLIES member(i2,instances(c2)))))

Property Relationships

The property subPropertyOf states that a property pl is a sub-property of pro-
perty p2 if and only if all pairs (il,42) in pl are also in p2. Therefore it is
modeled as a boolean function of two properties.

subProperty0f?(p1,p2:PROPERTY) : bool =
(

FORALL (i1,i2:INDIVIDUAL): (p1(i1,i2) IMPLIES p2(i1,i2))
)

270 J.S. Dong, Y. Feng, and Y.F. Li

3.2 ORL Extension

In ORL [12], a rule consists of an antecedent and a consequent, each of which
consists of a (possibly empty) set of atoms. Atoms can be of the form C(z),
P(z,y), sameAs(zx,y) or differentFrom(z,y), where C is an OWL class descrip-
tion, P is an OWL property, and z, y are either variables, OWL individuals
or OWL data values. Informally, an atom C(z) holds if z is an instance of the
class description C, an atom P(x,y) holds if z is related to y by property P,
an atom sameAs(z,y) holds if x is interpreted as the same object as y, and an
atom differentFrom(z, y) holds if and y are interpreted as different objects. A
rule may be read as meaning that if the antecedent holds (is ”true”), then the
consequent must also hold.

An ORL rule will be modeled as a PVS rewrite rule, e.g., a universally quan-
tified predicate of the form

ar N ag N\ .o N\ Gy, = Cc1 N Co2 /... N\ Cpy

where a; and ¢; are one of the four forms of atoms.

3.3 Proof Support for PVS

To make the proving process of PVS more automated, a set of rewrite rules and
theorems is also defined. They aim to hide certain amount of underlying model
from the verification and reasoning and to achieve abstraction and automation.
Usually these rules relate several classes & properties by defining the effect of
using them in a particular way. One simple example is the subClass0f _transitive
theorem. It states that if a class c1 is a sub-class of a class ¢2 and c2 is a sub-class
of a class c3, then c1 is a sub-class of c3.
subClassOf _transitive: THEOREM FORALL (c1,c2,c3:CLASS):

subClass0f?(c1,c2) AND subClass0f7?(c2,c3) IMPLIES
subClass0f?(c1,c3)

The following theorem, member_subClassOf states that an instance of a par-
ticular class is also an instance of all the super classes of this class.
member_subClass0f: THEOREM
FORALL (i:INDIVIDUAL), (c1,c2:CLASS):

member (i, instances(c1)) AND subClass0f?(ci,c2)
IMPLIES member (i, instances(c2))

4 Transforming ORL to PVS

As ORL is an extension to OWL with the inclusion of rules, we perform the
transformation in two steps. We transform OWL constructs into PVS specifica-
tions first, followed by the transformation of ORL rules.

We have developed a tool in Java to automatically transform OWL ontologies
into PVS specifications. For example, the following ontology fragment defines a
class Person and specifies some of its properties. The transformed PVS fragment
is shown at the right.

Verifying OWL and ORL Ontologies in PVS

<owl:Class rdf:ID="Person">

<rdfs:subClass0f rdf:resource="#Animal"/>

<rdfs:subClass0f><owl:Restriction>
<owl:onProperty
rdf :resource="#hasParent"/>
<owl:allValuesFrom
rdf :resource="#Person"/>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Restriction owl :cardinality="1">
<owl:onProperty

271

Person: CLASS
Person_union_ax:
AXIOM Person=unionOf ((:Man,Woman:))
Person_subClass0f_ax_1:
AXIOM subClass0f?(Person,Animal)
Person_subClass0f_ax_2: AXIOM subClass0f?
(Person,allValuesFrom(hasParent,Person))
Person_subClass0f_ax_3: AXIOM subClass0f?
(Person, cardinality (hasFather,1))

rdf :resource="#hasFather"/>
</owl:Restriction></rdfs:subClass0f>
<owl:unionOf rdf:parseType="Collection">
<owl:Class prefab="#Man"/>
<owl:Class prefab="#Woman"/>
</owl:union0f></owl:Class>

In order to facilitate reasoning about numbers, data type properties are trans-
formed into predicates and functional data type properties are transformed into
functions. The advantage of doing this will become clearer when we discuss rea-
soning in Section 5. For example, transformation of the datatype property age
is given below the OWL fragment:

<owl:DatatypeProperty rdf:ID="age">
<rdf :type rdf:resource="http://www.w3.org/
2002/07/owl#FunctionalProperty"/>
<rdfs:range rdf:resource="http://www.w3.org/
2000/10/XMLSchema#nonNegativeInteger"/>
</owl:DatatypeProperty>

age: [INDIVIDUAL -> Nat]

The tool we developed is also capable of transforming instance ontologies into
PVS specifications. For example, the following shows an OWL instance ontology
fragment and the corresponding PVS specification.

Ian: INDIVIDUAL
Ian_Person_ax:

AXIOM member (Ian,instanceOf (Person))
Ian_shoesize_14_ax: AXIOM shoe_size(Ian)=14
Ian_age_37_ax: AXIOM age(Ian)=37

<Description rdf:ID="Ian">
<rdf:type>
<owl:Class rdf:ID="Person"/>
</rdf :type>
<shoe size>14</shoe size>
<age>37</age>
</Description>

Transformation of ORL rules is straightforward. Each rule is transformed
into an axiom, which is a universally quantified Horn clause with each of the
atoms transformed into a predicate. For example,

<owlr:Rule rdf:ID="Rulel">
<owlr:antecedent>
<owlr:individualPropertyAtom polypro="hasParent">
<owlr:Variable tournament="x1" />
<owlr:Variable tournament="x2" />
</owlr:individualPropertyAtom>
<owlr:individualPropertyAtom polypro="hasBrother">
<owlr:Variable tournament="x2" />
<owlr:Variable tournament="x3" />
</owlr:individualPropertyAtom>
</owlr:antecedent>
<owlr:consequent>

272 J.S. Dong, Y. Feng, and Y.F. Li

<owlr:individualPropertyAtom polypro="hasUncle">
<owlr:Variable tournament="x1" />
<owlr:Variable tournament="x3" />
</owlr:individualPropertyAtom>
</owlr:consequent>
</owlr:Rule>

is transformed into

Rulel_ax: AXIOM FORALL (x1,x2,x3: RESOURCE)
hasParent (x1,x2) AND hasBrother(x2,x3)
IMPLIES hasUncle(x1,x3)

5 Ontology Reasoning Using PVS

In this section, we demonstrate how PVS can be used to check ontology-related
properties and to reason beyond the modeling power of OWL & ORL. It is
presented in two parts. Firstly, standard SW reasoning are performed. In the
second part, we show how PVS can reason ORL and more complex properties
that even ORL cannot express.

5.1 Standard SW Reasoning

Standard SW reasoning includes three categories, namely inconsistency checking,
subsumption reasoning and instantiation reasoning. The following subsections
illustrate each category with an example.

Inconsistency Checking. Ensuring the consistency of ontologies is an impor-
tant task in various stages of ontology development, as inconsistent ontologies
may lead agents to reason erroneously and make wrong conclusions.

To be precise, knowledge base consistency amounts to verifying whether every
concept in the knowledge base admits at least one individual [15].

The following is an example of inconsistency checking in the animal ontol-
ogy. After transforming the ontology into a PVS specification, we identified the
following closely related classes, properties and their axioms.

Animal,Vegetarian,Cow,MadCow,Food,Meat,Vegetable:CLASS

eats:0_PROPERTY

Vegetarian_subClassOf_ax_1: AXIOM subClass0f?(Vegetarian,Animal)
Vegetarian_allValuesFrom_ax_1: AXIOM Vegetarian=allValuesFrom(eats,Vegetable)
Cow_subClass0f_ax_1: AXIOM subClass0f?(Cow,Vegetarian)
MadCow_subClass0f _ax_1: AXIOM subClass0f?(MadCow,Cow)

MadCow_subClassOf_ax_2: AXIOM subClass0f?(MadCow,someValuesFrom(eats,Meat))
Meat_subClassOf _ax_1: AXIOM subClass0f?(Meat,Food)

Vegetable_subClassOf_ax_1: AXIOM subClass0f?(Vegetable,Food)
Vegetable_disjointWith_ax_1: AXIOM disjointWith?(Vegetable,Meat)

We suspect that there is an inconsistency in the class of MadCow. To prove
that, we assert the following theorem, which means that the class of MadCow
does not admit any individual.

MadCow_inconsistent: THEOREM
(EXISTS (i:INDIVIDUAL) :member (i, instances(MadCow))) IMPLIES FALSE

Verifying OWL and ORL Ontologies in PVS 273

After applying (lemma) to supply PVS with known facts (axioms), applying
(skolem!) to remove quantifiers and instructing PVS to understand the subclass
relationship between MadCow and Vegetarian, we mneed to prove
member (i'1,instances(Vegetarian)), that 4!l is a member of Vegetarian, which
can be proved by the theorem member_subClassOf introduced in Section 3.3.

By expanding the definition of Vegetarian and exploiting the fact that
MadCow is a subclass of an anonymous class that eats Meat, we can finish
up the proof using a (grind), which is a catch-all strategy that is frequently
used to automatically complete a proof branch or to apply all the obvious sim-
plifications.

Subsumption Reasoning. The task of subsumption reasoning is to infer that
an OWL class is a sub-class of another. This could be accomplished in PVS fairly
automatically. One of the simplest ways is by using the fact that subClass0£f? is
a transitive property, which can be easily proved by PVS.

There are other ways of proving subsumption relationships. One of them is
by inter-class relationships such as intersection0f and Union0f. For example, we
have the following transformed ontology fragment and we want to prove that the
class TallMan is a subclass of Person using theorem TallMan_subClassOf _Person
defined on the right:

TallMan_intersection_ax: AXIOM TallMan_subClass0f_Person: THEOREM
TallMan=intersection0f ((:TallThing,Man:)) subClass0f?(TallMan,Person)
Person_union_ax: AXIOM
Person=union0f ((:Man,Woman:))

The main steps of this proof are to prove separately subClass0f?(TallMan,Man)
and subClass0f?(Man,Person). Then the simple subsumption reasoning can finish
proving the theorem. The above two goals can be proved by the application of
two user defined theorems relating intersectionOf and unionOf to subClassOf,
respectively.

Instantiation Reasoning. Instantiation reasoning asserts that one resource
is or is not an instance of a class. Some SW reasoning tools such as FaCT
are designed to only support concept-level reasoning. Hence reasoning at the
instance-level cannot be performed by these tools. We demonstrate through an
example that PVS supports instance-level reasoning.

In the example ontology, we defined an individual called Santa, who can move
by both walking and flying, by the following axioms.

Santa_moves_walk_ax: AXIOM moves(Santa,walk)
Santa_moves_fly_ax: AXIOM moves(Santa,fly)

We want to prove that Santa is not an instance of the class Person. By
stating the facts that all instances of the Person class can move only by walk,
that the individual Santa can fly, and that walk and fly are disjoint, we can
finish the proof with a (grind) command.

274 J.S. Dong, Y. Feng, and Y.F. Li
Table 1. The Model of Scheduling Tasks
:Agent a owl:Class. :al a Agent. :tpl a TimePoint;
:Task a owl:Class. ;a2 a Agent. :precedes :tp2.
:TimePoint a owl:Class. :tl a Task; :tp2 a TimePoint;
:Data a owl:Class. :starts :tpil; :precedes :tp3.
:relatesTo a owl:TransitiveProperty; :ends :tp3; :tp3 a TimePoint;
rdfs:domain Task; :assignedTo :al. :precedes :tp4.
rdfs:range Task; :t2 a Task; :tp4 a TimePoint;
:assignedTo a owl:ObjectProperty; :starts :tp2; :precedes :tp5.
rdfs:domain Task; :ends :tp4; :tpb a TimePoint.
rdfs:range Agent. :uses :d2; :d1l a Data.
:starts a owl:0ObjectProperty; :assignedTo :a2.|:d2 a Data.
rdfs:domain Task; :t3 a Task;
rdfs:range TimePoint. :starts :tp4;
:ends a owl:0ObjectProperty; :ends :tpb5;
rdfs:domain Task; :relatesTo :t1;
rdfs:range TimePoint. :uses :d1;
:precedes a owl:TransitiveProperty; :assignedTo :a2.
rdfs:domain TimePoint;
rdfs:range TimePoint.
:overlaps a owl:0ObjectProperty;
rdfs:domain Task;
rdfs:range Task.
:uses a owl:0ObjectProperty;
rdfs:domain Task;
rdfs:range Data.
5.2 Checking ORL and Beyond

The above examples demonstrate PVS’s power of performing consistency, sub-
sumption and instantiation reasoning about OWL ontologies with certain degree
of automation. Now we shall illustrate that PVS can reason about ORL and more
complex properties that even ORL cannot capture.

ORL Reasoning. As stated earlier, one important reason of OWL expressive
limitation is that while the language contains a rich set of class constructors, very
little can be said about properties. Even simple composition of two properties
is impossible to represent. It is for this reason that ORL is proposed. Here we
demonstrate how PVS can act as a reasoner to support ORL.

We illustrate our idea with an example ontology about scheduling agents
for different tasks, which is represented in n3 [3] syntax below in Table 1. The
main reasoning task is, given a schedule and a set of constraints, to determine
whether the schedule violates the constraints. Informally, there is a set of tasks
and a set of agents. Any task can be assigned to any agent. There is also a set of
discrete time points and a set of data. A time point may precede another. Each
task starts and ends at a particular time point and may possibly use a piece of
data. A task could relate to another task. Some tasks may overlap with some
other task(s).

Four rules capture the requirements of the system. The first one states that
an agent cannot be assigned to two overlapping tasks. The transformed PVS
theorem is given on the right.

Verifying OWL and ORL Ontologies in PVS 275

rule_1: AXIOM FORALL(t1,t2,al,a2 : RESOURCE):
Task(t1) A Task(12) A member (t1,instances(Task)) AND
Agent(al) A Agent(aZ) A member (t2,instances(Task)) AND
member (al,instances(Agent)) AND

assignedTo(t1, al) A assignedTo(t2, a2) member (a2, instances (Agent)) AND

A overlaps(tl,t2) — assignedTo(t1l,al) AND assignedTo(t2,a2)
. AND overlaps(tl,t2)
differentFrom(al, a2) IMPLIES

differentFrom?(al,a2)

Since ORL rules transformation to PVS is straightforward, as we previously
mentioned in Section 4, we will omit the PVS version of the following rules.

The second rule requires that related tasks must be assigned to the same
agent.

Task(t1l) A Task(t2) A Agent(al) A Agent(a2) A
assignedTo(t1, al) A assignedTo(t2, a2) A relatesTo(t1,t2) —

sameAs?(al, a2)

The third rule requires that any two overlapping tasks cannot use the same
piece of data.

Task(tl) A Task(t2) A Data(dl) A Data(d2) A
uses(tl, d1) A uses(t2,d2) A overlaps(tl,t2) —
differentFrom?(d1, d2)

The last rule defines when two tasks are overlapping - when one task that
starts earlier ends after the other task starts.

Task(tl) A Task(t2) A

TimePoint(tpl) A TimePoint(tp2) A TimePoint(tp3) A TimePoint(tp4) A
starts(t1, tpl) A ends(tl, tp2) A starts(t2, tp3) A ends(t2, tpd) A
precedes(tpl, tp3) A precedes(tp3, tp2) —

overlaps(t1, t2)

To prove that the schedule violates some of the constraints, we simply prove
the following PVS theorem: violateConstraint: theorem FALSE.

A proof strategy is intended to capture patterns of inference steps. A defined
proof rule is a strategy that is applied in a single atomic step so that only the
final effect of the strategy is visible and the intermediate steps are hidden from
the user. We define a number of proof strategies, such as (installTimePoint),
(installData), (installAgent), etc., each of which introduces all the axioms one
by one of a particular class. The following strategy introduces to PVS all facts
related to all the time points.

(defstep installTimePoint ()
(then
(lemma "tpl_instanceOf_ax")
(lemma "tpl_precedes_ax")
(lemma "tp2_instanceOf_ax")
(lemma "tp2_precedes_ax")

276 J.S. Dong, Y. Feng, and Y.F. Li

(lemma "tp3_instanceOf_ax")

(lemma "tp3_precedes_ax")

(lemma "tp4_instanceOf_ax")

(lemma "tp4_precedes_ax")

(lemma "tp5_instanceOf_ax")
)
"Installing all axioms of TimePoint"
"Installing all axioms of TimePoint"

)

Then we also define a strategy which finds and installs the transitive closure
of the property precedes, i.e., the relative temporal order of all pairs of time
points, as follows. This is needed for determining instances of the overlaps
property later.

(defstep installAllPrecedes ()
(then
(lemma "precedes_transitive_ax")
(rewrite "transitiveProperty?")
(try (forward-chain -1) (installAllPrecedes) (delete -1))
)
"Finding and installing all precedes property instances"
"Finding and installing all precedes property instances"

)

Basically this strategy repeatedly forward-chains the precedes_transitive_ax
axiom until there is no more effect. Similarly, we find all instances of the property
relatesTo by using the strategy installAllRelatesTo (not shown here).

Now we apply the rules. First, we apply the fourth rule to discover all in-
stances of the property overlaps by using the strategy installAllOverlaps
below.

(defstep installAllOverlaps ()
(then
(lemma "rule_4")
(try (forward-chain -1) (installAllOverlaps) (delete -1))
)
"Finding and installing all overlaps property instances"
"Finding and installing all overlaps property instances"

)

Then we can apply the other three rules one by one by using strategies
similarly.

We apply the (grind) command, which proves the theorem. It means that
the schedule cannot satisfy the conjunction of all constraints. A closer look at
the ontology discovers that tasks t1 and 2 are related and yet overlapping. This
reasoning technique becomes more important when the ontology contains more
classes and more complicated properties.

Reasoning Beyond ORL. One example that OWL & ORL cannot deal with
is the concrete domains: it can only make assertions about linear (in)equalities
of cardinalities of property instances over integer. PVS, on the other hand, can
perform basic arithmetic operations and comparisons, which we believe could
improve the proof power beyond SW.

We illustrate the idea with the same schedule example. In the previous sec-
tion, we model time as discrete time points and their temporal relationship as

Verifying OWL and ORL Ontologies in PVS 277

an abstract precedes property. Now we can use the natural number domain to
model time. Correspondingly, the starts and ends properties would have to be
refined into functions from Task to natural number. Then the overlaps property
could be refined as follows.
overlaps_ax: theorem
FORALL (t1,t2:INDIVIDUAL):

member (t1,instances(Task)) AND

member (t2,instances(Task)) AND

starts(tl) < starts(t2) AND starts(t2) < ends(tl)

IMPLIES
overlaps(t1,t2)

The above is just a simple example property that ORL cannot specify. If
more constraints are to be put into the ontology, such as deadline for the whole
schedule (which requires addition over numbers) or axioms other than C(z),
P(z,y), sameAs(z,y) and differentFrom(z,y) are to be put into rules, more
interesting properties would arise, which are also inexpressible in ORL.

6 Conclusion

Ensuring the correctness of shared ontologies is an important task in ontology
development as inconsistent ontologies may lead agents to draw erroneous con-
clusions. In our previous works [8,20], we have attempted to use a combination
of SW and formal methods tools to reason about DAML4OIL/RDF ontolo-
gies. We used Alloy Analyzer (AA) [13], Z/EVES [18], RACER and OilEd [1] in
combination to check for properties of interest. Some properties are beyond the
modeling power of DAMLA+OIL. In this approach, the various tools were used
in a complementary way such that a balance of automation and expressiveness
is achieved. Moreover, the source of ontological errors can be traced in AA.

There are a few drawbacks to this approach. Firstly, AA does not scale up
very well and secondly, Z/EVES works interactively, as PVS theorem prover
does.

One part of the future works is to enhance the proof support for OWL and
ORL. The PVS reasoner will be more effective if the semantics include not
only essential functions but also sufficient supporting lemmas and theorems that
makes proof of trivial goals more automated.

PVS is a generic theorem prover. As a result, it lacks complete automation.
Hence, another part of the future works is to reduce user interactions as much
as possible so that the reasoning procedure can be more efficient. This can be
achieved by developing more advanced proof strategies.

Model-checking capabilities used for automatically verifying temporal prop-
erties of finite-state systems have recently been integrated into PVS. Hence PVS
could be used to model and reason behaviors of SW services such as DAML-S [6].

In conclusion, we presented the PVS semantics for the Semantic Web ontology
language OWL and its proposed extension ORL, the transformation process from
OWL ontologies to PVS specifications, and our approach of using PVS theorem
prover to reason ontology-related properties, sometimes beyond the modeling

278 J.S. Dong, Y. Feng, and Y.F. Li

capabilities of ORL. Some of the advanced features such as proof strategy are
incorporated in our approach.

ORL is a newly proposed ontology language. To our knowledge, so far there
is no existing reasoning system that can support ORL prior to this work. The
high expressiveness of PVS language, its highly tunable proof strategies and
similarity between PVS sequents and ORL rules make PVS a natural reasoner
for ORL.

Acknowledgements

This work is supported by the DIRP Grant “Formal Design Methods and DAML”
from Defense Science & Technology Agency (DSTA) Singapore. We would also
like to thank Hai Wang, who directed our attention to ORL and provided valu-
able comments on an earlier draft of this paper.

References

1. Sean Bechhofer, Ian Horrocks, Carole Goble, and Robert Stevens. OilEd: a reason-
able ontology editor for the semantic web. In Proceedings of KI2001, Joint Ger-
man/Austrian conference on Artificial Intelligence, number 2174 in Lecture Notes
in Computer Science, pages 396408, Vienna, September 2001. Springer-Verlag.

2. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Ameri-
can, 284(5):35-43, 2001.

3. Tim Berners-Lee. Notation 3 — Ideas about Web architecture.
http://www.w3.org/Designlssues/Notation3.html, 1998.

4. D. Brickley and R.V. Guha (editors). Resource description framework (rdf) schema
specification 1.0. http://www.w3.org/TR/rdf-schema/, February 2004.

5. J. Broekstra, M. Klein, S. Decker, D. Fensel, and 1. Horrocks. Adding formal
semantics to the web: building on top of rdf schema. In ECDL Workshop on the
Semantic Web: Models, Architectures and Management, 2000.

6. M. Burstein, J. Hobbs, O. Lassila, D. Martin, S. Mcllraith, S. Narayanan,
M. Paolucci, T. Payne, K. Sycara, and H. Zeng. Daml service.
http://www.daml.org/services/daml-s/2001/05/.

7. M. Dean, D. Connolly, F. van Harmelen, J. Hendler, I. Horrocks, D. L.. McGuinness,
P. F. Patel-Schneider, and L. A. Stein (editors). OWL Web Ontology Language
1.0 Reference. http://www.w3.org/TR/owl-ref/, 2002.

8. J. S. Dong, C. H. Lee, Y. F. Li, and H. Wang. A combined approach to checking
web ontologies. In Proceedings of 13th World Wide Web Conference (WWW’04),
pages 714-722, New York, USA, May 2004.

9. Volker Haarslev and Ralf Moller. Practical Reasoning in Racer with a Concrete
Domain for Linear Inequations. In Tan Horrocks and Sergio Tessaris, editors, Pro-
ceedings of the International Workshop on Description Logics (DL-2002), Toulouse,
France, April 2002. CEUR-WS.

10. Volker Haarslev and Ralf Moller. RACER User’s Guide and Reference Manual:
Version 1.7.6, December 2002.
11. I. Horrocks. The FaCT system. Tableaux’98, LNCS, 1397:307-312, 1998.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Verifying OWL and ORL Ontologies in PVS 279

Tan Horrocks and Peter F. Patel-Schneider. A proposal for an owl rules
language. In Proc. of the Thirteenth International World Wide Web Con-
ference (WWW 2004), pages 723-731, New York, USA, May 2004. ACM.
http://www.cs.man.ac.uk/ horrocks/DAML/Rules/.

D. Jackson, I. Schechter, and I. Shlyakhter. Alcoa: the Alloy Constraint Analyzer.
In The 22nd International Conference on Software Engineering (ICSE’00), pages
730-733, Limerick, Ireland, June 2000. ACM Press.

F. Manola and E. Miller (editors). RDF Primer. http://www.w3.org/TR/rdf-
primer/, February 2004.

Daniele Nardi and Ronald J. Brachman. An introduction to description logics. In
Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter
Patel-Schneider, editors, The description logic handbook: theory, implementation,
and applications, pages 1-40. Cambridge University Press, 2003.

S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system.
In Deepak Kapur, editor, 11th International Conference on Automated Deduction
(CADE), volume 607 of Lecture Notes in Artificial Intelligence, pages 748-752,
Saratoga, NY, June 1992. Springer-Verlag.

S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Language
Reference. Computer Science Laboratory, SRI International, Menlo Park, CA,
December 2001.

M. Saaltink. The Z/EVES system. In J. P. Bowen, M. G. Hinchey, and D. Till,
editors, ZUM’97: Z Formal Specification Notation, volume 1212 of Lect. Notes in
Comput. Sci., pages 72-85. Springer-Verlag, 1997.

F. van Harmelen, P. F. Patel-Schneider, and I. Horrocks (editors). Reference de-
scription of the DAML+OIL ontology markup language. Contributors: T. Berners-
Lee, D. Brickley, D. Connolly, M. Dean, S. Decker, P. Hayes, J. Heflin, J. Hendler,
O. Lassila, D. McGuinness, L. A. Stein, ..., March, 2001.

Hai Wang. Semantic Web and Formal Design Methods. PhD thesis, National
University of Singapore, 2004.

World Wide Web Consortium (W3C). OWL Web Ontology Language Overview.
http://www.w3.org/ TR /owl-features/, March 2003.

World Wide Web Consortium (W3C). Web Ontology Language (OWL) Use Cases
and Requirements. http://www.w3.org/TR/webont-req/, March 2003.

Symbolic and Parametric Model Checking
of Discrete-Time Markov Chains

Conrado Daws*

Nijmegen Institure for Computing and Information Sciences,
University of Nijmegen, The Netherlands
daws@cs.ru.nl

Abstract. We present a language-theoretic approach to symbolic model
checking of PCTL over discrete-time Markov chains. The probability with
which a path formula is satisfied is represented by a regular expression.
A recursive evaluation of the regular expression yields an exact rational
value when transition probabilities are rational, and rational functions
when some probabilities are left unspecified as parameters of the system.
This allows for parametric model checking by evaluating the regular ex-
pression for different parameter values, for instance, to study the influence
of a lossy channel in the overall reliability of a randomized protocol.

1 Introduction

In recent years, the need to formally reason about probabilistic behaviour, exhib-
ited, for instance, by randomized algorithms, or communication protocols and
computer networks with unreliable or unpredictable behaviour, has triggered re-
search in the area of formal methods for the specification and verification of prob-
abilistic systems. The general approach has consisted in extending those models,
logics and techniques, which have proved successful in the non-probabilistic set-
ting, with probabilities . In particular, this has lead to the theory of probabilistic
model checking [8, 5] of PCTL [14, 1] over discrete probabilistic systems, and, in
the last few years, to tools implementing it [17, 21].

Discrete probabilistic systems are typically modelled by an extension of tran-
sition systems with discrete probability distributions. In this model, a set of
outgoing distributions on the set of states is associated with every state. Each
such distribution gives the probability with which the source state can reach
some target state in one step. Models with at most one distribution per state are
said to be fully probabilistic, and usually referred to as a discrete-time Markov
chains (DTMC). Models with both nondeterministic and probabilistic choice are
usually referred to as a Markov Decision Processes (MDP).

The logic PCTL is a version of CTL where the existential and universal quan-
tification over paths in CTL are replaced with a probabilistic operator Py (),

This work was originally carried out at the Formal Methods and Tools group of the
University of Twente, supported by the European Community Project IST-2001-
35304 AMETIST.

Z. Liu and K. Araki (Eds.): ICTAC 2004, LNCS 3407, pp. 280—294, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Symbolic and Parametric Model Checking of Discrete-Time Markov Chains 281

where ~ € {<,<,> >}, and A € [0,1] is the probability threshold, affording
the specification of properties such as “a leader will eventually be elected with
probability 17 or “the chance of shutdown occurring is at most 0.001”.

Probabilistic model-checking of PCTL over discrete probabilistic systems is
based on the computation in every state of the probability measure of the set of
paths satisfying a (path) formula. These probabilities are computed numerically
by solving a system of linear equations in the case of DTMCs [14], and by solving
a linear optimization problem in the case of MDPs [5].

We present a new, language-theoretic, approach for probabilistic model check-
ing of DTMCs. Within our approach, transition probabilities are considered let-
ters of an alphabet of a finite state automaton. The probability measure of a set
of paths satisfying a formula is computed symbolically as a regular expression
on that alphabet, with the standard algorithms to obtain a regular expression
from a finiste state automaton. The regular expression is then evaluated to its
exact rational value when transition probabilities are rational. Moreover, the
symbolic representation of probability measures as regular expressions allows us
to leave transition probabilities unspecified as formal parameters. In this case,
the evaluation of a regular expression is a quotient between two polynomials on
the parameters, with rational coefficients.

In this way, we can perform parametric model checking, e.g., check whether a
formula holds for different values of the parameters, for instance, to study the in-
fluence of a lossy channel on the reliabilty of a protocol, or to obtain algebraically
the value of a parameter such that the system satisfies some property. However,
parametric model-checking is applicable only for formulas without nested prob-
abilistic operators, but this does not represent a strong restriction in practice
because such formulas are not needed to specify properties of interest.

The remainder of the article is organized as follows. Section 2 is a short
introduction to the theory behind probabilistic model checking of PCTL over
discrete-time Markov chains. Section 3 introduces our technique for symbolic
model-checking of DTMCs, and we extend it to the parametric case in Sec-
tion 4. We illustrate its application with two small case studies in Section 5.
Finally, Section 6 concludes our presentation with a discussion of related and
future work.

2 Probabilistic Model Checking

We start with a short introduction to model checking of PCTL formulas for
discrete-time Markov chains. Throughout this section, we consider a given set
of atomic propositions AP.

2.1 Discrete Time Markov Chains

A discrete-time Markov chain is a tuple D = (S, so, P, L) where

— S is a finite set of states
— 89 € S is an initial state

282 C. Daws

— L : S — 2°P is a labelling function which gives the atomic propositions that
are true in a state.

— P:S8x8~10,1]NQ is a probability matrix with rational values such that
forall s €S, > ,csP(s,t) = 1.

The function P(s,-) is the distribution on S for state s. Notice that states
with no outgoing distribution can be considered by adding a self-loop with
probability 1, without changing the transient and limiting probabilities of the
system. The matrix entry P(s,t) gives the probability of making a transition
from s to t. The probability of following a finite path sgs;...s, is P(sg,s1) -
P(s1,82) - ... - P(sp_1,8n). These probabilities for finite paths give rise to a
unique probability measure Pry on the set Paths of infinite paths starting in
state s, defined on the sets of paths having a finite common prefixe, such that
Prs({wjw =ss1...5,.w'}) = P(s,51) - P(s1,82) < ... - P(8n—1,8n) [19].

2.2 The Logic PCTL

The logic PCTL [14, 5] is a version of CTL where the existential and universal
quantification over paths in CTL are replaced by a probabilistic operator Pux(-),
with ~ € {<,<,>,>} and X\ € [0,1] rational is the probability threshold, that
can be applied to a path formula. The formal syntax of PCTL formulas over AP
is given by the following grammar:

¢ =true|a € AP|p A ¢ || Pur(a)
a = Xo | pUg

2.3 Semantics and Model Checking

The semantics of PCTL is the same as that of CTL for the fragment where they
both coincide. The semantics of the probabilistic operator is:

sEPu(a) iff Pry({w € Path, |w = a}) ~ A

meaning that the probability measure of the set of paths satisfying « is calculated
and compared to the threshold A, yielding true or false.

The model checking algorithm proceeds in the same way as for CTL, by
induction on ¢. The only difference is the evaluation of the probabilistic operator
appearing in sub-formulas of the type P.x(X¢) and Py (¢1Ups). The example
below shows the standard approach based on numerical solutions of a linear
equation system. Section 3 presents our symbolic algorithm based on regular
expressions.

2.4 A Simple Example

Let’s consider the DTMC of Fig. 1 (left). The initial state s has a probabilistic
branching to ¢ with probability %, to u with probability 1—30 and to itself with
probability 16—0. The probability with which ¢ can be reached from s, denoted

Symbolic and Parametric Model Checking of Discrete-Time Markov Chains 283

6
10

\/

6 3
Ts = 19%s + 0% + 0%
xtzl
1 3 Ty =0

10 10

@ O,

Fig. 1. A simple DTMC and the corresponding linear equation system to compute the

probabilities for trueUt with solution zs = i, e =1,2, =0

Zs, is the probability measure of the set of paths starting in s and satisfying
the formula o = trueUt. Its numerical value is obtained as the unique solution
of the linear equation system of Fig. 1 (right), which is z, = %. It follows that
s = P<i(a) and s = Ps1(a).

Tools like PrRisM [21] and RAPTURE [17] find the solution of the linear equa-
tion system using iterative methods (e.g. Jacobi, Gauss-Seidel), that numerically
approximate the solution. It must be noticed that since these methods do not
compute the exact solution, those tools might yield the wrong result when the
solution is equal, or close enough, to the threshold of the formula, like in this ex-
ample. Our symbolic approach does not suffer from this, but the same goal could
be achieved using direct methods on rational numbers with arbitrary precision.

3 Symbolic Model-Checking of DTMCs

This section presents a language-theoretic approach to model checking of DTMCs.
It is based on deriving from a DTMC a finite state automaton recognizing a lan-
guage over an alphabet consisting of the strictly positive transition probabilities
appearing in the matrix P. The initial state of the FSA is the state on which
the formula is to be checked, whilst the sets of final states and the transition
function depend on the path formula under consideration. A path formula yields
a regular expression that is evaluated recursively to the exact rational value of
the probability measure of the set of paths satisfying it.

3.1 Derived FSA

We derive from a DTMC D = (S,s0,P,L) a finite state automaton A =
(S,%,6,8¢) such that:

— § is the same set of states of D
— 8y € S is a subset of final states

284 C. Daws

Table 1. Evaluation of regular expressions as rational numbers

val(p/q) = g val(z|y) = val(z) + val(y)

1

val(z") = T val(m)

val(z.y) = val(z) x val(y)

- Y ={(p/q)|3i,j € S.P(,j) = % > 0} is the alphabet, consisting of the
strictly positive entries of the probability matrix.

— 6 : Sx X — 25 is a transition function derived from P which associates with
every pair of states and letters, a set of states such that if §(s,a) = Q then
for every ¢ € Q, P(s,q) = a.

3.2 Evaluation of Regular Expressions

The set R(X) of regular expressions over the alphabet X, is the set of expressions
containing the elements of X, and closed by union (]), concatenation (.) and star
(x). These expressions can be evaluated to a rational value, by replacing union
by addition (4), concatenation by multiplication (x) and star by the limit of a
geometric series. Formally, the evaluation function val : R(X) +— Q is defined
inductively by the rules of Table 1°.

The regular language L£(A,s;) recognized by A with initial state s; € S,
corresponds to the (possibly infinite) set 2 of finite paths from s; to some fi-
nal state in Sy, following only transitions allowed by 6. Among all the regular
expressions corresponding to this language, we consider a regular expression r
computed with the inductive or the state-elimination algorithms of [15], without
simplifying expressions of the type ala 2.

The following proposition states that the evaluation of r is the probability
measure in s; of the set of paths with prefixes in 2.

Proposition 1. Let r be a regular expression computed for L(A, s;). Then,

val(r) = Pry,({w € Paths, | 3k > 0.w(k) € Sy, and
Vi<k,Jae X.6w(l),a)3w(l+1)})

! Notice that the evaluation of z* is not defined when z evaluates to 1, but this does
not happen in the regular expressions we obtain because the final states of the FSAs
we consider have no outgoing transition, thus, every cycle must be exited. The same
remark applies for the parametric case.

2 To be precise we should talk about regular expressions with multiplicities [4]. How-
ever, the regular expressions computed by the standard algorithms mentioned above
without simplification, preserve the multiplicities of words, and, thus, our results
hold.

Symbolic and Parametric Model Checking of Discrete-Time Markov Chains 285

3.3 Model-Checking

Let D = (S, s0,P, L) be a DTMC and P.)(«) a PCTL formula. We charaterize
the set of paths satisfying « as a regular expression on Y. For the next operator
the regular expression can be obtained directly from P and «. For an until for-
mula, we derive from D and « a finite automaton A, generating the probability
measure of paths satisfying «. The set of states satisfying a state formula ¢ is

denoted by [¢].

Next Formulas. Let a = X¢ be a next formula. A regular expression corre-
sponding to the set of paths satisfying « is |;(p/q); such that s; € [¢] and
I)(Sl‘7 Sj) = %
Until Formulas. Let a = ¢1U¢s be an until formula. The derived finite au-
tomaton is such that the final states are those satisfying ¢s, and the transition
function is restricted to those states satisfying ¢; A —¢o. Formally:

— Sy = [¢2]

— §(s,a) = { ifs & [¢1] ors € [o2]

0
{t|P(s,t) = a} N ([o1] U [o2]) otherwise

Model-Checking. Let A, = (S, X, 6,S¢) be the finite automaton derived from
D and «. Then, the following proposition states that the model checking problem
can be solved for a state s; by evaluating a regular expression equivalent to the
language recognized by A with initial state s;.

Proposition 2. Let r be a reqular expression computed for L(Aq,s,). Then,
si = Pux(@)iff val(r) ~ A

In order to model-check recursively formulas with nested probabilistic op-
erators, we need to establish the validity of every probabilistic subformula in
each state. In this case, the inductive algorithm for computing regular expres-
sions which gives for every state a regular expression corresponding to the lan-
guage it accepts, should be preferred. However, for efficiency reasons, the state-
elimination algorithm is more appropriate to model-check simple formulas with-
out nested probabilistic operators, like those usually considered in practice.

3.4 A Simple Symbolic Example

Let’s consider the DTMC of Figure 1, and the path formula oy = trueUt to
be evaluated in state s. We derive the finite automaton depicted in Figure 2
(left) with alphabet X = {1/10,3/10,6/10}, initial state s; = s, final states
Sy = {t} and a transition function defined by 6(s,6/10) = {s}, 6(s,1/10) = {t}
and 6(s,3/10) = {u}.

The language recognized by this automaton corresponds to the set of paths
reaching ¢ from s. It can be described by the regular expression r = (6/10)*.(1/10)

286 C. Daws

a1 = trueUt as = sUu

6/10 6/10

\/ \/

~) -
1/10 3/10 3/10

O ©® ®

Fig. 2. Finite automata for the verification of a1 and a2 in s

which is evaluated to val(r) = 1_11% X 1= = 1. It follows that s = P 1(a1) and
s = Pe 1 (1), thus avoiding the problem arising with numerical computations.
Figure 2 (right) also depicts the finite automaton derived for the evaluation of

as = sUu in state s.

4 Model Checking Parametric DTMCs

Since regular expressions are computed formally, that is, probabilities are consid-
ered just symbols prior to evaluation, it is natural to extend our model checking
technique to the case where probabilities are given as formal parameters. This
makes possible to consider parametric models where some transition probabil-
ities are left unspecified. The regular expression is in this case evaluated to a
rational function, i.e., a quotient between two polynomials on the parameters,
which can be manipulated algebraically for parametric analysis.

4.1 Parametric DTMCs

Let X be a set of formal parameters. A parametric DTMC is a DTMC where we
extend the probability matrix to take values also in X. The formal parameters
must satisfy the linear system corresponding to the stochastic condition of the
probability matrix, i.e., for all s € S, >, s P(s,t) = 1, and they must be strictly
positive reflecting the fact that a transition between two states is present in the
derived finite automaton only if it corresponds to a strictly positive probability.

A parametric DTMC gives rise to a family of DTMCs by instantiating the
formal parameters to a value with an instantiation function x: Q4 UX — [0, 1]
such that for all ¢ € Q4, k(q) = ¢, for all x € X, k(z) > 0, and for all s € S,
> tes K(P(s,t)) = 1. For a parametric DTMC Dx, and an instantiation function
k, k(Dx) denotes the DTMC such that the probability matrix is obtained by
instantiating the formal parameters.

Symbolic and Parametric Model Checking of Discrete-Time Markov Chains 287

Table 2. Evaluation of regular expressions as rational functions

val(p/q) = s val(r|s) = %

4.2 Evaluation of the Regular Expression

The finite state automaton for a parameterized DTMC and a path formula is
derived as in the non-parametric case. The regular expression is also evaluated
recursively. In this case, the operators on regular expressions, union, concate-
nation and star, are replaced by the corresponding addition, multiplication and
inversion for rational functions, that is, quotients ggg between two polynomials
on X.

The evaluation function val : R(X) — (Q)X x (Q) X associates with a regular
expression r, a pair (P, @Q,) of polynomials on X with coefficients in @Q, noted
%, defined by induction on the regular expression following the rules in Table 2.

Let Dx be a parametric DTMC, A the derived FSA, and r a regular ex-
pression for its language computed with the inductive or the state-elimination
algorithms. The following proposition states that the evaluation of r for any
instantiation of the parameters k, noted k(val(r)), is the probability measure in
state s; for k(Dx), of the set of paths from s; to some state in Sy following only
transitions allowed by 6.

Proposition 3. Let r be a reqular expression computed for L(A,s;). Then,

k(val(r)) = Pr,, wpy({w € Paths, | 3k >0.w(k) € Sy, and
Vi<k,JaeX.6(w(l),a)dwl+1)})

4.3 Model Checking Simple PCTL Formulas

Let Ay = (S,%,6,5f) be the finite automaton derived from Dx and a path
formula « that does not contain nested probabilistic operators. The following
proposition states that model-checking such path formulas for a state s; in x(Dx)
consists in evaluating a regular expression equivalent to the language recognized
by A, with initial state s;, for the instantiation k.

Proposition 4. Let r be a regular expression computed for L(Aq,s,). Then,
$i Fu(py) Prorl(@) iff r(val(r)) ~ A

Thus, by evaluating the corresponding regular expression, we obtain an al-
gebraic expression of the probability measure of the sets of paths satisfying a
path formula, as a rational function on the parameters. We can use the result to

288 C. Daws

a1 = trueUt

1—4p 1—4p

\/

p 3p p 3p

O, @ @ @

Fig. 3. Parametric DTMC and FSA for the verification of trueUt in s

check whether the system satisfies a formula for different values of the param-
eters, without having to model check the system every time. Moreover, we can
manipulate the algebraic expression in order to synthesize the values of certain
parameters such that a formula is satisfied.

Parametric model-checking is however restricted to formulas without nested
probabilistic operators, because a recursive evaluation of a formula is not possible
in general, since the set of states satisfying a probabilistic formula is a parameter-
ized set. This is not a strong restriction in our opinion, since in practice general
formulas are not necessary to specify properties of interest. Moreover, such for-
mulas are also problematic when using iterative numerical methods because of
the propagation of the numerical error inherent to these methods.

4.4 A Simple Parametric Example

Now let’s consider that the transition probabilities of the DTMC of Figure 1
are not completely specified, and that we have the parametric DTMC depicted
in Figure 3 (left), such that P(s,t) = p, P(s,u) = 3p and P(s,s) = 1 — 4p, for
0<p<i.

The finite state automaton derived for the verification of a; is depicted in Fig-
ure 3 (right). The regular expression for the language it accepts is r = (1—4p)*.p,
which is evaluated to val(r) = m x p = 1. That is, state s satisfies both
s = P>1(on) and s |= Pc1 (o) for any valid value of p. Notice that the evalua-

tion of the regular expression is not defined for p = 0 but it is for p = i, hence
we could relax the requirement that P(s, s) be strictly positive. Intuitively, this
corresponds to removing the self-loop in s, which does not disconnect the graph.

5 Application

We apply our formal model checking approach to two small examples. We gen-
erate the regular expressions for the derived finite automata using the state-

Symbolic and Parametric Model Checking of Discrete-Time Markov Chains 289

elimination algorithm implemented in JFLAP[13, 18] and a simple script to eva-
lute them.

5.1 Simulating a Dice with a Coin

We consider a probabilistic program due to Knuth and Yao [20], which models a
fair dice using only fair coins, that has already been analyzed using a probability
theory [16] for the theorem prover HOL [11,12], and the probabilistic symbolic
model checker PrRISM [22].

The DTMC of Figure 4 generates a uniform distribution on {1,...,6} from
a source of independent, unbiased, random bits, which can be seen as a model of
a dice using a fair coin. Starting at state 0, the coin is tossed. Whenever heads
appears, the system takes the upper branch and when tails appears, the lower
branch. This continues until the value of the dice is decided.

Fig. 4. Simulating a dice tossing a coin: upper branches correspond to tail, and lower
branches to head

The properties of interest of this example are that it terminates with prob-
ability 1, and that it generates the uniform distribution. Let be an atomic
proposition characterizing the state where the value ¢ was obtained. Let ag =
trueU \/Z? and a; = trueU for i = 1...6. Then, the initial state sop must
satisfy the following PCTL formulas, for ¢ =1...6:

P>1(ao), P<ilai), Psi(ai)
Table 3 shows the results from applying our model checking approach to the
dice model. For each path formula a;, the second column gives the regular ex-

pression® corresponding to £(A,,) and the third column gives its evaluation. The

3 Although the language is the same for every a;, JELAP can return different regular
expressions.

290 C. Daws

Table 3. Regular expressions and evaluations for model checking the dice example

« r=L(As) val(r)
a1, az, a3, 06((1/2).((1/2).(1/2))".(1/2).(1/2) g
o, as ((1/2).(0/2)[(1/2).(1/2).((1/2).(1/2))".(1/2).(0/2)).(0/2)] 3

Table 4. Regular expressions for parametric analysis of the dice example

« = L(An)
g (1/2) (h1-h3)".hi.(1 = ha)
2, (3 (1/2) (h1 h3) (1 — hl) (1/2)
(1/2).(
(1/2).t

G4, 5 1/2 1 —tg) (1/2)|(1/2)t2(t6t2)*t6(1 — tg)(l/z)
2.(t6.t2)".(1 — t6)

regular expression corresponding to A, is the union of the regular expressions
for A,,, thus it is evaluated to 1. It follows that sg satisfies all above formulas.

Now we show how to do parametric analysis on the dice model when we allow
the use of biased coins. Let 0 < h; < 1 and t; = 1 — h; be the probabilities of
getting head or tail in state s;. In order to obtain the uniform distribution, we
must have hg = hy = hs = % for symmetry reasons, hence, only states si, ss,
sz and sg can use biased coins. Table 4 shows the regular expressions obtained
using the formal parameters h; and ;.

We will prove that the uniform distribution can not be obtained with a single
biased coin. First, we must have val(r,,) = val(rq,). This means that hy(1 —
h3) = (1 — hy)/2 and, hence, hy = 1/(3 — 2h3). Thus, if s; and s3 must use the
same coin, we should also have hy = hg or h;y = 1 — hg. Both cases yield a second
degree equation, with a unique solution in]0,1[, by = hg = 3.

5.2 The IPv4 Zeroconf Protocol

We consider a simple probabilistic model of part of the IPv4 Zeroconf protocol,
designed for the self-configuration of IP network interfaces. This part, modelled
by the DTMC of figure 5, taken from [6], deals with the collision-avoiding mech-
anism of the protocol. When a fresh host joins the network, which we assume to
have a fixed configuration, it selects uniformly a random IP address among the
K = 65024 possible addresses. If there are m hosts in the network the probability
of a collision is ¢ = m/K.

The host can select a new IP address with probability 1 — ¢ and join the
network. Otherwise, it tries to detect the collision by asking the other hosts
whether they are using this address, and then waits for an answer. However,
the new host might not receive an answer in time with probability p, in which
case it repeats the question. If the answer is received in time, with probability
1 —p, then the new host can restart selecting a new address again. The protocol
requires that n questions must be asked if no answer arrived. If after n tries the
host didn’t get an answer, then it will erroneously consider its IP as new.

Symbolic and Parametric Model Checking of Discrete-Time Markov Chains 291

p\ ¢[0.1]0.2[0.4]0.7]0.8]0.9 os
01 |v v v v [V |V 07
02 |v v v v o e
0.3 |v |V .
0.5

0.7

0 02 04 06 08 1
lambda

Fig. 6. Parametric analysis of the Zeroconf protocol

We are interested in the probability with which a correct new address will
be selected, that is the probability P,, for reaching s,; from sg. In order to
compute it, we consider the language recognized by the automaton with initial
state sg and final state s,;. The regular expression for it, is rop = (¢.(1 —
p)(1plp.p| ... [p™))*.(1 — q). By evaluating this regular expression, and after a
simple algebraic simplification, we obtain an analytic expression of P,:

1—g¢q 1—gq 1—g¢q

C1-q-p)Yopt 1 -p it 1—g(l—prt)

Pok

We want the system to ensure that the new host will get a valid address
with probability at least A, i.e., that it satisfies so = P>x(trueUok). This is
equivalent to P, > A. The table below (left) shows the results of parametric
model checking for A = 0.999, n = 4 and different values of parameters p and gq.
The graph below (right) plots the maximal value of ¢ ensuring that the property
holds, for p = 0.3 and n = 2, 3 and 4, in function of the probability threshold .

6 Conclusions

We presented a new language-theoretic approach to symbolic probabilistic model
checking of PCTL over DTMCs. It is based on representing the probability

292 C. Daws

measure of the set of paths satisfying a path formula as a regular expression,
computed with the state elimination or inductive algorithms, for the language
recognized by a finite-state automaton derived from a DTMC and a PCTL for-
mula, where the alphabet is the set of strictly positive transition probabilities
of the DTMC. When these are rational, the probability measure is evaluated to
its exact rational value, whereas when transition probabilities are left unspeci-
fied as parameters, it yields a rational function on them, which can be used for
parametric model checking of the system.

Although the symbolic approach cannot compete with advanced numerical
methods in terms of efficiency, we believe that it has some important advan-
tages. Besides allowing for parametric analysis as illustrated in the examples,
our approach could be used to generate “counter-eramples” violating a prop-
erty, an important feature lacking in probabilistic model checking. For instance,
any subterm of a regular expression whose evaluation is bigger than a threshold
can be viewed as a counter-example for a property stating that the probability
must be less than this threshold.

The only related result on symbolic model checking for parameterized DTMCs
we are aware of is [1]. Their method consists in computing strongly connected
components and then reduce a Markov chain to a DAG corresponding to its tran-
sient behaviour. Unfortunately, no algorithm is provided, and their description
does not give any insight into how to obtain the probability matrix of the DAG,
a step not trivial in our view. This missing step could boil down to something
similar to our method, but we believe the latter to be more intuitive, precise and
clear from an algorithmic point of view. Moreover, the technique of [1] cannot
deal with irreducible Markov chains, that is Markov chains which are a strongly
connected component.

We plan to implement our approach to model-check PCTL formulas without
nested probabilistic operators for both the parametric and the non-parametric
case, using the state-elimination algorithm for computing regular expressions.
In our opinion, formulas with nested probabilistic operators are never or hardly
necessary to specify probabilistic properties of practical interest. Moreover, these
formulas are also problematic when using iterative numerical methods, since
the numerical error introduced in a probabilistic subformula can yield that a
path formula is satisfied with probability 1 when it is actually satisfied with
probability 0, or vice-versa.

The state-elimination algorithm is the language-theoretic counterpart of Gaus-
sian elimination for solving linear equation systems. Full PCTL could be con-
sidered in the non-parametric case, using the inductive algorithm, but since it
consists in filling-in a matrix with new entries, we can expect it to have seri-
ous limitations to cope with large systems. It will be important to compare our
approach based on regular expressions with symbolic methods to solve systems
of linear equations based on matrix inversion or Gaussian elimination, as imple-
mented in several computer algebra systems. In order to cope with large systems,
reduction techniques based on simulation [9, 10] can be applied, yielding a sym-

Symbolic and Parametric Model Checking of Discrete-Time Markov Chains 293

bolic upper or lower bound for probabilistic reachability properties on a reduced
state space.

As future work, we are interested in extending the method to Markov de-
cission processes (MDPs), that is, probabilistic systems with non-determinism,
necessary to model compositionally complex systems. One can see an MDP as a
parametric DTMC where the non-deterministic choice is replaced by a paramet-
ric probabilistic one, such that all but one of these parameters are equal to zero,
and then apply our technique. However, this will require a number of evalua-
tions exponential in the number of non-deterministic choices in the worst case.
Heuristics to reduce this number, or an alternative approach, are thus neces-
sary. A possible solution could be to consider high-level specification languages
like process algebras with iteration [2], parallel composition and communica-
tion, and to device a linearization algorithm of such specifications with respect
to language equivalence (process algebras with iteration are strictly more ex-
pressive with respect to bisimulation in the presence of parallel composition [3])
without building the corresponding automata, for instance using the concept of
derivatives of regular expressions [7].

Acknowledgments. We are grateful to Joost-Pieter Katoen for his comments
on an early version of this paper, Wan Fokkink for his encouragement, and
Ryszard Janicki for helping clarify our results.

References

1. A. Aziz, V. Singhal, F. Balarin, R. K. Brayton, and A. L. Sangiovanni-Vincentelli.
It usually works: The temporal logic of stochastic systems. In P. Wolper, editor, 7th
International Conference On Computer Aided Verification, volume 939 of LNCS,
pages 155-165, Liege, Belgium, 1995. Springer Verlag.

2. J. Bergstra, W. Fokkink, and A. Ponse. Process algebra with recursive operations.
In J. Bergstra, A. Ponse, and S. Smolka, editors, Handbook of Process Algebrea.
Elsevier Science, 2001.

3. J. A. Bergstra, 1. Bethke, and A. Ponse. Process algebra with iteration and nesting.
The Computer Journal, 37(4):243-258, 1994.

4. J. Berstel and C. Reutenauer. Rational Series and Their Languages. EATCS
Monographs in Computer Science. Springer-Verlag, 1988.

5. A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterminis-
tic systems. In P. S. Thiagarajan, editor, Proc. 15th Conference on Foundalions
of Software Technology and Theoretical Computer Science (FSTTCS’95), volume
1026 of LNCS, pages 499-513. Springer-Verlag, 1995.

6. H. Bohnenkamp, P. van der Stok, H. Hermanns, and F. Vaandrager. Cost-
optimization of the IPv4 zeroconf protocol. In Proceedings of the 2003 International
Conference on Dependable Systems and Networks (DSN 2003), pages 531-540.
IEEE Computer Society, June 2003.

7. J. Brzozowsky. Derivatives of regular expressions. Journal of ACM, 11(4), 1964.

8. C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification.
Journal of the ACM, 42(4):857-907, 1995.

294

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

C. Daws

P. D’Argenio, B. Jeannet, H. Jensen, and K. Larsen. Reachability analysis of
probabilistic systems by successive refinements. In L. de Alfaro and S. Gilmore,
editors, Proceedings of Process Algebra and Probabilistic Methods. Performance
Modeling and Verification. Joint International Workshop, PAPM-PROBMIV 2001,
Aachen, Germany, volume 2165 of Lecture Notes in Computer Science, pages 29—
56. Springer-Verlag, 2001.

P. D’Argenio, B. Jeannet, H. Jensen, and K. Larsen. Reduction and refinement
strategies for probabilistic analysis. In H. Hermanns and R. Segala, editors, Pro-
ceedings of Process Algebra and Probabilistic Methods. Performance Modeling and
Verification. Joint International Workshop, PAPM-PROBMIV 2002, Copenhagen,
Denmark, volume 2399 of Lecture Notes in Computer Science. Springer-Verlag,
2002.

M. J. C. Gordon. HOL: A proof generating system for higher-order logic. In
G. Birtwistle and P. A. Subrahmanyam, editors, VLSI Specification, Verification
and Synthesis, pages 73—128. Kluwer Academic Publishers, Boston, 1988.

M. J. C. Gordon and T. F. Melham. Introduction to HOL (A theorem-proving
environment for higher order logic). Cambridge University Press, 1993.

Gramond and Rodger. Using JFLAP to interact with theorems in automata theory.
SIGCSEB: SIGCSE Bulletin (ACM Special Interest Group on Computer Science
Education), 31, 1999.

H. Hansson and B. Jonsson. A logic for reasoning about time and probability.
Formal Aspects of Computing, 6(5):512-535, 1994.

J. E. Hopcroft, R. Motwani, Rotwani, and J. D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley Longman, Reading, Mas-
sachusetts, 2000.

J. Hurd. Formal Verification of Probabilistic Algorithms. PhD thesis, University
of Cambridge, 2002.

B. Jeannet, P. D’Argenio, and K. Larsen. RAPTURE: A tool for verifying Markov
Decision Processes. In I. Cerna, editor, Tools Day’02, Brno, Czech Republic, Tech-
nical Report. Faculty of Informatics, Masaryk University Brno, 2002.

JFLAP (java formal languages and automata package) web page.
http://www.cs.duke.edu/ rodger/tools/jflap/.

J. Kemeny, J. Snell, and A. Knapp. Denumerable Markov Chains. Graduate Texts
in Mathematics. Springer, 2nd edition, 1976.

D. E. Knuth and A. C. Yao. The complexity of nonuniform random number
generation. In J. F. Traub, editor, Algorithms and Complexity: New Directions
and Recent Results. Academic Press, New York, 1976.

M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic symbolic model
checker. In J. B. T. Field, P. Harrison and U. Harder, editors, Proc. Modelling
Techniques and Tools for Computer Performance Evaluation (TOOLS’02), volume
2324 of LNCS, pages 200-204. Springer, 2002.

PRISM web page. http://www.cs.bham.ac.uk/~dxp/prism/.

Verifying Linear Duration Constraints of
Timed Automata

Pham Hong Thai and Dang Van Hung

United Nations University,
International Institute for Software Technology,
P. O. Box 3058, Macau
{dvh, pht}@iist.unu.edu

Abstract. This paper aims at developing a technique for checking if a
timed automaton satisfies a linear duration constraint on the automaton
states. The constraints are represented in the form of linear duration in-
variants - a simple class of chop-free Duration Calculus (DC) formulas.
We prove that linear duration invariants of timed automata are discretis-
able, and reduce checking if a timed automaton satisfies a linear duration
invariant to checking if the integer timed region graph of the original au-
tomaton satisfies the same linear duration invariant. The latter can be
done with exhaustive search on graphs. In comparison to the techniques
in the literature, our method is more powerful: it works for the standard
semantics of DC and the class of the closed timed automata while the
others cannot be applied.

1 Introduction

Constraints on the durations of system states form a class of important properties
of real-time systems. They can be formalised by a class of simple chop-free
Duration Calculus formulas of the form A < £ < B = Y _qcs[s < M.
This class was first introduced with the name linear duration invariants and
investigated in [14]. The duration of a state s is a mapping from time intervals
to reals and is denoted by [s. [s, when applied to an observation time interval
[b, €] is the accumulated time for the presence of state s over [b, e]; and the term
¢ when applied to an observation time interval [b, €] returns the length e — b of
the interval. A linear duration invariant A < ¢ < B =" ses Cs f s < M simply
says that for any observation time interval [b, e], if the length ¢ of the interval
satisfies the constraint A < ¢ < B then the durations of the system states
over that interval should satisfy the constraint Y _qcs [s < M. A desired
property for a simple gas burner “for any observation interval that is longer
than 60 seconds, the ratio between the duration of the state leak and the length
of the interval should not be more than 5%” is represented as a linear duration
invariant ¢ > 60 = [leak < 5% = ([leak + [nonleak) (here we have used
the equation [leak + [nonleak = {). A system safety saying that an unsafe
state s should not occur, can also be represented by a linear duration invariant

Z. Liu and K. Araki (Eds.): ICTAC 2004, LNCS 3407, pp. 295-309, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

296 P.H. Thai and D. Van Hung

as £ > 0 = [s < 0. The relative fairness of two processes p; and py can be
represented by two linear duration invariants £ > 0 = [py.run — [pa.run <1
and { > 0 = fpg.mm — fpl.run < 1. This says that the running time of
processes p; and po are almost the same for any observation interval.

Since timed automata are good models of real-time systems, and since linear
duration invariants are important properties of real-time systems, it is inter-
esting if verifying a linear duration invariant of a timed automata can be done
automatically. In fact, this problem has attracted a great deal of attention during
last decade, since the introduction of Duration Calculus in [13]. Many algorithms
have been proposed in the literatures, but all of them have high complexity and
do not work for the general case. Some restrictions are needed either on timed
automata, or on linear duration invariants or on the meaning of the satisfaction
of linear duration invariants by automata in order for those algorithms to apply.

For example, in [5], a solution for checking a LDP of a timed automaton LDI
is given using mixed integer and linear programming techniques. The authors
have to put restrictions on both linear duration invariants and the meaning of
satisfaction: the premise of LDIs should be true, i.e. there is no constraint on the
length of the observation intervals, the coefficients in LDIs should be integral,
and the observation intervals should start at time 0. In [14], a nice solution to the
problem is given using linear programming (techniques) only, but the authors
had to restrict themselves on the real-time automata, i.e. timed automata with
one clock which is reset by every transition. This solution is generalised in [7]
and in [9] to a wider subclass of timed automata, but still cannot be used for the
whole class of timed automata, and the restriction on the meaning of satisfaction
still applies. In [3] the authors considered checking LDI for timed automata with
observation intervals started at time 0 only, which is a restriction on the meaning
of satisfaction. In general, these algorithms are based on symbolic representation
of the behavior of the systems by extended time regular expressions, and hence,
reduce the problem to a number of linear programming problems. In practice,
the number of linear programming problems which have to be solved is very
large, so the time complexity of these algorithms is very high.

For reducing the complexity of the problem, some other papers use a differ-
ent approach. The authors of these papers consider those properties which are
discretisable, i.e. they are satisfied by all the behaviours of a timed automata if
and only if they are satisfied by all integral behaviors only. That means, we can
check such kind of properties of a timed automaton by exploring the integral
region graph of the automaton as in [12]. This technique is combined with linear
programming technique in [8] for checking some other classes of discretisable
properties. In these papers, the authors also had to enforce some restrictions on
linear duration invariants and on observation intervals.

In this paper, we study if we can remove the restrictions mentioned as above
and develop a general technique to solve the problem for the general case. The
idea on discretisability of LDP in [12] is the motivation for the discretisability
of LDIs in this paper. We prove that LDI is also a discretisable property for
timed automata. However, the discretisability of LDIs is used in this paper in a

Verifying Linear Duration Constraints of Timed Automata 297

manner that is different from the one in [12]. In the following, we call a LDI hav-
ing the premise equivalent to “true” (i.e. the premise can be removed) a linear
duration property (LDP). In [12] the discretisability of LDP is used to reduce
a region graph to an integral region graph, but in this paper the discretisabil-
ity of LDI is used to approximate a real-time interval by integral-time interval
as well.

Our results are summarised as follows. We first define the different semantics
for the satisfaction of a LDI by a timed automaton. We do this by introducing
the different classes of Duration Calculus models defined by a timed automaton
A: Mo (A) is the set of DC models generated by A with the observation intervals
of the form [0,¢], where ¢ is a non negative real; M(A) is the set of DC models
generated by A with no restriction on the observation intervals; M, (.A) is the
set of DC models generated by A with the observation intervals of the form
[tp, tq], where t, and t, are the times the automaton enters states p and ¢, re-
spectively, in the corresponding behaviour; and My (A) is the set of DC models
corresponding to the integral behaviours A with the integral observation inter-
vals. Then, we prove that given a LDI D, M(A) = D if and only if M;(A) = D.
Based on these results we reduce the problem of checking M (A) = P to the one
of checking p |= P for all paths p in the region graph of A, and we reduce the
problem of checking M(A) = D to the one of checking p = D for all path p in
the integral region graph of A. The resulting problem can be solved by standard
exhaustive search techniques.

The paper is organized as follows. In the next section we recall some basic
notions of timed automata and Duration Calculus formulas. In Section 3 we
prove the discretisability of LDIs for timed automata. In Section 4, we propose an
algorithm for checking a LDI of a timed automata by searching on the weighted
graph constructed from the integral region graph of the automaton. Finally,
Section 5 is the conclusion of this paper.

2 Preliminaries

In this section, we recall some notions that will play the basic role in defining the
problem in this paper. They are timed automata, region graphs, and Duration
Calculus formulas in the form of Linear Duration Invariants (LDI).

2.1 Timed Automata

Timed automata was introduced in [1, 2] as formal models for real-time systems.
Here we only give a brief description for timed automata and their behavior.
Readers are referred to [1] for their more details. As usual, we denote by R™
and N the sets of nonnegative real numbers and natural numbers, respectively.

For a finite set of clock variables X, let ®(X) be the set of clock constraints
on X, which are conjunctions of the formulas of the form = < ¢ or ¢ < x, where
rz € X and ¢ € N. A timed automaton is a finite state machine equipped with
the set of clock variables X, and is defined as follows.

298 P.H. Thai and D. Van Hung

Definition 1. A timed automaton A is a tuple (L, sy, X, X, E,I), where

— L is a finite set of locations,

— s9 € L is an initial location,

— X is a finite set of symbols (action names),

— X s a finite set of clocks,

— I is a mapping that assigns to each location s € L a clock constraint I(s) €
&(X) which is called invariant of location s. Intuitively, the timed automaton
only stays at s when the values of the clocks satisfy the invariant 1(s).

— ECLx®X)xXx2%XxLisa set of switches. A switch (s, p,a,\,s)
represents a transition from location s to location s’ with symbol a, where
@ is a clock constraint over X that specifies the enabling condition of the
switch, and X\ C X gives the set of clocks to be reset with this switch.

For convenient to our method, here we consider the class of the closed timed
automata, i.e. timed automata that do not include clock constraints of the form
r<corc<uzx.

A clock interpretation v for the set of clocks X is a mapping that assigns
a nonnegative real value to each clock. For 6 € R, let v 4+ ¢ denote the clock
interpretation which maps every clock € X to the value v(x) + 6. For A C X,
let v[X:=0] denote the clock interpretation which assigns 0 to each x € A and
agrees with v over the rest of the clocks.

A state of automaton A is a pair (s,r) where s is a location of A and v is
a clock interpretation which satisfies invariant I(s). State (so,vp) is the initial
state where sq is the initial location of A and vq is the clock interpretation for
which vy(x) = 0 for all clocks z.

A transition of A can:

— change state by letting time elapse: For a state (s,v) and a real-valued time
increment 6 > 0, (s,v) 2, (s,v+6) if for all 0 < § < 6, v+ ¢ satisfies
invariant I(s).

— change state by taking a location switch : For a state (s,v) and a switch
(s,0,a,\,s") such that v satisfies ¢ and v[\:=0] satisfies I(s") then (s,v) %
(', v[A:=0]).

A time elapsing transition and a following location switching transition can

. . s 5,
be combined into one transition and denoted by (s,v) 2 (s/,2/). That means

the system stays at location s with the current clock interpretation v, after &
time units, the clock interpretation v 4 ¢ satisfies the enabling condition (time
constraint) ¢ of switch e = (s, ,a, A, s’), and the system transits to location s’
by taking e with label a and resets the clocks in the A to 0, and the new state
of the system is (s, /).

In this paper we consider only nonZeno behaviours of automata ([1,2]), that
is those behaviours for which in any finite time interval there is only a finite
number of transition occurrences.

Ezample 1. The timed automaton in Figure 1, taken from [4], have two clocks
x and y. The set of locations is {sg, s1}, where invariants are I(sg) = (y < 5)
and I(s1) = (x <8 Ay < 10). The set of switches is

Verifying Linear Duration Constraints of Timed Automata 299

<
<«

Fig. 1. A timed automaton

y23,{y},a

\4

x>6,y>4, {x},b

{(s0,4> 3,a,{y}, 1), (51,2 > 6 Ay > 4,b, {z},50)}. The clock y is reset to
0 each time the automaton transits from sg to s; and the clock = is reset
to 0 when the automaton transits from s; to sg.

Definition 2. Let A be a timed automaton.

1. A run or an execution r of A is an infinite sequence of state transitions:

5 s . o
(s0,10) 5" (s1,v1) 232 ..., where (so,vy) is an initial state of A.
2. A behavior p correspondents to above run r, is the infinite sequence of timed

locations
P (80,t0)(81,61) -+ (Smytim) - - -

that satisfies the following conditions
— tg=0.
— for any T € R, there is some i > 0 such that t; > T.
— t; is the moment that system enters to s;, for all i > 0. That means,
b6; =t; —t;—1 and A stays in state s;_1 for t; —t;_1 time units and then
transits to s; in the run r.

Note that in this paper, a behavior of a timed automaton is a sequence of
time stamped locations instead of a sequence of timed stamped switches as in
other papers. However the semantics of timed automata is not changed. This
way of representation of behaviours shows the DC models generated by them
more explicitly. A run or a behavior is said to be integral iff for all i > 0,
the values of clock variables in v;, the time delay ¢;, and time stamps t; are
integral.

2.2 Linear Duration Invariants and Duration Properties

Models in Duration Calculus. Duration Calculus (DC) was introduced by
Zhou Chaochen et al. in [13] as a logic to reason about the state duration of
real-time systems. A comprehensive introduction to DC' can be found in the
recent monograph [15]. In DC, a state is viewed as a boolean-valued function
of the continuous time that has the value true (denoted by 1) at time ¢ iff the
state is present at t. Otherwise it takes the value 0. An interpretation Z of the
system is an assignment that assigns to each system state s a boolean-valued
function Zs. A DC model consists an interpretation Z and a time interval [b, e].

300 P.H. Thai and D. Van Hung

It represents an observation of the behavior of the system states in an interval of
time [b, ¢]. Given an interpretation Z, the duration of a state s over time interval
[b, €] is defined as fb t)dt, which is exactly the accumulated present time of s
in the interval [b, €] by the interpretation Z.

In this paper we consider the set of DC models that express all the observa-
tions of the behaviours of a timed automaton. Each behavior
p = (S0,t0)(s1,t1)(s2,t2) ... of timed automaton A defines uniquely an inter-
pretation Z in DC by: for any s € L, Zs(t) = 1 iff Jie (s; = s At € [t ti11)).
We also denote such Z by (3,) in which 5 = (sg, $1,...) and t = (to,?1,...) ex-
press a sequence of s; and t; from behaviour p. Hence, (3,t, [b, €]) is a DC model
representing the observation of p in the interval [b, e], which is an observation of
the timed automaton A over interval [b, e]. We also call (5,¢, [b,¢]) a DC model
of A.

Let M(A) denote set of DC models of \A. To cope with the different meanings
of the satisfaction of a DC formula by A as said in the introduction of the paper,
we introduced the following classes of DC models of A:

Mo(A) ={o|o=(51[0,T]) € M(A), T > 0},)
Myy(A) =10 | o = (5, [tmt 1) € M(A), t,,t, occur in t and t,, < t,},
M;(A) z{a\a:(Et[e]) € M(A) and t;,b,e € N, Vi > 0}.

In the other word, M(.A) is the set of models representing the observations
starting from 0 and ending at any time point. M, (A) consists of models that
representing the observations starting and ending at those time points at which
the automaton transits to a location, i.e. the observations between two location
switching transitions. A DC model of A in M (.A) represents an observation of
an integral behavior of A (i.e behavior in which transitions take place only at
integer time) from an integer time point to an integer time point.

Linear Duration Properties and Linear Duration Invariants. Given a
timed automaton A = (L, sg, X, X, E, I). A linear duration invariant over L is a
DC formula of the form

D: A<£<B:>ch/s<M

seL

where ¢, A, B and M are real numbers, A < B (B may be c0). In D DC term
fs is a duration term denoting the duration of location s, and ¢ is a DC term
denoting the interval length. LDI D evaluates over a DC model (Z, [b e]) as tt
and denoted by (Z,[be]) EDif A<e—b< B=> ¢ [L(t)dt < M
evaluates to true (in the predicate calculus). Here we define the satlsfactlon of
D by A directly on the behaviours of A as follows.

Definition 3. Let D be a LDI as above. For each o = (5,1, [b,e]) € M(A) we
define (o) and 6(o) as

l(c)=e—b and 0(o) = Z csPs

seL

Verifying Linear Duration Constraints of Timed Automata 301

where Py is the accumulated time for the presence of location s in the inter-
val [b,e] and is calculated as follows. Let u and v be the indexes in t such
that t,—1 < b < t, and t, < e < ty11. For s # s, and s # sy_1, Ps =
Zugjgv—l/\sjzs(tj+1 _tj) PSu—l = Zugjg’u—l/\s_jzsufl (t]+1 _tj)+ (tu _b)J and
PSv = Zuﬁjgvfll\s]»:sv (thFl - t]) + (6 - t’U)'

Hence, 6(c) evaluates over model o = (5,1, [b, ¢]) as

0(0) = cs,—y (tu — b) + Z Cs(tjr1 — ;) +cs, (e — to) (1)

u<j<v—1As;=s

By expanding the sum and letting ¢;’s be common factors, we have
v
0(c) = Z a;t; +cs e — cs,_, b (2)
1=

where a;’s are real numbers that are derivable from c,’s.
Definition 4. Given a LDI D.

— A DC model 0 = (Z,]b,e]) € M(A) is said to satisfy D, denoted by o = D,
iff A<l(o) < B implies 0(c) < M.

— Timed automaton A is said to satisfy D, denoted by A |=1D, iff o =D, for
all o € M(A).

When a LDI D has the premise equivalent to true, i.e. equivalent to 0 <
¢ < 00, we say that D is a linear duration property (LDP) ([12]). So, a LDP is
a special LDI which do not have premise. Hence, checking a LDP is normally
simpler than checking a LDI.

Similarly, for any class My(A), = € {uv,I,0}, we define M, (A) = D iff
o =D for all 0 € M, (A).

The model-checking problem in this paper is formulated as: given a timed
automaton A = (L, sg, X, X, E, I), given a LDI D over L; find an algorithm to
decide whether A = D.

3 Discretisability of Linear Duration Invariants with
Respect to Timed Automata

3.1 e-Digitising

The concept of e-digitising was first introduced in [6]. We recall here the definition
of e-digitisation given by them.

Definition 5. Given a positive real x and €, (0 < e < 1). Let x. be an integer
defined as

S x| if fraction of x is less than or equal to €
¢ [x] otherwise

The number x. is called e-digitisation of x.

302 P.H. Thai and D. Van Hung

Some properties of e-digitisation needed in the development of our techniques
are listed in the following lemmas. Proving of these lemmas is easy so reader be
referred [10].

Lemma 1. Given two integer numbers a < b, given two nonnegative real num-
bers t; > t;. Then for all e € [0,1) we have

agti—tjgb@aétie_tjeéb'

As a consequence of the lemma, if t; > ¢; then t;c > t;c for all € € [0,1)
(apply the lemma with a = 0). This means that under the e-digitisation, the
order of a sorted sequence of real numbers is unchanged.

Lemma 2. Let {a;}, {t;}, (i = 1..m) be two sequences of real numbers, where
t; >0 foralli=1,...,m. Then we can always find a real number € € [0,1) such
that

m m
Z a;t; < Z (7
i=1 i=1

Lemma 3. Let 0 = (5,1,[b,e]) € M(A) be a DC model of timed automaton A.
Let 5= 850,81,...; t =to,t1... and ty,_1 < b <t,, t, < e <tyr1. Then for all
e €10,1), oc = (5, tc, [be, ec]) is an integral model of A, i.e. . € M;(A), where
Ee =toesl1es -+ -

3.2 Discretisability of LDI

Definition 6. Given a timed automaton A and a linear duration invariant D. D
is said to be discretisable with respect to A if A |= D exactly when M;(A) = D.

Theorem 1. Any linear duration invariant D which has the premise A < { < B
in which A and B are integral, is discretisable with respect to timed automaton
A (here we consider oo as an integer by our convention,).

Proof. We have to prove that M(A) =D < M;(A) = D.

The “only if” part is obvious because M(A) C M(A).

The “if” part is proved as follows. Let o € M(A) such that o = D. We prove
that there exists € € [0,1) such that o, = D, where o, is the digitisation of ¢
w.r.t. €.

Assume that o = (5,¢,[b,e]) with 5 = s¢,81,... and { = #g,t1,.... Let
indexes u and v be such that t,_1 < b < t,, t, < e < ty41. 0 = D implies
that A < e—b < B and 0(0) > M. By the definition of LDI, it follows from
equation (2):

v
0(c) = Z a;t; +cs, e —cs,_,b>M
1=

Verifying Linear Duration Constraints of Timed Automata 303

From Lemma 2 (note that coefficients a;’s in the lemma are any reals), Je € [0,1)
v
such that Zaitie + ¢s e — Cs,_,be > 0(0) > M. By Lemma 1 it follows from

i=u
A<e—b< Bthat A <e.—b. < B (notice that A, B are integers). By Lemma
3 o, is an integral DC model of A, and 0(c.) = Y_;_, aitic + s, €c — Cs,_, be.
Hence, (o) > M.
Thus, we have obtained an integral model o, which does not satisfy D.

Now that the assumption that two integral bounds A and B in the premise
of LDIs is not too restricted, and the result can be extended to the case that A
and B are rationals using the well-known technique.

From this theorem, from now on we will consider only the integral DC models
of timed automaton A, i.e. models o = (5,1, [b, e]) € M (A).

4 Checking Linear Duration Invariants of Timed
Automata with Graph Search

4.1 Integral Reachability Graph of Timed Automata

In this section, we shortly recall about integral region graph which is a part
of region graph. Region graph was presented by Alur and Dill in ([1]) and has
become well-known.

Let K, be the largest constant compared with the clock x € X in the time
constraints and the invariants of A and let K = max{K,|z € X} + 1. An
equivalence relation restricted into the set of all integral clock interpretations
of A is defined as follows. Let vy, 15 be two integer clock interpretations. We
say that v is equivalent to v5 and denoted by v1 = vy iff for all x € X either
vi(x) = va(x) or vi(z) > Ky +1 A wva(x) > K, + 1. The equivalence class
containing v is denoted by [v] and is called integral clock region. It is easy to
see that number of integral clock regions is bounded by (K + 1)* (k is number
of clocks).

The equivalence relation 2 is also extended to an equivalence relation on
state space of timed automata. we call two states g1 = (s1,v1) and g2 = (s2,v2)
of timed automaton A be region-equivalent (denoted by ¢1 = ¢2) iff v1 = vo and
s1 = s2. The equivalence relation = partitions space of states of A into classes of
states, each class is characterized by a couple of a location s and a clock region
7 and is denoted by (s, 7). We also call (s,7) a region. It is obvious that the
number of regions is bounded by |L|(K + 1)*.

A region (¢, [V']) is called be successor of (s, [v]) if 3d > 0 and an transition

e = (s,p,a,\,s) such that (s,v) 48 (s',v"). Then we write (s, [v]) g (s, [V'])
We can easily prove the following lemma.
Lemma 4. If (s,v) ¢ (s',1) then (s, [v]) ¢ (', [V']), and reversely, if (s,) ¢

(s, ') then for each v € m, there exists V' € ' such that (s,v) ¢ (s', V).

304 P.H. Thai and D. Van Hung

From the lemma 4, the integral reachability graph RG = (V, E) of the timed
automaton A is built as follows. Each vertex v € V is a region (s, 7). E is
initialised to (), and V is initialised to {(so, 7o)}, where s¢ is initial location of
A and mg is region with 0 as the value of all of clocks. Then, V is expanded as
follows. If a vertex (s,) € V has a successor (s',7’) then (s’,7’) is added into
V and e = ((s,7),(s’,7n')) is an edge in E. Besides, each edge e is labelled by
an interval [l(e), u(e)], where I(e) and u(e) are the minimal and maximal integer
time delay that automaton can stay at location s before it transits into location
s’. I(e) and u(e) are defined as:

I(e) :inf{dzo |deN, <s,7r>‘i’?<s',7r'>},
u(e):sup{dzo |deN, <s77r>d—’L>l<s',7r’>}.

From the definition of (s,7) and (s',#"), either I(e) = u(e) or u(e) = co. We will
denote a labelled edge e by (v,V/,]I, u]).
An detailed algorithm was also constructed in [12] and also in [10].

4.2 Relationship Between M, (A) N M;(A) and Reachability
Graph RG w.r.t. LDI D

As mentioned above, in this section we consider only integral models. The re-
striction of M, (A) and M(A) on the integral DC models for A are M., (A)! =
My (A) N M(A) and M (A), respectively.

Let RG be the reachability graph of A.

Definition 7. Let p = vivy...V,, be a path in RG, and let d = dy,da, ... ,dpm—_1
be a sequence of integers, where d; € [I(vi,Vit1),u(Vs,Vip1)], fori =1..m—1. The
sequence © = vidiVads .. .V, 1dpym 1V (written as o = (p,d) for short) is called
weighted interpretation of p.

Definition 8

o~

— Let p = (p,d) be a weighted interpretation of path p. We define I(p)
Zﬁ_ll d; and 0(p) = er;_ol ey, di and call them length and cost of o respec-
tively, where c,, is the coefficient cs, in formula D when s; is the location

of v;.
— A weighted interpretation p is said to satisfy D, denoted by o = D, iff

A<l(p)<B=0(p)<M

— The graph RG is said to satisfy LDI D and is denoted by RG = D iff o E D
for all weighted interpretations o of RG.

The following lemma plays a key role for our checking technique.

Lemma 5. For any DC model o € M., (A)!, there exists a weighted interpre-
tation o of RG such that l(c) = l(p) and 0(c) = 6(p), and vice versa.

Verifying Linear Duration Constraints of Timed Automata 305

Proof. Let 0 = (3,1, [tu,t,]) € Muy(A)L. Then,

S§=80...8y.--Sp.--,
T=to...ty...ty...,
v—1
o) =ty —tu = Z(ti+1 —ti),
i=u
m v—1
9(0’) = chi Z (tj+1 - tj).
i=1 j=u
S;=84

From the definition of model o, o corresponds to the sequence of transitions

Ou sy

b, ’ Sp—1,0y—
(Su,l/u) - (5u+1;Vu+1) u+1_)c>bu+1 s 1—)?0 1(

51}7’/11)7 where 6; = t;11 — 1,

Qo bu s Ay
for all i = u..v — 1. By Lemma 4 we have: (s, [Vu]) bug (Sutts [Puga]) T
L g (S0, [v]). Consequently, the weighted interpretation = (p,d),
where p = (sy, [Vu]) (Sut1, [Vut1]) -+ (S0, [10]) and d = 61,62,. .. ,6,, satisfies

the requirement of the lemma, i.e. [(p) = (o), 0(p) = 0(0).

To prove the reverse direction, assume that o = (p,d) is a weighted interpre-

tation of RG, where p = vy Vy11 ... Vy, d is a sequence of integers dy, dy41 - .. , dy,

and v; = (s, ;) for i = u..v. Due to the fact that RG is a reachability graph of
. . . busau

A, there exists a sequence of switches e; (i = u..v — 1) such that (s,,m,) =%

Out1,0u+1 byp—1,ap—1
y detnduit | Smngmn

(Sut1s Tut1 Sy, Ty). By Lemma 4 we can find a model

. . . 6U7 u
0 € My, (A), i.e sequence of clock interpretations v; € m; such that (s,, vy,) S

(Susts Vugr) G BT (6). Hence, U(0) = I(p) and 8(0) = 8(p).

This lemma allows us, instead of checking M., (A) = D, to check RG = D
which can be done by using popular searching techniques.

Removing Infinitive Edges
We now give some lemmas to simplify RG before doing search. Lemmas 6 and 7
say that the label [I, 00) of an edge in RG either makes RG not satisfy D or can

be replaced by a finite label [I,u] without any change to the result of checking
RG |= D. Recall that the premise of LDI D is A < ¢ < B.

Lemma 6. Assume that e = (v,V/,[l,00)) is an infinite edge of region graph
RG. Then, if B =00 and ¢, > 0 then RG [~ D.

Lemma 7. Assume that e = (v,V/,[l,00)) is an infinite edge of RG. Then label
[Il,00) can be replaced as follows without any change to the result of checking

RG = D.

— If B=o00 and ¢, <0, replace [I,00) by [l, u] with u = max{l, A}.
— If B < o0, replace [l,00) by [I,u] with u = max{l, B}.

The proof of the above lemmas is simple and is omitted here.

306 P.H. Thai and D. Van Hung

In summary, for checking M,,,(A) | D, we can apply the above lemmas first
and either we discover M, (A) [~ D early or we can convert the infinite edges of
RG into finite ones. From now on, we assume that RG does not contain infinite
edges.

4.3 Weighted Graph for Checking LDI

Similarly to checking LDP ([12]), we can also construct a weighted graph G from
the reachability graph RG (not containing infinite edges) such that RG | D if
and only if G = D.

The weighted graph G = (V, E,w) is constructed from RG = (Vg, Eg) by the
following procedure:
Step 1.V:= VR7 E:.= ER.
Step 2. For each edge e = ((v4,v;), [lij, u;;]) € Er,

1. V:i=VuU {v}j,vfj7 . ,v;';"'il} and w(v};) := ¢, for all k = 0..uj; — 1 (where

[EREY] i Vig

V'l
E ;
3. E = EU{(v} VEEDY 1 k= 0.0 — 1}, and w(v¥ Vi) .= 1 for all k =
0.
E:=EU{(vl,v;) | k=l;j..u;; — 1}, and w(vfj,vj) :=0forall k = l;;..u;;—1.

Roughly speaking, G is built by ”splitting” each edge e = (v,V/, [l, u]) of RG
into u small edges with the length (weight) 1 by adding u — 1 sub-vertices. All
of these sub-vertices and v are assigned a weight as the coefficient ¢; in LDI,
where s is location of vertex v (s € v). On the other hand, from sub-vertices V'
to v¥~! there are edges joining these sub-vertices to v/ of the edge e with length
0. Hence, from v we can reach v’ of the edge e through a path passing through
only sub-vertices in G with the integer lengths between | and u. For the simplicity
of presentation we call vertices v and v’ of edge e mother vertices and call the
sub-vertices in e child vertices. Besides, all the paths joining v and v’ that go
through only child vertices of e (in RG) are also called paths belongs to e.

Figure 2 gives an example how to build graph G’ from simple graph G with
2 edges.

In order to make use of G, we have to show that G is compatible to RG w.r.t
checking LDI. First, we define length, cost and satisfaction of a path p in G w.r.t
LDI D.

Definition 9. Let p = viva...v,, be a path in G. The length l(p) and the cost
0(p) of p are defined as

I(p) = - w(vi,vit1), B(p) = w(vi)w(vi, vigt).
1 1

M.

3
3
L

o
I

i

A path p satisfies D iff A <I(p) < B = 6(p)

IN

Verifying Linear Duration Constraints of Timed Automata 307

[3.3] [2.4]
G' : 1 V011 1 VOI2 1 @ 1 VIZ1 1 V]Z2 1 VIZ3

Fig. 2. “Discretising” graph of region graph

Lemma 8. FEach integral weighted interpretation o = (p,d) of RG corresponds
to a path p' in G such that l(p) = U(p'), 0(p) = 0(p’), and reversely, each path

p’ in G corresponds to an integral weighted interpretation p = (p,d) of RG such
that I(p) = 1(p'), 6(p) = 6(p’).

Proof. It is obvious from the definition of G that for each edge (v;,v;,[l,u]) of
RG and an integer d € [I, u] there exists a path p = vivilj .. .vfjvj of G such that
l(p) = d, 8(p) = ¢y,d and vice-versa. Hence, the lemma is correct.

From Lemma 8 we can conclude that if there exists an integral model o €
M. (A) not satisfying LDI D then there exists a path that joins mother vertices
of G and does not satisfy LDI and reversely. A similar result for any integral
model of A and any path (joining two child vertices) of G is formulated by
following lemma.

Lemma 9. Given a timed automaton A, a LDI D and weighted graph G as
above. Then if there exists a path p € P(G) such that p = LDI then there exists
an integral model o € My(A) such that o = LDI and vice-versa.

Proof. See [10].

Theorem 2. Checking the satisfaction of LDID by timed automaton A is equiv-
alent to checking the satisfaction of LDI D by the set of paths P(G). That is,
A |= D if and only if P(G) E D.

This theorem follows immediately from Lemma 9 and the discretisability of
LDI w.r.t timed automata A.

4.4 Algorithm for Checking LDI

In this section we present the idea an algorithm for checking A |= D based on
traversing the weighted graph G. The algorithm uses procedure Traverse(vstart)
and procedure Checking-LDI. The procedure Traverse(vstart) explores every
path starting from fixed vertex vstart to see if it satisfies D, and the procedure
Checking-LDI calls procedure Traverse(vstart) for all vertices vstart € V for
deciding satisfaction of D by .A.

308 P.H. Thai and D. Van Hung

The procedure Traverse(vstart) uses the backtracking technique to explore
the graph. Starting from vertex vstart of G, the procedure constructs the current
path p (I(p) and O(p) initialised to 0) while going along out-going edges to their
destination vertices at which [(p) and 0(p) are re-calculated and A < (p) < B =
0(p) < M is verified. The procedure goes back when the current path p cannot be
expanded (see the next paragraph how a path can be expanded) or the length of
current path exceeds B, and terminates when either A <l[(p) < B = 0(p) < M
is violated or it goes back to the starting vertex vstart with no more out-going
edge to go.

The current path p cannot be expanded when there is no new out-going edge
to go when the number of repetitions of cycles has reached the limit. This applies
only when B = co. When a positive cycle is discovered, i.e. a cycle p’ (which is
a sub-path of p) with 6(p’) > 0, the procedure returns A (= D. When there is no
positive cycle in p, p cannot be expanded when the number of cycle repetitions
has reached k = fAA_CCL where c is the length of the shortest cycles in p. Any
more repetition of a cycle will make 6(p) smaller. So, there is no need to check
with expansion of p by more repetitions of cycles.

So, either there is a positive cycle in G, or eventually, either p will become
not expandable, or I(p) > B will be reached for a path p starting from vstart.
So, the procedure Traverse(vstart) will terminate eventually.

The detailed technical construction of the algorithm can be worked out easily,
and is omitted here.

5 Conclusion

Exploring reachability graphs is one of popular methods for checking reachabil-
ity property and some properties concerning time instants of real time systems.
However, paths in the reachability graph do not preserve time durations of sys-
tem locations, and hence, cannot be used for checking duration properties. By
equipping edges of integral reachability graphs with the minimal and maximal
bounds of state transitions, we are able to use this technique for checking du-
ration properties. We have proposed an algorithm for checking LDI of timed
automata using this technique. In this paper we have proved the discretisabil-
ity of LDI, and proposed an algorithm based on this result to check if a timed
automaton satisfies a LDI in the general semantics. Although the complexity of
this algorithm is high, it can serve, at least, for showing that checking LDI of
closed time automata is decidable. We do believe that checking is feasible for
some specific LDI and abstract timed automata.

References

1. R. Alur and D.L. Dill. A Theory of Timed Automata. Theoretical Computer Sci-
ence, pp. 183-235, 1994.

2. R. Alur. Timed Automata. Proceedings of 11" International Conference on
Computer-Aided Verification, LNCS 1633, pp. 822, Springer-Verlag, 1999.

10.

11.

12.

13.

14.

15.

Verifying Linear Duration Constraints of Timed Automata 309

Victor A. Braberman and Dang Van Hung. On Checking Timed Automata for Lin-
ear Duration Invariants. Technical Report 135, UNU/IIST, P.O.Box 3058, Macau,
February 1998. Proceedings of the 19th Real-Time Systems Symposium RTSS’98,
December 24, 1998, Madrid, Spain, IEEE Computer Society Press 1998, pp. 264—
273.

E. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT Press, Cam-
bridge, Massachusetts, 1999.

Y. Kesten, A. Pnueli, J Sifakis, and S. Yovine. Integration Graphs: A Class of
Decidable Hybrid Systems. In Hybrid Systems, volume 736 of Lecture Notes in
Computer Science, pages 179-208. Springer Verlag, 1994.

Thomas A. Henzinger, Zohar Manna and Amir Pneuli. Towards Refining Temporal
Specifications into Hybrid Systems, Hybrid Systems I, LNCS 736,Springer-Verlag,
1993.

Li Xuan Dong and Dang Van Hung. Checking Linear Duration Invariants by
Linear Programming. Research Report 70, UNU/IIST, P.O.Box 3058, Macau, May
1996. Published in Joxan Jaffar and Roland H. C. Yap (Eds.), Concurrency and
Parallelism, Programming, Networking, and Security LNCS 1179, Springer-Verlag,
Dec 1996, pp. 321-332.

Li Yong and Dang Van Hung. Checking Temporal Duration Properties of Timed
Automata. Technical Report 214, UNU/IIST, P.O.Box 3058, Macau, October 2001.
Published in Journal of Computer Science and Technology, Vol. 17, No. 6, Nov.
2002. pp. 689 — 698.

Pham Hong Thai and Dang Van Hung. Checking a Regular Class of Duration
Calculus models for Linear Duration Invariants. Technical Report 118, UNU/IIST,
P.O.Box 3058, Macau, July 1997. Proceedings of the International Symposium
on Software Engineering for Parallel and Distributed Systems (PDSE’98), Kyoto,
Japan, 20 — 21, April 1998. Bernd Kramer, Naoshi Uchihira, Peter Croll and Stefano
Russo (Eds). IEEE Press 1998, pp. 61 — 71.

Pham Hong Thai and Dang Van Hung. Verifying Linear Duration Constraints of
Timed Automata. Technical Report 306, UNU/IIST, P.O.Box 3058, Macau, June
2004.

S. Tripakis, S. Yovine. Analysis of timed systems based on time-abstracting bisim-
ulations. Formal Methods in System Design, 18, 25-68, 2001. Kluwer Academic
Publishers, Boston.

Zhao Jianhua and Dang Van Hung. Checking Timed Automata for Some Dis-
cretisable Duration Properties. Technical Report 145, UNU/IIST, P.O.Box 3058,
Macau, August 1998. Published in Journal of Computer Science and Technology,
Volume 15, Number 5, September 2000, pp. 423-429.

Zhou Chaochen , C.A.R. Hoare, and Anders P. Ravn. A calculus of durations.
Information Processing Letters, 40(5):269-276, 1991.

Zhou Chaochen, Zhang Jingzhong, Yang Lu, and Li Xiaoshan. Linear Duration
Invariants. Research Report 11, UNU/IIST, P.O.Box 3058, Macau, July 1993.
Published in: Formal Techniques in Real-Time and Fault-Tolerant systems, LNCS
863, 1994.

Zhou Chaochen and Hansen M. R., Duration Calculus. A Formal Approach to
Real-Time Systems, Springer, 2004.

Idempotent Relations in Isabelle/ HOL

Florian Kammiiller and J.W. Sanders

Technische Universitat Berlin,
Institute for Software Engineering and Theoretical Computer Science
and University of Oxford, Computing Laboratory

Abstract. A characterization of idempotent relations is presented first
as a paper-style proof, then by its formalization in Isabelle/HOL. The
novel characterization gives rise to the construction of idempotent rela-
tions by an abstract algorithm. This algorithm is rigorously developed
inside Isabelle/HOL using primitive recursive function definitions. Whilst
the characterisation and algorithm appear to be new, we regard this as
an interesting demonstration of the interplay between mathematical rea-
soning and program development, in particular using Isabelle/HOL.

1 Introduction

Idempotents are important in various areas of Mathematics. An abstract struc-
ture is frequently able to be represented in a particular concrete form in which
each abstract element is represented as a transformation on some underlying
set and the abstract operation is represented as sequential (or functional) com-
position of transformations. In some cases the idempotents (i.e. the elements e
satisfying ee = e, where we follow convention and write the algebraic operation
as juxtaposition) form the basis for that representation.

Here are two examples. In Analysis, a linear function on a vector space is
idempotent under sequential composition only if it is a projection onto a subspace
of the vector space. That is the foundation of spectral resolution, in which a (say
normal) linear operator is represented in terms of projections [DS58]. In Algebra,
much of the structure theory of (abstract) semigroups [CP61] and some of the
theory of ideals in ring theory [CP61] depends on identifying the idempotents.

In Computer Science, a transaction consists of a sequence t = t1,...,t,
of actions. Given a second transaction u = wuq,...,u, the idea is to perform
both transactions efficiently, but as if each were executed atomically. Efficiency
is achieved by interleaving the actions of ¢ with those of u; but correctness is
preserved only if the desired interleaving is obtained from the sequential com-
position ¢;u by interchanging those actions that commute: t;;u; T u;;t,. If, in
doing so, two identical actions become adjacent then one of them can be deleted
if it is idempotent: t;;t; = t;. Though not common, it is important to take
advantage of such simplification whenever possible.

Linear operators, functions and actions are all special cases of relations. De-
termining whether or not a given relation is idempotent is routine: it has the

Z. Liu and K. Araki (Eds.): ICTAC 2004, LNCS 3407, pp. 310-324, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Idempotent Relations in Isabelle/HOL 311

same computational complexity as that of Boolean-matrix squaring (i.e. mul-
tiplication). However the generation of all idempotent relations on a finite set
appears to be more difficult. It is not even clear, for example, how many idem-
potent relations there are. One of the motivations for finding an algorithm to
generate them has thus been to use it as a basis for counting them. The naive
approach of generate-and-test has the following complexity. (a) The complexity
of squaring a Boolean matrix is at worst O(n'97) by Strassen’s algorithm. (b)
On a set of size n there are 2" relations and so the generate-and-test algorithm
takes the product of that and the size in (a). An abstract algorithm that does
better is the topic of this paper.

This paper first introduces a theorem and a proof characterizing idempotent
relations which we believe to be original. Next, this theorem is formalized and
proved in the interactive theorem prover Isabelle [Pau94| using its instantiation
to Higher Order Logic (HOL). Besides confirming that the paper proof is correct,
the formalization represents an interesting application of Isabelle/HOL, particu-
larly as the mechanical proof involves some reasoning about finite sets, which is
usually quite tricky. Finally, we devise an algorithm that computes idempotent
relations. This algorithm is defined inside Isabelle/HOL using primitive recursive
functions. This final aspect is, from an engineering point of view, probably the
most interesting aspect of this work: starting from a theoretical characterization
an effective procedure is derived. Thereby, we show that Isabelle/HOL, can be
used as a program development framework in which correct programs can be
derived — and even be tested on the fly, since the primitive recursive functions
can be translated one to one into ML.

The paper is organized as follows: the next section introduces the theoretical
characterization (with proof). After that, Section 3 presents the mechanization
of the theorem in Isabelle. Section 4 then starts explaining the actual content
of the theoretical characterization by introducing some representative examples,
leading on to an informal description of a construction. Section 4.2 is used for
the presentation of the algorithm based on primitive recursive functions. Section
4.3 then indicates the properties that have to be shown to prove the correctness
of the algorithm. Finally, in Section 5 we draw some conclusions.

2 A Characterization of Finite Idempotent Relations

We characterize idempotent relations under the assumption of finiteness, and
show by example that we cannot do better.

A relation r on a given set is idempotent iff » o r = r where o is relational
composition, i.e.

ros={(x,y).3z. (x,2) € sA(2,y) Er}.

Where convenient (particular in pictures) we use the notation r;r for relational
composition. For simplicity, let r(z) stand for the relational image r.({z}| (where
r.(A) = {y.3z € A.(z,y) € r}) and r? stand for r o r. The characterization is

312 F. Kammiiller and J.W. Sanders

based on fixpoints of the relation, i.e. elements = of the domain with = € r(z),
that is (z,z) € r.
The characterization is given by the following theorem.

Theorem 1. Let r be a finite relation. Then

r(x) =Uy er(y)nr(z). r ())
W) Cr(x))

idempotent r = Vax € dom r.
Yya € r(z). 7(y

Clearly, idempotence implies transitivity ror C 7. The second conjunct is equiv-
alent to 7 being transitive, but we prefer to write it this way to emphasize the
relationship between the ranges of single elements. The first conjunct describes
r C ror and is the major clue to the construction to follow.

We prove the theorem using the following lemmata.

Lemma 1. Let r be idempotent. Then

x€r(r)=r(r)= Uy er(y) Nr(x). r(y).

Proof: Transitivity gives us Vy € r(x). r(y) C r(z). Clearly,

Uyerw nr@). rv) < Jy e r@). ry)

and by transitivity of C the left-hand side is a subset of r(x). Since = € r(z),
r(z) CUy € r(y) Nr(z). r(y), whereby we have equality. O

Lemma 2. Let r be finite and idempotent. Then
redomr,x ¢ r(z) =Vzer(x). Iycr(y) Nr(z). z€ry).

Proof: We prove that if the assumption and the negation of the conclusion hold
then r is not finite. Assume for contradiction

Jzer(x). Tyeriy) Nr(x). z€r(y)

Since (z,z) ¢ r, we need yo # x for (z,2) to be in r? in order to have

(,90), (yo,2z) € r and thereby (z,z) € r. Now, yo # z otherwise we had a
y = z with z € r(z) contradicting the assumption. Summarizing, yo # « and
Yo # z. However, now yo € r(z) and yo ¢ r(yo). By repetition of the argument,
we need a y; with (z,y1), (y1,y0) € © with y1 ¢ {z,2,50}, and so forth — ul-
timately leading to an infinite sequence of y; € r(x), establishing that r is not
finite. O

Proof of Theorem 1. Now, we are prepared for the proof of the theorem.
Correctness (=): Let r be idempotent and = € dom r be arbitrary. If z € r(z),
just apply Lemma 1. If z ¢ r(z), Lemma 2 gives

Uz er(z) C Uy er(y)nr(z). r(y).

Idempotent Relations in Isabelle/HOL 313

Since r is idempotent, it is also transitive. Hence, the right-hand side C r(x).
Since the left-hand side is equal to r(z) we have also for x ¢ r(z) that

rz) = Jyer@w)nr@). r(y).

Completeness («<): Let r(z) = Jy € r(y) Nr(z). r(y). For any (x,y) € r,
y € r(z). By assumption there is y’ with y € r(y’) for some ¢’ € r(y') Nr(z), i.e.
(z,y") € rand (y',y’) € r. Since y € r(y'), also (y,y) € r, hence (z,y) € r?.

As the second conjunct of the characterization corresponds to transitivity,

we have on the other hand that if (z,y) € 72 then (z,y) € r. O

From the theorem it follows immediately that if a finite idempotent relation
is nonempty then it has a fixpoint.

Corollary 1. If r # & is finite and idempotent then 3 x. x € r(x).

By contraposition this implies that if there is no fixpoint, the relation must be
infinite.

Corollary 2. If r is idempotent, r # & and =3 x. x € r(x) then r is infinite.
An illustrative example is the relation < on rational numbers.
Ezample 1. The relation <: Q x Q is idempotent and infinite.

The relation < is obviously transitive, and for any = and y with x < y there is
an element between x and y.

3 Mechanical Proof

In this section and the following we introduce some Isabelle/HOL formalizations.
Since this tool supports mathematical syntax, the only peculiarities to mention
from the start are: [| P; R |] = S is a meta-level implication and can be
read as (P A Q) = S. In contrast P — Q is the implication of the object
logic HOL. Other operators will be explained when necessary. Formalizations in
Isabelle start by defining a theory that contains types, constant declarations,
and definitions. The theory for idempotent relations contains just one definition
for idempotence.

idempotent :: (o X «a) set => bool
"idempotent r == (r o r = r)"

Theorem 1 is then proved in the scope of that theory. The representation of the
theorem in Isabelle is almost like the paper-style theorem. However, we have had
to resolve the self-reference in the binder of the union as otherwise the binding
would not have worked. The relational image of a singleton set is denoted r"{x}.

finite r —> idempotent r =
V x € Domain r. r"{x} = J y: {z. z € r"{z} N r"{x}}. r"{y> A
V ya € r"{x}. r"{ya} C r"{x}

314 F. Kammiiller and J.W. Sanders

3.1 Proof of Lemma 1

The proof of Lemma 1 is very simple in Isabelle. Using a lemma that infers
transitivity from idempotence it is just one application of the elimination rule
for transitivity. The rest is done automatically using the tactic auto.

[| idempotent r; x: r"{x} |] =
r'{x}=UJy € {z. z € r"{z} N r"{x}}. r"{y}

3.2 Proof of Lemma 2

This part of the proof of Theorem 1 is the difficult bit. What is done on pa-
per rather casually and informally by sketching a repetitive process in which
yet another element y; is needed and then concluding that the set r(z) cannot
be finite, is harder on the logical level. The repetitive process is first proved
as a lemma. Applying this lemma in an induction the existence of an infinite
sequence is proved. Some further theorems that generalize from the existence of
this particular sequence then provide the possibility to infer infinity from there.
These theorems can then be chained together to construct the contradiction to
the assumed finiteness.

Core Lemma. The core lemma describes that under the assumptions of Lemma
2 it is possible to infer a new element y that is in relation r to all others so far,
but is not equal to any of the former ones.

[l idempotent r; x € Domain r; x ¢ r"{x}; z € r"{x};

- Gy.yer{yy Ayer{xr ANz € r"{y}); z = s 0;

Vi j<n—sjerx}AVi.i<j—(sj,si)ErAsj#si
] = 3Jdy.yerxrAVj j<n— (y,sPeETr ANy #s]j

Similar to the paper style proof it uses the properties of idempotence to infer
that new “middle” element and furthermore transitivity to establish the invariant
that it is related to all previous ones. We use here a variable s that formalizes
a sequence over natural numbers used in the following to produce the infinite
sequence.

A Chain of Lemmata. The first step of the proof leading to the conclusion
that there is an infinite sequence, is an induction that shows that under the
given assumptions of Lemma 2, there is such a sequence s.

[| idempotent r; x € Domain r; x ¢ r"{x}; z € r"{x};
- Gy.yer{yr Ay € r"{x} A z € r'{y})
|] = Vn. ds::nat =>a .z=s50A
Vi j<n— (s3j)er{x}A
WVi.i<j— (sj,si)erA(sj #(si))

This proof is an induction over natural numbers. In the induction step the core
lemma is applied to produce the new element of the sequence s having the
appropriate properties.

The conclusion of the previous step can be weakened.

Idempotent Relations in Isabelle/HOL 315

Vn. I3s:tnat =>a.z2=50Aj j<n— (sj €r{zrA
MVMi.i<j—(sj,si)eErANsj#si))
— Vn ds. Vj. j<n—sjer{fxt AN Vi i<j—sj#si)

The weaker set of properties of the sequence is sufficient to infer the existence
of a set whose cardinality is always growing and whose elements are all subsets
of a set p — which will ultimately be r"{x} in our case.

[l Vn. 3 s:: nat => o .
(Vi j<n-— (i eEpAMi.i<j— (sj)#(si))) I]
=> Vmn. 38. card S=8Sucn ASCp

Finally, the set derived in the previous step can be used to infer that the set p
is infinite.

Vn. 38. card S =Sucn A S C p = - finite p

The variable p of type set can be instantiated to r"{x}. Thereby, chaining up
all these lemmata, we can put together the proof of Lemma 2 by producing a
contradiction with the assumed finiteness of the relation.

[l finite r; idempotent r |] —
V x € Domain r. x ¢ r"{x} —
Vzer{zx}. dy. yer{yr ANy € r"{x} A z € r"{y}»)

It may seem a bit odd that we have to derive first that the sets S we are con-
structing for contradiction have a cardinality. However, as infinity is just the
negation of finiteness, the only way to construct a contradiction is to arrive at
a property that a finite set has, i.e. a finite cardinality, and that clearly cannot
be assumed for the sequence.

The proof of Lemma 2 is, like some proofs in lattice theory [BKS01, DP02],
rather intricate. It would be much easier if a sequence could be constructed on
the outside of the universal quantification over n, i.e. 3s.Vn.... However, this is
not possible in our case. We have to show that such a sequence exists for each n.
Fortunately, as the core lemma can be identified and applied inside the induction
this sequence can be prolonged in each step and by identifying the commonality
of the sequences — that they are all in some set p — we can construct the
sequence of sets represented by the existentially quantified S.

Proof of the Theorem. The proof of the correctness, i.e.

[| finite r; idempotent r |] —
(V x € Domain r. r"{x} = (U y: {z. z: r"{z} N r"{x}}. r"{y») A
V ya € r"{x}. r"{ya} C r"{x}))

simply puts together Lemma 1 and Lemma 2 with transitivity.
For completeness note that we can infer the property r» C r o r from the first
conjunct of the characterization alone.

(V x € Domain r. r"{x} = (U y: {z. z € r"{z} N r"{x}}. r"{y}))
— r Cror

316 F. Kammiiller and J.W. Sanders

The other conjunct is equivalent to transitivity so we can prove the other
inclusion almost automatically. Finally, we put the two parts together to finish
the proof.

4 Algorithm

In this section we will develop an abstract algorithm that builds all idempotent
relations over a given domain. Before introducing the construction algorithm,
we illustrate how the characterization may be seen as a recipe for constructing
idempotent relations. After that, in Section 4.2 we introduce the primitive re-
cursive definitions of the algorithm. Finally in Section 4.3 we outline the major
steps in proving the correctness and discuss the solution in Section 4.4.

4.1 Constructing Idempotent Relations

The main idea of the construction is to start from relations that are constituted
by fizpoints, i.e. pairs of the form (z,z) (see Section 2), and so are trivially
idempotent. The next step adds more relations based on the latter by extending
the ranges of the single points according to Theorem 1. Finally, from those —
again idempotent relations — we get all idempotents by considering admissible
domain extensions.

To understand the characteristics of idempotent relations we consider some
representative examples to illustrate the meaning of the characterization in The-
orem 1. We consider small examples depicting the relations graphically as lines
connecting points picking out typical cases that illustrate the scope of idempo-
tence and prepare the ground to find an effective procedure to construct them.

Fixpoints. The first and most simple example is that of a relation that consists
of only fixpoints. For the three elements x,y, z the relation r = {(z,z), (y,v),
(z,2)} is depicted together with a graphical illustration of its idempotence:

T

Y ; =

z

The points that are connected by the relation are all fixpoints. Where in
extension it is hard to decide whether a relation is idempotent, graphically it
reduces to following up all paths from the left of the left graph to the right of
the right graph.

Range Extensions. Starting from a pure fixpoint relation, a relation that is
constructed by extending the ranges of the fixpoints is in most cases also idem-
potent. Consider the following example, where starting from the same fixpoints
the ranges of « and z are extended by y and {x,y} respectively.

Idempotent Relations in Isabelle/HOL 317

T

y ; =
z

The composition gives the same element, hence this relation is idempotent.
This extension conforms to the first conjunct of Theorem 1 for the case of fix-
points, i.e. Lemma 1: the ranges of x and z are defined by just their own ranges.

However, even though in most cases the range extension of fixpoints is arbi-
trary, one has to respect the second conjunct of Theorem 1, transitivity. In the
following example we have just the fixpoints x and z, but the range of z contains
y, while r(y) € r(z)! Hence, the relation on the left below is not idempotent
(whilst the result on the right is).

X

y ; =

z

Hangers-on. As a final step relations that are constructed from fixpoints and
admissible range extensions (such extensions that respect transitivity) can be
further extended by adding non-fixpoint elements on the domain side. These
additional domain extensions of the relations can be considered hangers-on: they
hang on to the fixpoint elements, thereby using their “idempotence”. This is
an instance of the first conjunct of Theorem 1 (more precisely Lemma 2): for
elements of the domain of the relations with x ¢ r(z), i.e. non-fixpoints, there
must exist fixpoints whose ranges constitute the range of these non-fixpoints.
An example is given by the following relation where the non fixpoint z hangs on
to the fixpoint z having exactly the same range as z.

x
Y ; =

z

Hangers-on need to copy the entire range of the fixpoints they hang-on to.
However, they can have more than one fixpoint they hang on to. The following
example with five points, shows how the hanger-on y can actually accumulate
the ranges of both fixpoints and z.

T

z

The previous example illustrates why in the characterization of Theorem 1
we need the union over all fixpoints for the case of hangers-on.

For domain extensions we also have to respect transitivity, as illustrated by
the following example.

318 F. Kammiiller and J.W. Sanders

T

y ; =

z

Although each of the components of the graphs in this relation respects the
rules found so far, the combination is not idempotent. The way to avoid this
when building domain extensions is to consider only such sets of hangers-on
that are not contained in any range of a fixpoint (here hanger-on y is contained
in the range of fixpoint z).

Informal Algorithm. To use the intuition given above to develop an algo-
rithm, we proceed informally as follows:

— For a given list of fixpoints [build range extensions for each of the fixpoints.
e The fixpoint is always contained in the range extension. The range ex-
tensions are initially all possible subsets of the intended range R of the
relation resulting in a list of relations that are lists of pairs (l;,s;) of
fixpoint and range extension, where [; € s;.

e Check the resulting lists of pairs (I;, s;) of fixpoint and range extension
for transitivity and delete the nontransitive relations.

— Build from the list of range extended relations all combinations d; of possible
domain extensions. A domain extension describes which elements hang-on
to a fixpoint, i.e. share its range.

e A domain extension is any subset of the domain of the prospective rela-
tion that does not contain fixpoints from [and that is not in the range
s; of any fixpoint.

e The elements in the domain extension all have the same range as the
fixpoints they are hanging-on to. So it suffices to record the element
together with the fixpoints.

— Finally, the derived list of elements of the form

[(ll, S1, dl), . (ln, Sny dn)}
represents a relation that can be recovered from this list representation as

r={(z,y).3i. (r=LVred)ANyEs;}.

4.2 Primitive Recursive Construction Functions

Instead of defining a nested loop that builds the entire set of all idempotent
relations for given domain, range, and fixpoints, we implement the algorithm
in a functional manner using primitive recursive functions directly as they are
provided in Isabelle/HOL.

Initially, we need at various points in the algorithm a function that produces
all possible subsets of a set. As we decided to implement the algorithm using
lists, the function sublists builds sublists of a list rather than sets.

sublists :: "a list => « list list"

Idempotent Relations in Isabelle/HOL 319

Assuming that the recursion returns all possible sublists of a list 1 the step of the
function builds the possible sublists of list ¢ # 1 by concatenating all sublists of
1 with all sublists of 1 where the element ¢ has been put in first. The recursion
finishes by returning the list with the empty sublist.

primrec
sublists_empty: "sublists_fn [] = [[]1]"
sublists_step: "sublists (c # 1) =
(let 11 = sublists 1 in 11 @ (map(A x. c # x) 11))"

This is an example of a primitive recursive definition as indicated by the keyword
primrec. We omit the keyword in the following when it is clear from context.

Next we consider the function that given the prospective range of the relation
and a list of fixpoints builds the range extensions range_exs R 1.

range_exs :: "[a list, a list] => (o X « list)list list"

This function is rather complex. For each fixpoint 11 it first builds all sublists
of the range R omitting 1i to avoid repetitions as 1i has to be in the range
extension — and is inserted into each range extension afterwards.

range_exs_empty: "range_exs R [] = []"
range_exs_step: "range_exs R (1i # 11) =
(let sl = (sublists [x:R. x # 1il)
in (if (11 = [1) then map (X x. [(1i,1i # x)]) sl
else combine_re (map (A x. (1i, 1li#x)) sl) (range_exs R 11)))"

The expression [x:R. x # 1i] is a filter denoting the list of elements in list R
that are # 1i. In the function body a function combine_re is used that will be
explained next.

combine_re :: "[a list, o list list] => « list list"

In the body of range_exs_step the algorithm builds all combinations of range
extensions by working through a given list of fixpoints 1 from back to front.
Given that the recursion range_exs R 11 returns all possible combinations of
range extensions for the postfix 11 of the fixpoints 1, all possible range extensions
for the postfix 1i # 11 are built by combining each possible range extension for
1li, say (1i,si) with each of the lists in range_exs R 11 by adding (1i,si)
as first element. The function combine_re now performs exactly the necessary
combination. It is similar to combine (see below) but the insertion depends on
the check fp_check.

combine_re_empty: "combine_re [1 1 = []"

combine_re_step: "combine_re (a # 11) 1 =
(map (A x. if (fp_check a x) then (a # x) else []) 1)
@ (combine_re 11 1)"

The function fp_check that is used in combine_re checks whether the range
extension that is created by adding the actual pair to an already range extended
postfix, introduces violations of transitivity in which case combine_re deletes
this element from the combinations.

320 F. Kammiiller and J.W. Sanders

fp_check:: "[(a X « list),(a X « list)list] => bool"

This check concerns the property of transitivity, formulated in Theorem 1 as:
Vo € dom 7. Vy, € r(x). r(y,) C r(zx)

If an element y, is also in the range of another x than y,’s range has to be
contained in the range of x. For fixpoints, which we are considering just now,
this property can be slightly simplified to considering such fixpoints that are
themselves in the domain of other fixpoints: in the case that a fixpoint [; is in
the range of a fixpoint /;, the range of [; has to be a subset of the range of /;. In
the construction of the range extension this criteria applies two ways: the newly
added fixpoint I; could be in the range of an “old” I; or vice versa. If both are
contained in the ranges of each other, clearly their ranges have to be the same’.

The constructor set transforms a list into a set.

fp_check_empty: "fp_check a [] = True"
fp_check_step: "fp_check (1i,si) ((1j,sj) # 1lr) =
(if (1i mem sj) then (if (1j mem si) then (set si) = (set sj)
else (set si C set sj))
else (if (1j mem si) then (set sj C set si)
else fp_check a 1r))"

It is safe to cancel such elements in the construction of the range extensions
that do not pass the function fp_check, because the algorithm goes through all
possible combinations. Hence, just a bit further down the line the current range
extension (1i,si) is going to be combined with a slight variation that fits.

The next step in the algorithm is to construct the domain extensions. Here,
the procedure is structurally very similar to the range extension. That is, we
again use a combination function to build all possible combinations of domain
extensions this time using a simple version of the function combine_re called
simply combine.

combine_empty: "combine [] 1 = []"
combine_step: "combine (a # 11) 1 = (map (Cons a) 1) @ (combine 11 1)"

Now, a domain extension of a fixpoint on a given domain for the relation and
list of fixpoints can be applied to a list of range extensions, that is to a list
of elements of type axalist. It returns a list of lists of triples, that are the
range extentions extended by an additional list as third element, representing
the elements of the domain that share the range of the fixpoints.

domain_exs :: "[a list, « list, (o X « list)list]
=> (a X « list X « list)list list"

! To make the definition more readable, we use pattern matching of pairs in the
argument position of the following primitive recursive definition, but this is actually
not supported in Isabelle/HOL.

Idempotent Relations in Isabelle/HOL 321

For a list D representing the relations domain and a list 1 of fixpoints, a do-
main extension of a fixpoint 1i is a subset of the domain that has neither ele-
ments of 1 nor elements in the range extensions si of any 1i. This constraint
is realized by using again the filter construct in [x:D. (= (x mem 1))A(—(x mem
fpre))]. The argument fpre is the list containing all range extensions of that
relation. In one step, that is for one range extension pair (1i,si), the function
domain_exs_fn builds all possible sublists of the result of that filtering and com-
bines all those with (1i,si) to build the domain extended point (1i,si,di).

domain_exs_empty_fn: "domain_exs_fn D 1 fpre [] = [I"
domain_exs_step: "domain_exs_fn D 1 fpre ((1,si) # 1lr) =
let sl = (sublists [x:D.(—(x mem 1))A(—(x mem fpre))])
in if (1r = []) then map (A x. [(1i,si,x)]) sl
else combine (map(A x. (1li,si,x)) sl)(domain_exs_fn D 1 fpre 1lr)"

The function domain_exs_fn can now be used to define the actual function for
domain extension as a constant by building the parameter fpre of all range
extensions of fixpoints and then applying the former function.

domain_exs D 1 rl == domain_exs_fn D 1 (concat (map snd rl)) rl

The meaning of a range extension point (1i,si) is that 1i is a fixpoint and has
range si containing 1i. The domain extension element di that is now added as
the third element to those points represents all hangers-on of 1i. That is, the
elements of di are all non fixpoints that have in their range all the elements
of the range of 1i, i.e. the elements of si.? For efficiency of representation and
simplicity it is advisable to choose this representation rather than copying the
ranges for each hanger-on.

Keeping in mind this explanation of the domain extensions the following
function should be easily comprehensible. This function, called build_rel, is
necessary to close the loop of developing the algorithm from the ideas contained
in Theorem 1 back to where it started by giving a procedure to translate the
list representation calculated from the previous set of functions into a relation
again.

build_rel :: "(a X (a)list x (a)list)list => (a X «)set"

For a relation represented as a list of the described triple type, the function
build_rel now builds a set of pairs: a pair (x,y) is in the relation if x is the
fixpoint we are considering and y is in the current range extension si or x is a
hanger-on from the domain extension. In the latter case, as hangers-on have the
same range as their fixpoints, y has to be in si too.

build_rel_empty: "build_rel [] = {}"
build_rel_step: "build_rel ((li,si,di) # 11) =
{(x,y). (x =11 V x mem di) A y mem si)} U (build_rel 11)"

2 Note that in general a hanger-on can have more elements in its range, as it can
simultaneously hang-on to other fixpoints.

322 F. Kammiiller and J.W. Sanders

As we will see in the next section, the functions presented in this section can be
simply applied to produce idempotent relations. As they are primitive recursive
function definitions, and the syntax chosen in Isabelle for these functions is very
similar to ML, it is possible to translate them one-to-one into ML.

Recall that we wish to produce all idempotent relations for a given domain
and range. We can build up the corresponding list in our representation defining
a constant.

list_of_all_idempotents :: "[a list,a list]
=> (o X o« list X « list)list list"

The definition of that constant just applies the functions for range extension and
domain extension to the list of all possible sets of fixpoints in the domain D and
building all possible range subsets of R as starting points for the process. As we
produce a list of lists of relations in each step it is necessary to flatten those lists
using concat when putting it together.

list_of_all_idempotents D R ==
(let all_ranges = sublists R
in concat(map (A 1. concat (map (domain_exs D 1)
(concat (map (range_exs R) all_ranges)))) (sublists D)))

4.3 Properties

Now, the function build_rel closes the loop of development. With its help we
can express the correctness of the algorithm concisely

[| finite r; unique 1; set 1 = {x. (x,x) € r};
set D = Domain r; set R = Range r |]
—> idempotent r = (3 re_fn. re_fn mem (range_exs R 1) A
(d de_fn. de_fn mem (domain_exs D 1 re_fn) A (r = build_rel de_fn)))

That is, for a given set [of fixpoints, a given domain and range for the relation,
the property of idempotence of a relation is equivalent to the existence of a range
extension and a domain extension that are built by the corresponding functions
applied consecutively and which represent the relation. The premise unique 1 is
a predicate ensuring that the list 1 does not contain repetitions. This restriction
is necessary to exclude lists with repetitions as input to the algorithm.

Otherwise, the proof is a rather straightforward unfolding of definitions of
function definitions using inductions over lists to show that the properties of the
list representation actually translate into the properties of the characterization.

From this property we can derive the more general one concerning the set of
all idempotent relations which corresponds to completeness.

{r. finite r & Domain r = set R A Range r = set R A idempotent r} =
set (map build_rel(list_of_all_idempotents D R))

Idempotent Relations in Isabelle/HOL 323

4.4 Discussion

In this section we have introduced via characteristic examples an algorithm for
the construction of finite idempotent relations. From there we have developed a
set of functions that compute them.

The way the function range_exs deletes half finished elements when they do
not respect transitivity is the main source of inefficiency. It would be nicer to
exclude unsuitable lists at the stage when all sublists s; for the range extensions
are generated — that is before range_exs is called. However, the problem arises
only later — that is, when the single sets s; are generated we cannot anticipate
how they are going to be combined. More precisely, they are going to be combined
in all possible ways. As the transitivity property is a property that concerns
each element of the relation, it can be judged only when putting the relation
together. We could have started building admissible sets of sets s; before adding
the fixpoints [; to the range extensions but that is basically what we are doing
just at the same time when the corresponding fixpoints are added.

Another point worth mentioning is that our function is not efficient for
another reason. When the domain extensions are built repetitions may arise:
when two fixpoints x and z have exactly the same range, there are two ways a
hanger-on can achieve its domain extension: by hanging on to = or by hanging
on to z. Hence, our algorithm produces two identical relations. For example,
domain_exs [1,2,3] [1,2] [(1, [1, 21D, (2, [2, 11)] produces the do-
main extensions [(1, [1, 21, [1), (2, [2, 1], [31)] and [(1, [1, 2],
[31), (2, [2, 11, [1)]. Those two will consequently be mapped to the same
relation by build_rel. Another frequent repetition occuring in the produced
lists, also apparent in the previous sample, is the empty list. This is a remainder
of the deletion of non admissible lists during the range extension and vanishes
when concatenating. The algorithm is thus abstract in the sense that it is really
defined at the level of sets rather than lists.

For those reasons our algorithm is not optimal. Let |D| = |R| = n. Then
the number of idempotents constituted just by fixpoints is 2". Now for the
complexity of the algorithm the functions that cost most are the two application
of the combine functions in domain_exs_step and range_exs. The combine [y
l> (and combine_re) are in O(]l1||l2|). However, their order-of-n times iterated
application in the recursion in domain_exs_step and range_exs on lists of length
order 2™ leads to an estimate for order of 1list_of_all idempotents as

).

This seems very costly. However for comparison we can obviously not do better
than O(2") — enumerating all idempotents is at least as costly as enumerating
the fixpoint relations — and the complexity of the naive approach of generate-
and-test (see Section 1) is of in O(22"). The square in the power comes through
the combination used in range and domain extensions. However, these combina-
tions can only be built by stepping through the single points of the relation (a
process of order n) and in each step we have a complexity of O(2") by the mere
number of relations that have to be combined.

n246n—2
2

0(2

324 F. Kammiiller and J.W. Sanders

5 Conclusion

We have presented a result characterizing finite idempotent relations. This result
has first been proved on paper and then formalized and proved in Isabelle/HOL.
A constructive abstract algorithm has been derived from there and its correctness
sketched in the same framework.

Independent of the contribution that the result and the algorithm may rep-
resent, this work is a case study that illustrates that a logic like HOL in the
implementation given by Isabelle/HOL is a framework that may well be used to
develop programs rigorously. Although small, it is a convincing demonstration
that Isabelle/HOL is suited as a formal method in itself, as has been recognized
before, e.g. [NW98, BN00], however not until very recently has this approach
been much applied. The close relation to the programming language ML has
proved very helpful in this project. All the functions presented here could be
tested easily by extracting them from the Isabelle code.

Clearly, it would be wrong to deduce from the current case study that HOL
even with a mature support like Isabelle is a substitute for advanced formal
methods providing support for abstract high level concepts like refinement, ob-
ject orientation, and modularity. But it may be an encouragement to extend the
existing features, like data types and recursive function definitions, in order to
make the rigorous development in Isabelle/HOL more powerful. The method of
derivation that is given by a manner of application like the present, is crucial
for the complete specification and proof of critical software. For comparison the
refinement calculus (with data refinement) has also been used by the authors to
derive an algorithm; integration into the development process in Isabelle may
also be of interest.

References

[BKSO01] J. Burghardt, F. Kammiiller and J. W. Sanders. On the Antisymmetry of Ga-
lois Embeddings. Information Processing Letters, 79:2, Elsevier, June 2001.

[BNOO] Stefan Berghofer and Tobias Nipkow. Ezecuting Higher Order Logic. Types
for Proofs and Programs (TYPES 2000), Springer LNCS, 2277, 2002.

[CP61] A. H. Clifford and G. B. Preston. The Algebraic Theory of Semigroups,
volume 1. Mathematical Surveys, number 7. American Mathematical Society.
1961.

[CP61] C. W. Curtis and I. Reiner. Representation Theory of Finite Groups and
Associative Algebras. Interscience Publishers, John, Wiley, 1966.

[DP02] R. A. Davey and H. A. Priestley. Introduction to Lattices and Order, Second
Edition. Cambridge University Press, 2002.

[DS58] N. Dunford and J. T. Schwartz. Linear Operators. Part I: General Theory.
Interscience Publishers, John Wiley, 1958.

[NWO98] W. Naraschewski and M. Wenzel. Object-Oriented Verification Based on
Record Subtyping in Higher-Order Logic, In Proceedings of TPHOLs 98,
Springer LNCS, 1479, 1998.

[Pau94] L. C. Paulson. Isabelle: A Generic Theorem Prover, Springer LNCS, 828,
1994.

Program Verification Using Automatic
Generation of Invariants***

Enric Rodriguez-Carbonell and Deepak Kapur

LSI Department, Technical University of Catalonia,
Jordi Girona, 1-3 08034 Barcelona (Spain)
erodri@lsi.upc.es
Department of Computer Science, University of New Mexico,
Albuquerque, NM 87131-0001 (USA)
kapur@cs.unm.edu

Abstract. In an earlier paper, an algorithm based on algebraic geome-
try was developed for discovering polynomial invariants in loops without
nesting, not requiring any a priori bound on the degree of the invariants.
Polynomial invariants were shown to form an ideal, a basis of which
could be computed using Grobner bases methods. In this paper, an ab-
stract logical framework is presented for automating the discovery of
invariants for loops without nesting, of which the algorithm based on
algebraic geometry and Grobner bases is one particular instance. The ap-
proach based on this logical abstract framework is proved to be correct
and complete. The techniques have been used with a verifier to automat-
ically check properties of many non-trivial programs with considerable
success. Some of these programs are discussed in the paper to illustrate
the effectiveness of the method.

1 Introduction

There has recently been a surge of interest in research on automatic generation
of loop invariants of imperative programs. This is perhaps due to the successful
development of powerful automated reasoning tools including BDD packages,
SAT solvers, model checkers, decision procedures for common data structures
in applications (such as numbers, lists, arrays, ...), as well as theorem provers
for first-order logic, higher-order logic and induction. These tools have been
successfully used in application domains such as hardware circuits and designs,
software and protocol analysis.

In an earlier paper [RCKO04], an approach for generating polynomials as
invariants for loops without nesting was presented. An algorithm employing

* This research was partially supported by an NSF ITR award CCR-0113611, the
Prince of Asturias Endowed Chair in Information Science and Technology at the
University of New Mexico, a Spanish FPU grant ref. AP2002-3693, and the Spanish
project MCYT TIC2001-2476-C03-01.

** An extended version of this paper is available at www.1lsi.upc.es/ erodri.

Z. Liu and K. Araki (Eds.): ICTAC 2004, LNCS 3407, pp. 325-340, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

326 E. Rodriguez-Carbonell and D. Kapur

Grobner basis method was proposed to derive conjunctions of polynomial equal-
ities as loop invariants, without any a priori bound on the degree of the polyno-
mials appearing in the invariants. The main contributions of that paper are:

1. Invariant polynomials are shown to form an ideal, a well-known algebraic
concept [CLO98]. Consequently, algebraic geometry techniques are brought
into play to discover such invariants from a given program without imposing
any a priori bound on their degrees.

2. The proposed algorithm for generating polynomial invariants is proved to ter-
minate using algebraic geometry if right-hand sides of assignments are solv-
able mappings either commuting or with positive eigenvalues (see [RCK04]
for definitions and details).

In this paper we improve our previous work in a number of aspects:

1. The construction of [RCK04] is generalized and presented in an abstract
logical framework, thus highlighting the key properties required for the pro-
posed approach to be applicable to data structures other than numbers. We
were thus able to abstract properties needed from algebraic geometry for our
results in [RCKO04].

2. The abstract framework is based on the forward propagation semantics of
program statements. A fixed point computation of formulas approximating
the invariant at the loop entry point is carried out by considering all possible
execution paths.

3. A procedure for computing loop invariants based on this abstract logical
framework is presented. The procedure is proved to be sound and complete, in
the sense that on termination, the procedure generates the strongest possible
invariant expressible in the considered language for specifying invariants.

4. The significance of this framework is demonstrated by showing our algorithm

in [RCKO04] as a nontrivial instance of this abstract procedure.
In another paper [RCK], we have used the abstract interpretation frame-
work for developing approximations and a widening operator to compute
polynomial invariants of a bounded degree, where the bound on their de-
gree is determined by the widening operator. The termination proof of this
algorithm is different from the one in [RCKO04]; it is based on using the di-
mension of the vector space generated by polynomials of bounded degree.
The advantage of our framework over abstract interpretation is that we are
able to ensure that we generate the strongest invariant expressible in the
language, which is not usually possible in abstract interpretation.

5. The procedure has been implemented and is employed with our tools for
program verification to prove the correctness of a number of programs, as
shown in a table of examples. Some of these are used for illustrating the key
ideas of the approach. Currently, the procedure only generates conjunctions
of polynomial equalities as invariants, but plans are underway to generate
polynomial inequalities as well.

The rest of the paper is organized as follows. In the next subsection, re-
lated work is briefly reviewed. Section 2 introduces the general framework: the

Program Verification Using Automatic Generation of Invariants 327

programming model is presented, and necessary properties of the language for
expressing invariants are studied so that the generic procedure for finding loop
invariants can be formulated. In Section 3, we prove that the language of conjunc-
tions of polynomial equalities satisfies all the required properties of the abstract
framework and is thus an instance of it. This gives an algorithm for computing
invariant polynomial equalities that turns out to be equivalent to that given in
[RCKO04]. In Section 4 we show that the framework is applicable even when some
of the conditions on the language to express invariants are not met. Section 5 is
a brief overview of the verifier we have built for proving properties of programs.
In Section 6 we give some illustrative examples of program verification using this
tool. Finally, Section 7 concludes with a discussion on future research.

1.1 Related Work

The generation of arithmetic invariants between numerical variables is a long
researched area. Karr first showed in [Kar76] an algorithm for finding invariant
linear equalities at any program point of a procedure. This work was extended
by Cousot and Halbwachs [CHT78], who applied the model of abstract interpre-
tation [CC77] for finding invariant linear inequalities. Like our techniques, both
methods are based on forward propagation and fixed point computation [Weg75],
which points out that our ideas may be useful for accelerating the termination
as well as improving the precision in abstract interpretation.

Recently, there has been a renewed surge of interest in automatically deriving
invariants of imperative programs. In [CSS03], Colén et al. used non-linear con-
straint solving based on Farkas’ lemma to attack the problem of finding invari-
ant linear inequalities. Extending Karr’s work, Miiller-Olm and Seidl [MOS04]
proposed an interprocedural method for computing invariant polynomial equal-
ities of bounded degree in programs with affine assignments. The same authors
[MOSO03] developed a complete technique for finding invariants of a prefixed form
in procedures with polynomial assignments and disequality guards. Similarly, in
[SSM04] a method was proposed for generating polynomials as invariants, which
starts with a template polynomial with undetermined coeflicients and attempts
to find values for the coefficients so that the template is invariant using the
Grobner basis algorithm. Kapur proposed a related approach using quantifier
elimination in November 2003 (see [Kap03]).

In [RCKO04], we gave an algorithm based on algebraic geometry and not re-
quiring any degree bounds for generating conjunctions of polynomial equalities
as loop invariants. This algorithm served as the basis for developing the pro-
posed abstract logical framework of this paper. In that paper, the discussion
and proofs extensively use results of polynomial ideal theory and algebraic ge-
ometry, because of which they are not likely to be directly applicable to other
data structures such as arrays, records, etc. In contrast, this paper presents a log-
ical framework that is likely to be more widely applicable. Finally, in [RCK] we
have employed the framework of abstract interpretation to generate polynomial
equalities of bounded degree as invariants in general procedures.

328 E. Rodriguez-Carbonell and D. Kapur

2 Abstract Framework

We consider a simple programming language with multiple assignments, non-
deterministic conditional statements and loop constructs. Loops are assumed to
have the following form:

while F(z) do
if C1(7) — 7 :=f1(2);

[Ci(z) — & :=fi(Z);

[] Cn(T) = T :=fn(T);
end if
end while

where T = (x1, 9, ...,2,,) denotes the tuple of program variables, E,C;’s are
boolean expressions and each f; is an m-tuple of expressions.

2.1 Loop Invariants

A formula expressing a property of a loop (including an invariant of the loop) is
specified using the program variables & and variables, denoted by £*, representing
the initial, usually unknown, values of the program variables before entering the
loop.

Let R stand for a subset of a first-order language with equality used for
expressing properties of loops. A formula in R representing an invariant property
will be written as R(Z,z*). Our goal is to capture the semantics of loops using
the strongest invariant expressible in the language R. For that we characterize
the expressiveness of R to admit such strongest invariants.

Definition 1. A formula R € R is invariant (with respect to another formula
Ro(z*) relating initial values of T) if:

i) Ro(z*) = R(z*,z*) and

i) Vi:1<i<n, (R(Zz*)NEZ) ACi(ZT)) = R(f:(Z),z*).

To capture the semantics of the loop, we have to compute the strongest
possible invariant in the language R:

Definition 2. The language R is expressive for a loop if IR~ € R such that

1. Ry is an invariant of the loop and
2. for every invariant R of the loop in the language R, Roo(Z,z*) = R(z,z").

In Section 3, the language of conjunctions of polynomial equalities is intro-
duced for specifying invariants, and it is shown to be expressive for loops with
polynomial assignments (when tests are abstracted and considered to be true).

Program Verification Using Automatic Generation of Invariants 329

2.2 Fixed Point Procedure for Computing Invariants

We give an iterative procedure for computing the strongest invariant R, of a
given loop. Assume that the loop test £ and each C}, the tests in the conditional
statement, and each assignment mapping f; are expressible in R. Let Ry stand
for a formula satisfied by the initial values of the variables before entering the
loop. Based on the forward propagation semantics of program statements, the
procedure below computes successive approximations of the strongest invariant
R until reaching a fixed point.

Forward Propagation Semantics. If R(z,z*) holds at the loop entry point,
the loop test E(z) is true and the i-th conditional branch is executed, then the
strongest postcondition at the end of the body of the loop is

(@ = f:(9) ARG, Z7) N EG) A Ci(7)) .-

Traditionally abstract interpretation uses this one-step forward propagation
to compute invariants, employing a widening operator to guarantee termina-
tion. In order to accelerate the procedure for finding invariants and avoid the
loss of precision involved in widening, we propose instead a many-step forward
propagation along the lines of the meta-transitions of Boigelot [Boi99]. While
these meta-transitions were originally utilized to compute the exact reach set
of a system, we apply accelerations to the more general problem of comput-
ing overapproximations of the set of reachable states, i.e. invariants, in a given
specification language.

If the i-th branch is executed s times in a row, the strongest postcondition
is: 1
(7= @) ARG A (N (EBE@)ACEH D)) -

t=0
assuming that the s-th power of f; is also expressible in R.

Given that the number of iterations s is undetermined, an infinite disjunction
is needed to express the relation (which is not a formula anymore in the language
unless existential quantifiers are used):

V (Go(e = 1) A Bla.2%) A (/\ (U@ ACUEG))))) - M
0

s=1 t=

In general, there are several branches in a loop and each of the branches
can be executed arbitrarily many times. This results in an infinitary formula
capturing the program states at the loop entry point after an undetermined
branch has been executed arbitrarily many times:

R(%x*)\/(i/ {7 (Egj(i‘ = ff(y)/\R(y,a?*)/\(S/_\l (E(ff(??))ACi(ff(@))))»)-

In order to capture the semantics of the loop, this approximation of the in-
variant is computed iteratively until reaching a fixed point (or going on forever).
This is the core of the procedure below.

330 E. Rodriguez-Carbonell and D. Kapur

In a highly powerful language for expressing invariants, the infinite disjunc-
tion in the above infinitary formula can perhaps be expressed using an equivalent
formula with the help of existential quantifiers. If the language does not permit
existential quantifiers or even disjunctions (as will be the case for the language
of conjunctions of polynomial equalities), the language must be able to express
a sufficiently strong approximation.

Definition 3. The language R is disjunctively closed if
VR,S € R, AT € R, written as RU S, such that
i) (R(z, ")V S(Z,z")) = T(z,T%),
i) VI € R, if (R(z,z*) Vv S(z,z%)) = T'(z,z*), then T(z,z*) = T'(z,T*).

The language of first-order predicate calculus with equality is disjunctively
closed, as V can be taken as L. So is the language of polynomial equalities
closed under conjunction: for any R and S that are conjunctions of polynomial
equalities, there is another conjunction of polynomial equalities R U .S which
is equivalent to RV S, as shown later. The language of conjunctions of linear
inequalities, used in [CHT78], is also disjunctively closed: given conjunctions R
and S of linear inequalities, RS is defined as the convex hull of R and S; unlike
the previous cases, R S is, in general, not equivalent to RV S in this case.

To get approximations in R of infinitary formulas involving infinite disjunc-
tions as well as existential quantifiers, R is required to have some additional
properties. For the i-th conditional branch we assume that Jp;(R) € R, the
strongest formula in the language implied by the formula (1) above:

Definition 4. R allows existential elimination if VR € R, Vi : 1 < ¢ < n
IT € R, written as @;(R), such that

00 s—1
0V 30(2 = 10 ARG A (A EGE)ACUG))) = T,
s=1 t=0

ii)VT" € R such that

In order to check whether the fixed point has already been reached, we ad-
ditionally need to decide whether two formulas in the language are equivalent:

Definition 5. R allows equivalence check if VR, S € R, it can be decided
whether R < S or not.

After replacing disjunctions V by U and eliminating existential quantifiers by
means of the ¢;’s, we get the procedure below. It starts assigning to the formula
variable R an initial formula satisfied by the initial values of the variables in
the loop. This variable R stores the formula corresponding to the successive
approximations of the invariant.

Program Verification Using Automatic Generation of Invariants 331

Invariant Generation Procedure

Input: Assignment mappings fi, ..., fn
Formula Ry satisfied by the initial values of program variables
Output: Strongest invariant formula R,

var R, R’ : formulas in R end var
R = false
Ri=(r1=a})AN-AN(zm=21})ARp
while R’ <4 R do
R =R
Ri=RU' (LI, ¢i(R)) 2)
end while
return R

The following theorem captures the correctness and completeness of the above
procedure:

Theorem 1. Given a loop L, let R be a language expressive for L, disjunctively
closed and admitting existential elimination and equivalence check. Let R, stand
for the strongest invariant of L in the language. If the invariant generation
procedure terminates with output R, then R(Z,T") & Roo(Z,T*).

The proof of the theorem, given in the extended version of the paper, is based
on two facts: i) if the procedure terminates, R is an invariant of the loop; and
i), R = R holds in all steps of the invariant generation procedure. So, if
the procedure terminates, R = R, and R., = R, which finally leads to the
result that the above procedure on termination indeed computes the strongest
invariant of the loop.

The key issue in the procedure is to find the appropiate definition for the
U operator as well as for the ¢; functions in order to ensure termination. In
the following section we show a nontrivial instance of language satisfying these
requirements, the language of polynomial equalities. Further, in Section 4 we will
see how, even if the specification language only satisfies some of the requirements
for disjunctive closedness and quantifier elimination, the procedure can still yield
useful results on termination.

3 Conjunctions of Polynomial Equalities as Invariants

In this section we show that the language of conjunctions of polynomial equali-
ties, denoted by P, is a particular instance of the abstract framework. Assuming
that the guards are ignored (i.e. E = C; = true) and that the assignment

! The use of LI approximating V here may not be sufficient to guarantee termination.
Using a widening operator V instead of LI ([CCT77]) as a further approximation of V
can ensure the termination of the procedure, probably at the cost of completeness.

332 E. Rodriguez-Carbonell and D. Kapur

mappings are polynomial, it is shown that this language P satisfies all the re-
quirements discussed above (Section 3.2). The above iterative procedure for com-
puting invariants can be instantiated as well (Section 3.3).

3.1 Preliminaries

Given a field K, let K[z] = K][z1, ..., 2] denote the ring of polynomials in the
variables z1,...,2z; with coefficients from K. An ideal is a set I C K[z] that
contains 0, is closed under addition and such that, if p € K[z] and ¢ € I,
then pg € I. Given a set of polynomials S C K[z], the ideal spanned by S is
(S)y={peK[z] | Fk>1p= Zle pjq; with p; € K[Z],q; € S}. For an ideal I,
a set S C K[z] such that I = (5) is called a basis of I.

The variety of a set S C K[2] over K! is defined as its set of zeroes, V(S) =
{a € K!| p(@) = 0 Vp € S}. On the other hand, if A C K!, the ideal I(4) = {p €
K[z]| p(@) = 0 V& € A} is the annihilator of A.

A mapping g : K! — K! is affine if it is of the form g(z) = Az + b, where
A e K> and b € K'. In general, a mapping g € K[z]' is a polynomial mapping.

To each conjunction of polynomial equalities R = (py = 0A---Ap =0) € P,
we associate the ideal J = (py,---,pg). Similarly, given an ideal J specified by
a finite basis, say B, there is a formula in P (not necessarily unique) associated
with it, written as /\pe (P = 0); depending upon the basis chosen for J, different
(but equivalent) formulas can be obtained.

3.2 Properties of P

Expressiveness. Given a loop, the language P is expressive, i.e., there exists a
formula R in P such that (i) R is an invariant of the loop, and (i7) any formula
R in P that is an invariant of the loop is implied by R... The idea of the proof is
to take a basis of the ideal generated by all the polynomials that are invariants
of the loop. By Hilbert’s basis theorem, such an infinite basis has an equivalent
finite basis. The conjunction of the polynomial equalities corresponding to the
polynomials in the finite basis is precisely R

Disjunctive Closedness. The language P is disjunctively closed: if R = p; =
OAN...Apr=0and S=¢q; =0A...Aq =0, there is a conjunction of polynomial
equalities R U S that is equivalent to RV S. This formula can be constructed
by computing a finite basis of the intersection ideal (p1,...,px) N {q1,...,q) and
taking the corresponding conjunction of polynomial equalities (since ideals of
polynomials are always finitely generated by Hilbert’s basis theorem).

Existential Elimination. For the i-th conditional branch, we need to show
the existence of p;(R) € R, the strongest formula in the language implied by the
infinitary formula (1) above in Section 2.2. Such a formula in P can be obtained
by computing a finite basis B of the ideal

o0

eIV (N (e rmU(U swa))).)

s=1 pelV(I)

Program Verification Using Automatic Generation of Invariants 333

where I = (p1,...,px) is the ideal associated to the formula R = p; = 0 A ... A
pr = 0 and —Z + f7(y) denotes the set of m polynomials corresponding to the
projections over each of the m coordinates. Then ¢;(R) = (\,cp ¢ = 0) is the
strongest formula in P implied by (1).

Equivalence Check. The language P admits equivalence check: if R = p; =
ON...Apr =0and S =¢g =0A..ANq = 0, then R & S is equivalent
to IV(p1,...,pr) = IV(qq,...,q). In case that IV(p1,...,px) = (p1,...,pr) and
IV(gi,....,qt) = {q1,...,q;) (which is common in practice), then obviously R < S
is equivalent to (p1,...,px) = {q1, ..., qi), which can be easily checked.

3.3 Generating Conjunctions of Polynomial Equalities as
Invariants

The abstract procedure discussed in Section 2.2 can be instantiated to be the
algorithm presented in [RCKO04] as follows. The assignment labelled as (2) in
the abstract procedure is the most non-trivial and complicated to perform: it
requires computing a basis of the ideal defined by the expression (3) for each
assignment mapping, which involves an infinite intersection of ideals. To compute
this infinite intersection, elimination theory is used to eliminate s and possibly
other auxiliary variables needed to express the f?’s as polynomials. In order to
represent the f7’s as polynomials, we ask assignment mappings to be solvable
mappings, a particular case of polynomial mappings; solvable mappings are an
extension of affine mappings. The following theorem is proved in [RCKO04]; the
reader can refer to that paper for details about the theorem as well as the proof.

Theorem 2. Let L be a loop with tests E = C; = true and assignments T :=
fi(Z), 1 < i < n. If each of the assignment mappings f; is a solvable mapping with
positive rational eigenvalues, the procedure computes the strongest invariant in at
most 2m + 1 steps, where m is the number of program variables in L. Moreover,
if the assignment mappings commute, i.e. fio fj = fjo fi for 1 < i,j < n,
then the algorithm terminates in at most n + 1 steps, where n is the number of
branches in the non-deterministic conditional statement of the body of L.

The proof of the first part of the theorem extensively uses algebraic geometry
concepts including irreducible decomposition of varieties and their dimension.
It is our experience that for instantiating the abstract framework, the most
nontrivial task is to find conditions under which the procedure for generating
invariants terminates.

4 Heuristic Procedure for Non-expressive Languages

In the previous section, we showed how the language of conjunctions of polyno-
mial equalities satisfies all the conditions required in the abstract logical frame-
work. We thus get a sound and complete algorithm for computing conjunction
of polynomial equalities as invariants; further, the invariant generated by the
procedure is the strongest possible invariant expressible in this language.

334 E. Rodriguez-Carbonell and D. Kapur

In this section we show that our abstract framework is still useful when the
language R for specifying invariants is not expressive for the loop. Namely, if the
language admits equivalence check and the conditions) of both definitions of
disjunctive closedness and existential elimination are satisfied, then the invariant
generation procedure can still be formulated and yields correct invariants on
termination. The invariant generated by the procedure, however, needs not be
the strongest possible one as the non-expressiveness of the language implies that
there is no such strongest invariant.

For example, let us consider the first-order language of quantifier-free for-
mulas with polynomial inequalities as atoms, which subsumes conjunctions of
linear inequalities [CH78] or polynomial equalities [RCK04, RCK]. This language
admits equivalence check and is in fact disjunctively closed; and moreover, it non-
trivially satisfies condition ¢) in the definition of existential elimination, as we can
use quantifier elimination [Tar51] to get rid of infinite disjunctions and existen-
tial quantifiers. We illustrate this with the following simple program, for which
our procedure finds a correct invariant in the language under consideration:

{Pre: n > 0}
a:=0; while (a + 1)? < n do a:=a + 1; end while

In this case, given a formula R = R(a,n,a*,n*) (where a*, n* stand for the
initial values of the variables a, n before entering the loop), we can compute the
formula for the next iteration by eliminating s, ¢ from

s (s >0AR(a—s,n,a*,n*) AVt (t>0At<s—1)= (a—1t)*><n))

using quantifier elimination. Starting with Ro(a*,n*) = (a* = 0)A(n* > 0), after
two iterations we get the fixed point a > 0 A a?<nAn>0Aa*=0An=n*
which is invariant for the loop. Notice that a > 0 A a2 < nAn >0 contains a
non-linear inequality.

However, the first-order quantifier-free language of polynomial inequalities is
not expressive in general. The next loop illustrates this fact:

2:=0; while true do z:=z + 1; end while

In this case, the set of reachable states is N. Any invariant formula R(z,0) in
the language will hold for all natural numbers. In particular, such a formula will
necessarily hold for an interval of real numbers of the form [zg, 00), for a certain
natural number xg. Then the formula R(x,0) A (x = 2oV a > z9+1) will also be
an invariant in the language, but will be strictly stronger than R(x,0); so there
is no strongest invariant. For this example, our invariant generation procedure
yields the invariant x > 0.

5 Verification of Properties of Programs

An implementation in Maple for automatically discovering polynomial loop in-
variants has been manually interfaced with a prototype of verifier described
below. We have successfully used this verifier to automatically prove non-trivial
properties of many numerical programs (computing for instance products, divi-

Program Verification Using Automatic Generation of Invariants 335

sions, square roots, divisors, ...). Some of these programs are shown in Section
6 to illustrate the power of the techniques.

5.1 Verifier

The verifier takes as input imperative programs with annotated assertions, in-
cluding preconditions and postconditions. The programming language that it
accepts has a similar syntax as that of C. It features integer variables, arithmetic
operations (4, , div, mod, etc.) and function calls. The assertion language is a
first-order logic with equality with interpreted function and predicate symbols.
Admitted functions are the arithmetic operators of C and the ged, lem func-
tions, introduced to widen the range of treatable properties. The predicates are
equality = and order >, >.

The verifier mainly consists of two components: (i) a verification condition
generator that produces the formulas that ensure that the desired properties of
the program are fulfilled; and (i7) a theorem prover, which checks the validity of
these formulas.

Verification Condition Generator. The verification condition generator is
based on Floyd-Hoare-Dijkstra’s inductive assertion method. It generates for-
mulas (called werification conditions) from the code and the annotations that
must be satisfied to guarantee the correctness of the program with respect to
the specification. This is done by means of a semantics of language constructs
as predicate transformers. Given a program postcondition, this semantics allows
to mechanically compute an assertion such that if the precondition implies it,
then the postcondition holds on termination of the program.

Theorem Prover. The goal of the theorem prover is to check the validity of
the verification conditions.

We initially tried SPASS [WBH'02], a general-purpose theorem prover for
first-order-logic with equality. Since the conditions are about integer numbers,
SPASS had to be given an axiomatization of the integers explicitly; still, this the-
orem prover had problems handling formulas requiring algebraic manipulation
and knowledge on the integers.

This led us to implement an ad-hoc prover in Prolog. In our prover, formulas
are proved by simplification using rewriting rules until the tautology true is
obtained; if this is not the case and the prover cannot rewrite further, then it
gives up and the problem of the validity of the formula is unsolved. Strategies
for proving formulas are implemented using conditional rewriting rules. This
allows us to give the prover a knowledge on numbers that overcomes the power
of general theorem provers like SPASS for our concrete application. Our prover
has given overall good results, as we shall see in the examples.

5.2 Interface of the Loop Invariant Generator and the Verifier

For the time being, the interface between our implementation in Maple for gen-
erating polynomial loop invariants and the verifier is manual; that is to say, the

336 E. Rodriguez-Carbonell and D. Kapur

code annotated with
pre/postconditions and
additional invariants

USER verification
VERIFICATION conditions THEOREM
polynomial invariants CONDITION PROVER
LOOP GENERATOR
INVARIANT
GENERATOR

Fig. 1. Scheme of the system for verifying programs

user has to annotate by hand the polynomial invariants obtained by means of
the method here described in the code to be verified.

Sometimes an invariant expressed as a conjunction of polynomial equalities is
not strong enough to prove the desired properties of a program; then additional
invariants are also annotated. Most often there are already methods for auto-
matically finding these assertions, as is the case for linear inequalities [CH78].

6 Examples

In this section we illustrate the power of the proposed techniques for generating
polynomial invariants and their effectiveness in proving properties of nontriv-
ial algorithms operating on numbers. Although in some cases the polynomial
invariants are not enough to prove the desired properties, we will demonstrate
their need in proving properties of programs. For the sake of simplicity, we will
focus on the verification conditions that guarantee that the postcondition is met
on termination of the program. At the end of the section, a table summarizes
the results of applying our tools to a variety of programs. For all the examples
here shown, the verifier is powerful enough to check the required properties. The
timings are taken in seconds with a Pentium 4 with a 2.5 GHz. processor and
512 MB of memory.

Ezxample 1. The next program is an algorithm for computing the product of two
natural numbers A and B. Three of the assignments are non-affine solvable:

function product (A4, B: integer) returns ¢: integer
{Pre: A>0AB >0}
var a, b, p: integer end var
(a, b, p. q):=(4, B, 1, 0);
while (a # 0) A (b# 0) do
if (¢ mod 2 =0) A (b mod 2 =0)
— (a,b,p,q) := (a div 2,b div 2,4p, q);
[(¢ mod2=1)A(bmod2=0)
- (CL, b,p, q) = (a’ -1, b7p7 q+ bp>,
[] (@ mod2=0)A(bmod?2=1)

Program Verification Using Automatic Generation of Invariants 337

— (a,b,p,q) == (a,b—1,p,q + ap);
[] (@ mod2=1)A(bmod?2=1)
- (avbapaQ) = (af]-ab*]-7paQ+ (a+b7 1)]7),
end if
end while
{ Post: ¢ = AB}

Our algorithm yields the invariant ¢ + abp = AB in 3.32 s. In this case, the
verification condition that ensures that the postcondition is met is (¢ + abp =
ABA(a =0Vb=0)) = q= AB (free variables are implicitly universally
quantified); this condition is split into (¢ 4+ abp = ABAa =0) = ¢ = AB and
(q+abp = ABAb=0) = q = AB, which are reduced to (¢ = ABAa=0) =
q=AB and (¢ = ABAb=0) = ¢ = AB respectively, and then both to true.
The program is shown to be correct automatically by our system in 0.82 s.

Ezample 2. The next example, taken from [Dij76], is an extension of Euclid’s
algorithm for computing the least common multiple of two natural numbers a
and b. The invariant generation procedure yields xu + yv = 2ab in 2.02 s.

function lem (a, b: integer) returns z: integer

{Pre:a>0Ab>0}

var x,y,u,v: integer end var

(z,y,u,v):=(a,b,b,a);

{ Inv: ged(z,y) =ged(a,b)}

while = # y do
ifx>y— (x,y,u,0):=(x —y,y, u,u + v);
|z <y— (z,y,u,0):=(2,y —z,u+v,0);
end if

end while

{Post : (u+v) div 2 =lem(a,b)}

In this case the auxiliary invariant ged(z,y) = ged(a,b), which can be ob-
tained automatically by other means ([CP93]), is also needed to prove the post-
condition. The verification condition in this case is (ged(z,y) = ged(a, b) A zu +
yv =2abAx=1y)= (u+v)div 2= lem(a,b). Our prover reduces this formula
to ged(a, b) (u + v) = 2ged(a, b) lem(a,b) = (v + v) div 2 = lem(a, b) and then
to u+ v = 2lem(a,b) = (u+ v) div 2 = lem(a, b), which is trivially valid. The
program is shown to be correct automatically in 0.9 s.

Ezample 3. The following program has been extracted from [Knu69]. It tries to
find a divisor d of the natural number N using a parameter D:

function divisor (N, D: integer) returns d, r: integer
{Pre: N>0ANmod2=1ADmod2=1AD >2yn+1}
var t,q: integer end var
(d,r,t,q):=(D, N mod D, N mod (D — 2),4(N div (D —2) — N div D));
{Inv:d mod 2 = 1}
while d < [VN|Ar #0 do
(d,r,t,q):=(d+2,2r —t+q,7,q);

338 E. Rodriguez-Carbonell and D. Kapur

ifr<0— (r,q):=(r+d,q+4); end if
ifr>d— (r,q):=(r —d,q—4); end if
ifr>d— (r,q):=(r —d,q—4); end if
end while
{ Post: r =0= N mod d =0}

For this program, our invariant generation algorithm yields d(dq — 4r + 4t —
2q) + 8 = 8N as invariant in 24.56 s. In this case we also need the extra
invariant d mod 2 = 1. To prove the postcondition we have to show the valid-
ity of (d(dq —4r + 4t —2¢) +8 =8N A dmod2=1 A (r=0Vd >
|VN])) = (r = 0 = N mod d = 0). Our prover reduces this formula into
(d(dg—4r+4t—2q)+8 =8N A dmod2=1 A r=0)= N mod d =0, and
then to (d(dg — 4r + 4t — 2q) = 8N A dmod 2 = 1) = N mod d = 0, which
is able to prove to be valid. The total time spent on proving the correctness of
the program is 2.03 s.

Table of Examples. Table 1 summarizes the results obtained after generating
invariants and verifying correctness for a number of programs 2. There is a row
for each program; the columns provide the following information:

1. 1st column is the name of the program; 2nd column states what the program
does; 3rd column gives the source where the program was picked from (the
entry (x) is for the examples developed up by the authors).

2. 4th column gives the number of variables in the program; 5th column gives
the number of loops; 6th column is the number of branches for each loop;

3. Tth column gives the number of loop invariants generated for each loop; 8th
column is the time taken by the invariant generation.

4. 9th column indicates if any other kind of additional invariants was needed;
10th column is the time taken by the verifier to prove correctness.

Table 1. Table of examples

1 2 3 456 [7 |8 [9 10 |
cohencu |cube [Coh90] [4]1]1 |4 |2.15 |No [0.61
prod4br |product () 6/1|14 |1 |3.32 |No |0.82
hard integer division|[SSM04]|6|2|1-2|3-3|7.43 |Yes|5.46
divbin |integer division|[Kal90] |5|2|1-2|2-1(4.28 |Yes|1.99
dijkstra |integer sqrt [Dij76] |5]2|1-2|2-1(4.73 |Yes|18.88
euclidex2|Bezout’s coefs |(x) 81|12 |5 |3.64 |Yes|1.79
lem2 lem [Dij76] [6/1|2 |1 [2.02 |Yes|0.90
fermat2 |divisor Knu69] |5(112 |1 |2.26 |Yes|1.01
factor |divisor Knu69] 61|14 |1 |24.56|Yes|2.03

? These programs are available at www.1si.upc.es/ erodri.

Program Verification Using Automatic Generation of Invariants 339

7 Conclusions and Further Research

An abstract framework for automatically discovering invariants for loops
without nesting is proposed. A general procedure for that is given if the language
used for expressing invariants is expressive, disjunctively closed and allows exis-
tential elimination and equivalence check. The procedure computes the strongest
possible invariant expressible in the language.

It is shown that our earlier results on computing polynomial equalities as
invariants are an instance of the abstract logical framework here presented. We
are investigating other languages for expressing invariants for which the frame-
work can be adapted. We are particularly interested in the first-order language
of polynomial inequalities, which subsumes that of of linear inequalities [CH7S].

The framework has been implemented as a part of a verifier for proving prop-
erties of programs. The verifier is interfaced with the Maple computer algebra
system, which generates conjunctions of polynomial equalities as invariants. The
verifier also features a theorem prover able to reason about numbers, so that
the formulas representing the desired program properties can be checked to be
valid. This scheme has been applied to many non-trivial programs, successfully
generating invariants and then verifying properties of these programs.

We believe that the proposed abstract logical framework will also allow us
to design expressive languages to specify invariants of loops manipulating data
structures such as records, pointers, etc. We regard that the approach will be
particularly useful with arrays, since our framework has already been successful
in inferring invariants for some loops involving this data structure.

We are also investigating enriching the programming model to consider nested
loops as well as procedure calls; the main idea here is to represent all execution
paths using regular expressions and define fixed point computations as prescribed
by such regular expressions.

Acknowledgements. The authors would like to thank R. Clarisé, G. Godoy,
R. Nieuwenhuis and M. Subramaniam for their help and advice.

References

[Boi99] B. Boigelot. Symbolic Methods for Exploring Infinite State Spaces. PhD
thesis, Faculté des Sciences Appliquées de I’Université de Liege, 1999.

[CCTT] P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model
for Static Analysis of Programs by Construction or Approximation of Fix-
points. In POPL 1977, p. 238-252, 1977.

[CHT8] P. Cousot and N. Halbwachs. Automatic Discovery of Linear Restraints
among Variables of a Program. In POPL 1978, p. 84-97, 1978.

[CLO98] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties and Algorithms. An
Introduction to Computational Algebraic Geometry and Commutative Al-
gebra. Springer-Verlag, 1998.

[Coh90] Edward Cohen. Programming in the 1990s. Springer-Verlag, 1990.

[CP93] R. Chadha and D. A. Plaisted. On the Mechanical Derivation of Loop
Invariants. Journal of Symbolic Computation, 15(5-6):705-744, 1993.

340 E. Rodriguez-Carbonell and D. Kapur

[CSS03]
[Dij76]
[Kal90]

[Kap03]

[Kar76]
[Knu69)
[MOS03]
[MOS04]

[RCK]

[RCKO04]
[SSM04]
[Tar51]

[WBH'02]

[WegT75]

M. A. Colén, S. Sankaranarayanan, and H.B. Sipma. Linear Invariant
Generation Using Non-Linear Constraint Solving. In CAV 2003, volume
2725 of LNCS, p. 420-432. Springer-Verlag, 2003.

E. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

A. Kaldewaij. Programming. The Derivation of Algorithms. Prentice-Hall,
1990.

D. Kapur. Automatically Generating Loop Invariants using Quantifier
Elimination. Technical Report TR-CS-2003-58, Department of Computer
Science, UNM, 2003. Also in 10th International IMACS Conference on
Applications of Computer Algebra (ACA 2004), Lamar, TX, July 2004.
M. Karr. Affine Relationships Among Variables of a Program. Acta Infor-
matica, 6:133-151, 1976.

D. E. Knuth. The Art of Computer Programming. Volume 2, Seminumer-
ical Algorithms. Addison-Wesley, 1969.

M. Miiller-Olm and H. Seidl. Computing Polynomial Program Invariants.
Technical report, Fernuni Hagen, 2003. Num. 310. To appear in IPL.

M. Miiller-Olm and H. Seidl. Computing Interprocedurally Valid Relations
in Affine Programs. In POPL 2004, p. 330-341, 2004.

E. Rodriguez-Carbonell and D. Kapur. An Abstract Interpreta-
tion Approach for Automatic Generation of Polynomial Invariants.
www.lsi.upc.es/erodri. To appear in SAS’04.

E. Rodriguez-Carbonell and D. Kapur. Automatic Generation of Polyno-
mial Loop Invariants: Algebraic Foundations. In ISSAC’0/, 2004.

S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Non-linear Loop Invari-
ant Generation Using Grobner Bases. In POPL 2004, p. 318-329, 2004.
A. Tarski. A Decision Method for Elementary Algebra and Geometry.
University of California Press, 1951.

C. Weidenbach, U. Brahm, T. Hillenbrand, E. Keen, C. Theobald, and
D. Topic. SPASS version 2.0. In CADE-18, volume 2392 of LNAI p.
275-279, 2002. Springer-Verlag.

B. Wegbreit. Property Extraction in Well-founded Property Sets. IEEE
Transactions on Software Engineering, 1(3):270-285, September 1975.

Random Generators for Dependent Types

Peter Dybjer!, Qiao Haiyan! and Makoto Takeyama?

! Department of Computing Science,
Chalmers University of Technology, 412 96 Goteborg, Sweden
{peterd, qiao}@cs.chalmers.se
2 Research Centre for Verification and Semantics,
National Institute of Advanced Industrial Science and Technology,
Nakoji 3-11-46, Amagasaki Hyogo, 661-097 Japan
makoto.takeyama@aist.go. jp

Abstract. We show how to write surjective random generators for sev-
eral different classes of inductively defined types in dependent type the-
ory. We discuss both non-indexed (simple) types and indexed families
of types. In particular we show how to use the relationship between in-
dexed inductive definitions and logic programs: the indexed inductive
definition of a type family corresponds to a logic program, and gener-
ating an object of a type in the family corresponds to solving a query
for the logic program. As an example, we show how to write a surjective
random generator for theorems in propositional logic by randomising the
Prolog search algorithm.

1 Introduction

Random testing is a quick way to find bugs both in programs and their specifica-
tions [4]. Tt also facilitates proof development in type theory [9,10]. When doing
random testing in type theory, we need to write random generators for types. A
random generator for a type D is a function that has random seeds as inputs and
objects of D as outputs. When D is a simple data type, the type of the generator
is Rand — D [9], where Rand is the type of random seeds. In the case of a depen-
dent type (an indexed family of types) P i for ¢ :: I (we write ¢ :: I to indicate
that i is an object of type I), we wish to generate a pair (i,p) of indices 7 :: T
and objects p :: P i. That is, the type of the generators for the dependent type
P is Rand — sig {i::I; p:: P i}, where sig {i:: I; p:: P i} denotes a dependent
record type: the first field has type I and the second field has a type P i that
depends on the value i of the first field. However, since P i can be empty, we need
to decide how to generate an index 4 so that this is not the case. In this paper,
we discuss some difficulties that arise when writing generators for dependent
types and present some solutions for several classes of inductive definitions (see
Section 4-7). In particular, we get a very general class of generators by using the
fact that generating objects of inductively defined indexed families is similar to
solving queries in logic programs. This is because certain inductive definitions of
indexed families of types (predicates under the Curry-Howard correspondence)

Z. Liu and K. Araki (Eds.): ICTAC 2004, LNCS 3407, pp. 341-355, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

342 P. Dybjer, Q. Haiyan, and M. Takeyama

can be seen as a logic programs and vice versa [11]. We also discuss how to use
logic programming techniques for writing generators.

Examples are implemented in Agda/Alfa [5,12], an interactive proof editor
based on Martin-Lof type theory. We slightly modify its concrete syntax to make
it easier to follow the examples. The formal proofs which are omitted in the paper
can be found at http://www.cs.chalmers.se/"qiao/papers/.

Acknowledgement. This research is partly supported by the Cover project funded
by SSF (the Swedish Foundation for Strategic Research). The aim of the Cover
project is to build tools where random testing and proving (automatic and in-
teractive) can be combined, see http://coverproject.org/. In particular we
develop tools based on dependent type theory, and we therefore need to develop
random generators for dependent types.

2 Inductive Families

In this section, we briefly describe the scheme for introducing new set formers
in Martin-Lof’s dependent type theory given by Dybjer [7]. We follow the usual
terminology where a “set” is a small type. Sets are either inductively defined or
formed from previously defined sets by dependent function set formation and de-
pendent record set formation. In general we may simultaneously define a whole
indexed family of sets inductively. Such a family is often called an inductive fam-
ily for short. In this article we restrict ourself to ordinary (or finitary) inductive
definitions. See [7] for a discussion about ordinary vs. generalised (or infini-
tary) inductive definitions. See also [8] for a discussion of further generalising
the notion of an inductive definition in dependent type theory.

We will only show the formation rule and the introduction rules, and omit
the elimination rules and equality rules. The reader is referred to [7] for details.

The dependent type theory here is based on the logical framework for Martin-
Lof type theory [13] extended with dependent record types [6]. It has four forms
of judgements: o :: Type, p :: 0, 0 = 7 and p = ¢ :: 0. The rules of type formation
are the following:

— Set :: Type,
— if o :: Set, then « :: Type,
— if o :: Type and 7[A] :: Type under the assumption A :: o, then
(A :: 0)— 7[A] :: Type (dependent function type) and
sig {A::0; B::7[A]} :: Type (dependent record type, also called signature).

Notation:
— We mostly use letters o, 7, - - for types; a, 3, - - for sets (observe that sets
are special types); p,q,--- for elements of a set; A, B,--- for variables of a

type; and a, b, u - - - for variables of a set.
— We write 7[A] when we emphasise that 7 may depend on a variable A (that
is, A may occur free in 7). However, this notation is optional: 7 may depend

Random Generators for Dependent Types 343

on any variable in scope regardless of the notation. The result of substituting
the object s for A in 7 is written 7[s/A].

— The general form of a signature is sig {A; ::01; -+-; An oy} It has as ob-
jects records (also called structures) struct{A; =s1; ---; Ay =sy} where
8; woy[s1/A1, -+, 8i—1/Ai—1]. A structure is a labelled tuple of objects of ap-
propriate types. The dot operation (—).A; selects its A; component; writing
r for the structure above, we have that r.A; = s;.

— A nondependent function type, written o — 7, is the special case of
(A :: 0)— 7[A] where A does not occur in .

2.1 Formation Rule
For each set former P, there is one formation rule that has the form
P:(Aro)— = (Avion) —
(a1 maq) = -+ — (ap o) — (P-Formation)
Set
where o; are types and «; are sets. We call A; parameters and a; indices.

For readability, we omit the parameters and write P a; ... ap; instead of
PAl ANa1 oo Qpr-

2.2 Introduction Rules

There are finitely many introduction rules for each set former. Each introduction
rule for the set former P above has the form
intro:: (A1 ::01) — -+ — (Ay 1 on) —
(b1 :01) — -+ — (bi = Br) —
uy 2 P ... —
.<. 1 m Q1M) (P'Introintro)
(ur, = Pqr1 .. qum) —
Ppi...pu
where (3, are sets, p; ojlpi/ar,---,pj—1/aj—1] (1 < j < M), and similarly
for g;; for each i. We call b; non-recursive and u; recursive arguments of the
constructor ntro.

2.3 Examples

We show some instances of the general schema [7] and how they are written in
Agda/Alfa [5,12].
Ezample 1 (Natural numbers). The set Nat of natural numbers has no parame-
ters and indices. The rules are
— formation = Nat :: Set (N = M = 0; in Nat-Formation)
— introduction zero :: Nat (K =L =0; in Nat-Introzero)
succ :: Nat — Nat (K =0, L =1; in Nat-Introgycc)

The concrete syntax in Agda/Alfa is

344 P. Dybjer, Q. Haiyan, and M. Takeyama

Nat :: Set = data zero :: Nat
| succ (n :: Nat) :: Nat

Ezample 2 (Finite sets). The indexed family Finn (n :: Nat) of sets with just n
elements has the following rules:

— formation Fin :: Nat — Set
— introduction Cp :: (n :: Nat) — Fin(succn) (
Cy ::(n:Nat) — Finn — Fin(succn) (
The Agda/Alfa syntax is
Fin :: Nat -> Set
= data CO (n :: Nat) :: Fin (succ n)
| C1 (n :: Nat) (i :: Fin n) :: Fin (succ n)

Il
—
=

I
|
~— —

mAR =
hi‘i
— O

Ezample 3 (Untyped A-terms). The set Termn (n :: Nat) of A-terms whose free
variables are among {varg, - - -, var,_1} (using de Bruijn indices), is a component
of the Nat-indexed family Term defined as follows.

Term :: Nat -> Set

= data var (n :: Nat) (i :: Fin (succ n)) :: Term (succ n)
| abs (n :: Nat) (t :: Term (succ n)) :: Term n
| app (n :: Nat) (t1, t2 :: Term n) :: Term n

Ezample 4 (Vectors of specified length). An example with one parameter A;
(o1 = Set) is the Nat-indexed family Vec where elements of Vecn are length-n
vectors.

Vec (A :: Set) :: Nat -> Set
= data nil’ :: Vec A zero
| cons’ (n :: Nat) (a :: A) (as :: Vec A n)
:: Vec A (succ n)

In Agda/Alfa, constructors are polymorphic with respect to the parameters and
need not be explicitly applied to them.

3 Generators

For the rest of the paper, we restrict o; in the schema in Section 2 to be the
type Set.

3.1 Definition of Generators
A generator for the family P in Section 2.1 is a function

genP :: (A ::Set) — -+ — (An 1 Set) —
(91 ::Rand — Ay) — -+ — (gn :: Rand — Ay) —
Rand — sig {a; ;-5 ay o paPay ..oapn}

Random Generators for Dependent Types 345

where A; are parameters and g; are parameter generators.
We have chosen to implement a seed in Rand as a binary tree of natural
numbers [9]. The definition in Agda/Alfa is

Rand :: Set = data Leaf (k :: Nat) :: Rand
| Node (k :: Nat) (1, r :: Rand) :: Rand

Example 5. The following function is a generator for Vec.

genVec :: (A :: Set) -> (Rand -> A) ->
Rand -> sig { ind::Nat; obj::Vec A ind }

genVec A g (Leaf _) = struct ind = zero; obj = nil’
genVec A g (Node _ 1 r) = let { as = genVec A g r } in
struct ind = succ as.ind
obj = cons’ as.ind (g 1) as.obj

The idea behind this generator is to map the parameter generator g to the given
tree seen as a (right-spine) list of (left) subtrees. (We omitted some braces and
semicolons using the so called layout rule of the Agda/Alfa syntax.)

3.2 Surjective Generators

A generator (with instantiation of parameters and parameter generators) is sur-
jective if it can generate, given a suitable seed, any element of any component
set of the target family. A reason for writing generators in Agda/Alfa is that
it becomes possible to for