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Preface

This volume contains the proceedings of ICTAC 2004, the 1st International
Colloquium on Theoretical Aspects of Computing, which was held in Guiyang,
China on 20–24 September 2004.

ICTAC was founded by the International Institute for Software Technology
of the United Nations University (UNU-IIST). Its aim is to bring together prac-
titioners and researchers from academia, industry, and government to present
research results, and exchange experience, ideas, and solutions for their prob-
lems in theoretical aspects of computing. The geographic focus of the ICTAC
events is on developing countries to help to strengthen them in their research,
teaching, and development in computer science and engineering, to encourage
research cooperation among developing countries, and to improve the links be-
tween developing countries and industrial countries.

The Program Committee of ICTAC 2004 received 111 submissions from over
30 countries and regions. Each paper was reviewed, mostly by at least three ref-
erees working in relevant fields, but by two in a few cases. Borderline papers were
further discussed during an online meeting of the Program Committee. Thirty-
four papers were accepted based on originality, technical soundness, presentation
and relevance to software engineering and formal methods. We sincerely thank all
the authors who submitted their work for consideration. We thank the Program
Committee members and the other referees for their great effort and professional
work in the reviewing and selecting process. Their names are listed on the follow-
ing pages. In addition to the contributed papers, the proceedings also includes
contributions from the invited speakers: José Luiz Fiadeiro, He Jifeng, Huimin
Lin and Rustan Leino.

Six very good tutorials were selected as affiliated events of ICTAC 2004. We
express our thanks to all those who submitted tutorial proposals. We have also
included the abstracts of the tutorials in the proceedings.

We thank the Organizing Committee Chair, LiDanning , the Finance Chair,
LiDan , and the Publicity Chair, Bernhard Aichernig, for their great collab-

orative effort and hard work that made the event so successful and enjoyable.
We are truly grateful to the Advisory Committee members for their advice and
suggestions. We particularly thank Kitty Iok Sam Chan and Anna UnLai Chan
of UNU-IIST for their hard work in maintaining the conference administration
system. All the members of staff at UNU-IIST helped in many ways. In partic-
ular, the Acting Director, Chris George, actively supported the organization of
ICTAC.

ICTAC 2004 was organized and sponsored by UNU-IIST and the Academy
of Sciences of Guizhou Province, China.

December 2004 Keijiro Araki and Zhiming Liu
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Software Services: 
Scientific Challenge or Industrial Hype? 

José Luiz Fiadeiro 

Department of Computer Science, University of Leicester, 
University Road, Leicester LE1 7RH, UK 

jose@fiadeiro.org 

Abstract. Web-services keep making headlines, not only in technical journals 
but also in the wider media like The Economist.  Is this just a sales plot of the 
fragile software industry targeted to the companies and organisations that want 
to operate in the new economy as enabled by the internet and wireless commu-
nication?  Or is there a new paradigm as far as software development is con-
cerned?  Should we, scientists, regard this as a challenge?  Or dismiss it as 
hype?  In this paper, we analyse these questions in the context of the notions of 
complexity that arise in software development and the methods and techniques 
that can be offered to address them. 

1   Introduction 

component (n): a constituent part 
complex (a): composed of two or more parts 
architecture (n):   

1 : formation or construction as, or as if, the result of conscious act;  
2 : a unifying or coherent form or structure  

Hardly anybody working in computer science or software engineering can claim to be 
immune to the hype that surrounds “web services”.  However, in spite (or because…) 
of all the frenzy, it is not clear whether there is any room for a real scientific discus-
sion.  After all, it is the big companies that have been driving most of the activity in 
this area.  This is why many people in academia and research are asking if this isn’t 
just a sales plot of the software industry targeted to the companies and organisations 
that want to operate in the internet…  Is there really a new paradigm as far as software 
development is concerned?  Should we, scientists, regard this as a challenge?   Or 
dismiss it as mere industrial hype? 

One of arguments made in favour of a new discipline, and a line that one could en-
visage pursuing in a scientific debate, opposes “components” to “services”.   How-
ever, the term “component” is being used more and more frequently in software engi-
neering, at the expense of conveying less and less meaning.  People are also drawing 
analogies with the use of these concepts in arts, science, and engineering without a 
clear sense of purpose.  This is raising more confusion and less confidence in the us-
age of methods and tools being advertised for component-based development or soft-
ware architecture design. 
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Nevertheless, bringing the term component into the arena is important because it 
points a finger to one of the crucial dimensions of (software) engineering: complexity.  
Decomposition of a problem into sub-problems is the best (only?) way that humans 
have found to tackle complexity.  Every discipline of decomposition leads to, or is in-
trinsically based on, a notion of component and composition: ça va de soi!  The way 
we decompose a problem, or the discipline that we follow in the decomposition, fur-
ther leads to an architecture, or architectural style, that identifies the way the problem 
is structured in terms of sub-problems and the mechanisms through which they relate 
to one another.  

This remark can hardly be classified as a deep insight but the fact is that the differ-
ences that we can witness in the use of the terms “software component” and “software 
architecture” can be attributed to the simple fact they address different notions of 
complexity that arise in the process of engineering software systems.  Hence, can we 
frame the debate on services in the context of complexity?  Are services the compo-
nents of a new architectural approach?  If so, for which notion of complexity? 

In our opinion, any answer to this question requires an analysis of the forces that 
have made software development practice evolve over the past 50 years or so, as well 
as the recognition of some of the fundamental milestones of this evolution.  The pur-
pose of this paper is, precisely, to guide the reader through a journey in the history of 
software engineering, hoping that, at the end, a clear case for a new paradigm will 
have emerged.  In this process, we will make use of the following figure borrowed 
from [24]: 

2   In the Beginning…  

Fig. 1 makes clear the fact that, in the early days, software development took place 
“in-the-head” of a person (a term that we prefer to “any-which-way”).  That person 
had a problem that, typically, consisted of some complex computation needed to ob-
tain some important result (e.g. the next best move during a game of chess) that the 
person would consume upon termination.  To solve that problem, the person would 
develop a program to run on a particular machine.  

2.1   From Programming “in-the-head” to “in-the-small” 

Programming took place “in-the-head” in the sense that it did not concern anybody 
else except the programmer: only the results of the execution were needed, the pro-
gram being just a means to that end.  The program thus built would reflect very 
closely the architecture of the machine available to run it.  The programmer would of-
ten have to resort to all sorts of “tricks” to get around the limitations of memory and 
speed.  This is why it seems unjust to qualify this activity as programming “any-
which-way” as it often required a deep knowledge of the target machine.  In any case, 
programming was a one-off activity best performed by virtuosi in absolute control of 
the execution infrastructure and with the final result of the execution as the primary 
goal of the activity. 

This changed when, instead of the result of the execution, the programmer had the 
solution (as embodied in the program itself) as a business goal.  For instance, instead 
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Fig. 1 

of a chess fanatic developing a program for his pocket calculator to compute the next 
move on a given configuration, we are now talking of a scenario in which a chess-
playing program is developed to be sold to clients who will run it themselves on their 
machines for their own purposes.  A crucial landmark is thus reached: programs, in-
stead of the results of their executions become the goods.  In other words, software 
becomes a product.   

In order to make commercial sense, it is essential to develop programs that can be 
run in different machines.  Programming becomes an activity that cannot be purely 
conducted “in-the-head” as it needs to take into account that the resulting software is 
to be commercialised.  The separation between program and code executable on a 
particular computer is supported by machine-independent programming languages 
and compilers.  In fact, this separation consists of an abstraction step in which the 
program written by the programmer is seen as a higher-level abstraction of the code 
that runs on the machine.   

A crucial aspect of this abstraction process is the ability to work with data struc-
tures that do not necessarily mirror the organisation of the memory of the machine in 
which the code will run.  This process can be taken even further by allowing the data 
structures to reflect the organisation of the solution to the problem, even if they are 
not available in the target programming language.  Specification languages support 
the definition of such data structures and the high-level programs that use them.   

Program development methodologies [6,] further address the problem of develop-
ing “real” programs from such high-level descriptions.  They help the software devel-
oper arrive to a solution to the original problem regardless of the fact that the resulting 
program is for self-consumption of for sale.  For instance, in the 70s, so-called struc-
tured programming provided abstractions for controlling execution that introduced a 
totally new discipline into software development by separating control flow from the 
text of programs.  Before, control flow was largely defined in terms of GOTO state-
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ments that transfer execution to a label in the program text.  Structured programming 
provides constructs such as "if-then-else" and "while-do" for creating a variety of con-
trol execution patterns that can be understood independently of the order in which the 
program text is written. 

2.2   Program Architectures 

Through methods supporting programming in-the-small we are led to notions of pro-
gram component and architecture that allow us to tackle the complexity of controlling 
the flow of execution.  In Fig. 2, we present the architecture of a run length encoder1 in 
JSP [15], one of the methods that introduced structured programming.  In JSP, pro-
gram development follows a top-down approach in the sense that blocks are identified 
and put together according to given control structures (sequential composition, itera-
tion, etc).  Each block is then developed in the same way, independently of the other 
blocks.  The criteria for decomposition derive from the structure of the data manipu-
lated by the program. 

The advantage of this architectural representation is that it decomposes control 
flow according to the structure of the input data into well-identified components.  
Each of these can be individually programmed and put together using the primitives 
of the specific programming language that is chosen for a particular implementation.  
Different methodologies lead to different architectures, of course. 

In what concerns the software industry, it is clear that programming methodologies 
have a significant impact in the delivery time and cost of the final product.  By allow-
ing the programmer to work at higher levels of abstraction, results from the theory of 
algorithms and complexity can be used for controlling performance in space and time, 
which is an important factor of quality.  When seconded by mathematical semantics, a 
method and associated language can even assist the proof of the correctness of the 
product with respect to a high-level specification of its functionality as given, for in-
stance, through input/output specifications.  This further adds to the quality of the fi-
nal product.  

It is not our purpose in this paper to promote any specific such language and 
method, especially because the debate on what consists good support for program 
construction is not closed and new methods/languages keep being proposed.  Never-
theless, we would like to mention artificial intelligence as a methodology that pro-
vides abstractions for programming that derive from the way humans solve problems, 
and object-oriented programming as a discipline based on the packaging of data and 
functionality together into units called objects. 

Finally, we would like to point out that we have been discussing abstractions for 
handling the complexity of solving a given problem in terms of a computer program.  
In this activity, the complexity lies more in the nature of the problem that needs to be 
understood and the process of coding it than in the resulting solution (application). 
For instance, programs that play chess, unlike some of their mechanical ancestors, are   
 
                                                           
1  A run length encoder is a program that takes as input a stream of bytes and outputs a stream 

of pairs consisting of a byte along with a count of the byte's consecutive occurrences in the 
input stream. 
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Fig. 2 

not known for the complexity of their structure in terms of the modules/parts that they 
are assembled from.  They give headaches to coders, not to project managers and their 
maintenance groups.  Indeed, chess playing is seen more as a testing ground for artifi-
cial intelligence than software engineering.  

3   The “Software Crisis” 

In September 1994, an article in the Scientific American alerted to the “Software’s 
chronicle crisis”: software was recognised to be manufactured as in a “cottage indus-
try” and not according to the “industrial standards of mass production and reliability. 
The article identifies the underlying problem as being one of “complexity”: 

The challenge of complexity is not only large but also growing. […]. To 
keep up with such demand, programmers will have to change the way that 
they work. "You can't build skyscrapers using carpenters," Curtis quips. 

3.1   Programming in-the arge 

The problem identified in this article was known for many years when it was pub-
lished, certainly since the famous 1968 NATO conference in Garmisch-
Partenkirschen.  What is significant about this article is the fact that it appeared in the 
Scientific American, a publication that reaches an audience much wider than com-
puter scientists and software engineers.  The reason it deserved being published in 

l-
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such a journal was that the general public had just been hit by one of the most famous 
software-related failures: the luggage delivery system that kept the brand new Denver 
airport shut for months at a huge expense.  In other words, it is not that the problem 
had suddenly started to give headaches to software developers but that it became clear 
that it was hurting the economy, i.e. reaching into people’s pockets. 

Indeed, as the scope and role of software in business grew, so did the size of pro-
grams:  software applications were (and still are) demanded to perform more and 
more tasks in the business domain and, as a consequence, they grew very quickly into 
millions of lines of code.  Sheer size compromised quality: delivery times started to 
suffer and so did performance and correctness due to the fact that applications became 
unmanageable for the lone programmer.  The analogy with building skyscrapers using 
carpenters is a very powerful one.  Engineering principles were quickly identified to 
be required to face the complexity of the product and the term programming “in-the-
large” was coined to reflect the fact that software development needed another activ-
ity to be supported: one that could break the task into manageable pieces [5]. 

We distinguish the activity of writing large programs from that of writing 
small ones.  By large programs we mean systems consisting of many small 
programs (modules), possibly written by different people.[…] 

We argue that structuring a large collection of modules to form a "system" 
is an essentially distinct and different intellectual activity from that of con-
structing the individual modules. That is, we distinguish programming-in-
the-large from programming-in-the-small. 

This is where a second important landmark in the history of Software Engineering 
is normally placed.  Please note that these are just milestones: the columns in Fig. 1 
should not be taken as disjoint periods in this history.  In fact, one should ignore the 
reference to the decades (60s, 70s, 80s and 90s) as they are neither accurate nor iden-
tifiers of periods in the history of Software Engineering.  Indeed, there is still a role 
for programming-in-the-small, as recognised above, and for programming-in-the-
head, e.g. for software embedded in some critical systems. 

3.2   Module Interconnection Languages 

It should be clear that programming in-the-large addresses an altogether different no-
tion of complexity, one that occurs at “design” or “compile” time.  We are not so 
much concerned with the flow of execution of a computation but with “workflow” in 
a development process. 

 A different kind of decomposition is, therefore, at stake: one that addresses the 
global structure of a software application in terms of what its modules and resources 
are and how they fit together in the system. The resulting components (modules) are 
interconnected not to ensure that the computation progresses towards the required 
output, but that, in the final system, all modules are provided with the resources they 
need (e.g. the parsing module of a compiler is connected to the symbol table).  In 
other words, it is the flow of resources among modules that is of concern.  Therefore, 
one tends to use primitives such as export/provide/originate and import/require/use 
when designing individual modules. 
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The conclusions of Parnas’ landmark paper [20] are even clearer in distinguishing 
program complexity/architecture from the complexity that is associated with pro-
gramming “in-the-large”: 

We have tried to demonstrate by these examples that it is almost always 
incorrect to begin the decomposition of a system into modules on the basis 
of a flowchart.  We propose instead that one begins with a list of difficult 
design decisions or design decisions which are likely to change.  Each 
module is then designed to hide such a decision from the others.  Since, in 
most cases, design decisions transcend time of execution, modules will not 
correspond to steps in the processing.  To achieve an efficient implementa-
tion we must abandon the assumption that a module is one or more sub-
routines, and instead allow subroutines and programs to be assembled 
collections of code from various modules. 

That is to say, we cannot hope and should not attempt to address the complexity of 
software systems as products with the mechanisms that were developed for structur-
ing complex computations.  That is why so-called module interconnection languages 
(MILs) were developed for programming in-the-large [22].  

In the architectures that are described in such languages, dependencies between 
components concern access to and usage of resources, not control flow.  Whereas pro-
gram architectures make it much simpler to understand and prove the correctness of 
the code with respect to input/output specifications, module interconnection archi-
tectures are essential for project management, namely for testing and maintenance 
support: they enforce system integrity and inter-modular compatibility; they support 
incremental modification as modules can be independently compiled and linked, and 
thus full recompilation of a modified system is not needed; and they enforce version 
control as different versions (implementations) of a module can be identified and used 
in the construction of a system. 

We should also make clear that problems of “size” do not just arise during software 
design.  Even if specification languages can factor down the size of code by at least 
one order of magnitude, they do not factor out complexity altogether.  For instance, in 
algebraic specifications, which consist of sets of sentences (axioms) in a given logic 
[17], the need to structure these sets in manageable pieces was recognised as early as 
1977 in a famous article by Burstall and Goguen whose title is, precisely, “putting 
theories together to make specifications” [4].  This concern for the complexity of 
specifications signalled the advent of category theory  [8] as a mathematical toolbox 
offering techniques for structuring logical theories into what became known as the 
“theory of institutions” [14].  Modularisation principles were extensively explored in 
this setting that contributed to the maturation of software development as an engineer-
ing discipline [13,25]. 

Other problems of “size” are also reflected in Fig. 1, e.g. in the data that some 
software applications are required to manipulate, which led to the development of da-
tabase technologies.  The same applies to control structures in the sense that termina-
tion ceased to be a correctness factor and properties of on-going execution like re-
sponsiveness started to emerge in applications such as operating and air traffic control 
systems.  
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3.3   The Case for Object-Oriented and Component-Based Development 

The article in the Scientific American goes one step further and offers possible ways 
out of the crisis: 

Musket makers did not get more productive until Eli Whitney figured out 
how to manufacture interchangeable parts that could be assembled by any 
skilled workman. In like manner, software parts can, if properly standard-
ized, be reused at many different scales. […] 

In April [1994], NIST announced that it was creating an Advanced Tech-
nology Program to help engender a market for component-based software. 

Indeed, the publication of this article is also marked by the advent of object-
oriented (OO) and component-based development.  In the context of the 
“small”/”large” divide, OO makes important contributions: 

• State encapsulation provides a criterion for modularising code: software is organ-
ised in classes that group together in methods all the operations that are allowed on 
a given piece of the system state. 

• Programming-in-the-small is used within a class to define its methods. 
• Clientship is used for interconnecting objects: an object can be declared to be a cli-

ent of another object, and methods of the client can invoke the execution of meth-
ods of the server as part of their code.  

• Inheritance is used for classifying and organising classes in hierarchies that facili-
tate reuse. 

Object-orientation cannot be taken primarily as a means of “programming-in-the-
large”.  In fact, one can argue that, in spite of grouping functionalities in classes, OO 
development could do with additional mechanisms for managing huge collections of 
classes…  Organising classes in inheritance hierarchies is a step in that direction but 
many would argue that it does not take software development deep enough into an 
engineering practice.  

Still, one has to recognise that OO software development has brought a significant 
improvement to the management of the complexity of software development.  When 
one considers alternative mechanisms for modularising imperative programming such 
as those introduced over Pascal to produce Modula, it is clear that OO is much richer 
in “methodological” contents in the sense that classes as software modules and inter-
connection via clientship, even if providing only for a rather fine grain of decomposi-
tion, organise systems according to structures that can be recognised in the problem 
domain.  

4   The Crisis 10 Years Later 

In spite of the recognised progress towards the management of the complexity of con-
structing large applications, an article published in May 2003 alerted to the fact that 
software was still under a “crisis”: 
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Computing has certainly got faster, smarter and cheaper, but it has also 
become much more complex.  Ever since the orderly days of the main-
frame, which allowed tight control of IT, computer systems have become 
ever more distributed, more heterogeneous and harder to manage. […]  

In the late 1990s, the internet and the emergence of e-commerce “broke 
IT’s back”.  Integrating incompatible systems, in particular, has become a 
big headache.  A measure of this increasing complexity is the rapid growth 
in the IT services industry. […] 

Computing is becoming a utility and software a service.  This will pro-
foundly change the economics of the IT industry. […]  

For software truly to become a service, something else has to happen: 
there has to be a wide deployment of web services. […]  

Applications will no longer be a big chunk of software that runs on a com-
puter but a combination of web services. 

4.1   Programming in-the- orld 

One has to recognise that a different notion of complexity is involved here.  The arti-
cle is very explicit in saying that the problem now is not one of size – “large chunks 
of software” – but that the complexity lies in the fact that systems are ever more dis-
tributed and heterogeneous, and that software development requires the integration 
and combination of possibly “incompatible” systems.  Societal and economical impli-
cations of this notion of complexity are not any smaller.  The fact that this article ap-
peared not in the Scientific American but in a wider circulation publication – The 
Economist – shows that the debate now concerns a much more general public. 

In our opinion, one can realise that this crisis is of a different nature in the fact that 
the discussion is no longer around the complexity of building a large application that 
one needs to deliver, in time and budget, to a client, but of managing an open-ended 
structure of autonomous components, possibly distributed and highly heterogeneous.  
This means developing software components that are autonomous and can be inter-
connected with other components, software or otherwise, and managing the intercon-
nections themselves as new components may be required to join in and other to be 
removed. 

In software engineering, the term software architecture [3,10,21,24] has recently 
been reserved to this different kind of complexity.  Components are treated as inde-
pendent entities that may interact with each other along well-defined lines of commu-
nication called architectural connectors [19].  By focusing on particular kinds of com-
ponents and connectors, one can identify different architectural styles.  One can even 
compare the architectures induced by different styles on the same system and discuss 
system properties without having to analyse the code.   

In a sense, we are going back to the kind of architecture provided by structured 
programming but at a higher level of abstraction, one which often involves abstrac-
tions not directly provided by the underlying programming language: pipes, filters, 
event broadcast, client-server protocols, etc.  In other words, it is not so much the 
flow of control that we want to structure but the flow of interactions.   

w
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It is interesting to note that, from a mathematical point of view, category theory 
[8], as the mathematics of “structure”, still plays a fundamental role in formalising 
these architectural principles and techniques [9].  However, instead of structuring 
large specifications, as discussed in Sect 3.2, we are now interested in run-time con-
figurations of complex systems [12] and in the properties that emerge from the inter-
actions within them [7]. 

Notice that, in this context, object-orientation can be clearly identified with an ar-
chitectural style among many others.  In this respect, the article in The Economist 
challenges us to identify an architectural style that can address the complexity of the 
new generation of systems that is emerging from the internet, mobile communication, 
and other such “global computers”2 in what one could label programming “in-the-
world” [24].  In this context, one can indeed debate the merits of an object-oriented 
style and discuss the role and status of services.  

4.2   The Case for Services 

Object-oriented techniques offer little support for the kind of decomposition, organi-
sation and architectural style required for programming in-the-world.  Interactions in 
OO are based on identities [16], in the sense that, through clientship, objects interact 
by invoking the methods of specific objects (instances) to get something specific 
done: to use another object’s services, an object needs to have the server’s identity to 
send it a message or call the required service. This implies that any unanticipated 
change on the collaborations that an object maintains with other objects needs to be 
performed at the level of the code that implements that object and, possibly, of the ob-
jects with which the new collaborations are established [23].   

This in why some people claim that OO brought GOTOs back into fashion.  One 
cannot but recognise that, indeed, clientship through feature calling and method invo-
cation works for interactions in the same way as GOTOs worked for control flow.  
Indeed, one often has the feeling that HyperText and URLs in web-based IT applica-
tions tend to become the web designers' version of spaghetti code. 

Hence, in our opinion, the challenges raised in The Economist show that a differ-
ent paradigm is required to address what is clearly a different form of software com-
plexity.  This is, precisely, the paradigm that started to emerge in the guise of web 
services [1]. 

Web services have been often characterised as “self-contained, modular applica-
tions that can be described, published, located, and invoked over a network, generally 
the web” [27].  Building applications under this new paradigm is a dynamic process 
that consists in locating services that provide the basic functionalities that are re-
quired, and “orchestrating” them, i.e. establishing collaborations between them, at 
run-time, so that the desired global properties of the application can emerge from their 
joint behaviour, just in time. 

                                                           
2  “A global computer is a programmable computational infrastructure distributed at worldwide 

scale and available globally. It provides uniform services with variable guarantees for com-
munication, cooperation and mobility, modalities and disciplines for resource usage, security 
policies and mechanisms, and more.”  [26]. 
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“Integration” is another keyword in this process, often found married to “orchestra-
tion” or “marshalling”: application building in service-oriented architectures is based 
on the composition of services that have to be discovered and “marshalled” dynami-
cally at run-time.  Therefore, one of the characteristics of the service-oriented para-
digm is, precisely, the ability that it requires for interconnections to be established and 
revised dynamically, in run-time, without having to suspend execution, i.e. without 
interruption of “service”.  This is what is usually called “late” or “just-in-time” inte-
gration (as opposed to compile or design time integration).  

What marks the difference between this aspect of the complexity of software from 
the one addressed by programming-in-the-large is, precisely, the fact that software is 
not being treated as a product but as a service, as the article of The Economist makes 
clear.  It is interesting to note that this shift from object/product to service-oriented in-
teractions mirrors what has been happening already in the economy: more and more, 
business relationships are established in terms of acquisition of services (e.g. 1000 
Watts of lighting for your office) instead of products (10 lamps of 100 Watts each for 
the office).  That is, software engineering is just following the path being set for the 
economy in general and, thus, shifting somewhat away from the more traditional “in-
dustrial” technologies oriented to the production of goods to exhibit the problems that 
are characteristic of more “social” domains. 

5   Concluding Remarks 

We hope that the previous sections made clear that, in our opinion, the case for a new 
service-oriented paradigm rests, essentially, in the recognition that there is more than 
one dimension of complexity in the engineering of software intensive systems.   

Indeed, even in our everyday life, we use the term “complex” in a variety of ways.  
Many times, we apply it to entities or situations that are “complicated” in the sense 
that they offer great difficulty in understanding, solving, or explaining.  There is noth-
ing necessarily wrong or faulty in them; they are just the unavoidable result of a nec-
essary combination of parts or factors.  For instance, the human body is a complex en-
tity; none of its organs operates autonomously if separated from the whole but we 
know which vital functions each provides as part of the body, and can understand how 
the functioning of each of them depends on the rest to the extent that we can replace 
them by others of the same type. 

In other circumstances, complexity derives more from the number and “open” na-
ture of interactions that involve “autonomic” parts.  Social systems are inherently 
complex in the sense that it is very difficult to predict what properties can emerge 
from the behaviours of the parts and their interactions.  Regulations and regulators 
can be superposed to influence the way the parts interact or induce properties that one 
would like to see emerge, but complete control is hard to achieve. 

Knowledge of the physiological structure of a part does not necessarily help in un-
derstanding how it can contribute to the functioning of a social system.  For instance, 
the social behaviour of human beings is essentially independent of their physiology.  
One does not go to a psychiatrist because of a toothache (even if the toothache is driv-
ing us mad), or to the dentist complaining with stress.  A car will usually have a 
driver’s manual explaining how it can be used for social purposes (i.e. driving) and a 
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technical manual that a mechanic can use for fixing a faulty part: one does not consult 
the technical manual to find out where to switch the headlights and the mechanic does 
not need the driver’s manual to replace a bulb.  A mechanic does not need a driver’s 
licence to repair a car, and knowing that one should stop at the red light is not some-
thing that derives from the structure of the car. 

Having said this, we should point out something equally obvious: that they can very 
well be related.  We all know that a speech impediment is likely to influence one’s 
ability to socialise and that, without brakes, a car cannot be stopped at a red light. 

In our opinion, this distinction applies to software as well.  Programming in-the-
large is concerned with the physiological complexity of software systems.  Program-
ming in-the-world with their social complexity.  As such, the methods and techniques 
that best apply to one do not necessarily serve the other in the best possible way.  We 
see component-based development as addressing in-the-large issues, as highlighted in 
the article of the Scientific American.   We see services as addressing social complex-
ity, as the article of The Economist clearly suggests. 

Service-oriented architectures are still very much in their infancy, and still too 
much bound to the internet, in the guise of web services, or other specific global com-
puters like the grid, in what are known as grid services.  Service-based computing and 
software development is being uptaken by the IT industry in an ad-hoc and undisci-
plined way, raising the spectrum of a society and economy dependent on applications 
that have the ability to "talk" to each other but without "understanding" what they are 
talking about.   

This scenario suggests very clearly that a scientific challenge is there to provide the 
mathematical, methodological and technological foundations that are required for the 
new paradigm to be used effectively and responsibly in the development of the gen-
eration of systems that will operate the Information Society of tomorrow.  Such is the 
challenge that a consortium of European universities, research institutes and compa-
nies chose to address under the IST-FET-GC2 integrated project SENSORIA (Soft-
ware Engineering for Service-Oriented Overlay Computers).  SENSORIA is address-
ing the social complexity involved in service-oriented development precisely through 
some of the technologies that characterise programming “in-the-world”: coordination 
languages and models [2,11], distributed reconfigurable systems [18], and software 
architectures [10,21,24].  
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1 Introduction

Duration Calculus (DC) [22] was introduced as a logic to specify real-time re-
quirements of computing systems. It has been used successfully in a number
of case studies. Moreover, many variants of DC were proposed to deal with
various real-time systems, including communicating processes [24], sequential
hybrid systems [19, 23]. imperative programming languages [2, 17, 18, 24], finite
divergence [6] and liveness properties [1, 25]. This paper aims to integrate those
variants, and provides a logical framework for DC-based programming, and a
design calculus for mixed hardware/software systems.

The main contribution of this paper includes some novel features

(1) Weak chop inverse constructs (l = x)\A and A/(l = x), which can be used
to specify liveness properties of real-time programs, and to define the neighbour-
hood operators �l and �r introduced in [1].

(2) Higher order quantifier ∃V to describe the behaviour of local program vari-
ables of real-time programs.

(3) A formal definition of substitution of state variables A[W/V ] which enables
us to define super-dense computations.

(4) A super-dense chop operator ◦, defined by the hiding operator and sub-
stitution, is used to model sequential composition of imperative programming
languages [24].

The language is a conservative extension of DC in the sense that it adopts
the same semantic definition for all the elements of DC, and preserves all the
laws of variants of DC (including Neighbourhood Logic [1], Duration Calculus
with iteration [2], Higher-order Duration Calculus [26], DC with super-dense
chop [24], Recursive Duration Calculus [17]).

Like most of interval logical languages, our language contains

(1) a set of global variables x, y, . . . , z.

(2) a set of state variables V, W, . . . , Z.
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(3) a set of temporal variables. In addition to the length temporal variable l, we
associate with every state variable V the following temporal variables

– point values bV and eV
– neighbourhood values

←
V and

→
V .

(4) a set of propositional temporal letters.

(5) a set of relation symbols.

(6) a set of function symbols.

Global variables and temporal variables are terms. If f is an n-place function
symbol, and t1, ... tn are terms, then f(t1, ..., tn) is also a term.

The syntax of formulae is defined as follows

F ::= AF | ¬F | F ∧ F | F � F | (l = x)\F | F/(l = x) |
∃x • F | ∃V • F | F [W/V ] |

∨
F

where the atomic formulae AF are of kinds P and R(t1, . . . , tn) where P is a
propositional temporal letter, and R is n-place relation symbol, and F stands
for a set of formulae.

The remaining of the paper is organised as follows. Section 2 is devoted
to the primitive features of the logical language, including logical connectives,
chop operator, temporal variable l and quantifier over global variables. Section
3 introduces the weak chop inverse operators and discusses its properties. In
section 4 we illustrate how to formalise the neighbourhood operators [1] in our
language. Section 5 deals with state variables and the induced temporal variables
point values and neighbourhood values. We tackle higher order quantifiers and
substitution operators in Section 6. Section 7 introduces the super-dense chop
operator. Section 8 presents the infinite disjunction operator, which enables us
to model iterative constructs of real-time programming languages , and handle
the recursive DC formulae [17]. Section 9 shows how to treat DC∗ [2] as one of
sub-languages. The paper ends with a short concluding section.

2 The Primitive Features

2.1 Time Domain

We adopt continuous time represented by reals

T =df Real

The set I of intervals is defined by

I =df {[b, e] | b, e ∈ T ∧ b ≤ e}

We use the temporal variable l : I→ Real to represent the length of interval

M[b, e](l) =df (e− b)
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2.2 Connectives

Let A and B be formulae. Let M be a model, define

M[b, e](A ∧B) =df M[b, e](A)andM[b, e](B)

M[b, e](¬A) =df notM[b, e](A)

where {and, not} are the connectives of the propositional logic. As usual, we
define A ∨B =df ¬(¬A ∧ ¬B).

2.3 Chop

Definition 2.1

Let A and B be formulae. Define their composition A � B by

M[b, e](A � B) =df ∃m : [b, e] • (M[b, m](A)andM[m, e](B)) �

The chop operator enjoys the following properties.

(�-1) (associativity) (A � B) � C ⇔ A � (B � C)

(�-2) (unit) (l = 0) � A ⇔ A ⇔ A � (l = 0)

(�-3) (zero) false � A ⇔ false ⇔ A � false

(�-4) (distributivity) (A1 ∨A2) � B ⇔ (A1 � B) ∨ (A2 � B)

A � (B1 ∨B2) ⇔ (A � B1) ∨ (A � B2)

(�-5) (monotonicity) If A1 ⇒ A2, then

(A1 � B) ⇒ (A2 � B)

(B � A1) ⇒ (B � A2)

The validity of the above laws is based on the following facts:
(1) the chop operator is defined as the lift of the catenation operator of intervals.
(2) the catenation operator is associative, and has the point intervals as its unit.

2.4 Temporal Variable l

The temporal variable l is governed by the following laws
(l-1) l ≥ 0,

(l-2) x, y ≥ 0 ⇒ (l = x) � (l = y) ⇔ (l = x+ y)

Definition 2.2

Let c ≥ 0. Define

Rc(A) =df A � (l = c)

Lc(A) =df (l = c) � A �

Fact 2.3 M[b−c, e](Lc(A)) = M[b, e](A) = M[b, e+c](Rc(A)) �

(LcRc-1) (Injectiveness) Lc(A) ⇒ Lc(B) iff A⇒ B

Rc(A) ⇒ Rc(B) iff A⇒ B

He in. .
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Proof not(A⇒ B) {Def of ⇒}
=⇒ ∃M, b, e • (M[b, e](A) = tt) and (M[b, e](B) = ff) {Fact 2.3}
=⇒ ∃M, b, e • (M[b, e+c](Rc(A)) = tt) and (M[b, e+c](Rc(B)) = ff)

{Def of ⇒}
=⇒ not(Rc(A) ⇒ Rc(B)) �

(LcRc-2) (Conjunctivity) Rc(A ∧B) ⇔ Rc(A) ∧Rc(B)

Lc(A ∧B) ⇔ Lc(A) ∧ Lc(B)

Theorem 2.4

Rc(A) ⇔ false iff A⇔ false iff Lc(A) ⇔ false

Proof From (�-3) Lc(false) ⇔ false⇔ Rc(false). The conclusion follows from
(LcRc-1). �

Theorem 2.5

(1) Rc(¬A) ⇔ (l ≥ c) ∧ ¬Rc(A)

(2) Lc(¬A) ⇔ (l ≥ c) ∧ ¬Lc(A)

Proof Rc(¬A) {(LcRc − 2) and Theorem 2.4}
⇔ Rc(¬A) ∧ ¬Rc(A) {Predicate Logic}
⇔ (Rc(¬A) ∨Rc(A)) ∧ ¬Rc(A) {(� −4)}
⇔ (l ≥ c) ∧ ¬Rc(A) �

2.5 Quantifier

Definition 2.6

Let x be a global variable. Define

M[b, e](∃x •A) = tt if ∃M ′ •M ′
[b, e](A) = tt and M ≡x M

′

where M ≡x M
′ =df ∀y �= x •M(y) = M ′(y) �

(∃-1) (Extension of the scope) If x is not free in A then

∃x • (A � B) ⇔ A � (∃x •B)

∃x • (B � A) ⇔ (∃x •B) � A

3 Inverse of Chop

Definition 3.1 (Weak Chop Inverse)

Let c ≥ 0. Define

M[b, e](A/(l = c)) =df M[b, e+c](A)

M[b, e]((l = c)\A) =df M[b−c, e](A) �
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The following law shows that /(l = c) (\(l = c) resp.) is the inverse of Rc (Lc

resp).

(WCI-1) c ≥ 0 ⇒ Rc(A/(l = c)) ⇔ A ∧ (l ≥ c)

c ≥ 0 ⇒ Lc((l = c)\A) ⇔ A ∧ (l ≥ c)

Proof M[b, e](Rc(A/(l = c))) = tt {Def 2.1}
iff e ≥ b+ c ∧M[b, e−c](A/(l = c)) = tt {Def 3.1}
iff e ≥ b+ c ∧M[b, e](A) = tt {Def of A ∧B}
iff M[b, e](A ∧ (l ≥ c)) = tt �

Theorem 3.2

(1) Rc(X) ⇒ A iff X ⇒ A/(l = c)

(2) Rc(A) ∧B ⇔ false iff A ∧ (B/(l = c)) ⇔ false

(3) (l = y)\Rx(A ∧ (l ≥ y)) ⇔ Rx((l = y)\(A ∧ (l ≥ y))

(4) (A/(l = x))/(l = y) ⇔ A/(l = x+ y)

Proof of (1) Rc(X) ⇒ A {(� −5)}
⇒ Rc(X) ⇒ (A ∧ (l ≥ c)) {(WCI-1) and (LcRc − 1)}
⇒ X ⇒ A/(l = c) {(� −5) and (WCI-1)}
⇒ Rc(X) ⇒ A

(2) (A ∧ (B/(l = c)) ⇔ false {Theorems 2.4}
⇔ Rc(A) ∧Rc(B/(l = c)) ⇔ false {(WCI-1)}
⇔ Rc(A) ∧B ∧ (l ≥ c) ⇔ false {(� −5)}
⇔ Rc(A) ∧B ⇔ false

(4) X ⇒ (A/(l = x))/(l = y) {Conclusion (1)}
⇔ ((X � (l = y)) � (l = x)) ⇒ A {(� −1), (l − 2)}
⇔ (X � (l = x+ y)) ⇒ A {Conclusion (1)}
⇔ X ⇒ (A/(l = x+ y)) �

Theorem 3.3

(1) Lc(X) ⇒ A iff X ⇒ (l = c)\A
(2) Lc(A) ∧B ⇔ false iff A ∧ ((l = c)\B) ⇔ false

(3) Lx((A ∧ (l ≥ y)))/(l = y) ⇔ Lx((A ∧ (l ≥ y))/(l = y))

(4) (l = y)\((l = x)\A) ⇔ (l = x+ y)\A �
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Theorem 3.4 (distributivity)

(1) true/(l = c) ⇔ true

(2) (A ∧B)/(l = c) ⇔ (A/(l = c)) ∧ (B/(l = c))

(3) ¬(A/(l = c)) ⇔ (¬A)/(l = c)

(4) (∃x •A)/(l = c)) ⇔ ∃x • (A/(l = c))

(5) (A � (B ∧ (l ≥ d))/(l = d) ⇔ A � ((B ∧ (l ≥ d))/(l = d)), where d ≥ 0

Proof of (3) Rc(¬(A/(l = c)) {Theorem 2.5(1)}
⇔ (l ≥ c) ∧ ¬Rc(A/(l = c)) {(WCI − 1)}
⇔ (l ≥ c) ∧ ¬(A ∧ (l ≥ c)) {Predicative logic}
⇔ (¬A) ∧ (l ≥ c) {(WCI − 1)}
⇔ Rc(¬A/(l = c)) �

Corollary 3.5

(1) false/(l = c) ⇔ false

(2) (A ∨B)/(l = c) ⇔ (A/(l = c)) ∨ (B/(l = c))

Proof From Theorem 3.4 (1)-(3). �

Theorem 3.6

(1) (l = c)\true ⇔ true

(2) (l = c)\(A ∧B)) ⇔ ((l = c)\A) ∧ ((l = c)\B)

(3) ¬((l = c)\A) ⇔ (l = c)\(¬A)

(4) (l = c)\(∃x •A) ⇔ ∃x • ((l = c)\A)

(5) (l = c)\((A ∧ (l ≥ c)) � B) ⇔ ((l = c)\(A ∧ (l ≥ c))) � B, where c ≥ 0 �

Corollary 3.7

(1) (l = c)\false ⇔ false

(2) (l = c)\(A ∨B) ⇔ ((l = c)\A) ∨ ((l = c)\B) �

Theorem 3.8

(l = x)\(A/(l = y)) ⇔ ((l = x)\A)/(l = y)

Proof From (� −1), Theorems 3.2(1) and 3.3(1). �

4 Neighbourhood Logic

This section illustrates how to define the neighbourhood operators [1] in our
framework.
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Definition 4.1

Define

�rA =df true � (∃c ≥ 0 • ((A ∧ (l = c))/(l = c)))

�lA =df (∃c ≥ 0 • (l = c)\(A ∧ (l = c))) � true

Define �l =df ¬ �l ¬ and �r =df ¬ �r ¬ �

(�-1) If x ≥ 0 then

�r(l = x)

�l(l = x)

Proof �r(l = x) {Def 4.1}
⇔ true � ∃c ≥ 0 • (((l = x) ∧ (l = c))/(l = c)) {Corollary 3.5(1)}
⇔ true � ((l = x)/(l = x)) {(LcRc − 1)}
⇔ true � (l = 0) {(� −2)}
⇔ true �

(�-2) �r(A ∨B) ⇔ �rA ∨ �r(B)

�l(A ∨B) ⇔ �lA ∨ �l(B)

Proof From (� −4) and Corollary 3.5(2). �

(�-3) If A⇒ B, then �r(A) ⇒ �r(B) and �l(A) ⇒ �l(B)

Proof From (� −5). �

(�-4) �r(∃x •A) ⇔ ∃x • �rA

�l(∃x •A) ⇔ ∃x • �lA

Proof From Theorems 3.4(4) and 3.6(4). �

Lemma 4.2

(1) A ∧ �rB ⇔ ∃x ≥ 0 • (A � (B ∧ (l = x))/(l = x)

(2) A ∧ �lB ⇔ ∃x ≥ 0 • (l = x)\((B ∧ (l = x)) � A)

Proof A ∧ �rB {Def 4.1 and (∃ − 1)}
⇔ A ∧ ∃x ≥ 0 • (true � (B ∧ (l = x))/(l = x) {Predicative logic}
⇔ ∃x ≥ 0 •A ∧ ((true � (B ∧ (l = x))/(l = x)) {Theorem 3.4(5)}
⇔ ∃x ≥ 0 • ((A � (l = x))/(l = x))∧

((true � (B ∧ (l = x))/(l = x)) {Theorem 3.4(2)}
⇔ ∃x ≥ 0 • (A � (B ∧ (l = x)))/(l = x) �
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(�-5) �l �r A ⇒ �l �r A

�r �l A ⇒ �r �l A

Proof �l �r (A)

{Def 4.1}
⇔ ∃x ≥ 0 • (l = x)\(�r(A) ∧ (l = x)) � true

{Lemma 4.2 and Theorem 3.6(4)}
⇔ ∃x, y ≥ 0 • ((l = x)\(((l = x) � (A ∧ (l = y)))/(l = y))) � true

{Theorems 3.6(5) and 3.8}
⇔ ∃x, y ≥ 0 • ((A ∧ (l = y))/(l = y)) � true

{Predicative logic}
⇔ ∃y ≥ 0 • ((A ∧ (l = y))/(l = y)) � true

{Theorem 3.4(2) and (� −5)}
⇒ ∃y ≥ 0 • (¬(((¬A) ∧ (l = y))/(l = y))) � true

In a similar way we can show that

¬�l�rA ⇔ ∀y ≥ 0 • (((¬A) ∧ (l = y))/(l = y)) � true

from which it follows the conclusion. �

(�-6) (l = x) ⇒ (A ⇔ �l �r(A ∧ (l = x)))

(l = x) ⇒ (A ⇔ �r �l(A ∧ (l = x)))

Proof (l = x) ∧ �l �r (A ∧ (l = x)) {Lemma 4.2}
⇔ ∃u ≥ 0 • (l = u)\((�r(A ∧ (l = x)) ∧ (l = u)) � (l = x))

{Lemma 4.2}
⇔ ∃u, v ≥ 0 • (l = u)\

((((l = u) � (A ∧ (l = x) ∧ (l = v)))/(l = v)) � (l = x))

{Theorem 3.5(1)}
⇔ ∃u ≥ 0 • (l = u)\(((l = u) � (A ∧ (l = x)))/(l = x)) � (l = x)

{(WCI-1), Thm 3.8}
⇔ A ∧ (l = x) �

Lemma 4.3

(1) �r(A ∧ (l = x+ y)) ⇔ �r ((A ∧ (l = x+ y))/(l = y)), where x, y ≥ 0

(2) �l(A ∧ (l = x+ y)) ⇔ �l ((l = y)\(A ∧ (l = x+ y)))
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Proof �r(A ∧ (l = x+ y)) {Def 4.1}
⇔ ∃z ≥ 0 • (true � ((A ∧ (l = x+ y)) ∧ (l = z)))/(l = z)

{(� −3), and Corollary 3.5(1)}
⇔ (true � (A ∧ (l = x+ y)))/(l = x+ y)

{Theorems 3.2(4) and 3.4(5)}
⇔ (true � ((A ∧ (l = x+ y))/(l = y)))/(l = x) {Theorem 3.4(2)}
⇔ (true � (((A ∧ (l = x+ y))/(l = y)) ∧ (l = x)))/(l = x)

{(� −3), Theorem 3.5(2)}
⇔ ∃z ≥ 0 • (true � (((A ∧ (l = x+ y))/(l = y)) ∧ (l = z)))/(l = z)

{Def 4.1}
⇔ �r((A ∧ (l = x+ y))/(l = y)) �

Theorem 4.4 (Nested neighbourhood)

(1) �r(A ∧ �rB) ≡ �r (A � B)

(2) �l(A ∧ �lB) ≡ �l (B � A)

Proof �r(A ∧ �rB) {Lemma 4.2}
⇔ �r(∃x ≥ 0 • (A � (B ∧ (l = x))/(l = x)) {(� − 4)}
⇔ ∃x ≥ 0 • �r((A � (B ∧ (l = x)))/(l = x)) {Lemma 4.3}
⇔ ∃x ≥ 0 • �r(A � (B ∧ l = x)) {(� − 4)}
⇔ �r(∃x ≥ 0 • (A � (B ∧ (l = x)))) {(∃ − 1)}
⇔ �r(A; (B ∧ (l ≥ 0))) {Theorem 2.8}
⇔ �r(A � B) �

(�-7) If x, y ≥ 0, then

(1) �r((l = x) ∧ �r((l = y) ∧ �rA)) ⇔ �r ((l = x+ y) ∧ �rA)

(2) �l((l = x) ∧ �l((l = y) ∧ �lA)) ⇔ �l ((l = x+ y) ∧ �lA)

Proof �r((l = x) ∧ �r((l = y) ∧ �rA)) {Theorem 4.4}
⇔ �r((l = x) ∧ �r((l = y) � A)) {Theorem 4.4}
⇔ �r((l = x) � ((l = y) � A)) {(� −1) and (l − 2)}
⇔ �r((l = x+ y) � A) {Theorem 4.4}
⇔ �r((l = x+ y) ∧ �rA) �

Theorem 4.5 (Conjunctivity)

(1) �r(A ∧ (l = x)) ∧ �r(B ∧ (l = x)) ⇔ �r (A ∧B ∧ (l = x))

(2) �l(A ∧ (l = x)) ∧ �l(B ∧ (l = x)) ⇔ �l (A ∧B ∧ (l = x))
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Proof �r(A ∧ (l = x)) ∧ �r(B ∧ (l = x)) {Theorem 3.5(1) and Def 4.1}
⇔ ((true � (A ∧ (l = x)))/(l = x)) ∧ ((true � (B ∧ (l = x)))/(l = x))

{Theorems 3.4(2)}
⇔ true � ((A ∧B ∧ (l = x))/(l = x)) {Theorems 3.5(1)}
⇔ �r(A ∧B ∧ (l = x)) �

(�-8) �r((l = x) ∧A) ⇒ �r((l = x) ⇒ A)

�l((l = x) ∧A) ⇒ �l((l = x) ⇒ A)

Proof �r((l = x) ∧A) ∧ ¬�r((l = x) ⇒ A) {Def 4.1}
⇔ �r((l = x) ∧A) ∧ �r((l = x) ∧ ¬A) {Theorem 4.5}
⇔ �r(false) {Corollary 3.5(1)}
⇔ false �

Theorem 4.6

(1) A � (B ∧ �r(C)) ⇔ (A � B) ∧ �r(C)

(2) (A ∧ �r(C)) � (B ∧ (l = 0)) ⇔ (A � (B ∧ (l = 0)) ∧ �r(C)

Proof A � (B ∧ �rC) {Lemma 4.2}
⇔ A � (∃x ≥ 0 • (B � (C ∧ (l = x)))/(l = x) {(∃ − 1)}
⇔ ∃x ≥ 0 •A � ((B � (C ∧ (l = x)))/(l = x)) {Theorem 3.4(5)}
⇔ ∃x ≥ 0 • (A � B � (C ∧ (l = x)))/(l = x) {Lemma 4.2}
⇔ (A � B) ∧ �rC �

Theorem 4.7

(1) (�l(C) ∧A) � B ⇔ �l (C) ∧ (A � B)

(2) (A ∧ (l = 0)) � (�l(C) ∧B) ⇔ �l (C) ∧ ((A ∧ (l = 0)) � B) �

5 Induced Temporal Variables

5.1 Point Value

Definition 5.1 (Point value)

Let V be a state variable. Define

M[b, e](bV ) =df M(V )(b)

M[b, e](eV ) =df M(V )(e) �

(point-1) (A ∧ p(eV )) � B ⇔ A � (p(bV ) ∧B)
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Theorem 5.2

(1) (p(bV ) ∧A) � B ⇔ p(bV ) ∧ (A � B)

(2) (p(bV ) ∧A)/(l = c) ⇔ p(bV ) ∧ (A/(l = c))

(3) l = 0 ⇒ p(bv) ⇔ p(ev)

Proof of (1) (p(bV ) ∧A) � B) {(� −2) and (point− 1)}
⇔ ((l = 0 ∧ p(eV )) � A) � B {(� −1) and (point− 1)}
⇔ (l = 0) � (p(bV ) ∧ (A � B)) {(� −2)}
⇔ p(bv) ∧ (A � B)

(2) Rc(p(bV ) ∧ (A/(l = c))) {(1) and (WCI-1)}
⇔ p(bV ) ∧A ∧ (l ≥ c) {(WCI-1)}
⇔ Rc(p(bV ) ∧A)

which together with (LcRc-1) implies the conclusion. �

Theorem 5.3

(1) A � (B ∧ p(eV )) ⇔ (A � B) ∧ p(eV )

(2) (l = c)\(A ∧ p(eV )) ⇔ ((l = c)\A) ∧ p(eV )

Proof Dual to Theorem 5.2. �

(point-2) Let S1 and S2 be Boolean state variables.

If S1 ⇒ S2, then bS1 ⇒ bS2 and eS1 ⇒ eS2.

Remark 5.4

The following laws related to the point value of Boolean state variables are part
of the mathematical theory which underlies the logical framework discussed in
this paper.

b(S1 ∨ S2) = bS1 ∨ bS2
b(S1 ∧ S2) = bS1 ∧ bS2

b(¬S) = ¬bS

Definition 5.5

We lift a Boolean state variable S to a formula by defining

�S� =df ¬((l > 0) � b(¬S) � (l > 0)) �

Theorem 5.6

(1) �true� ⇔ true

(2) �false� ⇔ (l = 0)

(3) �S1 ∧ S2� ⇔ �S1� ∧ �S2�
(4) �S� ⇔ �(�S�)
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Proof of (4) �(�S�) {Def of �}
⇔ ¬(true � (¬�S�) � true) {Def 5.5 and (� −1)}
⇔ ¬((l > 0) � b¬S � (l > 0)) {Def 5.5}
⇔ �S� �

5.2 Neighbourhood Value

Definition 5.7 (Finite variability)

A state variable V has finite variability if its value can only change finite number
of times in any interval, i.e., the formula

�(∃c • �l(�V = c�) ∧ ∃d • �r(�V = d�))
holds. �

Definition 5.8 (Neighbourhood values)

Let V be a state variable with finite variability. Define

M[b, e](
→
V ) =df c if ∃δ > 0 •M[e, e+δ](�V = c�) = tt

M[b, e](
←
V ) =df c if ∃δ > 0 •M[b−δ, b](�V = c�) = tt �

The neighbourhood values are captured by the following law:

(nbhood-1)
→
V= c ⇔ �r (�V = c�)

←
V= c ⇔ �l (�V = c�)

Theorem 5.9 (Left neighbourhood value)

(1) (p(
←
V ) ∧A) � B ⇔ p(

←
V ) ∧ (A � B)

(2) (A ∧ (l = 0)) � (p(
←
V ) ∧B) ⇔ p(

←
V ) ∧ ((A ∧ (l = 0)) � B)

Proof of (1) (p(
←
V ) ∧A) � B {Predicate Calculus}

⇔ (∃c • p(c)∧
←
V= c ∧A) � B {(∃ − 1)}

⇔ ∃c • (p(c) ∧ ((
←
V= c ∧A) � B)) {(nbhood− 1)}

⇔ ∃c • (p(c) ∧ ((�l(�V = c�) ∧A) � B)) {Theorem 4.7(1)}
⇔ ∃c • (p(c) ∧ �l(�V = c�)) ∧ (A � B) {(nbhood− 1)}

⇔ p(
←
V ) ∧ (A � B) �

Theorem 5.10 (Right neighbourhood value)

(1) A � (B ∧ p(
→
V )) ⇔ (A � B) ∧ p(

→
V )

(2) (A ∧ p(
→
V )) � (B ∧ (l = 0)) ⇔ (A � (B ∧ (l = 0)) ∧ p(

→
V )
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Proof From Theorem 4.6 and (nbhood-1). �

Theorem 5.11 (Removal of neighbourhood value)

(1) (A ∧ (
→
V= c)) � (B ∧ (l > 0)) ⇔ A � (B ∧ (�V = c�+; true))

(2) (A ∧ (l > 0)) � ((
←
V= c) ∧B) ⇔ (A ∧ �V = c�+; true)) � B

where �S�+ =df (l > 0) ∧ �S� �

6 Higher Order Quantifiers

6.1 Local State Variable

Definition 6.1

Let V be a state variable. Define

M[b, e](∃V • F ) =df tt if ∃M′ •M′
[b, e](F ) = tt and M≡V M′ �

(hiding-1) (Extension of the scope) If V is not free in A, then

∃V • (A � B) ⇔ A � (∃V •B)

∃V • (B � A) ⇔ (∃V •B) � A

Theorem 6.2

(1) ∃V • (A/(l = c)) ⇔ (∃V •A)/(l = c)

(2) ∃V • ((l = c)\A) ⇔ (l = c)\(∃V •A)

Proof of (1) Rc(LHS) {(hiding-1)}
⇔ ∃V • Rc(A/(l = c)) {(WCI-1)}
⇔ ∃V • (A ∧ (l ≥ c)) {Predicate Calculus}
⇔ (∃V •A) ∧ (l ≥ c) {(WCI-1)}
⇔ Rc(RHS) �

Corollary 6.3

(1) ∃V • �l(A) ⇔ �l (∃V •A)

(2) ∃V • �r(A) ⇔ �r (∃V •A) �

From Lemma 4.2 and Theorem 4.6 and 4.7, we will confine ourselves in the
following laws to those formulae which do not use the weak inverse operators
(l = c)\ and /(l = c) and their derived operators �l and �r in the remaining of
this paper.

(hiding-2) (Match of point values) If neither A nor B uses
←
V and

→
V , then

∃V • (A � B) ⇔ ∃c • (∃V •A ∧ eV = c) � (∃V •B ∧ bV = c)

(hiding-3) (Separation of neighbourhood values) If A does not refer to
←
V , and

B does not mention
→
V , then
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(1) ∃V • (p(
←
V ) ∧A) ⇔ (∃V • p(

←
V )) ∧ (∃V •A)

(2) ∃V • (p(
→
V ) ∧B) ⇔ (∃V • p(

→
V )) ∧ (∃V •B)

(hiding-4) (Separation of point values) If A does not use bV , and B does not
refer to eV , then

(1) ∃V • (p(bV ) ∧ (A ∧ (l > 0)) ⇔ (∃V • p(bV )) ∧ (∃V •A ∧ (l > 0))

(2) ∃V • ((B ∧ (l > 0)) ∧ p(eV )) ⇔ (∃V • (B ∧ (l > 0)) ∧ (∃V • p(eV ))

Theorem 6.4

If neither A nor B uses bV , eV ,
←
V , and

→
V , then

∃V • (A � B) ⇔ (∃V •A) � (∃V •B)

Proof ∃V • (A � B) {(hiding − 2)}
⇔ ∃c • (∃V •A ∧ eV = c) � (∃V • bV = c ∧B)

{(hiding − 3) & (hiding − 4)}
⇔ ∃c(∃V •A ∧ ∃V • eV = c)) � (∃V • bV = c) ∧ (∃V •B)

{Predicate Calculus}
⇔ (∃V •A) � (∃V •B) �

The axioms (HD1) and (HD2) for higher-order quantifications in [26] follow di-
rectly from (hiding-3). We will establish the axiom (HD3) in the next section.

6.2 Substitution

Definition 6.5 (Substitution)

Let W be a state variable. The notation A[W/V ] stands for the result of substi-
tuting all free occurrences of V in A by W .

M[b, e](A[W/V ]) =df tt if

∃M′ •M′
[b, e](A) = tt and M′ ≡V M and M′(V ) = M(W ) �

(sub-1) A[V/V ] ⇔ A

(sub-2) A[W/V ] ⇔ ∃V • (A ∧ eq(V, W ))

where W is distinct from V , and

eq(U, W ) =df

←
U=

←
W ∧ �|U = W |� ∧

→
U=

→
W

�|S|� =df bS ∧ �S� ∧ eS

Theorem 6.6

(1) eq(U, W ) ⇒ (A[U/V ] ⇔ A[W/V ])

(2) (∀V •A) ⇒ A[W/V ]
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Proof Direct from (sub-1) and (sub-2). �

Corollary 6.7

Let W be a fresh state variable not used in A.

(1) A ⇔ ∃W • (A[W/V ] ∧ eq(W, V )),
(2) If A does not use

→
V , then

A ⇔ ∃W • (A[W/V ]∧
←
V=

←
W ∧�|V = W |�)

(3) If A does not mention
←
V , then

A ⇔ ∃W • (A[W/V ]∧
→
V=

→
W ∧�|V = W |�)

(4) If neither
←
V nor

→
V occurs in A, then

A ⇔ ∃W • (A[W/V ] ∧ �|V = W |�)

Proof From Theorem 6.6 and (hiding-3). �

Now we are going to show (HD3) in [26].

Theorem 6.8 If neither A nor B mentions point values bV and eV , then⎛⎝ (∃V •A ∧ (true � �V = x1�+) ∧ (
→
V= x2)) �

(∃V •B ∧ (�V = x2�+ � true) ∧ (
←
V= x1))

⎞⎠⇒ ∃V • (A � B)

Proof Define A1 =df ∃W •A[W/V ] ∧ �|W = V |� ∧ (
←
V=

←
V ) ∧ (

→
W= x2)

B1 =df ∃W •B[W/V ] ∧ �|W = V |� ∧ (
→
V=

→
V ) ∧ (

←
W= x1)

From Corollary 6.7 it follows that

(c1) (A ∧ (
→
V= x2)) ⇔ (A1 ∧ (

→
V= x2))

(c2) (B ∧ (
←
V= x1)) ⇔ (B1 ∧ (

←
V= x1))

RHS {Pred. Calculus}

⇐ ∃V • ((A ∧ (true � �V = x1�+) ∧ (
→
V= x2)) �

(B ∧ (�V = x2�+ � true) ∧ (
←
V= x1))) {(c1) and (c2)}

⇔ ∃V • ((A1 ∧ (true � �V = x1�+) ∧ (
→
V= x2)) �

(B1 ∧ (�V = x2�+ � true) ∧ (
←
V= x1))) {Theorem 5.11}

⇔ ∃V • ((A1 ∧ (true � �V = x1�+)) � (B1 ∧ (�V = x2�+ � true)))

{Theorem 6.4}
⇔ (∃V •A1 ∧ (true � �V = x1�+)) �

(∃V •B1 ∧ (�V = x2�+ � true))) {Pred. Calculus}
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⇐ (∃V •A1 ∧ (true � �V = x1�+) ∧ (
→
V= x2)) �

(∃V •B1 ∧ (�V = x2�+ � true) ∧ (
←
V= x1)) {(c1) and (c2)}

⇔ LHS �

7 Chopping Points

Definition 7.1 (Super-dense chop)

Let V be the state variables used by formulae A and B. Define

A ◦B =df ∃x, V1, V2 •

(A[V1/V ] ∧ �|V = V1|� ∧ (
←
V=

←
V1) ∧ (

→
V1= x)) �

(B[V2/V ] ∧ �|V = V2|� ∧ (
→
V=

→
V2) ∧ (

←
V2= x)) �

The chop operator � is used to compose the continuously evolving hybrid
systems, whereas the relational composition operator is used to model the se-
quential composition of imperative programming languages. The following the-
orem states that ◦ can be seen as the product of the chop operator � and the
relational composition operator.

Theorem 7.2

If
←
V and

→
V do not occur in A and B, then

(A ∧ p(
←
V ,

→
V )) ◦ (q(

←
V ,

→
V ) ∧B) = (A � B) ∧ ∃x • (p(

←
V , x) ∧ q(x,

→
V ))

Proof LHS {(hiding − 3)}
⇔ ∃x • (∃V1 • (A[V1/V ] ∧ �|V = V1|�)∧

∃V1 • ((
←
V=

←
V1) ∧ (

→
V1= x) ∧ p(

←
V1,

→
V1))) �

(∃V2 • (B[V2/V ] ∧ �|V = V2|�)∧

∃V2 • ((
→
V=

→
V2) ∧ (

←
V2= x) ∧ q(

←
V2,

→
V2))) {Corollary 6.7}

⇔ ∃x • ((A ∧ p(
←
V , x)) � (B ∧ q(x,

→
V ))) {Theorems 5.9–5.10}

⇔ RHS �

Theorem 7.3 (◦ and �)

If A does not refer to
→
V and B does not use

←
V , then

A ◦B = A � B



30

Proof A ◦B {(hiding − 3)}

⇔ ∃x • (∃V1 • (A[V1/V ] ∧ �|V = V1|� ∧ (
←
V=

←
V1)) ∧

(∃V1 • (
→
V1= x))) � (∃V2 • (B[V2/V ] ∧ �|V = V2|�∧

(
→
V=

→
V2)) ∧ (∃V2 • (

←
V2= x))) {Corollary 6.7}

⇔ ∃x • (A � B) {x is not free in A and B}
⇔ A � B �

◦ also enjoys the following familiar algebraic laws:

Theorem 7.4

(1) (associativity) (A ◦B) ◦ C ⇔ A ◦ (B ◦ C)

(2) (unit) A ◦ I ⇔ A ⇔ I ◦ F , where I =df (l = 0) ∧ (
→
V=

←
V )

(3) (disjunctivity) A ◦ (B1 ∨B2) ⇔ (A ◦B1) ∨ (A ◦B2)

(A1 ∨A2) ◦B ⇔ (A1 ◦B) ∨ (A2 ◦B)

(4) (zero) A ◦ false ⇔ false ⇔ false ◦A

(5) (initial stable state) (p(
←
V ) ∧A) ◦B ⇔ p(

←
V ) ∧ (A ◦B)

(6) (final stable state) A ◦ (B ∧ q(
→
V )) ⇔ (A ◦B) ∧ q(

→
V )

(7) (consistency) (A ∧ r(
→
V )) ◦B ⇔ A ◦ (r(

←
V ) ∧B)

(8) (invisible stable state) If A does not use
→
V and B does not mention

←
V

(A ∧ (
→
V = y)) ◦B ⇔ A � B

A ◦ ((
←
V = y) ∧B) ⇔ A � B

(A ∧ (
→
V = y)) ◦ ((

←
V = z) ∧B) ⇔ (A � B) ∧ (y = z)

Proof (A ∧ (
→
V= y)) ◦ ((

←
V= z) ∧B) {(hiding − 3)}

⇔ ∃x • ((∃V1 • (A[V1/V ] ∧ �|V = V1|� ∧ (
←
V=

←
V1))

∧ (∃V1 • ((
→
V1= y) ∧ (

→
V1= x)))) �

(∃V2 • (B[V2/V ] ∧ �|V = V2|� ∧ (
→
V=

→
V2))))

∧ ((∃V2 • ((
→
V2= x) ∧ (

←
V2= z))) {Corollary 6.7}

⇔ (∃x • ((x = y) ∧ (x = z))) ∧ (A � B) {Pred. cal}
⇔ (y = z) ∧ (A � B) �
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8 Infinite Disjunction

Definition 8.1

Let A be a set of formulae. Define

M[b, e](
∨
A) = tt if ∃A ∈ A •M[b, e](A) = tt

Define (
∧
A) =df ¬ (

∨
{¬A | A ∈ A}). �∨

A is the greatest lower bound of A with respect to the order ⇒ as shown in
the following two laws.

(
∨

-1) (lower bound) If A ∈ A, then A⇒
∨
A

(
∨

-2) (greatest lower bound) If A⇒ B for all members A of A, then
∨
A ⇒ B

The following laws enable us to push
∨

outwards.

(
∨

-3) (
∨
A) � B ⇔

∨
{(A � B) | A ∈ A}

B; (
∨
A) ⇔

∨
{(B � A) | A ∈ A}

(
∨

-4) ∃x • (
∨
A) ⇔

∨
{∃x •A | A ∈ A}

∃V • (
∨
A) ⇔

∨
{∃V •A | A ∈ A}

Theorem 8.2

(
∨
A) ⇒ B iff ∀A ∈ A • (A⇒ B)

Proof (
∨
A) ⇒ B {(

∨
−1) transitivity of ⇒}

=⇒ ∀A ∈ A •A⇒ B {(
∨
−2)}

=⇒ (
∨
A) ⇒ B �

Theorem 8.3

(1) (
∨
A)/(l = c) ⇔

∨
{A/(l = c) | A ∈ A}

(2) (l = c)\(
∨
A) ⇔

∨
{(l = c)\A | A ∈ A}

Proof From (WCI-1). �

Definition 8.4 (Weakest fixed point)

Let F be a monotonic mapping on formulae. Define

μX • F =df

∨
{A | A⇒ F (A)} �

Theorem 8.5

(1) μX • F ⇔ F (μX • F )

(2) If A⇒ F (A), then A⇒ μX • F �
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9 Duration Calculus with Iteration

This section shows how to embed DC∗ [2] into our framework.

Definition 9.1 (Iteration)

Define A∗ =df

∨
{An | n ∈ NAT}

where A0 =df (l = 0) and An+1 =df A � An �

(DC∗
1 ) (l = 0) ⇒ A∗

Proof From (
∨
−1). �

(DC∗
2 ) (A∗ � A) ⇒ A∗.

Proof A∗ � A {(
∨
−3)}

⇔
∨
{An+1 | n ∈ NAT} {(

∨
−1) and (

∨
−2)}

⇒ A∗ �

(DC∗
3 ) (A∗∧B) � true⇒ (B∧ l = 0) � true ∨ (((A∗∧¬B) � A)∧B) � true

Proof (An+1 ∧B) � true {(� −4)}
=⇒ (((An ∧ ¬B) � A) ∧B) � true ∨ ((An ∧B) � A) ∧B) � true

{(
∨
−1) and (� −5)}

=⇒ (((A∗ ∧ ¬B) � A) ∧B) � true ∨
((An ∧B) � true) ∧ true) � true {(� −2) and (� −5)}

=⇒ RHS ∨ ((An ∧B) � true)

By induction and the fact that (A0 ∧ B) � true ⇒ RHS we conclude that for
all n ∈ NAT

(An+1 ∧B) � true⇒ RHS

from which and (
∨
−3)(1) follows the conclusion. �

Theorem 9.2 (Induction)

If (l = 0) ⇒ B and (A � B) ⇒ B, then A∗ ⇒ B

Proof We are going to show that An ⇒ B for all n ∈ NAT .

n = 0: From the assumption.

n = 1 : A {(� −2)}
⇔ A � (l = 0) {(� −5)}
⇒ A � B {assumption}
⇒ B

J and JNHe in. .
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n = k + 1 : Ak+1 {Def of Ak+1}
⇔ A � Ak {(� −5) and induction hypothesis}
⇒ B �

Corollary 9.3

A∗ ⇔ (l = 0) ∨A � A∗

Proof From (DC∗-1) and (DC∗-2) it follows that RHS ⇒ LHS. The opposite
inequation follows from Theorem 9.2. �

10 Conclusion

This paper presents a logical language which integrates many variants of DC, and
acts a wide spectrum language covering specification, design and programming
of real-time computing systems. We have investigated the links of our language
with some well-known variants of DC in the previous sections. Our language
provides a mathematically sound basis for real-time refinement calculus and as
well as proof systems for time-critical computing systems. It has been successfully
used in formalising a specification language TRSL [10], mixed hardware/software
systems [7] and Sequential Hybrid Systems [8].
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Abstract. Programming in the large is difficult, in part because the
number of details that one must get right is enormous. Various tools
can assist programmers in managing the details. These tools include a
methodology that formalizes useful programming idioms, a language in
which programmer design decisions can be expressed, and static and
dynamic checkers that look for errors or attempt to prove the absence
thereof. In this talk, I will discuss challenges in each of these areas. I will
also give a short demo of a prototype of the Spec# programming system,
which takes on these challenges and is designed to be used in practice.
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A Predicate Spatial Logic and
Model Checking for Mobile Processes�
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Abstract. Mobile processes involve not only in time but also in space.
Traditionally model checking has mainly concerned with temporal prop-
erties of processes, but recently proposals have been put forwarded to
check spatial properties as well. In this talk we shall first present a modal
logic for describing temporal as well as spatial properties of mobile pro-
cesses expressed in the asynchronous π-calculus. The logic is first-order
and has quantifies including the fresh name quantifier for handling the
name restriction construct in the π-calculus. The novelty of the logic is
that fixpoint formulas are constructed as predicates which are functions
from names to propositions. The semantics of the logic is developed and
shown to be monotonic, thus guarantees the existence of fixpoints. We
then propose an algorithm to automatically check if a process has prop-
erties described as formulas in the logic, and establish its correctness.
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Erika Ábrahám2, Marcello M. Bonsangue3,
Frank S. de Boer4, and Martin Steffen1

1 Christian-Albrechts-University Kiel, Germany
2 University Freiburg, Germany

3 University Leiden, The Netherlands
4 CWI Amsterdam, The Netherlands

Abstract. The concurrent object calculus has been investigated as a
core calculus for imperative, object-oriented languages with multithread-
ing and heap-allocated objects. The combination of this form of concur-
rency with objects corresponds to features known from the popular lan-
guage Java. One distinctive feature, however, of the concurrent object
calculus is that it is object-based, whereas the mainstream of object-
oriented languages is class-based.

This work explores the semantical consequences of introducing classes
to the calculus. Considering classes as part of a component makes in-
stantiation a possible interaction between component and environment.
A striking consequence is that to characterize the observable behavior
we must take connectivity information into account, i.e., the way objects
may have knowledge of each other. In particular, unconnected environ-
ment objects can neither determine the absolute order of interaction and
furthermore cannot exchange information to compare object identities.

We formulate an operational semantics that incorporates the con-
nectivity information into the scoping mechanism of the calculus. As
instantiation itself is unobservable, objects are instantiated only when
accessed for the first time (“lazy instantiation”).

Furthermore we use a corresponding trace semantics for full abstrac-
tion wrt. a may-testing based notion of observability.

Keywords: multithreading, class-based object-oriented languages, for-
mal semantics, full abstraction.

1 Introduction

The notion of component is well-advertised as structuring concept for software
development. Even if there is not too much agreement about what constitutes a

� Part of this work has been financially supported by the IST project Omega (IST-
2001-33522) and the NWO/DFG project Mobi-J (RO 1122/9-1/2).

Z. Liu and K. Araki (Eds.): ICTAC 2004, LNCS 3407, pp. 37–51, 2005.
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component in concrete software engineering terms, one aspect should go undis-
puted: At the bottom line, a component means a “program fragment” being
composed, which raises the question what the semantics of a component is. A
natural approach is to take an observational point of view: two components are
observably equivalent, when no observing context can tell them apart.

In the context of concurrent, object-based programs and starting from may-
testing as a simple notion of observation, Jeffrey and Rathke [7] provide a fully
abstract trace semantics for the language. Their result roughly states that, given
a component as a set of objects and threads, the fully abstract semantics consists
of the set of traces at the boundary of the component, where the traces record
incoming and outgoing calls and returns. At this level, the result is as one would
expect, since intuitively in the chosen setting, the only possible way to observe
something about a set of objects and threads is by exchanging messages.

The result in [7] is developed within the concurrent object calculus [5], an
extension of the sequential ν-calculus [10] which stands in the tradition of various
object calculi [1] and also of the π-calculus [9, 11]. The chosen language has
been proposed as core calculus for imperative, object-oriented languages with
multithreading and heap-allocated objects, but distinctive feature is that it is
object-based, which in particular means that there are no classes as templates for
new objects. This is in contrast to the mainstream of object-oriented languages
where the code is organized in classes, one well-known example being Java. This
work addresses therefore the following question:

What changes when switching from an object-based to a class-based
setting, a setting which corresponds to features as found in a language
like multithreaded Java or C#?

Considering the observable behavior of a component, we have to take into
account that in addition to objects, which are the passive entities containing
the instance state, and threads, which are the active entities, classes come into
play. Classes serve as a blueprint for their instances and can be conceptually
understood as particular objects supporting just a method which allows to gen-
erate instances. Indeed, ultimately, the observer consists only of classes since the
program code is structured into classes, and objects exist only at run-time.

Crucial in our context is that now the division between the program frag-
ment under observation and its environment also separates classes: There are
classes internal to the component and those belonging to the environment. As a
consequence, not only calls and returns are exchanged at the interface between
component and environment, but instantiation requests, as well. This possibility
of cross-border instantiation is absent in the object-based setting: Objects are
created by directly providing the code of their implementation, not referring to
the name of a class, which means that the component creates only component-
objects and dually the environment only environment objects.

To understand the bearing of this change on what is observable, we con-
centrate on the issue of instantiation across the demarcation line between com-
ponent and its environment. The environment is considered as the observing
context which tries to determine the behavior of the component or program
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under observation. So imagine that the component creates an instance of an en-
vironment class, and the first question is: does this yield a component object or
an environment object? As the code of the object is in the hand of the observer,
namely being provided by the external class, the further interaction between
the component and the newly created object can lead to observable effects and
must thus be part of the behavior at the component’s interface. In other words,
instances of environment classes belong to the environment, and dually those of
internal classes to the component.

To obtain a semantics which is abstract enough, it is crucial not just to cover
all possible interface behavior —there is little doubt that sequences of calls,
returns, and instantiations with enough information at the labels would do—
but to capture it exactly, i.e., to exclude impossible environment interaction.
As an obvious example: two consecutive calls from the same thread without
outgoing communication in between cannot be part of the component behavior.

Whereas in the above situation, the object is instantiated to be part of the
environment, the reference to it is kept at the creator, for the time being. So
in case an object of the program, say o1 instantiates two objects o2 and o3 of
the environment, the situation informally looks as shown in Figure 1, where the
dotted bubbles indicate the scope of o2, respectively of o3.

o1

o2

o3

c1 c2 c3

program environment

Fig. 1. Instances of external classes

In this situation, an incoming call from
the environment carrying both names o2
and o3 is impossible, as the only entity
aware of both references is o1. Unless the
component gives away the references to
the environment, o2 and o3 are and re-
main completely separated.

Thus, to exclude impossible combina-
tions of object references in the commu-
nication labels, the component must keep
track of which objects of the environ-
ment are connected. The component has,
of course, by no means full information

about the complete system; after all it can at most trace what happens at the
interface, and the objects of the environment can exchange information “be-
hind the component’s back”. Therefore, the component must conservatively over-
approximate the potential knowledge of objects in the environment, i.e., it must
make worst-case assumptions concerning the proliferation of knowledge, which
means it must assume that

1. once a name is out, it is never forgotten, and
2. if there is a possibility that a name is leaked from one environment object

to another, this will happen.

Sets of environment objects which can possibly be in contact with each other
form therefore equivalence classes of names —we call them cliques— and the
formulation of the semantics must contain a representation of them. New cliques
can be created, as new objects can be instantiated without contact to others, and
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furthermore cliques can merge, if the component leaks the identity of a member
of one clique to a member of another.

This paper investigates a class-based variant of the object calculus, formal-
izing the ideas sketched above about cliques of objects. Instantiation itself, even
across the environment-program boundary, is unobservable, since the calculus
does not have constructor methods. In the semantics, an externally instantiated
object is created only at the point when it is actually accessed the for the first
time, which we call “lazy instantiation”. For want of space, we concentrate here
on the intuition and stress the differences to the object-based setting. For deeper
coverage we refer to the technical reports [2] and [3].

The paper is organized as follows. Section 2 contains the syntax of the calcu-
lus in which the result is presented, and a sketch of its semantics. In particular,
the notions of lazy instantiation and connectivity of objects are formalized. Af-
terwards, Section 3 elaborates on the trace semantics, Section 4 fixes the notion
of observability, and Section 5 states the full abstraction result. Finally in Sec-
tion 6, we discuss related work.

2 A Concurrent Class Calculus

In this section, we present the calculus used in our development. As we con-
centrate on the semantical issues of connectivity of objects and the interface
behavior of a component, we only sketch the syntax, ignore typing issues and
also omit structural equivalence rules, as they are rather standard. As mentioned,
the reader will find details in the accompanying technical report.

The calculus is a syntactic extension of the concurrent object calculus from
[5, 7]. The basic change is the introduction of classes, where a class is a named
collection of methods. In contrast to object references, class names are literals
introduced when defining the class; they may be hidden using the ν-binder but
unlike object names, the scopes for class names are static. Object names, on the
other hand, are first-order citizens of the calculus in that they can be stored
in variables, passed to other objects as method parameters, making the scoping
dynamic, and especially they can be created freshly by instantiating a class.

A program is given by a collection of classes. A class c[(O)] carries a name c
and defines the implementation of its methods and fields. An object o[c, F ] stores
the current value of the fields or instance variables and keeps a reference to the
class it instantiates. A method ς(n:c).λ(x1:T1, . . . , xn:Tk).t provides the method
body abstracted over the ς-bound “self” parameter and the formal parameters of
the method [1]. Besides named objects and classes, the dynamic configuration of
a program can contain as active entities named threads n〈t〉, which, like objects,
can be dynamically created. Unlike objects, threads are not instantiated by some
statically named entity (a “thread class” as in Java), but directly created by
providing the code. A thread basically is either a value (especially a reference
to another named entity) or a sequence of expressions, notably method calls
(written o.l(v)) and creation of new objects and new threads (new c and new〈t〉
where c is a class name and t a thread). We will generally use n and its syntactic
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Table 1. Abstract syntax

C ::= 0 | C ‖ C | ν(n:T ).C | n[(O)] | n[n, F ] | n〈t〉 program
O ::= M, F object
M ::= l = m, . . . , l = m method suite
F ::= l = f, . . . , l = f fields
m ::= ς(n:T ).λ(x:T, . . . , x:T ).t method
f ::= ς(n:T ).λ().v field
t ::= v | stop | let x:T = e in t thread
e ::= t | if v = v then e else e expr.

| v.l(v, . . . , v) | n.l := v | currentthread
| new n | new〈t〉

v ::= x | n values

variants as name for threads (or just in general for names), o for objects, and c
for classes. Furthermore we will use f specifically for instance variables or fields,
we use f = v for field variable declaration, field access is written as x.f , and
field update1 as f.x := v.

Concerning the operational semantics of the calculus, the basic steps are
mainly given in two levels: internal steps whose effect is confined within a com-
ponent, and those with external effect. Interested mainly in the external behavior
we elide the definition of the internal steps.

The external behavior of a component is given in terms of labeled transi-
tions describing the communication at the interface of an open program. For the
completeness of the semantics, it is crucial ultimately to consider only commu-
nication traces realizable by an actual program context which, together with the
component, yields a well-typed closed program.

The concentration on actually realizable traces has various aspects, e.g., the
transmitted values need to adhere to the static typing assumptions, only publicly
known objects can be called from the outside, and the like. Being concerned with
the dynamic relationship among objects, we omit also these aspects here. Besides
that, this part is rather standard and also quite similar to the one in [7].

2.1 Connectivity Contexts and Cliques

The informal discussion in the introduction argued that in the presence of in-
ternal and external classes and cross-border instantiation, the component must
keep track of which identities it gives away to which objects in order to exclude
impossible behavior as described for instance in connection with Figure 1. The
external semantics is formalized as labeled transitions between judgments of
the form

Δ;EΔ � C : Θ;EΘ , (1)

where Δ;EΔ are the assumptions about the environment of the component C
and Θ;EΘ the commitments; alternative names are the required and the pro-

1 We don’t use general method update as in the object-based calculus.
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vided interface of the component. The assumptions consist of a partΔ concerning
the existence (plus static typing information) of named entities in the environ-
ment. For the book-keeping of which objects of the environment have been told
which identities, a well-typed component must take into account the relation
of object names from the assumption context Δ amongst each other, and the
knowledge of objects from Δ about those exported by the component, i.e., those
from Θ. 2 In analogy to the name contexts Δ and Θ, EΔ expresses assumptions
about the environment, and EΘ commitments of the component:

EΔ ⊆ Δ× (Δ+Θ) . (2)

and dually EΘ ⊆ Θ × (Θ +Δ). We write o1 ↪→ o2 (“o1 may know o2”) for pairs
from these relations. As mentioned, the component does not have full informa-
tion about the complete system and thus it must make worst-case assumptions
concerning the proliferation of knowledge. These worst-case assumptions are
represented as the reflexive, transitive, and symmetric closure of the ↪→-pairs of
objects from Δ the component maintains. Given Δ, Θ, and EΔ, we write � for
this closure, i.e.,

� � (↪→↓Δ ∪ ←↩↓Δ)∗ ⊆ Δ×Δ . (3)

Note that we close ↪→ only wrt. environment objects, but not wrt. objects at
the interface, i.e., the part of ↪→ ⊆ Δ×Θ. We also need the union � ∪ �; ↪→
⊆ Δ × (Δ + Θ), where the semicolon denotes relational composition. We write
�↪→ for that union. As judgment, we use Δ;EΔ � v1 � v2 : Θ, respectively
Δ;EΔ � v1 �↪→ v2 : Θ. For Θ, EΘ, and Δ, the definitions are applied dually.

The relation � is an equivalence relation on the objects fromΔ and partitions
them into equivalence classes. As a manner of speaking, we call a set of object
names from Δ (or dually from Θ) such as for all objects o1 and o2 from that
set, Δ;EΔ � o1 � o2 : Θ, a clique, and if we speak of the clique of an object we
mean the whole equivalence class.

2.2 External Steps

The external semantics is given by transitions between Δ;EΔ � C : Θ;EΘ judg-
ments (cf. Table 3). Besides internal steps a component exchanges information
with the environment via calls and returns. Using a lazy instantiation scheme for
cross-border object creation, there are no separate external labels for new -steps.
Thus, core labels γ are of the form n〈call o.l(v)〉 and n〈return(v)〉. Names may
occur bound in a label ν(n:T ).γ, and receiving and sending labels are written as
γ? and γ!. In this extended abstract, we omit the typing premises in the opera-
tional rules (“only values consistent with the static typing assumptions may be

2 Besides the relationships amongst objects, we need to keep one piece of information
concerning the “connectivity” of threads. To exclude situations where a known thread
leaves the component into one clique of objects but later returns to the component
coming from a different clique without connection to the first, we remember for each
thread that has left the component the object from Δ it has left into.
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Table 2. Labels

γ ::= n〈call o.l(v)〉 | n〈return(v)〉 | ν(n:T ).γ basic labels
a ::= γ? | γ! receive and send labels

Table 3. External steps

a = ν(Δ′, Θ′). n〈call o2.l(v)〉? dom(Δ′, Θ′) ⊆ fn(n〈call o2.l(v)〉)
Θ́; ÉΘ = Θ; EΘ + (Θ′; n ↪→ o2 ↪→ v) Δ́; ÉΔ = Δ; EΔ + Δ′; o1 ↪→ (Δ′, Θ′) \ n

Δ́; ÉΔ 
 n � o1 �↪→ v, o2 : Θ́ tblocked = let x′:T ′ = o′
2 blocks for o′

1 in t
CallI2

Δ; EΔ 
 C ‖ n〈tblocked 〉 : Θ; EΘ
a−→

Δ́; ÉΔ 
 C ‖ C(Θ′) ‖ n〈let x:T = o2.l(v) in o2 return to o1 x; tblocked 〉 : Θ́; ÉΘ

a = ν(Θ′, Δ′). n〈return(v)〉! (Θ′, Δ′) = fn(v) ∩ Φ Φ́ = Φ \(Θ′, Δ′)

Δ́; ÉΔ = Δ; EΔ + Δ′; (n ↪→ o1 ↪→ v) Θ́; ÉΘ = Θ; EΘ + Θ′; E(Ć, Θ′) \ n
RetO

Δ; EΔ 
 ν(Φ).(C ‖ n〈let x:T = o2 return to o1 v in t〉) : Θ; EΘ
a−→

Δ́; ÉΔ 
 ν(Φ́).(C ‖ n〈t〉) : Θ́; ÉΘ

a = ν(Θ′, Δ′). n〈call o2.l(v)〉! (Θ′, Δ′) = fn(n〈call o2.l(v)〉 ∩ Φ

Φ́ = Φ \(Θ′, Δ′) o2 ∈ dom(Δ́)

Δ́; ÉΔ = Δ; EΔ + Δ′; (n ↪→ o2 ↪→ v) Θ́; ÉΘ = Θ; EΘ + Θ′; E(Ć, Θ′) \ n
CallO

Δ; EΔ 
 ν(Φ).(C ‖ n〈let x:T = [o1] o2.l(v) in t〉) : Θ; EΘ
a−→

Δ́; ÉΔ 
 ν(Φ́).(C ‖ n〈let x:T = o1 blocks for o2 in t〉) : Θ́; ÉΘ

a = ν(Δ′, Θ′). n〈return(v)〉? dom(Δ′, Θ′) ⊆ fn(v)

Θ́; ÉΘ = Θ; EΘ + Θ′, (n ↪→ o1 ↪→ v) Δ́; ÉΔ = Δ; EΔ + Δ′, (o2 ↪→ (Δ′, Θ′)) \ n

Δ́; ÉΔ 
 o2 �↪→ v : Θ́
RetI

Δ; EΔ 
 C ‖ n〈let x:T = o1 blocks for o2 in t〉 : Θ; EΘ
a−→ Δ́; ÉΔ 
 C ‖ n〈t[v/x]〉 : Θ́; ÉΘ

c ∈ dom(Δ)
NewOlazy

Δ; EΔ 
 n〈let x:c = new c in t〉 : Θ; EΘ � Δ; EΔ 
 ν(o3:c).n〈let x:c = o3 in t〉 : Θ; EΘ

received” and the like) as they are straightforward and we concentrate on the
novel aspects, namely the connectivity information.

Connectivity Assumptions and Commitments. As for the relationship of
communicated values, incoming and outgoing communication play dual roles: EΘ

overapproximates the actual connectivity of the component, while the assump-
tion context EΔ is consulted to exclude impossible combinations of incoming
values. Incoming calls update the commitment context EΘ in that it remem-
bers that the callee o2 now knows (or rather may know) the arguments v, and
furthermore that the thread n has entered o2. For incoming communication (cf.
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rules CallI2 and RetI)3 we require that the sender be acquainted with the
transmitted arguments.

For the role of the caller identity o1, a few more words are in order. The
antecedent of the call-rules requires, that the caller o1 is acquainted with the
callee o2 and with all of the arguments. However, the caller is not transmitted
in the label which means that it remains anonymous to the callee.4 To gauge,
whether an incoming call is possible and to adjust the book-keeping about the
connectivity appropriately, in particular when returning later, the transition
chooses among possible sources of the call. With the sole exception of the initial
(external) step, the scope of at least one object of the calling clique must have
escaped to the component, for otherwise there would be now way of the caller to
address o2 as callee. In other words, for at least one object o1 from the clique of
the actual caller (which remains anonymous), the judgment Δ � o1:c holds prior
to the call. Furthermore it must be checked that the incoming thread originates
from a group of objects in connection with the one to which the thread had left
the component the last time: Δ́; ÉΔ � n � o1 : Θ́. Once chosen, the assumed
identity of the caller is remembered as part of the return-syntax.

It is worth mentioning that in rule RetI the proviso that the callee o2 knows
indirectly the caller o1, i.e., Δ;EΔ � o2 �↪→ o1 : Θ is not needed. Neither is it
necessary to require in analogy to the situation for the incoming call that the
thread is acquainted with the callee. If fact, both requirements will be automat-
ically assured for traces where calls and returns occur in correct manner.

A commonality for incoming communications from a thread n is that the
(only) pair n ↪→ o for some object reference o is removed from EΔ, for which
we write EΔ \n. While EΔ imposes restrictions for incoming communication,
the commitment context EΘ is updated when receiving new information. For
instance in CallI2, the commitment ÉΘ after reception marks that now the
callee o2 is acquainted with the received arguments and furthermore that the
thread n is visiting (for the time being) the callee o2. For outgoing communica-
tion, the EΔ and EΘ play dual roles. In the respective rules, E(Ć,Θ′) stands
for the actual connectivity of the component after the step, which needs to
be made public in the commitment context, in case new names escape to the
environment.

Scoping and Lazy Instantiation. In the explanation so far, we omitted the
handling of bound names, in particular bound object references. In the presence
of classes, a possible interaction between component and environment is in-
stantiation. Without constructor methods and assuming an infinite heap space,

3 We omit rules dealing with the initial situation where the first thread crosses the
interface between environment and component.

4 Of course, the caller may transmit its identity to the callee as part of the arguments,
but this does not reveal to the callee who “actually” called. Indeed, the actual
identity of the caller is not needed; it suffices to know the clique of the caller. As
representative for the clique, an equivalence class of object identities, we simply pick
one object.
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instantiation itself has no immediate, observable side-effect. An observable effect
is seen only at the point when the object is accessed.

Rule NewOlazy describes the local instantiation of an external class. Instead
of exporting the newly created name of the object plus the object itself immedi-
ately to the environment, the name is kept local until, if ever, it gets into contact
with the environment. When this happens, the new instance will not only be-
come known to the environment, but the object will also be instantiated in the
environment.

For incoming calls, for instance, the binding part is of the form (Δ′,Θ′) where
we mean by convention, thatΔ′ are the names being added toΔ, and analogously
for Θ′ and Θ. For object names, the distinction is based on the class types. For
thread names, the reference is contained in Δ′ and Θ′, and class names are never
transmitted. For the object names in the incoming communication Δ′ contains
the external references which are freshly introduced to the component by scope
extrusion. Θ′ on the other hand are the objects which are lazily instantiated as
side-effect of this step, and which are from then on part of the component. In
the rules, the newly instantiated objects are denoted as C(Θ′).

Note that whereas the acquaintance of the caller with the arguments trans-
mitted free is checked against the current assumption, acquaintance with the
ones transmitted bound is added to the assumption context.

3 Trace Semantics and Ordering on Traces

Next we present the semantics for well-typed components, which, as in the
object-based setting, takes the sequences of external steps of the program frag-
ment as starting point.

Not surprisingly, a major complication now concerns the connectivity of ob-
jects. In this context, the caller identity, while not visible by the callee, plays
a crucial role in keeping track of assumed connectivity, in particular to connect
the effect of a return to a possible caller clique. To this end, the operational
semantics hypothesizes about the originator of incoming calls and remembers
the guess as “auxiliary” annotation in the code for return (cf. rule L-CallI2
from Table 3).

The (hypothetical) connectivity of the environment influences what is observ-
able. Very abstractly, the fact the observer falls into a number of independent
cliques increases the “uncertainty of observation”. We can point to two reasons
responsible for this effect. One is that separate observer cliques cannot deter-
mine the relative order of events concerning only one of the environment cliques.
To put it differently: a clique of objects can only observe the order of events
projected to its own members. We will worry about this later when describing
the all possible reorderings or interleavings of a given trace. Secondly, separate
observers cannot cooperate to compare identities. This means, as long as sep-
arated, the observers cannot find out whether identities sent to each of them
separately are the same or not. In terms of projections to the observing clique
it means that local projections are considered up to α-conversion, only.



46 E. Ábrahám et al.

The above discussion should not mislead us to think that the behavior of
two observing cliques is completely independent. One thing to keep in mind is
that the observers can merge. This means that identities, separate and local
prior to the merge, become comparable, and the now joint clique can find out
whether local interaction of the past used the same identities or not. The ab-
solute order of local events of the past, however, cannot be reconstructed after
merging.

Another more subtle point, independent from merging of observers, is that to
a certain degree, the events local to one clique do influence interaction concerning
another clique. This in other words implies that considering only the separate
local projections of a global behavior to the observers is too abstract to be
sound.

To understand the point, consider as informal example a situation of a com-
ponent C1 with two observing cliques in the environment and a sequence s of
labels at the interface of the component being observed. Assume further that s1
is the projection of s to the first observer and s2 the projection to the second,
and assume that s = s1s2 meaning that s1 precedes s2 when considered as global
behavior. For sake of the argument, assume additionally that C1 is not able to
perform the interaction in the swapped order s2s1. Given a second component
C2 being more often successful, i.e., that C1 �may C2, what does this imply
for C2’s behavior? The definition of may-preorder is given in Section 4. For the
moment, being successful can be thought of being able to reach some predefined
point which counted as success.

Since the environment can be programmed in such a way that it reports
success only after completing s1 resp. s2, it is intuitively clear that C2 must
be able to exhibit s1 resp. s2. But the environment cannot observe whether C2
performs s1 and s2 in the same run, as does C1. We can only be sure that
there is a run of C2 which is able to do s1 and a (potentially different) one
which does s2, each of which is taken as independent sign of success. This does
not mean, however, that the order of s1s2 does not play a role at all. Consider
for illustration the situation where C2 can perform s2s1 but not s1s2 as C1:
In this case, C1 ��may C2, i.e., C2 is not successful while C1 is, namely in an
environment where s2 is possible and reports success but s1 can be hindered from
completion. In other words, taking the behavior s1s2 of C1 as starting point we
cannot consider in isolation the fact that s2 is possible by C2 as well, the order
of s1 preceding s2 is important inasmuch as it s1 can prevent success for s2. So
C1 ��may C2 and the fact that C1 performs the sequence s1s2 means, that C2
can perform s2 after a prefix of s1. Since the common environment has already
proven in cooperation with C1 that it is able to perform s1, it cannot prevent
success of C2 by blocking.

To sum up and independently of the details: to capture the observable be-
havior appropriately, we need to be able to define the projection of the external
steps to the observer cliques. Now the labels for method calls in the external se-
mantics do not contain information concerning the caller, which means given a
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trace as a sequence of labels, we have no indication for incoming calls concerning
the originating environment clique.5

A way to remedy this lack of information is to augment the labels as recorded
in the traces by the missing information. So instead of the call label described in
Section 2.2, we use n〈[o1]call o2.l(v)〉 as annotated call label, where o1 denotes
the caller, respectively the clique of the caller. The augmented transitions are
generated simply by using the caller rules from Table 3 where the caller is added
to the transition labels in the obvious way.

A trace of a well-typed component is a sequence s of external steps, where
we write Δ1;EΔ1 � C1 : Θ1;EΘ1

s=⇒ Δ2;EΔ2 � C2 : Θ2;EΘ2 . For Δ1;EΔ1 �
C1 : Θ1;EΘ1

ε=⇒ Δ2;EΔ2 � C2 : Θ2;EΘ2 , we write shorter Δ1;EΔ1 � C1 :
Θ1;EΘ1 =⇒ Δ2;EΔ2 � C2 : Θ2;EΘ2 .

With this information we can define the projection of a trace onto a clique
as the part of the sequence containing all the labels with objects from that
clique. Remember that a clique of an object o ∈ Θ consists of all objects from
Θ acquainted with o. Thus the equivalence � partitions Θ into equivalence
classes, and formally we could write [o]/EΘ

or [o]/� for that equivalence class.
For simplicity, we often just write [o].

The definition of projection of an (augmented) trace onto a clique of environ-
ment objects is straightforward, one simply jettisons all actions not belonging to
that clique. One only has to be careful dealing with exchange of bound names,
i.e., scope extrusion, since names sent for the first time to a clique are to be
considered as locally fresh, even if the name may globally be known to other
environment cliques.

We can now define the order on traces as follows.

Definition 1. Δ;EΔ � C1 : Θ;EΘ �trace Δ;EΔ � C2 : Θ;EΘ, if the following
holds. If Δ;EΔ � C1 : Θ;EΘ

sa=⇒ Δ′;E′
Δ � C ′

1 : Θ′;E′
Θ, then Δ;EΔ � C2 :

Θ;EΘ
t=⇒ Δ′′;E′′

Δ � C ′′
2 : Θ′′;E′′

Θ such that

– t ↓[o′′]= sa ↓[oa] for some clique [o′′] according to Θ′′;E′′
Θ and when [oa] is

the environment clique to which label a belongs, and
– for all cliques [o′′] according to Δ′′;E′′

Δ, there exists a clique [o′] according
to Δ′;E′

Δ such that t ↓[o′′]� sa ↓[o′].

4 Notion of Observation

Full abstraction is a comparison between two semantics, where the reference
semantics to start from is traditionally contextually defined and based on a
some notion of observability.

5 For outgoing calls, the relevant environment clique is mentioned explicitly as the
receiver of the call. Concerning returns, the concerned environment clique is deter-
mined by the matching call.
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As starting point we choose, as [7], a (standard) notion of semantic equiva-
lence or rather semantic implication —one program allows at least the observa-
tions of the other— based on a particular, simple form of contextual observation:
being put into a context, the component, together with the context, is able to
reach a defined point, which is counted as the successful observation. A context
C[ ] is a program “with a hole”. In our setting, the hole is filled with a program
fragment consisting of a component C in the syntactical sense, i.e., consisting of
the parallel composition of (named) classes, named objects, and named threads,
and the context is the rest of the programs such that C[C] gives a well-typed
closed program Δ;EΔ � C ′ : Θ;EΘ, where closed means that it can be typed in
the empty contexts, i.e., � C ′ : ().

To report success, we assume an external class with a particular success-
reporting method. So assume a class cb of type [(succ : () → none)], abbre-
viated as barb. A component C strongly barbs on cb, written C ↓cb

, if C ≡
ν(n:T , b:cb).C ′ ‖ n〈let x:none = b.succ() in t〉, i.e., the call to the success-method
of an instance of cb is enabled. Furthermore, C barbs on cb, written C ⇓cb

, if it
can reach a point which strongly barbs on cb, i.e., C =⇒ C ′ ↓cb

. We can now
define may testing preorder [6] as in [7].

Definition 2 (May testing). Assume Δ;EΔ � C1 : Θ;EΘ and Δ;EΔ � C2 :
Θ;EΘ. Then Δ;EΔ � C1 �may C2 : Θ;EΘ, if (C1 ‖ C) ⇓cb

implies (C2 ‖ C) ⇓cb

for all Θ, cb:barb;EΘ � C : Δ;EΔ.

5 Full Abstraction

The proof that may-testing coincides with order on traces given in Definition 1
has two directions: compared to �may , the relation �trace is neither too abstract
(soundness) nor too concrete (completeness).

For lack of space, we simply state the soundness result here. The proof is
rather similar to the one for the object-based case [7] and rests on the ability to
compose a component and an environment, performing complementary traces,
into one global program (plus the dual property of decomposition). We refer to
the full version [3] for details.

Proposition 1 (Soundness). If Δ;EΔ � C1 : Θ;EΘ �trace Δ;EΔ � C2 :
Θ;EΘ, then Δ;EΔ � C1 �may C2 : Θ;EΘ.

Completeness asserts the reverse direction:

Proposition 2 (Completeness). If Δ;EΔ |= C1 �may C2 : Θ;EΘ, then
Δ;EΔ � C1 : Θ;EΘ �trace Δ;EΔ � C2 : Θ;EΘ.

Concerning completeness, we sketch here one core aspect part of the argu-
ment. At the heart, completeness is a constructive argument: given a trace s,
construct a component Cs that exhibits the trace s and not simply realize the
trace, but realize it exactly, up-to unavoidable reordering and prefixing.
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Table 4. Legal traces

L-Empty
Δ; EΔ 
 r � ε : trace Θ; EΘ

a = ν(Δ′, Θ′). n〈call o2.l(v)〉? Δ 
 o1 : c1 Δ 
 r � a : Θ

Θ́; ÉΘ = Θ; EΘ + (Θ′; n ↪→ o2 ↪→ v) Δ́; ÉΔ = Δ; EΔ + Δ′; o1 ↪→ (Δ′, Θ′) \ n

Δ́; ÉΔ 
 n � o1 �↪→ v, o2 : Θ́ Δ́; ÉΔ 
 r ao1 � s : trace Θ́; ÉΘ
L-CallI

Δ; EΔ 
 r � a s : trace Θ; EΘ

a = ν(Θ′, Δ′). n〈return(v)〉! pop n r = ν(Δ′′, Θ′′). n〈[o1]call o2.l(v)〉?
Δ́; ÉΔ = Δ; EΔ + Δ′; n ↪→ o1 ↪→ v Θ́; ÉΘ = Θ; EΘ + Θ′; o2 ↪→ (Θ′, Δ′) \ n

Θ́; ÉΘ 
 o2 �↪→ v : Δ́ Δ́; ÉΔ 
 r a � s : trace Θ́; ÉΘ
L-RetO

Δ; EΔ 
 r � a s : trace Θ; EΘ

Legal Traces. To do so, we must first characterize which traces (the “legal”
ones) can occur at all, and again the crucial difference to the object-based case
is to take connectivity into account to exclude impossible combinations of trans-
mitted object names and threads.

The legal traces are specified by a system for judgments of the form Δ;EΔ �
r � s : trace Θ;EΘ stipulating that under the type and relational assumptions
Δ and EΔ and with the commitments Θ and EΘ, the trace s is legal. Three ex-
emplary rules for legal traces are shown in Table 4; not shown are two dual rules
for outgoing calls and incoming returns, and furthermore two rules specifying
the situation for the initial calls, which are similar to L-CallI. For simplicity,
we omit premises dealing with static aspects of typing, as we did for the exter-
nal semantics. As in the operational semantics, the caller identity, even if not
part of the label, is guessed and remembered, here in the history r. The premise
Δ � r � a : Θ asserts that after r, the action a is enabled, and pop n r picks the
call matching the return in question. See [3] for details.

6 Conclusion

Inspired by the work of [7], we presented an operational semantics of a class-
based, object-oriented calculus with multithreading. The seemingly innocent step
from an object-based setting as in [7] to a framework with classes requires quite
some extension in the operational semantics to characterize the possible behav-
ior of a component. In particular it is necessary to keep track of the potential
connectivity of objects of the environment to exclude impossible communication
labels. It is therefore instructive, to review the differences in this conclusion,
especially to try to understand how the calculus of [7] can be understood as a
special case of the framework explored here.

The fundamental dichotomy underlying the observational definition of equiv-
alence is the one between the inside and the outside: program or component vs.
environment or observer, or in game-theoretical terms, player vs. opponent. This
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leads to the crucial difference between object-based languages, instantiating from
objects, and class-based language, instantiating from classes: In the class-based
setting, instantiation may cross the demarcation line between component and
environment, while in the object-based setting, this is not possible: the program
only instantiates program objects, and the environment only objects belonging
to the environment. All other complications follow from this difference, the most
visible being that it is necessary to represent the dynamic object structure into
the semantics, or rather an approximation of the connectivity of the environ-
ment objects. Another way to see it is, that in the setting of [7], there is only
one clique in the environment, i.e., in the worst case, which is the relevant one,
all environment objects are connected with each other. Since the component
cannot create environment objects (or vice versa), new isolated cliques are never
created. The object-based case can therefore be understood by invariantly (and
trivially) taking EΔ = Δ × (Δ + Θ), while in our setting, EΔ may be more
specific.

Further Related Work. [12] investigates the full abstraction problem in an
object calculus with subtyping. The setting is a bit different from the one as
used here as the paper does not compare a contextual semantics with a denota-
tional one, but a semantics by translation with a direct one. The paper considers
neither concurrency nor aliasing. [4] presents a full abstraction result for the π-
calculus, the standard process algebra for name passing and dynamically chang-
ing process structures. The extensional semantics is given as a domain-theoretic,
categorical model, and using bisimulation equivalence as starting point, not may
testing resp. traces as here. [13] gives equational full abstraction for standard
translation of the polyadic π-calculus into the monadic one. Without additional
information, the translation is not fully abstract, and [13] introduces graph-types
as an extension to the π-calculus sorting to achieve full abstraction. The graph
types abstract the dynamic behavior of processes. In capturing the dynamic be-
havior of interaction, Yoshida’s graph types are rather different from the graph
abstracting the connectivity of objects presented here. Recently, Jeffrey and
Rathke [8] extended their work on trace-based semantics from an object-based
setting to a core of Java (called Java Jr.), including classes and subtyping. How-
ever, their semantics avoids the issue of object connectivity by using a notion
of package.
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Abstract. Orchestrating software components, often from independent
suppliers, became a central concern in software construction. Actually,
as relevant as components themselves, are the ways in which they can
be put together to interact and cooperate in order to achieve some com-
mon goal. Such is the role of the so-called software connectors: external
coordination devices which ensure the flow of data and enforce synchroni-
zation constraints within a component’s network. This paper introduces
a new model for software connectors, based on relations extended in time,
which aims to provide support for light inter-component dependency and
effective external control.

1 Introduction

The expression software connector was coined by software architects to repre-
sent the interaction patterns among components, the latter regarded as basic
computational elements or information repositories. Their aim is to mediate the
communication and coordination activities among components, acting as a sort
of glueing code between them. Examples range from simple channels or pipes,
to event broadcasters, synchronisation barriers or even more complex structures
encoding client-server protocols or hubs between databases and applications.

Although component-based development [19, 25, 15] became accepted in in-
dustry as a new effective paradigm for Software Engineering and even considered
its cornerstone for the years to come, there is still a need for precise ways to
document and reason about the high-level structuring decisions which define a
system’s software architecture.

Conceptually, there are essentially two ways of regarding component-based soft-
ware development. The most wide-spread, which underlies popular technologies
like, e.g., Corba [24], DCom [14] or JavaBeans [16], reflects what could be called
the object orientation legacy. A component, in this sense, is essentially a collec-
tion of objects and, therefore, component interaction is achieved by mechanisms
implementing the usual method call semantics. As F. Arbab stresses in [3] this

induces an asymmetric, unidirectional semantic dependency of users
(of services) on providers (...) which subverts independence of compo-
nents, contributes to the breaking of their encapsulation, and leads to
a level of inter-dependence among components that is no looser than
that among objects within a component.

Z. Liu and K. Araki (Eds.): ICTAC 2004, LNCS 3407, pp. 52–67, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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An alternative point of view is inspired by research on coordination languages
[13, 21] and favors strict component decoupling in order to support a looser
inter-component dependency. Here computation and coordination are clearly
separated, communication becomes anonymous and component interconnection
is externally controlled. This model is (partially) implemented in JavaSpaces
on top of Jini [20] and fundamental to a number of approaches to component-
ware which identify communication by generic channels as the basic interaction
mechanism — see, e.g., Reo [3] or Piccola [23, 18].

Adopting the latter point of view, this paper focuses on the specification of
software connectors either as relations over a temporarily labelled data domain
(representing the flow of messages) or as relations extended in time, i.e., defined
with respect to a a memory of past computations encoded as an internal state
space. The latter model extends the former just as a labelled transition system
extends a simple relation. Formally, we resort to coalgebraic structures [22] to
model such extended relations, pursuing a previous line of research on applying
coalgebra theory to the semantics of component-based software development
(see, eg, [5, 6, 17].).

The paper is organized as follows: a semantic model for software connectors
is introduced in section 2 and illustrated with the specification of one of the
most basic connectors: the asynchronous channel. The model is further devel-
oped in section 3 which introduces a systematic way of building connectors by
aggregation of ports as well as two combinators encoding, respectively, a form of
concurrent composition and a generalization of pipelining. Section 4 illustrates
the expressiveness of this model through the discussion of some typical examples
from the literature. Finally, section 5 summarizes what has been achieved and
enumerates a few research questions for the future.

Notation. The paper resorts to standard mathematical notation emphasizing a
pointfree specification style (as in, e.g., [9]) which leads to more concise descrip-
tions and increased calculation power. The underlying mathematical universe is
the category of sets and set-theoretic functions whose composition and identity
are denoted by · and id, respectively. Notation (φ → f, g) stands for a con-
ditional statement: if φ then apply function f else g. As usual, the basic set
constructs are product (A × B), sum, or disjoint union, (A + B) and function
space (BA). We denote by π1 : A × B −→ A the first projection of a product
and by ι1 : A −→ A + B the first embedding in a sum (similarly for the oth-
ers). Both × and + extend to functions in the usual way and, being universal
constructions, a canonical arrow is defined to A× B from any set C and, sym-
metrically, from A + B to any set C, given functions f : C −→ A, g : C −→ B
and l : A −→ C, h : B −→ C, respectively. The former is called a split and
denoted by 〈f, g〉, the latter an either and denoted by [l, h], satisfying

k = 〈f, g〉 ⇔ π1 · k = f ∧ π2 · k = g (1)
k = [l, h] ⇔ k · ι1 = l ∧ k · ι2 = h (2)

Notation BA is used to denote function space, i.e., the set of (total) functions
from A to B. It is also characterized by an universal property: for all function
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f : A×C −→ B, there exists a unique f : A −→ BC , called the curry of f , such
that f = ev · (f × C). Finally, we also assume the existence of a few basic sets,
namely ∅, the empty set and 1, the singleton set. Note they are both ‘degener-
ate’ cases of, respectively, sum and product (obtained by applying the iterated
version of those combinators to a nullary argument). Given a value v of type
X, the corresponding constant function is denoted by v : 1 −→ x. Of course
all set constructions are made up to isomorphism. Therefore, set B = 1 + 1 is
taken as the set of boolean values true and false. Finite sequences of X are de-
noted by X∗. Sequences are observed, as usual, by the head (head) and tail (tail)
functions, and built by singleton sequence construction (singl) and concatena-
tion (�).

2 Connectors as Coalgebras

2.1 Connectors

According to Allen and Garlan [1] an expressive notation for software connec-
tors should have three properties. Firstly, it should allow the specification of
common patterns of architectural interaction, such as remote call, pipes, event
broadcasters, and shared variables. Secondly, it should scale up to the description
of complex, eventually dynamic, interactions among components. For example,
in describing a client–server connection we might want to say that the server
must be initialized by the client before a service request becomes enabled. Fi-
nally, it should allow for fine-grained distinctions between small variations of
typical interaction patterns.

In this paper a connector is regarded as a glueing device between software
components, ensuring the flow of data and synchronization constraints. Software
components interact through anonymous messages flowing through a connec-
tor network. The basic intuition, borrowed from the coordination paradigm, is
that connectors and components are independent devices, which make the latter
amenable to external coordination by the former.

Connectors have interface points, or ports, through which messages flow. Each
port has an interaction polarity (either input or output), but, in general, con-
nectors are blind with respect to the data values flowing through them. Con-
sequently, let us assume D as the generic type of such values. The simplest
connector one can think of — the synchronous channel — can be modelled just
as a function [[ • � �� • ]] : D −→ D. The corresponding temporal constraint
— that input and output occur simultaneously — is built-in in the very notion
of a function. Such is not the case, however, of an asynchronous channel whose
synchronization constraints entails the need for the introduction of some sort
of temporal information in the model. Therefore, we assume that, on crossing
the borders of a connector, every data value becomes labelled by a time stamp
which represents a (rather weak) notion of time intended to express order of oc-
currence. As in [3], temporal simultaneity is simply understood as atomicity, in
the sense that two equally tagged input or output events are supposed to occur
in an atomic way, that is, without being interleaved by other events.
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In such a setting, the semantics of a connector C, with m input and n output
ports, is given by a relation

[[C]] : (D× T)n −→ (D× T)m (3)

The asynchronous channel, in particular, is specified by

[[ • � �� • ]] ⊆ (D× T)× (D× T) = {((d, t), (d′, t′)) | d′ = d ∧ t′ > t}

This simple model was proposed by the authors in [7], where its expressive
power and reasoning potential is discussed. Note that with the explicit represen-
tation of a temporal dimension one is able to model non trivial synchronization
restrictions. Relations, on the other hand, cater for non deterministic behaviour.
For example, a lossy channel, i.e., one that can loose information, therefore mod-
eling unreliable communication, is specified by a correflexive relation over D×T,
i.e., a subset of the identity IdD×T.

On the other hand it seems difficult to express in this model the FIFO require-
ment usually associated to an asynchronous channel. The usual way to express
such constraints, requiring a fine-grain control over the flow of data, resorts to
infinite data structures, typically streams, i.e., infinite sequences, of messages (as
in [4, 3] or [8]). An alternative, more operational, approach, to be followed in the
sequel, is the introduction of some form of internal memory in the specification
of connectors. Let U be its type, which, in the asynchronous channel example,
is defined as a sequence of D values, i.e., U = D

∗, representing explicitly the
buffering of incoming messages. The asynchronous channel is, then, given by the
specification of two ports to which two operations over D

∗, corresponding to the
reception and delivery of a D value, are associated. The rationale is that the
operations are activated by the arrival of a data element (often referred to as a
message) to the port. Formally,

receive : D
∗ ×D → D

∗

= � ·(id× singl)
deliver : D

∗ → D
∗ × (D + 1)

= 〈tl, hd〉

Grouping them together leads to a specification of the channel as an elementary
transition structure over D

∗, i.e., a pointed coalgebra 〈[] ∈ D
∗, c : D

∗ −→ (D∗ ×
(D + 1))(D+1)〉 where

c = D
∗ × (D + 1) dr−−−−→ D

∗ × D + D
∗ receive+deliver−−−−−−−−→ D

∗ + D
∗ × (D + 1)

�−−−−→ D
∗ × 1 + D

∗ × (D + 1)
[id×ι2,id]−−−−−−→ D

∗ × (D + 1)

Note how this specification meets all the exogenous synchronization con-
straints, including the enforcing of a strict FIFO discipline. The temporal di-
mension, however, is no more explicit, but built-in in coalgebra dynamics. We
shall come back to this in section 5. For the moment, however, let us elaborate on
this example to introduce a general model of software connectors as coalgebras.
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2.2 The General Model

A software connector is specified by an interface which aggregates a number of
ports represented by operations which regulate its behaviour. Each operation
encodes the port reaction to a data item crossing the connector’s boundary. Let
U be the type of the connector’s internal state space and D a generic data domain
for messages, as before. In such a setting we single out three kinds of ports with
the following signatures:

post : U −→ UD (4)
read : U −→ (D + 1) (5)
get : U −→ U × (D + 1) (6)

where

– post is an input operation analogous to a write operation in conventional
programming languages (see e.g., [2, 21, 3]). Typically, a post port accepts
data items and store them internally, in some form.

– read is a non-destructive output operation. This means that through a read
port the environment might ‘observe’ a data item, but the connector’s state
space remains unchanged. Of course read is a partial operation, because there
cannot be any guarantee that data is available for reading.

– get is a destructive variation of the read port. In this case the data item is
not only made externally available, but also deleted from the connector’s
memory.

As mentioned above, connectors are formed by the aggregation of a number
of post, read and get ports. According to their number and types one specific
connectors with well-defined behaviours may be defined. Let us consider some
possibilities.

Sources and Sinks. The most elementary connectors are those with a unique
port. According to its orientation they can be classified as

– Data sources, specified by a single read operation

♦d = 〈d ∈ D, ι1 : D → D + 1〉 (7)

defined over state space U = D and initialized with value d.
– Data sinks, ie, connectors which are always willing to accept any data item,

discarding it immediately. The state space of data sinks is irrelevant and,
therefore, modeled by the singleton set 1 = {∗}. Formally,

� = 〈∗ ∈ 1, ! : 1 → 1D〉 (8)

where ! is the (universal) map from any object to the (final) set 1.
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Binary Connectors. Binary connectors are built by the aggregation of two
ports, assuming the corresponding operations are defined over the same state
space. This, in particular, enforces mutual execution of state updates.

– Consider, first, the aggregation of two read ports, denoted by read1 and read2,
with possibly different specifications. Both of them are (non destructive)
observers and, therefore, can be simultaneously offered to the environment.
The result is a coalgebra simply formed by their split :

c = 〈u ∈ U, 〈read1, read2〉 : U → (D + 1)× (D + 1)〉 (9)

– On the other hand, aggregating a post to a read port results in

c = 〈u ∈ U, 〈post, read〉 : U → UD × (D + 1)〉 (10)

– Replacing the read port above by a get one requires an additive aggregation
to avoid the possibility of simultaneous updates leading to

c = 〈u ∈ U, γc : U → (U × (D + 1))D+1〉 (11)

where1

γc = U × (D + 1) dr−−−−→ U × D + U
post+get−−−−−→ U + U × (D + 1)

�−−−−→ U × 1 + U × (D + 1)
[id×ι2,id]−−−−−−→ U × (D + 1)

Channels of different kinds are connectors of this type. Recall the asyn-
chronous channel example above: ports identified by receive and deliver have
the same signature of a post and a get, respectively. An useful variant is the
filter connector which discards some messages according to a given predicate
φ : 2 ←− D. The get port is given as before, i.e., 〈tl, hd〉, but post becomes
conditional on predicate φ, i.e.,

post = φ→� ·(id× singl), id

– A similar scheme is adopted for the combination of two post ports:

c = 〈u ∈ U, γc : U → UD+D〉 (12)

where

γc = U × (D + D) dr−−−−→ U × D + U × D

post1+post2−−−−−−−→ U + U
�−−−−→ U

1 In the sequel dr is the right distributivity isomorphism and � the codiagonal function
defined as the either of two identities, i.e., � = [id, id].
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The General Case. Examples above lead to the specification of the following
shape for a connector built by aggregation of P post, G get and R read ports:

c = 〈u ∈ U, 〈γc, ρc〉 : U −→ (U × (D + 1))P×D+G × (D + 1)R〉 (13)

where ρc is the split the R read ports, i.e.,

ρc : U −→ (D + 1)× (D + 1)× . . .× (D + 1) (14)

and, γc collects ports of type post or get, which are characterized by the need
to perform state updates, in the uniform scheme explained above for the binary
case. Note that this expression can be rewritten as

U = (
∑
i∈P

UD +
∑
j∈G

U × (D + 1))×
∏
k∈R

(D + 1) (15)

which is, however, less amenable to symbolic manipulation in proofs.

3 Combinators

In the previous section, a general model of software connectors as pointed coal-
gebras was introduced and their construction by port aggregation discussed. To
obtain descriptions of more complex interaction patterns, however, some forms
of connector composition are needed. Such is the topic of the present section
in which two combinators are defined: a form of concurrent composition and a
generalisation of pipelining capturing arbitrary composition of post with either
read or get ports.

3.1 Concurrent Composition

Consider connectors c1 and c2 defined as

ci = 〈ui ∈ Ui, 〈γi, ρi〉 : (Ui × (D + 1))Pi×D+Gi × (D + 1)Ri〉

with Pi ports of type post, Ri of type read and Gi of type get, for i = 1, 2.
Their concurrent composition, denoted by c1 	 c2 makes externally available
all c1 and c2 single primitive ports, plus composite ports corresponding to the
simultaneous activation of post (respectively, get) ports in the two operands.
Therefore, P ′ = P1 + P2 + P1 × P2, G′ = G1 +G2 +G1 ×G2 and R′ = R1 + R2
become available in c1 	 c2 as its interface sets. Formally, define

c1 	 c2 : U ′ −→ (U ′ × (D + 1))P ′×D+G′ × (D + 1)R′
(16)

where
γc1�c2

= U1 × U2 × (P1 + P2 + P1 × P2) × D + (G1 + G2 + G1 × G2) �−−−−−−−→
(U1 × (P1 × D + G1) × U2 + U1 × U2 × (P2 × D + G2) + U1 × (P1 × D + G1) × U2 × (P2 × D + G2)

γ1×id+id×γ2+γ1×γ2−−−−−−−−−−−−−−−−−−→ (U1 × (D + 1)) × U2 + U1 × (U2 × (D + 1)) + (U1 × (D + 1)) × (U2×(D + 1))

�−−−−−−−→ U1 × U2 × (D + 1) + U1 × U2 × (D + 1) + U1 × U2 × (D + 1)2
�+id−−−−−−−→

U1 × U2 × (D + 1) + U1 × U2 × (D + 1) × U2(D + 1) �−−−−−−−→ U1 × U2 × ((D + 1) + (D + 1))2
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and

ρc1�c2 = U1 × U2
ρ1×ρ2−−−−→ (D + 1)R1 × (D + 1)R2 �−−−−→ (D + 1)R1+R2

3.2 Hook

The hook combinator plugs ports with opposite polarity within an arbitrary
connector

c = 〈u ∈ U, 〈γc, ρc〉 : U −→ (U × (D + 1))P×D+G × (D + 1)R〉

There are two possible plugging situations:

1. Plugging a post port pi to a read rj one, resulting in

ρc�pi
rj

= 〈r1, . . . , rj−1, rj+1, . . . , rR〉

γc�pi
rj

= U × ((P − 1)× D +G) θ×id−−−−→ U × ((P − 1)× D +G)

�−−−−→
∑

P−1 U × D +
∑

G U
[p1,...,pi−1,pi+1,...,pp]+[g1,...,gG]−−−−−−−−−−−−−−−−−−−−−→

U + U × (D + 1) �−−−−→ U × 1 + U × (D + 1)
[id×ι2,id]−−−−−−→ U × (D + 1)

where θ : U → U

θ = U
�−−−−→ U × U

id×rj−−−−→ U × D + 1
�−−−−→ U × D + U

pi+id−−−−→ U + U
�−−−−→ U

2. Plugging a post port pi to a get gj one, resulting in

ρc�pi
rj

= ρc

γc�pi
gj

= U × ((P − 1)× D + (G− 1)) θ×id−−−−→
U × ((P − 1)× D + (G− 1))

�−−−−→
∑

P−1 U × D +
∑

G−1 U

[p1,...,pi−1,pi+1,...,pp]+[g1,...,gj−1,gj+1,...,gG]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
U + U × (D + 1) �−−−−→ U × 1 + U × (D + 1)

[id×ι2,id]−−−−−−→ U × (D + 1)

where θ : U → U

θ = U
gj−−−−→ U × (D + 1) �−−−−→ U × D + U

pi+id−−−−→ U + U
�−−−−→ U
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Note that, according to the definition above, if the result of a reaction at a
port of type read or get is of type 1, which encodes the absence of any data item
to be read, the associated post is not activated and, consequently, the interaction
does not become effective.

Such unsuccessful read attempt can alternatively be understood as a pend-
ing read request. In this case the intended semantics for interaction with the
associated post port is as follows: successive read attempts are performed un-
til communication occurs. This version of hook is denoted by 
p

r c and easily
obtained by replacing, in the definition of θ above, step

U × D + U
pi+id−−−−→ U + U

by

U × D + U
pi+θ−−−−→ U + U

Both forms of the hook combinator can be applied to a whole sequence of
pairs of opposite polarity ports, the definitions above extending as expected.

The two combinators introduced in this section can also be put together to
define a form of sequential composition in situations where all the post ports of
the second operand (grouped in in) are connected to all the read and get ports of
the first (grouped in out). It is assumed that hooks between two single ports ex-
tend smoothly to any product of ports (as arising from concurrent composition)
in which they participate. Formally, we define by abbreviation

c1 ; c2
abv= (c1 	 c2) �in

out (17)

and
c1 �� c2

abv= 
in
out (c1 	 c2) (18)

4 Examples

This section discusses how some typical software connectors can be defined in
the model proposed in this paper.

4.1 Broadcasters and Mergers

Our first example is the broadcaster, a connector which replicates in each of its
two (output) ports, any input received in its (unique) entry as depicted bellow.
There are two variants of this connector denoted, respectively, by � and �. The
first one corresponds to a synchronous broadcast, in the sense that the two get
ports are activated simultaneously. The other one is asynchronous, in the sense
that both of its get ports can be activated independently. The definition of � is
rather straightforward as a coalgebra over U = D + 1 and operations

post : U × D → U = ι1 · π2

get1, get2 : U → U × (D + 1) = 
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get1

post � •

��

��
get2

Fig. 1. The broadcaster connector

where 
 is the diagonal function, defined by 
= 〈id, id〉. The synchronous case,
however, requires the introduction of two boolean flags initialized to 〈false, false〉
to witness the presence of get requests at both ports. The idea is that a value is
made present at both the get ports if it has been previously received, as before,
and there exists two reading requests pending. Formally, let U = (D+1)×(B×B)
and define

post : U × D → U = 〈ι1 · π2,π2 · π1〉
get1 : U → U × (D + 1) = (=∗ ·π1 → 〈id,π1〉, getaux1)

where
getaux1 = (π2 · π2 → 〈(ι2 · ∗)× (false× false),π1〉, 〈id× (true× id), ι2 · ∗〉)

I.e., if there is no information stored flag ∗ is returned and the state left un-
changed. Otherwise, an output is performed but only if there is a previous re-
quest at the other port. If this is not the case the reading request is recorded at
the connector’s state. This definition precludes the possibility of a reading unless
there are reading requests at both ports. The fact that both requests are served
depends on their interaction with the associated post ports, i.e., on the chosen
hook discipline (see the synchronization barrier example in subsection 4.3). The
definition of get2 is similar but for the boolean flags update:

getaux2 = (π1 · π2 → 〈(ι2 · ∗)× (false× false),π1〉, 〈id× (id× true), ι2 · ∗〉)

Dual to the broadcaster connector is the merger which concentrates messages
arriving at any of its two post ports. The merger, denoted by �, is similar to

post1

��• � �� get

post2

��

Fig. 2. The merger connector
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an asynchronous channel, as given in section 2, with two identical post ports.
Another variant, denoted by �, accepts one data item a time, after which disables
both post ports until get is activated. This connector is defined as a coalgebra
over U = D + 1 with

post1 = post2 : U × D → U

= (=∗ ·π1 → π1, ι1 · π2)
get : U → U × (D + 1)

= (=∗ → 〈
, id〉, 〈ι2 · ∗, id〉)

4.2 Drains

A drain is a symmetric connector with two inputs, but no output, points. Op-
erationally, every message arriving to an end–point of a drain is simply lost. A
drain is synchronous when both post operations are required to be active at the
same time, and asynchronous otherwise. In both case, no information is saved
and, therefore U = 1. Actually, drains are used to enforce synchronisation in the
flow of data. Formally, an asynchronous drain is given by coalgebra

[[ • � � � • ]] : 1 �� 1D+D

where both post ports are modelled by the (universal) function to 1, i.e., post1 =
!U×D = post2. The same operations can be composed in a product to model
the synchronous variant:

[[ • � 	 � • ]] : U �� UD×D

defined by

1× (D× D)
∼=−−−−→ 1× D× 1× D

post 1×post 2−−−−−−−−−→ 1× 1 !−−−−→ 1

There is an important point to make here. Note that in this definition two
post ports were aggregated by a product, instead of resorting to the more com-
mon additive context. Such is required to enforce their simultaneous activation
and, therefore, to meet the expected synchrony constraint. This type of port
aggregation also appears as a result of concurrent composition. In general, when
presenting a connector’s interface, we shall draw a distinction between single
and composite ports, the latter corresponding to the simultaneous activation of
two or more of the former.

Composite ports, on the other hand, entail the need for a slight generalisation
of hook. In particular it should cater for the possibility of a post port requiring,
say, two values of type D be plugged to two (different) read or get ports. Such a
generalisation is straightforward and omitted here (but used below on examples
involving drains).
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4.3 Synchronization Barrier

In the coordination literature a synchronization barrier is a connector used to
enforce mutual synchronization between two channels (as σ1 and σ2 below).
This is achieved by the composition of two synchronous broadcasters with two
of their get ports connected by a synchronous drain. As expected, data items
read at extremities o1 and o2 are read simultaneously. The composition pattern
is depicted in figure 3, which corresponds to the following expression:

(� 	 �) �� (( • � σ1 �� • ) 	 ( • � 	 � • ) 	 ( • � σ2 �� • )) (19)

• � σ1 �� o1

i1
� •

��

�� •�
	

�•

i2
� •

��

�� • � σ2 �� o2

Fig. 3. A synchronization barrier

4.4 The Dining Philosophers

Originally posed and solved by Dijkstra in 1965, the dinning philosophers prob-
lem provides a good example to experiment an exogenous coordination model of
the kind proposed in this paper2. In the sequel we discuss two possible solutions
to this problem.

A Merger-Drain Solution. One possible solution assumes the existence of
five replicas of a component Phi(losopher), each one with four get ports, two on
the lefthand side and another two on the righthand side. The port labeled lefti

2 The basic version reads as follows. Five philosophers are seated around a table. Each
philosopher has a plate of spaghetti and needs two forks to eat it. When a philosopher
gets hungry, he tries to acquire his left and right fork, one at a time, in either order.
If successful in acquiring two forks, he eats for a while, then puts down the forks
and continues to think.
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is activated by Phii to place a request for the left fork. On the other hand, port
leftfi is activated on its release (and similarly for the ports on the right). Coor-
dination between them is achieved by a software connector Fork with four post
ports, to be detailed below. The connection between two adjacent philosophers
through a Fork is depicted below which corresponds to the following expression
in the calculus

(Phii 	 Forki 	 Phii+1) �rri rfi lri lfi

righti rightfi lefti+1 leftfi+1
(20)

�

� �

�leftfi

lefti righti

rightfi

Phii

�

� 	

	rfi

rri lri

lfi

Forki

�

� �

�leftfi+1

lefti+1 righti+1

rightfi+1

Phii+1

Fig. 4. Dining Philosophers (1)

The synchronization constraints of the problem are dealt by connector Fork built
from two blocking mergers and a synchronous drain depicted in figure 5 and given
by expression

(� � �) ; • � 	 � • (21)

p1

��

p′
1

��• � �� • � 	 � • •�		

p2





p′
2

��

Fig. 5. A Fork connector (1)

A Token Solution. Another solution is based on a specification of Fork as
an exchange token connector. Such a connector is given as a coalgebra over
U = {�} + 1, where � is a token representing the (physical) fork. From the
point of view of a philosopher requesting a fork equivales to an attempt to
remove � from the connector state space. Dually, a fork is released by returning
it to the connector state space. In detail, a fork request at a philosopher port,
say right, which is a post port hooked to (the get port) rr of the connector is only
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successful if the token is available. Otherwise the philosopher must wait until a
fork is released. The port specifications for Fork are as follows

rr = lr : U → U × (D + 1)
= (=
 → (ι2 · ∗)× (ι1 · �), id× (ι2 · ∗))

rf = lf : U × D → U

= ι1 · �

Again, the Fork connector is used as a mediating agent between any two
philosophers as depict in figure 6. The corresponding expression is

(Phii 	 Forki 	 Phii+1) �righti rfi lefti lfi

rri rightfi lri+1 leftfi+1
(22)

�

� 	

�leftfi

lefti righti

rightfi

Phii

�

� �

	rfi

rri lri

lfi

Forki

�

� 	

�leftfi+1

lefti+1 righti+1

rightfi+1

Phii+1

Fig. 6. Dining Philosophers (2)

5 Conclusions and Future Work

This paper discussed the formalization of software connectors, adopting a
coordination oriented approach to support looser levels of inter-component de-
pendency. Two alternative models were mentioned: relations on time-tagged
domains (detailed in [7]) and (polynomial) coalgebras, regarded as relations ex-
tended in time, which is the basic issue of this paper. The close relation between
the two models is still object of on-going work. In particular, how does the re-
lational model lifts to a coalgebraic one when more complex notions of time are
adopted? Note that, in most cases, the usual set-theoretic universe underlying
coalgebras as used here lacks enough structure to extend such relations over
(richly structured) timed universes.

Resorting to coalgebras to specify software connectors has the main advan-
tage of being a smooth extension of the previous relational model. Actually, any
relation can be seen as a coalgebra over the singleton set, i.e., U = 1. Moreover,
techniques of coalgebraic analysis, namely bisimulation, can be used to reason
about connectors and, in general, architectural design descriptions. In fact, al-
though in this paper the emphasis was placed on connector modeling and ex-
pressiveness, the model supports a basic calculus in which connector equivalence
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and refinement can be discussed (along the lines of [17]). The model compares
quite well to the more classic stream-based approaches (see e.g., [10, 8, 3]), which
can be recovered as the final interpretation of the coalgebraic specifications pro-
posed here.

A lot of work remains to be done. Our current concerns include, in particu-
lar, the full development of a calculus of software connectors emerging from the
coalgebraic semantic framework and its use in reasoning about typical software
architectural patterns [1, 12] and their laws. How easily this work scales up to
accommodate dynamically re-configurable architectures, as in, e.g., [11] or [26],
remains an open challenging question. We are also currently working on the de-
velopment of an Haskell based platform for prototyping this model, allowing
the user to define and compose, in an interactive way, his/her own software con-
nectors.

Acknowledgements. This research was carried on in the context of the PURe
Project supported by Fct, the Portuguese Foundation for Science and Technol-
ogy, under contract POSI/ICHS/44304/2002.

References

1. R. Allen and D. Garlan, A formal basis for architectural connection, ACM TOSEM
6 (1997), no. 3, 213–249.

2. F. Arbab, Reo: A channel-based coordination model for component composition,
Mathematical Structures in Computer Science, 14 (2004), no. 3, 329–366.

3. , Abstract behaviour types: a foundation model for components and their
composition, Proc. First International Symposium on Formal Methods for Compo-
nents and Objects (FMCO’02) (F. S. de Boer, M. Bonsangue, S. Graf, and W.-P.
de Roever, eds.), Springer Lect. Notes Comp. Sci. (2852), 2003, pp. 33–70.

4. F. Arbab and J. Rutten, A coinductive calculus of component connectors, CWI
Tech. Rep. SEN-R0216, CWI, Amsterdam, 2002, To appear in the proceedings of
WADT’02.

5. L. S. Barbosa, Components as processes: An exercise in coalgebraic modeling,
FMOODS’2000 - Formal Methods for Open Object-Oriented Distributed Systems
(S. F. Smith and C. L. Talcott, eds.), Kluwer Academic Publishers, September
2000, pp. 397–417.

6. , Towards a Calculus of State-based Software Components, Journal of Uni-
versal Computer Science 9 (2003), no. 8, 891–909.

7. M.A. Barbosa and L.S. Barbosa, A Relational Model for Component Interconnec-
tion, Journal of Universal Computer Science 10 (2004), no. 7, 808–823.

8. K. Bergner, A. Rausch, M. Sihling, A. Vilbig, and M. Broy, A Formal Model for
Componentware, Foundations of Component-Based Systems (Gary T. Leavens and
Murali Sitaraman, eds.), Cambridge University Press, 2000, pp. 189–210.

9. R. Bird and O. Moor, The algebra of programming, Series in Computer Science,
Prentice-Hall International, 1997.

10. M. Broy, Semantics of finite and infinite networks of communicating agents, Dis-
tributed Computing (1987), no. 2.

11. G. Costa and G. Reggio, Specification of abstract dynamic data types: A temporal
logic approach, Theor. Comp. Sci. 173 (1997), no. 2.



Specifying Software Connectors 67

12. J. Fiadeiro and A. Lopes, Semantics of architectural connectors, Proc. of TAP-
SOFT’97, Springer Lect. Notes Comp. Sci. (1214), 1997, pp. 505–519.

13. D. Gelernter and N. Carrier, Coordination languages and their significance, Com-
munication of the ACM 2 (1992), no. 35, 97–107.

14. R. Grimes, Profissional dcom programming, Wrox Press, 1997.
15. He Jifeng, Liu Zhiming, and Li Xiaoshan, A contract-oriented approach to

component-based programming, Proc. of FACS’03, (Formal Approaches to Com-
ponent Software) (Pisa) (Z. Liu, ed.), Spetember 2003.

16. V. Matena and B Stearns, Applying entreprise javabeans: Component-based devel-
opment for the j2ee platform, Addison-Wesley, 2000.

17. Sun Meng and L. S. Barbosa, On refinement of generic software components,
10th Int. Conf. Algebraic Methods and Software Technology (AMAST) (Stirling)
(C. Rettray, S. Maharaj, and C. Shankland, eds.), Springer Lect. Notes Comp. Sci.
(3116), 2004, pp. 506–520.

18. O. Nierstrasz and F. Achermann, A calculus for modeling software components,
Proc. First International Symposium on Formal Methods for Components and
Objects (FMCO’02) (F. S. de Boer, M. Bonsangue, S. Graf, and W.-P. de Roever,
eds.), Springer Lect. Notes Comp. Sci. (2852), 2003, pp. 339–360.

19. O. Nierstrasz and L. Dami, Component-oriented software technology, Object-
Oriented Software Composition (O. Nierstrasz and D. Tsichritzis, eds.), Prentice-
Hall International, 1995, pp. 3–28.

20. S. Oaks and H. Wong, Jini in a nutshell, O’Reilly and Associates, 2000.
21. G. Papadopoulos and F. Arbab, Coordination models and languages, Advances in

Computers — The Engineering of Large Systems, vol. 46, 1998, pp. 329–400.
22. J. Rutten, Elements of stream calculus (an extensive exercise in coinduction), Tech.

report, CWI, Amsterdam, 2001.
23. J.-G. Schneider and O. Nierstrasz, Components, scripts, glue, Software Architec-

tures - Advances and Applications (L. Barroca, J. Hall, and P. Hall, eds.), Springer-
Verlag, 1999, pp. 13–25.

24. R. Siegel, CORBA: Fundamentals and programming, John Wiley & Sons Inc, 1997.
25. C. Szyperski, Component software, beyond object-oriented programming, Addison-

Wesley, 1998.
26. M. Wermelinger and J. Fiadeiro, Connectors for mobile programs, IEEE Trans. on

Software Eng. 24 (1998), no. 5, 331–341.



Replicative - Distribution Rules in P Systems
with Active Membranes

Tseren-Onolt Ishdorj1,2 and Mihai Ionescu2

1 Computer Science and Information Technology School,
Mongolian State University of Education,

Baga Toiruu-14, 210648 Ulaanbaatar, Mongolia
2 Research Group on Mathematical Linguistics,

Rovira i Virgili University,
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Abstract. P systems (known also as membrane systems) are biologi-
cally motivated theoretical models of distributed and parallel comput-
ing. The two most interesting questions in the area are completeness
(solving every solvable problem) and efficiency (solving a hard problem
in feasible time). In this paper we define a general class of P systems
covering some biological operations with membranes. We introduce a
new operation, called replicative-distribution, into P systems with active
membranes. This operation is well motivated from a biological point of
view, and elegant from a mathematical point of view. It is both com-
putationally powerful and efficient. More precisely, the P systems with
active membranes using replicative-distribution rules can compute ex-
actly what Turing machines can compute, and can solve NP-complete
problems, particularly SAT, in linear time.

1 Introduction

Traditionally, theoretical computer science has played the role of a scout that
explores novel approaches towards computing well in advance of other sciences.
This did also occur in the case of membrane computation.

In the history of computing, electronic computers are only the latest in a
long chain of man’s attempts to use the best technology available for doing
computations. While it is true that their appearance, some 50 years ago, has
revolutionized computing, computing does not start with electronic computers,
and there is no reason why it should end with them. Indeed, even electronic
computers have their limitations: there is only so much data they can store and
their speed thresholds determined by physical laws will soon be reached. The
latest attempt to break down these barriers is to replace, once more, the tools
for doing computations: instead of electrical use biological ones.

An important achievement in this direction was brought by Leonard Adle-
man in 1994, [1], when he surprised the scientific community by using the tools
of molecular biology to solve a hard computational problem. Adleman’s exper-
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iment, solving an instance of the Directed Hamiltonian Path Problem by ma-
nipulating DNA strands marked the first instance of a mathematical problem
being solved by biological means. The experiment provoked an avalanche of com-
puter science/molecular biology/biochemistry/physics research, while generating
at the same time a multitude of open problems.

The understanding of computations in nature – evolutionary computing,
neural computing, and molecular computing – belong to the emerging area of
natural computing, which is concerned with computing which go on in nature or
is inspired by nature.

Membrane computing is a novel emerging branch of natural computing, in-
troduced by Gheorghe Păun in [10]. This area starts from the observation that
certain processes which take place in the complex structure of living cells can be
considered as computations. P systems are a class of distributed parallel com-
puting devices of a biochemical type, which can be seen as a general computing
architecture where various types of objects can be processed by various opera-
tions. For a detailed description of various P system models we refer to [12].

In membrane computing, P systems with active membranes have a special
place, because they provide biologically inspired tools to solve computationally
hard problems. Using the possibility to divide or separate membranes, one can
create an exponential working space in linear time, which can then be used in
a parallel computation for solving, e.g., NP-complete problems in polynomial
or even linear time. Details can be found in [2, 11, 12], as well as in the com-
prehensive page from the web address http://psystems.disco. unimib.it.
Informally speaking, in P systems with active membranes one uses the following
types of rules: (a0) multiset rewriting rules, (b0) rules for introducing objects
into membranes, (c0) rules for sending objects out of membranes, (d0) rules for
dissolving membranes, (e0) rules for dividing elementary membranes, and (f0)
rules for dividing non-elementary membranes, see [3]. In these rules, a single ob-
ject is involved. The following rules are introduced in [2]: (g0) membrane merging
rules, (h0) membrane separation rules, and (i0) membrane release rules, whose
common feature is that they involve multisets of objects.

In this paper, we introduce a new developing rule in P systems, called
replicative-distribution rule, which is motivated from the specific structure and
functioning of living neural-cell (neuron). The universality and efficiency related
to replicative-distribution rules are investigated here.

Let us briefly mention the biological background of our new developing rules.
A neuron has a body, the dendrites, which form a very fine filamentary bush
around the body of the neuron, and the axon, a unique, long filament, which in
turn also ends with a fine filamentous bush; each of the filaments from the end of
the axon is terminated with a small bulb. It is by means of these end-bulbs and
the dendrites that the neurons are linked to each other: the impulses are sent
through the axon, from the body of the neuron to the end-bulbs, and the end-
bulbs transmit the impulses to the neurons whose dendrites they touch. Such
a contact junction between an end-bulb of an axon and dendrites of another
neuron is called cleft. An end-bulb releases an impulse into cleft, the impulse is
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replicated in the cleft and distributed into the connected dendrites. Moreover, in
the axon of the neuron, chemicals are replicated at the so-called Ranvier nodes
and transmitted to the adjacent nodes in opposite directions through the axon.
For more details about neural biology, we refer to [17].

2 Preliminaries

We assume the reader to be familiar to the fundamentals of formal language
theory and complexity theory, for instance, from [9, 15, 16], as well as to the
basics of membrane computing, from [12]. We only mention here some notions
and results from formal language theory, complexity theory, as well as from
membrane computing, which are used in this paper.

2.1 Formal Languages

An alphabet is a finite set of symbols (letters), and a word (string) over an
alphabet Σ is a finite sequence of letters from Σ. We denote the empty word
by λ, the length of a word w by |w|, and the number of ocuurences of a symbol
a in w by |w|a. The concatenation of two words x and y is denoted by x · y or
simply xy.

A language over Σ is a (possibly infinite) set of words over Σ. The language
consisting of all words over Σ is denoted by Σ∗, and Σ+ denotes the language
Σ∗−{λ}. A set of languages containing at least one language not equal to � or
{λ} is also called a family of languages.

We denote by REG, LIN, CF, CS, RE the families of languages generated by
regular, linear, context-free, context-sensitive, and of arbitrary grammars, re-
spectively (RE stands for recursively enumerable languages). By FIN we denote
the family of finite languages. The following strict inclusions hold:

FIN ⊂ REG ⊂ LIN ⊂ CF ⊂ CS ⊂ RE.

This is the Chomsky hierarchy.
For a family FL of languages, NFL denotes the family of length sets of lan-

guages in FL. Therefore, NRE is the family of Turing computable sets of natural
numbers. For a ∈ Σ and x ∈ Σ∗ we denote by |x|a the number of occurrences
of a in x. Then, for Σ = {a1, · · · , an}, the Parikh mapping associated with Σ
is the mapping on Σ∗ defined by ΨΣ(x) = (|x|a1 , · · · , |x|an) for each x ∈ Σ∗.
The Parikh images of languages RE is denoted by PsRE (this is the family of all
recursively enumerable sets of vectors of natural numbers).

The multisets over a given finite support (alphabet) are represented by strings
of symbols. The order of symbols does not matter, because the number of copies
of an object in a multiset is given by the number of occurrences of the corre-
sponding symbol in the string. Clearly, using strings is only one of many ways
to specify multisets. We suggest the readers refer to [4].

We will now introduce the notion of matrix grammars, used below in proofs.
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A matrix grammar with appearance checking is a computationally universal
rewriting system. Details can be found in [5]. For each matrix grammar there is
an equivalent matrix grammar in the binary normal form.

A matrix grammar G = (N,T, S,M,F ) is in the binary normal form if N =
N1 ∪ N2 ∪ {S,#}, with these three sets mutually disjoint, and the matrices in
M are in one of the following forms:

1. (S → XA), with X ∈ N1, A ∈ N2,
2. (X → Y,A→ x), with X,Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T )∗, |x| ≤ 2,
3. (X → Y,A→ #), with X,Y ∈ N1, A ∈ N2,
4. (X → λ, A→ x), with X ∈ N1, A ∈ N2, and x ∈ T ∗, |x| ≤ 2.

Moreover, there is only one matrix of type 1 (that is why one uses to write
it in the form (S → XinitAinit), in order to fix the symbols X,A present in it),
and F consists exactly of all rules A→ # appearing in matrices of type 3; # is
a trap-symbol, because once introduced, it is never removed. A matrix of type
4 is used only once, in the last step of a derivation.

For w, z ∈ (N ∪ T )∗ we write w =⇒ z if there is a matrix in m ∈ M such
that applying once each rule of m to w one can obtain z. A rule can be skipped
if it is in F and it is not applicable.

The language generated by G is defined by L(G) = {w ∈ T ∗ | S =⇒∗ w}.
The family of languages of this form is denoted by MATac. It is known that
MATac = RE.

2.2 P Systems with Active Membranes

In this subsection, we describe P systems with active membranes following the
concept defined in [12], where more details can also be found.

A membrane structure is represented by a Venn diagram and is identified by a
string of correctly matching parentheses, with a unique external pair of parenthe-
ses; this external pair of parentheses corresponds to the external membrane, called
the skin. A membrane without any other membrane inside is said to be elemen-
tary. For instance, the structure in Figure 1 contains 8 membranes; membranes 3,
5, 6 and 8 are elementary. The string of parentheses identifying this structure is

μ = [ [ [ ]5[ ]6]2[ ]3[ [ [ ]8]7]4]1.

All membranes are labeled; we have used here the numbers from 1 to 8. We
say that the number of membranes is the degree of the membrane structure,
while the height of the tree associated in the usual way with the structure is its
depth. In the example above we have a membrane structure of degree 8 and of
depth 3. The membranes delimit regions precisely identified by the membranes
(the region of a membrane is delimited by the membrane and all membranes
placed immediately inside it, if such a membrane exists). In these regions we
place objects, which are represented by symbols of an alphabet. Several copies of
the same object can be present in a region, so we work with multisets of objects.

We will now define the model which we work with: P systems with active
membranes. A P system with active membranes (without electrical charges) is a
construct
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Fig. 1. A membrane structure and its associated tree

Π = (O, H, μ, w1, . . . , wm, R),

where:

– m ≥ 1 is the initial degree of the system;
– O is the alphabet of objects;
– H is a finite set of labels for membranes;
– μ is a membrane structure, consisting of m membranes, labeled (not neces-

sarily in a one-to-one manner) with elements of H;
– w1, . . . , wm are strings over O, describing the multisets of objects placed in

the m regions of μ;
– R is a finite set of developmental rules, of the following forms:
(a0) [ a→ v]

h
, for h ∈ H, a ∈ O, v ∈ O∗

(object evolution rules, associated with membranes and depending on
the label, but not directly involving the membranes, in the sense that
the membranes are neither taking part in the application of these rules
nor are they modified by them);

(b0) a[ ]
h
→ [ b]

h
, for h ∈ H, a, b ∈ O

(communication rules; an object is introduced in the membrane during
this process);

(c0) [ a ]h → [ ]hb, for h ∈ H, a, b ∈ O
(communication rules; an objects sent out of the membrane during this
process);

(d0) [ a ]
h
→ b, for h ∈ H, a, b ∈ O

(dissolving rules; in reaction with an object, a membrane can be dis-
solved, while the object specified in the rule can be modified);

(e0) [ a]
h
→ [ b]

h
[ c]

h
, for h ∈ H, a, b, c ∈ O

(division rules for elementary membranes; in reaction with an object,
the membrane is divided into two membranes with the same label; the
object specified in the rule is replaced in the two new membranes by
possibly new objects; and the remaining objects are duplicated);

(f0) [ a]
h
→ [ b]

h
[ c]

h
, for h ∈ H, a, b, c ∈ O

(division rules for non-elementary membranes; in reaction with an object,
the membrane is divided into two membranes with the same label; the
object specified in the rule is replaced in the two new membranes by
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possibly new objects; the remaining objects and membranes contained
in this membrane are duplicated, and then are part of the contents of
both new copies of the membrane);

(g0) [ ]
h1

[ ]
h2
→ [ ]

h3
, for hi ∈ H, 1 ≤ i ≤ 3

(merging rules for elementary membranes; in reaction of two membranes,
they are merged into a single membrane; the objects of the former mem-
branes are put together in the new membrane);

(h0) [ O]h → [ U ]h[ O − U ]h, for h ∈ H,U ⊂ O
(separation rules for elementary membranes; the membrane is separated
into two membranes with the same labels; the objects from U are placed
in the first membrane, those from U − O are placed in the other mem-
brane);

(i0) [ [ O]
h1

]
h2
→ [ ]

h2
O, for h1, h2 ∈ H

(release rule; the objects in a membrane are released out of a membrane,
surrounding it, while the first membrane disappears).

The rules of types (a0), (b0), (c0), (d0), (e0), and (f0) are the polarizationless
version of the corresponding rules in [12]; the rules of (g0), (h0), and (i0) are
introduced in [2]. (In all cases, the subscript 0 indicates the fact that we do not
use polarization for membranes; in [11], [13] the membranes can have one of the
”electrical charges negative, positive, neutral, represented by −, +, 0, respec-
tively. Note that, following [3], we have omitted the label of the left parenthesis
from a pair of parentheses which identifies a membrane.)

The rules of type (a0) are applied in the parallel way (all objects which can
evolve by such rules have to evolve), while the rules of types (b0), (c0), (d0), (e0),
(f0), (g0), (h0), and (i0) are used sequentially, in the sense that one membrane
can be used by at most one rule of these types at a time. In total, the rules
are used in the non-deterministic maximally parallel manner: all objects and all
membranes which can evolve, should evolve.

The result of a halting computation is the vector of natural numbers de-
scribing the multiplicity of objects expelled into the environment during the
computation; the set of vectors computed in this way by all possible halting
computations of Π is denoted by Ps(Π). A P system is called deterministic if
there is a single computation. A P system is called confluent if all of its compu-
tations reach the same halting configuration.

By PsOPm(r) we denote the family of sets Ps(Π) computed as described
above by P systems with at most m membranes using rules of types listed in r.

When the rules of a given type (α0) are able to change the label(s) of the
involved membranes, then we denote that type of rules by (α′

0).
P systems with certain combinations of these rules are universal and efficient.

Further details can be found in [2, 3, 8].
To understand what solving a problem in a semi-uniform/uniform way means,

we briefly recall here some related notions. Consider a decisional problem X.
A family ΠX = (ΠX(1), ΠX(2), · · ·) of P systems (with active membranes in
our case) is called semi-uniform (uniform) if its elements are constructible in
polynomial time starting from X(n) (from n, respectively), where X(n) denotes
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the instance of size n of X. We say that X can be solved in polynomial (linear)
time by the family ΠX if the system ΠX(n) will always stop in a polynomial
(linear, respectively) number of steps, sending out the object yes if and only
if the instance X(n) has a positive answer. For more details about complexity
classes for P systems see [12, 13].

3 Replicative-Distribution Rules

The biological motivations of replicative-distribution operations are mentioned in
Section 1. Mathematically, we capture the idea of replicative-distribution rules
as following:

(k0) a[ ]
h1

[ ]
h2
→ [ u]

h1
[ v]

h2
, for h1, h2 ∈ H, a ∈ O, u, v ∈ O∗

(replicative-distribution rule (for sibling membranes); an object is replicated
and distributed into inner two adjacent membranes);

(l0) [ a[ ]
h1

]
h2
→ [ [ u]

h1
]
h2
v, for h1, h2 ∈ H, a ∈ O, u, v ∈ O∗

(replicative-distribution rule (for nested membranes); an object is replicated
and distributed into a directly inner membrane and outside the directly
surrounding membrane).

The rules are applied non-deterministically, in the maximally parallel manner.
Note that the multisets u and v might be empty.

As we have mentioned before, we use the primed versions to indicate the fact
that the labels of membranes can be changed. The primed versions of replicative-
distribution rules are of the following form:

(k′
0) a[ ]h1

[ ]h2
→ [ u]h3

[ v]h4
for hi ∈ H, 1 ≤ i ≤ 4

(the label of both or only one membrane can be changed);
(l′0) [ a[ ]

h1
]
h2
→ [ [ u]

h3
]
h4
v, for hi ∈ H, 1 ≤ i ≤ 4

(the label of both or only one membrane can be changed).

3.1 Computational Universality

P systems with active membranes and with particular combinations of several
types of rules can reach universality. Here, we show that P systems with active
membranes and with only one type of rules, namely (l′0), is Turing complete. The
proof is based on the simulation of matrix grammars with appearance checking.

Theorem 1. PsOP4(l′0) = PsRE.

Proof. It is enough to prove that any recursively enumerable set of vectors of
non-negative integers can be generated by a P system with active membranes
using rules of type (l′0) and four membranes.

Consider a matrix grammar G = (N,T, S,M,F ) with appearance checking,
in the binary normal form, hence with N = N1 ∪ N2 ∪ {S,#} and with the
matrices of the four forms introduced in Section 2.1. Assume that all matrices
are injectively labeled with elements of a set B. Replace the rule X → λ from
matrices of type 4 by X → f , where f is a new symbol.
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We construct the P system of degree 4

Π = (O, H, μ, w0, w1, w2, wXinit , R),
O = T ∪N2 ∪ {Am | A ∈ N2,m ∈ B} ∪ {c, c′, c′′, c′′′,λ,#},
H = N1 ∪ {Xm | X ∈ N1,m ∈ B} ∪ {0, 1, 2, f},
μ = [ [ [ [ ]2]1]Xinit

]0,
w0 = cAinit, wXinit = w1 = w2 = λ.

and the set R containing the rules below.
The simulation of a matrix m : (X → Y,A→ x), with X ∈ N1, Y ∈ N1∪{f},

and A ∈ N2, is done in two steps, using the following replicative-distribution
rules:

1. [ A[ ]X
]0 → [ [ Am]

Ym
]0λ,

2. [ Am[ ]1]Ym
→ [ [ λ]1]Y

x.

The first rule of the matrix is simulated by the change of the label of membrane
X, and the correctness of this operation is obvious (one cannot simulate one rule
of the matrix without simulating at the same time also the other rule).

The simulation of a matrix m : (X → Y,A → #), with X,Y ∈ N1, and
A ∈ N2, is done in four steps, using the rules:

3. [ c[ ]X
]0 → [ [ c′]

Ym
]0λ,

4. [ c′[ ]1]Ym
→ [ [ c′′]1]Y ′

m
λ,

5. [ A[ ]Y ′
m

]0 → [ [ #]f ]0λ,
[ c′′[ ]2]1 → [ [ λ]2]1c

′′′,
6. [ c′′′[ ]1]Y ′

m
→ [ [ λ]1]Y

c.

By using rule 3, object c replicates to c′ and λ which are distributed, in the same
time, as follows: c′ enters membrane X changing its label to Ym and λ is send
out of the skin membrane. The second step (rule 4) makes c′ to evolve to λ and
c′′; c′′ will be sent to membrane 1 and λ gets out of membrane Ym changing it
to Y ′

m. In the next step, if any copy of A is present, then, it introduces the trap-
object # and the computation never stops. Otherwise, c′′ following the same
replicative-distribution rule transforms into λ and c′′′, which enter membranes 1
and Y ′

m, respectively. The last computational step produces the result we were
looking for by replicating c′′′ to λ and c and distributing λ to membrane 1 and c
to the skin membrane, changing label Ym to Y . Now, the process can be iterated
having c in the skin membrane as in its initial configuration.

We also consider the following rules (applicable in the case A is present in
the skin membrane):

7. [ #[ ]1]f
→ [ [ λ]1]f

#,
8. [ #[ ]

f
]0 → [ [ #]

f
]0λ.

The equality ΨT (L(G)) = Ps(Π) easily follows from the above explanations.
!"
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3.2 Efficiency Result Using Pre-computed Resources

The SAT problem (satisfiability of propositional formula in the conjunctive nor-
mal form) is probably the most known NP-complete problem [6]. It asks whether
or not for a given formula in the conjunctive normal form there is a truth-
assignment of variables such that the formula assumes the value true.

Let us consider a propositional formula in the conjunctive normal form:

β = C1 ∧ · · · ∧ Cm,

Ci = yi,1 ∨ · · · ∨ yi,li , 1 ≤ i ≤ m, where
yi,k ∈ {xj ,¬xj | 1 ≤ j ≤ n}, 1 ≤ i ≤ m, 1 ≤ k ≤ li.

The instance β of SAT will be encoded in the rules of P system by multisets
vj and v′

j of symbols, corresponding to the clauses satisfied by true and false
assignment of xj , respectively:

vj = {ci | xj ∈ {yi,k | 1 ≤ k ≤ li}, 1 ≤ i ≤ m}, 1 ≤ j ≤ n,

v′
j = {ci | ¬xj ∈ {yi,k | 1 ≤ k ≤ li}, 1 ≤ i ≤ m}, 1 ≤ j ≤ n.

A computation in a P systems with active membranes always starts from
a given initial configuration, and we usually create an exponential workspace
in linear time by membrane division, membrane creation, string replication, and
membrane separation (all of them with biological motivation). In this subsection
we use a different strategy (which is already discussed in [12]): we start from
an arbitrarily large initial membrane structure, without objects placed in its
regions, and we trigger a computation by introducing objects related to a given
problem in a specified membrane. We use object replicative-distribution rules,
as discussed in the previous sections. In this way, the number of objects can
increase exponentially.

Theorem 2. P systems with rules of types (k′
0) and (l′0), constructed in a semi-

uniform manner, can solve SAT in linear time.

Proof. Given a propositional formula β as above, we construct the P system

Π = (O, H, μ, wa, wb, wc, wd, we, w0, w1, w2, w4n+5−m, w4n+6, R),with
O = {ai | 0 ≤ i ≤ n} ∪ {di | 1 ≤ i ≤ m} ∪ {ei | 0 ≤ i ≤ 4n+m+ 1}
∪ {ti, fi | 1 ≤ i ≤ n} ∪ {ci | 1 ≤ i ≤ m} ∪ {yes, no, d,λ},

μ = [ [ [ [ ]
a
]
b
]
c
[ · · · [ ]

d
[ ]

e
· · · ]1[ · · · [ ]

d
[ ]

e
· · · ]2]0︸ ︷︷ ︸

2n+4+2

,

w0 = a0, wc = e0, w1 = w2 = wa = wb = wd = we = w4n+5−m = w4n+6 = λ,

H = {0, · · · , 4n+ 6, a, b, c, d, e}.

The membrane structure has to be a complete binary tree with n + 2 internal
levels for the constructions of truth value assignments except the membranes
for global counting. In the skin membrane, 3 “nested” membranes with labels



Replicative - Distribution Rules in P Systems with Active Membranes 77

a, b, and c are used to count the computations of the system. The “sibling
membranes”, those placed in the same upper membrane, directly under it, are
labeled with 1 and 2. We consider the skin membrane as being level 0 (root) of
our binary tree. It is obvious that on level 1 we have 2 (21) membranes, on level
2 we have 4 (22) membranes, and so on. The membranes on levels 1, · · · , n are
labeled 1 and 2, of level n+1 are labeled 4n+5−m and 4n+6, and elementary
membranes are labeled by d and e. The skin membrane is labeled 0.

We give the set of rules R accompanying them with their use explanations:

– Global control:
E1. [ ei[ ]

b
]
c
→ [ [ ei+1]b

]
c
λ,

E2. [ ei[ ]
a
]
b
→ [ [ λ]

a
]
b
ei+1, 0 ≤ i ≤ 4n+m− 1,

The control variables ei count the computing steps in the “nested” control mem-
branes. As we shall see at the end of the description of the whole algorithm, after
4n + m derivation steps in the corresponding P system Π the answer yes ap-
pears outside the skin membrane if the given satisfiability problem has a solution,
whereas in the case that no solution exits, in one or two more steps the answer
no appears in the environment.

The main task of the algorithm is accomplished in the generation phase
where, for each possible truth assignment to the n variables. After 2n− 1 steps
it will contain all the informations needed to decide whether it represents a
solution to the given problem or not:

– Generation phase:
G1. ai[ ]1[ ]2 → [ ai+1ti+1]3[ ai+1fi+1]4, 0 ≤ i ≤ n− 1,
G2. ti[ ]

i+2[ ]
i+3 → [ ti] i+4[ ti] i+5,

fi[ ]
i+2[ ]

i+3 → [ fi] i+4[ fi] i+5, 1 ≤ i ≤ n,

Starting the computation (rule G1 in skin membrane), object a0 is replicated
into objects a1t1 and a1f1, which are distributed into direct inner membranes
with label 1 and 2 of level 2, changing the labels to 3 and 4.

Let us consider step i of the generation phase: By applying rule G1 in the
membranes of level i, 2i number of couples of objects aiti and aifi are produced
and took place in the 2i number of membranes, which will change the label
from 1 or 2 to 3 or 4, respectively. Each membrane among the 2i−j membranes
on levels i − j, 1 ≤ j ≤ [ i/2] of hierarchal binary tree structure contains
couple of objects pi−j and qj , (pr, qr ∈ {tr, fr}), 1 ≤ j ≤ [ i/2] if j is an
odd number. Otherwise, in the membranes of [ i/2] th level only objects pi−j

are placed. Up to now, t1, · · · , ti, f1, · · · , fi, and ai different 2i number of objects
have been produced and distributed in the membranes of levels between i−j and
i, 1 ≤ j ≤ [ i/2] presenting the truth value assignments for variables x1, · · · , xi

of β. Objects tk, 1 ≤ k ≤ i correspond to the true value of variables xk, and
objects fk correspond to the false value of variables xk, 1 ≤ k ≤ i. In the next
step, rule G1 is applied and objects ai+1ti+1 and ai+1fi+1 are produced and
took place in inner membranes, changing the labels of them to 3 and 4. At the
same time, rules

tk[ ]
k+2[ ]

k+3 → [ tk]
k+4[ tk]

k+5,
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fk[ ]
k+2[ ]

k+3 → [ fk]
k+4[ fk]

k+5

are applied simultaneously in each membranes of levels i − j, 1 ≤ j ≤ [ i/2] ,
objects tk and fk are replicated and distributed in one deeper level. Membrane
labels are changed from k+2 and k+3 to k+4 and k+5, respectively, which guar-
antees that in each step only a single object, tk or fk, enters into a membrane,
since active membranes work in sequential manner.

At the nth step of the computation, 2n number of couple objects anpn, pn ∈
{tn, fn}, were in 2n membranes with label 3 and 4 on nth level, then rule G1
will not apply anymore since there is no membrane with label 1 and 2 at the
next level. The iteration is continued n − 1 more steps, all objects tk, fk, 1 ≤
k ≤ n − 1 are within the membranes of level n, then, those membranes’ label
being 2n+1 and 2n+2. Therefore all possible 2n truth assignments of variables
x1, x2, · · · , xn are generated and placed in the corresponding 2n membranes.
Objects ti correspond to the true value of variables xi, and objects fi correspond
to the false value of variables xi.

G3. ti[ ]4n+5−m
[ ]4n+6 → [ vi]4n+5−m

[ d]4n+6,
fi[ ]4n+5−m

[ ]4n+6 → [ v′
i]4n+5−m

[ d]4n+6, 1 ≤ i ≤ n.

By using rule G3, in n steps, every object ti and fi evolve into objects ci (cor-
responding to clauses Ci, satisfied by the true or false values chosen for xi)
and “dummy” object d, then they are distributed into membranes with label
4n+ 5−m and 4n+ 6 in one deeper level, respectively.

– Checking phase:
C1. [ ci[ ]

d
]4n+4−m+i

→ [ [ ci]d
]4n+5−m+i

di, 1 ≤ i ≤ m.

In the checking phase, by using rule C1, object ci, 1 ≤ i ≤ n, is placed in
membranes labeled 4n+ 5−m of level n+ 1, and replicated into object ci and
counter object di. Object ci is sent into the direct inner elementary membrane
with label d, which is on the deepest level (n + 2) of our membrane structure,
and object di is sent out the surrounding membrane on nth level. Meanwhile, the
label of the surrounding membrane is incremented by one. If at the beginning
of the checking phase c1, · · · , ci are present (1 ≤ i < m), and ci+1 is absent, in
the membrane, after i + 1 steps rule C1 will no longer be applicable and the
membrane will never change the label again. If all objects ci, 1 ≤ i ≤ m, are
present in some membrane, then after m steps, objects dm are produced into the
membranes with label 2n+ 1 and 2n+ 2 of level n.

– Output phase:
O1. [ dm[ ]2n+5+2i

]1+2i
→ [ [ d]2n+5+2i

]2n+3+2i
dm,

O2. [ dm[ ]2n+6+2i
]2+2i

→ [ [ d]2n+6+2i
]2n+4+2i

dm, 1 ≤ i ≤ n
O3. [ dm[ ]2n+5]0 → [ [ d]2n+5]1yes,

If β has solutions, the process starts when objects dm are placed in membranes
with label 2n+ 1 and/or 2n+ 2 of level n. Object dm is replicated to objects d
and dm, object dm is sent out the current membrane, and “dummy” object d is
sent into the inner membrane with label 2n+ 5 + 2i. The process is recurrently
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done following objects dm through levels n · · · 1 in n steps by using rule O1 and
O2. During the output phase, in each membranes with label 1 + 2i and 2 + 2i
possible taken at most two objects dm, then one of them non-deterministically
chosen send out the surrounding membrane, while membrane label is changed to
2n+3+2i and 2n+4+2i. Then, in membranes 2n+3+2i and 2n+4+2i no rule
can be applied. Thus, the system works fine in a sequential manner. However, in
n steps, totally speaking in the (4n+m− 1)th step of the computation, at most
two objects dm arrive in the skin membrane. Then rule O3 is applied, an object
dm ejects positive answer yes and changes skin membrane label to 1 in order
to prevent further output. Thus, the formula is satisfiable and the computation
stops. That was the (4n+m)th step of the whole computation.

E3. [ e4n+m(−1)[ ]
b
]
c
→ [ [ λ]

b
]
c
e4n+m(+1),

E4. [ e4n+m(+1)[ ]
c
]0 → [ [ λ]

c
]0no.

If β has no solution and if 4n+m−1 is an odd step, counter object e4n+m−1 must
be placed in the membrane a, then rules E3 and E4 are applied in two steps,
the counter object e4n+m+1 will eject the correct answer no to the environment.
Otherwise after one more step object e4n+m will eject the correct answer no to
the environment by applying rule E4. Since rule O3 did not apply (the case in
which β has no solution), the label of the skin membrane is still 0, so rule E3 is
applicable. The 3 “nested” control membranes guarantee that no object tries to
cross the skin membrane at the same time with yes.

The labels of membranes of level i, in the constructing phase, are 3+2(i−1)
and 4 + 2(i − 1), 1 ≤ i ≤ n, and in the output phase it would be 3 + 2(i + n)
and 4 + 2(i+ n) , 1 ≤ i ≤ n. !"

Theorem 3. P systems with rules of types (k′
0) and (c′0), constructed in a semi-

uniform manner, can solve SAT in linear time.

Proof. The proof of the theorem follows the idea of Theorem 2. Since rules of
type (l′0) are not used in the proof, we do not need membranes of level n+ 2 in
the checking phase, and we change the “nested” couple membrane structure by
“eyes” structure for the global control.

We now construct the P system

Π = (O, H, μ, wa, wb, w0, w1, w2, w4n+5−m, w4n+6, R),with
O = {ai | 0 ≤ i ≤ n} ∪ {di | 1 ≤ i ≤ m} ∪ {ei | 0 ≤ i ≤ 4n+m+ 1}
∪ {ti, fi | 1 ≤ i ≤ n} ∪ {ci | 1 ≤ i ≤ m} ∪ {yes, no, d,λ},

μ = [ [ ]
a
[ ]

b
[ · · · [ ]4n+5−m

[ ]4n+6 · · · ]1[ · · · [ ]4n+5−m
[ ]4n+6 · · · ]2]0︸ ︷︷ ︸

2n+3+1

,

w0 = a0e0, w1 = w2 = wa = wb = w4n+5−m = w4n+6 = λ,

H = {0, · · · , 4n+ 6, a, b}.
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The global control rules are as following:

– Global control in skin membrane:
E1. ei[ ]

a
[ ]

b
→ [ ei+1]a

[ λ]
b
,

E2. [ ei]a → [ ]aei+1, 0 ≤ i ≤ 4n+m+ 1,

Here we use rules of types (k0) and (c0) for counting the computation steps
of the system.

– Generation phase:

We reuse rules G1-G3 of the generation phase in Theorem 2, then generate 2n

number of truth-assignments in level n of the membrane structure.

– Checking phase:
C1. [ ci]4n+4−m+i → [ ]4n+5−m+idi, 1 ≤ i ≤ m.

In the checking phase of satisfiability truth-assignments of propositional for-
mula, rules of type (c′0) are used instead of rules (l′0).

– Output phase:
O1. [ dm]1+2i

→ [ ]2n+3+2i
dm,

O2. [ dm]2+2i
→ [ ]2n+4+2i

dm, 1 ≤ i ≤ n
O3. [ dm]0 → [ ]1yes,
E3. [ e4n+m(+1)]0 → [ ]0no.

If β has solutions, in n steps, totally speaking in (4n+m− 1)th step of the
computation, at most two objects dm arrive in the skin membrane by using rules
O1 and O2, then rule O3 is applied, an object dm ejects positive answer yes and
changes the skin label to 1 in order to prevent further output. Thus, the formula
is satisfiable and the computation stops. That was the (4n + m)th step of the
whole computation.

If β has no solution and if 4n + m − 1 is an odd step, after two more steps
the counter object e4n+m+1 will eject the correct answer no to the environment.
Otherwise, after one more step object e4n+m will perform this operation. Since
rule O3 did not apply (the case in which β has no solution), the label of the skin
membrane is still 0, so rule E3 is applicable. !"

3.3 Efficiency Result Using Membrane Division to Obtain
Exponential Work Space

In Theorem 2 and Theorem 3 we have shown that the NP-complete problem
SAT can be decided by a P system with active membranes in linear time with
replicative-distribution rules of types (k′

0) and (l′0) and replicative-distribution
rules of type (k′

0) and communication rules of type (c′0), respectively, using pre-
computed exponential work space.

Here, we reuse the most investigated way to obtain exponential work space–
membrane division. The following theorem shows that SAT can be solved by P
systems with active membranes using the rules of types (f0) and (l′0), in linear
time. We recall here the propositional formula β in Section 3.2.



Replicative - Distribution Rules in P Systems with Active Membranes 81

Theorem 4. P systems with rules of types (f0), (l′0), constructed in a semi-
uniform manner, can deterministically solve SAT in linear time with respect to
the number of the variables and the number of clauses.

Proof. We construct the P system

Π = (O, H, μ, w0, · · · , w7, R), with
O = {di | 1 ≤ i ≤ m} ∪ {ai | 1 ≤ i ≤ n}
∪ {ci | 1 ≤ i ≤ m} ∪ {bi | 0 ≤ i ≤ n}
∪ {ei | 0 ≤ i ≤ 2n+m+ 4} ∪ {yes, no}
∪ {ti, fi | 1 ≤ i ≤ n},

μ = [ [ [ [ ]3]4]2[ [ [ ]6]7]5]0,
w2 = a1 · · · anb0, w5 = e0, w0 = w3 = w4 = w6 = w7 = λ

H = {i | 0 ≤ i ≤ 9},

and the following rules (we accompany them with explanations about their use):
The global control rules are as follows:

– Global control:
E1. [ ei[ ]7]5 → [ [ ei+1]7]5λ,
E2. [ ei[ ]6]7 → [ [ λ]6]7ei+1, 0 ≤ i ≤ 2n+m+ 1,

The “nested” membranes with label 5,7, and 6 are used only to globally control
of the computation, and rules E1 and E2 are used to count the computation
steps as we used in the proof of Theorem 2.

– Generation phase:
G1. [ ai]2 → [ ti]2[ fi]2, 1 ≤ i ≤ n,

Using rule G1, with ai non-deterministically chosen, we produce the truth
values true and false assigned to variable xi, placed in two separate copies of
membrane 2. In this way, in n steps we assign truth values to all variables, hence
we get all 2n truth-assignments, placed in 2n separate copies of membrane 2.

G2. [ bi[ ]4]2 → [ [ bi+1]4]2λ,
[ bi[ ]3]4 → [ [ λ]3]4bi+1, for all 0 ≤ i ≤ n− 1,

G3. [ bn[ ]3]4 → [ [ λ]3]1λ,
G4. [ bn[ ]4]2 → [ [ λ]1]2λ,

Initially, object b0 is placed in membrane 2. Rule G2 works simultaneously with
division and increment the subscript of bi by one in each step. If in the nth step
of the computation, object bn takes place in membrane 2, it was an odd number.
If it was an even number, object bn takes place in membrane 4. In the next step
rule G3 or G4 perform, and change the label of membrane 4 to 1, while object
bn disappears. This ensure rule G5 will perform.

G5. [ ti[ ]1]2 → [ [ vi]1]2λ,
[ fi[ ]1]2 → [ [ v′

i]1]2λ, 1 ≤ i ≤ n.
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– Checking phase:
C1. [ ci[ ]3] i

→ [ [ ci]3] i+1di, 1 ≤ i ≤ m.

The checking phase idea is the same from the proof of Theorem 2.

– Output phase:
O1. [ dm[ ]

m+1]2 → [ [ λ]
m+1]8dm,

O2. [ dm[ ]8]0 → [ [ λ]8]9yes,

If β has solutions, after 2n + m + 2 steps, objects dm appear in the skin
membrane using rules O1, and again one object dm, non-deterministically chosen,
ejects object yes into environment, while the skin label changes to 9 using rule
O2 in order to prevent further output. Thus, the formula is satisfiable and the
computation stops. That was the (2n+m+3)th step of the whole computation.

E3. [ e2n+m+2(3)[ ]7]5 → [ [ λ]7]5e2n+m+3(4),
E4. [ e2n+m+3(4)[ ]5]0 → [ [ λ]5]0no.

If β has no solution and if 2n + m + 2 is an odd step, after two more steps
the counter object e2n+m+4 will eject the correct answer no to the environment.
Otherwise, after one more step object e2n+m+3 will perform this operation. Since
rule O2 did not apply (the case in which β has no solution), the label of the skin
membrane is still 0, so rule E4 is applicable. !"

4 Final Remarks

We have considered a new type of rules in P systems with active membranes: (k0)
and (l′0) replicative-distribution rules with deep relations to cell biology. We have
illustrated here how this type of rules can solve NP-complete problems in linear
time using pre-computed resources and obtaining an exponential work space
during the computation, by membrane division. Universality was also shown
here, but we want to emphasize that we have used only one type of rules in
our proof. However, in the efficiency results, we have used very few types of
rules compared to the previous results in [2, 3, 7, 8, 11]. This reveals the fact that
replicative-distribution type of rules is a powerful and efficient tool in P systems.
The following problems are expecting a future work: What simulations of other
classes of P systems with active membranes using these new types of rules can
be obtained? What other computational hard problems can be solved with these
types of rules in feasible time and space?

Acknowledgments. The first author acknowledges the State Training Fund of
the Ministry of Science, Technology, Education and Culture of Mongolia. The
work of second author was supported by the FPU fellowship from the Spanish
Ministry of Education, Culture and Sport.



Replicative - Distribution Rules in P Systems with Active Membranes 83

References

1. L.M. Adlmen, Molecular computation of solutions to combinatorial problems, Sci-
ence v.266, Nov.1994, 1021–1024.

2. A. Alhazov, T.-O. Ishdorj, Membrane Operations in P Systems with Active Mem-
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11. Gh. Păun, P Systems with Active Membranes: Attacking NP-Complete Problems,
Journal of Automata, Languages and Combinatorics, 6, 1 (2001), 75–90.
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Abstract. We show how complex concurrent behaviours can be mod-
elled by relational structures (X, <>, �), where X is a set (of event oc-
currences), <> (interpreted as commutativity), � (interpreted as weak
causality) are binary relations on X. The paper is a continuation of the
approach initiated in [6, 18, 1, 9], substantially developed in [10, 12], and
recently partially generalized in [7]. For the first time an axiomatic model
for the most general case is given. The results can be interpreted as a
generalisation of Szpilrajn Theorem1 [25].

1 Introduction

The classical “true concurrency” model semantics make the assumption that all
relevant behavioural properties of non-sequential systems can be adequately ex-
pressed in terms of causal partial orders. This assumption is arbitrary and the
model, although very successful in the majority of applications, is unable to prop-
erly describe some aspects of systems with priorities, error recovery systems, in-
hibitor nets, time testing etc (see for instance [12, 10, 13, 19, 26] and many others).

The solution, first introduced by Lamport [18] (improved by Abraham, Ben-
David and Magodor [1]), Gaifman and Pratt [6], and Janicki and Koutny [9], later
fully developed by Janicki and Koutny [10, 12], is to use relational structures,
(X,<,�), with two relations. The first relation, denoted by “<” in [10, 12],
is “causality” (i.e. an abstraction of “earlier than”), the second, denoted by
“�” in [10, 12] is called “weak causality” and is an abstraction of “not later
than” relation. The classical “interleaving” and “true concurrency” models are
distinctive special cases. The papers [10, 12] provide the theoretical foundations
of the model (results of [18, 6, 1] are special cases) and prove its soundness.

The model has been successfully applied to inhibitor systems [11, 2, 14, 17],
priority systems [13, 16], asynchronous races [28, 29], synthesis [22, 24], and has
influenced many other approaches [3, 27]. It was shown in Janicki and Koutny
[10] that relational structures of the type (X,<,�) still cannot model the most
general case and that the most general case requires relational stuctures of the

� Partially supported by NSERC of Canada Grant.
1 Every partial order is the intersection of all its total order extensions.
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type (X,<>,�), where <>, called “commutativity”, is an abstraction of “inter-
leaving” relation, and <=<> ∩ �.

An axiomatic model for the structures of the type (X,<>,�) was recently
proposed by Guo and Janicki [7]. The model of [7] is restricted, it assumes that all
the observations (runs, executions) are modelled by stratified partial orders (or,
equivalently, step sequences). In this paper an axiomatic model for the structures
of the type (X,<>,�) with no restrictions is given.

To illustrate the main ideas, let us consider the following four, very simple
programs, which nonetheless are reflective of the essence of the problem. All
of the programs are written using a mixture of cobegin, coend and a version of
(concurrent) guarded commands.

P1: begin int x;
a: x:=0;
cobegin b: x:=x+1, c: x:=x+2 coend
end P1.

P2: begin int x,y;
a: begin x:=0; y:=0 end;
cobegin
b: x=0 → y:=y+1, c: x:=x+1,
coend
end P2.

P3: begin int x,y;
a: begin x:=0; y:=0 end;
cobegin
b:y=0 → x:=x+1, c: x=0 → y:=y+1
coend
end P3.

P4: begin int x,y;
a: begin x:=0; y:=0 end;
cobegin b: x:=x+1, c: y:=y+1 coend
end P4.

Each program is a different composition of three events (actions) called a,
b and c respectively (ai, bi, ci, i = 1, ..., 4, to be exact, but a restriction to
a, b, c, does not change the validity of the analysis below, while simplifying
the notation).

What concurrent behaviours (concurrent histories) are generated by the above
programs? Let us concentrate on the behaviours that involve all three actions
{a, b, c} (sometimes such behaviours are called proper). Let obs(Pi) denote the set
of all program runs involving the actions {a, b, c} that can be observed. Assume
that simultaneous executions can be observed. In this simple case all runs can be
modelled by step-sequences (or equivalently stratified orders), with simultaneous
execution of a1,...,an denoted by {a1, ..., an}. Let us denote o1 = abc, o2 = acb,
o3 = a{b, c}. Each oi can be seen as a partial order oi = ({a, b, c}, oi→), where, less
formally: o1 = a

o1→ b
o1→ c, o2 = a

o2→ c
o2→ b, o3 = a

o3→ b∧a o3→ c. We can now write
obs(P1) = {o1, o2}, obs(P2) = {o1, o3}, obs(P3) = {o3}, obs(P4) = {o1, o2, o3}.
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Note that for each obs(Pi) all runs from obs(Pi) yield to exactly the same outcome
(so this justify to call obs(Pi)’s as concurrent histories).

An abstract model of such outcome is called a concurrent behaviour, but
what entity constitutes such a model? Let us start with the set obs(P4). We
may say that in this case for each run, a always precedes both b and c, and
there is no casual relationship between b and c. This causality relation, <, is
a partial order defined as < = {(a, b), (a, c)}. Formally < is defined as x < y

iff for each run o we have x o→ y. One may notice that < is an intersection of
o1, o2 and o3, and that {o1, o2, o3} is the set of all stratified extensions of the
relation2 <. Thus in this case the causality relation < can model the concurrent
behaviour that corresponds to the set of (equivalent) runs obs(P4). This is a
classical case of “true” concurrency approach, where concurrent behaviours are
modelled by causality relations. Before considering the remaining cases, note
that the causality relation < is exactly the same in all four cases, i.e. <i =
{(a, b), (a, c)}, for i = 1, ..., 4, so we may omit the index i. Let us consider now
the set obs(P1).

The causality relation < does not model the concurrent behaviour correctly3

since o3 does not belong to obs(P1). Let <> be a symmetric relation, called
commutativity, defined as x <> y iff for each run o either x o→ y or y o→ x.
For the set obs(P1), the relation <>1= {(a, b), (b, a), (a, c), (c, a), (b, c), (c, b)}. A
set of relations {<>1, <} and the set obs(P1) are equivalent in the sense that
each one defines another (the set obs(P1) can be defined as the greatest set PO

of partial orders built from a, b and c satisfying x <>1 y ⇒ ∀o ∈ PO. x
o→

y ∨ y o→ x and x < y ⇒ ∀o ∈ PO. x
o→ y ). We may say that in this case the

relations {<>1, <} model the concurrent behaviour described by obs(P1). Note
also that <>i=< ∪ <−1 for i = 2, 3, 4, so the set {<>4, <} models the concurrent
behaviour described by obs(P4) as well.

To deal with obs(P2) and obs(P3) we need another relation, �, called weak
causality, and defined as x � y iff for each run o we have ¬(y o→ x) (x is never
executed after y). For our four cases we have �2= {(a, b), (a, c), (b, c)}, �3=
{(a, b), (a, c), (b, c), (c, b)}, and �1=�4=<. One may observe that for i = 2, 3, a
set of relations {<,�i} and the set obs(Pi) are equivalent in the sense that each
one defines another (the set obs(Pi) can be defined as the greatest set PO of
partial orders built from a, b and c satisfying x < y ⇒ ∀o ∈ PO. x

o→ y and
x �i y ⇒ ∀o ∈ PO. ¬(y o→ x)). We may say that in this case the relations �i,
i = 2, 3, models the concurrent behaviour described by obs(Pi). Note that �i

alone is not sufficient, for instance obs(P2) and obs(P2) ∪ {{a, b, c}} define the
same �. The relations <, <>, � are not independent, it can be proven ([10])
that <=<> ∩ �.

2 The fact that < equals to
o3→ is a coincidence, there are not so many partial orders

built from three elements. No order is interpreted differently, it means no causal
relationship for < and simultaneous execution for

o3→.
3 Unless we assume that simultaneity is not allowed, or not observed, in such a case

obs(P1) = obs(P4) = {o1, o2), obs(P2) = {o1}, obs(P3) = ∅.
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Summing up we have:

1. all obs(Pi), for i = 1, 2, 3, 4 are modelled by appropriate pairs of relations
{<>i,�i},

2. obs(Pi), for i = 2, 3, 4 can also be modelled by appropriate pairs of relations
{<,�i},

3. obs(P4) can be modelled by the relation < alone.

The theory developed in [10] provides a hierarchy of models of concurrency,
where each model corresponds to a so called “paradigm”, or general rule about
the structures of concurrent histories. In principle, a paradigm says how si-
multaneity is handled in concurrent histories. The paradigms are denoted by
π1 through π8. It appears only paradigms π1, π3, and π8 are interesting from
the point of view of concurrency theory. The most general paradigm, π1, as-
sumes no additional restrictions for concurrent histories. The most restrictive
paradigm, π8, simply says that if a set of partial orders Δ is a concurrent his-
tory then (∃o ∈ Δ. x

o↔ y) ⇐⇒ (∃o ∈ Δ. x
o→ y) ∧ (∃o ∈ Δ. y

o→ x),
where o↔ denotes simultaneity, i.e. x o↔ y ⇐⇒ ¬(x o→ y) ∧ ¬(y o→ x). The
paradigm, π3, assumes that if a set of partial orders Δ is a concurrent history
then (∃o ∈ Δ. x

o→ y) ∧ (∃o ∈ Δ. y
o→ x) ⇒ (∃o ∈ Δ. x

o↔ y).
In the case of P1, P2, P3, P4 programs, obviously all obs(Pi), i = 1, 2, 3, 4,

conform to paradigm π1, obs(P2), obs(P3), obs(P4), conform to paradigm π3, and
obs(P4) conforms to π8. It can be proven [10] that π3 implies <> = < ∪ <−1,
and π8 implies <>=< ∪ <−1 and < equals to �.

The most restrictive case, π8, corresponds to the classical “true concurrency”
model where causal partial orders are sufficient to model all aspects of concurrent
behaviour. In the “true concurrency” model, an equivalence of the formula that
defines π8 is called a ”Diagonal Property” [4, 5].

The problem is: What axioms the triples (X,<>,�) or (X,<,�) must satisfy
to be considered as models of concurrent behaviours?

The paradigm πi is only one of the factors shaping concurrent histories (i.e.
the sets obs(Pi) for our example). Another important factor is the kind of partial
orders that observable runs are allowed to be. It is argued in [10] that observable
runs of (discrete) software systems should be modelled by initially finite interval
orders, however the results of [12] cover general partial orders as well. Observable
runs are frequently assumed to be stratified orders or even total orders. This
makes the modelling simpler, and such assumptions are often justified. It appears
that the axioms for (X,<>,�) and (X,<,�) depend heavily on what kind of
partial orders the observable runs are allowed to be. Under the assumption that
only totally ordered runs are allowed, all paradigms are equivalent, < alone
models concurrent behaviour and the relationship between sets of runs and the
relation < follows directly from Szpilrajn theorem [25]. A detailed discussion
of triples (X,<,�) that model concurrent behaviours under the assumption of
paradigm π3, is given in [12].

A solution to the case (X,<>,�), i.e. paradigm π1, but under the assumption
that all runs must be stratified orders was recently presented in [7]. In this
paper two remaining solutions to the case (X,<>,�) are given, first, under the
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assumption that all runs are interval orders, and second, runs are just general
partial orders.

There are two major different attitudes towards abstracting non-sequential
behaviour, one based on interleaving abstraction (for instance [21]), and another
based on partially ordered causality (for instance [4, 5, 20] etc.). Both models have
been very successful. The interleaving models are very structured and composi-
tional, the partial order models can handle fairness, confusion, etc. Both models
are mathematically much less complex, far more developed than the models
with two relations, and they sufffice in the majority of standard applications.
Nevertheless some aspect of concurrent behaviour are difficult or almost impos-
sible to tackle by both interleaving and partially ordered causality based models.
E.g., specification of priorities, error recovery, time testing, proper treatment of
simultaneity, are in some circumstances problematic [12, 10, 13, 19, 26].

From the purely mathematical viewpoint the results of this paper can be seen
as an extension of the Szpilrajn Theorem [25] to orders that are not necessary
total. Alternatively, the results show how sets of equivalent partial orders can
be represented by two relations.

2 Relational Structure Model of Concurrency

In order to make this paper self-contained, we briefly recall all the main results
of [10, 12].

A partial order, is a pair po = (X,<) such that X is a non-empty set and <
is an irreflexive and transitive relation on X. We say taat X is the domain of po.
Sometime we also say that < is a partial order in X. Two distinct incomparable
elements a and b of X will be denoted by a ∼ b, and we will write a <∼ b if
a < b or a ∼ b.

A partial order (X,<) is said to be
• total if for all a, b ∈ X, either a < b or b < a or a = b.
• stratified if ∼ ∪ idX , where idX is identity on X, is an equivalence relation4;
• interval5 if for all a, b, c, d ∈ X, a < b ∧ c < d =⇒ a < d ∨ c < b.
• initially finite if for every a ∈ X, {b | b <∼ a} is finite.

It is easy to see that a total order is a stratified order and a stratified order
is an interval one. Stratified orders correspond to step sequences. Modelling
concurrency usually assume some form of discreteness, for instance the number
of predecessors is finite, etc. This is captured by the concept of initial finiteness. It
turns out many results need separate proofs under initial finiteness assumption.
In general, if C is a class of partial orders we will denote by CIF the subclass of
all initially finite partial orders in C. A partial order p1 is an extension of another
partial order p2 if they have the same domain and <p2⊆<p1 .

4 An equivalent definition: a poset (X, <) is a stratified order iff there exists a total
order (Y,≺) and a mapping φ : X → Y such that ∀a, b ∈ X. a < b ⇐⇒ φ(a) ≺ φ(b).

5 The name and intuition follow from Fishburn Theorem [8], see Theorem 3.3 in the
next section. Very often Fishburn Theorem is used as a definition of interval orders.
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A run (observation, instance of concurrent behaviour) is an abstract model of
the execution of a concurrent system. It was argued in [10] that an observation
must be an initially finite, either total, or stratified, or interval order. The results
of [12] are valid for all kinds of partial orders, not necessarily initially finite
nor interval, however separate proofs are frequently required for different cases.
Following [10, 12], we will make a distinction in notation between general posets
and those used as runs. We will use o = (X,→o) rather than po = (X,<) to
denote a generic run, and use ↔o rather than ∼ to denote incomparability.

A complete set of equivalent runs is a concurrent history6. To explain the
concept assume that all runs are total orders. A set Δ = {abc, cba} is not a
concurrent history, since it implies that there is no causal relationship between
a, b, and c (as the intersection of abc and cba, denoted by <Δ is empty). Let
Δcl be the set of all total extensions of Δ, i.e. Δcl = {abc, bac, acb, bca, cab, aba}.
The set Δcl is complete as it is the set of all total extensions of <Δcl= ∅, so it
can be considered as a concurrent history.

If runs are not all total orders, a definition of concurrent histories requires
using two intrinsic characteristics of the runs. Let Δ be a set of partial orders
with a common domain X.

Define the relations <>Δ and �Δ⊆ X ×X as
• x <>Δ y ⇐⇒ ∀o ∈ Δ. (x o→ y ∨ y o→ x),
• x �Δ y ⇐⇒ ∀o ∈ Δ. (x o→ y ∨ x o↔ y).
We say that a partial order (run) o = (X, o→) is an extension of <>Δ if and

only if
• ∀x, y ∈ X. x <>Δ y ⇒ (x o→ y ∨ y o→ x)

and it is an extension of �Δ if and only if
• ∀x, y ∈ X. x �Δ y ⇒ (x o→ y ∨ x o↔ y).
Let Δcl be the set of all posets o = (X, o→) that are extensions of both <>Δ

and �Δ.

Definition 2.1. A set of runs Δ is a concurrent history iff Δ = Δcl. �

All obs(Pi), i = 1, ..., 4, satisfy obs(Pi) = obs(Pi)cl. For detailed discussion of
the above definition, see [10, 12].

The problem is how to find axioms for the relations <> and � such that their
partial order extensions could be interpreted as some Δcl. To solve this problem
the notion of a paradigm has been introduced.

As we mentioned earlier, a paradigm is a superposition or a statement about
the structure of a history involving a treatment of simultaneity. For instance,
let Δ be a concurrent history. The classical causality based approach usually
stipulates that if there is a run o ∈ Δ such that a o↔ b, then there must be a
run such a precedes b and a run such that b precedes a. Formally, paradigms,
ω ∈ Par, are defined by

6 The term “concurrent history” has been used by many authors, e.g., [5, 15, 20] and oth-
ers, to denote formally different concepts (atlhough intuitively close) in the idea of con-
currency. The concept used in this paper was inroduced in [9] and is close to that of [20].
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ω := true|false|Ψ1|Ψ2|Ψ3|¬ω|ω ∨ ω|ω ∧ ω|ω ⇒ ω,

where Ψ1(β, γ) = ∃o. β o→ γ, Ψ2(β, γ) = ∃o. β o← γ and Ψ3(β, γ) = ∃o. β o↔ γ,
where β, γ are some variables.

A history Δ satisfies a paradigm ω ∈ Par if for all distinct a, b ∈ dom(Δ),
ω(a, b) holds. It can be shown (see [10]) that in the study of concurrent histories,
we only need to consider 8 paradigms, denoted by π1, · · · ,π8. From those eight,
only π1, π3 and π8 are important. The most general paradigm, π1 = true, admits
all concurrent histories. The most restrictive paradigm, π8, admits concurrent
histories Δ such that

(∃o ∈ Δ. x
o↔ y) ⇔ (∃o ∈ Δ. x

o← y) ∧ (∃o ∈ Δ. x
o→ y).

It was proven that in this case causality, <, suffices to fully describe Δ, so the
use of it to model concurrent behaviour is justified. The paradigm π3, which is
general enough to deal with most problems that cannot be dealt with under π8,
admits concurrent histories Δ such that

(∃o ∈ Δ. x
o← y) ∧ (∃o ∈ Δ. x

o→ y) ⇒ (∃o ∈ Δ. x
o↔ y).

It was proven that in this case, causality, <, and weak causality (an abstraction
of “not later than”), �, suffice to fully describe Δ. The axioms for relational
structures (X,<,�), such that the sets of their partial order extensions can be
interpreted as concurrent histories Δcl, were provided in [12]. We briefly show
them below.

Definition 2.2. A two relation structure, or simply a structure, is a triple
S = (X,<,�) where X is a non-empty set and <,� are two irreflexive bi-
nary relations on X such that for all a, b ∈ X, a < b⇒ ¬b � a. �

Note that at this point we do not assume any other properties of < and �.
Until further notice < and � do not have any interpretation. For any irreflexive
relation R, let R∼ be defined as xR∼y ⇐⇒ ¬(yRx).

Definition 2.3. Let S = (X,<,�) be a structure. An irreflexive relation R over
X is an extension of S, i.e. R ∈ ext(S), if and only if for all x, y ∈ X, we have
(x < y ⇒ xRy) ∧ (x � y ⇒ xR∼y). �

Let Θ be a non-empty class of structures and let S = (X,<,�) ∈ Θ. We
define extΘ(S) = {R | R ∈ ext(S) ∧ (X,R,R∼) ∈ Θ}.

Definition 2.4. A class of structures Θ is extension complete if for every S =
(X,<,�) ∈ Θ,
• extΘ(S) �= ∅,
• < =

⋂
R∈extΘ(S)R, and

• � =
⋂

R∈extΘ(S)R
∼. �

Let T be a class of structures defined as follows S = (X,<,�) ∈ T iff <
is a partial order and < equals to �, i.e. S = (X,<,<). One may easily show



A Generalisation of a Relational Structures Model of Concurrency 91

that for each S ∈ T , extT (S) consists of total orders only (if R = R∼ and R is
a partial order, then R must be a total order). By Szpilrajn theorem [25], T is
extension complete. The class T is called total order structures. This class is not
very interesting, as its members are just partial orders but it creates a bottom
of the hierarchy developed in [12].

Definition 2.5. A relational structure S = (X,<,�) is called a stratified, inter-
val and partial order structure if the following conditions S1-S4, I1-I6 and P1-P4
are satisfied respectively:

S1 a �� a S3 a � b � c⇒ a � c ∨ a = c
S2 a < b⇒ a � b S4 a � b < c ∨ a < b � c⇒ a < c.

I1 a �� a I4 a < b � c ∨ a � b < c⇒ a � c
I2 a < b⇒ a � b I5 a < b � c < d⇒ a < d
I3 a < b < c⇒ a < c I6 a � b < c � d⇒ a � d ∨ a = d

P1 a �� a P3 a < b < c⇒ a < c
P2 a < b⇒ a � b P4 a � b < c ∨ a < b � c⇒ a � c.

�

We will denote by S, I and P respectively the class of stratified, interval and
partial order structures. One may verify easily that T ⊂ S ⊂ I ⊂ P. It was
proven in [12] that
• for every S ∈ S, all elements of extS(S) are stratified orders,
• for every S ∈ I, all elements of extI(S) are interval orders,
• for every S ∈ P, all elements of extP(S) are partial orders

which justifies the names. A discussion of differences between the above axioms
(from [12]) and those of [18, 6] can be found in [12].

A structure (X,<,�) is said to be initially finite if {b | b <∼ a} is finite
for all a ∈ X. As with partial orders, if Θ is a class of structures, we denote
by ΘIF ⊆ Θ the subclass consisting of initially finite structures. The relational
structures S2 = ({a, b, c}, <,�2) and S3 = ({a, b, c}, <,�3) that correspond to
the programs P2 and P3 from the Introduction belong to SIF , and extSIF

(Si) =
obs(Pi) for i = 2, 3.

The main result of [12] is the following theorem.

Theorem 2.1 [12] The classes of ordered structures: T , S, I, P, TIF , SIF , IIF ,
PIF are extension complete. �

This means the ordered structures (i.e. the triples (X,<,�)) represent
uniquely appropriate sets of partial orders, i.e. concurrent histories, so they can
be used to model concurrent behaviours conforming to paradigm π3. It is im-
portant to point out that the result of [12, 18, 6] are only valid under π3, which
suffices for most of the application, but it is not the most general case. Under π3
we have to model the program P1 by two sequential behaviours instead of more
natural one concurrent behaviour.
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3 Generalized Order Structures

This chapter is devoted to the new results. We start with refining and adapting
some definitions from [7].

Definition 3.1. A generalised structure is a triple G = (X,<>,�) such that
X �= ∅, <> and � are two irreflexive relations on X, <> is symmetric, and
SG = (X,<G,�), where <G=<> ∩ �, is a structure. �

Definition 3.2. Let G = (X,<>,�) be a generalized structure. An irreflexive
relation R over X is an extension of G, i.e. R ∈ gext(G), iff for all x, y ∈ X, we
have (x <> y ⇒ x(R ∪R−1)y) ∧ (x � y ⇒ xR∼y). �

Let Θ be a non-empty class of generalized structures and let G = (X,<>,�)
is in Θ. We define gextΘ(G) = {R | R ∈ gext(G) ∧ (X,R,R∼) ∈ Θ}.

Definition 3.3. A class of generalized structures Θ is extension complete if for
every G = (X,<>,�) ∈ Θ,
• gextΘ(S) �= ∅,
• <> =

⋂
R∈gextΘ(S)(R ∪R−1), and

• � =
⋂

R∈gextΘ(S)R
∼. �

Let GT be a class of generalized structures defined as G = (X,<>,�) ∈ GT
if and only if <> = {(x, y) | x, y ∈ X ∧ x �= y} and � is a partial order. One
may easily show that for each G ∈ GT , gextGT (G) consists of total orders only
(the same argument as for extT (S) before), so by Szpilrajn theorem [25], GT is
extension complete. The class GT is called generalized total order structures, its
members are just partial orders in disguise, and it creates a bottom of our new
hierarchy.

Definition 3.4. A generalized structure G = (X,<>,�) is called a stratified, in-
terval, partial order generalized structure and initially finite generalized structure
if the structure SG = (X,<G,�), where <G =<> ∩ �, is stratified (axioms
S1-S4), interval (axioms I1-I6), partial order structure (axioms P1-P4), and ini-
tially finite, respectively. �

We shall use GT , GS, GI and GP to denote respectively the classes of total,
stratified, interval and partial order generalized structures. One may verify easily
that GT ⊂ GS ⊂ GI ⊂ GP. If Θ is a class of generalized structures, we denote
by ΘIF ⊆ Θ the subclass consisting of initially finite generalized structures. The
relational structure G1 = ({a, b, c}, <>1,�1) corresponding to the program P1
from the Introduction belong to GSIF , and gextGSIF

(G1) = obs(P1).
The following lemma (a generalization of Lemma 3 in [7]) gives some neces-

sary and sufficient conditions for extension completeness.

Lemma 3.1. Let G = (X,<>,�) be a generalized structure and Ω is any set
of relations that extends G. Then, <> =

⋂
R∈Ω(R ∪R−1), and � =

⋂
R∈Ω R∼ if

and only if for all distinct a, b ∈ X we have:
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(a) ¬(x <> y) ⇒ ∃R ∈ Ω. ¬(xRy) ∧ ¬(yRx)
(b) ¬(x � y) ⇒ ∃R ∈ Ω. yRx.

Proof. (Sketch) Similarly as the proof of Lemma 3 in [7]. �

The above lemma is used in proofs of our main results. The main result of
[7] is the following theorem.

Theorem 3.1.[7] The classes of generalized ordered structures GT , GS, GT IF ,
GSIF are extension complete. �

The main result of this paper is the following.

Theorem 3.2. The classes of generalized ordered structures GI, GP, GIIF ,
GPIF are extension complete. �

Theorem 3.1 was proven using a technique developed in [12] to prove Theo-
rem 2.1. It seems this technique is not enough to prove Theorem 3.2. In order
to prove Theorem 3.2 we need the following results from [1, 8, 25].

Lemma 3.2.[25] Let po = (X,<) be a partial order and a, b ∈ X, a ∼ b. Define
Y = {a} ∪ {y | y < a}, Z = {b} ∪ {z | b < z}.

Then (X,<ab) = (X,< ∪ Y ×Z) is a partial order and a <ab b. �

Theorem 3.3.[8]([10] for initially finite case) A partial order po = (X,<) is
interval (interval and initially finite) iff there exists a total (total and initially
finite) order (T,≺) and two mappings ϕ,ψ : X → T such that for all a, b ∈ X,
ϕ(a) ≺ ψ(a) and a < b ⇐⇒ ψ(a) ≺ ϕ(b). �

Usually ϕ(a) is interpreted as the beginning and ψ(a) as the end of an inter-
val a.

Theorem 3.4.[1] Let S = (X,<,�) be an interval order structure. Then there is
a partial order (T,≺) and two mappings ϕ,ψ : X → T such that for all a, b ∈ X,
ϕ(a) ≺ ψ(a) and:

a < b ⇐⇒ ψ(a) ≺ ϕ(b)
a � b ⇐⇒ ϕ(a) ≺ ψ(b) ∨ ϕ(a) = ψ(b). �

It turns out the results of Theorem 3.4 also hold under additional assumption
of initial finiteness.

Theorem 3.5. Let S = (X,<,�) be an initially finite interval order structure.
Then there is an initially finite partial order (T,≺) and two mappings ϕ,ψ :
X → T such that for all a, b ∈ X, ϕ(a) ≺ ψ(a) and:

a < b ⇐⇒ ψ(a) ≺ ϕ(b)
a � b ⇐⇒ ϕ(a) ≺ ψ(b) ∨ ϕ(a) = ψ(b).
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Proof. (Sketch) We take (T,≺) from Theorem 3.4 and show that initial finiteness
of S implies initial finiteness of (T,≺). �

The results of Thorems 3.4 and 3.5 can be extended to generalized structures.

Theorem 3.6. Let G = (X,<>,�) be a generalized interval order structure.
Then there is a partial order (T,≺), two mappings ϕ,ψ : X → T , and an acyclic
relation � ⊆ T×T such that for all a, b ∈ X, ϕ(a) ≺ ψ(a) and:

(a) a <> b ⇐⇒ ψ(a) � ϕ(b) ∨ ψ(b) � ϕ(a)
(b) a <G b ⇐⇒ ψ(a) ≺ ϕ(b), where <G=<> ∩ �

(c) a � b ⇐⇒ ϕ(a) ≺ ψ(b) ∨ ϕ(a) = ψ(b).

Furthermore, if G is initially finite then (T,≺) is also initially finite.

Proof.(Sketch) Let ≺t be any total extension of <G. Define Rt =<> ∩ ≺t. Note
that <>= Rt∪R−1

t and <G⊆ Rt. Let ≺ be any relation that satisfies (b) and (c).
Its existence follows from Theorem 3.4 or Theorem 3.5. First we set � equal to
≺. Let (a, b) ∈ Rt− <G= Rt− �. In such case we extend � by setting ψ(a)�ϕ(b).

�

At this point we can prove the first half of our main result.

Theorem 3.7. The class of generalized interval order structures GI and the
class of generalized initially finite interval order structures GIIF are extension
complete.

Proof.(Sketch) Let G = (X,<>,�) be a generalized interval order structure,
and let Ω be the set of interval orders that extend G. Let � be a relation from
Theorem 3.6, �+ be its transitive closure and let (T,≺t) be any total extension
of (T, �+). We define o = (X, o→) as a o→ b ⇐⇒ ψ(a) ≺t ϕ(b). By Theorem 3.3,
o is an interval order. Using Theorem 3.6 we can prove that o is an extension
of G, i.e. o ∈ Ω �= ∅, so it suffices to show that the conditions (a) and (b) of
Lemma 3.1. are satisfied. To prove this we need to use Theorem 3.6, Theorem
3.3 and Lemma 3.2. The reasoning for initially finite case is very similar. �

The second half of our main result requires a separate proof and the following
lemma.

Lemma 3.3. Let (Q,≺) be an upper semi-lattice7, and {Sr | r ∈ Q}, where
Sr = (X,<r,�r), be a class of partial order structures such that r1 ' r2 ⇒
(<r1⊆<r2 ∧ �r1⊆�r2). Then S = (X,<,�), where < =

⋃
r∈Q <r and � =⋃

r∈Q �r, is also a partial order structure.

Proof. (Sketch) We show that the axioms P1-P4 are satisfied. �

Theorem 3.8. The class of generalized partial order structures GP and the class
of generalized initially finite partial order structures GPIF are extension complete.

7 A partial order (X, <) is an upper semi-lattice if for any x, y ∈ X there is z ∈ X
such that x ≤ z ∧ y ≤ z. In particular any total order is an upper semi-lattice.
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Proof.(Sketch) Let G = (X,<>,�) be a generalized partial order structure, and
let Ξ be the set of partial orders that extend G. Let Rt be a relation from the
proof of Theorem 3.6, R+

t be its transitive closure. We can show that o = (X,R+
t )

belongs to Ξ. By using Lemmas 3.2 and 3.3, we can prove that the conditions
(a) and (b) of Lemma 3.1 are satisfied, which proves extension completeness of
GP. For GPIF we proceed similarly. �

The proofs are generally much longer and more complex that it might appear
from the sketches. Transfinite induction and the axiom of well-ordering are used.

By merging Theorem 3.1([7]) and Theorem 3.2 we obtain generalisations
of Szpilrajn Theorem for various types of partial orders, including the most gen-
eral case.

For the sake of putting all the results together we formulate them as a
theorem.

Theorem 3.9. (Generalisations of Szpilrajn Theorem) The classes of
generalized structures: GT , GS, GI, GP, GT IF , GSIF , GIIF , GPIF are
extension complete. �

It is intuitively obvious that in some cases both ordered structures and gen-
eralized ordered structures generate the same set of extensions. According to
[10] such cases conform to paradigm π3, but this property can also be expressed
without introducing explicitly the concept of paradigm (in the sense of [10]).

Theorem 3.10. For every generalized structure G = (X,<>,�):
<> =<G ∪ <−1

G ⇐⇒ gext(G) = ext(SG).

Proof. (Sketch) Standard, by definition manipulation. �

4 Generalized Order Structures and Concurrent
Histories

Below we discuss axiomatic representations of histories satisfying π1, i.e. no
restriction at all. Our main result is that every (initially finite or not) total,
stratified, interval, or partial generalized order structure corresponds in a natu-
ral way to a concurrent history. It was argued in [10] that runs (observations)
should be initially finite interval orders at most. The argument was based on the
laws of Physics under the assumption that observers work alone, from purely
mathematical viewpoint this assumption is not necessary. It was shown in [23]
that teams of observers can see runs modelled by arbitrary posets, so below we
do not impose the restrictions from [10].

Let T O, SO, IO, PO denote the class of total, stratified, interval and partial
orders respectively. Recall that GT , GS, GI, GP denote the classes of generalized
total, stratified, interval and partial order structures, respectively, while T , S,
I, P denote the classes of total, stratified, interval and partial order structures.
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Let us devide the set {T O,SO, IO,PO,GT ,GS,GI,GP, T ,S, I,P} into the
following partitions: {T O,GT , T }, {SO,GS,S}, {IO,GI, I}, {PO,GP,P},
{T OIF ,GT IF , TIF }, {SOIF ,GSIF ,SIF }, {IOIF ,GIIF , IIF }, {POIF ,GPIF ,
PIF }.

We say that two classes are related if ther belong to the same partition.
For every set of partial orders Δ with a common domain X, define

GΔ = (X,<>Δ,�Δ), and SΔ = (X,<Δ,�Δ) by

• <>Δ=
⋂

o∈Δ( o→ ∪ o←),
• <Δ=

⋂
o∈Δ

o→,
• �Δ=

⋂
o∈Δ( o→ ∪ o↔).

The main result of this section can now be formulated as follows.

Theorem 4.1. Let Δ be a non-empty set of partial orders with common domain.
Then:

Δ = Δcl ⊆ Σ ⇐⇒ (GΔ ∈ Θ ∧ gextΘ(GΔ) = Δ),
where Σ is a class of partial orders, Θ is a class of generalized order structures,
and (Σ,Θ) are related.

Proof. (Sketch) Standard, using definitions and Theorem 3.9. �

Under the paradigm π3 ordered structures and generalized ordered structures
describe the same behaviour, which can be formally described as follows.

Theorem 4.2. Let Δ be a non-empty set of partial orders with common domain
conforming to paradigm π3, Σ be a class of partial orders, Ξ be a class of ordered
structures, Θ be a class of generalized order structures, and (Σ,Ξ,Θ) are related.
Then the following are equivalent:

(a) Δ = Δcl ⊆ Σ
(b) SΔ ∈ Ξ ∧ extΞ(SΔ) = Δ
(c) GΔ ∈ Θ ∧ gextΘ(GΔ) = Δ

Proof. (Sketch) It was proven in [10] that π3 implies <>Δ=<Δ ∪ <−1
Δ . Next we

can use Theorem 3.10. �

5 Final Comment

In this paper, we refined the notion of generalized structures introduced in [7],
and proved that various classes of generalized structures are extension complete.
From purely mathematical point of view the results of this paper can be seen
as a generalization of Szpilrajn Theorem [25], from total orders to stratified,
interval and general partial orders.

An immediate application of the obtained results seems to be in the concur-
rent system synthesis problem area. We believe that the approach introduced in
[22] could now, after employing the results of this paper, handle the cases like
the program P1 from the introduction.
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The main result of this paper, Theorem 3.9, although highly motivated by
concurrency theory, is entirely independent of any particular interpretation.
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Abstract. In this paper we present logical characterizations of two pre-
orders, within the framework of Hennessy-Milner Logics. The two pre-
orders (loosely termed bisimulation-based efficiency preorders) are on
processes represented as labelled transition systems. The characteriza-
tions are particularly interesting as they explore preorders lying between
strong and weak bisimilarity, guided by a principle of containment which
is explained in the Introduction. Even though the proofs of the charac-
terizations use standard methods, there are various subtleties introduced
by the nature of the preorders and the logical operators needed to char-
acterize them. The authors have not previously encountered the use of
such operators in such simple logics.

Keywords: Concurrency, transition systems, bisimulation, efficiency pre-
orders, process efficiency, Hennessy-Milner Logic.

1 Introduction

In [5] a modal logic for reasoning about labelled transition systems was first
defined which characterized the notions of simulations, strong and weak bisim-
ulations. Subsequently the logic has been extended in various ways to include
the modal μ-calculus and various behavioural equivalences and preordering re-
lations on labelled transition systems. For a comprehensive account, the reader
is referred to [12].

In all such formulations, a process is identified by the set of formulas of a logic
that it satisfies. Given a behavioural equivalence relation on processes, a logical
language L characterizes this equivalence relation precisely when two equivalent
processes satisfy the same set of formulas of the logic.

Formally therefore, if P is a set of processes and L is a logic then we may
identify each process p ∈ P with the set of formulas of L that it satisfies, i.e.
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L(p) = {φ ∈ L | p � φ} denotes the set of formulas of L that p satisfies.
A behavioural equivalence ∼= on P is characterized by L whenever p ∼= q iff
L(p) = L(q). Similarly a behavioural preorder � on P is characterized by L
whenever p � q iff L(p) ⊆ L(q) or p � q iff L(q) ⊆ L(p).

Van Glabeek [14] has used precisely such formulations to characterize the
various behavioural relations on concrete processes. In several instances, it has
been shown that one behavioural relation R is coarser than another S, by show-
ing that a less expressive logic characterizes R or that a more expressive logic
characterizes S.

Such a formulation may actually be traced back to [5]. In it the authors
present two modal logics - the stronger or more expressive one (subsequently
referred to in the literature as Hennessy-Milner Logic or HML) characterizing
strong bisimulation equivalence and the weaker or less expressive one (referred
to by Stirling [12] as Observable Hennessy-Milner Logic or OHML) character-
izing observational equivalence. The paper [5] also showed the characterization
of trace equivalence and simulation equivalence in terms of sub-logics of HML,
thus establishing that both trace equivalence and the simulation equivalence are
coarser than bisimulation. The authors actually showed that for image-finite
processes, HML with finitary conjunctions captured strong bisimilarity whereas
HML without negation characterized simulation equivalence. Trace equivalence
was characterized by removing both negation and conjunction from the logic.

In this paper we provide such logical characterizations for behavioural rela-
tions that lie strictly between strong and weak bisimilarity by defining modified
Hennessy-Milner Logics for the purpose. We use the following properties as guid-
ing principles in the design of the logics.

1. For any behavioural preorder ≤ and logical language L characterizing ≤,
p ≤ q iff L(p) ⊆ L(q). It then follows that the kernel of the preorder is
an equivalence relation and is characterized by equality on sets of satisfying
formulae. That is, p ≤ q and q ≤ p if and only if L(p) = L(q).

2. Given preorders ≤1, and ≤2 characterized respectively by logics L1 and L2,
≤1 ⊂ ≤2 iff L1 ≺ L2 where L1 ≺ L2 denotes that L1 is more expressive
than L2 (and hence can allow for finer distinctions to be made).

While adhering to these principles, it may be pointed out that so far the spec-
trum of behavioural relations that lie strictly between strong and weak bisimilar-
ity has not really been explored in the literature. This includes some preorders
defined by Milner and others ([11], [10], [3], [2]). In this paper we provide a
characterization of the preorders defined in [3] and [2]. As we will show, the
characterization of these preorders requires reasoning about linear orders within
logics whose expressive power lies strictly between HML and OHML.

Efficiency-based preorders have been of interest to various people since they
were first introduced in [1]. Several other authors have worked on obtaining
similar preorders within the framework of extensionality (see [13], [6], [7], [8], [4]).
Some of these works are based on extent theories such as testing and bisimulation
in process algebra and Petri nets.
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The paper is organized as follows. In the next section we review HML and
OHML and show the characterizations of strong and weak bisimilarity respec-
tively. Section 3 presents the logical characterization of the elaboration preorder
[3] using an appropriately modified OHML. In this section we also highlight
the principal differences between the elaboration preorder and weak bisimilar-
ity and hence the need for a more expressive logic than OHML to characterize
elaboration. In section 4, we present the characterization of the efficiency pre-
order relation. Though the proofs in these sections are standard the operators
introduced to characterize the two preorders are not standard. Section 5 is the
conclusion and highlights further properties of the new modal operators that
have been introduced to enrich OHML so as to characterize these preorders.

2 Modal Characterizations of Strong and Weak
Bisimilarity

Here we review Hennessy-Milner Logic (HML) and Observable Hennessy-Milner
Logic (OHML) and show how they characterize strong and weak bisimilarity
respectively.

Let V be a set of visible actions, τ �∈ V a distinguished invisible action and
Act = V ∪ {τ} the set of actions. A labelled transition system (LTS) is a 3-tuple
〈P, Act,−→〉, where P is a set of process states or processes and −→⊆ P×Act×P

is the transition relation. We use the notation p
a−→ q to denote (p, a, q) ∈−→

and refer to q as a strong a-derivative of p.

2.1 Strong Bisimulation

Definition 1. A binary relation R ⊆ P × P is a strong simulation(SS)
if for every 〈p, q〉 ∈ R and a ∈ Act:

p
a−→ p′ =⇒ ∃q′ : q a−→ q′ ∧ p′Rq′

It is a strong bisimulation (SB)if both R and R−1are strong simulations.
We write p ∼ q if there exists a strong bisimulation R such that pRq. The
relation ∼ is called strong bisimilarity.

The relation ∼ is itself a strong bisimulation, and in fact, the largest one.
In [9] the author gives a comprehensive account of the modal logic (HML) that
characterizes strong bisimilarity. It is defined as follows.

Definition 2. The class LSB of strong bisimulation formulas over Act is given
by the following grammar (I is an indexing set, not necessarily finite).

ϕ ::= <a> ϕ |
∧

i∈I ϕi | ¬ϕ

tt ∈ LSB where tt ≡
∧

i∈∅ ϕi . Similarly, ff ∈ LSB where ff ≡ ¬tt .
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Definition 3. The satisfaction relation � ⊆ P × LSB is defined recursively as
follows:

– p � tt for all p ∈ P.
– p � <a> ϕ for a ∈ Act if ∃p′ ∈ P : p a−→ p′ and p′ � ϕ.
– p �

∧
i∈I ϕi if p � ϕi for all i ∈ I .

– p � ¬ϕ if p � ϕ.

The set SB(p) is defined as SB(p) = {ϕ ∈ LSB | p � ϕ}. We write p �SB

q iff SB(p) ⊆ SB(q) and we write p =SB q iff SB(p) = SB(q). The negation
operator collapses the preorder �SB to =SB as the following proposition shows.

Proposition 1 (Van Glabeek [14]). p �SB q ⇐⇒ p =SB q.

Proof. If ϕ ∈ SB(q) − SB(p) then ¬ϕ ∈ SB(p) − SB(q). Hence, p �SB q ⇐⇒
p =SB q . �

Theorem 1 (Van Glabeek [14]). p ∼ q ⇐⇒ p =SB q.

Proof. (=⇒) By induction on the structure of ϕ. Since p ∼ q , there exists a
strong bisimulation R such that pRq.

- Let p �<a> ϕ. Then there exists a p′ ∈ P with p a−→p′ and p′ � ϕ. Since
pRq, there must be a q ′ ∈ P with q a−→q ′ and p′Rq ′. So by induction q ′ � ϕ
and hence q �<a> ϕ.
By symmetry, one also obtains q �< a > ϕ =⇒ p �< a > ϕ.

- p �
∧

i∈I ϕi ⇐⇒ ∀i ∈ I (p � ϕi)
induction⇐⇒ ∀i ∈ I (q � ϕi) ⇐⇒ q �

∧
i∈I ϕi .

- p � ¬ϕ⇐⇒ p � ϕ
induction⇐⇒ q � ϕ⇐⇒ q � ¬ϕ.

(⇐=) To prove that p =SB q =⇒ p ∼ q, it suffices to establish that =SB is a
strong bisimulation. If however, we show that �SB is a strong simulation, then
proposition 1 implies that =SB = �SB = �−1

SB is a strong bisimulation.
We proceed to show that �SB is a strong simulation.

Suppose, p �SB q and p a−→p′. Then p �< a > tt and p �SB q implies q has
at least one strong a-derivative. We have to show that ∃q ′ ∈ P with q a−→q ′ and
p′ �SB q ′. Let

Q = {q ′′ ∈ P | q a−→q ′′ ∧ p′ ��SB q ′′}

For every q ′′ ∈ Q there is a formula ϕq′′ ∈ SB(p′) − SB(q ′′). Now < a >∧
q′′∈Q ϕq′′ ∈ SB(p) ⊆ SB(q). Therefore there must be a q ′ ∈ P with q a−→q ′

and q′ �
∧

q′′∈Q ϕq′′ , which implies q ′ /∈ Q . �

With negation in the logic, we may define the duals of the operators in LSB

as derived ones.

[a]ϕ ≡ ¬ <a> ¬ϕ
∨

i∈I ϕi ≡ ¬
∧

i∈I ¬ϕi

We may then define a negation-free language LSB′ .
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Definition 4. The class LSB ′ of negation-free strong bisimulation formulas over
Act is given by the following grammar

ϕ ::= <a> ϕ |
∧

i∈I ϕi | [a]ϕ |
∨

i∈I ϕi

with tt ≡
∧

i∈∅ ϕi and ff ≡
∨

i∈∅ ϕi .

Definition 5. The satisfaction relation � ⊆ P× LSB ′ is defined recursively as
in the case of LSB with the clause for negation being replaced by the following
clauses.

– p � ff for no p ∈ P.
– p � [a]ϕ for a ∈ Act if ∀ p′ ∈ P : p a−→ p′ =⇒ p′ � ϕ.
– p �

∨
i∈I ϕi if p � ϕi for some i ∈ I .

It is clear that ¬¬ϕ is equivalent to ϕ. It may be shown (refer [12]) that LSB

and LSB′ are expressively equivalent and characterize the same equivalence.

2.2 Weak Bisimulation

We may define several other derived operators. Some of the relevant ones are
given below.

<a>0 ϕ ≡ ϕ <a>m+1 ϕ ≡ <a><a>m ϕ,m ∈ N

<<>> ϕ ≡
∨

m≥0 <τ >
m ϕ <<a>> ϕ ≡ <<>><a><<>> ϕ

[[ ]]ϕ ≡ ¬ <<>> ¬ϕ [[a]]ϕ ≡ [[ ]][a][[ ]]ϕ

The last four operators correspond to the weak transition relation =⇒ which is
the smallest relation on processes such that

– p =⇒ p for all processes p, and
– p

τ−→ q and q =⇒ r implies p =⇒ r

Further for any a ∈ Act,

– p
a=⇒ q if p =⇒ a−→=⇒ q, and q is called a weak a-derivative or simply an

a-derivative of p.
– p

â=⇒ q denotes p =⇒ q if a = τ and p
a=⇒ q otherwise.

– <<â>> denotes <<>> if a = τ and <<a>> otherwise.

Definition 6. A binary relation R ⊆ P× P is a weak simulation if for every
〈p, q〉 ∈ R and a ∈ Act,

p
a−→ p′ =⇒ ∃q′ : q â=⇒ q′ ∧ p′Rq′

R is a weak bisimulation (WB) if both R and R−1 are weak simulations. We
write p ≈ q if there exists a weak bisimulation R such that pRq.
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Definition 7. The class LWB of weak bisimulation formulae over Act is defined
by the following BNF.

ϕ ::= <<α>> ϕ |
∧

i∈I ϕi | ¬ϕ

where α ∈ V .

Note that in the light of our discussion on derived operators, LWB is entirely
contained in LSB . It is also less expressive in the sense that it cannot express
properties relating to the number of invisible moves a process might be able to
make.

Definition 8. The satisfaction relation � ⊆ P×LWB is defined recursively by:

– p � tt for all p ∈ P.
– p �<<α>> ϕ for α ∈ V if ∃p′ : p α=⇒ p′ ∧ p′ � ϕ
– p �

∧
i∈I ϕi if p � ϕi for all i ∈ I .

– p � ¬ϕ if p � ϕ.

The set of all formulae that a process p satisfies is defined as WB(p) = {ϕ ∈
LWB | p � ϕ}. We write p �WB q iff WB(p) ⊆ WB(q) and we write p =WB q
iff WB(p) = WB(q). The proofs that p �WB q implies p =WB q and that
p ≈ q iff p =WB q (i.e. that LWB characterizes weak bisimilarity) are similar
to the corresponding proofs for strong bisimilarity and hence are omitted. It is
also possible to define a negation-free logic LWB′ (analogous to LSB′) which
characterizes weak bisimilarity.

3 Elaboration

In this section we give a logical characterization of the elaboration preorder
defined in [3]. This logic builds upon LWB and exhibits controlled use of counting.

Definition 9.A binary relation R ⊆ P × P is an elaboration iff for every
〈p, q〉 ∈ R the following conditions hold for every action a ∈ Act.

p
a−→p′ =⇒ ∃q′ : q â=⇒q′ ∧ p′Rq′ (1)

q
a−→q′ =⇒ ∃p′ : p a=⇒p′ ∧ p′Rq′ (2)

We write p � q if there exists an elaboration R such that pRq.

Loosely speaking, if p � q, then p ≈ q and for every execution sequence of p,
there exists a possibly shorter execution sequence of q which exhibits the same
visible behaviour. In [3] the authors illustrate this feature with a small example.
They also show in the equational axiomatization of the corresponding precon-
gruence (and congruence) for finite CCS processes, that it differs from that of
observational congruence in just one equation. Whereas observational congru-
ence satisfies the equation a.τ.p = a.p, in the case of elaboration, a.τ.p � a.p but
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the converse a.p � a.τ.p does not always hold. In that sense the precongruence
is closer to observational congruence than any other relation defined so far in
the literature.

It is easy to show from the above definition that every elaboration is a weak
bisimulation. In particular, the only difference from that of weak bisimulation
is in clause (2), where the â=⇒ is replaced by a=⇒. We state without proof, a
result (see [3]) that we use in the proof of lemma 4.

Lemma 1. If R ⊆ P×P is an elaboration then for every 〈p, q〉 ∈ R the following
conditions hold for every action a ∈ Act.

p
a=⇒ p′ =⇒ ∃q′ : q â=⇒ q′ ∧ p′Rq′ (3)

q
a=⇒ q′ =⇒ ∃p′ : p a=⇒ p′ ∧ p′Rq′ (4)

From lemma 1 it is clear that any HML-style characterization that is in
accordance with the principles laid out in section 1 would enrich observable
HML slightly in order to characterize the preorder. We define the following two-
level grammar, whose lower level (defined by the meta-variable ϕ) is LWB . The
higher level (defined by the meta-variable π) expresses a certain weak form of
counting. It introduces a new operator εk, (where k is a positive integer) but
does not permit negation to precede any occurrence of εk. The operator <<â>>
excludes << τ >>. Where counting of τ actions is not important, the lack of
negation is compensated by the derived operators [[. . .]] and

∨
.

Definition 10. The class LE of Elaboration formulae over Act is given by the
following two-level grammar, where α ∈ V and a ∈ A.

ϕ ::= <<α>> ϕ |
∧

i∈I ϕi | ¬ϕ

π ::= ϕ | <<â>> π | εkπ | [[a]]π |
∧

i∈I πi |
∨

i∈I πi

Definition 11. The satisfaction relation � ⊆ P × LE is defined recursively in
a manner that should be obvious by now for all operators drawn from LWB. So
we restrict ourselves to the definitions of the operators << â >>, εk and [[a]]
respectively.

– p �<< â>> π for a ∈ Act, if ∃p′ ∈ P : p â=⇒p′ ∧ p′ � π.

– p � εkπ for k > 0, if ∀p′ ∈ P : p τ j

−→ p′ ∧ p′ � π =⇒ j < k
– p � [[a]]π for a ∈ Act if for all p′ ∈ P : p a=⇒ p′ =⇒ p′ � π.

p τ j

−→ p′ denotes that p may evolve to p′ after performing j consecutive invisible
actions. E (p) = {π ∈ LE | p � π} and EWB (p) = {ϕ ∈ LWB | p � ϕ}. We write
p �E q iff E(p) ⊆ E(q) and p =E q iff E(p) = E(q). Similarly, p �EW B

q iff
EWB(p) ⊆ EWB(q) and p =EW B

q iff EWB(p) = EWB(q).
To gain a deeper understanding, we give below some examples that illustrate

the expressive power of LE .
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Example 1.

– The statement “p is stable” i.e. p cannot perform a τ action, may be expresed
as ε1tt. More generally, p � εktt if and only if p may perform no more than
(k − 1) consecutive τ actions.

– The statement “p converges” i.e. p cannot perform an infinite sequence of τ
actions, is expressed as

∨
k>0 ε

ktt.
– The statement “p diverges” is however not expressible in the language since
p diverges iff p ��

∨
k>0 ε

ktt.
– The statement p � εkff means that “p can perform τm for all m ≥ k”.

However, this statement does not necessarily imply that p diverges, unless p
is also finitely branching.

– εjπ logically implies εkπ for all 0 < j < k.
– For any j > 0,

∧
k≥j ε

kπ is logically equivalent to εjπ.
– Statements such as “p can do at least two consecutive τ actions” are not

expressible since there is no operator which can express lower bounds on the
number of consecutive τ actions1.

We now proceed to prove the characterization theorem. We begin with the
following lemma which is clearly implied by the fact that every elaboration is a
weak bisimulation and that �EW B

and =EW B
coincide.

Lemma 2. p � q =⇒ p =EW B
q and hence p � q =⇒ p �EW B

q. �

Theorem 2. The characterization. p � q iff p �E q. �

We split the proof of theorem 2 into two parts.

Lemma 3. p �E q implies p � q.

Proof. We show that �E is an elaboration. Let E(p) ⊆ E(q). We need to prove
both parts (1) and (2) of definition 9.

Part (1). Consider p a−→ p′ where a ∈ Act . Then p �<<â>> π for any π ∈ E (p′)

and q � <<â>>π which implies ∃q ′ : q â=⇒q ′ ∧ q ′ � π. We need to show that
∃q′ : q â=⇒ q′ ∧ E(p′) ⊆ E(q′).

Let
Q = {q ′′ | q â=⇒ q ′′ ∧ E (p′) � E (q ′′)}

Then for each q′′ ∈ Q, there exists a formula πq′′ ∈ E(p′)− E(q′′). This implies
p′ �

∧
q′′∈Q πq′′ . Hence p � π where π =<<â>>

∧
q′′∈Q πq′′ . That is, π ∈ E (p) ⊆

E (q). Hence ∃q′ : q â=⇒ q′ ∧ q′ �
∧

q′′∈Q πq′′ and q′ /∈ Q, which shows that
E(p′) ⊆ E(q′), which needed to be proved.

1 To be able to express such statements, would require either the power of negation
or the dual of εk. But allowing such operators would make the logic equivalent to
LSB , something we wish to avoid.
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Part (2). Suppose q a−→ q ′. We claim ∃p′ : p a=⇒ p′. Suppose not. If a ∈ V

then for some ϕ ∈ EWB (q ′), q �<< a >> ϕ and p ��<< a >> ϕ. This implies
p � ¬ <<a>> ϕ and q � ¬ <<a>> ϕ which contradicts EWB (p) ⊆ EWB (q). On
the other hand, if a = τ , then p � τ=⇒ implies p � ε1tt. But since q τ−→ q′, q � ε1tt
which contradicts E(p) ⊆ E(q).

Now, we need to show that ∃p′ : p a=⇒ p′ ∧ E(p′) ⊆ E(q′). Suppose there
is no such p′. Then ∀p′ : p a=⇒ p′ =⇒ E (p′) � E (q ′). Then for each weak
a-derivative p′′ of p, there exists a πp′′ ∈ E (p′′) − E (q ′). Choose one such for
each weak a-derivative p′′ of p and collect them in a set Π. Then we have
p � [[a]](

∨
Π), but q � [[a]](

∨
Π), which contradicts E(p) ⊆ E(q). Hence ∃p′ :

p a=⇒ p′ ∧ E (p′) ⊆ E (q ′). �

Lemma 4. p � q implies p �E q i.e. E(p) ⊆ E(q).

Proof. We need to show p � q =⇒ (p � π =⇒ q � π). We prove this by induction
on the structure of π

– p � ϕ. Then q � ϕ follows from lemma 2.

– p �<<â>> π, a ∈ Act. Then ∃p′ : p â=⇒p′ ∧ p′ � π and since p � q, ∃q ′ :

q â=⇒q ′ ∧ p′ � q ′. Therefore, by induction hypothesis, q ′ � π =⇒ q �<<â>>
π.

– p � εkπ. Then ∀p′ : p τ j

−→p′∧p′ � π =⇒ j < k. Since p � q , we have, for every

such p′ and j there exist q ′ and m respectively, such that q τm

−→ q′ ∧ p′ � q′.
Therefore by the induction hypothesis, q ′ � π. We claim that, m ≥ k is
impossible. Suppose not; then q τm

−→q ′ ∧ p′ � q ′ where m ≥ k , for some q′

and m. Then ∃p′′ : p τ j

−→p′′ ∧ p′′ � q ′ for some j ≥ m ≥ k . But then p � εkπ
which is a contradiction. Hence q � εkπ.

– p � [[a]]π. Then ∀p′ : p a=⇒ p′ =⇒ p′ � π. Since p � q , we have, for every

such p′, ∃q ′ : q â=⇒ q ′ ∧ p′ � q ′. By the induction hypothesis E(p′) ⊆ E(q′)
and q′ � π. We now claim that there does not exist any q′ such that q a=⇒ q′

and q′
� π. Suppose the claim is false. Then we have ∃q′ : q a=⇒ q′ ∧

q′
� π. This implies (by lemma 1) ∃p′ : p a=⇒ p′ ∧ p′ � q′

� π. Again by
induction hypothesis E(p′) ⊆ E(q′) and hence p′

� π. But this contradicts
the assumption p � [[a]]π. Hence the claim is false.

– p �
∧

i∈I πi . Then p � πi for all i ∈ I and by the induction hypothesis,
q � πi for all i ∈ I which implies q �

∧
i∈I πi

– p �
∨

i∈I πi . Then p � πi for at least one i ∈ I and by induction hypothesis
it follows that q �

∨
i∈I πi . �

The above proof has been presented in detail to highlight the steps for the
operators at the higher level, especially the operator εk. Note that the proof
would not go through if we allowed <<τ >> in the logic.
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4 Efficiency Prebisimulation

As we did for elaboration in the previous section, we now present a logical charac-
terization for efficiency prebisimulation [2] using a logic which is more expressive
than LE but not as expressive as LSB .

The following formulation [2] gives a simple definition of the efficiency pre-
order. Closely related preorders have been defined independently by Milner in
[10] and [11], though neither their algebraic nor logical characterizations have
been presented.

Definition 12. A binary relation R ⊆ P×P is an efficiency prebisimulation
(EP) iff for every 〈p, q〉 ∈ R, α ∈ V , a ∈ Act the following conditions are
satisfied.

p
α−→p′ =⇒ ∃q′ : q α−→q′ ∧ p′Rq′ (5)

p
τ−→p′ =⇒ p′Rq ∨ (∃q′ : q τ−→q′ ∧ p′Rq′) (6)

q
a−→q′ =⇒ ∃p′ : p a=⇒p′ ∧ p′Rq′ (7)

We write p � q if there exists an efficiency prebisimulation R such that pRq.

Intuitively, p � q means that for every execution sequence that p may per-
form, it is possible to find a possibly shorter sequence that q may perform with
the same visible content, and conversely, for any sequence that q may perform it
is possible to find a possibly longer sequence that p may perform with the same
visible content. In general, both the preorders � and � represent comparisons
between observationally equivalent processes and order them differently on the
amount of internal computation they may perform. We refer to both preorders
as efficiency-based preorders, but � having been christened “efficiency preorder”
earlier we continue to refer to it by the same name. We refer the reader to [2]
and [1] for intuitively appealing examples and for the axiomatization of finite
CCS processes.

In [3] it has been shown that ∼ ⊂ � ⊂ � ⊂ ≈ (where all the containments are
strict). This suggests that we require a logic that is more expressive than LE , but
less than LSB . This logic is very similar in structure to the logic for elaboration
and is again defined in two levels with the lower level of weak formulae being
the same.

Definition 13. The class LEP of efficiency prebisimulation formulae over Act
is given by the following grammar. As before, we use α to denote a visible action
and a to denote any action.

ϕ ::= <<α>> ϕ |
∧

i∈I ϕi | ¬ϕ

π ::= ϕ | <α> π | (τ)π | εkπ | [[a]]π |
∧

i∈I πi |
∨

i∈I πi
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Note that the index set I may be infinite. Also negation (¬) as in the case
of LE , is available only for weak formulae. The language LEP is the set of all
formulae π and the language LWB is the set of all weak formulae ϕ. Note that
LWB ⊆ LEP .

Definition 14. The satisfaction relation � ⊆ P×LEP is defined recursively. As
before, we omit those clauses which have been previously presented and restrict
ourselves to defining the clauses for the new operators.

– p �<α> π for α ∈ V if for some p′ ∈ P : p α−→ p′ and p′ � π
– p � (τ)π if p � π or for some p′ ∈ P : p τ−→ p′ and p′ � π

EP (p) = {π ∈ LEP | p � π} and EPWB(p) = {ϕ ∈ LWB | p � ϕ}. Further,
p �EP q iff EP (p) ⊆ EP (q), and p =EP q iff EP (p) = EP (q). As before,
p �EPW B

q iff EPWB(p) ⊆ EPWB(q) and p =EPW B
q iff EPWB(p) = EPWB(q).

As for the expressiveness of this language, notice that

– we allow the “strong possibility” modality (“<α>”) from LSB , but neither
negation nor “strong necessity” (“[α]”).

– The operator “<τ >” is replaced by the weaker prefix operator “(τ)” .
– The operator εk in the formula εkπ excludes the possibility of a process

being able to perform more than k− 1 initial τ actions and reaching a state
satisfying π.

– On the other hand, p satisfying the formula (τ)kπ, k > 0 (obtained by
prefixing π by k occurrences of (τ)) asserts the existence of a τ j derivative
of p (for some j, 0 ≤ j ≤ k) which satisfies π.

There are no formulae in LEP equivalent to the HML formula ¬ <τ ><τ > φ.
Even a statement such as “p has a strong τ2-derivative that satisfies π” can only
be inferred if it is known that p � π, p � (τ)π and p � (τ)2π.

We now proceed to give a proof outline of the characterization theorem. We
begin with the following lemma which is clearly implied by the fact that every
efficiency prebisimulation is a weak bisimulation and that �EPW B

and =EPW B

coincide.

Lemma 5. p � q =⇒ p =EPW B
q and hence p � q =⇒ p �EPW B

q. �

Theorem 3. The characterization. p � q iff p �EP q. �

We prove this theorem in two parts. We omit most of the routine details and
concentrate on only the operators that have been newly introduced.

Lemma 6. p �EP q implies p � q.

Proof. We show that �EP is an efficiency prebisimulation. We prove the various
parts viz. (5), (6) and (7) of definition (12), assuming EP (p) ⊆ EP (q).

Part (5). Suppose p
α−→ p′, α ∈ V . Then p �< α > π for each π ∈ EP (p′).

Clearly q �<α> π and there exists q′ such that q α−→ q′ and q′ � π. We need
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to show ∃q′ : q α−→ q′ ∧ EP (p′) ⊆ EP (q′). We use an argument that has now
become routine viz. consider the set Q = {q′′|q α−→ q′′ ∧EP (p′) �⊆ EP (q′′)} and
proceed as before.

Part (6). Suppose p
τ−→ p′, then for each π ∈ EP (p′) we have p � (τ)π and

q � (τ)π. Then if q � π there must exist a q′ such that q τ−→ q′ and q′ � π. It
then suffices to show that ∃q′ : q τ−→ q′ ∧ EP (p′) ⊆ EP (q′). We may show this
in a manner similar to that of Part 5.

Part (7). The proof of this part is similar to Part (2) of the proof of
lemma 3. �

Lemma 7. p � q implies p �EP q.

Proof. Assume p � q. We again use induction on the structure of formulae. For
any formula φ from EPWB , lemma 5 assures us that p � φ implies q � φ. Of the
rest of the cases from the language LEP −LEPW B

we consider only the following:

– p �<α> π, α ∈ V . Then for some p′, we have p α−→ p′ and p′ � π. Hence
∃q′ : q α−→ q′ ∧ p′ � q′. By the induction hypothesis, EP (p′) ⊆ EP (q′) and
so we get q �<α> π.

– p � (τ)π. If p � π then by the induction hypothesis q � π and so it follows
that q � (τ)π. On the other hand, if p � π, then ∃p′ : p τ−→ p′ ∧ p′ � π. From
p � q we have, either p′ � q or ∃q′ : q τ−→ q′ ∧ p′ � q′. If p′ � q then p′ � π
implies q � π by the induction hypothesis. If p′ �� q then p′ � π implies q′ � π
by the induction hypothesis and it follows that q � (τ)π.

– p � εkπ, k > 0. This is again proved in a manner analogous to the corre-
sponding proof for elaboration. �

5 Conclusion

In the foregoing sections we have introduced two new operators into Hennessy-
Milner Logic (HML) viz. εk and (τ). We have shown and characterized preorders
lying strictly between strong and weak bisimilarity using versions of HML and
OHML with these new operators.

At the outset, we would first of all like to be convinced that their introduction
into LSB does not in any way alter the expressive power of HML. It is easy to
see from their semantics that these operators enjoy the following equivalences.
For any formula π in LE or LEP , let π̃ denote the equivalent formula in LSB .
We then have

(τ)π ≡ π̃ ∨ <τ > π̃ (8)

εkπ ≡
∧
j≥k

[τ ]j¬π̃ (9)

While (8) is obvious from its semantics, it is fairly easy to derive (9) by noting

that p � εkπ precisely when ∃p′ : p τj

−→ p′ ∧ j ≥ k ∧ (p′ � π).
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These operators also satisfy some other properties. For example, any formula
π ∈ LEP logically implies (τ)π. And for any k > 0 we have (τ)kπ ≡

∨
j≤k(τ)jπ.

Further, (τ)kπ =⇒ (τ)k+1π. Similarly, in both LE and LEP , for any k > 0,
we have εkπ =⇒ εk+1π. For any set S of positive integers, let inf(S) and
sup(S) denote the minimum and maximum (provided it exists) elements of S
respectively. We then have the following identities.∧

j∈S(τ)jπ ≡ (τ)inf(S)π ,
∧

j∈S ε
jπ ≡ εinf(S)π and∨

j∈S(τ)jπ ≡ (τ)sup(S)π ,
∨

j∈S ε
jπ ≡ εsup(S)π if S is finite.

These properties enable us to follow the guiding principle that a preorder
should be characterized by containment on sets of formulae.

If we were to extend the language to allow ε0 as an operator, we would have
that p � ε0π implies p � π. Then we would also be able to express the statement
“p diverges” by the formula p � ε0

∨
k>0 ε

ktt and the statement “p can perform
at least two τ actions” by ε0ε2tt.

The results that we have presented in this paper offer interesting technical
insights into the construction of logical characterizations of preorders guided by
the principles enunciated in section 1. As far as we are aware, in the literature,
there are no logical characterizations of behavioural relations that lie strictly
between strong and weak bisimilarity.

In future work, we hope to study and understand more about these operators
and explore their interactions with fixpoint operators within a modal μ-calculus
setting.
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Abstract. Scenario based requirements specifications are the industry
norm for defining communication protocols. Basic scenarios captured
as UML sequence diagrams, Message Sequence Charts (MSCs) or Live
Sequence Charts (LSC) have partial order semantics that characterize
system traces by restricting the possible order of events within those
traces. The semantic partial order of the scenario specification is called
the causal ordering.

Semantic inconsistencies often occur in partial order scenarios between
the specified causal ordering and the order that events can occur in prac-
tice. Such inconsistencies are known as race conditions. The paper proves
that there is a unique race free partial order that is a minimal weakening
of the causal ordering. In other words, there is a canonical generaliza-
tion of the requirements that corrects all race conditions. Hence any race
free generalization of the original scenario is in fact a generalization of
the canonical scenario. The paper also proves the dual result, there is
a unique race free partial order that is a minimal strengthening of the
causal order. I.e. there is a canonical refinement of the requirements that
corrects all race conditions.

1 Introduction

UML sequence diagrams [19], Message Sequence Charts (MSCs) [18], and Live
Sequence Charts (LSCs) [7] are popular for defining wireless and mobile com-
munication protocols. The semantics of a basic scenario diagram defined with
any of these languages can be given in terms of a partial order on the events in
the scenario. The partial order restricts the order in which events can occur in
any system trace. This partial order is called the causal ordering. We refer to
any basic scenario diagram with such a semantics as a partial order scenario.

Although scenario specification languages have become quite sophisticated
and have expressive powers beyond partial order scenarios, such scenarios are
still the mainstay of industrial specifications. Consequently the study of partial
order scenarios is still an active topic of research [5, 13, 12, 16]. Synthesizing
various types of system models directly from these partial order scenarios is also
an active area [1, 3, 4, 11, 15, 17]. Research into automatic test generation from
partial order scenarios is another active research area [2, 6, 14].

Z. Liu and K. Araki (Eds.): ICTAC 2004, LNCS 3407, pp. 113–127, 2005.
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Industrial requirements specifications often contain inconsistencies between
the specified causal ordering and the order that events can occur in practice. Race
conditions are amongst the most common of these inconsistencies. Essentially a
race condition asserts a particular order of events will occur as a consequence of
the causal ordering, when in practise this order can not be guaranteed to occur. See
[9, 10] for the original formal description of the problem within the MSC context.

It is possible to directly analyze the causal ordering to automatically detect
race conditions [10]. This still leaves the onerous task of actually correcting the
race conditions. Case studies such as [20] have shown that around a third of sig-
nificant defects in SDL specifications are caused by poor requirements specifica-
tions. Since many SDL specifications are refined from MSCs and UML sequence
diagrams this suggests a significant number of errors arise because of poor qual-
ity in partial order scenarios. Hence the ability to automatically correct race
conditions would be of practical value.

In the paper we prove that given a causal ordering there exists a unique mini-
mal weakening of that order which does not contain any race conditions, and which
is itself the causal ordering of some scenario (Theorem 10). We call this weakening
the inherent causal ordering, and the scenario to which it corresponds the inherent
causal scenario. We prove the inherent causal scenario is canonical up to simula-
tion equivalence of system behaviour. Therefore any race free generalization of the
original scenario must be a generalization of the inherent causal scenario. Hence
there is an optimal generalization of a partial order scenario that corrects all race
conditions. In section 7 we describe an example MSC scenario from an industrial
case study that illustrates how the inherent causal order can be of value in practise.

The paper also proves that there is a unique minimal strengthening of a causal
order that corrects all race conditions, and which is equivalent to the causal
ordering of some scenario (Theorem 18). We call this the inherent refinement
ordering. As might be expected we prove the inherent refinement scenario is
canonical up to simulation equivalence. Hence there is an optimal refinement
of a partial order scenario that corrects all race conditions. The results can
be generalized to scenarios that extend the basic partial order semantics with
iteration and branching, as is the case with HMSCs. However, we do not prove
that here due to lack of space.

Although our results are perfectly general and apply to any basic scenario
diagram language such as basic UML sequence diagrams, MSCs or LSCs, we
will use MSC as the central language for the paper. The MSC standard [18]
is stable and MSCs are common in industry. Also MSC 2000 is being adopted
within UML 2.0 [19]. In addition MSCs allow the most general form of causal
ordering since it is possible for an MSC causal order to be almost any irreflexive
transitive partial order.

2 Basic Partial Order Specifications

In this section we define the causal ordering semantics for partial order scenarios
(e.g. basic MSCs). We use the same message semantics as the MSC 2000 standard
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[18]. Hence, a partial order scenario defines a set of message exchanges between
processes with asynchronous communication channels. Also we do not assume
any type of buffering with the channels. However, the results in the paper do
hold for both synchronous and FIFO channels.

Let P be a set of processes. A message m between processes is a pair (!m, ?m)
where !m is the send event for m, and ?m is the receive event for m. We regard
!m as belonging to the sending process, and ?m as belonging to the receiving
process. Let E be the set of all send and receive events between all processes.
Each event has a label, let l : E −→ L be the labelling function. For a message
m, l(!m) = l(?m). Within the MSC standard there are many other kinds of
events such as action boxes and condition symbols, but here we only consider
message events to simplify proofs as much as possible. It is straightforward to
generalize the results to include these other events.

Definition 1. A partial order scenario on processes P is

– a collection of disjoint sets E(P ) ⊆ E, for each P ∈ P that defines the
message events belonging to P ,

– and a set of irreflexive partial orders <P , where <P is a partial order on
E(P ) that defines the local ordering of events for process P .

These local partial orders must be subject to the constraint that for each send
event !m in a set E(P ) the corresponding receive event ?m occurs in some set
E(Q). Note messages are allowed to be sent from a process to itself, so we allow
P = Q. We treat a partial order as a binary relation that can be represented as
the set of pairs that are ordered by the relation. Hence we can take the union
of partial orders, which is just the set theoretic union of the sets that represent
the relevant order relations. It is important to note the local orders are not
necessarily total, but can be any irreflexive partial order. In the literature it is
sometimes assumed basic scenario diagrams have total local orderings, so it is
worth emphasizing this does not have to be the case.

Let Msg be the set of messages defined as the set of send and receive event
pairs:

{(!e, ?e) | !e ∈ E(P ) and
?e ∈ E(Q) for some P, Q ∈ P}

Definition 2. The causal ordering <C on a partial order scenario is the tran-
sitive closure of the relation given by( ⋃

P∈P
(<P )

)
∪Msg

From now on we will assume that all partial orders are transitive and irreflexive
without loss of generality. We will also assume that all causal orderings are
irreflexive, so that messages must be received after they are sent. We also, as is
the norm, rule out message overtaking as shown in figure 2. The MSC standard
includes a general ordering construct, which is a simple graphical notation that



116 B. Mitchell

A B C

a
b

c
d

Fig. 1. Race hidden by coregion

A B

ab

Fig. 2. Message Overtaking, which is prohibited

explicitly forces one event to occur before another event in the causal order. A
general order construct is depicted as a dashed arrow between the events to be
ordered, with arrow head placed in the middle of the arrow. In combination with
the coregion construct that means a process order <P defined by an MSC can
be any arbitrary irreflexive transitive partial order on the events E(P ).

The causal ordering defines the set of all possible system traces that are given
by the partial order scenario. A system trace is any total order extension of <C .
Recall a total order on a set S is a partial order < on S where for any distinct
elements x, y ∈ S, either x < y or y < x.

Definition 3. The set of system traces defined by a causal ordering <C is the
set of total order extensions of <C.

Consider the MSC depicted graphically in figure 1. Each vertical line describes
the time-line for a process, where time increases down the page. The distance
between two events on a time-line does not represent any literal measurement
of time, only that non-zero time has passed. Events on the same time-line are
ordered linearly down the page, except where they occur within a coregion.
Within a coregion events are not locally ordered unless that is directly imposed
by a general order construct. Coregions are depicted with a dashed line. For
process B events ?c and ?d are unordered as they occur within a coregion. The
local partial orders defined by this MSC are given in figure 3 where we draw
the ordering downwards, so that !a <B !b for example. In this case the causal
ordering <C is given in figure 4.
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?b 

!d

!a

!b 

?d ?c 

?a 

!c

A< B< C<

Fig. 3. Process Partial Orders

?b

!d

!a

!b

?d ?c 

?a 

!c

Fig. 4. Causal Ordering

Figure 1 illustrates a race condition. The causal ordering asserts that !b <C
?c. If this MSC is taken as a specification it asserts that after C receives a it
must send c so that it arrives after b is sent. It is not possible for C to know
for sure when !b occurs without querying B. Hence it is quite possible if this
scenario is implemented naively that c will arrive before b is sent, contradicting
the specification. This error can occur even though each of the processes A and
C locally implements the specification correctly.

A B C

a
b

A B C

a
b

A B C

a

b
c

Fig. 5. Three basic types of race condition
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Definition 4. Define a partial order < on E to be race free when for every event
x and message e:

x <?e⇒ (x <!e or x =!e)

We define an MSC to be race free when its causal ordering is race free.

That is < is race free if the following holds. When < orders an event x before
the receive event of some message e, then it also orders x to be before the send
event of e.

Note that figure 1 is not race free since !b <C?c, but !b �<C !c. The three basic
types of race are illustrated in figure 5. In the first example we have ?a <C?b,
but ¬(?a <C !b). In the second example we have !a <C?b, but ¬(!a <C !b). In the
last example we have ?a <C?c, but ¬(?a <C !c). The third race example is the
only one of the three that can be avoided by forcing messages to be synchronous.
Hence the first two examples will cause semantic inconsistencies in synchronous
and asynchronous scenarios.

3 Partial Order Processes

In this section we define a process algebra term that characterizes the traces that
are defined by a causal ordering. This is a standard result for partial orders, but
we present it in a slightly non-standard format for ease of use later in the paper.
The process algebra term also characterizes the system behaviour up to strong
bisimulation equivalence.

First we set up some notation for defining sets of events that are important
in generating system and process traces. Let < be a partial order on a set of
events E. For a set S ⊆ E define

n(S,<) = {x ∈ E | ∃ y ∈ S : y < x,
and ¬∃ z ∈ E : y < z < x}

m(S,<) = {x ∈ S | ¬∃ y ∈ S : y < x}
af(a, S,<) = m((S − {a}) ∪ n({a}, <), <)

The set n(S,<) are those events that are a least upper bound for some element
in S. The set m(S,<) is just the set of minimal elements of S.

The set af(a, S,<) characterizes how events may follow a in an execution
trace, where S describes the set of all events that are eligible to occur concur-
rently with a. Suppose we have an execution trace t that is a total extension
of <. Let a be some event in t, so that t is of the form t0 · a · t1 (where · de-
notes concatenation). Let S be the set of minimal events from the set of all
events in t1. Then t1 must be of the form b · t2 where b ∈ af(a, S,<). The first
element that can occur in a trace that is a total extension of < has to come
from m(E, <). Hence we can define the system behaviour for a causal ordering
as follows.
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Definition 5. For a set S ⊆ E define a recursive process algebra term by

P (S,<) =
∑

{a∈S}
a · P (af(a, S,<), <)

and P (∅, <) = 0.

Where a · P denotes the usual sequential composition of action and process,
and the summation is nondeterministic choice (as standard in both CCS and
CSP).

Definition 6. Define the observable behaviour for causal ordering <C to be the
process:

P (M) = P (m(E, <C), <C)

In [8] they define a process algebra term for M that defines the system traces for
<C . Let P ∗(M) denote this process. Process P (M) is strong bisimulation equiv-
alent to P ∗(M). Hence P (M) defines the system traces of the global behaviour
for the processes defined by M .

Suppose that MSC M contains processes Pi for 1 ≤ i ≤ n. Then a parallel
composition of the P (m(E(Pi), <Pi

), <Pi
) for 1 ≤ i ≤ n is strong bisimulation

equivalent to P (M) (which follows from an analogous result in [8]). However, we
will not need to use that result here.

4 Inherent Causal Behaviour

A partial order < on events preserves the message ordering when !e <?e for
every message e. Let <C be the causal ordering for a partial order scenario.

Definition 7. Define the inherent causal ordering <I of <C to be the transitive
closure of the following partial order relation <. For every event x and message
e define:

1. x < !e ⇐⇒ x <C !e
2. !e < ?e

Note that when regarding a partial order as a set of pairs, we have

(<I) ⊆ (<C)

The inherent ordering is the causal order of some partial order scenario. This
follows from the next lemma.

Lemma 8. The inherent causal ordering <I of a partial order scenario with
processes P is the transitive closure of the following partial order relation.

1. x < !e ⇐⇒ ∃P ∈ P such that x <P !e
2. !e < ?e



120 B. Mitchell

?b

!d

!a

!b

?d ?c 

?a 

!c

Fig. 6. Inherent Ordering
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Fig. 7. Inherent Causal Ordering, and Inherent Refinement Ordering as MSCs

Figure 6 gives a graphical depiction of the inherent ordering for figure 1.
Since we are able to impose general orderings on events within MSC diagrams

we can represent this inherent ordering as an MSC. That is we can define a second
MSC who’s causal ordering is in fact the inherent ordering of figure 1. This is
the leftmost MSC in figure 7. Notice that the coregion for process B now covers
all the events in E(B). In order to assert that !a must occur before !b we have
added a general ordering construct between these events. This is the dashed
arrow, with arrow head placed at the mid point of the arrow. Wherever such
a general ordering arrow occurs in an MSC from events x to y this explicitly
defines x <C y. Thus definition 2 of <C has to be extended so that it includes
the set of pairs given by the general ordering construct.

5 Canonical Inherent Processes

Recall in section 3 we defined the observable process behaviour P (M) of a partial
order scenario M .

Definition 9. Define the inherent process behaviour of a partial order scenario
M to be PI(M) = P (m(E, <I), <I)

Let � denote the standard simulation relation for process algebras. That is
P � Q iff
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for every transition Q
a−→ Q′,

there exists a transition P
a−→ P ′ where P ′ � Q′

Theorem 10

– (<I) ⊆ (<C), and PI(M) � P (M)
– For any race free partial order < that preserves message ordering, let P< =
P (m(E, <), <).
Then P< � P (M) iff (<) ⊆ (<I) ⊆ (<C) and P< � PI(M)

That is PI(M) is the canonical process that simulates P (M) and is race free. To
say that (<1) ⊆ (<2) means that for every x and y in E, when x <1 y then
x <2 y.

This theorem proves that the order <I describes the maximal ordering with
respect to simulation equivalence that is a race free weakening of <M . Hence
constructing an MSC that has partial order semantics given by <I defines a new
MSC that corrects any race conditions in M , and weakens the causal ordering
of M as little as possible. It is straightforward to construct such an MSC.

The theorem is a consequence of the following lemmas. For any partial order
< (which is not necessarily race free) let T (<) be the set of total extensions of
<. Lemma 11 follows immediately from our initial observations concerning the
definition of af(a, S,<).

Lemma 11. The set of traces of P< is exactly T (<), the set of total order
extensions of <.

Lemma 12. For partial orders <1 and <2 where

P<1 � P<2

then (<1) ⊆ (<2)

Proof. Note that x < y iff for every trace in T (<), x occurs before y in the
trace. When P<1 � P<2 then the set of traces for P<2 is contained in the set of
traces for P<1 , that is T (<2) ⊆ T (<1).

x <1 y ⇒ x occurs before y in every trace of T (<1)
⇒ x occurs before y in every trace of T (<2)
⇒ x <2 y

Hence (<1) ⊆ (<2), which concludes the proof.

Lemma 13. Given two partial orders <1 and <2,
T (<1) ⊆ T (<2) iff P<1 � P<2

Proof. Note that T (<1) ⊆ T (<2) iff (<2) ⊆ (<1). Given
(<2) ⊆ (<1), to prove P<1 � P<2 , it is enough to prove that for any S ⊆ E
and a ∈ E,

af(a, S,<1) ⊆ af(a, S,<2) (1)
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Let
m1 = m((S − {a}) ∪ n({a}, <1), <1)
m2 = m((S − {a}) ∪ n({a}, <2), <2)

We write U ≤ V for sets U, V ⊆ E, when for each u ∈ U , there is some v ∈ V
such that u ≤ v. Note that since (<2) ⊆ (<1) then n({a}, <2) ≤ n({a}, <1).

For a contradiction suppose that x ∈ m1 and x �∈ m2. This implies there is
some y ∈ m2 such that x <2 y. First consider if y ∈ S−{a}. Then x <1 y ∈ S−
{a}, hence x �∈ m1. This is a contradiction, hence we must have y ∈ n({a}, <2).
Since n({a}, <2) ≤ n({a}, <1), there is some y′ ∈ n({a}, <1) such that x <2
y <1 y

′. Therefore x <1 y
′ ∈ n({a}, <1), and so x �∈ m1. Again a contradiction

as required to complete the proof of equation 1. The proof that T (<1) ⊆ T (<2)
implies P<1 � P<2 , is completed once we note that m(E, <1) ⊆ m(E, <2).

The converse implication is straightforward. It is true for any processes P
and Q that if P � Q then the set of traces of Q is contained in the set of traces
for P . Since the traces of P<i are exactly T (<i), the result is then immediate.
That completes the proof of the lemma. �

Lemma 14. For a partial order < that preserves message ordering and is race
free, (

(<) ⊆ (<C)
)
⇒
(

(<) ⊆ (<I) ⊆ (<C)
)

Proof. For this it is enough to prove that whenever x < y then x <I y. The proof
splits into cases depending on whether y is a receive or send event. First suppose
that y =!e for some message e. Then x <!e implies x <C !e since (<) ⊆ (<C).
By definition of <I , x <C !e implies x <I !e.

The other case is where y =?e for some message e. Since < is race free, x <?e
implies that x <!e. As above this implies x <I !e. The ordering <I preserves
message ordering, and hence x <I?e. This completes the proof of the lemma. �

6 Inherent Refinement Behaviour

In this section we prove the dual result of theorem 10, where instead of general-
izing the causal ordering we refine it.

Definition 15. Define the inherent refinement ordering <R of a causal ordering
<C to be the transitive closure of the following partial order <. For every event
x and message e define:

– x <!e ⇐⇒ x <C?e
– !e <?e

First note that <R is race free. Since it is clear from the definition that
x <R?e implies that x <R!e or x =!e. Also notice that the refinement order only
extends <C by forcing particular send events to be delayed so that other events
may occur first, and hence is implementable.
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If the partial order scenario is an MSC then the inherent refinement ordering
can be constructed by adding suitable general orderings to the MSC, which cause
appropriate send events to wait until the relevant receive events have occurred.
For example the rightmost MSC of figure 7 gives the inherent refinement order
for the partial order scenario in figure 1.

The use of general orderings is acceptable so long as they can be implemented
in asynchronous distributed systems. We only use them to delay send events, and
this effect can always be achieved by adding further messages to the partial order
scenario. To force a general ordering x <C !e, where x ∈ E(P ) and !e ∈ E(Q), we
can add a new coordination message c with !c ∈ E(P ) and ?c ∈ E(Q). We then
alter the local orderings by adding the pairs x <P !c and ?c <Q !e. Processes
P and Q can enforce these orderings locally since they only have to delay send
events to do so.

However, the choice of implementation is for the system designers who may
use other mechanisms which are more appropriate for their particular circum-
stances. The goal of the solution presented here is to correct the semantics for
the scenario in an optimal manner without altering the given message content
of the scenario and without imposing any assumptions about communication
channel semantics.

Lemma 16

(<C) ⊆ (<R)

Proof. To prove this suppose x <C y. If y =!e for some e, then y <C?e. Hence
from the definition x <C?e and hence x <R!e. That is x <R y.

When y =?e, then x <R!e. Also !e <R?e, hence by transitive closure, x <R

?e = y. This completes the proof of the lemma. �

Lemma 17. For any race free transitive partial order < that preserves messages
and where (<C) ⊆ (<), then

(<C) ⊆ (<R) ⊆ (<)

Proof. To prove this first consider an event x and message e where x �=?e and
x <C?e. That is x <R!e. Since (<C) ⊆ (<), we have x <?e. Since < is race
free we have x <!e. Hence, if x <R!e then x <!e. Since < preserves messages it
trivially follows that !e <R?e implies !e <?e. Hence as < is transitive we have
proved that (<R) ⊆ (<). �

Given the lemmas already proved in section 5 we have thus proved the fol-
lowing theorem, which is the dual to theorem 10.

Theorem 18. Let PR(M) = P (m(E, <R), <R), then
– (<C) ⊆ (<R), and P (M) � PR(M)
– For any race free partial order < that preserves message ordering, let P< =
P (m(E, <), <).
Then P (M) � P< iff (<C) ⊆ (<R) ⊆ (<) and PR(M) � P<

Hence <R is the canonical refinement of the causal order that corrects all race
conditions in the specification.
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7 Industrial Case Study Example

In collaboration with Motorola Research Labs, we have been conducting a num-
ber of case studies [6, 11] into automating pathology detection in MSC telecom-
munication specifications. Figure 8 is an anonymized example from a Motorola
case study, which contains multiple race conditions. The original diagram is a
UML 2.0 sequence diagram that describes traffic channel allocation and activa-
tion between various processes for a telecommunication protocol. Process A has
delegated the task of determining what resource to allocate to process B.

A parallel construct in a MSC/UML sequence diagram, denoted by PAR,
describes a set of concurrent threads that occur in the diagram. Dotted lines
delineate the different threads. Hence, events from one thread are not causally
ordered with respect to events from any other thread. Figure 8 contains two
parallel constructs. The first parallel construct contains messages a, b and c in
separate threads, which can therefore occur in any order. The bounding box of
a parallel construct has no effect on the ordering of events, it solely delineates
the scope of the concurrent threads. Note an MSC/UML sequence diagram con-
taining solely messages, coregions and parallel constructs still defines a partial
order scenario in the sense of definition 1.

An inline reference, denoted by REF, is a place holder for another sequence
diagram. The reference can be replaced by the contents of the other sequence

A B C D E F G

a0

a

b

c

PAR

a1

b1

another sequence diagram

b2

c1
c2

PAR

d

Fig. 8. UML 2.0 case study example with multiple race conditions
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A B C D E F G

a0

a

a1

b
b1

another sequence diagram

b2

c
c1

c2

PAR

d

Fig. 9. Inherent Causal Scenario for Figure 8 as MSC

diagram if desired. The reference is weakly composed with the referring diagram
when inlined. Figure 8 contains an inline reference spanning processes A through
D. We will assume for this example that the inline reference is some linear
ordering of events in order to simplify our calculations.

In total we have the following six race conditions in figure 8. Event ?a1 is
in a race with !b and also with !c. Event ?c2 is in a race with !a and also with
!b. Also event ?b2 is in a race with !a and also with !c. It may be that the
authors implicitly assumed the downlink latency from B is much shorter than
the uplink latency for the other processes. If this were true it may be possible in
practise for the specification to be realizable. However it is far safer to rewrite
the specification without these race conditions.

One way to remove these races would be to regroup the messages within a
single parallel construct. Messages a and a1 could be grouped within the same
thread of a parallel construct. Similarly b, b1, b2 and the inline reference could
be grouped in a second thread. Finally c, c1 and c2 could be grouped in the
third thread. Figure 9 depicts this solution. It seems reasonable to suppose this
will not contradict what the authors originally intended.

Figure 9 is exactly the inherent causal scenario of figure 8. In this case the
inherent causal order for figure 8 would seem to represent the specification in-
tended by the authors, rather than the causal order of figure 8 itself.

The UML 2.0 case study also contained cases of sequence diagrams where a
more intuitively ‘correct’ specification was given by the inherent refinement or-
dering, rather than the inherent causal ordering. Hence, we are not proposing ei-
ther inherent ordering as some kind of panacea. However, providing practitioners
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with both inherent orderings in the form of MSCs (or UML sequence diagrams)
will give them a better understanding of what specifications are possible.

8 Conclusion

The paper has proved that there is a canonical solution for correcting all race
conditions within a partial order scenario by weakening the causal relationship.
Moreover the solution can be easily automated via lemma 8. The inherent causal
ordering that defines the solution can also be presented in MSC format by use of
the MSC coregion, parallel and general ordering constructs. Section 7 gave an ex-
ample from an industrial case study where the inherent causal ordering captured
the intended behaviour of a specification containing multiple race conditions.

The paper has also proved the dual result, that there is a canonical refine-
ment of the specifications that corrects all race conditions. This is the inherent
refinement ordering. This also can be presented in MSC format, which can be
constructed automatically. Together these inherent orderings provide a useful
insight into the semantically consistent specifications that are possible for a dis-
tributed system.
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Abstract. The operational definition of observational congruence in CCS and
ACP can be split into two parts: one, the definition of an observational semantics
(i.e. abstraction); and two, the definition of a strong congruence. In both cases
this “separation of concerns” has been applied with abstraction that is implicitly
“fair”. We define a novel (if obvious) observational semantics with no implicit
“fairness”. When combining this observational semantics with failure equality
the resulting observational semantics is shown to be equal, other than for mi-
nor details, to NDFD semantics. We also combine our observational semantics
with singleton failure semantics and we establish congruence results for this new
observational equality.

1 Introduction

Industry is looking to create a market in reliable “plug-and-play” components. To do
this the interface [1] of a component needs to be defined in a way that makes it safe to
substitute components with the same interface.

Microsoft approaches this issue using Abstract State Machines (ASM) as a starting
point and have noted [2] that it would be very useful to combine the event-based pro-
cess algebras, which have modular reasoning built in, with the descriptive ability of the
state-based ASM. To this end some process algebra features have been added to ASM
[2] but many conceptual difficulties remain. An alternative approach is to start with a
process algebra and enrich its descriptive ability to be more like ASM while retain-
ing the desired modularity. The work of [3] can be interpreted as an example of this
approach.

The field of Discrete Event Systems (DES, Ramadge and Wonham [4]) also lacks
modularity in the style of process algebra and the work of Heymann and Meyer [5, 6]
adds some process algebraic features to a DES formalism.

Here we work in the other direction and look for a process algebraic formalism that
would be suitable basis for a state and event formalism.

We are going to consider only simple components with atomic states and atomic
actions. Because of the simple semantics of our components they are easily recognis-
able as a small extension of processes. To take advantage of the well-known [7, 8, 9]
isomorphism between state-based relational semantics and event-based operational se-
mantics we focus our attention on the operational rather than denotational semantics of
processes.

Out of all the many semantics, we focus on failure semantics for process and sin-
gleton failures for abstract data types (ADT) because they: one, have a very realistic

Z. Liu and K. Araki (Eds.): ICTAC 2004, LNCS 3407, pp. 128–139, 2005.
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testing characterisation [10, 11, 12]; two, are congruent; and three, the removal of all
τ actions is sound. Hoare and He say [13][p.198] “The main distinguishing feature of
CSP is to define a hiding operator that succeeds in total concealment of internal ac-
tions.”

There is, from an operational perspective, a natural “separation of concerns” that
allows a decomposition of observational equivalences into two parts: one, abstraction
(the construction of the observational semantics); and two, a definition of a strong,
i.e. non-observational, equivalence (see Section 2.3). This approach is taken in [14, 15]
where choice is implicitly assumed to be “fair”.

We define a novel (if obvious) observational semantics modelling divergence where
choice is not assumed to be fair. When combining this observational semantics with
strong failure equivalence the resulting observational equivalence is, other than for mi-
nor details, NDFD equivalence [16].

Our definition of abstraction models divergence independently of any given strong
equality. By applying our definition of abstraction and singleton failures equivalence
[12] we construct an observational semantics for state-based definitions of components
that is congruent with respect to composition and hiding.

Our model of components consists of two distinct parts, an interface that is public
and an internal part that is private. Both states and events can be in either. We define an
observational equality that “preserves” the interface and is congruent with respect to
composition and hiding (abstraction).

When considering the start and end states to be in the interface and all other states
to be internal then the standard operational approach to building congruences w.r.t.
choice, as found in [14, 15], is to keep the internal actions that cross the internal - in-
terface boundary. The standard denotational approach to building congruences w.r.t.
choice, as found in [17, 18, 19], is to add stability. These two “standard” approaches re-
sult in slightly different equalities. Indeed the only difference between our operationally
defined equality and the denotationally defined NDFD is that we adopt the standard op-
erational approach to congruences (see Section 4.1).

It is possible to take previously defined models, one for states and one for events,
and then glue them together [20, 8, 21]. This has the advantage of making tool reuse
easy but requires accepting each model on an all-or-nothing basis. We are trying to
define a model that treats states and events on an equal footing by taking what best fits
our needs from a range of models.

We take an operational approach [14, 15] with failure [17, 18] or singleton failure
[12] semantics and apply a novel operational definition of hiding that models diver-
gence. To be consistent with our intention of distinguishing states in the interface and
internal states we have used choice from [22] and not the more well-known process
algebras [17, 18, 11, 14, 15]. We also reject CSP’s external choice as hiding (and opera-
tionally τS) does not distribute through this definition of choice.

The discussion above has been rather general and conceptual, but our motivation
has been to provide a semantics that permits modular reasoning in practice. So, in an
attempt to give some assurance that our framework is of practical use, we use it (in
Section 3) to model and reason about a simple example and briefly compare our model
with well-known models from the literature.



130 S. Reeves and D. Streader

2 Component Specifications

Components consist of atomic states and events. Both can either be a part of the com-
ponent’s interface or are internal to the component.

We will write A, B . . . for components and will assume a universe of observable

action names a, b . . . ∈ Act and τ for internal actions and Actτ
def= Act ∪ {τ} and we

let x, y . . . ∈ Actτ . We use a set of state propositions Π where {s, e} ⊆ Π to define the
state component of the interface (unlike [3]).

Definition 1. Component transition system (CTS)

A def= (NA, OsA, TA) is a CTS where

NA is a finite set of nodes - representing states,
TA a set of transitions TA ⊆ {(n, x, m) | n, m ∈ NA ∧ x ∈ Actτ}- representing events,
OsA : NA → 2Π (the observable states of A). •

By referring to a state as “observable” all that we mean is that the state is a part of
the interface. We use our two special state propositions {s, e} to encode a set of start

states sA
def= {n | s ∈ OsA(n)} and a set of end states eA

def= {n | e ∈ OsA(n)}.
In figures will use s for start nodes, e for end nodes and se for nodes that are both (see
Fig. 1). The transitions of nonterminating components can be defined using a set of
linear recursive equations, e.g. {X = aX + bY, Y = cZ} (see [15]).

The above set of equalities can be interpreted as

s

d

��

A
s

e

��e e

s

a
���

�



�
���

B
se

b

��◦
c

��

Fig. 1. A and B

giving a mutually recursive definition of {X, Y, Z}.
Alternatively {X, Y, Z} can simply be interpreted as
a set of states and an equality can be interpreted as
defining the set of actions with the same pre-state.
Each pair of the name and state on the right of the
equality defines the name and post-state of a transi-

tion. For example B in Fig. 1 can be defined by NB
def= {X, Y, Z} (seen as {s, ◦, se}),

sB
def= {X, Z}, eB

def= {Z} and TB
def= {X = aY, Y = cZ, Z = bY}.

If OsA(n) = ∅ then n is an internal state, else it is a part of the interface. We write
n

x−→m for (n, x, m) ∈ TA and n
x−→ for ∃m .(n, x, m) ∈ TA.

We define the ready set of a state π(s) def= {x | s
x−→} and alphabet of a process

as α(A) def= {x | n
x−→m ∈ TA}.

Processes are Special Components. A process can easily be seen as a component with
state propositions restricted to propositions for the start and end of the process. Clearly
process (NA, OsA, TA) defines a labelled transition system (LTS) (NA, sA, eA, TA). So,
we can say that every CTS can be viewed as an LTS, which we shall do in the sequel,
especially when being able to relate back to the standard world of LTS is desirable.

Although we regard our atomic components as a minor extension of processes these
processes are slightly different from those of CSP, CCS and ACP in that they have a set
of start states.
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2.1 A Component Algebra

The congruence of process algebraic equivalences give them their much sought-after
modularity. With this in mind we define component operators, taken from the process
literature, in order that our observational equivalences are congruent. We adopt the oper-
ators from the process literature: ! internal choice;⊕ choice; ; sequential composition;
and ‖γ parallel composition.

How we would wish operators to affect state propositions depends upon the meaning
of the propositions. Thus operators parameterised by “proposition rules” would seem
appropriate (as in [3]). Here we only model what is neededfor start and end states.

Choice has been defined ([15, 22]) on operational semantics with one start state
by gluing the two start states together. Here we glue together two sets of start states.
The reason for this generalisation is that we wish to model components that, like CSP
processes, can immediately be nondeterministic; but unlike CSP we wish hiding (ab-
straction) to distribute through choice.

Let S′ = {s′
1, s′

2, . . . , s′
m} and S = {s1, s2, . . . , sn} then define {{S/S × S′}} to be

the n substitutions {si/{“(si, s′
1)”, . . . ,“(si, s′

m)”}} for si ∈ S and define {{S′/S × S′}}
to be the m substitutions {s′

j/{“(s1, s′
j)”, . . . ,“(sn, s′

j)”}} for s′
j ∈ S′. We use quotes to

indicate that “(s1, s′
j)” is a name and any subsequent substitution must match on the

whole name not just part of it such as “s1”.
We define {{SS′/S×S′}} to be the n+m substitutions {{S/S×S′}}∪{{S′/S×S′}}.

The first n substitutions replaces each element of {s1, s2, . . . , sn} with m nodes and
the last m substitutions replaces each element of {s′

1, s′
2, . . . , s′

m} with n nodes. Conse-
quently {{sAsB/sA×sB}}will identify the two sets of nodes sA and sB as sA{{sAsB/sA×
sB}} and sB{{sAsB/sA × sB}} are both the n× m set of nodes sA × sB.

First we define what it means to have a set of nodes in a transition:

n
x−→{s1, . . . , sn} def= {n x−→s1, . . . , n

x−→sn}
Using this we can apply our node substitutions, e.g. {{sAsB/sA × sB}}, to sets of tran-
sitions by applying the substitutions to the two nodes in each transition in the set. Con-
squently, applying {{sAsB/sA×sB}} to all the components of A and B will glue together
the two sets of states.

Definition 2. Operations ⊕, ; τS δS and ‖γ on CTSs A and B, where γ is a partial
function from Act × Act to Act, S ⊆ Act and x ∈ Actτ .

NA‖γB
def= NA × NB, OsA‖γB((n, m)) def= OsA(n) ∩ OsB(m), TA‖γB is defined by:

n
x−→An′, o ∈ NB

(n, o) x−→(n′, o)
m

x−→Bm′, o ∈ NA

(o, m) x−→(o, m′)
n

a−→An′, m
b−→Bm′, γ(a,b)=c

(n, m) c−→(n′, m′)

NAτS = NA, OsAτS(n) = OsA(n),
NAδS = NA, OsAδS(n) = OsA(n),

n
x−→An′, x �∈ S

n
x−→AτS n′

n
a−→An′, a ∈ S
n

τ−→AτS n′
n

x−→An′, x �∈ S

n
x−→AδS n′

A ! B def= (NA ∪ NB, OsA�B(n) def= if n ∈ NA then OsA(n) else OsB(n), TA ∪ TB)
A⊕ B def= (A ! B){{sAsB/sA × sB}}
Let s∗

B = {s∗
i | si ∈ sB} and s∗e∗

B = {s∗
i | si ∈ sB ∩ eB} and OsA;B(n) def= if n ∈

NA then OsA(n) elseif n ∈ NB then OsB(n) else if n = s∗
i then OsB(si)
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A;B def= (NA∪NB∪s∗
B, OsA;B, TA∪TB∪{s∗

i
x−→n| si ∈ sB ∧ si

x−→n}){{eAs∗
B/eA×s∗

B}}

Hiding actions in the set S can be defined in terms of renaming the actions in S to τ
and then abstracting them. The details are obviously dependent upon how the actions
are abstracted. We return to this in Section 2.3.

Our definition of choice, see A⊕B Fig. 2, is
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Fig. 2. A⊕ B, A;B (A,B in Fig. 1)

based on that from [22] where the start states of
both processes are simply glued together. This is
unlike that of ACP where the processes are first
root unwound. We amend the definition of [22] in
the obvious way to cope with a set of start states.

In the example A;B( Fig. 2) the transitions
with dotted arrows have been added by our def-
inition of sequential composition.

The details of sequential composition are de-
pendent upon the details of successful termina-
tion but CSP and ACP treat successful termi-
nation differently. Our definitions are based on
ACP not CSP (adding the actions {n x−→s|e ∈ eA ∧ s ∈ sB ∧ n

x−→e} would result in a
more CSP-like definition). For further discussion see Section 4.2 later.

2.2 Strong Equivalences

A common denotational approach is to define processes without any τ actions and to de-
fine hiding as removing some actions. Here we adopt a more operational approach and
rename some actions as τ actions and then define an abstraction function that removes
the τ actions.

Failures are usually defined with traces that are sequences of action names. But we
wish to take account of state observation and the fact that we have a set of start states.

We write n1
Os(n1)x1Os(n2)x2...xkOs(nk+1)−−−−−−−−−−−−−−−−−−−→ nk+1 when ∃n2,...nk

.(n1, x1, n2) ∈ TA,
. . . (nk, xk, nk+1) ∈ TA and let θ range over alternating sequences of state observations
Os(ni) and actions xi ∈ Actτ .

Tr(A) def= {θ | m
θ−→n ∧ s ∈ OsA(m)}

F(A) def= {〈θ, X〉 | m
θ−→n ∧ s ∈ OsA(m) ∧ ∀x∈X .n

x
�−→}.

SF(A) def= {〈θ, {x}〉 | m
θ−→n ∧ s ∈ OsA(m) ∧ n

x
�−→}.

A =F B ⇔ F(A) = F(B) A =SF B ⇔ SF(A) = SF(B)

If we restrict our components to having only start and end predicates and further
restrict them so that no transition enters a start node nor leaves an end node then our
definition of failures on processes without τ actions is the same as that in CSP.

2.3 Component Abstraction

The CTSs in Definition 1 take no account of τ actions being unobservable, so we would
call it a strong semantics (→) and an equivalence based on it a strong equivalence
(=X , where X is the sort of equivalence, e.g. failure).
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Definition 3. a=⇒o is a predicate where:

s1
τ=⇒sn

def= s0
τ−→s1, s1

τ−→s2, . . . sn−1
τ−→sn ∧ ∀i≤n .Os(s0) = Os(si)

n
a=⇒om

def= n
τ=⇒n′, n′ a−→m′, m′ τ=⇒m ∧ (a ∈ Act ∨ Os(n′) �= Os(m′))

We define a parameterised abstraction function from a strong semantics:

Absz(A) def= 〈NA, OsA, {(n,x, m) ∈ TA | n
x=⇒zm}〉

Here the parameter z tells us, as we will see, what sort of (observational) semantics we
are dealing with, i.e. whether it disregards divergent behaviour etc. If A is a component
then Absz(A) is its interface, i.e.defines how it can interact with any context.

A method of abstraction Absz is well defined w.r.t. a strong equivalence =X when:

if A =X C then Absz(A) =X Absz(C)

We define observational equivalences (=zX) as:

A =zX C def= Absz(A) =X Absz(C). •

We will use a lower case prefix to depict the abstraction function and an upper case
suffix to depict the strong equivalence (e.g. F for failure), so for example we have:

A =oF C def= Abso(A) =F Abso(C)
The effect of our defini-

A

s ◦ e

◦ e

a c
τ

b Abso(A)

s ◦ e

◦ e

a c
ba

b

Fig. 3. Action abstraction

tion of abstraction acts on τ
actions that are not connected
to any state in the interface
can be seen in Fig. 3 and is
normal [18, 19] for failure
style semantics. Keeping τ
labelled transitions that are connected to the start and end states is the usual opera-
tional technique [14, 15] to define observational congruences with respect to choice and
sequential composition.

Different versions of hiding can be derived from different definitions of abstraction

since A/zH
def= Absz(AτH). CSP’s denotational semantics has no τ actions and hiding,

for terminating processes, [18–Ch.3] can be formalised by A/oH
def= Abso(AτH),

whereas with CSP’s operational semantics [18–Ch.7] and NDFD semantics [23] hiding
is defined by τH and the observational semantics is defined by

a=⇒o.

Is Divergence Observable? Although we believe divergence not to be directly observ-
able we will show that the distinction between livelock and deadlock it is a consequence
of the interleaving assumption and the unfairness of choice.

The interleaving assumption equates concurrent processes to a sequential process.
We write P ‖∅ Q for P in parallel with but not synchronising with Q. We assume
that choice can behave unfairly in that a process P ( see Fig. 4) which can diverge, i.e.
P τ=⇒P, can prevent all other actions of P from being performed.

When interleaving and unfair choice are combined the divergence of P in P ‖∅ Q
is able to stop Q from performing any action. Had P deadlocked Q would continue. We
will refer to this feature as divergence leakage. Divergence leaking can be regarded as
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counter intuitive as my computer performing an unlimited internal chatter should not,
we believe, affect an unrelated computer on your desk.

We extend Abso in order to define congruences with

P

τ

s

x

e

a

b Absτ (P)

s

x∗x

e

τ

a

b

a

Fig. 4. Divergence

nonterminating components by replacing τ loops with non-
determinism. Because of “ divergence leakage” we need to
distinguish livelock from deadlock. This we do by includ-
ing x∗ τ−→x∗ in Definition 4.

Process P in Fig. 4 is an example of what we call
optional divergence. It could either act fairly and always
eventually perform b or alternatively it could stay forever
in the x state. What is more which it does is not deter-
mined by any outside agent. Hence we model this divergence as the nondeterministic
choice between performing b and being trapped in the divergent state x∗ (see Fig. 4).

Definition 4. Let A def= (NA, OsA, TA), NτA = NA ∪ {x∗ | x
τ=⇒x},

A+ def= (NτA, OsA, TA ∪ {n
a−→x∗ | a ∈ Actτ ∧ x

τ=⇒x ∧ n
a−→x}),

TτA
def= TAbso(A+) ∪ {s∗ τ−→s∗ | s

τ=⇒s} and

OsτA(s) def= if s ∈ NA then OsA(s) else OsτA(s(∗
−1)) .

Then Absτ (A) def= (NτA, OsτA, TτA) •

Theorem 1. =τF and =τSF are congruent w.r.t. {!, ;,⊕, ‖γ , δS, /τ S}.

3 Z Components

We will use Z schemas to define both
Desp tea

◦

give tea��
give tea

��se

push tea but
��

se

init
State

st = s1 ∨ st = s2

final
State

st = s1 ∨ st = s2

State
st : {s1, s2, s3}

push tea but
ΔState

st = s1 ∧ st′ = s3

give tea
ΔState

st = s3 ∧
st′ = s1 ∨ st′ = s2

Fig. 5. Desp tea

operations and state. Unfortunately Z
leaves as informal any attempt to lo-
calise state or action, so here we infor-
mally follow the convention of sim-
ply allowing schemas to be grouped
together. This is the approach taken in
Object-Z [7, 8].

We define a Z-Component to be
(State, SS, OP) where State is a state
schema, SS a set of state schemas such
that init ∈ SS and final ∈ SS and OP
a set of named operation schemas (see
Fig. 5 for an example).

By restricting State to be a finite
set of observations of enumerated type
the normal evaluation function will map Z-Components to CTS. This is a small gener-
alisation of LTS semantics of Z found in [7, 8, 24, 9].

Example. A vending machine accepts an electronic money card, then allows the user
to request cups of tea if the card has sufficient funds, and finally to remove the card.
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We formalise the vending machine using components: one - Insert card; two -
Desp tea; and three - Remove card. We then define the vending machine as the se-
quential composition of the three components.

We define Desp tea Fig. 5 with two
Insert card

insert card
ΔState

st = s ∧ st′ = e

Remove card

remove card
ΔState

st = s ∧ st′ = e

Fig. 6

initial states, i.e. sufficient funds or insuf-
ficient funds. Our definition of sequen-
tial composition (Definition 2) then in-
troduces the nondeterministic branching
of the previous insert card action.

This definition of Desp tea would not
be possible had we used the CCS, ACP or
CSP semantics because, as we explain in
Section 4.1, they equate processes with their root unwinding.

For brevity, in Fig. 6 and Fig. 7, we assume the existance of both State, defined as

the obvious enumerated data type and init def= [State | st = s] and final def= [State |
st = e].

The operational semantics of Insert card;Desp tea;Remove card can be con-
structed by evaluation and then simplified by pruning unreachable operations and iden-
tifying bisimilar nodes, resulting in the CTS VM in Fig. 7. The Z text is constructed
from this CTS by using as state a single observation of enumerated type that ranges
over the set of nodes NVM.

To verify that two cards cannot be inserted without an intervening removal of a
card we can simplify VM (as all we are interested in are the actions insert card and
remove card) by hiding the other actions.

Analysis by hiding is conceptually different from the hiding of “private communi-
cation”. In analysis actions can be hidden that need not be observed, but can still be
controlled. In CSP [18–p296] the hiding of “private communication” is modelled by
eager abstraction and hiding in analysis is modelled by lazy abstraction. Because we do
not model divergence as chaotic behaviour we can use the same definition of hiding in
analysis as in the hiding of “private communication”.

VM
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���
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remove card
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ΔState

(st = s1 ∨ st = s3) ∧ st′ = e

give tea
ΔState

st = s2 ∧ (st′ = s1 ∨ st′ = s3)

Fig. 7. VM
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4 Comparison

Action-based approaches frequently use a single syntactic class (of actions) and use
recursion to define nonterminating components, which are given a fixed point seman-
tics. The need to have a unique fixed point semantics has had a strong influence on the
semantics of CSP [18–p215] and unifying theories of programming [13–2.6, 2.7]. Al-
ternatively, a very powerful argument, for state-based systems, has been made [25] in
support of using refinement semantics rather than fixed point semantics.

When modelling State-and-Action systems it is natural to use two syntactic classes,
one for states and one for actions. Using such a formalism, recursion and fixed points
are not needed to define nonterminating components that have finite state and alphabet.

4.1 Choice

In CSP (but not
s τ ��

τ
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n1
a ��e

A=a�b n2
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�����������
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���
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��◦ a ��
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��e
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A+c ◦
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������

Fig. 8. CSP � and ACP +

CCS/ACP)τ actions
s

τ−→n2 and s
τ−→n1

can model “the pro-
cess couldbe in state
n1 or n2 but we can-
not knowwhich”(see
a ! b in Fig. 8). We interpret CSP external choice � and ACP choice + to be the
same and use the different role of τ actions in CSP and ACP/CCS to explain why
A�c �= A + c in Fig. 8.

CSP, CFFD and NDFD all use the standard denotational approach to define con-
gruence w.r.t. choice, i.e. stability, whereas CCS, ACP and this paper use the standard
operational approach to define congruence, i.e. keep sA

τ−→◦. Although we believe this
to be of little conceptual importance it does introduce small discrepancies in what would
otherwise be the same equivalences.

The renaming of observable actions as τ actions, τ{a}, does not distribute through
CSP choice, whereas τ{a} does distribute through CCS/ACP choice and our ⊕.

Root Unwinding or Not. We have motivated our congruence by using distinguishing
states that are in the interface from those that are not. This introduces a question: what
happens if a process returns to one of the start states that is in the interface?

Choice as defined in [23, 15] is +

A

s

a

  

Unw(A)

s a ��◦

a

  

B

s b ��◦

A+B ◦

s a ��
b���

!!���

◦

a

  

A⊕B

s

a

  
b ��◦

Fig. 9. Choice + or ⊕

(see Fig. 9) and first root unwinds the
LTS then identifies start states. Root
unwinding allows us to view loops as
mere “sugar” for their true meaning as
an acyclic LTS.

Here choice is modelled by gluing
together the root nodes of two CTSs
without performing root unwinding. This is not new: it appears in [22] where such a
definition of choice is given as limits in categories of labelled transition systems and
Petri nets.
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By changing the definition of choice, what is required of a congruence is changed.
With the semantics in [22] A �= Unw(A), as we would expect from our desire to distin-
guish states that are in the interface from those that are not.

4.2 Sequential Composition

Sequential composition is defined using an explicit representation of the successful ter-
mination of a process. In CSP termination SKIP “can always be chosen” when offered,
i.e. SKIP�a → STOP = (SKIP�a → STOP)! SKIP. This is quite different from ACP
termination ε which cannot always be chosen. This can be seen in the construction of
((a;ε) + ε) ‖ (a;ε) (see [15] [p. 76]) where the ability of one of the components to
initially terminate is simply lost. Because of these differences we will avoid comparing
congruence w.r.t. sequential composition from CSP and our definition which follows
that of ACP.

4.3 NDFD Divergence Without Chaos

In [19, 23]1 they construct a denotational semantics without interpreting divergence as
chaos. Stability sta and divergence div are defined on the strong operational semantics.
Failure semantics is defined on the observational semantics (⇒o) and finally stability,
divergence and failures are all used in the definition of NDFD.

Let A and B be CTSs.

sta(A) def= ∀s∈sA
s

τ

�−→ and

div(A) def= {θ | s
θ=⇒on ∧ s ∈ sA ∧ n

ττ∗
−−−→n}

fail(A) def= {(θ, X) | ∃n s
θ=⇒on ∧ s ∈ sA ∧ ∀x∈X n

x
�=⇒o}

dfail(A) def= {(θ, X) | (θ, X) ∈ fail(A) ∨ θ ∈ div(A)}
A =NDFD B def= sta(A)= sta(B) ∧ dfail(A)=dfail(B) ∧ div(A)=div(B)
A CTS is well-terminating if n

a−→ implies n �∈ eA.

Lemma 1. For stable, unwound and well-terminating processes.
A =τF B ⇔ A =NDFD B

We have provided an operational interpretation of action abstraction that transforms
divergence into nondeterminism. The above result tells us that computing failure equiv-
alence on the observational semantics gives the same result as computing NDFD equiv-
alence on the strong semantics. The restriction to stable, unwound processes is ex-
plained in Section 4.1 and the restriction to well-terminating processes is explained in
Section 4.2.

5 Conclusion

To model components we give an equal status to states and events. We require that
our components have an interface and that components with the same interface are

1 We do not need traces as we consider only finite state processes.
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“observationally” equivalent. In particular we allow both states and events to be a part
of the interface. To this end we use two syntactic classes, one for states and one for
events, and consequently we do not need recursion or unique fixed points to define the
semantics of nonterminating components that have finite state and alphabet.

In order to preserve a component’s interface we reject the root unwinding built into
the semantics of many process algebras. In this regard our approach is based on that of
Winskel and Nielson [22]. We demonstrate some practical advantages of this approach
in Section 3.

To take advantage of the well-known [7, 8, 9] isomorphism between state-based re-
lational semantics and event-based operational semantics we use operational rather than
denotational semantics. There is a natural way of defining observational equivalences
in two steps: first, apply abstraction to build an observational semantics from the strong
semantics; then, apply a strong equivalence to the newly built observational semantics
Section 2.3. We take advantage of this and define abstraction that models what can be
observed of divergent processes.

In [12] they define a singleton failures semantics for ADTs but hiding has to be
restricted to exclude the possibility of considering divergent ADTs. We can extend this
work to consider nonterminating processes by first applying our definition of abstraction
and then applying their definitions to the resulting observational semantics. This results
in =τSF, a singleton version of NDFD equivalence.

The work in [9] gives testing characterisations that “explain” the difference between
several known refinements including LOTOS’s extension [26], conformance [27], may
and must testing [11], failure refinement and singleton failure refinement [12]. But all
these refinements ignore divergence and hence, if we require congruence with respect
to our operators, can only by applied to terminating processes. We can construct the
observational semantics defined here and subsequently apply the work in [9] to the ob-
servational semantics. This extends the original work to cover nonterminating processes
where divergence is not ignored.
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Abstract. In this paper, we put forward an automatic method of acquir-
ing the specific system composition model from a domain composition
model and requirements for the specific system in domain-specific Web
services composition. This is referred to as the variability consolidation
problem in this paper. To achieve this goal, we designed a language to de-
scribe domain properties for Web services composition. The basis of our
approach is to transform the domain composition model and the require-
ments for the specific system into a mathematical optimization problem,
which can be solved by existing algorithms. Thus, this method is fully
automatic and not prone to human errors. Our preliminary experimental
results show that our method is quite feasible for solving problems with
real world sizes.

1 Introduction

In recent years, using Web services to construct new applications has become an
emerging paradigm of integrating Web applications across the Internet [2][15][19].
A Web service is a software application identified by a URI, whose interface and
bindings are capable of being identified and discovered by XML artifacts and
support direct interactions with other software applications using XML-based
messages via Internet-based protocols [3]. From the perspective of software reuse,
Web services composition can be viewed as an Internet version of component-
based software development [18].

As Web services are usually prone to interruptions on the Internet, the non-
functional properties of Web services (which are often referred to as quality
of service in the literature on Web services [12]) have to be considered very
seriously in the composition. A common way of dealing with this problem is
to employ several services fulfilling the same functionality but with different
quality of service (QoS) as candidates competing for one place in the composed
application [22]. Therefore, Web services composition also includes the selection
among the candidate Web services. Actually, researchers outside the software
engineering community (e.g. the authors of [22]) may even view Web services
composition merely as candidate Web services selection.

Z. Liu and K. Araki (Eds.): ICTAC 2004, LNCS 3407, pp. 140–153, 2005.
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According to the literature, component reuse is typically beneficial when it
is confined to a special domain [13][16]. As Web services can be viewed as a
kind of reusable components, it should also be preferable to reuse Web services
within a particular domain. In this paper, our interest focuses on domain-specific
Web services composition, in which the composition can be guided by a domain
composition model containing domain variabilities. Thus, an important problem
in this kind of composition is to consolidate the variabilities and/or select the
proper candidate services in the domain composition model according to the
functional and non-functional requirements for constructing a particular system
in the domain.

Traditionally, the consolidation of variabilities in domain-specific composition
is performed by developers according to the requirements with the help of domain
specialists and system analysts. Although this does not seem to be a challenging
task, the manual nature may make it tedious and prone to errors, especially when
there are many candidate services and many constraints to be considered. For
example, if the system consists of ten types of services to be integrated, and each
service has 10 candidates, then there should be 1010 different ways to compose
the system. Obviously, it is impossible for developers to achieve the optimal or
sub-optimal composition via considering all these possibilities. Therefore, it is
in need of introducing an automatic or automated method to help developers to
decide which Web services is the proper services.

In this paper, we propose a method to solve the above problem using math-
ematical optimization (please refer to [8][14] for information on mathematical
optimization). In our approach, we use a way similar to the domain engineering
approach to describe domain variabilities in the domain composition model. In
the model, Web services selection can be represented as a special case of variabil-
ity consolidation. Based on the domain composition model, we can formalize the
above problem as an optimization problem, which can be solved using existing
algorithms.

The remainder of this paper is organized as follows. Section 2 presents some
preliminary knowledge used in this paper. Section 3 presents a language for
describing domain variabilities in the domain composition model. In section 4,
we propose our method to consolidate domain variabilities for constructing a
particular system in the domain. In section 5, we present some empirical results
on the feasibility of our method. Section 6 discusses some related research, and
section 7 concludes this paper.

2 Preliminaries

2.1 QoS of Web Services

The nature of Web services determines the importance of quality of service (QoS)
for both constituent Web services and the application composed of Web services.
In the literature, there have been quite a few papers discussing quality-related
issues of Web services (see e.g. [12][17]). In the following, we just list some
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frequently discussed quality attributes for Web services: reliability, availability,
execution time, and cost.
• Reliability
Reliability is an overall measure of a Web service to maintain its service

quality. In this paper, we adopt the definition that the reliability of a Web
service is the probability that the service responds correctly. In practice, we can
use Time-to-Fails (TTF) to measure the reliability of the service. TTF means
the running Web service’s mean time to fail.
• Availability
Availability defines the extent to which a Web service is ready for immediate

consumption. In this paper, we adopt the definition that the availability is the
probability that the service is accessible. Associated with availability is Time-
to-Repair (TTR). TTR represents the time it takes to repair the Web Service.
• Execution Time
The execution time is the time taken by a Web Service to finish its task. It

can be measured by the average response time of a certain Web service.
• Cost
The cost of a Web service is the amount of money that a service requests or

has to be paid for executing the service.
The QoS affects Web services composition in the following way. When using

Web services to compose a new application, we may have some non-functional
or quality requirements for the overall application. Therefore, we should select
the Web services with proper quality attributes and determine the proper inter-
connections of the selected services to achieve a system that satisfies the target
quality requirements.

2.2 Domain Engineering

Domain engineering (see e.g. [13][16]) is aiming at systematically managing vari-
ability within a domain. In a typical domain engineering process, several existing
systems in the domain are analyzed to acquire a domain composition model con-
taining some variabilities, which is usually termed as the domain-specific soft-
ware architecture (DSSA) in the domain engineering community. When a new
task of constructing a new system in the domain arises, the domain composi-
tion model is customized into a composition model for the particular system. As
the main task in the customization is to consolidate the variabilities contained in
the domain composition model, we refer to this customization process as domain
variability consolidation in this paper.

In a domain composition model, domain variability is usually described as the
characteristics of the constituents in the model and the relationships between the
constituents [6][9][11][20][24]. There are mainly three characteristics identified in
the literature:
• Mandatory
Mandatory constituents embody the essence and/or common requirements

within the domain. When consolidating the variabilities, all the mandatory con-
stituents should be included in the composition model for the specific system.
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• Optional
Optional constituents are those that appear in some systems in the domain,

but are not required in all the systems. During variability consolidation, we
should determine which optional constituents would be included in the specific
system.
• Alternative
Alternative constituents are a set of optional constituents that satisfy the

following condition during variability consolidation. Any system in the domain
should include one and only one of these constituents. Actually, the relationship
between a set of alternative constituents is the mutually exclusive relationship
discussed below.

The relationships between constituents identified in the literature are listed
below:
• Dependent
Constituent p is said to be dependent on constituent q, if and only if any

system in the domain containing p should also contain q. Therefore, we should
avoid including p without including q in the specific system when consolidating
the variabilities.
• Mutually Exclusive
Two constituents are said to be mutually exclusive, if and only if the two

constituents cannot both exist in any system in the domain. Obviously, any two
constituents among a set of alternative constituents are mutually exclusive.

Given a domain composition model and the requirements for a particular
system in the domain, variability consolidation is to produce the system’s com-
position model satisfying both the variability constraints described in the domain
composition model and the system requirements. When the domain composition
model is small and/or the variability constraints are simple, this variability con-
solidation can be fulfilled by developers manually. However, this manual consol-
idation can be quite time-consuming and prone to errors in a complex domain.
The situation could be even worse when we are consolidating variabilities for
composition of Web services, because the services selection problem discussed
above is intertwined with the variability consolidation problem. Below, we will
present a method to automatically select Web services and consolidate domain
variability for domain-specific Web services composition.

3 Describing Domain Properties for Web Services
Composition

In a commercial Web services composition language (such as [1][10]), the prim-
itive composition unit is usually an operation within a Web service. For the
simplicity of presentation, we treat Web services as primitive units in this pa-
per. Therefore, a Web service in this paper is corresponding to an operation in
a commercial language.

In order to describe the domain properties in a domain composition model,
we define the Domain Specific Web Services Composition Language (DSWSCL)
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〈DomainProperties〉::=〈ServiceProperties〉〈RelationProperties〉

〈ServicePropeties〉::={〈SingleServiceProperties〉}{〈AlternativeServicesProperties〉}
〈SingleServiceProperties〉::=SERVICE 〈ServiceID〉〈DomainProperty〉
〈DomainProperty〉::=MANDATORY|OPTIONAL THROUGH|OPTIONAL IGNORANCE

〈AlternativeServicesProperties〉::=ALTERNATIVE 〈ServiceID〉, 〈ServiceID〉 {,〈ServiceID〉}
〈RelationProperties〉::={〈DependentRelation〉|〈MutexRelation〉}
〈DependentRelation〉::=〈ServiceID〉 DEPENDS ON 〈ServiceID〉
〈MutexRelation〉::=MUTEX 〈ServiceID〉, 〈ServiceID〉

Fig. 1. Definition of DSWSCL

to work with a Web services composition language. Therefore, a domain compo-
sition model includes two parts: the domain part and the composition part. The
domain part is written in DSWSCL, containing all the domain commonalities
and variabilities. The composition part is written in a Web services composi-
tion language, containing all the possible Web services and all the possible links.
Here a link refers to the order in which the linked two services will have to be
performed. Please note that the composition part here is usually not a valid com-
position model, and some consolidation according to the domain part is needed
to obtain a valid composition model from the composition part. The definition
of the DSWSCL is depicted in Fig.1.

The description of the domain properties includes that of the Web services
and that of the relations between Web services. The description of Web ser-
vices indicates whether a Web service is mandatory, optional, or alternative. We
distinguish two types of optional Web services. The first type includes those
Web services whose deselection means that the inputs will be directly con-
nected to the outputs. This situation is identified by the reserved word OP-
TIONAL THROUGH. The second type includes those Web services whose des-
election means that all the inputs and outputs will be ignored. This situation is
identified by the reserved word OPTIONAL IGNORANCE.

Fig. 2. An example of the domain properties in DSWSCL
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Fig. 3. An example of domain variability consolidation

For example, we have a domain model that includes nine services: A, B, C,
D, E, F, G, H and I. Services A, D and I are mandatory, while services B,
C, E, F, G and H are optional. The relationship between B and C and that
between F and G are mutually exclusive. The properties of B, E, F G and H are
OPTIONAL IGNORANCE and the property of C is OPTIONAL THROUGH.
Service H is dependent on service G. We can describe the domain properties in
Fig. 2(a).

Supposing the possible Web services and their links (we use a circle to repre-
sent the service and a directed edge to show the order between two services) are
depicted in Fig. 2(b), three possible specific composition models are depicted in
(a), (b) and (c) of Fig. 3. From the above constraints, B and C cannot be both
selected, F and G cannot be both selected, and the selection of H implies the
selection of G. Fig. 3(a) represents the selection of C, E, G and H; Fig. 3(b)
represents the selection of B, E, G and H; and Fig. 3(c) represents the selection
of B, E and F. All the three satisfy the domain constraints.

4 The Method

The basic idea of our approach is to formalize the variability consolidation and/or
the Web services selection as a mathematical optimization problem, which has
been studied for quite a long time and can be solved using existing algorithms.
To treat variability consolidation and Web services selection in a uniform way,
we transform the latter into the former before formalization. Thus, the central
part of our method focuses on how to turn the variability consolidation problem
into a form of optimizing a subjective function under certain constraints.

4.1 Transforming Web Services Selection to Variability
Consolidation

To simplify the formalization, we treat Web services selection as a special case
of variability consolidation. For the Web services selection problem, we have a
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set of candidate services competing for one place in the composed system. This
situation satisfies the condition for a set of alternative Web services. Therefore,
we can treat a set of competing candidate Web services as a set of alternative
Web services, and thus we can solve the Web services selection problem in the
same way of solving the variability consolidation problem.

4.2 Formalizing Variability Consolidation as Optimization

Given a set of variables (denoted as x1, x2, . . .xn), a set of constraints on the
values of a set function of the variables and a subjective function of the vari-
ables, an optimization problem is to find a set of values for the variables that
satisfy the constraints and maximize or minimize the subjective function. In
our method, we use one variable to represent the selection of one corresponding
Web service. Therefore, if there are n Web services in the domain composition
model, there will be n selection variables in the formalized optimization problem.
Each variable can be of the value 0 (representing deselection) or 1 (representing
selection).

The variabilities described in the domain composition model will be for-
malized as a set of constraints (which are referred to as domain constraints).
The functional and non-functional requirements for the specific system will
also be formalized as a set of constraints (which are referred to as require-
ment constraints). To obtain the subject function, we can transform one re-
quirement constraint into the subject function. For example, we can transform
the constraint on the cost of the composed system into the form of minimiz-
ing the cost. Thus, a solution of the optimization problem (denoted as a set
of values for the variables) represents the consolidation of the domain variabil-
ities.

In the following, we assume that there are totally n Web services in the
domain composition model. We use WStotal = {1, 2, . . .n} to denote the set of
all the n Web services, and we use i to denote the ith Web services in WStotal

and xi denote its corresponding selection variable (i ∈ WStotal). A variable
in the formalized optimization problem is denoted as a lower case letter with
possible subscripts and a constant is denoted as an upper case letter with possible
subscripts.

4.2.1 Formalizing Domain Constraints
For each mechanism of describing domain variability discussed above, the corre-
sponding formalization is as follows.

• Mandatory Web Services
Supposing the set of mandatory Web services in the domain composition

model is WSman, for each element in the set, the equation in (1) will be added
as a constraint. This equation can ensure that the Web service appear in the
composition model for the target system.

xi = 1(i ∈WSman) (1)
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• Optional Web Services
As the value of the corresponding selection variable for a Web service can

deter-mine whether the Web service will appear in the composition model for the
target system, simply no constraint will ensure the Web service to be optional.
• Alternative Web Services
For a set of alternative Web services WSalt, the equation in (2) can ensure

one and only one of them will be selected into the composition model for the
target system. ∑

i∈WSalt

xi = 1 (2)

• Dependent Relationships
For two Web services p and q, supposing p is dependent on q, and the corre-

sponding variable of p is xp and that of q is xq, the inequity in (3) can ensure
that if p is selected, q will also be selected. In inequity (3), if the value of xp is
1, then the value of xq have to be 1 to satisfy the inequity.

xp − xq ≤ 0 (3)

• Mutually Exclusive Relationships
For two mutually exclusive Web services p and q, supposing the corresponding

variable of p is xp and that of q is xq, the inequity in (4) can ensure that not both
services be selected. As this relationship allows the situation in which neither of
the two services is selected, we should use an inequity rather than an equation
similar to that in (2).

xp + xq ≤ 1 (4)

4.2.2 Formalizing Requirement Constraints
When constructing a specific system based on the domain composition model,
the construction will also follow some functional and non-functional require-
ments. In our method, theses requirements will be formalized as constraints in
the optimization problem.

• Functional Requirements
Firstly, functional requirements in this domain-specific Web services compo-

sition may be represented as requiring some optional and/or alternative services
to be included in the target system composition model. This means that those
services will be treated as mandatory in the composition. Therefore, some more
constraints like those in (1) will also be added.

Secondly, when there is some freedom of choosing services, we may want the
selected services to fulfill as much functionality as possible. In such a case, we
can assign a value of functionality to each service, and require the total value
of functionality to be higher than a threshold. The value we assign to each Web
Service is depended on a subjective way. We make a questionnaire and let the
user give the score of functionality satisfaction of each service. The mean value
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of these scores is the value of functionality of each service. Supposing Fi is the
corresponding value of functionality for Web service i (i ∈WStotal), and Ftotal is
the threshold value of total functionality, the requirements of total functionality
can be represented as the constraint in (5).∑

i∈WStotal

FiXi ≥ Ftotal (5)

• Non-functional Requirements
There may also be non-functional requirements on the QoS of the composed

system. In the following, we demonstrate how these requirements on the above-
discussed QoS factors can be transformed into constraints. Similar ways of trans-
forming non-functional requirements into constraints can be found in [22]. We
believe that this kind of transformation can be extended to support requirements
on other QoS factors discussed in the literature.

Firstly, the requirements on the total cost can be transformed into a con-
straint as follows. Supposing the cost for Web service i is Ci (i ∈WStotal), and
the requirement on the total cost is no greater than Ctotal, the constraint on the
total cost can be formalized in (6).∑

i∈WStotal

CiXi ≤ Ctotal (6)

Secondly, the transformation for the requirement on the maximum execution
time is as follows. In this transformation, we introduce two new variables (si and
ei) for Web service i representing the starting time and the ending time of the
service (i ∈WStotal). Note that the values of variables si and ei are not confined
to 0 and 1, but any positive real numbers. The formalization is according to the
type of the Web service.

For a set of alternative Web services WSalt, these services will share the
same proceeding services (denoted as WSpro) and succeeding services (denoted
as WSsuc). Sup-posing the execution time of service i is Ti (i ∈ WSalt), the
constraints can be represented in (7), (8) and (9). Constraints in (7) ensure
that any service in WSalt will start after the ending of any proceeding services.
Similarly, constraints in (8) ensure that any succeeding services will start after
the ending of any service in WSalt. In (9), T is a sufficient large number, which
ensures that each constraint in (9) is effective only when the corresponding Web
service i is selected. In such a case, the effective constraint ensures that there is
enough time for the selected Web service to be executed.

si ≥ ej(i ∈WSalt, j ∈WSpro) (7)

ei ≤ sk(i ∈WSalt, k ∈WSsuc) (8)

Tixi ≤ (ei − si) + T (1− xi)(i ∈WSalt) (9)
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For an optional Web service o, the proceeding services and the succeeding
services of o are denoted as WSpro and WSsuc respectively.

If the deselection of o represents directly connecting its input flows to its
output flows, Web service o is actually an alternative service competing with a
service with no execution time. Thus, this situation can be formalized the same
as the formalization for alternative Web services.

If the deselection of o represents the ignorance of its input flows and output
flows, the formalization is denoted in (10), (11) and (12). Constraints in (10)
and (11) ensure the starting time of o is no earlier than the ending time of any
its proceeding services, and its ending time no later than the starting time of
any its succeeding services. In (12), To is the execution time of o, and T is a
sufficient large number. Therefore, if Web service o is selected (i.e. xo = 1), the
constraint in (12) ensures that there is enough time for o to be executed, and if o
is deselected (i.e. xo = 0), the constraint in (12) actually represents no constraint
at all.

so ≥ ej(j ∈WSpro) (10)

eo ≤ sk(k ∈WSsuc) (11)

eo − so ≥ To − T (1− xo) (12)

Supposing the Web services connecting to the starting point are WSstart,
and the Web services connecting to the ending point are WSend, we also need
the constraints in (13), (14) and (15), where tactual is the actual execution time
of the composed Web service, and Ttotal is the maximum allowed execution time
for the composed Web service. In fact, the introduction of tactual is for the ease
of transforming the constraint on execution time to the subjective function.

si ≥ 0(i ∈WSstart) (13)

ej ≤ tactual(j ∈WSend) (14)

tactual ≤ Ttotal (15)

Thirdly, as the reliability is modelled as the probability of correct responding,
the incorrectness of any selected Web services will result in the incorrectness of
the composed Web service. Therefore, supposing the reliability of Web service
i is Ri, the reliability of the composed Web service is denoted in (16), and
the constraint on reliability is denoted in (17), where Rtotal is the minimum
reliability. ∏

i∈WStotal

Ri
xi (16)

∑
i∈WStotal

ln(Ri)xi ≥ ln(Rtotal) (17)
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Fourthly, the transformation of the requirements on the total availability is
similar to that of reliability. Supposing the availability of Web service i is Ai and
the minimum availability is Atotal, the constraint is in (18).∑

i∈WStotal

ln(Ai)xi ≥ ln(Atotal) (18)

4.2.3 Determining the Subjective Function
We can transform one of the constraints in (5), (6), (15), (17) and (18) into the
subjective function. Therefore, the candidate subjective functions are in (19),
(20), (21), (22) and (23) respectively.

max(
∑

i∈WStotal

Fixi) (19)

min(
∑

i∈WStotal

Cixi) (20)

min(tactual) (21)

max(
∑

i∈WStotal

ln(Ri)xi) (22)

max(
∑

i∈WStotal

ln(Ai)xi) (23)

4.3 Solving the Optimization Problem

The problem formalized above is actually a special case of a mixed integer linear
programming problem. Therefore, we can adopt existing algorithms to solve the
problem. In this paper, we adopt the branch and bound method to solve this
problem (see [8][14] for details on this issue).

4.4 Generating the System Composition Model

After we acquire a solution of the formalized optimization problem, we can use
the result to generate the system composition model from the domain com-
position model. This generation is actually to eliminate those deselected Web
services and corresponding links from the composition part of the domain com-
position model. As there are tags in a Web services composition language, it is
not difficult to find the targets for elimination.
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5 Preliminary Empirical Results on Complexity

As algorithms for mix integer linear programming problems could be exponential
in the worst case, we conduct an experiment to see whether our method is feasible
for problems of the size the same with real problems.

For a given number of services contained in the system and a given number
of average candidates for each service, we generate a domain composition model
with sparse domain constraints. Then we generate the mix integer linear pro-
gramming problem with some random domain requirements as input. Finally, we
use the branch and bound method to solve this problem. The entire experiment
is conducted on a PC with a 2GHz Pentium 4 processor and 512M RAM.

The results of our experiment are depicted in Fig. 4, in which, (a) depicts
the number of iterations and (b) depicts the execution time for solving each
optimization problem. In both (a) and (b), the x-coordinate represents the num-
ber of services that a target system contains, and the y-coordinate is the average
number of iterations or the average execution time in milliseconds. Different lines
represent different average numbers of candidates for each service. From Fig. 4,
when the number of services is 40 and each service has 12 candidates, the exe-
cution time is still less than 25 seconds. Actually this size is larger than many
current Web services composition problems. Although our experiment is still
preliminary, the advantage of our approach is obvious compared to the tedious
manual variability consolidation.

Fig. 4. Performance of our approach

6 Related Work

Web services composition has become a very active research area. There are
several languages for describing composition models for Web services, including
WSFL [10], BPEL4WS [1]. These works are actually foundations for our ap-
proach and other related works. The works most related to ours are those on
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addressing service selection in Web services composition, such as eFlow [5], ME-
TEOR [4] and SELF-SERV [22][23]. The eFlow approach is put forward by HP
lab, which focuses on optimizing service selection at the task level. In this ap-
proach, the selection is mainly based on execution time and budget without con-
sidering other QoS factors. METEOR has more considerations for QoS factors,
but it concentrates on analyzing, predicting, and monitoring QoS of workflow
processes. The SELF-SERV approach concentrates on service selection based on
QoS factors. While eFlow and METEOR use local optimization strategies for
service selection, SELF-SERV adopts the global optimization strategy. In this
paper, we extend the idea in SELF-SERV to tackle the problem of variability
consolidation in domain engineering. As a result, our approach can automat-
ically calculate system models rather than mere selecting among functionally
identical services.

7 Conclusions and Future Work

Composing Web services to form new applications on the Internet provides chal-
lenges for existing component-based approaches, as the QoS issues can play an
important role in the composition. In this paper, we propose an approach to
consolidating variabilities within the domain-specific Web service composition
model. The central idea of our method is to formalize the variability consolida-
tion problem as a mix integer linear programming problem and apply existing
algorithms to solve it. Our preliminary results show that our approach is obvi-
ously superior over manual variability consolidation.

The work reported in this paper is still an ongoing one. In the future, we
will conduct more experiments, especially those with real world background,
to further evaluate our approach. Furthermore, we plan to extend our method
to tackle traditional component composition and/or composition with less do-
main knowledge.
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Abstract. The information society demands complete information from 
multiple sources, where available information is often heterogeneous and 
distributed. Because of semantic heterogeneities among ontologies of different 
information sources, it is rather difficult to integrate these local ontologies and 
get completely available information. In this paper, we propose a formal 
framework for integration of multiple ontologies from distributed information 
sources. To achieve this goal, implicit default information is extensively 
considered. We make a default extension to distributed description logics 
(DDL) for ontology integration and complete information query. A complete 
information query based on the integrated ontologies can boil down to checking 
default satisfiability of complex concept in accord with the query. Default 
satisfiability can be detected through an adapted tableau algorithm. Based on 
the proposed formal framework, a prototype system is developed, which can 
integrate strict as well as default information from multiple distributed 
information sources and global semantic information query can be performed. 

Keywords: Ontology integration, distributed description logics, default 
extension, Tableau algorithm, semantic query. 

1   Introduction 

The use of ontology for the explication of implicit and hidden knowledge is one of 
approaches to overcome the semantics heterogeneity of multiple information sources 
[1, 2]. More importantly, in the last few years, there has been a lot of effort put in the 
development of techniques that aim at the Semantic Web [3], which will enable 
computers to partly “understand” the information on the Internet. A lot of those newly 
developed techniques require and enable the specification of ontologies on the Web 
[4]. With the increased availability of large and specialized online ontologies, the 
questions about the integration of independently deployed ontologies have become 
even more important. 

Description Logic (DL) [5] is formalism for knowledge representation and 
reasoning. It’s very useful for defining, integrating, and maintaining ontology, which 
provide the Semantic Web with a common understanding of the basic semantic 
concepts used to annotate Web pages. It’s also ideal candidates for ontology 
languages [6]. RDF [14], RDFS [15], DAML+OIL [7] are clear examples of 
Description Logics.  
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Distinguished from with DL, Distributed Description Logics (DDL) [8] can better 
present heterogeneous distributed systems by modeling relations between objects and 
relations between concepts contained in different heterogeneous information sources. 
A DDL are composed of a collection of “distributed” DLs, each of which represents a 
subsystem of the whole system. All of DLs in DDL are not completely independent 
from one another as the same piece of knowledge might be presented from different 
points of view in different DLs. Each DL autonomously represents and reasons about 
a certain subset of the whole knowledge. A DDL might be regarded as a global 
integrated ontology, which is connected with a global DL, which encodes the 
information available in local DLs. 

For integration of heterogeneous information sources, there are some problems that 
require to be solved. In some situations, only incomplete information can be got. 
These happen sometime as unavailability of pieces of information, sometime as 
semantic heterogeneities of information sources. Another problem is that there always 
exist some exceptional facts, which conflict with commonsense information. For 
example, commonly bird can fly, penguin belongs to bird, but penguin couldn’t fly. In 
these situations, information reasoning should be based on default rules. This form of 
reasoning is called default reasoning, which is non-monotonic. Little attention, 
however, has been paid to the problem of endowing these logics above with default 
reasoning capabilities. It is a solution to model distributed information systems using 
DDL and further make a default extension to DDL for default reasoning. Then, a 
complete information query based on the integrated ontologies with default 
information can boil down to checking default satisfiability of the complex concept in 
accord with the query. 

For these reasons above, we propose a formal framework for distributed ontologies 
integration based on a default extension of DDL. The framework provides a 
mathematic basis for querying complete information from integrated ontologies. To 
get complete information from multiple sources, we add default information into a 
distributed knowledge base derived from integrated ontologies. 

In section 2 we introduce Description Logics and Distributed Description Logics 
briefly. The approach for default extension to DDL is presented in section 3. We 
make default extension to DDL using default rules, and introduce the definition of 
extended default distributed knowledge base (EDDK) by adding default rules into 
original distributed knowledge base. In Section 4, to check default satisfiability of a 
concept and perform default reasoning based on a distributed knowledge base with 
default rules, we adapt classical Tableau algorithm. Some examples are provided to 
explain our formal definition and default distributed reasoning. In Section 5, based on 
the formal framework, we develop a prototype system called OISDI for integrating 
strict ontology information as well as default information from distributed 
information sources. The system architecture and its main components are depicted, 
and the semantic query performed by the system is introduced. At the end, we discuss 
the related work in Section 6 and make a conclusion in Section 7. 

2   Formalism Related to DL 

Formalisms related to Description Logics have been used in a wide range of 
applications, which are usually given a declarative semantics. Unlike other 
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formalisms, one of the characteristics of formalisms related to Description Logics is 
that they are equipped with a formal, logic-based semantics. Another distinguished 
feature is the emphasis on reasoning as a central service. 

2.1   Description Logics 

Description Logics view the world as being populated by individuals. The basic 
notations in a DL are the notation of concept embracing some individuals on a 
domain of individuals, and roles representing binary relations on the domain of 
individuals. A specific DL provides a specific set of “constructors” for building more 
complex concept and role. The syntax and semantics of ALC DL are listed as  
Figure 1. Then one can make several kinds of assertions using these descriptions. 
There exist two kinds of assertions: subsumption assertions and assertions about 
individuals. The collection of subsumption assertions is called Tbox, which specifies 
the terminology used to describe some application domain. The collection of 
assertions about individuals forms Abox, which describes some states of world. A DL 
knowledge base K=(T, A), where T and A are Tbox and Abox in DL respectively.  

 
Constructor                        Syntax                       Semantic                   

primitive concepts                C                            AI⊆ I                       
primitive roles                      R                         R⊆ I× I                   
top                                         I                          
bottom                                  ⊥                               ∅                            
conjunction                       C D                        CI DI                         
disjunction                        C D                      CI DI                           
negation                              ¬C                          I \CI                         
existential restriction        ∃R.C               {x | ∃y. (x, y) ∈RI ∧y∈CI}    
value restriction                ∀R.C              {x | ∀y. (x, y) ∈RI y∈CI}   

Fig. 1. Syntax and semantics of the ALC DL 

An interpretation for DL I=< I, • I >, where I is a domain of objects and • I the 
interpretation function. The interpretation function maps roles into subsets of I× I, 
concepts into subsets of I and individuals into elements of I. 

Satisfaction and entailment in DL Tbox will be described using following 
notations:  

1. I C D iff CI ⊆ DI 

2. I T, iff  for all C D in T, I C D 

3. C D, iff for all possible interpretations I, I C D 

4. T C D, iff for all interpretations I, I C D, such that I T 

5. K C D, iff for all interpretations I, I C D such that I K 

These definitions are extended to Aboxes according to the following rules:  

1. I C(a), iff aI∈CI  

2. I p(a, b), iff (aI, bI)∈pI  
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3. I A, iff for every assertion in form of α = C(a) orα =p(a, b) in A, I α. 

4. I K iff I T and I A 

5. K C(a) , iff for all interpretations I, I C(a) such that I K  

K p(a, b), iff for all interpretations I, I p(a, b) such that I K 

2.2   Distributed Description Logics 

A DDL consists of a collection of DLs, which is written {DLi}i∈I, every local DL in 
DDL is distinguished by different subscripts. The constraint relations between 
different DLs are described by using so-called “bridge rules” in an implicit manner, 
while the constraints between the corresponding domains of different DLs are 
described by introducing the so-called “semantics binary relations”. In order to 
support directionality, the bridge rules from DLi to DLj will be viewed as describing 
“flow of information” from DLi to DLj from the point of view of DLj. In DDL, i:C 
denotes the concept C in DLi, i:C D denotes subsumption assertion C D in DLi, and  
i:x denotes that x is individual in DLi, j:{y,y1,y2,..} denotes that y, y1, y2, …are 
individuals in DLj. 

A bridge rule from i to j is described according to following two forms: 
D:jC:i ⎯→⎯⊆  and D:jC:i ⎯→⎯⊇ . The former is called into-bridge rule, and the latter 

called onto-bridge rule. An individual correspondence from i to j is expressed as 
following two forms: i: x j: y→  and 

1 2i: x j: {y,y ,...}=⎯⎯→ . The first is called a partial 

individual correspondence, which shows the binary semantics relation ijr (x, y) holds. 

The second is called a complete individual correspondence, which shows that for 

every element z in j:{y1,y2,..}, the relation ijr (x, z) holds.  

Similar to DL, DDL also embraces a set of subsumption assertions and a set of 
assertions about individuals, which are called DTB and DAB, respectively. A 
distributed Tbox (DTB) is defined based on Tboxes in all of local DLs and bridge 
rules between these Tboxes. A DTB DT=<{Ti}i∈I, B>, where Ti is Tbox in DLi, and 
for every   i j∈I, B={Bij}, where Bij is a set of bridge rules from DLi to DLj. The 
definition of a distributed Abox (DAB) is based on Aboxes in all of local DLs and 
their partial and complete correspondence between these Aboxes. A DAB 
DA=<{Ai}i∈I,C >, where Ai is Abox in DLi, and for every i j∈I, C={Cij}, where Cij is 
a set of partial and complete individual correspondences from DLi to DLj. 

The semantics for distributed description logics are provided by using local 
interpretation for individual DL and connecting their domains using semantics binary 

relations ijr .A distributed interpretation ℑ=<{Ii}i∈I, r> of DT consists of 

interpretations Ii for DLi over domain iIΔ , and a function r associating to each i, j∈I a 
binary relation rij⊆ ji

IIΔ ×Δ . rij(d)={d’ ∈ jIΔ | <d, d’>∈ rij }, and for any D⊆ iIΔ , 

ij d D ij(D)= (d)r r∈ . 

A distributed interpretation ℑ d-satisfies (written ℑ d) the elements of DTB 
DT=<{Ti}i∈I, B> according to following clauses: For every i, j∈I 
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1. ℑ d D:jC:i ⎯→⎯⊆ , if rij ( iCI )⊆ jDI           

2. ℑ d D:jC:i ⎯→⎯⊇ , if rij ( iCI ) jDI       

3. ℑ d i: C D, if Ii C D                         

4. ℑ d Ti, if for all C D in Ti, such that Ii C D 

5. ℑ d DT, if for every i, j∈I, ℑ d Ti, and ℑ d b, for every b∈ Bij  

6. DT d i:C D, if for every distributed interpretation ℑ, ℑ d DT=>ℑ d i:C D    

A distributed interpretation ℑd-satisfies the elements of DAB DA=<{Ai}i∈I, C > 
according to following clauses: For every i, j∈I 

1. ℑ d i: x j: y→ , if jyI ∈ rij ( ix I ) 

2. ℑ d 1 2i: x j: {y ,y ,...}=⎯⎯→ , if rij( ix I )={ j j

1 2y ,y ,...I I }  

3. ℑ d i:C(a), if Ii  C(a)   

ℑ d i:p(a, b), if Ii  p(a, b)   

4. ℑ d Ai, if for all α =C(a) or α = p(a, b) in Ai, ℑ d α  

5. ℑ d DA, if for every i∈I, ℑ d Ai, and ℑ d c, for every c∈ Cij 

6. DA d i:C(a), if for every distributed interpretation ℑ, ℑ d DA=>ℑ d i:C(a)      

DA d i:p(a, b), if for every distributed interpretation ℑ, ℑ d DA=>ℑ d i:p(a, b) 

A distributed knowledge base for distributed description logics DK=(DT, DA), 
where DT is a DTB, DA a DAB. 

3   Default Extension to DDL 

Our default extension approach is operated on a distributed knowledge base. A 
distributed knowledge base originally embraces only some strict information. So there 
also exists the satisfiability problem of elements in distributed knowledge base. Based 
on semantic interpretation of DDL, we define the satisfiability of elements in a 
distributed knowledge base. 

Definition 1. A distributed interpretation ℑ d-satisfies (written d) the elements of 
DK=(DT, DA) according to following clauses: For every i, j∈I 

1.  ℑ d DK, if ℑ d DT and ℑ d DA 

2.  DK d i:C D , if for every distributed interpretation ℑ, ℑ dDK=>ℑ d i:C D 

3.  DK d i:C(a), if for every distributed interpretation ℑ, ℑ d DK=>ℑ d i:C(a) 

DK d i:p(a, b), if for every distributed interpretation ℑ, ℑ d DK=>ℑ d i:p(a, b) 

4.  DK d DT, if for all distributed interpretation ℑ, ℑ dDK=>ℑ d DT 

DK d DA, if for all distributed interpretation ℑ, ℑ dDK=>ℑ d DA 

Default information is useful for getting complete information from multiple 
distributed information sources. To be able to include default information in a distributed 
knowledge base, we firstly introduce the notation description of a default rule. 
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Definition 2. A default rule is an expression of the form P(x):J1(x),J2(x),…,Jn(x)/C(x), 
where P, C and Ji are concept names (1 i n), and x is a variable. P(x) is called the 
prerequisite of the default, all of Ji(x) are called the justifications of the default, and 
C(x) is called the consequent of the default. The meaning of default rule 
P(x):J1(x),J2(x),…,Jn(x)/C(x) can be expressed as follows: If there exists an 
interpretation I such that I satisfies P(x) and doesn’t satisfy every Ji(x) (1 i n), then I 
satisfies C(x). Otherwise, if I satisfies every Ji(x) (1 i n), then I satisfies ¬C(x). 

For example, to state that a person can speak except if s/he is a dummy, we can use 
the default rule Person(x):Dummy(x)/CanSpeak(x). If there is a individual named 
John in a domain of individuals, then the closed default rule is 
Person(John):Dummy(John)/CanSpeak(John). 

Then, to deal with strict taxonomies information as well as default information in 
distributed knowledge base, the definition of distributed knowledge base should be 
extended for including a set of default rules. 

Definition 3. A default distributed knowledge base DDK=(DT, DA, D), where DT and 
DA are DTB and DAB respectively, D is a set of default rules. 

An example of a DDK is shown in figure 2. The DDK is based on two local DLs, 
named DL1 and DL2 respectively. The DTB, DAB and D of the DDK are shown in 
Figure 2(a). Figure 2(b) provides a distributed interpretation of the DDK. 

DT={{T1={PARROT BIRD, SPARROW BIRD}, 
T2={PARROT FLYING_ANIMAL, GOAT ¬SPEAKING_ANIMAL}},  
B={1:PARROT 2:PARROT}} 

DA={{A1={PARROT(parrot1), PARROT(parrot2)}, A2= {PARROT(parrot)}}, C=∅} 
D={BIRD(x):PARROT(x)/¬SPEAKING_ANIMAL(x)} 

(a) DTB, DTA and D of the DDK 
1IΔ ={parrot1, parrot2, sparrow, swan} 

1PARROT I ={parrot1, parrot2} 
1BIRDI ={parrot1, parrot2, sparrow, swan} 

1SPARROW I ={sparrow} 

2IΔ ={parrot, goat, butterfly} 
2PARROTI ={parrot} 

2GOAT I ={goat} 
2FLYING_ANIMALI ={parrot, butterfly} 

2SPEAKING_ANIMALI¬ ={goat} 
r12={(parrot1, parrot), (parrot2, parrot)} 

(b) Distributed interpretation of the DDK 

Fig. 2. A DDK and its distributed interpretation 

Similar to DK, There exists satisfaction (written dd) problem of elements in DDK. 
So we call satisfiability of elements in DDK default satifiability. Default satisfiability 
serves as a complement of satisfiability definition in a distributed knowledge base 
with default rules. 

Definition 4. A distributed interpretation ℑ dd-satisfies (written dd) the elements of 
DDK=(DT, DA, D), according to following clauses: For every default rule δ in D, 
δ=P(x):J1(x), J2(x), …, Jn(x)/C(x), and every i, j∈I 

1. ℑ dd DDK, if ℑ d DK and ℑ d δ 

2. ℑ dd DT, if ℑ d DT and ℑ d δ 

3. ℑ dd DA, if ℑ d Da and ℑ d δ 
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4. ℑ d δ, if ℑ d P C =>there doesn’t exist ℑ, such that ℑ Jk ¬C, (1 k n) 
5. ℑ d P C, if i j, such that ℑ d i: P C or ℑ d C:jP:i ⎯→⎯⊆  or 

ℑ d P:jC:i ⎯→⎯⊇  

6. DDK dd DT, if for all distributed interpretation ℑ, ℑ dd DDK=>ℑ dd DT 

DDK dd DA, if for all distributed interpretation ℑ, ℑ dd DDK=>ℑ dd DA 

In a distributed knowledge base, default information may have been used during 
reasoning, but a DDK is difficult to operate and not really helpful for reasoning with 
default information in a distributed knowledge base. Some additional information 
with respect to default rules should be included explicitly into DT and DA 
respectively. A closed default rule P(x):J1(x),J2(x), …, Jn(x)/C(x) can be divided into 
two parts: P(x) C(x) and Ji(x) ¬C(x), (1 i n). We call the first part fulfilled rule, 
and the second exceptional rules. A rule of the form A(x) B(x) means for every 
(distributed) interpretation I, x∈AI, then x∈BI, i.e. A B, where A and B are concept 
names, and x denotes an individual. 

Definition 5. An extended distributed knowledge base EDDK is constructed based on 
a DDK=(DT, DA, D), according to the following clauses: For every default rule δ in 
D,δ =P(x): J1(x), J2(x), …, Jn(x)/C(x), 

1) Dividing δ into two parts which embrace fulfilled rule and exceptional rules, 
respectively. The fulfilled rule denotes that it holds in most cases until the 
exception facts appear, while the exceptional rules denote some exceptional 
facts. 

2) Adding P C and Ji ¬C into DT (1 i n), which are the assertions 
corresponding to fulfilled rule and exceptional rules, respectively. 

3) Setting the priorities of different rules for selecting appropriate rules during 
reasoning. The assertions corresponding to exceptional rules have the highest 
priority, while original strict information has normal priority. The assertions 
corresponding to fulfilled rules are given the lowest priority. 

In the course of constructing an EDDK, default information has been added into 
distributed knowledge base for default reasoning, because these default information 
may have been used during reasoning. Exceptional information has been assigned the 
highest priority to avoid conflicting with some strict information, while fulfilled rules 
would be used only in the situation that no other strict information can be used, its 
priority is least. A simplified view of the EDDK based on the DDK (shown in Figure 
2) can be found in Figure 3.  

In Figure 3, The default rule BIRD(x):PARROT(x)/¬SPEAKING_ANIMAL(x) is 
divided into one fulfilled rule and one exceptional rule. The fulfilled rule 
BIRD ¬SPEAKING_ANIMAL and the exceptional rule PARROT SPEAKING_ 
ANIMAL has been added into EDDK. In fact, an EDDK can be recognized as a 
collection of integrated ontologies with explicitly expressed default information. 
Default reasoning can be performed based on an EDDK.  
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Fig. 3. An EDDK 

4   Reasoning with Default Information 

Reasoning with default information provides integrated ontologies with stronger 
query capability. A query based on integrated ontologies can boil down to checking 
default satisfiability of complex concept in accord with the query. Based on 
description logics, satisfiability of a complex concept is decided in polynomial time 
according to Tableau algorithm for ALC [5, 9]. To a certain extent, a DDL is 
connected with a global DL, which encodes the information available in local DLs. 
This would allow us to transfer theoretical results and reasoning techniques from the 
extensive current DL literatures. So in my opinion, detecting default satisfiability of a 
DDL is just detecting the default satisfiability of the global DL in accord with the 
DDL. A default extension to Tableau algorithm for ACL DL can be used for detecting 
default satisfiability of ACL concepts based on an EDDK. 

Definition 6. A constraint set S consists of constraints of the form C(x), p(x, y), 
where C and p are primitive concept and primitive role, respectively. Both x and y are 
variables. 

An I-assignment maps a variable x into a element of I. If xI∈CI, the I-assignment 
satisfies C(x). If (xI, yI) ∈pI, the I-assignment satisfies p(x, y). If the I-assignment 
satisfies every element in constraint set S, it satisfies S. If there exist an interpretation 
I and an I-assignment such that the I-assignment satisfies the constraint set S, S is 
satisfiable. S is satisfiable iff all the constraints in S are satisfiable. 

It will be convenient to assume that all concept descriptions in EDDK are in 
negation normal form (NNF). Using de-Morgan’s rules and the usual rules for 
quantifiers, any ALC concept description can be transformed into an equivalent 

description in NNF. For example, the assertion description SPARROW BIRD can be 

transformed the form ¬SPARROW BIRD. 
To check satisfiability of concept C, our extended algorithm starts with constraint 

set S={¬C(x)}, and applies transformation rules in an extended distributed knowledge 
base. The concept C is satisfiable iff the constraint set S is unsatisfiable. In applying 
transformation rules, if there exist all obvious conflicts (clashes) in S, S is 
unsatisfiable, which means the concept C is satisfiable. Otherwise, S is unsatisfiable. 
The transformation rules are derived from concepts and assertions in EDDK. If the 
constraint set S before the action is satisfiable, S after the action is also satisfiable. 
The adapted extension algorithm are shown as follows: 
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Begin 

Step 1: Exceptional rules:  
Condition: there exists a default rule of the form P(x):J1(x), J2(x),…,Jn(x)/C(x), 

and {Ji(x)}⊆S,   (1 i n) in set of default rules. 
     Action: S=S{¬C(x)} 
Step 2: Strict rules 

 rule: Condition: {(C D)(x)}⊆S, but S doesn’t contain both C(x) and D(x). 
Action:  S=S {C(x), D(x)} 

 rule: Condition: {(C D)(x)}⊆S and {C(x),D(x)} S=∅. 
Action:  S=S {C(x)} or S=S {D(x)} 

∃ rule: Condition: {(∃R.C)(x)} ⊆S, and there doesn’t exist y such that S 
contains C(y) and R(x, y). 

Action:  S=S {C(y), R(x, y)}  
∀ rule: Condition:  {(∀R.C)(x), R(x, y)} ⊆S, and S doesn’t contain C(y). 

Action: S=S {C(y)} 
Step 3: Fulfilled rule� 

Condition: no other transformation rules can be applied, there exists a default 
rule of the form P(x):J1(x), J2(x), …, Jn(x)/C(x), and {P(x)}⊆S, S 
doesn’t contain {Ji(x)} (1 i n). 

Action: S=S {C(x)} 
End 
 

When the adapted algorithm is used for detecting default satisfiability of ALC 
concepts, every action must preserve satisfiability. Because if an action don’t preserve 
satifiability, we cannot ensure the condition that if the constraint set before the action 
is satisfiable then the set after the action is satisfiabile. In the extension algorithm, we 
must prove the actions preserve satisfiability. 

Theorem 1.  Every action in the extension algorithm preserves satisfiability. 

Proof. In the extension algorithm, every step probably embraces some actions, so we 
must prove that all of actions in these steps preserve satisfiability. Because the actions 
in the second step are originally derived from the classical Tableau algorithm, we 
have known they preserve satisfiability [5]. The remainder of the proof will only 
consider the actions in the first step and the third step.  

1) In the first step, the action condition is that there exists a default rule of the form 
P(x):J1(x),J2(x),…,Jn(x)/C(x), and {Ji(x)}⊆S, (1 i n) in set of default rules. If there 
exists an interpretation I makes all Ji(x) (1 i n) hold, then according to the Definition 
2, we know I satisfies ¬C(x). If the constraint set S before the action is satisfiable, 
then there exists an interpretation I such that I satisfies all of elements of S. Because 
{Ji(x)}⊆S, then I satisfies Ji(x), (1 i n). Then because I satisfies both ¬C(x) and S, 
we get I satisfies S {¬C(x)} after the action.  
2) In the third step, the action condition is that {P(x)}⊆S, S doesn’t contain {Ji(x)} 
(1 i n) and no other transformation rules can be applied. If there exists a 
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interpretation I makes all Ji(x) (1 i n) doesn’t hold but P(x) hold, then according to 
the Definition 2, we know I satisfies C(x). If the constraint set S before the action is 
satisfiable, then there exists an interpretation I such that I satisfies all of elements of 
S. Because {P(x)}⊆S, then I satisfies P(x). Furthermore, we know I doesn’t satisfy 
Ji(x) (1 i n), otherwise, there would exist some exceptional rules which can be 
applied.So from Definition 2, we get I satisfies C(x). Because I satisfies both S and 
C(x), we get I satisfies S {C(x)}. 

From above proofs, we can conclude that every action in the extension algorithm 
preserves satisfiability. 

The default extension algorithm is divided into three steps. In the first step, we 
apply exceptional rules to constraint set because they have the highest priority. If 
exceptional rules can be used for the detected concept, strict rules will not be used. 
Otherwise, if no exceptional rules can be used, the strict rules can be applied to 
constraint set (step 2). The reason why we do like this is to avoid conflicting with 
some strict information. Another reason is to save reasoning time. In step three, only 
in the situation that no other strict information can be used, could fulfilled rules be 
used. The default extension algorithm either stops because all actions fail with 
obvious conflicts, or it stops without further used rules. 

The algorithm is also applied to detect subsumption assertions. As usual, a 

subsumption assertion A B is satisfiable iff the concept A ¬B is not satisfiable. The 
following example shown in Figure 4 demonstrates the algorithm with a tree-like 
diagram. 

S0={(SPARROW SPEAKING_ANIMAL)(x)} 

                                                                      
S1= S0 {SPARROW(x), SPEAKING_ANIMAL(x)}       

                                               ¬SPARROW(x) BIRD(x) 
                     
              S2= S1 {¬ SPARROW (x)}           S2= S1 {BIRD(x)} 

//Clash                        ¬BIRD(x)  ¬SPEAKING_ANIMAL(x) 
                                                                                          
                               S3= S2 {¬BIRD (x)}       S3= S2 {¬SPEAKING_ANIMAL(x)}  

                                              //Clash                              //Clash 

Fig. 4. Detecting default satisfiability of complex concept 

In figure 4, we want to know whether the subsumption assertion 

SPARROW ¬SPEAKING_ANIMAL is satisfiable in the EDDK shown in figure 3. 

That is to say, we should detect that the concept SPARROW SPEAKING_ANIMAL 
is unsatisfiable. The concept is firstly transformed into constrain set S0. Considering 
the default rule BIRD(x):PARROT(x)/¬SPEAKING_ANIMAL(x) , we know that 
PARROT(x) isn’t contained in S0, Then, in the first step, the exceptional rule 

¬PARROT(x) SPEAKING_ANIMAL(x) can not be applied to S0. In the following 
steps, we apply strict rules, the reasoning continues until it stops with obvious 
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conflicts. Finally, the leaf node of every branch in this tree-like diagram is notated 

using “Clash” tag. So we know the constraint SPARROW SPEAKING_ANIMAL is 
not satisfiable. That is to say, the subsumption assertion 

SPARROW ¬SPEAKING_ANIMAL is satisfiable. 
Please note that the extension algorithm can tackle both general subsumption 

assertions and assertions about exceptional facts. In another example, We want to 

check whether the subsumption assertion PARROT(x) SPEAKING_ANIMAL(x) is 
satisfiable, that is to say, we check the satisfiability of the concept 

PARROT(x) ¬SPEAKING_ANIMAL(x), which transformed into a constrain set. In 

the first step, when the exceptional rule ¬PARROT(x) SPEAKING_ANIMAL(x) is 
applied to constraint set, the complete conflicts occur. So we know the concept 

PARROT(x) ¬SPEAKING_ANIMAL(x) is not satisfiable, which means that the 

subsumption assertion PARROT(x) SPEAKING_ANIMAL(x) is satisfiable. Then 
reasoning process stops without applying other transformation rules. This can be 
served as an example of reasoning for an exceptional fact. 

5   Prototype System for Semantic Information Integration 

Based on the formal framework, we develop a prototype system using Hewlett-
Packard Company’s Jena Semantic Web Toolkits [16] for integrating strict ontology 
information as well as default information from multiple distributed information 
sources. In the ontology integration system with default information (OISDI), We use 
specific ontology language such as RDF and RDFS for describing and organizing 
ontology information and knowledge. The component and logical architecture of the 
system OISDI and its semantic query are introduced in this section. 

5.1   System Architecture 

The architectures of the prototype system OISDI are described from two perspectives: 
component architecture and logical architecture. The component architecture of the 
case system is shown in figure 5. The whole distributed system is constructed by 
multiple local information sources, each of which describes and classifies local 
knowledge objects. In order to meet the need of ontology information sharing and 
integration, the ontology information and knowledge objects of each local information 
source are formally described and classified by RDF and RDFS ontology languages. 
As a result, it forms different local personalized ontologies and local knowledge 
bases. RDF is a semi-structured data model. Data is encoded using so called resource-
property-value triples, which are also called statements. RDFS introduces classes and 
a subsumption hierarchy on classes for specifying metadata information such as 
classes, properties and hierarchy of knowledge objects. The metadata support 
provides the ability to describe, organize and associate knowledge objects, and 
promotes their interoperability.  

The EDDK is implemented by the global ontology and the global knowledge base, 
which are created on a server module for describing and classifying the integrated 
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knowledge objects from different local information sources. The global ontology can 
integrate different terminology of ontologies through a common vocabulary, which 
provides global semantic query capability based on integrated ontologies. 

We use RDF documents or RDFDB database [19] to store ontology data and 
metadata information. Using RDF query language, RDF files can be used for 
ontology information query. This way is simple and easily operated. But if the case 
system embraces a large amount of information data, it is quite difficult to use RDF 
files for storage of ontology information and semantic query, which causes very low 
query efficiency. RDFDB can be used to tackle this problem, and allows users to load 
RDF files from URIs into the database without any adaptation to them. RDFDB is a 
lightweight RDF database server, which supports RDF query language for performing 
semantic query. 
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Fig. 5. Component architecture of the prototype system 

The logical architecture of the prototype system OISDI is mainly considered for 
providing better capability of information interchange and interoperability. There are 
several kinds of information data such as individual knowledge objects, metadata and 
binary relations between different metadata, etc. The ontology representation 
combining RDF with RDFS can specify and organize these different kinds of 
information data. Based on these ontology representations, we can construct ontology 
inference model for semantic queries of application level. The logical architecture is 
considered into four levels: data description, metadata description, semantic 
description and application. Because a local knowledge base doesn’t need to integrate 
local ontology information from other local knowledge bases, its logical architecture 
is simpler and easier than that of the global knowledge base on the server module. 
Here, we mainly pay attention to the logical architecture of the global ontology and 
the global knowledge base, which is described in Figure 6. 

The global ontology and a global knowledge base are maintained on the server 
module. Each local user publishes their some personalized information that needs 
to share to the server module, and maps their personal metadata to certain 
categories of the global ontology. The information is described using RDF and 
RDFS languages. Model Integrator component is constructed for integrating local  
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Fig. 6. Logical architecture of the server 

ontologies information and forming the Global Ontology Model. Mapping Table 
component is constructed for terminology (e.g. concepts, properties) mapping 
between local sources and server module, where maintains a mapping table. The 
concepts of classes and properties from local information sources are either sub-
concepts and sub-properties or equivalent concepts and properties of the global 
concepts and properties, respectively. Consistency Checker is used to detect some 
kinds of consistencies such as type, domains or range of properties. The default 
information of the whole system is organized and managed by Default Information 
Manager component and further is added into the global ontology model. Exception 
Handling component may tackle some exceptions such as terminology inconsistencies 
and query exceptions, etc. Using Reasoner component (Jena can provide different 
types of reasoners), the implicit information hidden in global ontology model can be 
explicitly expressed and added into Global Ontology Inference Model, which provides 
the capability for global semantic query of application level. Using RDF query 
language, user can perform global semantic query of application level based on 
Shared Semantic Query Component. The Query Interface component provides a 
semantic query interface for users. 

5.2   Performing Semantic Query of Application Level 

Semantic queries of application level are performed based on the global ontology 
inference. According to RDF semantic specification [18], the so-called semantics 
based on ontology involves primarily computation of transitive closure of the classes 
and property hierarchies, computation of all implicit members of classes and 
properties. The same is done for domains and range of properties. For example, an 
instance of subclass of a class (property) is still instance of the class (property), etc. 
The system allows local users to perform semantic query based on local information 
sources. If users want to get complete information from multiple information sources, 
they can execute global semantic query based on global ontology.  
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In order to execute semantic query of application level, we use RDQL query 
language [17] as query language for ontology information. RDQL is an SQL-like 
syntax, and regards RDF model as a set of triple data. RDQL is programmable for 
semantic query in Jena toolkit. 

6   Related Work 

In the description logics community, a number of approaches to extend description 
logics with default reasoning have been proposed. Baader and Hollunder [10] 
investigated the problems about open default in detail and defined a preference 
relation. The approach is not restricted to simple normal default. Two kinds of default 
rules were introduced by Straccia [11]. The first kind is similar to the fulfilled rules in 
our approach. The second kind of rules allows for expressing default information of 
fillers of roles. Lambrix [12] presented a default extension to description logics for 
use in an intelligent search engine, Dwebic. Besides the standard inferences, Lambrix 
added a new kind of inference to description logic framework to describe whether an 
individual belongs to a concept from a knowledge base. Calvanese [13] proposed a 
formal framework to specify the mapping between the global and the local ontologies. 
Maedche [21] also proposed a framework for managing and integrating multiple 
distributed ontologies. McGuinness [20] proposed a new merging and diagnostic 
ontology environment. Davies [22], Huynh [23] and Nejdl [24] develop some 
platforms built on metadata and/or ontologies for describing Web information and 
achieving information sharing and interoperability. However, default information was 
not considered in these different frameworks and systems. 

An important feature of our formal framework distinguished from other work is 
that our default extension approach is based on DDL. To our best knowledge, little 
work has been done to pay attention to default extension to DDL. 

7   Conclusion 

In this paper, a formal framework is presented for integrating distributed ontologies 
with default information. The framework provides a mathematic foundation for 
querying complete information from integrated ontologies. To get complete 
information from multiple information sources, in which available information is 
often heterogeneous and distributed, we add default information into distributed 
knowledge base derived from integrated ontologies. The framework is based on 
default extension to DDL. The distributed knowledge base is originally used to 
present strict information. To perform default reasoning based on DDL, strict as well 
as default information is taken into account. Then, all of default information above is 
added into an EDDK, which is constructed from a distributed knowledge base with 
default rules. The default Tableau algorithm is used on EDDK where different rules 
have different priority: exceptional rules have the highest priority, and fulfilled rules 
the least. Based on the formal framework, we develop a prototype system called 
OISDI using Hewlett-Packard’s Jena semantic web toolkits for integrating both strict 
ontology information and default information from multiple distributed information 
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sources. The component and logical architectures of the system and its semantic query 
are introduced. Based on the system, users can perform global shared semantic query 
for getting complete information from multiple information sources. 
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Abstract. This paper presents a predicative semantic model for integrating mod-
els from UML class diagrams and sequence diagrams. The integrated model is
used for dealing with consistency problems of UML class diagrams and sequence
diagrams. We also define the notion of consistent refinement of these integrated
models.

Keywords: UML, Formal semantics, Refinement, Model integration.

1 Introduction

In a UML-based development process, such as the RUP [26, 14], several kinds of UML
models are used to represent and analysis the artifacts created in a certain phase of the
system development, which reflect the multiple views of UML:

– Static view: class diagram for static analysis.
– Interactive view: sequence diagrams and collaboration diagrams for interactions

between objects.
– Behavioral view: state machines for dynamic behavioral specification and validation.
– Functional view: OCL [27] specifications for functionalities of objects.

Under the multiple views of UML, the developers can decompose a software design
into smaller parts of manageable scales. However, several challenging issues inevitably
arise from such a multi-view approach [24]:

– Consistency: the models of various views need to be syntactically and semantically
compatible with each other (i.e. horizontal consistency) [15, 9, 1].

– Transformation and evolution: a model must be semantically consistent with its
refinement (i.e. vertical consistency) [9, 1].

– Traceability: a change in the model of a particular view leads to corresponding
consistent changes in the models of other views.

– Integration: models of different views need to be seamlessly integrated before soft-
ware production.

� On leave from the Department of Computer Science, the University of Leicester, UK.

Z. Liu and K. Araki (Eds.): ICTAC 2004, LNCS 3407, pp. 170–186, 2005.
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Consistency checking and formal analysis of UML models have been widely stud-
ied in recent years [6, 4, 9, 25, 1]. A formal semantic model is needed for precise and
intensive treatment of the problems. The informal semantics of UML is deliberately
left flexible and extendable in order to allow UML to be used for different purposes,
such as for requirement analysis, refinement of designs, and for code generation and
testing.

The majority of the existing works on formal support to UML-based development,
e.g. [7, 2, 6, 5, 10, 25], focus on the formalization of individual diagrams and only treat
the consistency of the models of one or two views. Another phenomenon in research on
formal use of UML is that different communities intend to emphasize different notations
and use the full or even extended power of, say sequence diagrams or state machines. This
would lose the advantages of the multiple-view modelling. It also leads to the increase
in the complexity of a certain kind of models and the reduction of the role that the other
kinds of UML models can play. To our knowledge, there is little work on consistent
refinement of complete UML models of systems. A complete model of a system here
means a family of models for the different views of the system.

This paper is towards the development of a semantic model of UML. The primary
use of this model is for model integration, refinement and code generation [23]. The
integration is based on the Relational Calculus of Object Systems (rCOS ) defined in
[12] that is designed for object-oriented system development in general.1 The refine-
ment calculus for rCOS [11, 12] will be used to define consistent refinement of UML
models. The refinement process will preserve the consistency and the correctness of
the system. The proposed techniques are also intended to support model-driven de-
velopment [24] for executable UML models. As a starting work towards UML model
integration and code generation, in this paper we only consider sequential software sys-
tems for which the UML class diagrams and sequence diagrams are powerful enough.
The future work will extend this approach to deal with concurrent systems for which
we need the other UML models, i.e. component diagrams, activity diagrams and state-
charts.

The rest of the paper is organized as follows. Section 2 describes the theoretical basics
of programming and presents an overview of rCOS . Section 2.2 provides formalization
of UML diagrams and system models using rCOS semantics with the definition of
model consistency. We show how a model is refined consistently in Section 4. Finally,
concluding remarks are given in Section 5.

2 The Theoretical Basics

2.1 Unifying Theories of Programming

Our work is based on Hoare and He’s Unifying Theories of Programming [13], in which
a program or a program command is identified as a design, which is represented by a
pair (α, P ), where

1 In early publications, such as [12], the calculus for object-oriented design was named as OOL.
rCOS is produced by LaTex command {\large r}\textsc{COS}.
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– α denotes the set of variables of the program, called the alphabet of the design.
– P , called the contract of the design, is a predicate of the form

p(x) 
 R(x, x′)
def
= (ok ∧ p(x))⇒ (ok′ ∧R(x, x′))

where
• x and x′ stand for the initial and final values of program variables x in α,
• predicate p, called the precondition of the program, characterizes the initial

states in which the activation of the program will lead its execution to termina-
tion,

• predicate R, called the post-condition of the program, relates the initial states
of the program to its final states, and

• we describe the termination behavior of a program by the Boolean variables ok
and ok′, where the former is true if the program is properly activated and the
latter becomes true if the execution of the program terminates successfully.

Please see the details in [13].

2.2 Our Relational Calculus of Object Systems

rCOS [12] is an object-oriented language with a rich variety of features including sub-
types, reference types, visibility, inheritance, dynamic binding, polymorphism and lo-
cal variable nested declarations. The language is designed for reasoning about object-
oriented software at different levels of abstraction including specifications, designs and
programs. The syntax of rCOS includes object-oriented systems, class declarations,
commands and expressions. The main part of the syntax is very similar to Java. Further-
more rCOS is equipped with an observation-oriented semantics which is based on UTP
[13]. Due to the page limit, we neglect the content in this paper. Please see the details
in [12].

3 A Formal Syntax and Semantics of UML Models

In this section, firstly we will give the syntax of the class diagram and sequence dia-
grams.After that we will describe the requirement model and design model in our frame-
work. Finally we will investigate the conditions on the consistent issues and present the
rCOS semantics of a consistent model.

3.1 Syntax of Class Diagrams

A class diagram Γ (see Fig.1 and 5) identifies the following information.

1. The first part provides the static information on classes and their inheritance rela-
tionships:

– CN: the finite set of classes has always been identified.
– super: this is the direct generalization relation over the set CN.
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2. The second part describes the structures of classes. For each C ∈ CN, we use
attr(C) to denote the set

{< a1 : T1 >, · · · , < am : Tm >}

of primitive attributes of C, where Ti stands for the type of attribute ai of class C.
3. The third part provides the information about associations among classes: the finite

set in which elements are of the forms:

< C1, m1, Ass, m2, C2 > | (C1, m1, Ass, m2, C2)

The first notation represents a direct association Ass from C1 to C2. The second
notation indicates a undirect association Ass between classes C1 and C2. Here m1
and m2 are of the forms: 1 | 0..1 | ∗ | 1..∗, indicating multiplicities respectively.
We call undirect association conceptual association, and direct association design
association.

4. For each C ∈ CN, method(C) identifies the set of all methods of class C.

      Catalog

ProductSpecification

  Store

  address
  name

Sale

date
time
isComplete

description
price
upc

LineItem

quantity

Payment

   amount

   Uses
1                          1

LogsCompleted

1                          *

1

Has

1

1

IsPaidBy

   Describes

1

1

Contains

1...*

*

1...*

Fig. 1. A conceptual class diagram for an automated checking out system in a shop

The main condition of the well-formedness of a class diagram is that the inheritance
relation does not introduce cycles between classes. Also we do not deal with multiple
inheritance in a class diagram. The other issues are mainly naming problems.

In our framework, the class diagram defines the system state space allowed by the
application, and each system state encompasses some objects and all links among these
objects. Therefore, the class diagram plays the role as declarations of classes, types and
variables in a program. A system state is a well-typed state of the variables. We can
therefore easily specify (or translate) a class diagram Γ into a declaration section cdeclΓ
in rCOS later.

3.2 Syntax of Sequence Diagrams

A sequence diagram consists of objects and ordered messages that describe how the ob-
jects communicate. An interaction occurs when one object invokes a method of another.
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We now give the syntactic definition of sequence diagrams. We will allow call back
messages in a sequence diagram (e.g. message “(5)" in Fig.2). The definition covers
most features of UML 2.0 including combined fragments (except for the PAR one) [3],
references to other sequence diagrams and nested sequence diagrams. The object “: B"
in Fig.2 represents a nested sequence diagram.

A sequence diagram SD consists of two parts:

1. A sequence of objects: 〈obj1, obj2, · · · , objn〉. Each object obji has the following
structure:

– Each object obj is associated with a type, denoted by type(obj), which is
either a class name C in CN or a sequence diagram SD1.

– For each object obj, the property multiob(obj) equals true if obj is a multi-
object (e.g. : C in Fig.2), otherwise multiob(obj) is false. Multi-objects rep-
resent one-to-many associations in a class diagram.

– For each object obj there is a sequence of time-points 〈p1, p2, · · · , pn〉which are
totally ordered and represent the time points when an event occurs during the
lifetime of the object. These points represent the ordering of messages sending
and receiving, the combination fragments and the references to other sequence
diagrams.
We have a function event for each time-point p and event(p) describes what
happens at time-point p. For each time-point p, event(p) can be one of the
elements in the following set

{send, ack, receive, receiveack, option, loop, endfrag, ref, endref}
2. A set MSG of messages: each message msg is one of the forms (src,m, tgt), (m, tgt)

or (src,m) where

– src, denoted by source(msg), is a pair (obj, p) of an object and a time-point, and
source(msg) = (obj, p) means that object obj is the source of the message that
occurs at time-pointp, and we use (obj, p).object to denoteobj and (obj, p).point
to denote p.

– tgt is a pair (obj, p) of an object and a time-point, represented by target(msg)
and

– m, denoted by method(msg), is any command in rCOS . Therefore, m can
be a method call of the form (ass,method()) (sometimes it is simply written
as ass.m()), which represents that method() of the target object is called by
the source object via the association ass. Also, m can be a command, such
as a design, an assignment, or any composite command of other kinds, but we
require in this case the source object and the target object must be the same. This
represents the execution of an internal action of the object. Finally, a message
can be a return signal and in this case m is denoted as return.

– A message (m, tgt) represents an incoming message to the sequence diagram
and in this casemmust be a method call.A message (src,m) shows an outgoing
message from the sequence diagram and in this case m must be return.

We do not show return in the diagram.

Fig.2 is an example of a sequence diagram in which
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:A :B

:B1 :B2

(0)

(1)

(2)

(3)

(4)
(5)

(6)

(7)

(8)

LO O P

(1) (9)

(2)
(10)

(call back)

:C

ref (SD 11)

*g

Fig. 2. An example sequence diagram

– event(p) = send shows a message is sent from this position of the current object.
Similarly, receive means a message is reached at this position of the object. The
message between a send point and a receive point will be drawn in a solid line with
arrow to the receive point in the graph. For example, the message “(1)" and “(4)" in
Fig.2.

– ack and receiveack points are used to denote a return message which are drawn
in dotted line with open arrowhead back to the lifeline of the source object. For
example, the message “(2)" and “(7)" in Fig.2.

– If an event of a point is option or loop, it will be equipped with another function,
guard, which maps the point to its guard that is Boolean expression of the source
object’s attributes.
The option combination fragment is used to represent a sequence that will be ex-
ecuted if the guard condition holds. An option combination fragment is used to
model a “conditional choice” statement. The loop combination fragment is used to
represent a repeated sequence. The body of the fragment will continue to be exe-
cuted repeatedly until the guard condition becomes false. The event(p) = endfrag
represents the end of a combination fragment.

– event(p) is ref means that from point p the current sequence diagram begins to call
another sequence diagram and endref represents the end of the call. A ref point will
be equipped with a name representing the sequence diagram it calls.

3.3 Well-Formedness of Sequence Diagrams

We need to ensure that a sequence diagram is well-formed. The well-formedness is
concerned with the following conditions:

– For each message msg in the sequence diagram, the event of the source point of
msg must be a send or ack and the event of target point of msg must be a receive or
receiveack, respectively.
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– If a point p1 represents the beginning of combined fragments, i.e. loop or option,
there must be one and exactly one corresponding endfrag point p2 on the same object
such that p2 is later than p1.

– For a point p1 with event(p1) = ref, there must be point p2 on the same object such
that event(p2) = endref and p2 is later than p1. The well-formedness of the referred
sub-sequence diagram is checked recursively.

– If obj is a nested sequence diagram, then for every matched pair of sending and re-
turning messages (src,m, (obj, p1)) and ((obj, p2),m′, tgt), there is a corresponding
matched pair of messages (m, tgt1) and (scr1,m′) of source-less (incoming) mes-
sage and target-less (outgoing) message in the sub-sequence diagram type(obj).
The order of these message is preserved in the sub-sequence diagram and the sub-
sequence has to be well-formed.

The well-formedness of a sequence diagram has also to ensure the sequence diagram
indeed represents a scenario of method calls. This means that 1). order of the message
sending and receiving must be consistent, and for all messages from the same object,
the earlier it is sent the earlier it is received by the target object; 2). if a message msg
invokes message msg1, then msg1 must return before msg does.

For a sequence diagram, let action be the set of all its messages, combined fragments,
and referred sub-sequence diagrams. For actions action0 and action1 from the same
object, we use the notation

returned(action0, action1)

representing that the execution of action0 is finished before the execution of action1.
In particular, if action0 is a message with a method call meth0, then its corresponding
return message must be received by the object before the the execution of action1.

Using the above notations, we give the following definitions for future use.

Definition 1 (Directly invoke). Let msg0 be a message in a sequence diagram SD.

– message. Message msg0 directly invokes msg1, denoted by Invoke(msg0,msg1) if
target(msg0).object = source(msg1).object and target(msg0).point is the latest
point in the set

{p|p ∈ target(msg0).Points ∧ p < source(msg1).point ∧ ¬returned(msg0, msg1)}

where target(msg0).Points is the time-points of the target object of msg0 in SD.
– fragment. Let freg be a combined fragment and (obj, p) is the beginning point

for freg. We say msg0 directly invokes freg, denoted by Invoke (msg0, freg), if
target(msg0).object = obj and target(msg0).point is the latest point in the set

{t|t ∈ target(msg0).Points ∧ t < p ∧ ¬returned(msg0, freg)}

– ref. Let SD1 be another sequence diagram and rf = (obj, p) is the ref point where
SD1 is called. We say msg0 directly invokes rf, denoted by Invoke(msg0, rf), if
target(msg0).object = rf.object and target(msg0).point is the latest point in the set

{p|p ∈ target(msg0).Points ∧ p < rf.point ∧ ¬returned(msg0, rf)}
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Definition 2 (Directly follow). Let msg0, msg1 be two messages, source(msg0).object =
source(msg1).object.We say msg1 directly follows msg0, denoted as Follow(msg0,msg1),
if source(msg1).point is the smallest element of the set

{p|p ∈ source(msg0).Points ∧ p > source(msg0).point ∧ returned(msg0, msg1)}

The directly follow relationship between other actions (fragments or the references
to other sequence diagrams) is similar to the message case in Definition 2.

3.4 Requirement Models in UML

As in [16, 19], the development cycle of a software system starts with the construction
of a requirement model RM. In UML, requirements are captured and described by a con-
ceptual class diagram and some use cases. Conceptual class diagram is a class diagram
in which every class has no method, and the associations are conceptual (i.e. undirect).
Informally, such requirement model consists of a number of UML models, including a
conceptual class diagramΓr, a use-case diagramUr, a family Δr of use-case (or system)
sequence diagrams (one for each use case), and some activity diagrams if concurrency
is concerned. In this paper, we do not consider concurrency2. We can thus denote the
requirement model by a triple RM = 〈Γr, Ur,Δr〉. Each use case U is modelled as a
use-case controller class U -Controller (see Fig. 3).

Class U-Controller {
private T x;
method op1(< T11 x1 >, < T12 y1 >, <>){c1};

· · · ;
opn(< Tn1 xn >, < Tn2 yn >, <>){cn}

}

where the attributes x may include state control variables which are private to the con-
troller class. For each method of the form opi(< Ti1 xi >,< Ti yi >,<>){ci}, xi is a
list of value parameters, yi a list of result parameters, and ci is a command.

This formalization implies that all attributes and associations in other classes are
directly visible to all the use-case controller classes. The use-case diagram also provides
the information about the design associations among the use-case controller classes.
If use case U1 includes use case U2 in the use-case diagram, then there is an associa-
tion from U1-Controller to U2-Controller. Use-case sequence diagrams Δr (see Fig.4),
describe the the interaction between the actors and the system. Following the facade
controller pattern in [16], for the operations in a use-case sequence diagram we declare
the signatures in the corresponding use-case controller class. In a use-case sequence
diagram, the receiver of each message is an object of the use-case controller class, and
the sender is either an actor or an object of another use-case controller class.

Therefore, for each use case U , U -Controller declares the operations that appear in
the use-case sequence diagram and the body of each method in U -Controller is defined
from the system sequence diagram of the U -Controller class. Following the idea above,

2 It is often not recommended to consider concurrency at this early stage in an iterative develop-
ment process.
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BuyItems -Controller

Bool  new=true
Bool isComplete =false

  Quantity balance=0
  Quantity total=0

enterItem ( )
endSale ( )
makePayment ( )

Fig. 3. The controller class
for BuyItems

Cashier

:BuyItems -Controller

enterItem  (upc ,quantity)

endSale  ( )

makePayment  (amount)

Fig. 4. The use-case sequence diagram for use
case BuyItems

given a UML requirement model RM = 〈Γr, Ur,Δr〉, the normal form specification in
rCOS for RM is:

[[RM]]
def
= cdeclsΓr ; U1-Controller; . . . ; Un-Controller

Ui, i = 1, . . . , n, are the use cases of RM.
We will give the details of the meaning of [[·]] later.

3.5 Design Models in UML

In UML, a design model DM should consist of a design class diagram Γd (see Fig.5),
a family Δd of object interaction or sequence diagrams, at least one for each method in
U-Controller. We can thus define a design model as an ordered couple DM = 〈Γd,Δd〉.

Object sequence diagrams Δd operate on the design class diagram Γd. In general
sequence diagrams do not contain many details for describing the functionality of the
system. In an informal UML-based development, other means, such as textual descrip-
tion, is used to describe the functionality of the system. In our formal framework, we
provide formal specification of the body of the methods that will ensure the behavior
required by the sequence diagrams.

Therefore, a design model DM is also specified as the normal form specification in
rCOS :

[[DM ]]
def
= cdecl1; · · · ; cdecln

In next subsection we will give the details of the definition of [[·]].

3.6 rCOS Semantics for UML Models

In this subsection we will give the rCOS semantics for a UML model. A UML model is
an ordered couple 〈Γ,Δ〉. If it is a requirement model, then Γ = Γr ∪ Ur,Δ = Δr; if
it is a design model, then Γ = Γd,Δ = Δd.

The semantics of a UML model 〈Γ,Δ〉, is a sequence of class declarations in rCOS .
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Store

 address: A ddress
  name: T ext

addsale( )

ProductCatalog

   specification( )
loadProdSpects( )

ProductSpecification

 description: T ext
 price: A mount
upc: UPC

  find()

BuyItems-Controller

endSale( )
enterItem( )
makePayment( )

Sale

   date: D ate
   time: T ime

inC omplete: Bool

becomeC omplete( )
makeLineItem( )
makePayment( )

  total( )

LineItem

  quantity:Q uantity

  subtotal( )

Payment

amount:A mount

1

*LogsC ompleted

1

1

Houses

 1         1

Uses
Has

1 1...*

1

1

LooksIn

Records

1         1

IsP aid By

1       1

ItemsContainer

items:LineItem

add()C ontains

1

1
1

C onsis ts
1...*

Fig. 5. A design class diagram for use case BuyItems

:B uyItem s-C ontroller

:Sale
:Item s

Container

:P roductC atalog

enterItem
(upc,qty)

new()
new()

spec:=Specification(upc)

find(upc)

m akeLine
Item ( )

li:=new( )

add(li)

:LineItem

:P roduct
Specification

Fig. 6. Sequence diagram for enterItem()

Before giving the semantics from a class diagram and a set of sequence diagrams,
we need to ensure that these diagrams are consistent.

For a well-formed class diagram and well-formed sequence diagrams, we give the
following items as the definition of consistency. A violation of any of them will be
considered as an inconsistency.
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– Association. For each msg ∈ MSG, there must be a corresponding association in
the class diagram. Notice, this is static as it cannot ensure that the object which is
sending the message in a particular state during the execution is currently associated
with the target object of the message.

– Class Name. For the above-mentioned association, each of the two related classes
in the class diagram must have the same name with the object related to msg in the
sequence diagram.

– Method. Each method signature in the sequence diagram must be the same as the
one in the class diagram. Furthermore, if m() is the method of a message sent from
: C to : D in the sequence diagram, then m() must be a method of class D in the
class diagram.

– Attribute. The variables used in the guard of a message should be directly accessible
by the source object.

– Multiplicity. If an association in class diagram is one-to-many, the corresponding
object in the sequence diagram must be a multi-object. Notice that multiplicity
and other general class invariants should be ensured by the design of the sequence
diagram, not by the consistency checking.

Now we give the semantics of consistent model 〈Γ,Δ〉, denoted by [[〈Γ,Δ〉]], as follows:

– Class. A class C in Γ is declared as a skeleton of class declaration cdecl in [[〈Γ,Δ〉]]
with their attributes and method signatures. All attributes are declared to be public.

– Association. For association role name a from Ci to Cj in Γ , if the multiplicity
of Cj is 0..1 or 1, cdecli for Ci has an attribute a with the type Cj ; and if the
multiplicity of Cj is 1..∗ or ∗, cdecli for Ci has an attribute a of type Cj and an
attribute a-set of type of the powerset PCj .

– Constraints: Constraints, such as invariants, multiplicity and aggregation, are spec-
ified in terms of pre-post conditions of methods in rCOS .

– Reference attributes: For a sequence diagram SD ∈ Δ, a method of an object of
type C1 is called by an object of type C2, there will be an attribute with the reference
type of C1 in the class declaration for C2.

– Method bodies: The method bodies in each class will be determined by the scenarios
of method call in sequence diagrams Δ. We will consider the following two items:

• Directly invoked actions: For a message either msg = (src,m, tgt) ∈ Δ or
msg = (m, tgt) ∈ Δ, if m is a method signature, SD is a particular sequence
diagram in which m is called, then the following sequence of actions, denoted
by bodySD, is a path of the execution of an invocation of m;

action1; action2; · · · actionn

where Invoke(msg,action1) and Follow(actioni, actioni+1) for each i : 0 < i <
n, and no more actions directly follow actionn.

• Method appears in several sequence diagrams. If a methodm appears in several
sequence diagrams, say, SD1, SD2, · · · , SDn ∈ Δ and

bodySD1, bodySD2, · · · , bodySDn

are the corresponding method bodies in these sequence diagrams. Then the body
of m is the non-determined choice of them:

m(){!n
i=1bodySDi}
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The overall well-formedness of the class diagram and the sequence diagrams and their
consistency are ensured by the well-formedness of the rCOS specification [12] obtained
from the above definition. This translation can be automated and we have designed an
algorithm in [23] for this purpose.

Example 1. The model composed of the class diagram in Fig.5 and the sequence diagram
in Fig.6 has the semantics in rCOS as follows.

Class Store {
public Address address, T ext name, P roductCatalog prod,

PSale sli, Sale s, BuyItems-Controller buyctr;
method addSale()
}
Class P roductCatalog {
public PP roductSpecification proli, P roductSpecification pro;
method specification(UPC upc, P roductSpecification spec){

pro.find(upc)
}

loadP rodSpects()
}
Class P roductSpecification {
public Text description, Quantity price, UPC upc, PLineItem li, Lineitem l;
method find(UPC upc)
}
Class BuyItems− Controller {
private P roductCatalog p, Sale sale;
method endsale();

enterItem(UPC upc, Quantity qty){
sale := Sale.new();
var spec := p.specification(upc);
sale.makeLineItem(spec, qty)
}

makePayment(Amount amount, Amount balance)
}
Class Sale {
public Date date, T ime time, Bool inComplete, ItemContainer icont,

PLineItem lset, LineItem lineItem, Payment p;
method new(){

lineitem := LineItem.new()
}

makeLineItem(P roductSpecification spec, Amount total){
var li := lineItem.new();
icont.add(li)
}

makePayment(Amount amount, Amount balance);
becomeComplete();
total()

}
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Class LineItem {
public Quantity quantity;
method subtotal(Quantity quantity, Quantity price, Amount subtotal)
}

Class Payment {
public Amount amount;
method
}

Class ItemContainer {
public PLineitem items, Lineitem item;
method add(LineItem item, PLineItme items)
}

4 Model Refinement

Having given the definition of the semantics [[·]] for UML models in the above section,
now we can define the refinement and correct relationship between UML models.

Firstly, let us recall the following two refinement definitions in rCOS [12].

Definition 3 (Refinement between object systems). Let S1 and S2 be object programs
which the same set of global variables glb. S1 is a refinement of S2, denoted by S1 *sys

S2, if the behavior of S1 is more predictable and controllable than that of S2.

S1 *sys S2
def
= ∀x, x′, ok, ok′ · (S1 ⇒ S2) where x are the variables in glb.

This means the external behavior of S1, i.e.the pair of pre- and post-global states, is a
subset of that of S2.

Definition 4 (Refinement between declaration sections). Let cdecls1 and cdecls2 be
two declaration sections. cdecls1 is a refinement of cdecls2, denoted by cdecls1 *class

cdecls2, if the former can replace the latter in any object system:

cdecls1 *class cdecls2
def
= ∀P · (cdecls1 • P *sys cdecls2 • P )

where P stands for a main method (glb, c).
Intuitively, it states that cdecls1 supports at least the same set of service as cdecls2.

Now we provide the definitions of model refinement and correctness.

Definition 5 (Model refinement). Let 〈Γ1,Δ1〉 and 〈Γ2,Δ2〉 be two UML models.
〈Γ2,Δ2〉 is refined by 〈Γ1,Δ1〉, denoted by 〈Γ1,Δ1〉 *model 〈Γ2,Δ2〉if the former’s
semantics refines the latter’s:

〈Γ1,Δ1〉 *model 〈Γ2,Δ2〉
def
= [[〈Γ1,Δ1〉]] *class [[〈Γ2,Δ2〉]]

Definition 6 (Correct Design Model). A design model DM is correct with respect to
the requirement model RM, denoted by Correct(DM,RM) if it is a model refinement
of RM:

Correct(DM,RM)
def
= [[DM ]] *model [[RM ]]
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As before-mentioned, the normal form specifications in rCOS for requirement model
and design model only concern the class declaration in an object program and its main
method corresponds to the application program using services which are provided by the
methods of the classes in the design model. Thus, in this article, we are only interested
in refinement relation between declaration sections. We allow the following refinement
rules to a declaration section within the UML framework.

1. Adding a class declaration: this corresponds to adding a class into the class diagram,
the methods of the new class into sequence diagrams.

2. Introducing a fresh attribute to a class: this corresponds to adding a fresh attribute of
primitive type to the class or adding a design association from the class to another.

3. Introducing inheritance. If none of the attribute of class N is appeared in class M
or any superclass of M , we can make M a direct superclass of N .

4. Moving some attributes from a class to its direct superclass: if all subclasses of class
N have a common attribute, the common attribute can be moved to class N from
all of its subclasses.

5. Data encapsulation: Suppose class M has a public attribute, and no method of
other classes accesses this attribute except those of subclasses of M , we change the
visibility of this attribute from public to protected. Suppose class M has a protected
attribute, and no method of its subclasses accesses this attribute, we change the
visibility of this attribute from protected to private.

6. Adding a fresh method into a class: This approach allows us to add a method signature
into the class in the class diagram, and add a sequence diagram.

7. Refining the body command of a method m(){c} in a declared class. This may lead
to the replacement of the subsequence diagrams involving with m().

8. Moving a method from a class to its direct superclass if the method body does not
access any protected or private attribute of the class.

9. Copying a method from a class to its direct subclass.
10. Delegating some tasks of a class to its associated classes. If a method of a class

contains a sub-command that can be realized by a method of another class, we can
replace that sub-command with a method invocation to the latter class. Notice the
sequence diagrams involved the method should be refined too.

11. Removing unused attributes: for a private attribute, it can be dropped if it does not
appear in any method of the class; for a protected attribute, it can be dropped if it
does not appear in any method of the class and its subclasses; for a public attribute,
it can be dropped if it does not appear in any method of any class.

12. Removing unused methods: if a method is not called by other method or the main
method in the object program, the method can be removed.

Example 2. The conceptual class diagram in Fig.1, the system sequence diagram in
Fig.4 together with the use-case diagram BuyItems-Controller in Fig.3 form a require-
ment model. We can apply the refinement calculus to this model for the design of the
method enterItem() (similarly to methods endSale and makePayment) according to the
design class diagram in Fig.5, then achieve the object sequence diagram in Fig.6 step
by step:
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1. BuyItems-Controller delegates the responsibility of creating a new sale to Sale,
2. BuyItems-Controller delegates the job of finding the specification using upc match-

ing to Catalog, which delegates the job further to the multi-object with type of
ProductSpecification,

3. BuyItems-Controller delegates the task of making a line item to Sale.

5 Conclusions and Future Works

This work is towards a formal foundation for component and object systems development
based on the formal object-oriented specification notation rCOS and its refinement cal-
culus in [12, 11]. In rCOS , normal form specification of an object system is a sequence of
class declarations and a main method. Each class declaration consists of some attributes,
method signatures and method-body definitions, which has corresponding notations in
UML. In this paper, we focused on the formalization of UML class diagrams and se-
quence diagrams in rCOS . With this formalization, we can integrate these two kinds
of UML models and carry out consistent refinement of these diagrams. The consistency
conditions between these two kinds UML models are treated as the well-formedness
conditions of their corresponding integrated specification in rCOS .

Compared to most exitsing work, e.g. [6, 4, 9, 25, 1], our approach is also transfor-
mational. However, we also provide integration of UML models. Furthermore, because
different sections in a rCOS specification clearly corresponding different UML diagrams,
the formal specification of the integrated model can be transformed back to UML dia-
grams, i.e. the transformation is reversible. This is very important, as this allows us to
obtain refined UML diagrams from a refined rCOS specification. Thus, this approach
also supports re-engineering.

In our formalization, the horizontal consistency is mainly static: the syntactic consis-
tency can be checked statically using an algorithm, while the invariants can be verified
with model-checking tools. Vertical consistency (of refinement) is mainly semantic. This
has fully justified our use of predicates in meeting the challenge of UML formalization
[7]. Fundamental techniques of program and data refinement can be applied to UML
transformation. This also supports UML-based model-driven development [8, 24].

Our future work will also include the integration of activity diagrams (for con-
currency) in the framework and the extension of rCOS with the notation of compo-
nents to support component diagrams in UML2.0. Tools have also been developed using
this framework [17].

In our related works, general transition systems are introduced to provide an inte-
grated model of conceptual class diagrams and use cases (without the treatment of se-
quence diagrams, state machines and use-case diagrams) [22].A version of rCOS without
reference types is presented in [11] and used in [21] for the specification of the integrated
model of [22]. Article [18] uses rCOS for the specification of design class diagram and
sequence diagrams, but without rules for model transformation. In [20], we show how
rCOS is used a the foundation for a rigorous approach to object-oriented in general, and
to UML-Base development in particular.
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Abstract. Statecharts is a visual formalism suitable for high-level system spec-
ification, while Verilog is a hardware description language that can be used for
both behavioural and structural specification of (hardware) systems. This paper
implements a semantics-preserving mapping from Graphical Statecharts to Ver-
ilog programs, which, to the best of our knowledge, is the first algorithm to bridge
the gap between Statecharts and Verilog, and can be embedded into the hard-
ware/software co-specification process [19] as a front-end.

1 Introduction

Statecharts [6, 7] is a visual formalism catering for high-level behaviourial specification
of embedded systems. Its hierarchical structure, orthogonal and broadcast communica-
tion features make the system specification compact and intuitive to understand. It is
a very good candidate for executable specification in system design [8]. Moreover, the
semantics of Statecharts has been extensively investigated [9, 12, 14, 15, 13] in recent
years. Some works also attempt to provide tools for formal verification of Statecharts
specifications [4], [14], [20].

Verilog [22], [17] is a widely used language for hardware description in industry [2],
[5], [11], [10] and also in research. Verilog is used to model the structure and behaviour
of digital systems ranging from simple hardware building block to complete systems.
Verilog semantics is based on the scheduling of events and the propagation of changes.
One early attempt to investigate the semantics of Verilog is the work of Gordon [5] which
explains how top-level modules can be simulated.

A Verilog program (or specification, as it is more frequently referred to) is a descrip-
tion of a device or process rather similar to a computer program written in C or Pascal.
However, Verilog also includes constructs specifically chosen to describe hardware. One
major difference from a language like C is thatVerilog allows processes to run in parallel.
This is obviously very desirable if one is to exploit the inherently parallel behaviour of
hardware. In this work, we will make use of abstract Verilog [10], [18], that is described
in the next chapter.

On the other hand, Verilog is a hardware description language that has been widely
used by hardware designers. Its rich features make it a good candidate for low–level
system specifications. The formal semantics of Verilog was first given by Gordon [5] in
terms of simulation cycles. It has been thoroughly investigated afterwards [25], [24].

Z. Liu and K. Araki (Eds.): ICTAC 2004, LNCS 3407, pp. 187–203, 2005.
c©Springer-Verlag Berlin Heidelberg 2005
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As the advantages of Statecharts and Verilog in embedded system design process
are complementary to each other, a natural question that can be raised is, can we make
use of both of them in system design? That is, can we use Statecharts as the high level
specification, while use Verilog as the low level description? This question has motivated
our work and this paper shall provide a positive answer by bridging the gap between
Statecharts and Verilog. The compilation from Statecharts to Verilog can be embedded
into the hardware/software co-specification process [19]. A mapping algorithm will be
given in the following sections, where the soundness has been given in Qin and Chin [18].

The rest of this paper is organized as follows. Sec 2 gives a brief introduction to
Statecharts and Verilog. Sec 3 presented the formal definition of the mapping function,
followed by its implementation in Sec 4. Sec 5 illustrates our mapping results using two
examples, while Sec 6 concludes the paper.

2 Preliminaries

2.1 Formal Syntax of Statecharts

Statecharts is a specification language derived from finite-state machines. The lan-
guage is rather rich in features including state hierarchy and concurrency. Transitions
can perform nontrivial computations unlike finite-state machines where they contain at
most input/output pairs. In this section we will describe Statecharts presented by David
Harel [6], [7], [9].

Statechart diagrams capture the behaviour of entities capable of dynamic behaviour
by specifying their responses to the event occurrences. Typically, it is used for describing
the behaviour of classes, but statecharts may also describe the behaviour of other model
entities such as use cases, actors, subsystems, operations, or methods.

We use a simple textual representation of Statecharts, while our system can automat-
ically translate a graphical representation to the textual representation. The statecharts
language we adopt has some features that are not present in UML statecharts. For exam-
ple, broadcast communication is supported in our language but not in UML statecharts.

As already mentioned in previous section, Statecharts is extensible by hierarchy,
orthogonality or broadcast communication. In this paper, we use the formal syntax of
statechart from [7] and [18]. The syntax of Statecharts formula is defined as follows
(quoting from [18]):

S : a set of names used to denote Statecharts. This is expected to be large enough to
prevent name conflicts.
Πe : a set of all abstract events (signals). We also introduce another set Π e to denote
the set of negated counterparts of events in Πe , i.e. Π e =df {e | e ∈ Πe}, where e
denotes the negated counterpart of event e, and we assume e = e.
Πa : a set of all assignment actions of the form v = exp.
σ : V ar → V al is the valuation function for variables, where V ar is the set of all
variables, V al is the set of all possible values for variables. A snapshot for variables v
is σ(v).
T : a set of transitions, which is a subset of S × 2Πe∪Πe × 2Πe∪Πa × Be × S,
where Be is the set of boolean expressions.
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A term-based syntax of statecharts was introduced in [18] and [14], [15]. We re-
introduce it here for the benefit of the reader. The set SC is a set of Statecharts terms that
is constructed by the following inductively defined functions.

Basic : S → SC
Basic(s) =df |[s]|
Or : S × [SC] × T → SC
Or(s, [p1, ..., pl, ..., pn], pl, T ) =df |[s : [p1, ..., pl, ..., pn], pl, T ]|
And : S × 2SC → SC
And(s, {p1, ..., pn}) =df |[s : {p1, ..., pn}]|

Note that:
– Basic(s) : denotes a basic statechart named s.
– Or(s, [p1, ..., pl, ..., pn], pl, T ) : represents an Or-statechart with a set of sub-states
{p1, ..., pn}, where p1 is the default sub-state, pl is the current active sub–state, T is
composed of all possible transitions among immediate sub-states of s.
– And(s, {p1, ..., pn}) is an And-statechart named s, which contains a set of orthogonal
(concurrent) sub-states {p1, ..., pn} .

In this paper we use sub-state interchangeable as children of Or-state. Correspond-
ingly, we use children and region of And-state interchangeably. For statecharts that we
adopted in this work, we shall assume that each And-state will have at least two regions.
Furthermore, each region shall be an Or-state.

We shall take the textual representation of statecharts as input data for our core
mapping program. Our front-end algorithm will translate graphic charts to textual rep-
resentation automatically. As an example, we give below a simple graphical Statechart
and its corresponding textual representation.

P0
P1

P2

P1a P1b

P2a

P2b P2c

t2: b (true)
t3: c (true)

t1: a (true)

P0 = |[ S1: P1, P2 ]|
P1 = |[ S2: [ P1a, P1b ], P1a, t1 ]|
P2 = |[ S3: [ P2a, P2b, P2c ], P2a, t2, t3 ]|
P1a = |[ S4 ]|
P1b = |[ S5 ]||
P2a = |[ S6 ]|
P2b = |[ S7 ]|
P2c = |[ S8 ]|

t1 = < P1a, a , , true, P1b >
t2 = < P2a, b , , true, P2a >
t3 = < P2b, c , , true, P2c >

Fig. 1. A simple example of a Statechart and its textual representation

2.2 Verilog

Verilog is a hardware description language that has been widely used in industry. Al-
though the Verilog IEEE standard [22] was released around ten years ago, the formal
semantics based on simulation cycles [5] has not been well-investigated until recently,
e.g. [11], [10]. In our work, we shall use a behaviourial subset of Verilog introduced in
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[10] and [18]. This more abstract version of Verilog can be used to express designs at
various levels of hardware behaviour. Such an abstract design can be gradually refined
into an equivalent counterpart in the Verilog HDL which can provide a closer match to
the underlying architecture of the hardware. This process may be repeated until the de-
sign is at a sufficiently lower level such that the hardware device can be synthesised from
it. There are two main features in abstract Verilog that are not present in Verilog HDL,
namely guarded choice extension and recursion. The translation from general guarded
choices to parallel composition in normal Verilog is achievable, although nontrivial.
The conversion of recursion to iteration is harder but there exists standard conversion
techniques to realise some subsets of them. Furthermore, for bounded recursion, it is
possible to inline the abstract Verilog code so as to remove recursion.

A Verilog program can be a parallel or a sequential process, but only parallel process
may contain sequence processes, not vice-versa. Here are some categories of syntactic
elements:

1. Parallel process
P ::= S | P ‖ P
where, S is a sequential process.

2. Sequential process can be formally described as following
S ::= PC (primitive command) | S;S (sequential composition)

| s � b � S (condition) | b ∗ S (iteration)
| (b&g S) [] ... [] (b&g S) (guarded choice) | fix X • S (recursion)

where, b is boolean condition, and
PC ::= skip | sink | ⊥ | → η (output event) | v = ex (assignment)
g ::= → η | @(x = v) (assignment guard))

|#1 (time delay) | eg (event control)
eg ::= η | eg & eg | eg & ¬eg
η ::= ↑ v (value rising) | ↓ v (value falling) | e (a set of abstract events)

Recall that a Verilog program can only be a parallel process at the top level, a
sequential process cannot contain a parallel process. However, most real systems contain
many parallel processes possibly organised hierarchically. To solve this restriction, we
shall use algebraic laws [10] to expand a parallel process into a sequential one.

Here are some simple code examples:

– (e & (→ f) sink) [] (g & (→ h) sink)
– μX • (e (f X) )
– (a & (→ e) sink) ‖ (b & (→ f) sink)

3 Semantic-Preserving Mapping

Our algorithm that takes as input graphical statecharts and generates as output Verilog
code is based on the theoretical result presented in [18]. This mapping algorithm works
in a top-down manner starting from the root of the statechart and then moving to its
children. Each time, we consider the input statechart (each part of Statecharts) as a
singleton statechart and continue until no further applicable.
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We present the mapping function L as originally proposed in [18] which produces
result based on the type of the source statechart:

Definition of Mapping Function L:

L : SC→ Verilog

maps any statechart description into a correspondingVerilog process. It keeps unchanged
the set of variables employed by the source description, i.e.,

∀sc ∈ SC • vars(L(sc)) = vars(sc)
and it is inductively defined as follows.

– For a statechart sc = |[s]| constructed by Basic, L maps its input into an idle
program sink which can do nothing but let time advance, i.e.,

L(sc) =df sink
– For a statechart sc = |[s : {p1, ..., pn}]| constructed by And, L maps its input into

a parallel construct in Verilog.
L(sc) =df ‖1≤i≤n L(pi)

– For a statechart sc = |[s : [p1, ..., pn], pl, T ]| constructed by Or, we define L by
exhaustively figuring out the first possible transitions of sc if any, otherwise it returns
sink.

L(sc) =df

{
sink if T ∗(sc) = ∅
P otherwise

where

P =df []0≤k≤or-depth(sc) []{bτk
& gi

τk
& (&0≤j≤k hj) & g0

τk
L(resc(τk, sc)) |

τk ∈ T (activek(sc)) ∧ src(τk) = activek+1(sc) ∧
hj = &{¬gi

τ | τ ∈ T (activej−1(sc)) ∧ src(τ) = activej(sc)}}
and

active0(sc) =df sc
active1(sc) =df active(sc)
activei+1(sc) =df active(activei(sc))

For each statechart, we always assume each of its variables has bounded range, and the
set of possible events is finite, which implies that the set of its configurations is finite.
Therefore, the set of configurations (under transition relation) forms a well–founded
quasi order, which indicates the mapping function L is terminating.

Following are some formal notations used in the above definition. Firstly, the function
or-depth : SC → N to calculate the “or–depth” of a statechart, which is defined as
follows:

- for a statechart sc = |[s]| constructed by Basic, or-depth(sc) =df 0;
- for a statechartsc = |[s : [p1, ..., pn], pl, T ]| constructed byOr, or-depth(sc) =df

or-depth(pl) + 1;
- for a statechartsc = |[s : {p1, ..., pn}]| constructed byAnd, or-depth(sc) =df 1.

The or-depth of an Or-chart just records the depth of the path transitively along its active
Or-sub-states. We stop going further once an And-state is encountered. The or-depth of
an And-chart is simply 1.

Secondly, the source and target state functions, src(τ) and tgt(τ), respectively repre-
sent the source and target state of a transition τ . Given a transition τ = &1≤k≤mτik

∈ T ,
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where τik
∈ T ∗(pik

), for 1 ≤ k ≤ m, and i1, ..., in is a permutation of 1, ..., n, we define
its source and target state as follow:

src(τ) =df (q1, ..., qn), where qik
= src(τik

), for 1 ≤ k ≤ m, and qik
=

active(pik
), for m < k ≤ n;

tgt(τ) =df (r1, ..., rn), where rik
= tgt(τik

), for 1 ≤ k ≤ m, and rik
=

active(pik
), for m < k ≤ n.

Note that T ∗(p) contains all possible transitions inside p along its transitive active
sub-state chain, i.e.,T ∗(p) =df {τ | τ ∈ T ∧src(τ) = pl}∪T ∗(pl).And active(sc) de-
notes a current active sub-state of sc. With anOr-statechart sc = |[s : [p1, ..., pn], pl, T ]|,
we have active(sc) = pl. With an And-statechart sc = |[s : {p1, ..., pn}]|, we have the
active state as a vector of the active states of these constituents, i.e., active(sc) =df

(active(p1), ..., active(pn)).
Thirdly, we need to know the resulting statechart after a transition is taken. When

a transition τ occurs, any involved statechart can have changes in its (transitive) active
sub-states. We use a function:

resc : T × SC → SC

to return the modified statechart after performing a transition in a statechart. It is defined
inductively with regard to the type of the statechart.

- for a Basic-statechart sc, and any transition τ , resc(τ, sc) =df sc;
- for an Or-statechart sc = |[s : [p1, ..., pn], pl, T ]|, and a transition τ ,

resc(τ, sc) =df

⎧⎨⎩
sc[l �→a2d(tgt(τ))], if τ ∈ T ∧ src(τ) = pl;
sc[l �→resc(τ,pl)], if τ ∈ T ∗(pl);
sc, otherwise.

- for an And-statechart sc = |[s : {p1, ..., pn}]|, and a transition τ ,

resc(τ, sc) =df

{
scτ , if τ = &1≤k≤mτik

∈ T (sc);
sc, otherwise.

where scτ = sc[q1/p1, ..., qn/pn] is the statechart obtained from sc via replac-
ing pi by qi, for 1 ≤ i ≤ n, qik

= resc(τik
, pik

), for 1 ≤ k ≤ m, and qik
= pik

,
for m < k ≤ n.

The function a2d(sc) is used to change the active sub-state of sc into its default
sub-state, and the same change is applied to its new active sub-state. This function is
defined as:

- a2d(|[s]|) =df |[s]|
- a2d(|[s : [p1, ..., pn], pl, T ]|) =df |[s : [p1, ..., pn], a2d(p1), T ]|
- a2d(|[s : {p1, ..., pn}]|) =df |[s : {a2d(p1), ..., a2d(pn)}]|

The substitution sc[l �→pm] for an Or-statechart sc = |[s : [p1, ..., pn], pl, T ]| is defined
by sc[l �→pm] =df |[s : [p1, ..., pn], pm, T ]|
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4 Implementation

Our implementation consists of two parts: a statechart editor (called Statechart E, is a
stencil of MS Visio) and a mapping program from statechart into abstract Verilog (called
AMSV-Automatic Mapping of Statechart into Verilog).

Statechart
drawing

(Statechart_E)

Mapping
(AMSV)

texture
representation

Code
generation

(AMSV)

abstract
Verilog

Fig. 2. Structure of the implementation

Fig. 2 shows the stages of using our system. Users first draw their statecharts, using
Statechart E, which also automatically generates the corresponding textual represen-
tations. AMSV will then generate abstract Verilog code from textual representation of
these statecharts. In next two sections, we will discuss about Statechart E, AMSV, and
some other techniques used in the system.

4.1 Statechart Editor

Statechart E is built with three main purposes:

– First, of course is for editing Statechart diagrams. The editor should be convenient
to use and easy to draw.

– Second, it should also be easy to export textual representation of statechart. This is
used by the mapping algorithm which converts statechart to abstract Verilog.

– Last, it should be easy to save the statecharts to other graphical formats (like bmp,
jpg, ps, eps, etc) This is important for portability and for documentation.

From these requirements, we built Statechart E as an add-on/embedded stencil in
Microsoft Visio. We make use of MS. Visio because Visio is a very powerful graphical
editor tool for drawing diagrams. Visio also supports many graphical formats for export-
ing our diagrams. Moreover, using Visio, we can not only draw statechart components
but also other shapes from suitable drawing types or stencils.

Features of Statechart E:

– A menu named Statechart is added to the menu bar of Visio. This menu contains
two functions, namely: Generate statechart and Add new statechart page. The first
function is used to export the current statechart to a textual file. This file is used as
input for the mapping program which to transform to abstract Verilog. The second
function is used to add a new page for current statechart diagram. To enable this menu
and its functions, users must allow a macro to be accepted when opening the stencil.

– A set of masters is added to the stencil and this is used for constructing statecharts.
It consists of a state master, a default master (common for all kind of states), 8
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transition masters (to help build complex statecharts), and vertical/horizontal sepa-
rators for And-state.

– Each master is accompanied by a program written in Visual Basic for Application
(VBA) to check data, events and perform actions of each master. Some masters are
linked to a window to allow input of needed data. This program also partially checks
the supplied data such as duplicate name, etc.

– We also allow users to build hierarchical statecharts. Users can easily extend a given
statechart by adding a new page (using the second function in menu Statechart) and
continue to extend the current statechart in a hierarchical manner in the new page.
Note that the generate function will read all components in all pages of the statechart.

4.2 AMSV - Core Mapping Program

The second part, called AMSV (Automatic Mapping of Statechart into Verilog), is es-
sentially a Java program.

DFS Algorithm. As presented in section 3, the mapping algorithm has to deal with
each state; Basic, And, and Or states. It can construct the corresponding Verilog
code after the mapping algorithm has been applied to all states of the source state-
chart. Nevertheless, how do we traverse all states of the input statechart? In the AMSV,
we make use of depth–first–search (DFS) algorithm [3] to reach all states of the
statechart.

However, DFS works on each tree of nodes. To apply DFS we have to reconstruct
the source statechart into a tree of states. Fig. 3 shows an example of hierarchy tree
(b) for a simple statechart (a). Here, dashed arrows denote the children of an And-state
(like arrow from P0 to P1, P2), while the doted arrows point to the active sub-states
of Or-state (like arrow from P1 to P3 or P2 to P6). The solid arrows represent the
transitions.

P0
P1

P3

P4

P2

P6

P7

t3: e3

P5

t2: e2t1
: e

1

t4
: e

4

P8

P9t5: e5

a)

P0

P1

P3

P4

P2

P6

P7P5

P8 P9

P0

P1

P3

P4

P2

P6

P7P5

P8 P9

b) c)

Fig. 3. Hierarchy tree. a) Statechart example, b) hierarchy tree, and c) DFS route

After reconstructing each statechart into a hierarchy tree, we apply a recursive func-
tion which maps each statechart to abstract Verilog. At each time, we only consider one
state, called the current state. Through this recursive function, we apply the mapping
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algorithm to all states of the source statechart to obtain Verilog process code. These
codes are kept in a hash table for latter use. After that, we gather the output code (from
sub-states or from target states of all transitions to the current state) to generate final
abstract Verilog process.

For example, in the Fig. 3, first we start from the root state (like P0). After that, we
invoke the function itself if it is possible to go to current state’s children (P1, P2) or
target states of transitions (P3 to P4, P5). A systematic way of finding the next state is
described below. Fig. 3 c shows the route taken by our DFS traversal:

– each state is the target of transition: If there exists any transition from the current
state, go to the target state of the transition. Like transitions from P3 to P4 or P5. The
information of the transition will be memorized to generate output code. If there
are more than one transitions from current state, process it one by one. The order
between these transitions is not important.

– each state is a child of the And-state: If the current state is And-state, go to all
children. Like from P0 to P1 or P2. Information of children in that And-state will
be memorized during code generation, as acquired by the Verilog language.

– state is sub-state of Or-state: Just go to active state and continue as before. For
example, P3 and P6 are the active states of P1 and P2.

Recursion. During the traversal to the states of a given statechart, it is possible for a
transition to re-occur. This may be due to non-termination. To solve this problem we use
a boolean array to remember all states which the program has already encountered. If
a program reaches a marked state, it just uses that information to generate a loop, and
then go back to previous state. This is meant to terminate a recursive transition.

Parallel Expansion. Recall from early discussion in Sec 2, we shall take into account
the parallel expansion of And-state. Whenever an And-state is reached, all information
(guards, conditions, etc) of the children of a current state are used for expansion. The
only exception is when the current state is the root. In this case we generate Verilog code
from all its children and gather it using the parallel operation (‖). This situation was
discussed in [23].

5 Examples

In this section, we illustrate the mapping algorithm via the following examples: a CD
player and a washing machine.

5.1 CD-Player

Specification. Fig. 4 shows the graphical statechart of a CD-player. It contains two or-
thogonal regions: Play control (PlayCtr) and Track information (TrackCtr), which
are used to control the playing mode and record the track information respectively. The
first region contains Stop, Play, Pause sub-states to control the playing mode,
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while the second one contains only a sub-state, Track. Three buttons, Next, Prev,
and select a track, are associated with the Track state. The variable ct (that is,
current track) is used to keep record of the current position of the CD being played. We
assume ct is initially 0 whenever the CD-player is switched on.

In this model, Stop and Track are respectively two default sub-states of two
orthogonal regions. So when the CD-Player is switched on, both of them are entered
simultaneously. Upon the arrival of event Play pressed (that is, the Play button is
pressed), transition t1 is taken and state PlayingCtr is entered, where the default
sub-state Playing becomes active. Transitions t4 and t3 are used to alter between
state Playing and Paused. Transition t2 connects state PlayingCtr with state
Stop. When the control is in state PlayingCtr (either Playing or Paused), and
t2 is enabled, it will yield the Stop state (that is, the CD-player will stop).

In the orthogonal state TrackCtr, upon the arrival of events Next pressed or
Prev pressed, the variable ct (current track) will be changed according to the event.
Conditions (ct > 1) and (ct < Max(track)) are used to check the range of the ct. The
transition t7 is taken if users select any track in the range.

CD-Player-ON

PlayCtr TrackCtr

Stop

t1: P
lay_pressed / c

t=1

(tru
e)

t2: Stop_pressed / ct=1

(true)

PlayingCtr

Playing

Paused

t3
: P

la
y_

pr
e

ss
ed

(tr
ue

)

t4: P
au

se_
pressed

(tru
e)

Track

t5: Next_pressed / ct=ct+1
(ct<max(track))

t7: T
rack_select / ct=trsl

(0<
ct<

m
ax(tra

ck)+
1)

t6: Prev_pressed /
ct=ct-1 (ct>1)

Fig. 4. CD player with track information (ct)

For simplicity, we only added track information in this specification of a CD-player.
A real CD-player may contain other functionalities, like timer, forward, rewind, etc. We
can add these setting as parallel regions in a similar way.

After drawing the statechart specification in Statechart E, the following textual rep-
resentation is automatically generated:

CD-Player-ON = |[ S1: { PlayCtr, TrackCtr } ]|
PlayCtr = |[ S2: [ Stop, PlayingCtr ], Stop, { t1, t2 } ]|
TrackCtr = |[ S3: [ Track ], Track, { t5, t7, t6 } ]|
Stop = |[ S4 ]|
PlayingCtr = |[ S5: [ Playing, Paused ], Playing, { t3, t4 } ]|
Playing = |[ S6 ]|
Paused = |[ S7 ]|
Track = |[ S8 ]|
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t1 = < Stop, { Play_pressed }, { ct=1 }, true, PlayingCtr >
t2 = < PlayingCtr, { Stop_pressed }, { ct=1 }, true, Stop >
t3 = < Paused, { Play_pressed }, { }, true, Playing >
t4 = < Playing, { Pause_pressed }, { }, true, Paused >
t5 = < Track, { Next_pressed }, { ct=ct+1 }, ct<max(track),

Track >
t7 = < Track, { Track_select }, { ct=trsl }, 0<ct<max(track)+1,

Track >
t6 = < Track, { Prev_pressed }, { ct=ct-1 }, ct>1, Track >

The first 8 lines are information of states. The rest are transitions.

Result. The textual representation given in last section is taken as the input of our
algorithm AMSV, the output we obtain is the following code in abstract Verilog:

Result:
L_PlayCtr || L_TrackCtr

Where:
L_PlayCtr = fix X0. ( L_Stop )
L_TrackCtr = fix X2. (
( ( ( Next_pressed & @( ct=ct+1 ) & ( ct<max(track) ) X2 )
[] ( Track_select & @( ct=trsl ) & ( 0<ct<max(track)+1 ) X2 ) )

[] ( Prev_pressed & @( ct=ct-1 ) & ( ct>1 ) X2 ) ) )
L_Stop = ( ( Play_pressed & @( ct=1 ) )
( ( Stop_pressed & @( ct=1 ) X0 ) [] fix X1. ( L_Playing ) ) )

L_Playing = ( ( Pause_pressed & not Stop_pressed )
( ( ( Play_pressed & not Stop_pressed ) X1 )
[] ( Stop_pressed & @( ct=1 ) X0 ) ) )

note that we use fix (rather thanμ) to denote the recursion.L state is the corresponding
result from state.

Here we can see that the L PlayCtrl and L TrackCtr are processes which are running
in parallel, where the recursive identifiers X0, X1, X2 represent three loop points.

5.2 Washing Machine

Specification. In this subsection, we discuss a washing machine with five setting func-
tions;Timer,Hot water,Rinse level,Water level, andPre-wash. Fig. 5
shows the user interface of the washing machine. Fig. 6 gives the statechart specification
of the washing machine corresponding to the interface, while Fig. 7 zooms into the sub-
state Washing-Ctr. Statechart in Fig. 6 contains six parallel regions corresponding to
five setting functions and the washing progress (Wash-Ctr). Each setting region contains
a sub-statechart to change the value of its function. For example, in the Timer-Ctr
region, the variable tm denotes the time that the washing machine has to wait before it
starts to wash. It can be changed by Inc or Dec buttons. Other variables hw (hot water),
rl (rinse level), wl (water level) and pw (pre-wash) are similar, and can be changed via
pressing corresponding buttons. The default values of these variables are shown in Fig. 5
with black circles (hw = 0, rl = 0, wl = 0, and pw = 0) and default timer is 0.



198 V.-A. Vu Tran, S. Qin, and W.N. Chin

Start

Pre-
wash

Water
level

Yes

No Normal

Half

Full

Rinse

Light

Medium

Extra

Hot
water

Cold

Warm

Hot

Inc

Dec

  0 h

Fig. 5. Interface of the washing machine
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Fig. 6. Main statechart of a washing machine

The Washing-Ctr is an Or-state as given in Fig. 7. The state Check-wait is
activated once state Washing-Ctr is entered. If tm is greater than 0, the machine
keeps waiting for tm time before the control moves to Pre-wash state. The transition
t18 calculates the value of the variable washtime based on the pre-wash setting. For
example, if pw is 0 then washtime = 1. The variable washtime is used to keep record
of the time that the clothes have been washed so far. It is explained as follows:

– washtime = 0: if pw = 1, need pre-wash.
– washtime = 1: if pw = 0, no need pre-wash, need powder, no spin.
– washtime = 2 or 3: wash without powder, spin.
– washtime > 3: finish.
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Fig. 7. Statechart of Washing-Ctr in the washing machine

Upon finishing, the machine beeps to inform the user.
The textual representation generated from Statechart E is printed in [23].

Result. We then run the AMSV algorithm to generate the Verilog program for the
washing machine. We only give some part of the target code here.
First of all, let us regard Washing-Ctr as a basic state (before we zoom into it). We
have the following Verilog program:

Result:
L_Wash-Ctr || L_Timer-Ctr || L_Water-Ctr || L_Prewash-Ctr ||
L_Hotwater-Ctr || L_Rinse-Ctr

Where:
L_Wash-Ctr = L_Idle
L_Idle = ( Start & @( washing=true ) sink )
L_Timer-Ctr =
fix X0. ( ( ( timer-increase & @( tm=tm+1 ) &

( tm<10 & washing=false ) X0 )
[] ( timer-decrease & @( tm=tm-1 ) &

( tm>1 & washing=false ) X0 ) ) )
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L_Water-Ctr = fix X1. ( L_Normal )
L_Normal = ( ( Water-pressed & @( wl=1 ) ) L_Half )
L_Half = ( ( Water-pressed & @( wl=2 ) )

( Water-pressed & @( wl=0 ) X1 ) )
L_Light = ( ( Rinse-pressed & @( rl=1 ) ) L_Medium )
L_Medium = ( ( Rinse-pressed & @( rl=2 ) )

( Rinse-pressed & @( rl=0 ) X4 ) )
L_Prewash-Ctr = fix X2. ( L_Pre-w-no )
L_Pre-w-no = ( ( Pre-wash & @( pw=1 ) & ( washing=false ) )

( Pre-wash & @( pw=0 ) & ( washing=false ) X2 ) )
L_Hotwater-Ctr = fix X3. ( L_Cold )
L_Cold = ( ( Hot-water & @( hw=1 ) ) L_Warm )
L_Warm = ( ( Hot-water & @( hw=2 ) ) ( Hot-water & @( hw=0 ) X3 ) )
L_Rinse-Ctr = fix X4. ( L_Light )

The sink process in L Idle is used to denote the Washing-Ctrl process, as we
regard it as a basic state. On the other hand, if we consider Washing-Ctr as a stand-
alone statechart, the corresponding code for it is as follows:

Result:
L_Check-wait =
( ( ( & @( timer-cal ) & ( tm>0 ) ) L_Wait )
[] ( ( & @( check-pre-wash ) & ( tm=0 ) ) L_Pre-wash ) )

L_Start-washing =
( ( ( fill-water & ( washtime!=1 ) ) L_water-in

( & @( rewash ) & ( washtime<4 ) X0 ) )
[] ( ( & @( get-powder-in ) & ( washingtime=1 ) ) L_Powder-in

( & @( rewash ) & ( washtime<4 ) X0 ) ) )
L_Wait = ( ( & @( check-pre-wash ) & ( tm=0 ) ) L_Pre-wash )
L_Pre-wash = ( ( & @( washtime=1-pw ) )

fix X0. ( ( ( & @( rewash ) & ( washtime<4 ) X0 )
[] L_Start-washing ) ) )

L_water-in =
( ( ( ( & @( check-wl ) & ( hw=0 ) ) L_cold-w

( & @( rewash ) & ( washtime<4 ) X0 ) )
[] ( ( & @( check-wl ) & ( hw=2 ) ) L_hot-w

( & @( rewash ) & ( washtime<4 ) X0 ) ) )
[] ( ( & @( check-wl ) & ( hw=1 ) ) L_warm-w

( & @( rewash ) & ( washtime<4 ) X0 ) ) )
L_cold-w = ( ( & @( start-wash ) ) L_washing

( & @( rewash ) & ( washtime<4 ) X0 ) )
L_warm-w = ( ( & @( start-wash ) ) L_washing

( & @( rewash ) & ( washtime<4 ) X0 ) )
L_hot-w = ( ( & @( start-wash ) ) L_washing

( & @( rewash ) & ( washtime<4 ) X0 ) )
L_washing = ( ( & @( washtime=washtime+1 ) ) L_water-out

( & @( rewash ) & ( washtime<4 ) X0 ) )
L_water-out = ( ( & @( start-spin ) & ( washtime>1 ) ) L_Spin

( & @( rewash ) & ( washtime<4 ) X0 ) )
L_Powder-in = ( ( fill-water ) L_water-in
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( & @( rewash ) & ( washtime<4 ) X0 ) )
L_Spin = ( & @( Beep-finish ) & ( washtime=4 ) sink

( & @( rewash ) & ( washtime<4 ) X0 ) )

In the final code, the sink process in L Idle is replaced by the process
L Check-wait.

6 Conclusion

In this paper we proposed an automatic mapping algorithm to translate high-level Stat-
echarts into low-level Verilog specifications. Our algorithm has been proved sound ear-
lier [18].

The system that we have built in Java provides a graphical interface for users to
draw their statecharts in MS Visio. Our mapping algorithm thus translates the graphical
representation into a textual representation, and then generates the correspondingVerilog
programs.

Some of related works on connecting Statecharts with other formalisms are pre-
sented in [1, 4, 16, 21, 20]. Beauvais et.al. [1] and Seshia et.al. [21] translate STATE-
MATE Statecharts to synchronous languages Signal and Esterel respectively, aiming
to use supporting tools provided in the target formalisms for formal verification pur-
poses. However, all these translations are based on the informal semantics [9] lacking
correctness proofs. The authors of [4, 16] transform variants of Statecharts into hier-
archical timed automata and use tools (UPPAAL, SPIN) to model check Statecharts
properties. More recently, a translation from Statecharts to B/AMN is reported in [20].
However, no correctness issue has been addressed. In comparison, the translation from
Statecharts to Verilog in this paper aims at code generation for system design. The
mapping function that we implement in this paper is constructed based on formal se-
mantics for both the source and target formalisms and has been proven to be semantics-
preserving [18].

Our compilation from Statecharts into Verilog can be used as a front-end of hardware
design or hardware/software co-design. After translating the input statechart specifica-
tion into abstract Verilog code, we can proceed to obtain lower level descriptions, as
a prelude to hardware implementation, or we can pass the Verilog specification to a
hardware/software partitioning system [19].

In order to provide the concrete Verilog programs to users, future works include
guarded choices elimination and the replacement of the other structures of abstract
Verilog, so that the AMSV can generate also concrete Verilog program. This should
make our tool especially useful for hardware designer.
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Abstract. Labelled state transition system (LSTS) is a formalism in-
tended to combine the benefits of both state-based and action-based
models. However, its existent equivalence preserves many properties with
the cost of poor reduction effects. A new equivalence is presented, namely
called reverse observation equivalence which is defined in the opposite di-
rection to observation equivalence and orients the invariant checking of
LSTS. Experiments show that the new semantics is efficient in the con-
text of compositional reachability analysis.

1 Introduction

Labelled state transition system (LSTS) is introduce in [1] as a formalism which
combines labelled transitions systems (LTSs) with atomic state propositions and
provides a way to benefit from both state-based and action-based models. Con-
cretely, similar to Kripke structures [2], the states of LSTSs are labelled with the
possible interpretations to the propositions. A notable characteristic of LSTS is
that the state propositions do not affect synchronization between LSTSs. That
is to say, LSTSs communicate only by the actions, as same as LTSs do.

Invariants are the simplest but most important kind of system requirements
[3]. It predicates that all the reachable states of a system satisfy some property,
which is in the form of boolean expressions.

Compositional reachability analysis (CRA) is a kind of hierarchy-based incre-
mental analysis approach [4, 5, 6, 7]. The mechanism of “intermediate simplifica-
tion during composition” in CRA can significantly increase the size of systems
which are analyzable with given computer resources [8, 9]. In CRA, the simplifi-
cation is usually based on some equivalence semantics, such as strong bisimilarity,
weak bisimilarity (or observation equivalence), and the failure-divergence model
of CSP [10]. In the chosen semantics, the final model gotten by CRA is equiva-
lent to the one gotten by the direct “all-at-once” approach [6] (called traditional
reachability analysis in [5]).
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In [1], a semantic model, CFFD (choas free failures divergence) is presented
for LSTS, which is an extension to the CFFD model of LTS. In the extension, the
state propositions of LSTSs are encoded via an attachment to actions. CFFD is
the weakest congruence that preserves deadlocks and all the properties that can
be expressed with next-state free LTL [1]. Thus, of course, it preserves invari-
ants. Although CFFD preserves many properties, it brings only small reduction
(see Section 5). For invariant checking of LSTS, some more efficient equivalence
semantics should be possible and necessary.

At a glance, one may think of observation equivalence, which can bring sig-
nificant reduction for the CRA of LTSs. Indeed, it is feasible to define the obser-
vation equivalence of LSTS similarly as the CFFD-equivalence of LSTS. In this
way, we must also encode the state propositions via an attachment to actions.
That is to say, we must extend the notion of actions to include the information
of the change of states propositions as transitions triggered. Thus the action
set will be enlarged and accordingly, the effect of reduction based on observa-
tion equivalence will be decreased. Fortunately, with a slight extension to LSTS,
we may define an equivalence relation in the opposite direction to observation
equivalence, and the invariant properties can be preserved without extending
the notion of actions. We call such a new equivalence as reverse observation
equivalence (ROE).

We have implemented a reduction algorithm based on reverse observation
equivalence in the framework of TVT toolkit [1]. The experiments show that the
new equivalence is much more efficient than CFFD-equivalence with respect to
the invariant checking of LSTS in the context of CRA. For example, in the tests
of a token ring system with 6 nodes, the largest subsystem generated by CRA
based on ROE contains only 1793 states and 9177 transitions while the largest
subsystem generated by the CRA based on CFFD contains 266805 states and
1581601 transitions.

The rest of the paper is organized as follows. After Section 2 gives some con-
cepts of LTS and LSTS, Section 3 presents the reverse observation equivalence.
Then, Section 4 formalizes the CRA based on reverse observation equivalence
and Section 5 makes a case study. The conclusion is summarized finally.

2 Labelled State Transition Systems

Labelled transition system is a fundamental formal model that can be used to
model the behavior of many systems. It’s widely used in the literature. Many
formal models use LTS as their semantic basis. Notable examples are the many
variants of automata, and process algebras such as CCS [11], CSP [12].

Definition 1 (Labelled Transition System). A labelled transition
system(LTS) is a quadruple

P =< VP , AP ,ΔP , qP
>
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where

– VP is a set of states;
– AP = αP ∪ {τ}, where αP denotes the communicating alphabet of P which

does not contain the internal action τ ;
– ΔP ⊆ VP × AP × VP , denotes a transition relation that maps from a state

and an action onto another state;
– q

P
is a state in VP which indicates the initial state of P .

For an LTS P , two states s1, s2 ∈ VP , an action a ∈ AP , and two finite
action sequences α = a1a2 · · · an ∈ (AP )n and β = b1b2 · · · bn ∈ (αP )n, we
define operator â and several relations as follows.

– â = ε if a = τ , and â = a otherwise, where“ε” denotes the empty action
sequence. α̂ = â1â2 · · · ân.

– s1
a−→P s2 iff (s1, a, s2) ∈ ΔP .

– s1
α−→P s2 iff s1

a1−→P
a2−→P · · ·

an−→P s2. Especially, s1
ε−→P s1.

– s1
ε=⇒P s2 iff s1(

τ−→P )∗s2.
– s1

a=⇒P s2 iff s1
ε=⇒P

a−→P
ε=⇒P s2.

– s1
β

=⇒P s2 iff s1
b1=⇒P

b2=⇒P · · ·
bn=⇒P s2.

where ∗ is reflexive and transitive closure and juxtaposition is a composition of
relations.

The parallel composition of two LTSs is defined [5] similar to that used in CSP.

Definition 2 (Parallel Composition of LTSs). The parallel composition
P ‖ Q of two LTSs P and Q is defined as LTS R =< VR, AR,ΔR, qR

> where

– VR = VP × VQ, AR = AP ∪AQ, and q
R

= (q
P
, q

Q
).

– ΔR is given by the following three transition rules:

s
P

a−→P s
P
′

(s
P
, s

Q
) a−→R (s

P
′ , s

Q
)
(a /∈ αQ)

s
Q

a−→Q s
Q
′

(s
P
, s

Q
) a−→R (s

P
, s

Q
′)

(a /∈ αP )

s
P

a−→
P
s

P
′ s

Q

a−→Q s
Q
′

(s
P
, s

Q
) a−→R (s

P
′ , s

Q
′)

(a ∈ αP ∩ αQ)

External actions of an LTS can be hidden and become unobservable.

Definition 3 (Hiding of LTS). The hiding of LTS P on action set L (τ /∈ L)
is defined as LTS P \L =< VP , AP \L,ΔP\L, qP

> where ΔP\L is given by the
following two transition rules:

s
a−→P s′

s
τ−→P\L s′

(a ∈ L)
s

a−→P s′

s
a−→P\L s′

(a /∈ L)

Labelled state transition system is introduce in [1] as a formalism which
augments LTS with atomic state propositions and has the features of both state-
based and action-based models. In this paper, we make a slight extension to it:
several possible evaluations are allowed in a state.
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Definition 4 (Labelled State Transition System). A labelled state transi-
tion system(LSTS) is a tuple

P =< VP , AP ,ΔP , qP
;ΠP , ΥP , valP >

where LTS PLTS = < VP , AP ,ΔP , qP
> is augmented with the set of proposi-

tions ΠP , evaluation function val
P

: VP → 22ΠP , and the set ΥP of permanent
propositions for which ΥP ⊆ ΠP .

The evaluation function tells which interpretations of the propositions are
possible in a state of the system. In the original definition of LSTS, val

P
is

a function of type VP → 2ΠP rather than VP → 22ΠP . We make this change
to benefit the merging of states when reducing models according to the equiva-
lence semantics. The permanent propositions are used by the generalized parallel
composition operator of LSTS (see below).

Figure 1 presents the LSTS of a client in a token-ring system that is intro-
duced in [1]. Some adaption has been made. We will present in more detail in
Section 5.

5
{ }

1
{ }

2
{{B}}

6
{ }

4
{{A}}

3
{{W}}

bye req

gra

rel0
{ }

init

Fig. 1. LSTS of the clients

A remarkable characteristic of LSTS is that propositions do not affect syn-
chronization. That is, when composed, several LSTSs communicate only by the
actions, which is as same as LTSs. Concretely, the generalized parallel composi-
tion of LSTS is defined in [1], which is more capable than the parallel composition
of LTS. It can do exactly the same transformations as the traditional parallel
composition, hiding, and multiple renaming combined, when applied to LTSs [1].
In this paper, for the sake of simplicity, we introduce basic parallel composition.

Definition 5 (Basic Parallel Composition of LSTSs). Given two LSTSs
P and Q, their basic parallel composition P ‖ Q is defined as the LSTS R =<
VR, AR,ΔR, qR

;ΠR, ΥR, valR > where

– RLTS =< VR, AR,ΔR, qR
>= PLTS ‖ QLTS.1

– ΠR = ΠP ∪ΠQ, ΥR = ΥP ∪ ΥQ.
– val

R
((s

P
, s

Q
)) = {ΩP ∪ΩQ | ΩP ∈ valP (s

P
) ∧ΩQ ∈ valQ(s

Q
)}.

1 “‖” is the parallel composition operator of LTS.
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It can be seen that the basic parallel composition is consistent with the gen-
eralized parallel composition, which integrates the power of the basic parallel
composition, hiding, multiple renaming and etc. In the following, the basic par-
allel composition will be called parallel composition shortly.

Similarly, we can define the hiding operator of LSTS.

Definition 6 (Hiding of LSTS). The hiding of LSTS P on action set L
(τ /∈ L) is defined as LSTS P\L =< VP , AP \L,ΔP\L, qP

;ΠP , ΥP , valP > where
< VP , AP \L,ΔP\L, qP

>= PLTS\L.2

The multiple renaming operator of LSTS can be defined similar to that of
LTS [13]. Given an LTS or LSTS P , we denote the set of all the reachable states
of P as V Rch

P .

Definition 7 (Invariant). Consider an LSTS P . Let φ be a boolean expression
over the set ΠP . Then φ is an invariant of P if for all states s ∈ V Rch

P and all
evaluations Ω ∈ val

P
(s), φ is satisfied under the interpretation IΩ defined as

follows.

∀q ∈ ΠP . IΩ(q) =
{
True if q ∈ Ω
False otherwise

3 Reverse Observation Equivalence

Observation equivalence [14] is a concept to identify a pair of processes or LTSs
which cannot be distinguished by an observer who is not able to observe internal
τ -actions. It can be used in compositional reachability analysis to reduce the size
of intermediate models. For our purpose of checking invariants of LSTS, it might
be inappropriate to use a direct extension of observation equivalence of LTS if
not extending the notion of actions, because it could not be a congruence again
with respect to the parallel composition of LSTS while preserving invariants.

We find that the requirement can be satisfied if we define an equivalence
relation in the reverse direction to observation equivalence. We call the new
equivalence relation “reverse observation equivalence”.

As observation equivalence is based on weak bisimulations, firstly we intro-
duce the notion of reverse weak bisimulation between LSTSs. In the following,
we assume that all LSTSs have the property “root-unwound” [14], that is, the
initial state is not the destination of any transitions. For those LSTSs where
the property does not hold, a simple adaptation can be made: add a state as
the new initial state and a transition from the new state to the old initial state.
Obviously, the adaptation does not affect the invariant checking of LSTS.

Firstly, we define several shorthands. Given a binary relation R ⊆ M × N ,
m ∈ M and n ∈ N , we denote the set of all the images of R as R[∗], the set of
all the inverseimages of R as R−1[∗], the set of all the images of m in relation R

2 “\” is the hiding operator of LTS.
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as R[m], and the set of all the inverseimages of n in relation R as R−1[n]. Their
formal definitions are as follows.

R[∗] =df {s ∈ N | ∃s′ ∈M. (s′, s) ∈ R}
R−1[∗] =df {s ∈M | ∃s′ ∈ N. (s, s′) ∈ R}
R[m] =df {s ∈ N | (m, s) ∈ R}

R−1[n] =df {s ∈M | (s, n) ∈ R}

If saying that weak bisimulation is a relation that “looks forward”, then
reverse weak bisimulation is a relation that “looks backward”.

Definition 8 (Reverse Weak Bisimulation between LSTSs). Given two
LSTSs P and Q, let R ⊆ V Rch

P × V Rch
Q be a binary relation. If αP = αQ,

ΠP = ΠQ, ΥP = ΥQ, (q
P
, q

Q
) ∈ R, R[∗] = V Rch

Q , R−1[∗] = V Rch
P , and for all

(s
P
, s

Q
) ∈ R the following three conditions are satisfied, then R is a reverse weak

bisimulation between P and Q.

1. If s
P
′ a−→P s

P
and s

P
′ ∈ V Rch

P
, then s

Q
′ â=⇒Q s

Q
for some s

Q
′ ∈ V Rch

Q
such

that (s
P
′ , s

Q
′ ) ∈ R.

2. If s
Q
′ a−→Q s

Q
and s

Q
′ ∈ V Rch

Q
, then s

P
′ â=⇒P s

P
for some s

P
′ ∈ V Rch

P
such

that (s
P
′ , s

Q
′ ) ∈ R.

3. val
P
(s

P
) ⊆

⋃
s

Q
′ ∈ R[s

P
] valQ(s

Q
′ ) and val

Q
(s

Q
) ⊆

⋃
s

P
′ ∈ R−1[s

Q
] valP (s

P
′ ).

LSTSs P and Q are reverse observation equivalent, if there is a reverse weak
bisimulation between them. When this is the case, we write P ≈r Q. It is easy
to prove that ≈r is an equivalence relation, which we called reverse observation
equivalence (shortly ROE). Furthermore, states s

P
∈ VP and s

Q
∈ VQ are re-

verse weak bisimilar, or reverse observation equivalent, if there is a reverse weak
bisimulation R between P and Q such that (s

P
, s

Q
) ∈ R.

In the definition of reverse weak bisimulation, we have borrowed the idea
of backward simulation [15] of I/O automata. However, it is worth noting that
ROE is not a trivial extension of backward simulation in the context of LSTS.
To preserve invariant properties, a special form of constraint on the atomic state
propositions is added to the definition.

From the definition above, it can be seen that two reverse observation equiv-
alent states are undistinguishable in how the states can be reached from the

1,2,5,6
{ ,{B}}

4
{{A}}

3
{{W}}

req

gra

rel0

{ }
init

Fig. 2. LSTS of the clients after ROE reduction
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initial states as to observers that can not see the internal actions of the system.
So in a sense, reverse observation equivalence focuses on the “history”, while
observation equivalence focuses on the “future”. It is worth noting that in the
definition we require that R[∗] = V Rch

Q and R−1[∗] = V Rch
P . That is, only reach-

able states can be simulated and all the reachable states must be simulated.
Figure 2 shows the ROE-reduced LSTS of the client in Figure 1 after hiding the
action “bye” firstly. Because the states 1, 2, 5, and 6 of the original LSTS are
reverse observation equivalent after the hiding, they are merged to a single state
in the ROE-reduced LSTS.

The following theorem illustrates the intuition that reverse weak bisimula-
tion preserves invariants of LSTS. It can be proved straightforwardly from the
definition of reverse observation equivalence.

Theorem 1. Given two reverse observation equivalent LSTSs P and Q, let Ω ∈
2ΠP (or Ω ∈ 2ΠQ), and φ be a boolean expression over ΠP (or ΠQ). Then the
following two propositions hold:

1. (∃s
P
∈ V Rch

P . Ω ∈ val
P
(s

P
)) ⇔ (∃s

Q
∈ V Rch

Q . Ω ∈ val
Q
(s

Q
)).

2. φ is an invariant of P iff φ is an invariant of Q.

The next lemma describes the essential property of ≈r.

Lemma 1. Consider two LSTSs P and Q that are reverse observation equiva-
lent. Let ≈ be a reverse weak bisimulation between them. Let states s

P
∈ V Rch

P

and s
Q
∈ V Rch

Q which satisfy s
P
≈ s

Q
(that is, (s

P
, s

Q
) ∈ ≈). Let action se-

quence α = a1a2 . . . an ∈ (αP )∗, β = b1b2 . . . bn ∈ (αQ)∗. Then the following
propositions hold:

1. If s
P
′ α=⇒P s

P
and s

P
′ ∈ V Rch

P , then s
Q
′ α=⇒Q s

Q
for some s

Q
′ ∈ V Rch

Q such
that s

P
′ ≈ s

Q
′ .

2. If s
Q
′ β

=⇒Q s
Q

and s
Q
′ ∈ V Rch

Q , then s
P
′ β

=⇒P s
P

for some s
P
′ ∈ V Rch

P such
that s

P
′ ≈ s

Q
′ .

Proof. We only prove the proposition 1, since the other can be proved similarly.
Suppose s

P
′ α=⇒P s

P
and s

P
′ ∈ V Rch

P . Then by the definition of “=⇒”, there
must exist an action sequence γ = r1r2 . . . rm ∈ (AP )∗ and a group of states
s0, s1, . . . sm ∈ VP such that γ̂ = α, s0 = s

P
′ , sm = s

P
and si

ri+1−→P si+1 (∀i ∈
[0 . . .m−1]). For s

P
′ ∈ V Rch

P , we have si ∈ V Rch
P (∀i ∈ [0 . . .m]). Since sm−1

rm−→P

sm and sm ≈ s
Q

(that is, s
P
≈ s

Q
), by the definition of ≈ we know there exists

a state s′
m−1 ∈ V Rch

Q such that s′
m−1

r̂m=⇒Q s
Q

and sm−1 ≈ s′
m−1. Similarly, by

sm−2
rm−1−→ P sm−1 and sm−1 ≈ s′

m−1, we know that there exists a state s′
m−2 ∈

V Rch
Q such that s′

m−2
r̂m−1=⇒Q sm−1 and sm−2 ≈ s′

m−2. Deducing recursively, it
can be known that there exists a group of states s′

0, s
′
1, . . . s

′
m ∈ V Rch

Q such that

s′
m = s

Q
and si ≈ s′

i ∧ (s′
i

r̂i+1=⇒Q s′
i+1) (∀i ∈ [0 . . .m − 1]). Therefore, we have

s′
0

γ̂
=⇒Q s

Q
and s0 ≈ s′

0. Let s
Q
′ = s′

0. Then we have s
Q
′ α=⇒Q s

Q
and s

P
′ ≈ s

Q
′ . !"
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Since all the LSTSs have the property “root-unwound”, those states that are
reverse weak bisimilar with the initial state have a special property, as shown in
the following lemma.

Lemma 2. Given two reverse observation equivalent LSTSs P and Q, two states
s

P
∈ V Rch

P and s
Q
∈ V Rch

Q , let ≈ be a reverse weak bisimulation between them.
Then the following two propositions hold:

1. If s
P
≈ q

Q
, then q

P

ε=⇒P s
P
.

2. If q
P
≈ s

Q
, then q

Q

ε=⇒Q s
Q
.

Proof. We only prove proposition 1. Because s
P
∈ V Rch

P , there exists an action
sequence α = a1a2 . . . an ∈ (αP )∗ such that q

P

α=⇒P s
P
. Suppose s

P
≈ q

Q
.

Then by Lemma 1 there must exist a state s
Q
′ ∈ V Rch

Q such that s
Q
′ α=⇒Q q

Q
and

q
P
≈ s

Q
′ . By the assumption about “root-unwound” property, we know s

Q
′ = q

Q

and α = ε. Thus q
P

ε=⇒P s
P

. !"

As to parallel composition and hiding, ≈r is a congruence. The following
theorem makes it clear.

Theorem 2. Given LSTSs P , P ′, Q, Q′ and an action set L that does not
contain the internal action τ , the following propositions hold:

1. P ≈r P
′ ⇒ P \ L ≈r P

′ \ L.
2. P ≈r P

′ ∧Q ≈r Q
′ ⇒ P ‖ Q ≈r P

′ ‖ Q′.

Proof. Obviously, the proposition 1 is true. We only prove the proposition 2.
Suppose P ≈r P ′ ∧ Q ≈r Q′. According to the definition of ≈r, there exist
reverse weak bisimulations ≈P between P and P ′, and ≈Q between Q and Q′. We
construct a binary relation ≈P‖Q between P ‖ Q and P ′ ‖ Q′ as the following set:

{((s
P
, s

Q
), (s

P ′ , sQ′ )) ∈ V Rch
P‖Q × VP ′‖Q′ |(s

P
, s

P ′ ) ∈ ≈P ∧ (s
Q
, s

Q′ ) ∈ ≈Q}. (1)

It is sufficient to prove that ≈P‖Q is a reverse weak bisimulation between P ‖ Q
and P ′ ‖ Q′. We prove it according to the definition of reverse weak bisimulation.

1. Firstly, we prove ≈P‖Q⊆ V Rch
P‖Q × V Rch

P ′‖Q′ . Given any pair of states
((s

P
, s

Q
), (s

P ′ , sQ′ )) ∈ ≈P‖Q, we will prove ((s
P
, s

Q
), (s

P ′ , sQ′ )) ∈ V Rch
P‖Q ×

V Rch
P ′‖Q′ . By the definition of ≈P‖Q, we have ((s

P
, s

Q
), (s

P ′ , sQ′ )) ∈ V Rch
P‖Q ×

VP ′‖Q′ , (s
P
, s

P ′ ) ∈ ≈P and (s
Q
, s

Q′ ) ∈ ≈Q. So it is sufficient to prove that
(s

P ′ , sQ′ ) ∈ V Rch
P ′‖Q′ . Because (s

P
, s

Q
) ∈ V Rch

P‖Q, there exists an action sequence

α = a1a2 . . . an ∈ (αP ∪ αQ)∗ such that (q
P
, q

Q
) α=⇒P‖Q (s

P
, s

Q
). Thus

q
P

α|αP=⇒P s
P

3 and q
Q

α|αQ=⇒Q s
Q
. Because (s

P
, s

P ′ ) ∈ ≈P and (s
Q
, s

Q′ ) ∈ ≈Q,
by Lemma 1 we know there exist states s

P ′
′ ∈ V Rch

P ′ , s
Q′
′ ∈ V Rch

Q′ such that

3 α|αP denotes the projection of α on αP .
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s
P ′
′ α|αP=⇒P ′ s

P ′ , qP
≈P s

P ′
′ and s

Q′
′ α|αQ=⇒Q′ s

Q′ , qQ
≈Q s

Q′
′ . Because q

P
≈P s

P ′
′

and q
Q
≈Q s

Q′
′ , by Lemma 2 we know q

P ′
ε=⇒P ′ s

P ′
′ and q

Q′
ε=⇒Q′ s

Q′
′ .

Combining with the previous result, it can be known that q
P ′

α|αP=⇒P ′ s
P ′ and

q
Q′

α|αQ=⇒Q′ s
Q′ . By the assumption that P ≈r P

′ ∧Q ≈r Q
′, it can be known

that αP = αP ′ and αQ = αQ′. Thus q
P ′

α|αP ′
=⇒ P ′ s

P ′ and q
Q′

α|αQ′
=⇒ Q′ s

Q′ . By
the property of parallel composition of LTSs, we know (q

P ′ , qQ′ )
α=⇒P ′‖Q′

(s
P ′ , sQ′ ). Therefore, (s

P ′ , sQ′ ) ∈ V Rch
P ′‖Q′ . Thus ≈P‖Q⊆ V Rch

P‖Q×V Rch
P ′‖Q′ . From

the result, we know that ≈P‖Q can be defined equivalently as the following
set:

{((s
P
, s

Q
), (s

P ′ , sQ′ )) ∈ V Rch
P‖Q×V Rch

P ′‖Q′ |(sP
, s

P ′ ) ∈≈P ∧(s
Q
, s

Q′ ) ∈≈Q}. (2)

Furthermore, by symmetry we know that ≈P‖Q can also be defined equiva-
lently as the following set:

{((s
P
, s

Q
), (s

P ′ , sQ′ )) ∈ VP‖Q×V Rch
P ′‖Q′ |(sP

, s
P ′ ) ∈≈P ∧(s

Q
, s

Q′ ) ∈≈Q}. (3)

2. By P ≈r P
′ ∧Q ≈r Q

′, it can be known that αP = αP ′, αQ = αQ′, ΠP =
ΠP ′ , ΠQ = ΠQ′ , ΥP = ΥP ′ , and ΥQ = ΥQ′ . Thus αP ∪αQ = αP ′∪αQ′, that
is, α(P ‖ Q) = α(P ′ ‖ Q′). Similarly, ΠP‖Q = ΠP ′‖Q′ and ΥP‖Q = ΥP ′‖Q′ .
By the algorithm of constructing ≈P‖Q, it can be known straightforwardly
that ((q

P
, q

Q
), (q

P ′ , qQ′ )) ∈≈P‖Q. In the following proof, we use R as an alias
of ≈P‖Q. Next we will prove R−1[∗] = V Rch

P‖Q and R[∗] = V Rch
P ′‖Q′ . Since in the

above we have proved that ≈P‖Q⊆ V Rch
P‖Q × V Rch

P ′‖Q′ , thus R−1[∗] ⊆ V Rch
P‖Q

and R[∗] ⊆ V Rch
P ′‖Q′ . So it is sufficient to prove that R−1[∗] ⊇ V Rch

P‖Q and
R[∗] ⊇ V Rch

P ′‖Q′ . Given any state pair (s
P
, s

Q
) ∈ V Rch

P‖Q, we have s
P
∈ V Rch

P

and s
Q
∈ V Rch

Q . By the definition of reverse weak bisimulation, we know
≈−1

P [∗] = V Rch
P and ≈−1

Q [∗] = V Rch
Q . Thus there exist states s

P ′ ∈ V Rch
P ′ and

s
Q′ ∈ V Rch

Q′ such that s
P
≈P s

P ′ and s
Q
≈Q s

Q′ . By the equation (1), we
have ((s

P
, s

Q
), (s

P ′ , sQ′ )) ∈≈P‖Q. So (s
P
, s

Q
) ∈ R−1[∗]. Therefore, R−1[∗] ⊇

V Rch
P‖Q. On the other hand, because ≈P‖Q can also be defined equivalently in

the form of equation (3), it can be proved symmetrically that R[∗] ⊇ V Rch
P ′‖Q′ .

3. Next, we will prove that for all ((s
P
, s

Q
), (s

P ′ , sQ′ )) ∈ ≈P‖Q, the following
three propositions hold:

(a) If (s
P
′ , s

Q
′) a−→P‖Q (s

P
, s

Q
) and (s

P
′ , s

Q
′) ∈ V Rch

P‖Q, then there exists a state

(s
P ′
′ , s

Q′
′ ) ∈ V Rch

P ′‖Q′ such that (s
P ′
′ , s

Q′
′ ) â=⇒P ′‖Q′ (s

P ′ , sQ′ ) and
((s

P
′ , s

Q
′), (s

P ′
′ , s

Q′
′ )) ∈ ≈P‖Q.

(b) If (s
P ′
′ , s

Q′
′ ) a−→P ′‖Q′ (s

P ′ , sQ′ ) and (s
P ′
′ , s

Q′
′ ) ∈ V Rch

P ′‖Q′ , then there exists a

state (s
P
′ , s

Q
′) ∈ V Rch

P‖Q such that (s
P
′ , s

Q
′) â=⇒P‖Q (s

P
, s

Q
) and

((s
P
′ , s

Q
′), (s

P ′
′ , s

Q′
′ )) ∈ ≈P‖Q.
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(c) val
P ‖Q

((s
P
, s

Q
)) ⊆

⋃
t′∈R[(s

P
,s

Q
)] valP ′‖Q′ (t′) and val

P ′‖Q′ ((sP ′ , sQ′ )) ⊆⋃
t∈R−1[(s

P ′ ,s
Q′ )]

val
P ‖Q

(t).

By the symmetry4, it is sufficient to prove only (a) and (c). Suppose

(s
P
′ , s

Q
′) a−→P‖Q (s

P
, s

Q
) and (s

P
′ , s

Q
′) ∈ V Rch

P‖Q. Then we have s
P
′ â|αP=⇒P s

P
,

s
Q
′ â|αQ=⇒Q s

Q
, s

P
′ ∈ V Rch

P and s
Q
′ ∈ V Rch

Q . Because ((s
P
, s

Q
), (s

P ′ , sQ′ )) ∈≈P‖Q,
we have (s

P
, s

Q
) ∈ V Rch

P‖Q, (s
P ′ , sQ′ ) ∈ V Rch

P ′‖Q′ , sP
≈P s

P ′ and s
Q
≈Q s

Q′ .
By Lemma 1, there exist states s

P ′
′ ∈ V Rch

P ′ and s
Q′
′ ∈ V Rch

Q′ such that

s
P ′
′ â|αP=⇒P ′ s

P ′ , sP
′ ≈P s

P ′
′ , s

Q′
′ â|αQ=⇒Q′ s

Q′ and s
Q
′ ≈Q s

Q′
′ . Therefore, s

P ′
′ â|αP ′

=⇒P ′ s
P ′

and s
Q′
′ â|αQ′

=⇒Q′ s
Q′ . By the property of parallel composition of LTS, it can be

known that (s
P ′
′ , s

Q′
′ ) â=⇒P ′‖Q′ (s

P ′ , sQ′ ). Because (s
P
′ , s

Q
′) ∈ V Rch

P‖Q, s
P
′ ≈P s

P ′
′

and s
Q
′ ≈Q s

Q′
′ , by the algorithm of constructing ≈P‖Q it can be known that

((s
P
′ , s

Q
′), (s

P ′
′ , s

Q′
′ )) ∈ ≈P‖Q. Since it has been proved that ≈P‖Q⊆ V Rch

P‖Q ×
V Rch

P ′‖Q′ , we know (s
P ′
′ , s

Q′
′ ) ∈ V Rch

P ′‖Q′ . Thus the proposition (a) holds. Next,
we will prove the proposition (c). By the definition of ≈

P
and ≈

Q
, we have:

(1) val
P
(s

P
) ⊆

⋃
t
P ′ ∈(≈

P
[s

P
]) valP ′ (tP ′ )

(2) val
Q
(s

Q
) ⊆

⋃
t
Q′ ∈(≈

Q
[s

Q
]) valQ′ (tQ′ ).

By (1), (2) and the definition of P ‖ Q, we have:

(3) val
P ‖Q

((s
P
, s

Q
)) = {ΩP ∪ΩQ | ΩP ∈ valP (s

P
) ∧ΩQ ∈ valQ(s

Q
)}

⊆ {ΩP ∪ΩQ | ΩP ∈
⋃

t
P ′ ∈(≈

P
[s

P
]) valP ′ (tP ′ ) ∧

ΩQ ∈
⋃

t
Q′ ∈(≈

Q
[s

Q
]) valQ′ (tQ′ ).

By the definitions of R and P ′ ‖ Q′, we have:

(4) R[(s
P
, s

Q
)] = (≈P [s

P
])× (≈Q [s

Q
])

(5) val
P ′‖Q′ ((tP ′ , tQ′ )) = {ΩP ′ ∪ΩQ′ | ΩP ′ ∈ val

P ′ (tP ′ ) ∧ΩQ′ ∈val
Q′ (tQ′ )}.

where (t
P ′ , tQ′ ) ∈ VP ′‖Q′ . Let t′ = (t

P ′ , tQ′ ). By (4) and (5), we know:

(6)
⋃

t′∈R[(s
P

,s
Q

)] valP ′‖Q′ (t′) ={ΩP ′∪ΩQ′ | ∃t
P ′ ∈(≈P [s

P
]). t

Q′ ∈(≈Q [s
Q
]).

(ΩP ′ ∈ val
P ′ (tP ′ ) ∧ΩQ′ ∈ val

Q′ (tQ′ )})
={ΩP ′∪ΩQ′ |ΩP ′ ∈

⋃
t
P ′ ∈(≈P [s

P
]) valP ′ (tP ′ )∧

ΩQ′ ∈
⋃

t
Q′ ∈(≈Q[s

Q
]) valQ′ (tQ′ )}.

Furthermore, by (3) and (6) it can be concluded that:

val
P ‖Q

((s
P
, s

Q
)) ⊆

⋃
t′∈R[(s

P
,s

Q
)]
val

P ′‖Q′ (t′).

4 Noting that ≈P‖Q can be defined equivalently in the forms of the equation (1) or
(3), which are symmetrical.
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Symmetrically, it can be proved that:

val
P ′‖Q′ ((sP ′ , sQ′ )) ⊆

⋃
t∈R−1[(s

P ′ ,s
Q′ )]

val
P ‖Q

(t).

Thus proposition (c) holds.

To sum up, the proposition 2 holds. !"
As to reverse observation equivalence, several hiding operations can be merged.

The following theorem illustrates it, which can be proved according to the defi-
nitions.

Theorem 3. Given LSTSs P , Q and action sets L1, L2 that do not contain the
internal action τ , the following propositions hold:
1. P \ L1 \ L2 ≈r P \ (L1 ∪ L2).
2. If (αP ∩L1) = (αP ∩L2) = (L1 ∩L2) = ∅, then (P \L1) ‖ (Q \L2) ≈r (P ‖

Q) \ (L1 ∪ L2).

4 Compositional Reachability Analysis Based on Reverse
Observation Equivalence

Compositional reachability analysis (CRA) is a kind of hierarchy-based incre-
mental analysis approach [4, 5, 6, 7]. Given a hierarchy of models, it incrementally
composes, hides and reduces subsets of the models according to the hierarchy,
and finally produces a model that is equivalent to the one produced by the
straightforward all-at-once approach, i.e. composing all the models simultane-
ously and then hiding all unobservable actions. Because the intermediate mod-
els can be reduced in CRA, the final model produced by CRA is usually much
smaller than the one gotten by the “all-at-once” approach. The CRA approach
is called compositional LTS construction in [10], and incremental composition
and reduction method in [16]. In this section, we formalize the theory of CRA of
LSTS based on reverse observation equivalence.

A hierarchy of LSTSs denotes a set of LSTSs with a hierarchy structure.
Formally, we can define recursively a hierarchy H of LSTSs in BNF format:

H ::= (H1 ‖ H2 ‖ · · · ‖ Hn) \ L | LSTS \ L
where LSTS denotes an LSTS and L denotes an action set (τ /∈ L). Intuitively,
a hierarchy is either the composition of a set of sub-hierarchies or simply an
LSTS, with the actions in L hidden.

Given an LSTS P and a hierarchy H of LSTSs, let red(P ) denote a reduction
operation to P based on reverse observation equivalence (that is, red(P ) ≈r P ),
and cra(H) denote the final LSTS of CRA of H based on reverse observation
equivalence. Then the algorithm of CRA can be represented as follows.

cra(H) =
{
red((

∏n
i=1 cra(Hi))\L) if H = (H1 ‖ H2 ‖ · · · ‖ Hn)\L

red(P\L) if H = P\L
where

∏n
i=1 cra(Hi) denotes cra(H1) ‖ cra(H2) ‖ · · · ‖ cra(Hn).
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In order to illustrate the principle of CRA based on reverse observation equiv-
alence, we define recursively several operators on hierarchies: lsts(H), act(H)
and hid(H), which denote respectively all LSTSs, all the actions and all the
hidden actions of the hierarchy H. Their formal definitions are as follows.

lsts(H) =
{⋃n

i=1 lsts(Hi) if H = (H1 ‖ H2 ‖ · · · ‖ Hn)\L
{P} if H = P\L

act(H) =
{⋃n

i=1 act(Hi) if H = (H1 ‖ H2 ‖ · · · ‖ Hn)\L
αP if H = P\L

hid(H) =
{

(
⋃n

i=1 hid(Hi)) ∪ L if H = (H1 ‖ H2 ‖ · · · ‖ Hn)\L
L if H = P\L

In the following discussion, we make an assumption that for all hierarchies
H = (H1 ‖ H2 ‖ · · · ‖ Hn)\L, the below formula holds.

∀i, j ∈ [1 . . . n]. (i �= j) → ((hid(Hi)∩ act(Hj)) = (hid(Hi)∩ hid(Hj)) = ∅) (4)

The aim of the assumption is to avoid the possible disturbance when deferring
the hiding operations in CRA (see below). Obviously, when the assumption is
not satisfied, renaming operations can be made to turn the assumption satisfied,
without changing the behaviors of the LSTSs. So, the restriction does not cause
any loss of generality.

Given a hierarchy H, let lsts(H) = {T1, T2, . . . , Tn}. We denote the LSTS
produced by the “all-at-once” approach as once(H), that is:

once(H) =df (
∏n

i=1
Ti)\hid(H).

The next lemma shows that once(H) can also be calculated compositionally.

Lemma 3. Given a hierarchy of LSTSs H = (H1 ‖ H2 ‖ · · · ‖ Hn)\L, then
once(H) = (

∏n
i=1 once(Hi))\L.

Proof. Let lsts(Hi) = {T 1
i , T

2
i , . . . , T

ni
i }, and

∏
lsts(Hi) =df

∏ni

j=1 T
j
i . Then we

deduce as follows.

once(H) = (
∏n

i=1
∏
lsts(Hi))\((

⋃n
i=1hid(Hi))∪L)

once(Hi) = (
∏
lsts(Hi))\hid(Hi)

(
∏n

i=1 once(Hi))\L = (
∏n

i=1 ((
∏
lsts(Hi))\hid(Hi)))\L

(
∏n

i=1 ((
∏
lsts(Hi))\hid(Hi)))\L = (

∏n
i=1

∏
lsts(Hi))\(

⋃n
i=1 hid(Hi))\L

= (
∏n

i=1
∏
lsts(Hi))\((

⋃n
i=1hid(Hi))∪L)

(by assumption (4) and Theorem 3)

once(H) = (
∏n

i=1 once(Hi))\L

!"

The following theorem presents the essential principle of CRA based on re-
verse observation equivalence, i.e. the CRA approach and all-at-once approach
coincide in the semantics of reverse observation equivalence.
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Theorem 4. For a hierarchy H of LSTSs, cra(H) ≈r once(H).

Proof. We prove recursively according to the definition of hierarchy as follows.

1. If H = P\L where P is an LSTS, then cra(H) = red(P\L) and once(H) =
P\L. Because red(P\L) ≈r P\L, cra(H) ≈r once(H) holds.

2. If H = (H1 ‖ H2 ‖ · · · ‖ Hn)\L where Hi (i ∈ [1 . . . n]) is the sub-hierarchy
of H and satisfies cra(Hi) ≈r once(Hi), then we deduce as follows.

H ′ =df (cra(H1)||cra(H2)|| · · · ||cra(Hn))\L

cra(H) = red((
∏n

i=1 cra(Hi))\L) by definition
(1) cra(H) = red(H ′)
(2) red(H ′) ≈r H ′

cra(H) ≈r H ′ by (1), (2)
once(H) = (

∏n
i=1 once(Hi))\L by Lemma 3

(3) cra(Hi) ≈r once(Hi)(i ∈ [1 . . .n]) by premise∏n
i=1 cra(Hi) ≈r

∏n
i=1 once(Hi) by Theorem 2 and (3)

(
∏n

i=1 cra(Hi))\L ≈r (
∏n

i=1 once(Hi))\L
H ′ ≈r once(H)

cra(H) ≈r once(H)

To sum up, we have cra(H) ≈r once(H). !"

5 Case Study

We have implemented a ROE-reduction algorithm in the framework of TVT
toolkit. To show its actual effects, we give a simple example, a demand-driven
token ring system for mutual exclusion which was introduced in [1]. We check
the mutual exclusion property (an invariant property) of the system by three
different approaches: CRA based on ROE, CRA based on CFFD, and the “all-
at-once” approach. A comparison is made between them.

The system is depicted in Figure 3. It can be seen that there are n clients and
n servers in the system. A client interacts with a server when intending to access
the mutual exclusive resources. The servers are organized in a ring structure, in
which one single token is passed clockwise (tr for sending and tl for receiving)
and the demands for the token are passed counterclockwise (dl for sending and
dr for receiving) [1]. The LSTS of clients have been presented in Figure 1 and
the LSTS of servers can be found in [1]. It is worthy to mention that the LSTSs
are adapted to satisfy the “root-unwound” property.

Our experiments show that the mutual exclusion property can be checked
successfully whenever the models are correct or not by using the above three
approaches. Figure 4 shows a hierarchy of the system with 3 clients and 3 servers,
whose models are correct. Results are represented in the figure when adopting
the approach of CRA based on ROE.
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Fig. 3. Topology of a simplified token-ring system
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before reduction

(after reduction)

Fig. 4. A hierarchy of the token-ring system for CRA based on ROE

Comparing with the CRA based on ROE, a similar test is made by the
approach of CRA based on CFFD (the original LSTSs are adopted without
adaption for “root-unwound” property). The results are shown in Figure 5. It
can be seen that the largest subsystem Node12 that is generated by CRA based
on ROE contains 43 states and 143 transitions, while the largest subsystem
Node123 that is generated by CRA based on CFFD contains 482 states and
1255 transitions. Thus, for invariant checking of LSTS, the former approach can
produce much smaller models than the latter one.

Table 1 shows the sizes of the largest subsystems generated by CRA based
on hierarchies similar to Figure 4 when the system contains 2 ∼ 6 nodes (one
node contains a client and a server). From the table, it can be seen that ROE is
much more efficient than CFFD when checking invariants of LSTS.
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Fig. 5. A hierarchy of the token-ring system for CRA based on CFFD

Table 1. The largest subsystems generated by CRA and All-at-once approaches

CRA based on ROE CRA based on CFFD All-at-once
#nodes #states #transitions #states #transitions #states #transitions

2 13 21 90 176 110 288
3 43 143 482 1255 825 2820
4 153 593 3075 12244 5500 23200
5 525 2367 27999 138242 34375 172500
6 1793 9177 266805 1581601 206250 1200000

6 Conclusion

The paper presents a new equivalence, reverse observation equivalence, which
orients the invariant checking of LSTS. It is proved that the new equivalence is a
congruence with respect to the basic parallel composition. The experiments show
that ROE is quite efficient for the invariant checking of LSTS in the context of
compositional reachability analysis.

Our future work will consider checking the deadlock and livelock properties
of LSTS by combining the approaches based on observation equivalence and
reverse observation equivalence.
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Abstract. A model-based approach for minimization of test sets for interactive 
systems is introduced. Test cases are efficiently generated and selected to cover 
the behavioral model and the complementary fault model of the system under 
test (SUT). Results known from state-based conformance testing and graph the-
ory are used and extended to construct algorithms for minimizing the test sets, 
considering also structural features of the SUT. 

1   Introduction 

Testing is the traditional validation method in the software industry. There is no justi-
fication, however, for any assessment on the correctness of the SUT based on the suc-
cess (or failure) of a single test, because there can potentially be an infinite number of 
test cases, even for very simple programs. To overcome this shortcoming of testing, 
formal methods have been proposed, which introduce models that represent the rele-
vant features of the SUT. The modeled, relevant features are either functional behav-
ior or the structural issues of the SUT, leading to specification-oriented testing or im-
plementation-oriented testing, respectively. This paper is on specification-oriented 
testing; i.e., the underlying model represents the system behavior interacting with the 
user’s actions. The system’s behavior and user’s actions will be viewed here as 
events, more precisely, as desirable events if they are in accordance with the user ex-
pectations. Moreover, the approach includes modeling of the faults as undesirable 
events as, mathematically spoken, a complementary view of the behavioral model. 

Based on [3], this paper introduces a novel, graphical representation of both the 
behavioral model and the fault model of the SUT. Algorithms are introduced for the 
coverage of these models by a minimal set of test cases (minimal spanning set for 
coverage testing). The next section summarizes the related work before Section 3 in-
troduces the fault model and the test process. The optimization of the test case set is 
discussed in Section 4. Section 5 considers the structure of the SUT to avoid unneces-
sary and/or infeasible tests. Supporting tools are introduced in Section 6. Section 7 
summarizes the results and sketches the research work planned. 

2   Related Work 

Methods based on finite-state automata have been used for almost four decades for 
the specification and testing of system behavior, e.g., for specification of software 
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systems [8], as well as for conformance and software testing [6, 1, 20, 18]. Also, the 
modeling and testing of interactive systems with a state-based model has a long tradi-
tion [19, 13, 21, 25]. These approaches analyze the SUT and model the user require-
ments to achieve sequences of user interaction (UI), which then are deployed as test 
cases. [25] introduced a simplified state-based, graphical model to represent UIs; this 
model has been extended in [3] to consider not only the desirable situations, but also 
the undesirable ones. This strategy is quite different from the combinatorial ones, e.g., 
pairwise testing, which requires that for each pair of input parameters of a system, 
every combination of these parameters’ valid values must be covered by at least one 
test case. It is, in most practical cases, not feasible [22] to test UIs. 

A similar fault model as in [3] is used in the mutation analysis and testing approach 
which systematically and stepwise modifies the SUT using mutation operations [10]. 
This approach has been well understood, is widely used and, thus, has become quite 
popular. Although originally applied to implementation-oriented unit testing, muta-
tion operations have also been extended to be deployed at more abstract, higher lev-
els, e.g., integration testing, state-based testing, etc. [9]. Such operations have also 
been independently proposed by other authors, e.g., “state control faults” for fault 
modeling in [7], or for “transition-pair coverage criterion” and “complete sequence 
criterion” in [18]. However, the latter two notions have been precisely introduced in 
[3] and [25], respectively, earlier than in [18]. 

Another state-oriented group of approaches to test case generation and coverage 
assessment is based on model checking, e.g., the Software Cost Reduction method, as 
described in [12]. These approaches identify negative and positive scenarios to gener-
ate and select test cases automatically from formal requirements specifications. A dif-
ferent approach, especially for graphical user interface (GUI) testing, has been intro-
duced in [16]; it deploys methods of knowledge engineering to generate test cases, 
test oracles, etc., and to deal with the test termination problem. All of these ap-
proaches use some heuristic methods to cope with the state explosion problem. 

This paper also presents a method for test case generation and test case selection. 
Moreover, it addresses test coverage aspects for test termination, based on [3], which 
introduced the notion of “minimal spanning set of complete test sequences”, similar to 
“spanning set”, that was also discussed in [15]. The present paper considers existing 
approaches to optimize the round trips, i.e., the Chinese Postman Problem [1], and at-
tempts to determine algorithms of less complexity for the spanning of walks, rather 
than tours, related to [24, 17]. 

3   Fault Model and Test Process 

This work uses Event Sequence Graphs (ESG) for representing the system behavior and, 
moreover, the facilities from the user’s point of view to interact with the system. Basi-
cally, an event is an externally observable phenomenon, such as an environmental or a 
user stimulus, or a system response, punctuating different stages of the system activity. 

3.1   Preliminaries 

Definition 1. An Event Sequence Graph ESG=(V,E) is a directed graph with a finite 
set of nodes (vertices) V  ∅ and a finite set of arcs (edges) E ⊆ V×V. 
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For representing user-system interactions, the nodes of the ESG are interpreted as 
events. The operations on identifiable components of the UI are controlled/perceived 
by input/output devices, i.e., elements of windows, buttons, lists, checkboxes, etc. 
Thus, an event can be a user input or a system response; both of them are elements of 
V and lead interactively to a succession of user inputs and system outputs. 

Definition 2. Let V, E be defined as in Def. 1. Then any sequence of nodes v0 ,…,vk  
is called an (legal) event sequence (ES) if (vi , vi+1)∈ E, for i=0,…,k-1. 

Furthermore, α (initial) and ω (end) are functions to determine the initial node and 
end node of an ES, i.e., α(ES)=v0, ω(ES)=vk. Finally, the function l (length) of an ES 
determines the number of its nodes. In particular, if l(ES)=1 then ES= vi  is an ES of 
length 1. An ES= vi , vk  of length 2 is called an event pair (EP). 

The assumption is made that there is an ES from the single node ε to all other 
nodes, and from all nodes there is an ES to the single node γ (ε, γ ∉ V). ε is called the 
entry and γ is called the exit of the ESG. 

 

Fig. 1. An ESG with [ as entry and ] as exit 

The entry and exit, represented by ‘[’ and ‘]’, respectively, are not included in V. 
They enable a simpler representation of the algorithms to construct minimal spanning 
test case sets (Section 4). 

Definition 3. An ES is called a complete ES (Complete Event Sequence, CES), if 
α(ES)=ε is the entry and ω(ES)= γ is the exit. 

CESs represent walks from the entry ‘[’ of the ESG to its exit ‘]’. 

Definition 4. The node w is a successor event of v and the node v is a predecessor 
event of w if (v, w)∈ E. The difference of a node u∈ V diff(u) is defined as the number 
of predecessor events reduced by the number of successor events. 

Definition 5. Let two ESGs be defined as ESGi = (Vi , Ei), i = 1,2. ESG1 is a subgraph 
of ESG2 if V1 ⊆ V2 and E1 ⊆ E2. ESG1 is an induced subgraph by a set of nodes. 

3.2   Fault Model and Test Terminology 

Definition 6. For an ESG=(V, E), its completion is defined as =ESG (V ,E )  with 

= ×E V V . 

Definition 7. The inverse (or complementary) ESG is then defined as =ESG (V ,E )  

with =E E \ E  (\: set difference operation). 
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Fig. 2. The completion ESG  and inversion E SG  of Fig. 1 

Note: Entry and exit are not considered while constructing the ESG . 

Definition 8. Any EP of the ESG  is a faulty event pair (FEP) for ESG.  

Definition 9. Let ES= v0 ,…,vk  be an event sequence of length k+1 of an ESG and 
FEP= vk , vm  a faulty event pair of the according ESG . The concatenation of the ES 
and FEP forms then a faulty event sequence FES= v0 ,…,vk , vm . 

Definition 10. An FES will be called complete (Faulty Complete Event Sequence, 
FCES) if α(FES)=ε is the entry. The ES as part of a FCES is called a starter. 

3.3   Test Process 

Definition 11. A test case is an ordered pair of an input and expected output of the 
SUT. Any number of test cases can be compounded to a test set (or, a test suite). 

Once a test set has been constructed, tests can be run applying the test cases to the 
SUT. If it behaves as expected, the SUT succeeds the test, otherwise it fails the test. 
The approach introduced in this paper uses event sequences, more precisely CES, and 
FCES, as test inputs. If the input is a CES, the SUT is supposed to proceed it and thus, 
to succeed the test. Accordingly, if a FCES is used as a test input, a failure is expected 
to occur. The latter case represents an exception that must be properly handled by the 
system, i.e., the SUT is supposed to refuse the proceeding and produce a warning. The 
test process is sketched in Algorithm 1. 

Algorithm 1. Test Process 

n := number of the functional units (modules) of the system that fulfill a well- 
 defined task 
length := required length of the test sequences 

FOR function1 TO n DO 
  Generate appropriate ESG and ESG  
  FOR k:=2 TO length DO    //Section 4.3 
    Cover all ESs of length k by means of CESs  
    subject to minimizing the number and total length of the CES //Section 4.1 
  Cover all FEPs of by means of FCESs 
  subject to minimizing the total length of the FCESs  //Section 4.2 
Apply the test set to the SUT 
Observe the system output to determine whether the system response is in 
compliance with the expectation 
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To determine the point in time in which to stop testing, a criterion is necessary to 
systematize the test process and to judge the efficiency of the test cases. The ap-
proach converts this problem into the coverage of the ES and FES of length k of the 
ESG . 

The test costs are given by the minimized total length of the CESs and FCESs. The 
length of the ESs can be increased stepwise. This enables a scalability of the test costs 
which are proportional to the length of the ESs. 

4   Minimizing the Spanning Set 

The union of the sets of CESs of minimal total length to cover the ESs of a required 
length is called Minimal Spanning Set of Complete Event Sequences (MSCES). 

If a CES contains all EPs at least once, it is called an entire walk. A legal entire 
walk is minimal if its length cannot be reduced. A minimal legal walk is ideal if it 
contains all EPs exactly once. Legal walks can easily be generated for a given ESG as 
CESs, respectively. It is not, however, always feasible to construct an entire walk or 
an ideal walk. Using some results of the graph theory [24], MSCESs can be con-
structed as follows: 

• Check whether an ideal walk exists. 
• If not, check whether entire walks exist. If yes, construct a minimal one. 
• If there is no entire walk, construct a set of walks with minimal total length to 

cover all ES. 

4.1   An Algorithm to Determine Minimal Spanning Complete Event Sequence 

A similar problem to the determination of MSCESs is the Directed Chinese Postman 
Problem [23]. In the following, some results are summarized that are relevant to de-
termine the test costs and enable scalability of the test process. 

The Algorithm 2 determines a set of walks with the minimal total length to cover 
all EPs and requires that this graph be strongly connected, which can be done through 
an additional arc from the final to the entry (Fig. 3). The figures within the nodes in 
Fig. 3 indicate the calculated differences (Definition 4) of these nodes. These balance 
values determine the number of additional EPs that will be identified by searching the 
all-shortest-path and solving the optimization problem by the Hungarian method [14]. 
The problem can then be transferred to the construction of the Euler tour for this 
graph [24]. 

 

Fig. 3. Transferring walks into tours and balancing the nodes 
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The function addArc(ESG,(u,v)) inserts a new arc from the node u to the 
node v of the ESG. The function computeShortestPath() determines all short-
est paths from a node v to all b ∈ B with BFS algorithm and stores these shortest dis-
tances in the matrix D for later usage by the function getShortestPath(). The 
function solveAssignmentProblem() returns a one-to-one mapping of the un-
balanced nodes. The function computeEulerTour()determines the Euler tour of 
the ESG. The euler tour will be decomposed into subsequences by the function get-
PartList().  

In Algorithm 2, the ESG is represented by its adjacency matrix. The algorithm 
consists of three sections: 

• Determination of all-shortest-paths by Floyds algorithm with the complexity 
O(|V|3) [2]. However, because the ESG is a non-weighted digraph, the complexity 
can be decreased by using the Breadth-First-Search down to O(|V|·|E|). This results 
from the fact that: 

Algorithm 2. Determination of the MSCES 

Input: ESG=(V, E); ε=[, γ=]  
Output: MSCES 

addArc(ESG,(γ,ε));  //insert arc from ] to [ 
sets A,B,M,MSCES := ∅  //empty sets  
FOR EACH v∈V DO 
  IF (diff(v)>0) THEN 
    A := A ∪ {vi |i∈{1,..,diff(v)}}; 
  IF (diff(v)<0) THEN 
    B := B ∪ {vi |i∈{1,..,diff(v)}}; 
m := |A| := |B|;  //cardinality 
D[1..m][1..m];  //distance matrix D 
FOR EACH v∈A DO //compute all shortest paths from v to all b∈B 
  computeShortestPaths(v,B,D); //shortest distances are saved in D 
M := solveAssignmentProblem(D); 
 //M = {(i, j) | one-to-one mapping: i∈{1,..,m}→j∈{1,..,m}} by Hungarian 
method 
FOR EACH (i,j)∈M DO 
  Path := getShortestPath(i,j); 
  FOR EACH e∈Path DO 
    addArc(ESG,e); 
EulerTourList := computeEulerTour(ESG); //tour starts in ε 
 //EulerTourList = (ε,...,γ,ε,...,γ,ε,...,γ,ε) 
start := 1; 
FOR i:=2 TO length(EulerTourList)-1 DO 
  IF (getElement(EulerTourList,i) = γ) THEN 
    MSCES := MSCES ∪ get-
PartList(EulerTourList,start,i); 
    start := i+1; //MSCES = {(ε,...,γ),(ε,...,γ),(ε,...,γ),...} 
RETURN MSCES; 
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− Breadth-First-Search algorithm determines the shortest path from one node of 
the ESG to all other ones in O(|E|) as |E|>|V|+1. 

− Breadth-First-Search algorithm iterates |V| times to handle all nodes. 
• The optimizing problem, which is solved in accordance with [14] by the Hungarian 

method, with the complexity O(|V|3). 
• Computation of an Euler tour with the complexity of O(|V|·|E|) [24]. 

To sum up, the MSCES can be solved in O(|V|3) time. Note that no entire walk ex-
ists for the example. Therefore, an ideal walk cannot be constructed. 

4.2   Minimal Spanning Set for the Coverage of Faulty Event Sequences 

The union of the sets of FCESs of the minimal total length to cover the FESs of a re-
quired length is called Minimal Spanning Set of Faulty Complete Event Sequences 
(MSFCES). 

In comparison to the interpretation of the CESs as legal walks, illegal walks are re-
alized by FCESs that never reach the exit. An illegal walk is minimal if its starter can-
not be shortened.  

Assuming that an ESG has n nodes and d arcs as EPs to generate the CESs, then 
exactly u:=n2-d arcs are FEPs. Thus, at most u FCESs of minimal length, i.e., of 
length 2, are available; those FCESs emerge when the node(s) after entry is (are) fol-
lowed immediately by a faulty input. The number of FCESs is precisely determined 
by the number of FEPs. FEPs that represent FCES are of constant length 2; thus, they 
also cannot be shortened. It remains to be noticed that only the starters of the re-
maining FEPs can be minimized, e.g., using the algorithm given in [11]. 

While constructing the MSCESs one can exclude the ESs that are already used to 
form starters to construct MSFCESs. This can help save costs if the test budget is very 
limited, as is very often the case in practice. 

4.3   Generating Event Sequences with Length > 2 

A phenomenon in testing interactive systems most testers are familiar with, is that 
faults can be frequently detected and reproduced only in some context. This makes a 
test sequence of a length>2 necessary since repetitive occurrences of some subse-
quences are needed to cause an error to occur/re-occur.  

 

Fig. 4. Static faults vs. dynamic faults 

Consider the following scenario: Based on the ESG given in Fig. 4, the tester as-
sumedly observes that the EP given by BC always reveals a fault, no matter if exe-
cuted within [ABC], [ABABC], or [ABDCBC]; i.e., the test cases containing BC al-
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ways detect the fault in any context. In this case, the fault is said to be a static one, as 
it can be detected without a context. Furthermore, the same scenario (so the assump-
tion) demonstrates that the EP BA reveals another fault, but only in the context of 
[ABCBAC], and never within [ABAC], or [ABACBDC], etc. In this case the fault is 
said to be a dynamic one. 

Such observations clearly indicate that the test process must be applied to longer 
ESs than 2 (EPs). 

Therefore an ESG can be transformed into a graph in which the nodes can be used 
to generate test cases of length > 2, in the same way that the nodes of the original 
ESG are used to generate EPs and to determine the appropriate MSCES. 

Fig. 5 illustrates the generation of ESs of length=3. In this example adjacent nodes 
of the extended ESG are concatenated, e.g., AB is connected with BD, leading to 
ABBD. The shared event, i.e., B, occurs only once producing ABD as an ES of 
length=3. In case ESs of length=4 are to be generated, the extended graph must be ex-
tended another time using the same algorithm. 

 

Fig. 5. Extending the ESG for covering ESs of length=3 

The common valid of this approach is given by Algorithm 3. Therein the notation 
ES(ESG,i) represents the identifier, e. g., AB, of the node i of the ESG. This identi-
fier can be concatenated with another identifier ES(ESG,j) of the node j, e.g., CD. 
This is represented by AB ⊕ CD, or ES(ESG,i) ⊕ ES(ESG,j), resulting in the 
new identifier ABCD. Note that the identifiers of the newly generated nodes to extend 
the ESG will be made up using the identifiers of the existing nodes. The function 
addNode() inserts a new ES of length k. Following this step, a node u is connected 
with a node v if the last n-1 events that are used in the identifier of u are the same as 
the first n-1 events that are included in the identifier of v. The function addArc() 
inserts an arc, connecting u with v in the ESG. The pseudo nodes [, ] are connected 
with all the extensions of the nodes with which they were connected before the exten-
sion. In order to avoid traversing the entire matrix, arcs which are already considered 
are to be removed by the function removeArc(). 

Apparently, the Algorithm 3 has a complexity of O(|V|2) because of the nested 
FOR-loops to determine the arcs in the ESG’. A further algorithm to generate FESs of 
length > 2 is not necessary because such faulty sequences will be constructed through 
the concatenation of the appropriate starters with the FEPs. Algorithm 2 can be ap-
plied to the outcome of the Algorithm 3, i.e., to the extended ESG, to determine the 
MSCES for l(ES) > 2. 



228 F. Belli and C.J. Budnik 

 

5   Exploiting the Structural Features 

The approach has been applied to the testing and analysis of the GUIs of different 
kind of systems, leading to a considerable amount of practical experience. A great 
deal of test effort could be saved considering the structural features of the SUT. Thus, 
there is further potential for the reduction of the cost of the test process. 

5.1   A Practical Example 

Fig 6 depicts a small part of the GUI of an MS WordPad-like word processing sys-
tem. This GUI will usually be active when a text portion is to be loaded from a file, or 
to be manipulated by cutting, copying, or pasting. The GUI will also be used for sav-
ing the text to the current file (or to another one). The optional events are abbreviated 
in the Fig. 7 with capital letters. There are still more window components, but they 
will not be explained here further. The described components are used to traverse 
through the entries of the menu and sub-menus, creating many combinations and ac-
cordingly, many applications. 

The GUI represented in Fig. 6 is transferred to an ESG (Fig. 7). is easy to under-
stand, but an informal and imprecise presentation of the GUI, while Fig. 7 is a for-
mal presentation that neglects some aspects, e.g., the hierarchy, while still being 
precise. 

The conversion of Fig. 6 into Fig. 7 is the most abstract step of the approach that 
must be done manually, requiring some practical experience and theoretical skill in 

Algorithm 3. Generating ESs and FESs with length > 2  

Input: ESG=(V, E); ε = [, γ= ], ESG’=(V’, E’) with V’=∅ , ε’= [, γ’= ]; 
Output: ESG’=(V’, E’), ε’= [, γ’=]; 

FOR EACH (i,j)∈ E with (i<>ε) AND (j<>γ) DO 
  addNode(ESG’,(ES(ESG,i) ⊕ ω (ES(ESG,j))); 
  removeArc(ESG,(i,j)); 
FOR EACH i∈ V’ with (i<>ε’) AND (i<>γ‘) DO 
  FOR EACH j∈ V’ with (j<>ε’) AND (j<>γ‘) DO 
    IF(ES(ESG’,i) ⊕ ω (ES(ESG’,j)) =  
                    α (ES(ESG’,i)) ⊕ (ES(ESG’,j)) THEN 
      addArc(ESG’,(i,j)); 
  FOR EACH (k,l)∈E with k=ε DO 
    IF(ES(ESG’,i) = ES(ESG,l) ⊕ ω (ES(ESG’,i)) THEN 
      addArc(ESG’,(ε’,i)); 
  FOR EACH (k,l)∈ E with l=γ DO 
    IF(ES(ESG’,i) = α (ES(ESG’,i)) ⊕ ES(ESG,k) THEN 
      addArc(ESG’,(i,γ’)); 
RETURN ESG’; 
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designing GUIs. Example 1 lists the FCESs to cover the FEPs of the ESGs 
Main/Open given in Fig. 7. 

 

Fig. 6. Top-level GUI of WordPad, modal/modeless windows 

 

Fig. 7. ESG of the GUI represented in  

Example 1. AD, AE, AF, AH, ABA, ABB, ABH, ABDA, ABDB, ABEA, ABEB, 
ABFB, ABFF, ABFE, ABFD, ABFH, AB(E+D)HA, AB(E+D)HB, AB(E+D)HD, 
AB(E+D)HE, AB(E+D)HF, AB(E+D)HH 

5.2   Modal and Modeless Windows 

Analysis of the structure of the GUIs, e.g., the example GUI in Fig. 6., delivers the 
following features: 

• Windows of commercial systems are nowadays mostly hierarchically structured, 
i.e., the root window invokes children windows that can invoke further (grand) 
children, etc. 

• Some children windows can exist simultaneously with their siblings and parents; 
they will be called modeless (or non-modal) windows. Other children, however, 
must “die”, i.e., close, in order to resume their parents (modal windows). 
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For the main frame of the WordPad, the child window Help is a modeless win-
dow; the other child window, Open, is a modal one. Fig. 8 represents these windows 
as a “family tree”. In this tree, a unidirectional edge indicates a modal parent-child re-
lationship. A bidirectional edge indicates a modeless one. 

 

Fig. 8. Modal windows vs. modeless windows 

Modal windows must be closed before any other window can be invoked. There-
fore, modal windows can be tested without taking the other windows into account, i.e., 
it is not necessary to consider the combinations of the ESs and FESs of the parent and 
children. Thus, similar to the strong-connectedness and symmetrical features [21], the 
modality feature is extremely important for testing since it avoids unnecessary test ef-
forts. Note that this is true only for the FCESs and MSFCESs as test inputs considering 
the structure information might impact the structure of the ESG, but not the number of 
the CESs and MSCESs as test inputs. Fig. 9 represents the modified ESG of the Word-
Pad. The modification, which separates the events A and B from Open, takes the mo-
dality into account that avoids unnecessary combinations of EPs and FEPs. Example 2 
lists the MSFCESs to cover FEPs of the sub-graph Open given in Fig. 9. 

 

Fig. 9. Modified ESG of the GUI in Fig. 8, taking the modality feature into account 

Example 2. (E+D)FD, (E+D)FE, (E+D)FF, (E+D)FH, (E+D)HF, (E+D)HD, 
(E+D)HF, (E+D)HH 

Already this example, i.e., the comparison of Example 1 (22 FEPs) with Example 2 
(8 FEPs), demonstrates the efficiency increase through the exploitation of the struc-
tural features of the SUT. 
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6   Tool Support 

The determination of the MSCESs/MSFCESs can be very time consuming when car-
ried out manually. Also, the gaining of the structural information that is necessary to 
reduce the number of MSFCESs is frequently a rather costly process. Thus, tools of 
different categories are necessary for both purposes. 

A good software engineering practice ensures that the system behavior has been 
modeled during the system design. Otherwise the model has to be constructed manu-
ally afterwards, according to the specification. 

6.1   Test Case Generation 

For the generation of test cases the tool GenPath [5] has been developed to accept the 
adjacency matrix of the ESG as input. The user can, however, input several ESGs 
which can also be subgraphs of the vertices of the ESG itself under consideration. Fig. 
10 represents the GUI of GenPath which generates MSCESs for ESs of required 
length. Moreover, it represents the ESG under consideration and marks its EPs with 
the underlying algorithm traces. 

 

Fig. 10. GenPath to generate MSCES 

6.2   Generation of GUI Structure  

Section 5 explained the necessity to consider the specific information on the structure 
of the SUT in order to reduce the number of test cases. This structural information can 
be obtained with a commercially available Capture-Playback facility, as to WinRun-
ner of Mercury Interactive [26] delivers. 

This tool can identify all available windows of a GUI-application and generates 
automatically information on the windows hierarchy that can be assembled to deter-
mine modal/modeless windows of the SUT. Fig. 11 represents a part of WordPad that 
the test environment has traced. The keyword opened_by identifies the child win-
dow Open. The parent window can be traced via the keyword 
menu_select_item(). 
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Fig. 11. Excerpt out of the WinRunner file with information on a GUI structure 

7   Validation 

A separate study has applied the proposed approach to a selected significant function of 
the personal music management system RealJukebox (RJB), Version 2, of RealNet-
works. This function enables the user to load a CD, select a track, and play it. The user 
can then change the mode, replay the track, or remove the CD, load another one, etc. 

Table 1. Reducing the number of test cases 

Length #CES #MSCES Cost Reduction ES 
2  40  15 62.5 % 
3  183  62 66.1 % 
4  849  181 78.7 % 

Sum  1072  258 76.0 % 

Length 
#MSFCES without struc-

tural information 
#MSFCES with structural 

information 
Cost Reduction MSFCES 

2  75  58 22.7 % 
3  339  218 35.7 % 
4  1587  632 60.2 % 

Sum  2001  908 54.6 % 

For a comprehensive testing, several strategies have been developed with varying 
characteristics of the test inputs, i.e.,  

• the length and number of the test sequences, and 
• the type of the test sequences, i.e., CES- and FCESs-based. 

This study delivered following findings: 
• The test cases of the length 4 were more effective in revealing dynamic faults than 

the test cases of the lengths 2 and 3. They were, however, considerably more ex-
pensive in terms of costs per detected fault. 

• The CES-based test cases as well as the FCES-based cases were effective in detect-
ing faults. 
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To summarize the test process, one student tester, who acted also as oracle, carried 
out 1166 tests semi-automatically over a period of 2 days, working, on average, 8 
hours per day, thus spending a total of 78560 seconds. These figures result in ap-
proximately 67 seconds per test. A total of 32 faults were detected. 

The results of the research for minimizing the spanning set of the test cases 
(MSCES and MSFCES), as described in Section 4, has been applied to the testing of 
the selected significant function. Table 1 summarizes that the algorithmic minimiza-
tion (Section 4.1 and 4.2) could save about 75 % of the test costs, while the exploita-
tion of the structural information of the SUT could save up to almost 50%! 

A more detailed discussion about the benefits, e.g., concerning the number of de-
tected errors in dependency of the length of the test cases, is given in [4]. 

8   Conclusion and Future Work 

This paper has introduced an integrated approach to coverage testing of interactive 
systems, incorporating modeling of the system behavior with fault modeling and 
minimizing the test sets for the coverage of these models. The framework is based on 
the concept of “event sequence graphs (ESG)”. Event sequences (ES) represent the 
human-computer interactions. An ES is complete (CES) if it produces desirable, well-
defined and safe system functionality. The notion of complete faulty event sequences 
mathematically complements this view. 

The objective of testing is the construction of a set of CESs of minimal total length 
that covers all ESs of a required length. A similar optimization problem arises for the 
validation of the SUT under exceptional, undesirable situations which are modeled by 
faulty event sequences (FESs) and complete FESs (FCESs). The paper applied and 
modified some algorithms known from graph theory to these problems. Furthermore, 
it was shown how the structure of interactive systems can be algorithmically exploited 
by a commercial test tool to reduce the test sets by infeasible and/or unnecessary test 
cases. 

In the case of safety, the threat originates from within the system due to potential 
failures and its spillover effects causing potentially extensive damage to its environ-
ment. The goal for future work is to design defense actions, which is an appropriately 
enforced sequence of events, to prevent faults that could potentially lead to such fail-
ures. Further future work concerns cost reduction through automatic, or semiautomatic 
modification of a given ESG in order to consider modality of interaction structures. 
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Abstract. Integration testing of programs based on formal specifica-
tions can benefit considerably from the comprehensibility of specifica-
tions. In this paper, we describe an approach to testing programs based
on data-flow-oriented specifications by analyzing data flow paths and dis-
cussing criteria for test case generation. This approach suggests a specific
way to generate test cases directly from formalized data flow diagrams
and the associated textual specifications. We apply the approach in a
case study of testing part of an ATM system to evaluate its effectiveness
in fault detection and to uncover its weakness for further improvement.
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1 Introduction

Testing programs based on formal specifications is an effective way to uncover
faults leading to violation of their specifications and to therefore enhance their
reliability [1][2]. The advance of research in this area also contributes to the
spreading of application of formal specification techniques in industry due to the
additional value provided by formal specifications serving as a firm foundation
for program testing.

It is worth noticing that much work on specification-based testing so far has
focused on operation level (i.e., unit testing) where an operation is defined using
pre and postconditions [3][4][5][6][7][8]. An important reason for this situation is
that test cases can be rigorously generated based on the pre and postconditions of
an operation, and a test oracle can be easily derived for test result analysis from
the specification. However, when we try to apply this principle to integration
testing of a program composed of many operations (e.g., procedures, methods),
two major problems will inevitably arise. Firstly, test cases can no longer be
easily generated from a pre-post expression, because there is usually no explicit
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pre-post expression for an integrated specification based on which the entire
program is implemented. In many cases, derivation of a pre-post expression for
an integrated specification (e.g., Z, VDM) is extremely difficult, if not impossible.
Secondly, assuming test cases have been generated properly, evaluation of the
test results becomes a difficulty, since no test oracle can be easily derived from
an integrated specification for this purpose.

Although some of researchers, including ourselves, have experienced a way
to generate test cases based on path coverage criteria in finite state machines
[9][10][11][12][13], this does not resolve the problem with test results analysis:
there is still a lack of effective way to derive a test oracle. In this particular
case, a practical solution is to let human being (e.g., customer or the analyst) to
act as an oracle. To this end, the comprehensibility of the formal specification
becomes important, because a specification with poor understandability would
not facilitate the human being to make correct judgments.

In accordance with our past experience of using both control flow and data
flow specification languages, data flow specifications, such as SOFL (Structured
Object-Oriented Formal Language) [14][15], is more understandable for ordinary
customers or end-users than control flow specifications because of the similarity
in concepts and functional representations between data flow specifications and
their real world systems. For this reason, we believe that adopting data flow
specifications in software development can be more effective in requirements ac-
quisition and validation. While there have been studies on test case generation
for integration testing of programs based on formal control flow specifications,
there is few research on test case generation on the basis of data flow specifi-
cations. According to our experience, it is extremely difficult to correctly select
data flow paths and to generate test cases based on a conventional data flow
diagram that has no precise operational semantics.

In this paper, we describe a path oriented approach to integration testing
of programs based on a formalized data flow diagram, known as condition data
flow diagram (or CDFD for short), which is employed in the SOFL specifica-
tion language [15]. In a SOFL specification, CDFDs are adopted to describe
the architecture of the entire specification, while mathematically-based formal
notation is used to define its components in the associated modules. CDFDs
distinguish from the classical data flow diagrams in that they may use struc-
tures for controlling data flows conditionally, and nondeterministic processes to
express alternative data flows. The essential idea of our approach is to select
paths from a CDFD to cover all branches of the control structures and process
functions, and then to generate test cases using the constraints defined by the
associated textual specifications. Thus, test cases can experience the data tran-
sitions among processes in the CDFD, which are intuitive for testers to analyze
the path coverage and the test results, and to make correct judgments on the
existence of faults in the systems.

The remainder of this paper is organized as follows. Section 2 provides a brief
introduction to the SOFL specification language. Section 3 describes an approach
to test case generation for integration testing of programs based on a SOFL
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specification. Section 4 presents a case study of testing part of an Automated
Teller Machine (ATM) system to evaluate the proposed approach. Section 5
introduces the related work on testing based on data flow diagrams. Finally, in
Section 6, we conclude the paper and point out future research.

2 Brief Introduction to SOFL

A SOFL specification is composed of a set of related modules in a hierarchy of
condition data flow diagrams (CDFDs), as illustrated in Figure 1.

A CDFD (e.g., A1 in Figure 1(a)) is a formalized DFD that specifies how
processes work together to provide functional behaviors. A CDFD usually con-
sists of control structures (conditional nodes, merging or separating nodes, and
diverging nodes), processes, data flows, and data stores. A data flow, which
represents a data transmission between two processes, is labeled with a vari-
able. A process consists of five parts: name, input ports, output ports, pre-
condition, and postcondition. It performs an action to transform input data
flows satisfying precondition into output data flows that satisfy the postcon-
dition. A conditional node denoted by a diamond or box allows a choice in
moving data items between processes. A merging node composes input data
flows into a single composite data flow, while a separating node is opposite to
the merging node in that it breaks up the composite data flow into its com-
ponents. A diverging node transforms an input data flow to either one of the
output data flows or all of the output data flows, depending on the type of
the diverging structure. The graphical constructs of control structures are given
in Figure 2.

In Figure 2, (a) is a binary choice and the data flow x will flow along the
upper branch when the condition C(x) is satisfied by x, otherwise x will flow

3.33.1 3.2

1 4
3

2

1.4

1.3

1.2

1.1

s-module A1
Constant, type, class, and/or
variable declarations
    Condition process1
    Condition process2
    Condition process3
    Condition process4

s-module A3
Constant, type, class, and/or
variable declarations
    Condition process3.1
    Condition process3.2
    Condition process3.3

s-module A2
Constant, type, class, and/or
variable declarations
    Condition process1.1
    Condition process1.2
    Condition process1.3
    Condition process1.4

(b) Hierarchical Structure of Specification Modules

(a) Hierarchical Condition Data Flow Diagram

A1

A2 A3

Fig. 1. Structure of a SOFL system
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Fig. 2. Control structures in SOFL
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Fig. 3. Process with multiple ports

along the lower arc. (b) is a multiple selection structure and data from x will
flow along a corresponding branch when x satisfy Ci(x), i = 1...n, otherwise it
will flow along the lowest level arc as xn+1. (c) is a merging node to compose
input data flows x1, x2, and x3 into a single composite data flow x, and (d) is
a separating node to break up x into x1, x2, and x3. (e) and (f) are diverging
nodes, in which the data flow x is nondeterministic to flow along one of the
following arcs in (e), and (f) is a broadcasting node and x will flow along all of
the output data flow arcs.

A process in a CDFD is different from that in the conventional DFDs in that
it allows nondeterministic inputs and outputs; it may denote an abstraction of
multiple functions. Figure 3 shows an example of nondeterministic processes.

Process A has two input ports receiving data flow x or y, and one output
port holding the data flow z. When either x or y is available, process A takes x
or y, but not both, as input, and produces z as output. Process B has one input
port receiving data flow x, and produces either y or z, but not both. Process C
supports inputs and outputs nondeterministically.

For each CDFD, a specification module (e.g., module A1 in Figure 1(b)) is
provided to define necessary types, related variables, and the functions of all the
processes occurring in the CDFD.
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3 A Path Coverage Approach

Assuming a SOFL specification is both internally consistent and valid, we intro-
duce a path oriented approach to integration testing of a program based on its
specification. This approach suggests the following steps:

1. Use the formal module as a foundation for eliminating nondeterministic pro-
cesses in the CDFD;

2. Determine a set of data flow paths to cover all control branches and sub-
processes in the CDFD. Here a data flow path is a sequence of data flows
satisfying a certain condition;

3. Generate test cases from the formal module to ensure that every path is
necessarily traversed and effectively tested;

4. Test the program and evaluate the testing results.

3.1 Processes Decomposition

The goal of decomposing a process is to divide a nondeterministic process into a
set of deterministic subprocesses, each defining a single function of the original
process. Thus, testing of the nondeterministic process can be divided into testing
of its subprocesses, which is less complex and more controllable in accordance
with the “divide and conquer” principle.

To facilitate discussions in this paper, we express a process, say P , in a SOFL
specification as a 4-tuple (I,O, pre, post) where

1. I is a finite set of inputs. If P is nondeterministic and has m input ports, we
write I = I1|...|Im, denoting its input ports where
(a) Ii(1 � i � m) is the set of inputs received by the ith input port;
(b) Ii ∩ Ij = φ (1 � i, j � m, i �= j, φ is the empty set);

2. O is a finite set of outputs. If P has n output ports, we write O = O1|...|On

where
(a) Oi(1 � i � n) is the set of outputs produced from the ith output port;
(b) Oi ∩Oj = φ (1 � i, j � n, i �= j);

3. pre and post are predicate expressions, denoting the pre and postconditions
of process P , respectively. Pre may involve the variables defined in I, while
post allows all the variables defined in both I and O to be used.

P can be divided into a set of deterministic subprocesses {sp1, sp2, ..., spk},
and we represent it as P � sp1|sp2|...|spk, where
1. spi is called a sibling of spj (1 � i, j � k, i �= j).
2. each subprocess is deterministic to represent a single function of P . A sub-

process spi is as well defined as spi = (Ii, Oi, prei, posti) where

(a) Ii ∈ {I1, ..., Im}, Oi ∈ {O1, ...,On};
(b) prei is a predicate expression denoting the precondition of spi; it involves

only the variables defined in Ii;
(c) posti is a predicate expression denoting the postcondition of spi; it may

involve the variables defined in both Ii and Oi.
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Consider the following definition of process C in Figure 3(c):

I : {x1} | {x2, x3}
O : {y1} | {y2, y3}
pre : x1 > 10 or x1 < 5 or x2 > x3 and (x2 > 100 or x3 < 50)
post : y1 > x1 + 1 or y1 < x1 or y1 > x2 and y1 > x3 or y2 > x1

and y3 < x1 or y2 > x2 or y3 > y2

then, process C is divided into the following four subprocesses

sp1 = (I1,O1, pre1, post1)

sp2 = (I2,O2, pre2, post2)

sp3 = (I3,O3, pre3, post3)

sp4 = (I4,O4, pre4, post4)

where

- I1, I2 : {x1}
- I3, I4 : {x2, x3}
- O1,O3 : {y1}
- O2,O4 : {y2, y3}
- pre1, pre2 : x1 > 10 or x1 < 5
- pre3, pre4 : x2 > x3 and (x2 > 100 or x3 < 50)
- post1 : y1 > x1 + 1 or y1 < x1

- post2 : y2 > x1 and y3 < x1 or y3 > y2
- post3 : y1 > x2 and y1 > x3
- post4 : y2 > x2 or y3 > y2

3.2 Path Selection

After all the nondeterministic processes are decomposed into deterministic sub-
processes, the next important issue to address is how to define data flow paths
for testing and how to select them in a CDFD. The classical Yourdon DFDs are
not widely used for testing in industry since that these diagrams do not support
the conditional controls and formal semantics explicitly, and therefore they are
intricate for test paths selection. In SOFL, a CDFD is an extended data flow di-
agram holding control structures, as well formalized notations are used to define
the processes in the CDFD. Thus independent data flow paths can be effectively
extracted for testing by using these control structures and its module. In our
approach, a data flow path is defined as a deterministic sequence of data flows
with its processes that lead to output data flows of the CDFD from an input
data flow sets. Formally, we have the following criteria for test path selection:

Criterion 1. Each data flow of a CDFD is covered by the set of test paths.
Criterion 2. Each subprocess is used at least in one path.
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Fig. 4. A CDFD and its deterministic CDFD

Criterion 1 is a mutation of the general control structure testing, but considers
more types of control structures for test path selection:

– Each data flow is transferred to the correct process/subprocess/control node;
– Every branch of a conditional node should be tested at least once;
– If a merging node is traversed, all of its input flows should be covered by the

given test path;
– When a separating or a broadcasting node is added to a data flow path, the

path may cover part of its output flows for testing if they are not affected
by the others during the following execution;

– When a nondeterministic node is added to a test path, we select one of its
output flows to traverse.

Criterion 2 is to ensure that every function in a process will be tested. Each
function of a process is represented by a subprocess, and testing of the process
needs to cover all of its subprocesses. For example, the nondeterministic processes
P1, P2, P3 and P4 in Figure 4(a) are decomposed as follows (Figure 4(b)):

P1 � sp11|sp12|sp13|sp14|sp15|sp16|sp17

P2 � sp21|sp22|sp23

P3 � sp31|sp32

P4 � sp41|sp42|sp43
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Fig. 5. A data flow path

In this CDFD, we identify twelve simple data flow paths, which cover all
the subprocesses occurring in the diagram. These paths and the corresponding
subprocesses covered are given as follows in the format: path→ subprocess set.

1. [x1, {x5, x6}, x11] → {sp11, sp21}
2. [x1, {x5, x6}, x12] → {sp11, sp22}
3. [x1, {x5, x6}, x13] → {sp11, sp23}
4. [x1, x7, x14] → {sp12, sp31}
5. [x1, x7, {x15, x16}] → {sp12, sp32}
6. [x1, x8, x17] → {sp13, sp41}
7. [{x2, x3}, {x5, x6}, x11] → {sp14, sp21}
8. [{x2, x3}, x7, x14] → {sp15, sp31}
9. [{x2, x3}, x8, x17] → {sp16, sp41}

10. [x4, {x5, x6}, x12] → {sp17, sp22}
11. [x9, x17] → {sp42}
12. [x10, x17] → {sp43}

3.3 Test Cases Generation

Having selected paths to satisfy Criterion 1 and Criterion 2, it is reasonable to
generate test cases so that they will execute through every branch or subprocess
in the CDFD.

The control nodes and the specifications of the subprocesses in a path provide
a set of ordered constraints on the execution of the path by the selected test cases.
The goal of test case generation is therefore to meet these constraints. The
strategies for generating test cases to meet the specification include boundary
value analysis, domain testing, and so on.

For example, the data flow path in Figure 5 covers subprocesses (sp1,sp2),
as well two conditional nodes and a broadcasting node. Suppose sp1 and sp2 are
defined as follows:

subprocess sp1(x1: real)x2: real
pre TRUE
post x2 = x1 + 2
end

subprocess sp2(x2, x3: real)x4: real
pre x3 > x2 and x3 < x2 + 10
post x4 = x3 + x2
end
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Fig. 6. The test points of T1

The set of exterior inputs in Figure 5 is {x1, x3}, and its constraints, T1, can
be computed by using conditional constraints, precondition and postcondition
of subprocesses, as:

x1 > 5 and (x1 > 10 and x1 < 20 or x1 < 6) and (x3 > x1+2 and x3 < x1+12)

The domain of the data flow path is illustrated in Figure 6, and we select the
following points as test cases

(x1, x3) = {
(5.001, 7.001), (5.001, 16.999), (5.999, 8.001), (5.999, 17.999),
(5.001, 12.001), (5.999, 12.999), (5.500, 7.501), (5.500, 17.499),
(10.001, 17.001), (15.000, 17.001), (19.999, 26.999), (15.000, 26.999),
(10.001, 12.001), (10.001, 21.999), (19.999, 22.001), (19.999, 31.999),

}.

To enhance the usability of this approach, we are working on a software tool to
support the automation of selecting data flow paths and generating test cases in
accordance with the path coverage criterion. Since it is still a primitive prototype,
we will report it in our future publication after it is completed properly.

4 Case Study

In order to evaluate the effectiveness of the suggested testing approach, we ap-
plied our approach to testing part of an ATM (Automated Teller Machine) sys-
tem implemented based on a formal specification written using the SOFL spec-
ification language by the second author [16]. The ATM system includes 5 basic
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Fig. 7. The CDFD of Change Password Decom module

functional services: (1) operations on current account, (2) operations on sav-
ing account, (3) transfer money between accounts, (4) manage foreign currency
account, and (5) change password. The entire specification contains sixty-nine
pages of descriptions. For the sake of space, we choose only one of its modules,
Change Password Decom, for the case study.

The Change Password Decom module includes the three primary functions:

1. Change password for the current account;
2. Change password for the savings account;
3. Change password for the foreign currency account.

The CDFD of the Change Password Decom module is shown in Figure 7. In
this module, process Select Password Services receives a command for chang-
ing a password of the current account, savings account, or foreign currency ac-
count, and passes it to process Decide Account. Process Decide Account then
determines to send a control data flow to processes Change Current Password,
Change Savings Password, or Change Foreign Password. If the new password
provided is satisfactory according to the criterion, one of these three processes
will send a successful message to process Display Success Message for display-
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ing on an output device; otherwise, a warning message will be sent to process
Display Warning Message for displaying.

4.1 Generating Test Cases

We generate test cases before the implementation of the specification. The mod-
ule includes the following processes: Select Password Services, Decide Account,
Change Current Password, Change Savings Password, Change Foreign Pass-
word, Display Success Message, and Display Warning Message. Some of the
processes in the Change Password Decom module take input data flows or pro-
duce output data flows nondeterministically (e.g., Select Password Services).
The tester decomposes them into eighteen equivalent deterministic subprocesses.

When generating test cases for integration testing, we extract six paths from
the original CDFD by using the data flow path coverage strategy. Each of these
paths defines how outputs are generated from the related inputs. One of the
paths representing the successful change of current password is shown in Fig-
ure 8. The inputs and external variables consumed by processes are {change pass,
change current, new pass1, current inf, current accounts, all used passwords,
output device}. The constraints enforced by the path are as follows:
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We generate twelve test cases for that cover all the possible paths, but for
the sake of space, we present only some of the test cases below. Since the Cur-
rent accounts is an external file that may consist of millions of account records
and output device represents a physical output device, we omit the concrete
values of those data structures for brevity.

    1   change_pass=<!>, change_current=<!>,
         current_inf=<1000000,00000>, new_pass1=<00001>,
         current_accounts_file=<..\Records\currents1.dat>,
         all_used_passwords=<00000,00001, ...>, output_device=<...>;
    2   change_pass=<!>, change_current=<!>,
         current_inf=<1000000,00000>, new_pass1=<33333>,
         current_accounts_file=<..\Records\currents1.dat>,
         all_used_passwords=<...>, output_device=<...>;
    3   change_pass=<!>, change_current=<!>,
         current_inf=<1000000,00000>, new_pass1=<00000>,
         current_accounts_file=<..\Records\currents1.dat>,
         all_used_passwords=<...>, output_device=<...>;
    4   change_pass=<!>, change_current=<!>,
         current_inf=<1000000,00000>, new_pass1=<99999>,
         output_device=<...>;
         ...

4.2 Test Results Analysis

Test cases generated from a formal specification need to be translated into a form
suitable for being used to execute the program that implements the specification
in a specific programming language. In this case study, we implement the pro-
gram in C++ and a third party deliberately insert twenty nine errors in it, most
of which are errors on the condition predicates and the domain errors of each
process. Table 1 summarizes the results of the testing. The error detection rate
indicates that 73% of the errors inserted independently are found. In addition,
the tester detects forty three errors of the original program by this test.

Table 1. Testing results analysis

Select_Password_Services 6 4 67%
Decide_Account 3 3 100%

Change_Current_Password 7 2 28%
Change_Savings_Password 3 2 67%
Change_Foreign_Password 2 2 100%
Display_ Success_Message 4 4 100%
Display_Warning_Message 4 4 100%

Amount 29 21 73%

process
inserted
errors

inserted
errors
found

errors
detection

rates

original
errors
found

3
1
8
8
8
8
9

43

The results of our case study demonstrates that our proposed testing ap-
proach and strategies are relatively effective in detecting predicate violations
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and domain errors, while they are less effective in detecting the errors violating
invariants defined in the specification.

5 Related Work

There exist many methods for testing programs from the data flow point of
view [17][18], but almost none of them utilizes data flow information from the
specifications of the programs. Rather, they derive data flow information from
the control flow structures of programs, and therefore they are still techniques
for structural testing. Since the final goal of testing is to ensure that programs
satisfy their specifications, functional testing based on specifications is extremely
important [19].

Since only a few of formal specification languages (e.g., SOFL [15] and FO-
CUS [20]) and semi-formal specification languages (e.g., the activity diagrams
in UML) are designed on the basis of data flow notion, most of the research on
specification-based testing so far are focused on the use of control flow speci-
fications. Aynur Abdurazik and Jeff Offutt provided a set of strategies and a
Rose-based test data generation tool from state-based specifications, which is
applicable to the activity diagrams in the UML [21]. F. Basanieri developed a
Cow Suite tool in which the derivation of test cases was based on the software
analysis and design document, and used the UML-based original test method-
ology UIT (Use Interaction Test) [22][23]. Chris Rudram extended the syntax
and semantics of Activity Diagrams with Formal Activity Diagrams (FAD) to
show user interaction with system, and then divided a FAD into segments for
testing [24]. However, the Activity Diagrams provide the whole structure of a
system with the collaborations of the other diagrams (e.g., Use Case Diagrams),
and we need to consider the infections of these factors for testing. Furthermore,
the diagrams in the UML do not describe the precise semantics of a system,
and therefore the corresponding test cases are less rigorously generated. The ac-
tivity diagrams in UML do not support nondeterministic mechanism useful for
modeling of systems either.

6 Conclusions and Future Work

In this paper we have described an approach to integration testing of programs
based on their data flow specifications. The essential idea of this approach is to
test programs using test cases generated based on the data flow path coverage
in their specifications. We have provided two criteria for test case generation
and presented a case study of testing part of an ATM system written in SOFL
to evaluate the effectiveness of the suggested testing approach. The case study
result shows that the approach is effective in detecting faults leading to predicate
and domain violations.

As future work, we plan to establish more powerful strategies and coverage
criteria to discover greater classes of errors. In addition, we will try to address
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some difficult issues concerned with program testing based on data flow specifi-
cations, such as invariants checking, recursive functions, and data flow loops. We
are also interested in investigating techniques for automatic test case generation
and in constructing an effective tool to enhance the degree of automation.
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Abstract. The classical work on test case generation and formal meth-
ods focuses either on algebraic or model-based specifications. In this
paper we propose an approach to derive test cases in the RAISE method
whose specification language RSL combines the model-based and alge-
braic style. Our approach integrates the testing techniques of algebraic
specifications and model-based specifications. In this testing strategy,
first, every function definition is partitioned by Disjunctive Normal Form
(DNF) rewriting and then test arguments are generated. Next, sequences
of function calls are formed. Finally, the test cases are built by replacing
the variables, on both sides of the axioms, with the sequences of functions
calls. These kinds of test cases not only provide the data for testing, but
also serve as test oracles. Based on this combined approach, a test case
generation tool has been developed.

Keywords: Test case generation, RAISE, RSL, formal method.

1 Introduction

Designing test cases is difficult, expensive and tedious. Recently, formal spec-
ifications have played an important role in test case generation for black-box
software testing. Specification-based testing is concerned with deriving testing
information from a specification, rather than from source code. The formal spec-
ification of the test object forms the basis for a systematic selection of test data,
the sequencing of test cases, and the evaluation of the test results.

Currently, a lot of research is going on in the area of specification-based
software testing. For model-based formal specification languages, such as VDM,
Z and B, the work focuses on partition techniques that generate Disjunctive
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Normal Form (DNF) and how to construct a Finite State Model (FSM) from
a DNF [10, 15, 5, 3]. On the other hand, for algebraic specification languages,
like Larch and CASL, people pay more attention to the techniques of applying
term rewriting rules and how to judge the observational equivalence of abstract
objects [14, 8, 11]. There is a clear distinction between methods used for model-
based specifications and algebraic specifications.

The Raise Specification Language (RSL) [16] is a language suitable for formal
specification and development of software systems. RSL is a “wide spectrum”
language. This means that it has features allowing its use for very abstract,
initial specifications and also for more concrete developments of an initial speci-
fication that can be easily (or even automatically) translated into a programming
language. RSL can be taken as a combination of model-based and algebraic spec-
ification languages. The ability to mix different styles within the same module
is very helpful in test case generation.

In this paper, we propose an approach to derive test cases from an RSL spec-
ification that has both a model-based part and an algebraic part. The approach
is based on the ideas that we choose some techniques which are suitable for RSL
and easy to implement from both model-based and algebraic testing techniques,
and combine them together. In this approach, roughly speaking, first partition
analysis is applied to functions and test calls corresponding to sub-domains are
extracted, then terms are constructed through iterative invocations of the test
calls, and test cases are generated by instantiating the variables in the left-hand
side and right-hand side of an axiom. The test cases can be executed and the
results are compared to check whether the test passes. A tool has been developed
to derive test cases from RSL specifications using this approach.

In Section 2 of this paper, we give the basic concepts used in our work. Section
3 describes the approach that derives test cases from RSL specifications. Section
4 is devoted to compare our work with other related work. The tool is briefly
described in Section 5. In Section 6, we conclude our work and make suggestions
for future work.

2 Basic Concepts

The RAISE Specification Language (RSL) is a modular language. Specifications
are in general collections of related modules. A scheme is the basic unit for
constructing modules through class expressions. In applicative style, a scheme
module S is defined as a triple:

S = 〈T ,V,A〉

where T is the type declaration and T = (T1, . . . , Tn), Ti (0 ≤ i ≤ n) is called a
type definition. V is the Value declaration and V = (V1, . . . , Vm), Vi (0 ≤ i ≤ m)
is a value definition. A is the axioms declaration and A = (A1, . . . , Al). We say
Ai (0 ≤ i ≤ l) is an axiom of the module.

The specification in Figure 1 is an example of RSL module that describes a
“first in – first out” queue buffer with input and output characters (represented
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scheme buffer =
class

type Buff = Int∗

value
empty : Buff = 〈〉,

input : Int × Buff → Buff
input(i, b) ≡

if i ≥ 32 ∧ i ≤ 126 then
if i ≥ 97 ∧ i ≤ 122 then

let j = i − 32 in b ̂ 〈j〉 end
else b ̂ 〈i〉 end

else b end,

output : Buff → Int × Buff
output(b) ≡ case b of

empty → (0, empty),
〈h〉 ̂ t → (h, t)

end,

count : Buff → Int
count(b) ≡ len (b),

has value : Buff → Bool
has value(m) ≡ m �= empty,

first value : Buff → Int
first value(b) ≡ case b of

empty → 0,
〈h〉 ̂ t → h

end,

last value : Buff → Int
last value(b) ≡ if len(b) > 1 then last value(tl b)

else first value(b) end
axiom

[ a1 ]
∀ i : Int, b : Buff •

count(let (j, m) = output(input(i, b)) in m end) ≤
count(b),

[ a2 ]
∀ i : Int, b : Buff •

input(i, b) ≡ b pre i < 32 ∨ i > 126
end

Fig. 1. RSL specification of an input-output buffer for ASCII characters
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by their ASCII values). The buffer accepts valid characters (with ASCII values
between 32 to 126), changes small case letters to upper case letters (transfer
ASCII values 97–122 to 65–90, respectively) and delivers the characters stored in
it when required. This module is a model-based specification which is developed
from an algebraic specification but some axioms remained in the module.

In RSL, there are three kinds of types [16]: built-in data types, abstract data
types and compound data types. In a RSL module, there may be many type
definitions, but only few of them are really modeling the system state, these
types can be referred as type of interest [12]. In this paper, we call the type of
interest a major type which represents the state of a module. State information
should be minimal in a module. Thus, there should be only one major type in a
well designed RSL module [12].

The following is the definition of major type:

Definition 1. Suppose T = {T1, . . . , Tn} are type definitions of module S. A
type definition Tk depends on type definition Tl if Tl appears in the type expres-
sion of Tk, where 1 ≤ k, l ≤ n. A type definition Ti (1 ≤ i ≤ n) is called a
major type of S if and only if none of the type definitions in T depend on Ti.
The major type is denoted as Tm.

In RSL, there are two kinds of value definitions: function and constant. For the
purpose of this paper, we take constant as a special kind of function which has no
input variable and only one output variable. So we consider all value definitions
as functions. RSL allows the user to describe functions either implicity, in terms
of their interfaces, or explicity, in terms of the details of their operations.

We define a function V ∈ V as:

V = 〈I,O,P,R〉

where I are input parameters and I = (i1 : I1, . . . , in : In). Each input parameter
here is an input variable ii of type Ii where Ii ∈ T . O are output parameters and
O = (o1 : O1, . . . , om : Om). Each output parameter here is an output variable
oj of type Oj where Oj ∈ T . I and O represent the interface of the function V .
P is a value expression which describe the precondition of the function. R is the
body part of the function in explicit style, or the postcondition of the function
in implicit style.

The concept of dividing operations into different categories is an important
idea in the testing of algebraic specifications [7, 8]. Inspired by [4], we give the
definition of creator, modifier and observer which are used to classify the func-
tions in RSL modules.

Definition 2. Suppose Tm is a major type of an RSL module. A function V
is called a creator of Tm if Tm appears in the output parameters and does not
appear in the input parameters of V . If Tm appears in both input parameters and
output parameters of V , V is called a modifier of type Tm. A function V is
called an observer of Tm if Tm appears in the input parameters and does not
appear in the output parameters of V .
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We use V c to represent a creator, V m to represent a modifier, V o to represent
an observer.

In the example shown in Figure 1, for instance, the function empty is a cre-
ator; input, output are modifiers; and the functions count, has value, first value
and last value are observers.

The creator functions give us a way to build a new sample of type Tm and
modifiers provide the methods to handle the type. If Tm is an abstract type,
observers provide the only way for us to query the content of Tm.

If there is only one major type Tm in the module, we can call the creators of
type Tm the creators of the module. So for modifiers and observers.

The word term has been used to define a sequence of operations in algebraic
specification languages. In the following part, we will give the definition of a
constructive term for this paper.

Definition 3. A sequence of function invocations, starting from the invocation
of a creator, followed by iterative invocations of modifiers through replacing the
input variables of major type Tm with the previous invocation sequence, is called
a constructive term of type Tm. The length of a constructive term is the
number of functions invoked in the term. A constructive term is called a ground
constructive term if all variables in the term are instantiated with concrete
values.

In RSL, a function may return more than one result. For the purpose of
constructing terms, we have to invoke a function in a special way that project
it to return only single value. In here, the value is of type Tm. For example, an
invocation of function output shown in Figure 1 that only returns one value of
type Buff can be expressed as:

Let (i, bo) =output(bi) in bo end

A constructive term can be referred as a function with output of type Tm. Let
π(Vi) represent the invocation of function Vi involving a projection to a single
return value. Then the general form of a constructive term is as follows:

cons = π(V m
1 (. . . ,π(V m

2 (. . . , . . . ,π(V m
n (. . . ,π(V c

j )))))))

Definition 4. An invocation of an observer function, through instantiating the
input variables of major type Tm with a constructive term, is called an observ-
able term. The length of an observable term is the number of functions
invoked in the term. An observable term is called a ground observable term
if all variables in the term are instantiated by concrete values.

An observable term can be referred as a function with one return value whose
type is other than type Tm. So the observable term obs will take the form :

obs = π(V o
k (. . . ,π(V m

1 (. . . ,π(V m
2 (. . . , . . . ,π(V m

n (. . . ,π(V c
j )))))))))
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An axiom itself is a Boolean expression which, by definition, must evaluate
to true. We denote an axiom as follows:

A = 〈Ul,Op, Ur, P re〉

where Ul and Ur are value expressions representing the left-hand side and right-
hand side of the axiom definition. Pre is the precondition of the axiom that is
also a value expression. Op is an operator which defines the way how to compare
Ul with Ur.

A value expression can be evaluated (or, synonymously, executed) to return
a value of definite type. The type of return value for Pre in above axiom must
be Boolean. If it is true, the precondition is satisfied and the evaluation of value
expressions Ul and Ur will be conducted. The return values, they are of the same
data type, are compared using Op to check whether the axiom holds. If the type
of Ul and Ur is primitive, like built-in types, the comparison could be easily
carried out. But for abstract data types, there are no straightforward methods
to judge the relationship of two values automatically.

In our case, if the type of Ul and Ur is a major type Tm and the operator Op
is equivalence, then we can apply an invocation of observer V o to this axiom A
to generate a variation of the axiom:

Am = 〈π(V o(Ul)),Op,π(V o(Ur)), P re〉

Because the data type of return value for π(V o(Ul)) and π(V o(Ur) is no longer
the abstract data type Tm, it is possible for us to check whether the axiom holds.
This idea gives us the inspiration in the construction of test cases.

Consider the axiom a2 in Figure 1. Since the right-hand side of a2 is of major
type, in order to derive test cases from this axiom, an observer, say last value,
is applied to a2, transforming axiom a2 into a variation a′

2
axiom

[ a′
2 ]
∀ i : Int, b : Buff •

last value(input(i,b)) ≡ last value(b)
pre i < 32 ∨ i > 126

3 Test Case Generation

In this section we present our approach to generate test cases by creating test
calls, sequencing them, and solving the oracle problem. For simplicity, we require
that the input specification should be well-formed, only one major type which
is considered as abstract data type exist in the module and there is at least one
creator, one modifier, and one observer in the module.

The whole process can be broken down into the following steps:

1. Analyse the specification, decide the major type and divide the functions
into three categories: creator, modifier, observer. This step is easy to be
conducted according to Definition 1 and Definition 2.
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2. For each function, apply partition analysis and divide the input domain into
subdomains. On each subdomain, instantiate the input variables except the
major type’s. Thus, we get a set of test calls for this function.

3. Decide an integer k and produce a collection of constructive terms and ob-
servable terms whose length is less than or equal to k by constructing from
the test calls of different functions.

4. Use axioms as test oracle by replacing the variables of the axiom itself or
a variation of the axiom with constructive terms and observable terms and
execute the left-hand side and right-hand side of the axiom separately. The
two results will be compared to decide whether the test passes or not.

Steps 2–4 will now be described in detail.

3.1 Partition Analysis

For a function V = 〈I,O,P,R〉, we collect the two parts of precondition and
function body (or postcondition) together to form a large value expression E =
P ∧R. Then partition analysis is carried out on E.

We adopt the well-know strategy proposed by [6] to partition the expressions
into their DNF. In [13], Meudec gives many coarse partitioning rules and refine-
ment rules for VDM-SL specification. Most of these rules and methods are used
in our work after amendment and extension.

After applying partition analysis, a partition P = {D1, . . . , Dn} for function
V is produced. Each subdomain Di is represented by a set of predicates that
give the constraint over input variables. We use CDi

= p1 ∧ . . . ∧ pm, where pj

(1 ≤ j ≤ m) is a predicate, to denote this constraint.
Consider a finite list of values DT = {i1, . . . , in} where n ≥ 1, with respective

types T = (T1, . . . , Tn) on subdomains Di, while DT satisfies the constraint CDi
.

We say that DT is a solution to constraint CDi
and V (DT ) is a test call of V .

DT is also referred as a test data of V . If no DT can be found for CDi
, then we

say subdomain Di is infeasible for V .
The job of instantiating at this stage is only for the input variables which

are not of major type. As an abstract data type, the major type could not be
instantiated directly in most cases. The approach to instantiate a major type
will be discussed in the next step.

A simple “generate and test” strategy, where a solution candidate is first
generated, then tested against the constraint for consistency, is adopted in our
work, because the predicates are quite simple in most situations. The constraint
CDi

= p1 ∧ . . . ∧ pm is first reordered by the number of variables contained in
each predicate pj so that the predicate with less variables will appear in front of
the constraint. Then, the variables in predicate p1 will be instantiated to ensure
p1 holds. The variables values instantiated in prior predicate will be checked
whether they meet the requirement of the current predicate, if not, or there
are no values for the variables of this predicate, new values will be calculated
for variables. This process continues until the last predicate has been coped.
Then, the set of obtained values will be evaluated against the whole constraint.
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If the evaluation is not successful, all values will be abandoned and the whole
process starts again. This procedure repeats until a set of values which satisfy
the constraint is found or the number of repetition exceeds a given limit. In this
case, it is assumed that this constraint is infeasible. As a future extension the
connection with a constraint solver as in [3] is envisaged.

Faults may either affect the behavior within a subdomain (computation fault)
or affect the boundaries of the subdomains (domain faults) [9]. Computation
faults are detected by choosing one or more test calls from each subdomain.
Domain faults are detected by testing around subdomain boundaries. So in our
approach, if possible, we construct several test calls from each subdomain Di,
one or more are around the boundaries and one is within the subdomain by
random selection.

For example, if we conduct partition analysis on function input in Figure 1, 7
subdomains will be generated. After resolving the constraints using our strategy
and instantiate values for each subdomain, we get 13 test calls from 5 feasible
subdomains. Note that input variable b is of major type and will be handled at
the next step.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

i ≥ 97 ∧ i ≤ 122
i < 97 ∧ i > 122
i ≥ 32 ∧ i < 97
i > 122 ∧ i ≤ 126
i < 32 ∧ i > 126

i < 32
i > 126

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

input(97,b); input(101,b); input(122,b)
∅

input(32,b); input(49,b); input(96,b)
input(123,b); input(125,b); input(126,b)

∅

input(31,b); input(-1032,b)
input(127,b); input(1782,b)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

3.2 Term Construction

Test calls for every function are now available. Input variables in each test call
have been replaced by concrete values except the ones of major type. Following
the categories of their functions, test calls can also be divided into three groups
: creator, modifier and observer.

The idea of using a sequence of invocations of functions, so called terms,
rather than test cases for individual functions, in the testing process was dis-
cussed in many papers [7, 4, 8]. An invocation to function V that only returns a
single value of major type Tm is denoted by πm(V ). The invocation to function
V that returns a single value other than of major type is denoted by πo(V ).

Let {πm(V c
i )}, {πm(V m

j )}, {πo(V o
l )} represent sets of invocations of test calls

whose functions correspond to creator, modifier and observer, respectively. In
order to build constructive terms, we start from a πm(V c

i ) to construct the
term, then we select a πm(V m

j ) and replace the input variables of major type
with the prior built term. This process continues until the length of the term
reaches the positive integer k. There are no un-instantiated variables, either of
a major type or of other data types, existing in the terms. So these constructive
terms are also ground constructive terms. Selecting a πo(V o

l ) and replacing the
input variables of major type with a constructive term, an observable term is
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generated. For observable terms, the situation is the same, they are also ground
observable terms.

For the purpose of illustration suppose the positive integer k = 4. From the
set of test calls built in the above step, a group of ground constructive terms with
length less than or equal to k is induced through replacing the input variables
of major type with the prior term.

1. empty
2. input(101, empty)
3. input(49, input(101, empty))
4. Let (io, bo) = output(input(49, input(101, empty))) in bo end

In the same way, a group of ground observable terms and their data types is
shown as :

1. has value(empty) : Bool
2. count(input(101, empty)) : Int
3. first value(input(49, input(101, empty))) : Int

3.3 Build Test Case

Let {CTi} (1 ≤ i ≤ n) be the set of constructive terms, and {OTj} (1 ≤ j ≤ m)
be the set of observable terms, where n,m ≥ 1. An axiom in the specification is
denoted as A = 〈Ul,Op, Ur, P re〉. We derive test cases from the axiom using the
algorithm shown in Figure 2.

In this algorithm, it is clear that if the return value of Ul and Ur of A
is of the major type Tm and the Op is equivalence (≡), a variation of axiom
Am = 〈π(V o(Ul)),Op,π(V o(Ur)), P re〉, instead of A itself, is actually used in
the process of generating test cases.

After the last step, a finite set of test cases is generated from the specification.
Each test case is denoted as a tuple Tc = 〈Tcl,Op, T cr, P re〉 which includes two
value expressions Tcl, Tcr and their relationship Op under precondition Pre. The
test cases not onlyprovide the test data tobe executed, but also serve as test oracles.

For instance, consider to derive a test case from axiom a2 of the specification
given in Figure 1. It should be noted that the return value of left-hand side or
right-hand side of the axiom is of major type, thus, a variation of the axiom, a′

2,
which can be found at the end of Section 2, is used in deriving test cases.

Note that axiom a′
2 has a precondition (i < 32 ∨ i > 126) that contains a

variable i which still is not instantiated. It is quite easy to select an integer i,
for instance i = 17, which satisfies the condition (i < 32∨ i > 126). By replacing
variable b in the axiom a′

2 with a constructive term: input(49, input(101, empty)),
we can generate a test case from the axiom:

Tc = 〈 last value(input(17,input(49, input(101, empty)))),
=,
last value(input(49, input(101, empty))),
17 < 32 ∨ 17 > 126 〉
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To apply the test case Tc = 〈Tcl,Op, T cr, P re〉 to an implementation, we
should map each function in Tcl, T cr and Pre to a method in the implementa-
tion program. As a result, this mapping generates three method sequences Ml,
Mr and Mpre in the program corresponding to Tcl, T cr and Pre, respectively.
For a complete implementation, this mapping exists and can be indicated man-
ually by the implementation designer or can be derived automatically from the
specification. After executing Ml, Mr and Mpre in the program and obtaining
results Ol, Or and Opre, if Opre is true, we compare Ol with Or with relation Op.
If it is satisfied, the test is passed, otherwise a implementation error is revealed
by test case Tc = 〈Tcl,Op, T cr, P re〉.

GenerateTestCase
Begin

Select axiom A = 〈Ul, Op, Ur, P re〉 ∈ A
T cl := Ul ; T cr := Ur ; P re := P re
Select CTi ∈ {CTi}
For each variable of major type in T cl, T cr, P re

T cl := T cl replace the variable with CTi

T cr := T cr replace the variable with CTi

P re := P re replace the variable with CTi

End For
For each variable of other data types in T cl, T cr, P re

If type of the variable is T
Select OTj ∈ {OTj} of data type T
T cl := T cl replace the variable with OTi

T cr := T cr replace the variable with OTi

P re := P re replace the variable with OTi

End If
End For
If result of T cl is of major type and Op is ≡

Select πo(V o
k ) ∈ {πo(V o

k )}
T cl := πo(V o

k ) replace major type input variable with T cl

T cr := πo(V o
k ) replace major type input variable with T cr

End If
Return Tc = 〈T cl, Op, T cr, P re〉

End

Fig. 2. Algorithm to derive test cases from axioms

3.4 Discussion

We have described every step of our approach to derive test cases from RSL
specification and use these test cases as test oracles. However, there are still
things remain unclear : determine the positive integer k and which individual
function test calls should be selected in constructing terms. These are equal to
the problems of how many test cases should be created for the testing process
and how the coverage of the test cases should be taken.
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Practically, we adopt the following criteria:

– The above positive integer k may be determined by first asking the user
give an acceptable value according to his understanding that major type
implemented in the program, such as the maximum sizes of arrays, or the
boundary values of variables. If the user does not wish to give the value, the
k will be default set to the number of functions in the specification plus 1.
This default k provides the possibility that every function could appear in
longest constructive terms;

– Each test call of creator or modifier should appear in the constructive terms
at least once. Each test call of observers should appear in the observable
terms at least once;

– Each constructive term and observable term should be tested at least once;
– Each axiom should be used to generate test cases at least once if the axiom

is capable to derive test cases.

4 Related Work

In the world of formal specification languages, model-based and algebraic speci-
fications are frequently regarded as separate and so are their testing techniques.
For testing of model-based specifications, as in VDM and Z, partition analysis is
a standard method that the work of Dick and Faivre [6] was a major contribu-
tion to. This method has been adapted and ameliorated in many other research
works [13, 2]. There are two major steps in the method.

1. Partition an operation’s input domain by reducing the input expression to
disjunctive normal form (DNF) and then derive test case from each DNF.

2. Construct a Finite Sate Automaton (FSA) from the specification by analysis
of the state space and operations. The FSA can be used to sequence the test
cases.

For partition analysis, it is quite difficult to solve the problem of test se-
quencing because of the characteristics of model-based specification. In the Dick
and Faivre paper, only generation of DNF (Step 1) was automated. Currently,
there is still no proposal which automates the full process [3]. At Step 2, there is
possible state explosion and the non-discovery problem which makes it difficult
to determine all the FSA states and transitions.

On the other hand, there are also many works on deriving test cases from
algebraic specifications. Testing code against algebraic specification consists of
showing that the final system satisfies the axioms in the specification[8].

In the ASTOOT approach [7], the concept of equivalent terms which are
valid sequences of invocations of operations has been presented and the idea
of using pairs of equivalent terms, rather than individual operations, as test
cases was adopted. The equivalent terms are generated by term rewriting of the
axioms of the specification. A test case consists of pairs of terms and a flag
indicating the relationship between the terms (equivalent or not). A strategy of
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“approximate check” for object observational equivalent was proposed, known
as the EQN method.

Motivated by the work of ASTOOT, Chen et al [4] used fundamental pairs,
which are pairs of equivalent ground terms formed by replacing all the variable
on both sides of an axiom by normal forms, as test cases. They also gave a new
algorithm referred as “relevant observable context approach“ for determining
the observational equivalence of two objects.

Using algebraic specifications, it is easy to create test data and to solve
the oracle problem. But the algebraic style is often criticized as rather restric-
tive and cumbersome to use in practice. Some important features of programs,
for example non-termination and higher-order functions, are difficult to model
in algebras; equations are often not expressive enough to conveniently capture
properties which one may want to state as requirements.

Our test approach is based on RSL, which can be considered as a combination
of an algebraic specification language and a model-based specification language,
that allows the development of an implementation to be based on the model-
based specification while providing the additional capability of algebraic specifi-
cation for validating the specification. So our approach can hopefully inherit the
above advantages from both algebraic and model-based testing techniques, and
overcome the problems within those techniques.

Concerning the experience in the above papers, we take Dick and Faivre’s
partition analysis technique to construct disjunctive normal form (DNF) and
derive the test calls from these DNF and we do not need to build a Finite State
Automaton (FSA) in our approach. We adapt the ideas of ASTOOT [7] and
Chen et al [4] that sequences of operations and axioms are used in building test
cases to our approach. However, there are still few distinctions between their
approaches and ours:

1. The approaches of ASTOOT and Chen impose many restrictions on the
axioms that can be used to produce pairs of equivalent terms. For example,
the axiom must be an equational axiom, the variables which occur in one
side of the axiom should also appear on the other side and the return value
of left hand side or right hand side of the axiom will be the main class[4].
These restrictions mean only a few axioms can be used to derive test cases
with. In contrast, our approach puts no restrictions on axioms. Almost every
axiom is able to be used to generate test cases.

2. The concept of observational equivalence of two abstract objects is not
adopted in our approach and so we do not have any complicated algorithms,
neither coarse nor accurate, to determine if objects are observational equiv-
alence. In our approach, the return values of test cases are always of simple
data types which are easy to compare. If the return value of the left hand
side or right hand side of an axiom is of abstract data type, a variety of
the original axiom, which has the simple return data type, will be used to
generate test cases.
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5 The Tool

The tool that implements the automatic generation test cases from RSL speci-
fications is based on the approach described in the above sections. It has been
written using the Gentle Compiler Construction System, a modern toolkit for
compiler writers and implementors of domain specific languages, and amounts to
a little more than ten thousand lines of Gentle code. The tool itself is integrated
in the “rsltc” RAISE tools which provide type checking, pretty-printing, gener-
ation of confidence conditions, showing module dependencies, and translation to
Standard ML and to C++.

The tool hooks onto the back of the RSL type checker to extract represen-
tations of RSL specifications in the form of abstract syntax trees and Gentle
environment variables as the tool’s input and produces as output a separate file
containing the test cases, or includes the test cases into the original RSL file.
That means the tasks of reading RSL files, analysing the structures and check-
ing their syntax are performed by the RSL type checker. We can also use the
C++ translator to translate the RSL specification and its test cases into a C++
program and execute the program immediately in order to evaluate the effect of
the test cases.

Test case declarations are a new extension to RSL to support interpretation
and translation. A test case declaration starts with the keyword test case and
followed by one or more test case definitions. Using the specification in Figure 1
as input, the test case generation tool produces as output a RSL test case
declaration. Two of those test cases are presented as follows:

test case

[ t1 left ] count( let (j, m) = output( input( first value( input(49,
input(101, empty))), input(49, input(101, empty))))
in m end),

[ t1 right ] count(input(49, input(101, empty))),
[ t1 result ] count( let (j, m) = output( input( first value(input(49,

input(49, input(101, empty))),input(49, input(101, empty))))
in m end) ≤ count(input(49, input(101, empty))),

[ t2 left ] last value(input(17, input(49, input(101, empty)))),
[ t2 right ] last value(input(49, input(101, empty))),
[ t2 pre ] 17 < 32 ∨ 17 > 126,
[ t2 result ] last value(input(17, input(49, input(101, empty)))) =

last value(input(49, input(101, empty)))

Appending the RSL test case declaration generated by the tool to the original
specification in Figure 1, a new version of the specification is created. The C++
translator is applied to translate the new specification into a C++ file. After
compiling the C++ file and executing it, we get the final testing results. The
testing results of the above two test cases are shown as follows:
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[ t1 left ] 2
[ t1 right ] 2
[ t1 result ] true
[ t2 left ] 49
[ t2 right ] 49
[ t2 pre ] true
[ t2 result ] true

The tool can be seen at the web site: http://www.gzas.org/rslweb.

6 Conclusion

In this paper, we have presented an approach to generate test cases from RSL
specifications. In contrast to other’s work, our approach combines the techniques
for testing algebraic specifications and model-based specifications. This approach
can be fully automatic and we design a tool to derive test cases from RSL
specifications using our approach. The overall aim of our work is to make RSL
being actually used in industrial software development through building a series
of tools that could be helpful to this process. Our approach, in order to be
implemented as the test cases generating tool, must be based on techniques
which should be very effective, reliable and practical.

In order to make the application of our approach to non-trivial specification
practical, there are many issues remaining unsolved. While we have focused so
far on module-testing, there are also many interesting questions pertaining to
how to extend our approach to system level. In RSL, a system is a collection
of modules organized in a hierarchy through class extending or instantiating
children modules as objects in parents [12]. We shall also consider to introduce
mutation testing technique [1] to our approach to examine whether our test cases
have enough coverage to find the errors in a mutant specification. In the future,
we also hope to do some research work on how to apply coalgebra theory, which is
a relatively new research field, to the test cases generation of RSL specifications.
Ultimately, we hope to use the results of these work to expand and improve
our tool.
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Abstract. The Semantic Web vision is being realized to reach the full
potential of the Web. Semantic data modeling is the foundation of the
Semantic Web. The Web Ontology Language (OWL) and OWL Rules
Language (ORL) provides basic machinery to the semantic mark-up for
data. However, there is limited tool support for OWL and no tool sup-
port currently for ORL. In this paper, we propose to model OWL and
ORL language semantics in PVS specification language so that OWL
and ORL ontologies can be transformed and verified in the Prototype
Verification System (PVS). PVS user-defined proof strategies are also
developed to automate the proof process.

Keywords: PVS, Semantic Web, OWL, ORL, reasoning.

1 Introduction

Unlike conventional web as we have now, the Semantic Web (SW) [2] is a plat-
form for inter-machine data and information exchange, filtering, integration, etc.,
across organizational boundaries without human supervision. It extends the cur-
rent web and reaches its full potential by making it truly ubiquitous and ready
for the machines. The Web Ontology Language (OWL) [7], a Recommendation
by World Wide Web Consortium (W3C), defines the basic vocabulary for de-
scribing data on the web and is a layer on which Web Services can be developed.
In a way, modeling of data using OWL is an important part of requirements
engineering for Semantic Web.

In order for intelligent software agents to automatedly process data on the
web, ontology languages such as DAML+OIL and (part of) OWL were originally
designed to be decidable [19, 22]. However, the trade-off is the limited expressive-
ness, which forbids some very desirable properties to be specified. To partially
overcome this limitation of OWL, the OWL Rules Language (ORL) [12] has
recently been proposed by Horrocks & Patel-Schneider.

Reasoning tool support for OWL is limited at the moment. Moreover, cur-
rently there is no tool support for ORL. SW reasoning tools such as FaCT [11]
and RACER [10] have been developed to be fully automated; hence they can-
not support ORL without major modification. However, as it can be foreseen
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that ORL be integrated into the ontology languages hierarchy, the correctness
of OWL and ORL ontologies is crucial to establishing trust in Semantic Web.

SW can be regarded as an emerging area from the knowledge representation
and the web communities. The software engineering community can also play
an important role in the SW development. Software verification techniques can
be applied to check SW ontology related properties. We believe SW will be
a new research and application domain for software engineering, especially for
software verification techniques. In this paper, we propose to develop reasoning
environment in PVS for OWL and ORL.

The rest of the paper is organized as follows. We briefly introduce the Se-
mantic Web, ontology languages, tools and PVS in Section 2. In Section 3, we
present PVS semantics for OWL with ORL axioms. In Section 4, we concisely
discuss transformation from ORL to PVS. Reasoning support for OWL and ORL
using PVS theorem prover is presented through a few case studies in Section 5.
Section 6 presents related works, summarizes our contribution and discusses
possible future works.

2 Overview

2.1 Semantic Web, Languages and Tools

Semantic Web. Although the traditional World Wide Web (WWW) was origi-
nally designed for machine processing, it ends up to be consumed only by human,
i.e., web contents are only visually marked-up for humans to read. To reach the
its full potential, it is necessary to make the web a platform for intelligent soft-
ware agents to interact with each other to accomplish complex tasks without
human supervision. To achieve this goal, data on the web must be given struc-
tured and precise meaning so that software agents can process data cooperatively
and autonomously. The Semantic Web [2] was proposed by Tim Berners-Lee as
the next generation of the web and it is now a W3C activity in its second phase.

Ontology Languages. Data in SW are represented by ontologies, which define
their concepts and relationships. Ontology languages provide vocabularies for
expressing ontologies.

Built on top of XML, the Resource Description Framework (RDF) [14] is a
model of metadata defining a mechanism for describing resources without as-
sumptions about a particular application domain. RDF describes web resources
in a simple triplet format: 〈subject predicate object〉, where subject is the resource
of interest, predicate is one the properties of this resource and object states the
value of this property. RDF Schema [4] provides facilities to describe RDF data.
RDF Schema allows structured and semi-structured data to be mixed together,
which makes them hard for machines to process.

The syntactic ambiguity and relatively limited expressiveness of RDF Schema
is partially overcome by the DARPA Agent Markup Language (DAML) [19],
which is built on top of RDF Schema and based on description logics. DAML
pooled effort with the Ontology Inference Layer project [5] to produce the ontol-



Verifying OWL and ORL Ontologies in PVS 267

ogy language DAML+OIL. It provides a richer set of language primitives to de-
scribe classes and properties than RDF Schema and allows only structured data.

In 2004, a new ontology language based on DAML+OIL, the Web Ontology
Language (OWL) [21] became the W3C Recommendation. It consists of three sub-
languages: OWL Lite, DL & Full, with increasing expressiveness. These languages
are designed for user groups with different requirements. OWL Lite & DL are de-
cidable but Full is generally not. The undecidability of OWL Full comes from re-
laxing certain constraints from OWL DL. For example, OWL Full does not enforce
the mutual exclusiveness between classes, properties, data values and individuals.

Although the design of OWL has taken into consideration of the different
expressiveness needs of different user groups, it is still not expressive enough.
Some very desirable properties cannot be expressed even in OWL Full. An im-
portant reason for this is that although the language provides a relatively rich
set of language primitives for describing classes, it does not provide as many
primitives for describing properties. For example, it does not support property
composition. In the light of this weakness, Horrocks and Patel-Schneider [12]
proposed an extension to OWL, the OWL Rules Language (ORL), in a syntac-
tically and semantically coherent manner. ORL incorporates Horn clause rules
into OWL and makes rules part of axioms that can be used to express more
complex classes and properties.

The major extensions of ORL are the inclusion of Horn clause rules and vari-
able declarations. The rules are in the form of antecedent → consequent, where
both antecedent and consequent are conjunctions of atoms: class membership,
property membership, individual (in)equalities. Informally, a rule means that if
the antecedent holds, then the consequent must also hold. A simple example rule
shown below states that if ?b is a parent of ?a and ?c is a brother of ?b, then
?c is an uncle of ?a.

parent(?a, ?b) ∧ brother(?b, ?c)→ uncle(?a, ?c)

Ontology Tools. Various ontology tools have been built to support the de-
velopment of the SW, such as ontology design, creation, management, merging,
maintenance, publishing, reasoning, etc. In the rest of this section, we will briefly
introduce a few reasoning tools.

FaCT (Fast Classification of Terminologies) [11] is a description logics clas-
sifier developed at University of Manchester. FaCT supports automated concept-
level reasoning (concept subsumption and satisfiability testing), but not instance-
level reasoning. Currently FaCT supports DAML+OIL and OWL.

RACER (Renamed ABox and Concept Expression Reasoner) [10] is a rea-
soner for the description logic ALCQHIR+(D)− [9]. It has a much richer set
of functionalities compared to that of FaCT, including ontology creation, query,
retrieval and evaluation, knowledge base conversion to DAML+OIL/OWL, etc.

2.2 PVS

The Prototype Verification System (PVS) is an integrated environment for the
development of formal specifications written in the PVS specification language
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[17]. It supports a wide range of activities in specification development: creation,
documentation, type-checking, theorem-proving, etc. The distinguishing feature
of PVS is its synergistic integration of an very expressive specification language
and powerful theorem-proving capabilities.

PVS provides an expressive specification language that augments classical
higher-order logic with a sophisticated type system with predicate subtypes and
dependent types, and with parameterized theories and a mechanism for defining
abstract data types such as lists and trees.

PVS specifications are organized into theories, which define data types, ax-
ioms, theorems and conjectures that can be reused by other theories.

PVS has a powerful interactive theorem prover/proof checker [16]. The ba-
sic deductive steps in PVS are large compared with many other systems: there
are atomic commands for induction, quantifier reasoning, automatic condition
rewriting, simplification, etc. User-defined proof strategies can be used to en-
hance the automation in the proof checker.

The proof goal in PVS is represented as a sequent which consists of a list
of formulas called antecedents and a list of formulas called consequents. The
interpretation of a sequent is that the conjunction of the antecedents implies
the disjunction of the consequents. Either or both of the antecedents and conse-
quents may be empty. An empty antecedent is equivalent to true, and an empty
consequent is equivalent to false, so if both are empty the sequent is false. Every
proof in PVS starts with a single consequent. It can be seen that the structure
of sequents in PVS very much resembles that of the rules in ORL except that
in ORL the conjunction of antecedents implies the conjunction of consequents.
But as pointed out in [12] that an ORL rule of multiple consequents can be
easily transformed into multiple rules each with a single consequent. Therefore
we believe PVS is a natural reasoner for ORL.

3 PVS Semantics for OWL and ORL

In order to use PVS to verify and reason ontologies with ORL axioms, it is
necessary to define the PVS semantics for OWL & ORL. This semantic model
forms the reasoning environment for verification using PVS theorem prover. In
this section, we present a PVS specification for a subset of OWL Full language
primitives and the newly proposed ORL. The complete model can be found
online1.

3.1 PVS Semantics for OWL Constructs

Basic Concepts

Everything in Semantic Web is a Resource. So we model it by defining a non-
empty type in PVS.

RESOURCE: TYPE+

1 http://www-appn.comp.nus.edu.sg/~rpfm/ORL2PVS
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In OWL Full the universe of individuals consists of all resources. Thus we
define Individual to be a type equivalent to Resource.

INDIVIDUAL: TYPE+ = RESOURCE

Each class in OWL is a resource, which has a number of individuals associated
with it: the instances of this class. So we model Class as a subtype of Resource
and define a function instances that maps a class to a set of individuals.

CLASS: TYPE+ FROM RESOURCE
instances: [CLASS -> set[INDIVIDUAL]]

A property relates resources to resources. So we model Property as a predicate
over a tuple of two resources.

PROPERTY: TYPE = pred[[RESOURCE,RESOURCE]]

Class Relationships

The property subClassOf is defined as a boolean function from two classes. For
a class c1 to be the sub-class of class c2, the instances of c1 must be a subset
of the instances of c2.

subClassOf?(c1,c2:CLASS): bool =
(

subset?(instances(c1),instances(c2))
)

Other class relationship properties such as disjointWith and equivalentClass
are similarly defined.

Class and Property

The property allValuesFrom attempts to establish a maximal set of individuals
as a class. It defines a class c1 of all individuals i1 for which it holds that if the
pair (i1,i2) is in the property p implies that i2 is an instance of class c2. So
we model it as a function from a property p and a class c2 to a class c1 and
specify its meaning as an axiom as follows.

allValuesFrom: [PROPERTY, CLASS -> CLASS]
allValuesFrom_ax: AXIOM FORALL (c1,c2:CLASS),(p:PROPERTY):

(allValuesFrom(p,c2) = c1 IMPLIES FORALL (i1:INDIVIDUAL):
member(i1,instances(c1)) IFF FORALL (i2:INDIVIDUAL):

(p(i1,i2) IMPLIES member(i2,instances(c2)))))

Property Relationships

The property subPropertyOf states that a property p1 is a sub-property of pro-
perty p2 if and only if all pairs (i1, i2) in p1 are also in p2. Therefore it is
modeled as a boolean function of two properties.

subPropertyOf?(p1,p2:PROPERTY): bool =
(

FORALL (i1,i2:INDIVIDUAL): (p1(i1,i2) IMPLIES p2(i1,i2))
)
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3.2 ORL Extension

In ORL [12], a rule consists of an antecedent and a consequent, each of which
consists of a (possibly empty) set of atoms. Atoms can be of the form C (x ),
P(x , y), sameAs(x , y) or differentFrom(x , y), where C is an OWL class descrip-
tion, P is an OWL property, and x , y are either variables, OWL individuals
or OWL data values. Informally, an atom C (x ) holds if x is an instance of the
class description C , an atom P(x , y) holds if x is related to y by property P ,
an atom sameAs(x , y) holds if x is interpreted as the same object as y , and an
atom differentFrom(x , y) holds if x and y are interpreted as different objects. A
rule may be read as meaning that if the antecedent holds (is ”true”), then the
consequent must also hold.

An ORL rule will be modeled as a PVS rewrite rule, e.g., a universally quan-
tified predicate of the form

a1 ∧ a2 ∧ ... ∧ am ⇒ c1 ∧ c2 ∧ ... ∧ cn

where ai and cj are one of the four forms of atoms.

3.3 Proof Support for PVS

To make the proving process of PVS more automated, a set of rewrite rules and
theorems is also defined. They aim to hide certain amount of underlying model
from the verification and reasoning and to achieve abstraction and automation.
Usually these rules relate several classes & properties by defining the effect of
using them in a particular way. One simple example is the subClassOf_transitive

theorem. It states that if a class c1 is a sub-class of a class c2 and c2 is a sub-class
of a class c3, then c1 is a sub-class of c3.

subClassOf_transitive: THEOREM FORALL (c1,c2,c3:CLASS):
subClassOf?(c1,c2) AND subClassOf?(c2,c3) IMPLIES

subClassOf?(c1,c3)

The following theorem, member subClassOf states that an instance of a par-
ticular class is also an instance of all the super classes of this class.

member_subClassOf: THEOREM
FORALL (i:INDIVIDUAL),(c1,c2:CLASS):

member(i, instances(c1)) AND subClassOf?(c1,c2)
IMPLIES member(i, instances(c2))

4 Transforming ORL to PVS

As ORL is an extension to OWL with the inclusion of rules, we perform the
transformation in two steps. We transform OWL constructs into PVS specifica-
tions first, followed by the transformation of ORL rules.

We have developed a tool in Java to automatically transform OWL ontologies
into PVS specifications. For example, the following ontology fragment defines a
class Person and specifies some of its properties. The transformed PVS fragment
is shown at the right.
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<owl:Class rdf:ID="Person">
<rdfs:subClassOf rdf:resource="#Animal"/>
<rdfs:subClassOf><owl:Restriction>

<owl:onProperty
rdf:resource="#hasParent"/>

<owl:allValuesFrom
rdf:resource="#Person"/>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction owl :cardinality="1">
<owl:onProperty

rdf:resource="#hasFather"/>
</owl:Restriction></rdfs:subClassOf>

<owl:unionOf rdf:parseType="Collection">
<owl:Class prefab="#Man"/>
<owl:Class prefab="#Woman"/>

</owl:unionOf></owl:Class>

Person: CLASS
Person_union_ax:

AXIOM Person=unionOf((:Man,Woman:))
Person_subClassOf_ax_1:

AXIOM subClassOf?(Person,Animal)
Person_subClassOf_ax_2: AXIOM subClassOf?

(Person,allValuesFrom(hasParent,Person))
Person_subClassOf_ax_3: AXIOM subClassOf?

(Person,cardinality(hasFather,1))

In order to facilitate reasoning about numbers, data type properties are trans-
formed into predicates and functional data type properties are transformed into
functions. The advantage of doing this will become clearer when we discuss rea-
soning in Section 5. For example, transformation of the datatype property age
is given below the OWL fragment:

<owl:DatatypeProperty rdf:ID="age">
<rdf:type rdf:resource="http://www.w3.org/

2002/07/owl#FunctionalProperty"/>
<rdfs:range rdf:resource="http://www.w3.org/

2000/10/XMLSchema#nonNegativeInteger"/>
</owl:DatatypeProperty>

age: [INDIVIDUAL -> Nat]

The tool we developed is also capable of transforming instance ontologies into
PVS specifications. For example, the following shows an OWL instance ontology
fragment and the corresponding PVS specification.

<Description rdf:ID="Ian">
<rdf:type>

<owl:Class rdf:ID="Person"/>
</rdf:type>
<shoe size>14</shoe size>
<age>37</age>

</Description>

Ian: INDIVIDUAL
Ian_Person_ax:

AXIOM member(Ian,instanceOf(Person))
Ian_shoesize_14_ax: AXIOM shoe_size(Ian)=14
Ian_age_37_ax: AXIOM age(Ian)=37

Transformation of ORL rules is straightforward. Each rule is transformed
into an axiom, which is a universally quantified Horn clause with each of the
atoms transformed into a predicate. For example,

<owlr:Rule rdf:ID="Rule1">
<owlr:antecedent>

<owlr:individualPropertyAtom polypro="hasParent">
<owlr:Variable tournament="x1" />
<owlr:Variable tournament="x2" />

</owlr:individualPropertyAtom>
<owlr:individualPropertyAtom polypro="hasBrother">

<owlr:Variable tournament="x2" />
<owlr:Variable tournament="x3" />

</owlr:individualPropertyAtom>
</owlr:antecedent>
<owlr:consequent>
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<owlr:individualPropertyAtom polypro="hasUncle">
<owlr:Variable tournament="x1" />
<owlr:Variable tournament="x3" />

</owlr:individualPropertyAtom>
</owlr:consequent>

</owlr:Rule>

is transformed into

Rule1_ax: AXIOM FORALL (x1,x2,x3: RESOURCE)
hasParent(x1,x2) AND hasBrother(x2,x3)

IMPLIES hasUncle(x1,x3)

5 Ontology Reasoning Using PVS

In this section, we demonstrate how PVS can be used to check ontology-related
properties and to reason beyond the modeling power of OWL & ORL. It is
presented in two parts. Firstly, standard SW reasoning are performed. In the
second part, we show how PVS can reason ORL and more complex properties
that even ORL cannot express.

5.1 Standard SW Reasoning

Standard SW reasoning includes three categories, namely inconsistency checking,
subsumption reasoning and instantiation reasoning. The following subsections
illustrate each category with an example.

Inconsistency Checking. Ensuring the consistency of ontologies is an impor-
tant task in various stages of ontology development, as inconsistent ontologies
may lead agents to reason erroneously and make wrong conclusions.

To be precise, knowledge base consistency amounts to verifying whether every
concept in the knowledge base admits at least one individual [15].

The following is an example of inconsistency checking in the animal ontol-
ogy. After transforming the ontology into a PVS specification, we identified the
following closely related classes, properties and their axioms.

Animal,Vegetarian,Cow,MadCow,Food,Meat,Vegetable:CLASS
eats:O_PROPERTY
Vegetarian_subClassOf_ax_1: AXIOM subClassOf?(Vegetarian,Animal)
Vegetarian_allValuesFrom_ax_1: AXIOM Vegetarian=allValuesFrom(eats,Vegetable)
Cow_subClassOf_ax_1: AXIOM subClassOf?(Cow,Vegetarian)
MadCow_subClassOf_ax_1: AXIOM subClassOf?(MadCow,Cow)
MadCow_subClassOf_ax_2: AXIOM subClassOf?(MadCow,someValuesFrom(eats,Meat))
Meat_subClassOf_ax_1: AXIOM subClassOf?(Meat,Food)
Vegetable_subClassOf_ax_1: AXIOM subClassOf?(Vegetable,Food)
Vegetable_disjointWith_ax_1: AXIOM disjointWith?(Vegetable,Meat)

We suspect that there is an inconsistency in the class of MadCow . To prove
that, we assert the following theorem, which means that the class of MadCow
does not admit any individual.

MadCow_inconsistent: THEOREM
(EXISTS (i:INDIVIDUAL):member(i, instances(MadCow))) IMPLIES FALSE
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After applying (lemma) to supply PVS with known facts (axioms), applying
(skolem!) to remove quantifiers and instructing PVS to understand the subclass
relationship between MadCow and Vegetarian, we need to prove
member(i!1,instances(Vegetarian)), that i !1 is a member of Vegetarian, which
can be proved by the theorem member subClassOf introduced in Section 3.3.

By expanding the definition of Vegetarian and exploiting the fact that
MadCow is a subclass of an anonymous class that eats Meat , we can finish
up the proof using a (grind), which is a catch-all strategy that is frequently
used to automatically complete a proof branch or to apply all the obvious sim-
plifications.

Subsumption Reasoning. The task of subsumption reasoning is to infer that
an OWL class is a sub-class of another. This could be accomplished in PVS fairly
automatically. One of the simplest ways is by using the fact that subClassOf? is
a transitive property, which can be easily proved by PVS.

There are other ways of proving subsumption relationships. One of them is
by inter-class relationships such as intersectionOf and UnionOf. For example, we
have the following transformed ontology fragment and we want to prove that the
class TallMan is a subclass of Person using theorem TallMan subClassOf Person
defined on the right:

TallMan_intersection_ax: AXIOM
TallMan=intersectionOf((:TallThing,Man:))

Person_union_ax: AXIOM
Person=unionOf((:Man,Woman:))

TallMan_subClassOf_Person: THEOREM
subClassOf?(TallMan,Person)

The main steps of this proof are to prove separately subClassOf?(TallMan,Man)

and subClassOf?(Man,Person). Then the simple subsumption reasoning can finish
proving the theorem. The above two goals can be proved by the application of
two user defined theorems relating intersectionOf and unionOf to subClassOf ,
respectively.

Instantiation Reasoning. Instantiation reasoning asserts that one resource
is or is not an instance of a class. Some SW reasoning tools such as FaCT
are designed to only support concept-level reasoning. Hence reasoning at the
instance-level cannot be performed by these tools. We demonstrate through an
example that PVS supports instance-level reasoning.

In the example ontology, we defined an individual called Santa, who can move
by both walking and flying, by the following axioms.

Santa_moves_walk_ax: AXIOM moves(Santa,walk)
Santa_moves_fly_ax: AXIOM moves(Santa,fly)

We want to prove that Santa is not an instance of the class Person. By
stating the facts that all instances of the Person class can move only by walk,
that the individual Santa can fly, and that walk and fly are disjoint, we can
finish the proof with a (grind) command.
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Table 1. The Model of Scheduling Tasks

:Agent a owl:Class. :a1 a Agent. :tp1 a TimePoint;
:Task a owl:Class. :a2 a Agent. :precedes :tp2.
:TimePoint a owl:Class. :t1 a Task; :tp2 a TimePoint;
:Data a owl:Class. :starts :tp1; :precedes :tp3.
:relatesTo a owl:TransitiveProperty; :ends :tp3; :tp3 a TimePoint;

rdfs:domain Task; :assignedTo :a1. :precedes :tp4.
rdfs:range Task; :t2 a Task; :tp4 a TimePoint;

:assignedTo a owl:ObjectProperty; :starts :tp2; :precedes :tp5.
rdfs:domain Task; :ends :tp4; :tp5 a TimePoint.
rdfs:range Agent. :uses :d2; :d1 a Data.

:starts a owl:ObjectProperty; :assignedTo :a2. :d2 a Data.
rdfs:domain Task; :t3 a Task;
rdfs:range TimePoint. :starts :tp4;

:ends a owl:ObjectProperty; :ends :tp5;
rdfs:domain Task; :relatesTo :t1;
rdfs:range TimePoint. :uses :d1;

:precedes a owl:TransitiveProperty; :assignedTo :a2.
rdfs:domain TimePoint;
rdfs:range TimePoint.

:overlaps a owl:ObjectProperty;
rdfs:domain Task;
rdfs:range Task.

:uses a owl:ObjectProperty;
rdfs:domain Task;
rdfs:range Data.

5.2 Checking ORL and Beyond

The above examples demonstrate PVS’s power of performing consistency, sub-
sumption and instantiation reasoning about OWL ontologies with certain degree
of automation. Now we shall illustrate that PVS can reason about ORL and more
complex properties that even ORL cannot capture.

ORL Reasoning. As stated earlier, one important reason of OWL expressive
limitation is that while the language contains a rich set of class constructors, very
little can be said about properties. Even simple composition of two properties
is impossible to represent. It is for this reason that ORL is proposed. Here we
demonstrate how PVS can act as a reasoner to support ORL.

We illustrate our idea with an example ontology about scheduling agents
for different tasks, which is represented in n3 [3] syntax below in Table 1. The
main reasoning task is, given a schedule and a set of constraints, to determine
whether the schedule violates the constraints. Informally, there is a set of tasks
and a set of agents. Any task can be assigned to any agent. There is also a set of
discrete time points and a set of data. A time point may precede another. Each
task starts and ends at a particular time point and may possibly use a piece of
data. A task could relate to another task. Some tasks may overlap with some
other task(s).

Four rules capture the requirements of the system. The first one states that
an agent cannot be assigned to two overlapping tasks. The transformed PVS
theorem is given on the right.
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Task(t1) ∧ Task(t2) ∧
Agent(a1) ∧ Agent(a2) ∧
assignedTo(t1, a1) ∧ assignedTo(t2, a2)

∧ overlaps(t1, t2) →
differentFrom(a1, a2)

rule_1: AXIOM FORALL(t1,t2,a1,a2 : RESOURCE):
member(t1,instances(Task)) AND
member(t2,instances(Task)) AND
member(a1,instances(Agent)) AND
member(a2,instances(Agent)) AND
assignedTo(t1,a1) AND assignedTo(t2,a2)
AND overlaps(t1,t2)

IMPLIES
differentFrom?(a1,a2)

Since ORL rules transformation to PVS is straightforward, as we previously
mentioned in Section 4, we will omit the PVS version of the following rules.

The second rule requires that related tasks must be assigned to the same
agent.

Task(t1) ∧ Task(t2) ∧ Agent(a1) ∧ Agent(a2) ∧
assignedTo(t1, a1) ∧ assignedTo(t2, a2) ∧ relatesTo(t1, t2) →
sameAs?(a1, a2)

The third rule requires that any two overlapping tasks cannot use the same
piece of data.

Task(t1) ∧ Task(t2) ∧ Data(d1) ∧ Data(d2) ∧
uses(t1, d1) ∧ uses(t2, d2) ∧ overlaps(t1, t2) →
differentFrom?(d1, d2)

The last rule defines when two tasks are overlapping - when one task that
starts earlier ends after the other task starts.

Task(t1) ∧ Task(t2) ∧
TimePoint(tp1) ∧ TimePoint(tp2) ∧ TimePoint(tp3) ∧ TimePoint(tp4) ∧
starts(t1, tp1) ∧ ends(t1, tp2) ∧ starts(t2, tp3) ∧ ends(t2, tp4) ∧
precedes(tp1, tp3) ∧ precedes(tp3, tp2) →
overlaps(t1, t2)

To prove that the schedule violates some of the constraints, we simply prove
the following PVS theorem: violateConstraint: theorem FALSE.

A proof strategy is intended to capture patterns of inference steps. A defined
proof rule is a strategy that is applied in a single atomic step so that only the
final effect of the strategy is visible and the intermediate steps are hidden from
the user. We define a number of proof strategies, such as (installTimePoint),
(installData), (installAgent), etc., each of which introduces all the axioms one
by one of a particular class. The following strategy introduces to PVS all facts
related to all the time points.

(defstep installTimePoint ()
(then

(lemma "tp1_instanceOf_ax")
(lemma "tp1_precedes_ax")
(lemma "tp2_instanceOf_ax")
(lemma "tp2_precedes_ax")
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(lemma "tp3_instanceOf_ax")
(lemma "tp3_precedes_ax")
(lemma "tp4_instanceOf_ax")
(lemma "tp4_precedes_ax")
(lemma "tp5_instanceOf_ax")

)
"Installing all axioms of TimePoint"
"Installing all axioms of TimePoint"

)

Then we also define a strategy which finds and installs the transitive closure
of the property precedes, i.e., the relative temporal order of all pairs of time
points, as follows. This is needed for determining instances of the overlaps
property later.

(defstep installAllPrecedes ()
(then

(lemma "precedes_transitive_ax")
(rewrite "transitiveProperty?")
(try (forward-chain -1) (installAllPrecedes) (delete -1))

)
"Finding and installing all precedes property instances"
"Finding and installing all precedes property instances"

)

Basically this strategy repeatedly forward-chains the precedes_transitive_ax

axiom until there is no more effect. Similarly, we find all instances of the property
relatesTo by using the strategy installAllRelatesTo (not shown here).

Now we apply the rules. First, we apply the fourth rule to discover all in-
stances of the property overlaps by using the strategy installAllOverlaps

below.
(defstep installAllOverlaps ()

(then
(lemma "rule_4")
(try (forward-chain -1) (installAllOverlaps) (delete -1))

)
"Finding and installing all overlaps property instances"
"Finding and installing all overlaps property instances"

)

Then we can apply the other three rules one by one by using strategies
similarly.

We apply the (grind) command, which proves the theorem. It means that
the schedule cannot satisfy the conjunction of all constraints. A closer look at
the ontology discovers that tasks t1 and t2 are related and yet overlapping. This
reasoning technique becomes more important when the ontology contains more
classes and more complicated properties.

Reasoning Beyond ORL. One example that OWL & ORL cannot deal with
is the concrete domains: it can only make assertions about linear (in)equalities
of cardinalities of property instances over integer. PVS, on the other hand, can
perform basic arithmetic operations and comparisons, which we believe could
improve the proof power beyond SW.

We illustrate the idea with the same schedule example. In the previous sec-
tion, we model time as discrete time points and their temporal relationship as
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an abstract precedes property. Now we can use the natural number domain to
model time. Correspondingly, the starts and ends properties would have to be
refined into functions from Task to natural number. Then the overlaps property
could be refined as follows.

overlaps_ax: theorem
FORALL (t1,t2:INDIVIDUAL):

member(t1,instances(Task)) AND
member(t2,instances(Task)) AND
starts(t1) < starts(t2) AND starts(t2) < ends(t1)

IMPLIES
overlaps(t1,t2)

The above is just a simple example property that ORL cannot specify. If
more constraints are to be put into the ontology, such as deadline for the whole
schedule (which requires addition over numbers) or axioms other than C (x ),
P(x , y), sameAs(x , y) and differentFrom(x , y) are to be put into rules, more
interesting properties would arise, which are also inexpressible in ORL.

6 Conclusion

Ensuring the correctness of shared ontologies is an important task in ontology
development as inconsistent ontologies may lead agents to draw erroneous con-
clusions. In our previous works [8, 20], we have attempted to use a combination
of SW and formal methods tools to reason about DAML+OIL/RDF ontolo-
gies. We used Alloy Analyzer (AA) [13], Z/EVES [18], RACER and OilEd [1] in
combination to check for properties of interest. Some properties are beyond the
modeling power of DAML+OIL. In this approach, the various tools were used
in a complementary way such that a balance of automation and expressiveness
is achieved. Moreover, the source of ontological errors can be traced in AA.

There are a few drawbacks to this approach. Firstly, AA does not scale up
very well and secondly, Z/EVES works interactively, as PVS theorem prover
does.

One part of the future works is to enhance the proof support for OWL and
ORL. The PVS reasoner will be more effective if the semantics include not
only essential functions but also sufficient supporting lemmas and theorems that
makes proof of trivial goals more automated.

PVS is a generic theorem prover. As a result, it lacks complete automation.
Hence, another part of the future works is to reduce user interactions as much
as possible so that the reasoning procedure can be more efficient. This can be
achieved by developing more advanced proof strategies.

Model-checking capabilities used for automatically verifying temporal prop-
erties of finite-state systems have recently been integrated into PVS. Hence PVS
could be used to model and reason behaviors of SW services such as DAML-S [6].

In conclusion, we presented the PVS semantics for the Semantic Web ontology
language OWL and its proposed extension ORL, the transformation process from
OWL ontologies to PVS specifications, and our approach of using PVS theorem
prover to reason ontology-related properties, sometimes beyond the modeling
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capabilities of ORL. Some of the advanced features such as proof strategy are
incorporated in our approach.

ORL is a newly proposed ontology language. To our knowledge, so far there
is no existing reasoning system that can support ORL prior to this work. The
high expressiveness of PVS language, its highly tunable proof strategies and
similarity between PVS sequents and ORL rules make PVS a natural reasoner
for ORL.
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9. Volker Haarslev and Ralf Möller. Practical Reasoning in Racer with a Concrete
Domain for Linear Inequations. In Ian Horrocks and Sergio Tessaris, editors, Pro-
ceedings of the International Workshop on Description Logics (DL-2002), Toulouse,
France, April 2002. CEUR-WS.
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Abstract. We present a language-theoretic approach to symbolic model
checking of PCTL over discrete-time Markov chains. The probability with
which a path formula is satisfied is represented by a regular expression.
A recursive evaluation of the regular expression yields an exact rational
value when transition probabilities are rational, and rational functions
when some probabilities are left unspecified as parameters of the system.
This allows for parametric model checking by evaluating the regular ex-
pression for different parameter values, for instance, to study the influence
of a lossy channel in the overall reliability of a randomized protocol.

1 Introduction

In recent years, the need to formally reason about probabilistic behaviour, exhib-
ited, for instance, by randomized algorithms, or communication protocols and
computer networks with unreliable or unpredictable behaviour, has triggered re-
search in the area of formal methods for the specification and verification of prob-
abilistic systems. The general approach has consisted in extending those models,
logics and techniques, which have proved successful in the non-probabilistic set-
ting, with probabilities . In particular, this has lead to the theory of probabilistic
model checking [8, 5] of PCTL [14, 1] over discrete probabilistic systems, and, in
the last few years, to tools implementing it [17, 21].

Discrete probabilistic systems are typically modelled by an extension of tran-
sition systems with discrete probability distributions. In this model, a set of
outgoing distributions on the set of states is associated with every state. Each
such distribution gives the probability with which the source state can reach
some target state in one step. Models with at most one distribution per state are
said to be fully probabilistic, and usually referred to as a discrete-time Markov
chains (DTMC). Models with both nondeterministic and probabilistic choice are
usually referred to as a Markov Decision Processes (MDP).

The logic PCTL is a version of CTL where the existential and universal quan-
tification over paths in CTL are replaced with a probabilistic operator P∼λ(·),
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where ∼ ∈ {≤, <,>,≥}, and λ ∈ [0, 1] is the probability threshold, affording
the specification of properties such as “a leader will eventually be elected with
probability 1” or “the chance of shutdown occurring is at most 0.001”.

Probabilistic model-checking of PCTL over discrete probabilistic systems is
based on the computation in every state of the probability measure of the set of
paths satisfying a (path) formula. These probabilities are computed numerically
by solving a system of linear equations in the case of DTMCs [14], and by solving
a linear optimization problem in the case of MDPs [5].

We present a new, language-theoretic, approach for probabilistic model check-
ing of DTMCs. Within our approach, transition probabilities are considered let-
ters of an alphabet of a finite state automaton. The probability measure of a set
of paths satisfying a formula is computed symbolically as a regular expression
on that alphabet, with the standard algorithms to obtain a regular expression
from a finiste state automaton. The regular expression is then evaluated to its
exact rational value when transition probabilities are rational. Moreover, the
symbolic representation of probability measures as regular expressions allows us
to leave transition probabilities unspecified as formal parameters. In this case,
the evaluation of a regular expression is a quotient between two polynomials on
the parameters, with rational coefficients.

In this way, we can perform parametric model checking, e.g., check whether a
formula holds for different values of the parameters, for instance, to study the in-
fluence of a lossy channel on the reliabilty of a protocol, or to obtain algebraically
the value of a parameter such that the system satisfies some property. However,
parametric model-checking is applicable only for formulas without nested prob-
abilistic operators, but this does not represent a strong restriction in practice
because such formulas are not needed to specify properties of interest.

The remainder of the article is organized as follows. Section 2 is a short
introduction to the theory behind probabilistic model checking of PCTL over
discrete-time Markov chains. Section 3 introduces our technique for symbolic
model-checking of DTMCs, and we extend it to the parametric case in Sec-
tion 4. We illustrate its application with two small case studies in Section 5.
Finally, Section 6 concludes our presentation with a discussion of related and
future work.

2 Probabilistic Model Checking

We start with a short introduction to model checking of PCTL formulas for
discrete-time Markov chains. Throughout this section, we consider a given set
of atomic propositions AP.

2.1 Discrete Time Markov Chains

A discrete-time Markov chain is a tuple D = (S, s0,P, L) where
– S is a finite set of states
– s0 ∈ S is an initial state
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– L : S .→ 2AP is a labelling function which gives the atomic propositions that
are true in a state.

– P : S ×S .→ [0, 1]∩Q is a probability matrix with rational values such that
for all s ∈ S,

∑
t∈S P(s, t) = 1.

The function P(s, ·) is the distribution on S for state s. Notice that states
with no outgoing distribution can be considered by adding a self-loop with
probability 1, without changing the transient and limiting probabilities of the
system. The matrix entry P(s, t) gives the probability of making a transition
from s to t. The probability of following a finite path s0s1 . . . sn is P(s0, s1) ·
P(s1, s2) · . . . · P(sn−1, sn). These probabilities for finite paths give rise to a
unique probability measure Prs on the set Paths of infinite paths starting in
state s, defined on the sets of paths having a finite common prefixe, such that
Prs({ω|ω = ss1 . . . sn.ω

′}) = P(s, s1) ·P(s1, s2) · . . . ·P(sn−1, sn) [19].

2.2 The Logic PCTL

The logic PCTL [14, 5] is a version of CTL where the existential and universal
quantification over paths in CTL are replaced by a probabilistic operator P∼λ(·),
with ∼ ∈ {≤, <,>,≥} and λ ∈ [0, 1] rational is the probability threshold, that
can be applied to a path formula. The formal syntax of PCTL formulas over AP
is given by the following grammar:

φ ::= true | a ∈ AP |φ ∧ φ | ¬φ | P∼λ(α)
α ::= Xφ |φUφ

2.3 Semantics and Model Checking

The semantics of PCTL is the same as that of CTL for the fragment where they
both coincide. The semantics of the probabilistic operator is:

s |= P∼λ(α) iff Prs({ω ∈ Paths |ω |= α}) ∼ λ

meaning that the probability measure of the set of paths satisfying α is calculated
and compared to the threshold λ, yielding true or false.

The model checking algorithm proceeds in the same way as for CTL, by
induction on φ. The only difference is the evaluation of the probabilistic operator
appearing in sub-formulas of the type P∼λ(Xφ) and P∼λ(φ1Uφ2). The example
below shows the standard approach based on numerical solutions of a linear
equation system. Section 3 presents our symbolic algorithm based on regular
expressions.

2.4 A Simple Example

Let’s consider the DTMC of Fig. 1 (left). The initial state s has a probabilistic
branching to t with probability 1

10 , to u with probability 3
10 and to itself with

probability 6
10 . The probability with which t can be reached from s, denoted
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ut

1
10

3
10

s

6
10

xs =
6
10

xs +
1
10

xt +
3
10

xu

xt = 1

xu = 0

Fig. 1. A simple DTMC and the corresponding linear equation system to compute the
probabilities for trueUt with solution xs = 1

4 , xt = 1, xu = 0

xs, is the probability measure of the set of paths starting in s and satisfying
the formula α = trueUt. Its numerical value is obtained as the unique solution
of the linear equation system of Fig. 1 (right), which is xs = 1

4 . It follows that
s |= P≤ 1

4
(α) and s |= P≥ 1

4
(α).

Tools like Prism [21] and Rapture [17] find the solution of the linear equa-
tion system using iterative methods (e.g. Jacobi, Gauss-Seidel), that numerically
approximate the solution. It must be noticed that since these methods do not
compute the exact solution, those tools might yield the wrong result when the
solution is equal, or close enough, to the threshold of the formula, like in this ex-
ample. Our symbolic approach does not suffer from this, but the same goal could
be achieved using direct methods on rational numbers with arbitrary precision.

3 Symbolic Model-Checking of DTMCs

This section presents a language-theoretic approach to model checking of DTMCs.
It is based on deriving from a DTMC a finite state automaton recognizing a lan-
guage over an alphabet consisting of the strictly positive transition probabilities
appearing in the matrix P. The initial state of the FSA is the state on which
the formula is to be checked, whilst the sets of final states and the transition
function depend on the path formula under consideration. A path formula yields
a regular expression that is evaluated recursively to the exact rational value of
the probability measure of the set of paths satisfying it.

3.1 Derived FSA

We derive from a DTMC D = (S, s0,P, L) a finite state automaton A =
(S, Σ, δ,Sf ) such that:

– S is the same set of states of D
– Sf ⊆ S is a subset of final states
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Table 1. Evaluation of regular expressions as rational numbers

val(p/q) =
p

q
val(x|y) = val(x) + val(y)

val(x∗) =
1

1− val(x)
val(x.y) = val(x)× val(y)

– Σ = {(p/q) | ∃i, j ∈ S .P(i, j) = p
q > 0} is the alphabet, consisting of the

strictly positive entries of the probability matrix.
– δ : S×Σ .→ 2S is a transition function derived from P which associates with

every pair of states and letters, a set of states such that if δ(s, a) = Q then
for every q ∈ Q, P(s, q) = a.

3.2 Evaluation of Regular Expressions

The setR(Σ) of regular expressions over the alphabet Σ, is the set of expressions
containing the elements of Σ, and closed by union (|), concatenation (.) and star
(∗). These expressions can be evaluated to a rational value, by replacing union
by addition (+), concatenation by multiplication (×) and star by the limit of a
geometric series. Formally, the evaluation function val : R(Σ) .→ Q is defined
inductively by the rules of Table 11.

The regular language L(A, si) recognized by A with initial state si ∈ S,
corresponds to the (possibly infinite) set Ω of finite paths from si to some fi-
nal state in Sf , following only transitions allowed by δ. Among all the regular
expressions corresponding to this language, we consider a regular expression r
computed with the inductive or the state-elimination algorithms of [15], without
simplifying expressions of the type a|a 2.

The following proposition states that the evaluation of r is the probability
measure in si of the set of paths with prefixes in Ω.

Proposition 1. Let r be a regular expression computed for L(A, si). Then,

val(r) = Prsi
({ω ∈ Pathsi

| ∃ k ≥ 0 . ω(k) ∈ Sf , and
∀ l < k, ∃a ∈ Σ . δ(ω(l), a) / ω(l + 1)})

1 Notice that the evaluation of x∗ is not defined when x evaluates to 1, but this does
not happen in the regular expressions we obtain because the final states of the FSAs
we consider have no outgoing transition, thus, every cycle must be exited. The same
remark applies for the parametric case.

2 To be precise we should talk about regular expressions with multiplicities [4]. How-
ever, the regular expressions computed by the standard algorithms mentioned above
without simplification, preserve the multiplicities of words, and, thus, our results
hold.
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3.3 Model-Checking

Let D = (S, s0,P, L) be a DTMC and P∼λ(α) a PCTL formula. We charaterize
the set of paths satisfying α as a regular expression on Σ. For the next operator
the regular expression can be obtained directly from P and α. For an until for-
mula, we derive from D and α a finite automaton Aα generating the probability
measure of paths satisfying α. The set of states satisfying a state formula φ is
denoted by [[φ]].

Next Formulas. Let α = Xφ be a next formula. A regular expression corre-
sponding to the set of paths satisfying α is |j(p/q)j such that sj ∈ [[φ]] and
P(si, sj) = p

q .

Until Formulas. Let α = φ1Uφ2 be an until formula. The derived finite au-
tomaton is such that the final states are those satisfying φ2, and the transition
function is restricted to those states satisfying φ1 ∧ ¬φ2. Formally:

– Sf = [[φ2]]

– δ(s, a) =
{

∅ if s �∈ [[φ1]] or s ∈ [[φ2]]
{t |P(s, t) = a} ∩ ([[φ1]] ∪ [[φ2]]) otherwise

Model-Checking. Let Aα = (S, Σ, δ,Sf ) be the finite automaton derived from
D and α. Then, the following proposition states that the model checking problem
can be solved for a state si by evaluating a regular expression equivalent to the
language recognized by A with initial state si.

Proposition 2. Let r be a regular expression computed for L(Aα,si). Then,

si |= P∼λ(α) iff val(r) ∼ λ

In order to model-check recursively formulas with nested probabilistic op-
erators, we need to establish the validity of every probabilistic subformula in
each state. In this case, the inductive algorithm for computing regular expres-
sions which gives for every state a regular expression corresponding to the lan-
guage it accepts, should be preferred. However, for efficiency reasons, the state-
elimination algorithm is more appropriate to model-check simple formulas with-
out nested probabilistic operators, like those usually considered in practice.

3.4 A Simple Symbolic Example

Let’s consider the DTMC of Figure 1, and the path formula α1 = trueUt to
be evaluated in state s. We derive the finite automaton depicted in Figure 2
(left) with alphabet Σ = {1/10, 3/10, 6/10}, initial state si = s, final states
Sf = {t} and a transition function defined by δ(s, 6/10) = {s}, δ(s, 1/10) = {t}
and δ(s, 3/10) = {u}.

The language recognized by this automaton corresponds to the set of paths
reaching t from s. It can be described by the regular expression r = (6/10)∗.(1/10)
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uut

s

1/10 3/10

6/10

α1 = trueUt

t

s

6/10

α2 = sUu

3/10

Fig. 2. Finite automata for the verification of α1 and α2 in s

which is evaluated to val(r) = 1
1− 6

10
× 1

10 = 1
4 . It follows that s |= P≥ 1

4
(α1) and

s |= P≤ 1
4
(α1), thus avoiding the problem arising with numerical computations.

Figure 2 (right) also depicts the finite automaton derived for the evaluation of
α2 = sUu in state s.

4 Model Checking Parametric DTMCs

Since regular expressions are computed formally, that is, probabilities are consid-
ered just symbols prior to evaluation, it is natural to extend our model checking
technique to the case where probabilities are given as formal parameters. This
makes possible to consider parametric models where some transition probabil-
ities are left unspecified. The regular expression is in this case evaluated to a
rational function, i.e., a quotient between two polynomials on the parameters,
which can be manipulated algebraically for parametric analysis.

4.1 Parametric DTMCs

Let X be a set of formal parameters. A parametric DTMC is a DTMC where we
extend the probability matrix to take values also in X. The formal parameters
must satisfy the linear system corresponding to the stochastic condition of the
probability matrix, i.e., for all s ∈ S,

∑
t∈S P(s, t) = 1, and they must be strictly

positive reflecting the fact that a transition between two states is present in the
derived finite automaton only if it corresponds to a strictly positive probability.

A parametric DTMC gives rise to a family of DTMCs by instantiating the
formal parameters to a value with an instantiation function κ : Q+ ∪X .→ [0, 1]
such that for all q ∈ Q+, κ(q) = q, for all x ∈ X, κ(x) > 0, and for all s ∈ S,∑

t∈S κ(P(s, t)) = 1. For a parametric DTMC DX , and an instantiation function
κ, κ(DX) denotes the DTMC such that the probability matrix is obtained by
instantiating the formal parameters.
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Table 2. Evaluation of regular expressions as rational functions

val(p/q) =
p

q
val(r|s) =

PrQs + QrPs

QrQs

val(x ∈ X) = x val(r.s) =
PrPs

QrQs
val(r∗) =

Qr

Qr − Pr

4.2 Evaluation of the Regular Expression

The finite state automaton for a parameterized DTMC and a path formula is
derived as in the non-parametric case. The regular expression is also evaluated
recursively. In this case, the operators on regular expressions, union, concate-
nation and star, are replaced by the corresponding addition, multiplication and
inversion for rational functions, that is, quotients P (X)

Q(X) between two polynomials
on X.

The evaluation function val : R(Σ) .→ 〈Q〉X×〈Q〉X associates with a regular
expression r, a pair (Pr, Qr) of polynomials on X with coefficients in Q, noted
Pr

Qr
, defined by induction on the regular expression following the rules in Table 2.
Let DX be a parametric DTMC, A the derived FSA, and r a regular ex-

pression for its language computed with the inductive or the state-elimination
algorithms. The following proposition states that the evaluation of r for any
instantiation of the parameters κ, noted κ(val(r)), is the probability measure in
state si for κ(DX), of the set of paths from si to some state in Sf following only
transitions allowed by δ.

Proposition 3. Let r be a regular expression computed for L(A, si). Then,

κ(val(r)) = Prsi,κ(DX)({ω ∈ Pathsi
| ∃ k ≥ 0 . ω(k) ∈ Sf , and
∀ l < k, ∃a ∈ Σ . δ(ω(l), a) / ω(l + 1)})

4.3 Model Checking Simple PCTL Formulas

Let Aα = (S, Σ, δ,Sf ) be the finite automaton derived from DX and a path
formula α that does not contain nested probabilistic operators. The following
proposition states that model-checking such path formulas for a state si in κ(DX)
consists in evaluating a regular expression equivalent to the language recognized
by Aα with initial state si, for the instantiation κ.

Proposition 4. Let r be a regular expression computed for L(Aα,si). Then,

si |=κ(DX) P∼λ(α) iff κ(val(r)) ∼ λ

Thus, by evaluating the corresponding regular expression, we obtain an al-
gebraic expression of the probability measure of the sets of paths satisfying a
path formula, as a rational function on the parameters. We can use the result to



288 C. Daws

ut

p 3p

s

1 − 4p

ut

s

p 3p

1 − 4p

α1 = trueUt

Fig. 3. Parametric DTMC and FSA for the verification of trueUt in s

check whether the system satisfies a formula for different values of the param-
eters, without having to model check the system every time. Moreover, we can
manipulate the algebraic expression in order to synthesize the values of certain
parameters such that a formula is satisfied.

Parametric model-checking is however restricted to formulas without nested
probabilistic operators, because a recursive evaluation of a formula is not possible
in general, since the set of states satisfying a probabilistic formula is a parameter-
ized set. This is not a strong restriction in our opinion, since in practice general
formulas are not necessary to specify properties of interest. Moreover, such for-
mulas are also problematic when using iterative numerical methods because of
the propagation of the numerical error inherent to these methods.

4.4 A Simple Parametric Example

Now let’s consider that the transition probabilities of the DTMC of Figure 1
are not completely specified, and that we have the parametric DTMC depicted
in Figure 3 (left), such that P(s, t) = p, P(s, u) = 3p and P(s, s) = 1 − 4p, for
0 < p < 1

4 .
The finite state automaton derived for the verification of α1 is depicted in Fig-

ure 3 (right). The regular expression for the language it accepts is r = (1−4p)∗.p,
which is evaluated to val(r) = 1

1−(1−4p) × p = 1
4 . That is, state s satisfies both

s |= P≥ 1
4
(α1) and s |= P≤ 1

4
(α1) for any valid value of p. Notice that the evalua-

tion of the regular expression is not defined for p = 0 but it is for p = 1
4 , hence

we could relax the requirement that P(s, s) be strictly positive. Intuitively, this
corresponds to removing the self-loop in s, which does not disconnect the graph.

5 Application

We apply our formal model checking approach to two small examples. We gen-
erate the regular expressions for the derived finite automata using the state-
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elimination algorithm implemented in JFLAP[13, 18] and a simple script to eva-
lute them.

5.1 Simulating a Dice with a Coin

We consider a probabilistic program due to Knuth and Yao [20], which models a
fair dice using only fair coins, that has already been analyzed using a probability
theory [16] for the theorem prover HOL [11, 12], and the probabilistic symbolic
model checker Prism [22].

The DTMC of Figure 4 generates a uniform distribution on {1, . . . , 6} from
a source of independent, unbiased, random bits, which can be seen as a model of
a dice using a fair coin. Starting at state 0, the coin is tossed. Whenever heads
appears, the system takes the upper branch and when tails appears, the lower
branch. This continues until the value of the dice is decided.

1

2

3

4

5

6

0

Fig. 4. Simulating a dice tossing a coin: upper branches correspond to tail, and lower
branches to head

The properties of interest of this example are that it terminates with prob-
ability 1, and that it generates the uniform distribution. Let i be an atomic
proposition characterizing the state where the value i was obtained. Let α0 =
trueU

∨i=6
i=1 i and αi = trueU i for i = 1 . . . 6. Then, the initial state s0 must

satisfy the following PCTL formulas, for i = 1 . . . 6:

P≥1(α0), P≤ 1
6
(αi), P≥ 1

6
(αi)

Table 3 shows the results from applying our model checking approach to the
dice model. For each path formula αi, the second column gives the regular ex-
pression3 corresponding to L(Aαi

) and the third column gives its evaluation. The

3 Although the language is the same for every αi, JFLAP can return different regular
expressions.
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Table 3. Regular expressions and evaluations for model checking the dice example

α r = L(Aα) val(r)
α1, α2, α3, α6 (1/2).((1/2).(1/2))∗.(1/2).(1/2) 1

6
α4, α5 ((1/2).(1/2)|(1/2).(1/2).((1/2).(1/2))∗.(1/2).(1/2)).(1/2) 1

6

Table 4. Regular expressions for parametric analysis of the dice example

α r = L(Aα)
α1 (1/2).(h1.h3)∗.h1.(1− h3)
α2, α3 (1/2).(h1.h3)∗.(1− h1).(1/2)
α4, α5 (1/2).(1− t2).(1/2)|(1/2).t2.(t6.t2)∗.t6.(1− t2).(1/2)
α6 (1/2).t2.(t6.t2)∗.(1− t6)

regular expression corresponding to Aα0 is the union of the regular expressions
for Aαi

, thus it is evaluated to 1. It follows that s0 satisfies all above formulas.
Now we show how to do parametric analysis on the dice model when we allow

the use of biased coins. Let 0 < hi < 1 and ti = 1 − hi be the probabilities of
getting head or tail in state si. In order to obtain the uniform distribution, we
must have h0 = h4 = h5 = 1

2 for symmetry reasons, hence, only states s1, s2,
s3 and s6 can use biased coins. Table 4 shows the regular expressions obtained
using the formal parameters hi and ti.

We will prove that the uniform distribution can not be obtained with a single
biased coin. First, we must have val(rα1) = val(rα2). This means that h1(1 −
h3) = (1− h1)/2 and, hence, h1 = 1/(3− 2h3). Thus, if s1 and s3 must use the
same coin, we should also have h1 = h3 or h1 = 1−h3. Both cases yield a second
degree equation, with a unique solution in ]0, 1[, h1 = h3 = 1

2 .

5.2 The IPv4 Zeroconf Protocol

We consider a simple probabilistic model of part of the IPv4 Zeroconf protocol,
designed for the self-configuration of IP network interfaces. This part, modelled
by the DTMC of figure 5, taken from [6], deals with the collision-avoiding mech-
anism of the protocol. When a fresh host joins the network, which we assume to
have a fixed configuration, it selects uniformly a random IP address among the
K = 65024 possible addresses. If there are m hosts in the network the probability
of a collision is q = m/K.

The host can select a new IP address with probability 1 − q and join the
network. Otherwise, it tries to detect the collision by asking the other hosts
whether they are using this address, and then waits for an answer. However,
the new host might not receive an answer in time with probability p, in which
case it repeats the question. If the answer is received in time, with probability
1− p, then the new host can restart selecting a new address again. The protocol
requires that n questions must be asked if no answer arrived. If after n tries the
host didn’t get an answer, then it will erroneously consider its IP as new.
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0 1 2 n err
q p p p p1 − q

1 − p

1 − p
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ok

Fig. 5. Model of the zeroconf protocol
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Fig. 6. Parametric analysis of the Zeroconf protocol

We are interested in the probability with which a correct new address will
be selected, that is the probability Pok for reaching sok from s0. In order to
compute it, we consider the language recognized by the automaton with initial
state s0 and final state sok. The regular expression for it, is rok = (q.(1 −
p)(1|p|p.p| . . . |pn))∗.(1 − q). By evaluating this regular expression, and after a
simple algebraic simplification, we obtain an analytic expression of Pok:

Pok =
1− q

1− q(1− p)
∑n

k=0 p
k

=
1− q

1− q(1− p) 1−pn+1

1−p

=
1− q

1− q(1− pn+1)

We want the system to ensure that the new host will get a valid address
with probability at least λ, i.e., that it satisfies s0 |= P≥λ(trueUok). This is
equivalent to Pok ≥ λ. The table below (left) shows the results of parametric
model checking for λ = 0.999, n = 4 and different values of parameters p and q.
The graph below (right) plots the maximal value of q ensuring that the property
holds, for p = 0.3 and n = 2, 3 and 4, in function of the probability threshold λ.

6 Conclusions

We presented a new language-theoretic approach to symbolic probabilistic model
checking of PCTL over DTMCs. It is based on representing the probability
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measure of the set of paths satisfying a path formula as a regular expression,
computed with the state elimination or inductive algorithms, for the language
recognized by a finite-state automaton derived from a DTMC and a PCTL for-
mula, where the alphabet is the set of strictly positive transition probabilities
of the DTMC. When these are rational, the probability measure is evaluated to
its exact rational value, whereas when transition probabilities are left unspeci-
fied as parameters, it yields a rational function on them, which can be used for
parametric model checking of the system.

Although the symbolic approach cannot compete with advanced numerical
methods in terms of efficiency, we believe that it has some important advan-
tages. Besides allowing for parametric analysis as illustrated in the examples,
our approach could be used to generate “counter-examples” violating a prop-
erty, an important feature lacking in probabilistic model checking. For instance,
any subterm of a regular expression whose evaluation is bigger than a threshold
can be viewed as a counter-example for a property stating that the probability
must be less than this threshold.

The only related result on symbolic model checking for parameterized DTMCs
we are aware of is [1]. Their method consists in computing strongly connected
components and then reduce a Markov chain to a DAG corresponding to its tran-
sient behaviour. Unfortunately, no algorithm is provided, and their description
does not give any insight into how to obtain the probability matrix of the DAG,
a step not trivial in our view. This missing step could boil down to something
similar to our method, but we believe the latter to be more intuitive, precise and
clear from an algorithmic point of view. Moreover, the technique of [1] cannot
deal with irreducible Markov chains, that is Markov chains which are a strongly
connected component.

We plan to implement our approach to model-check PCTL formulas without
nested probabilistic operators for both the parametric and the non-parametric
case, using the state-elimination algorithm for computing regular expressions.
In our opinion, formulas with nested probabilistic operators are never or hardly
necessary to specify probabilistic properties of practical interest. Moreover, these
formulas are also problematic when using iterative numerical methods, since
the numerical error introduced in a probabilistic subformula can yield that a
path formula is satisfied with probability 1 when it is actually satisfied with
probability 0, or vice-versa.

The state-elimination algorithm is the language-theoretic counterpart of Gaus-
sian elimination for solving linear equation systems. Full PCTL could be con-
sidered in the non-parametric case, using the inductive algorithm, but since it
consists in filling-in a matrix with new entries, we can expect it to have seri-
ous limitations to cope with large systems. It will be important to compare our
approach based on regular expressions with symbolic methods to solve systems
of linear equations based on matrix inversion or Gaussian elimination, as imple-
mented in several computer algebra systems. In order to cope with large systems,
reduction techniques based on simulation [9, 10] can be applied, yielding a sym-
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bolic upper or lower bound for probabilistic reachability properties on a reduced
state space.

As future work, we are interested in extending the method to Markov de-
cission processes (MDPs), that is, probabilistic systems with non-determinism,
necessary to model compositionally complex systems. One can see an MDP as a
parametric DTMC where the non-deterministic choice is replaced by a paramet-
ric probabilistic one, such that all but one of these parameters are equal to zero,
and then apply our technique. However, this will require a number of evalua-
tions exponential in the number of non-deterministic choices in the worst case.
Heuristics to reduce this number, or an alternative approach, are thus neces-
sary. A possible solution could be to consider high-level specification languages
like process algebras with iteration [2], parallel composition and communica-
tion, and to device a linearization algorithm of such specifications with respect
to language equivalence (process algebras with iteration are strictly more ex-
pressive with respect to bisimulation in the presence of parallel composition [3])
without building the corresponding automata, for instance using the concept of
derivatives of regular expressions [7].

Acknowledgments. We are grateful to Joost-Pieter Katoen for his comments
on an early version of this paper, Wan Fokkink for his encouragement, and
Ryszard Janicki for helping clarify our results.
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Abstract. This paper aims at developing a technique for checking if a
timed automaton satisfies a linear duration constraint on the automaton
states. The constraints are represented in the form of linear duration in-
variants - a simple class of chop-free Duration Calculus (DC) formulas.
We prove that linear duration invariants of timed automata are discretis-
able, and reduce checking if a timed automaton satisfies a linear duration
invariant to checking if the integer timed region graph of the original au-
tomaton satisfies the same linear duration invariant. The latter can be
done with exhaustive search on graphs. In comparison to the techniques
in the literature, our method is more powerful: it works for the standard
semantics of DC and the class of the closed timed automata while the
others cannot be applied.

1 Introduction

Constraints on the durations of system states form a class of important properties
of real-time systems. They can be formalised by a class of simple chop-free
Duration Calculus formulas of the form A ≤ % ≤ B ⇒

∑
s∈S cs

∫
s ≤ M .

This class was first introduced with the name linear duration invariants and
investigated in [14]. The duration of a state s is a mapping from time intervals
to reals and is denoted by

∫
s.
∫
s, when applied to an observation time interval

[b, e] is the accumulated time for the presence of state s over [b, e]; and the term
% when applied to an observation time interval [b, e] returns the length e − b of
the interval. A linear duration invariant A ≤ % ≤ B ⇒

∑
s∈S cs

∫
s ≤M simply

says that for any observation time interval [b, e], if the length % of the interval
satisfies the constraint A ≤ % ≤ B then the durations of the system states
over that interval should satisfy the constraint

∑
s∈S cs

∫
s ≤ M . A desired

property for a simple gas burner “for any observation interval that is longer
than 60 seconds, the ratio between the duration of the state leak and the length
of the interval should not be more than 5%” is represented as a linear duration
invariant % ≥ 60 ⇒

∫
leak ≤ 5% ∗ (

∫
leak +

∫
nonleak) (here we have used

the equation
∫
leak +

∫
nonleak = %). A system safety saying that an unsafe

state s should not occur, can also be represented by a linear duration invariant

Z. Liu and K. Araki (Eds.): ICTAC 2004, LNCS 3407, pp. 295–309, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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as % ≥ 0 ⇒
∫
s ≤ 0. The relative fairness of two processes p1 and p2 can be

represented by two linear duration invariants % ≥ 0 ⇒
∫
p1.run −

∫
p2.run ≤ 1

and % ≥ 0 ⇒
∫
p2.run −

∫
p1.run ≤ 1. This says that the running time of

processes p1 and p2 are almost the same for any observation interval.
Since timed automata are good models of real-time systems, and since linear

duration invariants are important properties of real-time systems, it is inter-
esting if verifying a linear duration invariant of a timed automata can be done
automatically. In fact, this problem has attracted a great deal of attention during
last decade, since the introduction of Duration Calculus in [13]. Many algorithms
have been proposed in the literatures, but all of them have high complexity and
do not work for the general case. Some restrictions are needed either on timed
automata, or on linear duration invariants or on the meaning of the satisfaction
of linear duration invariants by automata in order for those algorithms to apply.

For example, in [5], a solution for checking a LDP of a timed automaton LDI
is given using mixed integer and linear programming techniques. The authors
have to put restrictions on both linear duration invariants and the meaning of
satisfaction: the premise of LDIs should be true, i.e. there is no constraint on the
length of the observation intervals, the coefficients in LDIs should be integral,
and the observation intervals should start at time 0. In [14], a nice solution to the
problem is given using linear programming (techniques) only, but the authors
had to restrict themselves on the real-time automata, i.e. timed automata with
one clock which is reset by every transition. This solution is generalised in [7]
and in [9] to a wider subclass of timed automata, but still cannot be used for the
whole class of timed automata, and the restriction on the meaning of satisfaction
still applies. In [3] the authors considered checking LDI for timed automata with
observation intervals started at time 0 only, which is a restriction on the meaning
of satisfaction. In general, these algorithms are based on symbolic representation
of the behavior of the systems by extended time regular expressions, and hence,
reduce the problem to a number of linear programming problems. In practice,
the number of linear programming problems which have to be solved is very
large, so the time complexity of these algorithms is very high.

For reducing the complexity of the problem, some other papers use a differ-
ent approach. The authors of these papers consider those properties which are
discretisable, i.e. they are satisfied by all the behaviours of a timed automata if
and only if they are satisfied by all integral behaviors only. That means, we can
check such kind of properties of a timed automaton by exploring the integral
region graph of the automaton as in [12]. This technique is combined with linear
programming technique in [8] for checking some other classes of discretisable
properties. In these papers, the authors also had to enforce some restrictions on
linear duration invariants and on observation intervals.

In this paper, we study if we can remove the restrictions mentioned as above
and develop a general technique to solve the problem for the general case. The
idea on discretisability of LDP in [12] is the motivation for the discretisability
of LDIs in this paper. We prove that LDI is also a discretisable property for
timed automata. However, the discretisability of LDIs is used in this paper in a
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manner that is different from the one in [12]. In the following, we call a LDI hav-
ing the premise equivalent to “true” (i.e. the premise can be removed) a linear
duration property (LDP). In [12] the discretisability of LDP is used to reduce
a region graph to an integral region graph, but in this paper the discretisabil-
ity of LDI is used to approximate a real-time interval by integral-time interval
as well.

Our results are summarised as follows. We first define the different semantics
for the satisfaction of a LDI by a timed automaton. We do this by introducing
the different classes of Duration Calculus models defined by a timed automaton
A:M0(A) is the set of DC models generated by A with the observation intervals
of the form [0, t], where t is a non negative real; M(A) is the set of DC models
generated by A with no restriction on the observation intervals; Muv(A) is the
set of DC models generated by A with the observation intervals of the form
[tp, tq], where tp and tq are the times the automaton enters states p and q, re-
spectively, in the corresponding behaviour; and MI(A) is the set of DC models
corresponding to the integral behaviours A with the integral observation inter-
vals. Then, we prove that given a LDI D,M(A) |= D if and only ifMI(A) |= D.
Based on these results we reduce the problem of checking M(A) |= P to the one
of checking p |= P for all paths p in the region graph of A, and we reduce the
problem of checking M(A) |= D to the one of checking p |= D for all path p in
the integral region graph of A. The resulting problem can be solved by standard
exhaustive search techniques.

The paper is organized as follows. In the next section we recall some basic
notions of timed automata and Duration Calculus formulas. In Section 3 we
prove the discretisability of LDIs for timed automata. In Section 4, we propose an
algorithm for checking a LDI of a timed automata by searching on the weighted
graph constructed from the integral region graph of the automaton. Finally,
Section 5 is the conclusion of this paper.

2 Preliminaries

In this section, we recall some notions that will play the basic role in defining the
problem in this paper. They are timed automata, region graphs, and Duration
Calculus formulas in the form of Linear Duration Invariants (LDI).

2.1 Timed Automata

Timed automata was introduced in [1, 2] as formal models for real-time systems.
Here we only give a brief description for timed automata and their behavior.
Readers are referred to [1] for their more details. As usual, we denote by R+

and N the sets of nonnegative real numbers and natural numbers, respectively.
For a finite set of clock variables X, let Φ(X) be the set of clock constraints

on X, which are conjunctions of the formulas of the form x ≤ c or c ≤ x, where
x ∈ X and c ∈ N. A timed automaton is a finite state machine equipped with
the set of clock variables X, and is defined as follows.
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Definition 1. A timed automaton A is a tuple 〈L, s0, Σ,X,E, I〉, where

– L is a finite set of locations,
– s0 ∈ L is an initial location,
– Σ is a finite set of symbols (action names),
– X is a finite set of clocks,
– I is a mapping that assigns to each location s ∈ L a clock constraint I(s) ∈
Φ(X) which is called invariant of location s. Intuitively, the timed automaton
only stays at s when the values of the clocks satisfy the invariant I(s).

– E ⊆ L × Φ(X) × Σ × 2X × L is a set of switches. A switch 〈s, ϕ, a,λ, s′〉
represents a transition from location s to location s′ with symbol a, where
ϕ is a clock constraint over X that specifies the enabling condition of the
switch, and λ ⊆ X gives the set of clocks to be reset with this switch.

For convenient to our method, here we consider the class of the closed timed
automata, i.e. timed automata that do not include clock constraints of the form
x < c or c < x.

A clock interpretation ν for the set of clocks X is a mapping that assigns
a nonnegative real value to each clock. For δ ∈ R, let ν + δ denote the clock
interpretation which maps every clock x ∈ X to the value ν(x) + δ. For λ ⊆ X,
let ν[λ := 0] denote the clock interpretation which assigns 0 to each x ∈ λ and
agrees with ν over the rest of the clocks.

A state of automaton A is a pair (s, ν) where s is a location of A and ν is
a clock interpretation which satisfies invariant I(s). State (s0, ν0) is the initial
state where s0 is the initial location of A and ν0 is the clock interpretation for
which ν0(x) = 0 for all clocks x.

A transition of A can:

– change state by letting time elapse: For a state (s, ν) and a real-valued time
increment δ ≥ 0, (s, ν) δ→ (s, ν + δ) if for all 0 ≤ δ′ ≤ δ, ν + δ′ satisfies
invariant I(s).

– change state by taking a location switch : For a state (s, ν) and a switch
〈s, ϕ, a,λ, s′〉 such that ν satisfies ϕ and ν[λ :=0] satisfies I(s′) then (s, ν) a→
(s′, ν[λ :=0]).

A time elapsing transition and a following location switching transition can
be combined into one transition and denoted by (s, ν)

δ,a→ (s′, ν′). That means
the system stays at location s with the current clock interpretation ν, after δ
time units, the clock interpretation ν + δ satisfies the enabling condition (time
constraint) ϕ of switch e = 〈s, ϕ, a,λ, s′〉, and the system transits to location s′

by taking e with label a and resets the clocks in the λ to 0, and the new state
of the system is (s′, ν′).

In this paper we consider only nonZeno behaviours of automata ([1, 2]), that
is those behaviours for which in any finite time interval there is only a finite
number of transition occurrences.

Example 1. The timed automaton in Figure 1, taken from [4], have two clocks
x and y. The set of locations is {s0, s1}, where invariants are I(s0) = (y ≤ 5)
and I(s1) = (x ≤ 8 ∧ y ≤ 10). The set of switches is
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Fig. 1. A timed automaton

{〈s0, y ≥ 3, a, {y}, s1〉 , 〈s1, x ≥ 6 ∧ y ≥ 4, b, {x}, s0〉}. The clock y is reset to
0 each time the automaton transits from s0 to s1 and the clock x is reset
to 0 when the automaton transits from s1 to s0.

Definition 2. Let A be a timed automaton.

1. A run or an execution r of A is an infinite sequence of state transitions:
(s0, ν0)

δ1,a1→ (s1, ν1)
δ2,a2→ . . . , where (s0, ν0) is an initial state of A.

2. A behavior ρ correspondents to above run r, is the infinite sequence of timed
locations

ρ : (s0, t0)(s1, t1) . . . (sm, tm) . . .

that satisfies the following conditions
– t0 = 0.
– for any T ∈ R, there is some i ≥ 0 such that ti ≥ T .
– ti is the moment that system enters to si, for all i ≥ 0. That means,
δi = ti− ti−1 and A stays in state si−1 for ti− ti−1 time units and then
transits to si in the run r.

Note that in this paper, a behavior of a timed automaton is a sequence of
time stamped locations instead of a sequence of timed stamped switches as in
other papers. However the semantics of timed automata is not changed. This
way of representation of behaviours shows the DC models generated by them
more explicitly. A run or a behavior is said to be integral iff for all i ≥ 0,
the values of clock variables in νi, the time delay δi, and time stamps ti are
integral.

2.2 Linear Duration Invariants and Duration Properties

Models in Duration Calculus. Duration Calculus (DC) was introduced by
Zhou Chaochen et al. in [13] as a logic to reason about the state duration of
real-time systems. A comprehensive introduction to DC can be found in the
recent monograph [15]. In DC, a state is viewed as a boolean-valued function
of the continuous time that has the value true (denoted by 1) at time t iff the
state is present at t. Otherwise it takes the value 0. An interpretation I of the
system is an assignment that assigns to each system state s a boolean-valued
function Is. A DC model consists an interpretation I and a time interval [b, e].
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It represents an observation of the behavior of the system states in an interval of
time [b, e]. Given an interpretation I, the duration of a state s over time interval
[b, e] is defined as

∫ e

b
Is(t)dt, which is exactly the accumulated present time of s

in the interval [b, e] by the interpretation I.
In this paper we consider the set of DC models that express all the observa-

tions of the behaviours of a timed automaton. Each behavior
ρ = (s0, t0)(s1, t1)(s2, t2) . . . of timed automaton A defines uniquely an inter-
pretation I in DC by: for any s ∈ L, Is(t) = 1 iff ∃i • (si = s ∧ t ∈ [ti, ti+1)).
We also denote such I by (s, t) in which s = (s0, s1, . . . ) and t = (t0, t1, . . . ) ex-
press a sequence of si and ti from behaviour ρ. Hence, (s, t, [b, e]) is a DC model
representing the observation of ρ in the interval [b, e], which is an observation of
the timed automaton A over interval [b, e]. We also call (s, t, [b, e]) a DC model
of A.

LetM(A) denote set of DC models of A. To cope with the different meanings
of the satisfaction of a DC formula by A as said in the introduction of the paper,
we introduced the following classes of DC models of A:

M0(A) = {σ | σ = (s, t, [0, T ]) ∈M(A), T ≥ 0},
Muv(A) = {σ | σ = (s, t, [tu, tv]) ∈M(A), tu, tv occur in t and tu ≤ tv},
MI(A) = {σ | σ = (s, t, [b, e]) ∈M(A) and ti, b, e ∈ N,∀i ≥ 0}.

In the other word, M0(A) is the set of models representing the observations
starting from 0 and ending at any time point. Muv(A) consists of models that
representing the observations starting and ending at those time points at which
the automaton transits to a location, i.e. the observations between two location
switching transitions. A DC model of A in MI(A) represents an observation of
an integral behavior of A (i.e behavior in which transitions take place only at
integer time) from an integer time point to an integer time point.

Linear Duration Properties and Linear Duration Invariants. Given a
timed automaton A = 〈L, s0, Σ,X,E, I〉. A linear duration invariant over L is a
DC formula of the form

D : A ≤ % ≤ B ⇒
∑
s∈L

cs

∫
s ≤M.

where cs, A, B and M are real numbers, A ≤ B (B may be ∞). In D DC term∫
s is a duration term denoting the duration of location s, and % is a DC term

denoting the interval length. LDI D evaluates over a DC model (I, [b, e]) as tt
and denoted by (I, [b, e]) |= D iff A ≤ e − b ≤ B ⇒

∑
s∈L cs

∫ e

b
Is(t)dt ≤ M

evaluates to true (in the predicate calculus). Here we define the satisfaction of
D by A directly on the behaviours of A as follows.

Definition 3. Let D be a LDI as above. For each σ = (s, t, [b, e]) ∈ M(A) we
define l(σ) and θ(σ) as

l(σ) = e− b and θ(σ) =
∑
s∈L

csPs
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where Ps is the accumulated time for the presence of location s in the inter-
val [b, e] and is calculated as follows. Let u and v be the indexes in t such
that tu−1 < b ≤ tu and tv ≤ e < tv+1. For s �= sv and s �= su−1, Ps =∑

u≤j≤v−1∧sj=s(tj+1− tj). Psu−1 =
∑

u≤j≤v−1∧sj=su−1
(tj+1− tj)+(tu−b), and

Psv =
∑

u≤j≤v−1∧sj=sv
(tj+1 − tj) + (e− tv).

Hence, θ(σ) evaluates over model σ = (s, t, [b, e]) as

θ(σ) = csu−1(tu − b) +
∑

u≤j≤v−1∧sj=s

cs(tj+1 − tj) + csv (e− tv) (1)

By expanding the sum and letting ti’s be common factors, we have

θ(σ) =
v∑

i=u

aiti + csve− csu−1b (2)

where ai’s are real numbers that are derivable from cs’s.

Definition 4. Given a LDI D.

– A DC model σ = (I, [b, e]) ∈ M(A) is said to satisfy D, denoted by σ |= D,
iff A ≤ l(σ) ≤ B implies θ(σ) ≤M .

– Timed automaton A is said to satisfy D, denoted by A |= D, iff σ |= D, for
all σ ∈M(A).

When a LDI D has the premise equivalent to true, i.e. equivalent to 0 ≤
% ≤ ∞, we say that D is a linear duration property (LDP) ([12]). So, a LDP is
a special LDI which do not have premise. Hence, checking a LDP is normally
simpler than checking a LDI.

Similarly, for any class Mx(A), x ∈ {uv, I, 0}, we define Mx(A) |= D iff
σ |= D for all σ ∈Mx(A).

The model-checking problem in this paper is formulated as: given a timed
automaton A = 〈L, s0, Σ,X,E, I〉, given a LDI D over L; find an algorithm to
decide whether A |= D.

3 Discretisability of Linear Duration Invariants with
Respect to Timed Automata

3.1 ε-Digitising

The concept of ε-digitising was first introduced in [6]. We recall here the definition
of ε-digitisation given by them.

Definition 5. Given a positive real x and ε, (0 ≤ ε < 1). Let xε be an integer
defined as

xε =
{
�x� if fraction of x is less than or equal to ε
1x2 otherwise

The number xε is called ε-digitisation of x.
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Some properties of ε-digitisation needed in the development of our techniques
are listed in the following lemmas. Proving of these lemmas is easy so reader be
referred [10].

Lemma 1. Given two integer numbers a ≤ b, given two nonnegative real num-
bers ti ≥ tj. Then for all ε ∈ [0, 1) we have

a ≤ ti − tj ≤ b⇔ a ≤ tiε − tjε ≤ b .

As a consequence of the lemma, if ti ≥ tj then tiε ≥ tjε for all ε ∈ [0, 1)
(apply the lemma with a = 0). This means that under the ε-digitisation, the
order of a sorted sequence of real numbers is unchanged.

Lemma 2. Let {ai}, {ti}, (i = 1..m) be two sequences of real numbers, where
ti ≥ 0 for all i = 1, . . . ,m. Then we can always find a real number ε ∈ [0, 1) such
that

m∑
i=1

aiti ≤
m∑

i=1

aitiε

Lemma 3. Let σ = (s, t, [b, e]) ∈ M(A) be a DC model of timed automaton A.
Let s = s0, s1, . . . ; t = t0, t1 . . . and tu−1 < b ≤ tu, tv ≤ e < tv+1. Then for all
ε ∈ [0, 1), σε = (s, tε, [bε, eε]) is an integral model of A, i.e. σε ∈ MI(A), where
tε = t0ε, t1ε, . . . .

3.2 Discretisability of LDI

Definition 6. Given a timed automaton A and a linear duration invariant D. D
is said to be discretisable with respect to A if A |= D exactly when MI(A) |= D.

Theorem 1. Any linear duration invariant D which has the premise A ≤ % ≤ B
in which A and B are integral, is discretisable with respect to timed automaton
A (here we consider ∞ as an integer by our convention).

Proof. We have to prove that M(A) |= D ⇔MI(A) |= D.
The “only if” part is obvious because MI(A) ⊆M(A).
The “if” part is proved as follows. Let σ ∈M(A) such that σ �|= D. We prove

that there exists ε ∈ [0, 1) such that σε �|= D, where σε is the digitisation of σ
w.r.t. ε.

Assume that σ = (s, t, [b, e]) with s = s0, s1, . . . and t = t0, t1, . . . . Let
indexes u and v be such that tu−1 < b ≤ tu, tv ≤ e < tv+1. σ �|= D implies
that A ≤ e − b ≤ B and θ(σ) > M . By the definition of LDI, it follows from
equation (2):

θ(σ) =
v∑

i=u

aiti + csve− csu−1b > M
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From Lemma 2 (note that coefficients ai’s in the lemma are any reals), ∃ε ∈ [0, 1)

such that
v∑

i=u

aitiε + csv
eε − csu−1bε ≥ θ(σ) > M . By Lemma 1 it follows from

A ≤ e− b ≤ B that A ≤ eε − bε ≤ B (notice that A,B are integers). By Lemma
3 σε is an integral DC model of A, and θ(σε) =

∑v
i=u aitiε + csv

eε − csu−1bε.
Hence, θ(σε) > M .

Thus, we have obtained an integral model σε which does not satisfy D.

Now that the assumption that two integral bounds A and B in the premise
of LDIs is not too restricted, and the result can be extended to the case that A
and B are rationals using the well-known technique.

From this theorem, from now on we will consider only the integral DC models
of timed automaton A, i.e. models σ = (s, t, [b, e]) ∈MI(A).

4 Checking Linear Duration Invariants of Timed
Automata with Graph Search

4.1 Integral Reachability Graph of Timed Automata

In this section, we shortly recall about integral region graph which is a part
of region graph. Region graph was presented by Alur and Dill in ([1]) and has
become well-known.

Let Kx be the largest constant compared with the clock x ∈ X in the time
constraints and the invariants of A and let K = max {Kx |x ∈ X} + 1. An
equivalence relation restricted into the set of all integral clock interpretations
of A is defined as follows. Let ν1, ν2 be two integer clock interpretations. We
say that ν1 is equivalent to ν2 and denoted by ν1 ∼= ν2 iff for all x ∈ X either
ν1(x) = ν2(x) or ν1(x) ≥ Kx + 1 ∧ ν2(x) ≥ Kx + 1. The equivalence class
containing ν is denoted by [ν] and is called integral clock region. It is easy to
see that number of integral clock regions is bounded by (K + 1)k (k is number
of clocks).

The equivalence relation ∼= is also extended to an equivalence relation on
state space of timed automata. we call two states q1 = (s1, ν1) and q2 = (s2, ν2)
of timed automaton A be region-equivalent (denoted by q1 ≡ q2) iff ν1 ∼= ν2 and
s1 = s2. The equivalence relation ≡ partitions space of states of A into classes of
states, each class is characterized by a couple of a location s and a clock region
π and is denoted by 〈s,π〉. We also call 〈s,π〉 a region. It is obvious that the
number of regions is bounded by |L|(K + 1)k.

A region 〈s′, [ν′]〉 is called be successor of 〈s, [ν]〉 if ∃d ≥ 0 and an transition

e = 〈s, ϕ, a,λ, s′〉 such that (s, ν)
d,a→ (s′, ν′). Then we write 〈s, [ν]〉 d,a→ 〈s′, [ν′]〉

We can easily prove the following lemma.

Lemma 4. If (s, ν)
d,a→ (s′, ν′) then 〈s, [ν]〉 d,a→ 〈s′, [ν′]〉, and reversely, if 〈s,π〉 d,a→

〈s′,π′〉 then for each ν ∈ π, there exists ν′ ∈ π′ such that (s, ν)
d,a→ (s′, ν′).



304 P.H. Thai and D. Van Hung

From the lemma 4, the integral reachability graph RG = (V,E) of the timed
automaton A is built as follows. Each vertex v ∈ V is a region 〈s,π〉. E is
initialised to ∅, and V is initialised to {〈s0,π0〉}, where s0 is initial location of
A and π0 is region with 0 as the value of all of clocks. Then, V is expanded as
follows. If a vertex 〈s,π〉 ∈ V has a successor 〈s′,π′〉 then 〈s′,π′〉 is added into
V and e = (〈s,π〉 , 〈s′,π′〉) is an edge in E. Besides, each edge e is labelled by
an interval [l(e), u(e)], where l(e) and u(e) are the minimal and maximal integer
time delay that automaton can stay at location s before it transits into location
s′. l(e) and u(e) are defined as:

l(e) = inf
{
d ≥ 0 | d ∈ N, 〈s,π〉 d,a→ 〈s′,π′〉

}
,

u(e) = sup
{
d ≥ 0 | d ∈ N, 〈s,π〉 d,a→ 〈s′,π′〉

}
.

From the definition of 〈s,π〉 and 〈s′,π′〉, either l(e) = u(e) or u(e) = ∞. We will
denote a labelled edge e by (v, v′, [l, u]).

An detailed algorithm was also constructed in [12] and also in [10].

4.2 Relationship Between Muv(A) ∩ MI(A) and Reachability
Graph RG w.r.t. LDI D

As mentioned above, in this section we consider only integral models. The re-
striction ofMuv(A) andM(A) on the integral DC models for A areMuv(A)I =̂
Muv(A) ∩MI(A) and MI(A), respectively.

Let RG be the reachability graph of A.

Definition 7. Let p = v1v2 . . . vm be a path in RG, and let d = d1, d2, . . . , dm−1
be a sequence of integers, where di ∈ [l(vi, vi+1), u(vi, vi+1)], for i = 1..m−1. The
sequence ℘ = v1d1v2d2 . . . vm−1dm−1vm (written as ℘ = (p, d) for short) is called
weighted interpretation of p.

Definition 8

– Let ℘ = (p, d) be a weighted interpretation of path p. We define l(℘) =̂∑m−1
i=1 di and θ(℘) =̂

∑m−1
i=0 cvi

di and call them length and cost of ℘ respec-
tively, where cvi is the coefficient csi in formula D when si is the location
of vi.

– A weighted interpretation ℘ is said to satisfy D, denoted by ℘ |= D, iff

A ≤ l(℘) ≤ B ⇒ θ(℘) ≤M

– The graph RG is said to satisfy LDI D and is denoted by RG |= D iff ℘ |= D
for all weighted interpretations ℘ of RG.

The following lemma plays a key role for our checking technique.

Lemma 5. For any DC model σ ∈ Muv(A)I , there exists a weighted interpre-
tation ℘ of RG such that l(σ) = l(℘) and θ(σ) = θ(℘), and vice versa.
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Proof. Let σ = (s, t, [tu, tv]) ∈Muv(A)I . Then,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s = s0 . . . su . . . sv . . . ,
t = t0 . . . tu . . . tv . . . ,

l(σ) = tv − tu =
v−1∑
i=u

(ti+1 − ti),

θ(σ) =
m∑

i=1

csi

v−1∑
j=u

sj=si

(tj+1 − tj).

From the definition of model σ, σ corresponds to the sequence of transitions

(su, νu)
δu,au→ (su+1, νu+1)

δu+1,au+1→ . . .
δv−1,av−1→ (sv, νv), where δi = ti+1 − ti,

for all i = u..v − 1. By Lemma 4 we have: 〈su, [νu]〉 δu,au→ 〈su+1, [νu+1]〉
δu+1,au+1→

. . .
δv−1,av−1→ 〈sv, [νv]〉. Consequently, the weighted interpretation ℘ = (p, d),

where p = 〈su, [νu]〉 〈su+1, [νu+1]〉 . . . 〈sv, [νv]〉 and d = δ1, δ2, . . . , δv, satisfies
the requirement of the lemma, i.e. l(℘) = l(σ), θ(℘) = θ(σ).

To prove the reverse direction, assume that ℘ = (p, d) is a weighted interpre-
tation ofRG, where p = vuvu+1 . . . vv, d is a sequence of integers du, du+1 . . . , dv,
and vi = 〈s,πi〉 for i = u..v. Due to the fact that RG is a reachability graph of

A, there exists a sequence of switches ei (i = u..v − 1) such that 〈su,πu〉
δu,au→

〈su+1,πu+1〉
δu+1,au+1→ . . .

δv−1,av−1→ 〈sv,πv〉. By Lemma 4 we can find a model

σ ∈Muv(A), i.e sequence of clock interpretations νi ∈ πi such that (su, νu)
δu,au→

(su+1, νu+1)
δu+1,au+1→ . . .

δv−1,av−1→ (sv, νv). Hence, l(σ) = l(℘) and θ(σ) = θ(℘).

This lemma allows us, instead of checking Muv(A) |= D, to check RG |= D
which can be done by using popular searching techniques.

Removing Infinitive Edges
We now give some lemmas to simplify RG before doing search. Lemmas 6 and 7
say that the label [l,∞) of an edge in RG either makes RG not satisfy D or can
be replaced by a finite label [l, u] without any change to the result of checking
RG |= D. Recall that the premise of LDI D is A ≤ % ≤ B.

Lemma 6. Assume that e = (v, v′, [l,∞)) is an infinite edge of region graph
RG. Then, if B = ∞ and cv > 0 then RG �|= D.

Lemma 7. Assume that e = (v, v′, [l,∞)) is an infinite edge of RG. Then label
[l,∞) can be replaced as follows without any change to the result of checking
RG |= D.

– If B = ∞ and cv < 0, replace [l,∞) by [l, u] with u = max{l, A}.
– If B <∞, replace [l,∞) by [l, u] with u = max{l, B}.

The proof of the above lemmas is simple and is omitted here.
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In summary, for checkingMuv(A) |= D, we can apply the above lemmas first
and either we discoverMuv(A) �|= D early or we can convert the infinite edges of
RG into finite ones. From now on, we assume that RG does not contain infinite
edges.

4.3 Weighted Graph for Checking LDI

Similarly to checking LDP ([12]), we can also construct a weighted graph G from
the reachability graph RG (not containing infinite edges) such that RG |= D if
and only if G |= D.

The weighted graph G = (V,E, ω) is constructed from RG = (VR,ER) by the
following procedure:
Step 1. V := VR, E := ER.
Step 2. For each edge e = ((vi, vj), [lij , uij ]) ∈ ER,

1. V := V ∪
{

v1
ij , v

2
ij , . . . , v

uij−1
ij

}
and ω(vk

ij) := cvi
for all k = 0..uij − 1 (where

v0
ij = vi and v

uij

ij = vj),
2. E := E \ {e},
3. E := E ∪

{
(vk

ij , v
k+1
ij ) | k = 0..uij − 1

}
, and ω(vk

ij , v
k+1
ij ) := 1 for all k =

0..uij − 1,
4. E := E∪

{
(vk

ij , vj) | k = lij ..uij − 1
}
, and ω(vk

ij , vj) := 0 for all k = lij ..uij−1.

Roughly speaking, G is built by ”splitting” each edge e = (v, v′, [l, u]) of RG
into u small edges with the length (weight) 1 by adding u − 1 sub-vertices. All
of these sub-vertices and v are assigned a weight as the coefficient cs in LDI,
where s is location of vertex v (s ∈ v). On the other hand, from sub-vertices vl

to vu−1 there are edges joining these sub-vertices to v′ of the edge e with length
0. Hence, from v we can reach v′ of the edge e through a path passing through
only sub-vertices in G with the integer lengths between l and u. For the simplicity
of presentation we call vertices v and v′ of edge e mother vertices and call the
sub-vertices in e child vertices. Besides, all the paths joining v and v′ that go
through only child vertices of e (in RG) are also called paths belongs to e.

Figure 2 gives an example how to build graph G′ from simple graph G with
2 edges.

In order to make use of G, we have to show that G is compatible to RG w.r.t
checking LDI. First, we define length, cost and satisfaction of a path p in G w.r.t
LDI D.

Definition 9. Let p = v1v2 . . . vm be a path in G. The length l(p) and the cost
θ(p) of p are defined as

l(p) =̂
m−1∑
i=1

ω(vi, vi+1), θ(p) =̂
m−1∑
i=1

ω(vi)ω(vi, vi+1).

A path p satisfies D iff A ≤ l(p) ≤ B ⇒ θ(p) ≤M .
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Fig. 2. “Discretising” graph of region graph

Lemma 8. Each integral weighted interpretation ℘ = (p, d) of RG corresponds
to a path p′ in G such that l(℘) = l(p′), θ(℘) = θ(p′), and reversely, each path
p′ in G corresponds to an integral weighted interpretation ℘ = (p, d) of RG such
that l(℘) = l(p′), θ(℘) = θ(p′).

Proof. It is obvious from the definition of G that for each edge (vi, vj , [l, u]) of
RG and an integer d ∈ [l, u] there exists a path p = viv

1
ij . . . v

d
ijvj of G such that

l(p) = d, θ(p) = cvi
d and vice-versa. Hence, the lemma is correct.

From Lemma 8 we can conclude that if there exists an integral model σ ∈
Muv(A) not satisfying LDI D then there exists a path that joins mother vertices
of G and does not satisfy LDI and reversely. A similar result for any integral
model of A and any path (joining two child vertices) of G is formulated by
following lemma.

Lemma 9. Given a timed automaton A, a LDI D and weighted graph G as
above. Then if there exists a path p ∈ P(G) such that p �|= LDI then there exists
an integral model σ ∈MI(A) such that σ �|= LDI and vice-versa.

Proof. See [10].

Theorem 2. Checking the satisfaction of LDI D by timed automaton A is equiv-
alent to checking the satisfaction of LDI D by the set of paths P(G). That is,
A |= D if and only if P(G) |= D.

This theorem follows immediately from Lemma 9 and the discretisability of
LDI w.r.t timed automata A.

4.4 Algorithm for Checking LDI

In this section we present the idea an algorithm for checking A |= D based on
traversing the weighted graph G. The algorithm uses procedure Traverse(vstart)
and procedure Checking-LDI. The procedure Traverse(vstart) explores every
path starting from fixed vertex vstart to see if it satisfies D, and the procedure
Checking-LDI calls procedure Traverse(vstart) for all vertices vstart ∈ V for
deciding satisfaction of D by A.
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The procedure Traverse(vstart) uses the backtracking technique to explore
the graph. Starting from vertex vstart of G, the procedure constructs the current
path p (l(p) and θ(p) initialised to 0) while going along out-going edges to their
destination vertices at which l(p) and θ(p) are re-calculated and A ≤ l(p) ≤ B ⇒
θ(p) < M is verified. The procedure goes back when the current path p cannot be
expanded (see the next paragraph how a path can be expanded) or the length of
current path exceeds B, and terminates when either A ≤ l(p) ≤ B ⇒ θ(p) < M
is violated or it goes back to the starting vertex vstart with no more out-going
edge to go.

The current path p cannot be expanded when there is no new out-going edge
to go when the number of repetitions of cycles has reached the limit. This applies
only when B = ∞. When a positive cycle is discovered, i.e. a cycle p′ (which is
a sub-path of p) with θ(p′) > 0, the procedure returns A �|= D. When there is no
positive cycle in p, p cannot be expanded when the number of cycle repetitions
has reached k = 1A−c

�c 2, where c is the length of the shortest cycles in p. Any
more repetition of a cycle will make θ(p) smaller. So, there is no need to check
with expansion of p by more repetitions of cycles.

So, either there is a positive cycle in G, or eventually, either p will become
not expandable, or l(p) > B will be reached for a path p starting from vstart.
So, the procedure Traverse(vstart) will terminate eventually.

The detailed technical construction of the algorithm can be worked out easily,
and is omitted here.

5 Conclusion

Exploring reachability graphs is one of popular methods for checking reachabil-
ity property and some properties concerning time instants of real time systems.
However, paths in the reachability graph do not preserve time durations of sys-
tem locations, and hence, cannot be used for checking duration properties. By
equipping edges of integral reachability graphs with the minimal and maximal
bounds of state transitions, we are able to use this technique for checking du-
ration properties. We have proposed an algorithm for checking LDI of timed
automata using this technique. In this paper we have proved the discretisabil-
ity of LDI, and proposed an algorithm based on this result to check if a timed
automaton satisfies a LDI in the general semantics. Although the complexity of
this algorithm is high, it can serve, at least, for showing that checking LDI of
closed time automata is decidable. We do believe that checking is feasible for
some specific LDI and abstract timed automata.
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Abstract. A characterization of idempotent relations is presented first
as a paper-style proof, then by its formalization in Isabelle/HOL. The
novel characterization gives rise to the construction of idempotent rela-
tions by an abstract algorithm. This algorithm is rigorously developed
inside Isabelle/HOL using primitive recursive function definitions. Whilst
the characterisation and algorithm appear to be new, we regard this as
an interesting demonstration of the interplay between mathematical rea-
soning and program development, in particular using Isabelle/HOL.

1 Introduction

Idempotents are important in various areas of Mathematics. An abstract struc-
ture is frequently able to be represented in a particular concrete form in which
each abstract element is represented as a transformation on some underlying
set and the abstract operation is represented as sequential (or functional) com-
position of transformations. In some cases the idempotents (i.e. the elements e
satisfying ee = e, where we follow convention and write the algebraic operation
as juxtaposition) form the basis for that representation.

Here are two examples. In Analysis, a linear function on a vector space is
idempotent under sequential composition only if it is a projection onto a subspace
of the vector space. That is the foundation of spectral resolution, in which a (say
normal) linear operator is represented in terms of projections [DS58]. In Algebra,
much of the structure theory of (abstract) semigroups [CP61] and some of the
theory of ideals in ring theory [CP61] depends on identifying the idempotents.

In Computer Science, a transaction consists of a sequence t = t1, . . . , tm
of actions. Given a second transaction u = u1, . . . , un the idea is to perform
both transactions efficiently, but as if each were executed atomically. Efficiency
is achieved by interleaving the actions of t with those of u; but correctness is
preserved only if the desired interleaving is obtained from the sequential com-
position t;u by interchanging those actions that commute: ti;uj � uj ; ti. If, in
doing so, two identical actions become adjacent then one of them can be deleted
if it is idempotent: ti; ti = ti. Though not common, it is important to take
advantage of such simplification whenever possible.

Linear operators, functions and actions are all special cases of relations. De-
termining whether or not a given relation is idempotent is routine: it has the
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same computational complexity as that of Boolean-matrix squaring (i.e. mul-
tiplication). However the generation of all idempotent relations on a finite set
appears to be more difficult. It is not even clear, for example, how many idem-
potent relations there are. One of the motivations for finding an algorithm to
generate them has thus been to use it as a basis for counting them. The naive
approach of generate-and-test has the following complexity. (a) The complexity
of squaring a Boolean matrix is at worst O(nlg7) by Strassen’s algorithm. (b)
On a set of size n there are 2n2

relations and so the generate-and-test algorithm
takes the product of that and the size in (a). An abstract algorithm that does
better is the topic of this paper.

This paper first introduces a theorem and a proof characterizing idempotent
relations which we believe to be original. Next, this theorem is formalized and
proved in the interactive theorem prover Isabelle [Pau94] using its instantiation
to Higher Order Logic (HOL). Besides confirming that the paper proof is correct,
the formalization represents an interesting application of Isabelle/HOL, particu-
larly as the mechanical proof involves some reasoning about finite sets, which is
usually quite tricky. Finally, we devise an algorithm that computes idempotent
relations. This algorithm is defined inside Isabelle/HOL using primitive recursive
functions. This final aspect is, from an engineering point of view, probably the
most interesting aspect of this work: starting from a theoretical characterization
an effective procedure is derived. Thereby, we show that Isabelle/HOL, can be
used as a program development framework in which correct programs can be
derived — and even be tested on the fly, since the primitive recursive functions
can be translated one to one into ML.

The paper is organized as follows: the next section introduces the theoretical
characterization (with proof). After that, Section 3 presents the mechanization
of the theorem in Isabelle. Section 4 then starts explaining the actual content
of the theoretical characterization by introducing some representative examples,
leading on to an informal description of a construction. Section 4.2 is used for
the presentation of the algorithm based on primitive recursive functions. Section
4.3 then indicates the properties that have to be shown to prove the correctness
of the algorithm. Finally, in Section 5 we draw some conclusions.

2 A Characterization of Finite Idempotent Relations

We characterize idempotent relations under the assumption of finiteness, and
show by example that we cannot do better.

A relation r on a given set is idempotent iff r ◦ r = r where ◦ is relational
composition, i.e.

r ◦ s = {(x, y).∃z. (x, z) ∈ s ∧ (z, y) ∈ r} .

Where convenient (particular in pictures) we use the notation r; r for relational
composition. For simplicity, let r(x) stand for the relational image r.(|{x}|) (where
r.(|A|) = {y.∃x ∈ A.(x, y) ∈ r}) and r2 stand for r ◦ r. The characterization is
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based on fixpoints of the relation, i.e. elements x of the domain with x ∈ r(x),
that is (x, x) ∈ r.

The characterization is given by the following theorem.

Theorem 1. Let r be a finite relation. Then

idempotent r ≡ ∀x ∈ dom r.

(
r(x) =

⋃
y ∈ r(y) ∩ r(x). r(y)

∀ya ∈ r(x). r(ya) ⊆ r(x)

)
.

Clearly, idempotence implies transitivity r◦r ⊆ r. The second conjunct is equiv-
alent to r being transitive, but we prefer to write it this way to emphasize the
relationship between the ranges of single elements. The first conjunct describes
r ⊆ r ◦ r and is the major clue to the construction to follow.

We prove the theorem using the following lemmata.

Lemma 1. Let r be idempotent. Then

x ∈ r(x) ⇒ r(x) =
⋃

y ∈ r(y) ∩ r(x). r(y).

Proof: Transitivity gives us ∀y ∈ r(x). r(y) ⊆ r(x). Clearly,⋃
y ∈ r(y) ∩ r(x). r(y) ⊆

⋃
y ∈ r(x). r(y)

and by transitivity of ⊆ the left-hand side is a subset of r(x). Since x ∈ r(x),
r(x) ⊆

⋃
y ∈ r(y) ∩ r(x). r(y), whereby we have equality. 	

Lemma 2. Let r be finite and idempotent. Then

x ∈ dom r, x /∈ r(x) ⇒ ∀z ∈ r(x). ∃ y ∈ r(y) ∩ r(x). z ∈ r(y).

Proof: We prove that if the assumption and the negation of the conclusion hold
then r is not finite. Assume for contradiction

∃ z ∈ r(x). ¬∃ y ∈ r(y) ∩ r(x). z ∈ r(y)

Since (x, x) /∈ r, we need y0 �= x for (x, z) to be in r2 in order to have
(x, y0), (y0, z) ∈ r and thereby (x, z) ∈ r. Now, y0 �= z otherwise we had a
y = z with z ∈ r(z) contradicting the assumption. Summarizing, y0 �= x and
y0 �= z. However, now y0 ∈ r(x) and y0 /∈ r(y0). By repetition of the argument,
we need a y1 with (x, y1), (y1, y0) ∈ r with y1 /∈ {x, z, y0}, and so forth — ul-
timately leading to an infinite sequence of yi ∈ r(x), establishing that r is not
finite. 	

Proof of Theorem 1. Now, we are prepared for the proof of the theorem.
Correctness (⇒): Let r be idempotent and x ∈ dom r be arbitrary. If x ∈ r(x),
just apply Lemma 1. If x /∈ r(x), Lemma 2 gives⋃

z ∈ r(x) ⊆
⋃

y ∈ r(y) ∩ r(x). r(y) .
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Since r is idempotent, it is also transitive. Hence, the right-hand side ⊆ r(x).
Since the left-hand side is equal to r(x) we have also for x /∈ r(x) that

r(x) =
⋃

y ∈ r(y) ∩ r(x). r(y) .

Completeness (⇐): Let r(x) =
⋃
y ∈ r(y) ∩ r(x). r(y). For any (x, y) ∈ r,

y ∈ r(x). By assumption there is y′ with y ∈ r(y′) for some y′ ∈ r(y′)∩ r(x), i.e.
(x, y′) ∈ r and (y′, y′) ∈ r. Since y ∈ r(y′), also (y′, y) ∈ r, hence (x, y) ∈ r2.

As the second conjunct of the characterization corresponds to transitivity,
we have on the other hand that if (x, y) ∈ r2 then (x, y) ∈ r. 	

From the theorem it follows immediately that if a finite idempotent relation
is nonempty then it has a fixpoint.

Corollary 1. If r �= ∅ is finite and idempotent then ∃ x. x ∈ r(x).

By contraposition this implies that if there is no fixpoint, the relation must be
infinite.

Corollary 2. If r is idempotent, r �= ∅ and ¬∃ x. x ∈ r(x) then r is infinite.

An illustrative example is the relation < on rational numbers.

Example 1. The relation <: Q×Q is idempotent and infinite.

The relation < is obviously transitive, and for any x and y with x < y there is
an element between x and y.

3 Mechanical Proof

In this section and the following we introduce some Isabelle/HOL formalizations.
Since this tool supports mathematical syntax, the only peculiarities to mention
from the start are: [| P; R |] =⇒ S is a meta-level implication and can be
read as (P ∧ Q) ⇒ S. In contrast P −→ Q is the implication of the object
logic HOL. Other operators will be explained when necessary. Formalizations in
Isabelle start by defining a theory that contains types, constant declarations,
and definitions. The theory for idempotent relations contains just one definition
for idempotence.

idempotent :: (α × α) set => bool
"idempotent r == (r ◦ r = r)"

Theorem 1 is then proved in the scope of that theory. The representation of the
theorem in Isabelle is almost like the paper-style theorem. However, we have had
to resolve the self-reference in the binder of the union as otherwise the binding
would not have worked. The relational image of a singleton set is denoted r"{x}.
finite r =⇒ idempotent r =
∀ x ∈ Domain r. r"{x} =

⋃
y: {z. z ∈ r"{z} ∩ r"{x}}. r"{y} ∧

∀ ya ∈ r"{x}. r"{ya} ⊆ r"{x}
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3.1 Proof of Lemma 1

The proof of Lemma 1 is very simple in Isabelle. Using a lemma that infers
transitivity from idempotence it is just one application of the elimination rule
for transitivity. The rest is done automatically using the tactic auto.

[| idempotent r; x: r"{x} |] =⇒
r"{x} =

⋃
y ∈ {z. z ∈ r"{z} ∩ r"{x}}. r"{y}

3.2 Proof of Lemma 2

This part of the proof of Theorem 1 is the difficult bit. What is done on pa-
per rather casually and informally by sketching a repetitive process in which
yet another element yi is needed and then concluding that the set r(x) cannot
be finite, is harder on the logical level. The repetitive process is first proved
as a lemma. Applying this lemma in an induction the existence of an infinite
sequence is proved. Some further theorems that generalize from the existence of
this particular sequence then provide the possibility to infer infinity from there.
These theorems can then be chained together to construct the contradiction to
the assumed finiteness.

Core Lemma. The core lemma describes that under the assumptions of Lemma
2 it is possible to infer a new element y that is in relation r to all others so far,
but is not equal to any of the former ones.

[| idempotent r; x ∈ Domain r; x /∈ r"{x}; z ∈ r"{x};
¬ (∃ y. y ∈ r"{y} ∧ y ∈ r"{x} ∧ z ∈ r"{y}); z = s 0;
∀ j. j ≤ n −→ s j ∈ r"{x} ∧ ∀ i. i < j −→ (s j,s i)∈ r ∧ s j �= s i

|] =⇒ ∃ y. y ∈ r"{x} ∧ ∀ j. j ≤ n −→ (y, s j)∈ r ∧ y �= s j

Similar to the paper style proof it uses the properties of idempotence to infer
that new “middle” element and furthermore transitivity to establish the invariant
that it is related to all previous ones. We use here a variable s that formalizes
a sequence over natural numbers used in the following to produce the infinite
sequence.

A Chain of Lemmata. The first step of the proof leading to the conclusion
that there is an infinite sequence, is an induction that shows that under the
given assumptions of Lemma 2, there is such a sequence s.

[| idempotent r; x ∈ Domain r; x /∈ r"{x}; z ∈ r"{x};
¬ (∃ y. y ∈ r"{y} ∧ y ∈ r"{x} ∧ z ∈ r"{y})

|] =⇒ ∀ n. ∃ s:: nat => α . z = s 0 ∧
(∀ j. j ≤ n −→ (s j) ∈ r"{x} ∧
(∀ i. i < j −→ (s j, s i) ∈ r ∧ (s j) �= (s i)))

This proof is an induction over natural numbers. In the induction step the core
lemma is applied to produce the new element of the sequence s having the
appropriate properties.

The conclusion of the previous step can be weakened.
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∀ n. ∃ s:: nat => α . z = s 0 ∧ (∀ j. j ≤ n −→ (s j) ∈ r"{x} ∧
(∀ i. i < j −→ (s j, s i) ∈ r ∧ s j �= s i))

=⇒ ∀ n. ∃ s. ∀ j. j ≤ n −→ s j ∈ r"{x} ∧ (∀ i. i < j −→ s j �= s i)

The weaker set of properties of the sequence is sufficient to infer the existence
of a set whose cardinality is always growing and whose elements are all subsets
of a set p — which will ultimately be r"{x} in our case.

[| ∀ n. ∃ s:: nat => α .
(∀ j. j ≤ n −→ (s j) ∈ p ∧ (∀ i. i < j −→ (s j) �= (s i))) |]

=⇒ ∀ n. ∃ S. card S = Suc n ∧ S ⊆ p

Finally, the set derived in the previous step can be used to infer that the set p
is infinite.

∀ n. ∃ S. card S = Suc n ∧ S ⊆ p =⇒ ¬ finite p

The variable p of type set can be instantiated to r"{x}. Thereby, chaining up
all these lemmata, we can put together the proof of Lemma 2 by producing a
contradiction with the assumed finiteness of the relation.

[| finite r; idempotent r |] =⇒
∀ x ∈ Domain r. x /∈ r"{x} −→

(∀ z ∈ r"{x}. ∃ y. y ∈ r"{y} ∧ y ∈ r"{x} ∧ z ∈ r"{y})

It may seem a bit odd that we have to derive first that the sets S we are con-
structing for contradiction have a cardinality. However, as infinity is just the
negation of finiteness, the only way to construct a contradiction is to arrive at
a property that a finite set has, i.e. a finite cardinality, and that clearly cannot
be assumed for the sequence.

The proof of Lemma 2 is, like some proofs in lattice theory [BKS01, DP02],
rather intricate. It would be much easier if a sequence could be constructed on
the outside of the universal quantification over n, i.e. ∃s.∀n . . .. However, this is
not possible in our case. We have to show that such a sequence exists for each n.
Fortunately, as the core lemma can be identified and applied inside the induction
this sequence can be prolonged in each step and by identifying the commonality
of the sequences — that they are all in some set p — we can construct the
sequence of sets represented by the existentially quantified S.

Proof of the Theorem. The proof of the correctness, i.e.

[| finite r; idempotent r |] =⇒
(∀ x ∈ Domain r. r"{x} = (

⋃
y: {z. z: r"{z} ∩ r"{x}}. r"{y}) ∧

(∀ ya ∈ r"{x}. r"{ya} ⊆ r"{x}))

simply puts together Lemma 1 and Lemma 2 with transitivity.
For completeness note that we can infer the property r ⊆ r ◦ r from the first

conjunct of the characterization alone.

(∀ x ∈ Domain r. r"{x} = (
⋃

y: {z. z ∈ r"{z} ∩ r"{x}}. r"{y}))
=⇒ r ⊆ r ◦ r
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The other conjunct is equivalent to transitivity so we can prove the other
inclusion almost automatically. Finally, we put the two parts together to finish
the proof.

4 Algorithm

In this section we will develop an abstract algorithm that builds all idempotent
relations over a given domain. Before introducing the construction algorithm,
we illustrate how the characterization may be seen as a recipe for constructing
idempotent relations. After that, in Section 4.2 we introduce the primitive re-
cursive definitions of the algorithm. Finally in Section 4.3 we outline the major
steps in proving the correctness and discuss the solution in Section 4.4.

4.1 Constructing Idempotent Relations

The main idea of the construction is to start from relations that are constituted
by fixpoints, i.e. pairs of the form (x, x) (see Section 2), and so are trivially
idempotent. The next step adds more relations based on the latter by extending
the ranges of the single points according to Theorem 1. Finally, from those —
again idempotent relations — we get all idempotents by considering admissible
domain extensions.

To understand the characteristics of idempotent relations we consider some
representative examples to illustrate the meaning of the characterization in The-
orem 1. We consider small examples depicting the relations graphically as lines
connecting points picking out typical cases that illustrate the scope of idempo-
tence and prepare the ground to find an effective procedure to construct them.

Fixpoints. The first and most simple example is that of a relation that consists
of only fixpoints. For the three elements x, y, z the relation r = {(x, x), (y, y),
(z, z)} is depicted together with a graphical illustration of its idempotence:

x

y

z

=;

The points that are connected by the relation are all fixpoints. Where in
extension it is hard to decide whether a relation is idempotent, graphically it
reduces to following up all paths from the left of the left graph to the right of
the right graph.

Range Extensions. Starting from a pure fixpoint relation, a relation that is
constructed by extending the ranges of the fixpoints is in most cases also idem-
potent. Consider the following example, where starting from the same fixpoints
the ranges of x and z are extended by y and {x, y} respectively.
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x

y

z

=;

The composition gives the same element, hence this relation is idempotent.
This extension conforms to the first conjunct of Theorem 1 for the case of fix-
points, i.e. Lemma 1: the ranges of x and z are defined by just their own ranges.

However, even though in most cases the range extension of fixpoints is arbi-
trary, one has to respect the second conjunct of Theorem 1, transitivity. In the
following example we have just the fixpoints x and z, but the range of z contains
y, while r(y) �⊆ r(z)! Hence, the relation on the left below is not idempotent
(whilst the result on the right is).

x

y

z

=;

Hangers-on. As a final step relations that are constructed from fixpoints and
admissible range extensions (such extensions that respect transitivity) can be
further extended by adding non-fixpoint elements on the domain side. These
additional domain extensions of the relations can be considered hangers-on: they
hang on to the fixpoint elements, thereby using their “idempotence”. This is
an instance of the first conjunct of Theorem 1 (more precisely Lemma 2): for
elements of the domain of the relations with x /∈ r(x), i.e. non-fixpoints, there
must exist fixpoints whose ranges constitute the range of these non-fixpoints.
An example is given by the following relation where the non fixpoint x hangs on
to the fixpoint z having exactly the same range as z.

x

y

z

=;

Hangers-on need to copy the entire range of the fixpoints they hang-on to.
However, they can have more than one fixpoint they hang on to. The following
example with five points, shows how the hanger-on y can actually accumulate
the ranges of both fixpoints x and z.

x

y

z

=;

The previous example illustrates why in the characterization of Theorem 1
we need the union over all fixpoints for the case of hangers-on.

For domain extensions we also have to respect transitivity, as illustrated by
the following example.



318 F. Kammüller and J.W. Sanders

x

y

z

=;

Although each of the components of the graphs in this relation respects the
rules found so far, the combination is not idempotent. The way to avoid this
when building domain extensions is to consider only such sets of hangers-on
that are not contained in any range of a fixpoint (here hanger-on y is contained
in the range of fixpoint x).

Informal Algorithm. To use the intuition given above to develop an algo-
rithm, we proceed informally as follows:

– For a given list of fixpoints l build range extensions for each of the fixpoints.
• The fixpoint is always contained in the range extension. The range ex-

tensions are initially all possible subsets of the intended range R of the
relation resulting in a list of relations that are lists of pairs (li, si) of
fixpoint and range extension, where li ∈ si.

• Check the resulting lists of pairs (li, si) of fixpoint and range extension
for transitivity and delete the nontransitive relations.

– Build from the list of range extended relations all combinations di of possible
domain extensions. A domain extension describes which elements hang-on
to a fixpoint, i.e. share its range.
• A domain extension is any subset of the domain of the prospective rela-

tion that does not contain fixpoints from l and that is not in the range
si of any fixpoint.

• The elements in the domain extension all have the same range as the
fixpoints they are hanging-on to. So it suffices to record the element
together with the fixpoints.

– Finally, the derived list of elements of the form

[(l1, s1, d1), . . . (ln, sn, dn)]

represents a relation that can be recovered from this list representation as

r = {(x, y).∃ i. (x = li ∨ x ∈ di) ∧ y ∈ si}.

4.2 Primitive Recursive Construction Functions

Instead of defining a nested loop that builds the entire set of all idempotent
relations for given domain, range, and fixpoints, we implement the algorithm
in a functional manner using primitive recursive functions directly as they are
provided in Isabelle/HOL.

Initially, we need at various points in the algorithm a function that produces
all possible subsets of a set. As we decided to implement the algorithm using
lists, the function sublists builds sublists of a list rather than sets.

sublists :: "α list => α list list"
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Assuming that the recursion returns all possible sublists of a list l the step of the
function builds the possible sublists of list c # l by concatenating all sublists of
l with all sublists of l where the element c has been put in first. The recursion
finishes by returning the list with the empty sublist.

primrec
sublists_empty: "sublists_fn [] = [[]]"
sublists_step: "sublists (c # l) =

(let ll = sublists l in ll @ (map(λ x. c # x) ll))"

This is an example of a primitive recursive definition as indicated by the keyword
primrec. We omit the keyword in the following when it is clear from context.

Next we consider the function that given the prospective range of the relation
and a list of fixpoints builds the range extensions range exs R l.

range_exs :: "[α list, α list] => (α × α list)list list"

This function is rather complex. For each fixpoint li it first builds all sublists
of the range R omitting li to avoid repetitions as li has to be in the range
extension — and is inserted into each range extension afterwards.

range_exs_empty: "range_exs R [] = []"
range_exs_step: "range_exs R (li # ll) =

(let sl = (sublists [x:R. x �= li])
in (if (ll = []) then map (λ x. [(li,li # x)]) sl

else combine_re (map (λ x. (li, li#x)) sl) (range_exs R ll)))"

The expression [x:R. x �= li] is a filter denoting the list of elements in list R
that are �= li. In the function body a function combine re is used that will be
explained next.

combine_re :: "[α list, α list list] => α list list"

In the body of range exs step the algorithm builds all combinations of range
extensions by working through a given list of fixpoints l from back to front.
Given that the recursion range exs R ll returns all possible combinations of
range extensions for the postfix ll of the fixpoints l, all possible range extensions
for the postfix li # ll are built by combining each possible range extension for
li, say (li,si) with each of the lists in range exs R ll by adding (li,si)
as first element. The function combine re now performs exactly the necessary
combination. It is similar to combine (see below) but the insertion depends on
the check fp check.

combine_re_empty: "combine_re [] l = []"
combine_re_step: "combine_re (a # l1) l =

(map (λ x. if (fp_check a x) then (a # x) else []) l)
@ (combine_re l1 l)"

The function fp check that is used in combine re checks whether the range
extension that is created by adding the actual pair to an already range extended
postfix, introduces violations of transitivity in which case combine re deletes
this element from the combinations.
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fp_check:: "[(α × α list),(α × α list)list] => bool"

This check concerns the property of transitivity, formulated in Theorem 1 as:

∀x ∈ dom r. ∀ya ∈ r(x). r(ya) ⊆ r(x)

If an element ya is also in the range of another x than ya’s range has to be
contained in the range of x. For fixpoints, which we are considering just now,
this property can be slightly simplified to considering such fixpoints that are
themselves in the domain of other fixpoints: in the case that a fixpoint li is in
the range of a fixpoint lj , the range of lj has to be a subset of the range of li. In
the construction of the range extension this criteria applies two ways: the newly
added fixpoint li could be in the range of an “old” lj or vice versa. If both are
contained in the ranges of each other, clearly their ranges have to be the same1.
The constructor set transforms a list into a set.

fp_check_empty: "fp_check a [] = True"
fp_check_step: "fp_check (li,si) ((lj,sj) # lr) =

(if (li mem sj) then (if (lj mem si) then (set si) = (set sj)
else (set si ⊆ set sj))

else (if (lj mem si) then (set sj ⊆ set si)
else fp_check a lr))"

It is safe to cancel such elements in the construction of the range extensions
that do not pass the function fp check, because the algorithm goes through all
possible combinations. Hence, just a bit further down the line the current range
extension (li,si) is going to be combined with a slight variation that fits.

The next step in the algorithm is to construct the domain extensions. Here,
the procedure is structurally very similar to the range extension. That is, we
again use a combination function to build all possible combinations of domain
extensions this time using a simple version of the function combine re called
simply combine.

combine_empty: "combine [] l = []"
combine_step: "combine (a # l1) l = (map (Cons a) l) @ (combine l1 l)"

Now, a domain extension of a fixpoint on a given domain for the relation and
list of fixpoints can be applied to a list of range extensions, that is to a list
of elements of type α×αlist. It returns a list of lists of triples, that are the
range extentions extended by an additional list as third element, representing
the elements of the domain that share the range of the fixpoints.

domain_exs :: "[α list, α list, (α × α list)list]
=> (α × α list × α list)list list"

1 To make the definition more readable, we use pattern matching of pairs in the
argument position of the following primitive recursive definition, but this is actually
not supported in Isabelle/HOL.
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For a list D representing the relations domain and a list l of fixpoints, a do-
main extension of a fixpoint li is a subset of the domain that has neither ele-
ments of l nor elements in the range extensions si of any li. This constraint
is realized by using again the filter construct in [x:D.(¬(x mem l))∧(¬(x mem
fpre))]. The argument fpre is the list containing all range extensions of that
relation. In one step, that is for one range extension pair (li,si), the function
domain exs fn builds all possible sublists of the result of that filtering and com-
bines all those with (li,si) to build the domain extended point (li,si,di).

domain_exs_empty_fn: "domain_exs_fn D l fpre [] = []"
domain_exs_step: "domain_exs_fn D l fpre ((l,si) # lr) =

let sl = (sublists [x:D.(¬(x mem l))∧(¬(x mem fpre))])
in if (lr = []) then map (λ x. [(li,si,x)]) sl

else combine (map(λ x. (li,si,x)) sl)(domain_exs_fn D l fpre lr)"

The function domain exs fn can now be used to define the actual function for
domain extension as a constant by building the parameter fpre of all range
extensions of fixpoints and then applying the former function.

domain_exs D l rl == domain_exs_fn D l (concat (map snd rl)) rl

The meaning of a range extension point (li,si) is that li is a fixpoint and has
range si containing li. The domain extension element di that is now added as
the third element to those points represents all hangers-on of li. That is, the
elements of di are all non fixpoints that have in their range all the elements
of the range of li, i.e. the elements of si.2 For efficiency of representation and
simplicity it is advisable to choose this representation rather than copying the
ranges for each hanger-on.

Keeping in mind this explanation of the domain extensions the following
function should be easily comprehensible. This function, called build rel, is
necessary to close the loop of developing the algorithm from the ideas contained
in Theorem 1 back to where it started by giving a procedure to translate the
list representation calculated from the previous set of functions into a relation
again.

build_rel :: "(α × (α)list × (α)list)list => (α × α)set"

For a relation represented as a list of the described triple type, the function
build rel now builds a set of pairs: a pair (x,y) is in the relation if x is the
fixpoint we are considering and y is in the current range extension si or x is a
hanger-on from the domain extension. In the latter case, as hangers-on have the
same range as their fixpoints, y has to be in si too.

build_rel_empty: "build_rel [] = {}"
build_rel_step: "build_rel ((li,si,di) # ll) =
{(x,y). (x = li ∨ x mem di) ∧ y mem si)} ∪ (build_rel ll)"

2 Note that in general a hanger-on can have more elements in its range, as it can
simultaneously hang-on to other fixpoints.
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As we will see in the next section, the functions presented in this section can be
simply applied to produce idempotent relations. As they are primitive recursive
function definitions, and the syntax chosen in Isabelle for these functions is very
similar to ML, it is possible to translate them one-to-one into ML.

Recall that we wish to produce all idempotent relations for a given domain
and range. We can build up the corresponding list in our representation defining
a constant.

list_of_all_idempotents :: "[α list,α list]
=> (α × α list × α list)list list"

The definition of that constant just applies the functions for range extension and
domain extension to the list of all possible sets of fixpoints in the domain D and
building all possible range subsets of R as starting points for the process. As we
produce a list of lists of relations in each step it is necessary to flatten those lists
using concat when putting it together.

list_of_all_idempotents D R ==
(let all_ranges = sublists R
in concat(map (λ l. concat (map (domain_exs D l)

(concat (map (range_exs R) all_ranges))))(sublists D)))

4.3 Properties

Now, the function build rel closes the loop of development. With its help we
can express the correctness of the algorithm concisely

[| finite r; unique l; set l = {x. (x,x) ∈ r};
set D = Domain r; set R = Range r |]

=⇒ idempotent r = (∃ re_fn. re_fn mem (range_exs R l) ∧
(∃ de_fn. de_fn mem (domain_exs D l re_fn) ∧ (r = build_rel de_fn)))

That is, for a given set l of fixpoints, a given domain and range for the relation,
the property of idempotence of a relation is equivalent to the existence of a range
extension and a domain extension that are built by the corresponding functions
applied consecutively and which represent the relation. The premise unique l is
a predicate ensuring that the list l does not contain repetitions. This restriction
is necessary to exclude lists with repetitions as input to the algorithm.

Otherwise, the proof is a rather straightforward unfolding of definitions of
function definitions using inductions over lists to show that the properties of the
list representation actually translate into the properties of the characterization.

From this property we can derive the more general one concerning the set of
all idempotent relations which corresponds to completeness.

{r. finite r & Domain r = set R ∧ Range r = set R ∧ idempotent r} =
set(map build_rel(list_of_all_idempotents D R))
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4.4 Discussion

In this section we have introduced via characteristic examples an algorithm for
the construction of finite idempotent relations. From there we have developed a
set of functions that compute them.

The way the function range exs deletes half finished elements when they do
not respect transitivity is the main source of inefficiency. It would be nicer to
exclude unsuitable lists at the stage when all sublists si for the range extensions
are generated — that is before range exs is called. However, the problem arises
only later — that is, when the single sets si are generated we cannot anticipate
how they are going to be combined. More precisely, they are going to be combined
in all possible ways. As the transitivity property is a property that concerns
each element of the relation, it can be judged only when putting the relation
together. We could have started building admissible sets of sets si before adding
the fixpoints li to the range extensions but that is basically what we are doing
just at the same time when the corresponding fixpoints are added.

Another point worth mentioning is that our function is not efficient for
another reason. When the domain extensions are built repetitions may arise:
when two fixpoints x and z have exactly the same range, there are two ways a
hanger-on can achieve its domain extension: by hanging on to x or by hanging
on to z. Hence, our algorithm produces two identical relations. For example,
domain exs [1,2,3] [1,2] [(1, [1, 2]), (2, [2, 1])] produces the do-
main extensions [(1, [1, 2], []), (2, [2, 1], [3])] and [(1, [1, 2],
[3]), (2, [2, 1], [])]. Those two will consequently be mapped to the same
relation by build rel. Another frequent repetition occuring in the produced
lists, also apparent in the previous sample, is the empty list. This is a remainder
of the deletion of non admissible lists during the range extension and vanishes
when concatenating. The algorithm is thus abstract in the sense that it is really
defined at the level of sets rather than lists.

For those reasons our algorithm is not optimal. Let |D| = |R| = n. Then
the number of idempotents constituted just by fixpoints is 2n. Now for the
complexity of the algorithm the functions that cost most are the two application
of the combine functions in domain exs step and range exs. The combine l1
l2 (and combine re) are in O(|l1||l2|). However, their order-of-n times iterated
application in the recursion in domain exs step and range exs on lists of length
order 2n leads to an estimate for order of list of all idempotents as

O(2
n2+6n−2

2 ) .

This seems very costly. However for comparison we can obviously not do better
than O(2n) — enumerating all idempotents is at least as costly as enumerating
the fixpoint relations — and the complexity of the naive approach of generate-
and-test (see Section 1) is of in O(22n

). The square in the power comes through
the combination used in range and domain extensions. However, these combina-
tions can only be built by stepping through the single points of the relation (a
process of order n) and in each step we have a complexity of O(2n) by the mere
number of relations that have to be combined.
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5 Conclusion

We have presented a result characterizing finite idempotent relations. This result
has first been proved on paper and then formalized and proved in Isabelle/HOL.
A constructive abstract algorithm has been derived from there and its correctness
sketched in the same framework.

Independent of the contribution that the result and the algorithm may rep-
resent, this work is a case study that illustrates that a logic like HOL in the
implementation given by Isabelle/HOL is a framework that may well be used to
develop programs rigorously. Although small, it is a convincing demonstration
that Isabelle/HOL is suited as a formal method in itself, as has been recognized
before, e.g. [NW98, BN00], however not until very recently has this approach
been much applied. The close relation to the programming language ML has
proved very helpful in this project. All the functions presented here could be
tested easily by extracting them from the Isabelle code.

Clearly, it would be wrong to deduce from the current case study that HOL
even with a mature support like Isabelle is a substitute for advanced formal
methods providing support for abstract high level concepts like refinement, ob-
ject orientation, and modularity. But it may be an encouragement to extend the
existing features, like data types and recursive function definitions, in order to
make the rigorous development in Isabelle/HOL more powerful. The method of
derivation that is given by a manner of application like the present, is crucial
for the complete specification and proof of critical software. For comparison the
refinement calculus (with data refinement) has also been used by the authors to
derive an algorithm; integration into the development process in Isabelle may
also be of interest.
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Abstract. In an earlier paper, an algorithm based on algebraic geome-
try was developed for discovering polynomial invariants in loops without
nesting, not requiring any a priori bound on the degree of the invariants.
Polynomial invariants were shown to form an ideal, a basis of which
could be computed using Gröbner bases methods. In this paper, an ab-
stract logical framework is presented for automating the discovery of
invariants for loops without nesting, of which the algorithm based on
algebraic geometry and Gröbner bases is one particular instance. The ap-
proach based on this logical abstract framework is proved to be correct
and complete. The techniques have been used with a verifier to automat-
ically check properties of many non-trivial programs with considerable
success. Some of these programs are discussed in the paper to illustrate
the effectiveness of the method.

1 Introduction

There has recently been a surge of interest in research on automatic generation
of loop invariants of imperative programs. This is perhaps due to the successful
development of powerful automated reasoning tools including BDD packages,
SAT solvers, model checkers, decision procedures for common data structures
in applications (such as numbers, lists, arrays, ...), as well as theorem provers
for first-order logic, higher-order logic and induction. These tools have been
successfully used in application domains such as hardware circuits and designs,
software and protocol analysis.

In an earlier paper [RCK04], an approach for generating polynomials as
invariants for loops without nesting was presented. An algorithm employing
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Gröbner basis method was proposed to derive conjunctions of polynomial equal-
ities as loop invariants, without any a priori bound on the degree of the polyno-
mials appearing in the invariants. The main contributions of that paper are:

1. Invariant polynomials are shown to form an ideal, a well-known algebraic
concept [CLO98]. Consequently, algebraic geometry techniques are brought
into play to discover such invariants from a given program without imposing
any a priori bound on their degrees.

2. The proposed algorithm for generating polynomial invariants is proved to ter-
minate using algebraic geometry if right-hand sides of assignments are solv-
able mappings either commuting or with positive eigenvalues (see [RCK04]
for definitions and details).

In this paper we improve our previous work in a number of aspects:

1. The construction of [RCK04] is generalized and presented in an abstract
logical framework, thus highlighting the key properties required for the pro-
posed approach to be applicable to data structures other than numbers. We
were thus able to abstract properties needed from algebraic geometry for our
results in [RCK04].

2. The abstract framework is based on the forward propagation semantics of
program statements. A fixed point computation of formulas approximating
the invariant at the loop entry point is carried out by considering all possible
execution paths.

3. A procedure for computing loop invariants based on this abstract logical
framework is presented. The procedure is proved to be sound and complete, in
the sense that on termination, the procedure generates the strongest possible
invariant expressible in the considered language for specifying invariants.

4. The significance of this framework is demonstrated by showing our algorithm
in [RCK04] as a nontrivial instance of this abstract procedure.
In another paper [RCK], we have used the abstract interpretation frame-
work for developing approximations and a widening operator to compute
polynomial invariants of a bounded degree, where the bound on their de-
gree is determined by the widening operator. The termination proof of this
algorithm is different from the one in [RCK04]; it is based on using the di-
mension of the vector space generated by polynomials of bounded degree.
The advantage of our framework over abstract interpretation is that we are
able to ensure that we generate the strongest invariant expressible in the
language, which is not usually possible in abstract interpretation.

5. The procedure has been implemented and is employed with our tools for
program verification to prove the correctness of a number of programs, as
shown in a table of examples. Some of these are used for illustrating the key
ideas of the approach. Currently, the procedure only generates conjunctions
of polynomial equalities as invariants, but plans are underway to generate
polynomial inequalities as well.

The rest of the paper is organized as follows. In the next subsection, re-
lated work is briefly reviewed. Section 2 introduces the general framework: the
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programming model is presented, and necessary properties of the language for
expressing invariants are studied so that the generic procedure for finding loop
invariants can be formulated. In Section 3, we prove that the language of conjunc-
tions of polynomial equalities satisfies all the required properties of the abstract
framework and is thus an instance of it. This gives an algorithm for computing
invariant polynomial equalities that turns out to be equivalent to that given in
[RCK04]. In Section 4 we show that the framework is applicable even when some
of the conditions on the language to express invariants are not met. Section 5 is
a brief overview of the verifier we have built for proving properties of programs.
In Section 6 we give some illustrative examples of program verification using this
tool. Finally, Section 7 concludes with a discussion on future research.

1.1 Related Work

The generation of arithmetic invariants between numerical variables is a long
researched area. Karr first showed in [Kar76] an algorithm for finding invariant
linear equalities at any program point of a procedure. This work was extended
by Cousot and Halbwachs [CH78], who applied the model of abstract interpre-
tation [CC77] for finding invariant linear inequalities. Like our techniques, both
methods are based on forward propagation and fixed point computation [Weg75],
which points out that our ideas may be useful for accelerating the termination
as well as improving the precision in abstract interpretation.

Recently, there has been a renewed surge of interest in automatically deriving
invariants of imperative programs. In [CSS03], Colón et al. used non-linear con-
straint solving based on Farkas’ lemma to attack the problem of finding invari-
ant linear inequalities. Extending Karr’s work, Müller-Olm and Seidl [MOS04]
proposed an interprocedural method for computing invariant polynomial equal-
ities of bounded degree in programs with affine assignments. The same authors
[MOS03] developed a complete technique for finding invariants of a prefixed form
in procedures with polynomial assignments and disequality guards. Similarly, in
[SSM04] a method was proposed for generating polynomials as invariants, which
starts with a template polynomial with undetermined coefficients and attempts
to find values for the coefficients so that the template is invariant using the
Gröbner basis algorithm. Kapur proposed a related approach using quantifier
elimination in November 2003 (see [Kap03]).

In [RCK04], we gave an algorithm based on algebraic geometry and not re-
quiring any degree bounds for generating conjunctions of polynomial equalities
as loop invariants. This algorithm served as the basis for developing the pro-
posed abstract logical framework of this paper. In that paper, the discussion
and proofs extensively use results of polynomial ideal theory and algebraic ge-
ometry, because of which they are not likely to be directly applicable to other
data structures such as arrays, records, etc. In contrast, this paper presents a log-
ical framework that is likely to be more widely applicable. Finally, in [RCK] we
have employed the framework of abstract interpretation to generate polynomial
equalities of bounded degree as invariants in general procedures.
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2 Abstract Framework

We consider a simple programming language with multiple assignments, non-
deterministic conditional statements and loop constructs. Loops are assumed to
have the following form:

while E(x̄) do
if C1(x̄) → x̄ :=f1(x̄);
...
[] Ci(x̄) → x̄ :=fi(x̄);
...
[] Cn(x̄) → x̄ :=fn(x̄);
end if

end while

where x̄ = (x1, x2, ..., xm) denotes the tuple of program variables, E, Ci’s are
boolean expressions and each fi is an m-tuple of expressions.

2.1 Loop Invariants

A formula expressing a property of a loop (including an invariant of the loop) is
specified using the program variables x̄ and variables, denoted by x̄∗, representing
the initial, usually unknown, values of the program variables before entering the
loop.

Let R stand for a subset of a first-order language with equality used for
expressing properties of loops. A formula inR representing an invariant property
will be written as R(x̄, x̄∗). Our goal is to capture the semantics of loops using
the strongest invariant expressible in the language R. For that we characterize
the expressiveness of R to admit such strongest invariants.

Definition 1. A formula R ∈ R is invariant (with respect to another formula
R0(x̄∗) relating initial values of x̄) if:

i) R0(x̄∗) ⇒ R(x̄∗, x̄∗) and
ii) ∀i : 1 ≤ i ≤ n, (R(x̄, x̄∗) ∧ E(x̄) ∧ Ci(x̄)) ⇒ R(fi(x̄), x̄∗).

To capture the semantics of the loop, we have to compute the strongest
possible invariant in the language R:

Definition 2. The language R is expressive for a loop if ∃R∞ ∈ R such that

1. R∞ is an invariant of the loop and
2. for every invariant R of the loop in the language R, R∞(x̄, x̄∗) ⇒ R(x̄, x̄∗).

In Section 3, the language of conjunctions of polynomial equalities is intro-
duced for specifying invariants, and it is shown to be expressive for loops with
polynomial assignments (when tests are abstracted and considered to be true).
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2.2 Fixed Point Procedure for Computing Invariants

We give an iterative procedure for computing the strongest invariant R∞ of a
given loop. Assume that the loop test E and each Ci, the tests in the conditional
statement, and each assignment mapping fi are expressible in R. Let R0 stand
for a formula satisfied by the initial values of the variables before entering the
loop. Based on the forward propagation semantics of program statements, the
procedure below computes successive approximations of the strongest invariant
R∞ until reaching a fixed point.

Forward Propagation Semantics. If R(x̄, x̄∗) holds at the loop entry point,
the loop test E(x̄) is true and the i-th conditional branch is executed, then the
strongest postcondition at the end of the body of the loop is

∃ȳ(x̄ = fi(ȳ) ∧R(ȳ, x̄∗) ∧ E(ȳ) ∧ Ci(ȳ)) .

Traditionally abstract interpretation uses this one-step forward propagation
to compute invariants, employing a widening operator to guarantee termina-
tion. In order to accelerate the procedure for finding invariants and avoid the
loss of precision involved in widening, we propose instead a many-step forward
propagation along the lines of the meta-transitions of Boigelot [Boi99]. While
these meta-transitions were originally utilized to compute the exact reach set
of a system, we apply accelerations to the more general problem of comput-
ing overapproximations of the set of reachable states, i.e. invariants, in a given
specification language.

If the i-th branch is executed s times in a row, the strongest postcondition
is:

∃ȳ
(
x̄ = fs

i (ȳ) ∧R(ȳ, x̄∗) ∧
( s−1∧

t=0

(
E(f t

i (ȳ)) ∧ Ci(f t
i (ȳ))

)))
,

assuming that the s-th power of fi is also expressible in R.
Given that the number of iterations s is undetermined, an infinite disjunction

is needed to express the relation (which is not a formula anymore in the language
unless existential quantifiers are used):

∞∨
s=1

(
∃ȳ
(
x̄ = fs

i (ȳ) ∧R(ȳ, x̄∗) ∧
( s−1∧

t=0

(
E(f t

i (ȳ)) ∧ Ci(f t
i (ȳ))

))))
. (1)

In general, there are several branches in a loop and each of the branches
can be executed arbitrarily many times. This results in an infinitary formula
capturing the program states at the loop entry point after an undetermined
branch has been executed arbitrarily many times:

R(x̄, x̄∗)∨
( n∨

i=1

∞∨
s=1

(
∃ȳ
(
x̄ = fs

i (ȳ)∧R(ȳ, x̄∗)∧
( s−1∧

t=0

(
E(f t

i (ȳ))∧Ci(f t
i (ȳ))

)))))
.

In order to capture the semantics of the loop, this approximation of the in-
variant is computed iteratively until reaching a fixed point (or going on forever).
This is the core of the procedure below.
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In a highly powerful language for expressing invariants, the infinite disjunc-
tion in the above infinitary formula can perhaps be expressed using an equivalent
formula with the help of existential quantifiers. If the language does not permit
existential quantifiers or even disjunctions (as will be the case for the language
of conjunctions of polynomial equalities), the language must be able to express
a sufficiently strong approximation.

Definition 3. The language R is disjunctively closed if
∀R,S ∈ R, ∃T ∈ R, written as R " S, such that

i) (R(x̄, x̄∗) ∨ S(x̄, x̄∗)) ⇒ T (x̄, x̄∗),
ii) ∀T ′ ∈ R, if (R(x̄, x̄∗)∨S(x̄, x̄∗)) ⇒ T ′(x̄, x̄∗), then T (x̄, x̄∗) ⇒ T ′(x̄, x̄∗).

The language of first-order predicate calculus with equality is disjunctively
closed, as ∨ can be taken as ". So is the language of polynomial equalities
closed under conjunction: for any R and S that are conjunctions of polynomial
equalities, there is another conjunction of polynomial equalities R " S which
is equivalent to R ∨ S, as shown later. The language of conjunctions of linear
inequalities, used in [CH78], is also disjunctively closed: given conjunctions R
and S of linear inequalities, R"S is defined as the convex hull of R and S; unlike
the previous cases, R " S is, in general, not equivalent to R ∨ S in this case.

To get approximations in R of infinitary formulas involving infinite disjunc-
tions as well as existential quantifiers, R is required to have some additional
properties. For the i-th conditional branch we assume that ∃ϕi(R) ∈ R, the
strongest formula in the language implied by the formula (1) above:

Definition 4. R allows existential elimination if ∀R ∈ R, ∀i : 1 ≤ i ≤ n
∃T ∈ R, written as ϕi(R), such that

i)
∞∨

s=1

∃ȳ
(
x̄ = fs

i (ȳ)∧R(ȳ, x̄∗)∧
( s−1∧

t=0

(
E(f t

i (ȳ))∧Ci(f t
i (ȳ))

)))
⇒ T (x̄, x̄∗) .

ii)∀T ′ ∈ R such that
∞∨

s=1

∃ȳ
(
x̄ = fs

i (ȳ) ∧R(ȳ, x̄∗) ∧
( s−1∧

t=0

(
E(f t

i (ȳ)) ∧ Ci(f t
i (ȳ))

)))
⇒ T ′(x̄, x̄∗) ,

T (x̄, x̄∗) ⇒ T ′(x̄, x̄∗).

In order to check whether the fixed point has already been reached, we ad-
ditionally need to decide whether two formulas in the language are equivalent:

Definition 5. R allows equivalence check if ∀R,S ∈ R, it can be decided
whether R⇔ S or not.

After replacing disjunctions ∨ by " and eliminating existential quantifiers by
means of the ϕi’s, we get the procedure below. It starts assigning to the formula
variable R an initial formula satisfied by the initial values of the variables in
the loop. This variable R stores the formula corresponding to the successive
approximations of the invariant.
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Invariant Generation Procedure

Input: Assignment mappings f1, ..., fn

Formula R0 satisfied by the initial values of program variables
Output: Strongest invariant formula R∞

var R,R′ : formulas in R end var
R′ := false
R := (x1 = x∗

1) ∧ · · · ∧ (xm = x∗
m) ∧R0

while R′ �⇔ R do
R′ := R
R := R " 1

(⊔n
i=1 ϕi(R)

)
(2)

end while
return R

The following theorem captures the correctness and completeness of the above
procedure:

Theorem 1. Given a loop L, let R be a language expressive for L, disjunctively
closed and admitting existential elimination and equivalence check. Let R∞ stand
for the strongest invariant of L in the language. If the invariant generation
procedure terminates with output R, then R(x̄, x̄∗) ⇔ R∞(x̄, x̄∗).

The proof of the theorem, given in the extended version of the paper, is based
on two facts: i) if the procedure terminates, R is an invariant of the loop; and
ii), R ⇒ R∞ holds in all steps of the invariant generation procedure. So, if
the procedure terminates, R ⇒ R∞ and R∞ ⇒ R, which finally leads to the
result that the above procedure on termination indeed computes the strongest
invariant of the loop.

The key issue in the procedure is to find the appropiate definition for the
" operator as well as for the ϕi functions in order to ensure termination. In
the following section we show a nontrivial instance of language satisfying these
requirements, the language of polynomial equalities. Further, in Section 4 we will
see how, even if the specification language only satisfies some of the requirements
for disjunctive closedness and quantifier elimination, the procedure can still yield
useful results on termination.

3 Conjunctions of Polynomial Equalities as Invariants

In this section we show that the language of conjunctions of polynomial equali-
ties, denoted by P, is a particular instance of the abstract framework. Assuming
that the guards are ignored (i.e. E = Ci = true) and that the assignment

1 The use of � approximating ∨ here may not be sufficient to guarantee termination.
Using a widening operator ∇ instead of � ([CC77]) as a further approximation of ∨
can ensure the termination of the procedure, probably at the cost of completeness.
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mappings are polynomial, it is shown that this language P satisfies all the re-
quirements discussed above (Section 3.2). The above iterative procedure for com-
puting invariants can be instantiated as well (Section 3.3).

3.1 Preliminaries

Given a field K, let K[z̄] = K[z1, ..., zl] denote the ring of polynomials in the
variables z1, ..., zl with coefficients from K. An ideal is a set I ⊆ K[z̄] that
contains 0, is closed under addition and such that, if p ∈ K[z̄] and q ∈ I,
then pq ∈ I. Given a set of polynomials S ⊆ K[z̄], the ideal spanned by S is
〈S〉 = {p ∈ K[z̄] | ∃k ≥ 1 p =

∑k
j=1 pjqj with pj ∈ K[z̄], qj ∈ S}. For an ideal I,

a set S ⊆ K[z̄] such that I = 〈S〉 is called a basis of I.
The variety of a set S ⊆ K[z̄] over K

l is defined as its set of zeroes, V(S) =
{ᾱ ∈ K

l| p(ᾱ) = 0 ∀p ∈ S}. On the other hand, if A ⊆ K
l, the ideal I(A) = {p ∈

K[z̄]| p(ᾱ) = 0 ∀ᾱ ∈ A} is the annihilator of A.
A mapping g : K

l → K
l is affine if it is of the form g(z̄) = Az̄ + b, where

A ∈ K
l×l and b ∈ K

l. In general, a mapping g ∈ K[z̄]l is a polynomial mapping.
To each conjunction of polynomial equalities R ≡ (p1 = 0∧· · ·∧pk = 0) ∈ P,

we associate the ideal J = 〈p1, · · · , pk〉. Similarly, given an ideal J specified by
a finite basis, say B, there is a formula in P (not necessarily unique) associated
with it, written as

∧
p∈B(p = 0); depending upon the basis chosen for J , different

(but equivalent) formulas can be obtained.

3.2 Properties of P
Expressiveness. Given a loop, the language P is expressive, i.e., there exists a
formulaR∞ in P such that (i)R∞ is an invariant of the loop, and (ii) any formula
R in P that is an invariant of the loop is implied by R∞. The idea of the proof is
to take a basis of the ideal generated by all the polynomials that are invariants
of the loop. By Hilbert’s basis theorem, such an infinite basis has an equivalent
finite basis. The conjunction of the polynomial equalities corresponding to the
polynomials in the finite basis is precisely R∞.

Disjunctive Closedness. The language P is disjunctively closed: if R ≡ p1 =
0∧ ...∧ pk = 0 and S ≡ q1 = 0∧ ...∧ ql = 0, there is a conjunction of polynomial
equalities R " S that is equivalent to R ∨ S. This formula can be constructed
by computing a finite basis of the intersection ideal 〈p1, ..., pk〉 ∩ 〈q1, ..., ql〉 and
taking the corresponding conjunction of polynomial equalities (since ideals of
polynomials are always finitely generated by Hilbert’s basis theorem).

Existential Elimination. For the i-th conditional branch, we need to show
the existence of ϕi(R) ∈ R, the strongest formula in the language implied by the
infinitary formula (1) above in Section 2.2. Such a formula in P can be obtained
by computing a finite basis B of the ideal

K[x̄, x̄∗]
⋂( ∞⋂

s=1

〈
(−x̄+ fs

i (ȳ))
⋃( ⋃

p∈IV(I)

p(ȳ, x̄∗)
)〉)

, (3)
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where I = 〈p1, ..., pk〉 is the ideal associated to the formula R ≡ p1 = 0 ∧ ... ∧
pk = 0 and −x̄ + fs

i (ȳ) denotes the set of m polynomials corresponding to the
projections over each of the m coordinates. Then ϕi(R) ≡ (

∧
q∈B q = 0) is the

strongest formula in P implied by (1).

Equivalence Check. The language P admits equivalence check: if R ≡ p1 =
0 ∧ ... ∧ pk = 0 and S ≡ q1 = 0 ∧ ... ∧ ql = 0, then R ⇔ S is equivalent
to IV(p1, ..., pk) = IV(q1, ..., ql). In case that IV(p1, ..., pk) = 〈p1, ..., pk〉 and
IV(q1, ..., ql) = 〈q1, ..., ql〉 (which is common in practice), then obviously R⇔ S
is equivalent to 〈p1, ..., pk〉 = 〈q1, ..., ql〉, which can be easily checked.

3.3 Generating Conjunctions of Polynomial Equalities as
Invariants

The abstract procedure discussed in Section 2.2 can be instantiated to be the
algorithm presented in [RCK04] as follows. The assignment labelled as (2) in
the abstract procedure is the most non-trivial and complicated to perform: it
requires computing a basis of the ideal defined by the expression (3) for each
assignment mapping, which involves an infinite intersection of ideals. To compute
this infinite intersection, elimination theory is used to eliminate s and possibly
other auxiliary variables needed to express the fs

i ’s as polynomials. In order to
represent the fs

i ’s as polynomials, we ask assignment mappings to be solvable
mappings, a particular case of polynomial mappings; solvable mappings are an
extension of affine mappings. The following theorem is proved in [RCK04]; the
reader can refer to that paper for details about the theorem as well as the proof.

Theorem 2. Let L be a loop with tests E = Ci = true and assignments x̄ :=
fi(x̄), 1 ≤ i ≤ n. If each of the assignment mappings fi is a solvable mapping with
positive rational eigenvalues, the procedure computes the strongest invariant in at
most 2m+ 1 steps, where m is the number of program variables in L. Moreover,
if the assignment mappings commute, i.e. fi ◦ fj = fj ◦ fi for 1 ≤ i, j ≤ n,
then the algorithm terminates in at most n+ 1 steps, where n is the number of
branches in the non-deterministic conditional statement of the body of L.

The proof of the first part of the theorem extensively uses algebraic geometry
concepts including irreducible decomposition of varieties and their dimension.
It is our experience that for instantiating the abstract framework, the most
nontrivial task is to find conditions under which the procedure for generating
invariants terminates.

4 Heuristic Procedure for Non-expressive Languages

In the previous section, we showed how the language of conjunctions of polyno-
mial equalities satisfies all the conditions required in the abstract logical frame-
work. We thus get a sound and complete algorithm for computing conjunction
of polynomial equalities as invariants; further, the invariant generated by the
procedure is the strongest possible invariant expressible in this language.
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In this section we show that our abstract framework is still useful when the
language R for specifying invariants is not expressive for the loop. Namely, if the
language admits equivalence check and the conditions i) of both definitions of
disjunctive closedness and existential elimination are satisfied, then the invariant
generation procedure can still be formulated and yields correct invariants on
termination. The invariant generated by the procedure, however, needs not be
the strongest possible one as the non-expressiveness of the language implies that
there is no such strongest invariant.

For example, let us consider the first-order language of quantifier-free for-
mulas with polynomial inequalities as atoms, which subsumes conjunctions of
linear inequalities [CH78] or polynomial equalities [RCK04, RCK]. This language
admits equivalence check and is in fact disjunctively closed; and moreover, it non-
trivially satisfies condition i) in the definition of existential elimination, as we can
use quantifier elimination [Tar51] to get rid of infinite disjunctions and existen-
tial quantifiers. We illustrate this with the following simple program, for which
our procedure finds a correct invariant in the language under consideration:

{Pre: n ≥ 0}
a:=0; while (a+ 1)2 ≤ n do a:=a+ 1; end while

In this case, given a formula R = R(a, n, a∗, n∗) (where a∗, n∗ stand for the
initial values of the variables a, n before entering the loop), we can compute the
formula for the next iteration by eliminating s, t from

∃s (s ≥ 0 ∧R(a− s, n, a∗, n∗) ∧ ∀t ((t ≥ 0 ∧ t ≤ s− 1) ⇒ (a− t)2 ≤ n))

using quantifier elimination. Starting with R0(a∗, n∗) ≡ (a∗ = 0)∧(n∗ ≥ 0), after
two iterations we get the fixed point a ≥ 0 ∧ a2 ≤ n ∧ n ≥ 0 ∧ a∗ = 0 ∧ n = n∗,
which is invariant for the loop. Notice that a ≥ 0 ∧ a2 ≤ n ∧ n ≥ 0 contains a
non-linear inequality.

However, the first-order quantifier-free language of polynomial inequalities is
not expressive in general. The next loop illustrates this fact:

x:=0; while true do x:=x+ 1; end while

In this case, the set of reachable states is N. Any invariant formula R(x, 0) in
the language will hold for all natural numbers. In particular, such a formula will
necessarily hold for an interval of real numbers of the form [x0,∞), for a certain
natural number x0. Then the formula R(x, 0)∧ (x = x0∨x ≥ x0 +1) will also be
an invariant in the language, but will be strictly stronger than R(x, 0); so there
is no strongest invariant. For this example, our invariant generation procedure
yields the invariant x ≥ 0.

5 Verification of Properties of Programs

An implementation in Maple for automatically discovering polynomial loop in-
variants has been manually interfaced with a prototype of verifier described
below. We have successfully used this verifier to automatically prove non-trivial
properties of many numerical programs (computing for instance products, divi-
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sions, square roots, divisors, ...). Some of these programs are shown in Section
6 to illustrate the power of the techniques.

5.1 Verifier

The verifier takes as input imperative programs with annotated assertions, in-
cluding preconditions and postconditions. The programming language that it
accepts has a similar syntax as that of C. It features integer variables, arithmetic
operations (+, ∗, div, mod, etc.) and function calls. The assertion language is a
first-order logic with equality with interpreted function and predicate symbols.
Admitted functions are the arithmetic operators of C and the gcd, lcm func-
tions, introduced to widen the range of treatable properties. The predicates are
equality = and order >, ≥.

The verifier mainly consists of two components: (i) a verification condition
generator that produces the formulas that ensure that the desired properties of
the program are fulfilled; and (ii) a theorem prover, which checks the validity of
these formulas.

Verification Condition Generator. The verification condition generator is
based on Floyd-Hoare-Dijkstra’s inductive assertion method. It generates for-
mulas (called verification conditions) from the code and the annotations that
must be satisfied to guarantee the correctness of the program with respect to
the specification. This is done by means of a semantics of language constructs
as predicate transformers. Given a program postcondition, this semantics allows
to mechanically compute an assertion such that if the precondition implies it,
then the postcondition holds on termination of the program.

Theorem Prover. The goal of the theorem prover is to check the validity of
the verification conditions.

We initially tried SPASS [WBH+02], a general-purpose theorem prover for
first-order-logic with equality. Since the conditions are about integer numbers,
SPASS had to be given an axiomatization of the integers explicitly; still, this the-
orem prover had problems handling formulas requiring algebraic manipulation
and knowledge on the integers.

This led us to implement an ad-hoc prover in Prolog. In our prover, formulas
are proved by simplification using rewriting rules until the tautology true is
obtained; if this is not the case and the prover cannot rewrite further, then it
gives up and the problem of the validity of the formula is unsolved. Strategies
for proving formulas are implemented using conditional rewriting rules. This
allows us to give the prover a knowledge on numbers that overcomes the power
of general theorem provers like SPASS for our concrete application. Our prover
has given overall good results, as we shall see in the examples.

5.2 Interface of the Loop Invariant Generator and the Verifier

For the time being, the interface between our implementation in Maple for gen-
erating polynomial loop invariants and the verifier is manual; that is to say, the
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USER

polynomial invariants

code annotated with
pre/postconditions and
additional invariants

GENERATOR
CONDITION

VERIFICATION conditions
verification

THEOREM
PROVER

LOOP
INVARIANT
GENERATOR

Fig. 1. Scheme of the system for verifying programs

user has to annotate by hand the polynomial invariants obtained by means of
the method here described in the code to be verified.

Sometimes an invariant expressed as a conjunction of polynomial equalities is
not strong enough to prove the desired properties of a program; then additional
invariants are also annotated. Most often there are already methods for auto-
matically finding these assertions, as is the case for linear inequalities [CH78].

6 Examples

In this section we illustrate the power of the proposed techniques for generating
polynomial invariants and their effectiveness in proving properties of nontriv-
ial algorithms operating on numbers. Although in some cases the polynomial
invariants are not enough to prove the desired properties, we will demonstrate
their need in proving properties of programs. For the sake of simplicity, we will
focus on the verification conditions that guarantee that the postcondition is met
on termination of the program. At the end of the section, a table summarizes
the results of applying our tools to a variety of programs. For all the examples
here shown, the verifier is powerful enough to check the required properties. The
timings are taken in seconds with a Pentium 4 with a 2.5 GHz. processor and
512 MB of memory.

Example 1. The next program is an algorithm for computing the product of two
natural numbers A and B. Three of the assignments are non-affine solvable:

function product (A, B: integer) returns q: integer
{ Pre: A ≥ 0 ∧B ≥ 0}
var a, b, p: integer end var
(a, b, p, q):=(A, B, 1, 0);
while (a �= 0) ∧ (b �= 0) do

if (a mod 2 = 0) ∧ (b mod 2 = 0)
→ (a, b, p, q) := (a div 2, b div 2, 4p, q);

[] (a mod 2 = 1) ∧ (b mod 2 = 0)
→ (a, b, p, q) := (a− 1, b, p, q + bp);

[] (a mod 2 = 0) ∧ (b mod 2 = 1)



Program Verification Using Automatic Generation of Invariants 337

→ (a, b, p, q) := (a, b− 1, p, q + ap);
[] (a mod 2 = 1) ∧ (b mod 2 = 1)

→ (a, b, p, q) := (a− 1, b− 1, p, q + (a+ b− 1)p);
end if

end while
{ Post: q = AB}

Our algorithm yields the invariant q + abp = AB in 3.32 s. In this case, the
verification condition that ensures that the postcondition is met is (q + abp =
AB ∧ (a = 0 ∨ b = 0)) ⇒ q = AB (free variables are implicitly universally
quantified); this condition is split into (q + abp = AB ∧ a = 0) ⇒ q = AB and
(q + abp = AB ∧ b = 0) ⇒ q = AB, which are reduced to (q = AB ∧ a = 0) ⇒
q = AB and (q = AB ∧ b = 0) ⇒ q = AB respectively, and then both to true.
The program is shown to be correct automatically by our system in 0.82 s.

Example 2. The next example, taken from [Dij76], is an extension of Euclid’s
algorithm for computing the least common multiple of two natural numbers a
and b. The invariant generation procedure yields xu+ yv = 2ab in 2.02 s.

function lcm (a, b: integer) returns z: integer
{ Pre: a > 0 ∧ b > 0}
var x, y, u, v: integer end var
(x, y, u, v):=(a, b, b, a);
{ Inv: gcd(x, y) =gcd(a, b)}
while x �= y do

if x > y → (x, y, u, v):=(x− y, y, u, u+ v);
[] x < y → (x, y, u, v):=(x, y − x, u+ v, v);
end if

end while
{Post : (u+ v) div 2 = lcm(a, b)}

In this case the auxiliary invariant gcd(x, y) = gcd(a, b), which can be ob-
tained automatically by other means ([CP93]), is also needed to prove the post-
condition. The verification condition in this case is (gcd(x, y) = gcd(a, b)∧ xu+
yv = 2ab ∧ x = y) ⇒ (u+ v) div 2 = lcm(a, b). Our prover reduces this formula
to gcd(a, b) (u+ v) = 2 gcd(a, b) lcm(a, b) ⇒ (u+ v) div 2 = lcm(a, b) and then
to u + v = 2 lcm(a, b) ⇒ (u + v) div 2 = lcm(a, b), which is trivially valid. The
program is shown to be correct automatically in 0.9 s.

Example 3. The following program has been extracted from [Knu69]. It tries to
find a divisor d of the natural number N using a parameter D:

function divisor (N,D: integer) returns d, r: integer
{ Pre: N > 0 ∧N mod 2 = 1 ∧D mod 2 = 1 ∧D ≥ 2 3

√
n+ 1}

var t, q: integer end var
(d, r, t, q):=(D,N mod D,N mod (D − 2), 4(N div (D − 2)−N div D));
{ Inv: d mod 2 = 1}
while d ≤ �

√
N� ∧ r �= 0 do

(d, r, t, q):=(d+ 2, 2r − t+ q, r, q);
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if r < 0 → (r, q):=(r + d, q + 4); end if
if r ≥ d → (r, q):=(r − d, q − 4); end if
if r ≥ d → (r, q):=(r − d, q − 4); end if

end while
{ Post: r = 0 ⇒ N mod d = 0}

For this program, our invariant generation algorithm yields d(dq − 4r+ 4t−
2q) + 8r = 8N as invariant in 24.56 s. In this case we also need the extra
invariant d mod 2 ≡ 1. To prove the postcondition we have to show the valid-
ity of (d(dq − 4r + 4t − 2q) + 8r = 8N ∧ d mod 2 ≡ 1 ∧ (r = 0 ∨ d >
�
√
N�)) ⇒ (r = 0 ⇒ N mod d = 0). Our prover reduces this formula into

(d(dq− 4r+ 4t− 2q) + 8r = 8N ∧ d mod 2 ≡ 1 ∧ r = 0) ⇒ N mod d = 0, and
then to (d(dq − 4r + 4t − 2q) = 8N ∧ d mod 2 ≡ 1) ⇒ N mod d = 0, which
is able to prove to be valid. The total time spent on proving the correctness of
the program is 2.03 s.

Table of Examples. Table 1 summarizes the results obtained after generating
invariants and verifying correctness for a number of programs 2. There is a row
for each program; the columns provide the following information:

1. 1st column is the name of the program; 2nd column states what the program
does; 3rd column gives the source where the program was picked from (the
entry (∗) is for the examples developed up by the authors).

2. 4th column gives the number of variables in the program; 5th column gives
the number of loops; 6th column is the number of branches for each loop;

3. 7th column gives the number of loop invariants generated for each loop; 8th
column is the time taken by the invariant generation.

4. 9th column indicates if any other kind of additional invariants was needed;
10th column is the time taken by the verifier to prove correctness.

Table 1. Table of examples

1 2 3 4 5 6 7 8 9 10
cohencu cube [Coh90] 4 1 1 4 2.15 No 0.61
prod4br product (∗) 6 1 4 1 3.32 No 0.82
hard integer division [SSM04] 6 2 1-2 3-3 7.43 Yes 5.46
divbin integer division [Kal90] 5 2 1-2 2-1 4.28 Yes 1.99
dijkstra integer sqrt [Dij76] 5 2 1-2 2-1 4.73 Yes 18.88
euclidex2 Bezout’s coefs (∗) 8 1 2 5 3.64 Yes 1.79
lcm2 lcm [Dij76] 6 1 2 1 2.02 Yes 0.90
fermat2 divisor [Knu69] 5 1 2 1 2.26 Yes 1.01
factor divisor [Knu69] 6 1 4 1 24.56 Yes 2.03

2 These programs are available at www.lsi.upc.es/~erodri.
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7 Conclusions and Further Research

An abstract framework for automatically discovering invariants for loops
without nesting is proposed. A general procedure for that is given if the language
used for expressing invariants is expressive, disjunctively closed and allows exis-
tential elimination and equivalence check. The procedure computes the strongest
possible invariant expressible in the language.

It is shown that our earlier results on computing polynomial equalities as
invariants are an instance of the abstract logical framework here presented. We
are investigating other languages for expressing invariants for which the frame-
work can be adapted. We are particularly interested in the first-order language
of polynomial inequalities, which subsumes that of of linear inequalities [CH78].

The framework has been implemented as a part of a verifier for proving prop-
erties of programs. The verifier is interfaced with the Maple computer algebra
system, which generates conjunctions of polynomial equalities as invariants. The
verifier also features a theorem prover able to reason about numbers, so that
the formulas representing the desired program properties can be checked to be
valid. This scheme has been applied to many non-trivial programs, successfully
generating invariants and then verifying properties of these programs.

We believe that the proposed abstract logical framework will also allow us
to design expressive languages to specify invariants of loops manipulating data
structures such as records, pointers, etc. We regard that the approach will be
particularly useful with arrays, since our framework has already been successful
in inferring invariants for some loops involving this data structure.

We are also investigating enriching the programming model to consider nested
loops as well as procedure calls; the main idea here is to represent all execution
paths using regular expressions and define fixed point computations as prescribed
by such regular expressions.
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Abstract. We show how to write surjective random generators for sev-
eral different classes of inductively defined types in dependent type the-
ory. We discuss both non-indexed (simple) types and indexed families
of types. In particular we show how to use the relationship between in-
dexed inductive definitions and logic programs: the indexed inductive
definition of a type family corresponds to a logic program, and gener-
ating an object of a type in the family corresponds to solving a query
for the logic program. As an example, we show how to write a surjective
random generator for theorems in propositional logic by randomising the
Prolog search algorithm.

1 Introduction

Random testing is a quick way to find bugs both in programs and their specifica-
tions [4]. It also facilitates proof development in type theory [9, 10]. When doing
random testing in type theory, we need to write random generators for types. A
random generator for a type D is a function that has random seeds as inputs and
objects of D as outputs. When D is a simple data type, the type of the generator
is Rand→ D [9], where Rand is the type of random seeds. In the case of a depen-
dent type (an indexed family of types) P i for i :: I (we write i :: I to indicate
that i is an object of type I), we wish to generate a pair (i, p) of indices i :: I
and objects p :: P i. That is, the type of the generators for the dependent type
P is Rand→ sig {i :: I; p ::P i}, where sig {i :: I; p ::P i} denotes a dependent
record type: the first field has type I and the second field has a type P i that
depends on the value i of the first field. However, since P i can be empty, we need
to decide how to generate an index i so that this is not the case. In this paper,
we discuss some difficulties that arise when writing generators for dependent
types and present some solutions for several classes of inductive definitions (see
Section 4–7). In particular, we get a very general class of generators by using the
fact that generating objects of inductively defined indexed families is similar to
solving queries in logic programs. This is because certain inductive definitions of
indexed families of types (predicates under the Curry-Howard correspondence)
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can be seen as a logic programs and vice versa [11]. We also discuss how to use
logic programming techniques for writing generators.

Examples are implemented in Agda/Alfa [5, 12], an interactive proof editor
based on Martin-Löf type theory. We slightly modify its concrete syntax to make
it easier to follow the examples. The formal proofs which are omitted in the paper
can be found at http://www.cs.chalmers.se/~qiao/papers/.

Acknowledgement. This research is partly supported by the Cover project funded
by SSF (the Swedish Foundation for Strategic Research). The aim of the Cover
project is to build tools where random testing and proving (automatic and in-
teractive) can be combined, see http://coverproject.org/. In particular we
develop tools based on dependent type theory, and we therefore need to develop
random generators for dependent types.

2 Inductive Families

In this section, we briefly describe the scheme for introducing new set formers
in Martin-Löf’s dependent type theory given by Dybjer [7]. We follow the usual
terminology where a “set” is a small type. Sets are either inductively defined or
formed from previously defined sets by dependent function set formation and de-
pendent record set formation. In general we may simultaneously define a whole
indexed family of sets inductively. Such a family is often called an inductive fam-
ily for short. In this article we restrict ourself to ordinary (or finitary) inductive
definitions. See [7] for a discussion about ordinary vs. generalised (or infini-
tary) inductive definitions. See also [8] for a discussion of further generalising
the notion of an inductive definition in dependent type theory.

We will only show the formation rule and the introduction rules, and omit
the elimination rules and equality rules. The reader is referred to [7] for details.

The dependent type theory here is based on the logical framework for Martin-
Löf type theory [13] extended with dependent record types [6]. It has four forms
of judgements: σ :: Type, p :: σ, σ = τ and p = q :: σ. The rules of type formation
are the following:

– Set :: Type,
– if α :: Set, then α :: Type,
– if σ :: Type and τ [A] :: Type under the assumption A :: σ, then

(A :: σ)→ τ [A] :: Type (dependent function type) and
sig {A ::σ; B :: τ [A]} :: Type (dependent record type, also called signature).

Notation:

– We mostly use letters σ, τ, · · · for types; α, β, · · · for sets (observe that sets
are special types); p, q, · · · for elements of a set; A,B, · · · for variables of a
type; and a, b, u · · · for variables of a set.

– We write τ [A] when we emphasise that τ may depend on a variable A (that
is, A may occur free in τ). However, this notation is optional: τ may depend
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on any variable in scope regardless of the notation. The result of substituting
the object s for A in τ is written τ [s/A].

– The general form of a signature is sig {A1 ::σ1; · · · ; AN ::σN}. It has as ob-
jects records (also called structures) struct{A1 = s1; · · · ; AN = sN} where
si :: σi[s1/A1, · · · , si−1/Ai−1]. A structure is a labelled tuple of objects of ap-
propriate types. The dot operation (−).Ai selects its Ai component; writing
r for the structure above, we have that r.Ai = si.

– A nondependent function type, written σ → τ , is the special case of
(A :: σ)→ τ [A] where A does not occur in τ .

2.1 Formation Rule

For each set former P , there is one formation rule that has the form

P :: (A1 :: σ1) → · · · → (AN :: σN ) →
(a1 :: α1) → · · · → (aM :: αM ) →
Set

(P -Formation)

where σi are types and αi are sets. We call Ai parameters and ai indices.
For readability, we omit the parameters and write P a1 . . . aM instead of
P A1 . . . AN a1 . . . aM .

2.2 Introduction Rules

There are finitely many introduction rules for each set former. Each introduction
rule for the set former P above has the form

intro :: (A1 :: σ1) → · · · → (AN :: σN ) →
(b1 :: β1) → · · · → (bK :: βK) →
(u1 :: P q11 . . . q1M ) →
· · ·
(uL :: P qL1 . . . qLM ) →
P p1 . . . pM

(P -Introintro)

where βi are sets, pj :: αj [p1/a1, · · · , pj−1/aj−1] (1 ≤ j ≤ M), and similarly
for qij for each i. We call bi non-recursive and ui recursive arguments of the
constructor intro.

2.3 Examples

We show some instances of the general schema [7] and how they are written in
Agda/Alfa [5, 12].

Example 1 (Natural numbers). The set Nat of natural numbers has no parame-
ters and indices. The rules are

– formation Nat :: Set (N = M = 0; in Nat-Formation)
– introduction zero :: Nat (K = L = 0; in Nat-Introzero)

succ :: Nat→ Nat (K = 0, L = 1; in Nat-Introsucc)

The concrete syntax in Agda/Alfa is
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Nat :: Set = data zero :: Nat
| succ (n :: Nat) :: Nat

Example 2 (Finite sets). The indexed family Finn (n :: Nat) of sets with just n
elements has the following rules:

– formation Fin :: Nat→ Set (N = 0, M = 1)
– introduction C0 :: (n :: Nat) → Fin(succn) (K = 1, L = 0)

C1 :: (n :: Nat) → Finn→ Fin(succn) (K = 1, L = 1)

The Agda/Alfa syntax is

Fin :: Nat -> Set
= data C0 (n :: Nat) :: Fin (succ n)

| C1 (n :: Nat) (i :: Fin n) :: Fin (succ n)

Example 3 (Untyped λ-terms). The set Termn (n :: Nat) of λ-terms whose free
variables are among {var0, · · · , varn−1} (using de Bruijn indices), is a component
of the Nat-indexed family Term defined as follows.

Term :: Nat -> Set
= data var (n :: Nat) (i :: Fin (succ n)) :: Term (succ n)

| abs (n :: Nat) (t :: Term (succ n)) :: Term n
| app (n :: Nat) (t1, t2 :: Term n) :: Term n

Example 4 (Vectors of specified length). An example with one parameter A1
(σ1 = Set) is the Nat-indexed family Vec where elements of Vecn are length-n
vectors.

Vec (A :: Set) :: Nat -> Set
= data nil’ :: Vec A zero

| cons’ (n :: Nat) (a :: A) (as :: Vec A n)
:: Vec A (succ n)

In Agda/Alfa, constructors are polymorphic with respect to the parameters and
need not be explicitly applied to them.

3 Generators

For the rest of the paper, we restrict σi in the schema in Section 2 to be the
type Set.

3.1 Definition of Generators

A generator for the family P in Section 2.1 is a function

genP :: (A1 :: Set) → · · · → (AN :: Set) →
(g1 :: Rand→ A1) → · · · → (gN :: Rand→ AN ) →
Rand→ sig {a1 ::α1; · · · ; aM ::αM ; p ::P a1 . . . aM}
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where Ai are parameters and gi are parameter generators.
We have chosen to implement a seed in Rand as a binary tree of natural

numbers [9]. The definition in Agda/Alfa is

Rand :: Set = data Leaf (k :: Nat) :: Rand
| Node (k :: Nat) (l, r :: Rand) :: Rand

Example 5. The following function is a generator for Vec.

genVec :: (A :: Set) -> (Rand -> A) ->
Rand -> sig { ind :: Nat; obj :: Vec A ind }

genVec A g (Leaf _ ) = struct ind = zero; obj = nil’
genVec A g (Node _ l r) = let { as = genVec A g r } in

struct ind = succ as.ind
obj = cons’ as.ind (g l) as.obj

The idea behind this generator is to map the parameter generator g to the given
tree seen as a (right-spine) list of (left) subtrees. (We omitted some braces and
semicolons using the so called layout rule of the Agda/Alfa syntax.)

3.2 Surjective Generators

A generator (with instantiation of parameters and parameter generators) is sur-
jective if it can generate, given a suitable seed, any element of any component
set of the target family. A reason for writing generators in Agda/Alfa is that
it becomes possible to formally prove this fundamental correctness property of
generators.

For example, we can prove by induction that genVec A g is surjective when-
ever the parameter generator g is surjective. In Agda/Alfa we formally define

Surj :: (A :: Set) -> (Rand -> A) -> Set
Surj A g = (x :: A) -> sig rand :: Rand; prf :: Id A (g rand) x
-- (In predicate logic: ∀x :: A.∃ rand :: Rand. g rand = x.)

surj_genVec::(A :: Set) -> (g :: Rand -> A) -> Surj A g ->
Surj sig{ind :: Nat; obj :: Vec A ind} (genVec A g)

surj_genVec A g p = 〈 · · · proof omitted · · · 〉

4 Generators for Simple Sets

A simple set, possibly parameterised, is an inductive family with the following
restriction (using the notation from Section 2):
– Its formation rule has only parameters and no indices (M = 0).
– For each introduction rule, the type βi of each non-recursive argument is

either a parameter Aj or a previously defined simple set.
– It is inhabited (non-empty); that is, at least one introduction rule has no

recursive arguments.
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A generator for simple P is easy to write: it randomly chooses a constructor
and generates its arguments by parameter generators, by the generators for
previously defined simple sets, or by recursive calls, all using sub-seeds of the
given seed. When the seed is not large enough, it terminates by choosing a non-
recursive constructor. As each seed is finite, the problem of non-termination
discussed in [4] does not arise here.

Example 6 (Lists). The set List A of lists with elements in the set A is parame-
terised in A. A generator for it can be defined as follows:

List(A::Set) :: Set = data nil :: List A
| cons (a::A) (as::List A) :: List A

genList :: (A :: Set) -> (Rand -> A) -> Rand -> List A
genList A g (Leaf _) = nil
genList A g (Node _ l r) = cons (g l) (genList A g r)

This is indeed a simplified version of genVec and easily seen to preserve surjec-
tivity of the parameter generator g.

5 Generators for Inhabited Inductive Families

An inhabited inductive family is an inductive family which satisfies the following
criteria:

– Its formation rule P :: I → Set has no parameters, and the single index set
I is a simple set with a surjective generator genI :: Rand→ I.

– For all i :: I, the set P i is inhabited.

The extension to families with parameters and several indices is straightforward.
For such a family P , a surjective generator genP :: Rand → genPsig, where

genPsig = sig {ind :: I; obj ::P ind}, can be defined from a surjective generator
genP ′ i for each P i. It first generates an index using genI, then an element of
P i using genP ′ i.

genP’ :: (i :: I) -> Rand -> P i -- assumed given.

genP :: Rand -> genPsig
genP (Node _ l r) = struct ind = genI l; obj = genP’ ind r
genP s = struct ind = genI s; obj = genP’ ind s

In fact, one can formally prove that

surj_genP :: Surj I genI -> ((i :: I)-> Surj (P i) (genP’ i))->
Surj genPsig genP

surj_genP p q = · · ·

We now present some examples of random generators genP ′ for various P .
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Example 7. Fin (succn) is inhabited for all n :: Nat. A surjective generator for
this family can be defined as follows:

genFin’ :: (n :: Nat) -> Rand -> Fin (succ n)
genFin’ zero _ = C0 zero
genFin’ (succ m) (Leaf _) = C0 (succ m)
genFin’ (succ m) (Node _ l r) = C1 (succ m) (genFin’ m l)

Example 8. A binary tree is balanced if, at each node, the height difference
between its left and right subtrees is at most 1. One formulation of the set Bal n
of balanced binary trees of height n, and its surjective generator genBal′ n are

Bal :: (n :: Nat) -> Set = data
Empty :: Bal zero

| C00 (t1, t2 :: Bal n) :: Bal (succ n)
| C01 (t1 :: Bal n) (t2 :: Bal (succ n)) :: Bal (succ (succ n))
| C10 (t1 :: Bal (succ n)) (t2 :: Bal n) :: Bal (succ (succ n))

genBal’ :: (n :: Nat) -> Rand -> Bal n
genBal’ zero _ = Empty
genBal’ (succ zero) _ = C00 Empty Empty
genBal’ (succ (succ n)) (Leaf k) =

let t = genBal’ (succ n) (Leaf k) in C00 t t
genBal’ (succ (succ n)) (Node k l r) =

let b1 = genBal’ (succ n) l
b2 = genBal’ (succ n) r
b3 = genBal’ n r

in choice3 k (C00 b1 b2) (C01 b3 b1) (C10 b1 b3)

where choice3 k a0 a1 a2 = a(k mod 3). Note that no part of a (non-leaf) seed
contributes to the result twice; this is necessary for surjectivity, and keeps disjoint
parts of the result independent of each other.

Example 9. The set Termn is nonempty for any n :: Nat, and a surjective gen-
erator can be given as follows:

genTerm’ :: (n :: Nat) -> Rand -> Term n
genTerm’ zero (Leaf _) = abs zero (var zero (C0 zero))
genTerm’ zero (Node k l r) =

let t1 :: Term (succ zero) = genTerm’ (succ zero) l
t2 :: Term zero = genTerm’ zero l
t3 :: Term zero = genTerm’ zero r

in choice2 k (abs zero t1) (app zero t2 t3)
genTerm’ (succ m) (Leaf k) = var m (genFin’ m (Leaf k))
genTerm’ (succ m) (Node k l r) =

let t1 :: Term (succ (succ m)) = genTerm’ (succ (succ m)) l
t2 :: Term (succ m) = genTerm’ (succ m) l
t3 :: Term (succ m) = genTerm’ (succ m) r
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in choice3 k (var m (genFin’ m l))
(abs (succ m) t1)
(app (succ m) t2 t3)

6 Generators for Simple Inductive Families

We now consider a family whose component sets are not necessarily inhabited.
First, we adopt the method in Section 4 for simple sets to a restricted class of
families; for these, surjective generators can be defined without backtracking.

An inductive family is simple if the following conditions hold:

– Its formation rule P :: I → Set has no parameter, and the single index set
I is simple.

– Each introduction rule has the form
intro :: (x1 :: I) → · · · → (xK :: I) →

(u1 :: P x1) → · · · (uK :: P xK) →
P p

– P is not empty; there must be a constructor without arguments.

The type of a generator for P is the same as in Section 5: genP :: Rand →
genPsig. However, the choice of constructor controls the generation process, as
in Section 4. First, genP randomly chooses a constructor. Then it generates the
constructor arguments i1, · · · , iK , o1, · · · , oK for x1, · · · , xK , u1, · · · , uK . Note
that each of the pairs (i1, o1), · · · , (iK , oK) can be chosen as an arbitrary object
of the type genPsig, and thus K recursive calls suffices for that. The result is
the pair

(p[i1/x1, · · · , iK/xK , o1/u1 · · · , oK/uK ], intro i1 . . . iK o1 . . . oK) :: genPsig

As in Section 4 the process terminates since the sizes of seeds decrease.
It is easy to see that this method gives a surjective generator as long as we

use independent random seeds in different recursive calls.

Example 10. A surjective generator for the family Even n (n :: Nat) (of sets of
proofs that n is even) can be defined as follows.

Even :: Nat -> Set
= data C0 :: Even zero

| C1 (n :: Nat) (p :: Even n) :: Even (succ (succ n))

genEven :: Rand -> sig { ind :: Nat; obj :: Even ind }
genEven (Leaf k) = struct ind = zero; obj = C0
genEven (Node k l r) = let g1 = genEven l

in struct ind = succ (succ g1.ind)
obj = C1 g1.ind g1.obj

The method can be extended to include parameters, several indices, non-
recursive arguments of simple types, etc, under suitable restrictions.
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7 Inductive Definitions and Logic Programs

The motivation for considering various restrictions on inductive families is to
have as few constraints as possible between indices and elements, in order to fa-
cilitate random generation. However, representing intricate constraints is often
the very purpose of defining an indexed family. To cover some of those cases, we
introduce unification and backtracking in a generation algorithm in the next sec-
tion. This section explains its basis, the relationship between inductive families
and logic programs [11].

A Horn inductive family is an inductive family which satisfies the following
conditions:

– The index sets in its formation rule, and the types (sets) of non-recursive
arguments in its introduction rules, all belong to previously defined Horn
inductive families.

– In each introduction rule, indices appearing in types of recursive arguments
and in the target type (qij , pi) are all of constructor expressions; that is,
built up from variables in scope by constructors only.

This covers a large part of ordinary inductive families, including all classes we
have considered so far.

Our main example here is the family of sets of derivations in propositional
calculus, indexed by their conclusions (theorems). It has no parameters and
only one index. We do not explain our method for Horn families in general, but
generalising the discussion from our specific example should be routine.

Consider �Lukasiewicz’s system for propositional calculus. The set of formulas
is a simple set with constructors

var :: Nat→
~(−) :: →
(−) => (−) :: →→

where Nat is used to name propositional variables. The axiom schemata are:

Ax1 p q r = (p => q) => ((q => r) => (p => r))
Ax2 p = (~p => p) => p
Ax3 p q = p => (~p => q)

The only inference rule is Modus Ponens. Thus the family Thm p (p ::) below
defines the set of derivations of a theorem p.

Thm :: Formula -> Set = data
ax1 (p, q, r :: Formula) :: Thm (Ax1 p q r)

| ax2 (p :: Formula) :: Thm (Ax2 p)
| ax3 (p, q :: Formula) :: Thm (Ax3 p q)
| mp (p, q :: Formula) (x :: Thm p) (y :: Thm (p => q))

:: Thm q

This family is not an instance of the simple schema of Section 6 because of
mp (y’s type is indexed by the non-variable p => q). Suppose we try to generate
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arguments for mp, first generating a derivation dx :: Thm tp for arguments x and p.
While any tp will do here, we then must find, for y and q, a derivation dy :: Thm tq
where tq matches the specific pattern (tp => _). Although we can find such a
derivation in this particular case, for other definitions there may not be such a
tq. If so, we need to backtrack, generate another pair (d′

x, t
′
p), and try again.

This is similar to searching for a solution of a query in logic programming.
In Prolog, we can define a predicate thm so that thm p holds if and only if there
exists a derivation d :: Thm p (we here assume that we have a complete proof
search procedure rather than the standard incomplete one).

thm((P => Q) => ((Q => R) => (P => R))).
thm((~P => P) => P).
thm(P => (~P => Q)).
thm(Q) :- thm(P), thm(P => Q).

Running the query thm(X) on a Prolog implementation, we can obtain theorems
as solutions for X; for example

X = (((_A => _B) => (_C => _B)) => _D) => ((_C => A) => _D)

More precisely, this is a theorem pattern (schema) with variables A, · · ·, D. We
can generate a theorem by instantiating them with any elements in Formula.

In general, there is a correspondence between Horn inductive definitions in
dependent type theory and Prolog programs under the propositions-as-sets cor-
respondence:

Type theory Logic programming
Family of sets P :: D → Set Predicate P
an introduction rule a Horn clause
inductive definition of P logic program defining P

For example, a clause in Prolog

P (t) :- P1(t1), · · · , PK(tK)

becomes an introduction rule in type theory:

intro :: (x1, . . . , xN :: D) → P1 t1 → · · · → PK tK → P t

where D is the set inductively generated by the function symbols of the logic
program (the term algebra or the Herbrand universe), and ti, t are sequences
of terms in D with variables x1, . . . , xN .

The above correspondence does not account for derivations (proof objects) d ::
Thm p, nor for typing of objects in general. We now extend the correspondence
for these.

The idea is to regard sets in type theory as unary predicates (on untyped
terms) characterising their elements. For Nat and , the corresponding predicates
are defined by
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nat(zero).
nat(succ(X)) :- nat(X).

formula(var(P)) :- nat(P).
formula(~P) :- formula(P).
formula(P => Q) :- formula(P), formula(Q).

A family with M indices becomes an (M + 1)-place predicate. For example, the
unary predicate Thm becomes a binary predicate thm1 so that Thm(P ) is true iff
there exists a proof object (derivation) d such that thm1(P, d):

thm1((P => Q) => ((Q => R) => (P => R)), ax1(P,Q,R))
:- formula(P), formula(Q), formula(R).

thm1((~P => P) => P, ax2(P)) :- formula(P).
thm1(P => (~P => Q), ax3(P,Q)) :- formula(P), formula(Q).
thm1(Q, mp(P,Q,X,Y)) :- thm1(P, X), thm1(P => Q, Y).

We can obtain a theorem and its derivation as solutions for X and Y in the query
thm1(X, Y). For example,

X = (var(zero) => var(zero)) =>
((var(zero) => var(zero)) => (var(zero) => var(zero)))

Y = ax1(var(zero), var(zero), var(zero))

So the problem of generating a pair (X :: Formula, Y :: Thm X) in de-
pendent type theory corresponds to the task of solving a query thm1(X, Y). In
this way, we can directly use a Prolog interpreter to generate some elements of
dependent types. If we randomise the Prolog interpreter, then we get a random
generator for dependent types.

In general, a typing b :: P a can be represented by a predicate P ′ (a, b) in
Prolog. For example, the following introduction rule for an inductive family P

intro :: (x1 :: D1) → · · · → (xN :: DN ) → P1 t1 → · · ·PK tK → P t

becomes a clause of the following form:

P ′(t, intro(X1, . . . , XN , U1, . . . , UK)) :-

D′
1(X1), · · · , D′

N (X1, · · · , XN−1, XN ), P ′
1(t1, U1), · · · , P ′

K(tK , UK).

where D′
i is the predicate corresponding to the set Di[x1, · · · , xi−1].

The idea is applied to test data generation as follows. A testing form [9]
below requires that Q[d/x] to be true (inhabited) for any d = (d1, · · · , dN ) that
satisfies the preconditions Pi[d/x].

(x1 :: D1) → · · · → (xN :: DN [x1, · · · , xN−1])→
P1[x1, · · · , xN ] → · · · → PK [x1, · · · , xN ] →
Q[x1, · · · , xN ]

Test data d for this can be generated by searching for solutions to the query

:- D′
1(X1), · · · , D′

N (X1, . . . , XN−1, XN ),
P ′

1(X1, · · · , XN , _), · · · , P ′
K(X1, · · · , XN , _).
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In the next section, we show a generator example for theorems by randomising
the Prolog search algorithm: instead of always choosing the first clause unifiable
with a goal, we let the random seed determine the order in which clauses are
tried.

8 A Generator for Theorems

In this section, we describe a generator for the family Thm in Section 7. It is
based on another more general generator ThmPat for theorem patterns, that is,
formula patterns whose ground instantiations are all theorems.

The type of formula patterns Pat is a simple set with four constructors. We
have the same three constructors as but also a fourth constructor X :: Nat →
Pat for pattern variables (logical variables denoting indeterminate formulas). We
write X0, X1, · · · rather than X zero, X (succ zero), · · ·. Examples of patterns are
X0=>X1 and (var0=>var1)=>X1. We distinguish proposition and pattern variables,
so that the method applies to indexing types without a var-like constructor (for
example, that of formulas on a fixed finite set of atomic propositions).

A theorem pattern t :: Pat becomes a theorem when each of its pattern
variables is instantiated by a formula; for example Ax2 X0 is a theorem pattern
since ax2 p :: Thm((Ax2 X0)[p/X0]) for any p ::. They are precisely those t :: Pat
with some derivation d :: ThmPat t, where ThmPat :: Pat → Set is defined just
the same as Thm, but with Pat replacing everywhere.

In what follows, letters X,Y, · · · range over pattern variables. Our Agda code
uses a standard technique to have access to ‘totally fresh’ pattern variables at
any point, though we omit details. Substitutions σ = [t1/X1, · · · , tN/XN ] are
represented by lists of pairs, and Subst is their type. The composite σ1 � σ2 of
two substitutions are defined so that t[σ1 � σ2] = (t[σ1])[σ2].

A pattern t matches an introduction rule axi of ThmPat if it can be unified
with Axi X, where X is a sequence with the appropriate number of fresh pattern
variables. When this is the case, writing σ for the most general unifier of t and
Axi X, we call the pair (σ, axi X[σ]) the match. For example, a match of X0=>X1
with ax2 is ([~X =>X/X0, X/X1], ax2X) with a fresh X.

We now describe a theorem pattern generator genTP the purpose of which
is to generate not an arbitrary theorem pattern but one that fits into a given
t :: Pat.

genTP :: Rand -> (t :: Pat) -> Maybe (σ :: Subst, ThmPat t[σ])

We use the Maybe-type of Haskell which has two constructors: Just (for success)
and Nothing (for failure). With a seed s, genTP s t either succeeds and returns
some Just (σ, d), or fails and returns Nothing. In case of success, we have a
theorem pattern t[σ] with derivation d :: ThmPat t[σ].

The derivation returned by genTP t s (t pattern, s seed) has the same shape
as s: leaves correspond to axioms and nodes to mp. For the leaf case, the result
is a success if t matches one of the axioms, else a failure. For the node case, we
first apply genTP to a fresh variable X to obtain (σl, dl :: ThmPatX[σl]). Then
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we apply genTP to the pattern (X => t)[σl] and obtain (σr, dr :: ThmPat (X =>
t)[σl][σr]). The final result is the composite σl �σr, together with the derivations
dl[σr] and dr combined by mp.

Recursive calls are made with sub-seeds of the random seed given as argu-
ment, hence genTP always terminates. A failed recursive call is dealt with by
backtracking as long as our finite random seed is not exhausted.

The pseudo-code for genTP is given below. In the description, toList s turns
a tree (seed) s into the list of left-subtrees.

genTP (Leaf k) t = do
if (t matches some of ax1, ax2, ax3) {

choose a match (σ, d ) according to k;
return Just (σ, d );

} else
return Nothing;

genTP (Node k l r) t = do
for sl in (toList l) {

if (genTP sl X (X fresh) has the form Just (σl, dl)) {
for sr in (toList r) {

if (genTP sr ((X => t)[σl]) has the form Just (σr, dr)) {
// generation succeeded.
σ := σl � σr;
return Just (σ, mp X[σ] t[σ] dl[σr] dr);

}
}

}
}
// seed exhausted.
return Nothing;

We can prove that this is a surjective generator: for any theorem pattern t,
there exists a seed s and fresh X such that genTP sX is Just (σ, d) with X[σ] = t
and d :: ThmPat t. The Agda/Alfa code and the surjectivity proof for a slightly
different version can be found in Qiao [15].

We now use genTP to define a generator genThm for Thm.

genThm :: Rand -> sig { ind :: Formula; obj :: Thm ind }

genThm s = do
if (genTP sX (X fresh) has the form Just (σ, d)) {

τ := substitution of all pattern variables
by arbitrary elements of ;

return (X[σ][τ ], d[τ ]);
} else {

choose an axi , and generate arbitrary formulas p for its arguments;
return (Axi p, axi p);

}
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This generator can for example be used to test properties in [10] (where
BoolExpr is used for the type of formulas).

9 Discussions and Future Work

We have identified several restricted classes of inductive families of sets for which
writing surjective generators is simple. For a Horn inductive family, generating
elements of the family of sets is equivalent to solving a query in a corresponding
logic program. Therefore, proof search techniques in logic programming can be
used for writing generators. As an example, we implemented a surjective gen-
erator for theorems by randomising the proof search algorithm that is used in
Prolog implementations. However, it is of course inconvenient to ask the user
to implement the search algorithm for each new family of sets. One solution is
to embed the search algorithm in the proof assistant externally or internally.
Such a system would be a bit like a randomised version of Twelf [14], a logical
framework where a given type family is interpreted as a logical program.

In Section 6, we described a simple schema for inductive definitions for which
we can write surjective generators. It is interesting to consider more general
schemata for which we can still write surjective generators without much diffi-
culty. For example, we may add side conditions or allow general terms (and not
only variables) as indices in the induction hypotheses. Consider, for example,
the set of reachable states of a transition system. This can be defined in the
following way:

R :: S -> Set = data
init (s :: S)(p :: P s) :: R s

| step (s, s’ :: S)(q :: Tran s s’)(p :: R s) :: R s’

where there are side conditions in the introduction rules: P characterises the
initial states and Tran is the transition relation. One sufficient condition to
have a surjective generator is: there is a surjective generator for P, and for any
s0 :: S, we have a surjective generator for the family Tran s0, because we can
then generate all possible next states for a given reachable state.

Recent work on generic programming [1, 2, 3] allows us to write a generic
function for a class of data types. It will be interesting to see if we can use
generic programming to generate surjective generators for a class of data types.
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Abstract. We give an inductive method for proving weak innermost
termination of rule-based programs, from which we automatically infer,
for each successful proof, a finite strategy for data evaluation. We first
present the proof principle, using an explicit induction on the termination
property, to prove that any input data has at least one finite evaluation.
For that, we observe proof trees built from the rewrite system, schema-
tizing the innermost rewriting tree of any ground term, and generated
with two mechanisms: abstraction, schematizing normalization of sub-
terms, and narrowing, schematizing rewriting steps. Then, we show how,
for any ground term, a normalizing rewriting strategy can be extracted
from the proof trees, even if the ground term admits infinite rewriting
derivations.

1 Introducing the Problem

In the context of programming in general, termination is a key property that war-
rants the existence of a result for every evaluation of a program. For rule-based
programs, written in languages like ASF+SDF [19], Maude [4], Cafe-OBJ [12], or
ELAN [3], data evaluation consists in exploring rewriting derivations of an input
term. Strong termination, expressing that every rewriting derivation terminates,
often does not hold. When for any term, there is at least one terminating deriva-
tion, the rewrite system is said to be weakly terminating. This is an interesting
property for languages like ELAN , whose strategies can express that the result
of the program evaluation on a data is one of its possible finite evaluations,
or the first one. Weak termination then warrants a result for such evaluation
strategies.

Analyzing termination also allows choosing the good way to evaluate data.
Indeed, if the program is strongly terminating, a depth-first evaluation can be
used, while if the program is only weakly terminating, a breadth-first algorithm,
often much more costly, is necessary in general. In the second case, if there is
a way to find terminating branches, the breadth-first technique can be avoided,
which yields a considerable gain for program executions. This is what we propose.

Z. Liu and K. Araki (Eds.): ICTAC 2004, LNCS 3407, pp. 356–371, 2005.
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Specific methods for proving termination of rewriting under strategies have
been studied. Let us cite [2] and [13, 9] for the innermost strategy, [10] for the
outermost strategy, and [8, 20] for local strategies on operators. All these works
tackle the problem of strong termination. Here, we consider the weak innermost
termination problem, i.e. we prove that among all innermost rewriting deriva-
tions starting from any term, one of them is finite. We focus on the innermost
rewriting strategy, consisting in rewriting always at the lowest possible positions,
since it is most often used as a built-in mechanism in evaluation of rule-based
languages and functional languages.

Like the previously cited methods, the approach presented here also gives a
way to prove weak termination of standard rewriting. But to our knowledge, it
is the only approach able to handle term rewriting systems (TRSs in short) that
are not strongly but only weakly innermost terminating. Moreover, our method
is constructive in the sense that the proof gives the strategy to follow to obtain
one of the finite derivations.

The weak termination property has been studied from several perspectives.
For instance, B. Gramlich proved that weak termination can imply strong ter-
mination [16]. He also established conditions on TRSs for the property to be
preserved by the union operation on TRSs [17]. J. Goubault-Larrecq proposed
a proof of weak termination of typed Lambda-Sigma calculi in [15].

In order to illustrate the main ideas of our method on a running example, let
us consider the following TRS:

f(g(x), s(0)) → f(g(x), g(x)) (1)
f(g(x), s(y)) → f(h(x, y), s(0)) (2)

g(s(x)) → s(g(x)) (3)
g(0) → 0 (4)

h(x, y) → g(x). (5)

Obviously, R is not terminating, nor even, because of the rule (2), innermost
terminating. For instance, the following innermost infinite sequence is possible in
R: f(g(f(0, 0)), s(0)) →(2) f(h(f(0, 0), 0), s(0)) →(5) f(g(f(0, 0)), s(0)) . . . How-
ever, R is weakly innermost terminating ; in particular, the cycle above can be
avoided by using the rule (1) instead of (2).

We first propose in this paper a method based on the same inductive principle
as [9, 8, 10], where we study strong termination: we use an explicit induction on
the termination property, but to prove here that every element t of a given set of
terms T weakly innermost terminates, i.e. there is at least one finite innermost
rewriting derivation starting from t. The general proof principle relies on the
simple idea that for establishing weak innermost termination of a ground term
t, it is enough to suppose that subterms of t weakly innermost terminate, and
that rewriting the context leads to at least one terminating chain. Iterating this
process until a non-reducible context is obtained establishes weak innermost
termination of t.

Directly using the termination notion on terms has also been proposed in [14],
for inductively proving well-foundedness of binary relations, among which path
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orderings. The approach differs from ours in that it works on general relations,
that can then be used on TRSs, whereas we directly handle the termination
proof of a given TRS.

From the proof of weak termination of a given TRS, we then extract for any
given ground term, a rewriting strategy to compute one of its normal form, even
if the ground term admits infinite rewriting derivations. To some extent, our
method has similarities with [18], where an automaton is built for normalization
according to a needed-redex strategy in the case of orthogonal rewrite systems.

In Section 2, the background is presented. Section 3 introduces the basic
concepts of the inductive proof mechanism. In Section 4, our method is formally
described with inference rules and a strategy to apply them. Finally, in Section 5,
a strategy is proposed to reach an innermost normal form from a given term,
using information of the proof establishing weak termination.

2 Notations

We assume that the reader is familiar with the basic definitions and notations
of term rewriting given for instance in [7]. T (F ,X ) is the set of terms built from
a given finite set F of function symbols having an arity n ∈ N, and a set X of
variables denoted x, y . . .. T (F) is the set of ground terms (without variables).
The terms composed of a symbol of arity 0 are called constants; C is the set
of constants of F . Positions in a term are represented as sequences of integers.
The empty sequence ε denotes the top position. The notation t|p stands for the
subterm of t at position p. The term u[tj ]j∈{i1..ik} denotes the term u in which
the subterms u|j have been replaced by tj respectively.

A substitution is an assignment from X to T (F ,X ), written σ = (x �→
t) . . . (y �→ u). It uniquely extends to an endomorphism of T (F ,X ). We identify
a substitution σ = (x �→ t) . . . (y �→ u) with the finite conjunction of equations
(x = t)∧ . . .∧ (y = u). The result of applying σ to a term t ∈ T (F ,X ) is written
σ(t) or σt. The domain of σ, denoted Dom(σ) is the finite subset of X such
that σx �= x. A ground substitution or instantiation is an assignment from X to
T (F). The composition of substitutions σ1 followed by σ2 is denoted σ2σ1.

Given a setR of rewrite rules or term rewriting system on T (F ,X ), a function
symbol in F is called a constructor if it does not occur in R at the top position
of the left-hand side of a rule, and is called a defined function symbol otherwise.
The set of constructors of F for R is denoted by ConsR, the set of defined
function symbols of F for R is denoted by Def R (R is omitted when there is no
ambiguity). The rewriting relation induced by R is denoted by →R (→ if there
is no ambiguity on R). We note s →p,l→r,σ t (or s →p,l→r,σ t where either p or
l → r or σ may be omitted) if s rewrites into t at position p with the rule l → r
and the substitution σ, i.e. s = s[lσ]p and t = s[rσ]p. The reflexive transitive
closure of the rewriting relation induced by R is denoted by →∗

R. Given a term
t, we call normal form of t, denoted by t↓, any irreducible term, if it exists, such
that t →∗

R t↓.
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An ordering 4 on T (F ,X ) is said to be noetherian iff there is no infinite
decreasing derivation (or chain) for this ordering. It is F-stable iff for any pair
of terms t, t′ of T (F ,X ), for any context f(. . . . . .), t 4 t′ implies f(. . . t . . .) 4
f(. . . t′ . . .). It has the subterm property iff for any t of T (F ,X ), f(. . . t . . .) 4 t.
Notice that, for F and X finite, if 4 is F-stable and has the subterm property,
then it is noetherian [6]. If, in addition, 4 is stable by substitution (for any
substitution σ, any pair of terms t, t′ ∈ T (F ,X ), t 4 t′ implies σt 4 σt′), then
it is called a simplification ordering. Let t be a term of T (F); like for standard
rewriting, we say that t weakly (resp. strongly) (innermost) terminates if and
only if at least one (resp. every) (innermost) rewriting derivation starting from
t is finite. Obviously, strong (innermost) termination implies weak (innermost)
termination. An innermost rewriting normal form of t is also denoted by t↓,
when there is no ambiguity.

3 Induction and Constraints

For proving that the terms t of T (F) weakly innermost terminate, we proceed
by induction on T (F) with a noetherian ordering 4, assuming that for any t′

such that t 4 t′, t′ weakly innermost terminates. To warrant non emptiness of
T (F), we assume that F contains at least a constructor constant.

The main intuition is to observe the rewriting derivation tree starting from
any ground term t ∈ T (F) which is any instance of a term g(x1, . . . , xm) ∈
T (F ,X ), for some defined function symbol g ∈ Def , and variables x1, . . . , xm.
Proving weak innermost termination on ground terms amounts to prove that all
these rewriting derivation trees have at least one finite branch.

Each rewriting derivation tree is simulated, using a lifting mechanism, by
a proof tree developed from g(x1, . . . , xm) on T (F ,X ), for every g ∈ Def , by
alternatively using two main concepts: narrowing and abstraction. More pre-
cisely, narrowing schematizes all innermost rewriting possibilities of terms. The
abstraction process simulates the innermost normalization of subterms in the
derivations. It consists in replacing these subterms by special variables, denot-
ing one of their possible innermost normal forms, without computing them. This
abstraction step is performed on subterms that can be assumed weakly inner-
most terminating by induction hypothesis.

The schematization of ground rewriting derivation trees is achieved through
constraints. The nodes of the developed proof trees are composed of a current
term of T (F ,X ), and a set of ground substitutions represented by a constraint
progressively built along the successive abstraction and narrowing steps. Each
node in an abstract tree schematizes a set of ground terms: all ground instances
of the current term, that are solutions of the constraint.

The constraint is in fact composed of two kinds of formulas: ordering con-
straints, set to warrant the validity of the inductive steps, and abstraction con-
straints combined to narrowing substitutions, which effectively define the rele-
vant sets of ground terms. The latter actually allow controlling the narrowing
process, well known to easily diverge.
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Unlike [9, 8, 10], where, for proving strong termination, all branches of the
proof trees have to be considered, we only develop here the relevant branches
that warrant termination of one rewriting derivation for any ground term.

We now introduce the necessary concepts to formalize and automate the
technique sketched above.

3.1 Ordering Constraints and Abstraction

The induction ordering 4 is constrained along the proof by imposing constraints
between terms that must be comparable, each time the induction hypothesis is
used in the abstraction mechanism. As we are working with a lifting mechanism
on the proof trees with terms of T (F ,X ), we directly work with an ordering
4P on T (F ,X ) such that t 4P u induces θt 4 θu, for every θ solution of the
constraint associated to u.

So inequalities of the form t > u1, . . . , um are accumulated, which are called
ordering constraints. Any ordering 4P on T (F ,X ) satisfying them and which is
stable by substitution fulfills the previous requirement on ground terms. The or-
dering 4P , defined on T (F ,X ), can then be seen as an extension of the induction
ordering 4, defined on T (F). For convenience, 4P is also written 4.

It is important to remark that, for establishing the inductive termination
proof, it is sufficient to decide whether there exists such an ordering.

Definition 1 (ordering constraint). An ordering constraint is a pair of terms
of T (F ,X ) noted (t > t′). It is said to be satisfiable if there exists an ordering
4, such that for every instantiation θ whose domain contains Var(t) ∪ Var(t′),
we have θt 4 θt′. We say that 4 satisfies (t > t′).

A conjunction C of ordering constraints is satisfiable if there exists an order-
ing satisfying all conjuncts. The empty conjunction, always satisfied, is denoted
by 5.

Satisfiability of a constraint C of this form is undecidable. But a sufficient
condition for an ordering 4 to satisfy C is that 4 is stable by substitution and
t 4 t′ for any constraint t > t′ of C.

Other constraints are introduced by the abstraction mechanism. To abstract
a term u at positions i1, . . . , ip, where the u|j are supposed to have a normal form
u|j↓, we replace the u|j by abstraction variables Xj representing respectively one
of their possible innermost normal forms. Let us define these special variables
more formally.

Definition 2 (NF-variable). Let N be a set of new variables disjoint from
X . Symbols of N are called NF-variables. Substitutions and instantiations are
extended to T (F ,X ∪N ) in the following way. Let X ∈ N ; for any substitution
σ (resp. instantiation θ) such that X ∈ Dom(σ), σX (resp. θX) is in normal
form, and then Var(σX) ⊆ N .

Definition 3 (term abstraction). The term u is said to be abstracted into the
term u′ (called abstraction of u) at positions {i1, . . . , ip} iff u′ = u[Xj ]j∈{i1,...,ip},
where the Xj , j ∈ {i1, . . . , ip} are fresh distinct NF-variables.
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Weak termination on T (F) is proved by reasoning on terms with abstraction
variables, i.e. on terms of T (F ,X ∪N ). Ordering constraints are extended to
pairs of terms of T (F ,X ∪N ). When subterms ti are abstracted by Xi, we state
constraints on abstraction variables, called abstraction constraints to express that
their instances can only be normal forms of the corresponding instances of ti.
Initially, they are of the form t↓ = X where t ∈ T (F ,X ∪N ), and X ∈ N ,
but we will see later how they are combined with the substitutions used for the
narrowing process.

3.2 Narrowing

After abstraction of the current term t into t[Xj ]j∈{i1,...,ip} we test whether the
possible ground instances of t[Xj ]j∈{i1,...,ip} are reducible, according to the pos-
sible values of the instances of the Xj . This is achieved by innermost narrowing
t[Xj ]j∈{i1,...,ip}.

To schematize innermost rewriting on ground terms, we need to refine the
usual notion of narrowing. In fact, with the usual innermost narrowing relation,
if a position p in a term t is a narrowing position, no suffix position of p can
be a narrowing position too. However, if we consider ground instances of t,
we can have rewriting positions p for some instances, and p′ for some other
instances, such that p′ is a suffix of p. So, when using the narrowing relation to
schematize innermost rewriting of ground instances of t, the narrowing positions
p to consider depend on a set of ground instances of t, which is defined by
excluding the ground instances of t that would be narrowable at some suffix
position of p. For instance, with the TRS R = {g(a) → a, f(g(x)) → b}, the
innermost narrowing positions of the term f(g(X)) are 1 with the narrowing
substitution σ = (X = a), and ε with any σ such that σX �= a.

Let σ be a substitution on T (F ,X ∪N ). In the following, we identify σ with
the equality formula

∧
i(xi = ti), with xi ∈ X ∪N , ti ∈ T (F ,X ∪N ). Similarly,

we call negation σ of the substitution σ the formula
∨

i(xi �= ti).

Definition 4. A substitution σ is said to satisfy a constraint
∧

j

∨
ij

(xij
�= tij

),
iff for all ground instantiation θ,

∧
j

∨
ij

(θσxij
�= θσtij

). A constrained substi-
tution σ is a formula σ0 ∧

∧
j

∨
ij

(xij
�= tij

), where σ0 is a substitution, and∧
j

∨
ij

(xij
�= tij

) the constraint to be satisfied by σ0.

Definition 5 (innermost narrowing). A term t ∈ T (F ,X ∪N ) innermost
narrows into a term t′ ∈ T (F ,X ∪N ) at the non-variable position p, using the
rule l → r ∈ R with the constrained substitution σ = σ0 ∧

∧
j∈[1..k] σj, which is

written t 
Inn
p,l→r,σ t′ iff

σ0(l) = σ0(t|p) and t′ = σ0(t[r]p)

where σ0 is the most general unifier of t and l at position p, and σj , j ∈ [1..k]
are all most general unifiers of σ0t and a left-hand side of rule of R, at suffix
positions of p.
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Notice that we are interested in the narrowing substitution applied to the
current term t, but not in its definition on the variables of the left-hand side
of the rule. So the narrowing substitutions we consider are restricted to the
variables of the narrowed term t.

3.3 Cumulating Constraints

Abstraction constraints have to be combined with the narrowing constrained
substitutions to characterize the ground terms schematized by the proof trees.
A narrowing step is applied to a current term u if the narrowing substitution σ
effectively corresponds to a rewriting step of ground instances of u, i.e. if σ is
compatible with the abstraction constrained formula A associated to u (i.e. σA
is satisfiable). Else, the narrowing step is useless. So the narrowing constraint
attached to the narrowing step is added to the abstraction constraints initially
of the form t↓ = X. This motivates the introduction of abstraction constrained
formulas.

Definition 6. An abstraction constrained formula (ACF in short) is a formula∧
i(ti↓ = t′i) ∧

∧
j

∨
kj

(ukj
�= vkj

), where ti, t
′
i, ukj

, vkj
∈ T (F ,X ∪N ).

Definition 7. An abstraction constrained formula A =
∧

i(ti↓ = t′i) ∧
∧

j

∨
kj

(ukj
�= vkj

) is satisfiable iff there exists at least one instantiation θ such that∧
i(θti↓ = θt′i)∧

∧
j

∨
kj

(θukj
�= θvkj

). The instantiation θ is then said to satisfy
the ACF A and is called solution of A.

Applying a constrained substitution σ = σ0 ∧
∧

j

∨
ij

(xij
�= tij

) to an ACF
A gives a formula σA obtained by applying σ0 to A and then by adjoining the
disequality part to the result.

An ACF A is attached to each term u in the proof trees; its solutions char-
acterize the interesting ground instances of this term, that are the θu such that
θ is a solution of A. When A has no solution, the current node of the proof
tree does not represent any ground term. Such nodes are then irrelevant for
the weak termination proof. So we have the choice between generating only the
relevant nodes of the proof tree, by testing satisfiability of A at each step, or
stopping the proof on a branch on an irrelevant node, by testing unsatisfiability
of A. These are both facets of the same question, but in practice, they lead to
different solutions.

Checking satisfiability of A is in general undecidable. The disequality part
of an ACF is a particular instance of a disunification problem (a quantifier free
equational formula, qfef in short), whose satisfiability has been addressed in [5],
that provides rules to transform any disunification problem into a solved form.
Testing satisfiability of the equational part of an ACF is undecidable in general,
but sufficient conditions can be given, relying on a characterization of normal
forms.

Unsatisfiability of A is also undecidable in general, but simple sufficient con-
ditions can be used, very often applicable in practice. They rely on reducibility,
unifiability, narrowing and constructor tests, and can be found in [11].
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So both satisfiability and unsatisfiability checks need to use sufficient con-
ditions. But in the first case, the proof process stops with failure as soon as
satisfiability of A cannot be proved. In the second one, it can go on, until A is
proved to be unsatisfiable, or until other stopping conditions are fulfilled. In the
approach followed below, narrowing and abstraction are applied without check-
ing the satisfiability of abstraction constraints, and the process stops as soon as
they are detected to be unsatisfiable.

4 Inference Rules for Inductive Termination Proofs

We are now ready to describe the different steps of our mechanism on a term
t, with initial empty constraints conjunctions A,C. It consists in iterating the
three following steps.

The first step abstracts the current term u at given positions i1, . . . , ip. The
constraints t > u|i1 , . . . , u|ip

are set, allowing to suppose, by induction, the ex-
istence of irreducible forms for u|i1 , . . . , u|ip

. Then, u|i1 , . . . , u|ip
are abstracted

into abstraction variables Xi1 , . . . , Xip
(or X1, . . . , Xp for simplifying the in-

dices). The abstraction constraint u|i1↓ = X1, . . . , u|ip
↓ = Xp is added to the

ACF A. This is the abstract step. The abstraction positions are chosen so that
the abstraction mechanism captures the greatest possible number of rewriting
steps: we abstract the greatest possible subterms of u = f(u1, . . . , um). Note
also that it is not useful to abstract non narrowable subterms: their ground
instances are always in normal form, since the variables of these subterms are
NF-variables.

The second step innermost narrows the resulting term in one step with all
possible rewrite rules of the rewrite system R, and all possible substitutions σ,
into terms v, according to Definition 5. This step is a branching step, creating
as many states as narrowing possibilities. The substitution σ is integrated to A,
as explained after Definition 7. This is the narrow step.

We then have a stop step halting the proof process on the current branch
of the proof tree, when A is detected to be unsatisfiable, or when the ground
instances of the current term can be stated weakly innermost terminating, which
happens when the induction hypothesis applies on it.

The previously presented steps are performed by inference rules that trans-
form 3-tuples (T,A,C) where T is a set of terms of T (F ,X ∪N ), containing the
current term whose weak innermost termination has to be proved: this is either
a singleton or the empty set, A is an ACF and C is a conjunction of ordering
constraints stated by the abstract steps.

Before giving the corresponding inference rules, let us notice that the in-
ductive reasoning can be completed in the following way. When the induction
hypothesis cannot be applied on a term u, it is sometimes possible to prove weak
innermost termination of every ground instance of u by another way. Let WT (u)
be a predicate that is true iff every ground instance of u weakly innermost ter-
minates. In the first (resp. third) previous step of the induction reasoning, we
then associate the alternative predicate WT (u|ij

) (resp. WT (u)) to the condition
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Table 1. Inference rules for the weak innermost termination proof

Abstract: {u}, A, C
{u′}, A ∧ u|i1↓ = Xi1 . . . ∧ u|ip↓ = Xip , C ∧HC(u|i1) . . . ∧HC(u|ip)

where u is abstracted into u′ at the positions i1, . . . , ip �= ε

if C ∧HC(u|i1) . . . ∧HC(u|ip) is satisfiable

where HC(u|j)j∈{i1,...,ip} =
{

true if WT (u|j)
tref > u|j otherwise.

Narrow: {u}, A, C
{v}, σA, C

if u 
Inn
σ v

Stop: {u}, A, C
∅, A, C ∧HC(u)

if (C ∧HC(u)) is satisfiable or A is unsatisfiable

where HC(u) =
{

true if WT (u) or A is unsatisfiable
tref > u otherwise.

t > u|ij
(resp. t > u). For establishing that WT (u) is true, in some cases, the

notion of usable rules [1] can be used. This approach is fully developed in [13].
The termination proof procedure is described by the set of rules given in Ta-

ble 1. These rules must be applied on the initial pairs ({tref = g(x1, . . . , xm)},5,
5), where g is a defined symbol, with the strategy S

(Abstract; dk(Narrow); Stop) *

where “;” denotes the sequential application of rules, “dk” the application of a
rule in all possible ways and “*” the iterative application of a strategy, until it
is not possible anymore. The process stops if no inference rule applies anymore.

There are two cases for the behavior of the termination proof procedure. The
strategy applied to the initial state ({tref },5,5) terminates if the rules do not
apply anymore and all states are of the form (∅, A,C). Otherwise, the strategy
does not terminate if there is an infinite number of applications of Abstract
and Narrow.

A branch of the derivation tree is said to be successful if it is ended by an
application of Stop, i.e. if its final state is of the form (∅, A,C).

Thus, the inductive weak termination proof is successful if there is at least one
successful branch corresponding to each possible ground term. Let us develop
this point.

In fact, branching, produced by Narrow, can generate different states with
narrowing substitutions σ1, . . . σn. These substitutions can be compared (see [11]).
For σi and σj , three situations may occur: σi is strictly less general than σj , which
is noted σi > σj , (or σj is strictly less general than σi), σi and σj are equal up
to a renaming, or else σi and σj are incomparable.



A Proof of Weak Termination Providing the Right Way to Terminate 365

States corresponding to substitutions that are more general than other ones
then represent a set of ground instances that contains the other ones. So, for
proving weak termination for all ground instances at a branching point, it is
sufficient to prove weak termination only for the “most general states”.

Note that the ignored states may schematize different rewriting steps than
those we consider (at different positions, with different rewrite rules). So for the
considered instances, if a “most general state” doesn’t exclusively give rise to
successful branches, we lose the possibility to test whether the other branches are
successful. In practice, this case rarely occurs and the gain is greater in avoiding
to consider redundant subsets of instances.

A branching node in a proof tree is a state, on which the Narrow rule applies.
Let Σ be the set of narrowing substitutions (possibly with different rewrite
rules) at a given branching node. Let Σ0 be the reduced set from Σ such that
σ ∈ Σ0 iff σ ∈ Σ and � ∃ σ′ ∈ Σ such that σ > σ′ on (Dom(σ) \ V ar(l)) ∪
(Dom(σ′) \ V ar(l′)), where l and l′ are the left-hand sides of rules respectively
used to produce the narrowing substitutions σ and σ′. The set Σ0 may yet
contain equivalent (equal up to a renaming) substitutions which are marked as
such. So for any two substitutions in Σ0, either they are equivalent, or they are
incomparable.

A proof tree is weakly successful if it is reduced to a state of the form (∅, A,C),
or if at each branching node:

– for each class of equivalent substitutions, there exists at least one weakly
successful subtree corresponding to a substitution in this class,

– all subtrees corresponding to incomparable substitutions are weakly success-
ful.

So the strategy S can be optimized as follows: at each branching point of
a proof tree, with set of substitutions Σ, we only develop the subtrees cor-
responding to Σ0. Moreover, given two subtrees corresponding to equivalent
substitutions, as soon as one of them is weakly successful, the other one is cut.

We write SUCCESS(g,4) if the proof tree obtained by application on
({g(x1, . . . , xm)}, 5,5), with the strategy S, of the inference rules whose con-
ditions are satisfied by an ordering 4, is weakly successful.

Theorem 1. Let R be a TRS on a set F of symbols. If there exists an F-stable
ordering 4 having the subterm property, such that for each defined symbol g, we
have SUCCESS(g,4), then every term of T (F) weakly innermost terminates.

A formal description with a complete set of inference rules for describing the
subtree cut process, and proofs of theorems are given in [11].

5 Finding a Good Derivation Chain

As said previously, establishing weak termination of an undeterministic eval-
uation process warrants a result if a breadth-first strategy is adopted for this
process. But such a strategy is in general very costly, and it is much better to
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have hints about the terminating derivations to compute them directly with a
depth-first mechanism.

Our proof process, as it simulates the rewriting mechanism, gives complete
information on a terminating rewriting branch. It allows extracting the exact
application of rewrite rules that yields a normal form. To rewrite a term, it is
enough to follow the rewriting scheme simulated by abstraction and narrowing
in the proof trees.

We now formalize the use of the proof trees to compute a normal form for
any term.

Definition 8. Let R be a TRS proved weakly terminating with Theorem 1. The
strategy tree STf associated to f ∈ DefR is the proof tree obtained from the
initial state ({f(x1, . . . , xm)},5,5).

Definition 9. Let R be a TRS proved weakly terminating with Theorem 1. Let
ST = {STf |f ∈ DefR} be the set of strategy trees of R and s = f(s1, . . . , sm) ∈
T (F). Normalizing s with respect to ST into normST (s) is defined in the fol-
lowing way:

– if f ∈ConsR, then normST (f(s1, . . . , sn))=f(normST (s1), . . . , normST (sn)),
– if f ∈ Def R, then normalizing s with respect to ST into normST (s) is

performed by following the steps in the strategy tree STf of f , where t =
g(t1, . . . , tn) is any term of the transformation chain of s with respect to ST
and u = g(u1, . . . , un) is the corresponding term in STf :
• if the step is Abstract, and abstracts u at positions i1, . . . , ip,

then t �→ t[t′1]i1 . . . [t
′
p]ip

,

where t′j =
{

t|ij
↓ if WT (u|ij

)
normST (t|ij

) otherwise,
• if the step is Narrow with g(u1, . . . , un) 
Inn

p,l→r,σ u′,
then g(t1, . . . , tn) �→ t′ where t′ is defined by g(t1, . . . , tn) →Inn

p,l→r,μ t′ =
μu′, with θ=μσ on V ar(g(u1, . . . , un)) and g(t1, . . . , tn)=θg(u1, . . . , un)
if μ exists,
t′ = g(t1, . . . , tn) and the normalizing process stops, otherwise,

• if the step is Stop, then g(t1, . . . , tn) �→ t′,

where t′ =
{

g(t1, . . . , tn)↓ if WT (g(u1, . . . , un))
normST (g(t1, . . . , tn)) otherwise.

Given a TRS R, the previous definition assumes that if the predicate WT
has been used to prove termination of a particular term t during the termination
proof of R, one is able to find a normalizing strategy for t. A simple sufficient
condition is that t is proved strongly terminating, which can be established
in most cases, like for WT , with the usable rules. Under this assumption, the
following theorem holds.

Theorem 2. Let R be a TRS proved weakly terminating with Theorem 1 and
ST its set of strategy trees. Then for any term t ∈ T (F), normST (t) is an
innermost normal form of t for R.



A Proof of Weak Termination Providing the Right Way to Terminate 367

Let us come back to the TRS R presented in the introduction, built on
F = {f : 2, h : 2, g : 1, s : 1, 0 : 0}. We first prove that every ground term t
of T (F) can be innermost normalized with R, and then infer from this proof a
strategy allowing normalization of any ground term of T (F).

Since the defined symbols of R are f , g, and h, we have to apply the inference
rules to f(x1, x2), g(x1) and h(x1, x2). The proof trees, given in Table 2, show
how the inference rules are applied, and provide the information needed to infer a
strategy for normalizing any ground term. When Narrow applies, we specify the
narrowing substitution, when it is useful for normalization, and in parentheses,
the rewrite rule number used to narrow.

The subtree marked by
⊙

in the proof tree of f is cut as soon as the sub-
tree generated on the left from f(X6, s(0)) with the same substitution (up to a
renaming) σ = (X6 = g(X7)) ∧ (X7 �= s(X8) ∧X7 �= 0) is successful.

The final proof trees are bold. Since they are all successful, R is proved
weakly innermost terminating on the ground term algebra. These proof trees
are respectively the strategy trees STg,STh and STf , from which we can now
infer a strategy normalizing any ground term t, according to Definition 9.

As an example, let us use the strategy to normalize the term f(g(f(0, 0)), s(0))
following the steps of STf .

(Step 1 in STf : Abstract) The first step is Abstract at positions 1 and 2
by application of the induction hypothesis, and then we get f(g(f(0, 0)), s(0))
�→ f(normST (g(f(0, 0))), normST (s(0)). Since s is a constructor, we have
normST (s(0)) = s(normST (0)). Since 0 is a constructor constant, we have
normST (0) = 0, and finally normST (s(0)) = s(0). We now have to compute
normST (g(f(0, 0))), by following the steps of STg.

(Step 1 in STg : Abstract) The first step is Abstract at position 1
by application of the induction hypothesis, and then we get g(f(0, 0)) �→
g(normST (f(0, 0))). To compute normST (f(0, 0)), we have to follow the
steps of STf .

(Step 1 in STf : Abstract) The first step is Abstract at posi-
tions 1 and 2 by application of the induction hypothesis, and then
we get f(0, 0) �→ f(normST (0), normST (0)). Since 0 is a constant
constructor, we have normST (0) = 0, and then f(0, 0) �→ f(0, 0).
(Step 2 in STf : Narrow) The second step is Narrow at the top
position, with rule (2). The narrowing substitution σ is such that
our current term f(0, 0) is not a ground instance of σf(X1, X2).
Therefore f(0, 0) �→ f(0, 0), and finally normST (f(0, 0)) = f(0, 0).
We then come back to normalization of g(f(0, 0)).

(Step 2 in STg : Narrow) Our current term is g(f(0, 0)), and the
second step of STg is Narrow at the top position, with rules (3) and
(4). None of the narrowing substitutions σ is such that our current
term g(f(0, 0)) is a ground instance of σg(X1). Therefore g(f(0, 0)) �→
g(f(0, 0)), and finally normST (g(f(0, 0))) = g(f(0, 0)). We then come
back to normalization of our main term.
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Table 2. Proof trees for symbols g, h and f

g(x1)

Abstract

��
g(X1)

Narrow,(3)

σ=(X1=s(X2))

�����
���

���
���

�

Narrow,(4)

σ=(X1=0)

����
���

���
���

��

s(g(X2))

Stop

��

0

Stop

��
∅ ∅

h(x1,x2)

Abstract

��
h(X1,X2)

Narrow,(5)σ=Id

��
g(X1)

Stop

��
∅

f(x1,x2)

Abstract

��
f(X1,X2)

Narrow,(2)
σ = (X1 = g(X3) ∧X2 = s(X4))

∧(X3 �= s(X5) ∧X3 �= 0) ��
f(h(X3,X4), s(0))

Abstract

��
f(X6, s(0))

Narrow,(1)

σ = (X6 = g(X7))
∧(X7 �= s(X8) ∧X7 �= 0)

""����
����

����
���

Narrow,(2) ##���
����

����
���

f(g(X7),g(X7))

Abstract

��

⊙ �� f(h(X9, 0), s(0))

Abstract

��
f(X11,X12)

Narrow,(2)
σ = (X11 = g(X14) ∧X12 = s(X15))

∧(X14 �= s(X16) ∧X14 �= 0)��

f(X13, s(0))

Narrow,(1)

$$��
��
��
��
��
��
��
��
��
��
�

Narrow,(2)

��

f(h(X14,X15), s(0))

Stop

��
∅ f(g(X17), g(X17)) f(h(X19, 0), s(0))

(Step 2 in STf : Narrow) Our current term is f(g(f(0, 0)), s(0)), and
the current step in STf is Narrow at the top position with rule (2). The
narrowing substitution σ is such that our current term is a ground instance
of σf(X1, X2). So f(g(f(0, 0)), s(0)) →ε,(2) f(h(f(0, 0), 0), s(0)).
(Step 3 in STf : Abstract) The current step in the proof tree is Abstract
at position 1 thanks to the WT predicate, and more precisely thanks to
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the usable rules which give a strong terminating system. Then we have
h(f(0, 0), 0) �→ h(f(0, 0), 0)↓, and it suffices to rewrite h(f(0, 0), 0) as long
as a normal form is reached, which is guaranteed by the termination of
the usable rules. Here we have h(f(0, 0), 0) →ε,(5) g(f(0, 0)). Finally we get
f(h(f(0, 0), 0), s(0)) �→ f(g(f(0, 0)), s(0)).
(Step 4 in STf : Narrow) The current step in the tree is Narrow at the
top position with rule (1). The narrowing substitution σ is such that our cur-
rent term is a ground instance of σf(X6, s(0)). So f(g(f(0, 0)), s(0)) →ε,(1)

f(g(f(0, 0)), g(f(0, 0))).
(Step 5 in STf : Abstract) The current step in the tree is Abstract at po-
sitions 1 and 2 thanks to the WT predicate, and then f(g(f(0, 0)), g(f(0, 0)))
�→ f(g(f(0, 0))↓, g(f(0, 0))↓). Since g(f(0, 0)) is in normal form, we get
f(g(f(0, 0)), g(f(0, 0))) �→ f(g(f(0, 0)), g(f(0, 0))).
(Step 6 in STf : Narrow) The current step of STf is Narrow at the top
position, with rule (2). The narrowing substitution σ is such that our current
term is a not a ground instance of σf(X11, X12). Therefore the normalizing
process stops on f(g(f(0, 0)), g(f(0, 0))), which hence is a normal form of
f(g(f(0, 0)), s(0)).

For a more detailed development of this example, as well as for other exam-
ples, see [11].

6 Conclusion and Perspectives

In this paper, we have proposed a method to prove weak innermost termination
of term rewriting systems by explicit induction on the termination property. To
simulate the innermost rewriting derivations of any ground term, we generate
proof trees issued from patterns g(x1, . . . , xm) where g is a defined function sym-
bol, in using two mechanisms: abstraction, introducing variables that represent
ground normal forms, and narrowing, schematizing rewriting on ground terms.

When all proof trees have a successful branch for all ground instances of
the patterns, the weak innermost termination property of the rewrite system
is proved. Then from these successful branches, a normalizing strategy can be
inferred for any ground term. We show how to extract the relevant information
from the proof trees to guide the innermost normalization process.

Proving weak termination of a program and deducing a normalizing strategy
can be achieved at compile-time. Then, to evaluate a data at run-time with no
risk of non-termination, it suffices to follow the strategy described in Section 5,
that states which rule to apply and at which position in the term, at each step
of the normalization process. Henceforth, evaluation at run-time is made very
efficient, since it always leads to a result, i.e. an irreducible term.

Up to our knowledge, this is the first method proposed to ensure weak termi-
nation of rewriting systems, allowing to find a finite evaluation for every term.

The important point to automate our proof principle is the satisfaction of
the constraints at each step of the proof. On many examples, this is immediate:
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as the ordering constraints only express the subterm property, they are triv-
ially satisfied by any simplification ordering. Otherwise, we can use automatic
ordering constraint solvers. As for abstraction constraints, they can be man-
aged with an unsatisfiability test, for which simple sufficient conditions exist,
that are automated. Thus, in general, weak termination proof can be completely
automatic.

As in our approach, the rewriting strategy is explicitly handled in the proof
principle, the method should be easily applicable to other strategies, especially
to the outermost strategy, and to local strategies on operators. This potentially
leads to a new functionality for CARIBOO, a toolbox for proving termination
under strategies [9].
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Abstract. We consider the problem of building satisfiability procedures
for unions of disjoint theories. We briefly review the combination schemas
proposed by Nelson-Oppen, Shostak, and others. Three inference systems
are directly derived from the properties satisfied by the theories being
combined and known results from the literature are obtained in a uniform
and abstract way. This rational reconstruction is the starting point for
further investigations. We introduce the concept of extended canonizer
and derive a modularity result for a new class of theories (larger than
Shostak and smaller than Nelson-Oppen theories) which is closed under
disjoint union. This is in contrast with the lack of modularity of Shostak
theories. We also explain how to implement extended canonizers by using
the basic building blocks used in Shostak schema or by means of rewriting
techniques.

1 Introduction

There is an obvious need of using decision procedures in deduction systems and
constraint programming environments since their use allows us to reason on a
specific computation domain (or a class of computation domains), to improve
efficiency and reduce user-interaction. In almost all applications, the computa-
tion domain is an amalgamation of domains or a union (combination) of theories
whose domains are axiomatized by formulae. For example, program verification
usually assumes a union of theories axiomatizing classical data-structures such
as lists, arrays, and arithmetics. To tackle this kind of problems, an appealing
approach is to proceed in a modular way, by combining decision procedures avail-
able for component theories. This line of research was started in the early 80’s
by two combination schemas independently presented by Nelson-Oppen [19] and
Shostak [24] for unions of theories with disjoint signatures. Each schema makes
different assumptions on the properties the theories to be combined should sat-
isfy. The former requires the theories to have a satisfiability procedures and to be
such that a satisfiable formula in a component theory T is also satisfiable in an
infinite model of T (stable-infiniteness). The latter assumes the theories admit
procedures for reducing terms to canonical form (canonizers) and algorithms for
solving equations (solvers). A NO theory admits a satisfiability procedure and
is stably-infinite while a canonizer and a solver are defined for a SH theory.

Z. Liu and K. Araki (Eds.): ICTAC 2004, LNCS 3407, pp. 372–386, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Recently, a series of papers [5, 22, 3, 14, 13, 17, 23, 4, 18] have clarified the sub-
tle issues of combining SH theories by studying their relationships with NO
theories. Unfortunately, these papers lack uniformity and non-experts may be
confused. For example, some works [5, 22, 3, 23] use pseudo-code to describe
the combination algorithms while others [13, 17, 4, 18] adopt a more abstract
(rule-based) presentation. There are advantages (and disadvantages) in both ap-
proaches: the pseudo-code offers a better starting point for implementation while
inference systems make correctness proofs easier. The first contribution of this
paper is to provide a synthesis of Nelson-Oppen and Shostak approaches to dis-
joint combination by using a rule-based approach in which many recent results
are recast and proved correct in a uniform, rigorous, and simple way.

Our rational reconstruction proceeds as follows. First, we recall that SH the-
ories are contained in the class of (convex) NO theories (Section 2.1). According
to this abstract classification, three possible scenarios are to be considered when
combining two theories: (a) both are NO theories (Section 3.1), (b) both are
SH theories (Section 3.2), and (c) one is a SH and the other is a NO theory
(Section 3.3). We formalize the combination schema for each scenario as an in-
ference system. The applicability conditions of the inference rules are derived
from the properties of the theories being combined. Along the lines of [13, 18, 4],
the combination schema for (b) is obtained as a refinement of that for (a). The
inference system formalizing the combination schema for (c), already considered
in [3], is obtained by modularly reusing those for (a) and (b) in a natural and
straightforward way. As a final remark, we mention the possibility of refining
the abstract inference systems presented here with strategies as done in [4], so
to get a more fine-grained rule-based implementation which mimics a Shostak
procedure as described in [23]. We do not do this here, since we are interested
in modularity rather than efficiency.

Our synthesis of combination schemas serves two purposes. First, although
the results are not new, we believe that presenting them in a uniform framework
could provide a valuable reference for people interested in combination prob-
lems, especially for non-experts of the field. Second, it can serve as the starting
point for further investigations. As an example, a problem of greatest impor-
tance when combining SH theories is the lack of modularity for solvers [17]: no
general method exists to produce a solver for the union of SH theories from
the solvers of the component theories. This lack of modularity together with the
observation that the theory of equality (ubiquitous in virtually any application
where combinations of decision procedures are needed) is not a SH theory seem
to suggest that any ad hoc combination schema for scenario (c) constitute a
reasonable trade-off between efficiency and generality: solvers and canonizers for
SH theories efficiently derive new equalities and cooperate in a Nelson-Oppen
way. This solution (adopted, for example, in ICS [11]) can be easily specified in
the framework proposed in this paper. In fact, the schema of Section 3.1 can be
applied to construct a satisfiability procedure for the union of many NO theories
which can then be used as the component NO theory in a simple generalization
of the schema in Section 3.3 to accommodate several solvers and canonizers.
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However, this solution leaves open the question about the existence of a suitable
concept that would allow us to obtain a modularity result and retain some of
the efficiency of the canonizers and solvers. By investigating this question in our
framework, we propose the concept of extended canonizer which constitutes the
second contribution of our paper. Intuitively, an extended canonizer allows
us to canonize terms with respect to a given theory T and a given T -satisfiable
set of equations Γ , so that the uniform word problem for T , i.e. T |= Γ ⇒ s = t,
reduces to the problem of checking the identity ecan(Γ )(s) = ecan(Γ )(t), where
ecan(Γ )(s) and ecan(Γ )(t) are the “extended canonical forms” of s and t, re-
spectively (Section 4.1). A similar concept was introduced in [22] for the theory
of equality and its combination with one Shostak theory is also described by a
rigorous version of Shostak schema. In [23], such a schema is generalized to con-
sider the combination of the theory of equality with an arbitrary number of SH
theories by an interesting generalization of Shostak schema requiring only the
construction of a canonizer for the union of the theories and invoking the solvers
for the constituent theories. The main difference with our work is that the con-
cept of extended canonizer introduced in this paper is modular, i.e. there exists
a procedure that, given two extended canonizers for two component theories,
yields an extended canonizer for their union (Section 4.3). Another interesting
feature of extended canonizers is that they can be efficiently built by reusing a
wealth of existing techniques such as canonizers and solvers for SH theories and
rewriting techniques (as advocated in [15, 2, 1]) for theories which do not admit
a solver (Section 4.2). To summarize, the concept of extended canonizer offers an
interesting trade-off between modularity and the possibility to reuse disparate
techniques to solve the uniform word problem under a common interface. As a
final remark, we notice that our definition of extended canonizer is orthogonal
to the line of research (advocated in [17]) which suggests that modular solvers
may exist in modified settings such as multi-sorted logic.

Structure of the Paper. Section 2 introduces basic concepts of first-order logic
and combination of theories. Section 3 presents a rational reconstruction of com-
bination methods. Section 4 defines the concept of extended canonizer and shows
how it can be built out of canonizers and solvers, or rewriting based procedures;
the modularity of extended canonizers is also studied. Section 5 presents some
conclusions and discusses the future work. All proofs omitted in this version of
the paper can be found in [21].

2 Preliminaries

We assume the usual first-order syntactic notions of signature, term, position,
and substitution, as defined, e.g., in [7].

Let Σ be a first-order signature containing only function symbols with their
arity and X a set of variables. A 0-ary function symbol is called a constant. A
Σ-term is a first-order term built out of the symbols in Σ and the variables in X .
We use the standard notion of substitution. We write substitution applications
in postfix notation, e.g. tσ for a term t and a substitution σ. The set of variables
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occurring in a term t is denoted by V ar(t). If l and r are two Σ-terms, then l = r
is a Σ-equality and ¬(l = r) (also written as l �= r) is a Σ-disequality. A Σ-literal
is either a Σ-equality or a Σ-disequality. A Σ-formula is built in the usual way
out of the universal and existential quantifiers, Boolean connectives, and symbols
in Σ. If ϕ is a formula, then V ar(ϕ) denotes the set of free variables in ϕ. We call
a formula ground if it has no variable, and a sentence if it has no free variables.
Substitution applications are extended to arbitrary first-order formulas, and are
written in postfix notation, e.g. ϕσ for a formula ϕ and a substitution σ.

We also assume the usual first-order notions of interpretation, satisfiability,
validity, logical consequence, and theory, as given, e.g., in [10]. A first-order the-
ory is a set of first-order sentences. A Σ-theory is a theory all of whose sentences
have signature Σ. All the theories we consider are first-order theories with equal-
ity, which means that the equality symbol = is always interpreted as the identity
relation. The theory of equality is denoted by E . A Σ-structure A is a model of
a Σ-theory T if A satisfies every sentence in T . A Σ-formula is satisfiable in T
if it is satisfiable in a model of T . Two Σ-formulas ϕ and ψ are equisatisfiable
in T if for every model A of T , ϕ is satisfiable in A iff ψ is satisfiable in A. The
satisfiability problem for a theory T amounts to establishing whether any given
finite quantifier-free conjunction of literals (or equivalently, any given finite set
of literals) is T -satisfiable or not. A satisfiability procedure for T is any algorithm
that solves the satisfiability problem for T .1 Note that we can use free constants
instead of variables to equivalently redefine the satisfiability problem for T as the
problem of establishing the consistency of T ∪S for a finite set S of ground liter-
als. The uniform word problem for a theory T amounts to establishing whether
T |= Γ ⇒ e, where Γ is a conjunction of Σ-equalities, e is a Σ-equality, and all
the variables in Γ ⇒ e are (implicitly) universally quantified.

Given an inference system R composed of inference rules (written as P � C),
the binary relation �R is defined on formulas as follows: Φ �R Φ′ if Φ′ can be
derived from Φ by applying a rule in R. The reflexive and transitive closure of
�R, denoted by �∗

R, is called the derivation relation of R. Also, a derivation in
R is a sequence Φ �R Φ′ �R Φ′′ �R · · · . A formula Φ is in normal form w.r.t. �R

if there is no derivation in R starting from Φ. The relation �∗
R is terminating if

there is no infinite derivation. We will write the configuration Γ,Δ to denote a
formula Γ ∧Δ, where Γ is a conjunction of equalities and Δ is a conjunction of
disequalities.

2.1 Combination of Theories

In the sequel, let Σ1 and Σ2 be two disjoint signatures (i.e. Σ1 ∩Σ2 = ∅) and Ti

be a Σi-theory for i = 1, 2. A Σ1 ∪Σ2-term t is an i-term if it is a variable or it
has the form f(t1, ..., tn), where f is in Σi (for i = 1, 2 and n ≥ 0). Notice that

1 The satisfiability of any quantifier-free formula can be reduced to the satisfiability
of sets of literals by converting to disjunctive normal form and then splitting on
disjunctions, e.g., checking whether S1 ∨ S2 (where S1 and S2 are conjunction of
literals) is T -satisfiable reduces to checking the T -satisfiability of both S1 and S2.
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a variable is both a 1-term and a 2-term. A non-variable subterm s of an i-term
is alien if s is a j-term, and all superterms of s are i-terms, where i, j ∈ {1, 2}
and i �= j. An i-term is i-pure if it does not contain alien subterms. A literal is
i-pure if it contains only i-pure terms. A formula is said to be pure if there exists
i ∈ {1, 2} such that every term occurring in the formula is i-pure. We will write
the configuration Φ1;Φ2 to denote a formula Φ1 ∧ Φ2, where Φi is a conjunction
of i-pure literals (i = 1, 2).

In this paper, we shall consider the problem of solving the satisfiability prob-
lem for T1 ∪T2 (i.e. the problem of checking the T1 ∪T2-satisfiability of conjunc-
tions of Σ1∪Σ2-literals) by using the satisfiability procedures for T1 and T2. For
certain theories, more basic algorithms exist which can be used to build satisfia-
bility procedures, e.g. canonizers and solvers for the class of Shostak theories (see
below for a formal definition). When such algorithms exist for either T1, T2, or
both, we are interested in using them to solve the satisfiability problem for T1 ∪
T2. In order to know which basic algorithms are available for T1 and T2 and what
are the assumptions on T1 and T2, the following notions and results are useful.

Definition 1. [20] A conjunction Γ of Σ-literals is convex in a Σ-theory T iff
for any disjunction

∨n
i=1 xi = yi (where xi, yi are variables and i = 1, ..., n) we

have that T ∪ Γ |=
∨n

i=1 xi = yi iff T ∪ Γ |= xi = yi, for some i ∈ {1, ..., n}.
A Σ-theory T is convex iff all the conjunctions of Σ-literals are convex. A Σ-
theory T is stably-infinite iff for any T -satisfiable Σ-formula ϕ, there exists a
model of T whose domain is infinite and which satisfies ϕ. A Nelson-Oppen
theory (NO-theory, for short) is a stably-infinite theory which admits a satis-
fiability algorithm. A NOconvex-theory is a convex NO-theory. The class of
NO-theories (resp. NOconvex-theories) is denoted by NO (resp. NOconvex).

Theorem 1. NO and NOconvex are closed under disjoint-union.

Definition 2. A solver (denoted by solve) for a Σ-theory T is a function which
takes as input a Σ-equality s = t and such that (a) solve(s = t) returns false, if
T |= s �= t, or (b) solve(s = t) returns a substitution λ = {x1 ← t1, ..., xn ← tn}
such that (b.1) xi is a variable occurring in s or t for i = 1, ..., n, (b.2) xi does not
occur in any tj for i, j = 1, ..., n, and (b.3) T |= s = t⇔ ∃y1, ..., ym.

∧n
i=1 xi = ti,

where y1, ..., ym (m ≥ 0) are “fresh” variables s.t. yk does not occur in s or t,
for all k = 1, ...,m. A conjunction of Σ-equalities is in solved form iff it has the
form

∧n
i=1 xi = ti, which will be denoted by λ̂, where λ = {x1 ← t1, ..., xn ← tn}

is the substitution returned by solve. A canonizer canon for a Σ-theory T is
an idempotent function from Σ-terms to Σ-terms such that T |= a = b iff
|= canon(a) = canon(b). A Shostak theory is a convex theory which admits a
solver and a canonizer. A SH-theory is a stably-infinite Shostak theory. The
class of SH-theories is denoted by SH.

We assume SH-theories to be stably-infinite since this is necessary to combine
them with other theories as suggested by many recent papers (see e.g. [18]). This
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Proposition 1. [18] SH ⊆ NOconvex ⊆ NO.

3 Rational Reconstruction of Combination Schemas

Let Ti be a Σi-theory (i = 1, 2) such that Σ1∩Σ2 = ∅. We consider the problem
of building a satisfiability procedure for T1 ∪ T2. As a preliminary step, we
consider a purification process converting any conjunction Φ of Σ1 ∪Σ2-literals
into a conjunction of pure literals. Such a process is achieved by replacing each
alien subterm t by a new variable x and adding the equality x = t to Φ. This
mechanism, called variable abstraction, is repeatedly applied to Φ until no more
alien subterms t can be abstracted away. Obviously, the purification process
always terminates yielding Φ1 ∧ Φ2, where Φi is a conjunction of Σi-literals
(i = 1, 2) such that Φ1 ∧ Φ2 is equisatisfiable to Φ in T1 ∪ T2. In the rest of
this paper, without loss of generality, we consider the satisfiability of formulae
of the form Φ1 ∧ Φ2 (or, equivalently, of configurations Φ1;Φ2), where Φi is a
conjunction of i-pure literals.

Our combination schemas are specified by inference systems. To prove that
an inference system R yields a satisfiability procedure, we follow a three steps
methodology. First, we show that the derivation relation �R induced by R is
terminating. Second, we prove that �R preserves (un-)satisfiability. Finally, we
check that the normal forms defined by �R (i.e. configurations to which no rule
in R can be applied) distinct from false must be satisfiable. The proof of the last
step proceeds by contradiction showing that a normal form distinct from false
cannot be unsatisfiable by using the following (technical) lemma from which the
proof of correctness of Nelson-Oppen schema in [25] essentially depends.

Lemma 1. [25] If T1 and T2 are two signature-disjoint stably-infinite theo-
ries, then any conjunction Φ1 ∧ Φ2 of pure quantifier-free formulas is T1 ∪ T2-
satisfiable if and only if there exists some identification of shared variables
in V ar(Φ1) ∩ V ar(Φ2)—i.e. an idempotent substitution ξ from variables to
variables—such that Φiξ∧ξ�= is Ti-satisfiable for i = 1, 2, where ξ �= is the formula∧

{(x,y) | xξ �=yξ} x �= y.

3.1 Combining Theories in NOconvex

We assume that T1 and T2 are in NOconvex. This implies the availability of
two satisfiability procedures for T1 and T2. We consider the inference system
NO obtained as the union of NO1 presented in Figure 1 and NO2 obtained from
NO1 by symmetry.2 NO takes configurations of the form Φ1;Φ2 where Φi is a
set of Σi-literals (i = 1, 2). Rule Contradiction1 reports the T1-unsatisfiability
of Φ1 (and hence of Φ1 ∧ Φ2), detected by the available satisfiability procedure.
2 A symmetric rule for T2 is obtained from a rule for T1 by swapping indexes 1 and

2. A symmetric inference system for T2 is the set of symmetric rules for T2 obtained
from the rules for T1.

is not too restrictive since, as shown in [3], any convex theory with no trivial
models is stably-infinite.



378 S. Ranise, C. Ringeissen, and D.-K. Tran

Fig. 1. The Inference System NO1

Rule Deduction1 propagates equalities between shared variables known to the
procedure for T1 to that for T2 (if they are not already known to the latter).
The problem of checking whether the equality x = y is a logical consequence
of T1 ∪ Φ1 is transformed into the problem of checking the T1-unsatisfiability of
Φ1 ∪ {x �= y} so to be able to exploit the available satisfiability procedure.

Theorem 2. Let T1, T2 be two signature-disjoint NOconvex-theories. Let NO
be the inference system defined as the union NO1 ∪ NO2, where NO1 is depicted
in Figure 1 and NO2 is obtained from NO1 by symmetry. The relation �∗

NO is
terminating and Φ1;Φ2 �∗

NO false iff Φ1 ∧ Φ2 is T1 ∪ T2-unsatisfiable.

Indeed, NO specifies only the essence of the Nelson-Oppen schema. Such
a schema can be refined to increase efficiency. For example, the satisfiability
procedures of some theories, such as Linear Arithmetic, can be extended so
to derive entailed equalities while checking for satisfiability (see, e.g. [16, 26])
thereby avoiding the guessing done when applying Deduction1. In this paper, we
will not consider this kind of amelioration (the interested reader is referred to
[8] for a comprehensive guide-line to the efficient implementation of the Nelson-
Oppen schema). In the following, we will consider refinements of NO which allow
us to incorporate solvers and canonizers for theories in SH.

3.2 Combining Theories in SH

We assume that T1 and T2 are in SH. This implies the availability of a canonizer
canoni and a solver solvei for each theory Ti (i = 1, 2).

Preliminary to the combination schema, we extend solvers (cf. Definition 2)
to handle sets of equalities as follows: solve(∅) returns the identity substitution
ε; solve(Γ ∪ {s = t}) = false, if solve(s = t) = false; and solve(Γ ∪ {s = t}) =
σ ◦ solve(Γσ), if solve(s = t) = σ, where ◦ denotes composition of substitutions.

We consider the inference system SH obtained as the union of SH1 presented
in Figure 2 and SH2 obtained from SH1 by symmetry. SH takes configurations
of the form Γ1,Δ1;Γ2,Δ2, where Γi is a set of Σi-equalities and Δi is a set of
Σi-disequalities for i = 1, 2. Rule Solve− fail1 reports the T1-unsatisfiability of
Γ1 (and hence of Γ1 ∧Δ1 ∧ Γ2 ∧Δ2) detected by solve1. Rule Solve− success1
replaces the Σ1-equalities Γ1 with their solved form which is obtained again
by using solve1. This is important for the next two rules. Dealing with solved

Contradiction1 Φ1; Φ2 
 false if Φ1 is T1-unsatisfiable

Deduction1 Φ1; Φ2 
 Φ1; Φ2 ∪ {x = y} if

⎧⎪⎪⎨
⎪⎪⎩

Φ1 is T1-satisfiable,
Φ1 ∧ x �= y is T1-unsatisfiable,
Φ2 ∧ x �= y is T2-satisfiable, and
x, y ∈ V ar(Φ1) ∩ V ar(Φ2)
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Solve− fail1 Γ1, Δ1; Γ2, Δ2 
 false if solve1(Γ1) = false

Solve− success1 Γ1, Δ1; Γ2, Δ2 
 γ̂1, Δ1; Γ2, Δ2 if

{
Γ1 is not in solved form,
γ1 = solve1(Γ1) �= false

Contradiction1 γ̂1, Δ1 ∪ {s �= t}; Γ2, Δ2 
 false if canon1(sγ1) = canon1(tγ1)

Deduction1 γ̂1, Δ1; γ̂2, Δ2 
 γ̂1, Δ1; γ̂2 ∪ {x = y}, Δ2 if

⎧⎨
⎩

canon1(xγ1) = canon1(yγ1),
canon2(xγ2) �= canon2(yγ2),
x, y ∈ V ar(γ1) ∩ V ar(γ2)

Fig. 2. The Inference System SH1

forms allows us to simply determine entailed equalities (possibly between shared
variables, see Deduction1) using canonizers. Hence, it is possible to lazily report
unsatisfiability as soon as we find a disequality whose corresponding equality is
entailed (see Contradiction1). Indeed, convexity allows us to handle disequalities
one by one.

Theorem 3. Let T1, T2 be two signature-disjoint SH-theories. Let SH be the
inference system defined as the union SH1 ∪ SH2, where SH1 is depicted in Fig-
ure 2 and SH2 is obtained by symmetry. The relation �∗

SH is terminating and
Γ1,Δ1;Γ2,Δ2 �∗

SH false iff Γ1 ∧Δ1 ∧ Γ2 ∧Δ2 is T1 ∪ T2-unsatisfiable.

It is easy to see that a strategy applying rules Solve− fail1, Solve− success1,
and Contradiction1 in SH to a configuration Γ1,Δ1;Γ2,Δ2 yields the same result
as that of applying rule Contradiction1 in NO to Γ1 ∪ Δ1;Γ2 ∪ Δ2. Similarly,
the application of rules Solve− success1 and Deduction1 in SH simulates the
application of Deduction1 in NO; showing that equalities between shared variables
can be derived by invoking a solver (and a canonizer) rather than resorting to
guessing as for NO when applying the rule Deductioni (i = 1, 2). This is one of
the key insights underlying Shostak schema. Furthermore, similarly to [13], the
abstract schema presented here seems to emphasize the importance of the solver
w.r.t. the canonizer. In fact, if the solved form returned by the solver is also
canonical, the canonizer can be trivially implemented as the identity function.
Nonetheless, we believe that the concept of canonizer is quite important for two
crucial reasons. First, it offers the entry point to refinements of the proposed
schema to increase efficiency. In fact, solving a set of equalities in “one-shot”,
as done when applying rule Solve− success1, may not be as efficient as solving
equalities incrementally, as done e.g. in [22, 14]. This can be incorporated in
our schema by refining the inference system SH along the lines described in [4]
so that the solver is applied to only one equality at a time and the canonizer
needs to return a canonical form for arbitrary terms. The second reason is that a
generalization of the concept of canonizer will be the basis for a new combination
schema as we will see in Section 4.
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3.3 Combining a Theory in NOconvex with One in SH

Without loss of generality, let us assume that T1 is in NOconvex and that
T2 is in SH. This situation frequently arises in practical verification problem,
e.g. the union of a theory in SH and E (which is not in SH). We consider
the inference system NS obtained as the union of NO1 in Figure 1 and SH2,
the symmetric of SH1 in Figure 2. NS takes configurations of the form Φ1;Γ2,Δ2
where Φ1 is a set of Σ1-literals, Γ2 is a set of Σ2-equalities, and Δ2 is a set of Σ2-
disequalities. We furtherly assume that when a rule of NO is applied, Φ1;Γ2,Δ2
stands for Φ1;Γ2 ∪Δ2 and when a rule of SH is applied, Φ1;Γ2,Δ2 is considered
as Γ1,Δ1;Γ2 ∪ Δ2, where Φ1 = Γ1 ∪ Δ1 and Γ1 (Δ1) is a set of Σ1-equalities
(-disequalities, respectively). NS can be seen as an abstract version of the one
proposed in [3].

Theorem 4. Let T1, T2 be two signature-disjoint theories such that T1 is in
NOconvex and T2 is in SH. Let NS be the inference system defined as the
union NO1 ∪ SH2, where NO1 is in Figure 1 and SH2 is obtained from SH1 in
Figure 2 by symmetry. The relation �∗

NS is terminating and Φ1;Γ2,Δ2 �∗
NS false

iff Φ1 ∧ Γ2 ∧Δ2 is T1 ∪ T2-unsatisfiable.

Let T1, ..., Tk and Tk+1, ..., Tk+n be k theories in NOconvex and n theories
in SH, respectively, and such that Σi ∩ Σj �= ∅ for i, j = 1, . . . , k + n, i �= j,
and n, k ≥ 1. It is possible to modularly build a satisfiability procedure for
T =

⋃k+n
j=1 Tj as follows. Repeatedly use NO to obtain a satisfiability proce-

dure for U0 =
⋃k

j=1 Tj , then repeatedly use NS to build satisfiability procedures
for U1 = U0 ∪ Tk+1, . . . , Un = Un−1 ∪ Tk+n, where Un is T . An alternative
would be to repeatedly use SH to construct satisfiability procedures for unions
of two theories in SH, followed by a repeated use of NO on the resulting theo-
ries. The particular case of combining E with one or more theories in SH (i.e.
k = 1) has been extensively studied by many researchers [5, 22, 14, 3, 13, 17, 23, 4],
Shostak [24] being the first. The correctness of the combination schemas out-
lined above immediately follows from the correctness of NO, SH, NS, the fact
that the union of two theories in NOconvex is also in NOconvex (The-
orem 1), and that SH is contained in NOconvex (Proposition 1). Similar
results are given in [18]. Finally, let us mention still another possibility to com-
bine k theories in NOconvex and n theories in SH. It would be possible to
slightly modify our inference rules to take into account k + n theories; config-
urations would be of the form Φ1; . . . ;Φk;Γk+1,Δk+1; . . . ;Γk+n,Δk+n and the
rule Deduction would propagate an equality between shared variables, deduced
in one theory, to the other (k + n) − 1 theories. At this point, it would not be
difficult to modify the proof of correctness for NS to show that the resulting rules
(taken from NO1, . . . ,NOk,SHk+1, . . . ,SHk+n) yield a satisfiability procedure for
T . The resulting proof would be a bit more involved because of the more complex
notation.
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4 Combining ECANconvex-Theories

Although the combination schemas of Section 3 are already sufficient to combine
several theories either in NOconvex, SH, or both, we investigate how to find
a generic combination schema which features the modularity of NO and retains
some of the efficiency of SH. To this end, we introduce a new basic building
block which generalizes the concept of canonizer for SH-theories and can be
modularly combined either to (1) build a satisfiability procedure for the union of
theories (admitting extended canonizers) by a schema which allows to efficiently
propagate entailed equalities as in SH but does not require to solve equalities, or
to (2) obtain an extended canonizer out of two extended canonizers in a modular
way, thereby showing that the class of theories for which an extended canonizer
exists is closed under disjoint union.

4.1 Extended Canonizers and ECANconvex-Theories

Definition 3. Let T be a Σ-theory with decidable uniform word problem, and
let Γ be a conjunction of Σ-equalities. Given any T -satisfiable Γ , an extended
canonizer for T is a function ecan(Γ ) : T (Σ,X) → T (Σ ∪K(Γ ), X), such that,
for any terms s, t, we have T |= Γ ⇒ s = t iff ecan(Γ )(s) = ecan(Γ )(t), where
K(Γ ) is a finite set of fresh constant symbols such that Σ ∩K(Γ ) = ∅.

ECANconvex denotes the class of convex theories admitting an extended
canonizer.

The concept of extended canonizer presents many similarities with the func-
tion can(Γ ) in [22].3 An important difference is that our extended canonizers
can be modularly combined to yield satisfiability procedures for union of dis-
joint theories (see Section 4.3 below). However, [23] describes a solution to the
problem of combining E with several theories in SH by means of an interesting
generalization of Shostak algorithm which only requires to build a canonizer for
the union of the theories (which is always possible for convex theories [17]) and
invokes the solvers for the theories being combined.

If a theory T admitting an extended canonizer ecan is also convex, then it is
always possible to build a satisfiability procedure for T by recalling that Γ∧¬e1∧
· · · ∧ ¬en is T -unsatisfiable if and only if there exists some i ∈ {1, . . . , n} such
that Γ ∧ ¬ei is T -unsatisfiable, or equivalently T |= Γ ⇒ ei. This immediately
implies the following proposition.

Proposition 2. ECANconvex ⊆ NOconvex.

Although we can always decide the uniform word problem for a convex theory
T by invoking a satisfiability procedure, it is not clear whether an extended
canonizer always exists for T in NOconvex. Recall that in the Definition 3 of

3 can(Γ )(t) returns a canonical form of the term t in which any (uninterpreted) sub-
term that is congruent to a known left hand side in an equation of Γ is replaced by
the associated right hand side.
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extended canonizer, we require it to return terms over T (Σ ∪K(Γ ), X) where
K(Γ ) must be a finite set of fresh constant symbols. The intuition is that a
constant in K(Γ ) is the representative of an equivalence class induced by T ∪Γ .
Since K(Γ ) is finite, extended canonizers can only be built for a theory T such
that, for each finite set Γ of ground equalities, the equivalence relation induced by
T ∪Γ has a finite number of equivalence classes. So, the problem of determining
that the inclusion in Proposition 2 is strict amounts to proving the existence of
a theory T in NOconvex such that for some set Γ of ground equalities, T ∪ Γ
induces an equivalence relation with an infinite number of equivalence classes.
We conjecture that such a theory exists and hence conclude the inclusion in
Proposition 2 is strict.

4.2 Extended Canonizers, Solvers, Canonizers, and Satisfiability
Procedures

We describe the relationships between theories in ECANconvex, those in SH,
and some in NOconvex which are not in SH.

Proposition 3. SH ⊆ ECANconvex, i.e. theories in SH admits an extended
canonizer.

Proof. Let T be an SH-theory and solve and canon its solver and canon-
izer, respectively. We define an extended canonizer ecan for T , as follows. If
solve(Γ ) = false, then ecan is undefined. If solve(Γ ) returns a substitution λ,
then ecan(Γ )(s) returns canon(sλ). !"

The proof of the Proposition above suggests how to reduce the uniform word
problem T |= Γ ⇒ s = t for a theory T in SH to the word problem T |= sλ = tλ,
where λ is the substitution obtained by iteratively applying solve to Γ . In turn,
T |= sλ = tλ reduces to checking whether canon(sλ) is syntactically equal to
canon(tλ) (a similar observation is done in [13]). The key observation here is
that substituting equalities in Γ with their solved form λ̂ can be done without
backtracking thanks to the properties of solve. This is not possible for some
theories whose uniform word problem can be decided by using an extended
canonizer. For example, E admits efficient algorithms to solve its uniform word
problem (see, e.g. [9]) but it is easy to show that it does not admit a solver (see
e.g. [18]); so E is not in SH.

Proposition 4. E ∈ ECANconvex, i.e. E admits an extended canonizer.

The extended canonizer for E is a total function since any set Γ of ground
equalities is E-satisfiable. Because of Proposition 4 and the fact that E is not
in SH, the inclusion between SH and NOconvex in Proposition 3 is strict.
There are other interesting theories not in SH for which an extended canonizer
exists as the following Proposition shows.

Proposition 5. Let Cf be the theory axiomatized by ∀X,Y.f(X,Y ) = f(Y,X).
Then, the theory C ′

f := Cf ∪ {∃X,Y.X �= Y } is not in SH and admits an
extended canonizer.
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Also, associative-commutative theories can be shown to admit extended canon-
izers by using the result in [2].

An efficient implementation of the uniform word problem for the theory of
equality and commutative symbols based on a fast congruence closure algorithm
is given in [9]. This can be used as the basis for efficient extended canonizers.

4.3 Extended Canonizers and Combination of
ECANconvex-Theories

For technical reasons (that will become clear in a moment), we introduce the
concept of equational simplifier, which is a partial function eqs taking conjunc-
tions of equalities and returning a function whose input is an equality and which
returns either true or false such that for any conjunction of equalities Γ and
equality e, (a) eqs is defined for Γ and e iff Γ is T -satisfiable, and (b) eqs(Γ )(e) is
true if T |= Γ ⇒ e, and false otherwise. Indeed, for T in ECANconvex, clause
(b) can be restated as follows: for any T -satisfiable Γ and any equality s = t,
eqs(Γ )(s = t) = true iff ecan(Γ )(s) = ecan(Γ )(t). In the rest of this section,
we assume that equational simplifiers are defined in terms of extended canoniz-
ers and we study the problem of building satisfiability procedures for unions of
ECANconvex-theories. There are two possibilities. First, adapt NO to combine
satisfiability procedures built out of equational simplifiers. (To see this, observe
that equational simplifiers decides uniform word problems since these can be
transformed to satisfiability problems as described in Section 4.1.) This gives
a straightforward reformulation of the inference rules in NO where side condi-
tions are expressed in terms of eqs. Since this is easy, the details are left to the
reader. Second, build an equational simplifier for the union of theories and then
derive the corresponding satisfiability procedure. In the following, we develop
the second possibility. Let Ti be a Σi-theory in ECANconvex and ecani its
extended canonizer for i = 1, 2 and Σ1 ∩Σ2 = ∅. First, we show how to obtain
an equational simplifier eqs1,2 for T1 ∪ T2 by using a variant of NO restricted to
equalities. Then, we show how to build an extended canonizer ecan1,2 for T1∪T2
out of ecan1, ecan2 and eqs1,2. The reader may ask why we need to build the
equational simplifier for T1 ∪ T2 to be able to build an extended canonizer. The
answer is in the definition of extended canonizer which requires Γ to be satisfi-
able for ecan(Γ ) to be defined. So, we need to check the T1 ∪ T2-satisfiability of
conjunctions of Σ1 ∪Σ2-equalities to decide whether ecan1,2 is defined.

Lemma 2. Let T1 and T2 be two signature-disjoint convex and stably infinite
theories. If an equational simplifier eqsi is known for Ti (for i = 1, 2), then
it is possible to construct an equational simplifier eqs for T1 ∪ T2 using the
combination method described in Figure 3.

Notice that the result above can be repeatedly applied to build an equational
simplifier for the union of n signature-disjoint, convex, and stably-infinite the-
ories T1, . . . , Tn. So, a satisfiability procedure for T1 ∪ · · · ∪ Tn can be imme-
diately obtained. However, this still does not answer the question: does there
exist an extended canonizer ecan1,2 for T1 ∪ T2 given two extended canonizers



384 S. Ranise, C. Ringeissen, and D.-K. Tran

Given a set Γ of equalities and an equality s = t, the following procedure shows how
to construct eqs for (Γ, s = t), when defined. Let EEC be the inference system defined
as the union EEC1 ∪ EEC2, where EEC1 is depicted in Figure 4 and EEC2 is obtained
by symmetry.

1. Purify Γ into Γ1; Γ2.
2. If Γ1; Γ2 
∗

EEC false, then eqs is undefined for (Γ, ).
3. Otherwise, let Γ ′

1; Γ ′
2 be the normal form w.r.t. 
EEC such that Γ1; Γ2 
∗

EEC Γ ′
1; Γ ′

2.
Furthermore, purify x = s ∧ y = t, where x, y are new variables not occurring in
V ar(Γ ′

1 ∧ Γ ′
2). Let Γ ′′

1 ; Γ ′′
2 be the result of purifying Γ ′

1 ∧ Γ ′
2 ∧ x = s ∧ y = t.

4. Let Γ ′′′
1 ; Γ ′′′

2 be the normal form w.r.t. 
EEC such that Γ ′′
1 ; Γ ′′

2 
∗
EEC Γ ′′′

1 ; Γ ′′′
2 .

This normal form is necessarily different from false since Γ1 ∧ Γ2 is T1 ∪ T2-
satisfiable and x, y are different new variables.

5. If there exists i ∈ {1, 2} such that x, y ∈ V ar(Γ ′′
i ), then eqs(Γ )(s = t) is defined

and it is equal to eqsi(Γ ′′′
i )(x = y).

6. Otherwise (x ∈ V ar(Γ ′′
i ), y ∈ V ar(Γ ′′

j ), for i �= j), eqs(Γ )(s = t) is defined, and
it is equal to true if there exists z ∈ V ar(Γ ′′

1 )∩V ar(Γ ′′
2 ) such that eqsi(Γ ′′′

i )(x =
z) = eqsj(Γ ′′′

j )(y = z) = true, otherwise it is defined as false.

Fig. 3. Equational Simplifier for the Union of Theories

ecan1 and ecan2 for T1 and T2, respectively, and an equational simplifier eqs1,2
for their union? To answer this question (constructively), we analyze the equa-
tional simplifier for eqs1,2 for T1 ∪ T2 given in Figure 3 and we show how an
extended canonizer can be obtained. The key technique underlying the analy-
sis consists of unfolding the fresh variables (abstracting alien subterms) intro-
duced by purification so to get terms back in the right signature. This unfolding
must be done with care since we must take into account the equivalence rela-
tion on fresh variables induced by the propagation of equalities between shared
variables.

Theorem 5. ECANconvex is closed under disjoint union.

Contradiction1 Γ1; Γ2 
 false if eqs1(Γ1) is undefined

Deduction1 Γ1; Γ2 
 Γ1; Γ2 ∪ {x = y} if

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

eqs1(Γ1) is defined,
eqs2(Γ2) is defined,
eqs1(Γ1)(x = y) = true,
eqs2(Γ2)(x = y) = false,
x, y ∈ V ar(Γ1) ∩ V ar(Γ2)

Fig. 4. The Inference System EEC1
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5 Conclusions and Future Work

We have presented combination schemas for disjoint unions of (a) two theories
in NOconvex, (b) two theories in SH, and (c) one theory in NOconvex with
one in SH. We have shown how such schemas are related to Nelson-Oppen and
Shostak approaches to combination as well as with many of the refinements
available in the literature. Our formalization highlights the key ideas underlying
each combination and allows us to derive proofs of correctness which are easy
to grasp. We believe this is a valuable synthesis for further investigations. To
justify this claim, we have introduced the concept of extended canonizer which
abstracts algorithms for deciding the uniform word problem of a theory and it is
modular, i.e. an extended canonizer can be built out of the extended canonizers
for the component theories. This is in contrast to the lack of modularity of solvers
for Shostak combination schema. Another advantage is the fact that it can be
easily implemented in terms of solvers and canonizers for Shostak theories or by
rewriting techniques as suggested e.g. in [1].

There are several main lines for future work. First, we want to derive a more
precise characterization of the theories admitting an extended extended canon-
izer. In this respect, a promising line of research would be to study for which
theories the uniform word problem can be reduced to a word problem. Second,
we want to study the complexity of extended canonizers in the union of theories.
We believe it would be interesting to apply our combination results to polyno-
mial time decidable uniform word problems as described in [12]. Third, we intend
to empirically evaluate the efficiency of extended canonizers by conducting some
experiments in haRVey [6]. The interest here is to obtain an efficient combination
between extended canonizers and propositional solvers. This requires to equip
extended canonizers with the capability of generating useful theory-specific facts
which, once projected into the propositional domain, allow to reduce the search
space. Finally, we plan to study how extended canonizers can be used when
non-convex theories are combined.
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Abstract. We present a synchronous approach to real-time reactive programming
in Lucid enriched with contexts as first class objects. The declarative intensional
approach allows real-time reactive programs to manipulate both events and state-
based representations of complex systems. We show the formal specification of
the Train-Gate-Controller problem, a standard case study in real-time systems
community, and formally verify the safety property.

Keywords: Real-time reactive programming, intensional programming, contexts,
formal verification.

1 Introduction

Reactive systems continuously interact with their environment. The two properties that
characterise reactive systems are that the process always reacts to a stimulus from its
environment (stimulus synchronisation), and the time elapsed between a stimulus and
its response is acceptable to the relative dynamics of the environment, so that the envi-
ronment is still receptive to the response (response synchronisation). Reactive systems
include many real-time systems that are subject to hard real-time requirements. Exam-
ples of such systems include railroad control systems, nuclear reactor control systems,
and air traffic control systems. In this paper we discuss Lucid extended with contexts
and clocks for programming real-time reactive systems.

The design of synchronous dataflow languages Lustre [2], and RLucid [10] are based
on Lucid [12]. They have been used for reactive programming and verification ap-
proaches for such programs have been developed. Clocks were added to Lustre programs
so that certain parts of the programs need not always run. This enabled the introduction
of constrained reaction. In RLucid the operator before to deal with real time has been
introduced. That is, one can write the expression E1 before E2 to determine whether the
first value in the stream E1 arrived at time t1 < t2, where t2 is the time of arrival of the
first value of E2. SIGNAL [5] language manipulates signals that are timed sequences
of typed values. In all these approaches time is discrete, and streams implicitly have
the time dimension, although clocks associated with dimensions may be different. It
is possible to write an expression in Lucid whose evaluation is context-dependent, the
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context being [d : t] where t is the (time) tag in the dimension d associated with the
expression (stream). However, a context in Lucid can not be explicitly manipulated.
This restricts the ability of Lucid to be an effective programming language for dealing
with constraints. So we have extended Lucid by adding the capability to explicitly ma-
nipulate contexts. This is achieved by introducing context as a first class object in the
language. From now on, we call this extended language as Lucx (Lucid extended with
contexts).

The notion of context was introduced by McCarthy and later used by Guha [3] as
a means of expressing assumptions made by natural language expressions in Artificial
Intelligence (AI). Hence, a formula, which is an expression combining a sentence in
AI with contexts, can express the exact meaning of the natural language expression.
By making difference between intension and extension of an expression, Intensional
language(Lucid) can express a natural language expression succinctly without loss
of accuracy. According to Carnap, the real meaning of a natural language expression
whose truth-value depends on the context in which it is uttered is its intension. The
extension of that expression is its actual truth-value in the different possible contexts
of utterance, evaluated [8]. For example the intension in the expression “E: the aver-
age temperature for this month here is greater than 0◦C” is itself. The two intensional
operators in this expression are this month and here, which refer respectively to the
time and space dimension. The extension of the expression varies according to the dif-
ferent evaluation context, which are different cities and months in this example. The
major distinction between contexts in AI and in intensional programming language is
that in the former case they are rich objects that are not completely expressible and
in the later case they are implicitly expressible. The introduction of contexts explicitly
as first class objects in Lucid improves the expressive power of Lucid in the follow-
ing ways:

– Contexts can be dynamically modified through operators defined for contexts. New
contexts can be dynamically created from those defined in a program.

– Context calculus provides compilation rules for calculating a context from a context
expression, and evaluation rules for expressions over context expressions.

– In Lucid, the dimensions of a multidimensional stream can be named explicitly.
A context is also multidimensional. It is possible to extract different sub-streams
independently from a stream and manipulate them, by evaluating the sub-streams
at dynamically changing context expressions.

– Different clocks may be used with different dimensions and the program will be
able to combine them through contexts whose dimensions are clocks.

– Lucid programs can be written for continuous time models.

2 Lucx: Lucid with Contexts

Wadge and Ashcroft [12] invented Lucid in 1974 as a dataflow language. After evolving
through different versions, Lucid has become an intensional language.
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E ::= id
| E(E1, . . . ,En)
| if E then E′ else E′′

| #E
| E @E′ E′′

| E where Q

Q ::= dimension id
| id = E
| id(id1, . . . , idn) = E
| Q Q

The abstract syntax of Lucid is given above. The operators @ and # are context
navigation and query operators. The non-terminals E and Q respectively refer to ex-
pressions and definitions. The general form of evaluation in Lucid is D,P � E : v
which means that in the definition environment D, and in the evaluation context P ,
expression E evaluates to v. The definition environment D retains the definitions of all
of the identifiers that appear in a Lucid program. Formally,D andP are partial functions
D : Id → IdEntry, P : Id → N, where Id is the set of all possible identifiers and
IdEntry has five possible kinds of value such as: Dimensions, Constants, Data Oper-
ators, Variables, and Functions[8]. The evaluation context P , associates a tag to each
relevant dimension.

Example 1 is a program in Lucid to extract a value from the stream representing the
natural numbers, beginning from the ubiquitous number 42. We arbitrarily pick the third
value of the stream, which is assigned tag number two (indexes starting at 0). We also
set the stream’s variance in the d dimension. Intuitively, we can expect the program to
return the value 44.

Example 1
N @.d 2
where

dimension d;
N = if (#.d <= 0) then 42 else (N+1) @.d (#.d-1);

end;

The operational semantics for Lucid is defined in [8]. The implementation technique
of evaluation for Lucid programs is an interpreted mode called eduction.

2.1 Contexts

In [1] we have defined contexts as first class objects in Lucid, introduced a set of
operators on contexts, and given a semantics for evaluating expressions over context
expressions. We have also shown that Lucx has the generality and expressivity to be
used as agent communication language. In this section we review the basic definitions
and give examples on context operators.

Informally a context is a reference to a multidimensional stream, making an explicit
reference to the dimensions and the tags (indexes) along each dimension. The syntax for
context is [d1 : x1, . . . , dn : xn], where d1, . . . , dn are dimension names, and xi is the tag
for dimension di. Given an expression E and a context c, the Lucx expression E @ c directs
the eduction engine to evaluate E in the context c. The semantics for evaluation is an
extension of the semantics given by Paquet [8]. Formally, contexts are defined as a subset
of a finite union of relations. Let DIM = {d1, d2, . . . , dn} denote a finite set of dimension
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names.With each dimension di, a unique tag set Xi is associated. Let TAG = {X1, . . . ,Xr}
denote the set of tags. We define the function fdimtotag : DIM → TAG, that associates
with every di ∈ DIM exactly one tag set Xj in TAG.

Definition 1. Consider the relations

Pi = {di} × fdimtotag(di) 1 ≤ i ≤ n

A context C, given (DIM, fdimtotag), is a finite subset of
⋃n

i=1 Pi. The degree of the context
C is | Δ |, where Δ ⊂ DIM includes the dimensions that appear in C.

A context is written using enumeration syntax. The set enumeration syntax of a context
C is C = {(d, x) | d ∈ Δ, x ∈ fdimtotag(d)}.We use the syntax [di1 : xj1 , . . . , dik : xjk ] in
Lucx to explicitly denote the aggregation of dimension, tag pairs. Note that the dis need
not be distinct, and

C ⊆
⋃n

i=1 Pi ⊂ DIM × I, I =
⋃

Xi∈TAG Xi

Consequently, every subset of
⋃

i=1,n Pi is a context, but not every subset of DIM × I
is a context. However, if X1 = X2 . . . = Xn, every subset of DIM × I is a context. This
follows from the fact that fdimtotag(di) = Xi, i = 1, . . . , n implies that

∪n
i=1Pi = ∪n

i=1 ({di} × I) = (∪n
i=1{di})× I = DIM × I

We say a context C is simple (s context), if (di, xi), (dj, xj) ∈ C ⇒ di �= dj. A simple
context C of degree 1 is called a micro (m context) context.

Example 2. Let DIM = {X,Y ,Z,U}, TAG = {N, {blue, red}}, fdimtotag(X) = N,
fdimtotag(Y) = N, fdimtotag(U) = {blue, red} = fdimtotag(Z). The subsets of P = P1 ∪
P2 ∪ P3 ∪ P4, where P1 = X × N,P2 = Y × N,P3 = Z × {blue, red},P4 =
U × {blue, red} are contexts.

1. c1 = [X : 1.5,Y : red] is not a subset of P, hence is not a context.
2. c2 = [Z : blue] is a m context.
3. c3 = [X : 3,Y : 2] is a s context of degree 2.
4. c4 = [X : 3,X : 4,Y : 3,Y : 2,U : blue] is a context of degree 3.

We have defined several functions on contexts [1]. The basic functions dimm and
tagm extract the dimension and the tag from a micro context. Extending their definitions,
the functions dim and tag are defined for a context.

Example 3. Consider the contexts introduced in Example 2. An application of dim and
tag functions to these contexts produces the following results:

1. dim and tag are not defined for context c1.
2. dimm(c2) = Z, tagm(c2) = blue.
3. dim(c3) = {X,Y}, tag(c3) = {3, 2}.
4. dim(c4) = {X,Y ,U}, tag(c4) = {3, 4, 2, blue}.
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In general, a set of contexts may include contexts of different degrees. We use the
syntax Box[Δ | p] to introduce a finite set of contexts in which all contexts are defined
over Δ ⊆ DIM, have the same degree | Δ |, and the tags in every context satisfy the
predicate p. For example, the set of contexts defined by Box[X,U | x

4 + u
5 ≤ 1], where

fdimtotag(X) = fdimtotag(U) = N is given below:

{[X : 0, U : 0..5], [X : 1, U : 0..3], [X : 2, U : 0..2], [X : 3, U : 0..1], [X : 4, U : 0]}

A non-simple context is to be understood as a set of simple contexts, that may not be
expressible in Box notation. The context C4 = [X : 3,X : 4,Y : 3,Y : 2,U : blue] in
Example 2 is equivalent to the set of simple contexts {[X : 3,Y : 3,U : blue], [X : 3,Y :
2,U : blue], [X : 4,Y : 3,U : blue], [X : 4,Y : 2,U : blue]}. In [1] we have given a
method to construct the set of simple contexts that is equivalent to a non-simple context.

2.2 Context Calculus

Context operators in Lucx are: constructor [ : ], override [ ⊕ ] , difference [ 6 ] ,
choice [ | ] , conjunction [ ! ] , disjunction [ " ] , undirected range [ � ] , directed
range [ ⇀ ] , projection [ ↓ ] , hiding [ ↑ ] , substitution [ / ] , comparison [ = ],
superset [ ⊇ ], and subset [ ⊆ ] . The operators for sets of contexts, in particular for
Box, are join [ � ] , union [ 
 ] , and intersection [ � ] . In this paper we have omitted
the formal definitions. They can be found in [1]. Below, we give examples to illustrate
some of the operator definitions.

1. Context Operators:
(a) [Constructor [ : ]]

This operator constructs a m context for a given dimension d, and tag fdimtotag(d).
(b) [Override ⊕ ]

Let c1 = [d : 1], c2 = [e : 2], c3 = [e : 5], c4 = [d : 2 , d : 3 , f : 4],
Then c1 ⊕ c2 = [ d : 1 , e : 2 ], c2 ⊕ c3 = [ e : 5 ], c3 ⊕ c2 = [ e : 2 ],
c4 ⊕ (c1 ⊕ c2) = [ d : 1 , e : 2 , f : 4 ],
( c4 ⊕ c1 ) ⊕ c2 = [ d : 1 , e : 2 , f : 4 ].

(c) [Difference 6 ]
Let c1 = [ d : 3, d : 2, e : 3], c2 = [ d : 1, e : 4], c3 = [ d : 1],
Then c2 6 c3 = [e : 4], c1 6 ( c2 6 c3) = c1.

(d) [Hiding ↑ ]
Let c1 = [ d : 1, e : 4, f : 3 ], c2 = [ d : 3 ], c3 = [ f : 3 ] , Δ = { d, e }
Then c1 ↑ Δ = [ f : 3], c2 ↑ Δ = ∅, c3 ↑ Δ = [ f : 3].

(e) [Undirected range � ]
Let c1 = [ d : 1], c2 = [ d : 4 ], c3 = [ e : 3, d : 1], c4 = [ e : 1, d : 3 ],
Then c1 � c2 = {[ d : 1], [ d : 2], [ d : 3], [ d : 4]} = c2 � c1
c3 � c4 = {[ e : 1, d : 1..3], [ e : 2, d : 1..3], [ e : 3, d : 1..3],

2. Box operators:
Let DIM = {X,Y ,Z}, and fdimtotag(X) = fdimtotag(Y) = fdimtotag(Z) = N. Let B1 =
Box[X,Y | x, y ∈ N ∧ x + y = 5], and B2 = Box[Y ,Z | y, z ∈ N ∧ y = z2 ∧ z ≤ 3].
We have B1 = {[X : 1,Y : 4], [X : 2,Y : 3], [X : 3,Y : 2], [X : 4,Y : 1]}
B2 = {[Y : 1,Z : 1], [Y : 4,Z : 2], [Y : 9,Z : 3]}
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(a) [Join:]
B1 � B2 = Box[X,Y ,Z | x + y ≤ 5 ∧ y = z2 ∧ z ≤ 3]
= {[X : 1,Y : 4,Z : 2], [X : 4,Y : 1,Z : 1]}

(b) [Intersection:]
B1 � B2 = Box[Y | x + y ≤ 5 ∧ y = z2 ∧ z ≤ 3]
= {[Y : 1], [Y : 4]}

(c) [Union:]
B1 
 B2 = Box[X,Y ,Z | x + y ≤ 5 ∨ (y = z2 ∧ z ≤ 3)]
= {[X : 1,Y : 4,Z : 1..3], [X : 2,Y : 3,Z : 1..3], [X : 3,Y : 2,Z : 1..3],
[X : 4,Y : 1,Z : 1..3], [X : 1..3,Y : 1,Z : 1], [X : 2..4,Y : 4,Z : 2],
[X : 1..4,Y : 9,Z : 3]}

The following table shows the formal syntax for context expression C, and precedence
rules for context operators [1].

syntax precedence

C ::= c | C = C
| C ⊇ C | C ⊆ C
| C | C | C/C
| C ⊕ C | C  C
| C ! C | C � C
| C � C | C ⇀ C
| C ↓ D | C ↑ D

1. ↓, ↑, /
2. |
3. !, �
4. ⊕,  
5. �, ⇀
6. =, ⊆, ⊇

Similarly, we define a Box expression. The three Box operators have the same prece-
dence. An expression b1 � b2 � b3 is evaluated from left to right.

2.3 Syntax and Semantics of Lucx

The abstract syntax for contexts in Lucx is given below.

E ::= E @ E′

| [E1 : E′
1, . . . , En : E′

n]
But for this change, the rest of the original syntax is retained. The operator @ is the
navigation operator, which evaluates an expression E in context E′, where E′ is an
expression evaluating to a context. The syntactic construct [E1 : E′

1, . . . , En : E′
n] is

for introducing context as an enumerated aggregation of m contexts. As reflected in the
semantic rules below, E @ E′ is evaluated. The complete operational semantics is defined
in [8, 1].

Econtext :
D,P 
 Edj : idj D(idj) = (dim) D,P 
 Eij : vj v = [idj #→ vj]

D,P 
 [Ed1 : Ei1 , Ed2 : Ei2 , . . . , Edn : Ein ] : v

Eat(c) :
D,P 
 E′ : P′ D,P ′ 
 E : v

D,P 
 E @E′ : v

Based upon the precedence rules and semantics, evaluation rules for context expressions
are given. For instance, E @ c1 ⊕ c2 ! c3 = E @ (c4 " c1 ↑ Δc4), where c4 = c2 ! c3.
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3 Real-Time Reactive Programming in Lucx

In this section we discuss the representation of events, states, functions, contexts and
boxes of timed systems as streams in the language. We discuss the representations for
both discrete and continuous time models.

We denote a set of clocks by C. A clock valuation v is defined as a higher-order
function v : C → (Ω → Π) such that the function v(c), c ∈ C is monotonically
and synchronously increasing function. For continuous time model, Ω = R∞, and the
function v(c) is continuous for every c ∈ C. For discrete time model, Ω = N ∪ {0}.
For both time models, v(c)(0) = 0.

3.1 Global Clock

Let C denote the global clock, N denote the set of nonnegative integers, R denote
the set of reals, and R

≥0 the set of nonnegative reals. We assume that continuously
varying time is modelled as Π = {t | t ∈ R

≥0}. The model of discrete time is
Π = N ∪ {0} ∪ {+∞}.

Event Streams. Let E denote a finite non-empty set of events in the formal model of
the system. An event e ∈ E may occur any number of times within the system. The
function TIME : E → (N → Π) defines for e ∈ E , the function TIME(e), whose value
at k ∈ N is tk = TIME(e)(k), tk ∈ Π , interpreted as the time of k-th occurrence
of the event e. The function TIME(e) = {〈k, tk〉} is represented in the language as a
1-dimensional stream e, ek = tk . In the language the representation for an event e under
continuous time model is the stream e, and under discrete time model, the representation
can be either e or a boolean stream e with rank = {C}, such that e @ [C : tk] = true.
The function COUNT : E → (Π → N) defines for e ∈ E , the function COUNT(e),
whose value at t ∈ Π is k = COUNT(e)(t), k ∈ N is the number of occurrences
of the event e up to and including the time t. That is, the function COUNT is a pseudo
inverse of TIME function. That is, TIME(e)(0) = 0; TIME(e)(+∞) = +∞, and
COUNT(e)(0) = 0; COUNT(e)(+∞) = +∞.

Example 4. Let the times for1st ,2nd,3rd ,4th . . .occurrences of an event e be1, 4, 5, 7, . . .
For discrete time, the representation of the event e is the stream
e = true false false true true false true false . . .
Meanwhile, the representation of the stream e is
e = 1 4 5 7 . . .
The representation of the stream COUNT(e) is
COUNT(e) = 1 1 1 2 3 3 4 . . .
Let the times for 1st , 2nd, 3rd , 4th, ... occurrences of an event f be 1.3, 4.5, 5.6, 7.8, . . .,

in some clock valuation. The representation is the stream
f = 1.3 4.5 5.6 7.8, . . .
The representation of the stream COUNT(f) is
COUNT(f )(1) = 0, . . . COUNT(f )(1.3) = 1, . . . , COUNT(f )(2) = 1, . . . ,

COUNT(f )(4.5) = 2, . . . , COUNT(f )(5) = 2, . . . COUNT(f )(5.6) = 3, . . .
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The following primitive functions defined in the language are useful to manipulate
event streams. Let now denote current clock valuation. The arguments to the following
functions are streams corresponding to events.

– The function includes(e, f) returns true if TIME(e) ≤ TIME(f ), otherwise it
returns false.

– The function sum(e, f) returns the stream obtained by merging the two input streams.
The resulting stream represents the event e + f , which occurs whenever e occurs or
f occurs.

– The function last time(e, t) returns the latest time t1 < t < now at which e
occurred.

– The function next time(e, t) returns the most recent time t1 > t < now at which
e occurred.

– The function extract(e, p), where p is a predicate, extracts the sub-stream f of
stream e such that the predicate p is true at every occurrence of f . For instance, if
the predicate is count(e, t) = count(g, t) the function extract(e, p) extracts
the sub-stream f of stream e such that count(f, t) = k implies that there exist
0 ≤ t1 < t2 < . . . < tk−1 < tk = t, such that count(g, ti) = count(e, ti), for
i = 1, . . . , k.

Value and Function Streams. A variable v in the model is represented by a stream v
in the language. In the language the event ASSIGN(v) ∈ E is a stream, denoted as ev.
If ev is a boolean stream, tj and tk , tj < tk , are the times of two successive occurrences
of an event e ∈ E , the streams ev and v satisfy the properties:

evt = false , tj < t < tk; vt = vtj , tj < t < tk
Sampling the stream v at times t ∈ clock(ev) is sufficient to know the history of the
variable v.

A function stream is a sequence of functions that have been defined in the program.
A function in the function stream is represented as a tuple, where a tuple is regarded
as a finite stream. The tuple corresponding to the function f (v1, . . . , vn) defined in the
program is 〈f , v1, . . . , vn〉, where vis are stream variables, and f is the function definition.
The evaluation of a function f (v1, . . . , vn) at time t is an instantaneous transformation
of the inputs [vi/wi]t . The evaluation of a higher order function in Lucid is given by
Paquet [9]: variables vi, i = 1, . . . , n are bound to actual streams wi, and the values at
time t are extracted from the actuals wi to evaluate the function. A stream variable may
be bound to a multidimensional stream together with a chosen dimension of the stream.
The evaluations of the function f (v1, . . . , vn) at different instances produce a stream vf

of values.
A predicate p is evaluated, as a function of its free variables, whenever a free variable

in p gets a new value in the system.
The following functions manipulate value and function streams: The parameter v is

a value stream, F is a tuple, and now is the current clock valuation.

1. The function last assign(v, t) returns the latest time t1 < t < now at which the
variable v changed its value.

2. The function next assign(v, t) returns the most recent time t1 > t < now at
which the variable v changes its value.
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3. The function eval(F,w, t), evaluates the tuple F at time t by binding the stream
variables in F to the streams in the tuple w, in the order specified. For each variable
the latest assigned value (see 1 above) is used in evaluating the function. The current
value of the function is stream vf t .

4. The function eval(F,w, p), evaluates the tuple F whenever the predicate p on a
subset of the variables v1, . . . , vn of the function f (v1, . . . , vn) becomes true. That
is, if at time t the predicate p becomes true, the function eval(F,w, t) is invoked.

Streams for State Machine Models. We assume that a timed system is modelled by
a variant of the Timed Input Output Automaton, which we refer to as an extended state
machine (ESM). In the formal model we assume that one or more clocks may be used
and constraints on state transitions are specified in guard-action paradigm. The guard
g on a transition from state si to sj is of the form p ∧ tc, where p, a predicate on the
variable in state si, serves as a precondition for enabling the transition and tc is the time
constraint predicate lower ≤ t < upper. The action a is a predicate on the variable in
the post state sj.

For simplicity, in our discussion, we assume that each state has at most one active
variable, namely the variable that may change its value in that state. The static aspects
of a state machine specification are represented as follows:

1. State transitions are modelled as a 2-dimensional stream tf , which has dimensions
STATEfrom and STATEto with state names as tags. The evaluation tf @ [STATEfrom :
si, STATEto : sj] is the tuple 〈tn, e 〉, where tn is the transition number and e is the
event triggering the transition from si to sj in this example.

2. A precondition is modelled as a 1-dimensional stream pre, with dimension TRAN
and tag N. The evaluation pre @ [TRAN : k] is a tuple 〈pk, v 〉 giving the predicate
pk for variable v.

3. A postcondition is modelled similarly, as a stream post, with dimension TRAN and
tag N. The evaluation post @ [TRAN : k] is a tuple 〈ak, v 〉, giving the postcondition
for variable v.

4. A time constraint is modelled as a 1-dimensional stream tc, which has one di-
mension TRAN with tag N. The evaluation tc @ [TRAN : k] is a tuple of integers
〈timek, lowerk, upperk〉 corresponding to the constraint lower ≤ t < upper for
transition k.

The dynamic behaviour of the state machine is the set of traces produced according
to the state transition semantics. For each state si, let E(si) denote the set of events that
are possible in si.

(si, vi) ∧ e ∈ E(si) ∧ p[(vi)t ] ∧ tc(t)

(si, vi)
e−→ (sj, vj) ∧ v′

j = a[(vj)t ]

We represent each trace of a machine by a stream of tuples 〈s, v〉 in the program, where
s ∈ S, a finite set of states in the formal model, and v is the active variable. An ele-
ment of the trace is computed by applying the state transition semantics to the element
that was generated at the previous step. If event e occurs at time t, and is admissible for the
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current element in the trace, the transition happens instantaneously; if it is not admissible
in this state, transition does not happen, but time is allowed to progress.

In general, if there are several state machines, the program will have a 2-dimensional
stream P, in which each “i-th row” is a state stream Mi corresponding the the state
machine Mi in the model. At each instant t, Pt gives the stream in the tth column of the
2-dimensional stream, namely the stream showing the current status of all the machines
in the system. The system state changes if there exists an event e that is admissible for
the state in a tuple on the t-th column, otherwise time is allowed to progress. In the
former case, e is admissible for some machine Mi, implying the specified constraints
are satisfied by the state variable and clock valuations in the tuple Mit . We calculate the
function progress(P, t, e) to determine the next state tuple Mit+1 = 〈si, svi〉t+1, and for
all other rows, there is no change in time t + 1:

Pt+1 = 〈M1t , . . . ,M(i−1)t
,Mit+1 ,M(i+1)t

, . . . ,Mnt〉
If the state machines Mi and Mj synchronise at time t on an event, then the state changes
happen simultaneously in both machines, in rows i and j of the 2-dimensional stream
while no other row in the stream will change. If no event occurs, time progresses in
all clocks. The following program implements the function progress(P, t, e) with two
dimensions Time and Machine:

Example 5. progress.Time,Machine(P, t, e) =
P@[Time : t] fby.Machine
if (IsAdmissible(P @.Time #.Machine, e, t))
then NextState(P, e, t)
else P @[Time : t] #.Machine;

Lucx expressions for the functions IsAdmissible and NextState are shown below. In
GIPSY environment [7] Lucx programs may call external functions written in Java, the
target language of our compiler. Hence, IsAdmissible and NextState functions will be
implemented in Java, based on the following definitions. A tuple, being a finite stream,
has a selector function which retrieves a specific component of the tuple for the given
tag [10]. Below, we use the functions 1st , 2nd , and 3rd to select respectively the first,
second and third components of tuple streams.

IsAdmissible(si, e, t) = eval((1st .pre @ [TRAN : k], vsi , t) ∧
(2nd .tc @[TRAN : k] ≤ 1st .tc @ [TRAN : k]) ∧ (1st .tc @[TRAN : k] < 3rd .tc @[TRAN : k])
where
k = 1st .tf @ [STATEfrom : si, STATEto : sj]
end

Function NextState(si, e, t) uses the function IsAdmissible(si, e, t) and returns sj and vj

such that vj = eval((1st .post @ [TRAN : k], vsj , t)

Context and Box Streams. Context and Box are first class objects, as stream, in the
language. A stream c of contexts is a stream such that for t ≥ 1, ct is a context. The
contexts in a stream need not have the same dimension sets. All context operators can
be promoted to context streams. For instance, the expression c1 ⊕ c2 is the stream c3

such that c3t = c1t ⊕ c2t , t ≥ 1.
A Box stream B is a stream such that for t ≥ 1, Bt is a Box. The dimension sets of

Boxes in a stream need not be equal. Since a Box is a finite collection of contexts, a Box
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stream may be viewed as a stream of tuples. All Box operators can be promoted to Box
streams. For instance, the expression b1 � b2 is the stream b3 such that b3t = b1t � b2t ,
t ≥ 1.

Stream modifier functions available in Lucx, combined with context and Box opera-
tors provide a rich mechanism to express time-varying situations in a real-time program.
In particular, we explain now that Box streams are necessary to represent clock regions
that arise when several clocks are used in the system model.

3.2 Multiple Clocks

We let C denote the set of clocks in the system. The clock evaluation functions for clocks
satisfy the synchrony and monotonicity properties. Let us consider applications in which
a clock c is never compared with a time constant greater than m. Then, the actual clock
valuation, once it exceeds m, is of no consequence in deciding the allowed execution
paths in the program. Hence every clock c ∈ C has bounded support, Intv(c).

For continuous time model an equivalence relation for clock valuations is given in
[11]. We modify it as follows: v ∼= v′ iff, for all c1, c2 ∈ C, x ∈ R

≥0:

1. Intv(c1) = Intv(c2)
2. �v(c1)(x)� = �v′(c1)(x)� and (fract(v(c1)(x)) = 0 iff fract(v′(c1)(x)) = 0),
3. fract(v(c1)(x)) ≤ fract(v(c2)(x)) iff fract(v′(c1)(x)) ≤ fract(v′(c2)(x)).

If two clock valuations v and v′ are equivalent, then v(c)(x)[δ] = v′(c)(x)[δ] for any
clock predicate δ.

A clock region is an equivalence class of clock valuations induced by equivalence
relation ∼=. We say that a clock region α satisfies a clock constraint δ iff every v ∈ α
satisfies δ. Each region can be uniquely characterised by a (finite) set of clock constraints
it satisfies. Each region can be represented by specifying

(1) for every clock c, one clock constraint from the set{v(c)(x) = m | m = 0, 1, . . . ,mc}
∪{m − 1 < v(c)(x) < m | m = 1, . . . ,mc} ∪ {v(c)(x) > mc}, where mc is the
supremum of Intv(c), and x ∈ R

≥0

(2) for every pair of clocks c1 and c2 such that m1 − 1 < v(c1)(x) < m1 and m2 − 1 <
v(c2)(x) < m2 appear in (1) for some m1,m2, whether fract(v(c1)(x)) is less than,
equal to, or greater than fract(v(c2)(y)).

As an example, consider clocks c1 and c2 with m1 = 4, and m2 = 6. This gives
rise to 59 clock regions, as shown in Figure 1. Each region is interpreted by the clock
values according to the equivalence relation definition. For instance, (open) regions α1
and α16 are defined by the inequalities

α1 : 0 < v(c1)(x) < 1, 0 < v(c2)(y) < v(c1)(x)
α16 : 3 < v(c1)(x) < 4, v(c1)(x)− 2 < v(c2)(y) < 2
A clock region α′ is a time-successor of a clock region α iff for each v ∈ α, there

exists a positive t ∈ R such that v + t ∈ α′. The time-successors of a clock region α are
all the clock regions that will be visited by a clock valuation v ∈ α as time progresses.
The time-successors of a region α can be derived by moving along a line drawn from
some point in α in the diagonally upwards direction(parallel to the line x = y). For
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Fig. 1. Clock Regions

instance, in Figure 1, the successors of region α1 are : α4, α11, α14, α21, α24, α31,
α53, α54, α55, α56.

The clock regions corresponding to a set of clocks is represented as a finite stream
of Boxes. Every Box in the stream corresponds to one region. Each Box is defined
by the dimension set Δ = {c1, . . . , ck}, and a constraint on the clock valuations.
For example, Box[Δ | p1], where Δ = {c1, c2} and p1 = 0 < v(c1)(x) < 1, 0 <
v(c2)(y) < v(c1)(x) refers to the region α1. The tag sets for clocks are reals. For discrete
time modelled by multiple clocks the tag sets are integers, and regions become lattice
points, vertices of convex regions.

4 Railroad Crossing Problem

In this section we provide a specification of the generalized railroad crossing problem,
an example studied in real-time systems community [4]. This is the first step in our
efforts to experiment with the language for specification, programming, and verification
of programs for real-time reactive systems.

4.1 Problem Statement

Several trains cross a gate controlled by a monitor. Trains may be running on several
tracks, and hence cross the gate simultaneously. When a train approaches the gate, it
sends a message to the corresponding controller, which then commands the gate to
close. When the last train crossing a gate leaves the crossing, the controller commands
the gate to open. The safe operation of the controller depends on the satisfaction of
certain timing constraints, so that the gate is closed before a train enters the crossing,
and the gate is opened after the last train leaves the crossing.

1. [C1] A train enters the crossing within an interval of 2 to 4 time units after having
indicated its presence to the controller.

2. [C2] The train informs the controller that it is leaving the crossing within 6 time
units of sending the approaching message.
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3. [C3] The controller instructs the gate to close within 1 time unit of receiving an
approaching message from the first train entering the crossing, and starts monitor-
ing the gate. The controller continues to monitor the closed gate if it receives an
approaching message from another train.

4. [C4] The controller instructs the gate to open within 1 time unit of receiving a
message from the last train to leave the crossing.

5. [C5] The gate must close within 1 time unit of receiving instructions from the
controller.

6. [C6] The gate must open within an interval of 1 to 2 time units of receiving instruc-
tions from the controller.

4.2 Events and Streams for Problem Specification

In [6], a formal design of the railroad problem is given. It uses ESMs to formalize the
behavior of train-gate-controller objects. The formal object-oriented model thus obtained
is linked with PVS to formally verify the safety property in the modelled system. We use
the approach outlined in Section 3 to formally represent the above design in Lucx and
prove that our design satisfies the safety property. As we show in Section 4.4 below, the
safety property can be written purely in terms of the times of occurrences of observable
events in the system. So we skip the details of state streams, and discuss below the
specification of event streams and their constraints.

The events Lower and Raise are sent by the controller to the gate. The events Near?
and Exit? are received by the controller from a train. The gate closes using the event Down
and opens using the event Up. The events In and Out are used by trains respectively to
indicate that they are inside the crossing and outside the crossing respectively. A period
is the interval of time between two successive instants when the gate opens. Hence the
duration of k − th period is Upk+1 − Upk . Within a period, several trains may come,
and hence the events Near, In, Out, and Exit may occur several times. However, within
a period, the controller events and gate events occur just once. We represent the events
by the following streams:

1. The streams Lower and Raise are shared representations for the synchronous oc-
currences of Lower!,Lower?, and Raise!,Raise?. Thus, Lowerk and Raisek give the
times of occurrences of the events Lower and Raise in the k− th period, because in
each period they happen just once.

2. The streams Down and Up represent the events Down and Up. That is, in the k− th
period, the events Down and Up occur at times Downk , and Upk .

3. We use a 3-dimensional stream σ to represent the events from trains, with the conven-
tion that the events Near, In, Out, and Exit are denoted by 1,2,3, and 4 respectively.
The justification is that for each train in the k − th period, these events are linearly
ordered: TIME(Near)(k) < TIME(In)(k) < TIME(Out)(k) < TIME(Exit)(k). We
can also represent the events for a train by using tuples, which we avoid for clarity
of presentation. The stream σ has three significant dimensions, say TRAIN , EVE,
and PER with tags N for TRAIN and PER and the set {1, 2, 3, 4} for EVE. The
evaluation σ @ [TRAIN : i,EVE : j,PER : k], denoted σijk , is the time at which the
event j occurred in i− th train in the k− th period. For instance, σ243 gives the time
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at which the event Exit occurred in the second train in the 3rd− period. Notice that
i increases with the arrival of a new train in the system. The 1-dimensional stream
σ@[TRAIN : i,EVE : 1] gives the times of arrivals of the i-th train in all periods.

4.3 Specification in the Language

For every period, events used by the gate are linearly ordered:
k ∈ N, Lowerk < Downk < Raisek < Upk

Within a period k, the events of each train are linearly ordered: σi1k < σi2k < σi3k < σi4k .

For every period k, the time constraints C1, . . . ,C6 can be formally specified in Lucx
as follows:

C1 σ @[EVE : 1, PER : k] + 2 < σ @[EVE : 2, PER : k] < σ @[EVE : 1, PER : k] + 4
C2 σ @ [EVE : 1, PER : k] < σ @ [EVE : 4, PER : k] < σ @ [EVE : 1, PER : k] + 6
C3 σ11k < Lowerk < σ11k + 1
C4 last time(σ @[EVE : 4, PER : k], Lowerk+1) < Raisek < last time(σ @[EVE : 4, PER :

k], Lowerk+1) + 1
C5 Lowerk < Downk < Lowerk + 1
C6 Raisek + 1 < Upk < Raisek + 2

4.4 Verification of Safety Property

Informally, a program that is consistent with the above requirements is safe, if in every
period k the following property is satisfied by the program: The gate closes before any
train is in the crossing and opens only after the last train in the period has left the
crossing. Using our specification formalism, we formally rewrite the safety property as
follows:

Downk < σ12k < last time(σ @ [EVE : 4, PER : k], Lowerk+1) < Upk (S)

To prove the safety property, we use C1 . . .C6, and A1 below as axioms and show that
the predicate (S) is a consequence of these axioms:

σ14k ≤ last time(σ @ [EVE : 4, PER : k], Lowerk+1) A1

The proof steps are as follows for any period k - the axioms used in deriving a step are
shown at the end of each step:

1. Downk < Lowerk + 1 [C5]
2. Lowerk + 1 < σ11k + 2 [C3]
3. σ11k + 2 < σ12k [C1]
4. Downk < σ12k [Steps 1,2,3]
5. σ12k < σ14k [C1,C2]
6. σ14k ≤ last time(σ @ [EVE : 4, PER : k], Lowerk+1) [A1]
7. σ12k < last time(σ @ [EVE : 4, PER : k], Lowerk+1) [Steps 5,6]
8. last time(σ @ [EVE : 4, PER : k], Lowerk+1) < Raisek [C4]
9. last time(σ @ [EVE : 4, PER : k], Lowerk+1) + 1 < Raisek + 1 [Step 8]

10. Raisek + 1 < Upk [C6]
11. last time(σ @ [EVE : 4, PER : k], Lowerk+1) < Upk [Steps 9,10]
12. Downk < σ12k < last time(σ @[EVE : 4, PER : k], Lowerk+1 < Upk [Steps 4,7,11]

We conclude that any formal model in which the ESMs for train, gate, and controller
satisfy the axioms C1, . . . ,C6,A1 satisfy the predicate (S).



Real Time Reactive Programming in Lucid Enriched with Contexts 401

5 Concluding Remarks

Any implementation of the verified design of a real-time reactive system must faith-
fully conform to the design. Because of the semantic gap between the language used
for the formal design and the programming language that implements the design, it is
hard to demonstrate the faithfulness of the implementation to the verified design. Lucid
programs, being declarative, can be reasoned about. GIPSY [7] is an implementation
platform for Lucid. These features convinced us that in Lucid a semantic continuity
exists between a high level program, which is a specification, and its implementation.
Lucx, being a conservative extension of Lucid, would retain this continuity between a
real-time system specification in it and its implementation in GIPSY.

The significant feature that we have introduced in Lucid is the notion of context
as a first class object. This notion was originally introduced by MaCarthy, and used
by Guha [3] for enriching natural language expressions in AI. We are motivated by
this work. However, our notion of context differs significantly from MaCarthy’s. In
our study context is both finite and concrete. Guha uses contexts as infinite, rich, and
generalized objects. Our goal is to be able to manipulate contexts dynamically and
evaluate programming language expressions in different contexts. This contrasts with
the work of Guha in which the real meaning of natural language expressions are captured
by evaluating them in very rich contexts. Not all contexts studied by Guha can be dealt
within our language. However, every context that we can define in Lucx is indeed a
context in Guha’s sense, but restricted to well-formed Lucx expressions.

Most of the physical systems exhibit hybrid behavior and behave according to certain
scientific principles. The scientific programming constructs introduced by Paquet [8] and
the results shown in this paper add the expressive power needed to formally specify as
well as program such systems. We have shown a Lucx specification for the formal design
of the railroad crossing problem given in [6], and have verified its safety property. The
verification approach depends only on time-constrained events and does not explicitly
require the state information. Our ongoing research includes developing a verification
approach based on intensional logic, the basis of Lucid, and extending GIPSY architec-
ture for implementing Lucx programs.
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Abstract. Revision program [9], which describes the transformation
from an initial database to a revised database, is a formalism for speci-
fying revisions on database. In order to deal with the incompleteness of
knowledge, the paper provides an extension for both database and revi-
sion program by introducing explicit negation. Motivated by “∼ l ← ¬l”
[2], we propose an extended P-justified revision semantics for the exten-
sion, which is more general than P-justified revision semantics, where
we argue that the latest knowledge is preferred to the old one when it
conflicts with the old. This extension is not trivial by simply regarding
negative literals as positive in annotated revision programs [10]. In the
end, we establish the one-to-one correspondence between the extended
P-justified revisions of extended revision programs and answer sets of
the corresponding extended logic programs.

1 Introduction

Revision program is a collection of the revision rules of the forms,

in(a) ← in(a1), ..., in(an), out(b1), ..., out(bm) or (1)

out(a) ← in(a1), ..., in(an), out(b1), ..., out(bm) . (2)

It was firstly introduced by Marek and Trusczński in 1994 as a formalism to
describe and study the process of database updates. The intuitive meaning of
revision rules of form (1)(resp, (2)) is that a should be in (resp, not in) the
database D if a1, ..., an are all in database D and all b1, ..., bm are not in D.
Informally, a P -justified revised database R of an initial database I is a set of
atoms, which satisfies the revision program P in the sense of model theory and
guarantees the minimal changes from I [9, 12].

As stated by John McCarthy that it’s permitted to cross railway tracks only
if there is no approaching train being guaranteed, it is necessary to introduce
explicit negation into knowledge representation for its incompleteness [5]. The
next example confirms the case.

Example 1.1. Suppose there are four persons John, Adams, Rose and Jack in
one music interest group and, anyone in the group, who did not attend concert,
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will be fined ten thousands dollars. After one concert, from the secretary of
the group, we know that John attended the concert, Adams did not attend the
concert. That’s all we know for the concert about them. A few weeks later, we
know that some new information from the head of the group: John didn’t attend
the concert and Rose attended the concert unless John abnormally attended. In
the sense of [9], we have the following representation (Actually, we are not quite
sure whether or not they are proper presentations with the last two rules of P ,
but it’s the only way to do so.):

I = {Attend(John)}, P =

⎧⎨⎩
out(Attend(John)) ←
in(Attend(Rose)) ← out(Attend(John))
in(Fine(X)) ← out(Attend(X))

⎫⎬⎭
So we have R={Attend(Rose), Fine(John), Fine(Adams), Fine(Jack)} as the
unique P -justified revision of I, from which we know that anybody will be fined
except Rose. Obviously, it’s unacceptable to Jack since there is no evidence for
him to be fined at all.

We argue that it is reasonable to eliminate old knowledge if the latest knowl-
edge conflicts with it. Inspired by “∼ l ← ¬l” in [2], our extension is constructed
by the introduction of a new constraint CI to the initial knowledge base I, i.e.
{out(l) ← in(¬l)|l ∈ I}. The intended meaning is that l (l is known to be true)
should be discarded if its explicit negation was assured. For the extension, we
propose an extended P -justified revision semantics, which keeps the intended
meaning of P -justified revision. Moreover, we prove that extended revision pro-
grams and extended logic programs can be embedded into each other in the
sense of their 1-1 correspondent semantics – the extended P -justified revisions
and answer sets respectively.

2 Extended Revision Programs

In this section, we present our extension of revision programs and databases.
From the perspective of descriptive semantics, it is not so important considering
variables in the language since they can be removed by instantiation. For clarity,
we just focus on its propositional case.

Let U be a denumerable set of atoms (a universe). A classical literal (or
literal) is an atom a or its negation (classical negation) ¬a. a and ¬a are com-
plement with each other. As in first order logic, we admit ¬¬a = a. By Lit we
mean the set of all literals, i.e. Lit = U ∪ ¬U , where ¬U = {¬a|a ∈ U}.

An expression of the forms of in(l) or out(l) is called extended revision literal
(or revision literal), where l ∈ Lit. in(l) (resp. out(l)) is called extended in-literal
(resp. extended out-literal). By RLit we mean the set of all revision literals,
namely, RLit = {in(l)|l ∈ Lit} ∪ {out(l)|l ∈ Lit}. A set of extended revision
literals L is incoherent if there is at least one l such that {in(l), out(l)} ⊆ L or
{in(l), in(¬l)} ⊆ L. Otherwise L is coherent. Let L be a set of extended revision
literals, we denote L+ = {l|in(l) ∈ L}, L− = {l|out(l) ∈ L}. Let R be a set of
literals, we define Rc = {in(l)|l ∈ R} ∪ {out(l)|l /∈ R}.
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Definition 2.1. An extended database (knowledge base) S is a set of literals.
We denote St = {a|a ∈ S}, Sf = {a|¬a ∈ S}. S is consistent if there is not any
pair of complements in S, i.e. St ∩ Sf = ∅.

By the above definition, any atom, saying a, should have an unique state
with respect to a consistent knowledge base S. a is true (resp. false, unknown)
if a ∈ St (resp. a ∈ Sf , otherwise).

Definition 2.2. An extended revision program is a collection of the extended
revision rules of the forms,

in(l) ← in(l1), ..., in(lm), out(lm+1), ..., out(ln) or (3)

out(l) ← in(l1), ..., in(lm), out(lm+1), ..., out(ln) (4)

where l, li(1 ≤ i ≤ n) are literals. in(l) (resp. out(l)) is the head of the extended
revision rule of (3) (resp. (4)). {in(l1), ..., in(lm), out(lm+1), ..., out(ln)} is their
body. The head and body of an extended revision rule r are denoted respectively
by head(r) and body(r). The set of the heads of all rules in revision program P
is denoted by head(P). If the head of a rule is of the form in(l), the rule is called
an in-rule, otherwise, it is called an out-rule. The set of all extended revision
literals appearing in a program P is denoted by var(P).

Given an initial knowledge base I and a revision program P, we assume that,
without further mention, the language is determined by I and P, i.e, the U
is the set of all atoms which occurs in I or P, or whose negation does. That
is, U = {a|a ∈ I or ¬a ∈ I} ∪ {a|in(a) ∈ var(P ) or in(¬a) ∈ var(P ) or
out(a) ∈ var(P ) or out(¬a) ∈ var(P )}.

Definition 2.3. Let S be a consistent set of literals, the satisfiability of extended
revision literal is defined as follows,

– S satisfies an extended revision literal in(l) if l ∈ S. S satisfies out(l) if l �∈ S.
– S satisfies an extended revision rule r if either S satisfies head(r) or S doesn’t

satisfy at least one extended revision literal in body(r). Namely, if S satisfies
body(r) then S satisfies head(r).

– S satisfies an extended revision program P if S satisfies all of the rules of P.
S is a model of P if S satisfies P.

We write S |= α, S |= r, S |= P to denote that S satisfies extended revision
literal α, extended revision rule r and extended revision program P . Given an
extended revision program P , we denote the least model of P by LM(P ) when
P is treated as a Horn program built of independent propositional atoms of
forms in(l) and out(l). LM(P) states the necessary revision to knowledge base
forced by P, and is called the necessary change of P, denoted by NC(P). For a
knowledge base I, the revision result by a coherent set of revision literals L is
defined by

I ⊕ L = (I\L−) ∪ L+.

The following two lemmas 2.1 and 2.2 generalize the basic properties of the
model and the operator ⊕ in [9].
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Lemma 2.1. Let L be a set of extended revision literals and B be a consistent
knowledge base.

1. If B |= L, then L is coherent and B ⊕ L = B.
2. Let L be a coherent set of extended revision literals. If L ⊆ L′ and B⊕L |= L′,

then B ⊕ L = B ⊕ L′.
3. Let L be coherent. If α ∈ L, then B⊕L |= α. If B⊕L |= α and B �|= α, then

α ∈ L. !"

For two knowledge bases I and R, we define the inertial set I(I,R) as:

I(I,R) = {in(l)|l ∈ I ∩R} ∪ {out(l)|l �∈ I ∪R}.

The intended meaning of I(I,R) is, being the same with the original meaning
of inertial set in [9], the collection of all extended revision literals describing the
elements that do not change their status, in transition from I to R. Inertia set
I(I,R) has the following important property.

Lemma 2.2. Let I, I ′ and R be consistent knowledge bases. Let L be a set of
extended revision literals and α be an extended revision literal.

1. α ∈ I(I,R) if and only if I |= α and R |= α.
2. I(I,R) ⊆ I(I ′, R) if and only if R÷ I ′ ⊆ R÷ I.
3. If I(I,R) ⊆ I(I ′, R), L is coherent and R = I ⊕ L, then R = I ′ ⊕ L. !"

÷ is the symmetrical difference operator of two sets. Part (1) of the lemma
expresses a basic intuition behind the inertia set. It consists of those revision
literals that are satisfied by both I and R. Part (2) shows that the larger the
inertia set, the “closer” the two knowledge bases are (and conversely). Finally,
part (3) states that if R is obtained by revising I by L and if I ′ is “closer” to
R than I, then revising I ′ by L also results in R. We now present our revision
constraint before define the semantics of extended justified revision.

Definition 2.4. Let I be a consistent knowledge base. The revision constraints
of I is the set of extended revision rules,

CI = {out(l) ← in(¬l)|l ∈ I}.

The notion of revision constraints is quite intuitive. Firstly, it says that in(¬l)
is stronger (or stricter) than out(l). That is — if ¬l is known to be true then we
should have “l isn’t known to be true” hold. Secondly, the revision constraint
guarantees the consistency of the extended P -justified revision (see definition
2.5) whenever an item reverses its status from true to false or from false to
true. At the same time, it also means that the new knowledge is preferable to
the old one. In other words, for any l ∈ I, l should be removed from the justified
revision of I if the complement of l has been proved to be hold.



Revision Programs with Explicit Negation 407

Definition 2.5. Let I be a consistent knowledge base and P be an extended revi-
sion program. A consistent knowledge base R is an extended P-justified revision
of I (P-justified revision), if

– NC(PI,R ∪ CI) is coherent, and
– R = I ⊕NC(PI,R ∪ CI)

where PI,R is obtained from P by removing all extended revision literals in
I(I,R) from the body of every rules in P.

By far, we present the extended justified revision semantics for our extension,
which is almost the same with the original except for the CI in the necessary
change. Frankly, we confess that the same conclusion can be obtained from the
original justified revision by taking the negative literal as positive one and being
added the same constraint CI . However, the essence of the justified revision is
different in the view of the incompleteness of knowledge representation.

By the end of this section, we demonstrate a few examples to show our exten-
sion for knowledge base, revision program and compare them with some other
extensions, starting with our version of the Example 1.1 in introduction section.
In the sense of our extended revision, we have the following representation:

Example 2.1. (continue of example 1.1)
I = {Attend(John),¬Attend(Adams)},

P =

⎧⎨⎩
in(¬Attend(John)) ←
in(Attend(Rose)) ← out(Attend(John))
in(Fine(X) ← in(¬Attend(X))

⎫⎬⎭.

So we have R={Attend(Rose), ¬Attend(John), ¬Attend(Adams), Fine(John),
Fine(Adams)} as the unique extended P -justified revision of I. According to R,
we know that only John and Adams should be fined.

By the next example, I will show our extension are not trivial by regarding
negative atoms as a positive one in the other extensions of revision programs,
even in the annotated revision programs.

Example 2.2. Let U={a, b, c}, I={a, ¬b} and R={c, ¬a, ¬b}. The extended
revision program P is as below:

P =

⎧⎨⎩
in(¬a) ← out(b)
out(¬b) ← out(¬a)
in(c) ←

⎫⎬⎭ , CI =
{
out(a) ← in(¬a)
out(¬b) ← in(b)

}
.

So we have CI as above, and I(I,R) = {out(b), out(¬c), in(¬b)};

PI,R =

⎧⎨⎩
in(¬a) ←
out(¬b) ← out(¬a)
in(c) ←

⎫⎬⎭ , NC(PI,R ∪ CI) = {in(¬a), in(c), out(a)},

I ⊕ NC(PI,R ∪ CI) = I\{a} ∪ {¬a, c} = {c,¬a,¬b} = R. So R is an extended
P -justified revision of I.
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It’s not true that annotated revision program can obtain the same result
by renaming the classical negative literal ¬a to a new positive one, saying a′,
and then apply the annotated transform [10]. As to the above program, the
corresponding annotated revision program P a is:⎧⎨⎩

in(a′) : t← out(b) : t
out(b′) : t← out(a′) : t
in(c) : t←

⎫⎬⎭ .

Then we have Iv(a) = 〈t, f〉, Iv(a′) = 〈f, t〉, Iv(b) = 〈f, t〉, Iv(b′) = 〈t, f〉, Iv(c) =
〈f, t〉, Iv(c′) = 〈f, t〉. Rv(a) = 〈f, t〉, Rv(a′) = 〈t, f〉, Rv(b) = 〈f, t〉, Rv(b′) =
〈t, f〉, Rv(c) = 〈t, f〉, Rv(c′) = 〈f, t〉. And then P a

Rv |Iv is{
in(a′) : t← out(b) : ⊥
in(c) : t←

}
.

So the necessary change is Cv(a)=〈f, t〉, Cv(a′)=〈t, f〉,Cv(b)=〈f, t〉, Cv(b′)=
〈f, t〉, Cv(c) = 〈t, f〉, Cv(c′) = 〈f, t〉. It’s easy to see −C = C. So R′ = (I⊗−C)⊕
C = C �= R because of Cv(b′) = 〈f, t〉 but Rv(b′) = 〈t, f〉. Consequently, R is
not an extended P -justified revision of I by taking them as annotated.

In fact, it is doubtful to transform the initial database I to BI . The lat-
ter treats classical negation and negation by default equivalently. The incom-
pleteness of I was discarded by the definition of Bv

I (a) = 〈t, f〉 if a ∈ BI and
〈f, t〉 otherwise.

Pivkina had presented an extension called nested expression in revision pro-
gramming [12]. It cannot deal with the above classical negation in revision literals
yet. Let the two consistent databases I, R and the revision program P are the same
with the above example. We just regard the classical literals (a and ¬a) as some
new positive literals in mind which are irrelevant to each other. Since there is no
unary operator in and out in P at all, the reduction of P w.r.t (I,R) is P. Clearly,
we have L={in(¬a), in(c)} is a minimal set of literals that is closed under P (it is
the necessary change of PI,R). However, R′ = I ⊕L = {a,¬a, c,¬b} �= R. Conse-
quently, R is not an extended P -justified revision of I under nested expression.

There is one more example which is an extended logic program version of Lif-
schitz [5] about college X uses the rules for awarding scholarships to its students.
We implement it in our extended revision program.

Example 2.3. The corresponding extended revision program P is⎧⎪⎪⎨⎪⎪⎩
in(Eligible(x)) ← in(HighGPA(x))
in(Eligible(x)) ← in(Minority(x)), in(FairGPA(x))
in(¬Eligible(x)) ← in(¬FairGPA(x))
in(Interview(x)) ← out(Eligible(x)), out(¬Eligible(x))

⎫⎪⎪⎬⎪⎪⎭
Let the initial knowledge base about Ann is I={FairGPA(Ann),

¬HighGPA(Ann)}. It is easy to see that we have the unique extended P -justified
revision R={FairGPA(Ann), ¬HighGPA(Ann), Interview(Ann)} of I.
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3 Basic Properties

In the section, some basic results of our extension are presented.
When the classical literals in extended revision program P are restricted

within atoms, P will be reduced to the revision program of [9]; moreover, if
the initial extended databases are also restricted within the set of atoms, the
extended P -justified revision will be the same with P -justified revision, since CI

has not any contribution to NC(PI,R∪CI) (because negative literals don’t exist
any longer in P ). We will formally show this by the following theorem.

Theorem 3.1. Let I and R be two knowledge bases containing only atoms. P
be an extended revision program without negative literals in its extended revision
literals. We have that R is an extended P-justified revision of I if and only if R
is a P-justified revision of I.

Proof. It is easy to see NC(PI,R ∪ CI) = NC(PI,R); I and R are consistent.
Consequently, R is an extended P -justified revision of I if and only if R is the
P -justified revision of I. !"

As we have stated that extended P -justified revision can be obtained from P -
justified revision by adding the same constraints to initial database and regarding
negative literal as positive one implicitly. We formally present it by the next
theorem.

Theorem 3.2. Let I and R be two consistent knowledge bases. P be an extended
revision program. Then R is an extended P -justified revision of I if and only if
R is a (P ∪ CI)-justified revision of I by regarding all the negative literals as
some positive one implicitly.

Proof. Since I is consistent, we have in(¬l) /∈ I(I,R) for any “out(l) ← in(¬l)”
in CI . So CII,R

= CI . NC(PI,R ∪CI) = NC(PI,R ∪CII,R
) = NC((P ∪CI)I,R).

!"

The similarity between our extended P -justified revision and P -justified re-
vision in [9], deduces to some very similar properties. The proofs of the following
three theorems are respectively similar to Theorem 2.12, Theorem 2.13 and The-
orem 2.14 of [9]. So we omit their proofs here. Firstly, we will show the alternative
definition for extended P -justified revision by GL-reduction.

Theorem 3.3. Let P be an extended revision program and let I and R be two
consistent knowledge bases. The following two conditions are equivalent:

(R1) NC(PI,R ∪ CI) is coherent and R = I ⊕NC(PI,R ∪ CI)
(R2) NC(PR|I ∪ CI) is coherent and R = I ⊕NC(PR|I ∪ CI)

where PR|I is obtained from P by (1) Removing all the rules whose body is not
satisfied by R, denoted by PR; (2) Removing all revision literals from the body
of rules in PR which are satisfied by I. !"
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From the alternative definition of extended justified revision, we have the
following two theorems, which play important roles in proving the following
properties of the our extension. At first, we present the notation Pu. Let P be a
propositional Horn program. We define

Pu = {c|c ∈ P ∧ body(c) ⊆ LM(P )}.

Intuitively, Pu consists of all those rules in P which “fire” (are used) during the
construction of the least model of P. In particular,

head(Pu) = LM(P ).

Theorem 3.4. Let P be an extended revision program and a consistent knowl-
edge base R be an extended P -justified revision of a consistent knowledge base I.
Then, (PI,R)u = PR|I and

NC(PI,R ∪ CI)
= NC(PR|I ∪ CI)
= head(PR) ∪ {out(l)|in(¬l) ∈ head(PR) ∧ (l ∈ I)}. !"

This theorem implies that the condition of our revision constraint CI can be
enforced further by in(l) ∈ Head(PR).

Theorem 3.5. Let P be an extended revision program and let I and R be two
consistent knowledge bases. The following conditions are equivalent:

1. A consistent knowledge base R is an extended P -justified revision of a
consistent knowledge base I.

2. NC(P ∪ CI ∪ {α ← |α ∈ I(I,R)}) = Rc.
3. NC(PI,R ∪ CI) ∪ I(I,R) = Rc. !"

As for the relationship between this extended revision programs and extended
logic programs, we have a strict relation between computation of consistent
answer sets of extended logic programs and computation of the extended P -
justified revision of extended revision programs, that is a 1-1 correspondence.

Definition 3.1. The translation of the extended revision program P and the
consistent extended initial database I into an extended logic program is defined
as the logic program P(P, I) = P ∪ CI ∪ PN over a language K, K is a propo-
sitional language with the set of propositional letters consisting of {in(l)|l ∈
Lit} ∪ {out(l)|l ∈ Lit}. PN is the inertia rules of I: If l is initially in (resp.
out) then after revision it remains in (resp. out) unless it is forced out (resp. in)
explicitly or implicitly. Namely,

PN = {in(l) ←∼ out(l),∼ in(¬l)|l ∈ I} ∪ {out(l) ←∼ in(l)|l /∈ I}

where ∼ is the negation by default operator. We have an important proposition
for the inertia rules PN .
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Proposition 3.1. Let I and R be two consistent knowledge bases. Then
LM(PRc

N ) = I(I,R).

Proof. “⇒” ∀α ∈ LHS, we have “α ←”∈ PRc

N . (1) If α = in(l), that is in(l) ∈
LHS if and only if l ∈ I, in(¬l) /∈ Rc and out(l) /∈ Rc. If in(l) /∈ Rc then
out(l) ∈ Rc. It conflicts with out(l) �∈ Rc. So in(l) ∈ Rc, l ∈ R. Consequently,
in(l) ∈ I(I,R). (2) If α = out(l), that is “out(l) ←”∈ LHS if and only if l /∈ I
and in(l) /∈ Rc. So l /∈ R, l /∈ I ∪R. Consequently, out(l) ∈ RHS. The reverse is
very similar. !"

Note that, we take P(P,I) as a logic program by regarding the revision literals
in P(P,I) as the literals of logic program. A set of such literals M, which is a set
of extended revision literals, is an answer set of P(P,I) if

LM(P(P, I)M ) = M.

M is a coherent answer set if M is a coherent set of extended revision literals
and M = LM(P(P, I)M ). We have the following important proposition for the
coherent answer set of logic program P(P, I).

Theorem 3.6. Suppose that a coherent set of extended revision literals M is a
coherent answer set of P(P, I). Then M = M+c.

Proof. “⇒” ∀α ∈ M , (1) if α = in(l), l ∈ M+ then in(l) ∈ M+c; (2) if α =
out(l), l /∈M+ then out(l) ∈M+c. So LHS ⊆ RHS.

“⇐” ∀α ∈M+c, (1) if α = in(l), then in(l) ∈M ; (2) if α = out(l), then l /∈M+

and in(l) /∈M . In this case, suppose that out(l) /∈M . Since in(l) /∈M , then we
have l ∈ I, otherwise “out(l) ←”∈ PM

N and then out(l) ∈ M . It conflicts with
out(l) /∈M ; At the same time, since l ∈ I, “in(l) ←∼ in(¬l),∼ out(l)”∈ PN , so
we have in(¬l) ∈ M , otherwise in(l) ∈ M and then it conflicts with in(l) /∈ M .
Moreover, since l ∈ I, “out(l) ← in(¬l)”∈ CI and in(¬l) ∈M , so out(l) ∈M , it
conflicts with out(l) /∈ M . From the above discussion, we conclude out(l) ∈ M .
Consequently, RHS ⊆ LHS. !"

From Proposition 3.1, Theorem 3.5 and Theorem 3.6, we clearly have the 1-1
correspondence between extended justified revision and coherent answer set as
the next corollary.

Corollary 3.1. Let R and I be two consistent knowledge bases and let P be
an extended revision program. Then R is an extended P -justified revision of I
if and only if M is a coherent answer set of P(P, I), such that R = M+ and
M = Rc. !"

What the corollary implies is, for an extended revision program P, to compute
the extended P -justified revision of a knowledge base I, the existing methods
computing answer set of logic program can be applied by regarding P(P,I) as a
logic program over the language K. In this sense, our extended revision program
can be embedded into logic program.
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The semantics of consistent answer set of extended logic programs can also
be easily embedded into our extended justified revision semantics by the next
theorem. The proof is similar to Theorem 4.1 of [9].

Theorem 3.7. A consistent set of literals M is an answer set of extended logic
program P if and only if M is an extended rp(P )-justified revision of ∅, where
rp(P) is obtained from P by rewriting the rule

l ← l1, ..., lm,∼ lm+1, ...,∼ ln

to
in(l) ← in(l1), ..., in(lm), out(lm+1), ..., out(ln).

!"

In the end of this section, we briefly compare our extension, under a transla-
tion lp, with nested logic programs [8] and with program updates [6].

Given a consistent extended knowledge base I and an extended revision pro-
gram P, we define a map lp over P(P, I) by replacing each in(l) (resp. out(l))
by l (resp. ∼ l). lp(P(P, I)) is a logic program with nested expression (simply,
nested logic program).

In order to be self-contained, we abstract the basic notations of nested logic
programs here by leaving out the binary connectives “,” and “;” for terse-
ness. Elementary formulas are classical literals and the symbols ⊥(“false”) and
5(“true”). Formulas are built from elementary formulas using the unary con-
nective ∼ and the binary connectives ,(conjunction) and ;(disjunction). A nested
logic program is a set of rules of the form F ← G, which is called rule. The for-
mulas, rules, and programs that do not contain the negation as failure operator
∼ are called basic. A set X of literals satisfies an elementary F if F ∈ X, or
F = 5, or X contains a complementary pair.

Let P be a basic program. A set X of literals is closed under P if, for every
rule F ← G in P, X |= F whenever X |= G. X is an answer set for P if X is a
minimal set of literals that is both logically closed and closed under P.

The reduct of a formula, rule or program relative to a set X of literals is
defined recursively.

– for elementary F, FX = F .

– (∼ F )X =
{
⊥, if X |= FX

5, otherwise
– (F ← G)X = FX ← GX .
– PX = {(F ← G)X |F ← G ∈ P}

A set X of literals is an answer set of P if it is an answer set for the reduct of
PX . From Corollary 3.1, the next theorem is clear.

Theorem 3.8. Let I and R be two consistent extended knowledge bases and let
P be an extended revision program. If R is an extended P-justified revision of I
then R is an consistent answer set of lp(P(P,I)) as nested logic program. !"
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However, the reverse of the above theorem is not true. Consider the coun-
terexample, let I = {a}, P is {in(b) ← out(a)}. It is easy to see R1 = {b} is also
an answer set of lp(P(P, I)) but R = {a} is the unique P -justified revision of I.
The more profound connection between revision programs and logic programs
needs to be further investigated.

Przymusinski and Turner defined a translation π: in(p) → p and out(p) → ¬p
[13], and then established the 1-1 correspondence between P -justified revision
and the extended stable model of P∗(P, I) (Theorem 5.1). It is easy to see,
however, the theorem can not be generalized to our extended revision programs
as shown by Example 2.2 if we regard ¬a as a new atom a′ for any classically
negative literal. In fact, we have R = {a′, b′, c} is a P -justified revision of I but
M(R) is not an extended stable model of P∗(P, I).

Notably, J. Leite and M. Pereira et al generalized the revision (or update) un-
der inertial principle to program update, i.e. the knowledge bases are represented
by logic programs, and they extended the program from normal logic program
to extended logic programs [6, 7]. Further, they introduced a sequences of logic
programs updates – Dynamic Programs Updates [1]. It seems that our extension
does fall in their generalization. However, comparing with our extension, their
generalization has the following deficiency when we just focus on the update of
factual LP:

– Firstly, they need to translate revision programs into extended logic pro-
grams, it discriminately translates out’s in the head of revision rules into
classical negation and out’s in the body of the same rules into default nega-
tion.

– Secondly, the above translation drastically enlarges the objective language.
– Finally, and more significantly, the translated extended logic programs allow

for some pairs of answer-sets, one of which will always be closer than the
other to the initial model (knowledge base), as shown by Example 8 of [6]
and Example 1.2 of [1].

4 Conclusion and Further Work

In this paper, based on Marek and Truszczyński’s P -justified revision, we intro-
duce an extension to deal with explicitly negative information. Some desirable
properties of revision program have been generalized to our extension, and we
establish the one-to-one correspondence between extended justified revisions of
extended revision programs and coherent answer sets of the corresponding ex-
tended logic programs.

Actually, many propositions of the new revision programs need to be ex-
plored. Firstly, how to deal with the justified revision of inconsistent knowledge
base. Secondly, some other semantics for our revision programs, specially, the
well-founded semantics like [11], should be studied. Finally, more importantly,
the conditions for the existence of extended P -justified revision of a given initial
database must be developed, such as auto-compatibility theorem [15] in default
logic [14] and so on. We will investigate these issues in the future.
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Abstract. This paper gives an answer to Cospecification. Our contri-
bution to cospecification is twofold: allowing both to abstractly specify
systems without a priori on partitioning step, and achieve a posteriori
partial correctness proofs of C programs (software parts) and VHDL
programs (hardware parts) with respect to specifications.

1 Introduction

The work presented in this paper was performed within the French project
ECOS 1. This project was devoted to hardware / software codesign for telecom-
munication purposes. The aim of this project was to better answer combined
system specifications including both software parts (usually described in C or
C++ programs) and hardware parts (described by VHDL programs). Indeed,
with traditional designing methodologies, both software and hardware parts de-
signed in an independent way from first designing steps. However, last techno-
logical developments allow to define specific components where implementing
choices in hardware / software parts can evolve from needs. This is called Code-
sign. Codesign can then be split into two stages: cospecification and partitioning.
Cospecification deals with the specification of systems, without concern for the
division into software and hardware parts. At this stage, we are interested by
the abstract behavior of systems: what they are supposed to do. Later, parti-
tioning divides systems into hardware and software parts, looking for an optimal
trade-off of cost and performance.

The paper gives an answer to Cospecification. Our contribution to cospecifi-
cation is twofold:

1. allowing to abstractly specify systems without a priori on partitioning step.
In practice, this is usually VHDL programs which act as specifications of
hardware systems.

2. allowing to achieve a posteriori partial correctness proofs of C programs and
VHDL programs with respect to specifications.
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This first point has been solved by defining a simple extension of algebraic
specifications to deal with both dynamic and real-time aspects. The choices of
algebraic specifications are many. Algebraic specifications have proven to model
elegantly and abstractly the functional aspects of systems. They encourage the
natural and powerful method of reasoning by equality. They come with a highly
generic theory for both structuring specifications into manageable and reusable
modules, and refining abstract specifications into more concrete ones. Finally,
they are now in the process of standardization with the language CASL. We
firstly proposed to specify hardware telecommunication systems by using an
extension of the classical conditional equational logic, the Exceptions-algebras [6].
However, it happened that telecommunication systems induce strong dynamic
and real-time aspects (mainly, delays and response time constraints), features
for which classical algebraic specification methods are not well suited. Our first
experiences in the specification of hardware systems (GMDFα: an echo canceler,
AM291: a small microprocessor, DLX: a RISC processor, etc.) with algebraic
formalisms, naturally led us to extend usual algebraic approaches to better deal
with both dynamic and real-time aspects. We have thus designed a formalism,
called dynamic real-time specifications, that extends algebraic specifications as
simple as possible. In line with the general spirit of algebraic specifications,
the model of time is user-definable, as requested e.g. by the VHDL application
detailed below. The dependency of time and state is left implicit in the syntax,
as has been proven convenient in modal logics. However, we also allow an explicit
handling of time as a data-type, as required by many applications.

The second point has been solved by giving an (axiomatic) semantics to
VHDL programs. We have not given meaning of C programs in our formal-
ism because this does not pose difficulties to define it. Indeed, our formalism
subsumes Y. Gurevich’s evolving-algebras which have already used to give a se-
mantics to C programs. Thus, we can transform any VHDL program into an
equivalent dynamic real-time specification. A VHDL program will then be cor-
rect with respect to its abstract specifications if its translation into a dynamic
real-time specification defines a correct refinement of them (see Section 4 for the
complete definitions of these notions). Therefore, this requires first to define a
refinement theory within dynamic real-time specifications.

The paper is organized as follows: In Section 2, related works dealing with real-
time and dynamic aspects are addressed. In section 3, we introduce the definitions
of syntax and semantics of dynamic real-time specifications. Section 4 is devoted to
define a refinement theorywithin dynamic real-time specifications.We also studied
structuringwithin this formalism.For lack of space, this cannot be presented in this
paper. However, all results about structuration are available in [1]. In Section 5, we
present our (axiomatic) semantics of the hardware description language VHDL.

2 Related Work

The way whose dynamic is dealt with in this paper has taken inspiration from [9]
for the use of implicit states. [9] follows the state-as-algebra style where states are
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algebras and state transformations are transitions from a state algebra to another
state algebra. Various approaches follow the same idea for modeling dynamic
data types, e.g. [4], excepted that states are explicit. This approach has been
chosen as the basic underlying formalism for defining SB-CASL, an extension
of the algebraic specification language CASL to deal with dynamic systems.
All these works are mainly influenced by Gurevich’s evolving algebra approach.
All these works naturally lead to an operational semantics of dynamic systems.
This is well-adapted when formalisms are used to provide general semantics for
imperative programming languages. However, this may be more restrictive when
they are devoted to specify system behaviors because the resulting specifications
are concrete, and hence they loose in terseness and legibility.

Concerning real-time aspect, many approaches to real-time specification have
been developed in the last decade (see [3] for survey). Most extend some known
logic (temporal logic, first-order logic) to deal with real time. They differ in their
models of time (real numbers [2], natural numbers [8], specified by properties as
here, e.g. [14]), their syntax (with explicit [12] or implicit [2] time as here), their
properties (decidability [2, 12], complexity).

Some of these approaches to real time use algebraic concepts, e.g. [14] uses
rewriting – a technique often used to execute algebraic specifications – and com-
plement it with real time. Process algebras use each a specific algebra, in contrast
with the universal algebra approach adopted here. Many process algebras have
been extended to deal with real time, e.g. [5]. They can be combined with a
classical algebraic approach to define data structures, e.g. [15].

3 Dynamic Real-Time Specifications

This section deals with the specification of real-time dynamic systems. It defines
dynamic real-time specifications, dynamic real-time models and their properties.

3.1 Signature and Models

We start by extending the usual notion of algebraic signature in this context.
Syntactically, these extensions consist in adding a new sort δ to denote time,
as well as operations date, �, and ι to explicitly manipulate time. Briefly, date
returns the current date of the system, ι denotes a zero duration, and � denotes
time addition. Thus, a signature comprises the following user-defined sorts:

Definition 1 (Set of sorts). A set of sorts is a set that does not contain the
symbol δ. Let us note S = S ∪ {δ}.

By considering δ as a simple sort denoting time, we can accommodate several
models of time, including N, Z

+, R
+, as well as the δ time of VHDL explained

below.

Definition 2 (S-sets). Let S be a set of sorts. A S-set is a S-indexed family of
sets A = (As)s∈S such that Aδ has a subset A+

δ where we distinguish an element
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ιA, and is provided with an internal law �A : Aδ × Aδ → Aδ that satisfies the
following conditions:

– upon A+
δ :

• ∀a, b ∈ A+
δ , a�A b ∈ A+

δ closure (Δ1)
• ∀a, b ∈ A+

δ , a�A b = ιA =⇒ a = ιA ∧ b = ιA initiality (Δ2)
• ∀a ∈ A+

δ , ιA �A a = a neutral to left (Δ3)
– upon Aδ:

• ∀a, b, c ∈ Aδ, a�A (b�A c) = (a�A b) �A c associativity (Δ4)
• ∀a ∈ Aδ, a�A ιA = a neutral to right (Δ5)
• ∀a, b, c ∈ Aδ, a�A b = a�A c =⇒ b = c cancelable to left (Δ6)
• ∀a, b ∈ Aδ, ∃c ∈ A+

δ , (a�A c = b) ∨ (b�A c = a) linearity (Δ7)

Elements of Aδ are dates (or instants) whilst elements of A+
δ are durations,

or distances between instants. Any duration can be considered as an instant,
by considering a conventional origin. The properties given upon Aδ and A+

δ are
constraints that catch the intuitive view that the time elapses linearly by adding
successively durations between them.

Proposition 1. Let us note 'A the binary relation on Aδ defined as follows:
a ' b⇔ ∃c ∈ A+

δ , b = a�A c. Then, 'A is a total order on Aδ.

Some authors, e.g. [14], add commutativity and Archimedean properties.
Commutativity makes intuitive sense for the addition; the Archimedean prop-
erty excludes Zeno’s paradox. However, they are not satisfied by the time used
in VHDL, which is an intended application of our formalism. The VHDL time is
given by a couple of natural numbers: the first number denotes the real time, the
second number denotes the step number in the sequence of computations that
must be performed at the same time – but still in a causal order. Such steps are
called “δ-steps” in VHDL (and “micro-steps” in StateCharts). The idea is that
when simulating a circuit, all independent processes must be simulated sequen-
tially by the simulator. However, the real time (the time of the hardware) must
not take these steps into account. Thus, two events e1, e2 at dates (a, 1), (a, 2)
respectively will be performed sequentially (e1 before e2) but at a same real time
a. The VHDL addition is defined by the following axioms:

(r′ �= 0) =⇒ (r, d) � (r′, d′) = (r + r′, 0)
(r′ = 0) =⇒ (r, d) � (r′, d′) = (r, d+ d′)

where r, r′, d and d′ are natural numbers and + denotes the usual addition on
natural numbers. Clearly, � is not commutative, nor Archimedean: we may in-
finitely follow a δ-branch by successively adding δ-times.2 Thus, in the formalism
presented in this paper, we use a weaker version of this property by expressing
that from any date we can reach any other date by adding some durations to
the first date. This is what is expressed by the condition (Δ7) of Definition 2.
Section 5 gives more details on VHDL’s semantics.

2 This is not the intended use of VHDL time, however: VHDL computations should
perform a finite number of δ-steps.
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Definition 3 (Signatures). A signature Σ consists on a set of sorts S and a
set F of operation names f , each one provided with a profile of form i → o
with i ∈ S∗ and o ∈ S ∪ {ε} (ε is the empty word in S∗). Let us note F =
F ∪ {date,�, ι} with the profiles date, ι :→ δ and � : δ × δ → δ.

Example 1. We specify a function produce that takes as input a natural number
Max and duration d, and produces a list of increasing numbers from 0 to Max
in time less than d. Producing a number requires some variable time. Then, the
target of the game is to produce as many numbers as possible without exceeding
the allowed duration d. Moreover, the produced numbers should be placed as
regularly as possible from 0 to Max.

To specify the dynamic operation produce, lists of natural numbers are used
as implicit states. Thus, the side-effecting version of operations on lists will
belong to the signature:
empty :→ (resets the state to the empty list),
head :→ Nat (returns the first element of the list),
cons : Nat→ (add the argument number in front of the list),
pos : Nat→ Nat (the number at the position i in the list, starting with 0),
length :→ Nat (the size of the list).
Nat stands for the usual natural numbers. The profile of produce is then Nat×
δ →.

Notation 1. Let A be a S-set, and w = w1 . . . wn ∈ S∗. By convention, we let
Aw = Aw1 × . . .×Awn

and Aε = {1I} where 1I is neutral for tuples.

Definition 4 (Models). Let Σ = (S, F ) be a signature. A Σ-model A is a
S-set A together with a set A, called the set of states, and provided for each
operation f : i → o ∈ F with two A × Aδ-indexed families (fA

ξ )ξ∈A×Aδ
and

(fA
ξ

)ξ∈A×Aδ
of total functions fA

ξ : Ai → Ao and fA
ξ

: Ai → A×Aδ.
Moreover, the supplementary operations date, ι, and � satisfy for any (η, τ) ∈

A×Aδ the following conditions:

– dateA
(η,τ) = τ ; (date yields the current date)

– dateA
(η,τ) = ιA(η,τ) = �A

(η,τ) = (η, ιA) (these three functions are instantaneous
and without side-effects).

Definition 4 calls for some comments:

– A has to be understood as the set of possible states. These states are implicit
in this formalism, like in modal logics. They are simply used (together with
time) as an implicit environment that modifies dynamic operation semantics.
The behavior of dynamic operations can then depend on (implicit) time.

– Our extension is upward-compatible: usual algebraic specifications can be
used by declaring any operation f to be environment-independent, that is:
fA

(η,τ)
(a) = (η, ιA) and fA

ξ (a) = fA
ξ′ (a).
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– Elements of A × Aδ denote environments whose the effect is to associate
different semantics to operations. Functions of form fA

ξ define the expected
result of f under the environment ξ while fA

ξ
defines the side-effects of f

(i.e. both the new state reached and the time used to perform f) when f
is started in the environment ξ. Thus, a function f which is defined to be
instantaneous and without side-effects (i.e. fA

(η,τ)
= (η, ιA)) does not mean

that it is environment-independent.

3.2 Terms and Their Evaluation

Since we consider implicit states, the order in which terms are performed is
significant: we consider both sequential and parallel composition of terms.

Definition 5 (Terms). Let Σ = (S, F ) be a signature. Let V be a S-set where
elements will be used as variables. For any α ∈ S∗, let us note TΣ(V )α the least
set satisfying:

“ ”, denoting the empty tuple, belongs to TΣ(V )ε

if x ∈ Vs then x ∈ TΣ(V )s;
if t ∈ TΣ(V )α and t′ ∈ TΣ(V )β , then (t, t′) and (t; t′) belong to TΣ(V )α·β ; 3

if t ∈ TΣ(V )α and t′ ∈ TΣ(V )β , then [t]; t′ ∈ TΣ(V )β ;
if (f : i→ o) ∈ F and t ∈ TΣ(V )i, then f(t) ∈ TΣ(V )o.

“ ” is neutral for “,” and “;”. Moreover, “,” and “;” are associative.
We note TΣ(V ) = (TΣ(V )α)α∈S∗ .

Comments: The comma “,” is the parallel evaluation of terms, whilst the semi-
colon “;” is the sequential evaluation. The result of both (t, t′) and (t; t′) is the
tuple composed by the results of t and t′. [t]; t′ performs t, discards its results
but keeps its side-effects, and then evaluates t′.

Term Evaluation. To evaluate a term t ∈ TΣ(A)α, we take an environment
ξ = (η, τ) ∈ A × Aδ as input, and return a tuple r ∈ Aα, as well as a result-
ing environment ξ′ = (η′, τ ′) ∈ A × Aδ as output by following a bottom-up
evaluation strategy. However, the evaluation is not deterministic due to side-
effects of methods. Indeed, as method semantics relied on environments, results
of term evaluations will depend on evaluation order of subterms. Term eval-
uation is then contingent from environments 4. Therefore, term evaluation is
not a function anymore but rather, is a binary relation on the product (val-
ues,environments). Consequently, the evaluation of a term t ∈ TΣ(A)α leads to
a set of pairs (r, ξ′) ∈ Aα × (A×Aδ).

With such an approach, we can see that the evaluation of some terms is
deterministic. Among these are terms in TΣ(A) of form f(a) where a is a tuple
of values (a ∈ Ai). We call such terms flat terms. Their evaluation is defined as
follows:

3 “·” is the usual concatenation law on words.
4 In the literature on modal logics, we say that terms are not rigid.
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Definition 6 (Flat term evaluation). Given a flat term t = f(a) with f :
i→ o and an environment ξ = (η, τ) ∈ A×Aδ, its evaluation from ξ, noted tAξ ,
is (b, η′, τ ′) ∈ Ao ×A×Aδ where b = fA

ξ (a), (η′, d) = fA
ξ

(a) and τ ′ = τ �A d.

To evaluate more general terms, we have to consider all possible evaluation
orders. This leads to consider the notion of possible occurrence, which is a place
where evaluation could occur.

Definition 7 (Possible occurrence). With notations of Definition 6, a flat
term t is a possible occurrence of a term t′ if and only if t is a subterm of t′

such that if t′ is of the form (t1; t2) or [t1]; t2 then: if t1 is already completely
evaluated (i.e. a tuple of values) then t is a possible occurrence of t2 else t is a
possible occurrence of t1.

Definition 8 (Evaluation). We note E the binary relation on TΣ(A)×(A×Aδ)
defined by: (t, ξ)E(t′, ξ′) if and only if there exists a possible occurrence s of t
such that sA

ξ = (a, ξ′) and t′ is obtained from t by substituting the occurrence
of s in t by a.

An evaluation of t ∈ TΣ(A)α from ξ is then any couple (r, ξ′) ∈ Aα×(A×Aδ)
where (t, ξ)E∗(r, ξ′).5

3.3 Formulas and Their Satisfaction

We have three kinds of atoms to respectively deal with values, states and times.
Furthermore, we introduce a supplementary operator to deal with dynamic as-
pects: after.

Definition 9 (Formulas). Let Σ be a signature. A Σ-formula is built from:
equational atoms of form t = t′ where t and t′ are terms with variables of the
same sort;
equational atoms of form t ≡ t′ where t and t′ are terms with variables;
relational atoms of form t ' t′ where t and t′ are terms with variables of the
sort δ;
formulas of form after [t] (ϕ) where t is a term with variables and ϕ is a Σ-
formula;
connectives in {¬,∧,∨,⇒} and quantifiers in {∀,∃} with their usual rules.

Comments: t = t′ denotes equality between values. Since the side-effect may
be different, equal values are not replaceable. t ≡ t′ denotes equalities between
states. Finally, after [t] (ϕ) means that ϕ is true just after having performed t.
Afterwards, t ∼= t′ will be an abbreviation for t = t′∧ t ≡ t′∧ [t]; date = [t′]; date.
In this last case, equal values become replaceable.

Definition 10 (Dynamic real-time specification). A specification SP is a
couple (Σ,Ax) where Σ is a signature and Ax a set of formulas.

5 E∗ denotes the reflexive and transitive closure of E .



422 M. Aiguier, S. Béroff, and P.-Y. Schobbens

In many applications, we need to define constraints on the future evolution of
systems. For instance, we will see that VHDL instructions have long effect after
their execution, although this execution does not take any time. Therefore, we
have to go in the future to see instruction side-effects. To describe this evolution,
we introduce a dynamic operation # : δ → that will put us in the environment
that we’ll reach by letting its argument duration elapsed. Thus it will obey
the axioms:
#(d); date = date� d
#(d1); #(d2) ∼= #(d1 � d2)
#(ι) ∼=

Example 2. The axioms to define dynamic lists are the following:

after [cons(n)] (head = n)
pos(0) = head
pos(i) = m⇒ after [cons(n)] (pos(i+ 1) = m)
after [empty] (lenght = 0)
lenght = m⇒ after [cons(n)] (lenght = m+ 1)

produce can be specified abstractly as follows:{
date=h ∧
length=0

}
=⇒after[produce(n, d)]

⎧⎨⎩
date ' h� d ∧
i<j<length⇒pos(i)<pos(j)∧
i < length⇒ pos(i) ≤ n

⎫⎬⎭ (1)

Satisfaction of equations (between states or values) can be interpreted either
as set equality where two terms are equal if they return the same set of results,
or an element equality where two terms are equal if they are deterministic (i.e.
the set of values is a singleton) and always return the same result [16]. Usually,
the set equality of equations is chosen when dealing with specifications which
are intrinsically non deterministic (e.g. choice functions). In this logic, the non
determinism of the term evaluation is the consequence of evaluation strategies.
Therefore, it is a matter for implementation. In line with the general spirit of
algebraic frameworks the aim of which is to abstractly specify systems, we choose
element equality, which is more implementation-independent.

Definition 11 (Value-deterministic). Let A be a Σ-model. A term t ∈
TΣ(A)α has a deterministic value v ∈ Aα from ξ ∈ A × Aδ means that, for
any (v′, ξ1) such that (t, ξ)E∗(v′, ξ1), v = v′.

Definition 12 (State-deterministic). With the notations of Definition 11, a
term t ∈ TΣ(A) has a deterministic state η ∈ A from ξ ∈ A × Aδ means that,
for any (v′, (η′, τ ′)) such that (t, ξ)E∗(v′, (η′, τ ′)), η = η′.

Definition 13 (Formula satisfaction). Let A be a Σ-model. Let ϕ be a Σ-
formula. Let ν : V → A be an assignment (V covering all the variables of ϕ).
Let ξ be an environment in A×Aδ. A satisfies ϕ from ξ with ν, noted A |=ξ,ν ϕ,
if and only if:
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– if ϕ is of the form (t = t′) (resp. t ≡ t′) then A |=ξ,ν t = t′ (resp. A |=ξ,ν t ≡
t′) means that, ν#(t) and ν#(t′) have the same deterministic value v (resp.
the same deterministic state η) from ξ;6

– if ϕ is of the form t ' t′ then A |=ξ,ν t ' t′ means that, ν#(t) and ν#(t′)
have respectively both deterministic values v and v′ from ξ, and v 'A v′;

– if ϕ is of the form after [t] (ψ) then A |=ξ,ν after [t] (ψ) means that for all
(v, ξ′) such that (ν#(t), ξ)E∗(v, ξ′), A |=ξ′,ν ψ;

– propositional connectives and first order quantifiers are handled as usual.

Given a Σ-formula ϕ, A satisfies ϕ, noted A |= ϕ, means that for all assignments
ν : V → A (V covering all the variables of ϕ) and all environments ξ ∈ A×Aδ,
A |=ξ,ν ϕ . Finally, A satisfies a specification SP , noted A |= SP , if and only if
A satisfies all its formulas. A is then called a SP -model.

4 Refinement of Dynamic Real-Time Specifications

Here, we are going to take advantage from showing that the dynamic real-time
specification logic is an institution [11] to define a refinement theory for dynamic
real-time specifications.

4.1 An Institution for Dynamic Real-Time Specifications

In first, we must define an appropriate morphism notion between models.

Definition 14 (S-morphism). Given a set of sorts S, a S-morphism between
two S-sets A and B is a S-indexed family μ = (μs)s∈S of total functions μs :
As → Bs such that μδ(A+

δ ) ⊆ B+
δ . For w ∈ S∗, μw is acting on tuples.

Definition 15 (Σ-morphism). Given a signature Σ, a Σ-morphism between
two Σ-models A and B is a S-morphism from A to B together with a to-
tal function μ : A → B such that for every operation name f : i → o of
Σ, every tuple a ∈ Ai and every environment (η, τ) ∈ A × Aδ, we have:
μs(fA

(η,τ)(a)) = fB
(μ(η),μδ(τ))(μi(a)) and μ(fA

(η,τ)
(a)) = fB

(μ(η),μδ(τ))
(μi(a)). More-

over, μ is compatible with the predicate ': ∀a, b ∈ Aδ, a 'A b ⇒ μδ(a) 'B

μδ(b)).

Given a signature Σ, Σ-models and Σ-morphisms (with the usual composi-
tion) clearly form a category: let us note it Mod(Σ).

An essential ingredient which is missing is an appropriate notion for dynamic
real-time signatures.

Definition 16 (Signature morphism). Let Σ = (S, F ) and Σ′ = (S′, F ′)
be two signatures. A signature morphism σ : Σ → Σ′ is a pair (σsorts,σfun)

6 ν# is the canonical extension of ν on terms and formulas.



424 M. Aiguier, S. Béroff, and P.-Y. Schobbens

of mapping σsorts : S → S′ and σfun : F → F ′ such that for all f : i → o,
σfun(f) : σ#

sorts(i) → σ#
sorts(o) where σ#

sorts is the natural extension of σsorts

to S∗.
Given a signature morphism σ, let us note σ its canonical extension to Σ-

formulas.

Definition 17 (Reduct functor). Let σ : Σ → Σ′ be a signature morphism.
The reduct functor �σ : Mod(Σ′) →Mod(Σ) is defined as follows:

– for each Σ′-model A, A�σ
is the Σ-model B where:

• ∀s ∈ S, Bs = Aσsorts(s) and B = A;
• ∀f ∈ F, ∀ξ ∈ B ×Bδ, f

B
ξ = σfun(f)A

ξ ∧ f
B
ξ

= σfun(f)A
ξ

;

• ∀f ∈ {date,�, ι}, ∀ξ ∈ B ×Bδ, f
B
ξ = fA

ξ ∧ f
B
ξ

= fA
ξ

;
– for each Σ′-morphism μ : A → A′, μ�σ

: A�σ
→ A′

�σ
is the Σ-morphism

defined by all the restrictions of μ of the form: (μ�σ
)s = μs : Aσsorts(s) →

A′
σsorts(s) for every s ∈ S, and (μ�σ

) = μ : A→ A′.

Theorem 1 (Institution of dynamic real-time specifications)
The quadruple INSDRS = (SigDRS ,ModDRS , SenDRS , |=DRS) is an institu-
tion where SigDRS is the category of dynamic real-time signatures, SenDRS :
SigDRS → Set is the functor which maps each Σ to the set of Σ-formulas,
ModDRS : SigDRS → Cat is the contravariant functor which maps each Σ to
Mod(Σ), and |=DRS= (|=Σ)Σ∈|SigDRS | where |=Σ is the satisfaction relation
defined in Definition 13.

4.2 Syntax of Refinement

Specification refinement consists on adding new operations and removing axioms
of specifications to replace them by more concrete ones.

Notation 2. Let SP = (Σ,Ax) be a specification. Let us note Sig[SP ] = Σ. A
signature morphism σ : Σ = (S, F ) → Σ′ = (S′, F ′) is an inclusion signature
morphism if S ⊆ S′ and F ⊆ F ′.

Definition 18 (Specification refinement). A specification SPimp is a refine-
ment of a specification SP if and only if there is an inclusion signature morphism
σ : Sig[SP ] → Sig[SPimp]. Let us note SP 
σ SPimp such a refinement.

Example 3. Let us add to the signature of Example 1, the following operations:
timesub : δ × δ → δ (subtraction of durations)
timediv : δ × δ → Nat (division of durations, truncated)
generate : δ × δ → (dynamic: generate a list before its deadline)

and the following axioms:
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τ1 ' τ2 =⇒ τ1 � timesub(τ2, τ1) = τ2
¬(τ1 ' τ2) =⇒ timesub(τ2, τ1) = 0
¬(τ1 ' τ2) =⇒ timediv(τ2, τ1) = 0
τ1 ' τ2 =⇒ timediv(τ2, τ1) = succ(timediv(timesub(τ2, τ1), τ1))

We will produce the list in decreasing order since we add elements with cons,
so that the last element added is found in the first place. Thus we start with n
(if time allows):

date� d = e ∧ (cons(n); date) ' e ∧ cons(n); date = date� p =⇒
produce(n, d) ∼= cons(n); generate(p, e) (2)

Otherwise, we just do nothing:
date� d = e ∧ ¬(cons(n); date) ' e =⇒ produce(n, d) ∼= (3)

The operation generate is recursively defined: the induction step computes a n′

that should be evenly spaced if all later steps take the same time:⎧⎨⎩
(n = head) ∧ (n > 0)
∧n′ = n− (n div timediv(timesub(e, date), p))
∧date� p′ = cons(n′); date ∧ date� p ' e

⎫⎬⎭ =⇒

generate(p, e) ∼= cons(n′); generate(p′, e) (4)
Above, div is the integer division rounded above, so that n′ is less than n.
Otherwise, when either the deadline is reached or the bottom value has been
generated, we do nothing (the omitted condition is similar to the previous one):
. . . =⇒ generate(p, e) ∼= (5)

Obviously, this specification is a syntactic refinement of the specification given
in Example 1 and Example 2.

4.3 Semantics of Refinement

A refinement will be correct provided that the behavior of the implementation
is indistinguishable from the behavior of the higher level specification under
consideration. When dealing with loose semantics, this consists on cutting down
in model classes.

Notation 3. Given a specification SP = (Σ,Ax), the category of Σ-models
M such that M |=Σ Ax is noted Mod(SP ). A Σ-sentence ϕ is a semantic
consequence of a specification SP if and only if for every M ∈ |Mod(SP )|,
M |= ϕ. The set of semantic consequences of SP is noted SP •.

Definition 19 (Semantic refinement). Let SP 
σ SP ′. SP ′ is a semantic
refinement of SP , written SP �σ SP

′, if and only if Mod(SP ′)�σ
⊆Mod(SP ).

Example 4. The specification given in Example 3 is a semantic refinement of
the specification of Example 1 and Example 2. Indeed, we can easily show that
Axiom (1) given in Example 2 can be deduced from Axioms (2), . . . , (5) given in
Example 3.
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Semantic refinement well expresses refinement correctness, that is the imple-
mentation satisfies all the properties of the implemented specification.

Proposition 2. Let SP �σ SP ′ be a semantic refinement. Then, we have:
SP • ⊆ SP ′•.

4.4 Refinement Composition

Of course, it is not reasonable to refine a specification as a whole in a single
step. Large softwares usually require many refinement steps before obtaining
efficient programs. This leads to the notion of sequential composition of re-
finements steps. Usually, composition of enrichment is mainly divided into two
concepts: horizontal composition and vertical composition. Horizontal composi-
tion deals with refinement of subparts of system specifications when they are
structured into specification “blocks”. In [1], we have shown that all classical
modularity results are preserved in the dynamic real-time specification frame-
work when specifications are structured through the basic set of specification
building operations in {union, translate, derive}. As the institution proof sys-
tem of [7] defined from {union, translate, derive} has been shown sound and
complete w.r.t. semantic refinement (see Theorem 4.5 in [7] ), we directly have
that the horizontal refinement correctness holds in our refinement theory.

On the contrary, vertical composition deals with many refinement steps. It
corresponds to the transitive closure of refinement relations 
Σ . Its correctness
is expressed by the following result:

Theorem 2. The following rule is sound: SP�σSP ′ SP ′�σ′ SP ′′

SP�σ′◦σSP ′′

5 VHDL Semantics

In this section, we provide the hardware description language VHDL with an
algebraic semantics. This semantics is rather descriptive in contrast to existing
formal descriptions of VHDL which are more operational [13]. We have adopted
a description of VHDL according to software engineering principles. These prin-
ciples are twofold:

1. Abstraction and functional description of the programming language, that
is a formula only means a property linking inputs and outputs of functions.

2. Semantics must reflect user’s view. Therefore, it must avoid, as much as
possible, to exploit internal mechanisms which are not directly manipulated
by users.

This leads us to not explicitly describe the simulator of VHDL. It is simply
observed.

For lack of space, this presentation is rather succinct. Here, we will only give
meaning to instructions devoted to simulation, that is suspension instructions
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and signal assignments. Other instructions are usual ones that we find in any
imperative language. Their semantics is not problematic. A complete algebraic
semantics of VHDL from dynamic real-time specifications is given in second
author’s PhD.

5.1 The VHDL Language

VHDL is a language for describing, in an executable way, hardware systems,
mainly integrated circuits. It can be seen both as a programming language
(VHDL is based on the programming language ADA) and as a simulation lan-
guage (VHDL includes some structures allowing us to define and model events,
time and signals). To describe the behavior of an hardware system, we define a
set of modules. Each module is divided into two parts: an external view, called
entity, that describes its connexion with the external world (its interface) and
an internal view, called architecture, that describes its realization. In entities, we
mainly give input/output ports and their types. These ports carry signals.

Architectures implement entities. An architecture is composed of processes.
Each process runs cyclically. A process can suspend its execution, to wait for
some event 7. Therefore, in addition of usual instructions found in any impera-
tive language, VHDL is equipped with two supplementary kinds of instructions
which are specific of hardware description: suspension instructions and signal
assignments. Suspension instructions are of the form: wait {on sequences of
signals} {until condition} {for duration}. And, signal assignments are of the
form: signal identifier ⇐ value {after duration}.

A VHDL description of a hardware system mainly describes a concurrent
world whose active objects are processes. Each process is performed sequen-
tially, but this sequencing is only there for simulating, and takes no time when
implemented on silicon. To represent this, time is defined as couples of natural
numbers. The first element is the real time, the time of the circuit. This time
is discrete, with as unit the femtosecond (10−15s). The second element, the δ
time, is used to sequence instructions which have to be performed at a same real
time. Therefore, the performance of a VHDL description results on a sequence
of signal affectations, usually called transactions, distributed on a time line.

5.2 Our VHDL Semantics

Suspension Instructions. suspension instructions stop their process for a
given duration, or until a condition is satisfied. Our description simply states
that a suspended process cannot be act on its signals during its suspension.
Here, we only detail suspension instructions of the form: wait signal for dura-
tions. The other cases (wait on and wait until) are handled in the same way.

Each VHDL instruction (e.g. wait for 10 ns) will be represented by an in-
stantaneous side-effecting function, e.g. wait for : Process × δ × δ →. The
argument Process will be the identity of the process in which this instruction

7 An event is a change on a signal.
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is found. The second argument is simply the duration found in the instruction.
The third argument is the time after which the instruction will be executed,
depending on the instructions found before. It allows to take into account both
some suspension and/or signal assignment instructions which may have taken
place before the suspension instruction under consideration (see Paragraph on
the semantics of processes below). These instructions must be performed before
it. Therefore, the execution of the suspension instruction under consideration is
delayed till the end of all the suspension durations of these instructions.

date = tc =⇒ after[Wait for(P, time, delay)]

after[#(delay)]∀αafter[#(α)]

⎛
⎜⎜⎝

(
t′ % time ∧

signal out(P, s) = true

)
⇓(

trans(s, expr, tc � delay � t′) = false
)
⎞
⎟⎟⎠

signal out(P, s) = true means that s is an output signal for the process P , and
trans(s, expr, t) = true means that a transaction has been required at time t
to assign the value expr to the signal s. The date of request cannot be in a
suspended interval.

Therefore, the axiom above means that P cannot require transaction on any
of its output signals s during all the duration time.

Signal Assignments. VHDL signal assignments do not assign a new value
immediately, but rather posts a transactions on it at a later date. Some of these
transactions may be preempted by transactions posted later: the idea is that a
change that does not last long enough will not be performed by the hardware.
Roughly, the VHDL rule is: A signal assignment will actually occur iff there are
no transaction on the same signal with a different value which have been created
after its performance and before the actual date of this affectation.

A VHDL assignment “signal ⇐ expr after time” will again be represented
by a function symbol Assign sig : Type × Process × Type × δ × δ →. For in-
stance, Assign sig(s, P, 0, 5, 10) corresponds to the instruction s⇐ 0 after 5 ns
executed by the process P at time 10 ns, e.g., because the previous instruction
was of the form wait for 10 ns (see Paragraph just below).

Now, the formal rule simply expresses the preemption rule:(
signal out(P, s) = true∧
date = tc

)
=⇒ after[Assign sig(s, P, expr, time, delay)]

⎛
⎜⎜⎝after[#(delay)]

⎛
⎜⎜⎝

(
pre before(s, expr, tc � time) = false ∧

pre after(s, expr, tc � time) = false

)
'

after[#(time)](trans(s, expr, tc � delay) = true)

⎞
⎟⎟⎠

⎞
⎟⎟⎠

The predicates pre after and pre before (definition not shown here but given in
second author’s PhD) express the preemption rules defined by the VHDL norm.
Briefly, pre before(s, expr, tc � time) is false if there are no transaction on s
which have been produced after the date tc and will take effect before tc� time.
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In the same way, pre after(s, expr, tc� time) is false if there are no transaction
on s with a different value which have been produced after the date tc and will
take effect after tc � time. Therefore, the axiom above means that if s is an
output signal of P and the preemption rules are satisfied on s (according to
pre before and pre after specifications) then there is a transaction on s at time
tc� delay on the time line.

An algorithm translating VHDL programs towards dynamic real-time spec-
ifications has been defined along the lines sketched above in second author’s
PhD thesis. Our way to express temporal properties is general: by using quan-
tification, ordering on time and the operator after[#(time)], we can express any
property expressible in temporal logic. It is in fact not obvious for a temporal
logic to reach the level of first-order expressiveness [10]. It is also more expressive
than known real-time extensions of temporal logic [3]. This is, of course, at the
cost of decidability.

6 Conclusion

In this paper, we have introduced a new algebraic-like formalism to describe
– and semantically reason about – dynamic real-time systems. The modifica-
tions are simple and rather minimal: we introduce notations for state, duration
and date. Due to the power of first-order logic, we can immediately express all
usual real-time constraints, such as delays, timeouts or response-time, and every
property of temporal logic. A refinement theory adequate for this formalism has
been defined. This enables us to introduce implementation details progressively.
Finally, we have sketched an application, which uses our framework to give a
semantics to VHDL.

References
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430 M. Aiguier, S. Béroff, and P.-Y. Schobbens

8. S. Campos, E. Clarke, W. Marrero, M. Minea, and H. Hiraishi. Computing quan-
titative characteristics of finite-state real-time systems. In Proceedings of the 15th
Annual Real-time Systems Symposium. IEEE Computer Society Press, 1994.

9. P. Dauchy and M.-C. Gaudel. Algebraic specifications with implicit state. Technical
Report LRI-887-1994, Universit de Paris-Sud, 1994.

10. D. Gabbay, I. Hodkinson, and M. Reynolds. Temporal Logic. Clarendon Press,
1994.

11. J. A. Goguen and R. M. Burstall. Institutions: Abstract model theory for specifi-
cation and programming. Journal of the ACM, 39(1):95–146, Jan. 1992.

12. E. Harel, O. Lichtenstein, and A. Pnueli. Explicit-clock temporal logic. In Proceed-
ings of the Fifth Annual Symposium on Logic in Computer Science, pages 402–413.
IEEE Computer Society Press, 1990.

13. C. D. Kloos and P.-T. Breuer, editors. Formal Semantics for VHDL. Kluwer
Academics Publishers, 1995.

14. P. Kosiuczenko and M. Wirsing. Timed rewriting logic with an application to
object-based specification. Science of Computer Programming, 28(2–3):225–246,
1997.
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Abstract. Among the possible approaches for expressing real-time problems
with the B method, two are dominant : the use of the usual B mechanisms to
define real-time constraints on the one hand, and extending B through another
formalism more adapted to the real-time context on the other hand.

We define here a possible real-time semantic for B, by using a real-time logic
(the duration calculus), and we illustrate how this extension affects the proof
mechanism used to show the soundness of abstract machines.

1 Introduction

For several years, feedback on the use of formal methods in the industrial field has
been, in majority, positive. Indeed, for instance, the B method showed its strength in
helping the conception of safety-critical systems (for instance, the famous example of
line number 14 of the Parisian subway [BBFM99]).

However, the possibilities offered by the formal methods have to evolve at the same
time as industrial needs do. Viable methods for the validation of non-functional con-
straints appear gradually : among them are the time-constrained problems. Indeed, the
field of embedded devices and embedded software has great need of methods allowing
the designing of solutions including time management, and also, in the case of critical
systems, the checking of the validity of these solutions.

Such methods already exist, but often show drawbacks that can make the study of
some cases difficult. On the one hand, model-checking methods are suitable for the val-
idation of little problems, but when composing those problems to have them interact,
the number of cases increase dramatically. There are methods to avoid this problem
partially, but they involve often abstract interpretation, which is actually a way of giv-
ing semantics to languages. On the other hand, methods using timed automatas have
good compositionality properties, but do not allow the description of the step from the
abstract modelisation to computer code.

Then the idea of merging these design methods with formal languages and/or meth-
ods ensues, so one can benefit from both sides : easy validation of timed constraints
from the temporal formalism part, properties of modularity, compositionality and prox-
imity with computer code from the language part.
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In the next sections, we present a method to obtain a formal tool, allowing the check-
ing of both functional and timed properties of a given problem, by defining a real-time
semantic for the B method. We first describe the formalism used to express this seman-
tic, the duration calculus1 then we remind the reader of the properties of the B method.
Later on, we describe more in detail a real-time semantic for B, and end up with the
possibilities brought by this approach.

2 Duration Calculus

From the site ([DCa]) : "The duration calculus is a modal logic for describing and
reasoning about the real-time behaviour of dynamic systems, where states change over
time and are represented by functions from time (reals) to the Boolean values (0 and
1). It is an extension of Interval Temporal Logic2 [Dut95], but with continuous time,
and uses integrated durations of states as interval temporal variables. Assuming finite
variability of state functions, the axioms and rules of the DC constitute a complete logic
(relative to Interval Temporal Logic)."

2.1 History

Research on a real-time logic more powerful than "classical" interval temporal logic
(see [Dut95]) was initiated by the ProCos 3 project of the ESPRIT 4 program, in the
BRA5 3104 and 7071 working groups.

This initiative led in 1990 to the paper entitled "A calculus of durations" [ZHR91],
which established the foundations of DC. Then, more advanced studies followed, treat-
ing such topics as completeness or decidability (see e.g. [HZ04]), then extensions to
DC, like DC with infinite time intervals, or higher-order DC, for instance (see e.g.
[DCb]).

There are also examples of the use of DC ([Nai99]) through the design of real-time
software, as well as proof assistants for DC. Nowadays, the most active institution in
this field is the IIST6. Its site [DCa] gathers many links in relationship with DC.

2.2 Classical Modelling of Real-Time Problems

[SH01] presents an example of the study of the watertank problem. This case study
interests us because it describes well the required steps in any other study of a real-time
problem with DC. These steps are :

1. Problem variables are defined
2. Specifications of the problem are translated into a DC formula we call Req

1 abbreviated as DC from now on.
2 abbreviated IL from now on.
3 Provably correct systems.
4 European Strategic Program for Research in Information Technology.
5 Basic Research Action.
6 International Institute for Software Technology, affiliated with the United Nations University.



Duration Calculus: A Real-Time Semantic for B 433

3. Design decisions are taken and also translated into a DC formula we call Des, such
that Des ⇒ Req

4. Design takes place in a dense-time context, thus one may need to make it discreet.
In that case, a formula Cont must be found, such that A �Cont ⇒ Des, A being a
formula stating the behaviour of the environment and the relations between discrete
and dense variables.

5. Finally, a program verifying the discrete constraints of Cont is written.

Notice that here, the programming step is the last one, and the language used in
[SH01] is simple.

Therefore, our idea is to exploit the fact that, in the B method, the programming
step is strongly connected to the proof step through refinement, so that we obtain a
simplification of all these steps. Here follows a brief survey of DC with examples.

2.3 Syntax

Let Xi be a propositional temporal letter (interpreted as a boolean function over time
intervals), Pi a state variable (interpreted as a boolean-valued function over time), x,y, . . .
global variables (interpreted as real numbers), fi functions and Ri relation symbols.
Usually, the functions are the standard arithmetic ones (+,∗) and the relations are also
the usual ones (=,≤). The syntax of DC formulas is :

formula ::= Atom | ¬ formula | formula ∨ formula | formula�formula | ∃x.formula
Atom ::= true | X | R(term,. . . , term)
term ::= x | � |

∫
state | f(term,. . . , term)

state ::= 0 | 1 | P | state ∨ state | ¬ state

Let us mention the fact as functions and relations might be noted with prefix or infix
notation, as syntax is not our main concern.

In section 4.1 one can see that predicates are actually used as state variables : this
way we can specify changes of some particular states of variables over time (e.g. watch
when some variable reaches a critical level). This technique is implicitly used in [SH01].

2.4 Semantics

The most direct way to interpret DC formulas is to do so over time intervals. For space
reasons, we will only mention the most noticeable traits of DC semantic : let I be an
interpretation of a DC formula over a time interval, V a valuation of terms over a time
interval, and T a function from time to {0,1}, we have :

I (¬φ)([b,e]) = ¬I (φ)([b,e]) (the semantic of predicate cal-
culus’ connectors is as usual)

I (φ1
�φ2)([b,e]) = ∃m.(I (φ1)([b,m])∧ I (φ2)([m,e])) for m ∈

[b,e]
V (�)([b,e]) = e−b
V (

∫
S)([b,e]) =

∫ e
bT (S)(t)dt

T (0)(t) = 0
T (¬S)(t) = 1−T (S)(t)



434 S. Colin, G. Mariano, and V. Poirriez

What can we then observe ? The definition of � and � are linked, as � has different
values among subformulas where several � connectors are nested. The introduction of
the

∫
operator over state formulas thus allows the modelling of very fine-grained timed

formulas, where it can be reasoned on the duration of events (represented as states), and
the relationships between them (some examples are found in sec. 2.5).

A proviso is added for the state variables, which are interpreted as functions over
time : for the functions to be integrable, they need to be finitely variable over the con-
sidered time interval. For example, the following function is not finitely variable over
an interval of real numbers :

f (t) =
{

0 if t is irrational
1 otherwise

2.5 DC Examples

Some examples are inspired from [HZ04]:

1. Let the state variables Gas and Flame be the expressions of the event “gas is pro-
duced” and “flame exists”, respectively. Then, this DC formula states that during
the non-zero time interval, each time gas is produced, the flame must be present :∫

(Gas ⇒ Flame) = �∧ � > 0

2. The formula � = 10�� = 5 states that the first part of the time interval is 10 time
units long, and the second part is 5 time units long.

3. true�(φ�true) states that the φ formula is valid in some sub-interval. This special
construction is also noted �φ, and is comparable with the � one can find in other
temporal logics.

4. Similarly, the formula ¬�(¬φ) is noted �φ, and is interpreted as : “for any time
sub-interval, the φ formula is valid”.

5. 11S22 is a convenient notation for
∫

S = �∧ � > 0, meaning that the state S holds for
a non-zero time interval. This notation is often used in DC formulas.

2.6 WDC∗

Numerous papers have described numerous possibilities to extend DC. We present here
two extensions whose purpose is to allow to reason about an arbitrary number of time
intervals, and to reason on events happening at a time point.

DC∗ A new logical connector ∗, which chops an interval an arbitrary (possibly zero)
number of times. Hence this connector extends the � connector to an arbitrary number
of intervals. The axioms for ∗ reflect this behaviour adequately. Its semantic is defined
as follows :

I (φ∗)([b,e]) =

⎧⎨⎩
true if b = e,or
∃t1, . . . , tn ∈ R.

(b = t1 < . . .< tn = e∧∧n
i=1 I (φ)([ti, ti+1])
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We also introduce several notations :

φ+ =̂ φ�(φ∗)
φ0 =̂ � = 0
φk =̂ φ� .. .�φ︸ ︷︷ ︸

k times

for k > 0

DC∗ is preferred over DC when hybridising with a programming language, due to
the iteration connector, which allows a more accurate representation of the loops (such
as the while control structure).

WDC∗ The weakly monotonic time extension of DC∗, adds a new level of time, so
that it can be reasoned about succession of events, possibly at a single time point. The
time domain is defined to be (T,ω) (where T is the time domain chosen for time in-
tervals, thus usually interval of real numbers). Then each time point can be compared
to each other with an order compatible with the lexicographic order. This definition re-
sults in the splitting of macro-time points of DC∗ into one or several micro-time points
of WDC∗. The syntax changes are as follows :

formula ::= Atom | ¬ formula | formula ∨ formula | formula�formula |
∃x.formula | formula∗ | 1P20

Atom ::= true | X | R(term,. . . , term)
realterm ::= xr | � |

∫
state | fr(term,. . . , term)

integerterm ::= xi | η | fi(term,. . . , term)
state ::= 0 | 1 | P | state ∨ state | ¬ state

where xr is a real variable, fr a real function (such as addition, for instance), xi an
integer variable, fi an integer function, and P a state. η represents the micro-time level
of WDC∗, and the semantic of 1P20 is defined as (with θ a function interpreting the
value of states over time) :

I (1P20)([b,e]) = true if b = e and θ(P)(b) = 1

We also have the following notation : 1P2 ≡ ¬(¬1120�¬1P20�¬1120) (meaning
there is no non-zero micro-time interval where P is false).

By the means of these new connectors, one can now reason about states at precise
time points. We encourage the reader to refer to the appendix of [SH01] where a com-
plete presentation of WDC∗ is made.

2.7 Proof System and Support

Without going much into detail, it can be stated that the proof system of duration cal-
culus is particular, due to the particular nature of � (see the second example of sec. 2.5
where � seems to have two differents values) and the side-conditions of some of its
axioms and inference rules. Indeed, some axioms and side-conditions require that the
formula has a certain shape (it must not contain �, for instance) so it can be applied.

Several proof tools have overcome these problems, through different approaches :
PC/DC implements DC through its semantics (deep-embedding), Isabelle/DC uses
shallow-embedding7, [Ras02] describes an implementation of Signed Interval Logic

7 also referred to as external embedding, because Isabelle is a meta-engine.
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with Isabelle, from which results for DC can be deduced. There exists also DC li-
braries for Coq (presented in [CPM03]) illustrating both the shallow-embedding and
deep-embedding approaches.

There are also tools rather based on model-checking methods ([Pan01] is such a
tool). Many of these tools can be found at [DCa].

3 B Method

We will suppose the reader is familiar with the B method or formal methods of the same
kind (Z, for instance). We will simply recall its greatest characteristics here.

To prove the correctness of an operation of a B machine, a proof obligation for this
operation must be proved : this proof obligation is generated from the operation itself
and the invariant of the machine. We are particularly interested in this building rule,
as it is based on Hoare’s triples and weakest precondition calculus : the Hoare’s triple
{pre}[S]{post} is valid if pre ⇒ wpc(S, post), where pre and post are pre- and post-
condition respectively, and S a substitution. This formula is read as : "the precondition
establishes the weakest precondition of S w.r.t. its postcondition". In the B method, this
weakest-precondition calculus is noted [S]post and follows the rules mentioned in fig. 1,
the machine invariant plays the role of both pre and post, and S is the operation whose
correctness we want to prove. The reader can refer to [Abr96] for more details. Note
that we might use "substitution" or "GSL" equally in the next paragraphs, for the sake
of simplicity.

3.1 Real-Time Constrained Problems with "Classical" B

The use of the set theory allows the developer to adapt the proof to its framework.
Therefore it is possible to express models with real-time needs. In [Lan98], a commu-

GSL [GSL]P description

skip P "Do nothing" substitution
x := E P[E/x] All the occurrences of x are replaced by E

g|S g∧ [S]P Precondition
g =⇒ S g ⇒ [S]P Guard

S;T [S]([T ]P) Sequence
S[]T [S]P∧ [T ]P Bounded choice

@x.S ∀x[S]P Unbounded choice
S‖T simplified with rewriting

rules
Non-deterministic substitution

WHILE C ∀x(I∧C ⇒ [S]I)
DO S ∀x(I ⇒V ∈ N) While loop

VARIANT V ∀x(I ∧C ⇒ [n := V ][S](V <
n))

(these formulas allow to ensure that the loop ter-
minates)

INVARIANT I ∀x(I∧¬C ⇒ P)

Fig. 1. Calculus of the weakest precondition
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nication protocol between a SmartCard and its reader is modelled in B. A component
with real-time constraints is also described in [TS99]. Unfortunately, there are still some
limitations.

In [Lan98], temporal constraints do not include hard real-time needs, i.e. quantified
time intervals, but rather constraints on the order of the steps of the protocol. And in
[TS99], the model calls a clocks it updates itself, and does not allow the “triggering” of
the different operations, although it allows to check the operations function correctly if
triggered during specific time intervals. Moreover, with this approach, proof obligations
can become complex, even more if they are composed together so they communicate,
but function according to different clocks.

Hence, even if it is possible to model time-constrained problems in "classical" B, the
complexity of proof obligations potentially generated, as well as the external modelling
of time (the problem is not subject to time, but handles it through a machine acting as a
clock), limit the class of problems that can be addressed.

3.2 Event B and Real-Time Constraints

Event B (see e.g. [Abr00]) is an extension of B allowing abstract specification of re-
active systems. Thus, it is easier to model protocols requiring concurrency, or systems
described by events that can happen in it.

In [HJMO03], timed automatas are used in conjunction with event B to model timed
event systems. The presented example is a railroad crossing, in which the train can take
several states (modelled by a set), and to each event is associated a transition having
the train go from one state to the next. We have here a correspondence between the
events’ system of the B machine and a timed automata representing the different states
the system can be in, as well as associated transitions.

This approach has two advantages : many clocks can be defined to improve the
number of real-time properties of the model, and the refinement of timed automata is
intuitive, giving the ability to check that many properties of the model are kept at the
refinement step. But there are also subtle points one has to take care of : the events can
not be triggered explicitly, thus one can only act on variables of the model to ensure
the triggering of the guard of the awaited event. This way of modelling keeps event B
away from an immediate implementation.8 Additionally, The more clocks there are in
the model, the more constraints on them may appear in events’ guards, hence the harder
the proof obligations can be.

4 Timed Extension for "Classical" B

The extension presented here is based on [SH01], in which the presented method rather
follows the design steps presented in section 2.2. So, instead of having logical spec-
ifications as a basis to validate a solution to a time constrained problem, we use the

8 This is half a problem, though, as event B has been designed for abstract modelisation, and
there are systems allowing to explicit the operational semantic of events ([BF03]).
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GSL dur([GSL],P)
skip 1122

x := E 1122
delay d (� = d)∧11P22

g|S dur([S],P)
g =⇒ S dur([S],P)

S;T dur([S],([T ]P))�dur([T ],P)
S[]T dur([S],P)∨dur([T ],P)

@x.S dur([S],P)
S‖T transformed through rewriting rules

WHILE C
DO S dur([S], I)∗

VARIANT V
INVARIANT I

Fig. 2. Calculus of a duration formula from a generalised substitution

substitutions of B to describe the dynamical behaviour by giving them a real-time se-
mantic, so as to extract time informations we are interested in validating.

We define this semantic under the usual B design hypotheses, that is to say that
there is no concurrency, and the substitutions terminate. Moreover, we suppose the true
synchrony hypothesis, stating that affectations take zero time. This hypothesis is made
because, in practice, the delays used to synchronise the different components of a model
are very big w.r.t. the execution time of little instructions (affectations, additions,etc),
hence the latter do not play a big role in the core of the modelled problem. Let us notice
though, that the possibility remains to add delay statements if one needs to take into
account the duration (even little) of particular substitutions.

4.1 Timed Semantic of Substitutions

We present in fig.2 a possible semantic for B substitutions. The formula dur([GSL],P)
means "the duration of the substitution GSL, assuming the postcondition P holds after
the substitution has been executed". Indeed, this postcondition is to be checked in the
normal development cycle of a B model (when checking the generated proof obligations
with a prover), thus we can safely assume the postcondition holds.

Let us first notice that the calculus of a duration formula bases itself on a predi-
cate : this predicate represents the state whose evolution we want to watch during the
"execution" of the substitution (more on this in section 4.2).

The formulas of fig. 2 are obtained by first giving the substitutions a WDC∗ seman-
tics, and then projecting the obtained formulas into DC∗. As an example, let us make
the proof of the rule for the While, as made in [SH01]. Let us introduce some notations :
SCHi represents the state when a process i (composed of substitutions) is waiting and
not running, i.e. is ready to be scheduled. Indeed, this WDC∗ semantics of substitutions
takes into account a possible parallel execution of programs, although we do not use it
so far. M f in(S) represents the semantics of substitution S under the hypothesis that S
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terminates (in the timed meaning, not the B meaning). More details about this notation
are in [SH01].

The inference rule for the While can be written as :

{[S]I}[S,dur([S], I)]{I} I∧C ⇒ [S]I I∧¬C ⇒ P

{I}

⎡⎣WHILE C
DO S
INVARIANT I

,dur([S], I)∗

⎤⎦{P}
Please note that we omit the side-conditions for the VARIANT, as it is not used in

the proof. We keep the definition of real-time rules for the while :

M f in(WHILE)≡ (1C20�M f in(S)�SCHi)∗�1¬C20

Now let us prove that 1I20�M f in(WHILE) ⇒WDC∗ M f in(WHILE)�1P20

1. ASSUME: {[S]I}[S,dur([S], I)]{I}
2. ASSUME: I∧C ⇒ [S]I
3. ASSUME: I∧¬C ⇒ P
4. 1[S]I20�M f in(S) ⇒WDC∗ M f in(S)�1I20 (1)
5. 1I20�M f in(WHILE) ⇒WDC∗ M f in(WHILE)�1P20

PROOF:
5.1. ASSUME: 1I20�M f in(WHILE)
5.2. 1I20�(1C20�M f in(S)�SCHi)∗�1¬C20 (5.1,definition of while)
5.3. 1I∧¬C20∨ (1I∧C20�M f in(S)�SCHi)+�1¬C20 (5.2,WDC∗)
5.4. 1I∧¬C20∨ (1[S]I20�M f in(S)�SCHi)+�1¬C20 (2,5.3)
5.5. 1I∧¬C20∨ (M f in(S)�1I20�SCHi)+�1¬C20 (4,5.4)
5.6. 1I∧¬C20∨ (M f in(S)�SCHi

�1I20)+�1¬C20 (5.5,COND2)
5.7. 1I∧¬C20∨ (M f in(S)�SCHi)+�1I∧¬C20 (5.6,WDC∗)
5.8. (M f in(S)�SCHi)∗�1I∧¬C20 (5.7,WDC∗)
5.9. (1C20�M f in(S)�SCHi)∗�1I∧¬C20 (5.8,WDC∗)
5.10. (1C20�M f in(S)�SCHi)∗�1¬C20�1I∧¬C20 (5.9,WDC∗)
5.11. M f in(WHILE)�1I∧¬C20 (5.10,definition of while)
5.12. M f in(WHILE)�1P20 (3,5.11,WDC∗)

Then, we prove the duration formula (the proof is similar to the one in [SH01]) :

1. ASSUME: {[S]I}[S,dur([S], I)]{I}
2. ∏(1[S]I20�M f in(S)) ⇒ dur([S], I) (1)
3. ∏(1I20�M f in(WHILE)) ⇒ dur([S], I)∗

PROOF:
3.1. ASSUME: ∏(1I20�M f in(WHILE))
3.2. ∏(1I∧¬C20)∨

∏((1[S]I20�M f in(S)�SCHi)+)�∏(1¬C20)
3.1, definition of while,
monotony of ∏

3.3. � = 0∨ (dur([S], I)�� = 0)+�� = 0 (3.2,2, definition of ∏)
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S =
BEGIN

delay 3;
IF

x ≥0
THEN

delay 1; skip;
ELSE

delay 2; x:=-x;
END;

END

S =
BEGIN

delay1;
ANY

y
WHERE

y ∈ { a |∃b b >0 ∧a
=2 ∗b }

THEN
x:=y

END;
END

Fig. 3. Some examples of operations

3.4. � = 0∨dur([S], I)+ (3.3,DC∗)
3.5. dur([S], I)∗ (3.4,DC∗)

Thus we have proved that the rules for the while are correct w.r.t. its definition in
WDC∗. The proofs for other substitutions are similar : for instance, the proofs for the
bounded and unbounded choice happen to be compatible with the definition of the rules
for the if then else structure of [SH01]. That is the least one could have expected from
two formalisms originally based on Hoare’s triple.

Examples. The following examples are not meant to reflect actual time-constrained
problems, but rather to give the reader an intuition of the mechanism of the generation
of duration formulas from the operations.

Example 1. The duration formula associated with the substitution in figure 3 on the left,
knowing that, after execution, we have x≥ 0, is :

dur([S],x≥ 0) = dur([delay3], [IF...](x≥ 0)�dur([IF...],x≥ 0)

=
dur([delay 3],(x≥ 0 ⇒ x≥ 0)∧ (¬x≥ 0 ⇒−x≥ 0))
� ( dur([x≥ 0 =⇒ delay 1;skip],x≥ 0)
∨ dur([¬x≥ 0 =⇒ delay 2;x :=−x],x≥ 0))

=
� = 3∧11(x≥ 0 ⇒ x≥ 0)∧ (¬x≥ 0 ⇒−x≥ 0)22
�(� = 1∧11x≥ 022)∨ (� = 2∧11−x≥ 022)

= � = 3∧11true22�(� = 1∧11x≥ 022)∨ (� = 2∧11−x≥ 022)

Example 2. The duration formula associated with the substitution in figure 3 on the
right, knowing that after execution we have x≥ 0, is :

dur([S],x≥ 0) = � = 1∧11∀y,y ∈ {a|∃b,b > 0∧a = 2∗b}⇒ y > 022
= � = 1∧11true22

4.2 Use in Abstract Machines

Timed Correctness of Operations. Now that we have timed operations, how do we
prove their correctness ? The invariant as a timed requirement seems interesting, but
fails on two points : the invariant represent a requirement that must be true between
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executions of operations, thus at a time point between operations, and the invariant can
be understood as the common subset what all the operations of the machine establish.
Hence the invariant will in general be too imprecise w.r.t. the states of variables after
an operation. Thus we need to give the developer a way of expressing more precise
requirements for each operation. These requirements will be predicates we can base the
duration formulas’ generation on. This remark relates to those made in [TS99–section
6.4], where to each operation corresponds a timed operation, in which timed constraints
are expressed in the precondition.

Then, all we have to do is associate to each substitution of the system a real-time
constraint it must establish. To this end, we propose to add a new substitution we name
TIMING, whose role is to state the real-time constraint of the substitution it guards.
Finally, we have to provide the predicate whose evolution we will watch in the sub-
stitution (the P of figure 2). Then, we have two possibilities : use the invariant of the
machine as a basis for the calculation of the duration formula, but as stated above the
invariant might be too imprecise and contain useless predicates making the resulting
formula unwieldy. The other possibility is to use a predicate representing what the op-
eration will have realized, while staying consistent with the invariant of the machine and
not containing irrelevant predicates : this solution is presented in [Pet03], in the form
of postconditions. Postconditions possess all the characteristics mentioned above : they
contain only predicates relevant for the associated operation, and they are informative
enough to represent the result of the operation.

TIMING
Substitution

POST
Postcondition (in the form of a predicate)

REQUIRES
Real-time constraint

END

Thus a substitution with a real-time constraint will have the shape indicated in the
table above. Then, in order to prove the timed correctness of the substitution, it suf-
fices to generate the corresponding trace with the provided postcondition, and check
the constraint is verified, thus :

dur([Substitution],Postcondition) ⇒ Real-time constraint

Example 1. The generated formula for the example of figure 4 on the left side is : � =
1∧11x−1≥ 022⇒�(11x≥ 022), which is easy to prove. Note also that the postcondition
is intuitively verified.

Example 2. In this example (figure 4, on the right side), two substitutions with real-
time constraints are nested. We then have two possibilities : either prove the internal
substitution, then not take into account the internal postcondition and time constraint
to prove the external substitution, or prove the internal substitution, and, instead of re-
calculating the part corresponding to the internal substitution, use the time constraint it
establishes.
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x←−Example1 =
TIMING

PRE
x ≥1

THEN
delay 1; x:=x-1;

END
POST

x ≥0
REQUIRES

�(11x≥ 022)
END

Example2 =
TIMING

x:=100;
WHILE

x ≥1
DO

x:=Example1
INVARIANT

x≥0
VARIANT

x
END

POST
true

REQUIRES
�(11x≥ 022)

END

Fig. 4. An example of specification

The generated duration formulas is : (�(11x≥ 022))∗⇒ �(11x≥ 022). We can easily
see that the formula does not hold in the case the loop is not even entered, i.e. in the case
the iteration reduces to � = 0, producing the formula � = 0 ⇒�(11x≥ 022). The interval
is reduced to a time point, thus we can not deduce anything about the state x ≥ 0. A
possible way to make this specification correct, would be to add a delay statement be-
fore the loop is entered, in order to ensure that interval is not a time point. We have also
replaced the calculus of dur([Example1],x ≥ 0) with the real-time specification estab-
lished by Example1. Indeed, it allows us better precision than using the only invariant,
as the postcondition of Example1 guarantees the invariant is respected (the proof is done
at the usual step of verification of the correctness of the proof obligations).

Modularity. Section 4.2 illustrates the way we can validate nested substitutions with
real-time constraints. Now, this is the way proof obligations for operations in "classical"
B are generated. We do not want, as stated in [Pet03], to depend on the code of the called
operations to keep a software component view of B machines. To this end, what do we
need ? First, we need code independence towards the operations called in the included
machines, i.e. the called operation must satisfy a contract with the help of which we
will be able to validate the current operation, without knowing the code of the called
operation. Second, we need limited scope of the variables, i.e. an operation need not
export a contract containing variables from an included machine.

The first constraint is achieved, when generating the duration formula, by using the
duration formula of the called operation in the same manner as the nested substitutions
of section 4.2. It is up to the developer to achieve the second constraint, as he is the one
who determines what each operation must guarantee. Then, the verification of duration
formula is done as in section 4.2.
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MACHINE
. . .

INVARIANT
y ∈ IF(NAT1)

OPERATIONS
lire(n) =

PRE
n ∈ NAT1

THEN
y :=y ∪{n}

END;

REFINEMENT
. . .

INVARIANT
z = max(y ∪{0})

OPERATIONS
lire(n) =

PRE
n ∈ NAT1

THEN
z :=max(z,n)

END;

Fig. 5. Machine LittleExample and its refinement

Refinement. Refinement in B allows us the checking of that the result of an operation
is not inconsistent with the one of the operation it refines. Thanks to this, we can know
that what is calculated by the operation keeps certain properties. It allows also the use of
new variables, more concrete ones (in the programming sense), to realise these calculi.
The verification is then made by expressing the relation between the new variables and
those of the refined machine through a so-called gluing invariant.

However, timed verification is about the way the operation unfolds, which may cause
problems : thus, a refined operation can have a more precise timed trace, but is not
allowed to redefine its working steps. So, we have several cases :

Direct Demonstration. If φ is the duration formula of the operation, and φ′ the duration
formula of its refinement, check φ′ ⇒ φ. In that case, if new, more concrete, variables
are introduced, replacing those from the refined machine, the formula is generally not
provable. For instance, in figure 5, the variable of the machine, a set, is refined by an
integer variable. This means that, although the new variable corresponds functionally
to the refined one (proved by the B proof obligations), the way they are are calculated
is different, and then the different states the variable can have during the calculus can
differ in the abstraction and in the refinement.

The timed trace must also be strongly similar to the one of the abstraction. For
instance, in figure 6, the operation oper2 can not refine oper1, because the formula to
prove would be � = 5 ⇒ � = 0, which is false. This way of designing would force us
to have a great time precision at the beginning of the modelisation, and that is not what
we wish for the designer.

The Contract Approach. The contract approach is another approach to ensure that a
refinement will not contradict the operations that might use it : the new operation also
fulfils the real-time constraints of the operation it refines. This corresponds to an oper-
ation refinement approach.

In the example figure 6, we achieve this by removing the real-time constraints from
oper2, calculating its timed trace with the postcondition of oper1, and checking this
trace validates the real-time constraints of oper1. We have chosen to adopt this more
flexible approach, for the timed validation of a refinement. We have just proposed a
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oper1 =
TIMING

skip
POST

x = x
REQUIRES

�≤ 10
END

oper2 =
TIMING

delay 5;
POST

x = x
REQUIRES

�≤ 10
END

Fig. 6. Example of differently timed refinements

formal description of postconditions and their refinement in [CMP04]. Then, the only
remaining problem would be the addition of new variables refining the ones from the
abstract machine (which corresponds to data refinement).

5 Conclusion

After having presented DC and one of its extension suitable for the verification of real-
time programs, as well as some of its properties, we have reminded the reader of the
foundations of the B method, and some of the ways used to express real-time problems
with it. We have seen that it is possible to use either the bare formalism, but then we
have to face difficulties in the designing and the proof steps, or event B completed with
known methods, coming from the real-time community, but in that case we have to face
a lack of tools.

Hence we have showed that another way is possible : extending the most used for-
malism with a real-time logic. This allowed us to define a real-time semantic for B
substitutions without modifying the foundations of the semantic, based on set theory. In
fact, the opposite effect was achieved : DC, being defined partly on top of the predicate
calculus, allowed us to use the substitutions to find their real-time trace with regard to
a postcondition that we know to be correct (the correctness proof was made during the
classical B design stage).

Moreover, the real-time validation step of the operations justifies the need for the
modular validation of B machines, by requiring the use of postconditions, and by using
the same mechanism as in the call of operations of included machines.

6 Perspectives

Now that we are able to specify and verify a problem with real-time constraints in B
under the usual hypotheses (no concurrency, termination), what is left is to remove these
hypotheses in order to benefit from the expressiveness of DC, in order to check, for
instance, the railroad crossing problem (see [CBR93] for a general description). With
this aim in view, we can express problems with more subtle real-time requirements (for
example replacing the real-time logic used in [LFD96] by DC), with an easier treatment
of non-terminating (for instance, the validation of a mutual exclusion protocol, as in
[SH01]).
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It can also be interesting to use DC as a way of expressing and validating fairness
and liveness constraints in event B, by expressing time quantifications more naturally
(i.e. without using clocks or machines manipulating time).

Another interest of DC is the ability to express timed automatas (see [JH00]), and
vice versa, provided certain constraints are respected : it then allows the use of several
methods at the same time to model a real-time problem, i.e. a timed automata to specify
the real-time behaviour of the model, and use the B method to build the implementation
step by step, with the help of refinement.

In the end, B is also used to validate UML models (see [ML02]). A real-time exten-
sion to B will allow the checking of OCL models with real-time constraints, those being
inherited from the corresponding UML model, since UML 2.0 will include notions of
time.
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Abstract. In this paper we present two algebras, one based on term
re-writing and the other on Petri nets, aimed at the specification and
analysis of concurrent systems with timing information. The former is
based on process expressions (at-expressions) and employs a set of SOS
rules providing their operational semantics. The latter is based on a class
of Petri nets with time restrictions associated with their arcs, called at-
boxes, and the corresponding transition firing rule. We relate the two
algebras through a compositionally defined mapping which for a given
at-expression returns an at-box with behaviourally equivalent transition
system. The resulting model, called the Arc Time Petri Box Calculus
(atPBC), extends the existing approach of the Petri Box Calculus (PBC).

Keywords: Net-based algebraic calculi; arc based time Petri nets; pro-
cess algebras; box algebra; SOS semantics.

1 Introduction

Process algebras, e.g., ACP [2], CCS [15] and CSP[9], provide a formal framework
for dealing with large and complex concurrent computing systems by employ-
ing specific operators corresponding to commonly used programming constructs.
The way of representing system’s structure is given through suitably defined set
of process expressions, and their behaviour is typically captured by a (structured)
set of sequences of executed actions. Another way of modelling concurrent sys-
tems is provided by Petri nets [16, 20], which support a graphical representation
of concurrent systems and, through their being based on a theory of partial
orders (capturing explicit asynchrony), an additional means of verifying their
correctness efficiently, and a way of expressing properties related to causality
and concurrency in system behaviour.

These two kinds of formalisms treat the structure and semantics of concurrent
systems in different ways, which in the past meant that it was almost impossible
to take full advantage of their relative advantages (i.e., compositionality and ex-
plicit asynchrony) when used in isolation. To a significant extent, this problem
was addressed by the Box Algebra [5, 6] and its precursor, the Petri Box Cal-
culus (PBC) [4]. Both models provided a framework where both Petri nets and

Z. Liu and K. Araki (Eds.): ICTAC 2004, LNCS 3407, pp. 447–462, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



448 A. Niaouris

process algebras could co-exist, and thus established a bridge between these two
approaches.

Since their conception, the PBC has been extended to cover, in particular,
concurrent systems with timing restrictions [12, 13]. In both cases, the timing
restrictions were associated with transitions, effectively specifying for how long
an enabled action (or transition) can delay/prolong its execution as well as what
is a minimum delay or execution time. Another way in which timing assumption
could be introduced is to associate clocks (or age) with the resources (or tokens).
More precisely, one can specify how old/young a given resource consumed by an
action must be. This approach has been extensively studied in the past, see, e.g.,
[1, 8, 17], both as a model for dealing with complex concurrent systems such as
communication protocols, and as a framework for verifying their properties. It
is precisely this kind of time modelling which is our concern in this paper.

We introduce and investigate two different models for the specifications of
concurrent systems including explicit timing information of the latter kind. Both
models have an algebraic structure based on operators present in the standard
PBC.

The first algebra is based on process expressions, called at-expressions, and
a system of rewriting rules providing structural operational semantics of at-
expressions in the style of [18]. The second algebra is based on a class of Petri
nets with arc-based timing restrictions, called at-boxes, and their execution rules.
This means, in particular, that: (i) each arc from a place p to a transition is given
two time bounds, e and l, representing the earliest consuming time and the latest
consuming time, respectively, for a token which has arrived at place p; (ii) the
local clock of a token is started at the very moment it has been created; and (iii)
time is discrete. It is important to point out that property (i) suits particularly
well the intended compositional setting we are aiming at since the handshake
synchronisation of two transitions basically amounts to gluing them together,
and no special consideration of their timing restrictions is needed. On the other
hand, gluing two transitions in the other time frameworks we mentioned requires
combining their timing intervals which can be done in several different ways.

The two algebras are related through a compositionally defined mapping
which, for at-expression returns a corresponding at-box (its denotational seman-
tics). The main result is that the denotational and operational semantics of an
at-expression are behaviourally equivalent. The resulting framework consisting
of two consistent algebras is called the Arc-Based Time Petri Box Calculus, or
simply atPBC.

The paper is organised as follows. Section 2 recalls some basic notions used
throughout the paper, section 3 introduces at-boxes, section 4 provides the syn-
tax and semantics of at-expressions, and section 5 develops a compositional net
model based on at-boxes.

Throughout the paper, we assume that the reader is familiar with the basic
concepts of PBC and the Box Algebra [5] on which the compositional treatment
of nets is based.
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2 Basic Notions

Throughout the paper, N denotes the set of non-negative integers and N
∞ df=

N∪{∞}. A multiset over a set X is a function μ : X → N. We will write μ ≤ μ′

if the domain X of μ is included in that of the multiset μ′, and μ(x) ≤ μ′(x),
for all x ∈ X. An element x ∈ X belongs to μ, denoted x ∈ μ, if μ(x) > 0. The
sum and difference of multisets, and the multiplication by a non-negative integer
are respectively denoted by +, − and · (the difference will only be applied when
the second argument is smaller or equal to the first one). A subset of X may be
treated as a multiset over X, by identifying it with its characteristic function,
and a singleton set can be identified with its sole element. A multiset μ over X
may be denoted as

∑
x∈X μ(x) · {x}, as well as written in extended set notation,

e.g., {a, a, b} denotes a multiset μ such that μ(a) = 2, μ(b) = 1 and μ(x) = 0 for
all x ∈ X \ {a, b}.

A tuple N = (P, T, F,M) is a Place/Transition net (or PT-net) if: (i) P
is a finite set of places, T is a finite set of transitions disjoint from P , and
F : (T × P ) ∪ (P × T ) → {0, 1} is a flow function; and (ii) M : P → N is the
initial marking (in general, any mapping from P to N is a marking of N). In
what follows, for every x ∈ P ∪ T , •x = {y | F (y, x) = 1} is the preset of x and
x• = {y | F (x, y) = 1} is the postset of x; we assume that both sets are always
non-empty.

A finite set of transitions U , called a step, is enabled at a marking M if, for
all p ∈ P , M(p) ≥

∑
t∈U F (p, t) ·U(t). Such a step may fire leading to a follower

markingM ′ given, for every place p ∈ P , byM ′(p) df= M(p)−
∑

t∈U F (p, t)·U(t)+∑
t∈U F (t, p) ·U(t). We denote this by M [U〉M ′, and call M ′ reachable from M

(in general, a marking can be reachable through a possibly empty sequence of
intermediate markings). The net is safe if for every marking M reachable from
the initial one, it is the case that M(p) ≤ 1, for all p ∈ P .

To label transitions in nets considered in this paper, we use a fixed set of
communication actions A such that for every a ∈ A, there exists its conjugate,
â ∈ A, satisfying a �= â and ̂̂a = a. Also, there is a silent (or internal) action
ı /∈ A. In the algebra of nets (as well as in the process algebra), it will be assumed
that a synchronisation of two conjugate communication actions gives rise to the
silent action ı.

3 Boxes with Arc-Based Time Restrictions

An arc-time box (or at-box) is a tuple Θ = (P, T, F,λ, μ) such that: (i) P , T
and F are as in the definition of a PT-net; (ii) λ is a mapping with the domain
P ∪ T ∪ ((P × T ) ∩ F−1({1}); and (iii) μ : P → N ∪ {⊥} is the initial state of
Θ (in general, any such mapping is a state of Θ). For every place p ∈ P and
transition t ∈ T , we have the following: λ(p) is a symbol in {e, i, x}; λ(t) is an
action in A∪ {ı}; and if F (p, t) = 1 then λ(p, t) = (e, l) ∈ N×N

∞, where e ≤ l.
We adopt the standard rules concerning the drawing of diagrams representing
Petri nets.
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The ‘time-less’ version of an at-box Θ which is defined as a PT-net 〈Θ〉 df=
(P, T, F, 〈μ〉), such that, for every p ∈ P 〈μ〉(p) df= 1 if μ(p) ∈ N and 〈μ〉(p) df= 0
if μ(p) = ⊥. In what follows, 〈Θ〉 will be called the underlying net of Θ, and we
will assume that it is always safe.

Note that states of at-boxes are interpreted differently from markings of PT-
nets, namely, μ(p) = k means that p holds a single token which is k units of time
old, and μ(p) = ⊥ means that p is empty.

In the at-box model, time restrictions are associated with the arcs incoming
to transitions. For example, if λ(p, t) = (e, l), then the interval (e, l) gives the
waiting time for the tokens flowing from place p to transition t. This interval
identifies the time for which a token has to wait in place p before it can be
used to fire transition t. The left bound, e, is called the minimum waiting time
and the right bound, l, the maximum waiting time. A token on p cannot be
used to fire t when it is younger than the minimum waiting time and must be
used to fire an enabled transition before the maximum waiting time has finished
(unless the transition has been disabled in the meantime). If t is not enabled
and the maximum waiting time has passed, the token can no longer be used to
fire transition t. The age of tokens is represented through a state mapping which
returns, for each place containing a token, its age (⊥ is returned if a given place
is empty). When a token arrives to a place, its age is set to zero. After that the
age can be increased due to the passage of time. It should be emphasized that
a token does not need to enable any transition in order for its clock to start
‘ticking’.

A finite set of transitions U , called a step, is enabled at a state μ if it is
enabled at the marking 〈μ〉 in the underlying PT-net and, moreover, if t ∈ U
and p ∈ •t then e ≤ μ(p) ≤ l where (e, l) = λ(p, t). Such a step may fire leading
to a follower marking μ′ given, for every place p ∈ P , by ⊥ if p ∈ •U \ U•, 0 if
p ∈ U•, and μ(p) otherwise. We denote this by μ[U〉μ′.

Another kind of dynamic changes is effected by time moves. A state μ can
change into state μ′ by the passage of one time unit if, for transition t enabled at
μ and and every place p ∈ •t we have μ(p) < l, where (e, l) = λ(p, t). The change
results in a new state μ′ given by μ′(p) df= μ(p) + 1 if μ(p) ∈ N, and μ′(p) df= μ(p)
otherwise. We denote this by μ[

√〉μ′. Intuitively, at-boxes’ time deadlines are
defined to be hard, i.e., when a transition is ready to fire and even if only one of
the tokens that will be consumed has reached its maximum waiting time then
this transition must fire (or become disabled) before further passage of time.

The overall behaviour of Θ is captured by its reachability tree with nodes
labelled by states and arcs labelled by moves, denoted by RTΘ. In this tree, the
root node is labelled by the initial state and, if a node is labelled by a state μ, then
for every move μ[x〉μ′ there is a unique descendant labelled by μ′; the arc leading
to it is labelled by

√
if x =

√
, and by λ(U) df=

∑
t∈U U(t) · {λ(t)} if x = U is an

executed step. Figure 1 shows an at-box Θ1 and the corresponding reachability
tree RTΘ1 . The use of reachability trees instead of reachability graphs is quite
surprising at the moment but will be explained later in this paper together with
the considerations that led to this decision.
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μ0 = (0,⊥, 0)

μ1 = (1,⊥, 1)

μ2 = (⊥, 0, 1)
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√

{a}
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{b}

Fig. 1. An at-box Θ1 and its reachability tree RTΘ1

4 An Algebra of Process Expressions

The following is the syntax for static arc-based time box expressions (or static
at-expressions), E, which correspond to at-boxes without tokens.

E ::= α〈el〉 | E sy A | E rs A | E E | E‖E | E; E | [|E � E � E|] .

The only modification, when compared with the standard PBC syntax, is that
a different type of constant expression is used, viz. α〈el〉 where: α ∈ A ∪ {ı} is
a basic action; e is a non-negative integer; and l ≥ e is a non-negative integer
or ∞. Moreover, the actions employed by the syntax allow two-way rather than
multi-way synchronisation. Similarly as in the case of at-boxes, e denotes the
minimum, and l the maximum waiting time.

Sequence E;F and choice E F compositions are standard; the is used to
denote what is essentially the + in CCS [15] and the comma (,) in COSY [10].
The iterative construct [|D�E�F |] means ‘perform D once, then perform zero or
more repetitions of E, then perform F once’. The basic expression α〈el〉 means
‘upon its activation, execute a single action with communication capabilities α
and terminate, waiting at least e units of time and no more than l units of time
to do so’. The concurrent composition operator is basically a disjoint union and
hence differs from its counterparts in CCS and COSY, and is similar to the ‖∅
in TCSP [21]. For instance, a〈00〉‖â〈00〉 can perform the {a} and {â} actions
individually (as well as a two-action step {a, â}), but no synchronised action (in
contrast to a.nil|â.nil in CCS). Synchronisation can only be achieved through the
explicit synchronisation, E sy A. Essentially, it applies the CCS synchronisation
mechanism over all the concurrently enabled pairs (a, â) of conjugate action
names. Finally, the restriction E rs A prevents all the actions a and â, where
a ∈ A, from occurring.

Static expressions describe structural characteristics of concurrent systems.
Their behaviour will be modelled using dynamic at-expressions, introduced next.
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The syntax of (standard) dynamic PBC expressions is changed by adding
time related annotations to the over- and underbars. Each such annotation is a
pair of two non-negative integers that correspond to the age of the ‘youngest’
and ‘oldest’ token that might be consumed. For example, E

00
is an expression

E which is in its initial state and all tokens present are zero time units old.
Another example, E 35;F , is a sequential composition where the first component
has terminated, and produced some tokens. The exact number (and clock values)
of these tokens is not represented by the annotation, but what is represented is
the age of the youngest is 3 time units, and of the oldest 5 time units. Effectively,
this means that the annotation gives an age range for the tokens in the state
which is represented by the expression. This, in general, provides less information
than that conveyed by the state mappings provided by at-boxes. However, it will
turned out that this reduced (or abstracted) view is sufficient to reason about
the behaviour. We will re-visit this issue later on.

The dynamic at-expressions, G, are defined below, where E denotes a static
at-expression, and E,L ∈ N are such that E ≤ L .

G ::= E
EL | E

EL
| G sy A | G rs A | G E | E G |

G‖G | G; E | E; G | [|G � E � E|] | [|E � G � E|] | [|E � E � G|] .

Given that we are primarily interested in at-expressions that can be derived
from expressions of the form E

00
, the above syntax may appear to be too per-

missive. For example, it admits an expression α〈03〉 55 which has an inconsistent
timing information (the enabled action cannot wait for more than 3 time units
before being executed, yet the age of the enabling tokens is already 5). However,
such an expression may be a part of another, fully consistent expression, e.g.,
(α〈03〉 55) rs {a}, and thus cannot be excluded.

Operational Semantics of At-Expressions. We follow the way through
which the semantics of PBC was defined, with appropriate modifications in or-
der to address timing issues. We first define a structural equivalence relation on
at-expressions aims to capture the most fundamental correspondence between
expressions. For example, E

EL
;F ≡ E; F

EL

states that a sequential system in
which its first component has terminated is the same as the system in which
the second component is ready to begin its operation. The time annotations are
not changed since the entire state produced by the first component is passed
to the second one. Formally, ≡ is the least equivalence relation on dynamic at-
expressions such that the rules in table 1 are satisfied. Note that we do not
give any rule for E

EL‖F E
′
L

′
with EL �= E

′
L

′ as such an expression can never
be derived from initially marked static expressions, which are of our primary
interest.

Proposition 1. Assuming that we treat the rules in table 1 as term rewriting
rules, if G ≡ H and G is an at-expression, then so is H.
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Table 1. Rules of the structural equivalence for at-expressions

E‖F EL ≡ E
EL‖F EL

E
EL
‖F

E′L′ ≡ E‖F
min{E,E′}max{L,L′}

E F
EL ≡ E

EL

F E
EL

F ≡ E F
EL

E F
EL ≡ E F

EL

E F
EL
≡ E F

EL

E rs A
EL ≡ E

EL

rs A E
EL

rs A ≡ E rs A
EL

E sy A
EL ≡ E

EL

sy A E
EL

sy A ≡ E sy A
EL

E; F
EL ≡ E

EL

; F E; F
EL
≡ E; F

EL

E
EL

; F ≡ E; F
EL

[|D � E � F |] EL ≡ [|D EL � E � F |]
[|D

EL
� E � F |] ≡ [|D � E

EL � F |] [|D � E
EL

� F |] ≡ [|D � E � F
EL|]

[|D � E
EL � F |] ≡ [|D � E

EL
� F |] [|D � F � F

EL
|] ≡ [|D � E � F |]

EL

Similarly as at-boxes, at-expressions can perform two kinds of operational se-
mantics moves, namely action moves and time moves. A time move has the form

G

√

−−−−−→ H and an action move has the form G
Γ
−−−−−→ H where Γ = {γ1, . . . , γk}

is a finite multiset (k ≥ 0). Each γi is an action occurrence of the form αδ where:
α ∈ A∪{ı} is a communication or silent action, and δ ∈ {0, 1} indicates whether
this particular occurrence can be delayed or not (δ = 1 means that we can still
delay executing α without violating the hard time deadline rule, while δ = 0
means that time cannot yet progress and so this occurrence can be considered
as urgent). We now define various types of moves of the structural operational
semantics of dynamic at-expressions.

Empty Moves. The following rules deal with the empty action moves.

G ≡ H

G
∅−→ H

G
∅−→ J

Γ−→ H

G
Γ−→ H

G
Γ−→ J

∅−→ H

G
Γ−→ H

Basic Action. A basic action can occur if its timing restrictions are satisfied
by the age range of its overbar:

α〈el〉EL {αδ}
−−−−−→ α〈el〉

00
where e ≤ E and L ≤ l and δ = 0 ⇔ L = l

Note that the age range of a newly created underbar is always set to (00).
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Restriction and Synchronisation. There is a single rule for restriction:

G
Γ
−−−−−→ H

G rs A
Γ
−−−−−→ H rs A

where α �∈ A ∪ Â for every αδ ∈ Γ

and two synchronisation rules. The first one states that a synchronised expression
can do all that the original one could, while the second captures the essential
meaning of the standard handshake synchronisation:

G
Γ
−−−−−→ H

G sy A
Γ
−−−−−→ H sy A

G sy A
Γ+{ aδ , âδ′ }
−−−−−−−−−−−−−−→ H sy A

G sy A
Γ+{ıδ·δ′ }

−−−−−−−−−−−−−−→ H sy A

where a ∈ A

The second rule essentially means that two conjugate action occurrences, aδ and
âδ′

, can always be synchronised. Moreover, such a synchronisation is urgent iff
at least one of its participant was.

Other Operators. There is no real difference in the rules for the remaining
operators when compared with the standard PBC [5, 6].

G
Γ
−−−−−→ G′ , H

Γ ′

−−−−−→ H ′

G‖H
Γ+Γ ′

−−−−−→ G′‖H ′

G
Γ
−−−−−→ H

[|G � E � F |]
Γ
−−−−−→ [|H � E � F |]

[|E � G � F |]
Γ
−−−−−→ [|E �H � F |]

[|E � F � G|]
Γ
−−−−−→ [|E � F �H|]

G
Γ
−−−−−→ H

E G
Γ
−−−−−→ E H

G E
Γ
−−−−−→ H E

G
Γ
−−−−−→ H

G; E
Γ
−−−−−→ H; E

E; G
Γ
−−−−−→ E;H

Time Moves. There is a single time rule:

¬∃ G
{α0}
−−−−−→ H

G

√

−−−−−→ G⊕ 1

where G⊕1 is G with each time annotation EL at an over- or underbar changed
to (E + 1)(L + 1). Although the above rule is a rule with negative premise, the
inference rule system is well defined since time moves are not used in the premise
of any rule for the action moves. Notice that a time move can only be applied
at the topmost level of an expression as it cannot be ‘propagated up’ through
the expression using action rules.
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(1) ((a〈02〉; c〈44〉) ‖ (b〈11〉; ĉ〈14〉)) sy {c} 00 ≡

(2) ((a〈02〉 00; c〈44〉) ‖ (b〈11〉 00; ĉ〈14〉)) sy {c}
{a1}

−−−−−−−−→

(3) ((a〈02〉
00

; c〈44〉) ‖ (b〈11〉 00; ĉ〈14〉)) sy {c}
√

−−−−−−−−→

(4) ((a〈02〉
11

; c〈44〉) ‖ (b〈11〉 11; ĉ〈14〉)) sy {c}
{b0}

−−−−−−−−→
(5) ((a〈02〉

11
; c〈44〉) ‖ (b〈11〉

00
; ĉ〈14〉)) sy {c} ≡

(6) ((a〈02〉; c〈44〉 11) ‖ (b〈11〉; ĉ〈14〉 00)) sy {c}
√√√
−−−−−−−−→

(7) ((a〈02〉; c〈44〉 44) ‖ (b〈11〉; ĉ〈14〉 33)) sy {c}
{ı0}

−−−−−−−−→
(8) ((a〈02〉; c〈44〉

00
) ‖ (b〈11〉; ĉ〈14〉

00
)) sy {c} ≡

(9) ((a〈02〉; c〈44〉) ‖ (b〈11〉; ĉ〈14〉)) sy {c}
00

Fig. 2. An evolution of the expression (a〈02〉; c〈44〉) ‖ (b〈11〉; ĉ〈14〉)) sy {c} 00

Proposition 2. Assuming that we treat the rules of the operational semantics
as term rewriting rules, and H has been derived from an at-expression, then H
is also an at-expression.

We are interested in at-expressions of the form G = E
00

, and to capture its
behaviour we will use a reachability tree, denoted by RTG. Its nodes are labelled
by equivalence classes of dynamic expressions reachable from G, and arcs are
labelled by multisets over A∪{ı} or the

√
symbol. The root node is labelled by

[G]≡ and, if a node is labelled by [H]≡, then: for every move H
Γ
−−−−−→ J , there is

a unique descendant labelled by [J ]≡ and the arc leading to it is labelled by the
multiset

∑
αδ∈Γ Γ (αδ) · {α}, and if the time move is possible for H then there

is a unique descendant labelled by [H ⊕ 1]≡ and the arc leading to it is labelled
by
√

.

Examples. Our first example, in figure 2, shows an at-expression with two se-
quential actions a,c in parallel with two other sequential actions b, ĉ and a
possible synchronisation in action c. Different execution scenarios can be fol-
lowed. We choose, in line (2), to execute action a followed by a time move in
line (3) which is the only possible move at this stage. Action b becomes urgent
and in line (4) b is executed. After three time moves, an interesting point in
line (6) is that both c and ĉ are executable but only action c is urgent. No
time move is allowed. Synchronisation will take place in line (7) by executing
the silent synchronisation action ı. Even though only one of the synchronised
actions is urgent, the silent action is also marked as urgent. The second exam-
ple, in figure 3, shows an at-expression consisting of an action a in parallel with
two sequential actions b, â and a possible synchronisation of actions a and â. In
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(1) (a〈00〉 ‖ (b〈11〉; â〈01〉)) sy {a} 00 ≡

(2) (a〈00〉 00 ‖ (b〈11〉 00; â〈01〉)) sy {a}
{a0}

−−−−−−−−→

(3) (a〈00〉
00
‖ (b〈11〉 00; â〈01〉)) sy {a}

√
−−−−−−−−→

(4) (a〈00〉
11
‖ (b〈11〉 11; â〈01〉)) sy {a}

{b0}
−−−−−−−−→

(5) (a〈00〉
11
‖ (b〈11〉

00
; â〈01〉)) sy {a} ≡

(6) (a〈00〉
11
‖ (b〈11〉; â〈01〉 00)) sy {a}

{â1}
−−−−−−−−→

(7) (a〈00〉 ‖ (b〈11〉; â〈01〉)) sy {a}
01

Fig. 3. An evolution of the expression (a〈00〉 ‖ (b〈11〉; â〈01〉)) sy {a} 00

line (2), action a is urgent and must be executed immediately but â is not yet
enabled. In this example, the synchronisation between a and â was not allowed
by the time restrictions.

5 An Algebra of Arc-Time Boxes

We now extend the box algebra to at-boxes, by defining compositionally a map-
ping box which, for static at-expressions, returns at-boxes. The net algebra em-
ploys operators directly corresponding to (and denoted as) those used in the
algebra of static at-expressions. All the net operators are similarly as in the
standard PBC with two important modifications: (i) changing the definition
of the basic net corresponding to a single action, and (ii) taking care of the
time restrictions associated with transition input arcs. Essentially, that latter
means that if p and t are a place and transition which are ‘carried forward’ by a
net operator, then the associated time constraint λ(p, t) is also carried forward.
Moreover, in the synchronisation operation, if t and t′ are fused together to yield
a ı-labelled synchronisation transition u, then we assume that •t ∩ •t′ = ∅ and
t• ∩ t′• = ∅. We omit here a full definition of the composition operators, and
instead provide in figure 4 a number of examples involving the operators used
in the algebra of at-boxes.

We introduce a denotational semantics of at-expressions through the seman-
tical mapping box from static at-expressions to at-boxes so that box(α〈el〉) =
Nα〈el〉, where Nα〈el〉 is shown in figure 4, and for other static at-expressions:
box(E sy A) = box(E) sy A, box(E rs A) = box(E) rs A, box(E F ) =
box(E) box(F ), box(E‖F ) = box(E)‖box(F ), box(E;F ) = box(E); box(F ) and
box([|D � E � F |]) = [|box(D) � box(E) � box(F )|]. Since we are interested in the
behaviour of systems starting from their initial state, we also need to describe
box(G), for any dynamic at-expression of the form G = E

00
. The appropriate
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box(α〈el〉) df= Nα〈el〉

e

α

x

(e, l)

box(a〈01〉‖b〈23〉) df= Na〈01〉‖Nb〈23〉

e e

x x

a b

(0, 1) (2, 3)

box(a〈00〉 b〈07〉) df= Na〈00〉 Nb〈07〉

e

x

a b

(0, 0) (0, 7)

box(((a〈00〉 b〈11〉) ‖ â) sy {a} rs {a})

e e

x x

b ı

(1, 1) (0, 2)(0, 0)

box(a〈13〉; b〈69〉) df= Na〈13〉; Nb〈69〉

e

i

x

a

b

(1, 3)

(6, 9)

box([|a〈01〉� b〈00〉� c〈12〉|]) df= [|Na〈01〉� Nb〈00〉�Nc〈12〉|]

e

i

x

a

b

c

(0, 1)

(1, 2)

(0, 0)

Fig. 4. Examples of nets defined in the algebra of at-boxes

at-box is defined as box(G) with μ(p) changed to 0, for every entry place p. In
order to guarantee the safeness of the underlying PT-net, we follow the standard
treatment of the PBC, by restricting slightly the syntax of the second compo-
nent of the iterative construct [|D� E �F |], by stipulating that each application
of parallel composition is within the scope of some sequential composition. It is
then not difficult to see that.
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Proposition 3. For every dynamic at-expression G = E
00

, the mapping box
returns an at-box.

Consistency Between Denotational and Operational Semantics. We
now formulate the central result of this paper which states that the two se-
mantics of at-expressions are equivalent. The following result extends that for
the standard PBC where the transition systems of corresponding expressions
and boxes are isomorphic [6].

Theorem 1. For every dynamic at-expression G = E
00

, the reachability trees
RTG and RTbox(G) are isomorphic.

The first comment about the above theorem is that the result is not formu-
lated in terms of reachability graphs of G and box(G), as in the standard PBC,
but rather in terms of their reachability trees. The reason is that the latter are
not isomorphic (though they are strongly bisimilar). Isomorphism of reachabil-
ity graphs fails to hold because, in general, there is no one-to-one correspon-
dence between the expressions reachable from G and the states reachable from
the initial marking of box(G). To illustrate this, we consider the at-expression
G = ((a〈00〉 ‖ b〈01〉) ‖ c〈11〉); d〈01〉 00 for the the corresponding at-box box(G)
is shown in figure 6. It may be easily checked that this net allows the following
two sequences of moves, both starting from the initial state:

scenario1 scenario2

(1) (0, 0, 0,⊥,⊥,⊥,⊥) [{t1, t2}〉 (0, 0, 0,⊥,⊥,⊥,⊥) [{t1}〉
(2) (⊥,⊥, 0, 0, 0,⊥,⊥) [

√〉 (⊥, 0, 0, 0,⊥,⊥,⊥) [
√〉

(3) (⊥,⊥, 1, 1, 1,⊥,⊥) [{t3}〉 (⊥, 1, 1, 1,⊥,⊥,⊥) [{t2, t3}〉
(4) (⊥,⊥,⊥, 1, 1, 0,⊥) [{t4}〉 (⊥,⊥,⊥, 1, 0, 0,⊥) [{t4}〉
(5) (⊥,⊥,⊥,⊥,⊥,⊥, 0) (⊥,⊥,⊥,⊥,⊥,⊥, 0)

The two corresponding execution sequences for the expression G are shown in
figure 5. One may further observe that the left marking in line (4) above cor-
responds to the expressions in lines (4′) and (4a′), and that the right marking
in line (4) above corresponds to the expressions in lines (4′′) and (4a′′). How-
ever, the two markings are different yet we have (4′) ≡ (4a′) = (4a′′) ≡ (4′′),
which indicates that the expressions in lines (4′, 4a′, 4′′, 4a′′) represent the same
state of the system. It is therefore impossible to show that the reachability
graphs of G and box(G) are isomorphic. This should not be treated as a cause
for concern since theorem 1 above still provides a strong relationship between
the behaviours of the at-expressions and the corresponding at-boxes. The above
discussions also shows that, in general, there can be no direct translation from
dynamic at-expressions to at-boxes since, informally, there are fewer of the for-
mer than of the latter. In a way, as we already mentioned it, at-expressions are
more abstract than the corresponding at-boxes. This, as we expect, can be used
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to improve model-checking of behaviours specified by at-expressions, by provid-
ing an equivalence relation between reachable states of at-boxes which could be
used to improve the efficiency of the unfolding of at-boxes (with the resulting
unfoldings being smaller). This hypothesis is at the present moment investigated
in the context of the general scheme for generating net unfoldings in [11] and
the corresponding tool support.

The above discussion also means that a proof of theorem 1, cannot be ob-
tained by a simple adaptation of that used in [6] since dynamic at-expressions
cannot be unambiguously mapped to at-boxes. To explain how we cope with this
problem, assume that we have an at-expression G = E

00
not involving action

restriction nor synchronisation, like that considered above. One can then make
a crucial observation that for each transition t in box(G), the annotations of its
input arcs are exactly the same, say (e, l) (this is, clearly, not true of at-boxes
in general). This specific property implies that to check the enabledness of t it
suffices to check that each input place to t has a token, and that the age of the
oldest and the youngest token in such places lies between e and l. This is strictly
less information than we require in the general case.

For every dynamic at-expression G, we call clusters CL(G) = {cl1, . . . , cln}
sets of places of box(G) which are compositionally defined and correspond to
the entry/exit interfaces of box(G) as well as the input places of all individual
transitions. This allows one to express the evolutions of box(G) in terms of
changing the ‘state’ of clusters rather than the state of individual places. More
precisely, the cluster filling fc of box(G) is a mapping which associates with each
cluster either ⊥ (meaning the cluster is empty), or EL0 (meaning the cluster is
partially filled, the age of the youngest token in it is E, and the age of the oldest
is L), or EL1 (meaning the cluster is completely filled, the age of the youngest
token in it is E, and the age of the oldest is L). We then define enabledness of
steps and dynamic changes of the net w.r.t. cluster based states, in a way quite
similar to that used in the usual semantics, including the notion of a reachability
tree. It can then be proven that cluster-based at-boxes are behaviorally equivalent
to normal at-boxes (more precisely, their reachability trees are isomorphic).

Following the cluster definition, in the at-expression considered above, there
are five clusters: cl1

df= {p1}, cl2
df= {p2}, cl3

df= {p3}, cl4
df= {p4, p5, p6} and

cl5
df= {p7}. Assuming this ordering of clusters, our two scenarios can be re-

written as follows:

scenario1 scenario2

(1′′′) (001, 001, 001,⊥,⊥) [{t1, t2}〉 (001, 001, 001,⊥,⊥) [{t1}〉
(2′′′) (⊥,⊥, 001, 000,⊥) [

√〉 (⊥, 001, 001, 000,⊥) [
√〉

(3′′′) (⊥,⊥, 111, 110,⊥) [{t3}〉 (⊥, 111, 111, 110,⊥) [{t2, t3}〉
(4′′′) (⊥,⊥,⊥, 011,⊥) [{t4}〉 (⊥,⊥,⊥, 011,⊥) [{t4}〉
(5′′′) (⊥,⊥,⊥,⊥, 001) (⊥,⊥,⊥,⊥, 001)
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scenario1

(1′) ((a〈00〉 ‖ b〈01〉) ‖ c〈11〉); d〈01〉 00
{a0,b1}
−−−−−−−−→

(2′) ((a〈00〉
00
‖ b〈01〉

00
) ‖ c〈11〉 00); d〈01〉

√
−−−−−−−−→

(3′) ((a〈00〉
11
‖ b〈01〉

11
) ‖ c〈11〉 11); d〈01〉

{c1}
−−−−−−−−→

(4′) ((a〈00〉
11
‖ b〈01〉

11
) ‖ c〈11〉

00
); d〈01〉 ≡

(4a′) ((a〈00〉 ‖ b〈01〉) ‖ c〈11〉); d〈01〉 01
{d0}

−−−−−−−−→
(5′) ((a〈00〉 ‖ b〈01〉) ‖ c〈11〉); d〈01〉

00

scenario2

(1′′) ((a〈00〉 ‖ b〈01〉) ‖ c〈11〉); d〈01〉 00
{a0}

−−−−−−−−→

(2′′) ((a〈00〉
00
‖ b〈01〉 00) ‖ c〈11〉 00); d〈01〉

√
−−−−−−−−→

(3′′) ((a〈00〉
11
‖ b〈01〉 11) ‖ c〈11〉 11); d〈01〉

{b1,c1}
−−−−−−−−→

(4′′) ((a〈00〉
11
‖ b〈01〉

00
) ‖ c〈11〉

00
); d〈01〉 ≡

(4a′′) ((a〈00〉 ‖ b〈01〉) ‖ c〈11〉); d〈01〉 01
{d0}

−−−−−−−−→
(5′′) ((a〈00〉 ‖ b〈01〉) ‖ c〈11〉); d〈01〉

00

Fig. 5. Two execution sequences corresponding to scenario 1 and 2
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(0, 1)

(1, 1)
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(0, 1)
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Fig. 6. An at-box corresponding to the expression ((a〈00〉 ‖ b〈01〉) ‖ c〈11〉); d〈01〉 00

Note that the problem encountered before with line (4) is no longer present in
line (4′′′). Effectively, this means that we can suitably adopt the proof technique
used in, e.g., [6], to justify theorem 1. Finally, synchronised transitions will have
two clusters which are responsible for their enabling, and restriction will remove
transitions, but the corresponding clusters will still be retained.
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6 Concluding Remarks

In this paper, we introduced a new compositional model of arc-based time Petri
nets, and a corresponding process algebra of time expressions. We have explained
the nature of the correspondence between the two algebras, in terms of their
respective reachability trees, and outlined an intermediate (cluster based) rep-
resentation used in the proof of this correspondence. In particular, these results
make it possible to combine the verification techniques developed independently
for process algebra and Petri nets with timing, and to give a syntax oriented se-
mantics of real-time specification languages. Finally, we also plan to explore more
efficient model checking technique based on the observations made in this paper.
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Abstract. We present a spatial and temporal logic based on Duration
Calculus for the specification and verification of mobile real-time sys-
tems. We demonstrate the use of the formalism and apply it to a case
study. We extend a pure Duration Calculus specification for the con-
troller by spatial assumptions to reason about spatial system properties.
We prove that the formalism is undecidable in general for discrete and
continuous domains and present a decidable fragment.

Keywords: Real-time systems, mobile systems, spatial logic, temporal
logic, Duration Calculus.

1 Introduction

There are many well understood formal techniques for the specification and ver-
ification of real-time systems, among them the interval temporal logic Duration
Calculus (DC) [ZHR91, HZ04] or Timed Automata [AD94]. But often problems
of safety critical real-time systems have a spatial nature. Consider for example
two trams driving on the same track. This situation itself is not dangerous as
long as they do not “overlap” or as long as the distance between two trams is
sufficiently large. Another example is a robot moving around in a restricted area.
A desirable safety property might be that the robot moves at most 5 cm outside
its area so that it does not endanger staff.

These properties cannot be expressed concisely and nicely in standard tempo-
ral logics. This led us to the idea to extend a well known formalism for real-time
systems to be able to describe spatial properties when needed. The use of the
formalism should be similar to the use of pure temporal logics when no spatial
reasoning is required.

In this paper we describe how to extend the temporal interval logic Dura-
tion Calculus [ZHR91] to a spatio-temporal interval logic. Instead of having one
dimension for time, we allow an arbitrary number of dimensions from which a
subset is considered to be spatial and a subset to be temporal. From the point
of view of our formalism, it does not matter whether a dimension is temporal or
spatial. If we just chose one (temporal) dimension, we get the normal Duration
Calculus.

In section 2 we introduce the formalism and show in section 3 how it can
be used to describe spatial properties such as movement of objects in space. In

Z. Liu and K. Araki (Eds.): ICTAC 2004, LNCS 3407, pp. 463–477, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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section 4 we show how a controller design done in pure Duration Calculus can
be extended to reason about the spatial properties of the whole system.

In section 5 we prove that the formalism is undecidable for dense and discrete
time/space-domains before giving a decidable fragment in section 6.

2 Shape Calculus

In this section we define the shape calculus and show for each feature that
the extension is conservative and we do not add expressive power to Duration
Calculus if we only consider one dimension.

In Duration Calculus the behaviour of a system is modelled by a set of time-
dependant variables whose value change in time. The natural extension for a
spatial and temporal logic is to choose the dimension for space and for time
and to use flexible variables whose value depend on the point in time and space.
According to DC terminology we will call these variables observables and let Obs
denote the set of all observables. The semantics of an observable X is given by
a function I

I[[X]] : R
n
≥0 → {d0, . . . , dm}

where {d0, . . . , dm} denotes the range of the observable. To guarantee that the
integral exisits for this function, we require I[[X]] to be continuous almost ev-
erywhere. If we choose n = 1 we end up with the Duration Calculus definition.

State Expressions. Properties of a point in space and in time are expressed
by state formulae denoted by π and build from comparison of observables and
boolean connectors.

π ::= X = d | ¬π1 |π1 ∧ π2

where d is in the range of the observable X. The semantics is then given by a
function

I[[π]] : R
n
≥0 → {0, 1}

which is defined in the expected way. The definition is exactly like in Duration
Calculus. If the observable X is of boolean type, we will write X for X = 1.

Terms. Interval temporal logic assigns a real value to every interval and Du-
ration Calculus introduces the integral operator to measure the duration of a
certain state in a given interval.

Instead of intervals we use bounded polyhedra for the n-dimensional case.
Alternatively we could have used hypercubes, but as we shall see in the examples,
specifications can be done much more conveniently with polyhedra. The set of
bounded polyhedra will be denoted by Poly. One dimensional polyhedra are
intervals.

In many cases, we are not interested in the spatio-temporal volume, but only
in a spatial or a temporal measure. For example, it might be important how
much of a vehicle is outside its working area. In this case we need an integral
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for the spatial part. On the other hand we might be interested in the amount of
time the system is moving, which is a temporal integral.

To this end, we allow linear transformations T of the function I[[X]] before
applying the integral. With these transformations we can for example achieve
projections on all axes or on hyperplanes. We define the set of terms as follows:

θ ::=
∫

Tπ |x |d.i | f(θ1, . . . , θk)

where π is a state assertion, T is a m×n matrix of real numbers, x a rigid variable
of type real, d a variable whose type is a n-dimensional vector of reals, and f a
function symbol, which can be an arithmetic function like +. As usual, the value
of the rigid variable is determined by a valuation V and the set of valuations
is denoted by V al. The value of a vector d is also given by the valuation and
the components of d are accessed by indexing. So d.i returns the ith component
of d.

The semantics of terms is a function

I[[θ]] : Poly × V al → R

and in particular the semantics of the integral of a state assertion π after a
transformation T is defined using the characteristic function χ. This idea is
sketched in figure 1 (a)-(c).

I[[
∫

Tπ]](M,V) =
∫

M
χT (M∩I[[π]]−1(1))

where

χT (M∩I[[π]]−1(1)) =

⎧⎪⎨⎪⎩
R

m → B

x �→
{

1 if ∃x′ ∈M : x = Tx′ ∧ I[[π]](x′) = 1
0 otherwise

For the 1-dimensional case, the linear transformation T is only scaling and∫
Tπ = T

∫
π holds. Thus in this case the transformation does not add expressive

power and we still have the Duration Calculus.

Formulae. In temporal interval logic, the intervals can be “chopped” into a
leftmost and a rightmost subinterval. In our case we introduce the chop operator
〈d〉 to split the polyhedron along a given hyperplane, which results in two new
sub-polyhedra. This is illustrated in figure 1 (d).

The set of formulae is given by

F ::= F1 〈d〉F2 | p(θ1, . . . , θk) | ¬F1 |F1 ∧ F2 | ∃x : F | ∃d : F

where p is a predicate symbol, x a rigid variable and d a rigid vector. The other
boolean connectives can be defined as the usual abbreviations.

The semantics is a function

I[[F ]] : Poly × V al → B.
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(a)

t

x
O

M

(b)
x

0

1

O

M

(c)
x

0

1

O

M

(d)
M

α
m

x

d

x−m

Fig. 1. (a) Function I[[O]] with polyhedron M, (b) the characteristic function
χT (M∩I[[O]]−1(1)) where T = eT

x = (1, 0) is the transposed unit vector for the spatial di-
mension. This is the projection onto the x-axis and (c) the integral

∫
χT (M∩I[[O]]−1(1)).

(d) illustrates the chop-operation

A formula F1 〈d〉F2 is valid if and only if there is a hyperplane orthogonal to
the vector d such that the polyhedron M is split by this hyperplane into two
polyhedra M1 and M2 which fulfil F1 and F2, respectively. So

I[[F1 〈d〉F2]](M,V) = true

iff there exists a m ∈ M such that with M1
df
= {x ∈ M|〈x −m,d〉 ≤ 0} and

M2
df
= {x ∈M|〈x−m,d〉 ≥ 0} the following holds:

I[[F1]](M1,V) = true and I[[F2]](M2,V) = true

Here 〈x−m,d〉 denotes the scalar product of x−m and d which is proportional
to the cosine of the angle α between these vectors. Thus, it is negative iff α is
greater than 180 degrees, i.e., the point x is below and positive otherwise. Note
that the scalar product is bilinear. So scaling the vector d with positive reals
does not change M1 or M2.

In the 1-dimensional case, when the vector used for the chop operation has only
one dimension, there are only three different cases possible. All of them can be
modelled in Duration Calculus using the DC chop operator “;” and conjunction.

F 〈1〉G ⇐⇒ F ;G
F 〈0〉G ⇐⇒ F ∧G

F 〈−1〉G ⇐⇒ G;F

So we have the conclusion.
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Corollary 1. For n = 1 the shape calculus and the Duration Calculus coincide.

Note 1. The chop operation is associative for the same vector d but not for
different vectors

(F 〈d〉G) 〈d〉H ⇐⇒ F 〈d〉 (G 〈d〉H)

but in general if d1 is not a multiple of d2

(F 〈d1〉G) 〈d2〉H �⇐⇒ F 〈d1〉 (G 〈d2〉H).

2.1 Abbreviations

Duration Calculus defines a lot of abbreviations to ease the handling of specifi-
cations. We adopt them directly.

�
df
=
∫

1 �T
df
=
∫

T 1 �d
df
=
∫

(
1
‖d‖d)1

can be used to measures the size or diameter of the polyhedron. We denote by ex

and et the unit vectors for the x- respectively time dimension, by eT
x respectively

eT
t their transposition, and we write �t

df
=
∫

eT
t 1 to measure the size along the

time axis and �x
df
=
∫

eT
x 1 for the size along the x-axis.

Like in Duration Calculus, the chop along the time axis is written

F ;G
df
= F 〈et〉G.

The everywhere operator 1π2 expresses that a state assertion π holds almost
everywhere in the polyhedron. It can be augmented by a transformation T .

1π2 df
=
∫
π = � ∧ � > 0 1π2T

df
=
∫

Tπ = �T ∧ �T > 0.

A polyhedron of length zero is also denoted by

12T
df
= �T = 0.

The somewhere operator �F allows the polyhedron to be chopped twice in the
same direction such that in the middle polyhedron F holds.

�dF
df
= true 〈d〉F 〈d〉 true

with the dual globally operator �

�d
df
= ¬�d¬F.

Note 2. Although the chop operation is not associative for different directions,
the � operation commutes

�d1�d2F = �d2�d1F

and because of duality also the � operation does

�d1�d2F = �d2�d1F.



468 A. Schäfer

3 Application

Using the proposed framework, we can easily describe movement and connectiv-
ity of objects in space. Apart from that, we can describe and reason about the
control of these objects in this framework, using the Duration Calculus part, as
this is just a conservative extention. At first we present some examples describing
how objects move in space. Assume one spatial dimension x and one temporal
dimension t. We consider an object O which is modelled by an observable O
such that the observable has value 1 for a point in time and space iff the object
occupies this point in space for this point in time.

3.1 STOP

The simplest expression is that an object O with size s does not move in space.

STOP(O, s)
df
= (1¬O2 ∨ 12ex

) 〈ex〉 (1O2 ∧ �x = s) 〈ex〉 (1¬O2 ∨ 12ex
)

The idea of this formula is sketched in figure 2 and it reads as follows. The
polyhedron (here it is a square) can be partitioned into three parts along the
x-direction. In the first part, everywhere is not object O or it has size zero in
x-direction. In the second part, O is true everywhere and this part has size s in
x-direction. So O has constant size s over time. And in the third part, there is
again no object O or it has size zero. As we chop the square orthogonal to x-axis
the position of O must be constant.

3.2 Continuous Movement

The STOP formula can be generalised to describe continuous movement with
velocity v. Here we chop orthogonal to the velocity vector and obtain three
sub-polyhedra such that only in the middle one O is true everywhere. This is
sketched in figure 2 (b).

MOTION(O, v)
df
= (1¬O2 ∨ 12( 1

−v)) 〈
( 1
−v

)
〉 1O2 〈

( 1
−v

)
〉 (1¬O2 ∨ 12( 1

−v))

(a)

t

x
O (b)

1
v(1)

(1
−v)

t

x

O

Fig. 2. (a) The object O remains immobile (b) The object O moves continously,
according to the pattern MOTION
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(b)

t
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y

d1

d2

s

s

Fig. 3. (a) The object O has distance x in direction d from beginning of the polyhedron.
(b) The object is a square

This does not specify where the object O starts its movement. A starting position
can be defined by adding an additional constraint to MOTION, for example

MOTION0(O, v)
df
= MOTION(O, v) ∧ ¬(1¬O2x 〈ex〉 true)

requires the object to start at point 0 on the x-axis.

3.3 Position of Objects

By taking the position of object O at a certain point of time, it is possible to
define arbitrary movements. This is captured by

POSd(O, x)
df
= ((1¬O2 ∨ 12d) ∧ �d = x) 〈d〉 1O2d 〈d〉 true.

In this formula we define x to be the maximal size in direction d of a sub-
polyhedron in which O is not true. This is sketched in figure 3 (a).

3.4 Generalisation to More Than One Dimension

The MOTION formula given above easily generalises to more than one dimension.
Assume that the movement of the object is defined by the vector v = (vx, vy, 1)T .
Then

MOTION3d(O,v)
df
= ∀d.〈d,v〉 = 0 ⇒ (1¬O2∨12d) 〈d〉 (¬�d1¬O2) 〈d〉 (1¬O2∨12d)

describes the movement of an object in the plane, where 〈d,v〉 denotes the scalar
product of d and v.

3.5 Shape of Objects

The shape of objects at points in time can also be grasped. For example

Circle(O, s)
df
= �t

(
12t ⇒ (∀d.(1¬O2d 〈d〉 1O2d ∧ �d = s 〈d〉 1¬O2d))

)
requires that for every point in time, in the hyperplane which belongs to this
point the object has size s in every possible direction. This is only true if the
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object is a circle of diameter s and it does neither disappear nor does appear a
second object of this kind.

The property that the object is a square with size s can be defined by the
following formula. In figure 3 (b) we depict the idea of this definition.

Square(O, s)
df
=�t

(
12t ⇒ (∃d1,d2.(〈d1,d2〉 = 〈d1,et〉 = 〈d2,et〉 = 0 ∧

(1¬O2(ex,ey)T

〈d1〉
(1¬O2(ex,ey)T

〈d2〉 1O2(ex,ey)T ∧ �d1 = �d2 = s

〈d2〉 1¬O2(ex,ey)T )

〈d1〉
(1¬O2(ex,ey)T )))

)
.

4 Case Study: The Moving Robot (Roadrunner)

Now we apply the ideas of the previous section and specify a system using
two spatial and one temporal dimensions. We consider a robot moving on an
rectangular plateau. Assume that the robot is equipped with sensors all around
to detect the edges. We do not consider the special task of the robot, but only
model its movement and edge detection system. It is to be proven that the robot
does not fall off the plateau.

Controller. A simple controller for the vehicle may consist only of two states
and is sketched in figure 4. One state is run, in which the robot is moving
forward. When the robot detects an edge, after a response time of δR ms, the
robots starts to turn around for δT ms to rotate by angle π, before returning to
state run.

In order to derive an implementation from the specification, a subset of DC
called the DC-Implementables introduced by Ravn [Rav95] is important. We
use the implementables to specify the controller and thus need to introduce the
following abbreviation:

F −→ 1π2 df
= ¬�t(F ; 1¬π2)

With this abbreviation we can define the controller in the following way. Initially,
the controller is in state run.

1run2 ∨ 12t (init-control)

From state run, the controller can evolve to state turn.

1run2→ 1run ∨ turn2 (successor-run)
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(a)

run turn

edge

(b)

t

x

y

Plateau Robot

Fig. 4. (a) A simple controller for the roadrunner. (b) A possible unsafe run

From state turn it can evolve to state run.

1turn2→ 1run ∨ turn2 (successor-run)

State run must be left if an edge is detected after at most δR time units.

1run ∧ edge2 ∧ � = δR → 1¬run2 (progress-run)

State turn must be left after δT time units.

1turn2 ∧ � = δT → 1¬turn2 (progress-turn)

Spatial Behaviour. To specify the spatial behaviour of the robot we introduce
two boolean oberservables RR – for roadrunner – and P – for plateau –. The
assumptions are defined using the abbreviations given in the last paragraph.

1. In state run, the robot moves with constant velocity v in one direction:

�t(1run2⇒ ∃d.(MOTION3d(RR, d) ∧ d.12 + d.22 = v ∧ d.3 = 1))

2. In state turn the robot turns around its axis. We assume that the function
f computes the new direction d2 given the old direction d1 and the time
which is spent in state turn.

�t((1run2 ∧Motion3d(RR, d1); 1turn2 ∧ �t = t; 1run2 ∧Motion3d(RR, d2))
⇒ d2 = f(d2, t))

3. The shape of the robot is a circle with unit diameter.

Circle(RR, 1)

4. The edge detection is activated as soon as robot leaves the plateau.

�t1RR ∧ ¬P 2→ 1edge2
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4.1 Environment

We need to specify that the plateau P is rectangular and does neither change
its shape nor moves beneath the robot.

1¬P 2 〈ex〉 (1¬P 2 〈ey〉 1P 2 〈ey〉 1¬P 2) 〈ex〉 1¬P 2

Initially, the roadrunner is in the centre of the plateau and the length of the
plateau is 21 units. For better readability we omitted the parentheses.

12t∧
1¬(P ∧RR)2(ex,ey)T

〈ex〉
1¬(P ∧RR)2(ex,ey)T

〈ey〉
1P ∧ ¬RR2(ex,ey)T ∧ �x = 10

〈ex〉
1P ∧ ¬RR2(ex,ey)T ∧ �y = 10

〈ey〉
1P ∧RR2(ex)T ∧ 1P ∧RR2(ey)T ∧ �x = 1 ∧ �y = 1

〈ey〉
1P ∧ ¬RR2(ex,ey)T ∧ �y = 10

〈ex〉
1P ∧ ¬RR2(ex,ey)T ∧ �x = 10

〈ey〉
1¬(P ∧RR)2(ex,ey)T

〈ex〉
1¬(P ∧RR)2(ex,ey)T )

; true

4.2 Requirement

If we assume, that the robot is safe if at most 50 % of its area is outside the
plateau, the safety-requirement is specified by

�t

∫
(RR ∧ ¬P )(ex,ey)T ≤ 0.5.

Verification. Trying to verify the safety property, it turns out that the system
is not safe even if we chose the velocity v to be low enough such that the robot
can stop the motors in its response time. The erroneous situation is sketched in
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figure 4. If we assume the upper bound for the response time δB to be 500 ms
and the velocity v to be v = 1m/s then less than half of the robot is not on
the plateau, after having detected an edge. If this just happens in a corner of
the plateau and the robot turns 90 degree and continuous to move in the wrong
direction, after the response time of 500 ms 3

4 of the robot will be off the plateau.
Such a behaviour could for example be avoided by driving backwards for δB

before turning around.

5 Undecidability of Satisfiability

As Duration Calculus with dense time domain is undecidable in general [HZ97]
and the shape calculus with a zero dimensional space is exactly the Duration
Calculus, it is not decidable either.

However, a restricted subclass of Duration Calculus is decidable with discrete
time domain [HZ97], but this does not hold for the shape calculus with more
than 1 dimensions. We prove this by reduction from the emptiness problem for
2-dimensional tiling systems [GR97].

5.1 Tiling-Systems and Encoding of Turing Machine Computations

A tile is a 2×2 matrix whose elements are taken from a given alphabet Σ∪{#}
where # is a special symbol which is not included in the set Σ. For a set of tiles
Θ the local language L(Θ) is the set of all m×n matrices M such that every 2×2
block of M is in Θ. Note, that the blocks are overlapping. Additionally all four
borders of this matrix must only consist of the # symbol. So the matrix must be
framed by #. In [GR97] it is shown that the following problem is undecidable:
“Given a set of tiles Θ, is L(Θ) empty?”.

For the proof, a Turing Machine computation is simulated in a 2-dimensional
array as sketched in figure 5. Each row represents a configuration of the Turing
Machine and the row below its successor configuration.

5.2 Encoding Tilings in Shape Calculus

For a set of tiles Θ = {p1, . . . , pk} we can give a formula FΘ in shape calculus,
such that L(Θ) �= ∅ iff FΘ is satisfiable. To this end, every tile

pi =
(

a b
c d

)
is mapped to a formula

Fpi
=((1a2 ∧ �e1 = 1 ∧ �e2 = 1) 〈e2〉 (1b2 ∧ �e1 = 1 ∧ �e2 = 1)) 〈e1〉

((1c2 ∧ �e1 = 1 ∧ �e2 = 1) 〈e2〉 (1d2 ∧ �e1 = 1 ∧ �e2 = 1)).
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# . . . # # # # # # . . . #
# � . . . � q0 w1 w2 w3 . . . # (initial configuration)
# � . . . � w1

1 q1 w1
2 w1

3 . . . # (2nd configuration)
# � . . . � q2 w2

1 w2
2 w2

3 . . . # (3rd configuration)
# . . .
# � . . . qf wm

1 wm
2 wm

3 . . . # (final configuration)
# . . . # # # # # # . . . #

Fig. 5. Encoding of Turing Machine computation in a 2-dimensional picture

With these sub-formulae we define FΘ to be

FΘ =�e1�e2((�e1 = 2 ∧ �e2 = 2) ⇒
k∨

i=1

Fpi
)∧

1#2 ∧ �e1 = 1
〈e1〉 (1#2 ∧ �e2 = 1 〈e2〉 1¬#2 〈e2〉 1#2 ∧ �e2 = 1) 〈e1〉

1#2 ∧ �e1 = 1

The first part describes, that each 2 × 2 block must be in Θ. Note that we
consider the discrete shape calculus and therefore we may only chop at discrete
positions. The second part defines that the picture must be framed by #. As
we consider a discrete time and space domain, the formula FΘ is satisfiable if
and only if the the local language L(Θ) is not empty. Therefore the satisfiability
problem for shape calculus with discrete domain and more than one dimension
is undecidable. �

6 Decidable Fragment

If we restrict the set of formulae to

F ::= 1P 2 | 1P 2ex
| 1P 2et

|F ∧G | ¬F |F 〈ex〉G |F 〈et〉G

and the set of models to one discrete infinite temporal dimension and consider
all other spatial dimensions to be finite, the satisfiability problem is decidable.

We follow the lines of the decidability proof for discrete time Duration Calcu-
lus [HZ04] and extend it to one temporal and one finite spatial dimension with
cardinality n, but it can be easily generalised to more than one finite spatial
dimension. Assume we use boolean observables X1, . . . , Xo. Then for a point in
space and time the vector (x1, . . . , xo) ∈ {true, false}o describes which observ-
ables are true. We use o × n matrices to describe the space for a point of time
and take the set Σn = {[w1, . . . , wn]|wi ∈ {true, false}o} of all o× n matrices as
our alphabet.

We use Σ≤k =
⋃k

i=0 Σi as an abbreviation. For a state assertion P and
1 ≤ i ≤ n we define Σn

i,P = {[w1 . . .wn] ∈ Σn|wi |= P} as all possible space
configurations such that at point i in space the state assertion P is true. These
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sets can be computed as we allow only propositional formulae for the state
assertions.

Additionally we define Σn
�P =

⋂n
i=1 Σn

i,P and Σn
�P =

⋃n
i=1 Σn

i,P . We define
for every 1 ≤ i, j ≤ m ≤ n the functions hi,j,(m)([w1, . . . , wm]) = [wi, . . . , wj ]
where we assume hi,j,(m)([w]) = ε if j < i. These functions yield the middle part
from i up to j of the matrix [w1, . . . , wm].

For the construction of our languages, we use these functions as homomor-
phisms for languages L ⊆ (Σm)∗ and consider its inverse h−1

i,j,(m).
The construction of Ln(F ) over the alphabet Σn proceeds inductively as

follows:

Ln(1P 2) = (Σn
�P )+ Ln(1P 2et

) = (Σn
�P )+

Ln(1P 2ex
) =

n⋂
i=1

((Σn)∗ ◦Σn
i,P ◦ (Σn)∗) Ln(F ∧G) = Ln(F ) ∩ L(G)

Ln(F 〈et〉G) = Ln(F ) ◦ Ln(G) Ln(¬F ) = Ln(F )

For the spatial chop operation F 〈ex〉G, we consider every possible position i
at which the chop can be applied. For every 0 ≤ i ≤ n we construct the languages
Li(F ) and Ln−1(G). Every letter in Li(F ) is a o×i matrix which models a space
with cardinality i. We have to consider every possible extention to the right of
this matrix to an o × n matrix. This is done using the inverse homomorphism
h−1

1,i,(n). The same is done for Ln−1(G). We end up with

Ln(F 〈ex〉G) =
n⋃

i=0

(
h−1

1,i,(n)(Li(F )) ∩ h−1
i+1,n,(n)(Ln−i(G))

)
.

Using this construction for a formula F the following holds:

Theorem 1. Ln(F ) is empty if and only if F has no model.

7 Conclusion

In this paper, we presented how a well known real-time formalism can be enriched
to allow spatial verification. To this end, we generalised the Duration Calculus
to more than one dimension and showed how spatial properties like continuous
movement can be formalised. We gave an example to show that specifications in
pure Duration Calculus can be used directly in the extension, spatial requirement
just need to be added. We proved undecidability results and identified a decidable
subset.

Related Work. There is a lot of related work around in the field of spatial and
temporal logics. The Region Connection Calculus (RCC) proposed by Randell,
Cui and Cohn [RCC92] is widely used in the AI community and fundamental for
many extensions. It handles regions and their connectivity, for example whether
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one region intersects another or whether it is a proper part. It does not handle
time or quantitative measures and so it is not well suited for the description of
mobile safety-critical real-time systems. It has been used in [Gal95] to develop a
qualitative theory of movement. Additionally one should be able to encode the
RCC in the shape calculus. This is still to be investigated.

A more recent approach by Merz et al [MWZ03] considers an extension of
TLA to describe mobile systems, but this approach uses the π-Calculus [Mil99]
notion of mobility, namely mobility by changes of links between processes. Also
using this notion of mobility, Cardelli give a spatial logic tailored for the ambient
calculus in [CG00] or the π-Calculus in [CC03] which allows to reason about
freshness of names, name restriction and composition.

By contrast, the Real Space Process Algebra proposed by Baeten and Bergstra
[BB92] uses the 3-dimensional space and in an relativistic extension the 4-
dimensional space and describes actions occurring at certain points in space.

Closer to our approach are the recent multi-dimensional modal logics in-
troduced for example in [BC02, AvB01, Mul98, ADN97] but they do not allow
quantitative reasoning, neither spatial nor temporal. A logic specially tailored
to reason about distances can be found in [WZ03] but this approach does not
consider time.

Coming from Duration Calculus there are various extensions. The extension
for hybrid systems by Zhou, Ravn and Hansen [ZRH93] introduces the diffential
operator instead of the integral. But this formalism is still a temporal logic and
does not take space into account.

Finally, a 2-dimensional extension of Duration Calculus by Pandya and Van
Hung [PH98] uses 2-dimensional time, one dense time line (macro time) and or-
thogonal a discrete time line (stepped time) to model superdense computations.

Perspectives. For future work, we like to give a set of rules to make spatial
reasoning more convenient and apply these rules on more case studies. The
question whether there is a relative complete and sound calculus and finding
richer decidable subsets are also things to tackle in the future.

Acknowledgements. The author thanks E.-R. Olderog and the members of the
“Correct System Design” group for fruitful discussions and draft-reading earlier
versions.
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Abstract. In this work we propose a framework for specification and
validation of real-time programs using Circus actions. Circus is a language
that combines CSP, Z, and refinement calculus constructs. We have ex-
tended Circus and its model to capture time properties, and explored the
relationship between the timed and the untimed model. Here we present
a framework based on the integration of the timed and untimed versions
of Circus. The integration aims at building a heterogeneous model that
can express time properties using the untimed model. It is useful for the
validation of real-time systems properties based on techniques and tools
available for untimed languages. To illustrate the use of the framework,
we apply it to an alarm system controller.

Keywords: Formal methods integration, formal verification, real-time
systems.

1 Introduction

It has been noticed that a single software development method is not sufficient
for solving all types of problems found in complex software systems. Integration
has been a trend in the recent years: methods have been combined with the aim
of obtaining more complete and expressive formalisms.

Several examples of combining formalisms can be found in the literature
such as CSP-OZ, introduced by Fischer [3], in which CSP [11] and Z [17] are
combined such that the CSP part defines the behaviour of the system, and
Object-Z (OZ) [16] is used to specify the system data and operations. CSP-
OZ is a typical case in which the integration aims at complementing a method
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with the aid of another method by increasing its expression capabilities. Other
integrations are intended for reasoning in one formalism about other formalisms,
such as the study presented by Yifeng and Zhuming concerning an integration
of temporal logics [2]; their work explores the relation between different types of
temporal logics.

The combination strategy can also be differentiated by the form in which the
integration is carried out. Some approaches propose the use of informal links
between the language constructs and limit the proposed integration to a rela-
tion that combines constructs of a notation with another; an example of this
approach is Timed-CSP-Z [13]. Other approaches use a step by step framework
that combines one method with another in a systematic manner; an example
of such a method is that defined by Piage to integrate a subset of UML with
a predicative programming design calculus [9]. Some more formal approaches
propose the creation of a semantic model which can be used to relate and study
different languages. An example is presented in [1] where a model based on cate-
gory theory and viewpoints is used to relate and integrate different specification
languages. Another example is the unifying theories of programming [5], which
proposes an incremental semantic model based on simple predicate logic that
can be expanded and used to define different paradigms and languages.

Circus is a combination of CSP and Z ; it also includes specification state-
ments as in Morgan’s refinement calculus [7] and Dijkstra’s language of guarded
commands. Circus has a formal semantics [21] based on the unifying theories of
programming [5]. Case studies using the language are explored in [20]. A devel-
opment method based on refinement is described in [12]. In [14, 15] a time model
for Circus was proposed; some time operators have been added, giving Circus the
capability of expressing time behaviour.

In this work, we present a framework for specification and validation of real-
time programs using Circus. The main idea is to use the timed model for spec-
ification, and the untimed model to express desired properties. A normal form
for a timed program is used to obtain an untimed program that can be verified
to meet the time requirements. In this way, we reason about time properties
without making explicit use of time. The untimed program, however, includes
special (timer) events. The framework makes use of the meta-method for method
integration based on heterogeneous notations [8]; in our case, the notations are
a subset of the Circus actions and its timed extension.

In the next section we give a brief introduction to the meta-method for formal
methods integration. In Section 3, we present our heterogeneous notation used
for the specification of real-time systems using Circus. We present the framework
and show its use in Section 4. In Section 5, we draw our conclusions.

2 Meta-method for Formal Methods Integration

A meta-method for formal methods integration is presented in [8]. It has been
used to integrate a subset of UML with a predicative programming design cal-
culus [9]. The method is summarized by the following steps.
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Fix the Base Method. A base method provides the basic notation for the main
processes, which will be combined with the other (invasive) methods. At this
point, integrators need to have a clear understanding of the role of each method
in the integrated approach.

Determine the Invasive Method(s). The invasive methods are chosen to com-
plement the base method. They can complement the notation, or processes. In
choosing the invasive method, it must also be decided how to reconcile overlaps.

Construct or Extend a Heterogeneous Basis. This is accomplished by construct-
ing or adding notation from the base and invasive methods to a heterogeneous
basis. A single formal notation for the heterogeneous basis can be fixed at this
point.

Generalize and Relate the Method Steps. The method steps for the base and the
invasive method are manipulated in order to define how they will work together
in combination. Two forms of cooperation are particularly common:

– Generalization. The process of the base method is generalized to use hetero-
geneous notations constructed from those of the base and invasive methods.

– Interleaving. Relationships between the process of the base method and
the processes of the invasive method are defined, using an informal entity
relationship-like notation. Relationships can be established by defining a
translation between notations, by replacing entire processes from the base
method with processes from the invasive method, by supplementing a process
from a method by a process from another method, or by defining relations
that interleave the processes from the base and invasive methods.

Provide Guidance to the User. Examples and suggestions are given to the users
to aid them in using the integrated method.

In the next section, we show the application of this method to integrate a
subset of the Circus language with the time operators of its timed version.

3 The Heterogeneous Method

In our approach, we suggest the use of the Circus untimed original version as the
base method, and the Circus timed model and the time operators as the invasive
method. We define a heterogeneous notation that adds the time operators to the
original language with the aid of timer events. Finally we give expansion laws
that provide an axiomatic semantics for the timer events.

3.1 The Base Method

A modified subset of the action operators [21] of Circus is the base method. It is
defined in Figure 1 using a BNF, where e stands for an expression, N for a valid
name, N+ for a list of names, and cs for a set of channel names.
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Action ::= Skip | Stop | Chaos
| Communication → Action
| b & Action
| Action ! Action
| Action � Action
| Action; Action
| Action |[ cs ]| Action
| Action \ cs
| Command
| μ N • Action

Communication ::= N CParameter
CParameter ::= ? N | ! e | . e

Command ::= N+ := e
| Action b Action

Fig. 1. The subset of Circus used as the base method

The action Skip terminates immediately. Stop represents deadlock, which
simply puts a program in an ever waiting state. Chaos is the worst action;
nothing can be said about its behaviour.

An action can be prefixed with a communication (input or output) which
takes place before the action starts. This action waits for the other actions that
need to synchronize on the channel before the communication can take place. In
b & A, b is a guard: a boolean expression that has to be true for the action A
to take place; otherwise A cannot proceed.

The internal choice A ! B selects A or B in a nondeterministic manner.
The external choice A � B waits for interaction with the environment; the first
action that interacts with the environment (by either synchronizing on an event
or terminating) is chosen. The sequential composition A; B behaves as A followed
immediately by B.

The parallel composition A |[ cs ]| B involves a set cs containing the events on
which A and B need to synchronize. A hiding operation A \ cs takes a set cs
of events that are to be excluded from the resulting observation of the action,
hiding events that can no longer be seen by other actions.

Assignment is a command; it simply assigns a value to a variable in the
current state. If the variable already exists, its value is overwritten, otherwise
it is added to the current state and assigned the given value. The command
A � b � B is a conditional: if b evaluates to true, then A is executed, otherwise
B is chosen for execution.

For simplicity, we do not consider the Z and the refinement calculi specifica-
tion constructs available in Circus. We also do not contemplate Circus processes,
which effectively encapsulate state and action specifications. Our objective is to
explore novel ideas related to the development of real-time systems; we leave the
study of more elaborate Circus constructs as future work.

The semantics of Circus is based on the unifying theories of programming, and
is explored in details in [21, 19]. The following is a description of the observation
variables used by the untimed semantic model.
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ok and ok ′ are boolean variables. When ok is true, the previous action did not
diverge; ok ′ indicates that the current action is in a stable state.

wait and wait ′ are boolean variables. When wait is true, the program starts in
an intermediate state of the execution of the previous program. When wait ′

is true the current action has not terminated; when it is false, it indicates
termination.

state and state ′ are mappings from variable names to values. Each mapping
associates every user variable in the action to a value. The dashed variable
records the value of the variables at the final observation.

trace and trace ′ are sequences of observations on the action interaction with
its environment: trace records the events that occurred before the action
started, and trace ′ records a subsequent observation.

ref ′ is a set of events the action can refuse.

A single observation is given by the combination of values of the above vari-
ables. The semantics of an action is given as a predicate over the observation
variables. We give the semantics of the basic actions and communication as an
example. For a complete specification see [21, 19].

The semantics of the action Skip establishes that the action can only termi-
nate normally, and has no interaction with the environment.

[[Skip]] =̂ ok ′ ∧ ¬wait ′ ∧ trace ′ = trace ∧ state ′ = state

The action Stop waits forever.

[[Stop]] =̂ ok ′ ∧ wait ′ ∧ trace ′ = trace

An assignment assigns a value to a variable in the current state.

[[x := e]] =̂ ok ′ ∧ ¬wait ′ ∧ trace ′ = trace ∧ state ′ = state ⊕ {x .→ e}

If the variable does not exist it is added to the state. This is different from the
Circus semantics, which requires that all variables are declared.

An action can engage in a communication if all the other actions involved
in the same communication are ready to do so. We model this with the help
of two predicates: wait com(c), which models the waiting state of an action
to communicate on channel c, and term com(c.e) which represents the act of
communicating a value e over a channel c.

wait com(c) =̂ ok ′ ∧ wait ′ ∧ c /∈ ref ′ ∧ trace ′ = trace

term com(c.e) =̂ ok ′ ∧ ¬wait ′ ∧ trace ′ = trace � 〈c.e〉

The semantics of the output communication is given below.

[[c!e]] =̂ wait com(c) ∨ (term com(c.e) ∧ state ′ = state)

We can define the input operation in a similar manner.

[[c?x ]] =̂ wait com(c) ∨
(

term com(c.e) ∧
state ′ = state ⊕ {x .→ e}

)
In Section 4, we use this model as the base semantic model for the framework.
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3.2 The Invasive Method

The invasive method selected is a timed version of Circus. It is presented in
[14, 15]; two new time operators are added and the semantics is given in the
context of a discrete time model.

The action Wait t halts the system for an amount of time determined by the
positive integer expression t before terminating normally. The timeout construct
(A �t B) takes a positive integer value as the length of the timeout; it acts as
a time guarded choice. If A performs an observable event or terminates before
the specified time elapses, it is chosen. Otherwise, A is suspended and the only
possible observations are those produced by B.

A new semantics for the language is given in [15] with the same observa-
tion variables ok , ok ′,wait ,wait ′, state and state ′. The variables trace, trace ′ and
ref , ref ′ are substituted by a new pair of variables tr and tr ′.

The variable tr records the observations that occur before the program starts,
and tr ′ records the subsequent observations. Each element of the sequence rep-
resents an observation at the end of one time unit. The sequence indexing starts
from 0: the element at position 0 shows the observations before the action starts
(at time zero). Each observation element is a tuple, where the first element is
the sequence of events that occurred by the end of the time unit, and the second
is the set of refusals at the end of the same time unit:

tr , tr ′ : seq +(seqEvent × P Event)

where seq+ stands for a non-empty sequence, and Event represents all the pos-
sible events (communications) in which an action can engage. We show the use
of these new variables in the definition of the Wait d action.

[[Wait d]]time =̂
(

(wait ′ ∧ (#tr ′ −#tr) < d) ∨
(¬wait ′ ∧ (#tr ′ −#tr) = d ∧ state ′ = state)

)
∧

(Flat(tr ′)− Flat(tr) = 〈〉 ∧ ok ′)

where Flat : seq +(seqEvent × P Event) → seqEvent is defined as follows.

Flat(〈(el , ref )〉) = el

Flat(〈(el , ref )〉� S ) = el � Flat(S )

The only possible behaviour for this action is to wait for the specified number
of time units to pass before terminating immediately.

3.3 Linking Circus Models

In [14, 15] we explore a relation between the observations of the original untimed
Circus model and the time model. We define a function L that, when applied to a
set of timed observations related to a Circus action A, yields a related observation
in the original model without time information. The mapping is useful to validate
the safety properties that are time independent. The definition is as follows:

L([[A]]time) =̂ ∃ tr , tr ′ • [[A]]time ∧ trace = Flat(tr) ∧ trace ′ = Flat(tr ′) ∧
ref ′ = second(last(tr ′))
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The Flat function is applied to the timed traces to obtain the original trace
model. A projection on the second element of the last entry in tr ′ results in the
refusal set of the original model.

The mapping L is conservative as it preserves all the behaviours of the original
timed action in the untimed model, but it might add an undesired deadlock
state. This is due to the fact that applying the mapping to Wait d results in
Stop ∨ Skip (see [14, 15] for details).

A new mapping can be defined using L. It ensures that the only possible
waiting state of a program is a waiting state that can wait forever. The definition
of this function is as follows:

L̂([[A]]time) =̂ L([[A]]time) ∧ (wait ⇒ EndlessObs)

where EndlessObs are observations that wait for an arbitrary n time units

EndlessObs =̂ ∀n • ∃ tro • tro = tr � 〈(〈〉, ref )〉n ∧ L([[A]]time)[tro/tr
′]

The notation 〈e〉n stands for a sequence with n occurrences of e. The mapping
L̂ is not conservative as it does not distribute over parallel composition. The
mapping functions and their properties are explored in more detail in [14, 15].

3.4 The Heterogeneous Notation

The syntax of the heterogeneous notation is the same as the base notation,
with the addition of timer events. We define a normal form to express the timed
actions; it adds special timer events to the program which are used by the frame-
work. The timer events have differentiated behaviour in a parallelism. Therefore,
we define a new parallel composition operator for the heterogeneous notation,
with an axiomatic semantics.

Usually timed programs are implemented with timers: the system clock or a
dedicated timer. Following this idea, we give a normal form for the time opera-
tors. They are implemented as a parallel composition of a timer and an untimed
program which synchronizes on dedicated events. The following is the specifica-
tion of the timer.

Timer(i , d) =̂ μX •

⎛⎜⎜⎜⎜⎝setup.i?d →

⎛⎜⎜⎜⎜⎝
(halt .i → X )

� Wait d;

⎛⎝ (out .i → X )
�

(terminate.i → Skip)

⎞⎠
� (terminate.i → Skip)

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠

� (terminate.i → Skip)

The timer is initiated with the event setup.i?d , which takes the timer instance
identifier i and the delay d as input. The behaviour of the timer is then to
offer the event halt .i while it waits for d time units; at the end, the event
out .i is offered. When either halt .i or out .i takes place, the timer is reset. The
timer always offers the event terminate.i that terminates the time suspending
its execution. The events setup.i?d and out .i are special, as discussed later.
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The function Φ takes a timed action and returns an action in a normal form
that uses the timer events, instead of timed constraints. It is an identity for the
basic actions (except for Wait), and Φ distributes through the binary operators
except for timeout, external choice and parallel composition. Further,

Φ(b & A) = b & Φ(A)
Φ(A \ cs) = Φ(A) \ cs
Φ(c → A) = c → Φ(A)

Φ(μX • A(X ))) = (μX • Φ(A(X )))

The relevant cases are Wait , timeout, external choice, and parallel composition.

Φ(Wait d) =̂ (setup.i !d → out .i → Skip)

Φ((
n
�

j=1
cj → Aj )

d
� B) =̂ setup.i !d →

⎛⎜⎝ (
n
�

j=1
cj → halt .i → Φ(Aj ))

�

(out .i → Φ(B))

⎞⎟⎠
Φ(A � B) = Φ(A) � Φ(B)

Φ(A |[ cs ]| B) =̂ Φ(A) |[ cs ]|nf
Φ(B)

For Wait d, Φ replaces the wait action by an action that initializes a timer with
setup.i !d and then waits for the occurrence of out .i . For the timeout operator,

we consider a particular case: (
n
�

j=1
cj → Aj )

d
� B . The reason is that the timeout

has to stop the timer (using the event halt .i) after the occurrence of first event.
This does not lead to loss of generality because, using the algebraic laws of
Circus [12], we can transform any action to the required form. For external choice
Φ introduces a new external choice operator �. The new operator is used to give
the semantics of the time events in a choice. The new external choice semantics
is given by the following algebraic laws.

In the laws below we take ci and di to be ordinary events (they can not be
timer events) and A and B to be actions defined in the normal form. The first
law shows the idempotent of the � operator

Law 1. A � A = A

The following law states that the � operator is commutative

Law 2. A � B = B � A

The following is the associativity law for the � operator

Law 3. A � (B � C ) = (A � B) � C

The next law states that the setup event is not determinant in the choice and it
occurs without effecting the choice.
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The behaviour of the choice operator � is given for the case in which one of the
actions involved in the choice is the time event out . As in the case of the setup
event the out event is not determinant in the choice but different form setup,
the out event offers the none time events ci as a choice using the base method
external choice operator.

Law 5. (out .j → A) � (
n
�
i=1

ci → Bi) =
(out .j → (A � (

n
�
i=1

ci → Bi)))

� (
n
�
i=1

ci → halt .j → Bi)

In the case that the choice operator � is involving two out events then the events
are offered in the order of the smallest delay first. The cases are based on the
delay of the timers where the function delay(i) return the delay of a timer given
by the index i . In the case the two out events in the choice correspond to timers
with the same delay then the choice is nondeterministic.

Law 6

(out .i → A)
�

(out .j → B)
=

⎧⎪⎪⎨⎪⎪⎩
out .i → (A � (out .j → B)), if delay(i)<delay(j);
out .j → ((out .i → A) � B), if delay(i)>delay(j);
(out .i → out .j → (A � B))
! (out .j → out .i → (A � B)) , if delay(i)=delay(j).

The next law states that the choice operator � is solved between timer events.

Law 7.

((out .i → A) � C )
�

((out .j → B) � D)
=

⎛⎝ (out .i → A)
�

(out .j → B)

⎞⎠ � (C � D)

The final law for the operator � states that for all the other in which A or B do
no start with the timer events then the choice is the same as the external choice
operator of the base method.

Law 8. A�B = A � B Provided that setup and out are not in the initial events
of A and B.

Theorem 1. An action of the form A � B can always be reduced to A′ � B ′

such that A′ and B ′ are actions that do not contain the operator �.

For parallel composition Φ introduces a new parallel operator |[cs]|nf , whose
semantics is given below.

We define some expansion laws that can be used to convert a parallel action
into a sequential action. We use these expansion laws to give an axiomatic se-
mantics for the timer events and the parallel operator introduced by Φ. The first
law gives the basic expansion of the parallel composition of two actions that are
ready to perform a communication independently

Law 4. (setup.i .d → A) � B = setup.i .d → (A � B)
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Law 9

(
n
�
i=1

ci → Ai) |[ cs ]|nf (
m
�

j=1
dj → Bj ) =

(
n
�
i=1

ci →
(

Ai |[ cs ]|nf (
m
�

j=1
dj → Bj )

))
�(

m
�

j=1
dj →

(
(

n
�
i=1

ci → Ai) |[ cs ]|nf Bj

))
if, for all i and j, (ci �∈ cs) ∧ (dj �∈ cs).

The next law shows the expansion of a parallel composition where one of the
actions needs to synchronize with the other; in this case the free action can
proceed while the other waits for the synchronization.

Law 10. (
n
�
i=1

ci → Ai) |[ cs ]|nf (
m
�

j=1
dj → Bj ) =

m
�

j=1
dj →

⎛⎜⎝ (
n
�
i=1

ci → Ai)

|[cs]|nf

Bj

⎞⎟⎠
if (ci ∈ cs) ∧ (dj �∈ cs).

Law 3 states that the parallel composition will stop if both programs need to
synchronize, but disagree on the events to synchronize.

Law 11. (
n
�
i=1

ci → Ai) |[ cs ]|nf (
m
�

j=1
dj → Bj ) = Stop

if (ci ∈ cs) ∧ (dj ∈ cs) ∧ (ci �= di).

Law 4 states that the programs synchronize if they are ready to engage in the
same event.

Law 12. (
n
�
i=1

ci → Ai) |[ cs ]|nf (
n
�
i=1

ci → Bi) = Ai n
i=1

|[ cs ]|nf n
i=1

Bi

if (ci ∈ cs).

The next law states that the events setup, when in parallel, have to occur before
any other events in the action can occur.

Law 13. (setup.i !d → A) |[ cs ]|nf (setup.j !e → B) =⎛⎝ (setup.i !d → setup.j !e)
!

(setup.j !e → setup.i !d)

⎞⎠ ; (A |[ cs ]|nf B)

The last expansion laws state the order in which the events out synchronize,
based on the delay of the timers for each event. The function delay takes a timer
index and yields the delay setting of the timer associated to the index.

Law 14. (out .i → A) |[ cs ]|nf (out .j → B) = out .i → (A |[ cs ]|nf (out .j → B))
if delay(i) < delay(j )

Law 15. (out .i → A) |[ cs ]|nf (out .j → B) =
(out .i → out .j ) ! (out .j → out .i); (A|[cs]|nf B)

if delay(i) = delay(j )
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From the definition of the function Φ, and the semantics of the timed model,
we derive a theorem that establishes a relative notion of semantic preservation:
the generated (untimed) program, when operating with the timers, behaves as
the original timed program.

Theorem 2. For any timed action A, A ≡ Φ(A) Timersn where is
defined as A B =̂ (A; Terminate(n) |[ TSet ]| B)\TSet. Timersn is the in-
terleaving of the n timers needed by the action A (one for each time operator).

Terminate(n) is given as
n

|||
i=1

(terminate.i → Skip). TSet is given as the set of

all timer events TSet = {setup, halt , out , terminate}.

The operator par stands for the parallel composition of two actions that syn-
chronize on the timer events. The timer events are hidden and, therefore, treated
as internal events. We also have the following result.

Theorem 3. For any timed action A, the following holds
L̂([[A]]time) ≡ [[Φ(A)\{setup, halt , out}]].

This states that Φ does not change untimed behaviour.

3.5 The Heterogeneous Framework

In this section, we present the framework based on the heterogeneous notation.
Figure 2 illustrates the steps for using the framework, which can be summarized
as follows.

1. We start with a specification in the time model, using the timed version of
the language. The designer gives a complete description of the system.

Timed Circus
Action

Untimed
Circus Action Circus Action + 

Timer Events
Timerspar

Timed
Requirements

Untimed
Requirements

Abstraction Normal Form

ImpliesImplies

Fig. 2. A heterogeneous framework for analysis of timed programs in Circus

par par
par
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2. With the help of the abstraction function L̂ (Section 3.3), we obtain an
untimed version of the original specification.

3. The untimed action can be checked to validate the behaviour and safety
requirements that are not time dependent. It satisfies any untimed behaviour
requirement satisfied by the original action.

4. With the help of Φ, we obtain a program that has the same semantics as the
original program (Theorem 1), but contains internal timer events.

5. Time requirements should be expressed using the timer events. This is why
we can show that the untimed program satisfies the time requirements.

The next section explores the approach by applying it to a case study.

4 An Alarm System

The system used here as case study is also considered in [6]; it is a common bur-
glar alarm controller connected to sensors which detect movements or changes
in the environment. When disabled, the controller ignores any disturbance de-
tected; when enabled, the controller will sound an alarm when a sensor signals
a disturbance.

There are two timing requirements on the alarm controller. The first states
that after enabling the alarm controller, there is a period T1 before a disturbance
causes the alarm to ring. This period permits a person to enable the alarm and
get out. The second requirement states that, when a disturbance is detected, the
controller will wait for a period T2 before activating the alarm. This will allow
a person to enter the building and deactivate the alarm.

4.1 The Timed Specification

The event enable indicates that the alarm system is enabled. To disable the
alarm, the event disable is used. When the alarm system is disabled it responds
only to the event enable. The event disturbed indicates that a sensor has detected
a disturbance. Finally, alarm signals the firing of the alarm.

We can model the alarm controller with the help of several actions that are
composed to produce the final system Alarm.

Disable =̂ (disable → Skip)
Running =̂ Disable � (disturbed → Active)

Active =̂ Disable
T2
� (alarm → Disable)

Alarm =̂ μX • (enable → (Disable
T1
� Running)); X

The action Disable simply offers to engage on event disable. The action Running
represents the armed behaviour of the alarm controller: the controller can either
be disabled or it can be disturbed by a burglar. When the alarm is disturbed,
it behaves as Active, which models the active state of the alarm. In this state,
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the controller can to be disabled for the first T2 time units, after what an alarm
is fired. When fired, the controller will only terminate once disabled. The main
action Alarm is recursive. The controller starts by assuming that the alarm
is disabled and offers the enable event to start the controller. After the event
enable, the action can be disabled for the first T1 time units before it is armed.

4.2 Heterogeneous Alarm Controller

By applying the normal form function Φ to the timed specification of the alarm
controller, we obtain the following result.

Φ(Disable) = Disable
Φ(Running) = Disable � (disturbed → Φ(Active))

Φ(Active) = setup.2!T2 →
(

(Disable; halt .2 → Skip)
� (out .2 → alarm → Disable))

)
Φ(Alarm) = μX • (enable → setup.1!T1 →

(
(Disable; halt .1 → Skip)
� (out .1 → Φ(Running))

)
; X

The generated program contains no time information: just timer events. We
define one timer for each timeout operator used in the original specification.

Timer1 =̂ Timer(1,T1)
Timer2 =̂ Timer(2,T2)

From Theorem 2 we know that (Φ(Alarm) par (Timer1‖Timer2)) ≡ Alarm.
This equivalence is the basis for assuring that the validation step to come is
correct.

4.3 Requirements

We express the alarm controller requirements as a time action. A safety require-
ment of our alarm controller is that it should guarantee the elapse of at least
T1 time units before the alarm can be disturbed . It should assure also that after
detecting a disturbance it waits for at least T2 time units before the alarm is
trigged. These requirements can be expressed in the following action Req

Req =̂ μX • enable → Wait T1; disturbed → Wait T2; alarm → disable → X

We can obtain an untimed version of our requirements by applying the Φ function
as follows

Φ(Req) = μX • enable → setup.1!T1 → out .1 → disturbed → setup.1!T1 →
out .1alarm → disable → X

The timers needed for the above program are as follows

Timer1 =̂ Timer(1,T1)
Timer2 =̂ Timer(2,T2)
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Fig. 3. Screen dump of the FDR tool used in the validation of the alarm controller
example

Notice that the alarm controller and the requirement in the normal form use
the same timers; therefore we need to prove that the untimed alarm controller
Φ(Alarm) satisfies its untimed requirements Φ(Req). Because both actions are in
the normal form, do not contain any more time operators and, the semantics of
the time events has been given by the normal form expansion laws, we can use
CSP model checking tool FDR [4] in the verification process. Figure 3 shows the
use of FDR in the validation of the above problem. The proof can be conducted
in an algebraic form. We can use the semantic model also in the proof, in A

5 Conclusions

In this paper we presented a framework for the specification and validation of
real-time systems using a subset of Circus. We started by presenting a heteroge-
neous notation that combines the untimed version of the language and the time
operators of timed Circus. The heterogeneous notation was created following the
meta-method approach for formal integration presented by Paige in [8, 9].

A framework that makes use of the heterogeneous notation has also been in-
troduced. The framework presents an approach to validate the time requirements
of a system using the untimed heterogeneous notation.

Time requirements are specified using a particular model of time, either a
discrete or a continuous model. We observe that our approach is independent
of the time model used in the system specification. This is because the hetero-
geneous notation makes use of the untimed model and the time requirements
are translated to timer events requirements. We have used Circus discrete time
model, but a continuous model can also be used.
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In [10], Qin, Dong and Chin propose a semantic model for Timed Communi-
cating Object Z (TCOZ) based on the Unifying Theories of Programming. The
semantic model gives a unified semantics for both channels and sensors/actuators
based communication. The authors also extend TCOZ by adding two new timing
constraints (deadline and waituntil). The aim is to create a complete and unified
semantic model for TCOZ that can be later used to validate transformation rules
from TCOZ to other semantic models such as Timed Automata. However, the
authors do not show how this can be carried out.

The semantic model for TCOZ proposed by Qin,Dong and Chin in [10] and
the model used for Timed RSL as proposed by Ri and Jifeng in [18] are both
based on the semantic model proposed by Sherif and Jifeng in [15]; this model is
also the basis of our framework. This permits the use of the same framework to
validate time properties of these languages using the same principles but chang-
ing some of the time mapping functions. As a future exercise, our framework
could be adopted to validate time requirements of Timed RSL and TCOZ.

As future work we also intend to apply this framework to an industrial real-
time system and study its usage along with the Circus refinement calculus. We
also intend to develop a tool, possibly an extension of FDR [4], to automate the
validation process.
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Abstract. A switched probabilistic I/O automaton is a special kind of
probabilistic I/O automaton (PIOA), enriched with an explicit mech-
anism to exchange control with its environment. Every closed system
of switched automata satisfies the key property that, in any reachable
state, at most one component automaton is active. We define a trace-
based semantics for switched PIOAs and prove it is compositional. We
also propose switch extensions of an arbitrary PIOA and use these ex-
tensions to define a new trace-based semantics for PIOAs.

1 Introduction

Probabilistic automata [Seg95, Sto02] constitute a mathematical framework for
modeling and analyzing probabilistic systems, specifically, systems consisting of
asynchronously interacting components capable of nondeterministic and prob-
abilistic choices. This framework has been successfully adopted in the studies
of distributed algorithms [LSS94, PSL00, Agg94] and practical communication
protocols [SV99].

An important part of such a framework is a notion of visible behavior of
system components. This is used to derive implementation and equivalence re-
lations among components. For example, one can define the visible behavior
of a nondeterministic automaton to be its set of traces (i.e., sequences of visi-
ble actions that arise during executions of the automaton [LT89]). This induces
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an implementation (resp. equivalence) relation on nondeterministic automata,
namely inclusion (resp. equality) of sets of traces.

Perhaps the most important property of an implementation relation is com-
positionality : if P implements Q, then for every context R, one should be able to
infer that P‖R implements Q‖R. This property facilitates correctness proofs of
complex systems by reducing properties of a large system to properties of smaller
subsystems. In the setting of security analysis, for instance, compositionality en-
sures that plugging secure components into a security preserving context results
again in a secure component [Can01].

Generalizing the notion of traces, Segala [Seg95] defines the visible behavior
of a probabilistic automaton as its set of trace distributions, where each trace
distribution is induced by a probabilistic scheduler which resolves all nondeter-
ministic choices. This gives rise to implementation and equivalence relations as
inclusion and equality of sets of trace distributions, respectively. It turns out
that this notion of implementation relation is not compositional. A simple coun-
terexample is illustrated in Figure 1.
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Fig. 1. Probabilistic automata Early, Late and Toss

As their names suggest, automaton Early forces its scheduler to choose be-
tween b and c as it chooses one of the two available a-transitions, whereas au-
tomaton Late allows its schedulers to make this decision after the a-transition.
Clearly, these two automata have the same set of trace distributions, but they
can be distinguished by the context Toss. The composed system Late ‖Toss has
a trace distribution D0 that assigns probability 1

2 to each of these traces: adb
and aec . Such total correlations between actions d and b, and between actions
e and c, cannot be achieved by the composite Early ‖Toss.

Inspired by this example, we establish in [LSV03] that the coarsest precon-
gruence refining trace distribution preorder coincides with the probabilistic sim-
ulation preorder. In other words, probabilistic contexts are capable of exposing
internal branching structures of other components.

Aside from its inspirational merits, this example reveals an unsatisfactory
aspect of the composition mechanism of probabilistic automata. Namely, nonde-
terministic choices are resolved after the two automata are composed, allowing
the global scheduler to make decisions in one component using state information
of the other. This phenomenon can be viewed as a form of “information leak-
age”: the global scheduler channels private information from one component to
the other, in particular, from Toss to Late.
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In this paper, we present a composition mechanism where local scheduling
decisions are based on strictly local information. That is, (i) local nondetermin-
istic choices of each component are resolved by that component alone; (ii) global
nondeterministic choices (i.e., inter-component choices) are resolved by some in-
dependent means. To address the first issue, we introduce an input/output dis-
tinction to our model and pair each automaton with an input/output scheduler.
For the second, we introduce a control-passage1 mechanism, which eliminates
global scheduling conflicts.

Before describing our model in greater detail, we take a quick look at re-
lated proposals in the existing literature. (We refer to [SV04] for a compara-
tive study of various probabilistic models.) For purely synchronous, variable-
based models, global nondeterministic choices are resolved by “avoidance”: in
each transition of the global system, all components may take a step. This in-
trinsic feature of synchronous models allows De Alfaro, Henzinger and Jhala
[dAHJ01] to successfully define a compositional, trace-based semantics for their
model of probabilistic reactive modules. For asynchronous models such as prob-
abilistic automata, global nondeterministic choices must be resolved explicitly
in order to assign a probability mass to each possible interleaving of actions.
Wu, Smolka and Stark [WSS94] propose a compositional model based on prob-
abilistic input/output automata. In that model, global nondeterminism is re-
solved by a “race” among components: each component draws a delay from
an exponential distribution (thus leaving the realm of discrete distributions).
Assuming independence of these random draws, the probability of two compo-
nents drawing the same delay is zero, therefore there is almost always a unique
winner.

In this paper, we introduce the model of switched probabilistic I/O automata
(or switched automata for short). This augments the probabilistic I/O automata
model with some additional structures and axioms. In particular, we add a pred-
icate active on the set of states, indicating whether the automaton is active or
inactive. We require that locally controlled actions are enabled only if the au-
tomaton is active. In other words, an inactive automaton must be quiescent and
can only accept inputs from the environment.

A switched automaton changes its activity status by performing special con-
trol input and control output actions. Control inputs switch the machine from
inactive to active and vice versa for control outputs. All other actions must leave
the activity status unchanged. It is important that all control communications
are “handshakes”: at most two components may participate in a synchronization
labeled by a control action. Together with an appropriate initialization condition,
this ensures that at most one component is active at any point of an execution.
Intuitively, we model a network of processes passing a single token among them,

1 Throughout this paper, the term control is used in the spirit of “control flow” in
sequential programming: a component is said to possess the control of a system if
it is scheduled to actively perform the next action. This should not be confused
with the notion of controllers for plants, as in control theory.
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with the property that a process enables a locally controlled transition if and
only if it possesses the token.

The main technical result of this paper is compositionality of a trace-based
semantics for switched probabilistic I/O automata (Section 6, Theorem 1). Sec-
tions 2 and 3 are devoted to the basic theory. There we introduce new technical
notions such as I/O schedulers, scheduled automata and parallel composition
of scheduled automata. In Section 4, we define pseudo probabilistic executions
and pseudo trace distributions for automata with open inputs, and prove im-
portant projection and pasting results. Section 5 treats two standard operators:
renaming and hiding. In Section 7, we propose the notion of switch extensions
for PIOAs, which can be used to derive a new form of composition for the orig-
inal PIOA model. Concluding discussions follow in Section 8. Due to space con-
straints, we have omitted many proofs. These can be found in a full version of this
paper available at http://www.cs.kun.nl/ita/publications/papers/fvaan/
switched.html.

2 Preliminaries

In this section, we define probabilistic I/O automata and some related notions.
This is a straightforward combination of the Input/Output Automata model
of Lynch and Tuttle [LT89] and the Simple Probabilistic Automata model of
Segala [Seg95].

A discrete probability (resp. sub-probability) measure over a set X is a measure
μ on (X, 2X) such that μ(X) = 1 (resp. μ(X) ≤ 1). With slight abuse of notation,
we write μ(x) for μ({x}). The set of all discrete probability measures over X is
denoted Disc(X); similarly for SubDisc(X). Moreover, we use Supp(μ) to denote
the support of a discrete measure μ: the set of elements in X to which μ assigns
nonzero measure. Given x ∈ X, the Dirac distribution on x is the unique measure
assigning probability 1 to x, denoted (x �→ 1).

A probabilistic I/O automaton (PIOA) P consists of:

– a set States(P ) of states and a start state s0 ∈ States(P );
– a set Act(P ) of action symbols, partitioned into: I (input actions), O (output

actions) and H (hidden actions);
– a transition relation →⊆ States(P )×Act(P )× Disc(States(P )).

An action is visible if it is not hidden. It is locally controlled if it is non-input
(i.e., either output or hidden); we define L := O ∪ H. We write s

a→ μ for
〈s, a, μ〉 ∈→, and s

a→ s′ if there exists μ with s
a→ μ and s′ ∈ Supp(μ). A

state is quiescent if it enables only input actions. A PIOA is closed if its set of
input actions is empty. As with I/O automata, we always assume input enabling :
∀s ∈ States(P ) ∀a ∈ I ∃μ : s

a→ μ.
An execution of P is a (possibly finite) sequence p = s0a1μ1s1a2μ2s2 . . . ,

such that:
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– each si (resp., ai, μi) denotes a state (resp., action, distribution over states);
– s0 = s0 and, if p is finite, then p ends with a state;
– for each non-final i, si

ai+1→ μi+1 and si+1 ∈ Supp(μi+1).

In some literature, executions are defined to be sequences of states and ac-
tions in alternating fashion, thus omitting the target distributions. We adopt
the current style for a more straightforward generalization to probabilistic exe-
cutions.

Given a finite execution p, we use last(p) to denote the last state of p. A state
s is reachable if there exists a finite execution p such that last(p) = s. We write
Exec(P ) for the set of all executions of P and Exec<ω(P ) for the set of finite
executions. Given an execution p, the sequence of visible action symbols in p is
called the (visible) trace of p, denoted tr(p).

A finite set of PIOAs {P1, . . . , Pn} is said to be compatible if for all i �= j,
Oi ∩Oj = Act(Pi) ∩Hj = ∅. Such a set is closed if

⋃
1≤i≤n Ii ⊆

⋃
1≤i≤n Oi. We

define P = ‖1≤i≤nPi as usual with synchronization of shared actions:

– States(P ) :=
∏

1≤i≤n States(Pi) and the start state of P is 〈s0
1, . . . , s0

n〉;
– I :=

⋃
1≤i≤n Ii \

⋃
1≤i≤n Oi, O :=

⋃
1≤i≤n Oi, and H :=

⋃
1≤i≤n Hi;

– given a state 〈s1, . . . , sn〉, an action a and a target distribution μ, there is a
transition 〈s1, . . . , sn〉 a→ μ if and only if μ is of the form μ1 × . . .× μn and
for all 1 ≤ i ≤ n,
• either a ∈ Act(Pi) and si

a→ μi,
• or a �∈ Act(Pi) and μi = (si �→ 1).

Notice ‖ is commutative and associative for PIOAs (up to isomorphism).
The notion of (probabilistic) schedulers for a PIOA P is introduced as a means

to resolve all nondeterministic choices in P . Each scheduler consists of an input
component and an output component. Given a finite history of the automaton,
the output scheduler chooses probabilistically the next locally controlled transi-
tion, whereas the input scheduler responds to inputs from the environment and
chooses probabilistically a transition carrying the correct input symbol.

Definition 1. An input scheduler σ for P is a function

σ : Exec<ω(P )× I −→ Disc(→)

such that for all 〈p, a〉 ∈ Exec<ω(P )×I and transitions (s b→ μ) ∈ Supp(σ(p, a)),
we have s = last(p) and b = a. An output scheduler ρ for P is a function

ρ : Exec<ω(P ) −→ SubDisc(→)

such that for all p ∈ Exec<ω(P ) and transition (s a→ μ) ∈ Supp(ρ(p)), we have
s = last(p) and a ∈ L. An I/O scheduler for P is then a pair 〈σ, ρ〉 where σ is
an input scheduler for P and ρ is an output scheduler for P .

Notice input schedulers must return a discrete probability distribution, re-
flecting the requirement that each input issued by the environment is received
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with probability 1. (This is always possible because of the input enabling as-
sumption.) In contrast, output schedulers may choose to halt with an arbitrary
probability θ by returning a proper sub-distribution whose total probability mass
is 1− θ. Finally, we write σ(p, a)(μ) as a shorthand for σ(p, a)(last(p) a→ μ) and
ρ(p)(a, μ) for ρ(p)(last(p) a→ μ).

Consider a closed PIOA P . Obviously, any I/O scheduler for P has a triv-
ial input component (i.e., the empty function). Every output scheduler ρ thus
induces a purely probabilistic behavior, which is captured by the following no-
tion of probabilistic executions. The probabilistic execution induced by ρ is the
function Qρ : Exec<ω(P ) −→ [0, 1] defined recursively by:

– Qρ(s0) := 1, where s0 is the initial state of P ;
– Qρ(p′) := Qρ(p) · ρ(p)(a, μ) · μ(s′), where p′ is of the form paμs′.

A probabilistic execution Qρ induces a probability space over the sample
space ΩP := Exec(P ) as follows. Let � denote the prefix ordering on sequences.
Each p ∈ Exec<ω(P ) generates a cone of executions: Cp := {p′ ∈ Exec(P ) | p �
p′}. Let FP denote the smallest σ-field generated by the collection {Cp | p ∈
Exec<ω(P )}. There exists a unique measure mρ on FP with mρ[Cp] = Qρ(p) for
all p in Exec<ω(P ); therefore Qρ gives rise to a probability space (ΩP ,FP ,mρ).

Trace distributions are obtained from probabilistic executions by removing
non-visible elements. In our case, these are states, hidden actions and distribu-
tions of states. To state this precisely, we need the notion of minimal executions:
a finite execution p of P is said to be minimal if every proper prefix of p has a
strictly shorter trace. Notice, the empty execution (i.e., the sequence containing
just the initial state) is minimal. Moreover, if p is nonempty and finite, then p
is minimal if and only if the last transition in p has a visible action label. For
each α ∈ Act(P )<ω, let tr-1min(α) denote the set of minimal executions of P with
trace α.

Now we define a lifting of the trace operator tr : Exec<ω(P ) −→ Act(P )<ω.
Given a function Q : Exec<ω(P ) −→ [0, 1], define tr(Q) : Act(P )<ω −→ [0, 1] by

tr(Q)(α) :=
∑

p∈tr-1min(α)

Q(p).

Given an output scheduler ρ of a closed PIOA P , the trace distribution induced
by ρ (denoted Dρ) is simply the result of applying tr to the probabilistic exe-
cution Qρ. That is, Dρ := tr(Qρ). We often use variables D, D′, etc. for trace
distributions, thus leaving the scheduler ρ implicit.

Similar to the case of probabilistic executions, each Dρ induces a probability
measure on the sample space Ω := Act(P )≤ω. There the σ-field F is generated
by the collection {Cα | α ∈ Act(P )<ω}, where Cα := {α′ ∈ Ω | α � α′}. The
measure mρ on F is uniquely determined by the equations mρ[Cα] = Dρ(α) for
all α ∈ Act(P )<ω.

In the literature, most authors define probabilistic executions (resp. trace
distributions) to be the probability spaces 〈ΩP , FP , mρ〉 (resp. 〈Ω, F , mρ〉).
Here we find it more natural to reason with the functions Qρ and Dρ, rather
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than the induced measures. We refer to [Seg95] for these alternative definitions
and proofs that they are equivalent to our versions.

3 Switched Probabilistic I/O Automata

As we argued in Section 1, one must distinguish between global and local nonde-
terministic choices and must resolve them separately. This section describes our
solution, namely, an explicit mechanism of control exchange among parallel com-
ponents. The presentation is organized as follows: (i) first we define pre-switched
automata, where we describe control action signatures and the Boolean-valued
state variable active; (ii) then we introduce the notion of input well-behaved ex-
ecutions of a pre-switched automaton and state four axioms defining switched
automata; (iii) finally, we introduce the notion of a scheduled automaton, essen-
tially a switched automaton paired with an I/O scheduler.

For technical simplicity, we assume a universal set Act of action symbols
such that Act(P ) ⊆ Act for every PIOA P . Moreover, Act is partitioned into
two sets: BAct (basic actions) and CAct (control actions). Both sets are assumed
to be countably infinite, so we can rename hidden actions using fresh symbols
whenever necessary (cf. Section 5).

Definition 2. A pre-switched automaton P is a PIOA endowed with a function
active : States(P ) −→ {0, 1} and a set Sync ⊆ O∩CAct of synchronized control
actions.

We use variables P , Q, etc. to denote pre-switched automata. Given a pre-
switched automaton P , we further classify its action symbols:

– BI := I ∩ BAct (basic inputs);
– BO := O ∩ BAct (basic outputs);
– CI := I ∩ CAct (control inputs);
– CO := (O ∩ CAct) \ Sync (control outputs).

Essentially, we have a partition {BI ,BO ,H,CI ,CO ,Sync} of Act(P ). We say
that P is initially active if active(s0) = 1. Otherwise, it is initially inactive.

As described in Section 1, the Boolean-valued function active on the states
of P indicates whether P is active or inactive, while control actions allow P to
exchange control with its environment. The designation of synchronized control
actions helps to achieve the “handshake” condition on control synchronizations:
whenever we compose two automata, we classify the shared control actions as
“synchronized”, so that they are no longer available for further synchronization
with a third component. This is made precise in the definitions of compatibility
and composition for pre-switched automata.

A finite set of pre-switched automata {P1, . . . , Pn} is said to be compatible if
(i) {P1, . . . , Pn} is a compatible set of PIOAs; (ii) for all i �= j, Act(Pi)∩Syncj =
CI i ∩CI j = ∅; (iii) at most one Pi is initially active. Notice that such a set is
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compatible if and only if for all i �= j, Pi and Pj are compatible. The paral-
lel composition of {P1, . . . , Pn}, denoted ‖1≤i≤nPi, is the result of composing
P1, . . . , Pn as PIOAs, together with:

– Sync :=
⋃

1≤i≤n Synci ∪
⋃

1≤i,j≤n(CI i ∩COj);
– active(s1, . . . , sn) = 1 if and only if for some i, activei(si) = 1.

Clearly, the composite ‖1≤i≤nPi is again a pre-switched automaton. In the binary
case, we write P1‖P2 as shorthand for ‖1≤i≤2Pi. Observe that P1‖P2 ∼= P2‖P1;
that is, composition of pre-switched automata is commutative up to isomor-
phism. Next we check that composition is also associative on the class of pre-
switched automata.

Lemma 1. Let P1, P2 and P3 be pre-switched automata. Assume P1 is compat-
ible with P2, and P3 is compatible with P1‖P2. Then P2 is compatible with P3,
and P1 is compatible with P2‖P3. Moreover, (P1‖P2)‖P3 ∼= P1‖(P2‖P3).

Recall that switched automata are intended to be composed in such a way
that at most one component is active at any point of an execution. In particular,
any environment automaton must also follow the rules of control exchange; that
is, after activating some system component, the environment must itself become
inactive. This leads to the definition of input well-behavedness. Let P be a pre-
switched automaton. An input transition s

a→ μ is well-behaved if active(s) = 0.
An execution p of P is input well-behaved if all input transitions occurring in
p are well-behaved. Let Exec<ω

iwb (P ) denote the set of finite, input well-behaved
executions of P . Moreover, we say that a state s is input well-behaved reachable,
notation iwbr(s), if there exists an input well-behaved execution p such that
s = last(p). Clearly, the empty execution is input well-behaved and thus the
initial state is always input well-behaved reachable. If P is closed (i.e., I = ∅),
then every execution of P is trivially input well-behaved and every reachable
state is input well-behaved reachable. We are now prepared to define the notion
of switched probabilistic I/O automata.

Definition 3. A switched (probabilistic I/O) automaton is a pre-switched au-
tomaton P that satisfies the following axioms.

s
a→ μ ∧ active(s) = 0 ⇒ a ∈ I (1)

s
a→ s′ ∧ a ∈ CI ⇒ active(s′) = 1 (2)

s
a→ s′ ∧ a �∈ CI ∪CO ⇒ active(s) = active(s′) (3)

iwbr(s) ∧ s
a→ s′ ∧ a ∈ CO ⇒ active(s′) = 0 (4)

These four axioms formalize our intuitions about control passage. Axiom (1)
requires all inactive states to be quiescent. Axioms (2) and (4) say that control
inputs lead to active states and control outputs to inactive states. Axiom (3)
says that non-control transitions and synchronized control transitions do not
change the activity status. Together, they describe an “activity cycle” for the
automaton P : (i) while in inactive mode, P does not enable locally controlled
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transitions, although it may still receive inputs from its environment; (ii) when P
receives a control input it moves into active mode, where it may perform hidden
or output transitions, possibly followed by a control output; (iii) via this control
output P returns to inactive mode.

Notice that Axiom (4) is required for input well-behaved reachable states
only. Without this relaxation, the composition of two switched automata may
not satisfy Axiom (4).

We proceed to confirm that the class of switched automata is closed under the
parallel composition operator for pre-switched automata. A set {P1, . . . , Pn} of
switched automata is compatible if the set of underlying pre-switched automata
is compatible. Define the composite, ‖1≤i≤nPi, to be the result of composing
the switched automata as pre-switched automata. The first three axioms can
be verified by unfolding the definition of active in a composition and applying
appropriate axioms for the components. Axiom (4) follows from Lemma 2 below.
The proof is by induction on the length of executions and relies heavily on
invariant-style reasoning based on the definition of input well-behaved executions
and the axioms of switched automata.

Lemma 2. Let {P1, . . . , Pn} be a compatible set of switched automata. For each
finite, input well-behaved execution p of ‖1≤i≤nPi, we have:

(i) for all i, πi(p) is also input well-behaved;
(ii) there is at most one i such that activei(πi(last(p))) = 1.

To summarize, ‖1≤i≤n is a well-defined n-ary operator for switched automata
and, in the binary case, associativity of ‖ follows from Lemma 1.

Next we turn to scheduling decisions. The notion of I/O schedulers for switched
automata is inherited from that of its underlying PIOA.

Definition 4. A scheduled automaton is a triple 〈P, σ, ρ〉 such that P is a
switched automaton and 〈σ, ρ〉 is an I/O scheduler for P .

We use letters S, T , etc. to denote scheduled automata. For each 1 ≤ i ≤ n,
let Si denote a scheduled automaton 〈Pi, σi, ρi〉. The set {Si | 1 ≤ i ≤ n} is said
to be compatible if {Pi | 1 ≤ i ≤ n} is compatible as a set of switched automata.
Given such a compatible set of scheduled automata, we obtain its composite by
combining the I/O schedulers {〈σi, ρi〉 | 1 ≤ i ≤ n} into an I/O scheduler 〈σ, ρ〉
for the switched automaton ‖1≤i≤nPi.

Definition 5. Suppose {Si | 1 ≤ i ≤ n} is a compatible set of scheduled au-
tomata, where Si = 〈Pi, σi, ρi〉 for each i. We construct from this set a com-
posite scheduled automaton ‖1≤i≤nSi := 〈P, σ, ρ〉 as follows.

– P := ‖1≤i≤nPi.
– For every finite execution p of P with last(p) = s and for every a ∈ I,

• σ(p, a)(t b→ μ) := 0 if t �= s or b �= a;
• otherwise, σ(p, a)(s a→ μ0 × . . .× μn) := Πici, where ci equals
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∗ σi(πi(p), a)(μi), if a ∈ Ii;
∗ 1, otherwise.

– For every finite execution p of P with last(p) = s,
• ρ(p)(t a→ μ) := 0 if p is not input well-behaved, t �= s, or a �∈ L;
• otherwise, ρ(p)(s a→ μ0 × . . .× μn) := Πici, where ci equals

∗ ρi(πi(p))(a, μi), if a ∈ Li;
∗ σi(πi(p), a)(μi) if a ∈ Ii;
∗ 1, otherwise.

It is routine to check that σ(p, a) is a discrete distribution for all p ∈ Exec<ω(P )
and a ∈ I. Lemma 2 guarantees that, at the end of every input well-behaved
finite execution p, there is at most one i such that component i enables a lo-
cally controlled transition. This allows us to conclude that ρ(p) is a discrete
sub-distribution for all p ∈ Exec<ω(P ).

As usual, we write S1‖S2 for ‖1≤i≤2Si, provided S1 and S2 are compati-
ble. Associativity of ‖ for scheduled automata follows from that for switched
automata and a routine check on the I/O schedulers. Finally, the notions of
probabilistic executions and trace distributions for closed scheduled automata
are inherited from those of PIOAs. In particular, we write QS (respectively, DS)
for the probabilistic execution (respectively, trace distribution) induced by the
output scheduler of a closed scheduled automaton S.

4 Projection and Pasting

In this section, we study projection and pasting of probabilistic behaviors. Such
results are essential elements in constructing a compositional modeling frame-
work. We begin by introducing the notion of regular executions, which will be
used to define pseudo trace distributions for automata with open inputs. In
Lemma 5, we prove that the pseudo distribution of a composite is uniquely de-
termined by those of its components. Finally, we prove the main pasting lemma
for closed automata (Lemma 7), which plays a crucial role in the proof of our
main compositionality theorem (Theorem 1).

Given an execution p of a switched automaton P , we say that p is regular if
it is both minimal and input well-behaved. Given a finite sequence α of visible
actions in P , let tr-1reg(α) denote the set of regular executions of P with trace α.
Notice that regularity coincides with minimality in case P is closed.

Lemma 3 states that, given a fixed trace, there is a bijective correspondence
between the set of regular executions of the composite and the Cartesian product
of the sets of regular executions of the two components.

Lemma 3. Let X denote tr-1reg(α) in P1‖P2. Let Y and Z denote tr-1reg(π1(α)
in P1 and tr-1reg(π2(α)) in P2, respectively. There exists an isomorphism zip :
Y × Z −→ X whose inverse is 〈π1, π2〉.

Next we introduce a notion of pseudo probabilistic execution for automata
with open inputs. The definition itself is completely analogous to probabilistic
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executions for closed automata; however, a pseudo probabilistic execution does
not always induce a probability measure, because it does not take into account
the probabilities with which inputs are provided by the environment.

Definition 6. Let S = 〈P, σ, ρ〉 be a scheduled automaton. Define the pseudo
probabilistic execution Q of S as follows: for all finite executions p′ of S,

– if p′ is of the form s0, where s0 is the initial state of S, then Q(p′) := 1;
– if p′ is of the form paμs′ with a ∈ I, then Q(p′) := Q(p) · σ(p, a)(μ) · μ(s′);
– if p′ is of the form paμs′ with a ∈ L, then Q(p′) := Q(p) · ρ(p)(a, μ) · μ(s′).

Similarly, we define pseudo trace distributions.

Definition 7. Let S = 〈P, σ, ρ〉 be a scheduled automaton. The pseudo trace
distribution D of S is the function from (Act(S) \ HS)<ω to [0, 1] given by
D(α) :=

∑
p∈tr-1reg(α) Q(p), where Q is the pseudo probabilistic execution of S.

Notice that, if S is closed, then the pseudo probabilistic execution of S coin-
cides with the probabilistic execution of S. Moreover, an execution of a closed
automaton S is regular if and only if it is minimal, thus the pseudo trace distri-
bution of S coincides with the trace distribution of S.

For the rest of this section, let S and T be a pair of compatible scheduled
automata. Let QS‖T , QS and QT denote the pseudo probabilistic executions of
S‖T , S and T , respectively. Similarly for pseudo trace distributions DS‖T , DS

and DT . Lemma 4 below says we can project a pseudo probabilistic execution
of the composite to yield pseudo probabilistic executions of the components.
The proof is routine, by induction on the length of executions. Lemma 5 then
combines Lemma 3 and Lemma 4 to show the analogous projection result for
pseudo trace distributions.

Lemma 4. For all finite executions p of S‖T , we have QS‖T (p) = QS(π1(p)) ·
QT (π2(p)).

Lemma 5. Let α be a finite sequence of visible action symbols of S‖T . Then
DS‖T (α) = DS(π1(α)) ·DT (π2(α)).

To prove the main pasting lemma, we need yet another technical result;
namely, inputs must be received with probability 1. This can be viewed as “input
enabling” in the probabilistic sense and it follows from basic properties of target
distributions and input schedulers.

Lemma 6. Let α be a finite sequence of visible action symbols of S‖T and let
a ∈ Act(S‖T ) be given. If a is not locally controlled by T , then DT (π2(α)) =
DT (π2(αa)).

Two switched/scheduled automata are said to be comparable if they have the
same visible signature and their start states have the same status. We are now
ready for the main pasting lemma.
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Lemma 7 (Pasting). Let S1, S2, T1 and T2 be scheduled automata satisfying
(i) S1 and S2 are comparable; (ii) {S1, T1}, {S2, T2} and {S1, T2} are compatible
sets; (iii) the pseudo trace distributions DS1‖T1 and DS2‖T2 coincide (denoted D).
Then D also coincides with the pseudo trace distribution DS1‖T2 .

5 Renaming and Hiding

In this section, we consider the standard renaming and hiding operators. We
start with an equivalence relation on switched automata: P1 ≡R P2 just in case
there exists a bijection f : H1 −→ H2 such that P2 can be obtained from
P1 by replacing every hidden action symbol a ∈ H1 by f(a) ∈ H2 (notation:
P2 = f(P1)).

It is routine to check this is in fact an equivalence relation. If P1 ≡R P2, we say
that P2 can be obtained from P1 by renaming of hidden actions. This operation
also induces an equivalence relation on scheduled automata: 〈P1, σ1, ρ1〉 ≡R

〈P2, σ2, ρ2〉 just in case there exists a renaming function f such that P1 ≡R P2
via f and 〈σ2, ρ2〉 is obtained from 〈σ1, ρ1〉 via f and f -1 (notation: S2 = f(S1)).

The following lemma says, as long as the renaming operation does not intro-
duce incompatibility of signatures, it does not affect the behavior of an automa-
ton in a closing context.

Lemma 8. Let S and C be compatible scheduled automata with S‖C closed.
Suppose S ≡R S′ via the renaming function f : H −→ H ′ with H ′ disjoint from
Act(C). Then {S′, C} is closed and compatible and DS‖C = DS′‖C .

Next we consider the issue of hiding output actions. Let Hide denote the stan-
dard hiding operator for PIOA. This is also an operator for switched automata,
provided we hide only basic outputs and synchronized control actions.

Lemma 9. Let P be a switched automaton and let Ω ⊆ BO ∪Sync be given.
Then HideΩ(P ) is again a switched automaton.

Notice that every I/O scheduler for P is an I/O scheduler for HideΩ(P ).
Therefore Hide can be extended to scheduled automata:

HideΩ〈P, σ, ρ〉 := 〈HideΩ(P ), σ, ρ〉.

In the rest of this section we investigate the effect of HideΩ on (pseudo)
trace distributions. Let S = 〈P, σ, ρ〉 be a scheduled automaton with signature
〈I, O, H〉. For convenience, write P ′ for HideΩ(P ), O′ for O \Ω, and tr′ for the
trace operator for HideΩ(P ). (If we view HideΩ as an operator on traces, then
tr′ is precisely HideΩ ◦ tr.)

Moreover, for all β′ ∈ (I∪O′)<ω, letMβ′ denote the set of all minimal (w.r.t.
�) traces in HideΩ

-1(β′). That is, if β′ is empty, then Mβ′ is the singleton set
containing the empty trace ε; otherwise,

Mβ′ := {β ∈ (I ∪O)<ω | HideΩ(β) = β′ and the last symbol on β is not in Ω.}

We make a simple observation about minimal executions of P and those of P ′.
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Lemma 10. For all β′ ∈ (I ∪O′)<ω, the following two sets are equal:

– X :=
⋃

β∈Mβ′{p ∈ Exec<ω(P ) | tr(p) = β and p minimal w.r.t. tr};
– Y := {p ∈ Exec<ω(P ′) | tr′(p) = β′ and p minimal w.r.t. tr′}.

Now consider the pseudo trace distribution DS . Define the effect of HideΩ on
DS to be the following function from O′<ω to [0, 1]:

HideΩ(DS)(β′) :=
∑

β∈Mβ′

DS(β).

We have the following corollary of Lemma 10.

Corollary 1. The pseudo trace distribution of HideΩ(S) is precisely HideΩ(DS).
That is, DHideΩ(S) = HideΩ(DS).

Finally, we consider the effect of hiding in a parallel composition. We claim
that the act of hiding in one component does not affect the behavior of the other,
as long as the actions being hidden in the first component are not observable
by the second component. This idea is captured in the following lemma, which
follows from Corollary 1 and Lemma 5.

Lemma 11. Let S1, S2, T be scheduled automata satisfying: (i) S1 and S2 are
comparable and (ii) T is compatible with S1 and S2. Let Ω ⊆ OT be given and
let T ′ denote HideΩ(T ). If T ′ is compatible with S1 (and thus with S2), then

DS1‖T = DS2‖T ⇔ DS1‖T ′ = DS2‖T ′ .

6 Probabilistic Systems

In this section, we give a formal definition of our implementation preorder and
prove compositionality. The basic approach is to model a system as a switched
PIOA together with a set of I/O schedulers. Observable behavior is then defined
in terms of trace distributions induced by the prescribed schedulers.

Formally, a probabilistic system P is a set of scheduled automata that share
a common underlying switched automaton. (Equivalently, a probabilistic system
is a pair 〈P, S〉 where P is a switched automaton and S is a set of I/O schedulers
for P .) Such a system is full if S is the set of all possible I/O schedulers for P .

Two probabilistic systems P1 = 〈P1, S1〉 and P2 = 〈P2, S2〉 are compatible
just in case P1 is compatible with P2. The parallel composite of P1 and P2,
denoted P1‖P2, is the probabilistic system: {S1‖S2 | S1 ∈ P1 and S2 ∈ P2}.
Notice the underlying automaton of the composite is P1‖P2.

Let S be a scheduled automaton. A context for S is a scheduled automaton C
such that (i) C is compatible with S; (ii) S and C have complementary signatures
(i.e., IC = OS and IS = OC). Given probabilistic system P = 〈P, S〉, we say
that D is a trace distribution of P just in case there exist scheduled automata
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S ∈ P and context C for S such that D = DS‖C . We write td(P) for the set of
trace distributions of P.

Two probabilistic systems are comparable whenever the underlying switched
automata are comparable. Given comparable systems P1 and P2, we define the
trace distribution preorder by: P1 ≤td P2 whenever td(P1) ⊆ td(P2). We are now
ready to present our main theorem, namely, that the trace distribution preorder
for probabilistic systems is compositional.

Theorem 1. Let P1 and P2 be comparable probabilistic systems with P1 ≤td P2.
Suppose P3 is compatible with both P1 and P2. Then P1‖P3 ≤td P2‖P3.

7 PIOA Revisited

Before concluding, we give an example in which switched automata are used to
obtain a new trace-based semantics for general PIOAs. The idea is to convert
a general PIOA to a switched PIOA by adding control actions and activity
classification. We then hide all control actions in trace distributions generated by
the resulting switched PIOA. In many cases, this yields a set of trace distributions
strictly smaller than that considered by Segala [Seg95].

Let P be a PIOA and assume Act(P ) ⊆ BAct . Let go, done ∈ CAct be fresh
symbols and let b0 be a Boolean value. The switch extension of P with go, done
and initialization b0 (notation: E(P, go, done, b0)), is the switched automaton P ′

constructed as follows:

– States(P ′) = States(P )× {0, 1} and the start state of P ′ is 〈s0, b0〉;
– I ′ = I ∪ {go}, O′ = O ∪ {done}, and Sync′ = ∅;
– active′(〈s, b〉) = b for b ∈ {0, 1};
– the transition relation is the union of the following:

• {〈〈s, 1〉, a, μ1〉 | s
a→ μ in P},

• {〈〈s, 0〉, a, μ0〉 | s
a→ μ in P and a ∈ I},

• {〈〈s, b〉, go, (〈s, 1〉 �→ 1)〉 | s ∈ States(P ) and b ∈ {0, 1}},
• {〈〈s, 1〉, done, (〈s, 0〉 �→ 1)〉 | s ∈ States(P )},

where μb denotes the distribution that assigns probability μ(t) to 〈t, b〉 and
0 to 〈t, 1− b〉.

Roughly speaking, P ′ is obtained from P by (i) adding a Boolean flag active′

to each state; (ii) enabling locally controlled transitions only if active′ = 1; and
(iii) adding go and done transitions which update active′ appropriately. It is
not hard to check that P ′ satisfies all axioms of switched automata. Moreover,
the pair 〈go, done〉 can be easily generalized to a pair of disjoint sets of control
actions.

Given any two compatible PIOAs, we can always extend them with comple-
mentary control actions and initialization statuses, resulting in a pair of com-
patible switched automata. As an example, we consider the automata Late and
Toss in Figure 1. Actions a, b and c are considered outputs of Late, whereas
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action a is an input of Toss and actions e and f are outputs of Toss. The follow-
ing diagrams illustrate E(Late, go, done, 1) and E(Toss, done, go, 0). For a clearer
picture, we have omitted the probabilities on the input a-transition in Toss, as
well as all nonessential input loops. The active region, which is identical to the
original PIOA, is drawn in the foreground. The inactive region, in which all lo-
cally controlled transitions are removed, is in the background. Each two-headed
arrow indicates a control output from active to inactive and a control input from
inactive to active.
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Now consider the problematic trace distribution D0 of Late ‖Toss, as de-
scribed in Section 1. Let P1 and P2 denote the full probabilistic systems on
E(Late, go, done, 1) and E(Toss, done, go, 0), respectively. As we compose these
two systems, D0 is no longer a trace distribution of P1‖P2 (even after hiding go
and done), because I/O schedulers in P1 have no way of knowing whether action
d or action e was performed by P2, thus they cannot establish the correlations
between actions d and b, and between actions e and c.

This leads to our proposal of a new notion of visible behaviors for PIOA. Let
P be a PIOA and let P be the full probabilistic system on E(P, go, done, 0). A
PIOA E is a context for P if IE = OP , OE = IP , and E is compatible with P .
For each such E, write PE for the full probabilistic system on E(E, done, go, 1).
We say that D is a trace distribution of P if there exists a context E for P such
that D ∈ td(Hide{go,done}(P‖PE)), where Hide is lifted from scheduled automata
to probabilistic systems.

8 Conclusions and Further Work

Our ultimate goal, of course, is to obtain a compositional semantics for PIOAs.
The notion of switch extensions opens up an array of new options for that
end. A promising approach is to model each system as a finite set of PIOAs,
rather than a single PIOA. Composition is taken to be set union, representing
the act of placing two sets of processes in the same computing environment.
Behavior is then defined in terms of switch extensions, which instantiate the
system with a particular network topology for control passage. In that case, a
behavior of a finite set F is determined by (i) a context E for F ; (ii) a combi-
nation of switch extensions of F ∪ {E}; (iii) a combination of I/O schedulers
for these switch extensions. By ranging over all contexts and all extension-
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scheduler combinations, we capture all possible behaviors of the system repre-
sented by F .

In other future work, we plan to apply our theory of composition for PIOAs to
the task of verifying security protocols. For example, we will try to model typical
Oblivious Transfer protocols within the PIOA framework and verify correctness
in the style of Canetti’s Universal Composability [Can01]. We will also explore
the use of PIOAs as a semantic model for the probabilistic polynomial time
process calculus of Lincoln, Mitchell, Mitchell and Scedrov [LMMS98].
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Abstract. In this article we present an application of decompositions of au-
tomata to obtain distributed controllers. The decomposition technique is derived
from the classical method of partitions. This is then applied to the domain of
discrete event systems. We show that it is possible to decompose a monolithic
controller into smaller controllers which are non-conflicting. This is derived from
the notion of decompositions via partitions. Some global state information is nec-
essary to ensure that the joint behaviour of the component automata is identical
to the original controller. The global state information required is identical to
the global information present in Zielonka asynchronous automata. The joint be-
haviour of the component automata is shown to be non-conflicting.

Keywords: Decompositions, Asynchronous Automata, Controllers.

1 Introduction

It is well known that one can synthesise controllers for discrete event systems (DES)
using von-Neumann discrete game playing techniques [RW89]. In the context of au-
tomata one is given a system description (also called a plant or environment) and a
specification of desired behaviour. The synthesis process generates an automaton called
the controller or supervisor. The synthesis process ensures that the joint behaviour of
the controller and the plant is within the behaviours stated in the specification. The prin-
cipal advantage of this synthesis process is that it is completely automatic. Furthermore,
the synthesised controller is the most general controller (i.e., the controller that permits
the largest possible behaviour). In this article we present an approach to synthesising
distributed/parallel controllers.

The modular approach to developing (including specification, refinement, verifi-
cation) systems is the most promising technique to overcoming complexity [Jon94b,
dRLP98]. Compositional techniques allow one to combine smaller systems to obtain
larger ones. But it imposes certain conditions to ensure that the large system satisfies
the requirements. While there is knowledge concerning general compositional ideas
[dRLP98], the situation for controller synthesis is not that clear. [WR88] identify a suffi-
cient condition called non-conflicting under which the joint operation of two controllers
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is valid. The literature [Won04] indicates that modular synthesis of controllers is diffi-
cult and not always successful. [SW04] show how the state space of a single controller
can be reduced but do not address the distributed case. The general synthesis problem
especially related to implementation is either undecidable or NP-complete [SEM03].
[PTV01] also show how decentralised control over partial observations does not al-
ways admit finite state controllers (although the overall system may be finite state).
This is because the projection on the individual observations may yield non-regular
languages. Tripakis in [Tri04] shows that determining the existence of a function that
determines the validity of a distributed observation is undecidable. This result is related
to the undecidability of a decentralized supervisory control problem. Therefore, the
next best thing is to perform a “monolithic” synthesis and then automatically decom-
pose the controller to obtain distributed controllers. By obtaining a suitable distributed
automata over different alphabets, this process can also be viewed as yielding a de-
centralised controller over partial observations. It is this problem that we solve in this
paper.

Our solution to this problem is presented in two stages. In the first stage we treat
the controller obtained from the monolithic synthesis as an independent entity (i.e., an
open system). We adapt the classical decomposition technique [HS66] to split the large
controller into two components along with synchronisation restrictions. The key result
is that this process yields non-conflicting controllers. In the second stage we simplify
the two controllers (i.e., relax the synchronisation requirements) by taking the behaviour
of the plant into account. While this affects the overall behaviour of the controller, it
does not alter the correctness of the controller working in conjunction with the plant.
This technique illustrates how a collection of simple controllers each controlling only
certain aspects of behaviour but achieving the overall control can be constructed. The
strategy described in this paper can be summarised as follows.

1. Generate modular controllers from the distributed system.
2. If the generated controllers are non-conflicting then no further action is necessary.
3. Otherwise, generate a monolithic controller.
4. Decompose the monolithic controller to obtain two non-conflicting controllers.

This is described in section 3 and an example is presented in section 4.
5. Simplify the two controllers using the behaviour of the plant. This is described in

section 5.

In the next section we review the relevant results pertaining to decomposition of au-
tomata using partitions, relevant definitions from DES and the definition of distributed
automata. We then introduce a different presentation of distributed automata. This is
followed by the main results of this paper. First we show the decomposition of a sin-
gle automaton into distributed automata such that the languages accepted by them are
the same. Then we show that the decomposition process using partitions ensures non-
conflicting behaviour. Two examples, one of which is devoted to the decomposition of
controllers, are then presented. Finally, we present the extension to the basic technique
which takes into account the behaviour of the plant that is being controlled.
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2 Preliminaries

In this section we briefly recall the concepts and notation required to explain decompo-
sitions and controllers. The details concerning decompositions can be found in [HS66,
Hol82] while the details concerning discrete event systems and controllers can be found
in [RW89].

2.1 Decompositions

A finite state automaton A consists of a 5 tuple (Q, Σ,−→, q0, F) where Q is a finite set
of states, Σ a finite input alphabet,−→⊆Q×Σ×Q is the transition relation, q0 ∈Q the
initial state and F ⊆Q the set of final states. As a notational convenience (q,a,q′)∈−→
is often written as q

a−→ q′.
We extend the transition relation to sets. That is, for (X ⊆ Q) and (a ∈ Σ) we let

X
a−→ Y where Y = {q′ (q ∈ X),(q a−→ q′)}. Given two automata A1=(Q1,Σ,−→1

,q0
1,F1) and A2=(Q2,Σ,−→2,q0

2,F2) we write (A1 ≤ A2) if there is a surjective partial
map η from Q2 to Q1 satisfying the following three properties: 1) ∀ q,q′ ∈ Q2, a ∈ Σ:
η(q) a−→1 η(q′) implies q

a−→2 q′, 2) η(q0
2) = q0

1 and 3) F2 = {q ∈ Q2 η(q) ∈ F1}
That is, there is a covering homomorphism from A2 to A1. It is possible for A2 to

have more states and transitions than A1. However, if A2 has no a move in a state q,
there cannot be an a move from η(q) or η(q) is undefined.

Given two automata A1 and A2 over a common input alphabet Σ, define (A1 ‖ A2)
to represent the synchronous product (also called the meet operator in [Won04]). That
is, the automaton (A1 ‖ A2) is defined as (Q1 ×Q2,Σ,−→,q0

1 × q0
2,F1 × F2) where

(q1,q2)
a−→ (q′1,q

′
2) if and only if q1

a−→1 q′1 and q2
a−→2 q′2. We say (A1 ‖ A2) is a

decomposition of A if and only if A ≤ (A1 ‖ A2). A decomposition of A into (A1 ‖ A2)
is non-trivial if A is not identical to A1 or A2.

Given A, a partition π over Q is admissible if and only if for every X belonging to π
and for every a in the input alphabet, there is a Y belonging to π such that X

a−→ Z and
Z ⊆ Y .

The product of two partitions π1 and π2 written as π1 ·π2 is defined as follows. π1 ·π2

= { X ∩Y X ∈ π1, Y ∈ π2, X ∩Y �= /0}. The finest partition ⊥Q is defined to be set of
all singletons of Q. The coarsest partition 5Q is the set { Q }. A partition is non-trivial
if it is neither the coarsest nor the finest partition. Two partitions are orthogonal if their
product yields the finest partition.

Proposition 1 ([Hol82]). If a given automaton A has two non-trivial orthogonal parti-
tions each of which is admissible, then it has a non-trivial decomposition.

The proof of the proposition constructs A1 and A2 by considering orthogonal ad-
missible partitions. That is, each state in the component automata is actually a subset of
states of the original automaton. The construction also ensures that A ≤ (A1 ‖ A2). In
such a case, A is said to be decomposed via partitions.

2.2 Non-conflicting Controllers

Given a description of a plant (say P) (or the environment) and a desired specification
(say S), the purpose of a controller (say C) is to ensure that the operation of the plant is
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Fig. 1. Conflicting Automata

within the desired specification. That is, the behaviour of (P ‖ C) should be contained
in S. There are certain restrictions on C for it to be called a controller for P. Every
symbol in the alphabet of the automaton P can be classified as either controllable or
uncontrollable. A controllable action can either be disabled or enabled by the controller.
An uncontrollable action cannot be disabled to the controller. Hence in any global state
of (P ‖ C), if P can exhibit an uncontrollable action, C must also be able to exhibit it.

This can be formally stated as follows. Given an alphabet Σ, let Σu denote the un-
controllable subset of Σ and Σc denote the controllable subset of Σ. A prefix closed
language L is a controllable language with respect to a prefix closed language G if and
only if for every α ∈ Σ∗ belonging to L and a belonging to Σu, if αa belongs to G, αa
belongs to L. Here G represents the trace behaviour of the plant P and L the trace be-
haviour of the controller C. In any given state of the computation (denoted by α), if the
plant can perform an uncontrollable action (a) the controller must allow it to occur. The
above definition can be extended to non-prefix closed languages. A language L is a con-
trollable language with respect to a language G iff the prefix closure of L controllable
with respect to the prefix closure of G.

The controller itself may consist of a number of parallel components, and the key
idea is that they should not be conflicting one another. Given a regular language L, let
L̃ represent the prefix closure of L. Two languages L and K are non-conflicting iff L̃∩ K̃
is identical to L̃∩K. It is easy to see that L̃∩K ⊆ L̃∩ K̃. So, to verify non-conflicting
behaviour, we only have to show inclusion in one direction. The usefulness of non-
conflicting behaviour is illustrated by the following proposition.

Proposition 2 ([WR88]). Let L1 and L2 be supremal (largest with respect to inclusion)
controllable sub-languages of E1 and E2 respectively. If L1 and L2 are non-conflicting
controllable languages , L1∩L2 is the supremal controllable sublanguage of E1∩E2.

We now give an example to illustrate the problem of conflicting controllers or su-
pervisors.

Consider the two automata shown in figure 1. Let L be the language accepted by
the automaton shown on the left and K be the language accepted by the automaton
shown on the right. Note that L∩K = {abcd}. Consider the string abca which belongs
to (L̃∩ K̃). This is because the string abcabcd belongs to L and the string abcad belongs
to K. Hence the string abca belongs to the intersection of the prefix closures of the two
languages. However, it cannot belong to the prefix closure of (L∩K). Such behaviour is
conflicting because if the environment asks for permission to exhibit the symbol a after
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exhibiting abc, both controllers give their permission. But the system becomes stuck as
no extension of this string can lead to a final state. Hence the system enters a deadlock
state. This arises as the automaton is viewed as interacting with an environment rather
than as a pure acceptor. In other words, non-conflicting controllers ensure the plant does
not deadlock under their joint supervision.

2.3 Asynchronous Automata

We now describe asynchronous automata [Zie87]. We assume a finite set Loc = {1, . . . ,
n} of agents. Associated at each location is an automaton with its corresponding alpha-
bet. These are combined as follows. Let (Σ1,Σ2, . . . ,Σn) be a distributed alphabet and
(A1,A2, . . . ,An) be the associated automata. We will assume that the state spaces of the
component automata are pairwise disjoint but could have overlapping alphabets.

Let Σ =
⋃

i∈Loc

Σi. For a ∈ Σ let loc(a) = { j a ∈ Σ j}. We define Q =
⋃

i∈Loc

Qi to be

the set of local states. Given L ⊆ Loc, we define the set of possible L-states, QL = { q:
L −→ Q ∀l ∈ L, q(l) ∈ Ql }. QL defines the global state of the automaton as viewed
from locations in L. For every action a ∈ Σ we write Qa to represent Qloc(a). Similarly,
for q ∈ QLoc, we let qa represent the restriction of q to loc(a) and q−a represent the
restriction of q to Loc− loc(a).

A set of a-transitions (indicated by ⇒a⊆ Qa×Qa) is defined for every q and q′

belonging to Q to be (q,q′) ∈⇒a implies that for every l belonging to loc(a),q(l) a−→l

q′(l).
These are the a moves or the moves made by the automata to exhibit a. Strictly

speaking the individual transitions are not necessary, but they help in the presentation
of the automata. If one is given only ⇒a, the local transitions can be derived. The
global transition relation on QLoc, written as q

a−→ q′ is defined to be (qa,q′a) ∈⇒a and
q−a = q′−a.

Assume a global initial q0 and a set F of final states. That is, for every l, q0(l) is
identical to to q0

l . Similarly, if f belongs to F , for every l, f (l) belongs to Fl . The
Zielonka asynchronous automaton is given by the 5-tuple (QLoc,Σ,−→,q0,F). At this
stage it is relevant to note that the asynchronous automata are not the same as the taking
the sychronous product of the individual automata. In asynchronous automata not all
states in the product space where the an action is possible individually is necessarily
enabled. As shown in [Zie87] the language ((aa | bb)c+(a | b)c)∗ where | indicates the
shuffle cannot be accepted by a product of two automata over the alphabet {a,c} and
{b,c}. An asynchronous automaton can be defined to accept this by defining the global
states where a c can be exhibited to be either after one a and one b or after two as and
two bs.

We use a new presentation of asynchronous automata called restricted product au-
tomata. The new representation is useful in the synthesis process. The notion of local
and global states is as before. Instead of having the family of transition relations ⇒a,
we have a family of synchronisation constraints. That is, the states in which the action a
is possible is explicitly defined. For each input symbol a, we assume a set syncha which
is contained in Qa such that if the cardinality of loc(a) is 1, syncha is identical to Qa.
The interpretation is that an action a can be exhibited only from a permitted a-state.
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Such a set is defined for each action in the alphabet. This family of sets represents the
global synchronisation information. The requirement on syncha states that purely local
actions do not depend on any global information and hence cannot be disabled. The
global transition relation, −→, can now be defined as follows.

We let (q
a−→ q′) if and only if the three conditions ql

a−→l q′l for all l ∈ loc(a),
q−a = q′−a and qa ∈ syncha hold.

The first two conditions are similar to that of Zielonka automata. The last condition
states that the action a can be exhibited only from a permitted state; or in other words
an action is allowed in state qa. In synchronising automata described in [Ram95], the
component automata can have common states. If a common action is exhibited, the
resulting states have to be identical. As an aside, the difference with synchronising
automata in [Ram95] is that we require the states to “agree” before the action rather
than after the action.

The following proposition makes it clear that restricted product automata are only
a new presentation of asynchronous automata. That is, we are using syntactic sugar to
simplify the synthesis process.

Lemma 1. Deterministic Zielonka asynchronous automata correspond exactly to de-
terministic restricted product automata.

Proof: By converting every a-transition to transitions for the component automata and
by including the a-state into the set of permissible states we can translate one automa-
ton into another. That is, (q,q′) ∈⇒a iff q belongs to syncha. Furthermore, for every l
belonging to loc(a), we demand q(l) a−→l q′(l) •

While the theory for asynchronous automata is presented in terms of some finite (n)
components, we now restrict our attention to two component system. This is primarily
because the decomposition theory yields two components. The approach presented here
can be iterated to obtain any number of component systems.

3 Exact and Non-conflicting Decompositions

Let A be a controller synthesised from some plant description along with the specified
behaviour. The task is to decompose this automata into two non-conflicting controllers.
We show that decomposition via partitions followed by the generation of synchronisa-
tion conditions and the removal of unnecessary transitions yields the desired result.

Let A be decomposed via partitions into A1 and A2 such that A ≤ (A1 ‖ A2). Also
assume that the covering map from the states of (A1 ‖A2) to A is given by η. The initial
state and the set of final states in (A1 ‖ A2) are precisely those which are mapped under
η to the initial state or final states in the original automaton.

We now describe the technique of extracting the distributed alphabet, the compo-
nent automata and the synchronising conditions. The first step is to synthesise the
synchronisation restrictions and the second step is to obtain the distributed alphabet.
To compute the synchronisation restrictions, for every action a, define syncha to be
{q ∈ (Q1×Q2) ∃q′ ∈Q,η(q) a−→ q′}. Let synch represent the collection the synchro-
nisation sets. The following proposition characterises the importance of synch.
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Fig. 2. Example

Lemma 2. Let A be decomposed via partitions into A1, A2. Also assume that synch as
specified above has been obtained.

If the state (q1,q2) of the automaton (A1 ‖A2) is reachable under synch, η((q1,q2))
is defined and is identical to the intersection of q1 and q2.

Proof: Initially this is true as the initial state is (q1,q2) where q0 ∈ (q1∩q2). If (q1,q2)
a−→ (q′1,q

′
2), it is essential that q1

a−→1 q′1 and q2
a−→2 q′2. The definition of synch

requires q1 ∩ q2
a−→ s. But then s has to belong to q′1 and q′2. As the partitions are

orthogonal, q′1∩q′2 is identical to {s}. Therefore, η((q′1,q
′
2)) will be s. •

3.1 Distributed Alphabet

Thus far we have only generated the two automata along with the synchronisation re-
strictions. However, the alphabets of the two automata are identical. We now describe
the procedure to drop certain symbols (along with their transitions) from the component
automata thereby obtaining truly distributed automata.

The distributed alphabet is obtained by deleting all “redundant” symbols and hence
the associated transitions. The idea behind removing redundant symbols is that any
symbol that cannot change the local state of machine (say A2) or block the other com-
ponent (say A1), can be ignored in A2. Furthermore, all transitions on the symbol must
also be permitted by synch. In other words, every a a-move of the the first component is
independent of the second component and is permitted by the synchronisation require-
ments.

More precisely, a symbol of A2 is redundant if the following two conditions hold.

1. A2 has only self-loops on the symbol a. That is, for every q2 belonging to Q2,
q2

a−→2 q2.
2. ∀q1 ∈ Q1, ( q1

a−→1 implies ∀q2 ∈ Q2, (q1,q2) ∈ syncha).

A symmetric definition for the redundant symbols of A1 will be assumed.
Consider the automaton and its decomposition shown in figure 2 which will illus-

trate the identification of a redundant symbol. Let a denote the state {1,3}, b denote the
state {2,4}, c denote the state {5}, d denote the state {1,2,5} and e denote the state
{3,4}. The covering map η is given as follows:
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η(a,d) = 1, η(a,e) = 3, η(b,d) = 2, η(b,e) = 4, η(c,d) = 5 and η(c,e) is not defined.

The set synchs2 is {(a,d),(a,e),(b,d)}. The state (b,e) does not belong to this set
as there is no s2 transition from state 4. Hence the self-loops on s2 in the second com-
ponent cannot be removed. However, if synch permitted all moves, the self-loops can
be removed. A more detailed case is presented in section 4.

Let A over Σ be decomposed via partitions into A1 and A2. Also assume that the
synchronisation sets synch has been synthesised. Let Σ′i be the subset of Σ obtained by
eliminating redundant symbols with Ai

′ to be the restriction of Ai to Σ′i. Given A1
′ over

Σ′1 and A2
′ over Σ′2 the synchronisation constraints are now be restricted to only those

actions that occur in both automata.

Lemma 3. Under the above conditions, if Σ′1 ∪ Σ′2 = Σ, the language accepted by A
(say L) is identical to the language accepted by restricted product automaton derived
from A1

′,A2
′ and synch (say M).

Proof: We first show that L⊆M. The complete proof can be found in [Hol82]. Here we
present the general idea. Let a0a1 · · ·an belong to L. Hence there is a run (a sequence of
states) of A q0,q1, . . .qn+1 such that q0 is the initial state and qn+1 belongs to F . Also
qi

ai−→ qi+1. As η is a covering map, there has to exist a global state (qi
1,q

i
2) mapped

onto to qi. Similarly a global state (qi+1
1 ,q1+1

2 ) has to exist with the proviso that (qi
1,q

i
2)

has an a transition to (qi+1
1 ,qi+1

2 ). The initiality and finality conditions follow directly
from the definition.

We now show M ⊆ L. Let a0a1 · · ·an belong to M. Hence there is a global run
(q0

1,q
0
2), (q1

1,q
1
2), . . . ,(qn+1

1 ,qn+1
2 ). We translate this run into a run of the original au-

tomaton. For each (qi
1,q

i
2), there will be a state qi such that η(qi

1,q
i
2) = qi. This is

guaranteed by Lemma 2.
Consider the transition (qi

1,q
i
2)

ai−→ (qi+1
1 ,qi+1

2 ) made by the restricted product au-
tomaton. In this case synch will contain (qi

1,q
i
2). If ai belongs to both Σ′1 and Σ′2, the

transition will be permitted in the original automaton. Otherwise, without loss of gen-
erality assume that ai does not belong to Σ′1. In that case ai is redundant in A1 which

means that in the decomposed automaton qi
1

ai−→ qi
1. Once again this implies that the

transition will be permitted in the original automaton.
In otherwords, if the global automaton had an ai transition in state (qi

1,q
i
2), syncha

would have to contain (qi
1,q

i
2). This is possible only if qi had an ai transition. •

The above proposition is valid for any A, A1
′ and A2

′ with the necessary covering
map and synchronisation sets. A few simplifications can be made for A1

′ and A2
′ that

are derived by using partitions for the decomposition process, i.e., with subsets of states
as the state space. This is related to proposition 2. From the construction of the decom-
positions, each state of A1 and A2 is a subset of the states of A. As the partitions are
orthogonal, η corresponds precisely to the intersection of the appropriate sets. Further-
more, if the intersection of two sets is empty, η on those states will be undefined. By
proposition 2 it follows that such a global state will not be reachable. We reiterate that
this observation would not hold without synch.

Furthermore, the transition relation on a given input symbol for A1 (similarly for A2)
is defined to the union of the transitions on the same symbol for the original automaton.
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Hence for action a which belongs to only to one automaton, the set syncha can be
ignored. The details of this construction follows from the proof in [Hol82–page 80].

Sometimes it is helpful to add ‘irrelevant’ self loops so that a symbol can be ab-
stracted away to obtain automata that are more loosely coupled. Towards, this the fol-
lowing observation will help.

Let q2 ∈A2 such that q2 has no a move. Furthermore, for every q1 ∈A1 such that q1

has an a move, let q1∩q2 be the emptyset. Then adding a self loop on a to q2 does not
change the language accepted by the automata in question. This is because the global
state (q1,q2) is not reachable and hence the question of synchronisation does not arise.
This concludes the discussion of generating synchronising automata.

We now show that the two component automata are non-conflicting. Ensuring this
property is key to our approach. Towards that we assume the following (a property
called trim) about the original automaton. First, we assume that it has no unreachable
states. Second, we also assume that from every state, a final state is reachable. The
conversion of an automaton to an equivalent trim automaton is standard [HU79].

Lemma 4. Let A be a trim deterministic finite automaton decomposed (by partitions)
into A1 and A2 with synch. Let L1 be the language accepted by the automaton A1 and
L2 be the language accepted by the automaton A2. The joint behaviour of A1 and A2

under synch is non-conflicting.

Proof: Let α ∈ (L̃1∩ L̃2). As the state space of the automata accepting L̃i is identical to
Qi, we assume that the joint behaviour of the two components on α leads to the global
state (q1,q2). Now we have to show that αβ belongs to both L1 and L2 for some β ∈ Σ∗.

The original automaton on reading α would have reached a state q such that η(q1,q2)
equals q. If (q1,q2) does not have any move it implies that q does not have any move.
But the original automaton was trim. Hence q has to be the final state in which case
(q1,q2) is a final state. Hence β being the empty string suffices.

Otherwise, q will accept some β towards a final state. As the languages accepted by
the two automata are the same, the joint behaviour should be able to exhibit β to a final
state. This shows that the two automata are non-conflicting. •

To summarise, we have shown that a decomposition based on partitions yields non-
conflicting Zielonka asynchronous automata.

A prototype program to help the user construct orthogonal partitions has been writ-
ten. The program written in Hugs (a variant of Haskell) [Jon94a] works on an explicit
state transition representation. A program to handle symbolic representation is under
construction. Given a transition system, the user can specify an initial seed partition.
There are two ways of specifying this. The first is a direct enumeration of the seed par-
tition. The second technique is by using a list of actions. This list represents part of
the desired distributed alphabet for the resulting controller. This list of actions can be
automatically generated using the original distributed alphabet. But the user can also
provide any set of actions. A user defined set of actions is useful in the context of PLCs
where inputs/outputs are explicitly specified. In this case, a seed partition is constructed
such that for any action in the given list all transitions are self-loops. For example, if a
belongs to the list of actions and if q

a−→ q′, the states q and q′ are identified. The pro-
gram then computes the finest admissible partition consistent with the seed partition.
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Further refinement of the partition is possible by invoking special functions. Given a
list of seed partitions the program determines if the resulting admissible partitions are
orthogonal. If they are orthogonal, it computes the synch sets and removes the redundant
symbols.

4 Examples

We present two examples to illustrate the approach described earlier. The first is an
asynchronous automaton that cannot be represented by the product of two automata
over a given alphabet. The second is a larger example from the theory of discrete event
systems.

Consider the global automaton accepting the language ((ab + ba + aabb + abab +
abba+baba+bbaa+baab)d)∗. From [Zie87] it is known that no product decomposi-
tion over the distributed alphabet ({b,d},{a,d}) can exist. Therefore, in order to obtain
a correct decomposition global information in the form of synchronisation restrictions
is required. Applying the decomposition yields the automata shown in figure 3. That is
the first partition is { {1,2,4}, {3,5,7}, {6,8,9}} while the second partition is { {1,3,6},
{2,5,8}, {4,7,9} }. The self loops on a (in the first component) and b (in the second
component) do not have any synchronisation restrictions. So they satisfy the require-
ments for being redundant and hence can be removed. This results in { {b,d}, {a,d} }
as the distributed alphabet.

"#$%&'()1,2,4�� b ��

a

�� "#$%&'()3,5,7

a

��
b ��

d

��
"#$%&'()6,8,9
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d
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d

��

b
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Fig. 3. The Component Automata

The covering map η can be described by the usual intersection of the partitions.
From η one can compute the set synchd to contain precisely two elements, viz., ({3,5,7},
{2,5,8}) and ({6,8,9},{4,7,9}). This is because a d transition is possible only from
states 5 and 9. Another way to look at this is that the global state ({3,5,7},{4,7,9})
cannot exhibit a d. Furthermore, this state could be reachable as their intersection is
non-empty (i.e., 7). But there is no d transition in state 7 in the original automaton and
hence this transition needs to be disabled. By a similar argument, the d transition in the
global state ({6,8,9},{2,5,8}) needs to be disabled as state 8 has no d transition.

Our next example is based on the controller for a transfer line containing two ma-
chines and a tester linked by buffers as shown below.

M1 �� B1 �� M2 �� B2 �� T..

This example has been discussed in [Won04]. This example illustrates both the
strength and weakness of the decomposition approach.
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The machine M1 can start (s1) or finish ( f1). When the machine finishes it places
an item in the buffer B1. If B1 contains any element the machine M2 can start (s2) and
when it finishes ( f2) it places an item in B2. The tester can pick up an item from B2 (s3)
and either accept it (a) or reject it (r) in which case it places it in buffer B1. The starting
of the machines is controllable and the key is to avoid buffer overflow or underflow. We
will assume that buffer B1 has capacity three and buffer B2 has capacity one.

While we present the behaviour of the controller and the decomposition
using explicit state transition diagrams, symbolic synthesis techniques
[BHG+93, NW94, MW98] are actually used in practice. However, it is hard to discuss
the behaviour of such controller using symbolic representations such as BDDs [Bry86].
While the state transition diagrams may look complex, they illustrate the available sym-
metry which is actually exploited in the decomposition process. Issues related to the
realisation of synthesised controllers are discussed in [Zha96].

The monolithic controller for this system can be synthesised and is partially shown
in figure 4. The transitions on a and r have been omitted in the diagram. All other
transitions are shown. There are 22 more transitions (for example from state 9 to state
10 on an a, from state 9 to state 15 on an r). The purpose of this figure is only to
illustrate the regular structure present in the controller. Also, the controller synthesised
using symbolic representations cannot be easily understood. In general the action a
signifies that that an item has left the system. Hence it allows M1 to start and hence
introduce a new item in the system while an r action is as if an old item is reintroduced
into the system. To begin with the controller can allow three items to be introduced into
the system (s1, f1,s1, f1,s1, f1 leading to state 15). After that an s1 can only occur after
an a occurs.

By applying the theory of partitions twice, we obtain the three component automata
shown in figures 5, and 6. This was achieved by the user guiding the prototype program.
The first partition was achieved by requiring self-loops on the actions s1, f1,a and r.
This is because these actions have no effect on B2. The second partition is obtained by
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Fig. 6. Buffer1:Overflow Control

requiring self-loops on s1 and f2 (trying to obtain the controller that prevents underflow
of B1) while the third partition was obtained using self-loops on the actions s2, f2,s3

(trying to prevent the overflow of B1).
The synch set was initially calculated. It contained elements for the actions a and

r. For example, the decomposed global state (Q1,R2,S3) (corresponding to state 2) will
not be present in syncha. This is because the decomposed global state can exhibit an a
but an a action is not possible from state 2. For the sake of simplicity we do not present
the complete synch set. By applying the simplifications discussed in the next section it
can be shown that no extra global information is required. As an aside, the synch set can
be represented as a constraint on the variables shared by the two component automata.

In the diagrams the state Q1 refers to the set {0 . . . 4,9 . . . 16,18 . . . 20,22,23,26,27},
Q2 to the set {5 . . . 8,17,21,24,25}, R1 to the set {0,1} R2 to the set {2,6,7,11,12,16,17,
19} R3 to the set {3 . . . 5,20,21,23,. . . ,25}, R4 to the set {8,10,13,14}, R5 to the set
{18,22}, R6 to the set {26,27}, R7 to the set {9}, R8 to the set {15}, S1 to the set
{0}, S2 to the set {1}, S3 to the set {2,3,25,26}, S4 to the set {4,5,19,27}, S5 to the set
{6,10,11,22,. . . ,24}, S6 to the set {7,12,14,18,20,21} and S7 to the set{8,9,13,15,. . . ,17}.

The automata in figure 5 ensure that buffer B2 never overflows or underflows and
that B1 avoids underflow with respect to machine M2. For example, an action f1 or an
action r inserts an element into B1 after which M2 can be started. The action s2 removes
an element from the buffer and when the count reaches 0, the machine M2 cannot be
started. This ensures that the buffer B1 cannot underflow. However, the various transi-
tions on the actions s3, a and r are necessary to maintain orthogonality of the projec-
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tions. We return to this automata later. The automaton in figure 6 specifies the control
on buffer B1 with respect to M1 and more or less avoids overflow. Machine M1 has to
know the number of parts in the system before it can decide to produce more parts.
This is because the tester could reject all the parts in the system and a safe behaviour
requires that B1 has at least that many free places. For the sake of readability the state
associations (derived from the original automaton) are not shown in the decomposed
automata.

The procedure to obtain non-conflicting controllers can be summarised as follows:

1. Synthesise the single controller.
2. Obtain two orthogonal partitions along with the synchronisation restrictions.
3. Remove redundant symbols and thereby obtain a distributed alphabet.

The current theory focuses only on partitioning into two components. The direct de-
composition into multiple components needs further research.

The limitation of the partition approach is clearly demonstrated in the second au-
tomaton in figure 5 and figure 6 In the two automata shown, certain states deserve
special attention. We focus our discussion on the state marked R1. Similar arguments
hold for the state marked R6, R7, R8, S1 and S2. The decomposition process does not
yield any self loop on the actions a and f2 for the state R1. Hence the actions s1, a and
f are not redundant. This forces a tighter coupling than desired; but as we show in the
next section this tighter coupling can be loosened.

Also, for this particular problem the states R1, R3 and R6 can be merged. This would
then introduce self loops on various actions to the automaton. This could then be used
to obtain a more loosely coupled automaton. But the merging of R1, R3 and R6 does
not yield orthogonal partitions. Similarly, states R5 and R2 can be merged and R7 and
R4 can be merged. This can be done for this problem as state R1, R3 and R6 effectively
remember the buffer B1 being empty, R2 and R5 indicate the buffer containing one item,
R4 and R7 the buffer containing two items.

However, such analyses are problem specific and beyond what the theory of parti-
tions yields. That is, the partition technique has to be augmented with problem specific
analysis to further simplify the controllers. This issue is considered in the following
section.

5 Including the Plant Model

So far we have not used the fact that the original automaton was a controller for a given
plant. We have also not used the division of the input alphabet into controllable and un-
controllable actions. Recall that only controllable actions can be disabled. This implies
that if a controller cannot exhibit an uncontrollable action in a given state, the environ-
ment cannot exhibit the action. Therefore, augmenting the controller with a transition
on an uncontrollable action does not change the overall behaviour. Similarly, adding a
transition on a controllable action where the plant cannot use it does not enable any new
behaviours.

The general observation (for product automata) is as follows. Let q1 be a state in the
first component and q2 be a state in the second component. If both the states have no
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a transition from them adding an a transition to only one of them will not affect their
joint behaviour. As we are synthesising the controllers, we can add extra transitions to
them without enabling unspecified behaviours.

By using transitions that the plant cannot perform, the component controllers au-
tomata obtained by the partition technique can be simplified by reducing the required
global information. This simplification will alter the language accepted by the controller
but will not affect the joint behaviour of the plant and the controller.

We now present this more precisely. Let AC represent the controller and AP repre-
sent the plant. The effect of the controller on the plant can be characterised as follows.
Let cp : QC −→ 2QP

such that qp ∈ cp(qc) iff the state (qp,qc) is reachable in (AP ‖AC).
In other words, cp(qc) identifies all the states the plant could be in while the controller
is in state qc.

If for every qp belonging to cp(qc), qp has no a-move (a can be any action) and qc

has no a transition, consider AC augmented with the transition qc
a−→ qc. It is easy to

see that the joint behaviour of the plant and the augmented automaton is identical to the
joint behaviour of the plant and the original automaton.

We now focus on the component controller automata. Let AP, AC and cp be as
before. Let AC1 and AC2 be the decomposition of AC with synch the synchronisation
set.

Consider an action a such that all a transitions in AC1 are only self-loops. Let Na =
{ q ∈ AC1 q � a−→1 }. The set Na identifies the states that have no a transitions. Let q1

be a state belonging to Na. If for every state (q2) of the automaton AC2 ,q2
a−→2 implies

cp(η(q1,q2)) � a−→P, augment AC1 with the transition q1
a−→1 q1 and let synch′ be synch

augmented with { (q1,q2) q2
a−→2 }. Call this new automaton A ′

C1 . By a symmetric
process obtain A ′

C2 from AC2 .
Under the above assumptions the following property is valid. The proof of the above

proposition is obvious and follows from the definition of the product of automata.

Lemma 5. The joint behaviour of A ′
C1 and A ′

C2 under synch′ with AP is identical to
the joint behaviour of AC1 and AC2 under synch with AP.

We conclude this section with a discussion of an example from the previous section.
The first automaton shown in figure 5 (the controller for the second buffer) has self-
loops on the actions a and r which are uncontrollable actions. By considering the other
decomposed automata syncha and synchr can be augmented with the extra states such
that actions a and r become redundant. Hence the controller for that buffer has only s2,

f2 and s3 in its alphabet. The new controller is *+,-./01Q1��
f2 //

s2

00 *+,-./01Q2
s3

11

It shows clearly that the controller is unconcerned about the outcome of the testing
process as this affects only the first buffer.

Consider the automaton shown in figure 6. When the automaton is in state S1 or S2

(the state of the other component automata being immaterial) the plant cannot exhibit
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an f2 or an r. This is because both buffers are empty. Hence one can add self loops
on f2 and r without changing the joint behaviour. Now by applying the definition of
redundancy, the symbols f2 and r can be removed from the automaton; thus obtaining
a simpler automaton. This is because the controller has to be prepared for an item to be
rejected (an uncontrollable action) and hence reserves a slot for it. However, if the item
is accepted the slot can be released.

Note that self-loops for the symbols s2 and s3 cannot be added as the plant can
indeed perform these actions and the controller explicitly disables them. Although one
could add a-loops to the state S1 or S2, these are not useful as the other states do not
have self-loops on a.

The simplifications can be summarised as follows. In the first case we only augment
the synch sets while in the second case we add extra transitions as well as augment
the synch sets. In both cases the desired outcome is identical, viz., to make a particular
action redundant. As these changes are purely on the structure of the automata they can
be fully automated.

6 Conclusion and Future Work

We have presented a framework in which a single controller can be decomposed into
non-conflicting controllers. Although we have taken a distributed system, constructed a
monolithic system and then synthesised a controller, we have suggested in the introduc-
tion that this be used only when the controllers generated from the distributed system
are conflicting.

We now present an example to show the limitations for the partition based technique.

Consider the automaton "#$%&'()1

s1

22 r2 33

f1
44

"#$%&'()0

s1,r1

22
b255

f1 33"#$%&'()2

b2,r2

22
s255 (with 0 as the start state). For the

first automaton the partition {{0,1},{2}} suffices. However, equating states 0 and 2 or
1 and 2 results in the need to equate all three states. Hence two orthogonal partitions
are not possible.

A method based on set systems [HS66] (instead of partitions arbitrary subsets are
used to obtain the components) could be developed. For example, the set system {{0,2},
{0,1}} along with the partition {{0,1},{2}} yields a decomposition. But the drawback
of this approach is that one may need to consider non-deterministic systems which then
have to be determinised. At this point it is not clear if the method based on set systems
is as clean as the one based on partitions for deterministic systems.
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Abstract. We consider co–Büchi tree automata along with both alter-
nating and generalized paradigms, as a characterization of the class of
languages whose complement is accepted by generalized Büchi tree au-
tomata. We first prove that for alternating generalized co–Büchi tree
automata the simulation theorem does not hold and the generalized ac-
ceptance does not add to the expressive power of the model. Then, we
show that the emptiness problem for this class is Exptime-complete.
For the class of languages whose complement is accepted by determin-
istic generalized Büchi tree automata, we get better complexity bounds:
we give a characterization of this class in terms of generalized co–Büchi
tree automata that yields an algorithm for checking the emptiness that
takes time linear in the product of the number of states and the number
of sets in the acceptance condition. Finally, we compare the classes of
languages whose complement is respectively accepted by deterministic
and nondeterministic Büchi tree automata with the main classes studied
in the literature.

1 Introduction

Since its early days the theory of automata had an astonishing impact in com-
puter science. Several models of automata have been extensively studied and
applied to many fields. In the sixties, with their pioneering work, Büchi [Büc62],
McNaughton [McN66], and Rabin [Rab69, Rab70] enriched this theory by intro-
ducing finite automata on infinite objects. Such automata turn out to be very
useful for those areas of computer science where nonterminating computations
are studied. They give a unifying paradigm to specify, verify, and synthesize re-
active systems [Kur94, VW86, VW94]. A system specification can be translated
into an automaton, and thus, questions about systems and their specifications
are reduced to decision problems in the automata theory. More precisely, given
a system S and its specification ϕ, we can design an automaton AS represent-
ing the system and an automaton A¬ϕ accepting all computations that violate
the specification. Thus, we can check the correctness of S with respect to ϕ by
checking the emptiness of AS ×A¬ϕ.
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In system modelling, computations can be seen as finite or infinite sequences
of system states. To model nondeterminism, it is useful and natural to arrange
computations in trees. It is worth noticing that some concurrent programs, such
as operating systems, communication protocols, and air-traffic control systems,
are intrinsically nondeterministic and nonterminating. Moreover, nondetermin-
ism is successfully used to obtain models of concurrent programs in general
(nondeterministic interleaving of atomic processes).

Automata on infinite objects recognize objects according to an acceptance
criteria. In the literature, several acceptance criteria have been fruitfully inves-
tigated on words and trees: recall Büchi, co–Büchi, Muller, Rabin, Streett, and
parity acceptance conditions (for more on these models see [GTW02]). For ex-
ample, in the Büchi condition a subset of the automaton states is defined as
accepting and a word/tree is accepted if and only if there exists a run such that
“at least an accepting state repeats infinitely often”. The co–Büchi condition
expresses the dual condition, that is, it requires that “all states that are not
accepting repeats finitely often” or equivalently “all the states that repeat in-
finitely often are accepting”. Büchi and co–Büchi conditions can be generalized
in the sense that more than one subset of states can be defined as accepting.
Thus, an infinite word/tree is accepted by a generalized Büchi automaton if and
only if for each accepting set there is at least a state that repeats infinitely
often. Consistently, an infinite word/tree is accepted by a generalized co–Büchi
automaton if and only if there is an accepting set that contains all the states
that repeat infinitely often.

Generalized Büchi and co–Büchi acceptance conditions lead to automata with
fewer states and simpler underlying structure than the corresponding standard
conditions. For example, the traditional translation of an Ltl formula ϕ to a
Büchi word automaton results in an automaton with 2O(|ϕ|×|ϕ|) states [VW94],
while using generalized Büchi automata we only need 2O(|ϕ|) states [GPVW95].
Generalized conditions have become popular in system verification and now are
fruitfully used in several applications [Kur94]. The generalized co-Büchi condi-
tion was first introduced and studied on infinite words in [Lan69]. Its extension
to infinite trees has been investigated in [LMN02].

The kind of acceptance condition influences both the closure properties and
the complexity of the decision algorithms. For generalized Büchi and generalized
co-Büchi tree automata non-emptiness is decidable in polynomial time [VW86,
LMN02], for Rabin tree automata it is known to be NP-complete [Rab69]. On the
other hand, generalized Büchi and generalized co-Büchi tree automata are not
closed under language complementation, while Rabin and Muller tree automata
are [Tho90].

Alternating tree automata along with the co–Büchi paradigm characterize
the complement of languages nondeterministically accepted by Büchi tree au-
tomata [MS87]. Here, we consider these automata along with the generalized
paradigm, namely, we consider alternating generalized co–Büchi tree automata
(AGCTA), as a direct characterization of the class of languages whose comple-
ment is accepted by generalized Büchi tree automata (co–GBTA). In [MS87], it
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is shown that while alternation does not give more expressive power to Muller,
parity, Rabin, Street and Büchi paradigms (simulation theorem), it allows us
to get more succinct automata. For example, translating an alternating Büchi
tree automaton to a Büchi tree automaton might involve an exponential blow-
up [MS95]. Once the simulation theorem holds, emptiness for alternating au-
tomata can be checked in an easy, and often efficient, way via translation to the
corresponding nondeterministic model. For example, for an alternating Büchi
tree automaton, we can construct a language equivalent Büchi tree automaton
(which involves an exponential blow-up) and thus we can check for emptiness the
starting automaton in exponential time which matches the known lower bound
for the computational complexity of this problem.

Here, we prove that unfortunately the simulation theorem does not hold for
AGCTA. In fact, we observe that generalized co–Büchi tree automata are not
sufficiently powerful to characterize co–GBTA. We also prove that AGCTA and
alternating co–Büchi tree automata (ACTA) are polynomially equivalent, that
is, there exists a polynomial translation from an AGCTA to a language equiv-
alent ACTA and viceversa. We observe that, when the generalized and the cor-
responding non-generalized paradigms are language equivalent, the generalized
one is still of interest since it can lead to more succinct automata with evident
benefits in designing efficient algorithms. As an example, we recall that nonde-
terministic generalized Büchi word automata and nondeterministic Büchi word
automata are polynomially equivalent [Cho74]. However, computing the comple-
ment of a nondeterministic generalized Büchi automaton without constructing
first the language equivalent nondeterministic Büchi automaton, may result in
an automaton that is more succinct by an exponential factor [KV04].

Using the equivalence between AGCTA and ACTA, it follows that an AGCTA
A can be translated to a parity tree automaton with two parity sets whose size
is polynomial in the size of A. Thus, the emptiness problem for alternating
generalized co–Büchi tree automata can be decided in exponential time. This
result is also complete, since we can reduce the emptiness problem for weak
alternating Büchi tree automata that is known to be Exptime–hard [KVW00].

To characterize the class of languages whose complement is accepted by gen-
eralized deterministic Büchi tree automata (co–DGBTA) we use the generalized
co–Büchi paradigm along with the request that at least one path of an accept-
ing run must be successful (∃–acceptance). This kind of “existential” acceptance
differs from the usual request for tree automata that all paths need to be success-
ful in order to accept. With respect to the emptiness problem, this “existential”
acceptance condition is equivalent to consider the tree automaton as a word
automaton: each transition is split into several transitions (one for each state
successor). Thus, given a DGBTA A with n states and k accepting sets, we can
construct a Büchi word automaton B with O(nk) states such that the language
accepted by B is empty if and only if the complement of the language accepted
by A is empty. Using the fact that for Büchi word automata the emptiness prob-
lem is decidable in linear time [EL85], checking the emptiness for co–DGBTA
can be decided in quadratic time. We recall that an elegant characterization of
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co-DGBTA can be obtained via weak alternating Büchi tree automata. Unfor-
tunately, this characterization gives an exponential-time algorithm to solving
the emptiness problem for co–DGBTA, since the emptiness problem for weak
alternating Büchi tree automata is Exptime–complete [KVW00].

The rest of the paper is organized as follows. In Section 2, we give some
basic definitions and recall some results of the theory of finite automata on
infinite trees. In Section 3, we recall the concept of alternation and the main
properties of alternating tree automata. In Section 4, we consider alternation
along with the generalized co–Büchi paradigm and compare the corresponding
class of accepted languages with the main classes of languages considered in the
literature. In Section 5, we deal with the class of languages whose complement
is accepted by deterministic Büchi tree automata. Finally, we conclude with few
remarks in Section 6.

2 Preliminaries

Let Σ be an alphabet, k be a positive integer, and Dom = {0, 1, . . . , k − 1}∗.
We define an infinite k-ary Σ-tree t as a map t : Dom → Σ. The elements in
Dom are the nodes of the tree, the empty word ε corresponds to the root and
for each w ∈ Dom, wi is its i-child for i ∈ {0, 1, . . . , k − 1}. In the following,
unless differently stated, an infinite k-ary Σ-tree will be referred to simply as a
tree. Let u, v ∈ Dom, we say that u precedes v, denoted as u < v, if there exists
an x such that v = ux. Let π ⊆ Dom, π is a path of a tree t if it is a maximal
subset of Dom linearly ordered by <. If π is a path of a tree t, then t/π denotes
the restriction of the function t to the set π. We say that a symbol a ∈ Σ occurs
infinitely often in t/π if there exists an infinite number of nodes u ∈ π such that
t(u) = a. The set of symbols that occur infinitely often in t/π is denoted by
Inf(t/π).

Given a tree t and a node u ∈ Dom, we define the subtree of t rooted at u as
the tree tu such that tu(v) = t(uv), for uv ∈ Dom. Let Σ be a finite alphabet,
we denote by Tω

Σ the set of Σ-valued trees. A language is a subset of Tω
Σ . Given

a language L ⊆ Tω
Σ we denote with L the complement of L, that is, L = Tω

Σ\L.
In the following, we deal exclusively with binary trees (Dom = {0, 1}∗). All
the results we obtain also hold for k-ary trees, where k ≥ 2. According to the
introduced notation, we use t0 and t1 to denote, respectively, the subtrees of t
rooted respectively at 0 and 1 (the two children of the root). Moreover, with π0
we denote the path {0}∗.

A finite automaton on infinite trees (TA) is a tuple A = 〈Σ,Q,Q0, δ, F 〉
where Σ is the input alphabet, Q �= ∅ is a finite set of states, Q0 ⊆ Q is the set
of initial states, δ ⊆ Q×Σ×Q×Q is the transition relation, and F specifies the
acceptance condition (a condition that defines a subset of Qω, we define several
types of acceptance conditions below). Intuitively, each transition suggests a
nondeterministic choice for the next configuration of the automaton. If |Q0| = 1
and δ is a total function δ : Q×Σ → Q×Q, then A is a deterministic automaton
(DTA). Given an input tree t, a run r of A on t is a Q–tree such that r(ε) ∈ Q0,
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DBTA

MTA

DMTA BTA

GCTA

DGCTA

Fig. 1. Relationships between (D)BTA, (D)MTA and (D)GCTA

and (r(u), t(u), r(u0), r(u1)) ∈ δ, for all u ∈ Dom. With RunA(t) we denote the
set of runs of a TA A on a tree t. Clearly, if A is deterministic then |RunA(t)| = 1.
Different classes of languages are obtained defining different notions of successful
run. A tree t is accepted by a TA A if there exists a successful run r of A on
t, that is, r satisfies the acceptance condition on all the paths of t. We consider
here the following conditions:

– a run r satisfies a generalized Büchi condition F = {F1, . . . , Fk} ⊆ 2Q iff for
each path π of r and for each set Fi ∈ F , Inf(r/π) ∩ Fi �= ∅;

– a run r satisfies a generalized co–Büchi condition F = {F1, . . . , Fk} ⊆ 2Q iff
for each path π of r there is a set Fi ∈ F such that Inf(r/π) ⊆ Fi;

– a run r satisfies a Muller condition F = {F1, . . . , Fk} ⊆ 2Q iff for each path
π of r, Inf(r/π) ∈ F ;

– a run r satisfies a Rabin condition F = {(B1,G1), . . . , (Bk,Gk)} ⊆ 2Q×Q iff
for each path π of r, there is a pair (Bi,Gi) ∈ F such that Inf(r/π)∩Bi = ∅
and Inf(r/π) ∩Gi �= ∅;

– given a partition F = {F1, F2, . . . , F2k}, k ≥ 1, of the set of states, a run r
satisfies the parity condition F iff for each path π of r the minimal index i
for which Inf(r/π) ∩ Fi �= ∅ is even.

In the following, we refer to the number k appearing in the acceptance con-
dition as the index of the corresponding automaton. Recall that Büchi and co–
Büchi conditions are defined as the corresponding generalized conditions defined
above with index 1. With L(A) we denote the language accepted by a TA A,
that is, the set of accepted trees.

To denote the different types of tree automata, we will use acronyms of the
form DXTA and XTA, where X is one of B, GB, C, GC, M, R, P. The letter
D stands for deterministic and the X is used to denote the kind of acceptance
condition: Büchi (B), generalized Büchi (GB), co-Büchi (C), generalized Co–
Büchi (GC), Muller (M), Rabin (R) and parity (P). For example, deterministic
co–Büchi tree automata are denoted by DCTA. We also use the same acronyms
to denote the corresponding class of accepted languages.

Figure 1 recalls the known relationships between all the considered classes
of tree languages (automata) [Rab70, LMN02, Tho90, GTW02]. Since Rabin and
parity conditions are equivalent to the Muller condition, the classes of languages
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accepted by the corresponding tree automata coincide in both the deterministic
and nondeterministic paradigms. Thus, when we compare the class of languages
we only refer to MTA and DMTA, and the obtained results clearly apply to the
other classes. Analogously, since the class of languages (D)GBTA and (D)BTA
coincide, in the language comparisons we only refer to (D)BTA.

The following theorem summarizes the closure properties of the above classes
of automata and languages [Tho90, LMN02].

Theorem 1

– DMTA, DGBTA, and DGCTA are closed under intersection, but they are
not closed under union and complementation.

– GBTA and GCTA are closed under intersection and union, but they are not
closed under complementation.

– MTA is closed under intersection, union, and complementation.

In the following theorem, we recall some known results on the decision prob-
lems for Büchi, generalized co–Büchi, Rabin, and parity tree automata.

Theorem 2

– The emptiness problem for BTA is decidable [Rab70], and is LogSpace-
complete for Ptime[VW86].

– The emptiness problem for GCTA is decidable and is in Ptime [LMN02].
– The emptiness problem for PTA is UP ∩ co–UP [Jur98]1.
– The non-emptiness problem for RTA is Np-complete [Rab69, EJ88].

3 Alternating Tree Automata

Alternating automata generalize the notion of nondeterminism by allowing sev-
eral successor states along the same branch of the tree [MS87]. Muller and Schupp
were the first to apply to tree automata the concept of alternation, introduced
by Chandra, Kozen, and Stockmeyer [CKS81]. Here we briefly recall the basic
definitions and refer to [MS95] for more details.

An alternating tree automaton is a TA with the transition relation defined as
a function δ : Q×Σ → B+(K ×Q), where K is the set of directions in the tree
(K = {0, 1}, for binary trees) and B+(K ×Q) is the set of all positive boolean
combinations of pairs (d, q), where d is a direction and q is a state.

As an example, δ(q, a) = ((0, q0) ∨ (1, q1)) ∧ (1, q0) means that the automa-
ton has two nondeterministic choices: one copy of the automaton proceeds to
the 0-child of the current node entering state q0 and another copy proceeds to
the 1-child also entering state q0; or two copies proceed to the 1-child entering
respectively states q1 and q0. Hence, ∨ and ∧ in δ(q, a) represent, respectively,
choice and concurrency.

1 The class UP is a subset of NP, where each word accepted by the Turing machine
has a unique accepting run.
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A run of an alternating automaton on a binary tree t is a ({0, 1}∗×Q)–labeled
(possibly non binary) tree such that the root is labelled (ε, q0) and labels of each
node and its successors must satisfy the transition relation δ. For example, if
t(ε) = a and δ(q0, a) = ((0, q1) ∨ (0, q2)) ∧ ((0, q3) ∨ (1, q2)), then, a run r on t
at level 1 must include a node labeled (0, q1) or a node labeled (0, q2), and must
include a node labeled (0, q3) or a node labelled (1, q2).

As for standard tree automata, we can couple different acceptance conditions
to an alternating tree automaton, defining different classes of languages and au-
tomata. To denote alternating automata, we use a prefix “A” to the acronyms
used so far. For example, we use ABTA to denote alternating Büchi tree au-
tomata, as well as the class of languages accepted by these automata.

In [Cho74], it is shown that GBTA and BTA are polynomially equivalent.
In the next lemma, we extend this result to the alternating paradigm. That is,
given an AGBTA with m states and index k, we can build a language equivalent
ABTA with O(m(k + 1)) states.

Lemma 1. Given an AGBTA A, there exists an ABTA A′ accepting L(A) and
whose size is polynomial in the size of A.

Proof. Let A = 〈Q,Σ, δ,Q0, {F1, . . . Fk}〉 be an AGBTA. Consider A′ = 〈Q ×
{0, . . . k}, Σ, δ′, Q0×{0}, Q×{k}〉 as an ABTA, such that, for each formula δ(q,σ)
in A, the automaton A′ contains a formula δ′(q, i,σ) obtained from δ(q,σ) by
coupling each pair (q′, d) in δ(q,σ) with a value j as follows: (i) j=0 if i = k, (ii)
j = i+ 1 if q ∈ Fj , or (iii) j = i otherwise. Thus, A′ enters an accepting state if
at least one state for all accepting sets from A has been visited infinitely often.
Thus, L(A′) = L(A) and the size of A′ is polynomial in the size of A. !"

In [MS87], Muller and Schupp introduced weak alternating Büchi tree au-
tomata (WABTA) as a special case for ABTA. In a WABTA, we have a Büchi
acceptance condition F ⊆ Q and there exists a partition of Q into disjoint sets,
Q1, . . . , Qm, such that for each set Qi, either Qi ⊆ F , in which case Qi is an
accepting set, or Qi∩F = ∅, in which case Qi is a rejecting set. In addition, there
exists a partial order ≤ on the collection of the Qi’s such that for every q ∈ Qi

and q′ ∈ Qj for which δ(q,σ, q′, q′′) or δ(q,σ, q′′, q′) occurs, we have Qj ≤ Qi.
Thus, transitions from a state in Qi lead to states in either the same set Qi or in
a lower one. It follows that every infinite path of a run of a WABTA ultimately
gets “trapped” within some Qi . The path then satisfies the acceptance condition
if and only if Qi is an accepting set.

The main properties about weak alternating Büchi, alternating Büchi, and
alternating parity tree automata are summarized in the following theorem. We
recall that an alternating automaton is deterministic if and only if the transition
relation δ does not use ∨ [MS95].

Theorem 3

– Given an A(D)BTA (resp., an A(D)PTA) A, there exists a (D)BTA (resp., a
(D)PTA) accepting L(A), whose size is exponential in the size of A [MS87].
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– The emptiness problem for(W)ABTA is Exptime–complete[KVW00,MS87].
– The emptiness problem for APTA is in Exptime [EJ91,Wil01].

Directly from Lemma 1 and Theorem 3 we also get the following result.

Corollary 1. The emptiness problem for AGBTA is decidable in exponential
time.

As discussed in [MS87], an advantage of using alternation is that one can
complement an alternating automaton by dualizing its transition function and
acceptance condition. Formally, given a transition function δ, let δ̃ denote the
dual function of δ. That is, for every ϕ ∈ δ, we have ϕ̃ in δ̃, where ϕ̃ is obtained by
ϕ switching ∨ and ∧ and by switching true and false. The dual of an acceptance
condition F , denoted as F̃ , is a condition that holds exactly on all the runs on
which F does not hold. In particular, by denoting with Ã = 〈Q,Σ, δ̃, Q0, F̃ 〉 the
dual automaton of an automaton A = 〈Q,Σ, δ,Q0, F 〉, the following holds.

Theorem 4. [MS87] For an ABTA A, the ACTA Ã accepts L(A), and viceversa.

4 Alternating Generalized Co–Büchi Tree Automata

In this section, we deal with alternating tree automata along with the generalized
co–Büchi paradigm (AGCTA, for short). The definition of duality given in the
previous section, along with the result shown in Theorem 4 makes this class
a suitable choice for a direct characterization of the class of languages whose
complement is in AGBTA, as pointed out in the following.

Corollary 2. Given an AGBTA A, its dual Ã is an AGCTA accepting L(A),
and viceversa, given an AGCTA A, its dual Ã is an AGBTA accepting L(A).

Since A(G)CTA accepts the class of languages whose complement is accepted
by (G)BTA, in the following, we also denote the class of languages accepted by
A(G)CTA as co–(G)BTA. Lemma 2 shows that the class of languages accepted
by AGCTA is polynomially equivalent to that accepted by ACTA.

Lemma 2. Given an AGCTA A, there exists an ACTA A′ accepting L(A) and
whose size is polynomial in the size of A.

Proof. Let A be an AGCTA, from Corollary 2, it follows that there exists an
AGBTA B such that L(B) = L(A). From Lemma 1, it is possible to build an
ABTA B′ whose size is polynomial in the size of B such that L(B) = L(B′).
From Theorem 4, there exists an ACTA A′ dual to B′ such that L(B′) = L(A′).
Thus, L(A′) = L(B′) = L(B) = L(A) and the size of A′ is polynomial in the
size of A, from the definition of duality. !"

The above lemma is useful to show the following result.

Theorem 5. The emptiness problem for AGCTA is Exptime–complete.
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Languages Ranking
L1 = {t ∈ T ω

Σ | ∃ π, either a �∈ Inf(t/π) or b �∈ Inf(t/π)} (GCTA ∩ BTA) \ DMTA
L1 = {t ∈ T ω

Σ | ∀ π, a ∈ Inf(t/π) and b ∈ Inf(t/π)} DBTA \ GCTA
L2 = {t ∈ T ω

Σ | ∀ π, either a �∈ Inf(t/π) or b �∈ Inf(t/π)} DGCTA \ BTA
L2 = {t ∈ T ω

Σ | ∃ π, a ∈ Inf(t/π) and b ∈ Inf(t/π)} BTA \ GCTA
L3 = {t ∈ T ω

Σ | a �∈ Inf(t/π0)} (BTA ∩ GCTA ∩ DMTA) \ DBTA
L3 = {t ∈ T ω

Σ | a ∈ Inf(t/π0)} DBTA

Fig. 2. Some tree languages and their classification [LMN02]

Proof. We first show that given an AGCTA A there exists an APTA B accepting
L(A) and whose size is polynomial in the size of A. From Lemma 2, we first
translate A into an ACTA A′, whose size is polynomial in the size of A. Let
A′ = 〈Q,Σ, δ,Q0, {F}〉 be the obtained ACTA. An APTA accepting L(A′) is
the automaton B = 〈Q,Σ, δ,Q0, {Q\F, F}〉. Thus, for the emptiness problem
for AGCTA membership to Exptime follows from the fact that the size of B
is linear in the size of A′, the size of A′ is polynomial in the size of A, and the
emptiness problem for APTA is in Exptime (see Theorem 3).

For the lower bound, we observe that each weak alternating Büchi tree au-
tomaton A can be translated into a language equivalent alternating co–Büchi
tree automaton by simply interpreting its acceptance set as a co–Büchi condi-
tion. In fact, by the structure of the transition relation of a WABTA and the
property that each set of the partition of its states is either contained into or
disjoint from the acceptance set, we get that, along the paths of an accepting run
of A, the states that repeat infinitely often are only states within the acceptance
set. Since the emptiness problem for weak alternating Büchi tree automata is
Exptime–hard [KVW00], we get that the emptiness problem for ACTA, and
thus AGCTA, is Exptime-hard. !"

Directly from the above result, we also obtain the following.

Corollary 3. The universality problem for GBTA is Exptime-complete.

Proof. The upper bound follows from Corollary 2 and from the fact that the
emptiness problem for AGCTA is decidable in exponential time (Theorem 5).
For the lower bound, we observe that the universality problem for automata on
finite trees is Exptime–hard [Sei90]. !"

We now study the relationships between co–BTA and the classes of languages
we have introduced in the previous sections. For this purpose, in Figure 2 we list
some languages along with their ranking relatively to the classification illustrated
in Figure 1. For more details see [LMN02]. For all these languages we assume
that Σ = {a, b}. Since the classes of languages co–GBTA, co–BTA, AGCTA,
and ACTA coincide, in the following we only use co–BTA to refer to this class.

Lemma 3. co–BTA � GCTA.

Proof. This result can be shown using the languages L1 and L1. From the table
in Figure 2, we know that L1 ∈ BTA, thus L1 ∈ co–BTA, while L1 �∈ GCTA. !"
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Directly from the non–equivalence between generalized co–Büchi and alter-
nating generalized co–Büchi paradigms shown in Lemma 3, we get the following
important result for the latter.

Theorem 6. The simulation theorem does not hold for alternating generalized
co–Büchi tree automata.

The following lemma states the results of all the remaining comparisons in-
volving the class co–BTA. The complete picture of the relationships among all
discussed classes is given in Figure 3.

Lemma 4

1. GCTA ⊂ co–BTA.
2. DMTA ⊂ co–BTA.
3. BTA and co–BTA are not comparable.
4. co–BTA �⊆ (GCTA ∪ BTA ∪ DMTA).
5. (BTA \ (GCTA ∪ DMTA)) ∩ co–BTA �= ∅.
6. BTA ∪ co–BTA ⊂ MTA.

Proof. To prove that GCTA ⊆ co–BTA, we recall that any GCTA A is also
an AGCTA, and thus, from Theorem 4, L(A) is the complement of a language
accepted by the AGBTA B dual of A. Thus, the result follows from the fact that
the generalized Büchi paradigm is equivalent to Büchi. Strict containment is a
consequence of Lemma 3. Thus part 1 holds.

To prove that DMTA ⊆ co–BTA, we first observe that on a tree t, a deter-
ministic tree automaton can only check that the acceptance condition holds on
a fixed path of t, or on all paths of t. Thus, given a DMTA M , L(M) consists of
all trees such that the acceptance condition of M does not hold on a fixed path
or on a nondeterministicly selected path of t. Since a nondeterministic selection
can be easily done in BTA, and since on a single path the deterministic Muller
paradigm is equivalent to the nondeterministic Büchi one (see [Tho90]), we con-
clude that L(M) is in BTA, thus, L(M) is in co–BTA. Moreover, since GCTA
⊆ co–BTA and DMTA ⊆ co–BTA but GCTA and MTA are not comparable (see
Figure 1), we get that part 2 holds.

BTADBTADMTA

GCTA

MTA

co−BTA

Fig. 3. Summary of the comparisons involving co–BTA



Reasoning About Co–Büchi Tree Automata 537

Part 3 follows directly from the non–closure under complementation of BTA
(Theorem 1). Finally, to prove parts 4, 5, and 6 we can respectively use the
languages {t ∈ Tω

Σ | t0 ∈ L1 and t10 ∈ L2 and t11 ∈ L1}, {t ∈ Tω
Σ | t0 ∈ L1

and t1 ∈ L1} and {t ∈ Tω
Σ | t0 ∈ L2 and t1 ∈ L2}, where L1, L2, L3, and their

complements are given in Figure 2. !"

5 Co–DGBTA

In this section, we deal with the class of languages whose complement is de-
terministically accepted by generalized Büchi tree automata (co–DGBTA, for
short). We study the relationships of co–DGBTA with the other classes intro-
duced so far and the complexity of the emptiness problem. Clearly, from the
results obtained in the previous sections, the fact that DGBTA is polynomially
equivalent to DBTA, and the fact that DBTA is a special case of BTA, it follows
that the emptiness problem for co–DGBTA can be solved in exponential time.
Here, we prove that this problem is indeed decidable in polynomial time.

The first example of class within BTA closed under complementation has
been the remarkable characterization by Rabin [Rab72] of languages defined by
a formula of weak monadic logic (where only quantifiers over finite sets are al-
lowed): A language L is weakly definable if and only if both L and its complement
L are accepted by Büchi tree automata. In [MS87], it is shown that a language is
weakly definable if and only if it is accepted by a weak alternating Büchi tree au-
tomaton. The class of languages accepted by these automata includes co–DBTA.
In general, we have the following strict containment.

Lemma 5. DBTA ∪ co–DBTA ⊂ WABTA.

Proof. Let L = {t ∈ Tω
Σ | t0 ∈ L3 and t1 ∈ L3}, where L3 and L3 are given in

Figure 2. Since L3 is not in DBTA, it follows that L is not in DBTA ∪ co–DBTA.
On the other hand, since both L3 and L3 are in BTA, it follows that L is in
WABTA. Hence, L ∈ WABTA \(DBTA ∪ co–DBTA). !"

Recall that an alternating automaton is deterministic if and only if the tran-
sition relation δ does not use ∨ [MS95]. Directly form this definition and from
the fact that complementing a WABTA by dualization gives an automaton with
the same paradigm [MS87], we get the following characterization for co–DBTA.

Corollary 4. Each language in co–DBTA is accepted by a WABTA whose tran-
sition relation contains only disjunctions.

From Theorem 3, it follows that the emptiness problem for co–DBTA with
the characterization given by Corollary 4 can be solved in exponential time. As
we show in the following, this complexity can be reduced to a polynomial if we
use a direct approach. First observe that a tree is not accepted by a DGBTA A
if and only if the unique run r of A on t contains a path π that does not satisfy
the acceptance condition. Thus, it is possible to characterize the complement
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of a language accepted by a DGBTA A with an automaton that, for each tree,
nondeterministically selects a path and then deterministically checks that π does
not satisfy the acceptance condition of A. This last corresponds to check that
π satisfies the generalized co–Büchi condition obtained dualizing the acceptance
condition of A. Thus, we modify the definition of accepting run. Given a tree t
and a GCTA B with an accepting condition F = {F1, . . . , Fk}, we say that a run
r ∈ RunB(t) is ∃–successful if there exists a path π of r, such that Inf(r/π) ⊆ Fi

for some Fi ∈ F . A tree t is ∃–accepted by B if there exists an ∃–successful run of
B on t. The language ∃–accepted by B is denoted by L∃(B). In the next lemma,
we show that the ∃–acceptance along with the generalized co–Büchi paradigm
suffices to accept co–DGBTA.

Lemma 6. Given a DGBTA B, there exists a DGCTA A such that L∃(A) =
L(B). Moreover, if B is DBTA then A is DCTA.

Proof. Let L be a language whose complement is accepted by a DGBTA B =
〈Q,Σ, δ,Q0, {F1, . . . , Fk}〉. Let A = 〈Q,Σ, δ,Q0, {Q\Fi | i = 1, . . . , k}〉 be a
DGCTA. A tree t �∈ L(B) if and only if the only run r in RunB(t) (B is de-
terministic) is not successful. That is, r contains at least a path π such that
Inf(r/π)∩Fi = ∅, for some i. Thus, by the definition of ∃-acceptance, t �∈ L(B)
if and only if t ∈ L∃(A). !"

With respect to the emptiness problem, notice that the characterization of
co–DGBTA via “existential” tree automata is equivalent to consider tree au-
tomata as word automata2. In more details, given a DGBTA B, consider a
generalized co-Büchi word automaton C that is obtained from B by dualizing
the acceptance condition and splitting each transition into several transitions,
one for each state successor. That is, for each transition (s,σ, s′, s′′) of B, we get
two transitions (s,σ, s′) and (s,σ, s′′) of C. It is easy to verify that there is a tree
that is not accepted by B if and only if there is a word accepted by C. Using
this observation, we get an efficient algorithm for solving the emptiness problem
for co–DGBTA. First, we notice that a generalized co-Büchi word automaton
can be easily translated into a language equivalent generalized Büchi word au-
tomaton whose size is linear in the size of the starting automaton. Thus, given
a DGBTA B with n states and k accepting sets, we can construct a Büchi word
automaton A with O(nk) states such that the language accepted by A is empty
if and only if the complement of the language accepted by B is empty. Since the
emptiness problem for Büchi word automata is decidable in linear time [EL85],
we get that checking for the emptiness of L(B) can be done in O(nk) time. Thus,
the following theorem holds.

Theorem 7. Given a DGBTA B with n states and index k, checking if L(B)
is empty can be done in O(nk) time.

2 Tree automata generalize word automata, in the sense that a word is a tree of arity
1. Thus, we omit a formal definition of word automata here.
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The rest of the section is devoted to compare co-DGBTA with the other
classes considered in this paper.

Lemma 7. Given a DGBTA B, there exists a GCTA A such that L(A) = L(B).
Moreover, if B is DBTA then A is CTA.

Proof. Let L be a language whose complement is accepted by a DGBTA B =
〈Q,Σ, δ,Q0, {F1, . . . , Fk}〉. We build a GCTA A that nondeterministically selects
a path and on this path checks that the acceptance condition of B does not hold.
Formally, A = 〈{q}∪Q,Σ, δ′, Q0, {{q}∪Q\Fi | i = 1, . . . , k}〉 be a GCTA, where
q �∈ Q and δ′ is defined as follows. For each (s,σ, s′, s′′) ∈ δ, the transition
relation δ′ contains (s,σ, q, s′′) and (s,σ, s′, q); moreover, δ′ contains (q,σ, q, q).
A tree t �∈ L(B) if and only if the only run r in RunB(t) (B is deterministic) is
not successful. That is, r contains at least a path π such that Inf(r/π)∩Fi = ∅,
for some i. Thus, there exists a run r in RunA(t) such that for each path π, either
Inf(r/π) = {q} or there is an i such that Inf(r/π) ⊆ Q\Fi. Hence, t �∈ L(B) if
and only if t ∈ L(A). !"

From the above construction, notice that co–DGBTA can be linearly charac-
terized by GCTA. In the next lemma, we show that co–DGBTA can be polyno-
mially characterized by BTA (notice that it is linear starting from co–DBTA).

Lemma 8. Given a DGBTA B, there exists a BTA A accepting L(B), whose
size is polynomial in the size of B.

Proof. By [Cho74], we can restrict to DBTA. Let L be a language whose com-
plement is accepted by a DBTA B = 〈Q,Σ, δ,Q0, F 〉. We build a BTA A that
nondeterministically selects a path and on this path checks that the accep-
tance condition of B does not hold. Formally, A = 〈Q′, Σ, δ′, Q′

0, F
′〉 is such

that (i) Q′ = Q×{0, 1, 2}; (ii) Q′
0 = Q0×{0}; (iii) F ′ = Q×{1, 2}; (iv) if

(s,σ, s′, s′′) ∈ δ, the transition relation δ′ contains: ((s, 0),σ, (s′, h), (s′′, 1)) and
((s, 0),σ, (s′, 1), (s′′, h)), for h ∈ {0, 2}, ((s, 1),σ, (s′, 1), (s′′, 1)), ((s, 2),σ, (s′, 2),
(s′′, 1)) for s′ ∈ Q \F , and ((s, 2),σ, (s′, 1), (s′′, 2)) for s′′ ∈ Q \F . First, observe
that size of A is linear in the size of B. Moreover, A accepts a tree t if and only
if, for the only run r of B on t (B is deterministic), there exists a path π of
r on which final states of B occur only finitely often. This is done by nonde-
terministically selecting a path π (unselected paths are marked with 1 in the
second component of the states) and then checking that the property holds on
π. For this purpose, on the selected path the second component of the states is
nondeterministically set to 2. Once 2 is entered the run stops unless only states
in Q \ F are met on the selected path. Thus, L(B) = L(A), and the lemma is
shown. !"

Let us observe that the characterizations of co–DGBTA given in Lemmas 7
and 8 yield solutions to the emptiness problem for co–DGBTA via reductions to
the same problem for GCTA and BTA, respectively. Since the best known upper
bounds on the time complexity of the emptiness problem for GBTA and GCTA
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BTADBTA

MTA

DMTA

GCTA

DGCTA co−DBTA

Fig. 4. Summary of the comparisons involving co–DBTA

are both quadratic in the number of states and linear in the index of the au-
tomaton [Rab70, LMN02], the time complexity resulting from these approaches
is asymptotically worse than the upper bound stated in Theorem 7.

In the following lemmas, we complete the comparisons involving co–DBTA
and the classes GCTA, (D)BTA and DMTA. The complete picture of the com-
parisons is given in Figure 4.

Lemma 9. co–DBTA⊂GCTA∩BTA.

Proof. The inclusion co–DBTA⊆GCTA∩BTA is a direct consequence of Lem-
mas 7 and 8. To prove the strict inclusion, we can use the language L = {t ∈
Tω

Σ | t0 ∈ L1 and t1 ∈ L1}, where L1 is given in Figure 2. !"

Lemma 10

1. (a) co–DBTA ∩ DBTA �= ∅;
(b) co–DBTA ∩ (DMTA \ DBTA) �= ∅;
(c) co–DBTA \ DMTA �= ∅.

2. (a) ((BTA ∩ GCTA ∩ DMTA) \ DBTA) �⊆ co–DBTA;
(b) ((BTA ∩ GCTA) \ DMTA) �⊆ co–DBTA.

Proof. Consider first part 1. To prove statement (a), we use the language L =
{t ∈ Tω

Σ | ∀ x ∈ π0, t(x) = a}. For statements (b) and (c), we respectively use
L3 and L1 given in Figure 2.

Consider now part 2. To prove statement (a) we use L = {t ∈ Tω
Σ | t0 ∈ L3 and

t1 ∈ L3}. Finally, for statement (b) we use L = {t ∈ L | t0 ∈ L1 and t1 ∈ L1},
where L1 and L3 are given in Figure 2. !"

6 Conclusion

Büchi and co–Büchi conditions are of interest for expressing requirements over
nonterminating computations [GTW02]. For example, consider a drink-dispenser
machine, we may want to express a requirement such as “users can always choose
in the future coffee or tea” (typically a Büchi condition). In system verification,
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we may want to prove that the computations of a system do not violate a re-
quirement. In particular, in the automata theoretic approach, given a system
model S and its specification ϕ, we can construct an automaton A capturing
the computations of S and an automaton B capturing the negation of ϕ. Thus,
S is correct with respect to ψ if L(A) ∩ L(B) is empty [VW86, VW94]. In the
above example, the negation of the assertion consists of requiring that “users
can be prevented from choosing both coffee and tea from a given point on” (a
co–Büchi condition). Thus, to prove a model A of the drink-dispenser correct
with respect to the first requirement, we can model the second requirement as
a tree automaton with co–Büchi acceptance and check if its intersection with A
is empty.

In this paper, we have dealt with co–Büchi acceptance for branching time
specifications. As a characterization of this class we have considered alternating
generalized co–Büchi tree automata (AGCTA). We have compared the corre-
sponding class of tree languages with the main classes of languages accepted
by tree automata, showing interesting relationships. In particular, it is worth to
remark that this class strictly contains the class accepted by co–Büchi tree au-
tomata and is not comparable with that characterized via Büchi tree automata.
As a consequence of the first result we obtain that the simulation theorem does
not hold for the co–Büchi acceptance condition on tree automata.

We have also investigated the emptiness problem for AGCTA and its sub-
class of languages whose complement is accepted by deterministic generalized
Büchi tree automata (co–DGBTA). For the general class, using a simple trans-
lation to parity automata, we have proved that the emptiness for AGCTA is in
Exptime. This results is also complete since the emptiness problem for weak
alternating Büchi tree automata is Exptime-hard. For the class co–DGBTA,
we have shown a better bound, that is, the emptiness problem is decidable in
quadratic time. For this purpose, we have used a linear-time characterization
of this class of languages via generalized co-Büchi tree automata. In particular,
given a deterministic generalized Büchi tree automaton A with n states and
index k, we can check the emptiness for the complement of L(A) in time O(nk).
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Abstract. As the complexity of systems grows, the correctness of sys-
tems becomes harder to achieve. This difficulty promotes a run-time mon-
itoring technique as a promising complementary methodology for higher
system assurance. To formalize and understand the computational na-
ture of run-time monitoring is a key to utilize this valuable technique.
In this paper, we formalize the notion of run-time monitoring of reactive
systems in terms of ω-languages and show that the language of Monitor-
ing and Checking (MaC) architecture, called MEDL, is expressive enough
for the run-time monitoring.

First, we provide a descriptive theory for the class of monitorable
languages and show that this class of languages coincides with the class
Π0

1 of the Arithmetic hierarchy. Second, we introduce a class of automata
with storage that can be used to describe the class of monitorable lan-
guages using connections to the Arithmetic hierarchy. Finally, we show
that MEDL can express the class of monitorable languages via the cor-
respondence between MEDL and the automata with storage.

1 Introduction

Reactive systems are systems which perform ongoing interaction with an envi-
ronment rather than generate output with given input. Computation is, there-
fore, typically seen as being non-terminating. Such systems are notorious for
its complex behavior and difficulty of testing. As the complexity of systems
grows, the correctness of systems becomes harder to achieve. This difficulty
promotes a run-time monitoring technique not only as a performance mea-
surement method, but also as a promising complementary method for higher
system assurance. The monitor examines interaction of systems, rather than
a result at the end of computation and determines whether the behavior is
correct.

It is customary to model the behavior of such systems as an infinite sequence
of letters from some finite alphabet. This sequence can be seen as either the
sequence of program states visited by the reactive system, or as the sequence
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of request-response pairs that is generated by the system’s interaction with its
environment. Certifying the correctness of reactive systems, therefore, involves
checking to see if the set of execution sequences of the reactive system satisfies
certain constraints/properties.

Past research in monitoring [1] has tried to identify the class of monitorable
properties1 with the class of safety properties. We instead identify the class of
properties that can be monitored with the class Π0

1 in the Arithmetic hierarchy.
Π0

1 consists of properties whose violation can be detected by a Turing machine
by examining a finite prefix of the errant behavior. We will also introduce a class
of automata that can be used to specify these properties, and that can serve as
monitors for such properties.

Section 2 shows that the class of languages run-time monitoring can deter-
mine, sayM, is a strict subset of the class of safety languages. Section 3 describes
the class of monitorable languages M in the Arithmetic hierarchy. Section 4 in-
troduces the model of finite state machines with storage which can specify M.
Section 5 briefly describes the Monitoring and Checking (MaC) architecture and
the specification language Meta Event Definition Language (MEDL) of the MaC
architecture. Then, we show that MEDL is expressive enough for M. Finally,
we enumerate related works in Sec 6 and Sec 7 concludes this paper.

2 A Class of Monitorable Languages M
It is obvious that run-time monitoring cannot evaluate liveness properties be-
cause a monitor decides the correctness of system based on what has been ob-
served. We generally presume that the class of properties which run-time mon-
itoring can evaluate is safety properties. In this section, however, we study the
class of properties run-time monitoring can evaluate more precisely.

2.1 Notations

We use standard notations of ω-languages. Σ is a finite alphabet. The set of
finite words over Σ, including the empty word ε, is denoted by Σ∗, while the set
of ω-words is Σω; Σ∞ = Σ∗ ∪Σω. A subset of Σ∗ is called a finitary language,
and a subset of Σω is an infinitary language (or ω-language).

For a (finite or infinite) word α, α(i) (or αi) denotes the (i+ 1)st letter of α.
Segments of words are denoted as follows: α(m,n) = α(m) ·α(m+1) · · ·α(n−1)
and α(m,ω) = α(m) · α(m + 1) · · ·. The concatenation of a finite word u with
another word (finite or infinite) α, u · α, is defined by u · α(i) = u(i) if i ≤ |u|
and u · α(i) = α(i − |u|) otherwise. A finite word u is said to be a prefix of
another word α if there is β ∈ Σ∞ such that u · β = α. pref(α) is the set
of all finite prefixes of α, and for a (finite or infinite) language L, pref(L) =
∪α∈Lpref(α).

1 In this paper, we use two terms “property” and “language” for the same meaning
depending on its context.
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2.2 Safety Languages and Monitorable Languages

Informally speaking, safety languages are languages that require that nothing
bad happens during an execution; if an execution is faulty, then the monitor
should be able to reject it after looking at a finite prefix. Safety languages are
formally defined by [2] as

Definition 1 (Safety language). A language L ⊆ Σω is a safety language
if for every σ ∈ Σω, σ ∈ L if and only if ∀i∃β ∈ Σω(σ(0, i) · β ∈ L).

It is clear from Definition 1 that a monitorable property is a safety language.
A safety language, however, is not necessarily a monitorable language. The def-
inition of safety language makes no computational assumptions. It is possible to
define a language that is a safety language, but which is unlikely monitorable.
For example, safety closure of the halting problem is a safety language but not
a monitorable language.

Example 1. Let Σ = {0, 1, a, b}. Consider a finite language H∗ = {x · a ·
y | x, y ∈ {0, 1}∗, the Turing Machine encoded by x halts on input y}. We de-
fine a language Hω = H∗ · bω ∪ {0, 1}∗ · a · {0, 1}ω ∪ {0, 1}ω.

The language Hω, defined above is a safety language. In order to see this, we
only need to observe that for any execution not in Hω, there is a finite prefix
when this violation can be detected. Executions not in Hω are those that are
not in the “right format”, or where the finite prefix before the sequence of b’s
is not in H∗; in both cases there is a finite prefix that provides evidence of the
execution not being in the language.

However, in order to detect that an execution σ is not in Hω, we have to
check for membership in H∗. Since membership in H∗ (or the Halting problem)
is not decidable, it is impossible for us to design monitors that would be able to
detect a violation of this language. This suggests that the class of monitorable
language is a strict subset of a class of safety languages; they should be such
that sequences not in the languages should be recognizable by a Turing Machine,
after examining a finite prefix. Therefore, we can define a monitorable language
as follows.

Definition 2 (Monitorable language). A language L ⊆ Σω is said to be
monitorable if and only if L is a safety language and Σ∗ \ pref(L) is recursively
enumerable. The class of monitorable languages is denoted by M.

3 M in the Arithmetic Hierarchy

In our study of ω-languages, we will find it useful to discuss definability relative
to classical hierarchies in recursion theory and descriptive set theory. Such hier-
archies have been extensively studied in the context of formal languages[3, 4, 5].
In the language theoretic context, the usual set-up of these hierarchies is modi-
fied slightly. The relations that we consider are not defined over natural numbers
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and functions over natural numbers, but are rather over the finite and infinite
words over a finite alphabet. While this change is irrelevant due to the presence
of standard recursive encodings from Σ∗ to N, it provides a cleaner presentation
for questions arising in automata theory.

A relationR is said to be finitary overΣ, ifR ⊆ (Σ∗)m. We writeRu1u2 . . . um

instead of (u1, u2, . . . um) ∈ R. We will define our hierarchy in terms of a class
of finitary relations, C. This class C will be assumed to be closed under boolean
operations.

First, we will consider finitary languages over Σ. A languages L ⊆ Σ∗ is said
to be in Σ0

n(C) if and only if for some relation R ∈ C,

L = {u | ∃v1∀v2 . . . QnvnRv1v2 . . . vnu}

where Qn is either ∃ (if n is odd) or ∀ (if n is even). The languages in Π0
n(C) are

defined analogously. L ⊆ Σ∗ is in Π0
n(C) if and only if for some relation R ∈ C,

L = {u | ∀v1∃v2 . . . QnvnRv1v2 . . . vnu}

where Qn is either ∀ (if n is odd) or ∃ (if n is even).
The hierarchy of infinitary languages over C is defined as follows. A language

L ⊆ Σω is in Σ0
n(C) if and only if for some R ∈ C,

L = {α | ∃v1∀v2 . . . Qn−1vn−1Q
′
niRv1v2 . . . vn−1α(0, i)}

where, once again, Qn−1 and Q′
n are quantifiers, and i is an natural number.

The languages in Π0
n(C) are defined similarly in terms of logical formulae with

alternating quantifiers, with the leading quantifier being ∀. Though we use the
same notation for the hierarchy of infinitary languages, as in the case of finitary
languages, it will often be clear from the context which hierarchy we are referring
to.

By instantiating C to specific families, we obtain the classical hierarchies
from recursion theory and descriptive set theory. If C is taken to be the class
of recursive relations (REC), then we get the arithmetic hierarchy. For finitary
languages, Σ0

1(REC) coincides with the class of recursively enumerable (R.E.)
languages, while Π0

1 (REC) is the class of co-R.E. languages. For notational
convenience, we will denote the classes Σ0

n(REC) and Π0
n(REC), simply as, Σ0

n

and Π0
n, respectively.

Now we are ready to describe the class of monitoring languages M in terms
of the Arithmetic hierarchy.

Proposition 1. M = Π0
1

Proof. [M ⇒ Π0
1 ] Consider L ∈ M. From the definition of M, we know that

Σ∗ \pref(L) is recursively enumerable. Therefore, there is a recursive relation R
such that u ∈ Σ∗ \ pref(L) if and only if ∃vRvu. In other words, u ∈ pref(L) if
and only if ∀vR′vu, where R′ = ¬R. Furthermore, we know that L is a safety lan-
guage, which implies that L ∈ adh(pref(L)) where adh(L) = {α ∈ Σω|pref(α) ⊆
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pref(L)} [6]. Hence, α ∈ L if and only if ∀iα(0, i) ∈ pref(L) if and only if
∀i∀vR′vα(0, i). By contracting the quantifiers we can see that L ∈ Π0

1 .
[Π0

1 ⇒ M] Let L ∈ Π0
1 . Hence α ∈ L if and only if ∀iRα(0, i), for some

recursive relation R. From the definition of safety language (see Sect 2.2), it is
clear that L is a safety language. Also, u ∈ Σ∗ \pref(L) if and only if ¬Ru. Thus
Σ∗ \ pref(L) is recursively enumerable, and L ∈M. 	

4 ω-Automata with Storage

Finite state machines on infinite words, are very similar to those which accept
finite words. On an ω-word, α, the machine works as if α were a “very large”
finite word. The only difference is the criteria that these machines use to accept
a language (clearly, acceptance by final state cannot be used).

The general notion of an automaton on ω-words, using some kind of storage,
was first introduced and studied Engelfriet and Hoogeboom [7]. We use defini-
tions and concepts described there, to develop our theory. Before defining finite
state machines on ω-words formally, we first define the notion of a storage type,
and give an example.

Definition 1. A storage type is a 5-tuple X = (C,C0, P, F, [[·]]), where

– C is a set of storage configurations,
– C0 ⊆ C is a set of initial storage configurations,
– P is a set of predicate symbols,
– F is a set of function symbols, and
– [[·]] is a function that defines the semantics of the predicate and function

symbols. For each p ∈ P , [[p]] : C → {true, false}, and for each f ∈ F ,
[[f ]] : C → C, is a partial function.

The set of all Boolean expressions over P , built using connectives ∧,∨, and
¬, constants {true, false}, and the predicates in P , is denoted by BE(P ). The
function [[·]] is extended to BE(P ) in the standard way. [[·]] is also extended to
finite words over F , by interpreting concatenation as function composition. In
other words, [[f · ϕ]] = [[ϕ]] ◦ [[f ]], where ϕ ∈ F ∗ and f ∈ F .

Example 2. The storage type, accumulator, is AC = (N, {0}, {zero}, {+k,−k|k
∈ N}, [[·]]). It is the storage type of integers with a test for zero, and ability to
add and subtract constants. More precisely,

[[zero]](c) = true if and only if c = 0
[[+k]](c) = c+ k
[[−k]](c) = c− k, if c ≥ k, and undefined otherwise.

We will now define the notion of the product of storage types. It is a way
obtaining a new storage type that combines two storage types and uses them
independently.
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Definition 2. Let X1 = (C1, C10, P1, F1, [[·]]1) and X2 = (C2, C20, P2, F2, [[·]]2)
be two storage types with P1 ∩ P2 = ∅ and F1 ∩ F2 = ∅. The product of these
two storage types, X1 × X2, is the type (C,C0, P, F, [[·]]), where C = C1 × C2,
C0 = C10 ×C20, P = P1 ∪ P2 and F = F1 ∪ F2. The function [[·]] is then defined
naturally, as follows.

[[p]](c1, c2) =
{

[[p]]1(c1) if p ∈ P1
[[p]]2(c2) if p ∈ P2

[[f ]](c1, c2) =
{

([[f ]]1(c1), c2) if f ∈ F1
(c1, [[f ]]2(c2)) otherwise

We will often use the above definition to get finitely many copies of the same
storage type. In such a case, we first rename the predicate and function symbols
of the storage type, by adding subscripts, and then taking repeated products.
The n-fold product (n ≥ 1) of a storage type X will be denoted by Xn. In order
to extend the definition consistently, we take X0 = ({c}, {c}, ∅, ∅, ∅).

We are now ready to define automata with storage type X. We will consider
only one acceptance condition for such machines (see Def 4) 2

Definition 3. Let X = (C,C0, P, F, [[·]]) be a storage type. An X-automata is a
5-tuple A = (Q,Σ, δ, q0, c0), where

– Q is a finite set of states,
– Σ is a finite input alphabet,
– δ is the transition function, which is a finite subset of Q×(Σ∪{ε})×BE(P )×
Q× F ∗,

– q0 ∈ Q is the initial state, and
– c0 ∈ C0 is the initial storage configuration.

The instantaneous description of such a machine A, is a tuple (q,α, i, c) ∈
Q×Σω × N× C, where q is the current state of the machine, α is the input to
the machine, i is the position of the symbol being currently scanned, and c is the
current configuration. In one step the machine either reads a symbol from the
input or makes a “silent” transition, according to the transition function δ. More
precisely, we say (q,α, i, c) � (q′,α, i′, c′), if there exists a transition (q, a, ϕ, q′, h),
such that [[ϕ]](c) = true, [[h]](c) is defined, and [[h]](c) = c′. Furthermore, we
require that, either a = ε and i = i′, or a = α(i) and i′ = i+1. An infinite run of
the automaton A, on an input α, is an infinite sequence 〈Ii〉i∈N of instantaneous
descriptions, such that I0 = (q0,α, 0, c0), Ii � Ii+1, for each i ∈ N, and for every
j ∈ N, there is a k such that Ik is scanning a position beyond j.

Definition 4. An ω-word, α ∈ Σω, is said to be accepted by an X-automaton
A, if there is an infinite run of the automaton on the input α. The language
accepted by A, LA, is the set of all ω-words accepted by A.

2 For a discussion of the relative power of the various other acceptance conditions,
readers are directed to [3, 4].



Foundations for the Run-Time Monitoring of Reactive Systems 549

The above definition of acceptance coincides with Landweber’s [8] 1′-acceptance
and with the “always” acceptance of [7].

An automaton A is deterministic if for any state and storage configuration
there is at most one possible next state and storage configuration. More formally,
for any two tuples (q1, a1, ϕ1, q

′
1, h1) and (q2, a2, ϕ2, q

′
2, h2) in δ, with q1 = q2,

either a1 �= a2 and a1, a2 �= ε, or [[ϕ1∧ϕ2]](c) = false, for every c ∈ C. Automata
of particular interest to us will be what are called real-time automata. A is a
real-time automata if it has no ε-transition, i.e., δ ⊆ Q×Σ ×BE(P )×Q×F ∗.
A slightly more general class of automata than real-time automata is the finite
delay automata. An automaton A is said to be finite-delay, if there is no infinite
run of the automaton on a finite word.

The class of ω-languages accepted by X-automata will be denoted by XL;
X∗L = ∪nX

nL, where Xn is the n-fold product of the storage type X. The
prefixes d-, r-, and f - will be used to denote the class of languages accepted
by deterministic, real-time, and finite delay automata respectively. Similarly the
prefix dr- (and df -) will be used for languages accepted by automata that are
both deterministic and real-time (deterministic and finite delay).

Before presenting the automata theoretic characterization of M, we define
a storage type that will play an important role. This is the type of storage
where one has finitely many integer locations that one can manipulate using
addition, subtraction, multiplication and division. We will then prove a re-
sult relating the powers of real-time and finite delay automata with such a
storage.

Definition 5. The storage type of m integer variables Nm is given by Nm =
(C,C0, P, F, [[·]]). C = N

m is the set of m-tuples of natural numbers, and C0 =
〈0, . . . , 0〉. P consists of predicates zeroi, which test if the ith element of the
current configuration is 0, i.e., [[zeroi]](〈c0, . . . , cm−1〉) = true if and only if ci =
0. There are various operations that one can perform on these configurations;
one can add, subtract, and multiply integers to some element of the tuple, find
the quotient or remainder when dividing an entry by an integer, and also add and
subtract one entry in the tuple to another. The operation ADRi,j (add register)
adds the ith entry to the jth entry; SBRi,j (subtract register) subtracts the ith
entry from the jth entry. ADCi,k adds constant k to ith entry; similarly, SBCi,k

and MLCi,k subtract and multiply constants k, while QCi,k and RMCi,k find
the quotient and remainder when divided by k.

As usual, NmL is the class of languages accepted by automata with storage
type Nm. By N∗L we denote the class of languages ∪mNmL.

Theorem 1. The following classes of ω-languages are equivalent.

1. M = Π0
1

2. df -N∗L
3. dr-N∗L

Proof. [(1) ⇒ (2)] For a language L ∈ Π0
1 , we know that α ∈ L if and only if

∀iRα(0, i), where R is a recursive language. Since R is a recursive language, there
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exists a deterministic finite delay Nm-automaton, A, that has runs on exactly
the same finite words as R. It is easy to see that the language accepted by A isL.

[(2)⇒ (3)] A real-time automaton may not have the “time” to do the computa-
tion performed by a finite delay machine. However, if the real-time machine can
simulate a buffer, it has enough time to do everything done by the finite delay
machine. The real-time automaton, then, reads an input symbol every time and
puts it into the buffer, while the actual computation is then performed on the
buffered input.

We basically show that df -NmL ⊆ dr-Nm+2L. The two extra integer loca-
tions will be used by the real-time machine to simulate a buffer. The operations
for manipulating a queue can be performed in one step using two locations, one
storing the contents of the queue and the other storing some measure of the
number of elements in the queue. Detailed proof is omitted.

[(3) ⇒ (1)] Let A be the deterministic real-time automaton that accepts L.
Observe that since A is real-time, it cannot distinguish between infinite runs
that read the whole input and runs that do not read the whole input (because
there are no such runs). Thus α ∈ L if and only if ∀iα(0, i) has a run. Hence,
L ∈ Π0

1 . 	

5 The Language of the Monitoring and Checking
Architecture

5.1 Overview of the MaC Architecture

The Monitoring and Checking (MaC) architecture [9, 10] is a framework for mon-
itoring and checking a running system with the aim of ensuring that the target
program is running correctly with respect to a formal requirement specification.
Fig 1 shows the overview of the MaC architecture.

The MaC architecture consists of three components: filter, event recognizer,
and run-time checker. The filter extracts low-level information (such as values of
program variables and time when variables change their values) from the instru-
mented code. The filter sends this information to the event recognizer, which
detects primitive events and conditions where primitive events are changes of
values, beginnings of functions, and endings of functions and primitive condi-
tions are boolean variables or boolean statements composed by primitive typed
variables. These events and conditions are then sent to a run-time checker. The
run-time checker determines whether the current execution history satisfies the
requirement specification.

Monitoring and checking as well as target program instrumentation are au-
tomatically performed from a given requirement specification, which makes the
run-time analysis rigorous. In addition, monitoring program-dependent low-level
behavior and checking high-level behavioral requirements are separated. This
separation allows the specification of high-level requirements independent of the
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Fig. 1. Overview of the MaC architecture

implementation since implementation specific details are confined to the low-
level specification. Furthermore, this modularity of the MaC architecture and
well-defined interfaces among the components makes it easy to extend the ar-
chitecture to incorporate third-party tools.

We have demonstrated the effectiveness of the MaC architecture using Java-
MaC, a prototype implementation of the MaC architecture for Java programs,
through several case studies [11, 12].

5.2 Specification Languages of the MaC Architecture

In this section, we give a brief overview of the formal specification languages
used to describe specifications. The language for low-level specification is called
Primitive Event Definition Language (PEDL). PEDL is used to define what infor-
mation is sent from the filter to the event recognizer, and how it is transformed
into events used in high-level specification by the event recognizer. High-level
specifications are written in Meta Event Definition Language (MEDL). This
separation ensures that the architecture is portable to different implementation
languages and specification formalisms. Before presenting the two languages, we
first define the notions of event and condition, which are fundamental to the
MaC languages.

Events and Conditions. The MaC architecture assumes that it is possible to
observe the behavior of the target system and evaluate the observed behavior to
check whether required properties are satisfied or not. The observation is based
on the occurrence of “interesting” state change in the target system. We use the
notions of event and condition to capture interesting state changes.



552 M. Viswanathan and M. Kim

Events occur instantaneously during the system execution, whereas condi-
tions represent information that holds for a duration of time. For example, an
event denoting return from method RaiseGate occurs at the instant the control
returns from the method, while a condition (position == 2) holds as long as
the variable position does not change its value from 2. The distinction between
events and conditions is very important in terms of what the monitor can in-
fer about the execution based on the information it gets from the filter. The
monitor can conclude that an event does not occur at any moment except when
it receives an update from the filter. By contrast, once the monitor receives a
message from the filter that variable position has been assigned the value 2,
we can conclude that position retains this value until the next update.

We assume a countable set C = {c1, c2, . . .} of primitive conditions. For ex-
ample, these primitive conditions can be Java boolean expressions built from the
monitored variables. In MEDL (see Sec 5.2), these will be conditions that were
recognized by the event recognizer and sent to the run-time checker. We also
assume a countable set E = {e1, e2, . . .} of primitive events. Primitive events
correspond to updates of monitored variables and calls/returns of monitored
methods. The primitive events in MEDL are those that are reported by the
event recognizer. Table 1 shows the syntax of conditions (C) and events (E).

Table 1. The syntax of conditions and events

〈C〉 ::= c | defined(〈C〉) | [〈E〉,〈E〉) | !〈C〉 | 〈C〉&&〈C〉 | 〈C〉||〈C〉 | 〈C〉⇒〈C〉
〈E〉 ::= e | start(〈C〉) | end(〈C〉) | 〈E〉&&〈E〉 | 〈E〉||〈E〉 | 〈E〉 when 〈C〉

During execution, variables routinely become undefined when they are out of
scope. We choose to use a three-valued logic, where the third value is taken to
represent undefined (Λ). We interpret conditions over three values, true, false,
and Λ. The predicate defined(c) is true whenever the condition c has a well-
defined value, namely, true or false. Negation (!c), disjunction (c1||c2), and
conjunction (c1&&c2) are interpreted classically whenever c, c1 and c2 take val-
ues true or false; the only non-standard cases are when these take the value
Λ. In these cases, we interpret them as follows. Negation of an undefined con-
dition is Λ. Conjunction of an undefined condition with false is false, and
with true is Λ. Disjunction is defined dually; disjunction of undefined condi-
tion and true is true, while disjunction of undefined condition and false is
Λ. Implication (c1 ⇒ c2) is taken to !c1||c2. For events, conjunction (e1&&e2)
and disjunction (e1||e2) are defined classically; so e1&&e2 is present only when
both e1 and e2 are present, whereas e1||e2 is present when either e1 or e2 is
present.

There are some natural events associated with conditions, namely, the instant
when the condition becomes true (start(c)), and the instant when the condition
becomes false (end(c)). Notice that the event corresponding to the instant when
the condition becomes Λ can be described as end(defined(c)). Also, any pair of
events define an interval of time, so forms a condition [e1, e2) that is true from
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event e1 until event e2. Finally, the event (e when c) is present if e occurs at a
time when condition c is true.

Notice that MaC reasons about temporal behavior and data behavior of the
target program execution using events and conditions; events are abstract repre-
sentation of time and conditions are abstract representation of data. For formal
semantics of events and conditions, see [9].

Primitive Event Definition Language (PEDL). PEDL is the language for
writing low-level specifications. The design of PEDL is based on the following
two principles. First, we encapsulate all implementation-specific details of the
monitoring process in PEDL specifications. Second, we want the process of event
recognition to be as simple as possible. Therefore, we limit the constructs of
PEDL to allow one to reason only about the current state in the execution trace.
The name, PEDL, reflects the fact that the main purpose of PEDL specifications
is to define primitive events of requirement specifications. All the operations on
events can be used to construct more complex events from these primitive events.
PEDL is dependent on its target programming language.

Meta Event Definition Language (MEDL). The safety requirements are
written in MEDL. Primitive events and conditions in MEDL specifications are
imported from PEDL specifications. The overall structure of a MEDL specifica-
tion is given in Fig 2.

ReqSpec <spec_name>

/* Import section */
import event <e>;
import condition <c>;

/*Auxiliary variable declaration*/
var int <aux_v>;

/*Event and condition definition*/
event <e> = ...;
condition <c>= ...;

/*Property and violation definition*/
property <c> = ...;
alarm <e> = ...;

/*Auxiliary variable update section*/
<e> -> { <aux_v’> := ... ; }

End

Fig. 2. Structure of MEDL
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Importing events and conditions. A list of events and conditions to be imported
from an event recognizer is declared.

Defining events and conditions. Events and conditions are defined using im-
ported events, imported conditions, and auxiliary variables, whose role is ex-
plained later in this section. These events and conditions are then used to define
safety properties and alarms.

Safety properties and alarms. The correctness of the system is described in terms
of safety properties and alarms. Safety properties are conditions that must be
always true during the execution. Alarms, on the other hand, are events that
must never be raised (all safety properties [13] can be described in this way). Also
observe that alarms and safety properties are complementary ways of expressing
the same thing. The reason that we have both of them is because some properties
are easier to think of in terms of conditions, while others are in terms of alarms.

Auxiliary variables. The language described in Sec 5.2 has a limited expressive
power. For example, one cannot count the number of occurrences of an event, or
talk about the ith occurrence of an event. For this purpose, MEDL allows users
to define auxiliary variables, whose values may then be used to define events and
conditions. Updates of auxiliary variables are triggered by events. For example,

e1 -> {count e1’ := count e1 + 1;}
counts occurrences of event e1.

5.3 Expressive Power of MEDL

In this section, we show that MEDL is expressive enough for the monitoring
purpose. More specifically, we show that for every dr-N∗-automaton AM , there
exists a MEDL script MA which accepts exactly the same strings.

Theorem 2. MEDL is expressive enough for M.

Proof. Consider a dr-N∗-automaton A. The elements of Σ (the input alphabet
of A) will be all the imported events, and there will be an auxiliary variable cor-
responding to each of the m storing locations of the automaton A. In addition,
there will be an auxiliary variable state that will store the state of the automa-
ton. Let Pr be the set of all boolean expressions that label the edges of the au-
tomatonA. Corresponding to each such boolean expression b ∈ Pr, we will define
a condition Cb = b and an event Eb = start(Cb); note, that the expression b con-
tains no primed variable. A transition (q1, a, b, q2, f) is transformed into a guard

(a&&Eb) when (state ==q1) -> {state′ :=q2; f ′; }
where, f ′ is the sequence of updates that produces the same result as function
f . Finally, the automaton accepts only those strings that do not cause it to be
stuck at any point; this is captured by defining the safety property of the MEDL
script to be something that says if state == q, then the boolean expression la-
beling one of the out-going transitions must be true. It is clear that this MEDL
script will behave exactly like the automaton. 	
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6 Related Work

Monitoring systems at runtime to ensure correctness has received a lot of atten-
tion recently, and many systems have been developed. There are monitoring sys-
tems that analyze programs written in C [14, 15] and Java [16, 17, 18, 9], by in-
strumenting the program to extract information. Different specification languages
with varying expressive powers have been used to specify monitoring requirements
ranging from simple boolean expressions [14] to some versions of propositional
temporal logic [17] to extensions of propositional temporal logic [9] and logics for
partial-order traces [19]. However, there has been very little work in understanding
the fundamental limitations of what properties can and cannot be monitored. In
the seminal paper [1], monitorable properties are identified with safety properties.
This was refined in [6]. More recently, Hamlen et. al. [20] have identified the class
of properties that can be enforced; namely properties that can be detected and for
which corrective action can be taken before a serious violation happens. The class
of properties they identify as enforceable is strict subset of the class identified in
this paper. The difference between these classifications stems from the fact that in
this paper, we are only concerned with the problem of monitoring to detect errors
(possibly after the violation has occurred) and not in enforceable properties.

7 Conclusion and Future Work

Run-time monitoring can serve as a complementary method, in addition to formal
verification and testing, for assurance of the systems’ correctness. In this paper, we
have formalized the computational nature of run-time monitoring, which is nec-
essary for utilizing this valuable technique. We have provided a descriptive theory
for the class of monitorable languages M and showed that MEDL, the specifi-
cation language of the MaC architecture, is expressive enough forM. We showed
thatM is a strict subset of the class of safety languages andM corresponds toΠ0

1
in the Arithmetic hierarchy. Also, we introduced a class of automata with storage
which can specifyM, then showed that there exists a MEDL specification which
can express such automaton. Therefore, the MaC architecture, whose specifica-
tion language is MEDL, can be a general framework for run-time monitoring.

Although the MaC architecture provides an expressive language MEDL, it is
sometimes awkward to express certain features like temporal ordering of complex
events in MEDL. Extending MEDL for specifying requirements more easily could
be one further research direction. For example, [21] extends MEDL for describing
regular expressions more conveniently.
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A Summary of the Tutorials at ICTAC 2004
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Abstract. ICTAC 2004 provided six tutorials on advanced topics related to the
theme of ICTAC, given by recognized worldwide experts. Here, we include a brief
summary of each tutorial.

1 Introduction

The tutorial program at ICTAC provides opportunities for conference attendees to get
knowledge, insights and abilities on key subjects on theoretical aspects of computing. It
is intended for practitioners, researchers, educators and students looking for a better and
deeper understanding of up to date theories, methods and tools. We believe that this is
particularly helpful for developing countries to strengthen their research, teaching and
development in computer science and engineering.

The tutorial program at ICTAC 2004 was very popular and successful. The quality
of the proposals was very high and it is a pity that we had space only for only six. As a
result, a number of good proposals were not accepted. We hope the prospective speakers
will be encouraged to submit again to ICTAC 2005.

In the six that were selected, there was a good coverage of areas in theories, prac-
tical formal engineering methods and tools, that had great appeal and relevance to the
theoretical computer science community. In the following section, we summarise these
tutorials. Further detailed information can be obtained at the ICTAC 2004 website:
http://www.iist.unu.edu/ICTAC2004/tutorials.html.

2 The Tutorials

Tutorial 1: Theorem Proving with Isabelle/HOL

Lecturer: Tobias Nipkow, Techical University Munich

Abstract: Isabelle/HOL is an interactive theorem prover for HOL, a popular version
of higher-order logic. The purpose of this 12-hour tutorial is to familiarise students,
researchers and practitioners with the basics of specification and proof in Isabelle/HOL.
The course combines traditional lectures, on-line demos, and practical exercises for the
participants. At the end of the course participants should be able to formalize func-
tional programs and set-theoretic system models and prove (with Isabelle’s help) simple
properties about them. The following topics are covered:

Z. Liu and K. Araki (Eds.): ICTAC 2004, LNCS 3407, pp. 557–560, 2005.
c©Springer-Verlag Berlin Heidelberg 2005
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– Datatypes and recursive functions
– Proof by structural induction and by simplification
– Proofs in propositional logic and predicate logic
– Set theory and inductively defined sets
– A language of readable proofs.

Tutorial 2: Formal Theories of Software Testing

Lecturer: Hong Zhu, Oxford Brookes University, UK

Abstract: Software testing has been considered as in a lack of solid theoretical foun-
dation for a long time. In the past thee decades, serious efforts have been attempted by
researchers to lay a sound foundation of software testing. A number of formal theories
have been advanced. In this half-day tutorial, we will present a systematic introduction
the formal theories of software testing developed over the past decades. It will consist
of the following three parts. Part 1 will give a brief introduction to the basic concepts
and methods of software testing. Formal definitions of the concepts and testing methods
will be presented. Part 2 will be devoted to the axiomatic studies of software test ade-
quacy criteria. Various axiom systems will be discussed and analysed. The assessments
of testing methods against axioms will be reviewed. The results of the investigations
on the relationships between testing and software correctness and reliability through
interpretations of the axiom systems by inductive inferences will be reported. Part 3 will
focus on the problem of test oracle. The theories and methods of automated test oracle
based on the concept of observation contexts in algebraic specification-based testing will
be examined. A general theory of behaviour observation based on the domain theory of
program semantics will be introduced. Axioms of well-defined behaviour observation
methods will be discussed. Problems in testing concurrent systems and component-based
systems will also be examined.

Tutorial 3: Formal Aspects of Software Architecture

Lecturer: José Luiz Fiadeiro, University of Leicester, England

Abstract: This half-day tutorial presents a formal approach to Software Architecture.
The key architectural concepts - component, connector and configuration - are formalised
in CommUnity, a prototype architectural description language that has a mathematical
semantics and is supported by a graphical tool. We show how the principle of superposi-
tion can support the separation between three main architectural concerns - computation,
coordination and distribution. Finally, we show how architectures enable the incremental
development and compositional evolution of systems through graph-based reconfigura-
tion techniques.

Tutorial 4: Formal Engineering Methods for Industrial Software Development -
An Introduction to the SOFL Specification Language and Method

Lecturer: Shaoying Liu, Hosei University, Japan
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Abstract: This half-day tutorial offers a systematic introduction to the SOFL speci-
fication language, method, process, and supporting tools. As a specification language,
SOFL integrates VDM-SL, Data Flow Diagrams, and Petri Nets to provide an intuitive,
rigorous, and comprehensible formal notation for specifications at different levels. Com-
pared to UML (Unified Modeling Language), SOFL provides a simpler but systematic
mechanism for precisely defining the functions of system units and their integration,
and therefore avoids the difficulty in managing different kinds of diagrams and their
consistency in UML.

The tutorial is divided into three parts. The first part includes the brief introduction
to Formal Engineering Methods and the SOFL specification language. In particular,
we will focus on the explanation of the idea of using the graphical notation, known as
Condition Data Flow Diagram (or CDFD for short), to model the architecture of a system,
while using the pre-post notation to define the functionality of processes occurring in
CDFDs. The second part explains the SOFL method and process: how SOFL can be used
to construct a formal specification by taking a three-step: informal, semi-formal, and
formal specifications. It also explains how structured abstract design can be smoothly
transformed into object-oriented detailed design and programs. Finally, the third part
presents Rigorous Review and Specification Testing as two practical techniques for
verification and validation of specifications, and demonstrates several tools we have
built to support SOFL.

Tutorial 5: Program Transformation Systems: Theory and Practice for Software
Generation, Maintenance and Reengineering

Lecturer: Hongjun Zheng , Semantic Designs, Inc., Austin, USA

Abstract: This half-day tutorial provides an integrated view, built over 20 years, of pro-
gram transformation systems, on concepts, vocabulary, mechanisms, and discussion of
some existing systems from this view. Software engineering and software maintenance
automation support will come from such semantically founded tools. Of particular in-
terest to this conference, the tutorial will elaborate a well-founded theory of software
maintenance using the transformational perspective. It will describe a set of practical
transformation systems, and provide some application experience based on DMS, the
transformation toolset that Semantic Designs is building. A number of real-world appli-
cations of transformations will be described, including OO component reengineering (a
task-specific refactoring), automated translation of JOVIAL to C (legacy software mi-
gration), test coverage and profiling analysis, and automated clone detection and removal
(for million-line COBOL and Java systems).

Tutorial 6: Functional Predicate Calculus and Generic Functionals in Software
Engineering

Lecturer: Raymond Boute, University of Ghent, Belgium

Abstract: By formal calculation we mean expression manipulation on the basis of syn-
tax, “letting the symbols do the work”. This is a valuable complement to (some might
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even say, replacement for) intuitive reasoning, especially when exploring new grounds
where intuition is (still) clueless. By this tutorial, we wish to open for software engi-
neers the same possibilities that calculus has offered to physicists and engineers in more
classical areas (mechanical, electrical, ...). This half-day tutorial presents the principles
of two interwoven formalisms and illustrates their applications to formal reasoning in
various aspects of software engineering. The first formalism is a discipline for designing
generic functionals, some of which constitute generalizations of often-used functionals
in mathematics (composition, restriction, inverse, etc.), whereas others are new. A small
collection of generic functionals and their algebraic properties appears sufficient for
providing considerable expressive and calculational power in a wide diversity of fields,
illustrated with examples in program transformation, data types, program semantics,
databases. The second formalism is a functional predicate calculus, thus called because
predicates and quantifiers are functions and all algebraic laws are derived from the basic
quantifier axioms using the axioms for function equality. The laws are most elegantly
expressed using generic functionals and, conversely, the predicate calculus is most con-
venient for proving the properties of the generic functionals, which explains the synergy.
The collection of laws necessary for conveniently covering the diversity of logical argu-
ments encountered in practice is larger than found in traditional logic textbooks (a fact
also made evident by the extensive list in Gries and Schneider’s “A Logical Introduction
to Discrete Math”). However, it is still very manageable, especially by proper grouping.
Its power resides in guiding the flow of the calculations by the shape of the formulas
and, if used in this fashion, it makes the development of logical arguments in continuous
mathematics and in discrete mathematics remarkably similar and, above all, easy and
reliable. This is illustrated by (a) general methods for reasoning about functions, rela-
tions and proofs by induction (perhaps one of the most important proof techniques in
software engineering) and (b) showing how theories of programming that are useful in
program construction and verification can be calculationally derived from a very simple
model based on “program equations” in a way similar to systems modelling in classical
engineering. Other examples are kept available for illustration and discussion as time
permits.
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