

Lecture Notes in Computer Science 3448
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Günther R. Raidl Jens Gottlieb (Eds.)

Evolutionary
Computation
in Combinatorial
Optimization

5th European Conference, EvoCOP 2005
Lausanne, Switzerland, March 30 - April 1, 2005
Proceedings

13

Volume Editors

Günther R. Raidl
Vienna University of Technology
Institute of Computer Graphics and Algorithms
Algorithms and Data Structures Group
Favoritenstr. 9-11/186, 1040 Vienna, Austria
E-mail: raidl@ads.tuwien.ac.at

Jens Gottlieb
SAP AG
Neurottstr. 16, 69190 Walldorf, Germany
E-mail: jens.gottlieb@sap.com

Cover illustration: Triangular Urchin by Chaps
(www.cetoine.com)
Chaps has obtained an MSc in Physics at the Swiss Federal Institute of Technology.
He is the developer of the ArtiE-Fract software that was used to create Triangular
Urchin.
Triangular Urchin (an Iterated Functions System of 2 polar functions) emerged from
an urchin structure after a few generations usingArtiE-Fract. The evolutionary process
was only based on soft mutations, some of them directly induced by the author.

Library of Congress Control Number: 2005922053

CR Subject Classification (1998): F.1, F.2, G.1.6, G.2.1, G.1

ISSN 0302-9743
ISBN 3-540-25337-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11407041 06/3142 5 4 3 2 1 0

Volume Editors

Günther R. Raidl
Algorithms and Data Structures Group
Institute of Computer Graphics
Vienna University of Technology
Favoritenstrasse 9-11/186
1040 Vienna, Austria
raidl@ads.tuwien.ac.at

Jens Gottlieb
SAP AG
Neurottstrasse 16
69190 Walldorf, Germany
jens.gottlieb@sap.com

Preface

Evolutionary computation (EC) involves the study of problem-solving and opti-
mization techniques inspired by principles of natural evolution and genetics. EC
has been able to draw the attention of an increasing number of researchers and
practitioners in several fields. Evolutionary algorithms have in particular been
shown to be effective for difficult combinatorial optimization problems appearing
in various industrial, economics, and scientific domains.

This volume contains the proceedings of EvoCOP 2005, the 5th European
Conference on Evolutionary Computation in Combinatorial Optimization. It
was held in Lausanne, Switzerland, on 30 March–1 April 2005, jointly with
EuroGP 2005, the 8th European Conference on Genetic Programming, and the
EvoWorkshops 2005, which consisted of the following six individual workshops:
EvoBIO, the 3rd European Workshop on Evolutionary Bioinformatics; Evo-
COMNET, the 2nd European Workshop on Evolutionary Computation in Com-
munication, Networks, and Connected Systems; EvoHOT, the 2nd European
Workshop on Hardware Optimisation Techniques; EvoIASP, the 7th European
Workshop on Evolutionary Computation in Image Analysis and Signal Process-
ing; EvoMUSART, the 3rd European Workshop on Evolutionary Music and
Art; and EvoSTOC, the 2nd European Workshop on Evolutionary Algorithms
in Stochastic and Dynamic Environments.

EvoCOP, held annually as a workshop since 2001, became a conference in
2004 and it is now the premier European event focusing on evolutionary compu-
tation in combinatorial optimization. The events gave researchers an excellent
opportunity to present their latest research and to discuss current developments
and applications, besides stimulating closer future interaction between members
of this scientific community. Accepted papers of previous events were published
by Springer in the series Lecture Notes in Computer Science (LNCS volumes
2037, 2279, 2611, and 3004).

The double-blind reviewing process resulted in a strong selection among the
submitted papers; the acceptance rate was 36.4%. All accepted papers were
presented orally at the conference and are included in this proceedings volume.
We would like to give credit to the members of our Program Committee, to
whom we are very grateful for their quick and thorough work.

EvoCOP submitted accepted acceptance ratio
2001 31 23 74.2%
2002 32 18 56.3%
2003 39 19 48.7%
2004 86 23 26.7%
2005 66 24 36.4%

VI Preface

EvoCOP 2005 covers evolutionary algorithms as well as related approaches
like scatter search, simulated annealing, ant colony optimization, immune algo-
rithms, variable-neighborhood search, hyperheuristics, and estimation of distri-
bution algorithms. The papers deal with representations, analysis of operators
and fitness landscapes, and comparison of algorithms. The list of studied combi-
natorial optimization problems includes prominent examples like graph coloring,
quadratic assignment, the knapsack problem, graph matching, packing, schedul-
ing, timetabling, lot-sizing, and the traveling-salesman problem.

For the first time, EvoCOP used a conference management system, VSIS
ConfTool 1.1.2, to handle paper submissions and the reviewing process. Harald
Weinreich and his team, who developed this software and made it available to
us, deserve our gratitude for this open-source project that saved us a lot of
time. We would like to thank Philipp Neuner for administrating the conference
management system.

Finally, many thanks go to Jennifer Willies, who cared about the adminis-
tration and coordination of EuroGP 2005, EvoCOP 2005, and the EvoWork-
shops 2005, for her tremendous efforts.

March 2005 Günther R. Raidl
Jens Gottlieb

Organization

EvoCOP 2005 was organized jointly with EuroGP 2005 and the EvoWork-
shops 2005.

Organizing Committee

Chairs: Günther R. Raidl, Vienna University of Technology, Austria

Jens Gottlieb, SAP AG, Germany

Local Chair: Marco Tomassini, University of Lausanne, Switzerland

Publicity Chair: Jano van Hemert, Napier University, Edinburgh, UK

Program Committee

Adnan Acan, Eastern Mediterranean University, Turkey
Hernan Aguirre, Shinshu University, Japan
Enrique Alba, University of Málaga, Spain
M. Emin Aydin, London South Bank University, UK
Jean Berger, Defence Research and Development Canada, Canada
Christian Bierwirth, University of Halle-Wittenberg, Germany
Christian Blum, Universitat Politècnica de Catalunya, Spain
Edmund Burke, University of Nottingham, UK
Ernesto Costa, University of Coimbra, Portugal
Carlos Cotta, University of Málaga, Spain
Peter Cowling, University of Bradford, UK
Bart Craenen, Napier University, Edinburgh, UK
David Davis, NuTech Solutions, Inc., USA
Marco Dorigo, Université Libre de Bruxelles, Belgium
Karl Dörner, University of Vienna, Austria
Anton Eremeev, Omsk Branch of the Sobolev Institute of Mathematics, Russia
David Fogel, Natural Selection, Inc., USA
Bernd Freisleben, University of Marburg, Germany
Jens Gottlieb, SAP AG, Germany
Michael Guntsch, Eurobios UK, UK
Walter Gutjahr, University of Vienna, Austria
Jin-Kao Hao, University of Angers, France
Emma Hart, Napier University, Edinburgh, UK
William E. Hart, Sandia National Laboratories, USA
Jano van Hemert, Napier University, Edinburgh, UK

VIII

Jörg Homberger, Stuttgart University of Cooperative Education, Germany
Mikkel T. Jensen, Acure, Denmark
Bryant A. Julstrom, St. Cloud State University, USA
Graham Kendall, University of Nottingham, UK
Joshua D. Knowles, University of Manchester, UK
Gabriele Koller, Vienna University of Technology, Austria
Mario Köppen, Fraunhofer IPK, Germany
Jozef J. Kratica, Serbian Academy of Sciences and Arts, Serbia and Montenegro
Ivana Ljubić, Siemens, Austria
Elena Marchiori, Free University Amsterdam, The Netherlands
Dirk C. Mattfeld, TU Braunschweig, Germany
Helmut Mayer, University of Salzburg, Austria
Daniel Merkle, University of Leipzig, Germany
Peter Merz, University of Kaiserslautern, Germany
Zbigniew Michalewicz, University of Adelaide, Australia
Martin Middendorf, University of Leipzig, Germany
Pablo Moscato, University of Newcastle, Australia
Christine L. Mumford, Cardiff University, UK
Francisco J.B. Pereira, University of Coimbra, Portugal
Jakob Puchinger, Vienna University of Technology, Austria
Günther R. Raidl, Vienna University of Technology, Austria
Marcus Randall, Bond University, Australia
Colin Reeves, Coventry University, UK
Marc Reimann, ETH Zurich, Switzerland
Franz Rothlauf, University of Mannheim, Germany
Andreas Sandner, SAP AG, Germany
Marc Schoenauer, INRIA, France
Christine Solnon, University of Lyon I, France
Eric Soubeiga, University of Nottingham, UK
Thomas Stützle, Darmstadt University of Technology, Germany
El-ghazali Talbi, University of Lille, France
Edward Tsang, University of Essex, UK
Ingo Wegener, University of Dortmund, Germany
Takeshi Yamada, NTT Communication Science Laboratories, Japan

Sponsoring Institutions

– EvoNet, the Network of Excellence in Evolutionary Computing
– University of Lausanne, Lausanne, Switzerland

Organization

Table of Contents

An External Partial Permutations Memory for Ant Colony Optimization
Adnan Acan . 1

A Novel Application of Evolutionary Computing in Process Systems
Engineering

Jessica Andrea Carballido, Ignacio Ponzoni,
N lida Beatriz Brignole . 12

Choosing the Fittest Subset of Low Level Heuristics in a Hyperheuristic
Framework

Konstantin Chakhlevitch, Peter Cowling . 23

An Attribute Grammar Decoder for the 01 MultiConstrained Knapsack
Problem

Robert Cleary, Michael O’Neill . 34

, a New Evolutionary Approach to Graph Generation
Luigi Pietro Cordella, Claudio De Stefano, Francesco Fontanella,
Angelo Marcelli . 46

On the Application of Evolutionary Algorithms to the Consensus Tree
Problem

Carlos Cotta . 58

Analyzing Fitness Landscapes for the Optimal Golomb Ruler Problem
Carlos Cotta, Antonio J. Fernández . 68

Immune Algorithms with Aging perators for the String Folding
Problem and the Protein Folding Problem

Vincenzo Cutello, Giuseppe Morelli, Giuseppe Nicosia,
Mario Pavone . 80

Multiobjective Quadratic Assignment Problem Solved by an Explicit
Building Block Search Algorithm – MOMGA-IIa

Richard O. Day, Gary B. Lamont . 91

Lot-Sizing in a Foundry Using Genetic Algorithm and Repair Functions
Jerzy Duda . 101

é

EvoGeneS

O

X Table of Contents

Estimation of Distribution Algorithms with Mutation
Hisashi Handa . 112

Property Analysis of Symmetric Travelling Salesman Problem Instances
Acquired Through Evolution

Jano I. van Hemert . 122

Heuristic Colour Assignment Strategies for Merge Models in Graph
Colouring

István Juhos, Attila Tóth, Jano I. van Hemert . 132

Application of the Grouping Genetic Algorithm to University Course
Timetabling

Rhydian Lewis, Ben Paechter . 144

Self-Adapting Evolutionary Parameters: Encoding Aspects for
Combinatorial Optimization Problems

Marcos H. Maruo, Heitor S. Lopes, Myriam R. Delgado 154

Population Training Heuristics
Alexandre C.M. Oliveira, Luiz A.N. Lorena . 166

Scatter Search Particle Filter to Solve the Dynamic Travelling Salesman
Problem

Juan José Pantrigo, Abraham Duarte, Ángel Sánchez,
Raúl Cabido . 177

The Use of Meta-heuristics to Solve Economic Lot Scheduling Problem
Syed Asif Raza, Ali Akgunduz . 190

Making the Edge-Set Encoding Fly by Controlling the Bias of Its
Crossover Operator

Franz Rothlauf, Carsten Tzschoppe . 202

Ant Algorithm for the Graph Matching Problem
Olfa Sammoud, Christine Solnon, Khaled Ghédira 213

An Adaptive Genetic Algorithm for the Minimal Switching Graph
Problem

Maolin Tang . 224

An Improved Simulated Annealing Method for the Combinatorial
Sub-problem of the Profit-Based Unit Commitment Problem

T. Aruldoss Albert Victoire, A. Ebenezer Jeyakumar 234

Table of Contents XI

A New Hybrid GA/SA Algorithm for the Job Shop Scheduling Problem
Chaoyong Zhang, Peigen Li, Yunqing Rao, Shuxia Li 246

An Agent Model for Binary Constraint Satisfaction Problems
Weicai Zhong, Jing Liu, Licheng Jiao . 260

Author Index . 271

An External Partial Permutations Memory
for Ant Colony Optimization

Adnan Acan

Eastern Mediterranean University, Computer Engineering Department
Gazimagusa, T.R.N.C., Via Mersin 10, Turkey

adnan.acan@emu.edu.tr

Abstract. A novel external memory implementation based on the use of
partially complete sequences of solution components from above-average
quality individuals over a number of previous iterations is introduced.
Elements of such variable-size partial permutation sequences are taken
from randomly selected positions of parental individuals and stored in an
external memory called the partial permutation memory. Partial permu-
tation sequences are associated with lifetimes together with their parent
solutions’ fitness values that are used in retrieving and updating the
contents of the memory. When a solution is to be constructed, a partial
permutation sequence is retrieved from the memory based on its age and
associated fitness value, and the remaining components of the partial so-
lution is completed with an ant colony optimization algorithm. Resulting
solutions are also used to update some elements within the memory. The
implemented algorithm is used for the solution of a difficult combina-
torial optimization problem, namely the quadratic assignment problem,
for which significant performance achievements are provided in terms of
convergence speed and solution quality.

1 Introduction

Ant colony optimization (ACO) is a nature-inspired general purpose compu-
tation method which can be applied to many kinds of optimization problems
[1, 2]. Among many efforts on the development of new variants of ACO algo-
rithms toward improving their efficiency under different circumstances, recently
the idea of knowledge incorporation from previous iterations became attractive
and handled by a number of researchers. Mainly, these population- or memory-
based approaches take their inspiration from studies in genetic algorithms (GAs).
In memory-based GA implementations, information stored within a memory is
used to adapt the GAs behavior either in problematic cases where the solution
quality is not improved over a number of iterations, or a change in the problem
environment is detected, or to provide further directions of exploration and ex-
ploitation. Memory in GAs can be provided externally (outside the population)
or internally (within the population) [3].

External memory implementations store specific information within a sepa-
rate population (memory) and reintroduce that information into the main popu-
lation at a later moment. In most cases, this means that individuals from memory

G.R. Raidl and J. Gottlieb (Eds.): EvoCOP 2005, LNCS 3448, pp. 1–11, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 A. Acan

are put into the initial population of a new or restarted GA. Case-based memory
approaches, which are actually a form of long term elitism, are the most typical
form of external memory implemented in practice. In general, there are two kinds
of case-based memory implementations: in one kind, case-based memory is used
to re-seed the population with the best individuals from previous generations
[4], whereas a different kind of case-based memory stores both problems and
solutions [5]. Case-based memory aims to increase the diversity by reintroduc-
ing individuals from previous generations and achieves exploitation by reusing
individuals from case-based memory when a restart from a good initial solution
is required.

Other variants of external memory approaches are provided by several re-
searchers for both specific and general purpose implementations. Simoes and
Costa introduced an external memory method in which gene segments are stored
instead of the complete genomes [6, 7]. Acan et al. proposed a novel external
memory approach based on the reuse of insufficiently utilized promising chro-
mosomes from previous generations for the production of current generation
offspring individuals [8].

The most common approaches using internal memory are polyploidy struc-
tures. Polyploidy structures in combination with dominance mechanisms use
redundancy in genetic material by having more than one copy of each gene.
When a chromosome is decoded to determine the corresponding phenotype, the
dominant copy is chosen. This way, some genes can shield themselves from ex-
tinction by becoming recessive. Through switching between copies of genes, a
GA can adapt faster to changing environments and recessive genes are used to
provide information about fitness values from previous generations [9].

In ACO the first internally implemented memory-based approach is the work
of Montgomery et al. [10]. In their work, named as AEAC, they modified the
characteristic element selection equations of ACO to incorporate a weighting
term for the purpose of accumulated experience. This weighting is based on
the characteristics of partial solutions generated within the current iteration.
Elements that appear to lead better solutions are valued more highly, while
those that lead to poorer solutions are made less desirable. They aim to provide,
in addition to normal pheromone and heuristic costs, a more immediate and
objective feedback on the quality of the choices made. Basically, considering the
TSP, if a link (r, u) has been found to lead to longer paths after it has been
incorporated into a solution, then its weight w(r, u) < 1. If the reverse is the
case, then w(r, u) > 1. If the colony as a whole has never used the link (r, u),
then its weight is selected as 1. The authors suggested simple weight update
procedures and proposed two variations of their algorithm. They claimed that
the achieved results for different TSP instances are either equally well or better
than those achieved using normal ACS algorithm.

The work of Guntsch et al. [11] is the first example of an external mem-
ory implementation within ACO. Their approach, P-ACO, uses a population
of previously best solutions from which the pheromone matrix can be derived.
Initially the population is empty and, for the first k iteration of ants, the best

An External Partial Permutations Memory for Ant Colony Optimization 3

solutions found in each iteration enters the population. After that, to update
the population, the best solution of an iteration enters the population and
the oldest one is removed. That is, the population is maintained like a FIFO-
queue. This way, each solution in the population influences the decisions of ants
over exactly k iterations. For every solution in the population, some amount of
pheromone is added to the corresponding edges of the construction graph. The
whole pheromone information of P-ACO depends only on the solutions in the
population and the pheromone matrix is updated as follows: whenever a solution
π enters the population, do a positive update as ∀i ∈ [1, n] : τiπ(i) → τiπ(i) + ∆
and whenever a solution σ leaves the population, do a negative update as
∀i ∈ [1, n] : τiσ(i) → τiσ(i)−∆. These updates are added to the initial pheromone
value τinit. The authors also proposed a number of population update strategies
in [12] to decide which solutions should enter the population and which should
leave. In this respect, only the best solution generated during the past iteration
is considered as a candidate to enter the population and the measures used in
population update strategies are stated as age, quality, prob, age and prob, and
elitism. In age strategy, the oldest solution is removed from the population. In
quality strategy, the population keeps the best k solutions found over all past
iterations, rather than the best solutions of the last k iterations. Prob strategy
probabilistically chooses the element to be removed from the population and the
aim is to reduce the number of identical copies that might be caused the quality
strategy. Combination of age and prob strategies use prob for removal and age
for insertion into the population. In elitist strategy, the best solution found by
the algorithm so far is never replaced until a better solution is found.

Recently, Acan proposed two novel external memory strategies for ACO [13].
In this approach, a library of variable size solution segments cut from elite indi-
viduals of a number of previous generations is maintained. There is no particular
distribution of ants in the problem space and, in order to construct a solution
each ant retrieves a segment from the library based on its goodness in its par-
ent solution, takes the end component of the segment as its starting point, and
completes the rest to form a complete feasible solution. The proposed approach
is used for the solution of traveling salesman problem (TSP) and the quadratic
assignment problem (QAP) for which significantly better solutions are achieved
compared to conventional ACO algorithms.

This paper introduces another population based external memory approach
where the population includes variable-size partial permutation sequences taken
from elite individuals of previous iterations. Initially, the memory is empty and
an ant colony optimization algorithm runs for a small number of iterations to
initialize the memory of partial permutations. Each stored sequence is associated
with a lifetime and its parent’s objective function value that will be used as
measures for retrieving and updating partial solutions within the memory. In
order to construct a solution, a particular ant retrieves a partial solution (a
partial permutation sequence) from the memory based on a defined performance
measure and fills in the unspecified components within it. Constructed solutions
are also used to update the memory. The details of the practical implementation

4 A. Acan

are given in the following sections. The proposed ACO strategy is used to solve
the well-known quadratic assignment problem for which significant performance
improvements are achieved, compared to the well-known Max-Min AS algorithm,
in terms of both solution quality and the convergence speed.

This paper is organized as follows. The basics of ACO-based solution con-
struction procedures for the the quadratic assignment problem (QAP) are pre-
sented in Section 2. The proposed approach is described with its implementation
details in Section 3. Section 4 covers the results and related discussions. Conclu-
sions and future research directions are given in Section 5.

2 ACO for Quadratic Assignment Problem

In this section, the basic solution construction procedure of ACO algorithms
for the solution of QAP will be briefly described. Given a set of N facilities,
a set of N locations, distances between pairs of locations, and flows between
pairs of facilities, QAP is described as the problem of assigning each facility to
a particular location so as to minimize the sum of the product between flows
and the distances. More formally, if D = [dij] is the N × N distance matrix and
F = [fpq] is the N × N flow matrix, where dij is the distance between locations
i and j and fpq is the amount of flow between facilities p and q, QAP can be
described by the following equation:

min
π∈Π

N∑

i=1

N∑

j=1

dπ(i)π(j)fij (1)

where Π is the set of all permutations of integers from 1 to N , and π(i) gives
the location of facility i within the current solution (permutation) π ∈ Π. The
term dπ(i)π(j)fij is the cost of simultaneously assigning facility i to location π(i)
and facility j to location π(j).

Quadratic assignment problem belongs to the class of NP-hard combinatorial
optimization problems and the largest instances that can be solved with exact
algorithms are limited to instances of size around 30 [14]. Hence, the only fea-
sible way to deal with the solution of large QAP instances is to use heuristic
approaches which guarantee to reach a locally optimal solution in reasonable
computation times. Several modern heuristics, mostly evolutionary or nature-
inspired, are developed since 1975 and successfully applied for the solution of
many provably hard optimization problems including the QAP. In this respect,
ant colony optimization is successfully used for the solution of QAP and, com-
pared to other metaheuristic approaches, better results are obtained for many
difficult problem instances [15, 16, 17, 18, 19].

The QAP is one of the most widely handled problem for the illustration
and testing of ACO strategies. An ACO algorithm uses a number of artificial
ants for the construction of solutions such that each ant starts from a particular
initial assignment and builds a solution in an iterative manner. An ant builds
a solution by randomly selecting an unassigned facility and placing it into one

An External Partial Permutations Memory for Ant Colony Optimization 5

of the remaining free locations, until no unassigned facilities are left. In the
construction of a solution, the decision of an ant for its next assignment is
affected by two factors: the pheromone information and the heuristic information
which both indicate how good it is to assign a facility to the free location under
consideration. No heuristic information is used in the implementation of MMAS-
QAP and pheromone concentration τij refers to the desire of assigning facility
of i to location j. Very detailed steps of implementation for MAX-MIN AS
on the solution of QAP can be found in [16], that is also considered as the
main reference for ACO-strategy and parameter value selections in the proposed
approach.

3 The Proposed External Memory Approach

The basic inspiration behind the use of a partial-permutations memory is to store
values of some solution components that result in above-average fitness so that
they can be reused in future iterations to provide further intensification around
potentially promising solutions without destroying diversification capabilities of
the underlying ACO algorithm.

In the proposed approach, there are m ants that build the solutions. An
external memory of variable-size partial solution sequences from a number of elite
solutions of previous iterations is maintained. Initially the memory is empty and
a number ACO iterations is performed to fill in the memory. In this respect, after
every iteration, the top k-best solutions are considered and a number of randomly
positioned solution components are selected from these individuals, one sequence
per solution, and stored in the memory. Uniform probability distribution is used
in all random number generations. The memory size M is fixed and a number
of ACO iterations are repeated until the memory is full. Generation of a partial
permutation from a given parent solution is illustrated in Figure 1. Simply, an
arbitrary number of solution components are selected from the parent solution
and stored as a partially complete permutation within the memory. Since we
need the locus of the stored solution components when they will be used, partial
permutation sequences are stored as fixed-length sequences where unselected
parts are filled with zeros. With this description of individual partial permutation
sequences, the external memory is an MxN array where M is the number of
elements and N is the length of a solution.

When a new solution is to be created, a partially complete permutation is
retrieved from the memory selects a partial permutation sequence from the
memory based on its lifetime and fitness values. In this respect, each partial
solution sequence i in the memory is assigned with a performance score as
P Score(i) = Fitness(i)+Age2(i). With this assignment, higher P Score values
are given to those with higher age attributes in cases of closer fitness values. The
main idea behind this selection strategy is to give higher priority of being used
to older sequences before they are removed from the memory. This also helps to
provide further diversification by trying some of the previously promising search
directions.

6 A. Acan

Fig. 1. a) A parent solution and b) the partial permutation sequence containing ran-
domly located solution components stored in the memory

After the initial phase, MAX-MIN AS algorithm works in conjunction with
the implemented external memory as follows: there is no particular assignment
of ants over the problem space and, in order to construct a solution, each ant
selects a partial permutation sequence from memory using a tournament selec-
tion strategy and the starting point for the corresponding ant becomes the first
unassigned position of the partial solution. That is, the ant builds the rest of the
solution by assigning the unassigned components of the retrieved partial solution
in a random order. In the selection of partial solution sequences from memory,
each ant makes a tournament among Q randomly selected partial permutation
sequences and the best one is selected as the seed to start for construction. The
solution construction procedure is the same as the one followed in MAX-MIN
AS algorithm. After all ants complete their solution construction procedures,
pheromone updates are carried in exactly the same way it is done in MAX-MIN
AS algorithm. Based on these descriptions, the proposed ACO algorithm can be
put into an algorithmic form described in Algorithm 1.

In memory update procedure, the solutions constructed by all ants are sorted
in ascending order and the top k-best are considered as candidate parents from
which new partial permutation sequences will be extracted and inserted into
memory. One random-length and randomly-positioned partial permutation se-
quence is taken from each elite solution and it replaces either the worst of those
memory elements having worse fitness values than of the extracted sequence or
the worst of those oldest sequences within the memory.

4 Experimental Results

To study the performance of the proposed external memory ACO approach,
it is compared with a well-known classical implementation of ACO algorithms,
namely the MAX-MIN AS algorithm, for the solution of a widely known and
difficult combinatorial optimization problem, the QAP. The QAP problem in-
stances used in evaluations are taken from the web-site http://www.opt.math.tu-

An External Partial Permutations Memory for Ant Colony Optimization 7

Algorithm 1: ACO with an external partial permutations memory

1. Initialize the external memory.
2. Repeat

(a) For each of m ants, find an initial assignment by assigning a randomly selected
facility to a randomly selected location.

(b) Let all ants construct a solution iteratively by randomly selecting an unas-
signed facility and placing it into one of the free locations.

(c) Compute the objective function values for all the constructed solutions.
(d) Use local search to improve the solutions of a number of elite ants.
(e) Sort the solutions in ascending order of their objective function values.
(f) Consider the top k-best and extract a randomly-positioned and randomly-

sized partial permutation from each solution and insert the partial solution
sequences into the memory. Also, store the length of each sequence and the
cost of its parent. Meanwhile, set the age of the inserted element to 1.

3. Update the pheromone matrix.
4. Until the memory is full.
5. ITER=1
6. Repeat

(a) Let all ants select a partial solution sequence from the external memory using
tournament selection.

(b) Let all ants construct a solution starting from the partial permutation (se-
quence) they retrieved from the memory.

(c) Compute the objective function values for all the constructed solutions.
(d) Use local search to improve the solutions of a number of elite ants.
(e) Update pheromone matrix.
(f) Increase ages of memory elements by 1.
(g) Update memory.
(h) ITER=ITER+1.

7. Until ITER > Max Iter.

graz.ac.at/qaplib. These selected problems are representative instances of differ-
ent problem groups, commonly handled by several researchers, and have reason-
able problem sizes for experimental evaluations.

The ACO algorithm used with which the external memory is integrated is
MMAS-QAP [16] which is a well-known and provably successful algorithm for
the solution of QAP instances. All programs are prepared using Matlab 6.5 pro-
gramming language and the computing platform is a 1 GHz PC with 256 MB
of memory. Each experiment is performed 20 times over 1000 iterations. The
relative percentage deviation, RPD, is used to express the accuracy of experi-
mental results. RPD is a measure of the percentage difference between the best
known solution and an actual experimental result. RPD is simply calculated by
the following formula.

RPD = 100 × (
CostActual − CostBest

CostBest
) (2)

8 A. Acan

Details of implementations and the sets of parameter values used are given below.
In the implementation of the proposed ACO strategy, the memory size M and

the number of ants in ACO are set equal to the number of locations (facilities) in
QAP instances. The tournament size Q = 7, and the top k = 0.05 ∗ M solutions
are used in updating the memory. The local search algorithm used is 2.5-opt and
25 elite solutions are allowed to be processed within the local search. Maximum
lifetime of individuals in the shared-memory is taken as 5 iterations.

In the implementation of the ACO algorithms, the two sets of parameter
values taken from well-known publications are used as follows [16]: First set
of parameters are used in initializing the partial permutations memory and a
highly biased probabilistic selection scheme is followed in the selection of solution
components. In this respect, the next element for which τα.ηβ is maximal is
selected with probability q0 = 0.9. Together with the local search used, memory
elements are initialized with partially complete permutations extracted from
potentially promising solutions. Other parameter values used in this phase are
as follows: ρ = 0.1, α = 1, β = 2, τinit = 1/n, τmax = 3.0. Parameters used
during the normal course of ACO algorithms are ρ = 0.02, α = 1, β = 2,
τmax = 1/(ρ.LBest), τinit = τmax, and τmin = 1/(2n).

Stagnation in ACO is detected when
∑

τij

min(τmax − τij , τij − τmin) (3)

is less than 10−5. In this case, ACO is restarted by setting all elements of the
pheromone matrix to τmax.

Experimental results for the solved QAP instances are given in Table 1.
From Table 1, it can be observed that the proposed ACO strategy with an ex-
ternal partial permutations memory performs better than the MAX-MIN AS
supported with the same local search algorithm, in all problem instances. In
addition, the effectiveness of the external memory and the implemented mem-
ory management approaches is observed much more clearly for larger problem
instances. This is an expected result because partial solutions from potentially
promising solutions provide more efficient intensification for more difficult prob-
lems. The main drawback of the proposed approach is the long running times.
It is a well-known fact that Matlab is a useful programming language to pre-
pare prototypes, however it can be very slow in the execution of loops, which is
also the case in the presented implementations. The CPU times with the used
hardware platform change from 15 minutes (for the wil50 QAP instance) to 4
hours (for the tai100a QAP instance). However, these CPU time are smaller
than those required for MMAS algorithm within the same computing platform,
programming language, and algorithm parameters. For example, CPU times for
MMAS change from 22 minutes (for the wil50 QAP instance) to 6 hours (for the
tai100a QAP instance). Implementations with a faster programming language is
currently an ongoing but yet not completed task.

An External Partial Permutations Memory for Ant Colony Optimization 9

Table 1. Results for Max-Min AS, and the proposed approach on QAP instances

Strategy Instance RPD
Min Average Max

Max-Min AS wil50 1.831 3.823 4.412
wil100 3.512 5.711 7.3
tai100a 8.910 13.36 18.44
tai100b 10.117 15.19 19.5
tai35b 4.218 9.3 14.5
tai40b 4.887 6.1 11.7
tai50b 5.628 7.6 13.6
tai60b 7.917 9.5 17.32
tai80b 13.226 17.5 28.49
tai100a 21.11 25.6 33.51
sko100a 17.6 20.3 24.1
sko100b 19.44 22.7 26.8

MX-MIN AS wil50 0.98 2.61 3.73
with a Partial wil100 2.49 3.26 4.73

Permutations Memory tai100a 4.91 8.32 11.94
tai100b 7.96 10.27 14.81
tai35b 3.21 6.73 10.66
tai40b 3.16 5.25 8.86
tai50b 3.83 5.91 8.45
tai60b 4.92 7.53 11.74
tai80b 7.74 10.16 15.36
tai100a 16.49 21.71 27.45
sko100a 14.51 19.11 22.35
sko100b 16.43 20.21 24.81

5 Conclusions and Future Research Directions

In this paper a novel ACO strategy using an external memory of partial per-
mutations from elite solutions of previous iterations is introduced. The stored
partial permutations are used in the construction of solutions in the current it-
eration to provide further intensification around potentially promising solutions.
Using partially constructed solutions also improve time spent in the construc-
tion of solutions since part of the solution is already available. Performance of
the proposed external memory approach is tested using several instances of a
well-known hard combinatorial optimization problems.

From the results of case studies, it can easily be concluded that the pro-
posed ACO strategy performs better than Max-Min AS algorithm in terms of
the convergence speed and the solution quality. It can easily be observed that,
even though the proposed strategy better than the MAX-MIN AS strategy, its
real effectiveness is seen for larger size problems. This is an expected result be-
cause information incorporation from previous iterations should be helpful for
more difficult problem instances. The proposed ACO strategy is very simple to

10 A. Acan

implement and it does not bring significantly additional computational or storage
cost to the existing ACO algorithms.

Further investigation of the proposed ACO strategy for the solution of other
difficult problems, particularly the non-stationary optimization problems, may
be considered as a direction for future studies.

References

1. Dorigo, M., Caro, G.D., Gambardella, L.M.: Ant algorithms for distributed discrete
optimization, Artificial Life, Vol. 5, (1999), 137-172.

2. Dorigo, M., Caro, G.D.,: The ant colony optimization metaheuristic, In Corne, D.,
Dorigo, M., Glover, F. (eds.): New ideas in optimization, McGraw-Hill, London,
(1999), 11-32.

3. Eggermont, J., Lenaerts, T.: Non-stationary function optimization using evolu-
tionary algorithms with a case-based memory, Technical report, Leiden University
Advanced Computer Science (LIACS) Technical Report 2001-11.

4. Ramsey, C.L., Grefenstette, J. J.: Case-based initialization of GAs, in Forest, S.,
(Editor): Proceedings of the Fifth International Conference on Genetic Algorithms,
San Mateo, CA, (1993), 84-91.

5. Louis, S., Li, G.: Augmenting genetic algorithms with memory to solve traveling
salesman problem, Proceedings of the Joint Conference on Information Sciences,
Duke University, (1997), 108-111.

6. Simoes, A., Costa, E.: Using genetic algorithms to deal with dynamic environments:
comparative study of several approaches based on promoting diversity, in W. B.
Langton et al. (eds.): Proceedings of the genetic and evolutionary computation
conference GECCO’02, Morgan Kaufmann, New York, (2002), 698.

7. Simoes, A., Costa, E.: Using biological inspiration to deal with dynamic envi-
ronments, Proceedings of the seventh international conference on soft computing
MENDEL’2001, Czech Republic, (2001).

8. Acan, A., Tekol, Y.: Chromosome reuse in genetic algorithms, in Cantu-Paz et al.
(eds.): Genetic and Evolutionary Computation Conference GECCO 2003, Springer-
Verlag, Chicago, (2003), 695-705.

9. Lewis, J., Hart, E., Ritchie, G.: A comparison of dominance mechanisms and simple
mutation on non-stationary problems, in Eiben, A. E., Back, T., Schoenauer, M.,
Schwefel, H. (Editors): Parallel Problem Solving from Nature- PPSN V, Berlin,
(1998), 139-148.

10. Montgomery, J., Randall, M: The accumulated experience ant colony for the trav-
eling salesman problem, International Journal of Computational Intelligence and
Applications, World Scientific Publishing Company, Vol. 3, No. 2, (2003), 189-198.

11. Guntsch, M., Middendorf, M.: A population based approach for ACO, in S. Cagnoni
et al., (eds.): Applications of Evolutionary Computing - EvoWorkshops2002, Lec-
ture Notes in Computer Science, No:2279, Springer Verlag, (2002), 72-81.

12. Guntsch, M., Middendorf, M.: Applying population based ACO for dynamic opti-
mization problems, in M. Dorigo et al., (eds.): Ant Algorithms - Third International
Workshop ANTS2002, Lecture Notes in Computer Science, No:2463, Springer Ver-
lag, (2002), 111-122.

13. A. Acan. An External Memory Implementation in Ant Colony Optimization. In
Ant Colony Optimization and Swarm Intelligence - ANTS2004, page 73-82, Brus-
sels, September 2004.

An External Partial Permutations Memory for Ant Colony Optimization 11

14. Stützle, T., Fernandes, S.: New benchmark instances for the QAP and the ex-
perimental analysis of algorithms. In: Gottlieb, J., Raidl, G. R. (eds.): Evolution-
ary Computation in combinatorial Optimization - EvoCOP 2004, Springer-Verlag,
(2004), 199-209.

15. Stützle, T., Dorigo, M.: ACO Algorithms for the Quadratic Assignment Problem.
In: Corne, D., Dorigo, M., Glover, F. (eds.): New Ideas in Optimization, McGraw-
Hill, (1999), 33-50.

16. Stützle, T.: MAX-MIN ant system for the quadratic assignment problem. Techni-
cal Report AIDA-97-04, Darmstadt University of Technology, Computer Science
Dept., Intellectics Group, (1997).

17. Stützle, T.: Iterated local search for the quadratic assignment problem. Techni-
cal Report AIDA-99-03, Darmstadt University of Technology, Computer Science
Dept., Intellectics Group, (1999).

18. Maniezzo, V.: Exact and approximate nondeterministic tree-search procedures
for the quadratic assignment problem. INFORMS Journal on Computing, 11(4),
(1999), 358-369.

19. Maniezzo, V., Colorni, A., Dorigo, M.: The ant system applied to the quadratic as-
signment problem. Technical Report IRIDIA/94-28, Universite Libre de Bruxelles,
(1994).

G.R. Raidl and J. Gottlieb (Eds.): EvoCOP 2005, LNCS 3448, pp. 12 – 22, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Novel Application of Evolutionary Computing
in Process Systems Engineering

Jessica Andrea Carballido1,2, Ignacio Ponzoni1,2, and Nélida Beatriz Brignole1,2

1 Laboratorio de Investigación y Desarrollo en Computación Científica (LIDeCC)
Departamento de Ciencias e Ingeniería de la Computación,

Universidad Nacional del Sur, Av. Alem 1253, 8000, Bahía Blanca, Argentina
2 Planta Piloto de Ingeniería Química – CONICET,

Complejo CRIBABB, Camino La Carrindanga km.7 CC 717, Bahía Blanca, Argentina
{jac, ip, nbb}@cs.uns.edu.ar

Abstract. In this article we present a Multi-Objective Genetic Algorithm for
Initialization (MOGAI) that finds a starting sensor configuration for Ob-
servability Analysis (OA), this study being a crucial stage in the design and re-
vamp of process-plant instrumentation. The MOGAI is a binary-coded genetic
algorithm with a three-objective fitness function based on cost, reliability and
observability metrics. MOGAI’s special features are: dynamic adaptive bit-flip
mutation and guided generation of the initial population, both giving a special
treatment to non-feasible individuals, and an adaptive genotypic convergence
criterion to stop the algorithm. The algorithmic behavior was evaluated through
the analysis of the mathematical model that represents an ammonia synthesis
plant. Its efficacy was assessed by comparing the performance of the OA algo-
rithm with and without MOGAI initialization. The genetic algorithm proved to
be advantageous because it led to a significant reduction in the number of itera-
tions required by the OA algorithm.

Keywords: Combinatorial Optimization Problem, PSE, Process-Plant Instru-
mentation Design, Multi-Objective Genetic Algorithm, Observability Analysis.

1 An Application in the Field of Process Systems Engineering

Process plants are networks of industrial items of equipment physically connected by
streams. The instrumentation design problem is a challenging activity in the area of
Process Systems Engineering (PSE). It consists in deciding on the most convenient
amount, location and type of measuring devices to be incorporated into the industrial
process. The objective is to achieve complete knowledge of the plant’s operating
conditions, while satisfying other goals such as sensor-cost minimization and maxi-
mum reliability. Due to the complexity of this task, the development of automatic
decision-support tools for this purpose has become a challenge [1].

The computer-aided design of process-plant instrumentation is an iterative proce-
dure that comprises several steps. In the first place, a steady-state mathematical model
is built in order to represent plant behavior under stationary operating conditions. This

 A Novel Application of Evolutionary Computing in Process Systems Engineering 13

model is a set of algebraic equations that correspond to mass and energy balances, as
well as relationships employed to estimate thermodynamic properties like densities,
enthalpies, and equilibrium constants. A rigorous model usually involves not only
linear functionalities, but also many bilinear and nonlinear equations. Apart from the
model, an initial instrument configuration also has to be defined. This preliminary
design classifies model variables into measured and unmeasured ones, the former
being those whose values will be obtained directly from the sensors.

The next step is to carry out the Observability Analysis (OA), which consists in
pinpointing the unmeasured variables that will be observable, i.e. those that can be
calculated by means of model equations, regarding the measurements as constants.
The OA Algorithm (OAA) used for this purpose [2] analyzes the structural relation-
ships between model equations and unmeasured variables. This analysis is performed
by permuting a sparse occurrence matrix built from information about both the model
and the measurements in order to obtain a desirable pattern.

It is important to remark that some variables are critical for the industrial process
under study because they represent vital information about it (i.e. temperature in a
reactor), while others could be considered scarcely relevant. In principle, a careful OA
should yield a classification where all the key unmeasured variables are observable.
If, after an execution of the OAA, the result contains critical indeterminable variables,
the configuration of sensors should be modified and the OA has to be repeated. In this
way, the OA normally becomes an iterative procedure.

The last major step required to complete the entire design procedure is the classifi-
cation of the measurements, also known as redundancy analysis [3]. This task should
be carried out only after a satisfactory OA has been achieved.

This paper is focused on the search for an accurate automated OA initialization
strategy. The flow diagram of the OA procedure with manual initialization is shown
in Fig. 1, where the rectangular boxes represent automated tasks, while the others are
associated with expert activities handed over to the decision maker (DM).

Fig. 1. Iterative process for the OA stage with manual initialization

Both the OA time efficiency and quality of the results depend on the starting point,
and will therefore benefit from a careful choice of sensors. Notice that the number of

14 J.A. Carballido, I. Ponzoni, and N.B. Brignole

iterations required in order to reach an acceptable result may vary significantly with
the initialization. Since the OAA sweeps are very expensive as regards computing
time, it is highly advantageous to have as few iterations as possible. This objective
can be achieved by choosing an adequate initial instrument configuration. At present,
there are no algorithms to make optimal selections in this sense. Therefore, plant
engineers choose the sensors exclusively on the basis of their skill and experience.
The purpose of this work is to develop an automated tool to tackle this problem, thus
supporting them in the making of these complex decisions. The new scheme, shown
in Fig. 2, represents the interaction between the DM and the instrumentation design
package when the automated tool for initial configuration has been incorporated.

Fig. 2. Iterative process for the OA stage with automated initialization

2 The Sensor Choice as a Combinatorial Optimization Problem

The selection of the initial set of instruments can be classified as a combinatorial
optimization problem involving several objectives expressed in different units and in
mutual conflict. In particular, these features characterize the so-called multi-objective
or multi-criterion optimization problems (MOPs), whose special characteristic is that
they have no single solution. There is a set of valid solutions instead, and each one
may be considered the solution of the problem. This holds since none of them out-
weighs or “dominates” the others in all the objective functions. The valid solutions
are called non-dominated and form the Pareto front. The MOP is defined by Osyczka
[4] as “the problem of finding a vector of decision variables which satisfies con-
straints and optimizes a vector function whose elements represent the objective func-
tions. These functions form a mathematical description of performance criteria, which
are usually in conflict with each other. Hence, the term ‘optimize’ means finding such
a solution which would give the values of all the objective functions acceptable to the
decision maker.”

 A Novel Application of Evolutionary Computing in Process Systems Engineering 15

For our particular problem, the conflicting objectives are associated with sensor re-
liability, purchase and installation costs of the network, and observability level pro-
vided by the resulting mathematical model. It is important to remark that the MOGAI
is intended as a module for a specialized decision support system, where the DM
plays a major role interacting at several points of the procedure as shown in Fig. 2. In
this way, the definitive decisions that ultimately determine each configuration are
always made by the DM. Then, a multi-objective approach is useful because it not
only allows the DM to choose among several feasible alternative solutions, but also
helps him weigh various criteria simultaneously. It is interesting to note that, in this
case, the DM’s expertise can never be totally replaced by an automated tool because
there are many subtle, sometimes subjective, aspects impossible to capture with
enough detail through mathematical formulations.

There is a wealth of literature about multi-objective optimization techniques [5, 6,
7, passim], ranging from the conventional approaches to the evolutionary ones. Tradi-
tional methods are very limited [5]. In general, as problem size grows, these strategies
are too expensive to allow obtain results in polynomial times. Since Rosenberg [8]
pointed out the potential of evolutionary algorithms for MOP solving interest of the
evolutionary community in this area has grown enormously. This is justified on the
grounds that most real-life problems are MOPs, and also because evolutionary algo-
rithms have the inherent capability of finding the Pareto front in reasonable times [5].
Genetic algorithms (GAs) are particularly suitable for MOPs because they simultane-
ously deal with a set of possible solutions (population). Thus, several members of the
Pareto optimal set can be found in a single run, instead of having to perform various
runs, as is the case of the traditional mathematical programming methods. Moreover,
in comparison with the typical optimization methods, GAs are less susceptible to
shape or continuity, easily dealing with discontinuous or concave Pareto fronts.

3 Main Objective and Proposal

In this work we describe a new automated tool, whose purpose is to find a satisfactory
initial sensor network configuration for process plants so that the number of iterations
involved in the OA is reduced. In this case, a configuration is considered desirable
when it is cheap, reliable and meaningful in the sense that it should provide as much
plant information as possible. At the same time, short computing times were required,
this being a standard demand for any initialization method. When there are several
conflicting objectives, the notion of “optimum” means that we are really trying to find
a good trade-off solution that fulfills all the targets as satisfactorily as possible.

Several aspects of our specific application led us to use a GA. First of all, it is not
imperative for us to find an optimum, a solution near the Pareto front being good
enough. Besides, we need various candidate solutions for the DM to make the final
decision. Finally, the tool must be fast and efficacious for huge problem instances.

Founded on the reasons explained above, we decided to implement a multi-
objective genetic algorithm based on an aggregative non Pareto method. The technique
combines (or “aggregates”) all the objectives into a single one, without incorporating
the concept of Pareto optima directly. This approach was adopted mainly because it is
efficient and works especially well for a small number of objectives [7].

16 J.A. Carballido, I. Ponzoni, and N.B. Brignole

4 The Genetic Algorithm

The input of the MOGAI for OA initialization is the occurrence matrix O built from
the steady-state mathematical model of the plant under study. O’s rows and columns
respectively correspond to model equations and variables. In principle, every process
variable, namely temperatures, pressures, flow rates and compositions, is associated
to a sensor that could be chosen for its measurement. So, the GA also needs informa-
tion about the cost and reliability of each potential instrument. In this work, the cost
of measuring a variable was calculated as the price of the device plus its installation
costs, while the reliability of a variable was considered inversely proportional to the
instrument’s average error reported by the manufacturer. This information was loaded
in N-dimensional vectors, where N is the total number of model variables.

Representation of Potential Solutions to the Problem - Main Operators. The
individuals were represented in the canonical (binary) form. Bit-flip mutation and
one-point crossover operators were employed. Each genotype, represented here by the
symbol i, should be interpreted as an entire sensor configuration, where a nonzero
value on one of the bits means that the variable on that position should be measured.
The string length is equal to the total amount of variables (N) in the model.

Parameter Control. An excellent review about parameter control was published by
Eiben et al. [9]. They support the statement that any static set of parameters, i.e. one
whose values remain fixed throughout a run, is in principle inappropriate. For this
reason, we decided to explore parameter control techniques as an alternative. In par-
ticular, we obtained good results by using an adaptive mutation operator inspired in
the one proposed by Bäck [10]. In our case, we defined an initial mutation probability
equal to 1/l , where l is the length of the chromosome. This quantity is decreased dur-
ing the evolution so as to increase exploitation as the algorithm evolves. When this
parameter is applied, it is combined with an adaptive value based on the fitness of the
individual to be mutated. The idea behind this operator is to give more chances of
mutation to those individuals that are far from the optimum. As we shall see later,
there is a utopian optimum for our fitness function, whose value is equal to the num-
ber of objectives.

Infeasible Individuals. An individual is not feasible when it contains a non-zero in a
position that represents an unmeasurable variable, such as an enthalpy. We have given
special treatment to infeasible individuals as follows. First, the initial population was
generated with a restriction on the positions of the unmeasurable variables, which
were always initialized with a zero. In addition, as new gene data could be introduced
only through the mutation operator, those positions were regarded as “non-mutable”.
In this case, it was essential to implement this policy instead of applying penalties
since the first test runs, where the generation of infeasible individuals was allowed,
resulted in populations with too few valid individuals, at most 30%. Furthermore,
these variables must be coded since they have to be present when the observability
term of the fitness function is calculated, as will be discussed later.

 A Novel Application of Evolutionary Computing in Process Systems Engineering 17

Selection and Replacement. The selection method is based on the roulette wheel
approach, which picks out the individuals that will constitute the parent pool accord-
ing to the value of the objective function. The chosen individuals replace the old ones,
building a new population that in turn undergoes crossover and mutation.

The Convergence Criterion. From a recent review about stopping criteria for GAs
[11] it is clear that, in general terms, it is unadvisable to run a GA for a fixed number
of generations. For this reason we decided to implement an adaptive termination con-
dition based on the concept of schemata. A schema is a template that establishes simi-
larities among chromosomes. It is represented through a string of symbols in {0. 1,
#}, where # is a wildcard. For example, string 011001 is an instance of the schemata
01##0#. As stated by Radcliffe [12], when two parents are instances of the same
schema, the offspring will also be an instance of that schema. In particular, if the
schema carries good fitness to its instances, the whole population will tend to con-
verge over the bits defined by that schema. Once convergence has been reached, all
the offspring will be instances of that schema. Thus, the solution will also be an in-
stance of that schema. For this reason, our criterion analyzes the genotypes until a
high percentage becomes an instance of the same schema. For general information on
genotypic termination criteria, see [13].

4.1 The Multi-objective Fitness Function

This algorithm aims at finding the individual that simultaneously exhibits the best
trade-off performance with respect to the following three objective functions:

The Cost Term. Given a cost vector cv of length N, the total cost of an individual is
the sum of the values of all the elements in cv that correspond to nonzero entries in i.

C (i) =
1

([]* [])
N

j

j j
=

cv i . (1)

The Reliability Term. Given a reliability vector rv, and following the same line of
reasoning, we have:

R (i) =
1

([]* [])
N

k

k k
=

rv i . (2)

The Observability Term. In contrast with the other two objective functions, this one
cannot be calculated in a straightforward way. Its estimation was based on the
mathematical operation called Forward Triangularization (FT). Details on the FT
procedure can be found in [2]. FT returns estimates on the number of unmeasured
variables that can be directly calculated by solving individual equations from the
system of algebraic equations, given the measurements defined in i. In short, the value
returned by the observability function is:

Ob (i) = FT (i). (3)

18 J.A. Carballido, I. Ponzoni, and N.B. Brignole

The FT algorithm is the basic core of the OAA. The latter also includes other mod-
ules with more rigorous analysis tools, whose purpose is to refine the FT results at the
expense of much higher computing times. Then, in view of its short run times, the FT
constitutes an ideal criterion for an initialization algorithm.

The Merging Approach. The aggregating policy for the construction of the fitness
function requires a criterion to reconcile the values of all the individual objectives,
judiciously combining them so that none is undervalued. The standard procedure
consists in normalizing each of them in the [0,1] range. Therefore, in this paper, the
fitness function F was defined in terms of the three normalized objectives as follows:

F (i) = NR(i) + NOb(i) +1 – NC(i) . (4)

Our algorithm tends to maximize F, its values always lying between 0 and the total
number of individual objectives. Equation 4 can be naturally expanded to meet this
requirement for a greater number of objectives in the following way:

F(i) =
1 1

n m

p q
p q

NOM m NOm
= =

+ − . (5)

where n and m are the number of objectives to be maximized or minimized, respec-
tively, NOMp ∈[0, 1] is the pth normalized objective to be maximized, NOmq ∈[0, 1]
is the qth normalized objective to be minimized, and F(i) ∈ [0, n+m].

The optimal (utopian) situation, i.e. F(i) = n+m, occurs when all the objectives to
be maximized are equal to 1, while those to be minimized become 0. It should be
noted that these features are remarkably advantageous. First of all, the expansion to
consider additional objectives is straightforward. Besides, F moves within a closed
bounded range of values, thus providing a clear threshold to be reached.

Number of Evaluations. The MOGAI evaluates F only when necessary. Whenever
an individual remains unchanged from one generation to the other, its fitness value is
not recalculated. Implementing this feature led to 10% savings in the number of
evaluations, thus proportionally reducing the execution time of a complete GA run.

5 Experimentation

Brief Description of the Plant Under Analysis: The algorithmic performance was
assessed by carrying out the instrumentation analysis of an industrial plant whose
main features are described in Bike [14]. The plant produces 1500 ton/day of anhy-
drous liquid ammonia at 240 K and 450kPa with a minimum purity of 99.5%. The
product is obtained by means of the Haber-Bosch process, which consists in a me-
dium-pressure synthesis in a catalytic reactor followed by an absorption procedure
that removes the ammonia with water. The liquid output from the absorber enters a
distillation column that yields pure ammonia as top product. The plant also contains a

 A Novel Application of Evolutionary Computing in Process Systems Engineering 19

sector with membranes, where hydrogen is recovered and then recycled to the feed.
The rigorous mathematical model of this plant, used to build the occurrence matrix
was generated using the ModGen package [15]. The resulting system contained 557
non-linear algebraic equations and 546 process variables.

The MOGAI Parameters: The population size was fixed in 100 individuals. Cross-
over probability was set at 0.7. The initial mutation probability was 0.0018 and, as
explained above, it was forced to decrease as the algorithm evolved, its value being
also combined with the fitness of the individual. The genotype length N, which
amounted to the total number of process variables, was 546.

Some Industrial Results: Both the feasibility and convenience of using the MOGAI
as an initialization tool for structural OAAs were evaluated through a detailed study
of the ammonia plant. The most promising classifications obtained from a MOGAI
run were analyzed. The results were compared in terms of sensor acquisition costs,
reliability of the chosen instrumentation, and level of knowledge about the process
obtainable both through direct measurements and estimations carried out from the
model equations. With these guidelines, the most convenient initialization for the
rigorous OA was selected. A complete OA process was executed next, and the results
were compared against the configuration without automatic initialization suggested by
Ponzoni et al. [16].

For the first stage, the three solutions whose features are summarized in Table 1
were selected. The letters M, O and I indicate the number of measured, observable
and indeterminable variables, respectively. It can be observed that all the fitness val-
ues are satisfactory since they are close to 3, which is the upper bound for F. In all
cases, the reliability of the resulting configuration is greater than 99%. With respect to
costs, B is significantly cheaper than A or C. However, in terms of observability, the
results indicate that A and C are preferable since they have a lower number of inde-
terminable variables.

Table 1. Three MOGAI solutions

Observability
Config.

Fitness
Value Cost

M O I
A 2.538 $25,168 105 286 155
B 2.502 $12,642 92 275 179
C 2.512 $24,343 104 298 144

In order to complete the analysis, it is necessary to determine which indeterminable
variables are critical, since their values should be known accurately in the final con-
figuration. Table 2 shows the distribution of the critical variables and the incidence of
measuring them in the final cost of the instrumentation. The expression C indicates C indicates
the increment in the cost associated to the purchase and installation of the sensors that
wouldmeasure all the indeterminable critical variables.

20 J.A. Carballido, I. Ponzoni, and N.B. Brignole

Table 2. Details on the critical variables for the solutions in Table 1

Critical Variables Cost
Config.

M O I C.C. Final C.
A 7 10 12 $ 3,645 $28,813
B 6 10 13 $ 4,364 $17,006
C 7 10 12 $ 3,134 $27,477

From the number of indeterminable variables present in A and B (see Table 1) one
could infer that the best configuration is C. However, from Table 2 it is clear that the
number of indeterminable variables of interest is, in fact, similar. Hence, the most
significant difference lies in the cost, thus favoring configuration B. If it is assumed
that the final configuration should have no undeterminable critical variables, it be-
comes necessary to introduce in the analysis the costs derived from the addition of
sensors to monitor all of them. The minimum cost increment associated to the incor-
poration of these measurements corresponds to configuration C. However, this is not
enough to compensate the original difference in costs. Then, all in all, it can be con-
cluded that B is the most convenient alternative.

Finally, in Table 3 the results obtained after carrying out the rigorous OA initial-
ized with configuration B, are compared against the instrumentation reported in Pon-
zoni et al. [16] (configuration P). The OAA employed in those experiments was a GS-
FLCN implementation [2] with manual initialization.

Table 3. Concluding Results

Observability
Config. Cost

M O I
P $ 14,772 52 257 237
B $ 17,006 105 289 152

In terms of cost, configuration P seems to be more convenient. However, this
choice leaves 9 undeterminable critical variables. If we added sensors at those points
and considered the corresponding cost increments, the budget would raise to $ 17,922,
thus becoming more expensive than B’s. Furthermore, the use of the MOGAI also
leads to better knowledge about the process, with a reduction over 40% in the total
number of non-observable variables.

The use of the MOGAI as an initialization tool implies gains in both time and
effort, also improving the reliability of the results by taking into account a higher
number of interest factors. For this industrial case, the total amount of time required
by the complete OA procedure was reduced in 83% thanks to the automatic initializa-
tion. The number of OA iterations diminished and therefore, there was a decrease in
the effort the DM had to make for his analysis. More specifically, for the ammonia
synthesis plant, the average run times of the MOGAI in a PC Pentium IV (2.8 GHz)

 A Novel Application of Evolutionary Computing in Process Systems Engineering 21

amounted to approximately 150 seconds, while a complete iteration of the OA cycle
normally takes more than an hour. This shows that the computational effort invested
in making an automatic initialization is negligible in comparison with the order of
magnitude of the times required by an OA iteration.

6 Conclusions

In this article we tackled the problem of selecting the best configuration of sensors to
instrument an ammonia synthesis plant in order to assess the convenience of applying
the MOGAI as an automated tool for initialization purposes. The objective function of
the GA contemplates terms associated to cost, reliability and observability.

From the comparative analysis of the results achieved with and without auto-
mated initialization, it is possible to conclude that the use of the MOGAI makes the
design methodology more efficient. Moreover, the automated initialization leads to
results of higher quality by directing the search to the simultaneous fulfillment of
several objectives.

Acknowledgments

The authors would like to express their acknowledgment to the "Agencia Nacional de
Promoción Científica y Tecnológica" from Argentina, for their economic support
given through Grant Nº11-12778. It was awarded to the research project entitled
"Procesamiento paralelo distribuido aplicado a ingeniería de procesos" (ANPCYT
Res Nº117/2003) as part of the “Programa de Modernización Tecnológica, Contrato
de Préstamo BID 1201/OC-AR”.

References

1. Vazquez, G.E., Ferraro S.J., Carballido J.A., Ponzoni I, Sánchez M.C., Brignole N.B.: The
Software Architecture of a Decision Support System for Process Plant Instrumentation.
WSEAS Transactions on Computers, 4, 2, (2003), 1074-1079.

2. Ponzoni I., Sánchez M.C., Brignole N.B.: A New Structural Algorithm for Observability
Classification. Ind. Eng. Chem. Res., 38, 8, (1999), 3027-3035.

3. Ferraro S.J., Ponzoni I, Sánchez M.C., Brignole N.B.: A Symbolic Derivation Approach
for Redundancy Analysis. Ind. Eng. Chem. Res., 41, 23, (2002), 5692-5701.

4. Osyczka A.: Multicriterion Optimization in Engineering with FORTRAN Programs. Ellis
Horwood Limited, (1984).

5. Toscano Pulido G.: Optimización Multiobjetivo Usando Un Micro Algoritmo Genético.
Tesis de Maestría en Inteligencia Artificial, Universidad Veracruzana LANIA, (2001).

6. Fonseca C.M.: Multiobjective Genetic Algorithms with Application to Control Engineer-
ing Problems. PhD Thesis, Department of Automatic Control and Systems Engineering
University of Sheeld, (1995).

7. Coello Coello C.A.: A Comprehensive Survey of Evolutionary-Based Multiobjective Op-
timization Techniques. Knowledge and Information Systems, An International Journal, 1,
3, (1999), 269–308.

22 J.A. Carballido, I. Ponzoni, and N.B. Brignole

8. Rosenberg R.S.: Simulation of Genetic Populations with Biochemical Properties. PhD the-
sis, University of Michigan, Ann Harbor, Michigan, (1967).

9. Eiben A.E., Hinterding R., Michalewicz Z.: Parameter Control in Evolutionary Algorithms
IEEE Transactions on Evolutionary Computation, 3, 2, (1999), 124-141.

10. Bäck, T., Hammel, U., Schwefel, H.P.: Evolutionary Computation: Comments on the His-
tory and Current State, IEEE Transactions on Evolutionary Computation, 1, 1, (1997), 3-17.

11. Safe M., Carballido J., Ponzoni I., Brignole N.B.: On Stopping Criteria for Genetic Algo-
rithms. In: Bazzan, A., Labidi, S. (eds.): Advances in Artificial Intelligence SBIA 2004
Lecture Notes in Artificial Intelligence Vol. 3171 Springer-Verlag, Berlin Heidelberg New
York (2004) 405–413.

12. Radcliffe N.J.: Equivalence Class Analysis of Genetic Algorithms. Complex Systems 5,
(1991).

13. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. 3rd edn.
Springer-Verlag, Berlin Heidelberg New York, (1996).

14. Bike S.: Design of an Ammonia Synthesis Plant, CACHE Case Study. Department of
Chemical Engineering, Carnegie Mellon University, (1985).

15. Vazquez G.E., Ponzoni I., Sánchez M.C., Brignole N.B.: ModGen: A Model Generator for
Instrumentation Analysis. Advances in Engineering Software, 32, (2001), 37-48.

16. Ponzoni I., Brignole N.B., Bandoni J.A.: Estudio de Instrumentación para una Planta de
Producción de Amoníaco empleando un Nuevo Algoritmo de Clasificación. AADECA´98,
Argentina, 1, (1998) 59-64.

Choosing the Fittest Subset of Low Level
Heuristics in a Hyperheuristic Framework

Konstantin Chakhlevitch and Peter Cowling

MOSAIC Research Centre,
Department of Computing,

University of Bradford,
Bradford BD7 1DP, United Kingdom

{K.Chakhlevitch, P.I.Cowling}@Bradford.ac.uk
http://www.mosaic.brad.ac.uk

Abstract. A hyperheuristic is a high level procedure which searches
over a space of low level heuristics rather than directly over the space
of problem solutions. The sequence of low level heuristics, applied in an
order which is intelligently determined by the hyperheuristic, form a solu-
tion method for the problem. In this paper, we consider a hyperheuristic-
based methodology where a large set of low level heuristics is constructed
by combining simple selection rules. Given sufficient time, this approach
is able to achieve high quality results for a real-world personnel schedul-
ing problem. However, some low level heuristics in the set do not make
valuable contributions to the search and only slow down the solution
process. We introduce learning strategies into hyperheuristics in order to
select a fit subset of low level heuristics tailored to a particular problem
instance. We compare a range of selection approaches applied to a varied
collection of real-world personnel scheduling problem instances.

1 Introduction

Personnel scheduling involves the allocation of the available workforce to times-
lots and locations and the assignment of jobs to members of staff. Real-world
personnel scheduling problems are NP-hard combinatorial optimisation prob-
lems with many complex constraints and a huge number of feasible solutions.
Heuristic methods able to find solutions of a good quality in a limited time are
often used in personnel scheduling. A recent review of staff scheduling mod-
els and methods is given in [1] where the authors identify the development of
more general and flexible algorithms as one of the principal research goals. Such
algorithms should be robust enough to cope with the changes in problem speci-
fications and scheduling environment [1].

In [2], Burke et al. present an overview of the latest work in the area of
hyperheuristics – an important direction towards the generalisation of the search
methodology. A hyperheuristic is an approach which operates at a higher level
of abstraction than a metaheuristic and intelligently chooses the appropriate
low level heuristic from a given set depending upon the current state of the

G.R. Raidl and J. Gottlieb (Eds.): EvoCOP 2005, LNCS 3448, pp. 23–33, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

24 K. Chakhlevitch and P. Cowling

problem [3]. Problem-specific information is concentrated in a set of low level
heuristics (which represent simple local search neighbourhoods or dispatching
rules) and in the objective function(s) of the problem. All that a hyperheuristic
requires to make its decisions is the objective value(s) following the application
of each low level heuristic and possibly the CPU time used by the low level
heuristic. This makes a hyperheuristic robust and highly flexible.

Several hyperheuristic approaches for real-world scheduling problems use
metaheuristics as high level procedure. Cowling et al. [8] develop a hyper-GA
approach for a personnel scheduling problem. Their approach is based on ge-
netic algorithm (GA) where the chromosome represents a sequence of low level
heuristics. Heuristics are applied in the order given by the chromosome. Han
et al. [9] further improve the hyper-GA’s performance by enabling the chromo-
some length to change adaptively during the hyperheuristic run. The method
of evolving heuristic choice is successfully implemented by Hart et al. in [7] for
a complex scheduling problem of chicken catching and transportation. Burke
et al. [10] present a tabu search based hyperheuristic applied to nurse rostering
and university timetabling problems where a tabu list of low level heuristics with
poor performance is maintained.

Another group of hyperheuristics employs learning mechanisms for making
decisions. Gratch and Chien [4] consider a statistical approach to adaptively
solve the real-world problem of scheduling satellite communications. Nareyek [5]
presents a weight adaptation method which learns how to select attractive low
level heuristics during the search. Ross et al. [6] use a learning classifier system
based on an evolutionary algorithm to learn a solution process for various in-
stances of the bin-packing problem. Their method determines an order in which
simple heuristics should be applied to solve particular problem instance. Cowling
et al. ([3], [11]) investigate a hyperheuristic based on statistical ranking of low
level heuristics. In this method, historical information about the recent perfor-
mance of low level heuristics is accumulated in a choice function. The selection
of low level heuristic at each decision point depends on the current value of the
corresponding choice function.

In [13], we present a range of hyperheuristics where greedy and random meth-
ods are mixed in order to maintain a good balance between intensification and
diversification of the search. We also show how hyperheuristic approaches can be
enhanced by adding tabu lists of recently applied low level heuristics or recently
modified events. Since for complex real-world problems there is generally no ob-
vious choice of low level heuristics, we introduce a scheme for designing a large
set of low level heuristics for a personnel scheduling problem. Low level heuris-
tics represent all possible combinations of simple selection rules for events and
resources. The results of hyperheuristic runs for a real-world personnel schedul-
ing problem are promising. The disadvantage of the hyperheuristic methods de-
scribed in [13] is that they are relatively slow since selection of low level heuristic
to apply at each decision point involves examining all heuristics from a large set.
In [14], we analyse the behaviour of individual low level heuristics and their con-
tribution to the construction of the solution. We conclude that some low level

Choosing the Fittest Subset of Low Level Heuristics 25

heuristics from the set are fitted better for the particular problem instance than
others. The effectiveness of each low level heuristic may vary a great deal from
instance to instance and is hard to predict. These conclusions have motivated
us to investigate learning strategies for choosing the subset of the fittest low
level heuristics. This is the main contribution of this paper. Learning low level
heuristics allows us not only to get rid of a significant amount of redundancy in
our approach, but, given similar amount of CPU time, to improve further the
results previously achieved for all instances of the trainer scheduling problem.

The paper is organised as follows. In the next three sections we briefly formu-
late the problem and describe our set of low level heuristics and hyperheuristic
algorithms. The learning approaches are introduced in Section 5. In Section 6
we analyse the results of all approaches. Section 7 concludes the paper.

2 The Trainer Scheduling Problem

The trainer scheduling problem arises in a large financial institution which reg-
ularly organises training for its staff. The problem involves assigning a number
of compound events of three different types (i.e. training courses, meetings and
projects) to a limited number of training staff, locations, and timeslots. Each
timeslot represents a day of the week. We must provide a schedule for 3 months
activity. A numerical priority is specified for each event which reflects manage-
ment’s view of the event’s utility. The travel of each trainer is penalised depend-
ing on the time taken to travel from the home location of the trainer to the
location where the event is conducted. The objective is to maximise the total
priority for scheduled events while minimising the total travel penalty for the
training staff.

The problem is heavily constrained due to a number of limitations related to
possible trainers and locations for the events, availability of trainers and rooms,
room types and capacities, time windows and durations for the events, workloads
for trainers etc (see [13] for details). The integer programming formulation of a
much simplified version of a similar problem is given in [8].

3 Low Level Heuristics

We divide events into two subsets: already scheduled and not yet scheduled. For
each category of events we develop separate lists of event selection rules and
resource selection rules. Selection rules are chosen in such a way as to reflect the
subgoals of the objective function and the constraints with some random selec-
tion for diversification. For example, the criteria for selection events which are
not yet scheduled can be highest priority, smallest number of possible trainers
or locations etc. For already scheduled events we employ such criteria as highest
travel penalty, widest time window, largest number of possible trainers or loca-
tions and others. The resource selection rules concern the selection of alternative
locations, trainers, timeslots or their combinations. Selecting different resources

26 K. Chakhlevitch and P. Cowling

for the event, we intend to reduce the travel penalty for the event and free up
resources which can be used later for scheduling other events. We refer to [13]
for further details and complete lists of selection rules.

Combining (”multiplying”) event selection rules with resource selection rules
for each category of events, we construct a set of 95 low level heuristics (25
heuristics for not scheduled events and 70 heuristics for scheduled events). Such
an approach is quite easy to implement since different heuristics can use the
same event or resource selection rules as their components. We create only 27
pieces of code representing different event/resource selection mechanisms, and
only 5 of these pieces of code are substantially different to each other.

4 Hyperheuristics

In this section we describe our hyperheuristics.
Hyperheuristic Greedy selects and applies at each iteration the low level

heuristic either providing the greatest improvement to the objective function
or leading to the smallest deterioration (or yielding zero improvement) if there
are no improving heuristics. Note that improvements upon the current objective
value, not upon the best value found so far are considered for all hyperheuristics
in this section. Ties are broken randomly.

Hyperheuristics from the ”peckish” group combine random and greedy meth-
ods [12]. Hyperheuristic Peckish1 (P1) randomly selects a low level heuristic at
each iteration from the candidate list of low level heuristics which improve the
current solution or from the whole set of low level heuristics if the candidate
list is empty. Hyperheuristic Peckish2 (P2) randomly selects a low level heuristic
from the candidate list which contains the n best (not necessarily improving)
heuristics. Hyperheuristic Peckish3 (P3) attempts to form the candidate list of
only improving heuristics and if such a list is not empty, randomly selects a low
level heuristic from it. Otherwise, random selection from the candidate list of
n best non-improving heuristics is applied. In hyperheuristic Peckish4 (P4) the
candidate list size n is dynamically changed. It is initially set to 1. If at some
iteration the improving low level heuristics exist and one of them is applied, the
candidate list size n is reset to 1. Otherwise, a low level heuristic is randomly
selected from n best non-improving heuristics and candidate list size is incre-
mented. The candidate list size n determines how “greedy” and how “random”
the peckish hyperheuristic is – increasing n adds randomness and decreasing n
makes the hyperheuristic more greedy.

Hyperheuristics from the next group are based on the ideas of tabu search
(see [15]). Hyperheuristic TabuHeuristic (TH) employs a tabu list of recently
called heuristics. The size of the tabu list is fixed and set to some prespeci-
fied value. The algorithm greedily selects the best low level heuristic at each
iteration. If such a heuristic leads to an improved objective value, it is always
applied and released from the tabu list if there; a non-improving heuristic is
chosen only if it is not in the tabu list and immediately becomes tabu after its
application. Hyperheuristic TabuEvent (TE) is similar to TabuHeuristic but the

Choosing the Fittest Subset of Low Level Heuristics 27

tabu list holds recently selected events. In hyperheuristics TabuHeuristicAdaptive
(THA) and TabuEventAdaptive (TEA) the tabu list size is changed adaptively
as the search progresses (see [13]).

Note that all hyperheuristics above ensure that the solution is changed at
each iteration by discarding low level heuristics failing to find any alternative
resources for the selected event.

5 Learning Techniques

We have tested two approaches to select the subset of promising low level heuris-
tics from a large superset:

1. Warming up approach (WU): the hyperheuristic identifies the specified num-
ber of the fittest low level heuristics during some warm up period (given by
the number of iterations) and then either continues its run until a stopping
condition is met (WU-C) or restarts from a known initial solution with a
reduced set of low level heuristics (WU-R).

2. Step-by-step reduction (SSR) approach: the hyperheuristic gradually reduces
the set of low level heuristics during its run until some number of the fittest
low level heuristics remain in the set and continues with a reduced set until
a stopping condition is met.

The following parameters should be specified for the step-by-step reduction:

– hmin – the minimum possible number of low level heuristics remaining in
the subset. In other words, when after several reduction steps the number
of the fittest low level heuristics in the reduced set reaches hmin, no further
reductions are allowed.

– s – reduction step, i.e. the number of iterations between two successive re-
ductions.

– f ∈ [0.9; 1) – reduction factor, i.e. hafter = [hbefore ∗ f], where hafter and
hbefore are the number of low level heuristics in the set after and before
reduction respectively and [x] denotes the integer nearest to x.

Selecting different values of s and/or f , we can control the speed of reduction.
Increasing s or f makes the reduction slower, decreasing one of the parameters
speeds up the process.

Note that both WU and SSR approaches preserve the same ratio of low level
heuristics for not yet scheduled events and for already scheduled events in the
reduced set as in the whole set of 95 low level heuristics. Since this ratio in the
superset is approximately 1 : 3, the algorithm consecutively takes off three low
level heuristics for already scheduled events from the set before one low level
heuristic for not scheduled events is discarded.

We use total improvement as a fitness criterion for learning low level heuris-
tics. For each low level heuristic, the hyperheuristic accumulates the correspond-
ing value of improvement returned at each iteration. When a reduction occurs,
the low level heuristics with the smallest total improvement over all previous
iterations are discarded.

28 K. Chakhlevitch and P. Cowling

Table 1. Real-world datasets for the trainer scheduling problem

Dataset1 Dataset2 Dataset3 Dataset4 Dataset5 Dataset6
Courses 224 147 224 147 83 161
Meetings 0 0 37 71 27 58
Projects 0 0 71 169 31 171
Trainers 53 54 53 54 54 47
Locations 16 16 16 16 19 16
Rooms 37 39 37 39 35 36

6 Experiments and Results

This section describes input data and experimental settings for our methods and
contains the comparative analysis of the results of computational experiments.

Input Data. We use real datasets provided by a financial institution. Table 1
presents a summary for 6 datasets used in our experiments. The first two datasets
have been used in our previous work (see [13]) and represent simplified versions
of datasets 3 and 4 since only training courses have to be scheduled. This paper
adds realism to the model of [13] by including project and meeting events and
their associated constraints. The meetings are particularly difficult to schedule
since the presence of a large number of trainers may be required on the same
day and at the same location.

Implementation. The problem model, low level heuristics and hyperheuristics
were implemented in Microsoft Visual C++ making good use of object orienta-
tion and the experiments were run on a Pentium 4 1600MHz PC with 640Mb
RAM running under Windows 2000. A single experiment for hyperheuristic con-
sists of 10 runs with different random seeds and starting from the same initial
solution. The stopping condition is 500 iterations for the experiments with the
whole set of low level heuristics and 1000 iterations when the reduced sets are
used. The set of 95 low level heuristics is reduced down to 20 heuristics when
learning strategies are applied and the warming up period length is 200 itera-
tions.

Initial schedules are constructed using a greedy heuristic which takes events
one by one and assigns the combination of resources yielding the lowest travel
penalty for each event until all events have been tried. The events are pre-sorted
in descending order of their priority. If the meetings are present in a dataset, ties
in priority are broken by descending order of the number of trainers involved to
ensure that the meetings have been considered early in schedule construction.
The upper bound of all possible schedules for each problem instance represents
the solution for the relaxed version of the problem where all constraints on
availability of trainers and rooms, room types and capacities, on starting times
for the events and their time windows are ignored (see [13] fore more details).

Choosing the Fittest Subset of Low Level Heuristics 29

Table 2. Average performance of hyperheuristics applied to a whole set of 95 low level
heuristics (WS) and after learning the fittest low level heuristics using step-by-step
reduction approach (SSR) given in distance from the upper bound

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6
Hyper-
heuristic WS SSR WS SSR WS SSR WS SSR WS SSR WS SSR

Initial 4352 6727 13880 24210 9968 29610

Greedy 751 541 2382 1507 4931 3941 8197 6911 3188 2197 5741 5064

P1 517 503 2398 2033 4856 4336 8085 5091 3687 3690 5944 3406

P2(25) 1061 556 2842 2092 5910 4901 9432 6644 4091 2295 4998 4090

P3(25) 567 269 2793 2044 5634 4403 7750 5586 3988 2296 5281 4497

P4 941 465 2584 1782 4675 4114 7533 5468 4285 2194 5870 4195

TH(30) 746 362 1990 1770 4623 3760 7775 7106 3687 2595 6022 5378

THA(45) 749 276 2289 1600 4435 3945 7115 7863 4287 3089 6340 5025

TE(N/2) 553 256 1973 1317 4237 3241 7642 6525 3093 1799 4946 4670

TEA(45) 555 360 2185 1693 4259 3281 7568 7027 3289 1797 5526 5047

Results. The average results for hyperheuristics managing a large collection of
95 low level heuristics (denoted by WS) and a reduced set of low level heuristics
selected by step-by-step reduction approach (SSR) are compared in Table 2. We
choose SSR as the approach producing better results on average than both ver-
sions of the WU method (see Figure 1). For SSR method the following values of
parameters are choosen based on empirical tests: hmin = 20, s = 30, f = 0.90
(fast reduction). These settings provide the most consistent outcomes (although
not necessarily the best results for every hyperheuristic and dataset). The fig-
ures in Table 2 represent the distances from the corresponding upper bound.
The numbers in parentheses after some of hyperheuristics’ names are the values
of either candidate list size or tabu list size. Hyperheuristics are not particu-
larly sensitive to the values of these parameters and we use moderate values for
illustration purposes. The only exception is hyperheuristic TabuEvent which pro-
duces the most consistent outcomes when the tabu list may contain up to a half
of all the events in the dataset. This is denoted by N/2 in Table 2, where N is
the number of events in the dataset. It is evident from the table that the learning
technique embedded into a hyperheuristic leads to significant improvements in
the quality of the schedules. The small deviations in the objective values ob-
served represent practically very significant differences in trainer inconvenience
due to additional travel, or additional low priority scheduled events. Analysing
the performance of individual hyperheuristics with learning, we can notice from
Table 2 that hyperheuristics whose behaviour is primarily greedy (Greedy and
tabu list based) outperform their peckish counterparts for Datasets 1,2,3 and 5
with the best results consistently delivered by TabuEvent hyperheuristic. For the
most hard-to-schedule Datasets 4 and 6 peckish hyperheuristics are more suc-

30 K. Chakhlevitch and P. Cowling

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

Greedy P1 P2 P3 P4 TH THA TE TEA

Hyperheuristic

D
ev

ia
tio

n
fr

om
 U

B
 (%

).
WS-500 WS-1000 Random-20 WU-R WU-C SSR

 Fig. 1. Comparison of hyperheuristic approaches for Dataset 1 (deviation in % from
the upper bound)

cessful, especially Peckish1 where the random component dominates and more
frequent calls of low level heuristics which worsen the objective value are possi-
ble. This is not surprising since for tightly constrained datasets it is difficult to
find alternative resources without increasing travel penalties. Scheduling a new
event may require a few rescheduling moves which worsen the current schedule
by increasing penalties. Hyperheuristics with a greater degree of randomness ac-
cept such moves more often than more greedy hyperheuristics. This provides a
smaller number of not scheduled events in the best schedule. On the other hand,
the presence of a greedy component in a peckish hyperheuristic guarantees that
a worse move will not be accepted too often and therefore the penalties will
not be significantly damaged. For ”easier” Datasets 1,2,3 and 5 there is more
freedom to find resources and greedier hyperheuristics perform better. Figure 1
demonstrates the difference in performance of hyperheuristic approaches with
and without learning for Dataset 1. The results for other datasets follow similar
patterns. It is clear that SSR is the best method in most occasions. In order
to check the quality of low level heuristics selected by SSR algorithm, we have
conducted a range of experiments with the reduced sets of 20 randomly selected
low level heuristics (”Random-20” columns in Figure 1). The results of these
experiments are rather erratic: the high quality solutions comparable to those
produced by SSR approach are present along with very poor, unacceptable ones.
For example, the worst objective value achieved by hyperheuristic Greedy for
Dataset 1 using the Random-20 approach is unacceptable 3227 from the upper
bound whereas SSR is never more than 1214 from the bound. These results give
strong evidence for the importance of the right selection of low level heuristics in
the subset. We can also notice from Figure 1 that WU strategies are less consis-
tent than SSR and their performance varies widely for different hyperheuristics.
Comparing the results of WS approach for 500 and 1000 iterations (WS-500 and
WS-1000 columns in Figure 1) with those of SSR approach, we can observe that
although further improvements have been recorded during additional 500 iter-
ations for the hyperheuristics applied to a large set of low level heuristics, the
solutions obtained are generally slightly worse than that of hyperheuristics em-
ploying the SSR strategy. The WS-500 and SSR approaches use similar amounts

Choosing the Fittest Subset of Low Level Heuristics 31

of CPU time, although the SSR approaches carry out 1000 iterations in their
time compared to WS-500’s 500 iterations.

The low level heuristics in the reduced set are usually those yielding the most
frequent and valuable improvements to the current solution since the selection
criterion used in the SSR approach is the total improvement achieved by the low
level heuristic. The most effective event selection rules for not scheduled events
involve random selection of events and selection based on priority. Other event
selection rules are also present in the reduced set but less often and depending
on the hyperheuristic and dataset. The resource selection rules for not sched-
uled events are distributed quite evenly among the best low level heuristics. For
already scheduled events we observe different preferences in selection rules. All
event selection rules are usually represented in the reduced set of low level heuris-
tics although random selection, selection of events with the highest priority and
with the highest travel penalty are present in higher ratios. Only four resource
selection rules for already scheduled events are contained in low level heuristics
from the reduced set. Three of them are well suited to the total improvement
criterion selecting appropriate trainers, locations or their combinations which re-
duce the travel penalty for the selected event. The fourth rule selects alternative
timeslots for scheduled events and always yields zero improvement.

Summarising the above analysis, we observe that the reduced sets of low level
heuristics obtained by applying our learning approaches are similar for different
datasets. It appears that the choice of low level heuristics depends primarily
on the method used to select the reduced subset and to a lesser extent on the
problem instance and hyperheuristic. Successful individual runs of hyperheuris-
tics with a subsets of randomly selected low level heuristics support the idea
that even greater diversity could be useful. Therefore, the development of more
advanced and comprehensive learning mechanisms is an interesting research di-
rection, possibly employing weight adaptation schemes similar to those presented
by Nareyek in [5] or advanced scoring systems for ranking low level heuristics.

7 Conclusions

Since a hyperheuristic accumulates knowledge about low level heuristic perfor-
mance rather than directly about the problem, there is growing evidence that
the approach is robust for a variety of problem instances and across problem do-
mains. In this paper, we have added to this evidence. We have presented a range
of hyperheuristic algorithms managing a large collection of low level heuristics
constructed by combining simple selection rules. In order to make the method-
ology faster and more effective, we have introduced learning techniques into
hyperheuristics which allow us to reduce the set of low level heuristics leaving
only those most likely providing regular improvements to the current solution
for the particular problem instance. The experimental study shows that our
hyperheuristics produce high quality results for difficult real-world instances of
personnel scheduling problem. Hyperheuristics with learning outperform their

32 K. Chakhlevitch and P. Cowling

counterparts dealing with a large set of low level heuristics both in terms of
solution quality and CPU time.

The methodology presented in this paper has the potential to solve other
complex real-world scheduling problems. By considering manual schedule gen-
eration and repair techniques, it is usually straightforward to design selection
rules and therefore to form a set of low level heuristics, even when the problem
structure is poorly understood. The choice of which selection rules will work in
an automated system is difficult, and we have presented and compared several
methods to identify effective low level heuristics from a large set in this paper.
Investigating the robustness of the method across other problem domains is our
primary goal for the near future.

References

1. Ernst, A.T., Jiang, H., Krishnamoorthy, M., Sier, D.: Staff Scheduling and Roster-
ing: A Review of Applications, Methods and Models. European Journal of Opera-
tional Research 153 (2004) 3-27

2. Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-
heuristics: An Emerging Direction in Modern Search Technology. In:Glover, F.,
Kochenberger, G.A. (eds.): Handbook of Metaheuristics. Kluwer Academic Pub-
lishers, Boston Dordrecht London (2003) 457-474

3. Cowling, P., Kendall, G., Soubeiga, E.: A Hyperheuristic Approach to Scheduling
a Sales Summit. In: Burke, E., Erben, W. (eds.): Practice and Theory of Au-
tomated Timetabling III: PATAT2000. Lecture Notes in Computer Science, Vol.
2079. Springer-Verlag, Berlin Heidelberg New York (2000) 176-190

4. Gratch, J., Chien, S.: Adaptive Problem-Solving for Large-Scale Scheduling Prob-
lems: A Case Study. Journal of Artificial Intelligence Research 4 (1996) 365-396

5. Nareyek, A.: Choosing Search Heuristics by Non-Stationary Reinforcement Learn-
ing. In: Resende, M., de Souza, J. (eds.): Metaheuristics: Computer Decision-
Making. Kluwer Academic Publishers, Boston Dordrecht London (2003) 523-544

6. Ross, P., Schulenburg, S., Maŕın-Blázquez, J. G., Hart, E.: Hyper-Heuristics: Learn-
ing to Combine Simple Heuristics in Bin-packing Problems. In: Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO 2002). Morgan
Kauffmann (2002) 942-948.

7. Hart, E., Ross, P., Nelson, J.: Solving a Real-World Problem Using an Evolving
Heuristically Driven Schedule Builder. Evolutionary Computation 6 (1998) 61-80

8. Cowling, P., Kendall, G., Han, L.: An Investigation of a Hyperheuristic Genetic Al-
gorithm Applied to a Trainer Scheduling Problem. In: Proceedings of 2002 Congress
on Evolutionary Computation (CEC2002). IEEE Computer Society Press, Hon-
olulu, USA (2002) 1185-1190

9. Han, L., Kendall, G., Cowling., P.: An Adaptive Length Chromosome Hyperheuris-
tic Genetic Algorithm for a Trainer Scheduling Problem. In: Proceedings of the 4th
Asia-Pacific Conference on Simulated Evolution and Learning (SEAL’02). Orchid
Country Club, Singapore (2002) 267-271

10. Burke, E., Kendall, G., Soubeiga, E.: A Tabu-Search Hyperheuristic for
Timetabling and Rostering. Journal of Heuristics 9 (2003) 451-470

11. Cowling, P., Kendall, G., Soubeiga, E.: A Parameter-Free Hyperheuristic for
Scheduling a Sales Summit. In: Proceedings of the Third Metaheuristic Interna-
tional Conference (MIC’2001). Porto, Portugal (2001) 127-131

Choosing the Fittest Subset of Low Level Heuristics 33

12. Corne, D., Ross, P.: Peckish Initialisation Strategies for Evolutionary Timetabling.
In: Burke, E., Ross, P. (eds.): Practice and Theory of Automated Timetabling.
Lecture Notes in Computer Science, Vol. 1153, Springer-Verlag, Berlin Heidelberg
New York (1995) 227-240

13. Cowling, P., Chakhlevitch, K.: Hyperheuristics for Managing a Large Collection of
Low Level Heuristics to Schedule Personnel. In: Proceedings of the 2003 IEEE
Congress on Evolutionary Computation (CEC’2003). IEEE Computer Society
Press, Canberra, Australia (2003) 1214-1221

14. Chakhlevitch, K.: Hyperheuristics Which Manage Large Collections of Low Level
Heuristics. PhD thesis, in preparation

15. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Boston Dor-
drecht London (1997)

An Attribute Grammar Decoder for the 01
MultiConstrained Knapsack Problem

Robert Cleary and Michael O’Neill

University of Limerick, Ireland
{Robert.Cleary, Michael.ONeill @ul.ie}

Abstract. We describe how the standard genotype-phenotype mapping
process of Grammatical Evolution (GE) can be enhanced with an at-
tribute grammar to allow GE to operate as a decoder-based Evolution-
ary Algorithm (EA). Use of an attribute grammar allows GE to maintain
context-sensitive and semantic information pertinent to the capacity con-
straints of the 01 Multiconstrained Knapsack Problem (MKP). An at-
tribute grammar specification is used to perform decoding similar to a
first-fit heuristic. The results presented are encouraging, demonstrating
that GE in conjunction with attribute grammars can provide an im-
provement over the standard context-free mapping process for problems
in this domain.

1 Introduction

The NP-Hard 01 Multiconstrained Knapsack Problem (MKP) can be formulated
as;

maximise
n∑

j=1

pjxj (1)

subject to

n∑

j=1

wijxj ≤ , (2)

xj ∈ {0, 1}, j = 1 . . . n (3)

where, pj refers to the profit, or worth of item j, xj refers to the item j, wij

refers to the relative-weight of item j, with respect to knapsack i, and ci refers to
the capacity, or weight-constraint of knapsack i. There exist j = 1 . . . n items,
and i = 1 . . . m knapsacks.

The objective function (equation 1) tells us to find a subset of the possible
items (ie. the vector of items); where the sum of the profits of these items is
maximised, according to constraints presented in equation 2. Equation 2 states,
that the sum of the relative-weights of the vector of items chosen, is not to be
greater than the capacity of any of the m knapsacks. Equation 3 refers to the
notion that we wish to generate a vector of items, of size n(j = 1..n items),
whereby a 0 at the ith index indicates that this item is not in the chosen subset
and a 1 indicates that it is.

G.R. Raidl and J. Gottlieb (Eds.): EvoCOP 2005, LNCS 3448, pp. 34–45, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

ci

An Attribute Grammar Decoder for the 01 MKP 35

Exact methods such as Branch and Bound have been found as good approx-
imation algorithms to the single-constrained knapsack problem [1], but however
Evolutionary Algorithms (EAs) have been found to be most appropriate in solv-
ing large instances of the MKP for which exact methods are too slow. As a
result EAs, and in particular, decoder-based EAs have been heavily studied in
application to the MKP [2, 3, 4, 5, 6, 7, 8]. Their advantage over the more tradi-
tional direct representation of the problem, is their ability to always generate
and therefore carry out evolution over feasible candidate solutions, and thus fo-
cus the search on a smaller more constrained search space [9, 10]. The best EAs
for the MKP that we are aware of utilise problem-specific domain knowledge to
carry out repair and optimisation to maintain feasible solutions [11, 12, 5].

These EAs have been developed specifically for solving the MKP, and are
based heavily on domain knowledge of the problem and efficiency to solution
time via locally-optimised initialisation and search techniques. It is not the fo-
cus of this paper to attempt to compete with such algorithms, rather, in this
instance; we wish to examine the ability of Grammatical Evolution’s (GE’s)
mapping process to be transformed to the role of a decoder for constrained opti-
misation problems. More specifically, we use constrained optimisation problems
as a test-bed to demonstrate how attribute grammars allow the extension of GE
to context-sensitive problem domains. As a side effect, we also see the possibility
to further our analysis of the internal workings of GE, through merging research
in the methods of analysis found within the field of decoder-based EAs. Core
to the functioning of such decoder-based EAs is a genotype-phenotype map-
ping process, and methods have been developed for the effective analysis of the
workings of such mapping processes.

The remainder of the paper is structured as follows. An introduction to
decoder-based EAs from the literature is presented in Section 2, followed by a
short description of Grammatical Evolution in the context of knapsack problems
in Section 3. Attribute grammars and their application to knapsack problems are
discussed in Section 4 followed by details on the experimental setup in Section
5. Finally the results are presented in Section 6 and conclusion and future work
outlined in Section 7.

2 Decoder Approaches from the Literature

The previous section outlined the knapsack problem as that of a constrained op-
timisation problem. From our literature review we divide the various approaches
into two categories; infeasible, and feasible-only. From this survey we encoun-
tered many successful works from both approaches, with Raidl’s improved GA
[5] being the best infeasible approach, outperforming Chu and Beasley’s [11] GA
by what is reported to be a non-deterministic local optimisation strategy. Of
the feasible-only approaches, the problem space decoder based EA of Raidl [12],
marginally outperforms Gottlieb’s study of permutation-based EAs in [2].

36 R. Cleary and M. O’Neill

2.1 Infeasible Solutions

The allowance of infeasible solutions within the evolving population of the EA
stems from what [9] and [12] refer to as a direct representation. That is, chro-
mosomes encode for a set of items to be included in the knapsack. Each gene
represents a corresponding item. The most typical use of this approach is the
binary bit-string representation of size n where a 1 at the ith index indicates
that this item is to be included in the knapsack.

As pointed out in [8], it is important with this kind of approach to ensure
that the infeasible solution doesn’t end up in the final population, or result in
being awarded a fitness better than a feasible solution. Khuri and Olsen [13, 14],
both report only moderate success rates with such approaches; and as such we
focus our attention on the use of decoders in providing feasible-only solutions.

2.2 Feasible-Only Solutions

The simple structure of the MKP is often approached by applying the search
algorithm to the space of possible solutions, mapped out by P ∈ {0, 1}n. A
common alternative to this is the use of an EA which works in some other
search space which maps into F the feasible subset of P [9]. The entity which
does such a mapping is generally referred to as a decoder, and guarantees the
generation of solutions that lie within F , and often further constrain the search
to more promising regions of F .

In principle, all decoders work the same way. A decoder can be thought of as
a builder of legal knapsacks. It works by attempting to add items to a knapsack,
whereby each attempted addition of an item is governed by a capacity-constraints
check. That is, items are added as long as no capacity constraint is violated by
it’s addition.

Decoders differ; in their use of problem specific heuristic information and how
they interpret the genome. That is, EAs which choose the decoder approach to
constrained optimisation problems, utilise a representation which feeds the de-
coder’s internal knapsack generation algorithm. This representation is generally
one of two different classes: a) The chromosome representation is a mapping to
some permutation of the set of items that implicitly defines the order by which
the decoder attempts to build a knapsack. Such EAs are referred to as order-
based, and have been exhaustively studied in [2, 3, 4, 5, 6] and [7, 8] where the
general conclusion is that this is a very effective approach; b) The chromosome
uses a symbolic representation, where genes represent actual items; and the de-
coder works by dropping items which violate capacity constraints. In this case,
evolutionary operators must incorporate the decoder heuristic so as to allow
only the generation of feasible solutions. Hinterding [7], introduces such an EA
as an order-independent mapper and reports it to perform well, although it is
outperformed by an order-based approach.

With either approach, the introduction of a many-to-one genotype-phenotype
mapping may occur. Raidl et al [3] refers to this as heuristic bias, whereby the
stronger the restriction of the search space to promising regions of the feasible
search space F ⊂ P ∈ {0, 1}n, the stronger the heuristic bias. The building of

An Attribute Grammar Decoder for the 01 MKP 37

a legal knapsack is governed by termination at the point of a capacity viola-
tion. Thus, many of the same genotypes may decode to the same phenotype as
all of their genetic material may not be allowed to be used with such decoder
termination.

Although working with the simpler single-constrained knapsack problem,
Hinterding reports that a redundant mapping from genotype to phenotype gave
better results [8]. This is similarly supported in [3, 4] where it is also observed that
although desirable too much redundancy in the decoder may result in degrada-
tion of performance. The following section will describe the Grammatical Evolu-
tion EA, and demonstrate how it lends itself to act as a decoder for constrained
optimisation problems via the introduction of an attribute grammar into the
genotype-phenotype mapping process.

3 Grammatical Evolution

Grammatical Evolution (GE) [15], is an evolutionary algorithm that can evolve
computer programs in any language, and can be considered as a form of
grammar-based genetic programming. Rather than representing the programs
as parse trees, as in standard GP [16, 17], a variable-length linear genome rep-
resentation is used. Fig. 1 provides an illustration of the mapping process over
a simple example CFG.

Fig. 1. An illustration of GE’s genotype-phenotype mapping process’ operation

As illustrated, GE uses the CFG as a phrase-structure generative grammar,
whereby, rules of the grammar - outline the structure by which syntactically cor-
rect sentences of the language can be derived1. It can be seen that the grammar

1 Although GE uses a grammar in Backus-Naur-Form (BNF) - for clarity of explana-
tion of the subsequent attribute grammars, we subscribe to the notation of Knuth
[18] to do the same; whereby a → denotes a production, as opposed to ::= in BNF.

38 R. Cleary and M. O’Neill

specification of Fig. 1 defines a language. This language, written L(G), deter-
mines the set of legal (or syntactically correct) sentences, which can be generated
by application of the grammar’s rules. For example, the grammar within the il-
lustration defines the language L(G) = ab+c : the set of strings starting with the
terminal-symbol ‘a’ - ending in the terminal-symbol c; and having one-or-more of
the terminal-symbol ‘b’ in between (Note: the + symbol denotes, one-or-more).

The non-terminal symbols ‘A’ and ‘B’ define the phrase-structure of the lan-
guage. They define A-phrases and B-phrases, from which the language is con-
tained. These would be similar to constructs such as noun-phrases in spoken
language, or for example, a boolean-expression phrase from the abstract syntax
of a programming language. In terms of the example grammar, a syntactically
valid A-phrase contains an ‘a’ followed by a B-phrase. A recursive definition of
the B-phrase thereafter, defines the previously stated language of the grammar.
In this way, the structure of the syntax of an entire language can be defined in
a concise and effective notation.

Rules of the grammar are referred to as production-rules and as such A → aB,
can be read as, “A” produces “aB”. Similarly it can be said that “aB” is derived
from A. Such a production is said to yield a derivation in the sentential-form,
where by a completed derivation results in a sentential form consisting solely of
terminal symbols - a sentence of the language.

The GE mapping process works, by first constructing a map of the gram-
mar, such that left-hand-side non-terminals are used as a key to a correspond-
ing right-hand-side list of rules(the index of which are specified in parenthesis).
Production-rules are chosen, then, by deriving the production at the index of
the current non-terminal’s rule-list as specified by the following formula:

Rule = CodonV alue % Num. Rules

where % represents the modulus operator. (So as not to detract from the focus
of the paper, we defer the interested reader to the canonical texts of GE for a
explanation of the intricacies of the mapping process’ algorithm [15, 19, 20, 21].)

3.1 CFG Decoder Limitations

In considering GE as a decoder for knapsack problems then, we wish to use
the mapping process to decode a genotype, into sentences of the language of
knapsacks. That is, we require a CFG definition to represent the language of
feasible knapsacks. Let us now consider the viability of such a grammar-based
decoder as is afforded by the standard GE mapping process. We can define a
grammar for an n item knapsack problem as follows:

S → K

K → I

K → IK

I → i1
...

I → in

An Attribute Grammar Decoder for the 01 MKP 39

Beginning from the start symbol S a sentence in the language of knapsacks
is created by application of productions to S such that only terminal symbols
remain; yielding a string from the set of items {i1, . . . , in}. Consider however,
the problem of generating such a string for a 01 knapsack problem as defined in
the previous section. GE essentially carries out a left-most derivation, according
to the grammar specified. The following derivation-sequence illustrates the point
at which a CFG fails to be able to uphold context-specific information.

S → K → IK → i3K → i3IK → i3??

What this derivation-sequence provides is a context. That is, given the context
that i3 has been derived, the next derivation-step must ensure that i3 is not
produced again. Re-deriving an i3 violates the semantics of the language of 01
knapsacks. A CFG has no method of encoding this context-sensitive information
and hence, cannot be used as a decoder to decode chromosomes to feasible
knapsack solutions The answer to these limitations lies in the power of attribute
grammars, which allow us to give context to the current derivation step. By
employing an attribute grammar as the generative power of the mapping process
we can extend GE to become a decoder for feasible-only candidate solutions.

4 Attribute Grammars for Knapsacks

Attribute grammars (AGs) were first introduced by Knuth [18], as a method to
extend CFGs by assigning attributes (or pieces of information), to the symbols
in a grammar. Attributes can be assigned to any symbol of the CFG, whether
terminal or non-terminal, and are defined (given meaning) by functions asso-
ciated with productions in the grammar. These shall be termed the semantic
functions. Attributes can take the form of simple data (eg. integers), or more
complex data-structures such as lists, which append to each symbol of the gram-
mar. In terms of AGs it’s best to think of a derivation by it’s tree representation
where the root is S and it’s children the symbols of the applied production. A
portion of a derivation-tree descended from a single non-terminal node comprises
the context of a phrase. A sentential-form is the set of nodes directly descended
from such a non-terminal. Also, the term terminal-producing production will be
used to refer to a sentential-form which contains one or more terminals.

Attributes are thus pieces of data appended to nodes of the tree, and can be
evaluated in one of two ways. In the first, the value of an attribute is determined
by the value of the attributes of child nodes. That is, the evaluation of a parent
attribute can be synthesized or made up of it’s child’s attribute values. In the
second, the value of an attribute is determined by information passed down from
parent nodes. That is, a child’s attribute is evaluated based on information which
is inherited down from parent nodes. In either case, attributes of a node can be
evaluated in terms of other attributes of that same node. Information however,
originates either from the root node S or leaf nodes of the tree, which generally
provide constant values from which, the value of all other nodes in the tree are
synthesized or inherited.

40 R. Cleary and M. O’Neill

4.1 An Attribute Grammar for 01 Compliance

Consider the following attribute grammar specification to show how attributes
can be used to preserve 01 compliance when deriving strings in the language of
knapsacks. This attribute grammar is identical to the earlier CFG, with regard to
the syntax of the knapsacks it generates. The difference here being the inclusion
of attributes associated with both terminal and non-terminal symbols, and their
related semantic functions. As each symbol in the grammar maintains it’s own
set of attributes, we use a subscript notation to differentiate between occurrences
of like non terminals.

Following the notation of Knuth [18], we have appended the following at-
tributes to the previous CFG grammar:

items(K): A synthesized attribute that records all the items currently in the
knapsack (ie. items which have been derived thus far).
item(I): A string representation, identifying which physical item the current
non-terminal will derive. For example item(I) = “i′′1 where that I derives or
produces i1 of the problem.
notInKnapsack?(in): A boolean flag, indicating whether the 01 property can
be maintained by adding this item (ie. given the current derivation, has this item
been previously derived?). This is represented as a string-comparison of item(I)
over items(K).

The following gives a description of such an attribute grammar, and provides
an example to illustrate how it can be used to drive a context-specific derivation

S → K

K → I items(K) = items(K) + item(I)

K1 → IK2 items(K1) = items(K1) + item(I)
items(K2) = items(K1)

I → i1 item(I) = “i1”
Condition : if(notinknapsack?(i1))

...
I → in item(I) = “in”

Condition : if(notinknapsack?(in))

Consider the above attribute grammar, when applied to the following
derivation-sequence:

S → K → IK → i1K → i1IK → i1(iλ ∈ {i2...in})K → ...

At the point of mapping I given the above context, it can be seen from the
above semantic functions that it’s items(I) attribute will be evaluated to “iλ”
if the notinknapsack?() condition holds. Following this the root node will have
it’s items(K1) updated to include “iλ” which can from then on be passed down
the tree by the inherited attribute of items(K2). This in turn allows for the next

An Attribute Grammar Decoder for the 01 MKP 41

notinknapsack() condition to prevent duplicate items being derived. The next
section follows to provide a deeper example, which shows how we can include
the evaluation of weight-constraints at the point in a derivation where we carry
out a terminal-producing production.

4.2 An Attribute Grammar for Constraints Checking

Further attributes can be added, in order to extend the context-sensitive infor-
mation captured, during a derivation. The following outlines these attributes
and their related semantic-functions in a full AG specification, which maintains
both 01 and constraint-violation information.

lim(S): A global attribute containing each of the m knapsacks’ weight-
constraints. This can be inherited or passed down to all nodes.
lim(K): As lim(S) just used to inherit to each K2 child node.
usage(K): A usage attribute, records the total weight of the the knapsack to
date. That is, the weight of all items which have been derived at this point.
weight(K): A weight attribute, used as a variable to hold the weight of the
item derived by the descendant I to this K.
weight(I): A synthesized attribute, made-up of the descendant item’s physical
weight.
weight(in): The physical weight of item in(the weight of item in as defined by
the problem instance).

The corresponding attribute grammar is given below with an example show-
ing how it’s attributes are evaluated. At the point of deriving a left-hand side
production, the corresponding right-hand side semantic functions are evalu-
ated/executed. Conditions govern the firing of the set of semantic functions
directly above them at the point of their satisfaction.

S → K lim(K) = lim(S)

K → I weight(K) = weight(K) + weight(I)
Condition : if(usage(K) + weight(I) <= lim(K))

items(K) = items(K) + item(I)

K1 → IK2 weight(K1) = weight(K1) + weight(I)
items(K1) = items(K1) + item(I)
usage(K1) = usage(K1) + weight(I)

Condition : if(usage(K1) < lim(K1))
lim(K2) = lim(K1)
usage(K2) = usage(K1)
items(K2) = items(K1)

I → i1 item(I) = “i1”
Condition : if(notinknapsack?(i1))

weight(I) = weight(i1)
...

42 R. Cleary and M. O’Neill

I → in item(I) = “in”
Condition : if(notinknapsack?(in))

weight(I) = weight(in)

In terms of the problem being solved, lim(K) is actually a list of constraint-
bounds for each of the m knapsacks. Similarly, items(K), is a list of the items
which have currently been derived by the GE mapping process. For clarity of ex-
planation, the following example will assume a single knapsack weight-constraint,
but the more complicated problem can be extracted by altering the below con-
ditions to have lim(K) as an array of constraint-bounds as opposed to a sin-
gle integer value. Fig. 2 shows the synthesized and inherited message passing

Fig. 2. Diagram showing synthesized and inherited message-passing for evaluating
attributes in the derivation tree of an attribute grammar

involved in evaluating derivation trees for the above attribute grammar. We can
see, that initially the global limit is passed down to K by the first semantic
function. From the grammar, we can see that following this, the first three se-
mantic functions of K are evaluated before a condition checks to see that we
haven’t violated a weight-constraint2. Passing this allows for inheriting values
down the tree by the second three semantics functions (otherwise we would have
remapped K via another production and repeated the process). The attribute
grammar decoder works then by attempting to add items according to I’s pro-

2 For clarity, we assume that the notInKnapsack(i3) condition has passed and the its
values have synthesized up the tree.

An Attribute Grammar Decoder for the 01 MKP 43

duction rules, and at the point of constraint-violation or a 01 collision the codon
causing the error is skipped (becomes an intron) and the subsequent codon read.

5 Experimental Setup

In this study, we have chosen to apply our analysis to a range of problem in-
stances from the literature [22], which allow us to gauge the effectivity of different
grammars to capture the context-sensitive information for the test-bed knapsack
problems. Our current attribute grammar decoder as described in the previous
section, uses a simple construction heuristic similar to that of the first-fit heuris-
tic described in [8]. From the literature, this set of problems allow us a direct
comparison with two different knapsack problem approaches. Primarily, we un-
dergo a direct comparison with the penalty-based GA of Khuri et al. [13], and a
secondary comparison with a hybrid GA which uses a problem-space search [23].
It is worth noting however that Khuri et al. use a direct bitstring representa-
tion of fixed-length, where a graded penalty function overcomes the problem of
infeasiblity. We utilise the standard variable-length binary string representation
of GE, with the attribute grammar mapping as a decoder for feasibility. For
experiments with the standard GE mapping process, we penalise to zero - all
infeasible candidates. Our earlier work in [24] tested a graded penalty term but
it provided no improvement for results.
We adopt standard experimental parameters for GE, changing only the popula-
tion size to that of Khuri et al., whose a population size of µ = 50 running for up
to 4000 generations. We adopt a variable length one-point crossover probability
of 0.9, bit mutation probability of 0.01, and roulette selection. A steady-state
evolutionary process is employed, whereby a generation constitutes the evolution
and attempted replacement of µ/2 children into the current population. Replace-
ment occurs if the child is better than the worst individual in the population.
The initial population of variable-length individuals were initialised randomly,
with an average length of 20 codons, and standard-deviation of 5 codons from
average. Standard 8-bit codons are employed, and GE’s wrapping operator is
turned off. The experimental metric of percentage of runs yielding an optimum
solution serve to demonstrate GE’s ability to solve these problems.

6 Results

A comparison of the standard GE context-free grammar, the 01 attribute gram-
mar, and the full attribute grammar can be seen in Table 1. The benefit of
adopting an attribute grammar on these problem instances are clear with the
full constraint checking attribute grammar clearly outperforming the two other
grammars analysed. On comparison to the results obtained in [13, 23] it can be
seen that the results presented show GE with the attribute grammar decoder
to clearly outperform the traditional GA of Khuri et al. on some instances, and
provide competitive results to the hybrid GA of Cotta which uses local opti-
misation. The results labeled DE show the effect of implementing phenotypic

44 R. Cleary and M. O’Neill

Table 1. Comparing the three grammars, and results from [13, 23] on the percentage
of runs achieving an optimum solution. The effect of phenotypic duplicate elimination
(DE) is also presented for the full attribute grammar.

Problem n m GE AG(01) AG(Full) Khuri Cotta AG(Full)+DE

knap15 15 10 3.33% 60% 83.33% 83% 100% 96.6%
knap20 20 10 6.66% 33.33% 76.66% 33% 94% 100%
knap28 28 10 0% 3.33% 40% 33% 100% 90%
knap39 39 5 0% 0% 36.66% 4% 60% 43.33%
knap50 50 5 0% 0% 3.33% 1% 46% 16.66%
Sento1 60 30 0% 0% 10% 5% 75% 66.66%
Sento2 60 300 0% 0% 3.33% 2% 39% 30%
Weing7 105 2 0% 0% 0% 0% 40% 0%
Weing8 105 2 0% 0% 6.66% 6% 29% 36.66%

duplicate elimination, as described in [6], where we observe that disallowing
duplicates at a phenotypic level has the desired effect in improvement of per-
formance. It should be noted, however, that the best of the attribute grammar
results fall short of the number of successful solutions found by the best results
in the literature.

7 Conclusions and Future Work

We wished to examine the extension of the standard GE mapping process to
handle context-sensitive information via the medium of attribute grammars.
The results demonstrated a clear advantage for the attribute grammars over the
standard context-free grammar on the problem instances examined. Results have
also been provided to support the findings of Raidl and Gottlieb [6], which show
that duplicate elimination at a phenotypic level can improve performance. More
work is required to improve the performance of this approach, and to analyze
the redundancy of the attribute grammar decoder in terms of locality and effect
of operators (initial results show that this is preserved).

References

1. Martello, S., Toth, P. (1990). Knapsack Problems. J. Wiley & Sons, 1990.
2. Gottlieb, J. (2000). Permutation-Based Evolutionary Algorithms for Multidimen-

sional Knapsack Problem. Proc. of ACM Symp. on Applied Computing.
3. Raidl, Günther R., Gottlieb, J. (1999). Characterizing Locality in Decoder-Based

EAs for the Multidimensional Knapsack Problem. 4th European Conference on
Artificial Evolution, pp. 38 - 52, Springer-Verlag.

4. Raidl, Günther R., Gottlieb, J. (1999). The Effects of Locality on the Dynam-
ics of Decoder-Based Evolutionary Search. Proc. of the Genetic and Evolutionary
Computation Conference, pp. 787, Morgan Kaufmann.

An Attribute Grammar Decoder for the 01 MKP 45

5. Raidl, Günther R. (1998). An Improved Genetic Algorithm for the Multicon-
strained 0-1 Knapsack Problem. Proc of 1998 IEEE Congress on Evolutionary
Computation, pp. 207 - 211.

6. Raidl, Günther R., Gottlieb, J. (1999). On the importance of phenotypic duplicate
elimination in decoder-based evolutionary algorithms. Proc. of the Genetic and
Evolutionary Computation Conference, Late-Breaking Papers, pp. 204-211.

7. Hinterding, R. (1994). Mapping, Order-Independant Genes and the Knapsack
Problem. Proc. 1st IEEE Int. Conf. on Evolutionary Computation, pp. 13-17.

8. Hinterding, R. (1999). Representation, Constraint Satisfaction and the Knapsack
Problem. Proc. of 1999 IEEE Congress on EC, pp. 1286-1292.

9. Gottlieb J. (1999) Evolutionary Algorithms for Multidimensional Knapsack Prob-
lems: the Relevance of the Boundary of the Feasible Region. Proc. of the Genetic
and Evolutionary Computation Conference, pp. 787, Morgan Kaufman.

10. Gottlieb, J. (1999) On the Effectivity of Evolutionary Algorithms for the Multidi-
mensional Knapsack Problems. Proc. of Artificial Evolution, Springer LNCS.

11. Chu, P.C. and Beasley, J.E. (1998). A genetic algorithm for the multidimensional
knapsack problem. Journal of Heuristics 4:63-86.

12. Raidl, Günther R. (1999). Weight-Codings in a Genetic Algorithm for the Multi-
constraint Knapsack Problem. Proc of 1999 IEEE Congress on Evolutionary Com-
putation, pp. 596-603.

13. Khuri, S., Back, T., and Heitkotter, J. (1994). The zero/one multiple knapsack
problem and genetic algorithms. In Deaton, E. et al., editors, Proc. of the 1994
ACM symposium of Applied Computation, pp. 188-193, ACM Press.

14. Olsen, A. L. (1994): Penalty Functions and the Knapsack Problems. in Proc. of
the 1st Int. Conf. on Evolutionary Computation, pp. 559-564.

15. O’Neill, M., Ryan, C. (2003). Grammatical Evolution: Evolutionary Automatic Pro-
gramming in an Arbitrary Language. Kluwer Academic Publishers.

16. Koza, J.R. (1992). Genetic Programming. MIT Press.
17. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D. (1998). Genetic Program-

ming – An Introduction; On the Automatic Evolution of Computer Programs and
its Applications. Morgan Kaufmann.

18. Knuth, D.E. (1968). Semantics of Context-Free Languages. Mathematical Systems
Theory, Vol. 2, No. 2. Springer-Verlag.

19. O’Neill, M. (2001). Automatic Programming in an Arbitrary Language: Evolving
Programs in Grammatical Evolution. PhD thesis, University of Limerick, 2001.

20. O’Neill, M., Ryan, C. (2001). Grammatical Evolution, IEEE Trans. Evolutionary
Computation, Vol.5, No.4, 2001.

21. Ryan, C., Collins, J.J., O’Neill, M. (1998). Grammatical Evolution: Evolving Pro-
grams for an Arbitrary Language. Proc. of the First European Workshop on GP,
83-95, Springer-Verlag.

22. Beasley, J.E. (1990). OR-Library: distributing test problems by electronic mail.
Journal of the Operational Research Society Vol. 41 No. 11, pp. 1069-1072.

23. Cotta, C.,Troya, Jose, M (1998). A Hybrid Genetic Algorithm for the 0-1 Multiple
Knapsack Problem. In Artificial Neural Nets and Genetic Algorithms 3, pp. 251-
255, Springer-Verlag.

24. O’Neill, M., Cleary, R., Nikolov, N. (2004). Solving Knapsack Problems with At-
tribute Grammars. In Proc. of the Grammatical Evolution Workshop 2004.

EvoGeneS, a New Evolutionary Approach
to Graph Generation

Luigi Pietro Cordella1, Claudio De Stefano2, Francesco Fontanella1,
and Angelo Marcelli3

1 Department of Information Engineering and Systems,
University of Naples,

Via Claudio, 21 80125 Naples – Italy
{cordel, frfontan}@unina.it

2 Department of Automation, Electromagnetism,
Information Engineering and Industrial Mathematics,

University of Cassino,
Via G. Di Biasio, 43 02043 Cassino (FR) – Italy

destefano@unicas.it
3 Department of Computer Science and Electrical Engineering,

University of Salerno,
84084 Fisciano (SA) – Italy

amarcelli@unisa.it

Abstract. Graphs are powerful and versatile data structures, useful to
represent complex and structured information of interest in various fields
of science and engineering. We present a system, called EvoGeneS, based
on an evolutionary approach, for generating undirected graphs whose
number of nodes is not a priori known. The method is based on a special
data structure, called multilist, which encodes undirected attributed re-
lational graphs. Two novel crossover and mutation operators are defined
in order to evolve such structure. The developed system has been tested
on a wireless network configuration and the results compared with those
obtained by a genetic programming based approach recently proposed in
the literature.

1 Introduction

Graphs are powerful and versatile data structures, useful to represent complex
and structured information. In the last decades, there has been an increasing
interest in studying and using graphs in many applications, also because the
developments of computer technology made high computational cost problems
to be dealt with.

Graphs have been used in various fields of science and engineering. They may
effectively represent physical networks, such as transportation systems, power
systems, and mobile communication infrastructures [1, 2, 3], but have been also
used to model less tangible interactions, as might occur in ecosystems, databases
or in the control flow of a computer program [1]. In fields like pattern recogni-
tion and machine vision, the high representational power of graphs make them

G.R. Raidl and J. Gottlieb (Eds.): EvoCOP 2005, LNCS 3448, pp. 46–57, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

EvoGeneS, a New Evolutionary Approach to Graph Generation 47

very attractive and well-suited to model complex patterns in terms of parts and
their relations. Attributes of graph nodes and edges are often added to incorpo-
rate further information, leading to a graph representation form generally called
Attributed Relational Graph (ARG) [4]. Examples of successful applications
include shape analysis and 3-D object recognition [5, 6], character recognition
[7], classification of ideograms and symbols in document analysis and technical
drawing interpretation [8].

In many cases, a prominent problem is that of generating graphs exhibiting
some particular properties. The generation of prototypes in pattern recognition
problems, so as the generation of the optimal configuration of a physical net-
work are examples of such problem. Thus, the use of graph representations often
requires the definition of effective techniques for generating the graphs represent-
ing the desired solutions. To this purpose, two main different approaches can be
identified, depending on the nature of the problem: in case of applications in
which training samples are available, the graphs may be generated by exploiting
the information included in such a training set. In all the other cases the solution
is found by defining a function F able to measure the goodness of tentative so-
lutions in a given space: the graphs representing the solutions are generated by
finding all the absolute maxima of the function F . Combinatorial, heuristic and
inductive learning approaches have been used, among others, to generate graphs
[9]. Several attempts to generate graphs using evolutionary approaches have also
been done. Methods have been proposed in the fields of molecular design [10]
and electrical circuit design [11], using a direct encoding of the evolving graph.
It is worth noting that these methods define evolutionary operators tailored for
the considered problem. Indirect encoding of graphs in terms of bit strings [12]
or trees [13] has also been used. In the latter approach, for instance, a tree en-
codes the operations to be applied to a very simple starting graph, in order to
transform it into another one arbitrarily complex.

We present a system, called EvoGeneS (Evolutionary Graph Generation Sys-
tem), based on an evolutionary approach, for generating graphs whose number of
nodes is not a priori known. The proposed method aims at overcoming two major
disadvantages of the methods discussed earlier by providing a direct encoding of
graphs and two novel, general purpose and problem independent operators. A
special structure, called multilist, encodes undirected ARG’s, and demonstrated
to be particularly convenient for generating new and different graphs under given
constraints. For evolving multilists, two basic operators have been devised: the
first one, called crossover by analogy to genetic algorithms, swaps parts of two
multilists, thus swaps subgraphs of two graphs, thus generating graphs of vari-
able length. The second operator, called mutation, operates on a multilist in
such a way to change a graph into a new one whose node number is unchanged,
whereas both node and link attributes can be modified.

In the following, after defining the multilist and the elementary operations
defined for it, an application of the proposed evolutionary system will be il-
lustrated. The results obtained by EvoGeneS will be compared with those of

48 L.P. Cordella et al.

EvoGraph, the approach described in [13], showing that EvoGeneS performance
overcomes that of this Genetic Programming based approach.

2 EvoGeneS

EvoGeneS is essentially based on two elements: a new data structure encoding
undirected relational graphs with attributes and two operators devised for such
structure.

2.1 Graph Encoding

Let us consider a graph G of N nodes. Let also denote by An and Aa the
sets of values for the attributes describing the nodes and the arcs of the graph,
respectively. The data structure we have adopted for representing attributed
relational graphs has been called multilist (ML in the following) since it is based
on the list concept and consists of two basic lists. The first one, called main list,
contains the information on graph node attributes, thus its number of elements
is equal to the number N of nodes. Each element of the second list is on its turn
a list, called sublist. One sublist is associated with each node and includes the
attributes of the arcs connected to that node. In order to preserve information
about the nodes interconnected by each arc, arc attributes are sorted in each
sublist in a suitable order. Namely, the i-th sublist contains information on the
arcs connecting the i-th node of the graph to the nodes following it in the main
list, in the order they appear in such list. If two nodes are not connected, this
information is anyway suitably stored in the proper place of a sublist. In practice,
a ”null” relation has been defined so that even the absent arcs are encoded in the
ML representation of a graph (see Fig. 1). The length of a ML is defined as the
number of elements of its main list. It is important to notice that, in this paper,
we consider simple (i.e., without loops) undirected graphs, so that the relation
linking the i-th node to the j-th node coincides with the relation linking the j-th
node to the i-th node. For this reason, the length of the sublist associated with
a node decreases as the position of the node in the main list increases: the first
sublist is made of N − 1 elements, the second sublist has N − 2 elements and so
on. In fact, the information on the link between each node and the previous ones
in the main list is already expressed in the previous sublists. As a consequence,
the sublist of the last node of the graph is void. Thus a ML has a triangular
shape: the base of the triangle is the main list and is long N , while the height is
represented by the first sublist and is long N −1. In the following, the operations
defined on the ML’s will be introduced.

2.2 The Operators

The just described data structure has been devised in such a way to make eas-
ier the application of operators able to generate new and different items from
previously generated ones. Two basic operators have been defined for the ML:
they have been called crossover and mutation by analogy to genetic algorithm

EvoGeneS, a New Evolutionary Approach to Graph Generation 49

c

B
1 2

3 4

H

G C

g

db

c

1 2 3g a

b d h

B H A

CG

i

4 5

(a) (b)

o

c
CGB

g

b

d

1 2 3 4

H

o

H
54321

B CG

g

o

b

o

a

d

h

c

i

o

A

(c) (d)

Fig. 1. Two graphs (top) and their encoding multilists (bottom). The horizontal list
is the main one and the vertical lists are the sublists. The elements of the set An are
denoted by capital letters, while those of Aa are denoted by small letters. The null
element is denoted by the letter ’o’

operators. The former operator swaps parts of two ML’s. In this way, it is possi-
ble to generate better solutions by combining solutions that contain only part of
a good solution. The mutation operator, instead, generates a new graph whose
number of nodes is unchanged, whereas the attributes of both nodes and arcs
can be modified.

Crossover Operator. The crossover is applied to two ML’s, L
′
and L

′′
, called in

the following parents, respectively encoding the graphs G
′
and G

′′
, and generates

two new ML’s, M
′

and M
′′
, called offspring, respectively encoding the graphs

H
′

and H
′′
. The crossover operator allows generating ML’s of variable length.

In fact, if the parents are of length N
′

and N
′′

respectively, the length of the
offspring may varies in the interval [2, (N

′
+ N

′′
) − 2]. The operator is obtained

by combining two more elementary operations that can be applied to a ML. The
former, called t-cut, splits a generic ML L of length N in two ML’s, the first one
consisting of the first t nodes of L and the second one of the remaining N − t
nodes. The latter operation, instead, is called merge and, given two ML’s L

′
, of

length N
′
, and L

′′
, of length N

′′
, yields a new ML of length (N

′
+ N

′′
), encoding a

graph including both the nodes of G
′
and G

′′
. To show how the crossover works,

let L
′

be the ML of Fig. 1(a) (N
′

= 4) and L
′′

that of Fig. 1(b) (N
′′

= 5).
Then, to apply the crossover to these ML’s, two integers t1 ∈ [1, N

′ − 1] and
t2 ∈ [1, N

′′ − 1] have to be randomly chosen. Let t1 = 2 and t2 = 1, then the
2-cut operation is applied to L

′
and two ML’s are obtained: L

′
1 and L

′
2, both

50 L.P. Cordella et al.

cut point

c
G

3

C
4

B

g

b

d

1 2

H

o

o

cut point

a

d

h

2

H
3

i

o

A
4

G

c

5

C
1

B

g

o

b

o
(a) (b)

i

654

o

32

o

1

o

G C

c

B

o

h

d

h

o

H A

a

d

h

H
g

b

g

B
1 2 3

G C

c

o

(c) (d)

a

1 3

H
2

H

A
4 5

G

6

C

b

g d

h
h

c

d

i

B

c1 2 5

B
g

G C

(f) (f)

Fig. 2. The crossover operator. (a) and (b) the application of the t-cut to the multilists
of Fig. 1. (c) and (d) The offspring obtained after the merge. (e) and (f) The resulting
graphs

of length 2 (see Fig. 2(a)). Afterwards, the 1-cut operation is applied to L
′′
,

which yields two ML’s: L
′′
1 of length 1 and L

′′
2 of length 4 (see Fig. 2(b)). At this

point, the merge operation is applied to L
′
1 and L

′′
2 : it yields a ML of length 6,

which represents our first offspring (see Fig. 2(c)). The merge operation has to
be applied also to the remaining ML’s, L

′
2 and L

′′
1 . In this case a ML of length

3 is obtained, which represents the second offspring (Fig. 2(d)). The obtained
graphs are shown in Figures 2(e) and 2(f). Note that the length of the offspring
depends on the values chosen for t1 and t2.

Mutation Operator. The mutation operator defined here, actually gives place
to a sort of micro-mutation, because it does not modify the structure of the ML
to which it is applied, but only the values of the elements of the main list and of
the sublists. Such an operation is based on a probability value, called mutation
probability (pm in the following). For each element in the main list, pm represents
the probability to replace its value with another one randomly chosen from the

EvoGeneS, a New Evolutionary Approach to Graph Generation 51

C
54321

B

b

o

H
g

G C

a

a o c

h

d d H

1 3

2
a

4
5

a

b
hd

d

G

B

C

C

c

g

Fig. 3. The multilist (left) and the corresponding graph (right), derived from the ap-
plication of the mutation operator, with a probability equal to 0.1, to the multilist of
Fig. 1(b). The mutation modifies the attribute of node 3 and that associated with the
arc which links nodes 3 and 5. Moreover, the mutation added a new arc, which links
nodes 1 and 3, absent in the graph before of the application of the mutation operator

set An. The same occurs for the elements of the sublists, but in this case the
value can be replaced either by one belonging to the set Aa or by the null value.
Let L be a generic ML and L

′
be the ML produced by the application of the

mutation operator to L. Let us examine the possible differences between the
graphs encoded by L and L

′
. Both graphs contain the same number of nodes,

while the number of arcs of the two graphs may be different. In fact, when the
mutation is applied to an element of the main list it changes only the attributes
of that node leaving the number of nodes unchanged. Instead, when the mutation
is applied to an element of a sublist, and either a null element is changed to a
not null one or vice versa, the corresponding arc is added to or removed from the
original graph, respectively. Finally, if a not null element is replaced by a different
not null element, then both the graphs G and G

′
will contain the arc represented

by that element, but the relation associated with the arc in G is different from
that in G

′
(see Fig. 3). We should note that, generally, the differences between

the graphs G and G
′
are directly proportional to the mutation probability pm.

2.3 The Algorithm

The evolutionary algorithm implemented in EvoGeneS starts by generating at
random a population of P individuals. Each individual is a ML encoding a
graph representing a solution of the problem to be solved. The length of these
initial individuals range from 2 to Nmax nodes. Afterwards, the fitness of the
individuals generated is evaluated. To generate a new population, first the best E
individuals are selected and copied in the new population in order to implement
an elitist strategy. Then (P − E)/2 couples of individuals are selected using
the tournament method, to control loss of diversity and selection intensity. The
crossover operator is applied to each of the selected couples, according to a chosen
probability factor pc. Afterwards, the mutation is applied to the individuals
according to a probability factor pm. Finally these individuals are added to the
new population. The process just described is repeated for Ng generations.

52 L.P. Cordella et al.

3 Testing the Approach

In order to ascertain the effectiveness of the proposed approach, we have cho-
sen a planning and optimization problem. To cope with this kind of problems,
several approaches have been proposed in the literature, including genetic pro-
gramming [13], simplex method [14], simulated annealing [15], Tabu search [16]
and genetic algorithms [17]. In particular in [13], the wireless access point config-
uration problem, a hard non-linear optimization problem, has been considered.
We have chosen the same problem, in order to compare our results with those
presented in [13].

The scenario of the problem is the following: a community is planning to
provide wireless Internet service to its citizens (clients) who are scattered around
a given area. A certain number of access points need to be placed to cover all
clients, because each access point has a limited service radius. All access points
are wired and one of them is connected to an Internet gateway. The design
problem consists in determining the optimal configuration of the AP’s in the area
to cover. To reduce the cost, a configuration with minimal number of AP’s and
minimum length of the wires connecting them is considered optimal. According
to the constraints imposed, the wireless access point configuration problem can
be formulated in different ways. E.g., [18] assumes that the AP’s are located at
a specified set of possible points. We assume that the AP’s can be located at
any place. More precisely, the problem to solve is defined as follows:
GIVEN a set of NC clients located at (xc

i , y
c
i) i = 1 . . . NC in an area of size

W ×H where xc
i ∈ [0,W] and yc

i ∈ [0,H], and the gateway G located at (xg, yg),
let us assume that all AP’s are equal and that the service radius of an AP is rs;
FIND a configuration of wired access points located at (xAP

i , yAP
i) with i =

1 . . . NAP , connected to the gateway port G in such a way that each client is
covered by at least one AP and the total cost of the AP’s and the wires is
minimal. Thus, let CAP be the cost of each AP and Cw the cost of a unit length
wire, the aim is:
minimize f = CAP ∗ NAP + Cw ∗∑ |Li|
where the Li are the lengths of the connections among AP’s.

A more precise solution of the problem would require considering some pa-
rameters of an AP like transmission power, channel allocation and antenna di-
rectionality. In this paper, such parameters are not considered. Nevertheless, the
proposed formulation keeps the essentials of the wireless configuration problem,
avoiding a time-consuming simulation for evaluating the fitness of a configura-
tion.

The Fitness Function. To solve the problem, a configuration of AP’s is rep-
resented with a graph whose nodes are the AP’s and whose arcs are the wire
segments connecting the AP’s. The set of node attributes is made up of the AP
coordinates in the area to cover (see Fig. 4). In the problem at hand, it is nec-
essary to know only which nodes are linked to a given node. Hence, in the ML
representation encoding the graph, the value 1 is used to indicate the presence
of an arc, while the 0 indicates the absence of an arc.

EvoGeneS, a New Evolutionary Approach to Graph Generation 53

Created with aiSee V2.0 (ERP-Version) (c) 2000 AbsInt Angewandte Informatik GmbH. Commercial use prohibited!

 Wireless Access Point
Configuration Problem

 A: Access Points
 C: Clients
 G: Gateway

Rs: AP service radius

 G C C
C

C

C
C

C

C C

C

A1 (120,195)

A2 (179,311)

A3 (280,150)

A4 (380,271)

A5 (555,310)

A6 (650,166)

<Rs

0

A1 A A A A A2 3 4 5 6

280, 150179, 311 380, 271 555, 310 650, 166120, 195

1

1

0

0

0

0

0

0

0

0

1 1 1 1

0

0

0

0

Fig. 4. An instance of the wireless access point configuration problem (left) and the
multilist encoding it (right). The citizens (clients) are labeled as circled C, while the
access point are represented by squares

As mentioned in the previous section the fitness function has to consider three
aspects of the problem: the percentage of covered clients, the number of AP’s
employed and the total length of the wires connecting them. For this reason, the
fitness function is the weighted sum of three terms. The first term Fcover should
measure how well the clients are covered by the configuration of AP’s: the more
clients are covered, the better. The second term Fwires should measure how good
the connection topology is: the shorter the wires used, the better. Finally, the
term FAP should estimate the goodness of a configuration as regards the number
of wireless AP’s employed: now, the fewer AP’s are used, the better. It may be
convenient that the fitness terms are normalized and suitably weighted, so as to
reflect their different importance for evaluating the goodness of a configuration.
Since the aim of this paper is that of presenting a general purpose method for
graph generation, for the specific problem considered we have adopted the same
fitness function as proposed in [13], in order to ascribe any difference in the
performance of the methods to the way the solutions are generated, not to the
way they are evaluated. Namely, the fitness terms are:

Fcover =
4.0 ∗ Cc

Cc + CT
; Fwires =

10000
10000 + Lw

; FAP =
CT

CT + 1.5 ∗ NAP
(1)

where Cc is the number of clients covered, CT the total number of clients, NAP

the number of AP’s and Lw is the total length of wire segments connecting the
AP’s. Then, the fitness function Ftot is the weighted sum of the above three
terms:

Ftot = 0.7 ∗ Fcover + 0.1 ∗ Fwires + 0.2 ∗ FAP (2)

Moreover, solutions (i.e., configurations) containing isolated AP’s are penal-
ized by multiplying their fitness by 0.5.

54 L.P. Cordella et al.

4 Experimental Results

By analogy with the experimental framework presented in [13], we have consid-
ered a search space whose length and width are both equal to 1000, and we have
assumed, for the sake of simplicity, that the clients are represented in this space
by points having integer coordinates. The values of the evolutionary parameters
have been experimentally determined and are summarized in Table 1.

In the experiments reported below, the number of clients has been varied
starting from 25 up to 50 with increments equal to 5. For each considered value,
a distribution of clients has been randomly generated, and 50 runs have been
performed with different initialization of the population, so as to reduce the
effects of randomness embedded in the evolutionary algorithms. At the end of
each run, the best solution found by the algorithm is stored. The corresponding
length of the wires connecting the AP’s is computed and stored as well. For
each distribution of clients, we have computed the mean NAP and the standard
deviation σNAP

of the number of AP’s found by our method while performing 50
runs (see Fig. 5(a)). The mean L and the standard deviation σL of the lengths
of the wires have been computed as well (see Fig. 5(b)).

In order to highlight the effectiveness of the obtained results, for each solution
provided by our method, we have separately computed the Minimum Spanning
Tree (MST) [1] of the corresponding graph. In fact, the MST represents the
connection topology with minimal wire cost, thus we have compared the length
of the wires relative to the MST with that of our solution. In practice, for the
sake of comparison, we have computed the mean L′ of the wire lengths for each
distribution of clients. Each length refers to one of the 50 runs and is obtained
by using the MST over the set of AP’s provided by our method for that run.
The plot of L′ as a function of the number of clients, is shown in Fig. 5(b). The
results are very encouraging because in every run a complete coverage of the
clients has been obtained and the wire costs are very close to those computed
on the MST. Moreover, the number of AP’s needed to solve the problem, as well
as the lengths of their connections, slightly increase with the number of clients.
Finally, the standard deviations of both the number of AP’s and the wire lengths
assume small values, thus indicating that the solutions are widely independent of
the initial conditions. Note that, for each distribution of clients, the evolutionary

Table 1. Values of the basic evolutionary parameters used in the experiments

Parameter symbol value
Population size P 1000
Tournament size T 60
elitism size E 40
Crossover probability pc 0.3
Mutation probability pm 0.04
Number of Generations Ng 500
Maximum number of nodes Nmax 50

EvoGeneS, a New Evolutionary Approach to Graph Generation 55

(a) (b)

Fig. 5. (a) The mean number of access points and its standard deviation as a function
of the number of clients are respectively represented by bars and segments on top of
the bars. (b) The mean of the wire lengths and its standard deviation as a function of
the number of clients, computed by our method and by using the MST for finding the
connection topology

algorithm converges to solutions having almost the same number of AP’s and
the same wire cost.

Fig. 6 illustrates some results of one of the experiments performed by using
a randomly generated distribution of 40 clients. In particular, the best solutions
obtained at generation 10, 100, 300 and 500 are shown. During the initial gener-
ations, the evolutionary process tends to improve the client covering by adding
more and more AP’s, without optimizing the connection topology. Only after
an almost complete coverage has been obtained, the system tries to reduce the
number of AP’s and focuses the search on optimizing the connection topology.
This behavior can be explained considering that the term Fcover in the fitness
function has the highest weight, while the term Fwires the lowest. For instance,
at generation 10, all clients but one are covered using 23 AP’s, but the connec-
tion topology is messy. At generation 100, all the clients are covered with 21
AP’s and the connection topology is significantly improved. At generation 300
the total coverage is obtained with 20 clients and the connection topology is
nearly optimal. At generation 500, finally, 19 AP’s are used and the topology
connection is optimal (i.e., it coincides with the MST of the related graph).

In comparing the results obtained by EvoGeneS with those reported in [13]
it is worth noting that our system perform a global optimization in that both
the number of AP’s and their connections are simultaneously exploited for com-
puting the fitness function. On the contrary, the genetic programming based
method, is able to find a solution only when a sequential approach is adopted:
first, solving the coverage problem by GP and then using a MST algorithm for
determining the connection topology. Thus, it succeeds only when problem spe-
cific knowledge can be exploited to reformulate the original global optimization
problem as a sequence of partial optimization problems.

56 L.P. Cordella et al.

Created with aiSee V2.0 (ERP-Version) (c) 2000 AbsInt Angewandte Informatik GmbH. Commercial use prohibited!

GEN=10
Created with aiSee V2.0 (ERP-Version) (c) 2000 AbsInt Angewandte Informatik GmbH. Commercial use prohibited!

GEN=100

Created with aiSee V2.0 (ERP-Version) (c) 2000 AbsInt Angewandte Informatik GmbH. Commercial use prohibited!
GEN=300

Created with aiSee V2.0 (ERP-Version) (c) 2000 AbsInt Angewandte Informatik GmbH. Commercial use prohibited!
GEN=500

Fig. 6. The best solutions obtained at generation 10, 100, 300, 500, relative to an
experiment with 40 clients. Black circles represent the clients covered by at least one
access point, while white circles represent uncovered clients. The access points are
represented by white squares

5 Conclusion

We have presented a system, called EvoGeneS, based on an evolutionary ap-
proach, for generating undirected graphs whose number of nodes is not a priori
known. The proposed approach solves two key problems encountered when using
genetic algorithms for evolving graphs: it provides a suitable data structure for
the direct representation of graphs and defines crossover and mutation operators
for manipulating graphs with a variable number of nodes, i.e. representations of
variable length.

The results obtained by EvoGeneS on a wireless access point network config-
uration problem show a significant improvement with respect to those reported
in the literature. Moreover, the approach does not rely on any problem specific
knowledge and therefore it is suitable to deal with any problem whose solutions
can be represented by graphs.

EvoGeneS, a New Evolutionary Approach to Graph Generation 57

References

1. Gross, J., Yellen, J.: Graph Theory and Its Application. McGrawHill (2001)
2. Cascetta, E.: Transportation systems engineering: theory and methods. Kluwer

Academic (2001)
3. Crow, M.: Computational Methods for Electric Power Systems. CRC Press (2003)
4. Eshera, M.A., Fu, K.S.: A graph distance measure between attributed relational

graphs for image analysis. In: Proceedings of 7th Int. Conf. on Pattern Recognition,
IEEE Press (1984) 75–77

5. Pelillo, M., Siddiqi, K., Zucker, S.W.: Matching hierarchical structures using asso-
ciation graphs. Lecture Notes in Computer Science 1407 (1998) 3–13

6. Arcelli, C., Cordella, L., di Baja, G.S., eds.: Visual Form 2001, LNCS 2059.
Springer-Verlag (2001)

7. Filatov, A., Gitis, A., Kil, I.: Graph-based handwritten digit string recognition.
In: Proceedings of the Third International Conference on Document Analysis and
Recognition (Volume 2), IEEE Computer Society (1995) 845

8. Cordella, L.P., Vento, M.: Symbol recognition in documents: A collection of tech-
niques. International Journal on Document Analysis and Recognition (IJDAR) 3
(2000) 73–78

9. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: Learning structural shape de-
scriptions from examples. Pattern Recognition Letters 23 (2002) 1427–1437

10. Globus, A., Lawtonb, J., Wipkeb, T.: Automatic molecular design using evolution-
ary techniques. In Globus, A., Srivastava, D., eds.: The Sixth Foresight Conference
on Molecular Nanotechnology, Westin Hotel in Santa Clara, CA, USA (1998)

11. Naofumi Homma, T.A., Higuchi, T.: Multiplier block synthesis using evolutionary
graph generation. In: Proceedings of the 2004 NASA/DoD Conference on Evolvable
Hardware. (2004) 79–82

12. Lohn, J.D., Colombano, S.P.: Automated analog circuit synthesis using a linear
representation. Lecture Notes in Computer Science 1478 (1998) 125+

13. Hu, J., Goodman, E.: Wireless access point configuration by genetic program-
ming. In: Proceedings of the 2004 IEEE Congress on Evolutionary Computation,
Portland, Oregon, IEEE Press (2004) 1178–1184

14. Wright, M.H.: Optimization method for base station placement in wireless appli-
cations. In: Proceedings of the 1998 IEEE Conference on Vehicular Technology,
IEEE Press (1998) 287–291

15. Hurley, S.: Planning effective cellular mobile radio networks. IEEE Transactions
on Vehicular Technology 51 (2002) 243–253

16. Lee, C., Kang, H.: Cell planning with capacity expansion in mobile communications
a tabu search approach. In: IEEE VTC2000. (2000) 1678–1691

17. K.Lieska, Laitinen, E., Lahteenmaki, J.: Radio coverage optimization with genetic
algorithms. In: Proceedings of PIMRC. Volume 1. (1998) 318–322

18. Koichi, E., Yoishinori, W.: Automatic cell design for wide area wireless lan systems.
Special Issue on Devices and Systems for Mobile Communications 44(4) (2003)

On the Application of Evolutionary Algorithms
to the Consensus Tree Problem

Carlos Cotta

Dept. Lenguajes y Ciencias de la Computación, University of Málaga,
ETSI Informática, Campus de Teatinos, 29071 - Málaga, Spain

ccottap@lcc.uma.es

Abstract. Computing consensus trees amounts to finding a single tree
that summarizes a collection of trees. Three evolutionary algorithms are
defined for this problem, featuring characteristics of genetic programming
(GP), evolution strategies (ES) and evolutionary programming (EP) re-
spectively. These algorithms are evaluated on a benchmark composed of
phylogenetic trees computed from genomic data. The GP-like algorithm
is shown to provide better results than the other evolutionary algorithms,
and than two greedy heuristics defined ad hoc for this problem.

1 Introduction

Trees are ubiquitous data structures. They appear in diverse domains such as in-
formation retrieval [1], scheduling [2], computer graphics [3], and bioinformatics
[4] among others. In all these cases, there exists the need of representing data in a
hierarchical fashion, and hence the use of trees. Unfortunately, it is generally the
case that finding or constructing the optimal tree for one of these applications is
a very hard problem. Consider for example the inference of phylogenetic trees,
a problem from the bioinformatics domain. This problem seeks a tree represent-
ing the evolutionary history of a collection of species. This is typically done on
the basis of molecular information –e.g., DNA sequences– from these species,
and can be approached in a number of ways: maximum likelihood, parsimony,
distance matrices, etc. [5]. The problem is NP−hard under most models [6, 7, 8].

Hardness results motivate heuristic approaches for finding near-optimal trees.
Sticking with the phylogeny problem, both greedy heuristics [9] and metaheuris-
tics [10, 11, 12, 13] have been used. A number of different high-quality trees can
be found, each possibly telling something about the true solution. Furthermore,
the fact that data come from biological experiments, which are not exact, makes
near-optimal solutions (even near-optimal with respect to different criteria) be
almost as relevant as the actual optimum. It is in this situation where the con-
sensus tree problem comes into play. Essentially, a consensus method tries to
summarize a collection of trees provided as input, returning a single tree [14].
This implies identifying common substructures in the input trees and represent-
ing these in the output tree.

Consensus trees are extremely important in many domains. For example, in
phylogenetic inference, it has been observed that independently derived trees are

G.R. Raidl and J. Gottlieb (Eds.): EvoCOP 2005, LNCS 3448, pp. 58–67, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On the Application of Evolutionary Algorithms 59

unlikely to have spurious clades (or clusters) in common [15]. Thus, the clades
appearing in most or all the input trees can be considered reliable. Unfortunately
again, finding consensus trees is also a hard problem in general (see e.g. [16].)
The use of heuristic techniques is thus in order.

We consider the use of several evolutionary algorithms (EAs) for constructing
consensus trees. These evolutionary algorithms differ in the operator set and in
the evolution model, and will be compared on a benchmark from the phylogeny
domain. The comparison will also include two greedy heuristics defined ad hoc
for this problem.

2 Background on Consensus Methods

Let T be a strictly binary rooted tree; a LISP-like notation will be used to
denote the structure of the tree. Thus, (sLR) is the tree with root s, and with
L and R as subtrees, and () is an empty tree. The notation (a) is a shortcut
for (a()()). Let L(T) be the set of leaves of T . Each edge e in T defines a
bipartition πT (e) = 〈S1, S2〉, where S1 are the leaves in L(T) that can be reached
from the root passing through e, and S2 are the remaining leaves. We define
Π(T) = {ΠT (e) | e ∈ T}.

There is a variety of consensus methods defined in the literature, differing on
the characteristics of the input, and on the output sought. As mentioned before,
we concentrate here on trying to represent a collection of trees {T1, · · · , Tm} as
a single tree over ∪m

i=1L(Ti). This can be approached in several ways, such as
the tree compatibility problem [17], strict consensus [18], and the median tree
[19], among others (see also [20].) While the two first models focus on finding
a tree such that Π(T) = ∪m

i=1Π(Ti) (resp. Π(T) = ∩m
i=1Π(Ti)), the median

tree tries to minimize the sum of differences between T and the input trees, i.e.,
min

∑m
i=1 d(T, Ti). Typically, the distance d(T, T ′) between trees is defined as

the number of non-common bipartitions in Π(T) and Π(T ′). This is also termed
the partition metric.

The partition metric has several drawbacks. For example, two trees differing
solely in the position of one leaf can be maximally different [21]. Alternative
metrics can be considered. For example, one can cite the nearest neighbor in-
terchange (NNI), subtree prune and regraft (SPR), and tree bisection and re-
connection (TBR) (see [22].) These metrics have their own drawbacks though:
computing the NNI metric or the TBR metric is NP−hard [22, 23]; the com-
plexity of computing SPR is unknown, but it is conjectured to be NP−hard as
well.

We employ, then, an alternative metric called TreeRank [24]. Given trees T
and T ′, the TreeRank score provides a measure of the topological relationships in
T that are found to be the same or similar in T ′. This is done with the help of an
auxiliary data structure termed the UpDown matrix. This structure consists of
a pair of matrices for each tree T , the Up matrix UT , and the Down matrix DT .
These matrices are intended to capture information on the hierarchical structure

60 C. Cotta

Fig. 1. A tree and its Up matrix

of a tree. More precisely, they store the number of edges that must be traversed
upwards or downwards in order to go from a certain leaf to another one (see Fig.
1.) Formally,

∀u ∈ L ∀v ∈ R

{
U(sLR)[u, v] = 1 + depth(u, L)
U(sLR)[v, u] = 1 + depth(v, R) (1)

where depth(x, T) is the depth of node x in tree T (i.e., the length of the path
from the root of T to x.) Notice that U [u, u] = 0, and U [u, v] = D[v, u] (hence
it suffices using just one of the matrices to have complete information on the
hierarchical structure.) Now, the TreeRank score is computed as1:

TreeRank(T, T ′) =

(
1 − UpDownDist(T, T ′)∑

u,v∈L(T) UT [u, v]

)
× 100% (2)

where

UpDownDist(T, T ′) =
∑

u,v∈L(T)

|UT [u, v] − |UT ′ [u, v]| (3)

The UpDown matrix can be calculated in O(|L|2) as shown in [24]. Notice that
if T and T ′ are identical, then the TreeRank score is 100%. If no common sub-
structure exists in T and T ′, then the TreeRank score will be near 0%, or even
negative if the hierarchical structure is “reversed” in both trees. This TreeRank
measure is currently being used in TreeBASE2 –one of the most widely used
phylogenetic databases– for the purposes of handling queries for similar trees.

1 We have adapted this definition of TreeRank to the fact that L(T) = L(T ′). See [24]
for a general formulation in the case that L(T) �= L(T ′).

2 http://www.treebase.org

On the Application of Evolutionary Algorithms 61

3 Heuristics for the Consensus Tree Problem

We describe two greedy and three evolutionary heuristics for the consensus tree
problem.

3.1 Greedy Heuristics

The most typical heuristics for tree construction are essentially greedy (see e.g.
[25].) In this sense, we firstly consider a greedy heuristic that constructs a con-
sensus tree incrementally, adding one leaf at a time. This is done by testing all
possible insertion points within the partially-constructed tree, and retaining the
position that yields the best value of the TreeRank distance. This algorithm is
denoted by H1, and its pseudocode is shown below:

Heuristic H1 ({T1 · · · , Tm}, 〈o1, · · · , on〉)
1. Let A ← (h(o1)(o2))
2. for each j ∈ Nn−2 do

(a) Let the branches of A be numbered from 1 to 2j.
(b) for each insertion point i ∈ N2j do

i. Let Ai ← A
ii. Insert leaf oj+2 in branch i of Ai.

(c) Let A ← arg min {∑m
i=1 TreeRank(A′, Ti) | A′ ∈ {A1, · · · , A2j}}.

3. return A.

In this definition, Nk stands for the natural numbers in [1..k]. As it can be
seen, heuristic H1 is fed with both the collection of trees whose consensus is
sought, and with a permutation of the leaves that determines the order in which
they will be inserted in the tree. The two first leaves in the permutation are used
to construct the initial subtree.

The second greedy heuristic we consider is a variant of the previous one. It is
also close in spirit to an approximation algorithm that was devised by Phillips
and Tarnow [16] for the asymmetric median tree problem. The main idea of this
heuristic –that we denote by H2– is to consider all possible pairs of trees in the
target collection, constructing a greedy consensus tree for each of these pairs.
This can be done on the basis of the H1 heuristic described before, as shown in
the following pseudocode:

Heuristic H2 ({T1 · · · , Tm}, 〈o1, · · · , on〉)
1. Let best ← −∞.
2. for each i, j ∈ Nm, i < j do

(a) Let A ←H1({Ti, Tj}, 〈o1, · · · , on〉).
(b) Let d ← ∑m

k=1 TreeRank(A, Tk).
(c) if d > best then

i. Let best ← d.
ii. Let T ← A.

3. return T .

62 C. Cotta

This algorithm admits a minor variant in which the leaf sequence is not the
same for all pairs of trees, but separately computed for each of these pairs. This
is precisely the version of H2 that we have considered in the experimentation,
as it will be described in Sect. 4.

3.2 Evolutionary Heuristics

When using an EA for evolving a non-trivial data structure such as a tree, there
exist two main alternatives [26, 27]: either perform the search directly on the
space of all n−leaf trees, or conducting the search in an auxiliary space, using
a decoder in order to construct the actual trees. In this work, the evolutionary
heuristics considered are all defined in the line of the former approach, i.e., each
individual in the EA population directly represents a tentative consensus tree.
Given this choice of representation, appropriate operators for recombination and
mutation must be defined.

First of all, consider the recombination operator. This operator must take
information chunks from two parents, and combine them to create a descendant.
In this case, these information chunks can be naturally expressed as subtrees.
Hence, the recombination process can be approached much like it is typically
done in genetic programming (GP), in terms of pruning and grafting subtrees.
An important consideration must be nevertheless made: all trees must have all
n different leaves, with neither repetitions nor omissions. This means that when
attempting to transfer a subtree T ′ from a parent to another, all leaves in L(T ′)
must be deleted in advance from the latter parent. Let A1 and A2 be the trees
being recombined; the whole process would be then as follows (cf. [10, 12]):

Operator Prune-Delete-Graft Recombination (T1, T2)
1. Select a subtree T from T2.
2. for each leaf o ∈ L(T) do

(a) Find subtree U in T1 such that U = (h(o)U ′) or U = (hU ′(o)).
(b) Replace U by U ′ in T1.

3. Select a random subtree V from T1.
4. Replace V by V ′ = (h′TV) in T1, where h′ is a new internal node.

Notice that the fact that the set of leaves is the same for all trees during all
the run, makes in principle the mutation operator be dispensable: topological
diversity can be produced by recombination as well (for instance, notice that
recombining a tree with itself can yield a different tree.) We thus consider a first
EA in which reproduction is done exclusively by means of recombination, and
denote it by GP.

An alternative approach to that described above is possible, namely using no
recombination but just mutation. In this sense, there are numerous possibilities
for performing mutation on trees, see e.g. [11]. In this work, we have used two
mutation operators:

– SCRAMBLE: Let T be the tree to be mutated; firstly, a subtree T ′ in T is
selected at random and pruned from T . Then, a new random subtree T ′′ is
generated, with L(T ′) = L(T ′′), and grafted at the original location of T ′. In
other words, the topology of a certain subtree of T is rearranged at random.

On the Application of Evolutionary Algorithms 63

– SWAP: it consists of selecting two leaves of T at random, subsequently swap-
ping their places.

We have considered two mutation-based evolutionary heuristics. The first
one is denoted by EP, and consists of applying either SCRAMBLE or SWAP
to an individual with 50% probability. The second one is denoted by ES, and
just utilizes SCRAMBLE. However, an internal parameter is used to control the
size of the subtrees to be rearranged. This parameter can be regarded as a step
size, and evolves with each individual. To be precise, whenever a tree is to be
mutated, the step size is firstly mutated using a gaussian distribution, and the
mutated parameter value is used to select a subtree of the appropriate size to
be fed to SCRAMBLE.

The acronyms –GP, EP, ES– used to denote each of the algorithms are in-
tended to reflect their similarity with the corresponding EA family, namely ge-
netic programming, evolutionary programming, and evolution strategies. How-
ever, it must be noted that the algorithms have been kept simple, and do not
fully exploit the potential of the corresponding paradigm. This has been done so
in order to obtain a first assessment on the usefulness of the different operators
and evolution models for this problem.

4 Computational Results

The experiments have been performed using two test suites. Both of them com-
prise three different instances obtained from the biological domain. To be precise,
three datasets for phylogenetic inference have been downloaded from TreeBASE.
The size of these datasets ranges from 134 up to 178 leaves, as shown in Table
1. In the first test suite –termed AGGLOM– each dataset has been fed to three
classical agglomerative clustering techniques: single-link [28], complete-link [9],
and average link [29]. Thus, a collection of three trees is obtained in each case.
In the second test suite –termed SCATTER– we consider for each dataset the
different trees obtained in ten runs of a scatter search metaheuristic [30].

Table 1. The test suites considered in the experimentation. Mean distance refers to
the average of distances of each tree in the collection to the whole tree set

M877 M971 M808
AGGLOM SCATTER AGGLOM SCATTER AGGLOM SCATTER

mean distance 44.78 94.56 56.71 89.79 31.59 88.80
#leaves 134 158 178
source [31] [32] [33]

The parameterization of the algorithms is the following: GP is a steady-state
EA, with a population of 100 individuals, using binary tournament for selection;
EP has also a population size of 100 individuals, but uses flat selection, i.e.,
each individual is mutated once, thus yielding a population of 100 descendants.

64 C. Cotta

Subsequently, the best 100 out of the 100 existing individuals and the 100 newly
created descendants constitute the population for the next generation (i.e., a plus
replacement strategy); as to the ES algorithm, it follows a (16,100) evolution
model, and uses n/10 (where n is the number of leaves) as the hyperparameter
for the gaussian mutation of step sizes. In all cases, the algorithms are run for
a total number of 250,000 fitness evaluations. Also, trees in the target collection
are injected in the initial population.

Regarding the greedy heuristics, H1 is run using leaf permutations compatible
with the topologies of trees in the collection (one leaf permutation for each tree)3.
To be precise, let T = (hLR); the sequence 〈T 〉 = 〈L〉 :: 〈R〉, where :: represents
sequence concatenation, and 〈L〉 and 〈R〉 are computed recursively (〈(a)〉 = 〈a〉),
is compatible with T . H1 has then been run using sequences 〈Ti〉, · · · , 〈Tm〉. The
same is done in the internal invocations of H1 within H2.

Table 2. Results (averaged for 20 runs) of the EAs and the greedy heuristics on the
two test suites considered. sdv. and med. stand for standard deviation and median
respectively

AGGLOM test suite
M877 M971 M808

best mean ± sdv. med. best mean ± sdv. med. best mean ± sdv. med.
GP 51.80 51.68 ± 0.06 51.68 63.32 63.26 ± 0.04 63.27 48.45 48.41 ± 0.02 48.42
EP 50.91 50.87 ± 0.03 50.87 62.55 62.49 ± 0.02 62.48 48.16 48.16 ± 0.00 48.16
ES 50.55 50.34 ± 0.06 50.33 62.48 62.48 ± 0.01 62.48 48.15 48.15 ± 0.00 48.15
H1 43.30 36.81 ± 5.80 37.92 61.21 57.80 ± 4.22 60.33 38.01 35.29 ± 1.94 34.23
H2 49.53 40.08 ± 6.73 39.40 61.06 55.37 ± 5.39 57.74 47.92 32.22 ± 12.98 32.30

SCATTER test suite
M877 M971 M808

best mean ± sdv. med. best mean ± sdv. med. best mean ± sdv. med.
GP 96.03 96.03 ± 0.00 96.03 91.90 91.90 ± 0.00 91.90 91.04 90.93 ± 0.09 90.97
EP 95.81 95.81 ± 0.00 95.81 91.90 91.90 ± 0.00 91.90 89.96 89.94 ± 0.03 89.94
ES 95.81 95.81 ± 0.00 95.81 91.90 91.90 ± 0.00 91.90 89.89 89.87 ± 0.02 89.87
H1 83.81 81.33 ± 2.22 82.31 86.62 73.06 ± 8.94 74.07 84.58 78.27 ± 3.22 77.93
H2 90.65 83.69 ± 3.43 84.25 86.49 74.48 ± 7.53 75.29 81.96 76.47 ± 3.70 77.52

The results are shown in Table 2. Notice firstly that all evolutionary heuris-
tics perform clearly better than the greedy heuristics. The latter can hardly
produce consensus trees of score similar to those already in the corresponding
collection. The evolutionary algorithms can however produce consensus trees of
high quality, achieving overall scores superior to the original trees. This implies
that the topological information of the collection is being effectively summarized

3 A leaf sequence is said to be compatible with a tree topology if there exists a layout
of the tree in which its leaves are ordered from left to right as in the sequence, and
no two branches cross.

On the Application of Evolutionary Algorithms 65

Table 3. Results (averaged for 20 runs) of the GP algorithm without seeding the initial
population on AGGLOM (#1) and SCATTER (#2)

M877 M971 M808
best mean ± sdv. med. best mean ± sdv. med. best mean ± sdv. med.

#1 46.80 45.19 ± 1.16 45.32 57.51 56.63 ± 0.58 56.67 40.78 39.21 ± 0.86 39.18
#2 81.99 79.86 ± 1.17 79.93 79.88 78.05 ± 0.78 78.01 79.12 77.05 ± 0.85 77.03

in the consensus tree. The relative performance of the EAs indicates that EP
is better than ES, and that GP provides the best outcome. A non-parametric
statistical test (a Wilcoxon ranksum test [34]), has been used to corroborate the
significance of these results. Fitness differences are always statistically significant
(at the standard 5% significance level), except for the EP vs ES comparison on
the m877 instance of the SCATTER test suite, and for all EAs on the m971
instance of the same test suite.

A final experiment has been done to confirm the usefulness of injecting the
original tree collection in the initial population. The results are shown in Table 3
just for the GP algorithm. As it can be seen, the performance drop is dramatic.
Without seeding, the algorithm would require much longer execution times in
order to achieve the performance level of its seeded counterpart.

5 Conclusions

We have presented five heuristics for summarizing a collection of trees into a
consensus tree, using the TreeRank measure as the scoring metric. From these
five, the three evolutionary heuristics have been shown to be effective in summa-
rizing within a single tree topological information contained in the target tree
collection. Furthermore, a recombination-based EA has been shown to provide
the better results. An important part of the performance of these algorithms is
due to the seeding of the initial population.

Regarding the EAs, there is much room for improvement in the underlying
evolution model, as anticipated in Sect. 3.2. For example, the EP algorithm could
incorporate self-adaptation as well [35], evolving the number of times each muta-
tion operator is used, or a hyperparameter controlling a probability distribution
–e.g., a Poisson distribution– over this number of mutations. This would bring
closer the ES and EP approaches, and constitutes a line for future developments.

With respect to the greedy heuristics, their performance is not satisfactory.
Nevertheless, if not as stand-alone techniques, they can still be useful embedded
within an EA. As mentioned in Sect. 3.1, both H1 and H2 must be fed with
a particular leaf sequence. It is then conceivable to have an EA evolving leaf
permutations to be fed to these heuristics. This way, they would act as decoders,
and the EA could benefit from their greedy functioning. This is another line for
future developments.

66 C. Cotta

Acknowledgements

Thanks are due to the anonymous reviewers for their useful suggestions. The
author is partially supported by Spanish MCyT, and FEDER under contract
TIC2002-04498-C05-02.

References

1. Foster, C.: Information retrieval: information storage and retrieval using AVL
trees. In: Proceedings of the 1965 20th ACM National Conference, New York NY,
ACM Press (1965) 192–205

2. Garofalakis, M., Özden, B., Silberschatz, A.: Resource scheduling in enhanced
pay-per-view continuous media databases. In Jarke, M., et al., eds.: Proceedings
of the 1997 International Conference on Very Large Databases, Athens, Greece,
Morgan Kaufmann (1997) 516–525

3. Naylor, B.: Partitioning tree image representation and generation from 3D geomet-
ric models. In Booth, K., Fournier, A., eds.: Proceedings of the 1992 Conference
on Graphics Interface, San Francisco CA, Morgan Kaufmann (1992) 201–212

4. Holmes, S.: Phylogenies: An overview. In Halloran, M., Geisser, S., eds.: Statistics
and Genetics. Springer-Verlag, New York NY (1999) 81–119

5. Kim, J., Warnow, T.: Tutorial on phylogenetic tree estimation. In Lengauer, T.,
et al., eds.: Proceedings of the 7th International Conference on Intelligent Systems
for Molecular Biology, Heidelberg, AAAI Press (1999) 196–205

6. Day, W., Johnson, D., Sankoff, D.: The computational complexity of inferring
rooted phylogenies by parsimony. Mathematical Biosciences 81 (1986) 33–42

7. Foulds, L., Graham, R.: The Steiner problem in phylogeny is NP−complete.
Advances in Applied Mathematics 3 (1982) 439–49

8. Wu, B., Chao, K.M., Tang, C.: Approximation and exact algorithms for construct-
ing minimum ultrametric trees from distance matrices. Journal of Combinatorial
Optimization 3 (1999) 199–211

9. King, B.: Step-wise clustering procedures. Journal of the American Statistical
Association 69 (1967) 86–101

10. Moilanen, A.: Searching for the most parsimonious trees with simulated evolution.
Cladistics 15 (1999) 39–50

11. Andreatta, A., Ribeiro, C.: Heuristics for the phylogeny problem. Journal of
Heuristics 8 (2002) 429–447

12. Cotta, C., Moscato, P.: Inferring phylogenetic trees using evolutionary algorithms.
In Merelo, J., et al., eds.: Parallel Problem Solving From Nature VII. Volume 2439
of Lecture Notes in Computer Science. Springer-Verlag, Berlin (2002) 720–729

13. Barker, D.: LVB: parsimony and simulated annealing in the search for phylogenetic
trees. Bioinformatics 20 (2004) 274–275

14. Bryant, D.: A classification of consensus methods for phylogenetics. In Janowitz,
M., et al., eds.: Bioconsensus. DIMACS-AMS (2003) 163–184

15. Swofford, D.: When are phylogeny estimates from molecular and morphological
data incongruent? In Miyamoto, M., Cracraft, J., eds.: Phylogenetic analysis of
DNA sequences. Oxford University Press (1991) 295–333

16. Phillips, C., Warnow, T.: The asymmetric median tree a new model for building
consensus trees. Discrete Applied Mathematics 71 (1996) 311–335

On the Application of Evolutionary Algorithms 67

17. Gusfield, D.: Efficient algorithms for inferring evolutionary trees. Networks 21
(1991) 19–28

18. Day, W.: Optimal algorithms for comparing trees with labeled leaves. Journal of
Classiffication 2 (1985) 7–28

19. Barthélemy, J.P., McMorris, F.: The median procedure for n-trees. Journal of
Classiffication 3 (1986) 329–334

20. Östlin, A.: Constructing evolutionary trees. Algorithms and complexity. PhD
thesis, Department of Computer Science, Lund University (2001)

21. Penny, D., Hendy, M.: The use of tree comparison metrics. Systematic Zoology
34 (1985)

22. Allen, B., Steel, M.: Subtree transfer operations and their induced metrics on
evolutionary trees. Annals of Combinatorics 5 (2001) 1–15

23. DasGupta, B., He, X., Jiang, T., Li, M., Tromp, J., Zhang, L.: On computing
the nearest neighbor interchange distance. In Du, D., Pardalos, P., Wang, J., eds.:
Proceedings of the DIMACS Workshop on Discrete Problems with Medical Appli-
cations. Volume 55 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science., American Mathematical Society (2000) 125–143

24. Wang, J., Shan, H., Shasha, D., Piel, W.: Treerank: A similarity measure for nearest
neighbor searching in phylogenetic databases. In: Proceedings of the 15th Interna-
tional Conference on Scientific and Statistical Database Management, Cambridge
MA, IEEE Press (2003) 171–180

25. Jain, A., Murty, N., Flynn, P.: Data clustering: A review. ACM Computing Surveys
31 (1999) 264–323

26. Raidl, G., Julstrom, B.: Edge sets: an effective evolutionary coding of spanning
trees. IEEE Transactions on Evolutionary Computation 7 (2003) 225–239

27. Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms. Studies
in Fuzziness and Soft Computing. Physica, Heidelberg (2002)

28. Sneath, P., Sokal, R.: Numerical Taxonomy. Freeman, London, UK (1973)
29. Ward, J.: Hierarchical grouping to optimize an objective function. Journal of the

American Statistical Association 58 (1963) 236–244
30. Cotta, C.: Scatter search with path relinking for phylogenetic inference. European

Journal of Operational Research (2005) (to appear).
31. Hibbett, D., Donoghue, M.: Analysis of character correlations among wood de-

cay mechanisms, mating systems, and substrate ranges in homobasidiomycetes.
Systematic Biology 50 (2001) 1–27

32. Binder, M., Hibbett, D., Molitoris, H.: Phylogenetic relationships of the marine
gasteromycete Nia vibrissa. Mycologia 93 (2001) 679–688

33. Hibbett, D., Gilbert, L.B., Donoghue, M.: Evolutionary instability of ectomycor-
rhizal symbioses in basidiomycetes. Nature 407 (2000) 506–508

34. Lehmann, E., D’Abrera, H.: Nonparametrics: Statistical Methods Based on Ranks.
Prentice-Hall, Englewood Cliffs, NJ (1998)

35. Fogel, D.: Evolutionary Computation: Toward a New Philosophy of Machine In-
telligence. IEEE Press, Piscataway, NJ (2000)

Analyzing Fitness Landscapes for the Optimal
Golomb Ruler Problem

Carlos Cotta and Antonio J. Fernández

Dept. Lenguajes y Ciencias de la Computación, ETSI Informática,
University of Málaga, Campus de Teatinos, 29071 - Málaga, Spain

{ccottap,afdez}@lcc.uma.es

Abstract. We focus on the Golomb ruler problem, a hard constrained
combinatorial optimization problem. Two alternative encodings are con-
sidered, one based on the direct representation of solutions, and one
based on the use of an auxiliary decoder. The properties of the corre-
sponding fitness landscapes are analyzed. It turns out that the landscape
for the direct encoding is highly irregular, causing drift to low-fitness re-
gions. On the contrary, the landscape for the indirect representation is
regular, and exhibits comparable fitness-distance correlation to that of
the former landscape. These findings are validated in the context of vari-
able neighborhood search.

1 Introduction

Golomb rulers are a class of undirected graphs that, unlike usual rulers, measure
more discrete lengths than the number of marks they carry. This is due to the
fact that on any given ruler, all differences between pairs of marks are unique.
This feature makes Golomb rulers really interesting in many practical applica-
tions, such as carrier frequency assignment [1], radio communication [2], X-ray
crystallography [3], pulse phase modulation [4], and design of orthogonal codes
[5, 6], among others [7, 8, 9]. Needless to say, it also introduces numerous con-
straints that hinder the search of short feasible rulers, let alone optimal Golomb
rulers (OGR, i.e., the shortest Golomb ruler for a number of marks).

To date, no efficient algorithm is known for finding the shortest Golomb ruler
for a certain number of marks: massive parallelism projects have been undertaken
for several months in order to find the optimum instances of up to 23 marks
[10]. Being such an extremely difficult combinatorial task, the Golomb ruler
problem represents an ideal scenario for deploying the arsenal of evolutionary
optimization.

In Sect. 2.2 we discuss some of the non-evolutionary techniques employed so
far to solve OGRs. With respect to evolutionary ones, to the best of our knowl-
edge, there have been four attempts to apply evolutionary algorithms (EAs)
to the search for OGRs (see Sect. 2.3). These works are essentially empirical,
and little has been so far done on the analysis of the properties of the under-
lying combinatorial landscapes. In this paper, we tackle this issue by analyzing
two major problem representations under which evolutionary search can be con-
ducted on this problem. To be precise, we consider the direct representation of

G.R. Raidl and J. Gottlieb (Eds.): EvoCOP 2005, LNCS 3448, pp. 68–79, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Analyzing Fitness Landscapes for the Optimal Golomb Ruler Problem 69

solutions, and an indirect, decoder-based representation that uses a GRASP-like
mechanism to perform the genotype-to-phenotype mapping. These landscapes
are examined in Sect. 3, paying special attention to landscape regularity, and
correlation measures. The variable neighborhood search metaheuristic is used to
corroborate the outcome of this analysis in Sect. 4.

2 Background

The OGR problem can be classified as a fixed-size subset selection problem, such
as e.g., the p−median problem [11]. It exhibits some very distinctive features
though. A brief overview of the problem, and how it has been tackled in the
literature is provided below.

2.1 Golomb Rulers

A n-mark Golomb ruler is an ordered set of n distinct non-negative integers,
called marks, a1 < ... < an, such that all the differences ai − aj (i > j) are
distinct. Clearly we may assume a1 = 0. By convention, an is the length of the
Golomb ruler. A Golomb ruler with n marks is an optimal Golomb ruler if, and
only if, (i) there exists no other n-mark Golomb rulers having smaller length, and
(ii) the ruler is canonically “smaller” with respect to the the equivalent rulers.
This means that the first differing entry is less than the corresponding entry in
the other ruler. Fig. 1 shows an OGR with 4-marks. Observe that all distances
between any two marks are different.

6

0 1 4 6

1 3 2

4

5

Fig. 1. A Golomb ruler with 4 marks

Typically, Golomb rulers are represented by the values of the marks on the
ruler, i.e., in a n-mark Golomb ruler, ai = x (1 � i � n) means that x is the
mark value in position i. The sequence (0, 1, 4, 6) would then represent the ruler
in Fig. 1. An alternative representation consists of representing the Golomb ruler
via the lengths of its segments, where the length of a segment of a ruler is defined

70 C. Cotta and A.J. Fernández

as the distance between two consecutive marks. Therefore, a Golomb ruler can
be represented with n − 1 marks specifying the lengths of the n − 1 segments
that compose it. In the previous example, the sequence (1, 3, 2) would encode
the ruler depicted in Fig. 1.

2.2 Finding OGRs

The OGR problem has been solved using very different techniques. The evo-
lutionary techniques found in the literature to obtain OGRs are described in
Sect. 2.3. We provide here a brief overview of some of the most popular non-
evolutionary techniques used for this problem.

Firstly, it is worth mentioning some classical algorithms used to generate
and verify OGRs such as the Scientific American algorithm [12], the Token
Passing algorithm (created by Professor Dollas at Duke University) and the
Shift algorithm [13], all of them compared and described in [8].

In general, both non-systematic and systematic methods have been applied to
find OGRs. Regarding the former, we can cite for example the use of geometry
tools (e.g., projective plane construction and affine plane construction). With
these approaches, one can compute very good approximate values for OGR with
up to 158 marks [14]. As to systematic (exact) methods, we can mention the
utilization of branch-and-bound algorithms combined with a depth first search
strategy (i.e., backtracking algorithms), making use of upper-bounds set equal
to the minimum length in the experiments. In this sense there exist several pro-
posals: for example, Shearer [15] computed OGRs up to 16 marks. This approach
has been also followed in massive parallelism initiatives such as the OGR project
mentioned before. This project has been able to find the OGRs with a number
of marks between 20 and 23, although it took several months to find optimum
for each of those instances [8, 9, 16, 10].

Constraint programming techniques have also been used, although with lim-
ited success. For example, Smith and Walsh [17] obtained interesting results in
terms of nodes in the branching schema. However, computation times are far
from the results obtained by previous approaches. More recently, Galinier et al.
[18] proposed a combination of constraint programming and sophisticated lower
bounds for finding OGRs. They showed that using the same bound on different
ways affects not only to the number of branches in the search tree but also to
the computation time.

2.3 Evolutionary Approaches to the OGR

In this section will restrict here just to the evolutionary approaches to solve
OGRs considered so far in the literature. In essence, two main approaches can
be considered for tackling this problem. The first one is the direct approach, in
which the EA conducts the search in the space SG of all possible Golomb rulers.
The second one is the indirect approach, in which an auxiliary Saux space is
used by the EA. In this latter case, a decoder [19] must be utilized in order to
perform the Saux −→ SG mapping. Both approaches will be discussed below.

Analyzing Fitness Landscapes for the Optimal Golomb Ruler Problem 71

Direct Approaches. In 1995, Soliday, Homaifar and Lebby [20] used a genetic
algorithm on different instances of the Golomb ruler problem. They chosen the
alternative formulation already mentioned where each chromosome is composed
by a permutation of n−1 integers that represents the sequence of the n−1 lengths
of its segments. Two evaluation criteria were followed: the overall length of the
ruler, and the number of repeated measurements. This latter quantity was used in
order to penalize infeasible solutions. The mutation operator consisted of either
a permutation in the segment order, or a change in the segment lengths. As to
crossover, it was designed to guarantee that descendants are valid permutations.

Later, Feeney studied the effect of hybridizing genetic algorithms with local
improvement techniques to solve Golomb rulers [7]. The representation used
consisted of an array of integers corresponding to the marks of the ruler. The
crossover operator was similar to that used in Soliday et al.’s approach although
a sort procedure was added at the end. The mutation operator consisted in
adding a random amount in the range [−x, x] –where x is the maximum difference
between any pair of marks in any ruler of the initial population– to the segment
mark selected for mutation. As it will be shown later, we can use a similar
concept in order to define a distance measure on the fitness landscape.

Indirect Approaches. Pereira et al. presented in [21] a new EA approach
using the notion of random keys [22] to codify the information contained in each
chromosome. The basic idea consists of generating n random numbers (i.e., the
keys) sampled from the interval [0, 1] and ordered by its position in the sequence
1, . . . , n; then the keys are sorted in decreasing order. The indices of the keys
thus result in a feasible permutation of {1, · · · , n}. A similar evaluation criteria
as described in [20] was followed. They also presented an alternative algorithm
that adds a heuristic, favoring the insertion of small segments.

A related approach has been presented in [23]. This proposal incorporates
ideas from greedy randomized adaptive search procedures (GRASP) [24] in order
to perform the genotype-to-phenotype mapping. More precisely, the mapping
procedure proceeds by placing each of the n−1 marks (the first mark is assumed
to be a1 = 0) one at a time; the (i + 1)th mark can be obtained as ai+1 =
ai + li, where li � 1 is the i−th segment length. Feasible segment lengths (i.e.,
those not leading to duplicate measurements) can be sorted in increasing order.
Now, the EA needs only specifying at each step the index of a certain segment
within this list (obviously, the contents of the list are different in each of these
steps). This implies that each individual would be a sequence 〈r1, · · · , rn−1〉,
where ri would be the index of the segment used in the i−th iteration of the
construction algorithm. Notice that in this last placement step it does not make
sense to pick any other segment length than the smallest one. For this reason,
rn−1 = 1; hence, solutions need only specify the sequence 〈r1, · · · , rn−2〉. This
representation of solutions is orthogonal [25], i.e., any sequence represents a
feasible solution, and hence, standard operators for crossover and mutation can
be used to manipulate them. This GRASP-based approach is reported to perform
better than the previous indirect approach, and hence we use it in our further
analysis.

72 C. Cotta and A.J. Fernández

3 Fitness Landscapes for the Golomb Ruler Problem

The notion of fitness landscapes was firstly introduced in [26] to model the
dynamics of evolutionary adaptation in Nature. The fitness landscape analysis of
a problem can help to identify its structure in order to improve the performance
of search algorithms (e.g., to predict the behavior of a heuristic search algorithm,
or to exploit some of its specific properties). For this reason, this kind of analysis
has become a valuable tool for evolutionary-computation researchers.

In this section, we will analyze the fitness landscapes resulting from the two
problem representations described before, the direct encoding of rulers, and the
use of a GRASP-based decoder. We will assume below that n is the number
of marks for a specific Golomb ruler Gn, and that a = 〈a1, . . . , an〉 and b =
〈b1, . . . , bn〉 are arbitrary solutions from Gn. Analogously, r = 〈r1, · · · , rn−2〉
and r′ = 〈r′1, · · · , r′n−2〉 are arbitrary vectors from N

n−2, representing the vector
of indices for selecting segment lengths. We denote by ψ the bijective function
performing the genotype-to-phenotype mapping N

n−2 → Gn.

3.1 Distance Measures and Neighborhood Structure

We define a fitness landscape for the OGR as a triple 〈S, f, d〉n where S = Gn

is the set of all the n-mark Golomb rulers (i.e., the solution set), f is a fitness
function that attaches a fitness value to each of the points in S (i.e., f(a) is
equal to an, the length of a), and d : S × S → N is a function that measures
a distance between any two points in S. We have defined one distance function
for each of the Golomb ruler representations already commented. Specifically for
the direct formulation (i.e., that based on lists of marks) we have defined the
distance function d as follows:

d(a, b) = max{| bi − ai |, 1 ≤ i ≤ n} . (1)

In other words, d(a, b) returns the maximum difference between any two
corresponding marks in a and b. Also, for our indirect formulation (i.e., the
GRASP-based formulation) we have defined the distance function d as the L1
norm (the Manhattan distance) on the vector of indices, i.e.,

d(a, b) = d(ψ(r), ψ(r′)) =
n−2∑

i=1

| ri − r′i | . (2)

A first issue to be analyzed regards the neighborhood structure induced by
these distance measures. More precisely, consider the number of solutions reach-
able from a certain point in the search space, by a search algorithm capable of
making jumps of a given distance. In the direct formulation, this number of so-
lutions turns out to be variable for each point of S, as shown in Fig. 2. We have
implemented and used a logic-programming based constraint solver to solve the
Golomb ruler constraint satisfaction problem for an arbitrary number of marks.
Our solver, implemented in GNU Prolog [27], is based on the model proposed
in [28]. In particular, the solver generates a list of all possible distances between

Analyzing Fitness Landscapes for the Optimal Golomb Ruler Problem 73

Fig. 2. Number of neighbors for different values of the local radius ε in a 12-mark
Golomb ruler problem. From top to bottom and left to right, ε = 1, 2, 3, and 4. Notice
the log-scale in the Y-axis.

any pair of marks i, j (i < j and i, j ∈ {1, . . . , n}) in the ruler and then imposes
a global constraint all-different on this list instead of imposing the set of bi-
nary inequalities between any two marks i, j. The efficiency is further improved
by adding some redundant constraints leading to an improvement of the domain
pruning. This solver calculates the number of possible neighbors that are located
within a given distance ε (called the local radius) of certain solution a (i.e., it ob-
tains the cardinality of the set {〈c1, . . . , cn〉 ∈ S | ai−ε ≤ ci ≤ ai+ε, 1 ≤ i ≤ n}).
The solver is then applied to a large sample of solutions covering a wide range
of fitness values.

The outcome of this experiment indicates that the connectivity of the fit-
ness landscape increases with worse fitness values. Furthermore, this effect is

74 C. Cotta and A.J. Fernández

stronger as we increase the neighborhood radius (see Fig. 2). This kind of irreg-
ularity is detrimental for search algorithm navigating this landscape [29], since
the neighborhood structure tends to guide the search towards low-fitness re-
gions. This means that a search algorithm on this landscape would have to be
continuously fighting against this drifting force. On the contrary, notice that the
fitness landscape of the indirect formulation is perfectly regular, since its topol-
ogy is isomorphic to N

n−2. In principle, this regularity makes this landscape
more navigable since no underlying drift effect exists.

3.2 Fitness-Distance Correlation

Fitness-distance correlation (FDC) [30] is one of the most widely used measures
for assessing the structure of the landscape. It also constitutes a very informative
measure to evaluate the problem difficulty for evolutionary algorithms [31]. FDC
allows quantifying the correlation between fitness values, and the distance to
the nearest optimum in the search space. Landscapes with a high FDC typically
exhibit a big valley structure [32] (this is not always the case though [30, 33]).

It is typically assumed that low FDC is associated with problem difficulty for
local search. Nevertheless, the interplay of this property with other landscape
features is not yet well understood. Indeed, it will be later shown how landscape
ruggedness and neighborhood irregularity can counteract high FDC values.

Focusing on the problem under consideration, the optimum value optn for
n-mark Golomb rulers is known (up to n = 24, enough for our analysis). We
can then obtain a sample of m locally-optimal solutions A = {a1, . . . , am} ⊂ S
and easily calculate the sets F = {fi | fi = f(ai), 1 ≤ i ≤ m, ai ∈ A} and
D = {di | di = d(ai, optn), 1 ≤ i ≤ m, ai ∈ A}. Then we can compute the
correlation coefficient as FDC = CFD/ (σF σD), where

CFD =
1
m

m∑

i=1

(fi − f)(di − d) (3)

is the covariance of F and D, and σF , σD, f and d are, respectively, the standard
deviations and means of F and D. Observe that this definition depends on the
definition of the distance function, and as shown in Section 3.1, we consider two
different definitions for the two problem representations.

The FDC values computed for the two representations are shown in Fig.
3. In all cases, locally optimal solutions are computed by using hill climbing
from a fixed sample of seed feasible solutions. Notice firstly the high correlation
for the direct formulation, specially for low values of the local radius ε. This
can be explained by the fact that the fitness of a solution is actually the value
of the last mark, and this value will not change above the given ε within the
neighborhood. FDC starts to degrade for increasing values of this local radius.
To be precise, FDC values for ε = 1 up to ε = 4 are 0.9803, 0.9453, 0.8769, and
0.8221 respectively. In the case of the indirect formulation (ε = 1), the FDC
value is 0.8478, intermediate between ε = 3, and ε = 4. These results indicate
that the indirect formulation can attain FDC values comparable to those of the

Analyzing Fitness Landscapes for the Optimal Golomb Ruler Problem 75

Fig. 3. Fitness distance correlation in a 12-mark Golomb ruler problem. The upper
four figures correspond to the direct formulation (from top to bottom and left to right,
ε = 1, 2, 3, and 4), and those at the bottom to the indirect formulation (ε = 1, and 2).

76 C. Cotta and A.J. Fernández

direct formulation, but without suffering from some of the problems of the latter.
Actually, the high FDC values for the direct formulation are compensated by
two related facts, namely that there is a drift force towards low-fitness regions
as mentioned in Sect. 3.1, and that the number of local optima is higher for low
values of the local radius, specially in the high-fitness region.

4 Experimental Validation

In order to confirm our findings from the landscape analysis, we have performed
some experiments using a variable neighborhood search algorithm (VNS) [34].
This is a generalization of the conspicuous hill climbing algorithm in which dif-
ferent neighborhoods are used during the search. More precisely, a collection of
neighborhoods N1, · · · ,Nk is considered. The search starts from the first neigh-
borhood in the collection, and proceeds to the next one when no improvement
can be found. Whenever an improvement is found, the search continues from
the first neighborhood again. The underlying idea here is the fact that locally
optima solutions for one neighborhood are not necessarily locally optimal in the
next one. Hence, the algorithm can escape from such non-common local optima,
and progress further towards the global optimum. The search finishes when a
solution is found that is locally optimal for all neighborhoods.

The VNS algorithm has been deployed on the two problem representations
considered. In both cases, neighborhoods N1 up to N4 have been considered,
where Ni(x) refers to the set of solutions within distance i (in the corresponding
fitness landscape) of solution x. Neighborhoods are explored by sampling 100
solutions, and retaining the best one. If no improving solution is found, the
neighborhood is considered exhausted.

The results for n = 12 marks are shown in Table 1. VNSi indicates that
VNS is restricted to neighborhoods N1 to Ni. As it can be seen, the results
of the indirect representation are better than those of direct representation for
VNS1 and VNS2. The difference between both representations tends to decrease
for increasing radius: very similar results (no statistical difference according to
a Mann-Whitney U test) are obtained in both cases for VNS3, and the direct
representation turns out to be better for VNS4.

Table 1. Results (averaged for 30 runs) of variable neighborhood search on the two
representations. As a reference, starting solutions have a mean value of 127.57 ± 7.64

direct indirect indirect (exhaustive)
mean ± std.dev. median mean ± std.dev. median mean ± std.dev. median

VNS1 127.43 ± 7.73 125 114.10 ± 4.11 115 112.80 ± 3.91 113
VNS2 120.63 ± 6.09 120.5 107.43 ± 3.86 107 108.93 ± 3.71 109
VNS3 104.70 ± 5.19 105 105.83 ± 2.61 105 101.77 ± 3.03 101.5
VNS4 98.87 ± 2.49 100 105.17 ± 2.55 105 97.33 ± 1.97 97

Analyzing Fitness Landscapes for the Optimal Golomb Ruler Problem 77

Two facts must be noted here. First of all, the magnitude of the radius has not
the same meaning in the different representation, and hence, the data in Table
1 should not be interpreted as paired columns. Secondly, the computational cost
(not shown in Table 1) of exploring each neighborhood is quite different (around
three orders of magnitude larger in the case of the direct representation, as
measured in a P4–3GHz 1GB PC under Windows XP). This is so, even allowing
an exhaustive exploration of the neighborhood for the indirect representation.
The results in this latter case are shown in the two rightmost columns of Table 1.
Notice the improvement with respect to the direct representation.

5 Conclusions

This work has tried to shed some light on the question of what makes a problem
hard for a certain search algorithm. We have focused on the Golomb ruler prob-
lem, an extremely interesting problem due to its simple definition yet tremendous
hardness. It is also a problem for which several representations had been tried,
but that lacked an analysis of the combinatorial properties of the associated
fitness landscapes.

Our analysis indicates that the high irregularity of the neighborhood struc-
ture for the direct formulation introduces a drift force towards low-fitness regions
of the search space. This contrasts with other problems in which the drift force
is beneficial, since it guides the search to high-fitness regions (see [29]). The
indirect formulation that we have considered does not have this drawback, and
hence would be in principle more amenable for conducting local search in it. The
fact that fitness-distance correlation is very similar in both cases also support
this hypothesis.

The empirical validation provides consistent results: a VNS algorithm using
the indirect formulation can outperform a VNS counterpart working on the direct
representation, in a low computational cost scenario. It is also very interesting to
note that these results are also consistent with the performance of evolutionary
algorithm on this problem, despite the fact that even when the representation
may be the same, they do not explore exactly the same landscape.

Future work will be directed to confirm these conclusions in the context of
other constrained problems. We will also try to identify new problems in which
the irregularity of the neighborhood structure play such a central role, and study
alternative formulations for these.

Acknowledgements

This work is partially supported by Spanish MCyT and FEDER under contracts
TIC2002-04498-C05-02 and TIN2004-7943-C04-01.

78 C. Cotta and A.J. Fernández

References

1. Fang, R., Sandrin, W.: Carrier frequency assignment for non-linear repeaters.
Comsat Technical Review 7 (1977) 227–245

2. Babcock, W.: Intermodulation interference in radio systems. Bell Systems Tech-
nical Journal (1953) 63–73

3. Bloom, G., Golomb, S.: Aplications of numbered undirected graphs. Proceedings
of the IEEE 65 (1977) 562–570

4. Robbins, J., Gagliardi, R., Taylor, H.: Acquisition sequences in PPM communica-
tions. IEEE Transactions on Information Theory 33 (1987) 738–744

5. Klove, T.: Bounds and construction for difference triangle sets. IEEE Transactions
on Information Theory 35 (1989) 879–886

6. Robinson, J., Bernstein, A.: A class of binary recurrent codes with limited error
propagation. IEEE Transactions on Information Theory 13 (1967) 106–113

7. Feeney, B.: Determining optimum and near-optimum Golomb rulers using genetic
algorithms. Master thesis, Computer Science, University College Cork (2003)

8. Rankin, W.: Optimal Golomb rulers: An exhaustive parallel search implementa-
tion. Master thesis, Duke University Electrical Engineering Dept., Durham, NC
(1993)

9. Dollas, A., Rankin, W.T., McCracken, D.: A new algorithm for Golomb ruler
derivation and proof of the 19 mark ruler. IEEE Transactions on Information
Theory 44 (1998) 379–382

10. OGR project: http://www.distributed.net/ogr/ (on-going since September 14,
1998)

11. Mirchandani, P., Francis, R.: Discrete Location Theory. Wiley-Interscience (1990)
12. Dewdney, A.: Computer recreations. Scientific American (1986) 14–21
13. McCracken, D.: Minimum redundancy linear arrays. Senior thesis, Duke University,

Durham, NC (1991)
14. Shearer, J.B.: Golomb ruler table. Mathematics Department, IBM Research,

http://www.research.ibm.com/people/s/shearer/grtab.html (2001)
15. Shearer, J.: Some new optimum Golomb rulers. IEEE Transactions on Information

Theory 36 (1990) 183–184
16. Garry, M., Vanderschel, D., et al.: In search of the optimal 20, 21 & 22 mark Golomb

rulers. GVANT project, http://members.aol.com/golomb20/index.html (1999)
17. Smith, B., Walsh, T.: Modelling the Golomb ruler problem. In: Workshop on

non-binary constraints (IJCAI’99), Stockholm (1999)
18. Galinier, P., Jaumard, B., Morales, R., Pesant, G.: A constraint-based approach

to the Golomb ruler problem. In: 3rd International Workshop on Integration of AI
and OR Techniques (CP-AI-OR’2001). (2001)

19. Koziel, S., Michalewicz, Z.: A decoder-based evolutionary algorithm for constrained
parameter optimization problems. In Bäeck, T., Eiben, A., Schoenauer, M., Schwe-
fel, H.P., eds.: Parallel Problem Solving from Nature V. Volume 1498 of Lecture
Notes in Computer Science. Springer-Verlag, Berlin Heidelberg (1998) 231–240

20. Soliday, S., Homaifar, A., Lebby, G.: Genetic algorithm approach to the search
for Golomb rulers. In Eshelman, L., ed.: 6th International Conference on Genetic
Algorithms (ICGA’95), Pittsburgh, PA, USA, Morgan Kaufmann (1995) 528–535

21. Pereira, F., Tavares, J., Costa, E.: Golomb rulers: The advantage of evolution. In
Moura-Pires, F., Abreu, S., eds.: Progress in Artificial Intelligence, 11th Portuguese
Conference on Artificial Intelligence. Number 2902 in Lecture Notes in Computer
Science, Berlin Heidelberg, Springer-Verlag (2003) 29–42

Analyzing Fitness Landscapes for the Optimal Golomb Ruler Problem 79

22. Bean, J.: Genetic algorithms and random keys for sequencing and optimization.
ORSA Journal on Computing 6 (1994) 154–160

23. Cotta, C., Fernández, A.: A hybrid GRASP - evolutionary algorithm approach
to Golomb ruler search. In Yao, X., et al., eds.: Parallel Problem Solving From
Nature VIII. Number 3242 in Lecture Notes in Computer Science, Birmingham,
UK, Springer (2004) 481–490

24. Resende, M., Ribeiro, C.: Greedy randomized adaptive search procedures. In
Glover, F., Kochenberger, G., eds.: Handbook of Metaheuristics. Kluwer Academic
Publishers, Boston MA (2003) 219–249

25. Radcliffe, N.: Equivalence class analysis of genetic algorithms. Complex Systems
5 (1991) 183–205

26. Wright, S.: The roles of mutation, inbreeding, crossbreeding and selection in evo-
lution. In Jones, D., ed.: 6th Intenational Congress on Genetics. Volume 1. (1932)
356–366

27. Diaz, D., Codognet, P.: GNU Prolog: beyond compiling Prolog to C. In Pontelli,
E., Costa, V., eds.: 2nd International Workshop on Practical Aspects of Declarative
Languages (PADL’2000). Number 1753 in LNCS, Boston, USA, Springer-Verlag
(2000) 81–92

28. Barták, R.: Practical constraints: A tutorial on modelling with constraints. In Fig-
wer, J., ed.: 5th Workshop on Constraint Programming for Decision and Control,
Gliwice, Poland (2003) 7–17

29. Bierwirth, C., Mattfeld, D., Watson, J.P.: Landscape regularity and random walks
for the job shop scheduling problem. In Gottlieb, J., Raidl, G., eds.: Evolutionary
Computation in Combinatorial Optimization. Volume 3004 of Lecture Notes in
Computer Science., Berlin, Springer-Verlag (2004) 21–30

30. Jones, T.: Evolutionary Algorithms, Fitness Landscapes and Search. Phd thesis,
Santa Fe Institute, University of New Mexico, Alburquerque (1995)

31. Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem diffi-
culty for genetic algorithms. In Eshelman, L., ed.: Proceedings of the 6th Interna-
tional Conference on Genetic Algorithms, San Francisco, CA, Morgan Kaufmann
Publishers (1995) 184–192

32. Reeves, C.: Landscapes, operators and heuristic search. Annals of Operational
Research 86 (1999) 473–490

33. Boese, K., Kahng, A., S., M.: A new adaptive multi-start technique for combina-
torial global optimizations. Operations Research Letters 16 (1994) 101–113

34. Mladenović, N., Hansen, P.: Variable neighborhood search. Computers and Oper-
ations Research 24 (1997) 1097–1100

Immune Algorithms with Aging Operators for
the String Folding Problem and the Protein

Folding Problem

V. Cutello, G. Morelli, G. Nicosia, and M. Pavone

Department of Mathematics and Computer Science,
University of Catania,

V.le A. Doria 6, 95125 Catania, Italy
{cutello, morelli, nicosia, mpavone}@dmi.unict.it

Abstract. We present an Immune Algorithm (IA) based on clonal
selection principle and which uses memory B cells, to face the protein
structure prediction problem (PSP) a particular example of the String
Folding Problem in 2D and 3D lattice. Memory B cells with a longer
life span are used to partition the funnel landscape of PSP, so to prop-
erly explore the search space. The designed IA shows its ability to tackle
standard benchmarks instances substantially better than other IA’s. In
particular, for the 3D HP model the IA allowed us to find energy minima
not found by other evolutionary algorithms described in literature.

Keywords: Clonal selection algorithms, aging operator, memory B cells,
protein structure prediction, HP model, functional model proteins.

1 The String and Protein Folding Problems

A d-dimensional lattice is a graph L = (V, E), where V ⊆ Zd, i.e. the vertices
are points in the Euclidean space with integer coordinates, and the set of edges
E ⊆ {(x,y) : x = (x1, . . . , xd),y = (y1, . . . , yd)) :

∑d
i=1 | xi − yi |= 1}. Let

now s =< s1, . . . , sj , . . . , sn > be a string of length n in the alphabet {0, 1}∗. By
folding of the string s we mean its embedding into the lattice L, i.e., a one-to-one
mapping f from the set {1 ≤ j ≤ n} to V such that for all 1 ≤ j ≤ n − 1 we
have (f(j), f(j +1)) ∈ E. The points f(j) and f(j +1) are called f −neighbors.
A folding can therefore be seen as a walk in the lattice. A folding of a string
s is a self-avoiding walk iff two characters si, sj with i �= j do not occupy the
same node of the lattice. Given a folding f of a string s, we can also introduce
a measure to “assess” the quality of f . We say that an edge (x,y) ∈ L is a
loss if the two vertices are not f − neighbors, and exactly one of them is the
image under f of a symbol sj = 1 Given a d-dimensional lattice L = (V, E),
a string s ∈ {0, 1}∗, and an integer k, the String Folding Problem (SFP)
is be defined as the problem of checking whether there exists a self-avoiding
folding of s into the lattice L, with k or fewer losses. Let now d = 2, and let
L = {p = (xp, yp) : 0 ≤ xp, yp ≤ n−1}. The neighborhood of a point p is defined

G.R. Raidl and J. Gottlieb (Eds.): EvoCOP 2005, LNCS 3448, pp. 80–90, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Immune Algorithms with Aging Operators for the SFP 81

as the set of points in the lattice L connected by a single edge to p, i.e. as the set
N (p) = {q ∈ L : |xp − xq| + |yp − yq| = 1}. One of the main characteristics of a
lattice “geometry” is the number of nodes directly connected to each node. Such
a number is usually the same for all nodes, and it is known as the coordination
number (Cn) of the lattice. For instance, in two dimensions we have honeycomb
lattice (Cn = 3), square lattice (Cn = 4), and triangular lattice (Cn = 6). In
three dimensions possible lattice geometries are the following: diamond lattice
(Cn = 4), cubic lattice (Cn = 6), and tetrahedral lattice (Cn = 12).

1.1 The Protein Folding Problem

The special case of the String Folding Problem with d = 2, and square
lattice (Cn = 4,) captures the protein folding problem in the 2D HP model [6].
Analogously for d = 3 and cubic lattice (Cn = 6) we have the 3D HP model [6].
The HP model was shown to be NP complete problem for 2D lattice [12] (the
NP-hardness is shown by reduction from an interesting variation of the planar
Hamilton cycle problem), and for 3D lattice [13] (the NP-hardness is shown by
reduction from a variation of the Bin Packing problem).

The HP model is a well-known approach to face the protein folding problem.
It models proteins as 2D or 3D self-avoiding walks (i.e. two residues cannot oc-
cupy the same side of the lattice) of � monomers on the square lattice. There are
only two monomer types: the H and the P monomers, respectively for hydropho-
bic and polar monomers. Then, the HP model reduces the alphabet from 20
characters to 2, where our protein sequences take the form of strings belonging
to the alphabet {H, P}+. Any feasible conformation in the HP model is assigned
a free energy level: each H–H topological contact, that is, each lattice nearest-
neighbor H–H contact interaction, has energy value ε ≤ 0, while all other contact
interaction types (H–P, P–P) contribute with δ ≥ 0 value to the total free energy.
In general, in the HP model the residues interactions can be defined as follows:
eHH = ε and eHP = ePH = ePP = δ. When ε = −1 and δ = 0 we have the typical
interaction energy matrix for the standard HP model [6], whereas when ε = −2
and δ = 1 we have the energy matrix for the shifted HP model [7, 17]. The native
state of a protein is a conformation that minimizes the free energy function and,
hence, the conformation that maximizes the number of contacts H–H.

In this paper we will present experimental results on the PFP, i.e. the SFP
using square lattice (Cn = 4,) and cubic lattice Cn = 6. In particular, we design
and test an Immune Algorithm (IA) using classical PFP instances of the Tortilla
2D HP Benchmarks1, 3D cubic lattice HP instances (taken from [8, 9]), and the
classical benchmarks for the Functional Model Proteins2, into 2D square lattice.
The 3D HP benchmark uses the same protein sequences of Tortilla 2D HP Bench-
marks using a 3D cubic lattice. We also note that each instance of the functional
model proteins benchmarks has a unique native fold with minimal energy value,
E∗, and an energy gap between E∗ and the first excited state (best suboptimal).

1 http://www.cs.sandia.gov/tech reports/compbio/tortilla-hp-benchmarks.html
2 http://www.cs.nott.ac.uk/∼nxk/HP-PDB/2dfmp.html

82 V. Cutello et al.

Finally we note that in the HP model, a protein is represented as a sequence in
a lattice in either two or three dimensions. The sequence is the set of coordinates
that give the position in the lattice of each ammino-acid of the protein. Given
the position in a lattice for the first ammino-acid of the protein, the sequence
can be also identified by a set of moves that allow to find the position in the
lattice of an ammino-acid using the position of the previous one. In this scenario
the folding is represented by a sequence of moves (directions) that allow to find
a sequence with the maximum number of topological contact.

2 The Clonal Selection Algorithm for the PFP

In this article we describe an improved version of a previously proposed immune
algorithm [14], that uses only two entity types: antigens (Ag) and B cells. The Ag
is the given input string s ∈ {0, 1}∗ of the SFP and it models the hydrophobic-
pattern of the given protein, that is a sequence s ∈ {H, P}�, where � is the protein
length. The B cells population, P (t) (of size k), represents a set of candidate
solution in the current fitness landscape at each generation t. The B cell, or B cell
receptor, for the 2D HP model is a sequence of directions r ∈ {F, L, R}�−1, with
F = Forward, L = Left, and R = Right, where each ri, with i = 2, . . . , �−1, is a
relative direction [11] with respect to the previous direction ri−1 (i.e., there are �−
2 relative directions) and r1 is the non-relative direction. Analogously, for the 3D
HP model, the B cell receptor is a sequence r ∈ {F, L, R, B, U, D}�−1, where B =
Backward, U = Up, and D = Down. The sequence r detects a conformation
suitable to compute the energy value of the hydrophobic-pattern of the given
protein. For the 2D protein instances we use the relative directions because their
performance are better with respect to absolute directions in the square lattice
[11], while for the 3D protein instances we use both coding: relative and absolute
directions to assess the effectiveness of the IA. The initial population, at time t =
0, is randomly generated in such a way that each B cell in P (0), represents self-
avoiding conformations. The function Evaluate(P (t)) computes the fitness value
F of each B cell x ∈ P (t). Then, F (x) = e is the energy of conformation coded in
the B cell receptor x, with −e being the number of topological contacts H − H
in the lattice (2D or 3D). The function Termination Condition() returns true if
a solution is found, or a maximum number of fitness function evaluations (Tmax)
is reached. The cloning operator, simply, clones each B cell dup times, producing
an intermediate population P clo of size Nc = k×dup. We tested our IA using the
combination of inversely proportional hypermutation and hypermacromutation
operators. In the Inversely Proportional Hypermutation operator the number of
mutations is inversely proportional to the fitness value. In particular, at each
generation t, the operator will perform at most the following mutations:

Mi(F (x)) =

{
((1 − E∗

−1) × β) + β), if F (x) = 0
((1 − E∗

F (x)) × β)), if F (x) > 0
(1)

with β = c × �. In this case, Mi(F (x)) has the shape of an hyperbola branch.
In the Hypermacromutation operator the number of mutations is determined

Immune Algorithms with Aging Operators for the SFP 83

by a simple random process. It tries to mutate each B cell receptor M times,
maintaining the self-avoiding property. The number of mutations M is at most
Mm(x) = j − i + 1, in the range [i, j], with i and j being two random integers
such that (i + 1) ≤ j ≤ �. The number of mutations is independent from the
fitness function F and any other parameter. The hypermacromutation operator,
for each B cell receptor, randomly selects a perturbation direction, either from
left to right (k = i, . . . , j) or from right to left (k = j, . . . , i).

Table 1. Pseudo–code of the Immune Algorithm for the PFP

Immune Algorithm(�, k, dup, τB , c)
t := 0; Nc := k ∗ dup;
P (t) := Initial Pop();
Evaluate(P (t));
while (¬ Termination Condition()) do

P (clo) := Cloning (P (t), Nc);
P (hyp) := Hypermutation (P (clo), c, �);
Evaluate(P (hyp));
P (macro) := Hypermacromutation (P clo);
Evaluate (P (macro));
(P (t)

a , P
(hyp)
a , P

(macro)
a) := Aging(P (t), P (hyp), P (macro), τB);

P (t+1) := (µ + λ)-Selection (P (t)
a , P

(hyp)
a , P

(macro)
a);

t := t + 1;
end while

In the hypermutation phase, we use the stop at the First Constructive Muta-
tion (FCM) strategy: if a constructive mutation occurs, the mutation procedure
will move on to the next B cell. We adopted such a mechanism to slow down (pre-
mature) convergence, exploring more accurately the search space. Formally, the
mutation operator acts on the population P (clo), where each B cell is a feasible
candidate solution, i.e. it is a self-avoiding walk, generating the new populations
P (hyp) and P (macro). In 2D lattice, given a protein conformation sequence R,
the mutation operator randomly selects a direction rj , with 1 ≤ j ≤ � − 1, or a
subsequence Rij =< ri, ri+1, . . . , rj−1, rj >, with i > 1 and j ≤ � − 1. For each
relative direction D = rj , a new direction D′ �= D ∈ {F, L, R} is randomly se-
lected. If the new conformation is again self-avoiding then the operator accepts
it, otherwise the procedure repeats the process with a new and last direction
D′′ �=< D, D′ >∈ {F, L, R}.

Aging. The aging process reflects the attempt to benefit from modelling the
limited life spans of B cells and longer life spans of Memory B cells. Starting
from this basic observation, the aging operator eliminates old B cells from the
populations P (t), P (hyp) and P (macro), so to avoid premature convergence. The
parameter τB (and τBm

for the memory B cells) sets the maximum number of

84 V. Cutello et al.

generations allowed to B cells to remain in the population. When a B cell is τB+1
old (or τBm

+ 1 old) it is erased from the current population, no matter what
its fitness value is. We call this strategy, static pure aging. During the cloning
expansion, a cloned B cell takes the age of its parent. After the hypermutation
phase, a cloned B cell which successfully mutates, i.e. with a better fitness value,
will be considered to have age equal to 0. Thus, an equal opportunity is given
to each “new genotype” to effectively explore the fitness landscape. We note
that for τB greater than the maximum number of allowed generations, the IA
works essentially without aging operator. In such a limit case the algorithm uses
a strong elitist selection strategy. Aging is a new operator that causes a turn-
over in the populations of the IA. Its goal is to generate diversity and to avoid
getting trapped into local minima. It is an operator inspired by the biological
immune system where there is an expected mean life for the B cell [15], and it
is, in general, problem- and algorithm-independent. After clonal expansion and
aging phase, a new population P (t+1), of k B cells, for the next generation t+1,
is obtained by selecting the best B cells which “survived” the aging operator,
from the populations P (t), P (hyp) and P (macro). No redundancy is allowed: each
B cell receptor is unique, i.e. each genotype is different from all other genotypes.
If only k′ < k B cells survived, new randomly created B cells (with age = 0)
are added by the Elitist Merge function into the population (the Birth phase). In
general, the selection operator chooses the k best elements from both parent and
offspring B cells sets, thus guaranteeing monotonicity in the evolution dynamic.
In table 1 we show the pseudo-code of the proposed Immune Algorithm.

0E

*E

E’

τ
B τ

τ
B

τ
B

0E

EFP

ESP

*E

E’

Bm

Fig. 1. Typical funnel landscape for the PSP problem (left plot); partitioning of the
funnel landscape in three region using memory B cells with two aging parameter values,
τB , and τBm

2.1 Partitioning the Funnel Landscape Using Memory B Cells

The proposed IA uses memory B cells to better handle the space of solutions and
improve the performance, for the protein structure prediction problem. We have
not tested its performance on general instances of the String Folding Problem.
One characteristic feature of the PSP problem is its rugged funnel landscape
(see fig.1 on the left), where the number of feasible conformations decreases
with low free energy values, i.e. many conformations have high energy and few
have low energy. Thus, very likely, we could get trapped in a local minimum.

Immune Algorithms with Aging Operators for the SFP 85

Starting from this simple topological observation we used memory B cells to
partition the funnel landscape into three regions. Each partition is obtained
using two threshold energy values: if the protein native fold has energy value
E∗ we have Elevel = −E∗ + 1 energy levels, thus the boundary of the first
partition and secondary partition are respectively EFP = −(Elevel × 0.67) and
ESP = −(Elevel × 0.85). Theoretical findings [3] and experimental results (not
reported in this paper), show that the hardest region to search is the middle one.
It is typically rugged with many local minima. So we apply memory B cells only
to such a region. Conformations whose energy value is in the middle region, are
allowed to maturate.

-8

-7

-6

-5

-4

-3

-2

-1

 0

 0 20 40 60 80 100

F
itn

es
s

Generations

 Legend
 Memory B cell’s avg fitness
 Pop’s avg fitness
 best fitness

 0

 2

 4

 6

 8

 10

 10 20 30 40 50 60 70 80 90 100

Generations

Fig. 2. The best fitness value, average fitness function values of memory B cells and P (t)

versus generations on protein sequence Seq2, with parameter d = 10, dup = 2, τB = 5
and τBm = 10. In the inset plot we report the number of memory B cells versus
generations

In figure 2 we show memory B cells dynamic. We set the minimal population
size value d = 10, with dup = 2, τB = 5 and τBm

= 10. All curves are averaged
on 30 independent runs. We plot the best fitness value, the average fitness of
P (t) and memory B cell populations, whereas in the inset plot we show as change
the number of memory B cells with respect to generations.

3 Experimental Results

To assess the overall performance of the new version of the IA using memory B
cells we tested it using the well-known tortilla benchmarks in the standard 2D
and 3D HP model and the classical protein instances for the Functional Model
Proteins.

3.1 HP Model in 2D Square Lattice

In table 2 we compare our improved IA with the previous versions, respectively
IA with Hypermacromutation Operator only (with and without elitism) [4],
and IA with Inversely Proportional Hypermutation and Hypermacromutation

86 V. Cutello et al.

Table 2. IA with memory B cells compared to other types of IA. Results averaged on
30 independent runs

Macro with Elit. Macro without Elit. Inv.Prop.+Macro IA with mem.
No. � E∗ SR AES SR AES SR AES SR AES
1 20 -9 96.67 20508.9 100 25418.8 100 14443.7 100 15439.6
2 24 -9 100 37659.7 100 39410.9 100 39644.1 100 46034.9
3 25 -8 96.67 58905.3 100 79592.1 100 95147 100 99865.7
4 36 -14 36.67 310291.4 16.67 466176.4 23,33 388323,4 100 2032504
5 48 -23 3.33 277454 6.67 483651.5 (b.f. -22) // 56.67 2403985.3
6 50 -21 53.33 459868 16.67 469941.2 53.33 538936.4 100 1011377.4
7 60 -36 (b.f. -35) // (b.f. -34) // (b.f. -34) // (b.f. -35) //
8 64 -42 (b.f. -39) // (b.f. -36) // (b.f. -39) // (b.f. -39) //
9 20 -10 96.67 27719.14 100 27852.1 100 17293.9 100 20135.4

operators [14]. Comparisons were done in terms of Success Rate (SR) and Aver-
age number of Evaluations to Solution (AES). The IA used standard parameter
values: k = 10, dup = 2, c = 0.4, as described in [14] while the standard B cells
have aging parameter τB = 5 and the memory B cells τBm = 10.

Table 2 shows that the improved IA is comparable on the simplest protein in-
stances to the previous IA versions, and outperforms them on the hard instances.
Indeed, the new IA obtained SR = 100 on the Seq4 and Seq6, and SR = 56.67
on the Seq5, where the other versions failed. For the hardest instances the new
IA obtained the lowest energy values. These results show that partitioning the
landscape in three groups, is an effective approach for the PSP in the standard
2D HP model.

3.2 HP Model in 3D Cubic Lattice

In the 3D cubic lattice, each point has 6 different neighbors and 5 available loca-
tions. We use two different schemes of moves (absolute and relative directions)
to represent and embed a protein in the lattice. The relative encoding has been
described in section 2: the residues direction are relative to direction of the pre-
vious move, while in the absolute directions encoding the residues direction are
relative to the axes defined by the lattice. Both for the absolute and relative
coding not all moves give a feasible conformation. In our work we force the self-
avoidance constraint so each set of moves will correspond to a feasible sequence
(feasible conformation). Concerning the experimental results, for all considered
instances the IA (working with feasible solutions) has found the known mini-
mum value and for all instances the found mean value is lower than the results
obtained in [9] using Evolutionary Algorithms (EAs) working on Feasible-Space.
For several sequence presented in [9], as shown in table 3, we have found new
best lowest energy values for 3D protein sequences 5, 7, and 8. The IA used
the standard parameter values: k = 10, dup = 2, c = 0.4, as described in [14],
B cells have aging parameter τB = 5 and the memory B cells τBm

= 10. For
the experimental protocol we adopt the same values used in [9]: 50 independent
runs and a maximum number of evaluations equal to 105. In [9] the author does
not use the SR and AES values as quality metrics, but the following parameters:
Best found solution (Best), mean and standard deviation (σ). We designed an

Immune Algorithms with Aging Operators for the SFP 87

Table 3. Results of the IA for the 3D HP model

Absolute Encoding Relative Encoding
F-EA IA F-EA IA

Seq. � Best Mean σ Best Mean σ Best Mean σ Best Mean σ
1 20 -11 -10.32 0.61 -11 -11 0 -11 -9.84 0.86 -11 -10.90 0.32
2 24 -13 -10.90 0.98 -13 -13 0 -11 -10.00 0.87 -13 -12.22 0.65
3 25 -9 -7.98 0.71 -9 -9 0 -9 -8.64 0.69 -9 -8.88 0.48
4 36 -18 -14.38 1.26 -18 -16.76 1.02 -18 -13.72 1.41 -18 -16.08 1.02
5 48 -25 -20.80 1.61 -29 -25.16 0.45 -28 -18.90 2.08 -28 -24.82 0.71
6 50 -23 -20.20 1.50 -23 -22.60 0.40 -22 -19.06 1.46 -23 -22.08 1.43
7 60 -39 -34.18 2.31 -41 -39.28 0.24 -38 -32.28 3.09 -41 -39.02 0.50
8 64 -39 -33.01 2.49 -42 -39.08 0.95 -36 -30.84 2.55 -42 -39.07 1.20

IA which uses a Penalty strategy and a Repair-based approach as reported in
[9] which obtained similar experimental results to [9] (not shown due to space
limitation). The used penalty strategy is based on the fact that not all moves of
a conformation maintain the self-avoiding property; when a move does not sat-
isfy the self-avoiding constraint, the energy value assigned to the conformation
is increased of a penalty coefficient and, also, the aminoacid involved in a colli-
sion will be not considered in H-H contact. The repair strategy is applied, after
the HyperMutation and HyperMacroMutation phases, on each conformation of
the populations that contains a collision, and starting the process from the last
collision found. Let i be the collision position, the repair process determines a
free position L in the lattice such that it is possible to reach the position i + 1
with only one move. Moreover, either L is reachable directly from the position
i − 1 (in this case i will move to position L) or there exists another free position
C, reachable from i− 2 with only one move, and from which is possible to reach
L, with one move (in this case i will move to position L and i − 1 to position
C). In both cases, the moves of the conformation will be modified according to
the new coordinates. Such an IA proved to be very efficient for both absolute
and relative encoding, and allowed us to find energy minima not found by other
EAs working in feasible spaces and described in literature [9].

3.3 Functional Model Proteins in 2D Square Lattice

We show here the experimental results on the classical benchmarks for the Func-
tional Model Proteins using memory B cells. In table 4 we report the experimen-
tal results obtained by our IA using different life span values for the memory B
cells: (τB = 3, τBm = 5), (τB = 4, τBm = 8), and (τB = 5, τBm = 10). In the
last two columns we report the performance of an IA without memory B cells
using the standard parameter values: k = 10, dup = 2, c = 0.4, τB = 5. All the
experimental results reported are averaged on 30 independent runs. Like in the
standard HP Model, the proposed IA obtained the best results using the pair
(τB = 5, τBm = 10) values. However, for the functional model proteins the IA
without memory B cells is more effective. The Table shows how the IA without
memory B cells outperforms the IA with memory B cells in term of SR and AES,
obtaining SR = 100 values on all functional model protein instances, except for
the SeqC, where the algorithm reaches SR = 56.67 with mean = −15.13, and

88 V. Cutello et al.

Table 4. Improved IA performances using memory B cells (τB , τBm) in the Functional
Model Proteins. Each protein instance has � = 23 monomers

τB = 3, τBm = 5 τB = 4, τBm = 8 τB = 5, τBm = 10 τB = 5
No. E∗ SR AES SR AES SR AES SR AES
A -20 100 253393 100 60664.8 100 38586.63 100 32847.7
B -17 100 41189.7 100 258387 100 28434.9 100 17526.7
C -16 16.67 31311300 36.67 2448820 43.33 2583300.8 56.67 2667430
D -20 100 568485 100 261439.1 100 130849 100 128015.1
E -17 100 16726.3 100 17586.13 100 20834.46 100 12095.3
F -13 96.67 1083238.6 100 711828.33 100 483126.76 100 332938.5
G -26 100 1171346.4 100 936008.9 100 588057.5 100 584179.8
H -16 100 107131 100 54432.7 100 42562.53 100 38262.6
I -15 100 506368 100 75273.8 93.33 907962.4 100 281720.8
J -14 100 226564.87 100 141515.23 100 100085.43 100 104155.4
K -15 100 43327.2 100 82361.1 100 71903.1 100 27743.7

σ = 0.65. This confirm the optimal searching ability and diversity generation of
the pure aging operator. Finally, in table 5 we show the number of energy evalu-
ations required by the best run (in [10] the authors use only this metric to assess
the effectiveness of their algorithm) to reach the optimum or a sub-optimum en-
ergy value. We compare the performances of the IA with and without memory
B cells with the state of art algorithm for the functional model proteins, the
Multimeme Algorithm [10]. Comparing the results both versions of the IA, with
or without memory B cells outperforms the Multimeme Algorithm on all the
protein instances, in particular the IA without memory B cells obtains the best
results (9 instances over 11).

Table 5. Comparison of best runs for MultiMeme Algorithm (MMA) [10] and IA, with
and without memory B cells for the Functional Model Proteins. Each protein instance
has � = 23 monomers

No. E∗ MMA IA without memory B cells IA with memory B cells
1 -20 15170 3372 3643
2 -17 61940 578 1488
3 -16 132898 319007 100234
4 -20 66774 4955 20372
5 -17 53600 1047 1956
6 -13 32619 2828 7482
7 -26 114930 10061 37841
8 -16 28425 1818 1937
9 -15 25545 3845 10399
10 -14 111046 2847 3462
11 -15 52005 3176 1007

4 Conclusions

In this paper we propose an improved version of an IA for the protein structure
prediction problem, in the standard 2D and 3D HP model and the Functional
Model Proteins. In [4, 14] the results obtained for the 2D HP model suggested
that the previous IA version was comparable to and, in many protein instances,

Immune Algorithms with Aging Operators for the SFP 89

outperformed folding algorithms which are present in literature. The results
obtained in this research work established the new IA for the 2D HP model
as the state-of-art algorithm for this discrete lattice model. Moreover, for the
3D HP model the IA allowed us to find energy minima not found by other
EAs described in literature. Finally, for the functional model protein, the IA,
with or without memory B cells, outperforms the Multimeme Algorithm on
all the protein instances. Our algorithm proved to be very effective and very
competitive, compared to the existing state-of-art EAs.

We intend to analyze now the impact, on the efficiency and efficacy of the
Immune Algorithm, of the parameters τB and τBm . We also believe that it could
be worthwhile to implement a mutation rate dependent upon the B cells age.

Acknowledgements. we are grateful to the anonymous referees for their valu-
able comments.

References

1. Cutello V., Nicosia G.: The clonal selection principle for in silico and in vitro
computing. In L. N. De Castro and F. J. Von Zuben editors, Recent Developments
in Biologically Inspired Computing. Idea Group Publishing, Hershey, PA (2004).

2. De Castro L. N., Von Zuben F. J.: Learning and optimization using the clonal
selection principle. IEEE Trans. Evol. Comput., 6(3), pp. 239–251 (2002).

3. Plotkin S. S., Onuchic J. N.: Understanding protein folding with energy landscape
theory. Quarterly Reviews of Biophysics, 35(2), pp. 111-167 (2002).

4. Cutello V., Nicosia G., Pavone M: An immune algorithm with hyper-
macromutations for the 2D hydrophilic-hydrophobic model. CEC’04, 1, pp. 1074–
1080, IEEE Press (2004).

5. Cutello V., Nicosia G., Pavone M.: A hybrid immune algorithm with information
gain for the graph coloring problem. GECCO’03, Lectures Notes in Computer
Science, 2723, pp. 171–182 (2003).

6. Dill K. A.: Theory for the folding and stability of globular proteins. Biochemistry,
24(6), pp. 1501–1509 (1985).

7. Hirst J. D.: The evolutionary landscape of functional model proteins. Protein En-
gineering, 12(9), pp. 721–726 (1999).

8. Unger R., Moult J.: Genetic algorithms for protein folding simulations. J. Molecular
Biology, 231(1), pp. 75–81 (1993).

9. Cotta C.: Protein Structure Prediction using Evolutionary Algorithms Hybridized
with Backtracking. IWANN ’03, Lecture Notes in Computer Science, 2687, pp.
321–328, (2003).

10. Krasnogor N., Blackburne B. P., Burke E. K., Hirst J. D.: Multimeme algorithms
for protein structure prediction. PPSN VII, Lectures Notes in Computer Science,
2439, pp. 769–778 (2002).

11. Krasnogor N, Hart W. E., Smith J., Pelta D. A.: Protein structure prediction with
evolutionary algorithms. GECCO’99, pp. 1596–1601 (1999).

12. Crescenzi P., Goldman D., Papadimitriou C., Piccolboni A., Yannakakis M.: On
the complexity of protein folding. Journal of Computational Biology, 5(3), pp.
423–466 (1998).

13. B. Berger and T. Leighton, “Protein folding in the hydrophobic-hydrophilic model
is np complete,” J. Comput. Biol., vol. 5, pp. 27–40, 1998.

90 V. Cutello et al.

14. Cutello V., Nicosia G., Pavone M.: Exploring the capability of immune algo-
rithms: A characterization of hypermutation operators. ICARIS’04, Lectures Notes
in Computer Science, 3239, pp. 263–276 (2004).

15. Seiden P. E., Celada F.: A model for simulating cognate recognition and response
in the immune system. J. Theor. Biology, 158, pp. 329–357 (1992).

16. Shmygelska A., Hoos H. H.: An Improved Ant Colony Optimization Algorithm for
the 2D HP Protein Folding Problem. Proc. Conf. on Artificial Intelligence, Lectures
Notes in Computer Science, 2671, pp. 400–417 (2003).

17. Blackburne B. P., Hirst J. D.: Evolution of functional model proteins. J. Chemical
Physics, 115(4), pp. 1935–1942 (2001).

18. Chan H. S., Dill K. A.: Comparing folding codes for proteins and polymers. Pro-
teins: Struct., Funct., Genet., 24, pp. 335–344 (1996).

Multiobjective Quadratic Assignment Problem
Solved by an Explicit Building Block Search

Algorithm – MOMGA-IIa

Richard O. Day and Gary B. Lamont

Department of Electrical Engineering,
Graduate School of Engineering & Management,

Air Force Institute of Technology,��

WPAFB (Dayton) OH, 45433, USA
{Richard.Day, Gary.Lamont}@afit.edu

Abstract. The multi-objective quadratic assignment problem (mQAP)
is an non-deterministic polynomial-time complete (NPC) problem with
many real-world applications. The application addressed in this paper
is the minimization of communication flows in a heterogenous mix of
Organic Air Vehicles (OAV). A multi-objective approach to solving the
general mQAP for this OAV application is developed. The combinatoric
nature of this problem calls for a stochastic search algorithm; more-
over, two linkage learning algorithms, the multi-objective fast messy ge-
netic algorithm (MOMGA-II) and MOMGA-IIa, are compared. Twenty-
three different problem instances having three different sizes (10, 20, and
30) plus two and three objectives are solved. Results indicate that the
MOMGA-IIa resolves all pareto optimal points for problem instances
< 20.

1 Introduction

The scalar quadratic assignment problem (QAP) was introduced in 1957 by
Koopmans and Beckmann. In 2002, Knowles and Corne extended the QAP to
be multi-objective and it became the multi-objective quadratic assignment prob-
lem (mQAP) [11]. Explicit Building Block (BB) search Algorithms are good at
solving a multitude of NPC problems [3, 10, 21], including the mQAP. This in-
vestigation illustrates our latest achievement in finding a better building block
builder by way of a good competitive template selection mechanism added into
the multi-objective fast messy GA (MOMGA-II) [22]. The new MOMGA-II is
called the MOMGA-IIa. MOMGA-IIa originated as a single objective messy GA

�� The views expressed in this article are those of the authors and do not reflect the
official policy of the United States Air Force, Department of Defense, or the U.S.
Government. The authors also wish to acknowledge the following individuals: Jesse
Zydallis for the use of his MOMGA-II code; Mark Kleeman, Todd Hack and Justin
Kautz for their persistent help and discussions.

G.R. Raidl and J. Gottlieb (Eds.): EvoCOP 2005, LNCS 3448, pp. 91–100, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

92 R.O. Day and G.B. Lamont

(mGA) and evolved into a multi-objective mGA called the MOMGA [6]. Many
different Multi-objective Evolutionary Algorithms (MOEAs) were produced dur-
ing this time period; however, the MOMGA is the only MOEA explicitly using
good BBs to solve problems – even the Bayesian optimization algorithm (BOA)
uses a probabilistic model to find good building blocks. The MOMGA has a pop-
ulation size limitation: as the BB size increases so does the population size during
the Partially Enumerative Initialization (PEI) phase. This renders the MOMGA
less useful on large problems. To overcome this problem, the MOMGA-II, based
on the single objective fmGA, was designed. The fmGA is similar to the mGA in
that it specifically uses BBs to find solutions; however, it requires smaller pop-
ulation sizes and has a lower run time complexity when compared to the mGA.
MOMGA-II includes many different repair, selection, and crowding mechanisms.
Unfortunately, the MOMGA-II is found to be limited when solving large prob-
lems [5]. This called for the development of basis function diversity measures
in the MOMGA-IIa which are designed for smart BB searching in both the
geno- and pheno-type domains. The problem under investigation is the mQAP.
Test instances used in this study for the mQAP were designed by Knowles and
Corne [12]. Results are compared with deterministic results (where available)
and previously published attempts at solving these test instances. This paper
begins with this introduction and then is followed by a description of the Organic
Air Vehicles (OAV) problem mapped to the mQAP problem domain. Next the
algorithm domain is presented. A short discussion of the deterministic approach
is also included in the algorithm domain discussion. This is followed by the de-
sign of experiments section which includes the resources and parameter settings.
Finally, results are presented and conclusions are drawn.

2 Problem Domain

Today, OAVs are operated in an independent role where they each have their
own mission and a single controller. Future operation of OAVs must include
collaboration and autonomous operation of a package (heterogeneous mix) of
OAVs. During flight operations of an autonomous package of OAVs, vehicles
must communicate in an efficient manner. Flight vehicle patterns play an im-
portant role in communication effectiveness (power consumption) during long
range missions. In this investigation, the communication and flight pattern of a
heterogeneous set of OAVs is mapped to the mQAP.

The QAP was originally designed to model a plant location problem [2].
Mapping the OAV problem into a QAP is accomplished with replacement. By
inserting OAVs for plants, flight formation positions for plant locations, and
communication traffic for supply flow, the OAVs problem is mapped directly
onto the QAP. The mQAP is similar to the scalar QAP1, with the exception of
having multiple types of flows coming from each object.

1 See http://www.seas.upenn.edu/qaplib/ for more info about the QAP.

Multiobjective Quadratic Assignment Problem 93

For example, the OAVs may use one communication channel for passing
reconnaissance information, another channel for target information, and yet an-
other channel for OAV operational messages. The end goal is to minimize all the
communication flows between OAVs. The mQAP2 is defined mathematically in
Equations 1 and 2.

minimize{C(π)} = {C1(π), C2(π), . . . , Cm(π)} (1)

Ck(π) = min
π∈P (n)

n∑

i=1

n∑

j=1

aijb
k
πiπj

, k ∈ 1..m (2)

where n is the number of objects/locations, aij is the distance between location
i and location j, bk

ij is the kth flow from object i to object j, πi gives the
location of object i in permutation π ∈ P (n), and ’minimize’ means to obtain
the Pareto front [12].

Many algorithm approaches have been used on the QAP. QAP researchers
can only optimally solve for problems that are of size < 20. Furthermore, problem
sizes of 15 are extremely difficult [2]. When feasible, optimal solutions are found
using branch and bound methods [8, 2]. However, since many real-world problems
are larger than 20 instances, other methods need to be employed in order to find a
good solution in a reasonable amount of time. The use of Stocastic Local Searches
and Ant Colonies has been explored. These have been found to do well when
compared to some of the best heuristics available for the QAP and mQAP [7, 15,
18]. Evolutionary algorithms have also been applied [17, 9]. Additionally, several
researchers have compared the performance of different search methods [20, 16].

3 Algorithm Domain

While many different algorithms have been used to solve the QAP [1, 13], only a
few have been applied to mQAP [10]. This investigation compares results found
by all attempts at solving the mQAP test instances developed in [12]. Table 1
list all multi-objective problem (MOP) instances solved in this investigation.
Unfortunately, some researchers do not have access to solutions found by their
algorithm, so a direct pareto front comparison cannot be made for a more accu-
rate differentiation between solution quality.

Knowles and Corne [11] collected results by running 1000 local searches from
each of 100 (for 2-objective instances) or 105 (3-objective instances) different
λ vectors, thus giving them ≈ 200000 records. This technique is an interest-
ing one; however, they do not include the actual data points found on their
pareto front. Also, we previously used a multi-objective evolutionary algorithm
(MOEA), MOMGA-II, to solve the problem [4]. The next section describes both
the MOMGA-II and MOMGA-IIa.

2 See http://dbk.ch.umist.ac.uk/knowles/mQAP/ for more info about the mQAP.

94 R.O. Day and G.B. Lamont

Table 1. Multi-objective problems numbered and listed according to size and number
of objectives. There are real like (#rl) and uniform (#uni) instances. The size of each
problem is indicated by the two digit number following the KC (KC##). The number
of objectives for each problem is indicated by the number preceeding the fl (#fl). Each
column list the sizes of MOPs used: 10, 20, and 30. The shaded area of the table is
identifying the MOPs with 3 objectives - others have 2 objectives

(MOP #) Name (size 10) (#) Name (size 20) (#) Name (size 30)
1 KC10-2fl-1rl 9 KC20-2fl-1rl 17 KC30-2fl-1r1
2 KC10-2fl-1uni 10 KC20-2fl-1uni 18 KC30-3fl-1rl
3 KC10-2fl-2rl 11 KC20-2fl-2rl 19 KC30-3fl-1uni
4 KC10-2fl-2uni 12 KC20-2fl-2uni 20 KC30-3fl-2rl
5 KC10-2fl-3rl 13 KC20-2fl-3rl 21 KC30-3fl-2uni
6 KC10-2fl-3uni 14 KC20-2fl-3uni 22 KC30-3fl-3rl
7 KC10-2fl-4rl 15 KC20-2fl-4rl 23 KC30-3fl-3uni
8 KC10-2fl-5rl 16 KC20-2fl-5rl

3.1 Extended Multi-objective fmGA (MOMGA-IIa)

The MOMGA-IIa is a multi-objective version of the fmGA that has the ability to
achieve a semi-partitioned search in both the genotype and phenotype domains
during execution. It is an algorithm that exploits “good” building blocks (BBs)
in solving optimization problems. These explicit BBs represent “good” informa-
tion in the form of partial strings that can be combined to obtain even better
solutions. The MOMGA-IIa algorithm executes in three phases: Initialization,
Building Block Filtering, and Juxtapositional Phase. See Figure 1 for diagram
of the program flow.

The algorithm begins with the Probabilistically Complete Initialization (PCI)
Phase where it randomly generates a user specified number of population mem-
bers. These population members are a specified chromosome length and each is
evaluated to determine its respective fitness values. Our implementation utilizes
a binary scheme in which each bit is represented with either a 0 or 1.

The Building Block Filtering (BBF) Phase follows by randomly deleting loci
and their corresponding allele values in each of the population member’s chro-
mosomes. This process completes once the length of the population member’s
chromosomes have been reduced to a predetermined BB size. These reduced
chromosomes are referred to as underspecified3 population members. In order
to evaluate population members that have become underspecified, competitive
templates (CTs) are utilized to fill in the missing allele values. Evaluation con-
sists of the partial string being overlayed onto a CT just prior to evaluation.
CTs are fully specified chromosomes that evolve as the algorithm executes. CT
replacement is done after each BB generation. In the MOMGA-II, future CTs
are updated with the best individuals found with respect to each objective func-
tion. However, the MOMGA-IIa selects a competent CTs that partitions both
the phenotype and genotype. This innovative balance is achieved through two
mechanisms: Orthogonal CT generation and Target Vector (TV) guidance. Or-
thogonal CT generation is used to partition the genotype space, while keeping a

3 An underspecified chromosome is chromosome where some, but not all locus positions
have an associated allele value.

Multiobjective Quadratic Assignment Problem 95

Start

Juxtapositional Phase

Probabilistic Com plete Initializations Phase

For ERA = min_era to

max_era

For curr_bs = min_bs to

max_bs

For curr_gen = 1

to max_gens

curr_gen > max_gen

CUT AND SPLICE

curr_gen <= max_gen

For i = 1 to primodial_gens

i =cut generation

i <=primordial_gens

curr_bs > max_bs

curr_bs <= max_bs

End
ERA = max era

ERA < max era

= Tournament Selection

k regular CTs, k inverse CTs, k
TVs, and n orthogonal CT

generation (based on Latin square)

Assign k regular CTs

from the new population

based on a balance of

normalized distance

from TVs and PF

dominance. Set k
inverse, and n

orthogonal templates

based on assigned CTs

k is the product of number of
objectives multiplied by
number of identified
competitive templates (CTs).

Target Vectors (TVs) partition
the phenotype (fitness) domain
by generating vectors running
from the origin to positive
normalized fitness space and
smartly partition the Objective
space.

Orthogonal CT generation - a
bank of vectors are generated
using a Latin square based on
the all zeros vector (this set does
not change). When the regular
set of CTs is updated, one
regular CT is randomly selected
from which to build the set of
orthogonal CTs based on the
bank of Latin squared vectors.

i > primordial_gens

Building Block
Filtering Phase

Fig. 1. This figure illustrates the MOMGA-IIa program flow. Note the placement of
each phase and where tournament selection is performed. Additionally, the MOMGA-
IIa exploits and partitions in both the phenotype and genotype domains by updating
and generating regular, inverse, and orthogonal competitive templates. See Section 3.1
for a detailed description of the algorithm

good partition in the phenotype space requires TV guidance. TVs are normalized
fitness markers that capture one solution per vector for future CT replacement.
In the MOMGA-IIa, target vectors are used in a manner to divide the normal-
ized fitness space of pareto-front members and select a distribution of CTs that
fall nearest to each TV. Also, an orthogonal bank of chromosomes is used to
filter a randomly selected CT through for creation of a set of orthogonal CTs.

The BBF process is alternated with a selection mechanism to keep only the
strings with the “best” BBs found, or those with the best number of fitness

96 R.O. Day and G.B. Lamont

values. In the case of a tie, where two strings each have an equal number of better
fitness values (i.e. each have m

2 “best” fitness values), the string is randomly
selected between the two. It should be noted that the MOMGA-IIa has a more
complex selection mechanism than MOMGA-II because it maintains more fitness
values per solution. In the MOMGA-II each string has m fitness values, while
in MOMGA-IIa each string has f = (c ∗ m + i + o) ∗ m fitness values associated
with it – corresponding to the m objective functions to optimize, c competitive
templates, i inverse templates (equal to c ∗ m), and o orthogonal templates.

Finally, the juxtapositional phase uses the BBs found through the BBF phase
and recombination operators to create chromosomes that are fully specified. A
chromosome is referred to as fully specified if it is not missing any locus positions,
or in other words, does not need to use the CT for evaluation.

The MOMGA-IIa has an outer and inner loop that must be completely iter-
ated through using each BB size and epoch before terminating.

3.2 Non-stochastic Approaches

Two different approaches are discussed in this section. The first is the type of
approach used by Knowles and Corne in [12]. The second approach is simply our
exhaustive search algorithm.

Local Search Approach: The local search (LS) method employed for the
mQAP problem is where positions of facilities (or objects) are switched [11].
The new positioning is kept if the new configuration yields a lower fitness value.
This search method works for solving the QAP [19]; however, the mQAP makes
employing a strict LS approach difficult for the deceptive hyperplanes that ac-
company multi-objective problems. Specifically, a researcher is faced with how to
initialize the LS method. Knowles and Corne concluded that the starting points
would be randomly selected out of a basin of attraction [12, 19]. After a new
point is picked, the LS method is applied for a specified number of generations.
This is the technique used by [12] finding most, if not all, pareto front (PF)
solutions. To our knowledge, the solutions for the larger problems have not been
published, making comparisons difficult.

Complete Iterative Approach: The complete iterative approach is an ex-
haustively deterministic approach that can be accomplished on MOPs 1∼8 (See
Table 1). The number of solutions that must be evaluated is calculated by Equa-
tion 3 where n is the number of facilities and k is the number of locations.
Consequently, for the mQAP, k = n.

x ≈ n!
(n − k)!

, where k = n this reduces to n! (3)

Function calculations for each MOP are m ∗ 10!, m ∗ 20!, and m ∗ 30! or m ∗
3628800, ≈ m∗2.43e18 and ≈ m∗2.65e32. These numbers are not to be confused
with the search space size. For each search space solution, m calculations must
occur.

Multiobjective Quadratic Assignment Problem 97

Table 2. System Configuration

Cluster 1 (TAHOE) Cluster 2 (ASPEN) Cluster 3 (Polywells)

Fedora Core 2/Raid 5 Redhat Linux 9.0/Raid 5 Redhat Linux 7.3/Raid 5
Dual Opteron 2.2 ghz Ath XP 3000+ 2.1ghz Ath XP 2800+ 2.0ghz

RAM 4 GByte/Cache(L1 I 64,D 64/L2 1024)KB 1 GByte/(64,64/512)KB 1 GByte/(64,64/512)KB
Crossbar Switch/Gb Ethernet Crossbar Switch/Fast Ethernet Crossbar Switch/Gb Ethernet

65 node,2 CPUS/node 48 node,2 CPUS/node 16 node,1 CPU/node

Table 3. Summary of Results for all experiments. Included in this table are the number
of optimal pareto front points (when known), and the number of PF points found
by each algorithm {MOMGA-IIa (M-IIa), MOMGA-II (M-II), and LS}. u indicates
that it is unknown how many dominated solutions this particular algorithm found
when compared to the best PF solutions set found by all the algorithms considered. In
addition, diameter (dia) and entropy (ent) is calculated for M-II’s and M-IIa’s solutions

mQAP Number, Size 10, (Deterministic PF True Points)
Algorithm True PF Pts Found/Total PF pts Found

1(58) 2(13) 3(15) 4(1) 5(55) 6(130) 7(53) 8(49)
LS 58/58 13/13 15/15 1/1 55/55 130/130 53/53 49/49
M-II 57/59 13/13 11/17 0/3 50/53 122/122 25/34 36/45
M-IIa† 58/58 11/12 15/15 1/1 55/55 130/130 53/53 49/49
†Time(mins) 21.5 62.3 29.8 10.9 45.5 68.1 45.4 15.8

mQAP Number, Size 20
9 10 11 12 13 14 15 16

LS u/541 u/80 u/842 u/19 u/1587 u/178 u/1217 u/966
M-II 0/17 0/24 0/12 0/5 0/29 0/51 0/28 0/17
(dia/ent) 11.6/0.43 11.4/0.48 11.01/0.45 7.2/0.25 12.1/0.54 12.3/0.55 10.39/0.43 11.76/0.46

M-IIa† 36/36 33/33 31/31 7/7 63/63 139/139 48/48 44/44
(dia/ent) 13.0/0.58 13.7/0.69 11.17/0.47 3.67/0.16 14.1/0.73 15.5/0.88 12.76/0.60 11.37/0.50

†Time(days) 9.8 8.3 8.3 8.3 8.8 8.3 8.3 1.7
mQAP Number, Size 30

17 18 19 20 21 22 23
LS - u/1329 u/705 u/1924 u/168 u/1909 u/1257
M-II n/a 0/507 0/552 10/552 0/104 0/795 0/755
(dia/ent) - 24.1/0.79 20.1/0.50 24.3/0.78 22.3/0.64 21.2/0.57 20.4/0.56

M-IIa† 40/40 507/507 552/552 542/552 104/104 795/795 755/755
(dia/ent) 17.2/0.42 23.9/0.80 23.2/0.76 23.1/0.74 21.9/0.59 24.0/8.11 25.1/0.90

†Time(days) 8 ∼8 8 8 8 8 8

4 Design of Experiments

Experiments for the MOMGA-II were conducted on Clusters 2 and 3 listed
in Table 2. Experiments for the MOMGA-IIa were done on Cluster 1 in the
same table. The MOMGA-II was run 10 times in parallel and the data was
then processed incrementally so as to show solutions gradually being found. The
MOMGA-IIa ran 10 experiments in serial and kept one pool of PF solutions at
all times. The MOMGA-II was run using BB sizes 1 through (10, 10, and 10)

98 R.O. Day and G.B. Lamont

while the MOMGA-IIa was run using BB sizes 1 through (10, 15, and 20) for
each MOP sized (10, 20, and 30). These experiments are run to determine how
well each algorithm can solve the MOPs in this study. This research group’s
hypothesis is that the MOMGA-II’s CT generation and evolution mechanism
limited the exploration and building block finding ability of the algorithm, while
the MOMGA-IIa now has the enhancement required to overcome this limitation.

5 Results and Analysis

Overall we are pleased with results of the MOMGA-IIa. In the MOP of size
less than 20, the MOMGA-IIa found all true PF points available in a short
amount of time (under 16 minutes in some cases) - the MOMGA-II did not.
Additionally, in MOPs of size 20, the MOMGA-IIa solutions dominated the
MOMGA-II’s in every case (Illustrated by Figure 2). Finally, in MOPs of size 30
the MOMGA-IIa found more solutions than the MOMGA-II and were found to
be dominate in all except for the MOP 20 case where 10 solutions found by the
MOMGA-II are non-dominated. The reader should note also that MOPs of size
20 and 30 all took several days to solve. As far as the results for the LS method,
these results are good in quantity, but without the actual data to compare we
cannot claim that either algorithm LS or MOMGA-IIa is better at solving these
MOPs. PF points found for each MOP will soon be posted on our web site,

KC20-2fl-3uni (M OP 14)

800000

850000

900000

950000

1000000

1050000

1100000

1150000

800000 850000 900000 950000 1000000 1050000 1100000 1150000 1200000 1250000

O bjective 1

O
b
je
c
ti
v
e
 2

M O M GA-Iia

M OM GA-II

Fig. 2. Results for MOP 14 illustrating that the MOMGA-IIa’s CT generator is supe-
rior at fining good BBs

Multiobjective Quadratic Assignment Problem 99

http://en.afit.edu/agct. We conclude that the reason for the dominance of
the MOMGA-IIa over the MOMGA-II is due to the CT generation and selection
mechanism. In addition, MOMGA-II’s limited number of CTs might be causing
it to destroy some good building blocks. Lastly, the CT selection mechanism for
the MOMGA-IIa allows for better multi-objective building blocks to be found
- thus the MOMGA-IIa is a better building block builder. This phenomena is
reflected in the data for each MOP.

Future Analysis: Further analysis of the MOMGA-IIa in solving the mQAP is
required including a comparison to recent algorithm designs to solve the Biob-
jective QAP using Ant Colony Optimization (ACO) by Luis Paquete [14]. In
addition, a memetic adjustment to MOMGA-IIa by adding a local search onto
the end of the Juxtapositional Phase should be evaluated.

References

1. R.E. Burkard, S.E. Karisch, and F. Rendl. A quadratic assignment problem library.
Journal of Global Optimization, pages 391–403, 1997.

2. Eranda Çela. The Quadratic Assignment Problem - Theory and Algorithms. Kluwer
Academic Publishers, Boston, MA, 1998.

3. Richard O. Day. A multiobjective approach applied to the protein structure predic-
tion problem. Ms thesis, Air Force Institute of Technology, March 2002. Sponsor:
AFRL/Material Directorate.

4. Richard O. Day, Mark P. Kleeman, and Gary B. Lamont. Solving the Multi-
objective Quadratic Assignment Problem Using a fast messy Genetic Algorithm.
In Congress on Evolutionary Computation (CEC’2003), volume 1, pages 2277–
2283, Piscataway, New Jersey, December 2003. IEEE Service Center.

5. Richard O. Day and Gary B. Lamont. Multi-objective fast messy genetic algorithm
solving deception problems. Congress on Evolutionary Computation; Portland,
Oregon, 4:1502–1509, June 19 - 23 2004.

6. Carlos M. Fonseca and Peter J. Fleming. Genetic Algorithms for Multiobjective
Optimization: Formulation, Discussion and Generalization. In Stephanie Forrest,
editor, Proceedings of the Fifth International Conference on Genetic Algorithms,
pages 416–423, San Mateo, California, 1993. University of Illinois at Urbana-
Champaign, Morgan Kauffman Publishers.

7. L. M. Gambardella, E. D. Taillard, and M. Dorigo. Ant colonies for the quadratic
assignment problems. Journal of the Operational Research Society, 50:167–176,
1999.

8. Peter Hahn, Nat Hall, and Thomas Grant. A branch-and bound algorithm for the
quadratic assignment problem based on the hungarian method. European Journal
of Operational Research, August 1998.

9. Jorng-Tzong Horng, Chien-Chin Chen, Baw-Jhiune Liu, and Cheng-Yen Kao. Res-
olution of quadratic assignment problems using an evolutionary algorithm. In
Proceedings of the 2000 Congress on Evolutionary Computation, volume 2, pages
902–909. IEEE, IEEE, 2000.

10. Mark P. Kleeman. Optimization of heterogeneous uav communications using the
multiobjective quadratic assignment problem. Ms thesis, Air Force Institute of
Technology, March 2004. Sponsor AFRL.

100 R.O. Day and G.B. Lamont

11. Joshua Knowles and David Corne. Towards Landscape Analyses to Inform the
Design of Hybrid Local Search for the Multiobjective Quadratic Assignment Prob-
lem. In A. Abraham, J. Ruiz del Solar, and M. Koppen, editors, Soft Computing
Systems: Design, Management and Applications, pages 271–279, Amsterdam, 2002.
IOS Press. ISBN 1-58603-297-6.

12. Joshua Knowles and David Corne. Instance generators and test suites for the multi-
objective quadratic assignment problem. In Carlos Fonseca, Peter Fleming, Eckart
Zitzler, Kalyanmoy Deb, and Lothar Thiele, editors, Evolutionary Multi-Criterion
Optimization, Second International Conference, EMO 2003, Faro, Portugal, April
2003, Proceedings, number 2632 in LNCS, pages 295–310. Springer, 2003.

13. Eliane Maria Loiola, Nair Maria Maia de Abreu, Paulo Oswaldo Boaventura-Netto,
Peter Hahn, and Tania Querido. An analytical survey for the quadratic assignment
problem. Technical report, Council for the Scientific and Technological Develop-
ment, of the Brazilian gov, 2004.

14. M. López-Ibáñez, L. Paquete, and T. Stützle. On the design of ACO for the
biobjective quadratic assignment problem. In M. Dorigo, M. Birattari, C. Blum,
L. Gambardella, F. Montada, and T. Stützle, editors, Proceedings of the Fourth
International Workshop on Ant Colony Optimization (ANTS 2004), volume 3172
of Lecture Notes in Computer Sience. Springer Verlag, 2004. (c©Springer Verlag).

15. Vittorio Maniezzo and Alberto Colorni. The ant system applied to the quadratic
assignment problem. IEEE Transactions on Knowledge and Data Engineering,
11:769–778, 1999.

16. Peter Merz and Bernd Freisleben. A comparison of memetic algorithms, tabu
search, and ant colonies for the quadratic assignment problem. In Proceedings of
the 1999 Congress on Evolutionary Computation, 1999. CEC 99, volume 3, pages
1999–2070. IEEE, IEEE, 1999.

17. Peter Merz and Bernd Freisleben. Fitness landscape analysis and memetic algo-
rithms for the quadratic assignment problem. IEEE Transactions on Evolutionary
Computation, 4:337–352, 2000.

18. L. Paquete, M. Chiarandini, and T. Stützle. Pareto local optimum sets in the
biobjective traveling salesman problem: An experimental study. In X. Gandibleux,
M. Sevaux, K. Sörensen, and V. T’kindt, editors, Metaheuristics for Multiobjec-
tive Optimisation, volume 535 of Lecture Notes in Economics and Mathematical
Systems. Springer Verlag, 2004. (c©Springer Verlag).

19. Thomas Stntzle. Iterated local search for the quadratic assignment problem. Tech-
nical Report AIDA-99-03, 1999.

20. Eric D. Taillard. Comparison of iterative searches for the quadratic assignment
problem. Location science, 3:87–105, 1995.

21. Jesse B. Zydallis. Explicit Building-Block Multiobjective Genetic Algorithms: The-
ory, Analysis, and Development. Dissertation, Air Force Institute of Technology,
AFIT/ENG, BLDG 642, 2950 HOBSON WAY, WPAFB (Dayton) OH 45433-7765,
Feb 2002.

22. Jesse B. Zydallis, David A. Van Veldhuizen, and Gary B. Lamont. A Statistical
Comparison of Multiobjective Evolutionary Algorithms Including the MOMGA–
II. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello,
and David Corne, editors, First International Conference on Evolutionary Multi-
Criterion Optimization, pages 226–240. Springer-Verlag. Lecture Notes in Com-
puter Science No. 1993, 2001.

G.R. Raidl and J. Gottlieb (Eds.): EvoCOP 2005, LNCS 3448, pp. 101 – 111, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Lot-Sizing in a Foundry Using Genetic
Algorithm and Repair Functions

Jerzy Duda

AGH University of Science and Technology,
Faculty of Management, Dept. of Applied Computer Science,

ul. Gramatyka 10, 30-067 Kraków, Poland
jduda@zarz.AGH.edu.pl

Abstract. The paper presents a study of genetic algorithms applied to a lot-
sizing problem, which has been formulated for an operational production plan-
ning in a foundry. Three variants of genetic algorithm are considered, each of
them using special crossover and mutation operators as well as repair functions.
The real size test problems, based on the data taken from the production control
system, are presented for assessment of the proposed algorithms. The obtained
results show that the genetic algorithm with two repair functions can generate
good suboptimal solutions in the time, which can be acceptable from the deci-
sion maker point of view.

1 Introduction

The lot-sizing models allow to determine the production quantities at all production
planning levels. The reviews of them can be found in [1], [3] or in [5]. The problem
presented in this paper comes from a real production environment in a foundry and
focuses on a short-term production planning.

The considered foundry is a typical foundry, which produces iron castings and uses
hand-operated moulding machines. Among the shops existing in such a foundry two
are the most important regarding operational production planning: a melting shop in
which hot iron is prepared and a moulding shop where the moulds are made. Pouring
and moulding operations must be coordinated, as melted iron cannot wait too long to
be poured into the moulds and the space for the moulds waiting for pouring is limited.

Thus the main weekly task for the planners is to prepare a moulding plan together
with a pouring schedule for the furnaces. While building those plans many techno-
logical and organizational constraints must be taken into consideration. The most
significant are:

– capacities of furnaces and moulding machines,
– the number, desired delivery date and cast iron grade of ordered castings,
– the number of different castings, which can be produced during one shift (setup

times are included in moulding times),
– the number of flasks of various size available during a working shift.

102 J. Duda

2 Optimisation Model

A mathematical model is built around the classical discrete capacitated lot-sizing
problem with single level and multi item production. Presented model can be classi-
fied as a small bucket model, because only limited number of different items can be
produced during one period of time.

Only few models dedicated strictly to planning in iron foundries can be found in
literature. Van Voorhis et al. [7] provide a description of they work for Steel Foun-
dries Society of America to develop software for generating pouring schedules. The
objective function proposed by them is the sum of the non-utilization costs of heats
and moulding lines, the costs of putting production for a given order into a particular
lot, inventory costs and the penalty value for lateness. The constraints reflect all the
capacity limitations as well as metallurgical ones. They used two stage heuristic,
which solves an LP problem in the first stage and an IP problem in its second stage.

A model which is closer to the classical lot-sizing model can be found in dos San-
tos-Meza et al. paper [6]. The authors present a lot-sizing problem in a foundry with
automated moulding machines. They use a minimization of item production costs as
the only objective function and apply a relaxation method for the problems, which are
then solved using CPLEX 4.0 library.

The objective function used in the model presented herein is similar to the objec-
tive function proposed by Van Voorhis et al. Instead of the non-utilization costs of
furnaces and moulding lines, which may not always be estimated precisely, the com-
bined utilization value is used directly. Also the inventory costs are omitted, as they
are more or less fixed for the considered foundry (to some, but high enough limit).

The following symbols are used:

Decision variables:
xijtz – number of castings planned for order i to be manufactured on machine j dur-

ing day t and shift z,
vhtz – number of heats of grade h during day t and shift z,

Data:
τ – week for which the plan is created,
k – number of working days in a week,
l – number of machine type,
mj – number of working shifts for machines type j,
nj – number of active orders for machines type j,
CP – daily furnaces melting capacity [kg],
W – weight of single heat [kg],
CFj – capacity of moulding machines type j during a working shift [minutes],
wij – total iron weight needed to produce single i casting [kg],
aij –time of making a mould for casting i on machine j [minutes],
dij – ordered number of castings of type i to be produced on machine j,
γ – number of iron grades,
gij – iron grade for casting i, gij∈{1,...,γ},
ω – number of flask types,
So – flask number of type o available during a working shift,

 Lot-Sizing in a Foundry Using Genetic Algorithm and Repair Functions 103

qij – flask type in which a mould for casting i is prepared, qij∈{1,...,ω},
j – number of different castings which can be produced on machine type j during

one working shift,
ij – due week for castings of type i to be produced on machine j,

Maximize:

∑ ∑ ∑ ∑
= = = =

+
l

j

n

i Fjj

ijijtzk

t

m

z P

ijijtz
j j

Ckm

ax

kC

wx

1 1 1 1

)(∑ ∑ ∑ ∑
= = = =

<−−−
l

j

n

i
ijij

k

t

m

z
ijtzij

j j

xd
1 1 1 1

1000/)))(()((δτδτ (1)

Subject to:

jP
h

hzt mzktCWv ,...,1,,...,1,
1

==≤∑
=

γ
 (2)

jFj

n

i
ijijtz mzktljCax

j

,...,1,,...,1,,...,1,
1

===≤∑
=

 (3)

j

k

t
ij

m

z
ijtz niljdx

j

,...,1,,...,1,
1 1

==≤∑ ∑
= =

 (4)

jhtz

l

j
ij

n

i
ijijtz mzkthWvhgwx

j

,...,1,,...,1,,...,1,))((
1 1

===≤=∑∑
= =

γ (5)

jj

n

i
ijtz mzktljx

j

,...,1,,...,1,,...,1,)0(
1

===≤>∑
=

κ (6)

jo

l

j
ij

n

i
ijtz mzktoSoqx

j

,...,1,,...,1,,...,1,))((
1 1

===≤=∑∑
= =

ω (7)

The objective function (1) maximizes two elements. The first is the utilization level
of furnaces and moulding machines, which are the main bottlenecks in the production
system. Both utilization values are treated equally, however in reality the decision
maker may use a weighted sum of them. The second element of the sum maximizes
the penalty for the backlogging. The penalty function is proportional to the back-
logged quantity and the number of overdue weeks. Those two criteria have been indi-
cated directly by the planners in the considered foundry.

Constraints (2) and (3) are the capacity constraints for the furnaces and the mould-
ing machines, respectively. Constraint (4) limits the production of a given casting to
the quantity ordered by the customer. Constraint (5) limits the weight of the planned
castings of a particular cast iron grade to the weight of the metal which is to be
melted. Constraint (6) limits the number of different items which may be produced
during one working shift. The last constraint (7) limits the flask availability.

The model is formulated as a discrete nonlinear problem. It was changed into an in-
teger programming formulation by entering additional binary variables for the sake of
the comparison between the results obtained by genetic algorithm and CPLEX solver.

104 J. Duda

3 Test Problems

Two test problems have been chosen from the data existing in the production control
system, which is used in the described foundry.

The first test problem (fixed1) consists of 84 orders while the second one (fixed2)
has 100 orders. There are four moulding lines in the considered factory, each consist-
ing of two moulding machines, one for making a cope and one for making a drag (top
and bottom part of a flask). However, there are only three types of moulding ma-
chines (denoted here as A, B and C). The type of a machine, which has to be used for
making a mould for a particular casting is stated in a casting operation sheet.

Detailed orders specification for problems fixed1 and fixed2 are shown in Table 1
and Table 2, respectively.

Table 1. Detailed specification of fixed1 problem

m
ac

hi
ne

or
de

r
no

.

fl
as

ks
 le

ft

 to
 m

ak
e

w
ei

gh
t [

kg
]

m
ou

ld
in

g
ti

m
e

[m
in

]

ir
on

 g
ra

de

du
e

w
ee

k

m
ac

hi
ne

or
de

r
no

.

fl
as

ks
 le

ft

 to
 m

ak
e

w
ei

gh
t [

kg
]

m
ou

ld
in

g
ti

m
e

[m
in

]

ir
on

 g
ra

de

du
e

w
ee

k

m
ac

hi
ne

or
de

r
no

.

fl
as

ks
 le

ft

 to
 m

ak
e

w
ei

gh
t [

kg
]

m
ou

ld
in

g
ti

m
e

[m
in

]

ir
on

 g
ra

de

du
e

w
ee

k

A 1 282 61.2 30.5 4 -3 B 13 91 25.0 13.9 4 0 B 41 184 23.8 12.1 4 5

A 2 37 82.0 32.1 4 0 B 14 212 10.4 12.1 2 0 B 42 52 8.3 13.0 5 5

A 3 26 61.6 29.0 4 0 B 15 159 12.2 12.1 2 0 B 43 59 4.2 11.5 5 5

A 4 3 54.0 31.8 4 0 B 16 4 9.0 12.6 5 0 B 44 545 28.9 13.2 4 5

A 5 125 43.0 27.3 4 0 B 17 47 13.8 12.0 5 0 C 1 3 15.6 17.2 4 -3

A 6 226 65.0 32.6 4 1 B 18 16 12.4 13.9 5 0 C 2 257 18.2 15.1 4 -3

A 7 102 48.0 25.6 4 2 B 19 16 11.6 13.9 5 0 C 3 26 10.7 16.4 4 -2

A 8 16 30.4 25.4 4 3 B 20 16 11.0 13.9 5 0 C 4 25 10.8 18.1 4 -2

A 9 16 37.3 25.4 4 3 B 21 16 12.0 13.9 5 0 C 5 58 52.2 19.0 4 -2

A 10 22 34.7 30.2 5 3 B 22 133 12.0 12.3 5 1 C 6 196 29.6 17.7 4 -1

A 11 14 51.0 27.3 4 3 B 23 16 12.9 13.2 5 1 C 7 4 70.0 19.2 5 0

A 12 249 62.8 29.3 4 3 B 24 37 12.8 13.2 5 1 C 8 26 18.6 17.3 4 0

A 13 30 43.0 26.1 4 4 B 25 26 15.9 13.2 5 1 C 9 37 62.0 16.5 5 0

A 14 6 54.6 31.8 4 5 B 26 24 21.4 15.1 5 1 C 10 43 29.5 19.0 5 0

A 15 44 80.0 35.0 4 5 B 27 229 13.5 11.5 4 2 C 11 265 23.0 18.0 4 0

A 16 548 79.0 37.4 4 5 B 28 8 6.8 14.3 5 3 C 12 67 18.3 15.9 4 1

B 1 32 24.0 14.2 5 -3 B 29 16 6.0 14.3 5 3 C 13 36 6.9 2.9 5 2

B 2 35 24.0 14.2 5 -3 B 30 31 1.8 3.6 5 3 C 14 36 3.4 1.4 5 2

B 3 231 18.0 11.8 2 -3 B 31 6 10.4 13.9 5 3 C 15 83 5.8 2.4 5 2

B 4 424 9.3 11.6 4 -3 B 32 11 9.1 13.9 5 3 C 16 122 9.0 6.8 5 3

B 5 8 3.4 5.5 4 -2 B 33 16 10.8 13.9 5 3 C 17 96 23.6 16.7 5 3

B 6 31 15.6 13.9 2 -2 B 34 5 10.9 14.0 5 3 C 18 249 13.6 10.2 5 3

B 7 404 15.1 14.2 4 -2 B 35 5 13.1 14.0 5 3 C 19 22 21.7 18.6 5 3

B 8 538 15.1 14.2 4 -1 B 36 19 15.2 13.1 2 3 C 20 62 26.8 18.4 4 5

B 9 432 16.2 15.3 5 0 B 37 10 13.9 12.3 2 3 C 21 108 30.2 14.1 4 5

B 10 44 14.3 12.7 4 0 B 38 112 9.6 13.3 5 3 C 22 27 36.6 14.7 4 5

B 11 28 18.1 14.3 4 0 B 39 458 12.2 12.7 5 3 C 23 401 30.4 17.4 4 5

B 12 83 25.0 13.9 4 0 B 40 32 12.6 13.0 5 3 C 24 53 39.2 18.6 4 5

 Lot-Sizing in a Foundry Using Genetic Algorithm and Repair Functions 105

Table 2. Detailed specification of fixed2 problem

The number of flasks, which are to be made is calculated as the number of castings
ordered by the customers divided by the number of castings which fit in a single flask.
Thus the weight and forming time refer to the whole flask, not to a single casting. Due
week is a week which has been agreed with the customer as a term of delivery. A
negative number indicates that the remaining castings are already overdue.

m
ac

hi
ne

or
de

r
no

.

fl
as

ks
 le

ft

 to
 m

ak
e

w
ei

gh
t [

kg
]

m
ou

ld
in

g
ti

m
e

[m
in

]

ir
on

 g
ra

de

du
e

w
ee

k

m
ac

hi
ne

or
de

r
no

.

fl
as

ks
 le

ft

 to
 m

ak
e

w
ei

gh
t [

kg
]

m
ou

ld
in

g
ti

m
e

[m
in

]

ir
on

 g
ra

de

du
e

w
ee

k

m
ac

hi
ne

or
de

r
no

.

fl
as

ks
 le

ft

 to
 m

ak
e

w
ei

gh
t [

kg
]

m
ou

ld
in

g
ti

m
e

[m
in

]

ir
on

 g
ra

de

du
e

w
ee

k

A 1 19 143 38.6 1 -2 B 3 45 9.9 13.0 4 -3 B 37 78 23.1 12.5 4 3

A 2 19 48.0 25.6 3 -2 B 4 220 15.1 14.2 3 -2 B 38 275 14.4 13.6 4 4

A 3 155 31.1 28.7 3 -2 B 5 66 19.3 12.0 4 -2 B 39 108 16.0 12.7 3 4

A 4 38 26.5 28.7 4 -2 B 6 212 31.0 14.7 3 -2 B 40 57 4.2 11.5 4 4

A 5 59 61.2 30.5 3 -2 B 7 52 16.0 12.7 3 -2 B 41 52 8.3 13.0 4 4

A 6 31 44.8 27.5 1 -1 B 8 135 18.0 13.2 3 -2 B 42 45 9.9 13.0 4 4

A 7 131 51.0 27.3 3 -1 B 9 39 23.0 19.6 2 -2 B 43 138 11.6 12.7 4 4

A 8 212 31.1 28.7 3 -1 B 10 33 28.9 13.2 3 -2 C 1 42 20.0 16.8 3 -3

A 9 52 32.6 28.8 1 -1 B 11 520 13.5 12.6 3 -2 C 2 156 10.6 14.7 4 -2

A 10 110 35.0 29.6 3 0 B 12 324 16.3 12.7 3 -2 C 3 35 41.6 20.2 1 -2

A 11 168 44.8 27.5 1 0 B 13 23 23.8 12.1 3 -1 C 4 28 13.2 15.8 3 -2

A 12 32 37.3 25.4 3 0 B 14 106 12.2 12.1 1 0 C 5 293 23.0 18.0 1 -2

A 13 44 73.0 29.5 3 0 B 15 106 10.4 12.1 1 0 C 6 305 27.5 18.0 1 -2

A 14 52 32.6 28.8 1 0 B 16 299 35.0 16.8 3 0 C 7 16 22.4 16.8 3 -1

A 15 109 51.0 27.3 3 1 B 17 17 13.1 14.0 4 0 C 8 20 58.8 17.1 2 -1

A 16 27 51.4 31.7 2 1 B 18 17 10.9 24.5 4 0 C 9 43 29.8 18.4 3 0

A 17 232 31.1 28.7 3 1 B 19 33 18.4 12.2 4 0 C 10 364 37.5 18.0 2 0

A 18 197 26.1 30.0 3 1 B 20 110 9.0 12.6 4 0 C 11 69 20.4 18.1 4 0

A 19 26 32.6 28.8 1 1 B 21 132 15.1 14.2 3 0 C 12 42 22.4 16.8 3 0

A 20 75 26.5 28.7 4 1 B 22 324 16.2 15.3 4 0 C 13 108 23.0 18.0 3 1

A 21 31 30.4 25.4 3 2 B 23 74 24.0 14.4 2 0 C 14 47 41.0 19.8 3 1

A 22 232 31.1 28.7 3 2 B 24 43 31.0 14.7 3 0 C 15 47 60.0 17.1 2 2

A 23 197 26.1 30.0 3 2 B 25 65 20.8 14.8 1 0 C 16 55 14.2 15.4 1 2

A 24 26 32.6 28.8 1 2 B 26 42 15.0 13.2 4 1 C 17 27 58.8 17.1 2 2

A 25 75 26.5 28.7 4 2 B 27 165 19.3 12.0 4 1 C 18 162 58.8 17.1 2 2

A 26 206 44.8 27.5 1 3 B 28 168 13.8 13.2 4 1 C 19 394 41.5 17.1 2 2

A 27 108 51.4 31.7 2 3 B 29 258 19.8 14.7 3 1 C 20 55 18.5 15.9 1 2

A 28 232 31.1 28.7 3 3 B 30 244 31.0 14.7 3 1 C 21 63 15.7 14.5 3 3

A 29 118 26.1 30.0 3 3 B 31 110 18.0 11.8 1 2 C 22 63 11.8 14.5 3 3

A 30 103 32.6 28.8 1 3 B 32 121 28.7 18.0 4 2 C 23 106 28.5 18.5 3 3

A 31 34 26.5 28.7 4 3 B 33 73 23.1 12.5 4 2 C 24 17 14.0 20.2 3 4

A 32 44 52.3 27.5 4 4 B 34 44 8.6 11.7 4 3 C 25 364 37.5 18.0 2 4

B 1 19 8.4 12.7 3 -3 B 35 147 24.0 14.4 2 3

B 2 11 18.2 13.2 2 -3 B 36 38 8.8 11.7 4 3

106 J. Duda

There are 3 working shifts for the lines of machine type A and C while there are
only 2 working shifts for the lines of machine type B. A common practice in the con-
sidered foundry is that only two different castings can be produced during one work-
ing shift, so 1 and 3 are set to 2 and 2 is set to 4. The total daily capacity of the
furnaces is 21000 kg and a single heat weighs 1400 kg, i.e. at most 15 heats a day are
possible. The number of flasks available for all moulding machines during one work-
ing shift is limited to 50 big flasks (machine type A), 100 medium (machine type C)
and 120 small ones (machine type B).

The goal for optimisation is to create a plan for a week, which consists of 5 work-
ing days or for two weeks, consisting of 10 working days.

4 Genetic Algorithm

A weekly plan for moulding machines and a pouring schedule are coded in a single
chromosome using integer gene values. First n*k*(m1+m2+..+ml) genes represent the
quantity of castings planned for production or equals zero if the production for a par-
ticular order during a given shift is not planned. Last γ*k*max{mj} genes represent
the number of heats of a particular iron grade. This can be presented as the matrix
shown in Figure 1.

x1111, x2111,..., xn 111, x1112, x2112,..., xn 112, ..., x111m1, x211m1,..., xn 11m1,

x1121, x2121,..., xn 121, x1122, x2122,..., xn 122, ..., x112m1, x212m1,..., xn 12m1,
...
x11k1, x21k1,..., xn 1k1, x11k2, x21k2,..., xn 1k2, ..., x11km1, x21km1,..., xn 1km1,

machine
1st type

x1211, x2211,..., xn 211, x1212, x2212,..., xn 212, ..., x121m2, x221m2,..., xn 21m2,

x1221, x2221,..., xn 221, x1222, x2222,..., xn 222, ..., x122m2, x222m2,..., xn 22m2,
...
x12k1, x22k1,..., xn 2k1, x12k2, x22k2,..., xn 2k2, ..., x12km2, x22km2,..., xn 2km2,

machines
2nd type

machine
l-th type

...

v111, v 211, ..., vγ11, v112, v 212, ..., vγ12, ..., v11mmax, v 21mmax, ..., vγ1mmax,

v121, v 221, ..., vγ21, v122, v 222, ..., vγ22, ..., v12mmax, v 22mmax, ..., vγ2mmax,
...
v1k1, v 2k1, ..., vγk1, v1k2, v 2k2, ..., vγk2, ..., v1kmmax, v 2kmmax, ..., vγkmmax,

pourings

days
(1..k)

1st working shift 2nd working shift mj-th working shift

...

x1l11, x2l11,..., xn l11, x1l12, x2l12,..., xn l12, ..., x1l1m1, x2l1ml,..., xn l1ml,

x1l21, x2l21,..., xn l21, x1l22, x2l22,..., xn l22, ..., x1l2m1, x2l2ml,..., xn l2ml,
...
x1lk1, x2lk1,..., xn lk1, x1lk2, x2lk2,..., xn lk2, ..., x1lkm1, x2lkml,..., xn l kml,

Fig. 1. Moulding plan and pouring schedule coded in a chromosome

 Lot-Sizing in a Foundry Using Genetic Algorithm and Repair Functions 107

4.1 First Variant (GA1)

The proposed chromosome structure is simple and natural. However, there is a lot of
zeroes in a chromosome representing a valid plan, regarding the constraint (6). To
avoid keeping incorrect individuals in a population, a simple repair algorithm has
been introduced. Whenever constraint (6) is violated for one of the machines and
working shifts, the smallest lots planned so far are eliminated successively from the
plan until the number of different lots which are allowed for production during one
working shift is reached. Only the non overdue castings are taken into consideration
at the first stage. If the reduction in this stage is not enough the same procedure is
applied also for the overdue castings. The scheme of the algorithm can be presented
as follows:

Step 1. For each day t, working shift z and a machine j:
K ← SUM(i=1..nj){xijtz}

Step 2. While K>κj
Step 3. Find a lot, for which the smallest weight of

castings has been planned:
xs ← MIN(i=0..nj){xijtzwi}

Step 4. Remove the lot xs from the plan
Step 5. K ← K-1. Go to step 2

The above algorithm is used also in the remaining two variants of genetic algo-
rithm, as it improves solutions by 20–30%, on average.

Also a new crossover operator has been introduced. It creates one child from two
parents in the following way. A string of genes representing a single shift is chosen
randomly in two parents. If the fitness value for the first parent is better than for the
second parent, lots from the chosen shift in the first parent are placed in the second
parent. If the second parent has better fitness, then the lots from it replace the lots in
the first parent. The crossover operator simultaneously alters the pouring schedule for
the affected shift.

The irregular mutation in the version proposed by Michalewicz and Janikow [4]
has been chosen as a mutation operator with a one modification, which has been ap-
plied to it. The probability of increasing a gene value is 0.75 for the overdue castings,
while it equals to standard 0.5 for the rest of the castings.

Most of genes in initial population are set to zero and only about 3% of them are
set to random values. The genes representing pouring schedule are set randomly in
such a way that their sum equals to the limit of the number of heats allowed. Experi-
ments have shown that the solution quality obtained after first 1000 generations had a
great impact on the quality of the final solution. That is why the proposed algorithm
uses initially 10 populations, starting from 10 different points. The evolution is con-
tinued only for the best population after first 500 generations.

The remaining parameters, common for all algorithm variants look as follows:

– population size (fixed): 100 individuals
– number of generations: 10000 for problems with 5 days, 20000 for 10 days prob-

lems (+10000 for 10 initial populations)

108 J. Duda

– selection type: binary tournament with elitism
– crossover type: crossover changing shifts with the probability of 0.8
– mutation type: irregular mutation with the probability of 0.001
– penalty function: sum of squares of constraint violation values multiplied by 10000

4.2 Second Variant (GA2)

In the second variant of genetic algorithm two sets of variables representing moulding
plans (xijtz) and pouring schedule (vhtz) are treated as two separate chromosomes.

Irregular mutation operator alters genes only in the first chromosome. For the sec-
ond chromosome another mutation has been defined. It works as follows. The number
of heats of randomly chosen iron grade is decreased by 1 and simultaneously the
number of heats of another randomly chosen iron grade within the same working shift
is increased by 1. This mutation is used with the probability of 0.05.

All other parameters of the genetic algorithm remain the same as in the first variant.

4.3 Third Variant (GA3)

In the third variant of genetic algorithm the genes in which pouring schedule is coded
has been removed from the chromosome structure. Instead of this a second repair
algorithm has been used. Its role is to keep moulding plans always acceptable from a
pouring schedule point of view. This means there is always enough hot iron for filling
all the moulds, which has been prepared. The idea of this algorithm is similar to the
first repair algorithm. If the maximum number of heats of a particular iron grade is
exceeded than the lot with the minimum weight of castings is removed from the plan.
The details of the algorithm are shown below:

Step 1. t ← 1
Step 2. For each iron grade h:

Calculate the summary weight of iron grade h
(SWh) necessary for pouring the moulds prepared
on day t:

 SWh ← SUM(j=1..l,i=1..nj,z=1..mj){(xijtzwi)(gi=h)}
Step 3. Calculate the number of heats (lw):

lw ← INT(SUM(h=1..l){SWh/W)})+1
Step 4. If lw ≤ lwmax go to step 9
Step 5. For the day t find a machine j, a shift z and a

lot i, for which the smallest weight of castings
has been planned:
xs ← min(j=1..l,i=1..nj,z=1..mj){xijtzwi}

Step 6. Remove the lot xs from the moulding plan
Step 7. Correct lw by the removed lot weight
Step 8. If lw > lwmax go to step 4
Step 9. t ← t + 1
Step 10. If t ≤ k go to step 2

 Lot-Sizing in a Foundry Using Genetic Algorithm and Repair Functions 109

Experiments have shown that the role of the crossover operator defined earlier is
virtually meaningless for the third variant of genetic algorithm. Thus a modified ver-
sion of it has been introduced for this variant. The lots in randomly chosen shift from
the first parent are swapped with the lots in another randomly chosen shift from the
second parent. In that way two parents create two children instead of one, as it was in
the previous case. However, this crossover plays a role of another mutation operator,
rather than crossover itself. It is used with the probability of 0.1.

5 Results and Comparison to Integer Programming

Each variant of genetic algorithm was run for 10 times for fixed1 and fixed2 test prob-
lems, assuming 5 days and 10 days planning horizon. A single run took about 4 min-
utes for 5-day problems and 8 minutes for 10 days (computer with Pentium 560 proc-
essor, 1 GB RAM). The results were then compared with the solutions given by
branch-and-bound algorithm, implemented in CPLEX 9.0 mixed integer program-
ming solver. Solving time for CPLEX was limited to the time of 10 runs of a single
genetic algorithm. The best results and average results obtained from ten runs of the
three genetic algorithm variants and the results generated by CPLEX 9.0 (denoted as
bb) are collected in Table 3. The GA1 variant gave only 5 valid solutions for fixed2
problem with 10 days.

Table 3. Results obtained by the genetic algorithm variants

Problem GA1 GA2 GA3 bb GA3-bb
best 0.61 1.38 1.92 1.98 3.1%

fixed1 with 5 days
avg. 0.21 1.15 1.89 4.6%
best 0.52 0.79 1.81 1.89 4.5%

fixed1 with 10 days
avg. 0.12 0.50 1.77 6.7%
best -0.35 0.74 1.84 1.96 6.4%

fixed2 with 5 days
avg. -0.48 0.39 1.77 10.0%
best -0.58 -0.15 1.77 1.90 6.9%

fixed2 with 10 days
avg. -1.24 -0.41 1.69 10.7%

The last column in the table shows a relative difference in the objective function
value between the third variant of genetic algorithm and the branch-and-bound solu-
tion provided by CPLEX 9.0. The best of ten runs solution obtained by the third GA
variant is not more than 5% behind the branch-and-bound algorithm for the first prob-
lem and less than 7% for the second problem.

Next, the experiments for the problems with the objective function, which con-
sisted only of the first summand in equation (1), i.e. the utilization level of bottleneck
aggregates, have been carried out. The same genetic algorithms were tested and only
the overdue castings were not treated in a special way by the mutation operator and
the repair functions, as it was in the previous case. Table 4 shows the obtained results
in the same form as earlier.

110 J. Duda

Table 4. Results obtained by the genetic algorithm variants for a simplified objective

Problem GA1 GA2 GA3 bb GA3-bb

Best 1.82 1.89 1.97 1.98 0.8%
fixed1 with 5 days

Avg. 1.71 1.76 1.93 2.5%
Best 1.04 1.83 1.89 1.90 0.6%

fixed1 with 10 days
Avg. 0.72 1.77 1.80 5.1%
Best 1.69 1.87 1.96 1.97 0.4%

fixed2 with 5 days
Avg. 1.58 1.79 1.92 2.8%
Best 1.19 1.85 1.92 1.96 2.3%

fixed2 with 10 days
Avg. 0.86 1.65 1.85 5.4%

This time the best of the three genetic algorithm variants remains only less then 1%
behind the CPLEX 9.0 algorithm in 3 of 4 test tasks, if the best result from ten runs is
taken into consideration. The average solution generated by GA3 is within 3% of the
branch-and-bound limit for the 5 days planning problems and within 5.5% for the 10
days instances.

This shows that the combined, but competitive criteria have a significant negative
impact on the quality of solutions generated by the genetic algorithms. One of the
methods to overcome this problem is to treat all the objective functions independently
and use multiobjective evolutionary algorithms. The results of such an approach for a
similar production planning problem are described in the recently published author’s
paper [2].

6 Final Remarks

The results presented in the paper show how much a repair function is important to
a genetic algorithm, at least for certain real world problems. Both entering new
operators and suiting a chromosome structure to a specific problem can signifi-
cantly improve the quality of the obtained solutions. Nerveless, it is the introduction
of even simple repair functions that lets a genetic algorithm to generate solutions of
the high quality.

The third variant of genetic algorithm presented in this paper (GA3) can provide
good solutions, which differ by 0.5–7% from the results obtained by the advanced
branch-and-bound methods implemented in CPLEX 9.0. However, an integer
programming approach cannot always be applied easily, because it requires all the
objective functions and constraints to be non-linear. This is not a problem for meta-
heuristics such as evolutionary algorithms, for which the models can be written in the
natural way.

The optimisation model for operational production planning in a foundry proposed
in this paper will be successively complemented with new technological and organ-
izational constraints, which have an impact on the overall production costs. The most
interesting seems to be the assessment of the costs of a particular heat sequence,
resulting from the costs of changing from one iron grade to another. The possibility of

 Lot-Sizing in a Foundry Using Genetic Algorithm and Repair Functions 111

making a given casting from different iron grades (usually higher), if such an opera-
tion is acceptable by the customer, will be also introduced into the planning model.

The data for problems fixed1 and fixed2 can be downloaded from the author’s web-
site at http://www.zarz.agh.edu.pl/jduda/foundry.

Acknowledgment

This study was supported by the State Committee for Scientific Research (KBN)
under the Grant No. 0224 H02 2004 27.

References

1. Drexl, A., Kimms, A.: Lot sizing and scheduling – Survey and extensions, European Journal
of Operational Research vol. 99, 2 (1997) 221–235

2. Duda, J., Osyczka, A.: Multiple criteria lot-sizing in a foundry using evolutionary
algorithms (in:) Coello Coello C.A. et al. (eds.): EMO 2005, Lecture Notes in Computer
Science vol. 3410 (2005) 651–663

3. Karimi, B., Fatemi Ghomi, S.M., Wilson, J.M.: The capacitated lot sizing problem: a review
of models and algorithms, Omega, vol. 31, 5 (2003) 409–412

4. Michalewicz, Z., Janikow, C.Z.: Genetic algorithms for numerical optimization, Statistics
and Computing, vol. 1, 2 (1991) 75–91

5. Pochet, Y.: Mathematical programming models and formulations for deterministic produc-
tion planning problem (in:) Jünger M., Naddef D. (eds.), Computational Combinatorial
Optimization, vol. 2241, Berlin, Springer-Verlag, Berlin (2001)

6. dos Santos-Meza, E., dos Santos, M.O., Arenales, M.N.: A Lot-Sizing Problem in An
Automated Foundry. European Journal of Operational Research, vol. 139, 3 (2002) 490–500

7. Voorhis, T.V., Peters, F., Johnson, D.: Developing Software for Generating Pouring Sched-
ules for Steel Foundries. Computers and Industrial Engineering, vol. 39, 3 (2001) 219–234

Estimation of Distribution Algorithms
with Mutation

Hisashi Handa

Okayama University, Tsushima-Naka 3-1-1,
Okayama 700-8530, JAPAN

handa@sdc.it.okayama-u.ac.jp
http://www.sdc.it.okayama-u.ac.jp/~handa/index-e.html

Abstract. The Estimation of Distribution Algorithms are a class of
evolutionary algorithms which adopt probabilistic models to reproduce
the genetic information of the next generation, instead of conventional
crossover and mutation operations. In this paper, we propose new EDAs
which incorporate mutation operator to conventional EDAs in order to
keep the diversities in EDA populations. Empirical experiments carried
out this paper confirm us the effectiveness of the proposed methods.

1 Introduction

Recently, Estimation of Distribution Algorithms (EDAs) have been attracted
much attention in genetic and evolutionary computation community due to their
search abilities [1]. Genetic operators such like crossover and mutation are not
adopted in the EDAs. In the EDAs, a new population is generated from the
probabilistic model constituted by a database containing the genetic informa-
tion of the selected individuals in the current generation. Such reproduction
procedure by using the probabilistic model allows EDAs to search for optimal
solutions effectively. However, it significantly decreases the diversity of the ge-
netic information in the generated population when the population size is not
large enough.

In this paper, we discuss on the effectiveness of mutation operation in the case
of EDAs. We propose new EDAs which incorporate mutation operator to con-
ventional EDAs in order to keep the diversities in EDA populations. In order to
confirm the effectiveness of the proposed approach, Computational simulations
on Four-peaks problems, Fc4 function, and MAXSAT problems are carried out.

Related works are described as follows: The effectiveness of mutation opera-
tor in the case of conventional genetic and evolutionary computation has been
studied a long time: Ochoa empirically studied a well-known heuristic with re-
spect to mutation: better mutation probability is around 1 / L (string length)
[2]. The relationship between mutual information and entropy was discussed by
Toussaint [3].

In the next section, we will briefly introduce three kinds of the EDAs, which
are employed for our experiments. Moreover, we will describe the basic notion of

G.R. Raidl and J. Gottlieb (Eds.): EvoCOP 2005, LNCS 3448, pp. 112–121, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Estimation of Distribution Algorithms with Mutation 113

Procedure Estimation of Distribution Algorithm
begin

initialize D0

evaluate D0

until Stopping criteria is hold
DSe

l ← Select N individuals from Dl−1

pl(x) ← Estimate the probabilistic model from DSe
l

Dl ← Sampling M individuals from pl(x)
evaluate Dl

end
end

Fig. 1. Pseudo code of Estimation of Distribution Algorithms

Estimation of Distribution Algorithms with mutation, i.e., the proposed method.
Then, computational experiments are examined in section 3. Section 4 will con-
clude this paper.

2 Estimation of Distribution Algorithms

2.1 General Framework of EDAs

The Estimation of Distribution Algorithms are a class of evolutionary algorithms
which adopt probabilistic models to reproduce the genetic information of the
next generation, instead of conventional crossover and mutation operations. The
probabilistic model is represented by conditional probability distributions for
each variable (locus). This probabilistic model is estimated from the genetic
information of selected individuals in the current generation. Hence, the pseudo-
code of EDAs can be written as Fig. 1, where Dl, DSe

l−1, and pl(x) indicate the

set of individuals at lth generation, the set of selected individuals at l−1th

generation, and estimated probabilistic model at lth generation, respectively
[1]. The representation and estimation methods of the probabilistic model are
devised by each algorithm. As described in this figure, the main calculation
procedure of the EDAs is that (1) the N selected individuals are selected from
the population in the previous generation, (2) then, the probabilistic model is
estimated from the genetic information of the selected individuals, (3) a new
population whose size id M is sampled by using the estimated probabilistic
model, and (4) finally, the new population is evaluated.

In this paper, we discuss the effectiveness of mutation operation in case of
UMDA, MIMIC, and EBNA. The difference between these EDAs is the repre-
sentation and estimation of the probabilistic models. Since our study is relevant
to the representation of the probabilistic models, we will briefly describe EDAs
with a focus on the representation as follows:

– UMDA: Mühlenbein proposed UMDA (Univariate Marginal Distribution
Algorithm) in 1996 [1, 7]. As indicated by its name, the variables of the

114 H. Handa

UMDA

xx

xxx

12

345
x1x2 x3x4x5

MIMIC EBNA

x1

x2 x3

x4

x5

Fig. 2. Probabilistic models for UMDA, MIMIC, and EBNA

probabilistic model in this algorithm is assumed to be independent from
other variables. That is, the probability distribution pl(x) is denoted by a
product of univariate marginal distributions, i.e.,

pl(x) =
n∏

i=1

pl(xi),

where pl(xi) denotes the univariate marginal distribution Xi = xi at a vari-
able Xi at generation l.

– MIMIC: De Bonet et al. proposed MIMIC [1, 8], a kind of EDAs whose
probabilistic model is constructed with bivariate dependency such like COMIT
[9]. While the COMIT generates a tree as dependency graph, the probabilis-
tic model of the MIMIC is based upon a permutation π.

pl(x) =
n−1∏

j=1

pl(xin−j |xin−j+1) · pl(xin),

where the permutation π is represented by (i1, i2, . . . , in), and is obtained in
each generation. In Fig. 2, the permutation π is set to be (i1, i2, . . . , i5) =
(5, 2, 4, 1, 3) for instance.

– EBNA: Like BOA and LFDA [10, 11], the EBNA (Estimation of Bayesian
Networks Algorithms), proposed by Larrañaga et al., adopts Bayesian Net-
work (BN) as the probabilistic model [1, 12]. That is, the probabilistic model
used in the EBNA is written as follows: Suppose that S is the network struc-
ture of Bayesian Network, then,

pl(x) =
n∏

i=1

p(xi|PaS
i),

where PaS
i denotes a set of parent variables of ith variable. For instance,

in Fig. 2, sets of the parent variables PaS
1 , PaS

3 of variable x1 and x3 are
defined as {x2, x3} and �, respectively.

Estimation of Distribution Algorithms with Mutation 115

2.2 Estimation of Distribution Algorithms with Mutation

In this paper, we incorporate mutation operators into EDAs. The followings
introduce incorporated mutation operators for each of UMDA, MIMIC, and
EBNA: In the case of UMDA, we adopt the bitwise mutation operator which is
the same as SGA: after each bit is decided in accordance with estimated marginal
distribution, the mutation operator independently changes the allele of loci with
the mutation probability. That is, the succeeding bit production is not affected
by the changes by the mutation operator.

On the other hand, since the probabilistic model of MIMIC is represented by
a chain of variables, the changes at a certain locus by mutation operator affects
the production of alleles at succeeding loci. The mutation operation for MIMIC
is described as follows: After producing at a certain locus xi, whether mutation
operation is carried out is randomly decided with the mutation probability. If
the mutation operation is occurred, the allele at the locus xi is flipped. Now,
suppose that above mutation operation is carried out at the last produced locus
xij+1 in order π. If the conditional probability pl(xin−j

|xij+1) for flipped allele is
not defined1 the former value produced at first is used for xij+1 .

Finally, mutation operation for EBNA is similar to the one in the case of
MIMIC, that is, we should take into consideration for succeeding bit production.
Now, we assume that we would like to decide the allele at a certain locus xi

and q variables (loci) in the parent set PaS
i are flipped their alleles by past

mutation events. The conditional probability p(xi|PaS
i) for flipped alleles is used

iff such conditional probability is defined. Otherwise, find a defined conditional
probability p(xi|PaS

i) such that the number of flipped alleles is maximum, and
use it to produce allele at the current locus.

3 Experiments

3.1 Experimental Settings

This paper examines the effectiveness of mutation operation in the case of EDAs
on three kinds of fitness functions, whose explanation is described in the next
subsection, Four-peaks function, Fc4 function, and MAXSAT problems. In this
paper, we compare the proposed methods with corresponding conventional meth-
ods, that is, UMDA, MIMIC and EBNA. We will represent corresponding pro-
posed method as UMDAwM, MIMICwM, and EBNAwM, respectively. This pa-
per employs EBNABIC as EBNA. For first two functions, we investigate how
many trials these algorithms can achieve to optimal solution effectively. Hence,
we adopt two indices to evaluate the effectiveness of algorithms: success ra-
tio (SR) and the number of fitness evaluations until finding optimal solutions
(NOE). The SR is defined as the fraction of runs in which find optimal solu-
tions. The NOE in this paper is averaged value over “success” runs. If the SR

1 If the flipped allele is not occurred in selected individuals DSe
l−1, we cannot calculate

the conditional probability pl(xin−j |xij+1) for flipped allele.

116 H. Handa

Table 1. Genetic parameters for each problem

Four-Peaks Four-Peaks
(20 and 40 var.’s) (60 and 80 var.’s)

Fc4 MAXSAT

0.2, 0.1, 0.07, 0.02, 0.01, 0.005, 0.2, 0.1, 0.07, 0.02, 0.01, 0.005,Mutation Prob.
0.05, 0.02, 0.01 0.002, 0.001 0.05, 0.02, 0.01 0.002, 0.001

32, 64, 128, 32, 64, 128, 256, 512,
No. Indiv. 256, 512, 1024

1024, 2048
256, 512, 1024 1024, 2048,

2048, 4096
4096, 8192

2048, 4096 4096, 8192
No. Fit. Eval. 1,000,000 1,000,000 100,000 200,000

is 0, the NOE is not defined. Hence, lines in graphs in Fig. 3 and Fig. 4 are not
plotted for undefined NOE. On the other hand, we examine the solution qual-
ity obtained by the proposed methods and conventional methods for MAXSAT
problems.

Genetic parameters used in each examination is summarized in Table 1. For
each tuple of parameters indicated in the table, trial is examined. The number
of trials for each tuple is set to be 30 for Four-peaks and Fc4 function, and 10 for
each problem instance of MAXSAT. We use benchmark problems for MAXSAT
which consists of 50 problem instances for each couple of variables and clauses
[14][15]. Moreover, for Four-peaks and Fc4 function, we only plot the best result
for the proposed methods over various values of mutation probabilities. Common
settings for all problems are as follows: The number of selected individuals N is
set to be half of the number of individuals M . We use the truncation selection
method, which selects the best N individuals form M individuals, to constitute
the selected individuals.

3.2 Test Functions

Four-Peaks Function [8]

Ffour-peak(T,x) = max(head(x1,x)) + max(tail(1 − xn,x)) + R(T,x)

R(T,x) =
{ 3

2n if(head(x1,x) > T))(tail(1 − xn,x) > T)
0 otherwise,

where head(b,x) and tail(b,x) denote the number of contiguous leading bits set
to b in x, and the number of contiguous trailing bits set to b in x, respectively.
The parameter T is set to be 2/n − 1 in this paper. There are two optimal
solutions: 000 . . . 0011 . . . 111 and 111 . . . 1100 . . . 000. Furthermore, there are two
sub-optimal solutions: 111 . . . 1111 . . . 111 and 000 . . . 0000 . . . 000 which can be
easily achieved to.

Estimation of Distribution Algorithms with Mutation 117

Fc4 [1]
At first, we describe two functions: F 3

cuban1 and F 5
cuban1

F 3
cuban1(x1, x2, x3) =






0.595 for (x1, x2, x3) = (0, 0, 0)
0.200 for (x1, x2, x3) = (0, 0, 1)
0.595 for (x1, x2, x3) = (0, 1, 0)
0.100 for (x1, x2, x3) = (0, 1, 1)
1.000 for (x1, x2, x3) = (1, 0, 0)
0.050 for (x1, x2, x3) = (1, 0, 1)
0.090 for (x1, x2, x3) = (1, 1, 0)
0.150 for (x1, x2, x3) = (1, 1, 1)

F 5
cuban1(x1, x2, x3, x4, x5) =

{
4F 3

cuban1(x1, x2, x3) if x2 = x4 and x3 = x5
0 otherwise.

Then, function Fc4 is defined as follows:

Fc4(x) =
r∑

c=1

F 5
cuban1(x5c−4, x5c−3, x5c−2, x5c−1, x5c),

where n = 5r. This function has only one optimal solution.

MAXSAT
In order to solve the MAXSAT problems, we have to find an assign of values
such that the number of satified clauses is maximized. That is, this problem is
formulated as the following CNF (Conjunctive Normal Form):

∧

j

(
∨

li∈cl(j)

li),

where cl(j) denotes a set of literals which belongs in the jth clauses. Moreover,
li indicates literals.

3.3 Experimental Results

Fig. 3 depicts the experimental results for the Four-peaks problems. Conventional
methods, MIMIC and EBNA, with larger population size could find optimal
solutions when dimension = 20. It is difficult to solve for Four-peaks problems
by assigning alleles at each locus independently, so that UMDA could not solve
the four-peaks problems effectively. The proposed method improve the search
ability of the conventional EDAs in the viewpoint of the success ratio. Especially,
the proposed method with smaller population size could solve the Four-peaks
problems when they are easy problems. Moreover, only MIMICwM could solve
for Four-peaks problems with 80 variables.

Next, we carried out experiments on Fc4 problems as delineated in Fig. 4.
The number of fitness evaluations in each run was limited to 100000 so that it

118 H. Handa

 0

 0.2

 0.4

 0.6

 0.8

 1

32 64 128 256 512 1024 2048 4096

su
cc

es
s

ra
tio

pop. size

EBNA
MIMIC
UMDA

EBNAwM(0.07)7)

UMDAwM(0.07)0.07)

Dim
= 20

MIMICwM(0.2)2
(

MIMIC M(0 2)2
UMDA M(0 07

C (0)
0

 1

 10

 100

 1000

 10000

 100000

 1e+06

32 64 128 256 512 1024 2048 4096

fit
 e

va
ls

.

pop. size

EBNAwM(0.2)
MIMICwM(0.2)
UMDAwM(0.2)

EBNA
MIMIC
UMDA

 0

 0.2

 0.4

 0.6

 0.8

 1

32 64 128 256 512 1024 2048 4096

su
cc

es
s

ra
tio

pop. size

EBNAwM(0.01)
MIMICwM(0.01)
UMDAwM(0.07)
EBNA
MIMIC
UMDA

Dim
= 40 1

 10

 100

 1000

 10000

 100000

 1e+06

32 64 128 256 512 1024 2048 4096

fit
 e

va
ls

.

pop. size

EBNAwM(0.07)
MIMICwM(0.07)

UMDAwM(0.07)
EBNA
MIMIC
UMDA

 0

 0.2

 0.4

 0.6

 0.8

 1

1024 2048 4096 8192

su
cc

es
s

ra
tio

pop. size

EBNAwM(0.005)
MIMICwM(0.005)
EBNA
MIMIC

Dim
= 60 1

 10

 100

 1000

 10000

 100000

 1e+06

1024 2048 4096 8192

fit
 e

va
ls

.

pop. size

EBNAwM(0.005)
MIMICwM(0.005)

EBNA
MIMIC

 0

 0.2

 0.4

 0.6

 0.8

 1

1024 2048 4096 8192

su
cc

es
s

ra
tio

pop. size

MIMICwM(0.005)

Dim
= 80 1

 10

 100

 1000

 10000

 100000

 1e+06

1024 2048 4096 8192

fit
 e

va
ls

.

pop. size

MIMICwM(0.005)

Fig. 3. Experimental results for the Four-peaks problems: Success ratio (LEFT), the
number of fitness evaluations until finding optimal solutions (RIGHT); Problem di-
mension = 20 (UPPER), 40, 60, and 80 (LOWER)

Estimation of Distribution Algorithms with Mutation 119

 0

 0.2

 0.4

 0.6

 0.8

 1

32 64 128 256 512 1024 2048 4096

su
cc

es
s

ra
tio

pop. size

EBNAwM(0.07)

MIMICwM(0.07)

UMDAwM(0.07))
EBNAwM(0.07)
UMDA M(0 07

EBNA

MIMIC

UMDA

Dim
= 30 1

 10

 100

 1000

 10000

 100000

32 64 128 256 512 1024 2048 4096

fit
 e

va
ls

.

pop. size

EBNAwM(0.07)
MIMICwM(0.07)
UMDAwM(0.07)

EBNA
MIMIC
UMDA

 0

 0.2

 0.4

 0.6

 0.8

 1

32 64 128 256 512 1024 2048 4096

su
cc

es
s

ra
tio

pop. size

EBNAwM(0.05)BEB
MIMICwM(0.02)MIMM
UMDAwM(0.05)UMU

EBNA

UMDAUMDADim
= 90 1

 10

 100

 1000

 10000

 100000

32 64 128 256 512 1024 2048 4096

fit
 e

va
ls

.

pop. size

EBNAwM(0.05)
MIMICwM(0.05)
UMDAwM(0.05)

EBNA
MIMIC
UMDA

 0

 0.2

 0.4

 0.6

 0.8

 1

32 64 128 256 512 1024 2048 4096

su
cc

es
s

ra
tio

pop. size

EBNAwM(0.01)
MIMICwM(0.02)
EBNA
MIMIC

Dim
= 150 1

 10

 100

 1000

 10000

 100000

32 64 128 256 512 1024 2048 4096

fit
 e

va
ls

.

pop. size

EBNAwM(0.02)
MIMICwM(0.02)

EBNA
MIMIC

Fig. 4. Experimental results for the Fc4 function: Success ratio (LEFT), the number
of fitness evaluations until finding optimal solutions (RIGHT); Problem dimension =
30 (UPPER), 90 (MIDDLE), and 150 (LOWER)

was impossible for the proposed method whose population size was set to be
4096 to solve the Fc4 problems with 90 and 150 variables. Except for this, the
proposed methods shows better performance in the sense of the success ratio.

Finally, Fig. 5 investigated the quality of acquired solutions on 3-MAXSAT
problems with 100 variables. Upper graphs show the results for 500 clauses.
On the other hand, lower graphs are the results for 700 clauses. Graphs on the
left side and the right side indicates result of MIMIC and EBNA, respectively.
For each of the number of population size in all graphs in the figure, 6 lines
are plotted: the solid line denotes the conventional method. Other dashed lines

120 H. Handa

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

N
o.

 V
io

la
tio

ns

No. Individuals
256 512 1024 2048 4096 8192

MIMIC, 500 Clauses

0
0.001
0.002
0.005

0.01
0.02

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

N
o.

 V
io

la
tio

ns

No. Individuals
256 512 1024 2048 4096 8192

EBNA, 500 Clauses

0
0.001
0.002
0.005

0.01
0.02

 12

 14

 16

 18

 20

 22

 24

 26

N
o.

 V
io

la
tio

ns

No. Individuals
256 512 1024 2048 4096 8192

MIMIC, 700 Clauses

0
0.001
0.002
0.005
0.01
0.02

 12

 14

 16

 18

 20

 22

 24

 26

N
o.

 V
io

la
tio

ns

No. Individuals
256 512 1024 2048 4096 8192

EBNA, 700 Clauses

0
0.001
0.002
0.005
0.01
0.02

Fig. 5. Experimental results for MAXSAT problems with 100 variables: MIMIC
(LEFT) and EBNA (RIGHT); 500 clauses (UPPER) and 700 clauses (LOWER)

represents corresponding mutation probabilities. As mentioned above, there are
50 problem instances for each couple of (variable, clauses). 10 trials are examined
for each problem instance. The highest and lowest points indicates the averaged
number of unsatisfied clauses for worst and best solutions in 10 trials, respec-
tively. Moreover, the short horizontal lines crossed to corresponding vertical lines
means the averaged value over all (500) trials. All solutions used to depict the
graphs is acquired when the number of fitness evaluations achieves to 200,000.
These graphs reveal that the mutation operator proposed in this paper improves
the quality of solutions which are acquired after the convergence.

4 Conclusion

In this paper, we discussed on the effectiveness of mutation in the case of Esti-
mation of Distribution Algorithms from empirical viewpoints. Comparisons on
two deceptive functions carried out in section 3 elucidate that (1) the proposed
method works well even if the population size M of EDAs is not large enough,
and (2) only MIMICwM could solve for the most difficult four-peaks problems
applied in this paper. Moreover, the computational results for MAXSAT prob-
lems reveal that the mutation operator proposed in this paper improves the
quality of solutions after the convergence.

Estimation of Distribution Algorithms with Mutation 121

References

1. P. Larrañaga and J. A. Lozano Editors: Estimation of Distribution Algorithms,
Kluwer Academic Publishers (2002)

2. Proc. of 2002 Genetic and Evolutionary Computation Conference, (2003) 495–502
3. Marc Toussaint: The Structure of Evolutionary Exploration: On Crossover, Build-

ings Blocks, and Estimation-Of-Distribution Algorithms, Proc. of 2003 Genetic
and Evolutionary Computation Conference, LNCS 2724, 2 (2003) 1444–1455

4. Vose, M.D.: The simple genetic algorithm: foundations and theory. MIT Press
(1999)

5. González, C., Lozano J.A., Larrañaga, P.: Mathematical Modeling of Discrete Es-
timation of Distribution Algorithms. Larrañaga, P. and Lozano, J.A. Eds., Esti-
mation of Distribution Algorithms. Kluwer Academic Publishers (2002) 147–163

6. M. Pelikan: Bayesian optimization algorithm: From single level to hierarchy,
Ph.D. thesis, University of Illinois at Urbana-Champaign, Urbana, IL. Also Illi-
GAL Report No. 2002023 (2002)

7. H. Mühlenbein and G. Paaß:From Recombination of genes to the estimation of
distributions I. Binary parameters. Parallel Problem Solving from Nature - PPSN
IV (1996) 178–187

8. J. S. De Bonet et al.: MIMIC: Finding optima by estimating probability densities,
Advances in Neural Information Processing Systems 9 (1996)

9. S. Baluja: Using a priori knowledge to create probabilistic models for optimization
International J. of Approximate Reasoning, 31(3) (2002) 193–220

10. M. Pelikan et al.: BOA: The Bayesian optimization algorithm, Proceedings of the
Genetic and Evolutionary Computation Conference 1 (1999) 525–532

11. H. Mühlenbein and T. Mahnig: FDA - a scalable evolutionary algorithms for the
optimization of additively decomposed functions, Evolutionary Computation 7(4)
(1999) 353–376

12. P. Larrañaga et al.: Combinatorial Optimization by Learning and Simulation of
Bayesian, Uncertainty in Artificial Intelligence, Proceedings of the Sixteenth Con-
ference (2000) 343–352

13. The equation for the response to selection and its use for prediction, Evolutionary
Computation, 5(3) (1998) 303–346

14. http://rtm.science.unitn.it/intertools/sat/
15. R. Battiti and M. Protasi: Reactive Search, a history-sensitive heuristic for MAX-

SAT, ACM Journal of Experimental Algorithmics, 2(2) (1997)

Property Analysis of Symmetric Travelling
Salesman Problem Instances Acquired

Through Evolution

I. van Hemert

Centre for Emergent Computing, Napier University, Edinburgh, UK
j.van.hemert@napier.ac.uk

Abstract. We show how an evolutionary algorithm can successfully be
used to evolve a set of difficult to solve symmetric travelling salesman
problem instances for two variants of the Lin-Kernighan algorithm. Then
we analyse the instances in those sets to guide us towards deferring gen-
eral knowledge about the efficiency of the two variants in relation to
structural properties of the symmetric travelling salesman problem.

1 Introduction

The travelling salesman problem (tsp) is well known to be np-complete. It is
mostly studied in the form of an optimisation problem where the goal is to find
the shortest Hamiltonian cycle in a given weighted graph [1]. Here we will restrict
ourselves to the symmetric travelling salesman problem, i.e., distance(x, y) =
distance(y, x), with Euclidean distances in a two-dimensional space.

Over time, much study has been devoted to the development of better tsp
solvers. Where “better” refers to algorithms being more efficient, more accurate,
or both. It seems, while this development was in progress, most of the effort went
into the construction of the algorithm, as opposed to studying the properties of
travelling salesman problems. The work of [2] forms an important counterexam-
ple, as it focuses on determining phase transition properties of, among others,
tsp in random graphs, by observing both the graph connectivity and the stan-
dard deviation of the cost matrix. Their conjecture, which has become popular,
is that all np-complete problems have at least one order parameter and that
hard to solve problem instances are clustered around a critical value of this
order parameter.

It remains an open question whether the critical region of order parameters
are mainly depending on the properties of the problem, or whether it is linked
to the algorithm with which one attempts to solve the problem. However, a
substantial number of empirical studies have shown that for many constraint
satisfaction and constraint optimisation problems, a general region exists where
problems are deemed more difficult to solve for a large selection of algorithms
[3, 4, 5].

Often the characterisation of the order parameter includes structural proper-
ties [6, 7], which leads to both a more accurate prediction and a better

G.R. Raidl and J. Gottlieb (Eds.): EvoCOP 2005, LNCS 3448, pp. 122–131, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Jano

Property Analysis of Symmetric Travelling Salesman Problem 123

understanding of where hard to solve problems can be expected. Naturally, this
does not exclude that a relationship between an algorithm and certain structural
properties can exist. In this study, we shall provide empirical evidence for the
existence of such a distinct relationship for two tsp problem solvers, which is of
great influence on the efficiency of both algorithms.

In the following section we describe the process of evolving tsp instances.
Then, in Section 3 we provide a brief overview of the Lin-Kernighan algorithm,
and the variants used in this study. Section 4 contains the empirical investigation
on the difficulty and properties of evolved problem instances. Last, in Section 5
we provide conclusions.

2 Evolving TSP Instances

The general approach is similar to that in [8], where an evolutionary algorithm
was used to evolve difficult to solve binary constraint satisfaction problem in-
stances for a backtracking algorithm. Here, we use a similar evolutionary al-
gorithm to evolve difficult travelling salesman problem instances for two well
known tsp solvers.

A tsp instance is represented by a list of 100 (x, y) coordinates on a 400× 400
grid. The list directly forms the chromosome representation with which the evo-
lutionary algorithm works. For each of the 30 initial tsp instances, we create a list
of 100 nodes, by uniform randomly selecting (x, y) coordinates on the grid. This
forms the first step in the process, depicted in Figure 1. Then the process enters
the evolutionary loop: Each tsp instance is awarded a fitness equal to the search
effort (defined in Section 3) required by the tsp solver to find a near-optimal short-
est tour. Using two-tournament selection, we repeatedly select two parents, which
create one offspring using uniform crossover. Every offspring is subjected to muta-
tion, which consists of replacing each one of its nodes with a probability pm, with
uniform randomly chosen (x, y) coordinates. This generational model is repeated
29 times, and together with the best individual from the current population (1-
elitism), a new population is formed. The loop is repeated for 600 generations.

The mutation rate pm is decreased over the subsequent generations. This pro-
cess makes it possible to take large steps in the search space at the start, while
keeping changes small at the end of the run. The mutation rate is varied using,

create TSP instances
uniform randomly

run TSP-solver
 on each instance

fitness = runtime of
TSP-solver

using crossover & mutation
create new TSP instances

maximum number of generations reached?

replace the population
employing elitism

stop
start

Fig. 1. The process of evolving tsp instances that are difficult to solve

124 J.I. van Hemert

pm = pmend + (pmstart − pmend) · 2
−generation

bias ,

from [9] where the parameters are set as bias = 2, pmstart = 1/2, pmend = 1/100,
and generation is the current generation.

3 Lin-Kernighan

As for other constrained optimisation problems, we distinguish between two
types of algorithms, complete algorithms and incomplete algorithms. The first
are often based on a form of branch-and-bound, while the latter are equipped
with one or several heuristics. In general, as complete algorithms will quickly
become useless when the size of the problem is increased, the development of
tsp solvers has shifted towards heuristic methods. One of the most renowned
heuristic methods is Lin-Kernighan [10]. Developed more than thirty years ago,
it is still known for its success in efficiently finding near-optimal results.

The core of Lin-Kernighan, and its descending variants, consists of edge ex-
changes in a tour. It is precisely this procedure that consumes more than 98%
of the algorithm’s run-time. Therefore, in order to measure the search effort of
Lin-Kernighan-based algorithms we count the number of times an edge exchange
occurs during a run. Thus, this measure of the time complexity is independent
of the hardware, compiler and programming language used. In this study, we use
two variants of the Lin-Kernighan algorithm, which are explained next.

3.1 Chained Lin-Kernighan

Chained Lin-Kernighan (clk) is a variant [11] that aims to introduce more
robustness in the resulting tour by chaining multiple runs of the Lin-Kernighan
algorithm. Each run starts with a perturbed version of the final tour of the
previous run. The length of the chain depends on the number of nodes in the
tsp problem.

In [12], a proof is given demonstrating that local optimisation algorithms
that are pls-complete (Polynomial Local Search), can always be forced into
performing an exponential number of steps with respect to the input size of the
problem. In [13], Lin-Kernighan was first reported to have difficulty on certain
problem instances, which had the common property of being clustered. The
reported instances consisted of partial graphs and the bad performance was
induced because the number of “hops” required to move the salesman between
two clusters was set large enough to confuse the algorithm. We are using the
symmetric tsp problem, where only full graphs exist and thus, every node can
be reached from any other in one “hop”.

3.2 Lin-Kernighan with Cluster Compensation

As a reaction on the bad performance reported in [13], a new variant of Lin-
Kernighan is proposed in [14], called Lin-Kernighan with Cluster Compensation
(lk-cc). This variant aims to reduce the computational effort, while maintaining
the quality of solutions produced for both clustered and non-clustered instances.

Property Analysis of Symmetric Travelling Salesman Problem 125

Cluster compensation works by calculating the cluster distance for nodes,
which is a quick pre-processing step. The cluster distance between node v and w
equals the minimum bottleneck cost of any path between v and w, where the bot-
tleneck cost of a path is defined as the heaviest edge on that path. These values
are then used in the guiding utility function of Lin-Kernighan to prune unfruitful
regions, i.e., those involved with high bottlenecks, from the search space.

4 Experiments

Each experiment consists of 190 independent runs with the evolutionary algo-
rithm, each time producing the most difficult problem instance at the end of
the run. With 29 new instances at each of the 600 generations, this results in
running the Lin-Kernighan variant 3 306 000 times for each experiment. The set
of problem instances from an experiment is called Algorithm:Evolved set, where
Algorithm is either clk or lk-cc, depending on which problem solver was used
in the experiment.

The total set of problem instances used as the initial populations for the
190 runs is called Random set, and it contains 190 × 30 = 5 700 unique prob-
lem instances, each of which is generated uniform randomly. This set of initial
instances is the same for both Lin-Kernighan variants.

4.1 Increase in Difficulty

In Figure 2, we show the amount of search effort required by Chain Lin-Kernighan
to solve the sets of tsp instances corresponding to the different experiments, as

Lin−Kernighan search effort

0 80000 160000 240000 320000

LK−CC on
Random set

CLK on
Random set

Mean

Near outliers, <= 3.0 IQR

Far outliers, > 3.0 IQR

LK−CC:
Evolved set

CLK:
Evolved set

CLK on
TSP generator

Lin−Kernighan search effort

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

Fig. 2. Box-and-whisker plots of the search effort required by clk and lk-cc on the
Random set (top), and clk on the tsp generator and on the clk:Evolved set (bottom)
and by lk-cc on the lk-cc:Evolved set (bottom)

126 J.I. van Hemert

well as to the Random set. Also, we compared these results to results reported
in [15], where a specific tsp generator was used to create clustered instances
and then solved using the Chained Lin-Kernighan variant. This set contains the
50 most difficult to solve instances from those experiments and it is called TSP
generator.

In Figure 2, we notice that the mean and median difficulty of the instances in
the clk:Evolved set is higher than those created with the tsp generator. Also,
as the 5/95 percentile ranges are not overlapping, we have a high confidence of
the correctness of the difference in difficulty.

When comparing the difficulty of clk and lk-cc for both the Random set and
the Evolved sets in Figure 2, we find a remarkable difference in the the amount
of variation in the results of both algorithms. clk has much more variation with
the Random set than lk-cc. However, for the evolved sets, the opposite is true.
We also mention that for the Random set, lk-cc is significantly faster than clk,
while difference in speed for the evolved sets is negligible.

4.2 Discrepancy with the Optimum

We count the number of times the optimum was found by both algorithms for the
Random set and for the corresponding Evolved sets. These optima are calculated
using Concorde’s [16] branch-and-cut approach to create an lp-representation
of the tsp instance, which is then solved using Qsopt [17]. We show the average
discrepancy between optimal tour length and the length of the tour produced
by one of the problem solvers.

For the Random set, clk has an average discrepancy of 0.004% (stdev: 0.024),
and it finds the best tour for 95.8% of the set. For the same set of instances,
lk-cc has an average discrepancy of 2.08% (stdev: 1.419), and it finds the best
tour for 6.26% of the set.

A similar picture presents itself for the Evolved sets. Here, clk has an average
discrepancy of 0.03% (stdev: 0.098), and find the best tour for 84.7% of the
clk:Evolved set. lk-cc has an average discrepancy of 2.58% (stdev: 1.666), and
finds the best tour for 4.74% of the lk-cc:Evolved set.

4.3 Clustering Properties of Problem Sets

To get a quantifiable measure for the amount of clusters in tsp instances we
use the clustering algorithm gdbscan [18]. This algorithm uses no stochastic
process, assumes no shape of clusters, and works without a predefined number
of clusters. This makes it an ideal candidate to cluster 2-dimensional spatial
data, as the methods suffers the least amount of bias possible. It works by
using an arbitrary neighbourhood function, which in this case is the minimum
Euclidean distance. It determines clusters based on their density by first seeding
clusters and then iteratively collecting objects that adhere to the neighbourhood
function. The neighbourhood function here is a spatial index, which results in a
run-time complexity of O(n log n).

Clustering algorithms pose a large responsibility on their users, as every clus-
tering algorithm depends on at least one parameter to help it define what a
cluster is. Two common parameters are the number of clusters, e.g., for vari-

Property Analysis of Symmetric Travelling Salesman Problem 127

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 1 2 3 4 5 6 7 8 9

A
ve

ra
ge

 o
cc

ur
re

nc
es

 o
f c

lu
st

er
in

gs

Number of clusters

Random set
CLK:Evolved set

LK-CC:Evolved set

Fig. 3. Average amount of clusters found for problem instances of the Random set and
for problem instances evolved against clk and lk-cc

ants of k-means, and distance measurements to decide when two points are near
enough to consider them part of the same cluster. The setting of either of these
parameters greatly affects the resulting clustering. To get a more unbiased result
on the number of clusters in a set of points we need a more robust method.

To get a more robust result for the number of clusters found in the different
sets of tsp instances we repeat the following procedure for each instance in
the set. Using the set {10, 11, 12, . . . , 80} of settings for the minimum Euclidean
distance parameter for gdbscan, we cluster the tsp instance for every parameter
setting. We count the number of occurrences of each number of clusters found.
Then we average these results over all the tsp instances in the set. The set of
minimum Euclidean distance parameters is chosen such that it includes both the
peak nd the smallest number of clusters for each problem instance.

We use the above procedure to quantify the clustering of problem instances
in the Random set and the two evolved sets. Figure 3 shows that for the Random
set and the lk-cc:Evolved set, the average number of clusters found does not
differ by much. Instead, the problem instances in the clk:Evolved set contain
consistently more clusters. The largest difference is found for 2–6 clusters.

4.4 Distribution of Segment Lengths

For both problem solvers, we study the difference between the distribution of
the segment lengths of resulting tours from both the Random set and the cor-
responding Evolved set. For both sets, we take the optimal tour of each tsp
instance in the set and then, for each tour, observe all the segment lengths. Fi-
nally, we count the occurrences of the segment lengths, and average these over
the whole set of tours.

Figure 4 shows the average distribution in segment lengths for tours derived
from tsp instances from the Random set and for the clk:Evolved set. We notice
that the difference from the Random set to the clk:Evolved set is the increase of
very short segments (0–8) and more longer segments (27–43), and the introduc-
tion of long segments (43–58). As the number of segments in a tour is always the

128 J.I. van Hemert

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60

A
ve

ra
ge

 o
cc

ur
re

nc
es

Segment lengths

Random set

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60

A
ve

ra
ge

 o
cc

ur
re

nc
es

Segment lengths

CLK:Evolved set

Fig. 4. Average distribution of segment lengths in the resulting Chained Lin-Kernighan
tour for tsp instances of the Random set and of the clk:Evolved set

same, i.e., 100, these increases relate to the decrease of medium length segments
(9–26).

Figure 5 shows the average distribution of segment lengths for both prob-
lem solvers. For lk-cc, we observe no significant changes in the distribution of
segment lengths between the Random set and lk-cc:Evolved set.

When comparing the average distribution of segment lengths of tours in both
problem solvers we clearly see a large difference. lk-cc, compared to clk, uses
much longer segments. Those segments most frequently used, in the range of
60–80, never occur at all with clk. The distribution for lk-cc seems to match
a flattened normal distribution, whereas the distribution for clk is much more
skewed, clk favours the usage of short segments of a length less than 20.

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160 180

A
ve

ra
ge

 o
cc

ur
re

nc
es

Segment lengths

CLK, Random set
CLK:Evolved set

LK-CC, Random set
LK-CC:Evolved set

Fig. 5. Average distribution of segment lengths in the resulting tours for both the
Random set and Evolved set of problem instances for clk and lk-cc

Property Analysis of Symmetric Travelling Salesman Problem 129

4.5 Distribution of Pair-Wise Distances

In Figure 6, we show the average number of occurrences for distances between
pairs of nodes. Every tsp instance contains

(100
2

)
pairs of nodes on the account

that it forms a full graph. The distribution of these pair-wise distances mostly
resembles a skewed Gaussian distribution. The main exception consists of the
cut-off at short segments lengths. These very short distances, smaller than about
4, occur rarely when 100 nodes are distributed over a 400 × 400 space.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 100 200 300 400 500 600

A
ve

ra
ge

 o
cc

ur
re

nc
es

Pair-wise distances

Random set
CLK:Evolved set

LK-CC:Evolved set

Fig. 6. Distribution of distances over all pairs of nodes in randomly generated and
evolved problem instances after 600 generations (clk and lk-cc), 95% confidence
intervals included, most of which are small

For the Chained Lin-Kernighan we notice a change in the distribution similar
to that in the previous section. Compared with the Random set, both the number
of short segments and the number of long segments increases. Although not to
the same extent when observing the distribution of segment lengths. Also, the
number of medium length occurrences is less than for the Random set. This
forms more evidence for the introduction of clusters in the problem instances.
Although this analysis does not provide us with the amount of clusters, it does
give us an unbiased view on the existence of clusters, as it is both independent
of the tsp algorithms and any clustering algorithm.

Also shown in Figure 6 is the distribution of pair-wise distances for problem
instances evolved against the lk-cc algorithm. While we notice an increase in
shorter distances, this is matched by an equal decrease in longer distances. Thus,
the total layout of the nodes becomes more huddled together.

4.6 Swapping Evolved Sets

We run each variant on the problem instances in the set evolved for the other
variant. Table 1 clearly shows that a set evolved for one algorithm is much
less difficult for the other algorithm. However, each variant needs significantly

130 J.I. van Hemert

Table 1. Mean and standard deviation, in brackets, of the search effort required by
both algorithms on the Random set and both Evolved sets

clk cc-lk

clk:Evolved set 1 753 790 (251 239) 207 822 (155 533)
cc-lk:Evolved set 268 544 (71 796) 1 934 790 (799 544)
Random set 130 539 (34 452) 19 660 (12 944)

more search effort for the alternative Evolved set than for the Random set. This
indicates that some properties of difficulty are shared between the algorithms.

5 Conclusions

We have introduced an evolutionary algorithm for evolving difficult to solve
travelling salesman problem instances. The method was used to create a set of
problem instances for two well known variants of the Lin-Kernighan heuristic.
These sets provided far more difficult problem instances than problem instances
generated uniform randomly. Moreover, for the Chained Lin-Kernighan variant,
the problem instances are significantly more difficult than those created with a
specialised tsp generator. Through analysis of the sets of evolved problem in-
stances we show that these instances adhere to structural properties that directly
afflict on the weak points of the corresponding algorithm.

Problem instances difficult for Chained Lin-Kernighan seem to contain clus-
ters. When comparing with the instances of the tsp generator, these contained
on average more clusters (10 clusters) then the evolved ones (2–6 clusters). Thus,
this leads us to the conjecture that clusters on itself is not sufficient property to
induce difficulty for clk. The position of the clusters and distribution of cities
over clusters, as well as the distribution of nodes not belonging to clusters, can
be of much influence.

The goal of the author of lk-cc is to provide a tsp solver where its efficiency
and effectiveness are not influenced by the structure of the problem [14]. Problem
instances evolved in our study, which are difficult to solve for Lin-Kernighan with
Cluster Compensation, tend to be condense and contain random layouts. The
algorithm suffers from high variation in the amount of search effort required,
therefore depending heavily on a lucky setting of the random seed. Furthermore,
its effectiveness is much lower than that of clk, as the length of its tours are
on average, further away from the optimum. Thus, it seems that to live up its
goals, lk-cc is losing on both performance and robustness.

The methodology described here is of a general nature and can, in theory,
be used to automatically identify difficult problem instances, or instances that
inhibit other properties. Afterwards, these instances may reveal properties that
can lead to general conclusions on when and why algorithms show a particular
performance. This kind of knowledge is of importance when one needs to select
an algorithm to solve a problem of which such properties can be measured.

Property Analysis of Symmetric Travelling Salesman Problem 131

Acknowledgements. The author is supported through a TALENT-Stipendium
awarded by the Netherlands Organization for Scientific Research (NWO).

References

1. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: The Traveling
Salesman Problem. John Wiley & Sons, Chichester (1985)

2. Cheeseman, P., Kanefsky, B., Taylor, W.: Where the really hard problems are. In:
Proceedings of IJCAI-91. (1991)

3. Beck, J., Prosser, P., Selensky, E.: Vehicle routing and job shop scheduling: What’s
the difference? In: Proc. of the 13th International Conference on Automated Plan-
ning & Scheduling. (2003)

4. Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: Determin-
ing computational complexity from characteristic phase transitions. Nature 400
(1999) 133–137

5. Hayes, B.: Can’t get no satisfaction. American Scientist 85 (1997) 108–112
6. Hogg, T.: Refining the phase transition in combinatorial search. Artificial Intelli-

gence 81 (1996) 127–154
7. Culberson, J., Gent, I.: Well out of reach: why hard problems are hard. Technical

report, APES Research Group (1999)
8. van Hemert, J.: Evolving binary constraint satisfaction problem instances that

are difficult to solve. In: Proceedings of the IEEE 2003 Congress on Evolutionary
Computation, IEEE Press (2003) 1267–1273

9. Kratica, J., Ljubić, I., Tošic, D.: A genetic algorithm for the index selection prob-
lem. In Raidl, G., et al., eds.: Applications of Evolutionary Computation. Volume
2611., Springer-Verlag (2003) 281–291

10. Lin, S., Kernighan, B.: An effective heuristic algorithm for the traveling salesman
problem. Operations Research 21 (1973) 498–516

11. Applegate, D., Cook, W., Rohe, A.: Chained lin-kernighan for large travelling
salesman problems (2000) http://www.citeseer.com/applegate99chained.html.

12. Papadimitriou, C.: The complexity of the Lin-Kernighan heuristic for the traveling
salesman problem. SIAM Journal of Computing 21 (1992) 450–465

13. Johnson, D., McGeoch, L.: The traveling salesman problem: a case study. In Aarts,
E., Lenstra, J., eds.: Local Search in Combinatorial Optimization. John Wiley &
Sons, Inc (1997) 215–310

14. Neto, D.: Efficient Cluster Compensation for Lin-Kernighan Heuristics. PhD thesis,
Computer Science, University of Toronto (1999)

15. van Hemert, J., Urquhart, N.: Phase transition properties of clustered travelling
salesman problem instances generated with evolutionary computation. In Yao, X.,
Burke, E., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.,
Kabán, P.T.A., Schwefel, H.P., eds.: Parallel Problem Solving from Nature (PPSN
VIII). Volume 3242 of LNCS., Birmingham, UK, Springer-Verlag (2004) 150–159

16. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Finding tours in the TSP.
Technical Report 99885, Research Institute for Discrete Mathematics, Universität
Bonn (1999)

17. Applegate, D., Cook, W., Dash, S., Mevenkamp, M.: Qsopt linear programming
solver (2004) http://www.isye.gatech.edu/~wcook/qsopt/.

18. Sander, J., Ester, M., Kriegel, H.P., Xu, X.: Density-based clustering in spatial
databases: The algorithm GDBSCAN and its applications. Data Min. Knowl.
Discov. 2 (1998) 169–194

Heuristic Colour Assignment Strategies
for Merge Models in Graph Colouring

István Juhos1, Attila Tóth2, and Jano I. van Hemert3

1 Dept. of Computer Algorithms and Artificial Intelligence, Univ. of Szeged, Hungary
2 Department of Computer Science, Univ. of Szeged (jgytfk), Hungary
3 Centre for Emergent Computing, Napier University, Edinburgh, UK

Abstract. In this paper, we combine a powerful representation for graph
colouring problems with different heuristic strategies for colour assign-
ment. Our novel strategies employ heuristics that exploit information
about the partial colouring in an aim to improve performance. An evolu-
tionary algorithm is used to drive the search. We compare the different
strategies to each other on several very hard benchmarks and on gen-
erated problem instances, and show where the novel strategies improve
the efficiency.

1 Introduction

The problem class known as the graph k-colouring problem [1] is defined as
follows. Given a graph G = 〈V, E〉, where V = {v1, . . . , vn} is a set of nodes and
E = {(vi, vj)|vi ∈ V ∧ vj ∈ V ∧ i �= j} is a set of edges. The objective in the
graph k-colouring problem is to colour every node in V with one of k colours
such that no two nodes connected with an edge in E have the same colour. Such
a colouring is called a valid colouring. The smallest number of colours k used
to achieve a valid colouring of G is called the chromatic number of G, which is
denoted by χ.

Most algorithms searching for a solution of a graph k-colouring problem do
so by incrementally assigning a colour to a node. Consequently, at every node
visited a decision must be made which colour to assign. This choice may prove
of vital importance to achieving a valid colouring. Quite a number of strategies
for making this decision exist, and each one comes with its own rationale and
benefits [2–Chapter 5]. From recent theoretical developments [3] we know that
algorithms for finites sets of problems under permutation closure also cannot
escape the No Free Lunch Theorem [4], which makes it more important to link
properties of problems with algorithms [5].

A great deal of study is devoted to hybrid algorithms, as these have proven
to be successful approaches to solving difficult constrained optimisation prob-
lems. Popular methodologies are meta-heuristics [6] and, more recently, hyper-
heuristics [7] and hybrid meta-heuristics, where the idea is to use combine several
heuristics to get a more successful algorithm. This success is measured in both

G.R. Raidl and J. Gottlieb (Eds.): EvoCOP 2005, LNCS 3448, pp. 132–143, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Heuristic Colour Assignment Strategies for Merge Models 133

effectiveness and efficiency, i.e., accuracy in finding solutions and time complex-
ity. Here, we examine the combination of a powerful representation for graph
colouring with five different heuristic strategies for colour assignment.

In the next section we explain how solutions of graph colouring problems
can be represented using merge models. Then, in Section 3 we explain different
heuristic strategies for colour assignment. These strategies are used in an evo-
lutionary algorithm explain in Section 4. The different heuristic strategies are
benchmarked in Section 5 together with other algorithms. Finally in Section 6
we draw some conclusions.

2 The Binary Merge Model Representations

Graph colouring algorithms make use of adjacency checking during the colour-
ing process, which has a large influence on the performance. Generally, when
assigning a colour to a node, all adjacent nodes must be scanned to check for
potential violations. Thus, a number of constraint checks, i.e., checks for equal
colours, need to be performed. The exact number of constraint checks performed
is bounded by the current number of coloured neighbours and by |V | − 1. Using
the Binary Merge Model approach, explained next, the number of constraint
checks lies between one and the number of colours used up to this point. These
bounds arise from the model-induced hyper-graph structure, which guarantees
that the algorithms usually performs better .

The Binary Merge Model (bmms) implicitly uses hyper-nodes and hyper-
edges (see Figure 1). A hyper-node is a set of nodes that all have the same
colour, i.e., they are folded into one node. A hyper-edge connects nodes of which
at least one node is a hyper-node. Such a hyper-edge essentially forms a collection
of regular edges, i.e., constraints. A hyper-edge only exists if and only if its
corresponding nodes are connected by at least two ”normal” edges. The bmm
concentrates on operations on hyper-nodes and normal nodes, by trying to merge
normal nodes with normal nodes and hyper-nodes. Within the context of search
effort, which in constraint satisfaction is measured by counting the number of
constraint checks, we can save effort if at least one of the nodes is a hyper-node.
Then, the number of adjacency checks, i.e, constraint checks, can be reduced
as these are performed along hyper-edges instead of normal edges, because one
constraint check on a hyper-edge saves at least one, but possible more, constraint
checks on the normal edges it incorporates. A more detailed explanation is given
in [8], where the model was introduced.

The current colouring of a graph 〈V, E〉 is stored in a Binary Merge Table
(bmt) (for an example, see Figure 2). Every cell (i, j) in the table is binary. The
columns refer to the nodes and the rows refer to the colours. A value in cell (i, j)
is zero if and only if node j ∈ V cannot be assigned colour i because of the edges
E in the original graph 〈V, E〉. The initial bmt is the adjacency matrix of the
graph, hence a different colour is assigned to each node.

If the graph is not a complete graph, then it might be possible to reduce the
number of necessary colours. This corresponds to reducing rows in the bmt. Rows

134 I. Juhos, A. Tóth, and J.I. van Hemert

can be reduced by repeatedly using a Binary Merge Operation, which attempt
to merge two rows. If a merge is possible, i.e., no violations are introduced, the
number of colours is decreased by one. Otherwise, the number of colours remains
the same. A merge is successful only when two nodes are not connected by a
normal edge or a hyper-edge. An example of both a successful and unsuccessful
merge is shown in Figures 1 and 2.

Definition 1. The Binary Merge Operations ∪ merges an initial row rj into an
arbitrary (initial or merged) row ri if and only if (j, i) = 0 (i.e. the hyper-node
xj is not connected to the node xi) in the bmt. If rows ri and rj can be merged
then the result is the union of them.

Formally, let I be the set of initial rows of the bmt and R be the set of all
possible |V | size rows, i.e. binary vectors. Then an merge operation is defined as

∪ : R × I → R

r′j := rj ∪ ri, r′j , rj ∈ R, ri ∈ I, or by components

r′j(l) := rj(l) ∨ ri(l), l = 1, 2, . . . , |V |

With regard to the time complexity of the binary operation, it is proportional
to a binary or operation on a register of l bits. If l is the number of bits in one
such operation and, under assumption that the time complexity of that operation
is one, the merge of two rows of length n by l length parts takes �n/l� to complete.
If k is the number of rows left in the bmt, then the number of merge operations
is |V | − k, where k ∈ {χ, . . . , |V |}.

2.1 Permutation Merge Model

Finding a minimal colouring for a graph k-colouring problem using the binary
merge table representation requires finding the sequence of merge operations
that leads to that colouring. This can be represented as a sequence of candidate
reduction steps using the greedy approach described above. The permutations
of this representation form the Permutation Merge Model [8].

The result of colouring a graph after two or more merge operations depends
on the order in which these operations were performed. Consider the hexagon
in Figure 1(a) and its corresponding bmt in Figure 2. Now let the sequence
P1 = 1, 4, 2, 5, 3, 6 be the order in which the rows are considered for the merge
operations and consider the following merging procedure. Take the first two rows
in the sequence, then attempt to merge row 4 with row 1. As these can be merged
the result is 1 ∪ 4 (see Figure 1(b)). Now take row 2 and try to merge this with
the first row, i.e. (1 ∪ 4). This is unsuccessful, so row 2 remains unaltered. The
merge operations continue with the next rows 5 and 3, and finally, with 6. The
allowed merges are 1 ∪ 4 and 2 ∪ 5. This sequence of merge operations results
in the 4-colouring of the graph depicted in Figure 1(c). However, if we use the
sequence P2 = 1, 4, 2, 6, 3, 5 then the result will be only a 3-colouring, as shown
in Figure 1(e) with the merges 1 ∪ 4, 2 ∪ 6 and 3 ∪ 5. The defined merge is

Heuristic Colour Assignment Strategies for Merge Models 135

P{1,2} P1

P2

P2

x1

x6

x5

x4

x3

x2

x6

x3

x2 x5

x2 x6

x1 x4

x1 x4

x1 x4

x1 x4

x2 x6

x3 x5

(b)

(d) (e)

(c)

(a)

Fig. 1. Examples of the result of two different merge orders P1 = 1, 4, 2, 5, 3, 6 and
P2 = 1, 4, 2, 6, 3, 5. The double-lined edges are hyper-edges and double-lined nodes are
hyper-nodes. The P1 order yields a 4-colouring (c), but with the P2 order we get a
3-colouring (e).

greedy, i.e. it takes a row and tries to find the first row from the top of the table
that it can merge. The row remains unaltered if there is no suitable row. After
performing the sequence P of merge operations, we call the resulting bmt the
merged bmt.

(a) x1 x2 x3 x4 x5 x6

r1 0 1 1 0 0 1
r2 1 0 1 0 0 0
r3 1 1 0 1 0 1
r4 0 0 1 0 1 0
r5 0 0 0 1 0 1
r6 1 0 1 0 1 0

(b) x1 x2 x3 x4 x5 x6

r1 ∪ r4 0 1 1 0 1 1
r2 1 0 1 0 0 0
r3 1 1 0 1 0 1
r5 0 0 0 1 0 1
r6 1 0 1 0 1 0

(c) x1 x2 x3 x4 x5 x6

r1 ∪ r4 0 1 1 0 1 1
r2 ∪ r5 1 0 1 1 0 1

r3 1 1 0 1 0 1
r6 1 0 1 0 1 0

(d) x1 x2 x3 x4 x5 x6

r1 ∪ r4 0 1 1 0 1 1
r2 ∪ r6 1 0 1 0 1 0

r3 1 1 0 1 0 1
r5 0 0 0 1 0 1

(e) x1 x2 x3 x4 x5 x6

r1 ∪ r4 0 1 1 0 1 1
r2 ∪ r6 1 0 1 0 1 0
r3 ∪ r5 1 1 0 1 0 1

Fig. 2. Binary Merge Tables corresponding to the graphs in Figure 1.

In practice the graphs start out uncoloured, the colouring is then constructed
by colouring the nodes in steps. We deal with the sub-graphs of the original graph
defined by the colouring steps. The related binary merge tables contain partial

136 I. Juhos, A. Tóth, and J.I. van Hemert

information about the original one. Let the original graph with its initial bmt
be defined by Figure 3(a) on which the colouring will be performed. Taking the
x1, x4, x2, x6, x3, x5 order of the nodes into account for colouring G, then using
the ordering P1 = 1, 4, 2, 6, 3, 5, an attempt will be made to merge rows. After
the greedy colouring of the nodes x1, x4, x2 there is a related partial or sub-bmt
along with the (sub-)hyper-graph. These are depicted in Figure 3(b). The 1st
and the 4th row are merged together, but the 2nd cannot be merged with the
1 ∪ 4 merged row, thus the 2nd row remains unaltered in the related sub-bmt.

From here on, we concentrate on how to extract valuable information from the
sub-structures to get an efficient colour assignment strategy for the the nodes,
which takes into account the current state of the colouring. This as opposed to
the usually greedy manner, which is blind in this sense, i.e., it does not consider
the current environment.

(b)

(a)

x1

x6

x5

x4

x3

x2

x5

x6

x1 x4

x2

x3

hyper-degree

Fig. 3. The left side shows the partial colouring of the G graph according to the x1, x4, x2

greedyorder and the adjacencymatrix of the graph.The right one shows thepartial or sub-
bmt related to this colouringwith its co-structures and sub-bmt inducedhyper-graph.

3 Heuristic Strategies for Colour Assignment

Finding the appropriate node order is important, which will be left to the evolu-
tionary algorithm described in Section 4. However, the choice of which colour to

Heuristic Colour Assignment Strategies for Merge Models 137

assign also has much influence on the success of the final algorithm. The greedy
strategy finds the first available colour for assigning it to the node currently
being coloured. It does so by trying to merge the corresponding rP (i) row of the
bmt to the previously merged rows following the natural order 1, 2, . . . , i − 1.

Instead of using a simple greedy procedure, we will employ a number of more
sophisticated ways for assigning colours. The way in which the merge model
reduces the number of colours leaves open the way in which the colours are
assigned to various groups of nodes. We take advantage of this by employing
different heuristic strategies for the assigning colours to nodes. Formally, let
xP (i) be the next node to be coloured, where i is the index of the node in the
permutation P . Next, we provide several strategies for assigning a colour to
xP (i) using the information provided by the current merge model. The first two
strategies use only information about the already coloured structure, i.e., about
the sub-bmt not dealing with the current node. The remaining, novel strategies,
use information about the current node and its context so far, and then try to
exploit this information by using it to avoid getting stuck later on.

3.1 Hyper-node Cardinality

This strategy attempts to merge row i with its preceding rows by favouring
hyper-nodes with high cardinality. A hyper-node’s cardinality is defined by the
number of normal nodes it encompasses. The strategy consists of first colouring
the hyper-node with the highest cardinality. In other words, choosing the colour
that colours the most nodes and gives valid colouring. Although this strategy
has a greedy component to it, its ability to use knowledge on-line, i.e., while
searching for a solution, may give it an edge over the simple greedy method.

3.2 Hyper-node Constrainedness

While the previous heuristic supposes that the hyper-node cardinality deter-
mines its constrainedness, this one expresses it in a direct way examining the
context of the considered hyper-node. With this heuristic, we favour the most
constrained hyper-nodes. The intuition is to avoid the possibility that the least
constrained nodes pick up too many irrelevant nodes. This method also works
for the bmt, where we count all the connecting hyper-edges, so calculating the
hyper-degree (see Figure 3). This information can easily be obtained by sum-
marising the rows, i.e., by making the first order norm ||rP (i)||1 of them in the
sub-bmt.

3.3 Suitable Matches

Up until now, we did not consider the characteristics of the structure of xP (i).
The previous strategy used only the constrainedness of hyper-nodes, and here we
shall use the xP (i) constraints as well to find a suitable match for merging rows.
We say that the m-th vector of the sub-bmt r′(m) is the most suitable candidate
for merging with rP (i) if they share the most constraints. The dot product of two
vectors provides the number of shared constraints. Thus, by reverse sorting all

138 I. Juhos, A. Tóth, and J.I. van Hemert

the sub-bmt vectors on their dot product with rP (i), we can reduce the number
of colours by merging rP (i) with the most suitable match.

These approach include implicitly the least constraining value heuristic [2–
Chapter 5], but provide additional one. Try to find that hyper-nodes (group of
the nodes) which has the most number of common neighbors. Thus, reducing
implicitly the structure of the graph in a way which is explicit described in [9].

3.4 Topological Similarity

The dot product, as described above, provides a measure for the similarity of
the vectors. If we normalise these vectors by their length, the result is a measure
for similarity in a topological sense. As the normalised dot products gives the
cosines of the angles of the vectors, higher cosines corresponds to vectors located
nearer. This strategy exploits this idea by collecting vectors that are spatially
near to each other. By performing merge operations on these collections we get
convex combinations of vectors. Thus, the result of a merge remains in the span
of the merged vectors. The idea behind this is to carefully combine similar groups
of colours, thereby building up a solid colouring of the graph that leaves enough
room for further merging of groups, i.e., rows in the bmt.

4 Evolutionary Algorithm to Guide the Models

We have two goals. The first is to find a successful order of the nodes and
the second is to find a successful order for assigning colour. While the order of
the node can be represented by a fix length permutation, the order for colour
assignment needs a variable length representation. We turn to the heuristics
described above to guide the colour assignment dynamically. For the first goal, we
must search the permutation search space of the model described in Section 2.1,
which is of size n!. Here, we use an evolutionary algorithm to search through the
space of permutations. The genotype consists of the permutations of the nodes,
i.e., rows of the bmt. The phenotype is a valid colouring of the graph after using
a colour assignment strategy on the permutation to select the order of the binary
merge operations.

An intuitive way of measuring the quality of an individual p in the population
is by counting the number of rows remaining in the final bmt. This equals to
the number of colours k(p) used in the colouring of the graph, which needs to
be minimised. When we know that the optimal colouring is χ then we may
normalise this fitness function to g(p) = k(p) − χ. This function gives a rather
low diversity of fitnesses of the individuals in a population because it cannot
distinguish between two individuals that use an equal number of colours. This
problem is called the fitness granularity problem. We address it by introducing a
new fitness, which relies on the heuristic that one generally wants to avoid highly
constraint nodes and rows in order to have a higher chance of successful merges
at a later stage. It works as follows. After the final merge the resulting bmt
defines the colour groups. There are k(p) − χ over-coloured nodes, i.e., merged

Heuristic Colour Assignment Strategies for Merge Models 139

rows. Generally, we use the indices of the over-coloured nodes to calculate the
number of nodes that need to be minimised. But these nodes are not necessarily
responsible for the over-coloured graph. Therefore, we choose to count the nodes
that are in the smallest group of nodes with the same colour. In the context of
the merge model, this corresponds to hyper-nodes with the smallest cardinality.
To cope better with the fitness granularity problem we should also deal with
the constraints causing high constrainedness. The final fitness function is then
defined as follows. Let ζ(p) denote the number of constraints, i.e., ones, in the
rows of the final bmt that belong to the k(p)−χ hyper-nodes having the smallest
cardinality. The fitness function becomes f(p) = (k(p) − χ)ζ(p).

Note that here the cardinality of the problem is known, and used as a stopping
criterium (f(p) = 0) to determine the efficiency of the algorithm. For the case
where we do not know the cardinality of the problem, this approach can be used
by leaving out the normalisation step.

5 Empirical Comparison

We use a generational model with 2-tournament selection and replacement,
where we employe elitism of size one. The stop condition is that either an in-
dividual p exists with f(p) = 0 or that the maximum number of generations of
6 000 generations is reached (twice as many as in a previous study due to the
harder problems here). The latter means that the run is unsuccessful, i.e., the
optimal colouring is not found. This setting is used in all experiments. The ini-
tial population is created with 100 random individual. Two variation operators
are used to provide offsprings. First, the 2-point order-based crossover (ox2)
[10–in Section C3.3.3.1] is applied. Second, the other variation operator is a sim-
ple swap mutation operator, which selects at random two different items in the
permutation and then swaps. We use simple operators to make sure that any
success gained, stems from the heuristic strategies for colour assignment. The
probability of using ox2 is set to 0.4 and the probability for using the simple
swap mutation is set to 0.6. These values are take from a previous study [8].

5.1 Means of Comparisons

The performance of an algorithm is expressed in its effectiveness and its efficiency
in solving a problem instance. The first is measured using the success ratio, which
is the amount of runs where an algorithm has found the optimum divided by
the total number of runs. The second is measured by keeping track of how many
constraint checks are being performed on average, for a successful run. This
measure is independent of hardware and programming language as it counts the
number of times an algorithm requests information about the problem instance,
e.g., it checks if an edge exists between two nodes in the graph. This check, or
rather the number of times it is performed, forms the largest amount of time
spend by any constraint solver. A constraint check is defined for each algorithm
as checking whether the colouring of two nodes is allowed (satisfied) or not

140 I. Juhos, A. Tóth, and J.I. van Hemert

allowed (violated). An evolutionary algorithm is of stochastic nature. Therefore,
we always perform ten independent runs with different random seeds for each
problem instance. Results are averaged over these runs and, where appropriate,
over multiple instances with equal characteristics.

5.2 Benchmarks

We compare the five different strategies on a number of benchmark problems
from the “The Second dimacs Challenge” [11], which is a standard competi-
tion repository. For demonstration purposes we choose the extremely difficult
Leighton graphs [12]. In a previous study [13], these graphs took 10–20 hours
to be solved by specialised evolutionary solvers, due to the structure induced
during their creation. Also, the failure of the well-known heuristic dsatur of
Brélaz [14] confirms the difficulty of these problem. They are random graphs
on n = 450 nodes with an edge density of 0.25. A graph is constructed by first
generating cliques of varying sizes in such a way that the pre-specified value of
χ is not violated. Here we use χ = 15. They are identified by le450-15x, where
x is one of a, b, c, or d, to differentiate the individual instances.

 52000

 54000

 56000

 58000

 60000

 62000

 64000

 66000

 68000

 70000

 72000

 0 5 10 15 20 25 30 35 40 45 50A
ve

ra
ge

 d
en

si
ty

 o
f e

dg
es

 in
 th

e
gr

ap
hs

Generations

le450-15c

Simple greedy
Hyper-node cardinality

Hyper-node constrainedness
Suitable matches

Topological similarity

 52000

 54000

 56000

 58000

 60000

 62000

 64000

 66000

 68000

 70000

 72000

 0 5 10 15 20 25 30 35 40 45 50A
ve

ra
ge

 d
en

si
ty

 o
f e

dg
es

 in
 th

e
gr

ap
hs

Generations

le450-15d

Simple greedy
Hyper-node cardinality

Hyper-node constrainedness
Suitable matches

Topological similarity

Fig. 4. Convergence graphs of the fitness for all five strategies on two hard problems

In Figure 4, the fitness of the best individual in the population is presented for
each generation. These results are averaged over ten runs. This provides insight
into the convergence when employing the different heuristic strategies. Not much
difference exists between the simple greedy strategy and both the hyper-node
cardinality and hyper-node constrainedness. However, we notice a significant
faster convergence for both the suitable matches and the topological similarity.
For the graph le450-15c, the convergence of the topological similarity is slightly
faster than that of the suitable matches. Observing the starting phase for the
le450-15d, the topological similarity shows large improvements, however after
the good starting the suitable matches catches it up.

Heuristic Colour Assignment Strategies for Merge Models 141

5.3 In the Phase Transition

Using the well known graph k-colouring generator of Culberson [15], we generate
a test suite of 3-colourable graphs with 200 nodes. The edge density of the graphs
is varied in a region called the phase transition. This is where hard to solve
problem instances are generally found, which is shown using the typical easy-
hard-easy pattern. The graphs are all equipartite, which means that in a solution
each colour is used approximately as much as any other. The suite consists of
nine groups where each group has five instances, one each instance we perform
ten runs and calculate averages over these 50 runs. The connectivity is changed
from 0.020 to 0.060 by steps of 0.005 over the groups.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06

S
uc

ce
ss

 r
at

io

Average density of edges in the graphs

Simple greedy
Hyper-node cardinality

Hyper-node constrainedness

-5e+07

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06

A
ve

ra
ge

 n
um

be
r

of
 c

on
st

ra
in

t c
he

ck
s

Average density of edges in the graphs

Simple greedy
Hyper-node cardinality

Hyper-node constrainedness

Fig. 5. Success ratio and average constraint checks to a solution for the simple greedy
strategy, the hyper-node cardinality strategy, and the hyper-node constrainedness strat-
egy (with 95% confidence intervals; for 0.035, the success ratio is too low thus we include
all runs)

Figure 5 shows the performance measured by success ratio and by average
constraint checks performed for the simple greedy strategy and the two strategies
that restrict their on-line heuristics to the current node under consideration for
colouring. No significant improvement is made over the simple greedy method.

The two novel strategies that employ knowledge over the colouring of the
graph made so far are shown in Figure 6 together with the simple greedy strategy.
Here we clearly notice an improvement in both efficiency and effectiveness over
the simple greedy strategy. Especially, the search effort needed for denser graphs
is much lower. Furthermore, the confidence intervals for this range are small
and non-overlapping. These two approaches give a much robuster algorithm for
solving graph k-colouring.

6 Conclusions

We have combined a powerful representation for the graph k-colouring problem,
called the permutation merge model, with several heuristic strategies for colour

142 I. Juhos, A. Tóth, and J.I. van Hemert

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06

S
uc

ce
ss

 r
at

io

Average density of edges in the graphs

Simple greedy
Suitable matches

Topological similarity

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

 1.8e+08

 2e+08

 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06

A
ve

ra
ge

 n
um

be
r

of
 c

on
st

ra
in

t c
he

ck
s

Average density of edges in the graphs

Simple greedy
Suitable matches

Topological similarity

Fig. 6. Success ratio and average constraint checks for the simple greedy strategy,
the suitable matches, and the topological similarity (with 95% confidence intervals for
0.035, the success ratio is too low thus we include all runs)

assignment. Four novel strategies use information about the current state of the
colouring of the graph to infer where problems can be expected in a future stage
of the colouring process. The aim of exploiting this knowledge is to improve
performance by increasing the efficiency and effectiveness of the evolutionary
algorithm that uses the permutations merge model.

By comparing the different strategies on several hard to solve problems, we
showed how employing on-line heuristics improves the convergence speed of the
evolutionary algorithm. Furthermore, the two novel strategies, by exploiting the
suitability of matches and the topological similarity, showed more potential then
the two strategies that restrict to using knowledge about the current node only.

In order to get a strong comparison, we compared all the strategies on a suite
of generated problem instances that encompasses the phase transition. This way
we ensure a comparison on very hard to solve problems. This confirmed the
results on the benchmarks, as the two novel strategies are more effective, i.e.,
had a higher success ratio, on the right side of the phase transition. Also, they
were far more efficient, and more consistent in their efficiency.

Acknowledgements

This work was supported by the Hungarian National Information Infrastruc-
ture Development Program through High Performance Supercomputing as the
project cspai/1066/2003-2004. The third author is supported by a talent-
Stipendium awarded by the Netherlands Organization for Scientific Research
(nwo).

References

1. Jensen, T., Toft, B.: Graph Coloring Problems. Wiley-Interscience Series in Dis-
crete Mathematics and Optimization. John Wiley & Sons, Inc (1995)

Heuristic Colour Assignment Strategies for Merge Models 143

2. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. second edn.
Prentice Hall Series in Artificial Intelligence. Englewood Cliffs, New Jersey (1995)

3. Schumacher, C., Vose, M., Whitley, L.: The no free lunch and problem description
length. In Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt, H.M., Gen,
M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E., eds.: Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO-2001), Morgan
Kaufmann (2001) 565–570

4. Wolpert, D., Macready, W.: No free lunch theorems for optimization. IEEE Trans-
actions on Evolutionary Computation 1 (1997) 67–82

5. Culberson, J.: On the futility of blind search: An algorithmic view of ”No Free
Lunch”. Evolutionary Computation 69 (1998) 109–128

6. Glover, F., Kochenberger, W., Gary, A.: Handbook of Metaheuristics. Volume 57
of International Series in Operations Research and Management Science. Kluwer
(2003)

7. Burke, E., Kendall, G., Soubeiga, E.: A tabu-search hyper-heuristic for timetabling
and rostering. Journal of Heuristics 9 (2003) 451–470

8. Juhos, I., Tóth, A., van Hemert, J.: Binary merge model representation of the graph
colouring problem. In Gottlieb, J., Raidl, G., eds.: Evolutionary Computation in
Combinatorial Optimization. (2004) 124–134

9. Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the Really Hard Problems
Are. In: Proceedings of the Twelfth International Joint Conference on Artificial
Intelligence, IJCAI-91, Sidney, Australia. (1991) 331–337

10. Bäck, T., Fogel, D., Michalewicz, Z., eds.: Handbook of Evolutionary Computation.
Institute of Physics Publishing Ltd, Bristol and Oxford University Press (1997)

11. Johnson, D., Trick, M.: Cliques, Coloring, and Satisfiability. American Mathemat-
ical Society, dimacs (1996)

12. Leighton, F.T.: A graph colouring algorithm for large scheduling problems. J. Res.
National Bureau Standards 84 (1979) 489–503

13. Dimitris Fotakis, Spyros Likothanassis, S.S.: An evolutionary annealing approach
to graph coloring. In: Proceedings of Applications of Evolutionary Computing,
EvoWorkshops 2001. (2001) 120–129

14. Brélaz, D.: New methods to color the vertices of a graph. Communications of the
acm 22 (1979) 251–256

15. Culberson, J.: Iterated greedy graph coloring and the difficulty landscape. Tech-
nical Report tr 92-07, University of Alberta, Dept. of Computing Science (1992)

G.R. Raidl and J. Gottlieb (Eds.): EvoCOP 2005, LNCS 3448, pp. 144 – 153, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Application of the Grouping Genetic Algorithm
to University Course Timetabling

Rhydian Lewis and Ben Paechter

Centre for Emergent Computing, Napier University, Edinburgh EH10 5DT, UK
{r.lewis, b.paechter}@napier.ac.uk

Abstract. University Course Timetabling-Problems (UCTPs) involve the
allocation of resources (such as rooms and timeslots) to all the events of a
university, satisfying a set of hard-constraints and, as much as possible, some
soft constraints. Here we work with a well-known version of the problem where
there seems a strong case for considering these two goals as separate sub-
problems. In particular we note that the satisfaction of hard constraints fits the
standard definition of a grouping problem. As a result, a grouping genetic
algorithm for finding feasible timetables for “hard” problem instances has been
developed, with promising results.

1 Introduction

The university course-timetabling problem (UCTP)1 is the task of assigning the events
of a university (lectures, tutorials, etc) to rooms and timeslots in such a way as to
minimise violations of a predefined set of constraints. This version of the problem is
already well known and in the last few years has become somewhat of a benchmark in
a problem area that is notorious for having a multitude of different definitions.
Specifically, given a set of events E, the task is to assign every event a room from a
set R and timeslot from a set T (where |T|=45, comprising 5 days of nine timeslots).
The problem is made taxing by the fact that various pairs of events clash - i.e. they
can’t be scheduled in the same timeslots because one or more student may be required
to attend them both, making it analogous to the well known NP-hard graph colouring
problem. There are also other complications - not all rooms are suitable for each event
(it may be too small to accommodate the students or might not have the facilities the
event requires), and cases of double booking (where a particular room is given more
that one event in a timeslot) are strictly disallowed. A violation of any of these three
so-called hard-constraints makes a timetable infeasible. The total number of possible
assignments (timetables) is therefore |E||R|.|T| and it can be easily appreciated that in
anything but trivial cases, the vast majority of these contain some level of
infeasibility.

1 Defined by B. Paechter for the International Timetabling Competition 2002. More details,

and example problem instances are at [19].

 Application of the Grouping Genetic Algorithm to University Course Timetabling 145

In addition to finding feasibility, it is usual in timetabling problems to define a
number of soft constraints. These are rules that, although not imperative in their
satisfaction, should be avoided, if possible, in order to show some consideration to the
people who will have to base their working lives around it. In this particular UCTP
these are (1) no student should be scheduled to sit more than three events in
consecutive timeslots on the same day, (2) students should not be scheduled just one
event in a day and (3) events should not be scheduled in the last timeslot of a day.

This UCTP has been studied by Rossi-Doria et al. [14] as a means for comparing
different metaheuristics. A conclusion of this substantial work is that the performance
of any one metaheuristic with respect to satisfying hard constraints and soft
constraints might be different; i.e. what may be a good approach for finding feasibility
may not necessarily be good for optimising soft constraints. The authors go on to
suggest that hybrid algorithms comprising two stages, the first to find feasibility, the
second to optimise soft constraints whilst staying in feasible regions of the search
space might be the more promising approach. This hypothesis was reinforced when
the International Timetabling Competition [19] was organised in 2002 and people
were invited to design algorithms for this problem - as it turned out, the best
algorithms presented used this two-stage approach [1, 4, 13], using various
constructive heuristics to first find feasibility, followed by assorted local improvement
algorithms to deal with the soft constraints.

It seems then that we have a case for this two-stage approach, but although there is
substantial work pertaining to the optimisation of soft constraints whilst preserving
feasibility [1, 4, 11, 13], there is still a major issue of concern: How we can ensure
that we have a good chance of finding feasibility in the first place? Indeed, this
(sub)problem is still NP-hard [10] and should not be treated lightly. Therefore in
“harder” instances, where methods such as those in [1], [4], [11] and [13] might start
to fail, some sort of stronger search algorithm is required.

1.1 Grouping Genetic Algorithms and Their Applicability for the UCTP

Grouping genetic algorithms (GGAs) may be thought of as a special type of genetic
algorithm specialised for grouping problems. Falkenauer [9] defines a grouping
problem as one where the task is to partition a set of objects U into a collection of
mutually disjoint subsets ui of U, such that ∩ui=U and ui∪ uj = ∅, j, and according
to a set of problem-specific constraints that define valid and legal groupings. The NP-
hard bin packing problem is a well used example - given a finite set of “items” of
various “sizes”, the task is to partition all of the items into various “bins” (groups)
such that (1) the total size of all the items in any one bin does not exceed the bin’s
maximum capacity and (2) the number of bins used is minimised (a legal and optimal
grouping respectively).

It was bin packing that was first used in conjunction with a GGA by Falkenauer
[7]. Here, the author argues that when considering problems of this ilk, the use of
classical genetic operators in conjunction with typical representation schemes2 (as

2 Such as the standard-encoding representations where the value of the ith gene represents the

group that object i is in, and the indirect order-based representations that use a decoder to
build solutions from permutations of the objects.

i

146 R. Lewis and B. Paechter

used for example with timetabling in [3] and [14]) are highly redundant due to the fact
that the operators are object-oriented rather than group-oriented, resulting in a
tendency for them to recklessly break up building blocks that we might otherwise
want promoted. Falkenauer concludes that when considering grouping problems, the
representations and resulting genetic operators need to be defined such that they allow
the groupings of objects to be propagated, as it is these that are the innate building
blocks of the problem, and not the particular positions of any one object on its own.

With this in mind, a standard GGA methodology is proposed in [9]. There has
since been applications of these ideas to a number of grouping problems, with varying
degrees of success. Examples include the equal piles problem [8], graph colouring [5,
6], edge colouring [12] and the exam-timetabling problem [6]. To our knowledge,
there is yet to have been an application of a GGA towards a UCTP3, although it is
fairly clear that, at least for finding feasibility, it is a grouping problem - in this case,
the set of events represents the set of objects to partition and the groups are defined by
the timeslots. A feasible solution is therefore one where all of the |E| events have been
partitioned into |T| feasible timeslots t1,…,t|T|, where a feasible timeslot ti 1 i |T| is
one where none of the events in ti conflict, and where all the events in ti can be placed
in their own suitable room.

Note that soft constraints are not considered in this definition. There are two
reasons for this. Firstly, in this UCTP violations of soft constraints (1) and (2) arise as
a result of factors such as timeslot ordering and the occurrence of sequences of events
with common students across adjacent timeslots. Thus they are in disagreement with
the more general definition of a grouping problem [9]. Secondly, if we were to take
soft constraints into account at this stage they would need to be incorporated into the
fitness function (which we’ll define in section 2.1). But taking soft-constraints into
account, while at the same time searching for feasibility (as used in [3] and [14] for
example), might actually have the adverse effect of leading the search away from
attractive (and 100% feasible) areas of the search space, therefore compromising the
main objective of the algorithm.

2 The Algorithm

Similarly to the work presented in [4], [11], [15] and [17], in our approach each
timetable is represented by a two dimensional matrix M where rows represent rooms
and columns represent timeslots; thus if M(a,b)=c, then event c is to occur in room a
and timeslot b. If, on the other hand, M(a,b) is blank, then no event is to be scheduled
in room a during timeslot b. In our method, the timeslots are always kept feasible and
the number of timeslots in each timetable is allowed to vary. We therefore open new
timeslots when events cannot be feasibly placed in any existing one, and the aim of
the algorithm is to reduce this number down to the required amount |T| (remembering
that in this case |T|=45).

3 We note that UCTPs are generally considered to be different problems to exam timetabling

problems due to various differences that we will not go into here, but are detailed in [16] for
example.

 Application of the Grouping Genetic Algorithm to University Course Timetabling 147

Fig. 1 shows how we perform recombination to construct the first offspring
timetable using parents P1 and P2, and randomly selected crossover points x1,…,4. To
form the second offspring the roles of the parents and the crossover points is reversed.
The mutation operator we use follows a typical GGA mutation scheme - remove a
small number (specified by the mutation rate mr) of randomly selected timeslots from
a timetable and reinsert the events contained within them using the rebuild scheme
(see below). We also use an inversion operator that randomly selects two columns in
the timetable and swaps all the columns between them.

An initial population of timetables is constructed using the recursive rebuild
scheme defined below. The same scheme is also used to reconstruct partial
timetables that occur during recombination and mutation (with subtle differences
regarding the breaking of ties - see table 1. Note too that event selection for
mutation-rebuild is also different). The heuristics we use with this scheme are
variations on those used in [1] and [11] and have already shown themselves to be
powerful with this sort of problem.

Specifically, the rebuild scheme takes an empty or partial timetable tt and a set U
of unplaced events. It then assigns all u∈U a room and timeslot to produce a complete
timetable, opening new timeslots where necessary. Note that for the initial population
generator U=E. Let S represent the set of timeslots in tt and let represent the set of
places in tt - i.e. =R×S.

Rebuild (tt, U)

1. If U=∅ end, else if (|S|<|T|) open (|T|-|S|) new slots, else open | |
| |

U
R   new slots.

2. PlaceEvents (tt, U).
3. Rebuild (tt, U).

PlaceEvents (tt, U)

1. Pick u∈U with the smallest number of possible places to which it can be feasibly
assigned in tt. Break ties with H1 (see table 1). For mutation, just choose any u
randomly.

2. Pick the feasible place for u in tt that the least number of other events in U want.
Break ties with H2 (see table 1).

3. Remove u from U and insert it into tt at the chosen place.
4. If there are still events in U with feasible places, go back to step 1.

x4 x3

x1 x2

P2

P1
unplaced

(4) Insert
unplaced events
using rebuild
scheme.

(3) Remove all slots from P1
(the white parts) that cause
duplicate events. Track the
events that become unplaced.

(1) Copy P1 and P2 and
choose X-over points

(2) Inject chunk
from between x3
and x4 at x1

Fig. 1. How recombination is performed in this algorithm

148 R. Lewis and B. Paechter

2.1 Judging Criteria and the Fitness Function

When looking at the final output of the algorithm, it seems reasonable to assume
that what we are ultimately interested in is the timetable’s distance to feasibility, if
indeed feasibility has not been found. In timetabling this can be measured in various
ways such as the level of student inconvenience, the number of broken constraints,
the number of extra timeslots used, etc. Of course, what is chosen depends first and
foremost on user preference. In our approach we choose to use the number of
unplaced events. This is calculated by doing the following: Recall that |T| represents
the target number of timeslots that we wish to use (i.e. 45), and |S| represents the
current number of timeslots. Additionally, let Fi indicate the number of events
placed in timeslot i, where 1 i |S|, and let |S|’ represent the number of extra
timeslots being used i.e. |S|’=(|S|-|T|). The distance to feasibility is the total number
of events in the |S|’ timeslots to which Fi is minimal – i.e. the |S|’ timeslots with the
least events in them.

During the algorithm’s run however, the distance to feasibility need not be the only
measure that we use to determine fitness. Indeed, if other information is present then
it makes sense to use it if it is thought that it can help guide the search towards more
promising areas of the search space. Consequently, we use a fitness function
somewhat akin to the one proposed for graph colouring by Eiben et al. [5]: we
calculate the number of extra timeslots |S|’ being used and the distance to feasibility.
The fitness function is the total of these two values.

Table 1. Showing the various ways that ties are broken in the rebuild scheme for the three
genetic operators (described in section 2). Note that H1 for mutation is not applicable. As
explained in the text, for this operator the order that unplaced events are inserted back into the
timetable is entirely random

 Heuristic - H1 Heuristic - H2
Recombination Choose the event that conflicts

with the most others
Choose the place that
defines the emptiest slot

Initial population Choose randomly Same as above
Mutation N/A Choose randomly

3 Experimental Analysis

We created sixty test instances using an instance generator, which we separate into
three classes: small, medium and large4. It is known that all have at least one feasible
timetable. These instances were created with no reference to the proposed GGA but
are deliberately intended to be troublesome for finding feasibility. This was mainly
achieved by simple experiments whereby instances were created and run on two

4 For the small instances |E| = 200 to 225 and |R| = 5 or 6. For the medium instances |E| = 390

to 425 and |R| = 10 or 11. For the large instances |E| = 1000 to 1075 and |R| = 25 to 28. Other
parameters for the instances can be found online at the URL at the end of section 4.

 Application of the Grouping Genetic Algorithm to University Course Timetabling 149

existing constructive algorithms [1, 11] that attempt to use stochastic heuristics to
place all events feasibly. With many instances, these algorithms could only place
about 80% of events (and sometimes even less) before running out of ideas and
getting totally stuck. We therefore tended to take these as the instances to use in our
experiments. Indeed, between them these algorithms could not find feasibility in 52 of
the 60 instances.

For all the experiments we used a PC Pentium 4 2.40GHz with 512MB RAM. For
the evolution scheme, a steady-state population of size ps was used: at each step, two
parents are selected using binary tournament selection with parameter ts. Two
offspring are then created with recombination rate rr. These are then mutated and
inserted back into the population, in turn, over the least fit individual. If there is more
than one least-fit individual we choose between these randomly. Also at each step, ir
individuals are also chosen randomly and inversion is applied. During the run we
keep track of the fittest solution found so far according to the fitness function defined
in section 2.1. This is the algorithm’s final output. In all experiments we set ps=50,
ts=0.9, mr=3, and ir=4.

For our first set of experiments5 we tested the algorithm on all sixty problem
instances. We introduced time limits of 30, 200 and 800 seconds for the instance sets
small, medium and large respectively, and set the recombination rate to 0.5. In this
case, even with the strict time limits and the fact that we performed minimal
parameter tuning, the algorithm found feasibility in 23 of the 60 instances – fifteen
more than the algorithms presented in [1] and [11]. Additionally, there is the obvious
advantage that this new algorithm is able to produce a number of different solutions in
the same run.

In the experiments we also noticed that, in some cases (10 in small, 3 in medium
and 1 in large), solutions were actually found in the initial populations! Although
this might lead the prudent reader to suspect that the test instances are suspiciously
easy, we argue that if anything this just goes to highlight the strength of our rebuild
heuristics. Indeed this could be somewhat expected - similar heuristics have already
shown themselves able to find feasibility in one go with other well-known instances
[1, 11] and so there is no reason why they shouldn’t occasionally do the same here.

Our next experiments attempted to address an issue that we consider to be of
particular interest with this algorithm - the consequences that the recombination
operator has on the number of new individuals that can be produced within the time
limit, and the effects that this has on movement in the search space. It is well
acknowledged that the general goal of recombination is to aid the search by allowing
useful building blocks from multiple parents to be combined into new, different and
hopefully fitter offspring. However, as can be imagined in this algorithm,
recombination is more expensive than mutation, so if it is not doing its intended job at
an acceptable level then its presence is questionable. If, on the other hand,
recombination is aiding the search, there will still be a trade-off between the amount
of recombination that is used, and the resultant number of new individuals that can be
produced within the time limit.

5 Full results can be found online at the URL defined at the end of section 4.

150 R. Lewis and B. Paechter

To investigate this, we conducted experiments using different recombination rates
with all other parameters, including the time limits, remaining as previously defined.
For all problem instances we ran five separate trials using recombination rates 0.0,
0.25, 0.5, 0.75 and 1.0.

Table 2 shows clearly that as we increase the recombination rate, the mean number
of new individuals produced within the time limit falls. The effect that this
characteristic has on the resultant movements in the search space within the time limit
is illustrated in fig 2. This graph shows the mean fitness of populations for each of the
twenty medium instances, over time. The effect of using a high level of recombination
is shown well here - a rate of 1.0 for instance, at least for the first half of the run,
gives the slowest progression through the search space per second, whilst a rate of 0.0
offers the most. Clearly, if the time limits for these instances were shorter, then using
no recombination would seem the more sensible choice. What is also noticeable
however is that the higher rates of 0.75 and 1.0 still seem to be making positive
movements in the search space towards the end of the runs, whilst the other three
rates (which use less recombination) seem to be levelling off. Indeed, the lines for
both 0.75 and 1.0 both cross the other three towards the end of the run and, if the time
limit were increased, look like they could go on to make further positive movements.

Table 2. Showing the mean number of new individuals the algorithm is able to produce within
the specified time limits for the different recombination rates

 Rr=0.0 Rr=0.25 Rr=0.5 Rr=0.75 Rr=1.0
Small 24382 19750 14542 11600 7662
Medium 62752 45658 32262 26160 10454
Large 67594 38424 18148 4072 1052

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 100 120 140 160 180

F
itn

es
s

Time (sec)

0.00
0.25
0.50
0.75
1.00

Fig. 2. Mean fitness of populations for the twenty medium instances, per second, for the
different recombination rates

 Application of the Grouping Genetic Algorithm to University Course Timetabling 151

This is exactly what is shown in fig 3. Here, rather than concern ourselves with
CPU time, we look at the way the fitness changes according to the number of
timetable evaluations performed. This measure is frequently considered instead of
CPU time when looking at the performance of an evolutionary algorithm [3] as
evaluation can often be the most expensive operation. Indeed, timetabling problems in
particular are prone to this, as often there might be an abundance of different real-
world constraints that need to be checked, resulting in very complex and expensive
evaluation functions. Although this is not the case for the relatively simple UCTP
used here, this still seems a reasonable criterion to study, as it might be the case that
as we add extra realism to the problem, the fitness function might become so intricate
that the relative expense of the recombination operator becomes negligible. In this
graph then, it can be seen quite clearly that as we increase the recombination rate,
both the amount of positive movement through the search space per evaluation and
the quality of the final solution increases (reflected in the steepness of the curve and
the lower levelling-off point respectively). It can also be seen that as we decrease the
recombination rate, these characteristics lessen in a uniform fashion. Thus it would
seem that recombination is indeed doing its intended job.

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 500 1000 1500 2000 2500

F
itn

es
s

Evaluations (x20)

0.00
0.25
0.50
0.75
1.00

Fig. 3. Mean fitness of populations for the twenty medium instances, per evaluation, for the
different recombination rates

4 Conclusions and Further Work

We have presented an algorithm for university-course timetabling that combines
powerful constructive heuristics with GGA methodology. To our knowledge this is
the first such algorithm aimed at this problem domain. Our initial experiments with
sixty new “hard” problem instances have shown that results are promising with
regards to the number of cases where we have found feasibility, although we do not
yet claim these results to be state of the art. Further experiments in this paper have

152 R. Lewis and B. Paechter

shown that the use of recombination does seem to aid the search towards better
solutions, but if the time limit imposed is highly restricted it should probably be used
in smaller amounts. Finally we round off this paper with some remarks about possible
future work and various other issues that might be of interest.

A place where some improvements might be found is the fitness function.
Currently the search landscape defined by our function can sometimes seem a little
stepped in nature - especially when we are close to finding feasibility. In these cases
the jump from near-feasibility to full-feasibility might well be a lucky one. However,
other smoother fitness functions that concentrate more on favouring solutions with
good combinations of events in timeslots might show to improve the search. We have
recently been conducting experiments using the fitness function

| | 2

1
(| |)

| |

S

ii
F R

f
S

== ∑
 (1)

where Fi is as defined in section 2.1. Although this is more archetypal of this type of
algorithm [6, 7, 8] it actually seems to give significantly worse results than our
current function under the same test conditions. Further work might reveal other
promising avenues.

Other improvements may also be seen through the introduction of some sort of
smart-mutation [3] and/or various local search operators [14]. Whether or not these
will improve the algorithm’s results is also pending further work.

It is also worth noting that not all cases of UCTPs will have these same classical
grouping characteristics as this one. In some problem definitions, all timeslots might
not be the same because certain resources might be unavailable in certain predefined
timeslots. Secondly, some cases may incorporate hard-constraints that pan across the
timeslots such as the specification that one event must take place before another etc.
in which case the ordering of the timeslots might also become important.

Finally, and perhaps most noticeably, we have not addressed for the time being the
important task of optimising the soft constraints. The two-stage approach that we
support here dictates that only once feasibility is found should soft constraints be
considered. However, whether effective searches can still be made in the more
restricted, feasible-only search space for these “hard” instances is yet to be
investigated. In the meantime, the sixty problem instances and full tables of results are
available at www.emergentcomputing.org/timetabling/harderinstances.htm.

References

1. H. Arntzen and A. Løkketangen. A Tabu Search Heuristic for a University Timetabling
Problem. (2003), Proceedings of the Fifth Metaheuristics International Conference MIC
2003, Kyoto, Japan. An older version of the paper is also available at (accessed Dec 2004)
http://www.idsia.ch/Files/ttcomp2002/arntzen.pdf

2. E. Burke, D. Elliman and R. Weare, Specialised Recombinative Operators for Timetabling
Problems. (1995) In Proceedings of the AISB (AI and Simulated Behaviour) Workshop on
Evolutionary Computing, Springer LNCS 993, pp. 75-85.

 Application of the Grouping Genetic Algorithm to University Course Timetabling 153

3. D. Corne, P. Ross, H-L Fang, The Practical Handbook of Genetic Algorithms,
Applications, Volume 1. (1995). Edited by Lance Chambers, CRC Press, pp 219-276.

4. M. Chiarandini, K. Socha, M. Birattari, and O. Rossi-Doria. An effective hybrid approach
for the university course timetabling problem.(2003) Technical Report AIDA-2003-05, FG
Intellektik, FB Informatik, TU Darmstadt, Germany.

5. A.E. Eiben, J.K. van der Hauw, and J.I. van Hemert. Graph Coloring with Adaptive
Evolutionary Algorithms (1998). Journal of Heuristics, 4(1):25-46.

6. W. Erben, A grouping Genetic Algorithm for Graph Colouring and Exam Timetabling
(2000). Proceedings of the Practice and Theory of Automated Timetabling III, Springer
LNCS 2079, pp132-156.

7. E. Falkenauer. A New Representation and Operators for GAs Applied to Grouping
Problems (1994). Evolutionary Computation, Vol. 2 Issue 2, Summer 1994 pp123-144.

8. E. Falkenauer. Solving equal piles with the grouping genetic algorithm (1995) Proceedings
of the 6th Int. Conf. on Genetic Algorithms. Morgan Kaufmann, pp 492-497.

9. E. Falkenauer. Genetic Algorithms and Grouping Problems (1999). John Wiley and
Sons Ltd.

10. M. R. Garey and D. S. Johnson. Computers and Intractability – A guide to NP-
completeness. (1979). W. H. Freeman and Company, San Francisco.

11. R. Lewis and B. Paechter. New Crossover Operators for Timetabling with Evolutionary
Algorithms (2004). In proceedings of the 5th International Conference on Recent Advances
in Soft Computing RASC2004. ISBN 1-84233-110-8, pp189-194. A copy is also available
at http://www.soc.napier.ac.uk/publication/op/getpublication/publicationid/7207469

12. S. Khuri, T. Walters and Y. Sugono. A Grouping Genetic Algorithm for Coloring the
Edges of Graphs (2000), Proceedings of the 2000 ACM/SIGAPP Symposium on Applied
Computing, ACM Press, pp 422-427.

13. P. Kostuch. The University Course Timetabing Problem with a 3-stage approach (2004).
In E. Burke and M. Trick (eds.) Proceedings of the 5th International Conference on the
Practice and Theory of Automated Timetabling, pp 251-266.

14. O. Rossi-Doria, M. Samples, M. Birattari, M. Chiarandini, J. Knowles, M. Manfrin, M.
Mastrolilli, L. Paquete, B. Paechter, T. Stützle. (2002). A comparison of the performance
of different metaheuristics on the timetabling problem. In E. Burke and W. Erben (eds.)
Proceedings of the Practice and Theory of Automated Timetabling III, Springer LNCS
2740, pp329-351.

15. B. Paechter, H. Luchian, A. Cumming and M. Petriuc. Two Solutions to the General
Timetable Problem Using Evolutionary Algorithms (1994). In Proceedings of the IEEE
World Congress in Computational Intelligence, pp 300 305.

16. A Schaerf. A Survey of Automated Timetabling. (1995) Centrum voor Wiskunde en
Informatica (CWI) report CS-R9567, Amsterdam, The Netherlands. A revised version
appeared in Artificial Intelligence Review 13(2), 87-127.

17. K. Socha, J. Knowels, M. Sampels. A MAX-MIN Ant System for the University Course
Timetabling Problem (2002). In Dorigo, M., Di Caro, G., Sampels , M. (eds.), Proceedings
of the 3rd International Workshop on Ant Algorithms (ANTS'2002), Springer LNCS 2463,
pp 1-13.

18. J. M. Thompson and K. Dowsland. A Robust Simulated Annealing Based Examination
Timetabling System (1998). Computers and Operations Research 25 pp 637- 648 ISSN
0305-0548.

19. International Timetabling Competition - http://www.idsia.ch/Files/ttcomp2002, accessed
Dec 2003.

Self-Adapting Evolutionary Parameters:
Encoding Aspects for Combinatorial

Optimization Problems

Marcos H. Maruo1, Heitor S. Lopes1, and Myriam R. Delgado1

Centro Federal de Educação Tecnológica do Paraná -CEFET/PR
Av. Sete de Setembro, 3165 – 80230-901 Curitiba, Brazil

{ maruo, hslopes, myriam}@cpgei.cefetpr.br

Abstract. Evolutionary algorithms are powerful tools in search and op-
timization tasks with several applications in complex engineering prob-
lems. However, setting all associated parameters is not an easy task and
the adaptation seems to be an interesting alternative. This paper aims
to analyze the effect of self-adaptation of some evolutionary parameters
of genetic algorithms (GAs). Here we intend to propose a flexible GA-
based algorithm where only few parameters have to be defined by the
user. Benchmark problems of combinatorial optimization were used to
test the performance of the proposed approach.

1 Introduction

The two major definitions in applying any heuristic search algorithm to a partic-
ular problem are the representation and the evaluation (fitness) function. When
using an evolutionary algorithm (EA) it is also needed to specify how candidate
solutions will be changed to generate new solutions. This encompasses the defini-
tion of genetic operators (mainly mutation and crossover) suited to the encoding,
and a selection method to enforce the survival-of-the-fittest evolutionary rule.
Each of these components may have parameters, for instance: the probability
of mutation, the tournament size of selection, or the population size. Values of
these parameters greatly determine the quality of the solution found and the
efficiency of the search [1]. Frequently, choosing suitable parameter values, is
problem-dependent and requires previous experience of the user. Since this can
be a time-consuming task, considerable effort has been applied to develop good
heuristics for it, so as to avoid trial-and-error [2]. Despite its crucial importance,
there is no consistent methodology for the determination of the running param-
eters of an EA, which are, most time, arbitrarily set within predefined ranges.

Globally, we distinguish two major forms of setting parameter values: pa-
rameter tuning and parameter control. The first means the commonly practised
approach that tries to find good values for the parameters before running the
algorithm, and then tuning the algorithm using these values, which remain fixed
during the run. A general drawback of the parameter tuning approach, regard-
less of how the parameters are tuned, is based on the observation that a run of

G.R. Raidl and J. Gottlieb (Eds.): EvoCOP 2005, LNCS 3448, pp. 154–165, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Self-Adapting Evolutionary Parameters 155

an EA is an intrinsically dynamic, adaptive process. The use of rigid parameters
that do not change their values is thus in contrast with this spirit [1]. Therefore,
parameter control is an alternative. In this approach, a run is started with initial
values for the parameters, and then they are dynamically changed during the
run.

This paper aims to analyze the parameter control in contrast with the param-
eter tuning technique while solving combinatorial optimization problems, taking
into account three important issues:

– Does real-valued encoding take any benefit for a discrete problem using pa-
rameter control in a GA?

– How the performance of the GA is affected by the adaptation in their pa-
rameters?

– Is there any advantage for the user using parameter control in a GA?

In this work the parameter control technique is based on self-adaptation of
several parameters associated with the evolutionary process. The main goal here
is to produce a flexible GA, in which only few running parameters need to be
defined by the user.

2 Parameter Control

In classifying parameter control techniques of an evolutionary algorithm, many
aspects can be taken into account: What is changed? How the change is made?
The scope/level of change and the evidence upon which the change is carried
out.

According to Eiben et al. [1], the change can be categorized into three classes:

– Deterministic parameter control: this take place when the value of a param-
eter is altered by some deterministic rule.

– Adaptive parameter control: this take place when there is some form of feed-
back from the search that is used to determine the direction and/or the
magnitude of the change to the parameter.

– Self-adaptive parameter control: the idea of “evolution of the evolution” can
be used to implement the self-adaptation of parameters. Here the parameters
to be adapted are encoded into the chromosome and undergo the action of
genetic operators. The better values of these encoded parameters lead to
better individuals which, in turn, are more likely to survive and produce
offspring and hence propagate these better parameter values.

Some authors have introduced a different terminology based on the level of
change [3, 4] and in how the change is made [5]. A more detailed discussion of
parameter control can be found in [6].

The straightforward way to control parameters in a deterministic way is by
using parameters that may change over time, that is, by replacing a parameter
pstat by a function pdyn(t), where t is the generation counter. However, this pro-
cess presents some disadvantages: the difficulty in designing an optimal function

156 M.H. Maruo, H.S. Lopes, and M.R. Delgado

pdyn(t), and the fact that this function does not take into account any clue of
the actual progress in solving the problem. Hence, it is thus seemingly natural
to use an evolutionary algorithm not only for finding solutions to a problem,
but also for tuning the (same) algorithm to the particular problem. Technically
speaking, it is tried to modify the values of parameters during the run of the
algorithm by taking the actual search progress into account. As discussed in [1],
there are two ways to do this. The first way is to use some heuristic rule which
takes feedback from the current state of the search and modifies the parameter
values accordingly (adaptive parameter control), such as the credit assignment
process presented by [7]. A second way is to incorporate parameters into the
chromosomes, thereby making them subject to evolution (self-adaptive parame-
ter control), like the approach presented in [8].

2.1 Mutation Parameters Control

De Jong recommended pm = 0.001 [9], the meta-level GA used by Grefen-
stette [10] indicated pm = 0.01, while Schaffer et al. [11] came up with pm ∈
[0.005, 0.001]. Folowing the earlier work of Bremmermann [12], Mühlenbein de-
rived a formula for pm which depends on the length of the bitstring (L), namely
pm = 1

L should be a generally ”optimal” static value for pm. This rate was com-
pared with several fixed rates by Smith and Fogarty [13]who found that pm = 1

L
outperformed other values for pm in their comparison. The same was found by
Bäck [14] using gray coding. However, as pointed by [15, 13], there is an increas-
ing body of evidence that the optimal rate of mutation is not only different for
every problem encoding but will vary with evolutionary time according to the
state of the search and the nature of the fitness landscape being explored.

These ideas have been applied to a generational GA by adding a further 20
bits to the problem genotype, which were used to encode the mutation rate [16].
The results showed that in generational setting the mechanism proved compet-
itive with a genetic algorithm using a fixed (optimal) mutation rate, provided
that a high selection pressure was maintained (this is referred to as “extinc-
tive” selection). In [17] they proposed two simple adaptive mutation rate control
schemes and show their feasibility in comparison with several other fixed and
adaptive schemes applied to combinatorial optimization problems.

2.2 Crossover Parameters Control

Effectiveness of crossover has been frequently discussed in the literature, and
some interesting results were reported by De Jong [9]. More recently, Schaffer
and Eshelman [18] empirically compared mutation and crossover and concluded
that the latter is capable of exploring epistatic problems more efficiently, in
contrast with the mutation alone.

There are several types of crossover, but GAs use more frequently only
one- or two-point crossovers. However, there are some situations when using
a multi-point crossover can be beneficial [19, 20]. Then, an interesting option
is the uniform crossover, that produces, in average, L

2 combinations in L-long

Self-Adapting Evolutionary Parameters 157

strings [21, 20]. Besides the empirical research, many efforts have been directed to
the theoretical comparisons between different crossover types [22, 23]. However,
conclusions are not general enough to foresee which crossover is the best for a
given problem. For instance, such theoretical approaches do not consider popula-
tion size, although this parameter can affect directly the utility of crossover [24].
Furthermore, there are evidences that the utility of mutation operators can also
be affected by the population size: it seems to be more useful than crossover
when the population is small, and crossover seems to be more effective when the
population is large [25].

Spears [8] proposed a self-adapting mechanism that chooses between two
crossover types: two-point and uniform crossovers. An extra bit is added to the
chromosome indicating which type of crossover it will be used for this particular
individual. Descendants will inherit the crossover type from parents. Some ex-
periments indicate that the GA using adaptive crossover had performance equal
or better than a classic GA for a set of test problems [11].

When we use multi-parent operators [26], a new parameter is included: the
number of parents used in the crossover. Eiben [27] presents an adjustment
mechanism for the recombination arity based on competing sub-populations. In
particular, the population is divided into disjoint sub-populations, and each one
uses a crossover with different arity. These sub-populations evolve independently
during a time-window and then they interchange information by allowing migra-
tions between them. Migration favors those sub-populations that evolved better
within the time-window, allowing them to be increased, accepting migrants.
Conversely, sub-populations that evolved worse, loose individuals and decrease
in size. This method achieved similar performance than the conventional GA us-
ing a 6-parents crossover. However, this algorithm does not succeed to identify
clearly the best operators, regarding the population sizes, thus agreeing with
Spears’ experiments [8].

3 Proposed Approach: Self-Adapting Parameters

As discussed before, parameter control in evolutionary algorithm is a poorly
structured, ill-defined, complex problem [1], and then, self-adapting appears as
an interesting alternative. Most works in recent literature discuss the adaptation
of just one evolutionary parameter at a time (e.g., probability of crossover and
mutation). In this work it is aimed to self-adapt concomitantly several parame-
ters associated with the evolutionary process. It is also evaluated their influence
on the performance for different encodings. The main objective is to develop a
flexible GA with few user-defined parameters.

In self-adapting GA parameters, regardless of the adopted encoding, the chro-
mosome must be modified to accommodate genes encoding parameters’ values
that will be fine-tuned during the evolutionary process. Considering the param-
eters that will be changed, each individual is codified into a chromosome with
n+p genes, where n and p are, respectively, the number of genes that encode the

158 M.H. Maruo, H.S. Lopes, and M.R. Delgado

Pr_crossPr_mut cross_type mut_nonunif tourn_sizeSolution

Pr_crossPr_mut cross_type mut_nonunif tourn_sizeSolution

Pr_crossPr_mut cross_type mut_nonunif tourn_sizeSolution

.

.

.

Pr_crossPr_mut cross_type mut_nonunif tourn_sizeSolution Pr_crossPr_mut cross_type mut_nonunif tourn_sizeSolution

.

.

.

.

.

.

1

2

N

Fig. 1. Self-adapting: encoding aspects

problem solution and those that encode parameter values. In the population N
individuals, they are encoded with a single chromosome, as shown in Figure 1.

In figure 1 the strategic parameters that will be adjusted by means of evo-
lution are: mutation rate (Pr mut), crossover rates (Pr cross), crossover type
(cross type), mutation step (for real encoding) (mut nonunif), and the tour-
nament size (tour size), resulting in p = 5 genes. Mutation rate, mutation step
and crossover rate are applied at individual level, whereas the tournament size
and crossover type are determined by the mean among all individuals and are
applied at population level. To compare the behavior of parameters adaptation
in continuous and discrete search spaces, two encoding schemes will be analyzed:
binary and real encoded chromosomes.

During the evolutionary process, genetic operators treat indistinctly all genes
of the chromosome, despite what it encodes (part of the solution or any strategic
parameter). For crossover, a N -length random vector is generated, where N is
the population size and each element of the vector is within [0, 1]. Each value of
this vector is compared with the crossover rate encoded in an individual. If it is
lower, the individual is selected for crossover. For mutation, a N ×(n+p) matrix
is generated with random values. For each individual there is a corresponding
line of n + p random numbers in the matrix, which are compared with the
mutation rate encoded in the individual. If it is lower, the associated gene of
the individual will undergo mutation. Both crossover type and tournament size
are chosen based on the frequency of the corresponding value in the population.
The most frequent values are accepted as parameter for the next generation. It is
important to note that with this encoding, whenever an individual has the genes
that encode the strategic parameters modified by genetic operators (but not the
solution genes), the corresponding fitness does not need to be re-calculated.

4 Experiments, Results and Discussion

This paper aims to analyze the performance of the self-adapting approach when
applied to a benchmark of a well-known combinatorial optimization problem:
the multiple knapsack problem (MKP), that is a generalization of the simple
0/1 knapsack problem [28]. The 0/1 KP involves selecting from among various
items those that will be most profitable, given the knapsack has limited capacity.
The 0/1 MKP involves m knapsacks of capacities c1, c2, · · ·, cm. Every object

Self-Adapting Evolutionary Parameters 159

selected must be placed in all m knapsacks, although neither the weight of an
object oj nor its profit is fixed, and, probably, they will have different values in
each knapsack (for additional details see [29]).

In our implementation, each gene that encodes the problem solution should
indicate the presence or absence of an item in all knapsacks. For binary en-
coding, each gene corresponds to a single bit, and for real encoding, each gene
corresponds to a number in the range [0..1] that is rounded to the closest integer,
as shown in figure 2.

0 0 0 0 0 011 1 1 1

0.1 0.3 0.6 0.2 0.8 0.5 0.7 0.1 0.9

0 0 1 0 1 1 1 0 1

a) b)

Fig. 2. Solution encoding using: a) binary encoding, b) real encoding

When using binary encoding, the search space (ss) is defined by the number
of items i as ss = 2i. Although the number of knapsacks does not influence
the search space, a large number of knapsacks implies in more complexity in
computing the fitness function.

For analyzing the behavior of the algorithm in different difficulty levels, sim-
ulations were done for nine MKP problems, detailed in Table 1.

Table 1. Characteristics of MKP problems used in this work

Problem Items Knapsacks Optimal solution

Weing7 105 2 1095445
Pb6 40 30 776
Pet6 39 5 10618

Weish18 70 5 9580
Weish22 80 5 8947
Weish26 90 5 9584

Flei 20 10 2139
Hp2 35 4 3186

Sent01 60 30 7772

In our experiments, the value of GA parameters were based on those recom-
mended by De Jong [9], and were set as follows:

– Number of generations: 2000;
– Population size (N): 100 individuals;

160 M.H. Maruo, H.S. Lopes, and M.R. Delgado

– Crossover rate: Pr cross ∈ [0.4, 1] for adaptive approach and Pr cross = 0.6
for fixed approach;

– Mutation rate: Pr mut ∈ [0.0001, 0.3] for adaptive approach and Pr mut =
0.001 for fixed approach;

– Tournament size: s ∈ {2, . . . , 5} for adaptive approach and s = 5 for fixed
approach;

– Crossover type: one-point and uniform for adaptive approach and one-point
for fixed approach;

– Stop criterion: Maximum number of generations.

Table 2 compares the performance of our self-adapting parameters algorithm
(self-adapt) and fixed parameters algorithm (fixed) for all problems described in
Table 1. As shown in Figure 2, for real encoding, rounding to the closest integer
is used to transform a real-valued chromosome to a binary string.

Self-adaptation is based in the expectation that the best strategic parameters
will be able to produce more adapted individuals. Table 2 shows the results
of self-adaptation in both cases, real and binary encoding. The problems were
evaluated considering 500 runs 1 and the problem files were taken from [31].
For each problem instance, we evaluated the distribution tendency 2. Besides,
we also presented the best individual found in all runs (Best) and when this
individual has been found (Gen Best).

Table 2 clearly shows that the self-adapt approach out-performed the fixed
approach, independently of the encoding scheme. Therefore, we can answer the
first question pointed in the Introduction: ”Does real-valued encoding take any
benefit for a discrete problem using parameter control in a GA?”. For the discrete
problems dealt in this work real encoding does seems to be less appropriate
than binary encoding. The hypothesis that making transitions between values of
genes smoother before rounding (using real values instead of discrete ones) can
facilitate GA to find better solutions was not confirmed.

To better investigate the effects of self-adaptation in the system performance,
Table 3 shows normalized results 3 considering binary encoding and different
levels of system autonomy. Results from [32] that self-adapts mutation rates are
also presented.

It is important to point out that, due to the penalties applied to the fitness
function, all the solutions obtained from approaches with adaptation were feasi-
ble. It is a strong restriction that could be relaxed in the future to improve the
system performance. In [32], for instance, they reported the elimination of all un-
feasible solutions. As can be noted, the version with the highest level of autonomy

1 Different random seeds were generated using L’Ecuyer with Bays-Durham shuf-
fling [30]

2 Measures of central tendency are measures of the location of the middle or the center
of a distribution. For symmetric distributions, mean and median are the same. In
general, the mean will be higher than the median for positively skewed distributions
and less than the median for negatively skewed distributions.

3 The optimal known value (profit=1095445) for the Weing7 problem is the reference
value 1.00

Self-Adapting Evolutionary Parameters 161

Table 2. Results for multi knapsack 0/1 optimization problems

Problem Encoding Adaptation Mean Median SD Best Gen(Best)

Binary Self-Adapt 1095264 1092466 48892.98 1095445 231
Weing7 Fixed 1075147 1071868 48891.31 1091327 1721

Real Self-Adapt 1079962 1083937 49065.43 1079880 63
Fixed 1034557 1038552 50443,06 1094957 9

Binary Self-Adapt 714.0699 729 62.27475 776 24
Pb6 Fixed 407.0459 405 104.9299 657 57

Real Self-Adapt 681.1497 704 79.87887 776 17
Fixed 470.5289 468 91.4316 745 3751

Binary Self-Adapt 10468.01 10504 474.841 10618 34
Pet6 Fixed 8749.058 8271 992.6105 10396 1328

Real Self-Adapt 10460.21 10496 475.6101 10618 19
Fixed 10152.5 10201 497.6526 10584 5526

Binary Self-Adapt 9510.048 9548 433.288 9580 37
Weish18 Fixed 8102.982 8157 534.998 9109 1915

Real Self-Adapt 9218.266 9282 463.818 9580 61
Fixed 7535.108 7556 641.971 8938 46

Binary Self-Adapt 8834.535 8857 400.092 8947 924
Weish22 Fixed 7435.112 7458 514.995 8589 1407

Real Self-Adapt 8239.800 8334 540.689 8929 45
Fixed 5735.299 5764 810.009 7629 37

Binary Self-Adapt 9493.311 9539 428.442 9584 97
Weish26 Fixed 8115.074 8130 515.070 9117 1865

Real Self-Adapt 8716.764 8840 657.194 9533 55
Fixed 6080.405 6120 867.144 8429 62

Binary Self-Adapt 2067.920 2068 94.8643 2139 8
Flei Fixed 1944.948 1956 102.612 2059 60

Real Self-Adapt 2052.653 2059 98.2860 2139 1
Fixed 1918.399 1922 117.593 2139 1

Binary Self-Adapt 3080.966 3089 149.404 3186 18
Hp2 Fixed 2855.920 2868 158.267 3119 13

Real Self-Adapt 3038.818 3048 148.173 3169 19
Fixed 2894.940 2910 161.950 3157 29

Binary Self-Adapt 7622.100 7698 383.915 7772 44
Sent01 Fixed 4559.451 4573 816.850 6698 1939

Real Self-Adapt 7111.149 7295 650.846 7772 36
Fixed 3843.950 3758 973.846 6505 42

(self-adapt approach) out-performed the other approaches with a high degree of
confidence (see t-Student test column 4), confirming that the self-adaptation is
a good alternative to release user from arbitrarily defining evolutionary param-
eters. By answering the second question ”How the performance of the GA is

4 t-Student tests were performed comparing all the approaches with the fixed one.

Self-Adapting Evolutionary Parameters 163

of mutation rates to small values at the end of evolution. This fact confirms the
hypothesis that using fixed parameters during the evolutionary process is not
adequate for all the problems solved by GAs.

5 Conclusions

This paper presented a method for self-adapting several parameters associated
with the evolutionary process of a GA. After answering the questions asked in
the Introduction, we conclude that the proposed approach has shown a good
performance with a high degree of autonomy, where only few evolutionary pa-
rameters have to be defined by the user. Also, we verified that, for the MKP
instances tested, the search in a continuous space resulted in a worse performance
when compared with the search in a binary space. So, the possible benefits as-
sociated with the fact of producing more robust algorithms (which can perform
independently in continuous or discrete spaces) are reduced in performance.

Finally, simulation results confirmed that self-adaptation is an interesting
alternative in the search for parameterless heuristic optimization systems, since
it is able to generate models that explore the space of parameters looking for
the best ones at the same time as well as it searches for the problem’s solution.
Results obtained encourage further research towards a fully self-adaptive GA,
relieving user from the burden of adjusting parameters for each problem.

Acknowledgements. The authors would like to thank the anonymous refer-
ees for their helpful suggestions. Thanks to Fundação Araucária/Funcefet-PR
018/2004 for the financial support, for CNPq for a grant to M.H.Maruo, and
CNPq for a research grant to H.S.Lopes, process 350053/03-0.

References

1. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary
algorithms. IEEE Transactions on Evolutionary Computation 3 (1999)

2. Rojas, I., Gonzalez, J., Pomares, H., Merelo, J., Castillo, P., Romero, G.: Statistical
analysis of the main parameters involved in the design of a genetic algorithm. IEEE
Transactions on Systems Man and Cybernetics 32 (2002) 31–37

3. Angeline, P.J.: Adaptive and self-adaptive evolutionary computation. In M., P.,
Attikiouzel, Y., Marks, R., D., F., Fukuda, T., eds.: Computational Intelligence,
A Dynamic System Perspective, IEEE Press (1995) 152–161

4. Hinterding, R., Michalewicz, Z., Eiben, A.E.: Adaptation in evolutionary compu-
tation: A survey. In: Proceedings of the 4th IEEE International Conference on
Evolutionary Computation. (1997) 65–69

5. Smith, J., Fogarty, T.C.: Operator and parameter adaptation in genetic algorithms.
Soft Computing 1 (1997) 81–87

6. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer
(2003)

7. Davis, L., ed.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New
York, New York (1991)

164 M.H. Maruo, H.S. Lopes, and M.R. Delgado

8. Spears, W.M.: Adapting crossover in evolutionary algorithms. In: Proceedings
of the Fourth Annual Conference on Evolutionary Programming, San Diego, CA
(1995)

9. De Jong, K.: The Analysis of the behaviour of a Class of Genetic Adaptive systems.
PhD thesis, Department of Computer Science, University of Michigan (1975)

10. Grefenstette, J.J.: Optimization of control parameters for genetic algorithms. IEEE
Transactions on Systems, Man, and Cybernetics 16 (1986) 122–128

11. Schaffer, J.D., Morishima, A.: An adaptive crossover distribution mechanism for
genetic algorithms. In: Proceedings of the Second International Conference on Ge-
netic Algorithms on Genetic algorithms and their application, Lawrence Erlbaum
Associates, Inc. (1987) 36–40

12. Bremermann, H.J., Rogson, M., Salaff, S.: Global properties of evolution processes.
In Pattee, H.H., Edlsack, E.A., Fein, L., Callahan, A.B., eds.: Natural Automata
and Useful Simulations. Spartan Books, Washington D.C. (1966) 3–41

13. Smith, J., Fogarty, T.C.: Self-adaptation of mutation rates in a steady-state ge-
netic algorithm. Proceedings of IEEE International Conference on Evolutionary
Computation (1996) 318–323

14. Bäck, T.: Evolutionary algorithms in theory and practice: evolution strategies,
evolutionary programming, genetic algorithms. Oxford University Press (1996)

15. Fogarty, T.C.: Varying the probability of mutation in the genetic algorithm. In:
Proceedings of the 3rd International Conference on Genetic Algorithms, Morgan
Kaufmann Publishers Inc. (1989) 104–109

16. Bäck, T.: Self-adaptation in genetic algorithms. In Varela, F.J., Bourgine, P., eds.:
Proc. of the 1st European Conf. on Artificial Life, Cambridge, MA, MIT Press
(1992) 227–235

17. Thierens, D., Goldberg, D.E.: Mixing in genetic algorithms. In: Proceedings of the
5th International Conference on Genetic Algorithms, Morgan Kaufmann Publish-
ers Inc. (1993) 38–47

18. Schaffer, J.D., Eshelman, L.J.: On crossover as an evolutionary viable strategy. In
Belew, R., Booker, L., eds.: Proceedings of the Fourth International Conference on
Genetic Algorithms. (1991) 61–68

19. Eshelman, L.J., Caruana, R., Schaffer, J.D.: Biases in the crossover landscape. In:
Proceedings of the 3rd International Conference on Genetic Algorithms, Morgan
Kaufmann Publishers Inc. (1989) 10–19

20. Sywerda, G.: Uniform crossover in genetic algorithms. In: Proceedings of the third
international conference on Genetic algorithms, Morgan Kaufmann Publishers Inc.
(1989) 2–9

21. Spears, W.M., De Jong, K.: On the virtues of parameterized uniform crossover.
In Belew, R.K., Booker, L.B., eds.: Proc. of the Fourth Int. Conf. on Genetic
Algorithms, San Mateo, CA, Morgan Kaufmann (1991) 230–236

22. De Jong, K., Spears, W.M.: A formal analysis of the role of multi-point crossover
in genetic algorithms. Annals of Mathematics and Artificial Intelligence 5 (1992)
1–26

23. Spears, W.M.: Crossover or mutation? In Whitley, L.D., ed.: Foundations of
Genetic Algorithms 2. Morgan Kaufmann, San Mateo, CA (1993) 221–237

24. De Jong, K., Spears, W.M.: An analysis of the interacting roles of population size
and crossover in genetic algorithms. In Schwefel, H.P., Männer, R., eds.: Parallel
Problem Solving from Nature - Proceedings of 1st Workshop, PPSN 1. Volume
496., Dortmund, Germany, Springer-Verlag, Berlin, Germany (1991) 38–47

Self-Adapting Evolutionary Parameters 165

25. Spears, W.M., Anand, V.: A study of crossover operators in genetic programming.
In Ras, Z.W., Zemankova, M., eds.: Proceedings of the Sixth International Sympo-
sium on Methodologies for Intelligent Systems ISMIS 91, Springer-Verlag (1991)
409–418

26. Eiben, A.E.: 3.7. In: Multi-parent Recombination. IOP Publishing Ltd and Oxford
University Press (1995)

27. Eiben, A.E.: Multiparent recombination in evolutionary computing. Advances in
evolutionary computing: theory and applications (2003) 175–192

28. Mumford, C.L.: Comparing representations and recombination operators for the
multi-objective 0/1 knapsack problem. In: CEC2003: Proceedings of The IEEE
Conference on Evolutionary Computation, IEEE. (2003) 854–861

29. Thierens, D.: Adaptive mutation rate control schemes in genetic algorithms. In:
CEC2002: Proceedings of The IEEE Conference on Evolutionary Computation,
IEEE. (2002) 980–985

30. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes
in C: The Art of Scientific Computing. Cambridge University Press (1992)

31. Khuri, S., Bäck, T., Heitkötter, J.: SAC 94: suite of 0/1 multiple knapsack problem
instances, http://elib.zib.de/pub/packages/mp-testdata/ip/sac94-suite (1994)

32. Kimbrough, S.O., Lu, M., Wood, D.H., Wu, D.J.: Exploring a two-market ge-
netic algorithm. In: Proceedings of the Genetic and Evolutionary Computation
Conference, Morgan Kaufmann Publishers Inc. (2002) 415–422

Population Training Heuristics

Alexandre C.M. Oliveira1 and Luiz A.N. Lorena2

1 Universidade Federal do Maranhão - UFMA, Depto. de Informática,
S. Lúıs MA, Brasil
acmo@deinf.ufma.br

2 Instituto Nacional de Pesquisas Espaciais - INPE, Lab. Associado de Computação e
Matemática Aplicada, S. José dos Campos SP, Brasil

lorena@lac.inpe.br

Abstract. This work describes a new way of employing problem-specific
heuristics to improve evolutionary algorithms: the Population Training
Heuristic (PTH). The PTH employs heuristics in fitness definition, guid-
ing the population to settle down in search areas where the individuals
can not be improved by such heuristics. Some new theoretical improve-
ments not present in early algorithms are now introduced. An application
for pattern sequencing problems is examined with new improved compu-
tational results. The method is also compared against other approaches,
using benchmark instances taken from the literature.

Keywords: Hybrid evolutionary algorithms; population training; MOSP;
GMLP.

1 Introduction

Evolutionary algorithms are efficient to explore a wide search space, converging
quickly to local minima. However, their lack of exploiting local information is
a well-known drawback to reach global minima. Evolutionary operators to in-
corporate knowledge about problem particularities have encapsulated heuristics
and local search procedures. Such procedures basically consist in searching for
better solutions in the set of candidate solutions (neighborhood) that can be
obtained from a given solution by heuristic moves. An individual improved by
heuristic, in general, is replaced as soon as a better individual is obtained. The
more individuals are heuristically improved, the more the heuristic leads the
population to incorporate the desired features.

Due to the computational cost of some heuristic procedures, a challenge in
such hybrid methods is to define efficient strategies to cover all search space,
applying local search only in actually promising neighborhoods. Elitism plays
an important role towards achieving this goal, once the best individuals can rep-
resent such promising neighborhoods. But the elite can be sharing the same few
neighborhoods and then the heuristic moves does not improve the population.

The Population Training Heuristic (PTH) proposes a way of leading the pop-
ulation to acquire desired characteristics. All individuals are evaluated by two

G.R. Raidl and J. Gottlieb (Eds.): EvoCOP 2005, LNCS 3448, pp. 166–176, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Population Training Heuristics 167

functions: a function computing what the individual is and another estimating
what it should be. The later does not take account of a presumed potential of
the individual, but its deficiency by not being what it should be.

The evolutionary process is driven by a problem-specific heuristic (called
training heuristic), employed in the fitness function formulation. The well-adapted
individuals are those who can not be improved by the training heuristic. They
are what they should be, i.e., the best inside the neighborhood generated by the
training heuristic and tend to stay in the population longer times.

The Constructive Genetic Algorithm (CGA) was proposed in [1] to Location
Problems, and applied to other problems as Timetabling [2]. The CGA presents
a number of new features compared to a traditional genetic algorithm, such as
a dynamic-sized population composed of schemata (incomplete solutions) and
structures (complete solutions). Each individual (structure or schema) has a
fitness evaluation based on two functions, f and g (fg-fitness), that are built
considering specific aspects of the problem at hand in a way that an individual
with |f − g| ≈ 0 corresponds to an optimal solution. A further optimization
objective is introduced to guide the search to find structures: to maximize g.
Thus, no matter the nature of the problem (minimization or maximization),
the original problem is transformed in a bi-objective problem (BOP): f − g
minimization (optimal phase) and g maximization (constructive phase) [1].

The CGA was inspiration to PTH, especially by the double evaluation of indi-
viduals. In PTH, the fg-fitness leads population to subsearch spaces where no im-
provement can be reached by applying the training heuristic, probably optimal so-
lutions depending on how much less approximative is the heuristic. To avoid costly
fitness evaluation, light heuristics are used. Local search mutations are included in
the evolutionary process to make a fine tuning of the well-adapted individuals.

Some early CGA applications, since they employ training heuristics, can be
considered as based on PTH fundamentals [3], [4]. Such applications rank the
population by a constructive ranking that considers simultaneously a construc-
tive and optimal phases, as in the CGA original form. The constructive approach
of PTH is still called Constructive Genetic Algorithm, but denoted by CGAH ,
to avoid misunderstanding with the original CGA, which no heuristic training
had been employed yet [1], [2].

On the other hand, the non-constructive ranking, proposed in this work, only
focuses the optimal phase, concerning to the adaptation of individuals to training
heuristic. The main reason for this alternative form of ranking is to aggregate
more flexibility to the approach, not necessarily coding individuals as incom-
plete solutions. The non-constructive approach is called Population Training
Algorithm (PTA) and it was firstly applied to numerical optimization [5].

This work introduces theoretical improvements for PTH and also presents
new results for pattern sequencing problems not found in early works [3], [4], [5].
The remainder of this paper is organized as follows. Section 2 presents the general
guidelines of PTH, consolidating the formulation needed to future applications.
In section 3, an application in pattern sequencing problems is modeled. The
conclusions are summarized in the section 4.

168 A.C.M. Oliveira and L.A.N. Lorena

2 General Guidelines of PTH

The PTH can be defined by the tuple {P,Θ, f,H, ℘, δ}, where P is a population
sampled from the coded search space S, hence individuals sk ∈ P ⊂ S. Individu-
als are generated by a set of evolutionary specific operators Θ and evaluated by
an objective function f that maps S in �. The training heuristic H is defined
by the pair {ϕH , g}, where g heuristically evaluates each solution generated by
the neighborhood relationship ϕH . The neighborhood relationship ϕH can be
understood as set of solutions which can be obtained from an original one, sk,
by heuristic moves (H moves):

ϕH(sk) = {sk, sv1, sv2, . . . , svl} (1)

where l + 1 is the length of the neighborhood of sk, including itself.
The heuristic knowledge about a problem is then used to define g. A typical

g, adopted in this work, is the objective function f calculated over ϕH(sk). Thus,
for minimization problems:

g(sk) = f(svb) = min{f(sk), f(sv1), f(sv2), . . . , f(svl)} (2)

The best neighbor of sk is denoted by svb. The concept of proximity, ℘, is
concerned with the effort necessary to reach svb from sk by H moves. More
proximity means more adaptation of sk to the heuristic that generated svb. De-
pending on the coding being employed in the application, some distance metrics
may be used, such as hamming for binary-coded, euclidean for real-coded and
heuristic distance [6]. In this application, the fitness distance between sk and svb

is adopted:

℘(sk, svb) = |f(sk) − f(svb)| (3)

Independently of the nature of the problem (minimization or maximization),
the ℘(sk, svb), adopted in this work, always reflects how much svb is better than
sk. However, if another distance metric was used, ℘(sk, svb) would mean just the
adaptation to the training heuristic. Finally, the entire population is ranked by
a function δ that considers the overall individual adaptation. The constructive
and non-constructive rankings are, respectively:

δcons(sk) =
d · Gmax − |f(sk) − g(sk)|

d · [Gmax − g(sk)]
(4)

δncons(sk) = d · [Gmax − g(sk)] − |f(sk) − g(sk)| (5)

Considering Gmax an estimate of the upper bound for all possible values of
the function g (even function f), the interval Gmax − g(sk), gives the fitness
distance between individual sk and the upper bound. This distance is used in
two distinct ways. In the constructive ranking, to estimate the completeness of
the individuals, penalizing the schemata. In the non-constructive ranking, such

Population Training Heuristics 169

interval just considers the objective function evaluation, once in minimization
problems, the greater is Gmax − g(sk), the better is the individual.

The constant d is used to equilibrate both ranking equations (generally, about
1/Gmax). In the beginning of the evolution, the upper bound Gmax can be ana-
lytically calculated, considering the problem instance, or estimated by sampling.
For maximization problems, a lower bound Gmin is introduced in the construc-
tive ranking:

δmax
ncons(sk) = d · [g(sk) − Gmin] − |f(sk) − g(sk)| (6)

The constructive ranking considers simultaneously a constructive and optimal
phases, as in the CGA original form. The non-constructive ranking, on the other
hand, only focuses the optimal phase. The main reason for these two forms
of ranking is to aggregate more flexibility to the approach, as the possibility
of employing distinct heuristics, evolutionary operators and, especially, other
solution codings: incomplete solutions (schemata) not always may be naturally
incorporated by the evolutionary process. A good example of such applications
is the numerical optimization coded in real numbers [5].

3 Applications in Pattern Sequencing Problems

The problems treated in this section can be classified as pattern sequencing
problems. Pattern sequencing problems may be stated by a matrix with integer
elements where the objective is to find a permutation of rows or patterns (client
orders, or gates in a VLSI circuit, or cutting patterns) minimizing some objective
function [7]. Objective functions considered here differ from traveling salesman
like problems because the evaluation of a permutation can not be computed by
using values that only depend on adjacent patterns.

The PTA is modeled for two similar pattern sequencing problems found in
the literature: Minimization of Open Stacks Problem (MOSP) and Gate Ma-
trix Layout Problem (GMLP). Theoretical aspects are basically the same for
both problems. The difference between them resides only in their enunciation.
A more detailed description of the MOSP is emphasized in next sections. The
particularities of the GMLP are occasionally presented, when needed.

3.1 Theoretical Issues of the MOSP

The MOSP appears in a variety of industrial sequencing settings, where distinct
patterns need to be cut and each one may contain a combination of piece types.
For example, consider an industry of woodcut where pieces of different sizes are
cut of big foils. Pieces of equal sizes are heaped in a single stack that stays opened
until the last piece of the same size is cut. A stack is considered opened while
there exist pieces of the same size to be cut. A MOSP consists of determining
a sequence of cut patterns that minimizes the maximum of open stacks (MOS)

170 A.C.M. Oliveira and L.A.N. Lorena

during the cutting process. Typically, this problem is due to limitations of phys-
ical space, so that the accumulation of stacks can cause the temporary need of
removal of one or other stack, delaying the whole process.

The data for a MOSP are given by an I × J binary matrix P , representing
patterns (rows) and pieces (columns), where Pij = 1, if pattern i contains piece
j, and Pij = 0 otherwise. Patterns are processed sequentially, opening stacks
whenever new piece types are processed and closing stacks of pieces that do
not have any items else to be cut. The sequence of patterns being processed
determines the number of stacks that stays open at same time. Another binary
matrix, here called the open stack matrix Q, can be used to calculate the MOS
for a certain pattern permutation. It is derived from the input matrix P , by the
following rules:

– Qij = 1 if there exists x and y|π(x) ≤ i ≤ π(y) and Pxj = Pyj = 1;
– Qij = 0, otherwise;

where π(b) is the position of pattern b in the permutation.
The Q shows the consecutive-ones property [8] applied to P : in each column,

“0” ’s between “1”’s are replaced by “1” ’s. The sum of “1” ’s, by row, computes
the number of open stacks when each pattern is processed. Figure 1 shows an
example of matrix P , its corresponding matrix Q, and the number of open stacks
to each pattern processed. When pattern 1 is cut, 3 stacks are opened. No stack
else is opened for patterns 2 and 3, but pattern 4 requires 5 open stacks. At
most, 7 stacks (MOS = max{3, 3, 3, 5, 6, 7, 7, 5, 3} = 7) are needed to process
the permutation π0 = {1, 2, 3, 4, 5, 6, 7, 8, 9}.

Fig. 1. MOSP (or GLMP) instance: original and corresponding matrix

Recently, several aspects of the MOSP and other related problems, as the
GMLP, have been presented, including the NP-hardness of them [9], [10], [11].
The GMLP goal is to arrange a set of gates (horizontal wires), which are inter-
connected by nets (vertical wires), such that the number of tracks is minimized.
This can be achieved by placing non-overlapping nets in the same track. The
same example of Figure 1 can be seen as a GMLP instance. The number of open
stack is equivalent to the number of overlapping nets.

Population Training Heuristics 171

3.2 PTA Modeling

A very simple representation is implemented for the MOSP and GMLP: a direct
alphabet of symbols (natural numbers) represents the pattern (or gate) permu-
tation. Each label is associated to a row of binary numbers, representing the
piece type presence in each pattern. A permutation of rows is called structure
and consists of a candidate solution for an instance.

A second objective for the MOSP have been used by early works: to close
the stacks as soon as possible, allowing that the customer’s requests be available
with minimum delay [11], [3]. The second objective is to minimize the time that
the stacks stay open (TOS) and it can be calculated by the sum of all “1” ’s in
Q. The TOS is particularly useful for increasing the fitness distinction among
individuals. The function f reflects the total cost of a given permutation and
considers the primary (MOS) and secondary (TOS) objectives:

f(sk) = I · J · max
i∈I





∑

j∈J

Qij




+
∑

i∈I

∑

j∈J

Qij (7)

where the product I · J is a weight to reinforce MOS part of the cost.
A dynamic-sized population was implemented and controlled by an adaptive

rejection threshold that eliminates the ill-adapted individuals, i.e., structures
such that α ≥ δ(sk). The adaptive rejection threshold, α, is initialized at the
beginning of the process with the rank of the worst individual in population.
During the evolutionary process, α is updated with adaptive increments, con-
sidering the current range of the rank values in the population, the population
size, and the remaining number of generations. The adaptive increment of α is:

α = α + Step · |P | · (δbst − δwst)
RG

(8)

where δbst and δwst are, respectively, the best and the worst rank of structures
in current population, |P | is the current population size, RG is the remaining
number of generations, and Step is an adjustment parameter, used to give more
or less speed to the evolutionary process.

At the beginning, the population tends to grow up, generally, accepting all
new individuals. After some generations, α determines the adaptation values
that can be kept in population and the ill-adapted individuals are eliminated.
Whenever no improvement is obtained, the population eventually can collapse,
becoming empty. Therefore, the correct adjustment of Step (generally, a value
about 0.001 is used) is needed to avoid premature emptying of the population.

3.3 The Training Heuristics

The 2-Opt is a well-known improvement heuristic based on k-changes over a com-
plete initial solution. Typically, a 2-change of a permutation consists of deleting
2 edges and replacing them by 2 other edges to form a new permutation. It can
be obtained by breaking the permutation in 2 reference points and inverting the

172 A.C.M. Oliveira and L.A.N. Lorena

order in the middle subpermutation. For example, {1−2−3−4−5−6−7−8},
breaking in 3 and 6 becomes {1 − 2 − 3 − 6 − 5 − 4 − 7 − 8}.

The 2-Opt-like heuristic is employed in function g for training the population.
Each one of the 2-changes generates a neighbor structure that is evaluated,
looking for the best objective function value. At the end, up to 0.5 · (I2 − I)
neighbor structures are evaluated .

Another heuristic used in this work, called the Faggioli-Bentivoglio’s heuris-
tic, is based on the constructive heuristic described in [12]. The basic idea of
this heuristic is to build a complete solution, minimizing the differences among
the patterns. An initial group of patterns (in this work, the first N/2 patterns),
in a given structure, is accepted as start patterns. The neighborhood is defined
as all structures that begin with the start group of patterns and minimize the
difference to the subsequent patterns, according to a three stage criterion.

At the first stage, the patterns that open as few new stacks as possible are
chosen. A stack is opened when the new sequenced pattern contains a piece
type that is not yet stacked, i.e., the ith item presents a 0 − 1 transition, from
previous pattern to next. At the second stage, the pattern that removes the
greatest number of stack is chosen among the patterns previously selected. A
stack is removed when the new sequenced pattern ends a piece type that is being
stacked, i.e., the ith item presents a 1 − 0 transition, from previous pattern to
next. At the last stage, the pattern that continues the production of the greatest
number of stacked pieces is chosen among the patterns previously selected. The
production continues when the new sequenced pattern contains a piece type that
is already stacked, i.e., the ith item presents a 1 − 1 transition, from previous
pattern to next. If these three rules lead to more than one pattern to be inserted
in sequence, one of them is selected at random.

3.4 Evolutionary Operators

The structures in the population are kept in descending order, according to the
ranking in equation 5. Thus, well-adapted individuals appear in first places on
the population, being privileged for evolutionary operations.

Two structures are selected for recombination. The first is called the base
(sbase) and it is randomly selected out from the first positions in the popula-
tion (generally, about 20% from the population). The second structure is called
the guide (sguide) and is randomly selected out of the entire population. They
are recombined by a variant of the Order Crossover (OX) called Block Order
Crossover (BOX) [13]. The parent(A) and parent(B) are mixed into only one
offspring, by copying blocks of both parents, at random. Pieces copied from a
parent are not copied from other, keeping the offspring feasible (Figure 2a).

A local search mutation is applied to each new structure generated with a
certain probability (generally, about 20%). This procedure is very important to
get intensification moves around a solution. The local search mutation explores
a search tree, considering several 2-Opt neighborhoods, not only one as fitness
function g (Figure 2b).

Population Training Heuristics 173

Fig. 2. (a) Block order crossover and (b) local search mutation tree

Some neighbors (generally, l = 20 neighbors) are evaluated in each tree level
and the best one is held on to be used as starting point to next tree level.
Successive neighborhoods are generated until a pre-defined maximum number of
neighborhoods (generally, m = 20 neighborhoods).

The PTA pseudo-code, shown as follows, is based on traditional genetic al-
gorithms. The stop criteria is either when the best-known solution is found, or
after a certain number of objective function calls, to be set depending on the
number of patterns (length) of the instance at hand. Once the stop criteria is
reached the searching process has failed to find the best-known (optimal) solu-
tion.

{PTA pseudo-code}
RandomlyInitialize (Pα);
for all sk ∈ Pα do

Compute f(sk), g(sk), δ(sk); {equations 7, 2, 5}
end for
α := δwst;
while not stopCriteria do

while numberOfCrossovers do
SelectionBaseGuide (sbase, sguide);
CrossoverBOX (sbase, sguide) giving snew;
if mutationCondition then

LocalSearchMutation (snew);
end if
Compute f(snew), g(snew), δ(snew);
Update (snew) in Pα;

end while
α := AdaptiveIncrement (α); {equation 8}
for all sk ∈ Pα e δ(sk) < α do

Delete (sk) from Pα;
end for

end while

174 A.C.M. Oliveira and L.A.N. Lorena

3.5 Computational Tests

A pool of 300 MOSP instances and one GMLP instance were chosen for tests,
taken from [11], [12]. The MOSP instances have different number of patterns
(I ∈ {10, 15, 20, 25, 30, 40}), each one of them with different number of piece
types (J ∈ {10, 20, 30, 40, 50}). The GMLP instance, called w4, has 141 gates
(patterns) and 202 nets (piece types) and it is the largest instance of pattern
sequencing found in literature [11].

The PTA population size was 50 for the MOSP instances and 100 for GMLP
instance. Two versions of PTA (PTA2opt and PTAfag), respectively using the 2-
Opt-like and Faggioli-Bentivoglio’s heuristics for training, were built to evaluate
how different heuristics interfere in the algorithm performance.

The best two approaches presented in [12]: a) a tabu search method (TS)
based on an optimized move selection process; and b) a generalized local search
method (GLS) that employs the Faggioli-Bentivoglio’s procedure in a simpli-
fied tabu search that only accepts improving moves [12]. Besides, another two
methods are included in this comparison: c) the Constructive Genetic Algorithm
(CGA2opt); and d) the Collective method (COL). The CGA2opt employs 2-Opt-
like heuristic as training heuristic [3], [4]. The COL method explores distance
measures among permutations and employs 2-exchange local search to drive the
search of a simulated annealing like algorithm [11].

Table 1 shows the best MOS averages obtained by the methods in each in-
stance group. Each pair (I, J) is an instance group with ten instances and differ-
ent solutions. A comparison is made putting together the results shown in [11],
[12] and the new results found by the PTH approaches in this work.

Both versions PTAfag and PTA2opt found the same results and were referred
as PTA. The TOS is not considered in the other works and was excluded from the
comparison. For this test, CGA2opt and PTA were run 10 times. The PTA have
found the best overall average of solutions for the instance groups. The CGA2opt

appears with the second best performance, failing in achieving the best average
in 2 instance groups (20 × 40 and 25 × 40). The hardest instances to find the
best-known solution were p2040n6, p2540n3.

Other performance aspects are focused in Table 2: average of the MOS found
(AS), the number of times that the best solution was found (NS), the average of

Table 1. Performance comparison with another approaches per instance groups

I J COL TS GLS CGA PTA I J COL TS GLS CGA PTA I J COL TS GLS CGA PTA
10 10 5.5 5.5 5.5 5.5 5.5 20 10 7.5 7.7 7.5 7.5 7.5 30 10 7.8 7.8 7.8 7.8 7.8

20 6.2 6.2 6.2 6.2 6.2 20 8.5 8.7 8.6 8.5 8.5 20 11.2 11.2 11.2 11.1 11.1
30 6.1 6.1 6.2 6.1 6.1 30 9.0 9.2 8.9 8.8 8.8 30 12.2 12.6 12.2 12.2 12.2
40 7.7 7.7 7.7 7.7 7.7 40 8.6 8.6 8.7 8.6 8.5 40 12.1 12.6 12.4 12.1 12.1
50 8.2 8.2 8.2 8.2 8.2 50 7.9 8.0 8.2 7.9 7.9 50 11.2 12.0 11.8 11.2 11.2

15 10 6.6 6.6 6.6 6.6 6.6 25 10 8.0 8.0 8.0 8.0 8.0 40 10 8.4 8.4 8.4 8.4 8.4
20 7.2 7.2 7.5 7.2 7.2 20 9.8 9.8 9.9 9.8 9.8 20 13.0 13.1 13.1 13.0 13.0
30 7.3 7.4 7.6 7.3 7.3 30 10.6 10.7 10.6 10.5 10.5 30 14.5 14.7 14.6 14.5 14.5
40 7.2 7.3 7.4 7.2 7.2 40 10.4 10.7 10.6 10.4 10.3 40 15.0 15.3 15.3 14.9 14.9
50 7.4 7.6 7.6 7.4 7.4 50 10.0 10.1 10.2 10.0 10.0 50 14.6 15.3 14.9 14.6 14.6

Population Training Heuristics 175

objective function calls (FC). A parallel memetic algorithm (PMA) taken from
[14] was included in this comparison. The PMA presents a new 2-exchange local
search with a reduction scheme, which discards useless swaps, avoiding unnec-
essary objective function calls. Table 2 shows the comparison among PTAfag,
PTA2opt, CGA2opt and PMA in 10 trials for GMLP instance w4.

Table 2. Comparison between PTA and CGA2opt and PMA for instance w4

AS NS FC AS NS FC
PTA2opt 28.6 2 8,488,438 CGA2opt 28.0 3 6,537,706
PTAfag 28.3 2 9,330,802 PMA 29.4 2 9,428,591

Observing Table 2, CGA2opt has obtained the best AS and NS for w4.
PTAfag and PTA2opt are slightly similar in AS, but the later seems to perform
less function calls. All approaches based on population training were better than
PMA. Despite the Faggioli-Bentivoglio’s procedure seemingly should perform
less function calls than 2-Opt-like heuristic, this can not be observed in FC.
Indeed, it was expected a superior FC for versions employing 2-Opt. This fact
can be explained perhaps by the mutation procedure: the mutation would domi-
nate the number of function calls and the training heuristic was not relevant for
FC. Another possibility is that 2-Opt-like training heuristic would improve the
algorithm performance so that it could compensate its computational cost.

The comparison among the methods here presented are based only in the av-
erage performance because the other works found in literature does not mention
nothing about the variability of their models. Table 3 shows the average and
standard desviation in 20 trials for the hard MOSP instances p2040n6, p2540n3.

Table 3. Average and standard desviation for MOSP instances p2040n6 and p2540n3

Instances (solution) PT A2opt PT Afag CGA2opt CGAfag

p2040n6 (8, 0) 8, 7 ± 0, 5 8, 7 ± 0, 5 8, 9 ± 0, 3 8, 9 ± 0, 3
p2540n3 (10, 0) 10, 7 ± 0, 5 10, 8 ± 0, 4 10, 7 ± 0, 5 10, 9 ± 0, 3

Statistical tests showed that the differences in averages are not statisticaly
significant for MOSP instances p2040n6 and p2540n3. For GMLP instance w4,
averages obtained by CGA2opt was significantly better than those obtained by
PTAfag and PTA2opt.

4 Conclusion

In the Population Training Heuristic (PTH), proposed in this paper, the evolu-
tionary process is driven by a training heuristic, employed in the fitness defini-
tion. The population is led to settle down in search areas where the individuals
can not be improved by such heuristic. In this work, the general guidelines for

176 A.C.M. Oliveira and L.A.N. Lorena

PTH are introduced and new versions employing a non-constructive ranking are
presented.

The algorithms based on PTH showed the best performance when com-
pared against other approaches found in literature. Both constructive and non-
constructive approaches were able to reach the known optimal solutions. The
2-Opt-like training heuristic has presented better results concerning the com-
putational cost. For further work, it is intended to implement a multi-heuristic
version with subpopulations trained by different heuristics, evolving in parallel,
for multi-objective problems.

References

1. Lorena, L.A.N., Furtado, J.C.: Constructive genetic algorithm for clustering prob-
lems. Evolutionary Computation. (2001) 9(3): 309-327.

2. Ribeiro Filho, G., Lorena, L.A.N.: A constructive evolutionary approach to school
timetabling, In: Applications of Evolutionary Computing, Boers, E.J.W., Gottlieb,
J., Lanzi, P.L., Smith, R.E., Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H., (Eds.)
- Springer LNCS 2037(2001). 130-139.

3. Oliveira, A.C.M., Lorena, L.A.N.: A constructive genetic algorithm for gate matrix
layout problems. IEEE Trans. on Computer-Aided Designed of Integrated Circuits
and Systems(2002) 21(8): 969-974.

4. Oliveira, A.C.M., Lorena, L.A.N.: 2-Opt population training for minimization of
open stack problem. Advances in Artificial Intelligence - XVI Brazilian Sympo-
sium on Artificial Intelligence. Guilherme Bittencourt e Geber L. Ramalho (Eds).
Springer LNAI 2507. (2002) 313-323.

5. Oliveira, A.C.M., Lorena, L.A.N.: Real-coded evolutionary approaches to uncon-
strained numerical optimization. Advances in Logic, Artificial Intelligence and
Robotics. Jair Minoro Abe and João I. da Silva Filho (Eds). (2002) 10-15.

6. Reeves, C.R. Landscapes, operators and heuristic search. Annals of Operations
Research, v. 86, p. 473490, 1999.

7. Fink, A., Voss, S.: Applications of modern heuristic search methods to pattern
sequencing problems, Computers and Operations Research, (1999) 26(1): 17-34.

8. Golumbic, M.: Algorithmic graph theory and perfect graphs. Academic Press, New
York (1980).

9. Möhring, R.: Graph problems related to gate matrix layout and PLA folding,
Computing (1990) 7: 17-51.

10. Kashiwabara, T., Fujisawa, T.: NP-Completeness of the problem of finding a min-
imum clique number interval graph containing a given graph as a subgraph, In
Proc. Symposium of Circuits and Systems(1979).

11. Linhares, A.: Industrial pattern sequencing problems: some complexity results and
new local search models. Doctoral Thesis, INPE, S. José dos Campos, Brazil (2002).

12. Faggioli, E., Bentivoglio, C.A.: Heuristic and exact methods for the cutting se-
quencing problem, European Journal of Operational Research(1998) 110: 564-575.

13. Syswerda, G.: Schedule optimization using genetic algorithms. Handbook of Genetic
Algorithms,Van Nostrand Reinhold, New York (1991) 332-349.

14. Mendes, A., Linhares, A.: A multiple population evolutionary approach to gate
matrix layout, Int. Journal of Systems Science, Taylor & Francis Eds, (2004),
35(1): 13-23.

G.R. Raidl and J. Gottlieb (Eds.): EvoCOP 2005, LNCS 3448, pp. 177 – 189, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Scatter Search Particle Filter to Solve the Dynamic
Travelling Salesman Problem

Juan José Pantrigo, Abraham Duarte, Ángel Sánchez, and Raúl Cabido

Universidad Rey Juan Carlos, c/ Tulipán s/n
28933 Móstoles, Spain

{j.j.pantrigo, a.duarte, an.sanchez}@escet.urjc.es

Abstract. This paper presents the Scatter Search Particle Filter (SSPF)
algorithm and its application to the Dynamic Travelling Salesman Problem
(DTSP). SSPF combines sequential estimation and combinatorial optimization
methods to improve the execution time in dynamic optimization problems. It
allows obtaining new high quality solutions in subsequent iterations using
solutions found in previous time steps. The hybrid SSPF approach increases the
performance of general Scatter Search (SS) metaheuristic in dynamic
optimization problems. We have applied the SSPF algorithm to different DTSP
instances. Experimental results have shown that SSPF performance is
significantly better than classical DTSP approaches, where new solutions of
derived problems are obtained without taking advantage of previous solutions
corresponding to similar problems. Our proposal reduces execution time
appreciably without affecting the quality of the estimated solution.

1 Introduction

Dynamic optimization problems are characterized by an initial problem definition and
a collection of “events” over the time. An event defines some changes on the data of
the problem [1]. Therefore the optimization method needs from adaptive strategies for
these changing conditions. In these problems, a key question is how to use
information found in previous time steps to obtain high quality solutions in
subsequent ones, without restarting the computation from scratch.

Dynamic optimization problems play an important role in industrial applications,
such as transportation, telecommunications and manufacturing [1]. Surprisingly,
compared to the amount of research undertaken on static optimization problems,
relatively little work has been devoted to dynamic problems [2][3].

Unlike static problems, dynamic ones often lack well defined optimization
functions, standard benchmarks or criteria for comparing solutions [1][4][2][3].
Nowadays, main used strategies have been specific heuristics [1] and manual
procedures [5][2]. Traditionally, metaheuristics using constructive methods such as
Ant Systems [6][7] and population-based metaheuristics such as evolutionary
algorithms [8] have been applied to dynamic problems.

178 J.J. Pantrigo et al.

The filtering problem deals with updating the present state of knowledge and
predicting with drawing inferences about the future state of the system [9]. Sequential
Monte Carlo algorithms (also called particle filters) are a special class of filters in
which theoretical distributions on the state space are approximated by simulated
random measures (also called particles) [9].

We propose a new approach, called Scatter Search Particle Filter (SSPF) to solve
the Dynamic Travelling Salesman Problem. SSPF combines sequential estimation
(Particle Filter) [9][10] and metaheuristic methods (Scatter Search) [11] in two
different stages. In the Particle Filter (PF) stage, a particle set is propagated and
updated to obtain a new particle set. In the Scatter Search (SS) stage, some solutions
from the particle set are selected and combined to obtain new optimized solutions.

This paper considers a dynamic variant of the Travelling Salesman Problem [12] in
which “distances” among cities vary over the time. In dynamic problems, meta-
heuristics based approaches tend to restart the search method after events or to use the
best solutions found in previous time steps. In the first approach, the derived problem
is processed as unrelated with respect to its origin problem. It implies that useful
information can be rejected, increasing the computation time. As a consequence, a
reasonable trade-off between the analysis of the prior problem solution and actual
problem computational effort must be found. Experimental results have shown that
the proposed algorithm has successfully been applied to different DTSP instances.

2 The Dynamic Travelling Salesman Problem

The Travelling Salesman Problem (TSP) consists of finding the shortest tour
connecting a fixed number of locations (cities), visiting each city exactly once [12].
This problem can be represented by a graph G = {V, E, W}, where V is a set of vertex
representing the cities, E is a set of edges which model the paths connecting cities and
W is a symmetric matrix of weights. We suppose that there is an edge jointing every
pairs of cities. Weighs wij ∈ W, attached to edges (i,j) ∈ E represent the distance
between cities i, j ∈ V. The TSP can be described as the problem of finding a
Hamiltonian circuit with minimum length in the graph G [8]. The TSP belongs to the
NP-hard class [13]. It is one of the most considered problems in Combinatorial
Optimization and several approaches have been used to solve it. In the public library
TSPLIB [14] sample instances for the static TSP can be found.

The Dynamic Travelling Salesman Problem (DTSP) is a generalization on TSP
where G is time-dependent. This problem has got several practical applications such
as traffic jams [12] or fluctuating set of active machines [15]. Two different varieties
of Dynamic Travelling Salesman Problem exist in the literature. The first one consists
of inserting or deleting cities into a given problem instance [16][17]. A different
approach [12] consists of keeping constant the number of cities, allowing distance
changing among them. It can be applied to describe traffic jams and motorways. In
this context, good solutions may not be optimal after changes and the salesman needs
to be re-routed. In this paper, we focus on the second approach.

Ant Systems (AS) and Evolutionary Computation (EC) have been the most
common applied metaheuristics to solve the DTSP. These techniques should be able

 Scatter Search Particle Filter to Solve the Dynamic Travelling Salesman Problem 179

to adjust their solutions under changing environments. In [12][15][17] different AS
implementations applied to DTSP can be found. The main reason for using AS to
dynamic problems is based on the pheromone concept. Pheromone can be exploited
as reinforcement, and therefore, as a way to transferring knowledge. When a change
is detected a partial decomposition-reconstruction procedure is performed over old
solutions [1]. This procedure determines which elements of ant’s solutions must be
discarded to satisfy the feasibility of the new conditions.

Fig. 1. Particle Filter scheme

3 Particle Filter Framework

Sequential Monte Carlo algorithms (also called Particle Filters) are filters in which
theoretical distributions on the state space are approximated by simulated random
measures (called particles) [9]. The state-space model consists of two processes: (i) an
observation process p(Zt|Xt), where X denotes the system state vector and Z is the
observation vector, and (ii) a transition process p(Xt|Xt-1). Assuming that observations
{Z0, Z1,…, Zt} are known, the goal is to recursively estimate the posterior pdf p(Xt|Zt)
and the new system state { 0, 1, … , t} at each time step. In Sequential Bayesian
Modelling framework, posterior pdf is estimated in two stages:

 (i) Evaluation: posterior pdf p(Xt|Zt) is computed at each time step by applying
Bayes theorem, using the observation vector Zt:

)p(

)|)p(|p(
)|p(

t

1tttt
tt Z

ZXXZ
ZX −= (1)

(ii) Prediction: the posterior pdf p(Xt|Zt-1) is propagated at time step t using the
Chapman-Kolmogorov equation:

∫ −−−−− = 1t1t1t1tt1tt)d|)p(|p()|p(XZXXXZX (2)

A predefined system model is used to obtain an updated particle set.

180 J.J. Pantrigo et al.

In Figure 1 an outline of the Particle Filter scheme is shown. The aim of the PF
algorithm is the recursive estimation of the posterior pdf p(Xt|Zt), that constitutes the
complete solution to the sequential estimation problem. This pdf is represented by a
set of weighted particles {(xt

0, t
0)… (xt

N, t
N)}.

PF starts by setting up an initial population X0 of N particles using a known pdf.
The measurement vector Zt at time step t, is obtained from the system. Particle
weights t are computed using a weighting function. Weights are normalized and a
new particle set X*

t is selected. As particles with larger weight values can be chosen
several times, a diffusion stage is applied to avoid the loss of diversity in X*

t. Finally,
particle set at time step t+1, Xt+1, is predicted using the motion model. A pseudocode
of a general PF is detailed in [10][18]. Therefore, Particle Filters can be seen as
algorithms handling the particles time evolution. Particles in Particle Filters move
according to the state model and are multiplied or died according to their weights or
fitness values as determined by the likelihood function [9].

4 Scatter Search

Scatter Search (SS) [19][20] is a population-based metaheuristic that provides
unifying principles for recombining solutions based on generalized path construction
in Euclidean spaces. In other words, SS systematically generates disperse set of points
(solutions) from a chosen set of reference points throughout weighted combinations.
This concept is introduced as the main mechanism to generate new trial points on
lines jointing reference points. SS metaheuristic has been successfully applied to
several hard combinatorial problems. A recent method review can be found in [20].

Fig. 2. Scatter Search scheme

In Figure 2 an outline of the SS is shown. SS procedure starts by choosing a subset
of solutions (called RefSet) from a set S of initial feasible ones. The solutions in
RefSet are the h best solutions and the r most diverse ones of S. Then, new solutions
are generated by making combinations of subsets (pairs typically) from RefSet. The
resulting solutions, called trial solutions, can be infeasible. In that case, repairing

 Scatter Search Particle Filter to Solve the Dynamic Travelling Salesman Problem 181

methods are used to transform these solutions into feasible ones. In order to improve
the solution fitness, a local search from trial solutions is performed. SS ends when the
new generated solutions do not improve the quality of the RefSet.

5 Scatter Search Particle Filter

In our opinion, dynamic optimization problems deal with optimization techniques, but
also with prediction tasks. This is due to the fact that the optimization method for
changing conditions needs from adaptive strategies. Therefore, one key aspect is how
to efficiently use important information found in previous time steps in order to find
high quality solutions for new derived problems instances.

Usually in metaheuristics, two approaches can be used depending on the problem
change rate. If it is high, each problem is tackled as a different one, so the
computation is restarted from scratch. If change rate is low, the last solution or a set
of the best solutions found are used as starting point in the new search. For instance,
Genetic Algorithms use the previous population as initial set in the next time step. On
the other hand, Ant Colony Optimization uses the previous pheromone deposition in
each node as initial pheromone distribution of subsequent steps. The same idea can be
extended to other metaheuristics. In Scatter Search, the RefSet obtained in the
previous time step can be used as a new RefSet for the next one or RefSet could be
improved with diverse solutions. Nevertheless, it is very important to make a decision
of which information is propagated to the next time step. This is because it is possible
that the search algorithm get stuck near local optimum. As a consequence, a
reasonable trade-off between both restart from scratch and restart from previous
optimum must be found. Therefore, it could not be appropriate to use optimization
procedures in the prediction stage.

Analogously, sequential estimation algorithms like particle filters are well-suited in
prediction stages, but they are not good enough for solving dynamic optimization
problems. Optimization strategies performed with this kind of algorithms are usually
very computationally inefficient.

Then, dynamic optimization problems need from both optimization and prediction
tasks. The key question is how to hybridize these two kinds of algorithms to obtain a
new one which combines both techniques. In this way, a novel hybrid algorithm
called Scatter Search Particle Filter (SSPF) is presented to solve the Dynamic TSP.

5.1 Scatter Search and Particle Filter Hybridization

The Scatter Search Particle Filter (SSPF) algorithm is introduced in this paper to be
applied to dynamic optimization problems. SSPF integrates both Scatter Search (SS)
and Particle Filter (PF) frameworks in two different stages:

 In the Particle Filter stage, a particle set is propagated and updated to obtain a new
one. This stage is focused on the evolution in time of the best solutions found in
previous time steps. The aim for using PF is to avoid the loss of needed diversity in
the solution set.

 In the Scatter Search stage, a fixed number of solutions from the particle set are
selected and combined to obtain better ones. This stage is devoted to improve the
quality of a reference subset of good solutions in such a way that the final solution
is also improved.

182 J.J. Pantrigo et al.

Fig. 3 . Scatter Search Particle Filter scheme. Weight computation is required during
EVALUATE and IMPROVE stages (*)

Figure 3 shows a graphical template of the SSPF algorithm. Dashed lines separate
the two main components in the SSPF scheme: PF and SS optimization, respectively.
SPF starts with an initial population of N particles drawn from a known pdf (Figure 3:
INITIALIZE). Each particle represents a possible solution of the problem. Particle
weights are computed using a weighting function (Figure 3: EVALUATE). SS stage
is later applied to improve the best obtained solutions of the particle filter stage. A
Reference Set (RefSet) is created selecting a subset of b (b<<N) particles from the
particle set (Figure 3: MAKEREFSET). This subset is composed by the b/2 best
solutions and the b/2 most diverse ones of the particle set. New solutions are
generated and evaluated, by combining all possible pairs of particles in the RefSet
(Figure 3: COMBINE and EVALUATE). In order to improve the solution fitness, a
local search from each new solution is performed (Figure 3: IMPROVE). Worst

 Scatter Search Particle Filter to Solve the Dynamic Travelling Salesman Problem 183

solutions in the RefSet are replaced when there are better ones (Figure 3:
UPDATEREFSET). SS stage ends when new generated solutions RefSetNew do not
improve the quality of the RefSet. Once the SS stage is finished, the “worst” particles
in the particle set are replaced with the RefSetNew solutions (Figure 3: INCLUDE).
Then, a new population of particles is created by selecting the individuals from
particle set with probabilities according to their weights (Figure 3: SELECT and
DIFFUSE). Finally, particles are projected into the next time step by following the
update rule (Figure 3: PREDICT).

5.2 Scatter Search Particle Filter Main Features

The SSPF leads the search process to a region of the search space in which it is highly
probable to find new better solutions than the initial computed ones. PF increases the
performance of general SS in dynamic optimization problems by improving the
quality of the diverse initial solution set S. In order to obtain the solution set S(t+1) PF
performs two tasks over the set S(t): (i) selecting the best solutions and (ii) predicting
new solutions from the best ones. Firstly, the selection procedure selects particles
with larger weight values more likely than those with lower weights. Secondly, PF
performs a prediction procedure over these best solutions to obtain the set S(t+1). In
this way, PF tackles with problem changes in time by predicting the best solution time
evolution. As results, solutions in S(t+1) will be closer to global optimum than
another ones obtained randomly. On the other hand, a diffusion procedure is applied
to the selected solutions to include diversity in the set S(t+1).

Therefore, SSPF adapts computational load to problem constraints, by reducing the
number of required evaluations of the particle weighting function. In this way,
solutions in RefSet will be selected from a better solutions set. This is the main reason
why SSPF reduces the required number of evaluations for the fitness function, and
hence the computational load.

SS and PF are related in such a way that when the SS improves its performance,
the PF performance also improves and vice versa. PF allows parameter tuning in
order to adjust the quality and the diversity of the set S, used by SS. On the other hand
SS improves the quality of the particle set allowing the better estimation of the pdf, by
including RefSet solutions in the set S. This fact yields to a highly configurable
algorithm. The main considered SSPF algorithm parameters are:

 The size of the particle set N is the number of particles in the particle set. These
should be enough particles to support a set of diverse solutions, avoiding the loss
of diversity in the particle set. Therefore, N influences on the performance of the
SS stage. The value of N depends on the problem instance complexity.

 The size of the reference set b is the number of solutions in the RefSet. A typical b
used in the literature is b = 10 [20][22].

 The diffusion stage is applied to avoid the loss of diversity in S. It is performed by
applying a random displacement with maximum amplitude A. This amplitude is a
measure of the diversity produced in the new particle set. Therefore, A influences
the performance of the SS by tuning the diversity of the initial solution set, and
hence, the diversity of the RefSet.

184 J.J. Pantrigo et al.

The SSPF is presented to be applied to hard dynamic optimization problems. In
this kind of problems, it is usual to perform some preliminary experimentation in
order to achieve the appropriate parameter values.

6 SSPF Implementation to DTSP Solving

In the Scatter Search Particle Filter (SSPF) implementation, solutions (particles) are
represented as paths over cities. The number of particles N in the particle set S is
chosen according to the problem size. Concretely, N varies from 100 in the 25-cities
problem to 1000 in the 100-cities problem. The RefSet is created by selecting the 5
best solutions and the 5 most diverse ones in S.

DTSP is considered as an R-permutation problem [20], because relative
positioning of the elements is more important than absolute positioning. Therefore, to
find the most diverse solutions, the distance metric for R-permutation problems was
used [20]. The distance between two solutions p and q for R-permutation problems is
defined as:

d(p,q) = number of times pi+1 doesn’t immediately follow pi in q for i=1,…, n-1 (3)

Voting method [20] has been used as combination procedure over all pairs of
solutions in the RefSet. In this procedure, each reference solution votes for its first
sector not included in the combined solution. The voting determines the element to be
assigned to the next free position in the combined solution.

The 2-opt method [21] was employed as improvement stage in the SS scheme
(Figure 3). Given a solution, consider all pairs of edges connecting four different
cities are considered. Removing two edges from the solution tour, there is a unique
way of reconnecting the two remaining paths such that a new tour is obtained. If the
new tour is shorter, then it replaces the old tour and the procedure is repeated until no
such improvement is produced.

7 Experimental Results

To analyze the performance of the proposed algorithm, implementations of three
evolutionary methods have been developed: Scatter Search, Evolutionary Algorithm
and Scatter Search Particle Filter. The experiments were evaluated in an Intel Pentium
4 at 1.7 GHz and 256 MB RAM. All algorithms were coded in MATLAB 6.1, without
optimization and by the same programmer. Different methods were applied to several
instances of DTSP and results were compared. The following sections are devoted to
describe used data, algorithms and obtained results.

7.1 Problem Instances

Unfortunately, as far as the authors know, there are no benchmarks for the DTSP.
Thus, we generated synthetic and standard-based data. Synthetic data are composed
by four different graph sequences, using 25, 50, 75 and 100 cities. Each sequence is
composed by 10 different graphs. To know the value of the optimum, cities are

 Scatter Search Particle Filter to Solve the Dynamic Travelling Salesman Problem 185

located in the Euclidean plane along the diagonal as shown in Figure 4. In the first
frame, cities are located in lexicographic order. Subsequent frames are generated by
performing exchanges of cities in groups of three (see Figure 4). The average
probability of node exchange in the considered graph sequences was pchange = 0.15.

Standard-based data are built as dynamic version of benchmarks from the public-
domain library TSPLIB [14]. In particular, they are dynamic modifications of
BAYG29, BERLIN51 and ST70 instances. We built each sequence starting from the
original graph. Subsequent 4 graphs are obtained from the previous one introducing a
perturbation in the actual location of each city according to a Gaussian distribution.

7.2 Algorithms Description

Different versions of Scatter Search and Evolutionary Algorithms were implemented.
All of them use as stopping criteria “106 evaluations of fitness function or none
improvement in the population”. Solutions are coded as tours connecting all cities.

The two Scatter Search implementations were called SS1 and SS2. SS1 considers
that each graph in the sequence is totally decoupled from the previous ones.
Therefore, computation is restarted from scratch after graph changes. Basically, SS1
is based on Campos implementation described in [20][22].

In the second implementation (SS2) the graphs are supposed quite related. Thus,
the RefSet obtained in the actual time step is used as a new RefSet for the next one. SS
parameters PopSize and b for both implementations SS1 and SS2 were set to 100 and
10 respectively, as recommended in [22]. To obtain comparable results, we use the
same RefSet composition, combination and improvement methods as in SSPF
implementation (5-best and 5-diverse solutions in RefSet, voting method and 2-opt).

The implementation of the Evolutionary Algorithm (EA) performs the main stages
of a standard genetic algorithm, including an improvement stage. The algorithm use
voting method and 2-opt. EA parameters were set to PopSize = 100, crossover
probability pc = 0.25 and mutation probability pm = 0.01 as recommended in [23].
Finally, improvement probability was set to pc = 0.25.

7.3 Computational Testing

Experimental results are organized in three sections. In the first one the approach
goodness in synthetic data is justified. Next section is devoted to the comparison
between the SSPF and the two SS and the EA implementations.

 (a) (b) (c)

Fig. 4. Graph sequence generation process

186 J.J. Pantrigo et al.

7.3.1 SSPF in Synthetic Data
Experimental results obtained by applying SSPF to synthetic data are presented in this
section. In table 1, mean value of the execution time for the first graph is compared to
the mean value of the execution time for the rest of the graph sequence.

The proposed strategy, based on Particle Filter and Scatter Search hybridization
seems to be more advantageous than the classical SS one, in which an execution from
scratch is performed. In this table, the column Ratio represents the average time SSPF
improvement with respect to the corresponding time of the SS1 solution. As it can be
seen, ratio between execution times is always in favor of SSPF algorithm.

Figure 5 shows the average fitness function evaluation per frame, over 10 runs of
the same graph sequence. Each one is composed by 10 similar graphs. In this figure,
relative execution time is represented for each frame. Elapsed time for the 2nd to
10th graphs (SSPF improvement) significantly reduces elapsed time for the first
graph (SS approach) in all instances. Results show that SSPF achieves the best
solution in all instances. Moreover, it is faster than SS1 implementation without
loss of quality.

Table 1. Average fitness function evaluations values over 10 runs for each graph sequence

(a)

(b)

(c)

(d)

Fig. 5. Fitness function evaluations per graph in (a) 25, (b) 50, (c) 75 and (d) 100-cities
problems

Nº of cities Size of RefSet Average Time SS Average Time SSPF Ratio
25 100 0.3x106 0.2x106 0.69
50 100 2.1x106 1.1x106 0.55
75 500 6.8x106 3.0x106 0.44
100 1000 14.7x106 6.6x106 0.44

 Scatter Search Particle Filter to Solve the Dynamic Travelling Salesman Problem 187

7.3.2 SSPF Vs SS and EA in Standard-Based Data
This section presents a comparison between SSPF and two different implementations
of SS. Results obtained by these algorithms (SS1, SS2, EA and SSPF) over all
standard-based data (BAYG29, BERLIN52 and ST70) are presented in figure 6.
Because of initial conditions and initial procedures performed are the same in SS1,
SS2 and SSPF, solutions found in the first graph is exactly the same one. As the EA
approach is different to the other ones, the solution and the time required to found this
solution in the first graph are also unlike.

Quality of the estimation performed by SS1 and SSPF are similar in subsequent

graphs. However, execution time is significantly lower in SSPF approach, as
explained in previous sections. In the SS2 implementation, the search procedure is
trapped in a local optimum (maybe in the neighbourhood of the previous optimum).
This yields SS2 achieves the lowest execution time, but with very poor quality.
Finally, EA finds good quality solutions, but the time required to obtain them is larger
than using SSPF. Table 2 resumes the main results obtained using different
approaches. Execution time and path length demonstrate the performance of SSPF.

Table 2. Average execution time and path lengths of SS1, SS2, EA and SSPF over all instances

 SS1 SS2 EA SSPF
Cities Length Time Length Time Length Time Length Time

BAYG29 0.86x106 0.91x104 0.25x106 1.09x104 1.03x106 0.89x104 0.58x106 1.09x104
BERLIN52 5.07x106 3.51x103 1.75x106 4..27x103 6.37x106 4.12x103 3.79x106 3.11x106

ST70 9.65x106 302.97 2.84x106 427.58 3.97x106 331.15 5.72x106 272.15

(a) (b) (c)

Fig. 6. Path length (upper row) and fitness function evaluations (lower row) using SS1, SS2,
EA1 and SSPF in (a) BAYG29, (b) BERLIN52 and (c) ST70

188 J.J. Pantrigo et al.

8 Conclusions

The main contribution of this work is the development of the Scatter Search Particle
Filter (SSPF) algorithm. SSPF hybridizes the Scatter Search metaheuristic and the
Particle Filter framework to solve dynamic problems. We have successfully applied
the proposed SSPF algorithm to the Dynamic Travelling Salesman Problem (DTSP).
Experimental results have shown that SSPF appreciably increases the performance of
derived Scatter Search and Evolutionary Algorithm methods in a challenging dynamic
optimization problem (DTSP), without losing quality in the estimation procedure.
This improvement is more significant as the size of the problem increases.

References

1. Randall, M.: Constructive Meta-heuristics for Dynamic Optimization Problems. Technical
Report. School of Information Technology. Bond University (2002)

2. Sadeh, N., Kott, A.: Models and Techniques for Dynamic Demand-Responsive
Transportation Planning. Tech. Rept. TR-96-09, Carnegie Mellon University (1996)

3. Dror, M., and Powell, W.: Stochastic and Dynamic Models in Transportation. Operations
Research, 41 (1993) 11-14

4. Beasley, J., Krishnamoorthy, M., Sharaiha, Y. and Abramson, D.: The displacement
Problem and Dynamically Scheduling Aircraft Landings. Working paper, Available online
at http://graph.ms.ic.ac.uk/jeb/displace.pdf (2002)

5. Beasley, J., Sonander, J. and Havelock, P.: Scheduling Aircraft Landings at London
Heathrow using a Population Heuristic, Journal of the Operational Research Society, 52
(2001) 483-493

6. Glover, F., Kochenberger, G. A.: Handbook of metaheuristics. Kluwer (2002)
7. Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning approach to

the traveling salesman problem. IEEE Trans. on Evolutionary Computation, 1(1) (1997)
53–66

8. Zhang-Can H.; Xiao-Lin H.; Si-Duo C.: Dynamic traveling salesman problem based on
evolutionary computation. Proc. of Evolutionary Computation Conf, 2 (2001) 1283 - 1288

9. Carpenter, J., Clifford, P., Fearnhead, P.: Building robust simulation based filters for
evolving data sets. Tech. Rep., Dept. Statist., Univ. Oxford, Oxford, U.K. (1999)

10. Arulampalam, M., et al.: A Tutorial on Particle Filter for Online Nonlinear/Non-Gaussian
Bayesian Tracking. IEEE Trans. On Signal Processing, 50 (2) (2002) 174–188

11. Blum, C., Roli, A.: Metaheuristics in Combinatorial Optimization: Overview and
Conceptual Comparison. ACM Computing Surveys, 35 (3) (2003) 268 - 308

12. Eyckelhof, C.J., Snoek, M.: Ant Systems for A Dynamic DSP: Ants Caught in a Traffic
Jam. Proc. of ANTS02 Conference (2002)

13. Karp, R.M.: Reducibility among Combinatorial Problems. R. Miller and J. Thatcher (eds.):
Complexity of Computer Computations. Plenum Press (1972) 85-103

14. Reinelt, G.: TSPLIB. University of Heidelberg. Available online at http://www.iwr.uni-
heidelberg.de/groups/comopt/software/TSPLIB95/ (1996)

15. Guntsh, M., Middendorf, M.: Applying Population based ACO to Dynamic Optimization
Problems. In Ant Algorithms, Proceedings of Third International Workshop ANTS 2002,
LNCS 2463 (2002) 111-122

 Scatter Search Particle Filter to Solve the Dynamic Travelling Salesman Problem 189

16. Guntsh, M., Middendorf, M., Schmeck, H.: An Ant Colony Optimization Approach to
Dynamic TSP. In Proc. GECCO-2001 Conference, San Francisco, CA: Morgan Kaufmann
Publishers (2000) 860-867

17. Guntsh, M., Middendorf, M.: Pheromone Modification Strategies for Ant Algorithms
applied to Dynamic TSP. Lecture Notes in Computer Science, 2037 (2001) 213-222

18. Pantrigo, J.J., Sánchez, A., Gianikellis, K., Duarte, A.: Path Relinking Particle Filter for
Human Body Pose Estimation. Lecture Notes in Computer Science 3138 (2004) 653-661

19. Glover, F.: A Template for Scatter Search and Path Relinking. LNCS 1363 (1997) 1-53
20. Laguna, M., Marti, R.: Scatter Search methodology and implementations in C. Kluwer

Academic Publisher (2003)
21. Vizeacoumar, F.: TSP Implementation. Project report Combinatorial Optimization

CMPUT – 670
22. Campos, V., Laguna, M. , Martí, R.: Scatter Search for the Linear Ordering Problem. New

Ideas in Optimization. McGraw-Hill (1999)
23. Michalewitz, Z.: Genetic Algorithms + Data Structures = Evolution Programs Springer-

Verlag, 1996.

The Use of Meta- euristics to Solve Economic
Lot Scheduling Problem

Syed Asif Raza and Ali Akgunduz

Concordia University, 1455 de Maisonneuve Blvd. W.
Montreal, Quebec H3G 1M8 Canada

{sraza, akgunduz}@me.concordia.ca

Abstract. Economic lot scheduling problem has been an important
topic in production planning and scheduling research for more than four
decades. The problem is known to be NP-hard due to it’s combinatorial
nature. In this paper, two meta-heuristics algorithms - Tabu Search and
Simulated Annealing - are proposed. To investigate the effect of control
parameters to the performance of tabu search and simulated annealing
algorithms, a general factorial design of experiment study is used. Two
Neighborhood Search heuristics that differ in rounding off scheme of the
production frequencies are also tested. Experimental study shows that
both tabu search and simulated annealing algorithms outperform two
best known solution methods - Dobson’s Heuristic and Hybrid Genetic
Algorithm.

1 Introduction

Economic Lot Size Problem (ELSP) deals with the production assignment of
several products sharing a common production facility in order to minimize the
total cost. It is a constraint optimization problem where production scheduling
is done in such a way that all products are manufactured and their demands
are satisfied during the planning period. There have been many articles pub-
lished in last forty years covering a wide range of possible solutions to ELSP.
The problem has many applications in production planning and scheduling (see
Moon et al. [1]). The earliest contribution to ELSP is due to Elion [2], Rogers [3],
Maxwell [4], Hanssmann [5] and Bomberger [6]. A Lower Bound (LB) on cost
was developed by Bomberger [6]. The LB is tight because it incorporates ma-
chine sharing constraint in calculation, whereas the previous lower bound was an
Independent Solution (IS) obtained by ignoring all constraints. Elmaghraby [7]
presents a comprehensive review of the research up to late 1970s. In previous
studies, three different approaches are used to solve ELSP : common cycle, basic
period and time varying lot size. In all approaches it is mostly desired to gen-
erate cyclic schedules and Zero Switch Rule (ZSR) is also considered in most
studies. ZSR enforces the condition that a product will only be produced if it’s
inventory reaches to zero. ZSR does not guarantee optimality as it is shown in
some cases (see Maxwell [4] and Delporte and Thomas [8]). A common period

G.R. Raidl and J. Gottlieb (Eds.): EvoCOP 2005, LNCS 3448, pp. 190–201, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

h

The Use of Meta- euristics to Solve Economic Lot Scheduling Problem 191

approach is the simplest to implement in which all products are manufactured
for the same period. The basic period approach allows different cycle times for
different products; however the cycle time of each product has to be an inte-
ger multiple of the basic period. Research shows that both approaches, common
cycle and basic period, have limitations. The common cycle approach may pro-
duce solutions that are far from LB (see Moon et al. [1]). The basic period
approach tends to find better solutions than the common period approach; how-
ever finding a feasible solution is NP-hard (Hsu [9]). On the other hand, the
time varying lot size approach is more flexible in solving ELSP than the other
two approaches as it allows different cycle times for products. Maxwell [4] and
Delporte and Thomas [8] started using time varying lot size approach to solve
ELSP, then Dobson [10] showed that under this approach any production se-
quence can be converted into a feasible sequence and, thus proposed a heuristic
solution, known as Dobson’s Heuristic (DH). In general, the ELSP is known as
an NP-hard problem (see Hsu [9], Gallego and Shaw [11]). Although it is typi-
cally assumed that the demand rate, production rate, set-up time and set-up cost
are deterministic, known and product dependent they nevertheless independent
of production sequence. Dobson [12] in extension to his work, considered the
sequence dependent set-up times. ELSP model is extended by considering some
given parameters as decision variables and relaxing some of the assumptions.
Allen [13] considered the production rate as a decision variable in ELSP model.
Several authors, Silver [14], Moon et al. [15], Gallego [16], Khouja [17] and Moon
and Christy [18] concluded that slowing down production rates is more profitable
in an under-utilized production facility. Silver [19], Viswanathan and Goyal [20]
studied the ELSP under shelf life constraint. Under this constraint inventory
is subjected to expiration while in stock. A feasible production schedule is ob-
tained by using either production rate or cycle time as decision variable. Issues
related to set-up time reduction were consider by Gallego and Moon [21], Hwang
et al. [22] and Moon [23]. The concept of stabilization is another extension to
ELSP. During stabilization period the production rate gradually increases and
it is suggested by Moon et al. [24]. Silver [25] presented a comprehensive sur-
vey of heuristic solution methods. Khouja et al. [26] used Genetic Algorithm
(GA) to solve the ELSP problem using basic period approach, although is some
cases GA resulted in an unfavorable solution when compared with LB. Moon et
al. [1] used the Hybrid GA to solve ELSP using time varying lot size approach.
In this study we proposed a Tabu Search (TS), Simulated Annealing (SA) al-
gorithm and two Neighborhood Search heuristics for solving the ELSP using
time-varying approach, hence extending the work of Moon et al. [1]. The rest
of the article is composed as follows : The ELSP model under time-varying ap-
proach is outlined in section 2. Section 3 discusses the implementation of TS and
SA algorithms to ELSP and the selection of operation parameters of the algo-
rithms using factorial Design Of Experiment (DOE). Computational experience
with the algorithms is summarized in section 5, and conclusions are presented
in section 6.

h

192 S.A. Raza and A. Akgunduz

2 ELSP Model

In this section we outline Dobson’s [10] ELSP model. The model uses follow-
ing notations. The objective is to determine the optimal parameters for cycle

i = Product index.
j = Position index of the item in a production sequence f .
m = Total number of products.
n = Total number of production runs in a cycle.
pi = Production rate of item i, ∀ i = 1, 2, . . . , m.
di = Demand rate of item i, ∀ i = 1, 2, . . . , m.
hi = Inventory holding cost ($ per unit per day), ∀ hi i = 1, 2, 3, . . . , m.
Ai = Set-up cost for item i ($), ∀ i = 1, 2, 3, . . . , m.
si = Set up time for item i, ∀ i = 1, 2, . . . , m.
tj = Production time for a product produced at position j in a production sequence.
uj = Machine idle time associated with product processed at jth position in a

production sequence.
T = Length of the production cycle (in days).
Ji = Set of indexes of a schedule f containing product i.

length T , a production sequence f =
{
f1, f2, . . . , fn

}
, ∀f j ∈ {1, 2, 3, . . . , m},

production times t =
{
t1, t2, . . . , tn

}
and idle times u =

{
u1, u2, . . . , un

}
, such

that the demand is satisfied and the total cost of setup and inventory holding is
minimized. The cycle is repeated indefinitely. Let’s consider the ith product that
is produced at jth position in a production sequence f . It’s production involves a
production time tj , setup time sj and an idle time uj . This part will be produced
again after subsequent products are produced in production sequence. The total
number of parts produced in the jth position is pjtj . These parts will satisfy

the demand for the product in the period [0, v], where v =
pjtj

dj
. The highest

inventory level is (pj − dj)tj . The total inventory holding cost for the product

produced at the jth position in the sequence is
1
2
hj(pj − dj)(pj/dj)(tj)2. Let Lk

represents the set containing the products that are produced in a given sequence
from k up to the position in the sequence where product k is produced again
but not included in the sequence. Now, using the information provided above,
an ELSP problem is written as shown below:

inf

min
t ≥ 0
u ≥ 0
T ≥ 0

1
T




n∑

j=1

1
2
hj(pj − dj)(

pj

dj
)(tj)

2
+

n∑

j=1

Aj



 (1)

Subject to
∑

j∈Ji

pit
j = diT i = 1, 2, . . . , m (2)

193

∑

j∈Lk

(tj + sj + uj) =
(

pk

dk

)
tk k = 1, 2, . . . , n (3)

n∑

j=1

(tj + sj + uj) = T (4)

Equation 2 guarantees that enough quantity of item i is produced to sat-
isfy the demand incurring with a rate of di over the cycle time T . The con-
straints stated in Equation 3 mention that enough quantity of an item should
be produced to satisfy it’s demand until it is produced again during the cycle
T . Equation 4 describes that the sum of the production, setup and idle time of
the product produced in any given sequence is the cycle time T . In this study
all the model assumptions stated in Dobson [10] are kept the same.

3 Implementation of Meta- euristics to ELSP

Both meta-heuristic techniques we described in this paper use the following
procedure [1] to find the optimal solution to ELSP.

– Step 1: Use the LB computation procedure given in Moon et al. [1] to
determine lower bound on estimates of optimal cycle times, T ∗

i ’s of each
product.

– Step 2: Let zi represent the optimal production frequency for the item i.
Then zi is determined as follows:

zi =
max
i {T ∗

i }
T ∗

i

∀ i = 1, 2, 3, . . . , m. (5)

– Step 3: Round the production frequencies found in step 2 to the nearest
integers.

– Step 4: Use of a meta-heuristic to determine the best production sequence
using the rounded production frequencies.

– Step 5: Use Quick and Dirty heuristic [1], assuming a zero idle time i.e.,
u = 0. For a given production sequence f solve Equation 3 to find t.

3.1 Tabu Search

Fred Glover [27] introduced Tabu Search (TS) in 1989. It is an iterative heuristic
for solving optimization problems. Unlike a local search which stops when no
improved solution is found in the current neighborhood, TS continues the search
even if the new solutions are worse than the current best solution. To prevent
cycling, information pertaining to the most recently visited solutions is recorded
in a list called tabu list. The tabu status of a solution is overridden when a
certain criterion (Aspiration Criterion) is satisfied. In it’s simplified form the TS
algorithm requires seed solution, neighborhood generation scheme, tabu criterion
and stopping criterion. The performance of the TS algorithm can be improved
by the incorporation of the search Intensification and Diversification (Sait and
Youssef [28]).

The Use of Meta- euristics to Solve Economic Lot Scheduling Problemh

h

194 S.A. Raza and A. Akgunduz

TS Parameter Selection Using Factorial Design. Tables 1- 2 present the
DOE with three important control parameters of TS, usually called factors.
It works as a good tool to improve the performance of the algorithm (Lyu et
al. [29]). The DOE reveals that the TS algorithm is robust in it’s performance as
none of these factors significantly affects the performance. Since ELSP is usually
considered an offline scheduling problem, the authors would choose a mediocre
value of Candidate list size to give TS a chance to perform more aggressive search,
although it may not result any improvement. For the same reason intensification
and diversification is also chosen.

Table 1. Levels of Design of experiment on TS

Factor Label Levels

Candidate List Size (CLS) A 3 25 50
Tabu List Size (TLS) B 1 7 20
Intensification and Diversification C No Yes

Table 2. Factorial design on TS response is % relative deviation form lower bound

Source DF Sum of Squares F Prob. of Larger F

A 2 1.40031 1.042 0.3552
B 2 0.00971 0.007 0.9928
C 1 0.03227 0.048 0.8268
A×B 4 0.02930 0.011 0.9998
A×C 2 0.04929 0.037 0.9640
B×C 2 0.01258 0.009 0.9907
A×B×C 4 0.01440 0.005 0.9999

– Seed Generation: The seed solution is also called the initial solution. A feasi-
ble production sequence f is generated randomly using production frequen-
cies. Only a feasible seed is accepted in this search.

– Neighborhood Scheme: Several neighborhood schemes can be used to gener-
ate neighborhoods. Taillard [30] outlined a variety of schemes that can be
used to generate neighborhood. In this study, we employ a simple neighbor-
hood scheme in which two randomly selected items at distinct positions in
a production sequence f are interchanged. A neighbor production sequence
f ′ is considered unacceptable if there exists two similar items at any two
adjacent positions in f ′.

– Tabu Feature: Tabu list (TL) is updated on a First In First Out (FIFO)
basis. Two indexes of f that are randomly swapped are stored in TL.

– Aspiration Criterion: Tabu status of a move is overridden if it results a cost
less than the best solution encountered in the search.

195

– Candidate Selection Scheme: Candidate List Size (CLS) is 20 and best solu-
tion among 20 candidate neighbors is selected for next iteration.

– Diversification: If there no improvement is observed after 500 iterations, the
search is diversified with a randomly generated new seed.

– Intensification: Intensification is done after 250 iterations of no improvement
using the procedure given in Figure 1.

– Stopping Criterion: Algorithm stops after 1000 iterations.

Algorithm Intensification
(∗ m = Product index. ∗)
(∗ n = Position index in the sequence. ∗)
(∗ Hm×n = Frequency matrix. ∗)
(∗ f = Production sequence. ∗)
(∗ zi = Production frequency of item i. ∗)

Begin
f ← {∅}, l ← 1, j ← 1.
Repeat

Find the entry in frequency matrix H such that Hij = max{H}.
If (zi ≥ 1) Then

Insert Product i at the jth position in the f .
zi ← zi − 1.

Endif
Delete the ith row and column jth from H.
l ← l + 1

Until (l ≤ n)
End

Fig. 1. Intensification scheme for TS algorithm

3.2 Simulated Annealing

Simulated Annealing (SA) is another powerful tool used in optimization. Unlike
TS, SA does not discriminate between perviously visited and unexplored solu-
tions while finding new search directions. A basic SA needs seed solution, cooling
schedule, equilibrium criterion and stopping criterion. More details pertinent to
SA can be found in Sait and Youssef [28].

SA Parameters Selection Using Factorial Design. The DOE shows that
the three control parameters (see Tables 3) do not effect the performance of the
SA and hence SA is also robust in performance. ANOVA is presented in Table 4
where performance indicator is deviation from LB i.e., SA/LB.

– Cooling Schedule:
• Initial Temperature: The initial temperature T0 is estimated using an

efficient algorithm proposed by White [31]. T0 = kσ, where k = −3/ lnP
and P is acceptance ratio at T0. In this implementation we take P = 0.90.

The Use of Meta- euristics to Solve Economic Lot Scheduling Problemh

196 S.A. Raza and A. Akgunduz

Table 3. Levels of Design of experiment on SA

Factor Label Levels

Acceptance ratio (P) at initial temperature A 0.60 0.80 0.90
Metropolis loop size (M) B 5 20 50
Temperature decrement (α) C 0.60 0.80 0.99

Table 4. Factorial design on SA response is SA/LB

Source DF Sum of Squares F Prob. of Larger F

A 2 5.668×10−5 0.021 0.9793
B 2 1.625×10−3 0.599 0.5500
C 2 3.492×10−4 0.129 0.8792
A×B 4 1.121×10−5 0.002 1.0000
A×C 4 3.386×10−5 0.006 0.9999
B×C 4 2.994×10−4 0.055 0.9943
A×B×C 8 5.735×10−5 0.005 1.0000

• Temperature Decrement Rule: Tk+1 = αTk where Tk and Tk+1 are tem-
peratures at kth and kth +1 iterations respectively and α is cooling rate.
Here we take α = 0.95 to avoid any drastic decrement in temperature.

• Final Temperature: Final temperature is set at 0.001. Temperature decre-
ment is stopped when the temperature in annealing process reaches that
level.

– Markov Chain Length: Metropolis loop (see Eglese [32]) is called 20 times
at each temperature level. The number is the same as CLS to give both
algorithms equal search opportunity.

– Acceptance Probability Function: We used the statistical acceptance
probability function (Sait and Youssef [28]). At a given temperature Ti, the
acceptance probability function pa of a solution f ′ can be written as:

pa =






1 If cost(f ′) < cost(f)
exp(∆/Ti) If cost(f ′) ≥ cost(f)

Where ∆ = cost(f ′) - cost(f)
(6)

The seed solution, neighborhood scheme and stopping criterion are the same
with those used in the TS algorithm given in Section 3.1.

4 Neighborhood Search Heuristics

A Neighborhood Search (NS) heuristic is greedy random search method. Ran-
domization generates a neighborhood of the seed solution. The neighborhood
solution is accepted if it is superior to the existing solutions. Hence it is unable

197

to escape from the local minimum like other deterministic, greedy algorithms.
More details on NS can be found in Sait and Youssef [28]. In this research we
study two simple NS heuristics i.e., NSa and NSb. The NSa is based on round-
ing off production frequencies to the nearest integers (Moon et al. [1]). It takes
the same implementation procedure given in section 3. The only difference is
that NSa is used in step 4. The implementation of NSb heuristic differs from
NSa only in rounding off the scheme of production frequencies. It makes use of
the rounding-off algorithm given in Roundy [33] which rounds the production
frequencies to the power of 2. Both the NSa and NSb stop after 1000 iterations.

5 Computational Results

The proposed algorithms are coded using MATLAB and tested on an Intel Pen-
tium 4, 2.4 GHz Processor. Initial experimentation is performed with the test
problem given in Mallya [34], Bomberger [6] and randomly generated problems
using Set 1 shown in Table 5. In this study the deviation from the LB is estimated
using ratio of cost resulted in an algorithm to the cost of LB (See Dobson [10])
and presented in Tables 8-10. Tables also show the improvements i.e., the pro-
posed solution methods made over DH using the same idea. For the example
presented by Mallya [34] both TS and SA are able to find an alternative solution
resulting in the same cost $60.911 as obtained by Hybrid GA [1]. All of these
algorithms round production frequencies to the nearest integer. The Dobson [10]
heuristic (DH) on the other hand rounds production frequencies to the power
of 2 which results in a better cost of $60.874. When production frequencies are
rounded to the power of 2 in Mallya’s problem (See Mallya§ in Table 7), TS and
SA outperform DH with a cost of $60.782. The NSb is also able to converge to
the same cost. We also conduct test with Bomberger’s problem [6] at K = 0.01
i.e., 99% Utilization, clearly TS, SA and NSa outperform existing solutions (see
Table 7). Moon et al. [1] tested Hybrid GA on 50 randomly generated prob-
lems with uniform distribution under parameters given in Set 1, Table 5. Table 8
shows the computational results with Set 1, CPU time for DH is not presented
because it is constructive heuristic and can be executed for large scale ELSP in
negligible time. Out of 50 randomly generated problems, the TS, SA and NSa

Table 5. Distribution for randomly generated data for the test problems

Parameters Set 1 Set 2 Set 3

Number of items (units) [5, 15] [5, 15] [5, 15]
Production rate (units/unit time) [2000, 20000] [4000, 20000] [1500, 30000]
Demand rate (units/ unit time) [1500, 2000] [1000, 2000] [500, 2000]
Setup time (time/ unit) [1, 4] [1, 4] [1, 8]
Setup cost ($) [50, 100] [50, 100] [10, 350]
Holding cost ($) [1/240, 6/240] [1/240, 5/240] [5/240000, 5/240]
Utilization ≥ 90%

The Use of Meta- euristics to Solve Economic Lot Scheduling Problemh

198 S.A. Raza and A. Akgunduz

Table 6. Production frequencies for Mallya and Bomberger’s problem

Example Items Production frequencies
m {y1, y2, . . . , ym}

Round-off to power-of 2 Round off to nearest integer

Mallya 5 {2, 1, 4, 2, 1} {2, 2, 3, 3, 1}
Bomberger 10 {1, 4, 4, 8, 4, 2, 2, 16, 4, 4} {1, 4, 4, 7, 5, 2, 1, 12, 4, 2}

Table 7. Comparison on Mallya and Bomberger’s problem

Problem type Lower bound Existing solutions Proposed solutions

DH GA SA TS NSa NSb

Mallya 57.726 60.874 60.911 60.911 60.911 60.911 60.782
Mallya§ - - - 60.782 60.782 - -
Bomberger 122.945 128.339 126.12 125.135 125.31 125.754 130.346

Table 8. Comparison of algorithms on randomly generated problems using Set 1

Parameters Comparison with Lower Bound Comparison with Dobson heuristic
DH
LB

SA
LB

TS
LB

NSa

LB
NSb

LB
DH
SA

DH
TS

DH
NSa

DH
NSb

Mean 1.0517 1.0243 1.0242 1.0250 1.0484 1.0267 1.0268 1.0260 1.0031
Min. 1.0114 1.0074 1.0074 1.0074 1.0114 0.9957 0.9956 0.9919 0.9919
Max. 1.2216 1.1098 1.1100 1.1192 1.2176 1.1056 1.1056 1.1055 1.0283

Avg. CPU time (sec.) - - - - - 8.3641 11.0777 0.3828 0.4081
Best time (sec.) - - - - - 0.6713 3.2662 0.0288 0.0447
Nbr. of Problems
with ratio ≤ 1 0 0 0 0 0 7 8 8 27

Table 9. Comparison of algorithms on randomly generated problems using Set 2

Parameters Comparison with Lower Bound Comparison with Dobson heuristic
DH
LB

SA
LB

TS
LB

NSa

LB
NSb

LB
DH
SA

DH
TS

DH
NSa

DH
NSb

Mean 1.0503 1.0274 1.0272 1.0278 1.0491 1.0225 1.0227 1.0220 1.0011
Min. 1.0070 1.0051 1.0051 1.0051 1.0070 0.9754 0.9758 0.9722 0.9904
Max. 1.2336 1.0713 1.0708 1.0748 1.2054 1.2034 1.2034 1.1967 1.0234

Avg. CPU time (sec.) - - - - - 8.7303 11.3887 0.4297 0.4088
Best time (sec.) - - - - - 0.8628 4.5018 0.0528 0.0590
Nbr. of Problems
with ratio ≤ 1 0 0 0 0 0 8 12 13 31

improve atleast 2.6% over DH on average, whereas GA by Moon et al. [1] im-
proves 1.1%. More analysis is done using 50 randomly generated problem for

199

Table 10. Comparison of algorithms on randomly generated problems using Set 3

Parameters Comparison with Lower Bound Comparison with Dobson heuristic
DH
LB

SA
LB

TS
LB

NSa

LB
NSb

LB
DH
SA

DH
TS

DH
NSa

DH
NSb

Mean 1.2550 1.1594 1.1592 1.1745 1.2301 1.0440 1.0443 1.0311 1.0089
Min. 1.0193 1.0111 1.0107 1.0123 1.0192 0.9272 0.9304 0.9304 0.9502
Max. 8.1570 5.3715 5.3720 5.4625 7.3938 1.5186 1.5184 1.4933 1.1032

Avg. CPU time (sec.) - - - - - 22.4303 22.1410 2.4722 5.0455
Best time (sec.) - - - - - 11.8694 14.5094 2.2650 4.8128
Nbr. of Problems
with ratio ≤ 1 0 0 0 0 0 13 12 18 21

each of Set 2 and 3. The Problems in Set 3 are known to be hard (Dobson [10]).
In Set 3, the SA and TS algorithms are atleast 4.4% better than the DH on
average. The NS heuristics, NSa and NSb produce solutions with averages of
3.11% and 0.89% better than the DH respectively. The results are summarized
in Tables 8-10.

6 Conclusion

In this paper two meta-heuristics, based on Tabu Search and Simulated An-
nealing algorithms are proposed. Two Neighborhood Search heuristics, NSa and
NSb are also studied. Computational studies on randomly generated problems
showed that the TS and the SA algorithms outperform the best known Dobson’s
heuristic and Hybrid Genetic Algorithm to ELSP. It can also be inferred from
the performance of NSa and NSb that NSa supersedes NSb on the majority of
problems. Surprisingly, NSa finds better solutions than Dobson’s Heuristic and
Hybrid GA to most of the problems solved in this study. In most cases both
TS and SA result the best solutions to the problem and they are found most
consistent in their performance.

Acknowledgements. Authors are thankful to Dr. Danielle Morin for her help
with statistical analysis. Authors are also grateful to anonymous referees.

References

1. Moon, I., Silver, E., Choi, S.: Hybrid genetic algorithm for the economic lot-
scheduling problem. International Journal of Production Research 20 (2002) 809–
824

2. Eilon, S.: Economic batch-size determination for multi-product scheduling. Oper-
ations Research 10 (1959) 217–227

3. Rogers, J.: A computational approach to the economic lot scheduling problem.
Management Science 4 (1958) 264–291

The Use of Meta- euristics to Solve Economic Lot Scheduling Problemh

200 S.A. Raza and A. Akgunduz

4. Maxwell, W.L.: The scheduling of economic lot sizes. Naval Research Logisitcs
Quarterly 11 (1964) 89–124

5. Hanssmann, F.: Operations Research in Production Planning and Control. John
Wiley, New York (1962)

6. Bomberger, E.E.: A dynamic programming approach to a lot size scheduling prob-
lem. Management Science 12 (1966) 778–784

7. Elmaghraby, S.: The economic lot scheduling problem (ELSP): Review and exten-
sion. Management Science 24 (1978) 587–598

8. Delporte, C., Thomas, L.: Lot sizing and sequencing for N products on one facility.
Management Science 23 (1978) 1070–1079

9. Hsu, W.: On the general feasibility test for scheduling lot sizes for several products
on one machine. Management Science 29 (1983) 93–105

10. Dobson, G.: The economic lot-scheduling problem: Achieving feasibility using
time-varying lot sizes. Operations Research 35 (1987) 764–771

11. Gallego, G., Shaw, X.: Complexity of the ELSP with general cyclic schedules. IIE
Transactions 29 (1997) 109–113

12. Dobson, G.: The cyclic lot scheduling problem with sequence-dependent setups.
Operations Research 40 (1992) 736–749

13. Allen, S.J.: Production rate planning for two products sharing a single process
facility: A real world case study. Production and Inventory Management 31 (1990)
24–29

14. Silver, E.: Deliberately slowing down output in a family production context. In-
ternational Journal of Production Research 28 (1990) 17–27

15. Moon, I., Gallego, G., Simchi-Levi, D.: Controllable production rates in a family
production context. IIE Transaction 30 (1991) 2459–2470

16. Gallego, G.: Reduced production rates in the economic lot scheduling problem.
International Journal of Production Research 31 (1993) 1035–1046

17. Khouja, M.: The economic lot scheduling problem under volume flexibility. Inter-
national Journal of Production Research 48 (1997) 73–86

18. Moon, D., Christy, D.: Determination of optimal priduction rates on a single facility
with dependent mold lifespan. International Journal of Production Economics 54
(1998) 29–40

19. Silver, E.: Dealing with shelf life constraint in cyclic scheduling by adjusting both
cycle time and production rate. International Journal of Production Research 33
(1995) 623–629

20. Viswanathan, S., Goyal, S.K.: Optimal cycle time and production rate in a family
production context with shelf life considerations. International Journal of Produc-
tion Research 35 (1997) 1703–1711

21. Gellego, G., Moon, I.: The effect of externalizing setups in the economic lot schedul-
ing problem. Operations Research 40 (1992) 614–619

22. Hwang, H., Kim, D., Kim, Y.: Multiproduct economic lot size models with invest-
ment costs for set-up reduction and quality improvement. International Journal of
Production Research 31 (1993) 691–703

23. Moon, I.: Multiproduct economic lot size models with investment costs for setup re-
duction and quality improvements: Reviews and extensions. International Journal
of Production Research 32 (1994) 2795–2801

24. Moon, I., Hahm, J., Lee, C.: The effect of the stabilization period on the economic
lot scheduling problem. IIE Transactions 30 (1998) 1009–1017

25. Silver, E.A.: An overview of heuristic solution methods. Journal of Operational
Research Society 55 (2004) 936–956

201

26. Khouja, M., Michalewicz, Z., Wilmot, M.: The use of genetic algoritms to solve the
economic lot size scheduling problem. European Journal of Operational Research
110 (1998) 509–524

27. Glover, F.: Tabu Search- Part I. OSAR Journal on Computing 1 (1989) 190–206
28. Sait, S.M., Youssef, H.: Iterative Computer Algorithms with Applications in En-

gineering. IEEE Computer Society (1999)
29. Lyu, J., Gunasekaran, A., Ding, J.H.: Simulated annealing algorithm for solving

the single machine early/tardy problem. International Journal of Systems Science
27 (1996) 605–610

30. Taillard, E.: Some efficient heuristic methods for the flow shop sequencing problem.
European Journal of Operational Research 47 (1990) 65–74

31. White, S.R.: Concept of scale in simulated annealing, IEEE, IEEE International
Conference of Computer Design (1984) 646–651

32. Eglese, R.W.: Simulated annealing: A tool for operational research. European
Journal of Operational Research 46 (1990) 271–281

33. Roundy, R.: Rounding off to powers of two in continuous relaxation of capcitated
lot sizing problems. Management Science 35 (1989) 1433–1442

34. Mallya, R.: Multi-product scheduling on a single machine: A case study. OMEGA:
International Journal of Management Science 20 (1992) 529–534

The Use of Meta- euristics to Solve Economic Lot Scheduling Problemh

Making the Edge-Set Encoding Fly by
Controlling the Bias of Its Crossover Operator

Franz Rothlauf and Carsten Tzschoppe

Department of Business Administration and Information Systems,
University of Mannheim,

68131 Mannheim/Germany
rothlauf@uni-mannheim.de, carsten.tzschoppe@gmx.de

Abstract. Edge-sets encode spanning trees directly by listing their
edges. Evolutionary operators for edge-sets may be heuristic, considering
the weights of edges they include in offspring, or naive, including edges
without regard to their weights. Crossover operators that heuristically
prefer shorter edges are strongly biased towards minimum spanning trees
(MST); EAs that apply heuristic crossover generally perform poorly on
spanning tree problems whose optimum solutions are not very similar to
MSTs. For the edge-set encoding, a modified heuristic crossover called γ-
TX implements variable bias towards low-weight edges and thus towards
MSTs. The bias can be set arbitrarily between the strong bias of the
heuristic crossover operator, or being unbiased. An investigation into
the performance of EAs using the γ-TX for randomly created OCST
problems of different types and OCST test instances from the litera-
ture present good results when setting the crossover-specific parame-
ter γ properly. The presented results suggest that the original heuristic
crossover operator of the edge-sets should be substituted by the modified
γ-TX operator that allows us to control the bias towards the MST.

1 Introduction

A spanning tree T of an undirected graph G(V, E) is a subgraph that connects
all vertices of G and contains no cycles. Relevant constrained minimum spanning
tree (MST) problems are, for example, the optimal communication spanning tree
(OCST) problem [1], or the degree-constrained minimum spanning tree problem
[2, 3]. When using evolutionary algorithms (EAs) for tree problems it is neces-
sary to encode a tree such that the evolutionary search operators like crossover
or mutation can be applied. There are two different possibilities for doing this.
Indirect representations usually encode a tree (phenotype) as a list of strings
(genotypes) and apply standard search operators to the genotypes. The pheno-
types are constructed by an appropriate genotype-phenotype mapping (repre-
sentation). In contrast, direct representations encode a tree as a set of edges and
apply search operators directly to the set of edges. Therefore, no representation
is necessary. Instead, tree-specific search operators must be developed, as stan-
dard search operators can not be used any more. Examples for direct encodings

G.R. Raidl and J. Gottlieb (Eds.): EvoCOP 2005, LNCS 3448, pp. 202–212, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Making the Edge-Set Encoding Fly 203

are the edge-set encoding [3], or the NetDir encoding [4–sec. 7.2]. Raidl and
Julstrom [3] proposed two different variants of search operators for the edge-
set encoding: Heuristic variants where the operators consider the weights of the
edges, and non-heuristic versions. Results for the degree-constrained MST prob-
lem and the traveling salesman problem indicated a good performance of the
heuristic variants [5, 3].

Representations and search operators can have a bias towards some solutions.
A representation is biased if it is redundant and some phenotypes are over-
represented. A search operator is biased if its iterative application results in a bi-
ased population that means not all possible phenotypes are represented with the
same probability by the population. Consequently, heuristic search is biased if it
pushes a population of solutions towards some solution even if no selection oper-
ator is used. Biased representations and operators do change the performance of
evolutionary search. If the optimal solutions are similar to the solution towards
which the bias points, EA performance increases [4–section 3.1]. However, if there
is a bias towards a solution that is not similar to the optimal solution, EA per-
formance is low. Tzschoppe et al. [6] examined the bias of the edge-set encoding
and found a strong bias of the heuristic crossover operator of the edge-sets to-
wards the MST. Therefore, problems where the optimal solution is the MST can
be easily solved. However, as the bias of the heuristic crossover towards the MST
is strong, EAs fail if the optimal solution is only slightly different from the MST.

This paper proposes a modified version of the heuristic crossover operator of
the edge-set encoding that allows us to control the strength of the bias towards
the MST. Therefore, the problems arising from the oversized bias of the heuristic
crossover operator can be overcome and its bias can be adjusted according to the
properties of the problem at hand. If it is known a-priori that optimal solutions
of a problem are similar to the MST, a modest bias towards the MST allows
EAs to solve the problem more efficiently. Experiments on the performance of
the modified crossover operator are performed for the optimal communication
spanning tree (OCST) problem. Results for random problems and problem in-
stances from the literature show that by controlling the strength of the heuristic
bias EA performance increases.

The paper is structured as follows. The following section describes the func-
tionality of the edge-set encoding with and without heuristics and introduces the
modified crossover operator. Section 3 investigates the bias of the crossover op-
erators of the edge-set encoding and shows that the bias can be controlled when
using the modified crossover operator. Its influence on EAs when solving OCST
problems is examined in section 4. The paper ends with concluding remarks.

2 The Edge-Set Encoding

The edge-set encoding [3] is a direct representation for trees. Therefore, the
search operators are applied directly to sets of edges. There are two different
variants of search and initialization operators of the edge-set encoding: either
with or without heuristics. When using operators with heuristics the weights of

204 F. Rothlauf and C. Tzschoppe

the edges are considered for the construction of the offspring. In the following
paragraphs we briefly review the functionality of the initialization method and
the crossover operator. We do not consider the mutation operator as Raidl and
Julstrom [3] already proposed a version of the mutation operator that allows us
to control its bias [7].

2.1 The Edge-Set Encoding Without Heuristics

Initialization. In order to create feasible solutions for the initial population,
the edge-set encoding uses the Kruskal random spanning tree (RST) algorithm, a
slightly modified version of the algorithm from Kruskal. In contrast to Kruskals’
algorithm, KruskalRST chooses edges (i, j) not according to their weight wij but
randomly. Raidl and Julstrom [3] have shown that this algorithm for creating
random spanning trees, KruskalRST, has a small bias towards star-like trees.

procedure KruskalRST(V, E): //E: set of edges; V : set of vertices
T ← ∅, A ← E; //T : to be constructed spanning tree
while |T | < |V | − 1 do

choose an edge {(u, v)} ∈ A at random;
A ← A − {(u, v)};
if u and v are not yet connected in T then

T ← T ∪ {(u, v)};
return T .

Recombination. The non-heuristic KruskalRST* crossover operator [3] in-
cludes in a first step all edges that are common to both parents T1 and
T2 in the offspring Toff . Then, in a second step, KruskalRST is applied to
Gcr = (V, T1 ∪ T2). KruskalRST* has high heritability as in the absence of con-
straints, only parental edges are used to create the offspring. Crossover becomes
more complicated for constrained MST problems as it is possible that the RST
algorithm can create no feasible tree from Gcr = (V, T1 ∪ T2). Then, additional
edges have to be chosen randomly to complete an offspring.

2.2 Heuristic Recombination Operators for the Edge-Set Encoding

The heuristic crossover operator [3] is a modified version of KruskalRST*
crossover. In a first step, the operator transfers all edges T1 ∩ T2 that exist
in both parents to the offspring. Then, the remaining edges are chosen randomly
from E′ = (T1 ∪ T2) \ (T1 ∩ T2) using a tournament with replacement of size
two. If the underlying optimization problem is constrained, it is possible that
the offspring has to be completed using edges not in E′. This version of the
heuristic crossover operator is denoted as 2-tournament-crossover (TX). Two
other variants of the heuristic crossover operator were proposed [5]. They differ
in the strategy of completing the offspring with the edges available in E′:

– Greedy crossover: When using this strategy, the edge with the smallest
weight is chosen from E′.

Making the Edge-Set Encoding Fly 205

– Inverse-weight-proportional crossover: This strategy selects each edge
from E′ according to probabilities inversely proportional to the edges’
weights.

Julstrom and Raidl [5] examined the performance of the different crossover vari-
ants for the traveling-salesperson problem and the degree-constrained MST prob-
lem. The results indicated that Greedy crossover shows good performance for
simple and easy problem instances. For large problems TX crossover resulted in
the best performance.

All three crossover strategies have a strong bias towards the MST. The bias
of the TX operator is already so strong that EAs are only able to find optimal
solutions if they are very similar to the MST [7]. Problems where the optimal
solutions are slightly different from the MST could no longer be solved by using
the TX operator. The bias of the Greedy crossover is higher than the bias of the
TX crossover. Therefore, Greedy crossover also results in low EA performance if
the optimal solution is not the MST. The inverse-weight-proportional crossover
introduces a bias to the MST similar to the TX crossover. However, the bias can
not be controlled in a systematic way but depends on the specific weights of the
edges.

We want to propose a modified version of the heuristic TX operator. The
modification is only small but allows us to control the bias towards the MST. In
the new crossover variant (denoted as γ-TX crossover) the tournament of size
two that chooses one edge from E′ is not always performed but only with the
probability γ. Therefore, for γ = 0 an edge is randomly chosen from E′ and
we see the same behavior as KruskalRST*. For γ = 1 all edges are chosen by a
tournament of size 2 and we get the same behavior as TX crossover. The bias of
γ-TX towards the MST can be set arbitrarily small with γ → 0.

3 Bias of the Crossover Operators for Edge-Sets

We investigate the bias of the TX and γ-TX operator for randomly created trees
with n = 10 and n = 16 nodes. To every edge (i, j) a non-negative weight wij is
associated. We want to consider two different possibilities for the weights wij :

– Random weights: The real-valued weights wij are generated randomly and
are uniformly distributed in]0, 100].

– Euclidean weights: The nodes are randomly placed on a 1000x1000 grid.
The weights wij between nodes i and j are the Euclidean distances between
nodes i and j.

As the weights wij are randomly created and wij �= wkl, ∀i �= k, j �= l, there
is a unique MST for every problem instance. T is the MST if c(T) ≤ c(T ′) for all
other spanning trees T ′, where c(T) =

∑
(i,j)∈T wij . The similarity between two

spanning trees Ti and Tj can be measured using the distance dij ∈ {0, 1, . . . , n−
1} as dij = 1

2

∑
u,v∈V, u<v |liuv − ljuv|, where liuv is 1 if an edge from u to v exists

in Ti and 0 if it does not exist in Ti.

206 F. Rothlauf and C. Tzschoppe

For the experiments we randomly generate an initial population of 500 indi-
viduals using the non-heuristic KruskalRST initialization and apply the crossover
operators iteratively. As no selection operator is used, no selection pressure
pushes the population to high-quality solutions. An operator is unbiased if the
statistical properties of the population do not change by applying crossover
alone. In the experiments we measure in each generation the average distance
dmst−pop = 1/N

∑n
i=1 di,MST of the individuals Ti in the population to the

MST. If dmst−pop decreases, the crossover operator is biased towards the MST.
If dmst−pop remains constant, the crossover operator is unbiased and no MST-like
solutions are overrepresented.

0
1
2
3
4
5
6
7
8

0 50 100 150 200

 d
m

st
-p

op

generations

KruskalRST* (γ=0)
γ-TX (γ=0.1)

γ-TX (γ=0.25)
γ-TX (γ=0.5)

TX (γ=1)

(a) 10 node, random weights

0
1
2
3
4
5
6
7
8

0 50 100 150 200

 d
m

st
-p

op

generations

KruskalRST* (γ=0)
γ-TX (γ=0.1)

γ-TX (γ=0.25)
γ-TX (γ=0.5)

TX (γ=1)

(b) 10 node, Euclidean weights

0
2
4
6
8

10
12
14

0 50 100 150 200

d m
st

,p
op

generations

KruskalRST* (γ=0)
γ-TX (γ=0.1)

γ-TX (γ=0.25)
γ-TX (γ=0.5)

TX (γ=1)

(c) 16 node, random weights

0
2
4
6
8

10
12
14

0 50 100 150 200

d m
st

,p
op

generations

KruskalRST* (γ=0)
γ-TX (γ=0.1)

γ-TX (γ=0.25)
γ-TX (γ=0.5)

TX (γ=1)

(d) 16 node, Euclidean weights

Fig. 1. The plots show the mean and the standard deviation of the distance dmst−pop

between a population of 500 randomly generated individuals towards the MST over the
number of generations when only using crossover (no selection pressure). The results
show that the bias of the γ-TX crossover can be controlled and lies between the strong
bias of TX crossover (γ = 1) and the no-bias of the KruskalRST* crossover (γ = 0)

We performed this experiment on 500 randomly generated 10 and 16 node
problem instances with random, and Euclidean weights wij . For every prob-
lem instance we performed 50 runs. In each run, the crossover operator was
applied 200 generations. Fig. 1 shows the mean and the standard deviation of
the distance dmst−pop over the number of generations. The plots compare the
non-heuristic KruskalRST* crossover with the heuristic TX and γ-TX operator
(no selection is used).

Making the Edge-Set Encoding Fly 207

The results show that the non-heuristic KruskalRST* operator is unbiased.
In contrast, the heuristic TX operator shows a strong bias towards the MST
and a population converges to the MST after a few generations. When using the
γ-TX crossover the bias towards the MST can be controlled. With lower γ the
bias gets smaller and for γ = 0 we get the same results as for KruskalRST*.

4 Performance of the γ-TX Crossover for OCST
Problems

This section investigates how the performance of different crossover variants of
the edge-set encoding depends on the properties of the optimal solutions. We
perform the experiments for the optimal communication spanning tree (OCST)
problem as all trees are feasible solutions and there are no additional constraints.

4.1 Optimal Solutions for Randomly Created OCST Problems

The OCST problem was first introduced by Hu [1] and is MAX NP-hard [8].
The problem seeks a spanning tree that connects all given nodes and satisfies
their communication requirements for a minimum total cost. The problem can
be defined as follows: Let G = (V, E) be a complete undirected graph with
n = |V | nodes and m = |E| edges. To every pair of nodes (i, j) a non-negative
weight wij and a non-negative communication requirement rij is associated. The
communication cost c(T) of a spanning tree T is defined as

c(T) =
∑

i,j∈V, i<j

rij · w(pT
i,j),

where w(pT
i,j) denotes the weight of the unique path from node i to node j in the

spanning tree T . The OCST problem seeks the spanning tree with minimal costs
among all other spanning trees. The OCST problem becomes the MST problem
if there are no communication requirements rij and c(T) =

∑
(i,j)∈T wij .

It was shown [9] that on average optimal solutions for OCST problems are
similar to the MST, that means the average distance dopt,MST between the
optimal solution and the MST is significantly lower than the average distance
drand,MST between a randomly created tree and the MST. Therefore, as the op-
timal solutions of OCST problems are biased towards the MST, representations
as well as operators that are biased to the MST are expected to solve the OCST
problem efficiently.

To investigate how the performance of EAs using different crossover variants
of edge-sets depend on the structure of the optimal solution, an optimal or
near-optimal solution for the OCST problem must be determined. We identified
optimal (or near-optimal) solutions for the OCST problem by an EA whose
population size N is doubled in every iteration until the same solutions are
found in subsequent iterations. Details of the experimental setting for finding
optimal solutions for OCST problems can be found in Rothlauf et al. [9].

208 F. Rothlauf and C. Tzschoppe

4.2 Edge-Set Crossover for Randomly Created OCST Problems

This section investigates for randomly created OCST problems how the perfor-
mance of EAs using different variants of the crossover operator depends on the
distance dopt,MST between the optimal solution and the MST.

We randomly generated 500 problem instances with 10 and 16 nodes
using either random or Euclidean distance weights. The demands rij are
chosen randomly and are uniformly distributed in]0,. . . ,100]. Then, we
determine the optimal solutions using the experimental setting described
in [9]. For comparing the performance of the different crossover variants
(KruskalRST*, TX, and γ-TX) we use a simple generational EA with no mu-
tation and tournament selection without replacement of size two. The pop-
ulation size N is chosen with respect to the performance of KruskalRST*.
The aim is to find the optimal solution with a probability of about
25-75 %. Therefore, we choose for the 10 node problems a population
size N = 100 and for the 16 node problems N = 250. Each run is
stopped after the population is fully converged or the number of genera-
tions exceeds 200. 50 runs are performed for each of the 500 problem in-
stances.

The results of our experiments are presented in Fig. 2. It shows the percentage
of EA runs that find the optimal solutions (left) and the gap c(Tfound)−c(Topt)

c(Topt)
between the cost of the optimal solution Topt and the cost of the best found
solution Tfound (right) at the end of a run over the distance dopt,MST between
the optimal solution and the MST. Results are plotted for KruskalRST*, different
variants of γ-TX, and TX. The initial population was generated using the non-
heuristic initialization from section 2.1. We only show results for those dopt,MST

with more than 10 problem instances (out of 500).
The results reveal that with increasing dopt,MST the performance of EAs

is reduced. The decrease in performance is emphasized with larger γ. When
using a crossover operator with a strong bias like TX or γ-TX with γ = 0.5
EA performance is high if and only if dopt,MST ≈ 0; with larger dopt,MST EA
performance drops rapidly. The strong bias pushes the population towards the
MST and makes it difficult to find the optimal solution. In contrast, when using
the γ-TX operator with a low γ (γ = 0.05 or γ = 0.2) the bias towards the
MST is small and reasonable and EAs perform better or equal than when using
the non-heuristic version. These results are confirmed when examining the gap
c(Tfound)−c(Topt)

c(Topt)
. With increasing bias and increasing dopt,MST , the quality of

the found solutions decreases.
In summary, using a strong bias towards the MST results in high EA perfor-

mance for dopt,MST ≈ 0 but low performance elsewhere. With lower γ, problems
with larger dopt,MST can be solved. EAs using the γ-TX operator with a low
bias towards the MST (γ ≈ 0.05 − 0.2 for 10 nodes and γ ≈ 0.05 for 16 node
problems) outperform the non-heuristic KruskalRST* crossover for low dopt,MST

and also show good results for larger dopt,MST .

Making the Edge-Set Encoding Fly 209

0

0.2

0.4

0.6

0.8

1

0 1 2 3pe
rc

en
ta

ge
 o

f o
pt

im
al

 s
ol

ut
io

ns
 fo

un
d

dopt,MST

KruskalRST* (γ=0)
γ−TX (γ=0.05)

γ−TX (γ=0.2)
γ−TX (γ=0.5)

 TX (γ=1)

0

1

2

3

4

5

0 1 2 3

ga
p

(in
 %

)

dopt,MST

KruskalRST* (γ=0)
γ−TX (γ=0.05)

γ−TX (γ=0.2)
γ−TX (γ=0.5)

 TX (γ=1)

(a) 10 node, random weights

0

0.2

0.4

0.6

0.8

1 2 3 4 5 6pe
rc

en
ta

ge
 o

f o
pt

im
al

 s
ol

ut
io

ns
 fo

un
d

dopt,MST

KruskalRST* (γ=0)
γ−TX (γ=0.05)

γ−TX (γ=0.2)
γ−TX (γ=0.5)

 TX (γ=1)

0

1

2

3

4

5

6

1 2 3 4 5 6

ga
p

(in
 %

)

dopt,MST

KruskalRST* (γ=0)
γ−TX (γ=0.05)

γ−TX (γ=0.2)
γ−TX (γ=0.5)

 TX (γ=1)

(b) 10 node, Euclidean weights

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6pe
rc

en
ta

ge
 o

f o
pt

im
al

 s
ol

ut
io

ns
 fo

un
d

dopt,MST

KruskalRST* (γ=0)
γ−TX (γ=0.05)

γ−TX (γ=0.2)
γ−TX (γ=0.5)

 TX (γ=1)

0

1

2

3

4

5

0 1 2 3 4 5 6

ga
p

(in
 %

)

dopt,MST

KruskalRST* (γ=0)
γ−TX (γ=0.05)

γ−TX (γ=0.2)
γ−TX (γ=0.5)

 TX (γ=1)

(c) 16 node, random weights

0

0.1

0.2

0.3

4 5 6 7 8pe
rc

en
ta

ge
 o

f o
pt

im
al

 s
ol

ut
io

ns
 fo

un
d

dopt,MST

KruskalRST* (γ=0)
γ−TX (γ=0.05)

γ−TX (γ=0.2)
γ−TX (γ=0.5)

 TX (γ=1)

0

1

2

3

4

5

6

7

8

4 5 6 7 8

ga
p

(in
 %

)

dopt,MST

KruskalRST* (γ=0)
γ−TX (γ=0.05)

γ−TX (γ=0.2)
γ−TX (γ=0.5)

 TX (γ=1)

(d) 16 node, Euclidean weights

Fig. 2. The plots show the percentage of optimal solutions that can be found (left) and
the gap between the cost of the best found solution and the optimal solution (right)
over dopt,MST for different crossover operators and different types of OCST problems.
The plots show that with increasing dopt,MST , EAs using the TX operators fail due
to their strong bias. When using the γ-TX operator with a low bias, EA performance
is high. With increasing γ the bias towards the MST becomes stronger and problems
with larger dopt,MST can no longer be solved

210 F. Rothlauf and C. Tzschoppe

Table 1. Performance of EA using different crossover operators for OCST test problems
from the literature

problem opt solution N KruskalRST* γ-TX (γ = 0.05) γ-TX (γ = 0.2) TX (γ = 1)
instance n dopt,MST c(Topt) µ σ µ σ µ σ µ σ
palmer6 6 1 693,180 50 698,200 8,447 696,301 5,833 698,217 8,524 706,784 6,438
palmer12 12 7 3,428,509 60 3,589,15492,885 3,582,433 91,529 3,534,93571,125 3,707,94756,691
palmer24 24 12 1,086,656 800 1,088,231 915 1,088,007 665 1,088,615 695 1,873,83536,453
raidl10 10 3 53,674 60 57,046 5,266 55,275 3,481 55,077 2,261 57,200 927
raidl20 20 4 157,570 400 159,714 4,038 159,943 3,984 157,922 1,426 164,811 2,671
berry6 6 0 534 50 539 13 534 3 534 0 534 0
berry35u 35 - 16,273 800 16,621 173 16,622 180 16,604 190 16,577 187
berry35 35 0 16,915 800 17,263 381 16,975 138 16,915 0 16,915 0

4.3 Edge-Set Crossover for Test Instances from the Literature

Several test instances for the OCST problem have been proposed in the literature
[10, 11, 12]. Details of the test instances and an analysis of their properties can be
found in Rothlauf et al. [9]. The following paragraphs examine the performance
of EAs using the different crossover variants for these test instances.

Table 1 lists the properties of the optimal solutions for the test instances. It
shows the number of nodes n, the distance dopt,MST , and the cost c(Topt) of the
optimal solution. In the instance berry35u, all distances are uniform (wij = 1),
so all spanning trees are minimal. For all test instances, dopt,MST is smaller
than the average distance of a randomly created solution towards the MST [9].
Therefore, all test problems are biased towards the MSTs.

For the experiments the same generational EA with population size N as in
the previous section is used. The table presents the mean µ and the standard
deviation σ of the cost of the best solution found at the end of the runs averaged
over 50 runs for each problem instance. The results show that the heuristic TX
crossover (γ = 1) is only able to find the optimal solution if dopt,MST = 0.
Otherwise, the performance of EAs using it is low. In contrast, the performance
of EAs using the non-heuristic and unbiased KrukalRST* is high and high quality
solutions can be found. When using the modified γ-TX operator with a low γ
(γ = 0.05 or γ = 0.2) the performance of EAs can be increased in comparison
to KruskalRST* as the optimal solutions for all problem instances are biased
towards the MST. EAs using the γ-TX with low γ (e. g. γ = 0.05) always find
solutions of similar or higher quality. Only for berry35u can no better solutions
be found as all spanning trees are minimal and therefore a low bias towards the
MST does not increase EA performance.

5 Summary and Conclusions

This work proposed a new variant (γ-TX) of the heuristic crossover (TX) opera-
tor of the edge-set encoding. When using the standard TX operator an offspring
tree is created from two parents by inserting all edges that are common in both
parents into the offspring. The offspring is completed by parental edges chosen
by a tournament of size two. Edges with lower weight are preferred. In contrast

Making the Edge-Set Encoding Fly 211

to the standard TX operator, the γ-TX operator only performs a tournament
with probability γ and otherwise inserts a random edge from one of the parents.

The TX operator shows a strong bias towards the minimum spanning tree
(MST). Using it for the optimal communication spanning tree (OCST) problem
allows EAs only to solve the problem if the optimal solution is the MST. If
the optimal solution is slightly different from the MST, EAs fail. The γ-TX
operator allows us to control the bias which can be set arbitrarily (according to
γ) between the strong bias of the TX operator (γ = 1) and no-bias (γ = 0).
Therefore, the problems of the TX operator with the strong bias towards the
MST can be overcome while still allowing the crossover operator to be slightly
biased towards the MST. The experimental results for random OCST problem
instances and problem instances from the literature show that EAs using the
γ-TX operator with a proper setting of γ show good performance.

The problems of the TX operator of the edge-set encoding emphasize the
difficulties of a proper design of representations and operators. If it is known a
priori that the optimal solutions for a problem are biased towards some solutions
this bias can be exploited by developing representations and operators that are
biased in a proper way. Then, problems can be solved more efficiently than when
using non-biased encodings. However if the bias is too great, EAs fail if the op-
timal solutions are only slightly different from the solutions the representation
and operator are biased to. Therefore, biased representations should be used
with great care and only if there is a priori knowledge about the problem avail-
able. Otherwise, either non-biased representations should be used or appropriate
mechanisms should be developed that allow to identify problem-specific knowl-
edge during the EA run. For the edge-set encoding, the parameter γ can be, for
example, incorporated into the genotype and evolved on-the-fly by the EA.

References

1. Hu, T.C.: Optimum communication spanning trees. SIAM Journal on Computing
3 (1974) 188–195

2. Narula, S.C., Ho, C.A.: Degree-constrained minimum spanning trees. Computers
and Operations Research 7 (1980) 239–249

3. Raidl, G.R., Julstrom, B.A.: Edge-sets: An effective evolutionary coding of span-
ning trees. IEEE Transactions on Evolutionary Computation 7 (2003) 225–239

4. Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms. 1 edn.
Number 104 in Studies on Fuzziness and Soft Computing. Springer, Heidelberg
(2002)

5. Julstrom, B., Raidl, G.: Weight-biased edge-crossover in evolutionary algorithms
for two graph problems. In et al., G.L., ed.: Proceedings of the 16th ACM Sym-
posium on Applied Computing, ACM Press (2001) 321–326

6. Tzschoppe, C., Rothlauf, F., Pesch, H.J.: The edge-set encoding revisited: On the
bias of a direct representation for trees. In Deb, Kalyanmoy et al., ed.: Proceed-
ings of the Genetic and Evolutionary Computation Conference 2004, Heidelberg,
Springer (2004) 1174–1185

212 F. Rothlauf and C. Tzschoppe

7. Rothlauf, F., Tzschoppe, C.: On the bias and performance of the edge-set encod-
ing. Technical Report 2004/11, Department of Information Systems, University of
Mannheim (2004)

8. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complex-
ity classes. J. Comput. System Sci. 43 (1991) 425–440

9. Rothlauf, F., Gerstacker, J., Heinzl, A.: On the optimal communication spanning
tree problem. Technical Report 15/2003, Department of Information Systems,
University of Mannheim (2003)

10. Palmer, C.C.: An approach to a problem in network design using genetic algo-
rithms. unpublished PhD thesis, Polytechnic University, Troy, NY (1994)

11. Berry, L.T.M., Murtagh, B.A., McMahon, G.: Applications of a genetic-based
algorithm for optimal design of tree-structured communication networks. In: Pro-
ceedings of the Regional Teletraffic Engineering Conference of the International
Teletraffic Congress, Pretoria, South Africa (1995) 361–370

12. Raidl, G.R.: Various instances of optimal communication spanning tree problems.
personal communciation (2001)

Ant Algorithm for the Graph Matching Problem

Olfa Sammoud1, Christine Solnon2, and Khaled Ghédira1

1 SOIE, Institut Supérieur de Gestion de Tunis,
41 rue de la Liberté, Cité Bouchoucha, 2000 Le Bardo, Tunis

{olfa.sammoud,khaled.ghedira}@isg.rnu.tn
2 LIRIS, CNRS UMR 5205, bât. Nautibus, University of Lyon I

43 Bd du 11 novembre, 69622 Villeurbanne cedex, France
christine.solnon@liris.cnrs.fr

Abstract. This paper describes a new Ant Colony Optimization (ACO)
algorithm for solving Graph Matching Problems, the goal of which is to
find the best matching between vertices of multi-labeled graphs. This
new ACO algorithm is experimentally compared with greedy and reactive
tabu approaches on subgraph isomorphism problems and on multivalent
graph matching problems.

1 Introduction

Numerous applications require to measure the similarity of objects. For instance,
Case-Based Reasoning (CBR) relies on the hypothesis that similar problems have
similar solutions, so that CBR systems solve new problems by retrieving similar
ones, for which solutions are known and can be adapted [1]. Also, information
retrieval systems must be able to measure the similarity of documents and images
in order to retrieve relevant documents from a database.

In many of these applications, objects are described by graphs, so that mea-
suring objects similarity turns into determining graphs similarity, i.e., matching
graph vertices to identify their common features [6, 8, 10]. This may be done by
looking for an exact graph or subgraph isomorphism in order to show graph
equivalence or inclusion. However, the objects to be compared are usually not
identical and the assumption of the existence of an isomorphism between the cor-
responding graphs is usually too strong. As a consequence, error-tolerant graph
matchings such as maximum common subgraph and graph edit distance have
been proposed [7, 10]. Such matchings drop the condition that all vertices and
edges must be preserved: the goal is to find a ”best” matching, i.e., one which
preserves a maximum number of vertices and edges.

Most recently, three different papers proposed to go one step further by in-
troducing multivalent matchings, where a vertex in one graph may be matched
with a set of vertices of the other graph:

– In [4], graph matching is used for model-based pattern recognition of brain
images. In this case, the assumption of a bijection between regions of models
and images is too strong: models have schematic aspects easy to segment

G.R. Raidl and J. Gottlieb (Eds.): EvoCOP 2005, LNCS 3448, pp. 213–223, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

214 O. Sammoud, C. Solnon, and K. Ghédira

while images are noised and usually over-segmented. Therefore, scene recog-
nition is better expressed as a multivalent matching problem where a set of
vertices of the scene may be linked to a same vertex of the model.

– Guided by very similar motivations, [2] proposes a new graph edit distance
that introduces two new edit operations —vertex splitting and merging— in
order to handle the fact that images may be over- or under- segmented.

– In [9], graphs are used to model design objects in a computer-aided design
application. In this context, vertices are used to represent object components
and one single component of an object may play the same role than a set
of components of another object, depending of the granularity of object
description. Therefore, the authors introduce a similarity measure based on
multivalent matchings so that one vertex in a graph may be associated with
a set of vertices of the other graph.

The graph similarity measure of [9] is generic and is parameterized by func-
tions that allow one to express domain dependent knowledge. Hence, [16] shows
that the matchings introduced in [4] and [2] are special cases of the graph simi-
larity measure of [9].

In this paper, we address the problem of computing this graph similarity
measure. Indeed, [9] has proposed a first greedy algorithm that incrementally
builds multivalent matchings. These matchings are quickly computed but are
usually far from optimality. Hence, we propose to improve the quality of the
constructed matchings by using the Ant Colony Optimization (ACO) meta-
heuristic [11]: the idea is to use pheromone trails to keep track of the best
components of matchings built by the greedy algorithm.

Section 2 briefly describes the generic graph similarity measure and the as-
sociated greedy algorithm introduced in [9]. Section 3 describes a new ACO
algorithm —Ant Graph Matching (ANT-GM)— for computing this measure.
Section 4 presents experimental results on different graph matching problems,
and compares ANT-GM with the greedy algorithm of [9] and a reactive tabu
search algorithm introduced in [16].

2 A Generic Similarity Measure for Multi-labeled
Graphs

2.1 Definition of Multi-labeled Graphs

A directed graph is defined by a couple G = (V, E), where V is a finite set of
vertices and E ⊆ V × V is a set of directed edges. Vertices and edges may be
associated with labels that describe their properties. Given a set LV of vertex
labels and a set LE of edge labels, a multi-labeled graph is defined by a triple
G = 〈V, rV , rE〉 such that:

– V is a finite set of vertices,
– rV ⊆ V × LV is a relation associating labels to vertices, i.e., rV is the set of

couples (vi, l) such that vertex vi is labeled by l,

Ant Algorithm for the Graph Matching Problem 215

– rE ⊆ V × V × LE is a relation associating labels to edges, i.e., rE is the set
of triples (vi, vj , l) such that edge (vi, vj) is labeled by l. Note that the set
E of edges of the graph can be defined by E = {(vi, vj)|∃l, (vi, vj , l) ∈ rE}.

We shall call the tuples of rV and rE the vertex and edge features of G. The
set descr(G) = rV ∪ rE of all vertex and edge features of a graph G completely
describes the graph G.

2.2 Similarity Measure

We now briefly describe the graph similarity measure introduced in [9], we refer
the reader to [9] for more details. This similarity measure is defined for two
multi-labeled graphs G = 〈V, rV , rE〉 and G′ = 〈V ′, rV ′ , rE′〉, defined over the
same sets of vertex and edge labels LV and LE , and such that V ∩ V ′ = ∅.

The first step for measuring graph similarity is to match vertices. The match-
ing function considered here is multivalent, i.e., each vertex of one graph is
matched with a possibly empty set of vertices of the other graph. More formally,
a multivalent matching of two graphs G and G′ is a set m⊆V×V ′ which contains
every couple (v, v′) ∈ V × V ′ such that vertex v is matched with vertex v′.

Once a multivalent matching is defined, the next step is to identify the set of
features that are common to the two graphs with respect to this matching. This
set contains all the features from both G and G′ whose vertices (resp. edges)
are matched by m to at least one vertex (resp. edge) that has the same feature.
More formally, the set of common features descr(G) �m descr(G′), with respect
to a matching m, is defined as follows:

descr(G)
m descr(G′) =̇ {(v, l) ∈ rV | ∃(v, v′) ∈ m, (v′, l) ∈ rV ′}
∪ {(v′, l) ∈ rV ′ | ∃(v, v′) ∈ m(v), (v, l) ∈ rV }
∪ {(vi, vj , l) ∈ rE | ∃(vi, v

′
i) ∈ m, ∃(vj , v

′
j) ∈ m (v′

i, v
′
j , l) ∈ rE′}

∪ {(v′
i, v

′
j , l) ∈ rE′ | ∃(vi, v

′
i) ∈ m, ∃(vj , v

′
j) ∈ m (vi, vj , l) ∈ rE}

Given a multivalent matching m, we also have to identify the set of split
vertices, i.e., the set of vertices that are matched to more than one vertex, each
split vertex v being associated with the set sv of its matched vertices:

splits(m) = {(v, sv) | v ∈ V, sv = {v′ ∈ V ′|(v, v′) ∈ m}, |sv| ≥ 2}
∪ {(v′, sv′) | v′ ∈ V ′, sv′ = {v ∈ V |(v, v′) ∈ m}, |sv′ | ≥ 2}

The similarity of G and G′ with respect to a matching m is then defined by:

simm(G, G′) =
f(descr(G)
m descr(G′)) − g(splits(m))

f(descr(G) ∪ descr(G′))
(1)

where f and g are two functions that are defined to weight features and splits,
depending on the considered application. For example, if f is the cardinality
function and g is the null function, then the similarity is proportional to the
number of common features with respect to the total number of features. If g
is the cardinality function, instead of the null function, then the similarity is
decreased proportionally to the number of split vertices.

216 O. Sammoud, C. Solnon, and K. Ghédira

Finally, the maximal similarity sim(G, G′) of two graphs G and G′ is the
greatest similarity with respect to all possible matchings, i.e.,

sim(G, G′) = max
m⊆V ×V ′

simm(G, G′)

Note that the denominator in the definition of formula (1) does not depend
on the matching m —this denominator is introduced to normalize the similarity
value between zero and one. Hence, it will be sufficient to find the matching that
maximizes the score function below:

score(m) = f(descr(G) �m descr(G′)) − g(splits(m))

2.3 Greedy Algorithm

A greedy algorithm for approximating sim(G, G′) is introduced in [9]. We briefly
describe it as it is used as a starting point of our ACO algorithm.

The algorithm starts from the empty matching m = ∅, and iteratively adds to
this matching couples of vertices that are chosen within the set cand = V×V ′−m
in a greedy way: at each step, the algorithm first selects the set of couples
(u, u′) ∈ cand that most increase the score function. This set of best scored
couples often contains more than one couple. To break ties between them, the
potentiality of each candidate (u, u′) is looked ahead by taking into account the
features that are shared by edges starting from (resp. ending to) both u and u′
and that are not already in descr(G) �m∪{(u,u′)} descr(G′). More formally, one
defines the set look aheadm(u, u′) of potential common edge features by:

{(u, v, l) ∈ rE | ∃v′ ∈ V ′, (u′, v′, l) ∈ rE′} ∪ {(u′, v′, l) ∈ rE′ | ∃v ∈ V, (u, v, l) ∈ rE}
∪ {(v, u, l) ∈ rE | ∃v′ ∈ V ′, (v′, u′, l) ∈ rE′} ∪ {(v′, u′, l) ∈ rE′ | ∃v ∈ V, (v, u, l) ∈ rE}
− descr(G)
m∪{(u,u′)} descr(G′)

The next couple to enter the matching is randomly selected within the set
of couples (u, u′) that most increase the score function and that maximize
f(look ahead(u, u′)).

This greedy algorithm stops iterating when every couple neither directly in-
creases the score function nor has looked-ahead common edge features.

3 Description of ANT-GM

The greedy algorithm may be run several times, in order to compute different
matchings. We propose to combine such iterated greedy constructions with the
Ant Colony Optimization (ACO) meta-heuristic, in order to take benefit of the
previously computed matchings when building new ones.

The ACO meta-heuristic is a bio-inspired approach that has been used to
solve different hard combinatorial optimization problems [14, 12]. The main
idea is to model the problem to solve as the search for a minimum cost path
in a graph —called construction graph— and to use artificial ants to search for

Ant Algorithm for the Graph Matching Problem 217

good paths. The behavior of artificial ants is inspired from real ants: they lay
pheromone trails on graph components and they choose their path with respect
to probabilities that depend on pheromone trails that have been previously laid,
these pheromone trails progressively decrease by evaporation. Intuitively, this
indirect stigmergic communication means aims at giving information about the
quality of path components in order to attract ants, in the following iterations,
towards the corresponding areas of the search space.

The proposed ACO algorithm for computing graph similarity follows the clas-
sical ACO algorithmic scheme for static combinatorial optimization problems
[11]. At each cycle, each ant constructs a complete matching in a randomized
greedy way, and then pheromone trails are updated. The algorithm stops iter-
ating either when an ant has found an optimal matching, or when a maximum
number of cycles has been performed.

3.1 Construction Graph

The construction graph is the graph on which artificial ants lay pheromone
trails. Vertices of this graph are solution components that are selected by ants
to generate solutions. In our graph matching application, ants build match-
ings by iteratively selecting couples of vertices to be matched. Hence, given two
attributed graphs G = (V, rV , rE) and G′ = (V ′, rV ′ , rE′), the construction
graph is the complete non-directed graph that associates a vertex to each couple
(u, u′) ∈ V × V ′.

3.2 Pheromone Trails

Ants communicate by laying pheromone trails on edges of the construction
graph1. The amount of pheromone on an edge < (u, u′), (v, v′) > is noted
τ<(u,u′),(v,v′)> and represents the learnt desirability of matching together u with
u′ and v with v′. Hence, to reward a matching mi, ants lay pheromone trails
between every pair of matched vertices ((u, u′), (v, v′)) ∈ m2

i . Then, when con-
structing a new matching mk, vertices that are matched in mi will be more likely
to be matched in mk if mk already contains some matched vertices of mi. More
precisely, the more mk will contain matched vertices of mi, the more the other
matched vertices of mi will be attractive.

3.3 Construction of a Matching by an Ant

At each cycle, each ant constructs a matching, starting from the empty matching
m = ∅, by iteratively adding couples of vertices that are chosen within the set
cand = {(u, u′) ∈ V×V ′ − m}. As usually in ACO algorithm, the choice of the
next couple to be added to m is done with respect to a probability that depends

1 We have defined another ACO algorithm where pheromone trails are laid on vertices
of the construction graph (instead of edges). However, experiments showed us that
this algorithm obtains much worse results than when pheromone is laid on edges.

218 O. Sammoud, C. Solnon, and K. Ghédira

on pheromone and heuristic factors. More formally, given a matching m and a
set of candidates cand, the probability pm(u, u′) of selecting (u, u′) ∈ cand is:

[τm(u, u′)]α · [h1m(u, u′)]β1 · [h2m(u, u′)]β2

∑
(v,v′)∈cand[τm(v, v′)]α · [h1m(v, v′)]β1 · [h2m(v, v′)]β2

(2)

where

– τm(u, u′) is the pheromone factor and is defined by the sum of all pheromone
trails laying between the candidate (u, u′) and every couple (v, v′) already
selected in m, i.e.,

τm(u, u′) =
∑

(v,v′)∈m

τ<(u,u′),(v,v′)>

When m = ∅, i.e., when choosing the first couple, τm(u, u′) = 1 so that the
probability only depends on heuristic factors).

– h1m(u, u′) is a first heuristic factor that aims at favoring couples that most
increase the score function, i.e.,

h1m(u, u′) = score(m ∪ {(u, u′)}) − score(m)

– h2m(u, u′) is a second heuristic factor that aims at favoring couples that have
many looked-ahead features (as defined for the greedy algorithm described
in Section 2), i.e.,

h2m(u, u′) = f(look aheadm(u, u′))

– α, β1, and β2 are three parameters that determine the relative importance
of the three factors.

Ants stop adding new couples to the matching m when every couple neither
directly increases the score function nor has looked-ahead common edge features,
or when the score function has not been increased since the last three iterations.

3.4 Pheromone Updating Step

Once every ant has constructed a matching, pheromone trails are updated ac-
cording to the ACO meta-heuristic. First, evaporation is simulated by multiply-
ing every pheromone trail τ<(u,u′),(v,v′)> by (1 − ρ), where ρ is the pheromone
evaporation rate such that 0 ≤ ρ ≤ 1.

Then, the best ant of the cycle deposits pheromone. More precisely, let mk

be the best matching (with respect to the score function) built during the cycle
(if there are several best matchings, ties are randomly broken), and mbest be the
best matching built since the beginning of the run (including the current cycle).
The quantity of pheromone laid is inversely proportional to the gap of score
between mk and mbest, i.e. it is equal to 1/(1+ score(mbest)− score(mk)). This
quantity of pheromone is deposited on every edge ((u, u′), (v, v′)) connecting two
different couples (u, u′) and (v, v′) of mk.

Ant Algorithm for the Graph Matching Problem 219

 57

 58

 59

 60

 61

 62

 63

 64

 10 100 1000

S
co

re
 o

f
th

e
 b

e
st

 m
a

tc
h

in
g

 (
a

ve
ra

g
e

 o
n

 2
0

 r
u

n
s)

Number of cycles (logscale)

alpha=0 rho=1.00
alpha=1 rho=0.01
alpha=1 rho=0.02
alpha=2 rho=0.01
alpha=2 rho=0.02

Fig. 1. Evolution of the score of the best found matching w.r.t. the number of cycles,
for different settings of α and ρ (with 10 ants, β1 = 8 and β2 = 3)

4 Experimental Study of ANT-GM

4.1 Influence of Pheromone on the Solution Quality

As usually in ACO algorithms, the behavior of ANT-GM depends on its pa-
rameters, and more particularly on α, the pheromone factor weight, and ρ, the
evaporation rate. Diversification can be emphasized both by decreasing α, so
that ants become less sensitive to pheromone trails, and ρ, so that pheromone
evaporates more slowly. When increasing the exploratory ability of ants in this
way, better solutions are found, but as a counterpart it takes more longer time.

This is illustrated in Figure 1 on the si2r001s80 UNINA instance [13]. On this
figure, one can remark that when α or ρ increase, ants converge quicker towards
a matching: convergence occurs around cycle 500 when α=1 and ρ=0.01, around
cycle 350 when α=1 and ρ=0.02, and around cycle 200 when α=2 and ρ=0.02.
As a counterpart, ants find better matchings, at the end of the solution process,
when α and ρ are set to lower values such as α=1 and ρ=0.01.

Note also that when α=0 and ρ=1, i.e., when pheromone is totaly ignored,
so that the solution process is a pure randomized greedy one, the constructed
matchings have a much lower score and hardly reach 60.5 at the end of the
solution process, instead of more than 62.5 when pheromone is used. This shows
that pheromone improves the solution quality.

220 O. Sammoud, C. Solnon, and K. Ghédira

4.2 Comparison of ANT-GM with Greedy and Reactive
Approaches

Considered algorithms. We compare our ACO algorithm (ANT-GM) with the Greedy
Search algorithm (GS) of [9] described in Section 2 and a Reactive Tabu Search
algorithm (RTS) described in [16].

RTS improves a matching built by the greedy search algorithm of [9] by per-
forming local search: the idea is to iteratively move from a matching to one of
its neighbours (obtained by either adding or removing one couple of vertices)
until the optimal solution is found or until a maximum number of moves have
been performed. At each step, the search moves towards the best neighbour of
the current matching (with respect to the same criteria than for the greedy algo-
rithm). To avoid being trapped in locally optimal matchings, a Tabu list is used
that memorizes the last moves in order to forbid backward moves. As proposed
in [3], the length of this Tabu list is dynamically adapted during the search,
depending on the need for diversification/intensification.

Experimental Setup. ANT-GM, GS, and RTS have been implemented in C++, and
run on a 1.8Ghz pentium M with 512Mo RAM.

For ANT-GM, we have set α to 1, ρ to 0.01, β1 to 8, β2 to 3, the maximum
number of cycles MaxCycle to 1000 and the number of ants nbAnts to 10,
so that each run builds 10, 000 matchings. Parameters of RTS have been set as
recommended in [16].

To compare algorithms independently from implementation issues, all runs
on a given instance are limited to a same number of moves, where a move is
defined by the addition or removal of one couple of vertices to a matching. This
limit on the number of moves depends on the considered instance. Indeed, one
run of ANT-GM builds 10, 000 matchings, but the size of these matchings, and
therefore the number of moves performed by ANT-GM, depends on the considered
instance. Hence, let x be the average size of the matchings built by ANT-GM for a
given instance, the number of moves performed by ANT-GM is x ∗ 10, 000 so that
the maximum number of moves for this instance is set to x ∗ 10, 000.

Each algorithm has been run 20 times on each instance of each benchmark.

Results on subgraph isomorphism problems. We first consider 11 benchmarks of
subgraph isomorphism problems, for non labeled graphs, issued from a UNINA
benchmark [13] and available at http://amalfi.dis.unina.it.graph. For each
of these 11 benchmarks, we have considered the 30 first instances.

Each instance is composed of two graphs G=(V, E) and G′=(V ′, E′) such
that |V | ≤ |V ′|, and the goal is to find an injective function φ : V → V ′ such
that (v1, v2)∈E ⇒ (φ(v1), φ(v2))∈E′.

To solve subgraph isomorphism problems with the generic similarity measure
of formula (1), we define function g as the cardinality function and function f
as a weighted sum where the weight of the features of G (resp. G′) is 1 (resp.
0). In this case, sim(G, G′)=1 if and only if there exists a mapping m such that
descr(G) ⊆ descr(G) �m descr(G′) (as f(descr(G) ∪ descr(G′))= |descr(G)|)

Ant Algorithm for the Graph Matching Problem 221

Table 1. Results on 11 benchmark sets of subgraph isomorphism problems. For each
benchmark set, the table first reports its name and the number of vertices of the two
graphs to be matched. Then, for each algorithm, it reports the global success rate
(GSR), i.e., the percentage of successful runs over all runs for all instances of the
benchmark, the instance success rate (ISR), i.e., the percentage of instances that have
been solved at least once over the twenty runs, and the number of moves (Mv) and the
CPU time (T) spent to find the solution (average on successful runs only)

Benchmark ANT-GM GS RTS
Name (nb vertices) GSR ISR Mv T GSR ISR Mv T GSR ISR Mv T

si2r001s100 (20/100) 76.8 86.7 40492 33.2 33.3 33.3 89 0.2 67.5 100.0 9758 6.6
si2r001s80 (16/80) 93.3 100.0 42240 10.1 33.3 33.3 37 0.0 90.0 100.0 5585 2.4
si2r001s60 (12/60) 99.7 100.0 22164 2.8 46.7 46.7 15 0.0 99.2 100.0 1590 0.4
si4r001s80 (32/80) 81.3 90.0 110818 44.1 23.3 23.3 507 0.5 85.7 100.0 8292 7.5
si4r001s60 (24/60) 99.2 100.0 44539 9.0 40.0 40.0 39 0.1 93.2 100.0 5066 2.5
si4r001s40 (16/40) 100.0 100.0 8634 0.7 53.3 53.3 41 0.0 99.7 100.0 1759 0.4
si4r001s20 (8/20) 100.0 100.0 166 0.0 83.3 83.3 9 0.0 100.0 100.0 219 0.0
si4r005s40 (16/40) 89.7 96.7 34976 4.4 6.7 6.7 67 0.0 88.0 96.7 4647 1.0
si6r001s60 (36/60) 99.7 100.0 79738 21.0 63.3 63.3 110 0.1 94.5 100.0 6964 5.2
si6r001s40 (24/40) 100.0 100.0 16547 1.9 86.7 86.7 44 0.0 98.3 100.0 3101 1.0
si6r001s20 (12/20) 100.0 100.0 352 0.0 93.3 93.3 24 0.0 100.0 100.0 266 0.0

Average 94.5 97.6 36424 11.6 51.2 51.2 89 0.1 92.4 99.7 4295 2.45

and splits(m) = ∅, i.e., sim(G, G′) = 1 if and only if there exists a subgraph
isomorphism.G and G′.

Table 1 reports results obtained on these subgraph isomorphism problems.
These results first show that GS is much less successfull than both ANT-GM and
RTS, being able to solve nearly twice as less instances. Moreover, global and
instance success rates of GS are always equal and, when a solution is found, the
number of moves performed to find it is always very low. Indeed, the search
is not much diversified in GS: random choices are performed only to break ties
between candidates that have equally highest scores. As a consequence, GS always
computes very similar matchings and, given an instance, either it very quickly
finds a solution, or it never finds it.

When comparing ANT-GM with RTS, one can note that the global success
rate of ANT-GM is nearly always greater or equal to the one of RTS: 94.5% of the
20∗30∗11 runs of ANT-GM have succeeded instead of 92.4% for RTS. However, the
instance rate of ANT-GM is always smaller or equal to the instance success rate of
RTS: 97.6% of the 30∗11 considered instances have been solved at least once over
the 20 runs of ANT-GM instead of 99.7% for RTS. Actually, given an instance, the
result of an execution of ANT-GM is nearly always the same (i.e., either it nearly
always fail or it nearly always succeed), whereas the result of an execution of RTS
is more variable and highly depends on the starting point of the local search.

Table 1 also shows that ANT-GM performs 8.5 times as more moves as RTS to
find a solution. However, as one move of ANT-GM is performed twice as fast, RTS
is 4.7 times as fast as ANT-GM.

222 O. Sammoud, C. Solnon, and K. Ghédira

Table 2. Results on 5 multivalent matching problems. For each problem and for each
algorithm, the table displays the average similarity (Sim), the average number of moves
(Mv) and the average CPU time in seconds (T) needed to find the best solution

Problem ANT-GM RTS
name Sim Mv T Sim Mv T
hom-v20-e60 0.795 303167 30.9 0.798 17747 2.2
hom-v30-e90 0.863 512746 155.0 0.865 14187 4.4
hom-v40-e120 0.885 685155 477.9 0.895 24801 13.7
hom-v45-e135 0.895 717767 709.5 0.904 60085 40.5
hom-v50-e150 0.804 847699 1075.6 0.913 53922 47.9
Average 0.848 613307 489.8 0.875 34149 21.7

Experimental comparison on multivalent matching problems. We have also com-
pared ANT-GM and RTS on 5 multivalent graph matching problems that have been
randomly generated. Each problem named hom-vN-eM is composed of a cou-
ple of non labeled graphs such that the first graph has N vertices and M edges
(randomly generated) and the second graph is obtained by randomly removing 6
vertices and their incident egdes of the first graph, and then randomly splitting
5 vertices and their incident edges.

Table 2 shows the results obtained by ANT-GM and RTS on these multivalent
matching problems. On this table, one can note that similarities computed by
ANT-GM are slightly worse than those computed by RTS. Moreover, when graph
sizes increase, this difference in quality becomes more important. Also, ANT-GM
needs more moves to converge towards its best solution, and therefore it is more
time consuming.

5 Conclusion

We have introduced in this paper ANT-GM, a new ACO algorithm for solv-
ing multivalent graph matching problems. First experiments on benchmarks of
subgraph isomorphism problems showed us that ANT-GM is able to solve to
optimality a wide majority of these problems. A key point of the multivalent
graph matching problem is that each vertex may be mapped to a set of vertices,
so that it can be used to evaluate the similarity of two graphs, and not only their
equivalence, inclusion or intersection. As there does not yet exist benchmarks
dedicated to this problem, we have generated random instances. Experiments
showed us that, on these problems, ANT-GM is outperformed by a Reactive Tabu
Search approach.

Further work will mainly concern the integration within ANT-GM of some
local search technics such as the one used by RTS. Indeed, experiments showed
us that results obtained by ANT-GM and RTS are rather complementary, each al-
gorithm being able to solve instances that the other one cannot solve. Actually,
the best performing ACO algorithms for many combinatorial problems are hy-

Ant Algorithm for the Graph Matching Problem 223

brid algorithms that combine probabilistic solution construction by a colony of
ants with local search [12, 15].

References

1. A. Aamodt and E. Plaza. Case-Based Reasoning: Foundational Issues, Method-
ological Variations, and System Approaches. AI Communications, IOS Press, Am-
sterdam (NL), 7(1):39-59, 1994.

2. R. Ambauen, S. Fischer, and H. Bunke. Graph Edit Distance with Node Splitting
and Merging, and Its Application to Diatom Identification. IAPR-TC15 Wksp on
Graph-based Representation in Pattern Recognition, LNCS, Springer Verlag, 95-
106, 2003.

3. R. Battiti and M. Protasi. Reactive Local Search for the Maximum Clique Problem.
Algorithmica, Springer-Verlag, (29), 610-637, 2001.

4. M. Boeres, C. Ribeiro, and I. Bloch. A Randomized Heuristic for Scene Recognition
by Graph Matching. WEA 2004, 100-113, 2004.

5. H. Bunke. Error-tolerant Graph Matching: A Formal Framework and Algorithms.
Lecture Notes in Computer Science. Springer, Berlin, 1998.

6. H. Bunke and B.T. Messmer. Recent advances in graph matching. International
Journal of Pattern Recognition and Artificial Intelligence, (11):169-203, 1997.

7. H. Bunke and K. Shearer. A graph distance metric based on maximal common
subgraph. Pattern recognition letters, (19):255-259, 1998.

8. H. Bunke and X. Jiang. Graph matching and similarity. Volume Teodorescu, H-N,
Mlynek, D. Kandel, A. Zimmermann, H-J. (ds.): Intelligent Systems and Interfaces,
chapter 1, 2000.

9. P. Champin and C. Solnon. Measuring the similarity of labeled graphs. 5th Interna-
tional Conference on Case-Based Reasoning (ICCBR). Lecture Notes in Computer
Science - Springer Verlag, 2003.

10. D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years of graph matching
in pattern recognition. International Journal of Pattern Recognition and Artificial
Intelligence, 18(3):265-298, 2004.

11. M. Dorigo and G. Di Caro. The Ant Colony Optimization Meta-heuristic. In D.
Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization. McGraw
Hill, London, UK, pages 11-32, 1999.

12. M. Dorigo and L. Gambardella. Ant Colony System: A cooperative learning ap-
proach to traveling salesman problem. IEEE transactions on evolutionary compu-
tation, 1(1):53-66, 1997.

13. P. Foggia, C. Sansone, and M. Vento. A database of graphs for isomorphism and
sub-graph isomorphism benchmarking. In 3rd IAPR-TC15 Workshop on Graph-
based Representations in Pattern recognition, pages 176-187, 2001.

14. V. Maniezzo and A.Colorni. The Ant System Applied to the Quadratic Assigne-
ment Problem. IEEE Transactions on Data and Knowledge Engineering, 11(5):769-
778, 1999.

15. T. Stützle and H.H. Hoos. MAX − MIN Ant System. Journal of Future Gener-
ation Computer Systems, 16:889-914,2000.

16. S. Sorlin and C. Solnon. Reactive Tabu Search for Measuring Graph Similarity.
to appear in 5th IAPR Workshop on Graph-based Representations in Pattern
Recognition (GbR 2005), LNCS, Springer Verlag, 2005.

An Adaptive Genetic Algorithm for the Minimal
Switching Graph Problem

Maolin Tang

School of Software Engineering and Data Communications,
Queensland University of Technology,
2 George Street, Brisbane, Australia

m.tang@qut.edu.au

Abstract. Minimal Switching Graph (MSG) is a graph-theoretic repre-
sentation of the constrained via minimization problem — a combinato-
rial optimization problem in integrated circuit design automation. From
a computational point of view, the problem is NP-complete. Hence, a
genetic algorithm (GA) was proposed to tackle the problem, and the
experiments showed that the GA was efficient for solving large-scale via
minimization problems. However, it is observed that the GA is sensitive
to the permutation of the genes in the encoding scheme. For an MSG
problem, if different permutations of the genes are used the performances
of the GA are quite different. In this paper, we present a new GA for MSG
problem. Different from the original GA, this new GA has a self-adaptive
encoding mechanism that can adapt the permutation of the genes in the
encoding scheme to the underlying MSG problem. Experimental results
show that this adaptive GA outperforms the original GA.

1 Introduction

Minimal Switching Graph (MSG) [1] is a graph-theoretic representation of the
constrained via minimization problem — a combinatorial optimization problem
in integrated circuit design automation. From a computational point of view,
the problem is NP-complete [2]. Hence, a genetic algorithm (GA) was proposed
to tackle the problem [3], and the experiments showed that the GA was good for
solving large-scale via minimization problems. However, it is observed that the
GA is sensitive to the permutation of the genes in the encoding scheme. For an
MSG problem, if different permutations of the genes are used the performances
the GA are quite different.

The power of GAs comes from their ability to preserve good pieces, or build-
ing blocks, from parents and to combine them to produce highly fit children.
However, when the genes of building blocks are spread across the chromosome
of a GA representation, the building blocks are most likely destroyed by the
crossover operator, and therefore it is less likely for the GA to obtain an opti-
mal solution. The problem of building block disruption is often referred to as
the linkage problem [4]. The unscalability of the GA was caused by the linkage
problem.

G.R. Raidl and J. Gottlieb (Eds.): EvoCOP 2005, LNCS 3448, pp. 224–233, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Adaptive Genetic Algorithm for the Minimal Switching Graph Problem 225

The techniques for handling the linkage problem are categorized into two
classes. The first class of techniques is based on changing the representation of
solutions in the algorithm or evolving the recombination operators [4, 5, 6, 7].
The second class of techniques is based on extracting some information from the
entire set of promising solutions in order to generate new solutions [8, 9, 10]. In
this paper, we will focus on the first class of techniques.

This paper presents a new GA for the MSG problem. Different from
conventional GAs, this GA uses a knowledge-based self-adaptive encoding mech-
anism to optimize the permutation of the genes before it actually starts generat-
ing the initial population and evolving the population. This GA has been imple-
mented and experimental results show that this GA outperforms the
conventional GA.

The remaining paper is organized as follows. In Section 2 the MSG problem
is formalized. Then a GA encoding scheme for the MSG problem is presented in
Section 3. Section 4 details the self-adaptive encoding mechanism, and Section 5
shows the experimental results for the adaptive GA. Finally, this research work
is concluded in Section 6.

2 Minimal Switching Graph Problem

A directed bigraph is a directed graph whose vertices can be partitioned into two
disjoint sets such that no vertices within the same set are adjacent. A directed
bigraph can be denoted as G = (V1 ∪ V2, E), where V1 and V2 are two disjoint
vertex sets, and E is a set of directed edges, or arcs. Figure 1 shows a directed
bigraph, where V1 = {v1, v2, v3, v4, v5, v6, v7}, V2 = {v8, v9, v10, v11, v12, v13}, and
E = {< v1, v8 >, < v1, v10 >, < v12, v2 >, < v10, v3 >, < v11, v3 >, < v3, v12 >,
< v13, v3 >, < v9, v4 >, < v4, v11 >, < v4, v12 >, < v5, v9 >, < v13, v6 >,
< v7, v8 >}.

v v v v v v71 2 3 4 5 6

v v 109 v11 v12 v138 v

v

Fig. 1. A directed bigraph

A directed bigraph can be represented in a matrix M|V1|×|V2| = [mij]. The
rows of the matrix present the vertices in V1 and the columns of the matrix
present the vertices in V2. If < vi, vj >∈ E, vi ∈ V1, and vj ∈ V2, then mij = 1,
if < vi, vj >∈ E, vi ∈ V2, and vj ∈ V1, then mij = −1, otherwise, mij = 0,where

226 M. Tang

mij is the ith row and jth column element in M|V1|×|V2|. For example, the directed
bigraph shown in Figure 1 is represented by the following matrix:





1 0 1 0 0 0
0 0 0 0 −1 0
0 0 −1 −1 1 −1
0 −1 0 1 1 0
0 1 0 0 0 0
0 0 0 0 0 −1
1 0 0 0 0 0





In the above matrix, the rows from the top to the bottom represent v1, v2,
· · ·, and v7 respectively, and the columns from the left to the right represent v8,
v9, · · ·, and v13 respectively.

Given a directed bigraph G, a switching graph of G, denoted as G(S), is
defined as the directed graph obtained by reversing the direction of all the arcs
being incident to the vertices in S ⊆ V1. Figure 2 displays a switching graph of
G, G({v3, v6}).

v v v v v v71 2 3 4 5 6

v v 109 v11 v12 v138 v

v

Fig. 2. A switching graph

It is pointed out that a directed bigraph G itself is a special switching graph
of G in which S = φ. A directed bigraph G = (V1 ∪ V2, E) has 2|V1| switching
graphs.

The vertices in V2 are categorized into two types: desirable vertices and un-
desirable vertices. Desirable vertices are those vertices whose either in-degree
or out-degree is zero, and undesirable vertices are those vertices whose both
in-degree and out-degree are not zero.

Given a directed bigraph G, the objective is to find a switching graph G(S)
such that the number of desirable vertices is maximal. This is so-called MSG
problem.

An Adaptive Genetic Algorithm for the Minimal Switching Graph Problem 227

3 GA Encoding Scheme for the MSG Problem

GA encoding transforms a potential solution to an underlying problem into a
set of parameters, known as genes. These genes are structured to form a string
of values, often referred to as a chromosome.

A schema H is a similarity template describing a subset of strings with sim-
ilarities at certain string positions [5]. For example, 0 ∗ 1 ∗ ∗ ∗ 1 is a schema
representing a subset of 7-bit binary strings in which the first bit is 0, the third
and seventh bits are 1. The ∗ symbol means don’t care. The defining length of a
schema H, denoted as δ(H), is the distance between the first and last positions
at which values are fixed. For example, δ(0*1***1) = 6. A string of n binary bits
contains 2n schemata. Those highly fit, meaningful schemata are building blocks.
In a GA encoding scheme, building blocks are expected to be short in defining
length; otherwise, they may be destroyed by the crossover operator.

Suppose G = (V1 ∪ V2, E) is a directed bigraph, and G(S) is a switching
graph of G. Let n1 = |V1| and n2 = |V2|. Then, G(S) can be represented in a
binary string of n1 bits, b1b2 · · · bn1 , where

bi =
{

1 if vi ∈ S
0 otherwise ,

and 1 ≤ i ≤ n1. For example, the switching graph G({v3, v6}) shown in
Figure 2 is encoded as 0010010, and G = G(φ) is encoded 0000000. In this GA,
each individual is a switching graph encoded in a binary string.

This encoding scheme maps the underlying problem to a binary string GA
representation naturally. It uses minimal alphabets, and the crossover and mu-
tation operators never produce any invalid individuals under this representation
because all the binary strings of length n1 represent a valid switching graph of
the MSG problem.

4 Self-Adaptive Encoding

There are n1! different permutations of the genes (b1, b2, · · ·, bn1), and the
linkages of building blocks in different permutations are different. In one permu-
tation of the genes the defining length of a building block may be longer, while in
another permutation of the genes the defining length of the building block may
be shorter. Hence, it is desirable to find a permutation of the genes in which all
building blocks have a shorter defining length.

Building blocks and their linkages cannot be known beforehand by the GA.
Hence, given an MSG problem the GA needs to find a good permutation at
runtime before it actually starts evolving the individuals in the initial population.
To find a good permutation of the genes for the encoding scheme, we need to
identify building blocks and have a strategy to discover a good permutation of
the genes. In the following we address the two issues.

228 M. Tang

4.1 Identifying Building Blocks

An atomic building block for the MSG problem is a schema which a vertex is a
desirable vertex in the corresponding switching graph. For instance, 1 ∗ ∗ ∗ ∗ ∗ 1
is an atomic building block for the MSG problem shown in Figure 1 as it rep-
resents a collection of switching graphs on which v8 is a desirable vertex. The
following lists all the atomic building blocks for that MSG problem:

s1 =
[
1 ∗ ∗ ∗ ∗ ∗ 1

]

s2 =
[
0 ∗ ∗ ∗ ∗ ∗ 0

]

s3 =
[∗ ∗ ∗ 1 0 ∗ ∗]

s4 =
[∗ ∗ ∗ 0 1 ∗ ∗]

s5 =
[
1 ∗ 0 ∗ ∗ ∗ ∗]

s6 =
[
0 ∗ 1 ∗ ∗ ∗ ∗]

s7 =
[∗ ∗ 0 1 ∗ ∗ ∗]

s8 =
[∗ ∗ 1 0 ∗ ∗ ∗]

s9 =
[∗ 1 0 0 ∗ ∗ ∗]

s10 =
[∗ 0 1 1 ∗ ∗ ∗]

s11 =
[∗ ∗ 0 ∗ ∗ 0 ∗]

s12 =
[∗ ∗ 1 ∗ ∗ 1 ∗]

Among these atomic building blocks, s1 and s2 represent the class of switching
graphs on which v9 is a desirable vertex; s3 and s4 stand for the set of switching
graphs on which v10 is a desirable vertex; etc. It is expected that these building
blocks are preserved in the population of the GA and are combined to form highly
fit individuals. For example, by combining an individual containing s1 and an
individual containing s3 it is expected to produce a new individual containing
the schema 1 ∗ ∗10 ∗ 1, which represents both v9 and v10 as desirable vertices on
the corresponding switching graph. The schema 1∗∗10∗1 is a compound building
block. It is pointed out that some building blocks are exclusive from each other.
For example, it is impossible for an individual to contain both s7 and s9 due to
the conflict at bits 3 and 4.

When identifying building blocks, we only identify atomic building blocks
and do not identify compound building blocks because of the following reasons:
firstly, the atomic building blocks are essential to the GA to generate an opti-
mal solution, but not for the compound building blocks because the compound
building blocks can be built during the evolution of the GA as long as the atomic
building blocks are preserved in the population; secondly, it is not practical to
identify all the compound building blocks. In fact, to identify all the compound
building blocks may be as complex as the original MSG problem. Hence, the GA
identifies atomic building blocks only.

There are two atomic building blocks associated to a vertex in V2. Hence, for
a directed bigraph G = (V1 ∪V2, E), there are 2×|V2| atomic building blocks. It
takes O(|V1|) time to identify two atomic building blocks associated to a vertex in
V2. Therefore, the computational complexity for identifying all atomic building
blocks is O(|V1| × |V2|).

An Adaptive Genetic Algorithm for the Minimal Switching Graph Problem 229

4.2 Self-Adaptive Encoding Algorithm

Given an MSG problem represented by a matrix, the GA uses the encoding
scheme to transform the matrix into the binary string genetic representation.
The permutation of the genes in this initial encoding is in the order as in the
matrix. Then, the GA identifies all atomic building blocks. Once the atomic
building blocks have been identified, the GA uses a so called self-adaptive en-
coding mechanism to optimize the permutation of the genes in the encoding
scheme online, and then generate the initial generation and evolves it until the
termination condition is satisfied.

It is observed that the permutation of the genes does not have to be perfect for
the GA to get a satisfactory solution, and that the longest defining length of the
atomic building blocks directly affects the performance of the GA although the
total defining length of all atomic building blocks is also important. Therefore, we
design a computationally efficient hill-climbing algorithm to gradually minimize
the longest defining length of the atomic building blocks without increasing
the total defining length of the atomic building blocks. Below is the heuristic
algorithm:

1. Calculate the defining length of the atomic building blocks and find the
atomic building block that has the longest defining length;

2. Extract the genes associated with the building block that has the longest
defining length;

3. Generate a new permutation of the genes by moving the right-most gene to
the left of the second right-most gene of the longest defining length building
block;

4. Update the atomic building blocks according to the new permutation of the
genes;

5. Calculate the defining length of the atomic building blocks and find the
atomic building block that has the longest defining length;

6. If the longest defining length under the new permutation is shorter than that
under the current permutation and the total defining length of the atomic
building blocks under the new permutation is not longer than that under
the current permutation, then replace the current permutation with the new
permutation and go to 1; otherwise, stop.

Denote the permutation of the genes in the initial GA representation for the
MSG problem shown in Figure 1 as b1b2b3b4b5b6b7. The new encoding obtained
by the self-adaptive encoding algorithm would be b7b1b6b3b4b2b5. In this new
encoding, the building blocks become:

s1 =
[
1 1 ∗ ∗ ∗ ∗ ∗]

s2 =
[
0 0 ∗ ∗ ∗ ∗ ∗]

s3 =
[∗ ∗ ∗ ∗ 1 ∗ 0

]

s4 =
[∗ ∗ ∗ ∗ 0 ∗ 1

]

s5 =
[∗ 1 ∗ 0 ∗ ∗ ∗]

s6 =
[∗ 0 ∗ 1 ∗ ∗ ∗]

230 M. Tang

s7 =
[∗ ∗ ∗ 0 1 ∗ ∗]

s8 =
[∗ ∗ ∗ 1 0 ∗ ∗]

s9 =
[∗ ∗ ∗ 0 0 1 ∗]

s10 =
[∗ ∗ ∗ 1 1 0 ∗]

s11 =
[∗ ∗ 0 0 ∗ ∗ ∗]

s12 =
[∗ ∗ 1 1 ∗ ∗ ∗]

In the initial encoding, the longest defining length and the total defining
length of the atomic building blocks were 6 and 30 respectively; in the new
encoding the total defining length has been dropped to 2 and the average defining
length has been reduced to 18.

5 Experiment

5.1 A Benchmark MSG Problem

It is desirable to use large-scale and complex benchmarks with known optimal so-
lutions to evaluate the performance of the adaptive GA. Unfortunately, there are
no such benchmarks available. Hence, we construct such a large MSG
problem.

The large MSG problem consists of 16 components of the directed bigraph
graph shown in Figure 3. The size of the component MSG problem is 3, and
individuals 100 and 011 represent two optimal solutions in which all the three
vertices in V2 are desirable vertices (the fitness of the solutions is 3). The max-
imal defining length of the atomic building blocks for the component MSG
problem is 2.

v v v1 2 3

v4 v5 v6

Fig. 3. A component directed bigraph

The size of the benchmark MSG problem is 48, thereby the search space is
248. A combination of 16 3-bit binary strings 100 or 001 constitutes an optimal
solution to the large problem, in which all 48 vertices are desirable ones. The
fitness of an optimal solution is 48.

An Adaptive Genetic Algorithm for the Minimal Switching Graph Problem 231

5.2 Experimental Results

This experiment focuses on investigating the effect of the adaptive encoding on
the performance of the GA. Therefore, we implement a GA for the MSG problem
and develop two versions of the GA: one using the self-adaptive encoding and
one not using the self-adaptive encoding, and compare the performance of the
two versions of the GA.

To make the experiment simple and to exclude factors that may influence the
performance and behavior of the GA, we implement the GA as a conventional
one with a normal 1-point crossover operator and a normal mutation operator.
The selection strategy used by the GA is the roulette selection. In order to get
unbiased experimental results, we randomly generate the initial permutation
of the genes, use the same initial population for the two versions of the GA.
The parameters of the GA are fixed at the following values: the probability of
crossover is 0.95, the probability of mutation is 0.05, and the size of population
is |V1| ∗ |V2|/2.

We run the two versions of the GA 10 times each. Each time the permutation
of the genes is randomly generated. we keep the GA running until an optimal
solution is found. Table 1 shows the experimental results, which include the
characteristics of the randomly generated encoding (the longest defining length
and total defining length of the atomic building blocks), and the computation
time for each run.

Table 1. Comparisons of GA without self-adaptive encoding (GA without SAE) and
GA with self-adaptive encoding (GA with SAE)

GA without SAE GA with SAE
Runs Longest δ Total δ Time (sec) Longest δ Total δ Time (sec)

1 43 698 27.74 2 62 9.51
2 44 805 26.88 6 99 20.01
3 44 763 30.68 8 178 11.95
4 37 666 24.78 11 166 18.56
5 32 611 31.03 8 123 19.60
6 42 658 23.55 4 90 5.69
7 41 563 30.00 5 99 17.55
8 40 773 34.26 3 74 14.12
9 45 753 29.29 6 118 22.38
10 45 575 29.67 4 79 16.14

It can be seen from Table 1 that the GA with the self-adaptive encoding
spends significantly less time than the GA without the self-adaptive encoding
to find an optimal solution. This indicates that the GA with the self-adaptive
encoding is more efficient than the GA without the self-adaptive encoding.

The GA with the self-adaptive encoding uses encodings in which the longest
defining length and total defining length of the atomic building blocks are rel-
atively short. Therefore, the building blocks in the GA with the self-adaptive

232 M. Tang

encoding have more chances to be preserved in the crossover operation, and
therefore better quality offsprings can be produced by the crossover operator.
As a result, the total fitness value of the population in the GA with the self-
adaptive encoding increases quicker than in the GA without the self-adaptive
encoding, and thus an optimal solution can be built quicker in the GA with
self-adaptive encoding. This was observed when we monitored the dynamics of
the two versions of the GA.

6 Conclusions

The MSG problem is a combinatorial optimization problem in integrated circuit
design automation, and GAs are suitable for solving the problem. This paper
has presented an adaptive GA for the MSG problem.

This adaptive GA tackles the potential linkage problem using a knowledge-
based self-adaptive encoding mechanism, which can adapt the permutation of
the genes in the encoding scheme to the MSG problem online. This GA has
been implemented and experimental results have shown that this adaptive GA
outperforms the original GA.

This GA is similar to messy GAs in that it uses a preprocessing to adapt
the encoding to the underlying problem before actually starting generating the
initial population and evolving the population. However, this GA is funda-
mentally different from messy GAs in that it treats the encoding scheme as
a white-box and directly uses the domain-specific knowledge to improve the en-
coding while messy GAs treat the encoding scheme as a black-box and do not
use any domain-specific knowledge. Generally speaking, a GA that exploits the
domain-specific knowledge is more efficient and effective than a GA that does not
use any domain-specific knowledge. Since the adaptive GA uses domain-specific
knowledge, however, the adaptive encoding mechanism cannot be directly em-
ployed by other GAs algorithm although the basic idea behind the mechanism
can be used.

This paper has presented some preliminary research on an adaptive GA for
the MSG problem. This research focuses on how to improve the performance
of the GA by optimizing the permutation of the genes. Further research on the
adaptive GA can be extended to adaptive GA parameter setting. In addition, the
performance of the adaptive GA could be further improved if a sophisticated GA
is used. For example, a steady-state GA with higher mutation rates, no duplicates
allowed, and always deleting the worst population member may speed up the
evolution of the GA. Finally, it is interesting to compare this adaptive GA with
a GA using a uniform crossover operator, a messy GA, and a LLGA.

Acknowledgement

The author would like to thank the anonymous reviewers for their valuable
comments and suggestions on the manuscript of this paper.

An Adaptive Genetic Algorithm for the Minimal Switching Graph Problem 233

References

1. Tang, M., Eshraghian, K., and Cheung, H.N.: An Efficient Approach to Con-
strained Via Minimization for Two-Layer VLSI Routing. Proc. IEEE Asia and
South Pacific Design Automation Conference. Hong Kong (1999) 149–152

2. Naclerio, N.J., Masuda, S., and Nakajima, K.: The Via Minimization problem is
NP-complete. IEEE Transactions on Computers. 38 (1989) 1604–1608

3. Tang, M., Eshraghian, K., and Cheung, H.N.: A Genetic Algorithm for Constrained
Via Minimization. Proc. IEEE International Conference on Neural Information
Processing. Perth (1999) 435–440

4. Harik, G.R. and Goldberg, D.E.: Linkage Learning. IlliGAL Technical Report
96006 (1996)

5. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley, Reading (1989)

6. Goldberg, D.E., Korb, B.,and Deb, K.: Messy genetic algorithms: Motivation, anal-
ysis, and first results. Complex Systems 3 (1989) 493–530

7. Harik, G.R.: Lingake Learning Via Probabilistic Modeling. IlliGAL Technical Re-
port 99010 (1999)

8. Mühlenbein, H. and Paaß, G.: From Recombination of Genes to the Estimation of
Distributions I. Binary Parameters. In: Eiben, A., Bäck, T., Shoenauer, M. and
Schwefel, H.-P. (eds): Parallel Problem Solving from Nature - PPSN IV, Springer-
Verlag, Berlin (1996) 178–187

9. Harik, G. R., Lobo, F.G. and Goldberg, D.E.: The Compact Genetic Algorithm.
International Conference on Evolutionary Computation, IEEE, New Jersey (1998)
523–528.

10. Pelikan, M., Goldberg D.E. and Cantu-Paz, K.: Linkage Problem, Distribution
Estimation, and Bayesian Networks. Evolutionary Computation. 8 311-340

11. Sastry, K.: Analysis of Mixing in Genetic Algorithms: A survey. IlliGAL Report
No. 2002012 (2002)

12. Sastry, K. and Goldberg D.E.: How Well Does A Single-Point Crossover Mix Build-
ing Blocks with Tight Linkage?. IlliGAL Report No. 2002013 (2002)

13. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs.
3rd edn. Springer-Verlag, Berlin Heidelberg New York (1996)

14. Prügel-Bennett, A.: Modeling Cross-Induced Linkage in Genetic Algorithms. IEEE
Trans. on Evolutionary Computation 5 (2001) 376–387

15. Thierens, D. and Goldberg, D.E.: Mixing in Genetic Algorithms. Proc. the 5th Int.
Conf. on Genetic Algorithms. (1993) 38–45

G.R. Raidl and J. Gottlieb (Eds.): EvoCOP 2005, LNCS 3448, pp. 234 – 245, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Improved Simulated Annealing Method for the
Combinatorial Sub-problem of the Profit-Based Unit

Commitment Problem

T. Aruldoss Albert Victoire1 and A. Ebenezer Jeyakumar2

1 Department of Electrical and Electronics Engineering,
Karunya Institute of Technology, Coimbatore, India

aruldoss@karunya.edu
2 Department of Electrical and Electronics Engineering,

Government College of Technology, Coimbatore, India
ebyjaya@rediffmail.com

Abstract. Here is presented an improved simulated annealing (SA) method for
solving the combinatorial sub-problem of profit-based unit commitment (UC)
problem in electric power and energy systems. The UC problem is divided into
a combinatorial sub-problem in unit status variables and a non-linear program-
ming sub-problem in unit power output variables. The simulated annealing
method with an improved random perturbation of current solution scheme is
proposed to solve the combinatorial sub-problem. A simple scheme for generat-
ing initial feasible commitment schedule for the SA method to solve the combi-
natorial problem is also proposed. The non-linear programming sub-problem is
solved using the sequential quadratic programming (SQP) technique. Several
example systems are solved to validate the robustness and effectiveness of the
proposed technique for the profit-based UC problem.

1 Introduction

Unit commitment is the problem of determining the optimal set of generating units
within a power system to be used during the next one to seven days [1]. The UC prob-
lem to minimize production costs (mainly fuel cost) and transition costs (start-
up/shut-down costs) is traditionally referred as cost-based unit commitment (CBUC)
problem [2-7]. In a CBUC problem, utilities has to produce power to satisfy their
customers with the minimum production cost fulfilling the condition that all power
demand and reserve must be met.

In the recent past, due to deregulation of electricity industry, power producers are
identified as GENCOs (power GENerating COmpanies), have more freedom to utilize
their generation unit capabilities to enhance their benefits in the power market [8-10].
Here GENCOs sells power in the spot market, and sell spinning reserves in the re-
serve markets [8]. The GENCOs can consider a UC schedule that produces less than
the predicted power demand, with its ultimate aim to maximize its own profit, regard-
less of the system wide profit [9-10]. For this UC problem the objective is the profit

 An Improved Simulated Annealing Method for the Combinatorial Sub-problem 235

which is not the negative of production cost, rather it is defined as the revenue minus
production cost [9-10]. This updated UC problem with a different objective is referred
as price-based UC (PBUC) problem [9]. Deregulation of electricity industry, also
brought challenges is to maintain efficient use of generation resources in market-
based environment, thereby maximizing the profit of GENCOs [3,10].

In General, a UC problem is referred as a mixed combinatorial and non-linear op-
timization problem [3]. It is very complex to solve because of its enormous dimen-
sion, non-linear objective function, and coupling constraints [2]. Thus a need for op-
timality exists for this highly nonlinear and computationally difficult power system
problem. Researchers studied this complex problem for decades and many conven-
tional and Meta-heuristic techniques have been developed [3].

Solving this complex problem using several conventional solution techniques in-
volves a number of simplifying assumptions, and consumes a large amount of compu-
tation time. Unlike strict conventional techniques, meta-heuristics has the apparent
ability to adapt to non-linearities and discontinuities commonly found in power sys-
tem problems. All these techniques have the attractive feature of assured convergence
under appropriate assumptions. The main difficulty in heuristics is their sensitivity to
the choice of parameters and long computation time [3]. Many advanced operators are
proposed for reducing search time to acceptable values, but these sophisticated opera-
tors are problem specific. To overcome these difficulties, hybrid techniques combin-
ing different optimization techniques were proposed [3,7]. These techniques accom-
modate more constraints and produce better solutions [7]. Despite the extensive work
carried out, building a consistent technique to solve UC problem is still evolving.

This article emphasizes the effectiveness of heuristic techniques for the UC prob-
lem, by proposing an improved SA technique. The SA [6,11] method has proved itself
as a powerful technique for solving combinatorial optimization problems. It has the
ability of escaping local minima by incorporating a probability function in accepting
or rejecting new solutions. Another advantage of SA method is it does not need large
computer memory [6,7,11].

SQP [12] seems to be the best nonlinear programming methods for constrained
optimization. It outperforms every other nonlinear programming method in terms of
efficiency, accuracy, and percentage of successful solutions, over a large number of
test problems. In this article the combinatorial part of the UC problem is solved using
the SA method. A modified approach for generating the trial schedule as the
neighbourhood of the current feasible schedule and a simple procedure to generate the
initial feasible schedule for the SA method is proposed. The non-linear optimization
part (Economic Dispatch Problem (EDP)) is solved using SQP technique.

2 Nomenclature

)(iti PFC : Fuel Cost function of unit i ($)

iST : Start up of cost of unit i ($)

PF : Profit of the GENCO ($)

tD : Power demand at time t (MW)

236 T.A.A. Victoire and A.E. Jeyakumar

tSR : Power reserve at time t (MW)

itP : Power produced by unit i at time t (MW)

itR : Reserve generation of unit i at time t (MW)

itX : ON/OFF status of unit i at time t

N : Number of generating units.
H : Number of hours in the scheduling horizon.

miniP / maxiP : Minimum/Maximum generation capability of unit i (MW)

iToff /
iTon : OFF/ON time of unit i (hr)

iTup /
iTdown : Minimum up/down time of unit i (hr)

hiS / ciS : Start-up costs incurred for a hot/cold start for unit i ($)

starticold
t : Number of hours that it takes for the boiler to cool down. (hr)

tSP /
tRP : Forecasted spot/reserve price at hour t ($)

ρ : Probability that the reserve is called and generated.

)1,0(rand : Random number between 0 and 1.

3 Problem Formulation

A PBUC problem is formulated mathematically by the following equations [10]:
The objective function

TCRVPFMaxorRVTCMin −=− ($) (1)

Where, TC is the total cost for the GENCO ($) to commit N units during the given
time. The total cost, is minimized by economically dispatching the units and this is a
non-linear programming sub-problem of the UC problem, commonly referred as EDP.

RV is the revenue earned by the GENCO ($) by selling the generated power.

∑ ∑∑ ∑
= == =

+=
N

i

H

t
ititt

N

i

H

t
ittit XRRPXSPPRV

1 11 1

...)..(ρ (2)

∑∑

∑∑

= =
−

= =

−+++

−=

N

i

H

t
tiitiitititi

N

i

H

t
ititi

XXSTXRPFC

XPFCTC

1 1
)1(

1 1

)1(.).(

).()1(

ρ

ρ
 (3)

The classic EDP minimizes the following incremental fuel cost function associated
to dispatchable units,

 An Improved Simulated Annealing Method for the Combinatorial Sub-problem 237

iitiitiiti cPbPaPFC ++= 2)(i=1,2, …, N and t=1,2,…T (4)

where,
iii cba ,, are cost coefficients of the ith generating unit.

Start-up cost:





 ≥

=
hi

icoldstartici

i

S

tToffifS
ST (5)

The start-up cost is the cost spent for committing a unit which was de-committed
in previous hours. Hot start represents the starting of the generating unit before the
boiler parameters reaches below the specified values. Cold start indicates the start of
the unit when the boiler parameters reach below the specified values.

Subject to the following constraints:
Power demand is to be met to by the committed units at a given time:

∑
=

=≤
N

i
titit HtDXP

1

.,...,1, (6)

Reserve need to be maintained at a given time:

∑
=

=≤
N

i
titit HtSRXR

1

.,...,1, (7)

Minimum uptime and minimum downtime:

ii TdownToff ≥

ii TupTon ≥ (8)

A generating unit cannot be committed for iTdown hours once it is de-committed

and similarly it cannot be de-committed for iTup hours once it is committed.

Combining constraints given in Eqn (6) and (7), we may write,

Power and Reserve Limits:

∑
=

=+≤
N

i
ttiit HtSRDPX

1
max ,......,1 (9)

In a PBUC problem or even a cost based unit commitment problem of the
regulated system, the predicted demand, reserve, and the prices are important parame-
ters. It is assumed that all data are readily available, as was assumed in [21]. But the
predicted load demand is only known through short-term load forecasting, errors
always exist in the forecasted system loads. Moreover, the spinning reserve constraint
practically is based on the probability of abnormal conditions that might result in

238 T.A.A. Victoire and A.E. Jeyakumar

insufficient generation capacity to cover the load demand; hence this constraint could
be a soft, not a hard, limit constraint. Consequently, it is advisable to formulate the
problem within the uncertainty frame [2].

Fuzzy logic plays a very successful role in dealing with the uncertainties in the
system. Thus the power demand and reserve requirements are treated as the fuzzy
variables and represented in membership functions based on error statistics. A penalty
factor based on both power demand and reserve fuzzy membership functions is then
determined to guide the solution. Thus the final schedule and the optimum solution
will take into consideration the uncertainties in the constraints of the unit commitment
problem. This way of solving the UC problem would be more appropriate and exact
though this article does not consider the uncertainties in the unit commitment problem
for the sake of the comparison of the final results of various techniques for combina-
torial problems.

4 Simulated Annealing Algorithm

SA models the process of annealing in solids. Kirkpatrick et al. [11] adopted the
idea of SA for solving difficult combinatorial problems. Essentially, the SA
method generates a sequence of solutions, which are successively modified until a
stopping criterion is satisfied. A temperature parameter is used to control the ac-
ceptance of modifications. Initially, the temperature is set to a high value and is
decreased over iterations. If the modified solution has better fitness value than the
current solution, it replaces the current solution. If the modified solution is less fit,
it is still retained as current solution but with a probability condition. As the algo-
rithm proceeds, the temperature becomes cooler, and it is then less likely to accept
deteriorated solutions.

In each iteration, the process of generating and testing a new trial solution is re-
peated for a specified number of trials, to establish the 'thermal equilibrium'. The last
of the accepted solution becomes the initial solution for the next iteration, after the
temperature is reduced, according to the 'annealing schedule'. Thus the main features
of the SA process are: the transition mechanism; and the cooling scheme. The transi-
tion mechanism consists of three components [7]:

(a) Generation of candidate solution by perturbing the current solution accord-
ing to a probabilistic distribution function.

(b) Acceptance test for the solution based on better objective values or a prob-
ability of acceptance in case of higher values

(c) Iterative procedure.

In the last component, the first and the second components are used to produce a
chain of tested candidate solutions. The last accepted solution becomes the initial
solution of the next iteration. The way by which the control temperature parameter is
reduced is called the cooling schedule. Optimal choice of this parameter is very criti-
cal to the success of the SA method [7].

 An Improved Simulated Annealing Method for the Combinatorial Sub-problem 239

5 Proposed SA Based UC Solution Methodology

The following steps enumerate the algorithm for the SA based UC problem. As dis-
cussed previously, the EDP sub-problem will be solved using the SQP [12] technique.

Step 1: Get the system data

Step 2: Initialise the temperature
o

k TT = , and set the iteration counter k=0.

 Where, oT is the initial temperature.
Step 3: Randomly generate an initial feasible commitment schedule, and evaluate
 (solve the economic dispatch problem using SQP) its cost function (Eqn.(1)),

 Set this schedule as current schedule CUC , with cost value CFS .

Step 4: Find the neighbourhood trial feasible schedule PUC by randomly perturbing

 the current schedule, and evaluate its cost function, and assign it as PFS .

Step 5: Perform the acceptance test:

 (a) If CP FSFS < , corresponding commitment schedule is accepted and

 set PC UCUC = and also PC FSFS =

 (b) Else if)1,0(]/)exp[(randTFSFS kPC ≥− the commitment schedule is

 accepted and set PC UCUC = and PC FSFS =

 (c) Otherwise reject the trial schedule PUC

Step 6: If the equilibrium condition (the specified number of iterations at kT is com-

 pleted) is satisfied, go to Step 7. Otherwise go to Step 4.

Step 7: If kT reaches below the final temperature, exit. Otherwise Set k = k +1, up

 date temperature
ok

k TT τ= and go to Step 3, where 10 << τ .

5.1 Improved Random Perturbation (IRP) of the Current Schedule

The algorithm begins with a randomly generated feasible commitment schedule

CUC (a commitment schedule denotes the ON/OFF status of the N units over the H
hours) as the current schedule. Then a trial feasible schedule is generated by random
perturbation of the current schedule. A feasible schedule is the one, which satisfies the
constraints given by Eqns. (5-9). The random perturbation scheme proposed in this
article is a modification of the one proposed by Mantawy et. al. [6].

Mantawy et.al, perturbed the current schedule as follows. Given a current feasible
schedule, randomly select a generating unit i, and an hour t. The current schedule is
examined to find the state of generating unit i, at hour t. If the selected unit is OFF
during t and if the OFF interval (the length of this interval is found by moving for-

ward and backward around t), iToff is equal to iTdown , then change the status of that

240 T.A.A. Victoire and A.E. Jeyakumar

unit to ON over the entire iToff interval. If ii TdownToff > , then there is a flexibility

in determining the number of hours,Tch for which the status shall be changed. In [7],
Purushothama et.al, suggested an option to select, changing the status at either the
beginning or at the end of the interval iToff .

In this article, the modification proposed is as follows.

Let, iTdownTrTch += (10),

Where,),0(ii TdownToffUDTr −= (11)

Instead of selecting a singleTch (17) corresponding to a singleTr (11) using, it is
suggested to select all possible

ii TdownToffTr −= ,...2,1,0 . From which the best fea-

sible schedule (commitment schedule) is chosen as the next feasible neighbourhood
trial schedule. The following steps enumerate this for finalizing a schedule.

Step I : Identify all feasible commitment schedules from all
ii TdownToffTr −= ,...2,1,0 .

Step II : Find the corresponding cost value by evaluating the cost function of all the
feasible schedules obtained in Step I.

Step III: Find the best commitment schedule PUC corresponding to the best cost

value from all the cost values in Step II.

The best commitment schedule PUC of Step III above is the neighbourhood trial

schedule of the current schedule CUC .

A CBUC problem with 3-units, expected to meet a 12 hours power demand pat-
tern is used to demonstrate the performance of the proposed IRP scheme over the
other two perturbation schemes proposed in [6,7]. The data for this test system is
adopted from [1]. Table 1(a) shows a feasible commitment schedule for this system

and taken as the current schedule CUC and a cost value CFS of $75282. Random

perturbation of this solution starts randomly with unit 3 at the 9th hour.
Here 33 =Tdown also 5)1812(=+−=iToff therefore, iTch can either take 3 or 4

or 5. Using the random perturbation (RP) scheme of [6] let the random value
of 1=Tr . For this value, Table 1(b) shows the commitment schedule generated using

the RP scheme proposed in [6] and cost value CFS is $73460. This commitment

schedule is also valid for the RP scheme proposed in [7], since the option of changing
the status at the end of the interval will result an infeasible commitment schedule. For
this schedule Now using the IRP scheme, instead of choosing randomly a singleTr ,
all values of Tr are checked before concluding the next trial schedule. Thereby

for 2=Tr the cost value CFS is $72992, which is better, compared to the cost value

of RP scheme and the schedule is also feasible. Table 1(c) shows the final commit-
ment schedule using the proposed random perturbation (IRP) scheme. This schedule
is finalized as the next trial feasible schedule for the SA method. This commitment
schedule would have been possibly generated by the RP schemes proposed in [6 or 7],

 An Improved Simulated Annealing Method for the Combinatorial Sub-problem 241

but the success probability is only 33.33%. Thus the proposed IRP scheme, much
more effectively explores the solution space around the current solution compared
with that was possible with the other two RP schemes.

If the randomly selected unit is ON at t, replaceTdown to Tup &Toff toTon in

the above procedure and may be proceeded.

Table 1. Commitment schedules of the 3 unit system to illustrate the performance of the
proposed perturbation scheme

(a)
Hour 1 2 3 4 5 6 7 8 9 10 11 12
Unit 1 0 100 100 120 300 450 500 400 250 100 100 150

Unit 2 100 150 300 400 400 400 400 400 400 230 300 400

Unit 3 70 0 0 0 0 200 200 0 0 0 0 0

(b)

Hour 1 2 3 4 5 6 7 8 9 10 11 12
Unit 1 0 100 100 120 300 450 500 200 100 100 100 150

Unit 2 100 150 300 400 400 400 400 400 350 100 100 400

Unit 3 70 0 0 0 0 200 200 200 200 130 200 0

(c)

Hour 1 2 3 4 5 6 7 8 9 10 11 12
Unit 1 0 100 100 120 300 450 500 200 100 100 100 100

Unit 2 100 150 300 400 400 400 400 400 350 100 100 250

Unit 3 70 0 0 0 0 200 200 200 200 130 200 200

5.2 Generating the Initial Feasible Commitment Schedule

A simple procedure for generating initial feasible schedule for the SA method is as
follows,

Step a: Identify the must-not-run units from the initial status of the units, prior to
scheduling. If there are no must-not-run units, go to Step b: else go to Step c:

Step b: If minminmaxmax & DPCDPC ≤≥ , switch ON all the N units for all H

hours and exit.

Step c: If minminmaxmax & DPCDPC mm ≤≥ , switch ON all the N units (excluding the

must-not-run units) for all H hours and exit.

242 T.A.A. Victoire and A.E. Jeyakumar

Where, ∑
=

=
N

i
iPPC

1
maxmax , ∑

=

=
N

i
iPPC

1
minmin ,

∑
≠
=

=
N

NRUi
i

i
m PPC

1
maxmax , ∑

≠
=

=
N

NRUi
i

i
m PPC

1
minmin

maxD / minD is the maximum/minimum power demand in the scheduling horizon.

NRU is the index of must-not-run units at hour t, so that at hour t, the maximum
number of the units are kept must-not-run.

This approach is validated from the experiments conducted to generate initial fea-
sible schedule on several UC problems available in ref of [3]. If this way of generat-
ing initial feasible schedule is not possible for any UC problem, then the technique
proposed by Mantawy et al [6], is suggested. The above procedure is for generating
initial feasible commitment schedule for CBUC problem. For generating initial feasi-
ble commitment schedule for PBUC problem, following modifications are made on
the above procedure. Identify the must-run units from the initial status of the units,
prior to scheduling. Switch ON those must-run units and switch OFF all other units.

6 Numerical Results

The proposed technique has been implemented in MATLAB on a 933 MHz Pentium
PC. The performance of the algorithm has been evaluated through simulation. Simula-
tion studies have been carried out on a example system, over a scheduling time hori-
zon of 24 hours. The example system has 10 units and is taken from [10].
 Hereinafter, SA-RP based technique is referred to the technique proposed in [6] and
SA-IRP based technique is referred to the proposed technique of this article. After
performing several trial experiments using the proposed technique for the UC prob-
lems of this article, the following control parameters are found to be most fit for the
SA method. Initial temperature: 700, Final temperature: .001, equilibrium condition:
30 and 97.0=τ . These values are also used for the SA-RP based technique for
comparison purpose. Since the prime emphasis of this article is to compare the per-
formance and solutions obtained using the proposed technique (SA-IRP based tech-
nique) with that of the SA-RP based technique, the proposed UC problem formulation
does not include the ramp rate limit and security constraints.

To validate the robustness of the solution procedure, 30 different trial runs were
conducted. In each run, the control parameters remained the same. To compare the
performance of the SA method with IRP (SA-IRP) scheme with that of the RP
scheme of [6], this approach is also coded in MATLAB and tested for 30 different
trial runs. All simulation results represent the average of 30 trial runs.

In addition the GA approach reported in [4] is also coded in MATLAB and used
to solve the PBUC problem for 30 different trial runs. The simulation parameters for
GA are population size 100, Probability of crossover 0.8, probability of mutation
0.001 and Maximum number of generations 500.

 An Improved Simulated Annealing Method for the Combinatorial Sub-problem 243

Based on market’s forecasted information, the proposed technique considers both
power and reserve generation at the same time. The system data is available in [10]
and had previously been solved using the EP-LR method [10]. The final results show
that the profit using the proposed technique is $113134 compared to $112819 of EP-
LR method, $110633 of SA-RP based technique and $111035 of GA method. The
final commitment schedule using the proposed technique is shown in Table 2.

As can be seen from the above final solutions the proposed IRP scheme enhances
the performance of the SA method. Also the minimum operators of SA compared to
the GA make it easy to implement. In GA the initialization of initial population are
very difficult and tedious, also repairing mechanisms leads it further cumbersome of
the simulation. Thus the SA approach in total is robust and simple compared to the
GA method for the Unit commitment problems.

Table 2. Final commitment schedule for example sytsem using the proposed technique

 Hr Unit power output (MW) Unit reserve output (MW)
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1 455 245 0 0 0 0 0 0 0 0 0 70 0 0 0 0 0 0 0 0

2 455 295 0 0 0 0 0 0 0 0 0 75 0 0 0 0 0 0 0 0

3 455 395 0 0 0 0 0 0 0 0 0 60 0 0 0 0 0 0 0 0

4 455 455 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 455 455 0 0 62 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0

6 455 455 0 130 52 0 0 0 0 0 0 0 0 0 110 0 0 0 0 0

7 455 455 0 130 47 0 0 0 0 0 0 0 0 0 115 0 0 0 0 0

8 455 455 0 130 42 0 0 0 0 0 0 0 0 0 120 0 0 0 0 0

9 455 455 130 130 32 0 0 0 0 0 0 0 0 0 130 0 0 0 0 0

10 455 455 130 130 162 64 0 0 0 0 0 0 0 0 0 16 0 0 0 0

11 455 455 130 130 162 80 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 455 455 130 130 162 80 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 455 455 130 130 25 0 0 0 0 0 0 0 0 0 137 0 0 0 0 0

14 455 455 130 130 32 0 0 0 0 0 0 0 0 0 130 0 0 0 0 0

15 455 455 130 130 30 0 0 0 0 0 0 0 0 0 120 0 0 0 0 0

16 455 455 0 0 57 0 0 0 0 0 0 0 0 0 105 0 0 0 0 0

17 455 455 0 0 62 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0

18 455 455 0 0 52 0 0 0 0 0 0 0 0 0 110 0 0 0 0 0

19 455 455 0 0 42 0 0 0 0 0 0 0 0 0 120 0 0 0 0 0

20 455 455 0 0 25 0 0 0 0 0 0 0 0 0 137 0 0 0 0 0

21 455 455 0 0 32 0 0 0 0 0 0 0 0 0 130 0 0 0 0 0

22 455 455 0 0 52 0 0 0 0 0 0 0 0 0 110 0 0 0 0 0

23 455 445 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0

24 455 345 0 0 0 0 0 0 0 0 0 80 0 0 0 0 0 0 0 0

244 T.A.A. Victoire and A.E. Jeyakumar

To investigate the scalability of the proposed technique, simulations on 10-, 20-,
40-, 60-, 80- and 100- unit systems had been carried out. The larger systems are
obtained by an appropriate scaling of the 10-unit systems. To obtain the 20-unit test
system, each of the 10 units was duplicated, and the power demand at each hour
was doubled. Although such duplication does not create the true diversity of a typi-
cal large system, it is believed that this approach does demonstrate scalability of the
technique [7], which is not influenced by any pair of units being identical to one
another. The simulation parameters are kept as same for all these simulations. For
each case, 30 trial runs are taken, and observed that, even the mean cost of SA-IRP
based method is better compared to the best cost of SA-RP based method and GA
based method.

Here are some comments on the SA approach of proposed by Mantawy et.al, and
the proposed SA approach. The proposed approach needs less transactions per tem-
perature compared to the Mantawy et.al, approach. This further leads to quick con-
vergence of the solution procedure.

As the execution times are platform dependent, the simulation times are not di-
rectly compared. However, due to the increased rate of convergence at each tempera-
ture of the SA algorithm with an IRP scheme, fewer function evaluation (transitions)
are required to reach the thermal equilibrium, and there is a significant reduction in
time overhead. The proposed technique require more simulation time when compared
with the LR method, for all example systems, due to the nature of the basic SA tech-
nique, but this is acceptable, as there is an improvement in the quality of the solution
produced. In the two SA techniques, the simulation taken by the SA-IRP technique is
less. Further reduction in simulation time can be achieved by parallel coding of the
approach. Research for inclusion of uncertainties in the unit commitment problem
using the fuzzy logic approach and inclusion of other practical constraints is under-
way and the simulation and analysis results for the unit commitment problem will be
presented in another article.

 Conclusion

An improved SA technique for solving the UC problem is presented. An IRP scheme
and a simple procedure for generating initial feasible commitment schedule are
proposed for the SA method. Proposed improved random perturbation for the SA
method scheme effectively generates feasible schedules for the UC problems. The
nonlinear programming sub-problem is solved using the SQP technique. A PBUC
problem is solved to demonstrate the validity and effectiveness of the proposed
technique. Comprehensive numerical results show the applicability of the proposed
technique for combinatorial part of UC problem in the real-time operation of electric
power systems.

Reference

1. A.J. Wood, B.F. Wollenberg, Power Generation, Operation, & Control, Wiley, NY, 1984.
2. G.B. Sheble, T.T. Maifeld, Unit commitment by genetic algorithm and expert system’,

Electr. Power Syst. Res. 30 (1994) 115-121.

7

s

 An Improved Simulated Annealing Method for the Combinatorial Sub-problem 245

3. H.Y. Yamin, Review on methods of generation scheduling in electric power systems,
Electr. Power Syst. Res. 69 (2004) 227-248.

4. S.O. Orero, M.R Irving, A genetic algorithm for generator scheduling in power systems,
Electr. Power Energy Syst. 18 (1) (1996) 19–26.

5. K.A. Juste, H. Kita, E. Tanaka, J. Hasegawa, An evolutionary programming solution to the
unit commitment problem, IEEE Trans. Power Syst. 14 (1999) 1452–1459.

6. A.H. Mantawy, Y.L. Abdel-Magid, S.Z. Selim, A simulated annealing algorithm for unit
commitment, IEEE Trans. Power Systems, 9 (1) (1998) 197–204.

7. G.K. Purushothama, U.A. Narendranath, L. Jenkins, Unit commitment using a stochastic
extended neighbour hood search, IEE Proc., Gener. Transm. Distrib., 150, (2003) 67-72.

8. E.H. Allen, M.D. Ilic, Reserve markets for power systems reliability, IEEE Trans. Power
Syst., 15 (1) (2000) 228–233.

9. S.M. Shahidehpour, H.Y. Yamin, Z. Li, Market Operations in Electric Power Systems,
Wiley, February 2002.

10. A. Pathom, H. Kita, E. Tanaka, J. Hasegawa, A Hybrid LR–EP for New Profit-Based UC
Problem Under Competitive Environment, IEEE Trans. Power Syst., 18 (2003) 229–237.

11. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing. Science,
1983, 220 (4598), 671-680.

12. P.T. Boggs, J.W. Tolle, Sequential Quadratic Programming, Acta Numerica, (1995) 1–52.

G.R. Raidl and J. Gottlieb (Eds.): EvoCOP 2005, LNCS 3448, pp. 246 – 259, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A New Hybrid GA/SA Algorithm for the Job Shop
Scheduling Problem

Chaoyong Zhang, Peigen Li, Yunqing Rao, and Shuxia Li

School of Mechanical Science & Engineering, Huazhong University of
Science & Technology, Wuhan, 430074, P.R. China

zcyhust@sohu.com

Abstract. Among the modern heuristic methods, simulated annealing (SA) and
genetic algorithms (GA) represent powerful combinatorial optimization
methods with complementary strengths and weaknesses. Borrowing from the
respective advantages of the two paradigms, an effective combination of GA
and SA, called Genetic Simulated Algorithm (GASA), is developed to solve the
job shop scheduling problem (JSP). This new algorithm incorporates metropolis
acceptance criterion into crossover operator, which could maintain the good
characteristics of the previous generation and reduce the disruptive effects of
genetic operators. Furthermore, we present two novel features for this algorithm
to solve JSP. Firstly, a new full active schedule (FAS) based on the operation-
based representation is presented to construct schedule, which can further
reduce the search space. Secondly, we propose a new crossover operator,
named Precedence Operation Crossover (POX), for the operation-based
representation. The approach is tested on a set of standard instances and
compared with other approaches. The Simulation results validate the
effectiveness of the proposed algorithm.

Keywords: Genetic Algorithm, Simulated Annealing, Crossover, Local Search.

1 Introduction

The job shop scheduling problem (JSP) is a well-known NP-hard problem of combi-
natorial optimization and has a very wide engineering background. The general JSP
can be described as follows: given n jobs, each composed of several operations that
must be processed on m machines. Each operation uses one of the m machines for a
fixed duration. Each machine can process at most one operation at a time and once an
operation initiates processing on a given machine it must complete processing on that
machine without interruption. The operations of a given job have to be processed in a
given order. The problem consists in finding a schedule of the operations on the
machines, taking into account the precedence constraints, which minimizes the
makespan, i.e. the finish time of the last operation completed in the schedule.

JSP is also known to be a very difficult combinatorial optimization problem such
that some test problems of moderate size are still unsolved. During the last three

 A New Hybrid GA/SA Algorithm for the Job Shop Scheduling Problem 247

decades, the approaches proposed to solve the scheduling problem can be divided into
two categories: exact methods and approximation algorithms. Exact methods, such as
Branch and Bound, Linear Programming, Lagrangian Relaxation and Decomposition
methods, have been successful in solving small instances, including the notorious
10×10 instance of Fisher and Thompson proposed in 1963 and only solved twenty
years later. But for the big instances there is a need for approximation algorithms that
include priority dispatch, shifting bottleneck approach, heuristic methods and so on.
In recent years, hybridizing the modern heuristic methods, such as Genetic Algorithm
(GA) [1-2-3], Simulated Annealing (SA) [4-5], Tabu Search (TS) [6-7], has been
captured many researchers attention, because they are able to attain high-quality solu-
tions within reasonable computational times. A comprehensive survey of job shop
scheduling techniques can be found in [8-9].

Among the modern heuristic methods, GA and SA represent powerful combinato-
rial optimization methods with complementary strengths and weaknesses. GA exhib-
its implicit parallelism and can retain useful redundant information about what is
learned from previous searches by its representation in individuals in the population.
But GA is also prone to loss of solutions and theirs substructures due to the disrup-
tive effects of genetic operators and suffers from poor convergence properties [10].
By contrast to GA, SA is a naturally serial algorithm and currently possesses a for-
mal proof of convergence, but its behavior can be controlled by the cooling schedule.
Since SA maintains only one solution at a time, whenever it accepts a new structure,
it must discard the old one, so there is no redundancy and no history of past struc-
tures. The end result is that good structures and substructures can be discarded [11].
Moreover, it has been demonstrated that SA and GA, especially SA, are very sensi-
tive to parameters and their performances are largely dependent on fine-tuning of the
parameters [12]. How to set optimal parameters and efficiently find global optima
are still open problems. In recent years, by reasonably combining the respective
advantages of the two paradigms, researchers have been investigating hybrid algo-
rithms that attempt to mix GA and SA techniques and presented several hybrid
frameworks [11-12-13-14]. Those previous SA/GA hybrid frameworks benefit from
closer resemblance to SA than to the GA. In this paper, we develop a new hybrid
genetic algorithm GASA, which most closely resembles GA, and investigate its
potential on solving JSP.

The organization of remain contents is as follows. In Section 2, the framework of
GA and SA is presented. In Section 3, a new type of schedule, full active schedule, is
proposed. In Section 4, we present our approach to solve the job shop scheduling
problem: the encoding, decoding scheme, schedule generation procedure and new
genetic operators. Section 5 reports the computational results and simulation. The
conclusions are made in Section 6.

2 Hybrid GASA Methods

Genetic algorithms and simulated annealing are similar, natural motivated, general
purpose optimization procedures [15]. The GA is based on the survival of the fittest
and involves some selection, crossover and mutation. A GA exhibits parallelism,

248 C. Zhang et al.

contains certain redundancy and historical information of past solutions, and is suit-
able for implementation on massively parallel architecture. Critical components of
past good solutions can be captured, which can be combined together via crossover to
form high quality solutions. Unfortunately, GA is also prone to loss of solutions and
theirs substructures due to the disruptive effects of genetic operators. This is because
new solutions produced by the genetic operators are always accepted, even if they are
significantly inferior to older solutions. This characteristic can lead to disruption,
where good solutions are lost or damaged, so that a pure GA may easily produce
premature convergence and poor results. By contrast to GA, SA possesses good con-
vergence property and the ability to probabilistically escape from local optima; it
accepts or rejects the newly generated candidate solution probabilistically by the Me-
tropolis acceptance criterion, where inferior candidate can be accepted some of the
time. By exploiting the efficient parallelization of the GA and the convergence control
of SA, the new hybrid GA/SA algorithm (GASA), which incorporates metropolis
acceptance criterion into crossover operator, is proposed with the framework illus-
trated in Fig.1.

In contrast to a general genetic algorithm, the GASA has superior features. First,
this new algorithm incorporates metropolis acceptance criterion into crossover opera-
tor, which motivated by both empirical and analytical evidence (Goldberg [15]) that
the distribution of population members over time is nearly Boltzmann. If the fitness
ftemp1, ftemp2 of the individual temp, temp2 which is generated by two parent satisfy
ftempi<favg or probability exp(ftempi -favg)/T (i=1,2), then the solution tempi is accepted.
Otherwise crossover continues until the two children are updated. The two unequal
best individuals in these children are selected to next generation. This approach could
maintain the good characteristics of the previous generation and reduce the disruptive
effects of genetic operators. Secondly, a novel approach of crossover rate is proposed
and replaces the general crossover rate. If the fitness fP1, fP2 of individuals P1, P2
which select from the Pold is unequal, then implement the crossover operation. Other-
wise implement the mutation operation. This new method of crossover rate can vary
dynamically, adaptively in response to the state of premature convergence. For exam-
ple, at the beginning of the evolution period, the mutation rate is small; whereas at the
end of the convergence period, the mutation rate increases accordingly, so GA can
avoid premature convergence better, as well as to avoid the difficulty of choosing the
crossover rate. Our experimental results shown this new method could obtain better
results and reduce the search times. This novel method could also be used for the
general genetic algorithm. Thirdly, the schedule generation procedure is used for
constructing schedule, i.e., after a schedule is obtained a local search heuristic is ap-
plied to improve the solution. In addition, Temperature (favg/120) is adjusted to control
the number of the crossover times, at a high temperature, GA performs a course
search with the low number of the crossover times; while at a low temperature, SA
performs a fine search with the high the number of the crossover times. Moreover,
such hybrid framework can convert to traditional GA by omitting the SA unit.

Such hybrid algorithm retains the generality of GA, SA and can easily be imple-
mented and applied to any combinatorial optimization problems. For different prob-
lems, the representation scheme, optimization operators and parameters should be
designed suitably. In the next sections, we will explore the potential of such hybrid
GASA optimization strategy to JSP.

 A New Hybrid GA/SA Algorithm for the Job Shop Scheduling Problem 249

Begin

 Initialize population randomly with Psize individual;

Evaluate the initial population with the Schedule Generation Procedure;

While stopping criteria not satisfied Repeat

{

Reproduce the 10% elite individuals from Pold to Pnew;

Select a pair of individuals P1, P2 from the Pold, which the fitness is fP1, fP2

respectively.

 UpdateChildi = False;(i = 1,2)

If (fP1 != fP2)

{

Do {

Implement crossover operation and generate two children individual

temp1, temp2, then calculate fitness ftemp1, ftemp2 with the Schedule

Generation Procedure. favg is the average fitness of this generation.

Set the temperature T is favg /120;

 if (ftempi<favg || exp(ftempi -favg)/T > random[0,1]) i=1,2;

{ UpdateChildi = True; }

Select two unequal best individuals in these children to next generation.

}Until(UpdateChild1 || UpdateChild2)

}

else

{ Mutation the chosen pair of individuals by the probability of Pm . }

}

End

Fig. 1. The outline of the hybrid GASA

3 Types of Schedules

In general, schedule can be classified into three types: semi-active schedule, active
schedule and non-delay schedule. The set of active schedules is a subset of semi-active
schedules, which can be obtained by shifting the operation of a semi-active schedule to
the left without delaying other jobs. A schedule with no more permissible left shifts is
called an active schedule. An optimal schedule must be an active schedule, so it is safe
and efficient to limit the search space to the set of all active schedules.

250 C. Zhang et al.

Table 1. A sample 2×2 problem

Although repairing a semi-active schedule to the active one improves the
makespan, the set of active schedules is usually very large and contain many sched-
ules with relatively large delay times. The simple 2×2 problem described in Table 1 is
taken for example. Fig.2 (a) shows an active solution of this problem. Fig.2 (b) is
attained by shifting the operation (J1, 1) to the right of the operation (J2, 1) in M2
(machine2). It can be seen from Fig.2 that sometimes there are obvious improvements
that can be attained by right shift the operation of the active schedule.

Fig. 2. Permissible right shift for an active schedule

Fig. 3. Full active schedules

This paper proposes a new type of schedule—Full Active Schedule (FAS). A FAS
can be obtained by shifting operations of an active schedule to the right without de-
laying other jobs (The example can be seen from Fig. 2). So the full active schedule
can be defined as a schedule with no more permissible left and right shifts. The set of

 A New Hybrid GA/SA Algorithm for the Job Shop Scheduling Problem 251

full active schedules is a subset of active schedules. Fig. 3 illustrates where the set of
full active schedules is, A full active schedule generator procedure based the opera-
tion-based representation is proposed in section 4.1. Using the FAS set, we can fur-
ther reduce the search space and get better optimal or near optimal schedule.

4 Hybrids GASA for JSP

4.1 Schedule Generator Procedure

4.1.1 Representation
The genetic algorithm described in this paper uses an operation-based representation
that uses an unpartitioned permutation with m-repetitions of job numbers [2-16-17].
In this representation, each job number occurs m times in the chromosome. By scan-
ning the chromosome from left to right the k-th occurrence of a job number refers to
the k-th operation in the technological sequence of this job. The important feature of
the operation-based representation is that any permutation of the chromosome can be
decoded to a feasible schedule.

Table 2. Example of 3×3 problem

Table 3. A 3×3 feasible solution

Consider the 3-job and 3-machine problem given in Table 2. Suppose a chromo-
some is given as [2 1 1 2 2 3 3 1 3]. Because each job consists of three operations, it
occurs exactly three times in the chromosome. The fourth gene of the chromosome in
this example is 2. Here, 2 represents the second operation of job 2 because number 2
has been repeated twice. A schedule is decoded from a chromosome with the
following procedure: the first operation in the list is scheduled firstly, then the second
operation, and so on. Each operation under treatment is allocated in the best available
processing time for the corresponding machine the operation requires. The process is

252 C. Zhang et al.

repeated until all operations are scheduled. A schedule generated by the procedure can
be guaranteed to be an active schedule [18]. Then, using the active-decoding process,
we can get the corresponding feasible solution shown in Table 2 and the active chro-
mosome [2 3 1 1 2 2 3 1 3]. The active chromosome and the feasible solution can be
converted into each other, however two or more different chromosomes can be de-
coded to an identical solution.

4.1.2 Schedule Generation Procedure
The objective of the schedule generation procedure is to improve the chromosome
and compute the corresponding makespan, which makes use of a full active schedule
generator procedure and a local search procedure and feedback of the makespan and
the corresponding full active chromosome.

The algorithm described in section 4.1.1 can generate an active schedule. Using
the same algorithm to this active schedule, a full active schedule can be attained with
only small modifications described as follows. By reversing the chromosome based
on the operation-based representation and all of the technological sequences, a given
schedule can be converted to another schedule. The new schedule is equivalent to the
original one with the same makespan (the same critical path) and the reversed chro-
mosome (reversing the job processing sequences in same machine). Through shifting
left all operations of the new schedule, we can obtain the makespan of the full active
schedule. Therefore the makespan and chromosome of a full active schedule can be
obtained by using the algorithms (in Section 4.1) to the reversed chromosome and the
reversed technological sequences of an active schedule.

 Fig. 4. The schedule generation procedure

 A New Hybrid GA/SA Algorithm for the Job Shop Scheduling Problem 253

Fig. 4 illustrates the steps of the schedule generation procedure applied to each
chromosome generated by the hybrid GASA. The schedule generation procedure
generates the active schedule and it’s full active schedule, and then applies the local
search to each of them to improve them. If the local search improves the makespan,
the schedule generation procedure continuously generates the full active schedule and
applies the local search to improve it. Otherwise, Improvement of the chromosome
(or schedule) ends, and we obtain the makespan and the corresponding full active
chromosome for the evolutionary process. A local search procedure is introduced in
the next section.

4.1.3 Local Search Procedure
A neighborhood, N(x) is a function which defines a simple transition from a solution x
to another solution by inducing a change that typically may be viewed as a small
perturbation [19]. The objective of these strategies is to progressively perturb the
current configuration through a succession of neighbors in order to direct the search to
an improved solution.

For the JSP, a key component of a solution is the critical path, which is the longest
route from source to sink in the disjunctive graph. It is possible to decompose the
critical path into a number of blocks where a block is a maximal sequence of adjacent
critical operations that require the same machine. Because the permutation of non-
critical operation cannot improve the objective function and may create an infeasible
solution, an efficient method can be obtained by introducing a transition operator that
exchanges a pair of consecutive operations only on the critical path and forms a
neighborhood.

Fig. 5. Permutation of operations on a critical path

In this paper, we focus particularly on the neighborhood of Nowicki and Smutnicki
(1996), which is noted for proposing and implementing the most restrictive neighbor-
hood in the literature. In the approach only a single arbitrary critical path is generated,
but our approach generates all critical paths. The critical path thus gives rise to the
following neighborhood of moves (see Fig. 5). The local search used in this paper is
the standard hill climbing. If the swap improves the makespan, it is accepted. Other-
wise, the swap is undone. Once a swap is accepted, the critical path is changed and a
new critical path must be identified. If no swap of the first or the last operations in
any block of critical path improves the makespan, the local search ends [20].

254 C. Zhang et al.

4.2 Crossover Operation

Crossover can be regarded as the backbone of the genetic algorithm. It intends to
inherit the information of two parent solutions to one or more offspring solutions. To
apply crossover operation successfully to the JSP, the following criteria should be
satisfied: completeness, feasibility, non-redundancy and characteristics- preserving-
ness [21]. In this paper, a new crossover operator named Precedence Operation Cross-
over (POX) is proposed for the operation-based representation, which can satisfy the
characteristics-preservingness, completeness and the feasibility properly between
parents and their children.

The effective crossover operator proposed in this paper is described as follows.
Given chromosome, parent1 and parent2, POX generates the children, child1 and
child2 by the following procedure:

(1) Randomly choose the set of job numbers, {1, 2… n}, into one nonempty ex-
clusive subset J1.

(2) Copy those numbers in J1 from parent1 to child1 and from parent2 to child2,
preserving their locus.

(3) Copy those numbers in J1, which are not copied at step 2, from parent2 to
child1 and from parent1 to child2, preserving their order.

Fig. 6. POX crossover

Fig. 6 shows an example of the precedence operation crossover (POX) of the 3×3
problem; the locus of job {2} is preserved. The crossover of parent1 and parent2
generates two children chromosomes, child1 {1 2 2 2 1 3 1 3 3} and child2 {3 3 1 2 2
1 2 1 3}. It can be seen that child1 preserves the locus and order of job {2} in parent1
and the order of job {1, 3} in parent2 respectively, and child2 preserves the locus and
order of job {2} in parent2 and the order of job {1, 3} in parent1 respectively. There-
fore POX is excellent in the characteristics-preservingness.

4.3 Mutation Operation

Mutation is just used to produce perturbations on chromosomes in order to maintain
the diversity of population. In this paper, an insertion mutation is introduced, which is
used not only to produce small perturbations but also to perform intensive search. The
insertion mutation is described as follows: select two positions randomly within the

 A New Hybrid GA/SA Algorithm for the Job Shop Scheduling Problem 255

chromosome and insert the back one before the front one, implements the procedure
the number of jobs times and chooses the best one (except the parent chromosome) to
the next generation.

4.4 Selection and Reproduction

In the GA application, it is necessary to define an evaluation function, which deter-
mines the probability of survival of an individual to the next generation. In this paper,
an individual chromosome x is assigned to the fitness value:

int;_))(_()(samllxnesscurrentfitfitnessworstxFitness +−=

Here, worst_fitness is the fitness of the schedule produced from the worst chromo-
some in the current generation. Currentfitness(x) is the fitness of the schedule gener-
ated from the chromosome x by the schedule generation procedure, and small_int
means the lowest fitness and it is a fixed parameter based on the instance size.

Roulette wheel selection incorporating elitist strategy is used to generate a new
population for the next generation. In this paper, the elitist strategy is accomplished
by copying the top 10% from the previous population chromosomes to the next
generation. The advantage of an elitist strategy over the traditional probabilistic
reproduction is that the best solution is monotonically improving from one genera-
tion to the next. The potential problem in this way is population convergence to a
local minimum. However, this can be overcome by the new crossover rate proposed
in our paper.

5 Computational Results and Simulation

To illustrate the effectiveness and the performance of the algorithm described in this
paper, we consider instances from three classes of standard JSP test problems: Fischer
and Thompson (1963) instances FT06, FT10, FT20, Lawrence (1984) instances
LA01-LA40 and Adams et al (1988) instances ABZ7- ABZ9. Here, we regard FT06,
LA01, LA06, LA11 and so on as easy problems, because they can be easily solved by
many methods. So we don’t consider those problems. All test instances were
downloaded from Beasley's OR-Library, http://mscmga.ms.ic.ac.uk.

The proposed algorithm is compared with the following algorithms:

Hybrid SA/GA (PRSA)(SAGen) M. Kolonko(1999)[22]
Tabu Search (TSAB) Nowicki and Smutnicki (1996)[7]
Tabu Search method guided by
shifting bottleneck (TSSB)

Ferdinando Pezzella and Emanuela
Merelli(2000)[23]

The Hybrid GASA Algorithm for JSP mentioned above was implemented in
Visual C++ and the tests were run on a computer with Pentium 1.6G and 256M
RAM. In our experiments, if the number of operations in the problem is less than or

256 C. Zhang et al.

equal to 100, population size is 200. Otherwise population size is 300. The top 10%
elite solutions from the old population chromosomes are copied to the next genera-
tion; the mutation rate (Pm in Fig.1) is 0.8. The algorithm was terminated when an
optimal solution was found or after 60-100 generations of the algorithm.

Table 4. Results of the fifteen tough problems

Prob

Size

LB

GASA

Best

GASA

Average

GASA(s)

AVGTime

SAGen

TSAB

TSSB

FT10 10 10 930 930* 930 18.7 930 930 930

FT20 20 5 1165 1165* 1166.3 29.8 1165 1165 1165

LA21 15 10 1046 1046* 1052.6 259.8 1047 1047 1046

LA24 15 10 935 935* 941.5 278.4 938 939 938

LA25 15 10 977 977* 980.8 203.8 977 977 979

LA27 20 10 1235 1235* 1254.2 553.2 1236 1236 1235

LA29 20 10 1157 1164 1176.1 557.4 1167 1160 1168

LA36 15 15 1268 1274 1282 397.9 1268 1268 1268

LA37 15 15 1397 1397 1402.3 406.8 1401 1407 1411

LA38 15 15 1196 1196 1202.6 530.8 1201 1196 1201

LA39 15 15 1233 1238 1239.8 514.6 1233 1240

LA40 15 15 1222 1224 1233.2 463.3 1226 1229 1233

ABZ7 20 15 656 666 673.9 1195.6 658 670 666

ABZ 8 20 15 665(645) 675 684.5 1461.7 670 682 678

ABZ 9 20 15 679(661) 681 687.1 1281.4 695 693

*The optimal solutions were found by our algorithm.

The GASA finds the optimal solutions for the ft10 problems almost every time in
less than half minute on average. Table 4 shows the makespan performance statistics
of the hybrid GASA for the fifteen difficult benchmark problems. It lists problem
name, problem dimension (number of jobs × number of operations), the best-known
lower bound (LB), and the solution obtained by our algorithm (GASA) including best
solution, the average value and the average time and the solution by each of the other
algorithms. In the table, the columns named best, average and average time values are
obtained over 10 runs respectively. Optimal solutions were found for eight out of the
fifteen difficult problems. The GASA compared with the other famous algorithm
(SAGen, TSAB and TASB). The computation results validate the effectiveness and
robustness of the proposed algorithm. Fig. 7 shows the optimal solution of the La27
20×10 problem that is one of the hardest problems.

 A New Hybrid GA/SA Algorithm for the Job Shop Scheduling Problem 257

Fig. 7. The optimal solution of the La27 20×10 problem

6 Conclusions

This paper describes a hybrid algorithm (GASA) combining simulated annealing and
local search with genetic algorithm for the JSP. By reasonably combining the advan-
tage aspects of these global probabilistic search algorithms, the hybrid framework of
GA and SA can achieve more efficient optimization results and relax the parameter
dependence to some extent. The chromosome representation of Our GA is based on
the operation-based representation. A new type of schedule, full active schedule
(FAS), is presented to construct schedule. After a schedule is obtained, a local search
heuristic is applied to improve the solution. To preserve the characteristics properly, a
new crossover operator named Precedence Operation Crossover (POX) is proposed
for the operation-based representation. The approach is tested on a set of standard
instances and compared with the other approaches. The computational results show
the effectiveness and robustness of our algorithm. Further research is necessary to
reduce the computational time, which can be improved by integrating TS into the
algorithms.

Acknowledgements

This paper is supported by the National Natural Science Foundation, China (Grant
No. 50105006, 50305008). The authors would like to thank the referees for their help-
ful comments and suggestions.

258 C. Zhang et al.

References

1. Davis, L.: Job shop scheduling with genetic algorithms, in: Proceedings of the Interna-
tional Conference on Genetic Algorithms and their Applications. Hillsdale, Lawrence
Erlbaum (1985) 136–149

2. Bierwirth, C.: A generalized permutation approach to job shop scheduling with genetic
algorithms. OR Spektrum. 17 (1995) 87–92

3. Croce, F.D., Tadei, R., Volta, G.: A genetic algorithm for the job shop problem. Com-
puters & Operations Research. 22(1) (1995) 15-24

4. Laarhoven, P.V., Aarts, E., Lenstra, J.K.: Job shop scheduling by simulated annealing.
Operations Research. 40 (1) (1992) 113–125

5. Aarts, E.H.L., van Laarhoven, P.J.M., Lenstra, J.K., Ulder, N.L.J.: A computational study
of local search algorithms for Job Shop Scheduling. ORSA Journal on Computing. 6
(1994) 118-125

6. Taillard, E.D.: Parallel taboo search techniques for the job-shop scheduling problem.
ORSA J. on Comput. 6(2) (1994) 108–117

7. Nowicki, E., Smutnicki, C.: A fast taboo search algorithm for the job shop problem. Man-
agement Science. 42(6) (1996) 797–813

8. Jain, A.S., Meeran, S.: Deterministic job-shop scheduling: Past, present and future. Euro-
pean Journal of Operational Research .113 (1999) 390-434

9. Blazewicz, J., Domschke, W., Pesch, E.: The job shop scheduling problem: Conventional
and new solution techniques. European Journal of Operational Research. 93 (1996) 1-33

10. DeJong, K.A.: An analysis of the behavior of a class of genetic adaptive systems. Disserta-
tion Abstracts International 36(10) (1975),5140B(University Microfilms No.76-9381),
Ph.D. Thesis, University of Michigan, Ann Arbor

11. Mahfoud, S.W., Goldberg, D.E.: Parallel Recombinative Simulated Annealing:A Genetic
Algorithm. Parallel Computing. 21(1995) 1-28

12. Ingber, L., Rosen, B.: Genetic algorithms and very fast simulated reannealing: a compari-
son. Mathematical Computer Modeling. 16(11) (1992) 87-100

13. Brown, D.E., Huntley, C.L., Spillane, A.R.: A Parallel Genetic Heuristic for the Quadratic
Assignment Problem. in: Proceedings of the Third International Conference on Genetic
Algorithms. Fairfax, VA (1989) 406-415

14. Lin, F.T., Kao, C.Y., Hsu, C.C.: Incorporating Genetic Algorithms into Simulated Anneal-
ing. in: Proceeding of the Fourth International Symposium on Artificial Intelligence.
(1991) 290-297

15. Goldberg, D.E.: A note on Boltzmann tournament selection for genetic algorithms and
population-oriented simulated annealing. Complex Systems. 4 (1990) 445-460

16. Gen, M., Tsujimura Y., Kubota, E.: Solving Job-Shop Scheduling Problems by Genetic
Algorithm. in: Proceedings of the 1995 IEEE International Conference on Systems, Man,
and Cybernetics. Institute of Electrical and Electronics Engineers, Vancouver (1995)
1577-1582

17. Shi, G. Y., IIMA, H., Sannomiya, N.: A new encoding scheme for Job Shop problems by
Genetic Algorithm. in: Proceedings of the 35th Conference on Decision and Control.
Kobe, Japan (1996) 4395-4400

18. Cheng, R., Gen, M., Tsujimura, Y.: A tutorial survey of job-shop scheduling problems us-
ing genetic algorithms I. Representation. Computers and Industrial Engineering. 30 (9)
(1996) 83-97

19. F. Glover, and M. Laguna, Tabu Search. Kluwer Academic Publishers, Norwell, MA
(1997)

 A New Hybrid GA/SA Algorithm for the Job Shop Scheduling Problem 259

20. Gonçalves J. F.: A Hybrid Genetic Algorithm for the Job Shop Scheduling Problem.
AT&T Labs Research Technical Report TD-5EAL6J, September 2002

21. Kobayashi, S, Ono, I., Yamamura, M: An Efficient Genetic Algorithm for Job Shop
Scheduling Problems. in: Proceedings of the 6th International Conference on Genetic Al-
gorithms. (1995) 506-511

22. Kolonko, M.: Some new results on simulated annealing applied to the job shop scheduling
problem. European Journal of Operational Research. 113 (1999) 123-136

23. Pezzella F., Merelli, E.: A tabu search method guided by shifting bottleneck for the job
shop scheduling problem. European Journal of Operational Research. 120 (2000) 297-310

G.R. Raidl and J. Gottlieb (Eds.): EvoCOP 2005, LNCS 3448, pp. 260–269, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Agent Model for Binary Constraint
Satisfaction Problems

Weicai Zhong, Jing Liu, and Licheng Jiao

Institute of Intelligent Information Processing (224#),
Xidian University, Xi’an 710071, China

neouma@163.com

Abstract. With the intrinsic properties of constraint satisfaction problems
(CSPs) in mind, several behaviors are designed for agents by making use of the
ability of agents to sense and act on the environment. These behaviors are
controlled by means of evolution, so that multiagent evolutionary algorithm for
constraint satisfaction problems (MAEA-CSPs) results. To overcome the
disadvantages of the general encoding methods, the minimum conflict encoding
is also proposed. The experiments use 250 benchmark CSPs to test the
performance of MAEA-CSPs, and compare it with four well-defined algorithms.
The results show that MAEA-CSPs outperforms the other methods. In addition,
the effect of the parameters is analyzed systematically.

1 Introduction

A large number of problems coming from artificial intelligence as well as other areas of
computer science and engineering can be stated as Constraint Satisfaction Problems
(CSPs). Historically, CSPs have been approached from many angles by Evolutionary
Algorithms (EAs). Among the available methods, some ones put the emphasis on the
usage of heuristics, such as Glass-Box [1] and H-GA [2], while some others handle the
constraints by fitness function adaptation, such as SAW [3].

Agent-based computation has been studied for several years in the field of distributed
artificial intelligence. In this paper, with the intrinsic properties of CSPs in mind, several
behaviors are designed for agents. Furthermore, all such behaviors are controlled by
means of evolution, so that a new algorithm, multiagent evolutionary algorithm for
constraint satisfaction problems (MAEA-CSPs), results. In MAEA-CSPs, all agents live
in a latticelike environment. Making use of the designed behaviors, MAEA-CSPs realizes
the ability of agents to sense and act on the environment that they live in. During the
process of interacting with the environment and the other agents, each agent increases its
energy as much as possible, so that MAEA-CSPs can find solutions. Experimental results
show that MAEA-CSPs has a good performance.

2 Constraint Satisfaction Agents

The meaning of an agent is very comprehensive, and what an agent represents
depends on problems. In general, four elements should be defined when multiagent

 An Agent Model for Binary Constraint Satisfaction Problems 261

systems are used to solve problems. The first is the meaning and the purpose of each
agent. The second is the environment where all agents live. Since each agent has only
local perceptivity, so the third is the definition of the local environment. The last is
the behaviors that each agent can take to achieve its purpose [6].

2.1 CSPs

A CSP has three components [7]:

(1) A finite set of variables, x={x1, x2, …, xn};
(2) A domain set D, containing a finite and discrete domain for each variable:

D={D1, D2, …, Dn}, 1 2 | |{ , , , }, 1, 2, ,
ii i Dx D d d d i n∈ = = (1)

where | ⋅ | stands for the number of elements in the set;
(3) A constraint set, C={C1(x1), C2(x2), …, Cm(xm)}, where xi, i=1, 2, …, m is a subset

of x, and Ci(xi) denotes the values that the variables in xi cannot take
simultaneously.

Thus, the search space of a CSP, S, is a Cartesian product of the n sets of finite
domains, namely, S=D1×D2×…×Dn. A solution for a CSP, s=<x1, x2, …, xn>∈S, is an
assignment to all variables so that the values satisfy all constraints. Here is a example:

Example 1: A CSP is described as follows:

() () () (){
() () () ()

1 2 3

1 2 3

1 1 2 2 1 2 3 1 3 4 1 3

5 1 3 6 1 3 7 2 3 8 2 3

{ , , }

{ , , }, {1, 2, 3}, 1,2,3

{ , } 1,3 , { , } 3,3 , { , } 2,1 , { , } 2,3 ,

 { , } 3,1 , { , } 3,3 , { , } 1,1 , { , } 1,2 ,

i

x x x

D D D D i

C x x C x x C x x C x x

C x x C x x C x x C x x

=
= = =

= = = = =

= = = =

x

D

C

() () () }9 2 3 10 2 3 11 2 3 { , } 1,3 , { , } 2,1 , { , } 3,1C x x C x x C x x= = =

 (2)

All solutions for this CSP are <1, 2, 2>, <1, 2, 3>, <2, 2, 2>, <2, 3, 2>, and <3, 2, 2>.
2.2 Definition of constraint satisfaction agents
A constraint satisfaction agent (CSAgent) is defined as follows:
Definition 1: A constraint satisfaction agent, a, represents an element in the search

space, and its energy is equal to

∀ ∈a S , 1() (,)m
i iEnergy Cχ== −a a (3)

where
1 violates

(,)
0 otherwise

i
i

C
Cχ =

a
a . The goal of each CSAgent is to increase its

energy as much as possible, and it has some behaviors to achieve its goal.
When one uses EAs to solve problems, the search space must be encoded such that

individuals can be represented as a uniform form. For CSPs, an effective coding
method is a permutation coding with a corresponding decoder. For example, in [3],
each individual is represented as a permutation of the problem variables, and the
permutation is transformed to a partial instantiation by a simple decoder that considers

262 W. Zhong, J. Liu, and L. Jiao

the variables in the order they occur in the permutation and assigns the first possible
domain value to that variable. If no value is possible without introducing a constraint
violation, the variable is left uninstantiated. In what follows, we label this decoder as
Decoder1 and the set of permutations of the problem variables as P

xS .
Because Decoder1 uses a greedy algorithm, there exists a serious problem. That is,

for some CSPs, Decoder1 cannot decode any permutation to a solution, so the
algorithms based on Decoder1 cannot find solutions at all. Here is a simple example:

Example 2: The CSP is given in Example 1 and its P
xS is

{ }1 2 3 1 3 2 2 1 3 2 3 1 3 1 2 3 2 1, , , , , , , , , , , , , , , , ,P
x x x x x x x x x x x x x x x x x x x=S (4)

According to Decoder1, each element in P
xS can be transformed to a partial

instantiation of the variables, namely,

1 2 3 1 3 2 2 1 3

2 3 1 3 1 2 3 2 1

, , 1, 1, , , 1, 1, , , 1, 1,

, , 1, , 1 , , 1, 1, , , 1, , 1

x x x x x x x x x

x x x x x x x x x

→ ∗ → ∗ → ∗
→ ∗ → ∗ → ∗

 (5)

where the “∗ ” represents that the corresponding variable is left uninstantiated. As can
be seen, no element in P

xS can be transformed to a solution by Decoder1.
On the basis of Decoder1, we propose the minimum conflict encoding (MCE). In

MCE, each CSAgent is not only represented as an element in P
xS , but also an element

in S, so that we can design some behaviors to deal with the values of the variables
directly. Therefore, each CSAgent must record some information, and it is represented
by the following structure:

CSAgent=Record
P: P

x∈P S ; V: V∈S; E: E=Energy(V);
SL: If SL is True, the self-learning behavior can be

performed on the CSAgent, otherwise, it cannot;
End.

CSAgent(⋅) is used to represent the corresponding component in the above structure.
When computing the energy of a CSAgent, P must be first decoded to V. In MCE, it is
decoded by the minimum conflict decoding:

Algorithm 1 Minimum conflict decoding (MCD)
Input: CSAgent: the CSAgent needs to be decoded;

Pos: the position to start decoding;
Output: CSAgent(V);
Let

1 2
() , , ,

nP P Px x x=CSAgent P , 1 2() , , , nv v v=CSAgent V , and

1() (,)m
i j i jConflicts v v Cχ== , where

1 violates
(,)

0 otherwise
i j

i j

v C
v Cχ = (6)

Conflicts(vi) only considers the variables assigned values.

 An Agent Model for Binary Constraint Satisfaction Problems 263

Step 1: If (Pos=1),
1

1Pv ← , and i←2; otherwise i←Pos;
Step 2: If i>n, stop; otherwise, 1

iPv ← , ()
iC PMin Conflicts v← ,

MinV←1; and j←2;
Step 3:

iPv j← ; if ()
iPConflicts v <MinC, then ()

iC PMin Conflicts v←
and MinV←j;

Step 4: Let j←j+1; if | |
iPj D≤ , then go to Step 3; otherwise,

go to Step 5;
Step 5:

iP Vv Min← , i←i+1, and go to Step 2.

The behaviors performing on P (P-behaviors) and the behaviors performing on V
(V-behaviors) are designed for CSAgents. When V-behaviors perform on a CSAgent,
its energy can be updated directly. But when P-behaviors perform on a CSAgent, it
must be decoded by MCD before updating its energy. If MCD starts to decode from the
first variable in the permutation for any CSAgent, the information generated by
V-behaviors would lost. Therefore, we set a parameter, Pos, for MCD, which is the first
position that has been changed by P-behaviors. Thus, the value of the variables before
Pos is left untouched such that some information generated by V-behaviors can be
reserved. For a completely new CSAgent, Pos is set to 1.

2.2 Environment of Constraint Satisfaction Agents

In order to realize the local perceptivity of agents, the
environment is organized as a latticelike structure, which
is defined as follows:

Definition 2: All CSAgents live in a latticelike
toroidal environment, L, which is called an agent lattice.
The size of L is Lsize×Lsize, where Lsize is an integer. Each
CSAgent is fixed on a lattice-point and it can only
interact with its neighbors. Suppose that the CSAgent
located at (i, j) is represented as Li,j, i, j=1,2,…,Lsize, then
the neighbors of Li,j, Neighborsi,j, are defined as

, 1, , 1 1, , 1{ , , , }i j i j i j i j i j− − + +=Neighbors L L L L .
Therefore, the agent lattice can be represented as the one in Fig.1. Each circle

represents a CSAgent, the data represent the position in the lattice, and two CSAgents
can interact with each other if and only if there is a line connecting them.

2.3 Behaviors of Constraint Satisfaction Agents

Three behaviors are designed for CSAgents to realize their purposes, that is, the
competition behavior, the self-learning behavior, and the mutation behavior. The
former two belong to P-behaviors, while the last one belongs to V-behaviors.

Competition Behavior: The energy of a CSAgent is compared with those of its
neighbors. If its energy is greater than that of any CSAgent in its neighbors, then it can
survive; otherwise, it must die, and its lattice-point will be taken up by the child of the
CSAgent whose energy is maximum in its neighbors. Suppose that the competition

Fig. 1. The agent lattice

264 W. Zhong, J. Liu, and L. Jiao

behavior is performed on the CSAgent located at (i, j), Li,j, and Maxi,j is the CSAgent
with maximum energy among the neighbors of Li,j, namely, Maxi,j ∈ Neighborsi,j and
∀ C SAgent ∈ Neighborsi,j, then CSAgent(E) ≤ Maxi,j(E). If Li,j(E) ≤ Maxi,j(E), then
Maxi,j generates a child CSAgent, Childi,j, to replace Li,j, and the method is shown in
Algorithm 2; otherwise, Li,j is left untouched.

Algorithm 2 Competition behavior
Input: Maxi,j:

1 2, () , , ,
ni j m m mx x x=Max P ;

pc: A predefined parameter, and it is a real number
between 0 and 1;

Output: Childi,j:
1 2, () , , ,

ni j c c cx x x=Child P ;
Swap(x, y) exchanges the values of x and y. U(0,1) is a uniform
random number between 0 and 1. Random(n, i) is a random integer
among 1, 2, …, n and is not equal to i. Min(i, j) is the smaller one
between i and j.
Step 1: Childi,j(P)←Maxi,j(P), i←1, and Pos←n+1;
Step 2: If U(0, 1)<pc, then l←Random(n, i);
Step 3: Perform (,)

i lc cSwap x x , and go to Step 4;
Step 4: If Min(l, i)<Pos, then Pos← Min(l, i);
Step 5: Let i←i+1; if i n≤ , then go to Step 2;
Step 6: Perform MCD(Childi,j, Pos); Childi,j(SL)←True.

Self-Learning Behavior: A CSAgent increases its energy by using the knowledge
about CSPs. Suppose that the self-learning behavior is performed on Li,j. Then, Li,j
increases its energy by the method shown in Algorithm 3.

Algorithm 3 Self-learning behavior
Input: Li,j:

1 2, () , , ,
ni j m m mx x x=L P , , 1 2() , , , i j nv v v=L V ;

Output: Li,j;
Step 1: Repeat←False, k←1, and Iteration←1;
Step 2: If (() 0)

kmConflicts v = , then go to Step 7;
Step 3: Energyold←Li,j(E), l←Random(n, k);
Step 4: Perform (,)

k lm mSwap x x , MCD(Li,j, Min(k, l)); Energynew←Li,j(E);
Step 5: If Energynew>Energyold, then Repeat←True; otherwise,

(,)
k lm mSwap x x , and perform MCD(Li,j, Min(k, l));

Step 6: If Iteration<n-1, then Iteration←Iteration+1, go to Step 2;
otherwise, Iteration←1, go to Step 7;

Step 7: Let k←k+1; If k≤n, then go to Step 2;
Step 8: If Repeat=True, then go to Step1; otherwise, Li,j(SL)

←False, and stop.

Mutation Behavior: This behavior is similar to the mutation operator used in
traditional EAs. Its function is to assist the above behaviors. It can enlarge the search
area so as to make up for the disadvantage of the decoding method. Suppose that the
mutation behavior is performed on Li,j, and , 1 2() , , , i j nv v v=L V . Then, the
following operation is performed on Li,j.

 An Agent Model for Binary Constraint Satisfaction Problems 265

If Uk(0, 1)<pm, then vk←Random(|Dk|) (7)

Where k=1, 2, …, n, and Uk(0, 1) represents the random number is anew for each k. pm
is a predefined parameter, and it is a real number between 0 and 1. Random(|Dk|) is a
random integer among 1, 2, …, |Dk|.

3 Multiagent Evolutionary Algorithm for CSPs

To solve CSPs, all CSAgents must orderly adopt the three behaviors aforementioned.
Here these behaviors are controlled by means of evolution. The details are described in
Algorithm 4.

Algorithm 4 Multiagent evolutionary algorithm for CSPs
Input: EvaluationMax: The maximum number of evaluations;

Lsize: The scale of the agent lattice;
pc: The parameter used in the competition behavior;
pm: The parameter used in the mutation behavior;

Output: s: A solution or an approximate solution for the CSP
under consideration, and ∈s S ;

Lt represents the agent lattice in the tth generation.
t
BestCSAgent is the best CSAgent in L0, L1, …, Lt, and t

tBestCSAgent is
the best CSAgent in Lt.
Step 1: Evaluations←0; Initialize the agent lattice L0: Generate

a permutation randomly and assign it to 0
, ()i jL P ,

0
, ()i j SL True←L , perform 0

,MCD(,1)i jL , compute 0
, ()i j EL , and

Evaluations←Evaluations+1, where i, j=1, 2, …, Lsize; update
0
BestCSAgent and t←0;

Step 2: Perform the competition behavior on each CSAgent in
Lt: If ,

t
i jL wins, then 1

, ,
t t
i j i j
+ ←L L ; otherwise, 1

,
t
i j i, j
+ ←L Child ,

compute 1
, ()t

i j E+L , and Evaluations←Evaluations+1;
Step 3: Update 1

(1)
t
t Best
+
+CSAgent ; If 1

(1)(())t
t Best SL True+
+ =CSAgent , then

perform the self-learning behavior on 1
(1)
t
t Best
+
+CSAgent ,

where Evaluations has been updated in Algorithm 3, and
go to Step 5; otherwise, go to Step 4;

Step 4: Perform the mutation behavior on 1
(1)
t
t Best
+
+CSAgent , compute

1
(1) ()t
t Best E+
+CSAgent , and Evaluations←Evaluations+1;

Step 5: If 1
(1) () ()t t
t Best BestE E+
+ ≥CSAgent CSAgent , then

1 1
(1)

t t
Best t Best
+ +

+←CSAgent CSAgent ; otherwise,
1t t

Best Best
+ ←CSAgent CSAgent , 1t t

Random Best
+ ←CSAgent CSAgent , where

1t
Random
+CSAgent is randomly selected from Lt and is

different from 1
(1)
t
t Best
+
+CSAgent ;

Step 6: If ()1 () 0t
Best E+ =CSAgent or (Evaluations ≥ EvaluationMax), then
1 ()t

Best
+←s CSAgent V and stop; otherwise, t←t+1,goto

Step2.

266 W. Zhong, J. Liu, and L. Jiao

4 Experiments

Since any CSP can be equivalently transformed to a binary CSP [4], binary CSPs are
used to test the performance of MAEA-CSPs in this section. The test suite1 was used to
compare the performances of 11 available algorithms in [5]. It consists of 250 solvable
instances. They are divided into 10 groups according to their difficulty, p={0.24, 0.25,
0.26, 0.27, 0.28, 0.29, 0.30, 0.31, 0.32, 0.33}.

Three measures, the success rate (SR), the mean error (ME) and the average
number of evaluations to solution (AES), are used to measure the performance of
MAEA-CSPs. Four parameters of MAEA-CSPs are set as follows: Lsize=5, pc=0.2,
pm=0.05, and EvaluationMax=100 000. We perform 10 independent runs on each of the
25 instances belonging to a given p value.

4.1 Comparison Between MAEA-CSPs and the Existing Algorithms

Reference [5] has made a comparison among 11 available algorithms, and the results
show that the best four algorithms are H-GA.1 [2], H-GA.3 [2], SAW [3], and

Fig. 2. The comparison between MAEA-CSPs and the four existing algorithms

1 http://www.xs4all.nl/~bcraenen/resources/csps_modelE_v20_d20.tar.gz

 An Agent Model for Binary Constraint Satisfaction Problems 267

Glass-Box [1]. Therefore, in this experiment, we make a comparison between
MAEA-CSPs and the four algorithms. The comparison results are shown in Fig.2.

The SR of MAEA-CSPs is the highest among the five algorithms, and it achieves to
100% for p=0.24~0.26. Fig.2(b) shows that the ME of MAEA-CSPs is also the best
among the five algorithms. Since the AES is not statistically reliable when the SR is
very low, only the AES of the instances whose SR is larger than 10% is plotted in
Fig.2(c).

4.2 Parameter Analyses of MAEA-CSPs

pc and pm are increased from 0.05 to 1 in steps of 0.05. MAEA-CSPs with the 400
groups of parameters are used to solve the 10 groups of instances. According to the
SR, the 10 groups of instances can be divided into 3 classes. The first class includes
the instances with low p values, that is, p=0.24~0.26. Since the SR for this class is
higher than 90% for the most of the parameters and the ME is very low, the graphs for
the SR and the AES are shown in Fig.3. The second class includes the instances
whose values of p vary from 0.27 to 0.29. Since the SR for this class is lower, the
graphs for the SR and the ME are shown in Fig.4. The last class includes the instances
with high p values. Since the instances in this class are very difficult, only the graphs
for the ME are shown in Fig.5.

Fig. 3. The SR and the AES of MAEA-CSPs for p=0.24~0.26

As can be seen, pc has a larger effect on the performance of MAEA-CSPs. For the
first class, the SR is higher than 90% when pc is larger than 0.1. Although the AES
increases with pc when pc is larger than 0.2, the AES is smaller when pc is in 0.1~0.3.
For the second and the last class, the results are similar, namely, when pc is in 0.1~0.3,
the SR is higher, and the ME is smaller. Although pm does not affect the performance of

268 W. Zhong, J. Liu, and L. Jiao

MAEA-CSPs obviously, Fig.4 and Fig.5 show the SR is a little higher and the ME is a
litter smaller when pm is small. Therefore, it is better to choose pc from 0.1~0.3 and
choose pm from 0.05~0.3. In addition, although the performance of MAEA-CSPs with
above parameters is better, MAEA-CSPs still performs stably when pc is larger than
0.2. It shows that the performance of MAEA-CSPs is not sensitive to the parameters,
and MAEA-CSPs is quite robust and easy to use.

Fig. 4. The SR and the ME of MAEA-CSPs for p=0.27~0.29

Fig. 5. The ME of MAEA-CSPs for p=0.30~0.33

5 Conclusion

In this paper, multiagent systems and evolutionary algorithms are combined to form a
new algorithm to solve constraint satisfaction problems. Parameter analyses show that
MAEA-CSPs is quite robust and easy to use. It is better to choose pc from 0.1~0.3 and

 An Agent Model for Binary Constraint Satisfaction Problems 269

choose pm from 0.05~0.3. The comparison between MAEA-CSPs and four
well-defined algorithms, H-GA.1, H-GA.3, SAW, and Glass-Box, indicated that
MAEA-CSPs outperforms the four algorithms.

References

1. Marchiori, E., Combining constraint processing and genetic algorithms for constraint
satisfaction problems, in Proc. 7th Int. Conf. Genetic Algorithms, Bäck, T., Ed., 1997,
pp.330–337.

2. Craenen, B., Eiben, A., and Marchiori, E., Solving constraint satisfaction problems with
heuristic-based evolutionary algorithms, in Proc. Congress Evolutionary Computation, 2000,
pp. 1571–1577.

3. A. Eiben and J. I. Van Hemert, SAW-ing EAs: Adapting the fitness function for solving
constrained problems, in New Ideas in Optimization, Corne, D., Dorigo, M., and Glover, F.,
Eds. New York: McGraw-Hill, 1999, pp. 389–402.

4. Rossi, F., Petrie, C., and Dhar, V., On the equivalence of constraint satisfaction problems, in
Proc. 9th European Conf. Artificial Intelligence, Aiello, L. C., Ed., pp.550–556, 1990.

5. Craenen, B. G. W., Eiben, A. E., and van Hemert, J. I., Comparing evolutionary algorithms
on binary constraint satisfaction problems, IEEE Trans. Evol. Comput., vol. 7, pp. 424–444,
Oct. 2003.

6. Zhong, W. C., Liu, J., Xue, M. Z., and Jiao, L. C., A multiagent genetic algorithm for global
numerical optimization. IEEE Trans. Sys., Man, and Cybern. B, vol. 34, pp. 1128-1141, Apr.
2004.

7. Tsang, E., Foundations of Constraint Satisfaction, Academic Press, 1993.
8. Tan, S., et al., Automatic image enhancement driven by evolution based on ridgelet frame in

the presence of noise. Lecture Notes in Computer Science, Springer-Verlag, Berlin
Heidelberg New York, 2005.

Author Index

Acan, Adnan 1
Akgunduz, Ali 190

Brignole, Nelida Beatriz 12

Cabido, Raúl 177
Carballido, Jessica Andrea 12
Chakhlevitch, Konstantin 23
Cleary, Robert 34
Cordella, Luigi Pietro 46
Cotta, Carlos 58, 68
Cowling, Peter 23
Cutello, Vincenzo 80

Day, Richard O. 91
Delgado, Myriam R. 154
De Stefano, Claudio 46
Duarte, Abraham 177
Duda, Jerzy 101

Fernández, Antonio J. 68
Fontanella, Francesco 46

Ghédira, Khaled 213

Handa, Hisashi 112

Hemert, Jano I.van 122, 132

Jeyakumar, A. Ebenezer 234
Jiao, Licheng 260
Juhos, István 132

Lamont, Gary B. 91
Lewis, Rhydian 144
Li, Peigen 246
Li, Shuxia 246

Liu, Jing 260
Lopes, Heitor S. 154
Lorena, Luiz A. N. 166

Marcelli, Angelo 46
Maruo, Marcos H. 154
Morelli, Giuseppe 80

Nicosia, Giuseppe 80

O’Neill, Michael 34
Oliveira, Alexandre C. M. 166

Paechter, Ben 144
Pantrigo, Juan José 177
Pavone, Mario 80
Ponzoni, Ignacio 12

Rao, Yunqing 246
Raza, Syed Asif 190
Rothlauf, Franz 202

Sánchez, Ángel 177
Sammoud, Olfa 213
Solnon, Christine 213

Tóth, Attila 132
Tang, Maolin 224
Tzschoppe, Carsten 202

Victoire, T. Aruldoss Albert 234

Zhang, Chaoyong 246
Zhong, Weicai 260

	Frontmatter
	An External Partial Permutations Memory for Ant Colony Optimization
	A Novel Application of Evolutionary Computing in Process Systems Engineering
	Choosing the Fittest Subset of Low Level Heuristics in a Hyperheuristic Framework
	An Attribute Grammar Decoder for the 01 MultiConstrained Knapsack Problem
	{\itshape EvoGeneS}, a New Evolutionary Approach to Graph Generation
	On the Application of Evolutionary Algorithms to the Consensus Tree Problem
	Analyzing Fitness Landscapes for the Optimal Golomb Ruler Problem
	Immune Algorithms with Aging Operators for the String Folding Problem and the Protein Folding Problem
	Multiobjective Quadratic Assignment Problem Solved by an Explicit Building Block Search Algorithm -- MOMGA-IIa
	Lot-Sizing in a Foundry Using Genetic Algorithm and Repair Functions
	Estimation of Distribution Algorithms with Mutation
	Property Analysis of Symmetric Travelling Salesman Problem Instances Acquired Through Evolution
	Heuristic Colour Assignment Strategies for Merge Models in Graph Colouring
	Application of the Grouping Genetic Algorithm to University Course Timetabling
	Self-Adapting Evolutionary Parameters: Encoding Aspects for Combinatorial Optimization Problems
	Population Training Heuristics
	Scatter Search Particle Filter to Solve the Dynamic Travelling Salesman Problem
	The Use of Meta-heuristics to Solve Economic Lot Scheduling Problem
	Making the Edge-Set Encoding Fly by Controlling the Bias of Its Crossover Operator
	Ant Algorithm for the Graph Matching Problem
	An Adaptive Genetic Algorithm for the Minimal Switching Graph Problem
	An Improved Simulated Annealing Method for the Combinatorial Sub-problem of the Profit-Based Unit Commitment Problem
	A New Hybrid GA/SA Algorithm for the Job Shop Scheduling Problem
	An Agent Model for Binary Constraint Satisfaction Problems
	Backmatter

