

Lecture Notes in Computer Science 3422
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Roland T. Mittermeir (Ed.)

From
Computer Literacy
to Informatics
Fundamentals

International Conference on Informatics in Secondary Schools –
Evolution and Perspectives, ISSEP 2005
Klagenfurt, Austria, March 30 - April 1, 2005
Proceedings

13

Volume Editor

Roland T. Mittermeir
Universität Klagenfurt
Institut für Informatik-Systeme
Universitätsstr. 65-67, 9020 Klagenfurt, Austria
E-mail: roland@ifi.uni-klu.ac.at

Library of Congress Control Number: 2005922177

CR Subject Classification (1998): K.3, K.4, K.8

ISSN 0302-9743
ISBN 3-540-25336-X Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11407003 06/3142 5 4 3 2 1 0

Preface

Twenty years ago, informatics was introduced as a compulsory subject in Aus-
trian secondary schools. During this period informatics has experienced drastic
evolutions and even some shifts of paradigms. This applies to an even larger
extent to the didactics of informatics.

ISSEP - Informatics in Secondary Schools, Evolution and Perspectives - takes
stock of how the developments in the field are reflected in school throughout
Europe. Teachers of informatics at secondary schools as well as educators of such
teachers propose innovative methods of instruction, discuss the scope of overall
informatics instruction, and discuss how innovative concepts can be disseminated
to students in education as well as to active informatics teachers.

Due to the penetration of information technology into society at large and into
schools in particular, the relationship between informatics and education leading
to general computer literacy or to the use of IT-based approaches in conventional
subjects, e-learning in school, is an evident focus of many contributions.

According to the broad scope of the conference its proceedings are split into
two volumes. This volume, From Computer Literacy to Informatics Fundamen-
tals, covers papers reporting on national strategies of informatics instruction
and their evolution in accordance with the penetration of information process-
ing equipment in our daily life. In one way or another, these strategies strive to
accommodate the needs of basic skills in information and communication tech-
nology (ICT) with educational principles that can be conveyed by informatics
instruction in a traditional sense. Hence, the papers on national strategies are
complemented in two ways: firstly, by contributions that strive to identify funda-
mental issues, informatics can contribute to the general education process of the
youth; and, secondly, by papers presenting approaches on how to link or even
to combine instruction about such informatics fundamentals with the need to
introduce pupils to the productive use of ICT. The other ISSEP volume, subti-
tled Innovative Concepts for Teaching Informatics, addresses specific didactical
models for teaching informatics as well as models of teaching using ICT [1]. Its
scope ranges from teacher education via ethics and self-controlled learning to
various facets of e-learning.

Out of 51 submissions from 10 countries the program committee selected 16
contributions for publication in this volume. Each paper was reviewed by at
least three members of the program committee. The reviewing process and the
ensuing discussion were fully electronic.

Thus, this volume, though consisting mainly of contributed papers, is never-
theless the result of an arrangement of papers that aimed in their final versions to
specifically contribute to the facet of the program for which they were accepted.
The editorial introduction shows how they contribute to the various facets of
the conference.

VI Preface

A conference like this is not possible without many hands and brains working
for it and without the financial support of gracious donors. Hence, I’d like to
thank particularly the members of the program committee, notably those who
were keen to review late arrivals or to provide additional help in conflicting
situations. Special thanks are also due to the organizing committee led by Peter
Micheuz, to Annette Lippitsch for editorial support and administration, as well
as to Karin Hodnigg for operating the electronic support of the conference.

The conference was made possible due to the support of several sponsors
whose help is gratefully acknowledged. Printing and wide distribution of the two
volumes of proceedings was particularly made possible due to a substantial con-
tribution by the Austrian Federal Ministry of Education, Science, and Culture;
I’d like to single out particularly Dr. Anton Reiter for his dedicated efforts and
creative inputs.

Finally, hosting of the conference by Universität Klagenfurt is gratefully
acknowl-edged. Its facilities and the beautiful surroundings of Carinthia provide
the proper setting for a successful event.

January, 2005 Roland Mittermeir

1. Micheuz P., Antonitsch P., Mittermeir R.: Informatics in Secondary Schools – Evo-
lution and Perspectives: Innovative Concepts for Teaching Informatics, Ueberreuter
Verlag, Wien, March 2005.

Table of Contents

Introduction
Roland T. Mittermeir . 1

20 Years of Informatic in Austrian Secondary Schools

Incorporation of Informatics in Austrian Education: The Project
“Computer-Education-Society” in the School Year 1984/85

Anton Reiter . 4

20 Years of Computers and Informatics in Austria’s Secondary
Academic Schools

Peter Micheuz . 20

Informatics Education at Vocational Schools and Colleges in Austria
Martin Weissenböck . 32

National Perspectives

The Transition from School to University: Would Prior Study of
Computing Help?

Martyn Clark, Roger Boyle . 37

Informatics and ICT in Polish Education System
Ewa Gurbiel, Grazyna Hardt-Olejniczak, Ewa Kolczyk,
Helena Krupicka, Maciej M. Syslo . 46

Teaching Information Technology in General Education: Challenges
and Perspectives

Valentina Dagienė . 53

Educational Standards in School Informatics in Austria
Christian Dorninger . 65

Russian Educational Standards of Informatics and Informatics
Technologies (ICT): Aims, Content, Perspectives

Aleksandr A. Kuznetsov, Sergey A. Beshenkov . 70

The Present-Day Tendencies of Teaching Informatics in Ukraine
Oleg Spirin . 75

X Table of Contents

Study of Information Search Systems of the Internet
Yuri Ramsky, Olga Rezina . 84

Fundamentals Versus ICT

Why Teach Introductory Computer Science? Reconciling Diverse Goals
and Expectations

Jürg Nievergelt . 92

Teaching: People to People - About People
A Plea for the Historic and Human View

Laszlo Böszörmenyi . 93

Preparatory Knowledge: Propaedeutic in Informatics
Susanne Loidl, Jörg Mühlbacher, Helmut Schauer 104

A Pragmatic Approach to Spreadsheet Training Based Upon the
“Projection–Screen” Model

Karin Hodnigg . 116

A Strategy to Introduce Functional Data Modeling at School Informatics
Markus Schneider . 130

Informatic Models in Vocational Training for Teaching Standard
Software

Siglinde Voß . 145

Evolving Boxes as Flexible Tools for Teaching High-School Students
Declarative and Procedural Aspects of Logic Programming

Bruria Haberman, Zahava Scherz . 156

The Role of ICT and Informatics in Austria’s Secondary
Academic Schools

Peter Micheuz . 166

Informatics Versus Information Technology - How Much Informatics Is
Needed to Use Information Technology - A School Perspective

Maciej M. Syslo, Anna Beata Kwiatkowska . 178

Standard Software as Microworld?
Peter K. Antonitsch . 189

The Future Is Mobile - Education Meets Mobile Communication
Werner Wiedermann . 198

Author Index . 203

R.T. Mittermeir (Ed.): ISSEP 2005, LNCS 3422, pp. 1–3, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Introduction

Roland T. Mittermeir

Institut für Informatik-Systeme
Universität Klagenfurt

9020 Klagenfurt, AUSTRIA
roland@isys.uni-klu.ac.at

The external motivation to organize a conference on Informatics in Secondary
Schools with specific focus on the Evolution and Perspective of School Informatics
was an anniversary. 1985 informatics instruction was introduced in secondary acade-
mic schools (AHS) in Austria as an independent subject. It encompassed two credit
hours of basic informatics instruction in the 5th form (age group 14 – 15 years old)
and possible electives thereafter. A few years later, electives in informatics could be
chosen even at lower grades.

To account for this fact, the opening keynote is given by three pioneers who have
been instrumental in the formation of school informatics and who helped to shape the
subject in its initial twenty years. Anton Reiters contribution tells from a ministerial
perspective how this came all about. Peter Micheuz’ very personal contribution shows
how these developments are perceived from the perspective of a practicing teacher.
The differentiating nuances between the perceptions reported in these contributions
are probably not too specific for a particular country.

Since Austria’s secondary school systems is structured into two huge blocks, the
(general, humanistic) academic secondary schools (AHS, i.e. Allgemeinbildende
Höhere Schulen) and vocational secondary schools (BHS, i.e. Berufsbildende Höhere
Schulen), Micheuz’ contribution is complemented by Martin Weissenböck’s paper
explaining the details of the highly structured and, therefore, relatively inhomogene-
ous block of BHS’s. This highly structured system of vocational secondary schools is
a distinct characteristic of the Austrian school system. As the system of vocational
schools covers a broad spectrum, the role of informatics in these schools varies ac-
cordingly. It ranges from special engineering curricula in informatics which have
already a substantial tradition to rather non-technical curricula, where informatics is
rather seen as data processing or as web design.

The next block of papers gives an account of various national perspectives on in-
formatics instruction and its introduction into curricula of secondary schools. In light
of the current enlargement of the European Union towards the East, special focus is
laid on countries which joined the union recently or which are even a step further to
the East. This block is opened by Martyn Clark and Roger Boyles investigation,
whether and what kind prior informatics instruction would help students to succeed in
entry level exams to British universities. Next, Ewa Gurbiel and her colleagues report
on a reform of the Polish school system. It led to the introduction of informatics re-
lated content, ranging from informatics proper via ICT to computer support in tradi-
tional subjects. The paper explains how informatics related education is spread over
the various levels of the educational system. Remaining in northeastern Europe,

2 R.T. Mittermeir

Valentina Dagiene describes the contents of Informatics instruction in Lithuania.
There, from the 9th to the 12th form students get a rather rich spectrum of compulsory
ICT and informatics instruction with optional extensions in the two uppermost grades.

The tension between application oriented ICT and the aim of conveying fun-
damental principles of informatics to students is further highlighted by Christian
Dorninger’s arguments calling for standardization. It is certainly up for debate, to
which extent general schools should apply company-specific standards as their
yardstick. Critics should admit though, that in spite of currently popular instances,
educational standards might in principle be established for contents of exclusively
fundamental nature as well. Establishing such standards would just require agreement
on a list encompassing such fundamentals. Dorninger’s recommendations attempt the
range from basic skills to technical specialties taught at the university level. This
implies already that the standards mentioned have to be methodologically much richer
than what comes to mind when thinking about ECDL.

Aleksandr Kuznetsov and Sergey Beshenkov allow a glimpse at Russian informatics
instruction from basic up to university levels. Derived from theoretical principles, a
list of topics and related instructional processes is presented.

Two Ukrainian papers complete this section. Oleg Spirin shows how hardware
constraints influence the curricula of Ukrainian schools and how they can be over-
come at least to a certain extent. The paper also informs about the actualization of
informatics competences of teachers, an aspect relevant all over the world. Another
paper showing how to cope with limitations is Yuri Ramsky and Olga Rezina’s ac-
count of introducing Ukrainian students to internet search. The West-European per-
spective of the internet as an infinite world-wide library has to be at least slightly
adjusted, when realizing that these pupils native language is written in a different
script. Realizing these limitations might, on the other hand, remind us that the west-
centric perspective on Latin script and English language provides also only a very
truncated view of the world. Further, we rather don’t imagine creating a search system
to simulate internet search in order to prepare even those pupils for modern informa-
tion retrieval where scarcity of resources prohibits interconnection to the real web.

Summarizing these national perspectives one witnesses that the penetration of per-
sonal computing and the (almost) ubiquitous presence of certain types of application
software had substantial effects on the shape of what was introduced as informatics
instruction. Principles of abstraction and algorithmization gave way to intellectually
less rewarding topics such as using a text processing system to write a letter or using
spreadsheets to perform some calculations which were never meant to be done by
such tools when the tool was invented.

The dispute centers quite often on the role of programming in informatics instruc-
tion. The arguments supporting programming changed over the years. Algorithmiza-
tion, the necessity to formulate extremely precise, the capability of modeling, the need
to anticipate consequences of commands and the need to think in alternative branches
is just an incomplete list of arguments. Nevertheless, programming is undoubtedly a
distinctive characteristic of computing and informatics as argued by Jürg Nievergelt
in his keynote opening the discussion about Fundamentals. Programming must not
capture all of the attention of informatics instruction though.

How broad the discussion about fundamentals can be conducted is shown by
Laszlo Böszörmenyis paper. Certainly in agreement with the mainstream of informat-
ics educators about the final goals of informatics instruction, he argues to give plastic-

 Introduction 3

ity to the current body of knowledge deemed appropriate for school by teaching from
a historical perspective. This should allow pupils to share part of the excitement cre-
ated by the inventions once made by the masters of the discipline. In comparison,
Susanne Loidl, Jörg Mühlbacher and Helmut Schauer approach fundamental topics in
a less controversial way. The distinctive feature of this paper is the simplicity of ex-
amples the authors are proposing in order to demonstrate pupils highly complex fun-
damentals of the discipline. Using e-learning supportas mentioned might allow en-
graining these concepts so that they are also retained by students.

The next set of papers presents approaches to avoid what sometimes is mentioned
as conflicting goals: basic ICT training and informatics-instruction proper. Karin
Hodnigg presents spreadsheets beyond the tool aspect. Her focus is not on tips and
tricks relating to the individual cell but on the perspective of the sheet as a huge com-
puting space with scoping and data-flows, hence on a programming plane. Her projec-
tion-screen model seems intuitive and overcomes some inconsistencies one runs into
when explaining spreadsheets with the broadly known semantic models of program-
ming. Markus Schneider dwells also on the perspective that filling in spreadsheets is
programming. To do this in a methodological way, he proposes functional data flow
modeling. This not only combines ICT-aspects with software engineering concepts. It
also proposes a methodology for systematic spreadsheet development that leads to a
relationship between layout and semantics. Siglinde Voss shows how to introduce
object-orientation based on word processing software. Taken together, these three
papers show how multifaceted programming can be and how different the approaches
to teach its discipline are. The spectrum opened by these papers is further widened by
Bruria Haberman and Zahava Scherz’s contribution. Building on already existing
programming knowledge, their approach introduces component based software devel-
opment with the full spectrum from specification comprehension and specification
writing to black box and white box reuse of ADT’s. Their approach conveys the de-
clarative and procedural aspects of logic programming. It puts apparently also sub-
stantial emphasis on code reading, an aspect neglected in most approaches.

The papers by Peter Micheuz and by Maciej Syslo et al come back to the issue of
the transition from ICT to informatics from the vantage point of two different educa-
tional systems. While Peter Micheuz argues to subsume ICT in a broad framework of
informatics related instruction, Maciej Syslo and Beata Kwiatowska explain why the
various IT-related facets of education are kept separate in Poland. They also report on
principles of peer-guided, self-organized training of fellow teachers to raise their
competences in integrating information technology in their teaching activity. Peter
Antonitsch, on the other hand, addresses a procedural didactical issue when discussing
the pros and cons of using either highly specialized instructional environments or
micro-worlds when teaching programming. It might be surprising that he resolves the
dispute by finally proposing an ICT solution to solve the problem.

The volume concludes with a contribution of Werner Wiedermann, reporting on
developments in the telecommunication industry and their impact on learning in mo-
bile contexts. His keynote leads the way to eLearning and mLearning, topics beyond
informatics instruction, and therefore discussed in the accompanying volume. But
nevertheless, currently, these topics are still to a large extent within the scope of in-
formatics teachers or at least in the scope of educational projects where informatics
teachers are members of the educational team.

R.T. Mittermeir (Ed.): ISSEP 2005, LNCS 3422, pp. 4–19, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Incorporation of Informatics in Austrian Education: The
Project “Computer-Education-Society” in the School

Year 1984/85

Anton Reiter

Federal Ministry of Education, Science and Culture,
Vienna, Austria

Anton.Reiter@bmbwk.gv.at

Abstract. Effects of information technology on economy, society and education
were discussed already at the beginning of the 1980’s. The German computer
scientist Klaus Haefner even predicted an educational crisis caused by the pene-
tration of information technology into our lives. When the personal computer
became the “machine of the year 1985”, politicians and educators in the in-
dustrialized countries proclaimed “computer literacy” as an essential part of edu-
cation and demanded the integration of new technologies into the curriculum.

This paper describes the comprehensive instruction project “Computer-
Education-Society” of the school year 1984/85, launched by the Austrian Federal
Ministry of Education, Arts and Sports1 on the background of the author’s per-
sonal involvement as a permanent speaker at the central teacher seminars in Vi-
enna and as a historical dedication to the 20th anniversary of the implementation
of the subject Informatics at the compulsory secondary general school (AHS).

1 Introductory Remarks

The rather frightening predictions in George Orwell’s well known book “1984” that
our lives would be affected, modified and even governed (“Big Brother”) more and
more significantly by new information (and communication) technologies2 (in recent
literature usually abbreviated with NICTs), might have had some effects on Austrian
policy-makers. They considered it as duty of the government's education system to
adequately prepare the young people of the 1980’s for a life in the so-called post in-
dustrial era, a forthcoming technologically advanced information society.

Within two decades the NICTs have changed the world of work and sciences, daily
life and our educational system. Computers accomplish tasks of the human intellect

1 Currently: Federal Ministry of Education, Science and Culture (Bundesministerium für

Bildung, Wissenschaft und Kultur).
2 It’s a matter of fact that in many (recent) publications the term “new information and com-

munication technology” (NICT) is not precisely defined or explained. In most cases it refers
to the use of computers, multimedia and telecommunication as tools for teaching and learn-
ing. But it also has relevance to the subject informatics or computer science. During the early
1980’s the communication aspect played a minor role. The PC was predominantly available
as stand alone device.

 Incorporation of Informatics in Austrian Education 5

with high efficiency and reliability and they can be linked together to form extensive
electronic systems of information and communication. The world’s largest and most
famous electronic network - the Internet (WWW) - has got an outstanding relevance
not only for the field of education [10, 16] but also for the economy and daily life in
the industrialized countries. That’s why any educational policy has to meet the chal-
lenges of the NICTs and to take them into account when discussing future aspects of
teaching and learning.

2 The New Education Crisis

The German computer scientist Klaus Haefner3, speaker at worldwide IFIP4 confer-
ences, raised doubts about the contemporary educational system. He saw the educa-
tional system as moving too slowly towards information technology (IT) in general.
In the beginning of the 1980s he stated: "Since more and more information processing
is being transferred from human brains into the information technology, the presented
role of the educational system will be questioned." [12, p. 525] Education would have
to change drastically the way to prepare students of all ages for their future role in
society, Haefner demanded.

Looking ahead many activities up to now still performed by humans would be
taken over by technology, he argued. Instead of human hands, robots would manipu-
late materials. The low costs benefit ratio of information technology would make it
possible to use automated production. Human activity would then be shifted into
control activities. People would prefer technical information processing in profes-
sional as well as in private applications because it would be more economic, available
around the clock, more reliable, and much faster compared with human information
handling. Education would have to be adapted quickly or it would run the risk of
misqualifying people, Haefner warned.

But in the beginning of the 1980s, he could justifiably claim that "politicians, ad-
ministrators and teachers presently behave in a way as if information technology does
not exist at all. The overall goals of the public educational system have been basically
unmodified for decades. It is still the intention of 99 percent of all curricula to educate
the autonomous human brain as the sole source of information storage and informa-
tion processing." [4, p. 973] The human brain would be challenged by the growth of
information technology and subject to competition of information processing systems.
Humans as information processors would be in fact often not needed anymore, since
there was a growing choice of using information technology instead.

To overcome the crisis mentioned in time, Haefner recommended as invited
speaker in the House of the Association of Industrialists in Vienna in 1984 and the
following years certain educational goals [14]. His recommendations reached from
the necessity to understand the forthcoming changes in society as impact of IT via
the demand to bring IT into the class for proper use up to the development and

3 His book “Die neue Bildungskrise” [13] became a bestseller.
4 International Federation for Information Processing – the IFIP secretariat is in Laxenburg

close to Vienna (www.ifip.or.at).

6 A. Reiter

evaluation of new curricula, and to the suggestion of starting of in- and pre-service
teacher training.

Fig. 1. With reference to his publications and convincing talks and lectures, the German com-
puter scientist. Prof. Dr. Klaus Haefner was consulted when building an IT-related infrastruc-
ture within the educational system in Austria

Haefner’s "revolutionary" ideas regarding education and society influenced politi-
cians and educational policy makers in Germany and Austria to establish an IT-
related infrastructure within the educational system. They became only partly true.
Thanks to robots used in production, even skilled workers lost their jobs and had to
acquire new qualifications. On the other hand, the amount of working hours per week
did not decrease to 30 hours as a direct result of IT as often predicted by Haefner. But
as far as information finding and knowledge management is concerned, it became a
matter of fact that the quantity of information now available no longer enables indi-
viduals to amass encyclopedic knowledge. Instead of memorizing the data it is often
more important to find the proper information whenever required, be it by querying
data bases or via web quest on the Internet. However, locating information is not
enough. At least a higher cognitive process has to be applied in order to construct
solutions and to decide then.

Looking back, there is no doubt that 20 years ago the IT-hype did not happen at the
advent of the so-called information age just because technology (the microcomputer)
was available (the IBM PC XT5 came on the market in 1981). Rather strong outside
forces, coming from computer industry, politics, commerce and so on were pushing it
forward. In response to these pressures, most of the developed countries started ambi-
tious and costly programs to introduce computers into schools in the beginning of the
1980s [6, p. 27ff.].

5 See the introductory book of Steven Manus concerning the IBM PC [17].

 Incorporation of Informatics in Austrian Education 7

One main goal of the IT-approaches was to have computer science6 taught at voca-
tional and upper secondary education. This should develop computer-related skills for
the labor market. A second objective was to teach computer literacy to all students at
all levels of education in order to provide them with a basic understanding of the way
computes work and about the impact of computers on society and on the individual.
Well known and often presented and described broad policy approaches were under-
taken by the U.K., (Microelectronics Education Program starting in 1980 [7]), France
(L’informatique pour tous 1985 [18]), Norway (Program of Action 1984 -1988), the
Netherlands (the Dutch NIVO project 1985) and Portugal (the Minverva Plan 1985-
1988).

Fig. 2. and Fig. 3. Show the booklet-covers of MEP [7] and “informatique pour tous” [18]

3 General Principles and Objectives of Informatics Instruction

In an official folder of the Austrian Federal Ministry of Education, Arts and Sport, the
BMUKS, basic knowledge in informatics was demanded, no matter what level or type
of school it concerned. It listed the general principles shown in Fig. 4 [3].

In detail, education in information technology should be conveyed in a differenti-
ated way. Based on concepts originating in the late 1980s [12, p. 5 f.; 21, p. 119 f.] the
following three categories were aimed at:

1. basic instruction in information technology for all pupils,
2. advanced instruction in information technology with informatics as distinct subject,
3. job-specific instruction in information technologies.

6 The term “computer science” used in the US and in anglo-american publications corresponds

with the term “Electronic Data Processing” (EDP). Nowadays the subject EDP is replaced in
Austria even in the curricula of vocational schools, mostly by the new subject “informatics”
enriched with so-called socioeconomic themes.

8 A. Reiter

Fig. 4. Scan-image of page 2 of the BMUKS-folder of 1985 [3]

3.1 Basic Instruction

Suggested aims of a basic instruction in information technologies were as follows:

• Meaning and impact of the computer: The pupils should get acquainted with a
world in which information and communication technologies and, above all, the
computer, play a decisive role such that they understand this world. They should
get an insight into the vast range of applications and the new facilities generated by
the use of these technologies. However, they should also be able to recognize the
limitations of these technologies and be aware of problems that arise in connection
with social, professional and private spheres. Issues such as economic and social
consequences, competition, modifications in the structure of the labor market and
jobs, data protection and privacy protection7 must also be discussed. This approach
should give the pupil the fundamentals necessary for independent and objective as-
sessment.

• Use of the Computer: Pupils should get acquainted with the responsible use of
information and communication technologies, as well as computers in their profes-
sional and private lives. They should be motivated and their capability of using the
new techniques should be promoted by allowing them to gain practical experience,
thus reducing unfounded fears that sometimes go along with these techniques.
Computers should be used as tools in performing easy tasks of information logis-
tics based on information processing.

7 These general goals drawn up in the middle of 1980s are still valid and could partly be added

into a catalogue of ethical guidelines for pupils concerning the use of the Internet (WWW).

 Incorporation of Informatics in Austrian Education 9

Hence, the curriculum for a basic instruction in information technology comprised
four sections:

− to use computers and information systems,
− to deal with the applications and the impact of data processing,
− to solve problems using algorithmic methods,8
− to get acquainted with the fundamentals of hardware and software.

3.2 Advanced Instruction

For a more profound education in information technology, the subject informatics
should take into account aspects particular to each type of school. This caused differ-
ent types of schools to get curricula with different emphasis. The pupils should be
motivated trying to understand the problems put before them and to break them down
into partial problems, to structure data, to develop procedures for problem solving, to
formulate these procedures accurately and completely, and to convert them into a
computer language. Furthermore, they should learn to test solution procedures, to
correct them and to assess them. The examples of instruction should, as far as possi-
ble, be related to problems corresponding to the subjects of the type of school con-
cerned, to the vocations concerned or to everyday life. Instruction in informatics
should promote teamwork, perseverance, independence, self-criticism, responsibility
and the pleasure in one's creative work.

Advanced instruction in information technologies should take into account the fol-
lowing aspects:

− to deal with the capacity and the limits of performance of a computer,
− to convey methods for problem solving,
− to convey information about programming languages,
− to deal with programming and data structures,
− to use computers for calculations, to draw up graphics and to simulate processes,

etc.

3.3 Job Specific Instruction

As third aspect, vocation related education in information technology, such as often
provided at the company level,9 was seen as part of training or advanced training. It
concerns also nowadays nearly every professional field.

• In the industrial and technical areas it covers for instance measuring and control
techniques, computer-aided drawing, computer-aided design (CAD), programming
of machines and production processes, simulation of technical processes, industrial
automation, etc.

• In the commercial and business fields information technology covers file manage-
ment, word processing, office communication and office organization, etc.

8 Algorithms were rather considered to be part of a more profound basic instruction in informa-

tion technology.
9 E-Learning during breaks and at the working place goes in that direction.

10 A. Reiter

As main goal and as objective for the future the then existing differentiation between
informatics which comprises a critical view of computers and the more technical and
algorithm-oriented EDP at medium and high vocational schools should be diminished
sooner or later. The socio-economic dimension with relation to society should be
binding for both types of school in future.

4 The Project “Computer-Education-Society”

According to Haefner’s proposals, information technology should become part of a
basic general education in Austria. That’s why in 1984 Austria’s Federal Ministry of
Education, Arts and Sports (BMUKS) launched a specific project on future informat-
ics instruction, the project “Computer-Education-Society” (in German: Computer-
Bildung-Gesellschaft or C-B-G). This initiative, whose organization structure has
since changed several times, was started by Minister Dr. Helmut Zilk10 in cooperation
with associations of labor and industry (Federal Board of Economy, Association of
Industrialists; Labor Board, Austrian Federation of Trade Unions), pedagogic insti-
tutes and leading IT-companies. The project departed from a situation where only a
very small part of the Austrian population was informed about the new technologies
and related matters. Its operational goal was that “in the future, basic education in
information technology is to be seen as integral part of general education.” [15, p. 9]
Due to the general motto of the C-B-G-project “Prepare the youth and offer a chance
of entry to adults” various aspects explained next had to be tackled [4, p. 25f.].

4.1 Syllabus Development

In the spring of 1984 the goal to introduce informatics as an obligatory subject at the
high-level secondary general school (Allgemeinbildende Höhere Schulen, AHS) had
made considerable progress. A syllabus working group consisting of AHS-teachers,
representatives of both, associations of employers and associations of employed, as
well as representatives of universities, of school inspection, and officials of the
BMUKS, was formed (c.f. [20]). This team drew up a draft of the AHS-syllabus. The
foreseen instruction of informatics should convey not only basic EDP-knowledge but
also sociological and economic aspects. The latter was a totally new concept. It
should raise lots of controversy among future informatics teachers.

The approach was finally approved by representatives of all parties, representatives
of employer’s as well as of employed, by educational scientists, and by politicians.
The demand that the social consequences of modern technologies, their implications
on professional life, economy, communication, family-life etc. would have to be dealt
with at least on an equal level in the conception of an informatics syllabus was finally
advocated by the majority of people engaged in the discussion, notwithstanding that
representatives of the Austrian trade union considered it more important than the
involved teachers (c.f. [1]).

Under the scenario of EDP-context emotional discussions about contents and us-
ability of chapters like EDP and Society, EDP and the Development of Qualifications,

10 Prof. Dr. Helmut Zilk was head of the Ministry of Education, Arts and Sports in 1984 and

later on mayor of Vienna for a long time [27].

 Incorporation of Informatics in Austrian Education 11

New Ways of Technological Control, Data Privacy Protection, History and the De-
velopment of EDP, and Rationalization and Full Employment took place. But never-
theless, these chapters remained doubtless important issues and as so-called socio-
political and socioeconomic aspects of informatics part of the informatics syllabus11.

Fig. 5. Minister Dr. Helmut Zilk launched the project “Computer-Education-Society” with
engagement in 1984

Further thematic priorities of the syllabus were the strategies of problem solving,
technological concerns of hard- and software, work with user software, and of course
programming. In the didactic remarks of the syllabus, teamwork was stressed as the
primary form of instruction in order to take into account the fact that the instruction in
informatics would offer the chance to teach social behavior and modern working
techniques.

In June 1985 the Federal Parliament passed the 8th amendment of the school or-
ganization law (Schulorganisations-Gesetz-Novelle, SchOG) with the votes of all
three parties represented in parliament at this time. Thus the introduction of infor-
matics as an obligatory subject in the 5th form of the AHS was legally established.
With the introduction of the subject informatics into the AHS one of the substantial
goals of the project C-B-G was reached12.

At the beginning of the 1985/86 school year informatics was introduced as a com-
pulsory subject in the 5th form of all AHS, with the option of continuing informatics as
an optional subject in the 6th to 8th forms.

11 Some teachers still consider these chapters only as sort of an “appendix” as expressed in an

interview of an experienced informatics pioneer and vocational lecturer. [22, p. 400].
12 I’d like to mention that I was a member of that working group of 5 teachers who published

1985 the first textbook for the new subject informatics [2]. Another book was published by
Ueberreuter in 1986 [8].

12 A. Reiter

4.2 Teacher Training

Successful establishment of informatics in schools depended on the qualifications of
prospective teachers of informatics, thus teacher training and advanced teacher train-
ing were essential aspects of the project C-B-G. Together with representatives of the
IT-industry, of employer’s and employee’s organizations, the BMUKS developed a
programme of teacher training13.

After intensive negotiations with representatives of the Federal Board of Economy
(Bundeswirtschaftskammer), the Association of Industrialists (Industriellenvereini-
gung), the Labour Board (Arbeiterkammer), as well as the Austrian Federation of
Trade Unions (Österreichischer Gewerkschaftsbund) an agreement was reached that
16,5 out of a total of 80 hours of instruction were to be dedicated to socio-political
and socioeconomic themes of informatics. The C-B-G-seminars lasted two weeks.
They represented a symbiosis of a basic technical course, which offered both an in-
sight into the operation, functioning, and programming of personal computers, with a
platform for public discussions about the influence of information-processing tech-
nologies on society and economy. Topics treating the social, economic, and political
consequences of a computerized world had to be integrative parts of the seminars.
From my point of view as an official representative of the BMUKS and as speaker in
that field they were considered of equal importance14 to the lectures or exercises deal-
ing with hardware, software, programming etc.

Fig. 6. The central teacher seminars lasting 2 weeks took place at IBM and at Philips Data
System (PDS). This picture of Dec. 1984 shows me as opening speaker (sitting) and MR Dr.
Klaus Satzke representing prevocational schools (standing at right)

13 Since fall 1999 prospective teachers of the subject informatics at higher secondary general

and higher vocational schools can study informatics at the universities of Klagenfurt, Salz-
burg and Vienna. Since 2002 Linz also offers teachers formation in informatics.

14 As permanent speaker in this field I made an inquiry on the acceptance of the socioeconomic
themes. Evaluating statements of about 120 teachers showed that more than 30 percent re-
jected them. The teachers main interest was rather the development of databases (dBase),
calculations with spreadsheets, programming with GWBASIC, and of course, word process-
ing (with Easy writer or Wordstar).

 Incorporation of Informatics in Austrian Education 13

Fig. 7. Exercises on the PC at PDS during a seminar for future informatics teachers

From 20th August 1984 to 28th June 1985 a little less than 500 teachers of AHS,
compulsory junior secondary general schools (Hauptschulen), and pre-vocational
schools (Polytechnische Schulen) were instructed at the central C-B-G teacher training
seminars at IBM and Philips Data Systems in Vienna. As mentioned, these seminars
triggered off a discussion concerning the socioeconomic aspects of informatics. But
the teacher’s initial reservation gave way to an increasing readiness to accept this
form of a modern informatics instruction. These issues became fixed in their minds.

I’d like to add some simple BASIC-program-listings15 of the C-B-G-seminars.
Nowadays one would find several alternative and quicker ways for instance by using
the pocket calculator. Those who consider these programs too trivial may nevertheless
appreciate that at the seminars 20 years ago, some teachers got shiny eyes when an
operation succeeded. They could hardly get away from the PC when the course was
over.

Sample 1: Find the greatest common divisor (GCD) according to Euklid’s algorithm

 5 REM ** Greatest common divisor **
 10 PRINT „digit 1”
 20 INPUT A
 30 PRINT „ digit 2“
 40 INPUT B
 50 LET R = A – INT (A/B)*B
 60 LET A = B
 70 LET B = R
 80 IF R = 0 THEN 100
 90 GOTO 50
100 PRINT “GCD”
110 END

15 I replaced German identifiers by corresponding English terms. The BASIC-syntax remained.

14 A. Reiter

Sample 2: Find mirrored palindromes (the word can be read in both directions, but has
another meaning such as EVIL and LIVE)

 5 REM ** mirrored palindromes**
10 PRINT “type a word”
20 INPUT WORD$
30 LET MIRROR $ = " "
40 FOR I = LEN (WORD$) TO STEP -1
50 LET MIRROR$ = MIRROR$ + MID$ (WORD$, I,1)
60 PRINT MIRROR$
70 NEXT I
80 PRINT MIRROR$
90 END

Sample 3: At what age someone may be elected?

 5 REM **election age**
10 PRINT „How old is the person”
20 INPUT A
30 IF A • 21 THEN 60 21 THEN 60
40 PRINT “The person cannot be elected”
50 GOTO 70
60 PRINT „The person can be elected”
70 END

To complement the central seminars in Vienna further (advanced) training courses
took place at the institutes of further training for teachers of compulsory general
schools (Pädagogische Institute) in the provinces and at schools with adequate
equipment. The upgrade courses of the C-B-G seminars were transferred to the Päda-
gogische Institute all over the country. These courses were organized as “didactic
workshops” to illustrate the possibilities of computer applications in education. Fur-
thermore, the programme of the Austrian Computer Society (OCG)16 offered special
seminars, which effectively supported the advanced training of teachers in the school
year 1984/85. At the beginning of the school year 1985/86 about 1600 teachers were
basically qualified for teaching the new subject informatics at AHS [4].

4.3 Supply of Equipment for the AHS

The aim to expand education with information technologies necessitated to provide
schools with equipment and programmes geared towards the pedagogic objectives. A
hard- and software working team consisting of AHS-teachers from all over Austria,
representatives of school inspection and administration, and experts from the BMUKS
was set up and new equipment for a total of 169 AHS was tested nationwide. In the
first effort the call for proposals was published in Wiener Zeitung, the official news-
paper, in December 1984 according to Ö-Norm A-2050. In January 1985 the tender
was opened, and already in 1985 the acceptance of the tender was awarded by the
BMUKS. In total, 1026 IBM compatible microcomputers17 (MS-DOS 2.0) were pur-
chased at an expense of about ATS 50.000,00 per configuration18.

16 see www.ocg.at
17 PCs of Honeywell Bull, Philips Data System, and Toshiba were ordered.
18 Due to decreased prices for hardware, one would get today at least 2 or even 3 configurations

for this price of roughly € 3.600,00.

 Incorporation of Informatics in Austrian Education 15

The call for proposals obliged the companies to supply user software, manuals, and
printers. With the help of the delivered integrated software package “Open Access”
pupils could understand the principles of data bases and became familiar with word
processing and spreadsheet calculation.

Each of the newly equipped 169 public AHS was supplied with six XT-compatible
microcomputers. The other 69 AHS had at least four units each at their disposal. Suit-
able computer rooms were provided in most cases.

4.4 Interactive Videotex (Bildschirmtext) for Federal Schools

At this time powerful, but stand-alone personal computers did not guarantee a modern
instruction in informatics. Consequently it was imperative to include new trends and
technological developments in the instruction. Considerations of educational policy
determined the decision to supply each of the 238 public AHS with a MUPID (multi-
function universal programmable intelligent decoder) computer and an interactive
videotex connection. The use of MUPID-219allowed the connection to the videotex,
anticipating future perspectives of an all-embracing exchange of communication and
information between the schools themselves, and between schools and databases or
external systems as nowadays realized by using the Internet.20

Fig. 8. Prof. Dr. Hermann Maurer participated not only at the development of the MUPID
computer. He also created an online videotex-corner (“Maurers Btx-Ecke”). In computer maga-
zines he was called “The Btx-pope”

Interactive videotex21 was a text information- and text communication system,
developed on the basis of TV-, telephone-, and computer technologies. User could

19 The well known Austrian Mathematician, computer scientist ant telecommunication expert
Hermann Maurer developed the MUPID together with Reinhard Posch.

20 In the beginning of the 1980s the Internet (interconnected network) was part of the ARPAnet.
The Internet started its triumphal and explosive worldwide growth in the middle of the 1990s

21 The French system Minitel and Prestel in England corresponded to the Austrian” Bildschirm-
text” (in Germany called Videotext).

16 A. Reiter

information in form of texts, graphs, pictures, and tele-programmes from the public
telephone network and read it on the terminal. MUPID-2 was a microcomputer which
could be expanded by externals and used in connection with the nationwide commu-
nication network. Its programming facilities and the possibility of file transfer of so-
called telesoftware offered a wide range of applications for education and for the
home.

To actually take advantage of the new communicative effect of interactive video-
tex, a teacher training course for informatics was offered. This package, called
“Autool”, allowed organizing courses without knowledge in programming. The con-
stant control of progress determined the further form of a lesson.

Interactive videotex connection at school did not only offer an interesting area of
activity for informatics instruction, it could also promote the integration of informat-
ics into other subjects. Available learning and simulation programs as well as the
possibility to recall lexical knowledge and to obtain daily information about recent
events could be useful for teachers of all subjects. Notwithstanding the advantages of
the medium the pro and contra in public discussions about its effects on social and
private life continued [20]. Retrospectively seen, videotex did not gain a basic foot-
hold in the Austrian school system. With the advent of the Internet the operation of
videotex was stopped by Telecom Austria.

4.5 Installation of Information-, Instruction-, and Training Centres

The C-B-G-project’s aim to introduce informatics into schools and to offer adults the
chance of instruction and continued instruction gave birth to the idea of creating a
permanent place of information and training in the field of information processing [4,
p. 29 f.; 15, p. 63].

In the spring of 1984 a first concept for a generally accessible centre equipped with
personal computers was developed in cooperation with the Arbeitsgemeinschaft für
Datenverarbeitung22 (working team for data processing). Moreover, the demand for a
central location where it should be possible to test and compare different computers of
different producers was voiced in the discussion about advanced teacher training and
school-external adult education.

This discussion resulted in the EDP-information-, instruction-, and training centre
Ettenreichgasse in Vienna. Thanks to the cooperation of various IT-companies and
institutions this centre was realized. A concept of equipment was developed together
with Austrian EDP-companies, the associations of employers and employed, banking
institutions etc. The companies gave their products, which were of considerable fi-
nancial value, as objects of permanent loan. This form was chosen to avoid getting
soon a “museum of technology”, as well as to minimize service and repair costs.

The Federal Government supplied several rooms and furniture at the federal
teacher training college (Pädagogische Akademie des Bundes) in Vienna and paid for
electricity and cleaning. It slso provided three tutors looking after visitors and equip-
ment of the centre. All institutions supporting the centre with material or funds, that is
to say IT-producing companies etc. were represented as external members.

22 See www.adv.at

recall information in form of texts, graphs, pictures, and tele-programmes from the

 Incorporation of Informatics in Austrian Education 17

The tasks of the information-, instruction-, and training centre were as follows:

− The centre should enable all teachers to test, enlarge, and increase their knowledge
of appliances of various producers. The EDP-centre should also be used for school-
external adult education. There were regular courses of public adult education cen-
ters (Volkshochschulen) and working groups.

− Moreover, the institution was opened to a wide public in the form of regular “Tage
der offenen Tür”. This “Open House” was above all attended by pupils who wanted
to put into practice the knowledge gained in informatics- and EDP-instruction. As
a result of the success of this institution in Vienna an expansion of further EDP-
information-, instruction- and training centers to the provinces took place.

From the middle of the 1980ies onwards a number of information centers23
throughout Austria were offering interested pupils, teachers and parents the opportu-
nity to try and compare various computer models and programs. These centers were
also available for training and advance training purposes as part of adult education
programs.

5 Conclusions

One of the most important outputs of the C-B-G-project was according to my opinion
the completion of the EDP-curricula of the medium and higher vocational schools
with the socio-political and socioeconomic aspects of informatics. C-B-G has to be
considered as strong motor for the further developments24 in the complex field of
Austrian school-informatics. It was likewise instrumental for integrating new infor-
mation and communication technologies such as Multimedia and Internet into all
levels of Austrian education in the respective curricula of different subjects as de-
manded by OECD [6], UNESCO [23 to 26], and in recommendations of the EU-
commission [9] in recent years. It should be mentioned as well that the comfortable
human-computer-interfaces of today, used in connection with E-Learning or mobile
communication are products of applied informatics. I’d like to stress that the disci-
pline informatics must defend its per se-position of being an essential part of general
education [22, p. 39 ff.] irrespective of the requirements of media literacy or IT-
standards at the level of the European Computer Driving Licence also in the future.

References

1. AK/ÖGB: Technikbewertung EDV. Auswirkungen des EDV-Einsatzes auf Arbeit,
Wirtschaft und Gesellschaft, Reihe „Arbeitswelt und Schule“, Wien 1985.

2. Anzböck, Friedrich/Mathuber, Alf/Prowaznik, Bruno/Reiter, Anton/Wöhrl, Manfred: In-
formatik 5. Klasse AHS, Wien (Bohman) 1985.

23 The very successful institution “education highway” in Linz (www.eduhi.at) was a former

expansion of the Viennese EDP-information-, instruction- and training centre.
24 See the contribution of Peter Micheuz in this book that analyses the further developments of

informatics at general secondary schools in Austria

18 A. Reiter

3. BMUKS: Informatics Instruction in Austrian Education. New Information Technologies
and School, Folder, Vienna 1985

4. BMUKS: EDP/Informatics in Austrian Education. An Initiative of the Federal Ministry of
Education, Arts and Sports, brochure of the BMUKS, Vienna 1986.

5. CEO-Forum: Key Building Blocks for Student Achievement in the 21st Century, Wash-
ington 2001.

6. CERI/OECD: New Information Technologies. A Challenge, Paris 1986.
7. Department of Education and Science of England, Northern Ireland and Wales: The

Microelectronics Programme, Newcastle 1981.
8. Dinauer/Sziruscek/Wurnig: Informatik, Wien (Ueberreuter) 1986.
9. Erault, Michael (ed.): Education and the Information Society. A Challenge for European

Policy, Councel of Europe, 1991.
10. Forsyth, Ian, Teaching and Learning materials and the Internet, 2nd edition, London (Ko-

gan) 1988.
11. Haefner, Klaus: The Concept of an Integrated System for Information Access and Tele-

communication (ISIT) and its Impact on Education in the 90s, in: Levington S.H. (ed.): In-
formation Processing 80, Amsterdam (North Holland) 1980, p. 973-978.

12. Haefner, Klaus: Challenge of Information Technology to Education. The New Educational
Crisis, in: Lewis, Bob/Tagg, Donovan (eds.): Computers in Education, Proceedings of the
IFIP TC-3, 3rd World Conference on Computers in Education – WCCE81, Lausanne, July
27-31, Amsterdam (North Holland) 1981, p. 525-531.

13. Haefner, Klaus: Die neue Bildungskrise. Herausforderung der Informationstechnik an
Bildung und Ausbildung, Basel (Birkhäuser) 1982.

14. Haefner, Klaus: Herausforderung der Informationstechnik an Bildung und Ausbildung,
in: Vereinigung Österreichischer Industrieller (Hrsg.): Bildungswesen und Infor-
mationsgesellschaft. Dokumentation einer Enquete, Wien (Edition Bildung) 1985, S.
39-53.

15. Lehner, Karl/Reiter, Anton (eds.): Informatics in Austrian Education revised and supple-
mented edition, Vienna (BMUK) 1991.

16. Maier, Pat/Barnet, Liz/Warren, Adam/Brunner, David: Using Technology in Teaching and
Learning, London (Kogan) 1998.

17. Manus, Steven: IBM PC. Einführung in System und Betrieb, München (Goldmann)
1984.

18. Ministère de L’Education Nationale: Informatique pour tous, Paris 1985.
19. Neuwirth, Erich/Schauer, Helmut/Tauber, J. Michael (Hrsg.): Kinder, Computer und

Bildung, Schriftenreiher der OCG, Band 31, Wien 1985.
20. Österreichische Computer Gesellschaft (OCG): Gesellschaftliche Probleme der Com-

puterisierung in Österreich, Arbeitskreis: Computer und Gesellschaft“, Wien 1985.
21. Reiter, Anton: EDV/Informatik im österreichischen Bildungswesen, in: Reiter,

Anton/Rieder, Albert (Hrsg.): Didaktik der Informatik. Informations- und kommunikation
stechnische Grundbildung, Wien (Jugend und Volk) 1990, S. 118-140.

22. Reiter, Anton: Eine Standortbestimmung der Schulinformatik, in: Reiter, Anton/Scheidl,
Gerhard/Strohmer, Heinz/Tittler, Lydia/Weissenböck, Martin (Hrsg.): Schulinformatik in
Österreich. Erfahrungen und Beispiele aus dem Unterricht, Wien (Ueberreuter) 2003, S.
33-56.

23. UNESCO: Education and Informatics Worldwide. The State of the Art and Beyond, Lon-
don 1992.

24. UNESCO: Information and Communication Technologies in Teacher Education. A Plan-
ning Guide, Paris 2002.

 Incorporation of Informatics in Austrian Education 19

25. UNESCO: Information and Communication Technologies in Teacher Education. A
Curriculum for Schools and Programme of Teacher Development, Paris 2002.

26. UNESCO: Open and Distance Learning. Trends, Policy and Strategy Considerations, Paris
2002.

27. Zilk, Helmut: Humanistisches Bildungsideal bleibt aufrecht, in: Vereinigung Österrei
chischer Industrieller (Hrsg.): Bildungswesen und Informationsgesellschaft.
Dokumentation einer Enquete, Wien (Edition Bildung) 1985, S. 11-15.

R.T. Mittermeir (Ed.): ISSEP 2005, LNCS 3422, pp. 20 – 31, 2005.
© Springer-Verlag Berlin Heidelberg 2005

20 Years of Computers and Informatics
in Austria’s Secondary Academic Schools

Peter Micheuz

Alpen-Adria-Gymnasium A-9100 Völkermarkt, Austria
University Klagenfurt, A-9020 Klagenfurt, Austria

micp@gym1.at

Abstract. The way in which Austrian schools have reacted to the needs of a
growing digital society has been, all things considered, a success story. This is
remarkable as schools in general are not necessarily places where excessive
progress takes place. Many teachers are rather conservative and not willing to
take part in every new promising development unless they are fully convinced
of its benefits. This applies especially to teachers who are now confronted with
introducing new technologies. Unlike the more or less established subject
Informatics, the overall penetration of information technology in education is
still at the beginning. We have to remember that the present situation has not
appeared from nowhere, but has to be seen as a result of a comparatively short,
but all the more turbulent history with roots already in the seventies. The
official start for the subject Informatics in the secondary academic schools in
Austria (AHS)1 can be dated back to 1985 when all these schools have been
equipped with computers for the first time. „History does nothing; it does not
possess immense riches, it does not fight battles. It is men, real, living, who do
all this" is a quotation from Karl Marx and can be applied very well to the
development of Informatics in Austrian general educating schools. Even if the
visible changes in hardware, software and curricula are remarkable enough it
should be pointed out that this short history was a history of people behind
these developments, enthusiastic teachers as well as responsible policy makers
in that field.

Reminding means choosing.
Günther Grass

1 Introduction

The development of Informatics in schools in general and in secondary academic
schools of Austria in particular is characterized by permanent changes and
improvements in hardware, software and by corresponding didactical approaches as
well. Teaching Informatics in the early eighties was understandably a pioneer work

1 Austria has two categories of schools which provide secondary education for the students

aged 15 to 18 (19) years (in [7], p. 20]]. One is AHS (allgemein bildende höhere Schule)
aiming at a general education, the other is BHS (berufsbildende höhere Schule) which is a
collective term for various types of schools offering vocational education.

 20 Years of Computers and Informatics in Austria’s Secondary Academic Schools 21

for non-typical adventurous teachers who recognized the signs of time and taught a
subject with no experience at all but all the more enthusiasm.

In this keynote I want to point at some milestones which have been set by central
decisions of the Ministry of Education in form of hardware and software equipment,
enactment and organisational measures which have been taken to introduce the
subject Informatics nationwide and obligatory for all. Due to lack of empirical data, I
will try to attach some personal impressions as I have experienced this exciting time.
In retrospective, the last three decades of history of Informatics at the AHS can be
classified into five sequential periods, each of them characterized by more ore less big
changes.

I think there is a world market for maybe five computers.

Thomas Watson, chairman of IBM, 1943
640 KBytes RAM is all that any application will ever need.

Bill Gates

2 The Very Roots and Single Initiatives (1975–1985)

The history of computers in the AHS goes back to the late seventies and early eighties
when some teachers started teaching EDP (electronical data processing, in German:
EDV – Elektronische Datenverarbeitung) with some home computers of the first
generation. It was the time when the computer came into the mind of a broader public
and some teachers experimented with the first affordable computers such as
Commodore Pet, VC64, Amiga and Apple II and shared their experience with a
handful of students.

Fig. 1. Development of use of computers in all types of schools

This diagram (see [9], p. 20) shows the continually growing curve (AHS-Ost) of
the application of computers at the upper level of the secondary academic schools in

22 P. Micheuz

Austria from 1970 on. From 1980 to 1985 the number of schools which used
computers in a rudimentary and rather unorganized way increased significantly.

Personally, I could not resist the temptation and took part in this development.
From 1981 on I jumped into the cold water and taught a subject EDV for three years
with 16 to 18 years old students in the form of elective courses. Because of lack of
computers in the school (AHS) where I am still teaching we had to use the computers
of a vocational school in the same town. From my point of view this adventure turned
out to be very successful. Quite a number of Austrian teachers did as well and were
encouraged enough that most of them have not given up teaching Informatics till yet.

These days, it is hardly imaginable to teach Informatics with a computer which
obviously has no operating system, which is not networked, has no harddisks and
floppy drives and, moreover, is equipped with a monitor with an intolerably awful
solution. It was at the time when just the unemotional message "OK" appeared on the
screen. It was the time when programming in BASIC dominated the lessons
(see Fig. 2). At least I successfully passed the era of punchcards …

Fig. 2. The GW Basic Interpreter and a well known algorithm

At this point the legendary computer courses in Graz, the capital of Styria, have to
be mentioned. In these courses, which were held regularly in the first two weeks of
the holidays every year, hundreds of interested Austrian teachers got their first
computer related lessons. These annual conventions were very popular and served as
the very information- and communication centre for its participants. Among the
trainers there were many deserved teachers. Most of them are still very active in the
field of school Informatics.

I do not exaggerate when asserting that this institution, which is still alive today in
a reduced way, has triggered off and influenced the development of school
Informatics in Austria extraordinarily.

Inspired by these in-service-trainings and with the experience of already teaching
the subject EDV, I was comparatively well prepared when in 1985 the new subject
Informatics was introduced nationwide in the 9th grade for 15 year old students. This
decision to install Informatics as a regular subject obligatorily for the 9th grade and

 20 Years of Computers and Informatics in Austria’s Secondary Academic Schools 23

optionally for the 10th - 12th grades was made last but not least by the former Minister
of Education Dr. Zilk. This change in the organisational structure of the AHS has
survived till these days. So has the curriculum, which has nearly remained the same
for almost 20 years. But now, for the current schoolyear 2004/05, a new central
curriculum for the subject Informatics at the secondary level of the AHS has been
enacted ([7]).

BASIC - A programming language.

Related to certain social diseases in that those who have it
will not admit it in polite company.

3 The Experimental Stage (1985–1990)

In 1985 all AHSes were equipped with computers, that meant a comparatively big
investment. They got six(!) computers for the subject Informatics, IBM-compatibles
XT-8086 with 640 kB RAM, two floppy disc drives, running on he DOS operating
system and additionally impact printers. Compared to the affluence of software
nowadays, there were very little applications available. The programming language
GW-Basic, the spreadsheet "Supercalc", an exotic word processing software
"Textmaker" and the integrative software "Open Access".

Above all, it meant a big challenge to educate and prepare teachers in a short time
in order to reach a veritable return on this investment. The so called C-B-G
(Computer Bildung Gesellschaft) courses with 14 days of central instruction in
Vienna are legendary in retrospective, because this training formed the formal
qualification for teaching Informatics for a long time.

For teachers who had nothing to do with computers before, these two weeks might
have been a valuable first contact. As far as I remember the instructions were rather
confusing and there was much self education, further study and training necessary to
provide the teachers with basic knowledge and skills.

This was the time when many interested students knew a lot more than their
teachers. The self image of Informatics teachers has been therefore different from that
in traditional subjects. At that time many of them actually represented the rare species
of learners, instructors and experimenters who sometimes had to cope with the fact to
know little more - if at all – than many students. To tell the truth, it is likely that this
phenomenon can also be experienced these days…

Many of the comparatively young teachers of Informatics were autodidacts and
enthusiastic programmers, exploring the fascinating potentials of programming in
GW-Basic without really knowing the meaning of the letters GW2. Actually these
early years were dominated by programming because of lack of comfortable
application software.

In 1985 every 15-year-old student had to attend the subject Informatics in the 9th
grade. The problem of the small number of computers was solved by generously
splitting classes into small groups.

2 Some say GW-Basic was named after Greg Whitten, an early MicroSoft employee.

24 P. Micheuz

Simultaneously with the introduction of the obligatory subject Informatics in the
9th grade, the optional subject Informatics for the grades 10 to 12 was established. The
first courses started in the schoolyear 1986/87 with the first final exams ("Matura") in
1989. The acceptance of these elective courses was comparatively high right from the
beginning on, that is, about 30% of the all the students attended these courses then.
There are unfortunately no exact numbers about current percentages. But informal
surveys are anything but encouraging.

The following years were characterized by the emergence of a programming
language and environment which should dominate the education in programming for
more than ten years: Turbo Pascal. This marked the change from an interpreted
language to a native compiler and from "spaghetti code" to structured programming.

Fig. 3. The Turbo Pascal interface with a fullscreen editor

For programming languages, a lean but didactically most valuable roboter system
([12]), developed by a deserving Austrian teacher, further Logo, dBase and the hype
of Turbo Prolog should be mentioned. In some cases even batch programming in
DOS and assembly programming were taught according to the level of knowledge of
the respective teacher.

Application software such as word processing, spreadsheet calculation, and
database software underwent a development to integrative software, the ancestor of
the later office suites. Open Access and Enable were representatives of that kind of
software. The first one was used to some degree. The second one, Enable, was to my
knowledge, completely refused. For the first time teachers had to cope with what was
considered to be an unnecessary upgrade. Understandably none of the teachers
wanted to relearn. Isn't this a well known phenomenon this very day?

In addition to algorithms and programming and the (rudimentary) application
software the curriculum also stipulated knowledge about hardware, mathematical and
logical basics and naturally some soft topics such as data security and the implications

 20 Years of Computers and Informatics in Austria’s Secondary Academic Schools 25

of information technology on society. But as "real programmers" many teachers did
not attach as much importance to these topics as the curriculum demanded.

It should also be mentioned that in that period the first viruses appeared and thus
revealed the vulnerability of information technology. Since 1987 an apparent change
from intellectual exercise to dangerous activity took place. The Vienna Virus written
in Austria in 1988 with the falling letters on the screen is still well kept in mind by
those who suffered from it.

Fig. 4. A MUPID with its almost 10 kg heavy 5 ¼" floppy drive

It is remarkable that the first but still rather ineffective steps to telecommunication
in schools in form of MUPID (Multipurpose Universally Programmable Intelligent
Decoder or joking: Most Useful Product Invented In this Decade) were taken very
early (see Fig. 4). This device was delivered to every AHS and worked - if it has ever
been installed and configured - with the unimaginable data transfer rate of 300 byte
per second. But the time was not mature for text based telecommunication. It never
reached a critical mass. Consequently this undertaking with its roots in Graz, Austria,
was doomed to fail as the World Wide Web began its triumphal procession around the
world.

In the five years from 1985 to the 1990 the computer continuously became a mass
product and at the end of this period almost half of Austrian students declared to have
access to computers at home ([9]).

Change is not merely necessary to life - it is life.

Alvin Toffler

4 Networking and the Beginning of the GUI Era (1990–1995)

In 1990 the second wave of hardware equipment heralded the period of integration of
the computer into other subjects than Informatics together with the introduction of
networked computers. Fifteen computers including a server with the Novell network
operating system was installed especially for that purpose in all AHSes. I can
remember very well my reverence for the server. For some time, I really thought this

26 P. Micheuz

was a special sort of hardware and did not know that it was just the software which
distinguished a client from a server.

This computer network needed of course maintenance and, therefore, special
know-how. System administration in schools was born.

With that equipment also these little animals called mice became an input device
and triggered off the era of the point and click generation. It seems a little bit
ridiculous, but the Ministry of Education strictly advised that these mice had to be
plugged in - without exception - by the company which delivered the computers.

In this context one additional computer classroom was adapted and should be used
frequently by the 13- to 14-year old pupils. Enactment by the Ministry of Education
was made to foster the use of computers at an earlier age than fifteen.

This period from 1990 on is also characterized by comparatively enormous efforts
in organizing in-service-trainings for teachers in order to encourage them to use the
computer in the so called key-subjects (Trägerfächer, supporting subjects) German,
English, Mathematics and Geometrical Drawing. In retrospective we can state that
this integrated approach, called ITG (informationstechnische Grundbildung,
information technology based education), did not work very well to say the least. Too
few computers equipped with proprietary software and teaching more than thirty
pupils on fourteen computers can be mentioned as evident reasons.

Nevertheless, the acquisition of these computers – IBM compatibles AT with
harddisks and 1 MB memory - was finally no stranded investment. These computers
were widely used not only for the obligatory subject Informatics and the elective
courses in the upper secondary level but also for 13 and 14-year-old pupils. There was
a special curriculum and even programming was quite usual.

According to the COMPED3 study ([9]) the applications Supercalc, MS Works,
Textmaker, CAD 2D, Word Perfect and Logo can be found in the top ten list.

Fig. 5. Result of the COMPED-test on computer competence in 1992. Left: lower secondary
level. Right: upper secondary level

3 COMPED: Computers in Education Study, initiated by the IEA (International Association for

the Evaluation of Educational Achievement). Austria entered this organisation as the last
country in 1989. This international study based on a comprehensive test where also many
thousands of Austrian pupils were involved. As a result a lot of scientifically proven
information about the application of computers in schools at that time is available.

 20 Years of Computers and Informatics in Austria’s Secondary Academic Schools 27

This study reveals – more than 10 years later – astonishing facts. It included the
evaluation of the pupils and students IT-competencies in form of basic computer
knowledge and skills. Even programming skills were tested. Today it is unthinkable
to assign the same elementary programming tasks to pupils at an age of 14 years.
Teaching programming at the lower level of the AHS practically does not take place
any longer. But you could very well pose the same questions today as standard
software related assignments are concerned. What we can learn from this is that most
of the problems are still the same, only the tools and products are changing. Old wine
in new bottles …

Fig. 5. impressingly shows the excellent performance of Austrian pupils at the age
of 14 years concerning computer literacy and programming skills. Unfortunately,
since then, no comparably substantial test has been done.

In 1993 8 Intel-PCs 486 (4MB RAM, 40 MB HD), Novell Netware 3.11, a server
(8 MB RAM, HD 240 MB) formed the hardware basis for lessons in Informatics the
following years in all AHSes. The change from DOS to WINDOWS and, accordingly,
the shift from the textual to the graphical user interface was unstoppable and
influenced the subject Informatics especially as the application software was
concerned. Didactics in Informatics changed in many schools and classes from a
programming and algorithm orientation to an application oriented approach. There
Microsoft Office began to occupy a superior position and has kept it till today. It is
worth mentioning that Excel 5.0 was released in 1993 and has dominated the field of
spreadsheet software. As Windows 3.1/3.11 is based on DOS, there were still many
applications running on DOS with a textual interface.

At that time a veritable number of schools nationwide decided to enforce their
Informatics education at the 7th and 8th grade and in the upper secondary level. This
measure of course required appropriate and engaged teachers and a certain amount of
belief in progress by the school administration.

Describing the Internet as the Network of Networks is like

 calling the Space Shuttle, a thing that flies.
John Lester

5 More Autonomy, Consolidated Standardized Application
Software and the Kickoff of the Internet Era (1995–2000)

1997 marks the last year of centrally controlled investment of hard- and software.
From that time on it was up to the schools to buy hardware from their budget. Due to
the shift to more autonomy the schools themselves were made responsible for their
hardware equipment. Till now it is up to schools to provide a sufficient infrastructure
according to the needs of their profiles in terms of pushing IT. Thus, in 1997 the
fourth and the last central wave of hardware and software equipment took place with
the first Pentium computers and a Windows NT network. At the same time Austrian
secondary academic schools went online. An internet access for one computer with a
modem (33 kBit) was established in all AHSes.

With the advent of Windows 95 and Windows NT, object orientation appeared in
form of the continuous interaction with graphical user interfaces. Programming and

28 P. Micheuz

algorithms lost importance at the expense of a rapidly growing offer of Windows
software. Windows-based application software and later on integrated development
environments such as Visual Basic and Delphi converged in terms of handling and
stopped the uncomfortable situation of software with extremely varying user
interfaces. In the retrospective - despite many side blows - Microsoft Windows has to
be seen rather as a blessing than a curse. The standard, which was set, and the
consistency in handling all applications influenced the learning curve of the students
positively. This argument doubtlessly applies to the use of application software. But
programming, which still played a role in the elective courses, slowly migrated from
the popular GW-Basic and Turbo Pascal under DOS to the event driven successors
Visual Basic and Delphi. More than ten years of procedural programming under
familiar development environments made the shift to event driven, object oriented
and graphical development environments rather difficult: An experience I shared with
many other teachers.

Didacts still argue that an unreflected use of event driven development
environments affect the algorithmic aspect of programming where the user interface
and aspects of design distracts from imparting the concepts.

Anyway, with the introduction of the graphical user interface the era of complex
software and thus the world of objects arrived. Handling objects in standard software
became a matter of course and developing programs in a Windows environment
required the save application of at least predefined graphical objects and classes. It
became obvious that the facilities an operating system provides and its general design
philosophy exert an extremely strong influence on programming style and on the
technical cultures that grow up around its host machines.

The increasing penetration of the internet and the number of networked computers
in schools consequently made a professional system administration necessary. Many
in-service trainings took place in order to qualify the responsible teachers and to
guarantee a functioning infrastructure at schools.

The role of the internet was still underdeveloped for the reason of a poor
bandwidth. In this time an average secondary academic school in Austria had a single
ISDN – connection shared with a lot of computers. A productive integration of the
internet even in Informatics lessons was not possible, not to mention using the
internet in other subjects. But since 1996 the know-how in schools concerning the
internet has rapidly grown despite the mentioned deficits. First homepages were
produced and the vision of publishing for the whole world had its impact on the
subject Informatics. Webdesign, markup and script languages, the client-server
concept and network fundamentals enriched the stagnating education in Informatics
and opened a completely new perspective.

Last but not least Linux came into mind of many teachers of Informatics and with
it the idea of open source. Although not shown separately in the central curriculum for
Informatics, Linux found its ways into many schools at least in form of stable internet
servers. It will be interesting to watch the development of Linux as a desktop system.

Until now very little about the education of teachers in the field of Informatics has
been mentioned. Central courses, such as the one in Graz, which started in 1980, are
are still maintained to a reduced extent, but the main responsibility has been conferred
to regional in service centres, the PIs (Pädagogische Institute – pedagogical
institutes).

 20 Years of Computers and Informatics in Austria’s Secondary Academic Schools 29

Almost as long as the subject Informatics has existed, there were efforts and
preceding debates about installing a full academic study to educate teachers for the
subject Informatics. In 2000 this became true at the universities Wien, Salzburg,
Klagenfurt and in 2001 also in Linz.

Getting information off the Internet is like taking a drink from a fire hydrant.

Mitchell Kapor

6 E-Learning, Standards and Increasing Didactical Issues
(2000–2005)

Parallel to the hype of the internet at the beginning of the 3rd millennium a new era
began when a nationwide initiative provided secondary schools with a predominantly
excellent access to the internet. From this time on, the way for an adequate use of the
internet has been smoothened as an effective information and communication tool.

A recent survey in 2004 (see [13], p. 87f) revealed the fact that at least almost
every pupil of AHSes in Carinthia/Austria has access to a computer at home and
almost two thirds have an internet access. Due to autonomous decisions of the
schools, the quality of the hardware equipment of the AHSes already differs
considerably. About one third of the AHSes is emphasizing IT as part of a school
development program. Some of these schools are involved in e-learning and
notebooks projects in which computers and the internet should support the learning
process. But looking at the latest PISA results for Austrian students, we have to state
an urgent call for action to deal with education in a fundamental manner. Till now
there has been no proof that the (unreflected) use of computers has a convincingly
positive effect on the improvements of learning processes.

In the last years autonomic decisions of schools have led to an enormous diversity
in organisational structures, e-learning initiatives and still reinforced informatical
education. This process is still going on rapidly and it is not difficult to predict that
this development will continue. This is as certain as the fast-paced progress in the
hard- and software development.

Another big issue in the political discussion about quality in schools is the shift
from input control by open curricula to output measurement and the definition of
clearly defined standards. It seems that Informatics respectively ICT leads the way in
this context in form of a wide offer of certifications as for instance the ECDL. As an
additional qualification since the year 2000 it has also been accepted in secondary
academic schools and supported by the Ministry of Education. It will be interesting to
watch the further development of certificates in schools in general.

Actually, many didactics experts attach rather little value to the ECDL in terms of
its role in general education. In my opinion the argument is two-sided. As long as the
offer of this certificate leads to a reliable basic qualification in terms of computer
literacy and to improved basic skills in the use of computers, there is no reason to
object to it. In case of a mere product training without any conceptual background this
absolutely deserving initiative of the ECDL has to be reflected seriously. This applies
to all the other certificates which are offered at the secondary academic schools as
well. Apprehensions that the ECDL is totally dominating the subject Informatics and

30 P. Micheuz

thus leaving too little room for other important curricular contents have unfortunately
been proven in some cases. Convincing the teachers that this is the wrong way and
simultaneously showing concepts to do it better is doubtlessly a big challenge for the
young field of Informatics didactics. Unfortunately, there is still an underdeveloped
market of schoolbooks which lead in this direction in Austria.

Another important challenge is the demand for assuring the position of Informatics
in the canon of all the other obligatory and elective subjects as well. The need for an
independent subject Informatics is still alive and beyond question in Austria at the
moment. The recent reform of the upper secondary level of the AHS offers students
ways for a special education in Informatics in form of elective courses and a
reinforced integration of informatical methods in other subjects as well. The new
enactment for the final examination at the AHS, called Matura, determines this new
option in order to foster the use of the computer and to encourage students to attend
elective courses in Informatics. At the moment it is difficult to predict to what extent
students will accept this interesting option. A quantitative and qualitative evaluation
in this regard would be highly appreciated.

I find the great thing in this world is not so much where we stand,

as in what direction we are moving.
Oliver Wendell Holmes, Jr.

7 Conclusion

The twenty years of computers and Informatics at Austrian's secondary academic
schools are characterized by a matchless dynamic and the need for teachers who
permanently engage themselves in new tools and concepts. Enthusiastic and mainly
self-taught teachers who invested a lot of time and money have led the way for a
remarkable history of the computer and Informatics in the AHS.

We have experienced the development from rudimentary personal computers with
text-based software to worldwide networked multimedia machines which are suitable
for almost all purposes. We have experienced various didactical approaches, shifts in
the way of programming, and in the intensity of teaching application software. The
role of the computer has changed from a rare experimental tool to a ubiquitous object
of common utility. But despite this drastic development there are long-term basics and
meta-concepts which have survived it.

It is not only the ongoing drastic shift in our society and economy caused by
information technology which puts pressure on the educational systems. The schools
themselves are involved in a continuously changing process in which informatic
systems are strongly involved and still discussed.

Doubtlessly we have experienced already a diversified and rich history of the
computer in schools, but the big challenges are still in front of us. This especially
applies to the subject Informatics and to the use of ICT in education in general.

Considering the almost unmanageable offers and shifts in contents, methods, and
software tools. it is highly advisable to adapt the introductory quotation of Grass
"Reminding means choosing" to "Teaching means choosing". To find an appropriate
choice is the very challenging task of teaching Informatics.

 20 Years of Computers and Informatics in Austria’s Secondary Academic Schools 31

Concerning the use of ICT, it could be beneficial to confront the reader with a very
disputed quotation by Manfred Spitzer, a well known German brain researcher: "If
sometimes teaching and learning material has to be purchased, attention should be
paid that it is functioning without electricity – in that case you can't be wrong."

Third time is a charme and therefore I conclude these reflections with a quotation
worth being considered especially in the context of Informatics.

"Men have become tools of their tools." The author Henry David Thoreau, an
American philosopher, lived from 1817 to 1862 ...

References

1. Anton Reiter-Albert Rieder, Didaktik der Informatik, Jugend und Volk, 1999
2. Schwill A.(Ed.), Informatik und Schule, Springer, 1999
3. Schauer H., Michael Tauber (Eds..), Informatik in der Schule, R.Oldenburg, Wien, 1980
4. Mittermeir R. (Ed.) et al., Informatik in der Schule-Informatik für die Schule, Böhlau,

1992
5. Weinhart K. (Ed.), Informatik im Unterricht, Oldenburg, 1979
6. Koerber B. (Ed.), Informatische Bildung in Deutschland, LOG IN Verlag, Berlin, 1998
7. Reiter A. et al., Schulinformatik in Österreich, Ueberreuter, 2003
8. Hüffel C., Reiter A. (Ed.), Praxis der EDV/Informatik, Jugend&Volk, Wien, 1996
9. Haider G., Schule und Computer, Österreichischer Studienverlag, 1994

10. Reiter A., Anekdoten zur Informatik, Studienverlag, Innsbruck, 2001
11. Menzel K., Basic in 100 Beispielen, Teubner Verlag, Stuttgart, 1981
12. Köck et al., Werkzeug Computer, Schulbuch A. Pichler, Wien, 1986
13. Micheuz P., Informatics at an Early Stage, in Johannes Magenheim, Sigrid Schubert

(Eds.), Informatics and Student Assessment, GI-Edition Lecture Notes in Informatics, GI,
Bonn, 2004

14. Banville E. et. al., European Linkages in Teaching Computing at Primary and Secondary
Level (Sokrates – Comenius Conference CTC Link 97), Dublin, 1997,
http://www.ctc.deu.ie

R.T. Mittermeir (Ed.): ISSEP 2005, LNCS 3422, pp. 32–36, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Informatics Education at
Vocational Schools and Colleges in Austria

Martin Weissenböck

Höhere technische Bundeslehranstalt Wien 3R,
Rennweg 89b, 1030 Wien, Austria

martin.weissenboeck@htl.rennweg.at

Abstract. The contribution offers a survey about vocational schools in Austria
(both intermediate and higher education) and the development and position of
the informatics education. The main area of the account lies within the “techni-
cal and vocational schools and colleges”, but also the other forms of vocational
schools (“schools of occupations in the business sector”, “schools of manage-
ment and service industries”, “schools of social occupations”) will be ex-
plained1. In addition a selection of various special school models will be dealt
with. Furthermore the development of the informatics curricula, the present
state and the current trends will be described.

1 Tasks of Vocational Schools

Amounting to 195,476 pupils, the technical and vocational schools and colleges out-
strip those from the grammar schools (189,753 pupils)2. Considering that the voca-
tional schools comprise only the forms 9 to 13, the grammar schools on the other
hand 5 to 12, it is not surprising that more graduates leave the vocational schools
(about 17,000 graduates) than the grammar schools (about 16,000 graduates). Never-
theless the vocational schools rank lower in the public perception.

Figures of graduates from vocational colleges may go to University or take up a
job immediately – a model of education which is unique in Europe.

2 Systematics

2.1 Arrangement According to the Level of Education

The Austrian School system provides for three levels of vocational education.

1 See also http://www.berufsbildendeschulen.at/.
2 Statistik Austria, http://www.statistik.at/fachbereich_03/bildung_tab10.shtml1. All figures

concern the school year 2002/03.

Informatics Education at Vocational Schools and Colleges in Austria 33

Part-time Vocational Schools for Apprentices (Berufsschulen)
Part-time vocational schools for apprentices3 are part of the dualistic education of ap-
prentices. As a rule apprentices are trained in school once a week, the rest of the time
they work in a company.

Vocalional Education and Training (VET) Schools (Mittlere Schulen, Fach-
schulen)
Vocational education and training schools4 (Fachschulen) last from three to four years
(in a few cases even shorter) and end with a final exam. School-leavers are employed
as skilled workers and they might, by attending a Secondary College (Aufbaulehrgang
– Kolleg), reach the level of a VET College.

Vocalional Education and Training (VET) College (Höhere Schulen)
Vocational education and training colleges5 provide curricula lasting five years. They
end with a “Higher School Certificate and VET Diploma”. The expression “Higher
School Certificate” refers to the permission to go to University after the exam, the
expression “VET Diploma“ refers to the professional qualification and chances to
take up a job.

2.2 Arrangement According to Contents

Both, VET schools6 and colleges7, offer subject matters containing technical, com-
mercial, and social fields.

Schools and Colleges of Engineering, Arts and Crafts
The schools and colleges of engineering, arts and crafts8 are probably the best known
technical and vocational schools. On more than 80 locations all over Austria the clas-
sical branches of the engineering disciplines like civil engineering, mechanical engi-
neering, electrical engineering or electronics are taught. But also the disciplines eco-
nomics and business engineering, electronic data processing and organisation or in-
formation technology are offered. There are also schools specialising for instance in
chemistry, food technology, or business management9. VET schools are often added
to the VET colleges.

3 All legal quotations - if not indicated otherwise - come from the School Organisation Act (Schul

organisations gesetz), see also http://www.ris.bka.gv.at. This is not a word-by-word translation. §
46 Assignment of the Berufsschule: It is supposed to convey (parallel to the job) the fun damental
theoretical knowledge, to support the education in a company and to enlarge general education.

4 § 52 Assignment of VET Schools: They are supposed to convey essential specialized knowl-
edge and skills needed in jobs of industrial, technical, artistic, commercial or social branches.

5 § 65 Assignment of VET Colleges: They are supposed to convey a higher general and spe-
cific education which enables school-leavers to take up a higher job of technical, industrial,
artistic, commercial branches. It qualifies them to go to University.

6 Details to be found in: § 54 School Organisation Act.
7 Details to be found in: § 67 School Organisation Act.
8 § 72. Schools and Colleges of Engineering, Arts and Crafts. They serve to gain higher techni-

cal or commercial education in diverse fields of economy. Lessons in a workshop and practi-
cal education convey practical skills.

9 The curricula can be found at: http://www.bmbwk.gv.at/schulen/bw/bbs/bbmhs/Berufsbil-
dende_Schulen_H1745.xml

34 M. Weissenböck

Schools and Colleges of Occupations in the Business Sector
School-leavers from schools and colleges of occupations in the business sector10 are often
employed in administration or trading. Knowledge in informatics is taken for granted.

Schools and Colleges for Occupations in the Service Industries
School-leavers from Colleges for Occupations in the Service Industries11 have inter-
esting job prospects in tourism, for example. Also in this branch companies expect
perfect computer skills.

2.3 Examples For Special Forms

Schools for Employed Persons
These are generally run in the form of evening classes.

Secondary Colleges
Secondary Colleges lead graduates (from grammar schools or other vocational
schools) to the goals of a VET college. Therefore, they have to pass only the VET
diploma, as they have already got the school-leaving exam (“Higher School Certifi-
cate”). Add-on Courses (Aufbaulehrgänge) which can be run by Secondary Schools
enable school-leavers from VET schools to pass the final exam.

3 History and Position of Informatics at Schools and Colleges of
Engineering, Arts and Crafts

Informatics has had a long tradition at vocational schools. About 30 years ago the
compulsory subject "electronic data processing" (2 lessons per week in the IV.
form12) was introduced. Then simple programming was in the centre of education.
Soon the education was prolonged into twice 2 lessons per week (11th and 12th grade).

In the other forms of vocational schools subjects were included that belong to in-
formatics as well.

With small computers and personal computers coming into fashion sufficient train-
ing units could be installed for the first time.
Informatics developed fast:

• on the one hand, it was introduced as part of the technical general knowledge in
every branch.

• on the other hand, certain forms of a special informatics education was set up.

3.1 Informatics as a Basic Discipline

Understanding for the fundamentals of economic contexts is imparted in all branches
of education. Similarly informatics education has continued to develop. The subject

10 § 74. College of Occupations in the Business Sector. Students gain higher commercial educa-

tion for all branches of economy.
11 § 76. College of Management and Service Industries. They serve to gain higher economical

education to take up higher jobs in the fields of economy, administration, nourishment, tour-
ism and culture.

12 The IV. form corresponds to the 8th class of grammar school or the 12thlevel of education.

Informatics Education at Vocational Schools and Colleges in Austria 35

"electronic data processing" developed in the Schools and Colleges of Engineering,
Arts and Crafts into the subject "electronic data processing and applied electronic data
processing", then into "applied informatics".

Topics such as word processing, spreadsheets and data bases were added. Also the
social effects of electronic data processing were soon part of the curricula.

New contents came into being due to electronic communication networks and the
internet. To supply all schools with internet accesses with suitable bandwidth was a
great challenge in the following years. With the help of fast internet accesses which
are permanently at hand the assignment to induce pupils to self-study could be ful-
filled. Although the standard increased the amount of lessons remained unchanged.

3.2 Informatics as a Special Form of Education

With “electronic data processing and organization” a new branch was established 20
years ago. Since then it predominantly trained technicians for electronic data process-
ing on a grand scale and for commercial application of electronic data processing.
From our present point of view this branch can best be compared with “business in-
formatics“.

Divisions such as “engineering with business administration – business infor-
matics” or “electronics - technical informatics” followed. Terms like “information
technology” or “informatics” were combined with further expressions such as from
civil engineering.

4 Information Technology as Example of an Educational Branch

The final development, starting with the school year 2001/02, is the division for in-
formation technology13. At present this form is run as an educational experiment.

The curriculum has chosen three main areas14:

• network technology
• systems and information technology
• internet and media technology

In each year of education there are about 37 lessons per week. The regular educa-
tion which is the same for each main area comprises the following subjects (the fig-
ures in the last column indicate the complete amount of lessons per week)

For deepening the subject matters in the three main areas another 5, 14 and 14 les-
sons per week are used in the 3rd, 4th and 5th year.

However, this balanced distribution was disturbed by the liability to save two les-
sons per week every year.15

Curricula are general frameworks, this means that the contents are listed only very
generally. The outline of one subject which is taught over a couple of years is for in-

13 The curricula can be found at: http://www.htl.rennweg.at/recht/erlaesse/it-stdt.pdf.
14 See also http://www.zeugnisinfo.at/xml/3897/3897.pdf.
15 “Entlastungsverordnung’’ June 2003 (BGBl. II Nr. 283/2003).

36 M. Weissenböck

stance hardly more than half a page in print. Due to the fact that the technology de-
velops very fast in informatics, the subject matters of current interest must be adapted
again and again. On one hand, the lecturers themselves are responsible for that, on the
other hand, the current development is coordinated in work groups among the indi-
vidual locations.

Religion Religion 10
German language Deutsch 11
English language Englisch 12
History and polical education Geschichte und politische Bildung 4
Physical exercise Leibesübungen 8
Geography and economics Geographie und Wirtschaftskunde 4
Economy and law Wirtschaft und Recht 6
Applied mathematics Angewandte Mathematik 14
Applied physics Angewandte Physik 4
Applied chemistry and ecology Angewandte Chemie und Ökologie 5
Applied programming Angewandte Programmierung 10
Basics of electrical engineering and
electronics

Grundlagen der Elektrotechnik und
Elektronik

6

Basics of computer science Grundlagen der Informatik 5
Media engineering Medientechnik 6
Business economics Betriebswirtschaft 4
Operating systems and computer
architecture

Betriebssysteme und Computerar-
chitektur

6

Network engineering Netzwerktechnik 8
Data base systems Datenbanksysteme 4
Projects and project management Projekte und Projektmanagement 15
Qualitymanagement Qualitätsmanagement 2
Practical training on computers Computerpraktikum 8

An example for this is "voice over IP". Although it is not expressly mentioned in
the curriculum, the technology is also put into practice: interested schools join the
project at4316! VoIP offers reasonable options for communication for our economy
and consequently competitive advantages. It is up to the technical schools to convey
the fundamentals of implementation.

5 Summary

Informatics has had a long tradition in vocational schools. New curricula take current
developments into account. The subject matters describe a wide spectrum from mod-
est beginnings of a programming course to contents which need not frighten compari-
son with the education provided by advanced technical college (FH).

16 The project at43 is carried out by The University of Vienna and the Internet Private Founda-

tion Austria: http://www.at43.at.

The Transition from School to University:
Would Prior Study of Computing Help?

Martyn Clark and Roger Boyle

School of Computing, University of Leeds, UK
{martyn, roger}@comp.leeds.ac.uk

Abstract. We investigate issues in the preparation of students for un-
dergraduate study. Specifically, we focus upon the question of whether
computer science students would be better prepared if they were required
to pass a school level qualification in the discipline. Thus we investigate
the school level curriculum in detail and make a comparison with the
demands of a typical UK university first year. We conclude that there is
no reason necessarily to see a school level qualification as assisting the
preparation of students for undergraduate study in computer science.
Rather, we hypothesise that the value of the qualification will depend
heavily on the nature of the teaching experienced.

1 Introduction

The preparation of students for university entry is known to be very influential
on their success [1]. Further, the preparation of students for university study of
computer science has recently been highlighted as a key issue [2, 3, 4]. Thus we
address the issue of school level computer science as preparation for studying
the discipline at university.

Specifically, we compare the English school level computer science curriculum
with the requirements of a typical university first year and ask what grounds
exist for believing that an applicant with a school level computing qualification
will perform better in a university computing course than another applicant who
has not studied the discipline before.

The paper is structured as follows. Section 2 provides background relating
to university admissions and pre-university qualifications in England together
with the methodology for the study. Section 3 details findings and these are
discussed in section 4. The paper ends with conclusions and an outline of plans
for further work.

2 Background

In England, compulsory education ends at age sixteen but most individuals do
not move on to university until the age of eighteen. While a variety of alternative
routes exist, most university candidates spend the intervening years at tertiary

R.T. Mittermeir (Ed.): ISSEP 2005, LNCS 3422, pp. 37–45, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

38 M. Clark and R. Boyle

institutions studying in preparation for A-level examinations. These examina-
tions are offered in a wide range of subjects and most candidates will attempt
three or, perhaps, four subjects. In the majority of cases results will play a major
part in determining which universities and which degree programmes will accept
the candidate.

Indeed, to be accepted at a particular English university candidates must
satisfy up to three types of admission requirement.

– Matriculation requirements are designed to allow candidates to demonstrate
that they have the potential to benefit from the university experience. For
example, in addition to passing at least two A-levels at grade E or above,
many universities require candidates to do well in at least five subjects in
pre-A-level examinations taken at age 16.

– Popular and prestigious institutions and courses will normally set entrance
requirements somewhat above this minimum level. For example, to study his-
tory at a member of the UK ‘Russell Group’ of leading research universities
candidates must pass three A-levels at grades BBB [5].

– In addition, entry to many degree programmes is conditional upon passing
an A-level in the student’s discipline of choice. Thus applicants to physics
should offer an A-level in the discipline at grade A or B.

We are aware of no degree course in computer science which requires stu-
dents to have passed an A-level in the discipline. However, at our institution
approximately half of each cohort present with this qualification [6, 7] and we
are interested in whether these students have an advantage over their peers who
are computing neophytes. An academic truism that entry qualifications are at
best poor indicators of student achievement on graduation is supported by a
growing body of research including our own study of computing [8, 9, 10, 11, 12].
However, these are complex issues and at least one large-scale quantitative study
appears to contradict this finding [13].

Nevertheless, we are aware of no research which attempts to move back a
step in the analysis and ask why A-levels, or any other tertiary exit qualifica-
tion, should be a good predictor of university performance. Thus we ask: what
grounds exist for believing that undergraduates with a school level computing
qualification should get better marks than their peers?

A-level examinations are run by examination boards. Inter alia, examination
boards publish specifications setting out the precise nature of the qualification,
including the syllabus to be examined. They also set and organise examinations,
including the marking and publishing results. A number of boards exist and
although their respective A-level computing specifications are not identical, they
are, of necessity, comparable. Indeed, the supervisory regime which assures the
quality of A-level qualifications ensures that significant elements are common
to each board’s specification in a given subject. We examined the current A-
level computing specifications offered by two of these examinations boards: the
Assessment and Qualifications Alliance (AQA) and the Oxford, Cambridge and
RSA Examinations Board (OCR). The selection of these boards largely reflects

The Transition from School to University 39

the accessibility of data but by studying two boards’ specifications we were able
to consider the relevance of their different emphases to our findings.

We compared these specifications with the first year undergraduate curricu-
lum in order to consider the extent to which experience of an A-level course
might prepare students for the university experience. The approach is subjective
and relies on our judgements as teachers of computing. However, we argue that
this process mirrors that undertaken in tertiary establishments when teachers
receive an A-level specification and plan activities to prepare students to sit ex-
aminations based upon it. Further, the analysis could be applied to other school
level qualifications and to the entry level curriculum of other universities both
in England and further afield.

3 Findings

Our findings, which necessarily rely on our interpretations of both university and
A-level curriculum documents, are designed to identify those aspects of the level
one curriculum in which students who have passed A-level Computing might be
thought to have an advantage over their peers who have not.

The level one undergraduate curriculum under consideration is specified as
twelve modules addressing ten sub-disciplinary areas; there are two modules each
of programming and mathematics. For each module we report on the extent to
which we perceive the A-level as preparation. Modules are grouped into: those
we judge to be new even to students who have the A-level (new challenges);
those we consider most likely to reveal an advantage for these students (familiar
territory); and those where we feel the A-level may represent a good foundation,
although this may not be revealed in results (firm foundations).

3.1 New Challenges

Two areas of the undergraduate level one curriculum emerge as being highly dis-
tinct from the A-level experience: mathematics and artificial intelligence. There
is evidence that some mathematics did feature strongly in earlier versions of
the A-level curriculum [14], while artificial intelligence is a particular specialism
of the department under consideration. In our judgement A-level Computing
should not be a discriminator in these modules.

– English students are not alone in finding that the importance of mathemat-
ics to the practise of computing often comes as both a surprise and a disap-
pointment [15]. However, a variety of mathematical concepts and techniques
are fundamental to computing and undergraduates are expected to become
familiar with areas such as algebra, discrete mathematics, logic, geometry,
probability and statistics.
In contrast, the A-level syllabus contains almost no mathematics. Each
Board’s specification includes a requirement to study number systems but
this is the only mathematical content we identify in the specification. It
should be noted, however, that an A-level in mathematics exists and that

40 M. Clark and R. Boyle

a number of computing degree programmes make a pass in this subject a
prerequisite.

– The artificial intelligence module is designed to help students to develop un-
derstanding of the fundamental ideas, issues and techniques of artificial in-
telligence. Its key syllabus content, knowledge representation and reasoning,
leads to a survey of the main sub-areas including computer vision; computing
using natural language; computer learning.
While equivalents for the remainder of the level one modules are almost
certain to be found in any university level one computing curriculum, arti-
ficial intelligence is a particular specialism of the department concerned. It
is, therefore, not surprising that we found no evidence that these topics are
included in the A-level curriculum.

3.2 Familiar Territory

In contrast, there may be grounds for believing that undergraduates who have
taken the A-level Computing will get better marks than their peers who did
not in the database, professional development, and architecture modules. The
close relationship between the curriculum requirements of these modules and
the A-level specifications suggests that while the translation from the school
regime to that of the university may require some effort, students should be on
familiar territory.

– Introductory databases focuses upon databases as programmable systems.
The curriculum is based largely around data modelling techniques and the
use of the Structured Query Language (SQL) to develop, maintain and ma-
nipulate relational databases.
Databases are a major topic in the A-level curriculum which refers specifi-
cally to the SQL, relational models and a number of other concepts which
feature in the level one curriculum. However, the extent to which this is made
specific differs between the Boards considered: while the AQA specification
clearly addresses many of the issues included in the level one curriculum, the
OCR specification addresses them, but less obviously.
Of course, expectations at undergraduate level will not be identical with
those at A-level, but our judgement is that students who have considered
the concept of the relational database and used the SQL should have skills
and knowledge on arrival at university that other students must learn during
their level one studies. Refining understanding as concepts and techniques
are encountered in new contexts should be less challenging than starting
from scratch.

– The inclusion of professional development as a topic in the undergraduate
curriculum reflects the close relationship between the theory and practise
of computing. Students are encouraged to become aware of managerial, so-
cial and legal issues arising from the practise of computing and are given
opportunities to develop and refine various generic skills such as report writ-
ing, working in groups and communication skills. Professional organisations,

The Transition from School to University 41

such as the British Computer Society [16], offer additional accreditation to
degree programmes and in the UK this form of accreditation is widely sought
by university departments as a form of endorsement of quality and compa-
rability. These organisations see professional development as a particularly
important aspect of the undergraduate curriculum.
These issues feature strongly in the A-level curriculum. Each of the specifica-
tions considered makes specific reference to legal, social, historical and ethical
issues in computing. Therefore, we judge that students who have taken the
A-level may be aware already of many of the issues of professionalism that
this module seeks to highlight.

– The syllabus for the architecture module refers to computer internals, per-
formance measures, arithmetic and logic operations and CPU internals. The
A-level specification refers to many of these concepts specifically, including
the expectation that students develop an historical perspective. This mod-
ule, therefore, has the potential to highlight any advantage for students who
have passed the A-level.

3.3 Firm Foundations?

The potential for undergraduates holding the A-level qualification to be advan-
taged in the remaining modules is less clear. Certain aspects of the undergrad-
uate curriculum are specified for study at A-level, but there is clearly scope to
address them in more or less detail depending on the Board chosen, the facilities
available, and the interests of teachers and students.

In these modules the A-level may provide a useful foundation but we judge
that, as activities at undergraduate level will tend to focus on the more advanced
material, module results may not reveal much advantage for A-level holders.

– Introductory networking introduces ideas about operating systems and
computer-to-computer communication. Key concepts from this area are re-
quired at A-level, for example, client-server models of communication, hy-
perlinking and the World Wide Web, and common network environments.
Clearly, however, the undergraduate curriculum goes further, for example,
it includes CGI scripts, data compression, and distributed applications.

– Similarly, the basics of human-computer interaction are specified as topics
for A-level study including, for example, user models and interface design.
The undergraduate curriculum builds upon the basics by discussing why
interaction is as important as processing and analysing ‘human factors’, such
as vision and memory, which are important in the design of interactions.

– Analysis of algorithms is a theoretical, rather than practical, module which,
in addition to introducing data structures, invites students to consider par-
ticular problems and how they might be tackled using a computer. While
the A-level specification does call for a familiarity with simple data struc-
tures and some description of algorithms we judge that the undergraduate
curriculum requires a significantly more sophisticated understanding.

– The information systems module introduces a more ‘business-oriented’ or less
technical (‘softer’) perspective on computing. It is concerned with concepts

42 M. Clark and R. Boyle

relating to systems and information and requires students to consider dif-
ferent perspectives on the process of developing information systems. These
concepts do not feature prominently in the A-level curriculum. However,
courses based upon these specifications should consider the relationship be-
tween data and information which is an important foundation for undergrad-
uate study. Similarly, the uses of computers in organisations, particularly
management information systems, is part of the A-level specification.

3.4 The Special Case of Programming

Software engineering is a major component of any undergraduate programme
in computing. The ability to program is one of the defining characteristics of
members of the computing community [15]. Experience suggests that learning to
program dominates their first year at university for a large number of computing
students. Further, students who do not pass these modules are unlikely to enter
level two.

The level one programming modules focus on the syntax of a programming
language and techniques for ensuring that robust and reliable programs are de-
veloped which meet requirements: that is, techniques for engineering software.
In contrast, the A-level specification does not require programming specifically.
Rather, the emphasis is on systems development: an expression which could
mean programming, but equally could refer to the development of systems us-
ing applications such as database management systems (e.g., Microsoft Access).
Our judgement is that students arriving at university able to program would
be at a substantial advantage but there is no guarantee that the A-level would
deliver this.

Aspects of software engineering are required by the A-level specifications:
particularly, aspects of design and testing. However, we consider these topics
alone insufficient to confer a significant advantage because in comparison with
programming they are not significant topics in the software engineering modules.

4 Discussion

We have identified certain university modules as being highly convergent with
the school level curriculum, but this is balanced by other modules where no
relationship is apparent. This finding is consistent with the results when we
compared the first year grades attained by students who were admitted with
A-level Computing and those attained by students with no prior experience of
studying the discipline; students with the A-level were shown to do better in
databases, professional development and computer architecture but not in other
modules [6]. Is this sufficient to make prior study of the discipline a requirement
for university entrance?

The reasons for a university to view school level experience as a prerequisite
for the study of a discipline are rarely made explicit. We suggest there are two
main perspectives;

The Transition from School to University 43

– Necessary preparation: the learning of material essential to even the most
elementary study at university. An example might be an understanding of
calculus to study mathematics – without it, the student would find it very
difficult to participate in disciplinary conversations. Thus an accepted start-
ing point for university study is defined.

– Gate-keeping: supplementing basic entry entry requirements in a largely ar-
bitrary way for courses where applications exceed significantly the number
of places available.

Whilst recognising that if the number of places is oversubscribed some means
must be found for selecting candidates for admission, we see little to commend
the latter approach. Similarly, we do not see in these findings a case for adopting
A-level Computing as a prerequisite for university study on the basis of necessary
preparation. Not only does the A-level appear to confer a significant advantage
in only three modules but we suggest that crucial differences in the way comput-
ing is experienced at the school level may have significant implications for the
relevance of this qualification as preparation for joining a university department.

In the UK the origins of a discipline of computing lie in the creation of com-
puting facilities designed to service research in mathematics and the science and
engineering disciplines [7]. Thus, ideas about a higher education in the discipline
are founded not only upon relatively easy access to equipment of a certain stan-
dard but upon the methods and techniques devised in universities for the using
computers in the solution of numerical problems. In contrast, while school level
computing appeared in the late 1960s, the subject did not become widespread
until the general adoption of the personal computer eliminated the issue of access
to equipment [14].

Prior to the commercial development of microprocessors and home comput-
ers, school computing tended to rely on a postal service to a mainframe (com-
monly at a university or local government facility). While slow and cumber-
some, such access at least guaranteed a quality of service; pupils were operating
in the same computing environment as academics and professionals (albeit re-
motely). We hypothesise that the introduction to schools of personal computers
changed this.

Of course, personal computers are used in undergraduate computing courses
and many graduates of computing degree programmes go on to support their
use in business and other environments. Significantly, however, much professional
and academic work in such matters as programming, database management, the
Internet, etc. is undertaken using equipment that would not normally be found
in the average office or home. If this hypothesis is correct, one reason that A-
level Computing is of limited relevance as preparation for university study is that
pupils do not operate in computing environments typical of much professional
and academic work.

A second hypothesis which may have relevance to the utility of A-level Com-
puting as preparation for university study in the discipline relates to staffing.
Universities began to offer post-graduate courses in the discipline during the late
1950s with undergraduate courses being introduced in the 1960s. The number of

44 M. Clark and R. Boyle

places available has grown dramatically, particularly during the 1990s, but we
hypothesise that demand from industry for the graduates of these courses, and
the consequent pay differential, has meant relatively small numbers of computing
graduates have entered the teaching profession.

If this hypothesis were correct it might help to explain why the A-level Com-
puting specification does not require that candidates learn computer program-
ming. Access to equipment is unlikely to be an issue with respect to programming
which can be learnt using personal computers and commonly available software.
Rather, the absence of programming from many A-level courses may reflect the
fact that many A-level teachers are not computing specialists. That is, although
computing academics perceive significant differences between their discipline and
skills associated with the use of computers, the implication of this hypothesis is
that this distinction is less clear at the school level; computing is taught from
the perspective of using rather than building computer systems.

This is not intended to be derogatory; the ability to use information technol-
ogy efficiently and effectively has become an important life skill. However, we
argue that the ability to manipulate applications such as Microsoft Access or
Macromedia Dreamweaver via user-oriented graphical interfaces is a relatively
poor preparation for studying a discipline concerned with what happens be-
hind the interface. Certainly, the ability to program would be significantly more
beneficial than the most highly developed IT skills in the study of computing.

5 Conclusions

We have argued that there is some convergence between the school level curricu-
lum in England and a typical first year university computer science curriculum.
Students entering university with prior experience of the discipline are likely
to have encountered already a number of ideas that computing neophytes will
meet for the first time. However, unless students learnt to program as part of
their A-level studies this advantage is unlikely to be significant. Thus we do not
advocate making prior study of the discipline a condition of entry to university
computer science degrees.

Our findings highlight the importance to university computer scientists of
awareness of the treatment of the discipline in the school curriculum. In partic-
ular, support for the teaching of programming would appear a priority. Further
our findings highlight the need to support students who have not studied the dis-
cipline before who may become demotivated if they struggle relative to students
who have seen some of the subject matter before.

Finally, in this research we have relied upon our interpretations of A-level
specification documents. Whilst we argue that our interpretations are sufficiently
relevant for the findings presented here to be meaningful, it would be interesting
to study students’ experiences of the A-level courses based upon these docu-
ments. That is, further work will seek to compare our understanding of the
requirements with the reality of studying computer science at school level.

The Transition from School to University 45

Acknowledgements

Some of this work was conducted with grant assistance from the Learning and
Teaching Support Network for Information and Computer Sciences, University
of Ulster, which we gratefully acknowledge. We are also most grateful for the
significant assistance provided by the archive sections of AQA (Hilary Nicholls),
AEB (Jane Bradshaw) and UCLES (Gillian Cooke) and to Miriam Zukas for
comments on an earlier draft of this paper.

References

1. Ozga, J., Sukhnandan, L.: Undergraduate non-completion: Developing an explana-
tory model. Higher Education Quarterly 52 (1998) 316–333

2. Clark, M.: Teaching computing in the liquid modern world. Presented at Grand
Challenges in Computing, University of Newcastle, 29-31 March (2004)

3. Utting, I.: Mind the gap! Presented at Grand Challenges in Computing, University
of Newcastle, 29-31 March (2004)

4. Johnson, C.: What do students want ... Presented at Grand Challenges in Com-
puting, University of Newcastle, 29-31 March (2004)

5. University of Leeds: Coursefinder 2003 (2002) Available at: http://tldynamic.
leeds.ac.uk/ugcoursefinder/2003 [accessed 3.6.04].

6. Boyle, R., Clark, M.: A-level computing: its content and value. University of Leeds
School of Computing Report No. 2002.15 (2002)

7. Clark, M.: Constructing the discipline of computing: implications for the curricu-
lum. unpublished PhD thesis, University of Kent, UK (2004)

8. Lizzio, A., Wilson, K., Simons, R.: University students’ perception of the learning
environment and academic outcomes: implications for theory and practice. Studies
in Higher Education 27 (2002) 27–52

9. Osborne, M., Leopold, J., Ferrie, A.: Does access work? The relative performance
of access students at a Scottish university. Higher Education 33 (1997) 155–176

10. Brown, M., Macrae, S., Rodd, M.: Mathematics undergraduates’ attitudes to their
course (2004) In preparation.

11. Child, D.: A-levels as a predictor: the correlation between A-level grades and
degree results for the 1981 entry to Leeds. The Reporter: The University of Leeds
newsletter (1986) 4 Number 255.

12. Boyle, R.D., Carter, J.E., Clark, M.A.C.: What makes them succeed? Entry, pro-
gression and graduation in Computer Science. Journal of Further and Higher
Education 26 (2002) 3–18

13. Bekhradnia, B.: Who does best at university? (2002) Available at: http://www.
hefce.ac.uk/learning/whodoes [accessed 3.6.04].

14. Boyle, R.D., Clark, M.A.C.: A-level computing: its history and development. IEEE
Annals of the History of Computing (2004) Forthcoming.

15. Alexander, S., Amillo, J., Boyle, R.D., Clark, M.A.C., Daniels, M., Laxer, C.,
Loose, K., Shinners-Kennedy, D.: Case studies in admissions to and early perfor-
mance in computer science degrees. SIGCSE Bulletin 35 (2003) 137–147

16. British Computer Society: Exemption & accreditation for higher education insti-
tutions. Available at: http://www.bcs.org/BCS/Products/HEAccreditation [ac-
cessed 7.6.04] (2003)

R.T. Mittermeir (Ed.): ISSEP 2005, LNCS 3422, pp. 46–52, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Informatics and ICT in Polish Education System

Ewa Gurbiel, Grazyna Hardt-Olejniczak, Ewa Kolczyk,
Helena Krupicka, and Maciej M. Syslo

Institute of Computer Science, University of Wroclaw,
ul. Przesmyckiego 20, 51-151 Wroclaw, Poland

tik@ii.uni.wroc.pl

Abstract. The reform of the Polish national education system started in the
school year 1999/2000. One of the main features of it is the plan to integrate
Information and Communication Technology (ICT) into almost all school
subjects. The second important feature is preparing students to use computers
and software in other subjects during separate ICT lessons. The separate lessons
on using computers and ICT are called informatics. Informatics lessons are
obligatory in primary schools and in middle schools (gimnazjum). In high
schools (liceum) there is an obligatory subject called information technology
(IT) and an elective subject called informatics (computer science). It is possible
to take the maturity exam in informatics when someone has graduated from the
high school. The authors work as a team, and have prepared subject curricula,
informatics textbooks, electronic materials for students and accompanying
guidelines and books for teachers for all stages of the education system. We are
also engaged in teacher-education and in-service training. We want to exchange
our ideas, as realized within these materials, and we would like to present our
experience in making these ideas alive in our schools. The realization of
informatics education in secondary schools is a continuing process. We are at
the moment, in the year 2005, when the first graduates of the new education
system will come to study in our universities. So it is necessary to make some
reflections on the past.

1 Introduction

Since September of 1999, the education system in Poland is divided into: primary
school (6 years), middle school (called gimnazjum, 3 years) and high school (called
liceum, 3 years). Children begin the school education when they are seven.

The Ministry of National Education published a document Guideline for teaching
mandatory topics in the primary, middle and high school [2], which can be considered
as the education standards for subjects in all types of schools. Regarding
information and communication technology (ICT), it is emphasised there that the
teachers and schools are responsible for enabling all students to learn how to:

Search, sort and make use of information coming from different
sources and effectively use information technology for that purpose.

Students should learn to communicate information to others through a variety of
means. One of the main objectives of the modern school is to prepare all students to

 Informatics and ICT in Polish Education System 47

live and work in the information society [1]. To this end, ICT has been included in
all school subjects in the standards. Students therefore should first be introduced to
ICT and then they should have every opportunity to use ICT across curriculum, in
studying all other subjects. It requires to:

− propose new informatics and ICT curriculum,
− integrate ICT with all other school subjects across the curriculum,
− elaborate and publish new education packages consisting of textbooks for students,

software and electronic data, teacher’s manual and Internet service,
− prepare teachers for introducing students to ICT and for using ICT in their

teaching.

The authors, in collaboration with the publishing house Wydawnictwa Szkolne i
Pedagogiczne S.A. (WSiP), started in 1997 with the project Meetings and Learning
with Computer. The main goal of this project is to address all four areas, that is, to
prepare curricula integrating ICT, elaborate learning and teaching materials for new
curricula, and train teachers in using new curricula and materials.

2 Main Assumptions

The project is a realization of the education standards, and its main goal is to integrate
ICT into all school subjects, with learning activities for students and teaching
activities for teachers. It is assumed that the introductory classes on using computers
and ICT, called meetings with computer, are oriented towards preparing students for
learning with computers.

The project is addressed to primary, middle and high schools. For each type of
school, the following items are elaborated and published:

1. Curricula for: Introductory ICT, ICT across curriculum, and for other subjects in
the area of using ICT.

2. Education packages for students, e.g. textbooks1 [9], [11], [12], software and
electronic data.

3. Teacher’s manuals2 [10], [13].

1 Gurbiel, E., Hardt-Olejniczak, G., Kołczyk, E., Krupicka, H., Sysło, M.M., Informatyka,

Podr cznik dla ucznia szkoły podstawowej, klasy 4-6, WSiP, Warszawa 1999.
Gurbiel, E., Hardt-Olejniczak, G., Kołczyk, E., Krupicka, H., Sysło, M.M., Informatyka,
Podr cznik dla ucznia gimnazjum, WSiP, Warszawa 2000.
Gurbiel, E., Hardt-Olejniczak, G., Kołczyk, E., Krupicka, H., Sysło, M.M., Technologia
informacyjna, Podr cznik dla liceum ogólnokształc cego, liceum profilowanego i technikum,
WSiP, Warszawa 2002.

2 Gurbiel, E., Hardt-Olejniczak, G., Kołczyk, E., Krupicka, H., Sysło, M.M., Informatyka,
Poradnik dla nauczycieli szkoły podstawowej, klasy 4-6, WSiP, Warszawa 1999.
Gurbiel, E., Hardt-Olejniczak, G., Kołczyk, E., Krupicka, H., Sysło, M.M., Informatyka,
Poradnik dla nauczyciela gimnazjum, WSiP, Warszawa 2000.
Gurbiel, E., Hardt-Olejniczak, G., Kołczyk, E., Krupicka, H., Sysło, M.M., Technologia
informacyjna, Poradnik dla nauczyciela i program nauczania w liceum ogólnokształc cym,
liceum profilowanym i technikum, WSiP, Warszawa 2002.

48 E. Gurbiel et al.

4. In-service training courses for teachers who decide to work in schools using
proposed materials.

5. Internet service [3].

3 Curricula

There are three types of curricula, prepared in the project, for each type of schools:

− ICT across the curriculum, with a realization of the school’s and teachers’ tasks in
information technology.

− Informatics and ICT curriculum, as a separate subject, which prepares students to
use ICT.

− Connections between the above curricula.

The main emphasis in the project is put on the spiral introduction of new and more
advanced topics. The topics in the curriculum have been divided into five groups:

A. The use of a computer and its peripheral devices.
B. The influence of ICT on personal life, the local community, the outside world, and

society.
C. The use of ICT tools, i.e. different kinds of software packages.
D. Communication, searching and using information, mainly with the help of ICT.
E. Solving problems and decision making using ICT.

Topics from group A, B and C are mainly assigned to separate lessons. The main
objective of these lessons is making students familiar with the rules of using
computers, networks and applications designing for information processing. Topics
from group D and E more often require some material from other subjects, because
processes of communication, searching information, solving problems are common
for all domains of science and real life. The exception to this rule is the informatics
curriculum for high schools, in which topics from group E concern computer science
methods of solving problems.

3.1 ICT Across Curriculum

The ICT across curriculum is not divided into subjects since it concerns the
activities of the whole school. It has been constructed by taking from the education
standards of different school subjects: teaching goals, topics and skills, related to ICT
[4], [5], [6] [7]. In particular, it was taken into considerations:

− formulations which explicitly refer to ICT and computers, contain notions and tools
related to informatics education;

− formulations which refer to different aspects of information, which today, or in the
near future, need the use of ICT;

− topics and goals which, when ICT is used, may increase the students’ competence
in using computers and ICT;

− topics and activities, which can be supported and enhanced by using ICT.

 Informatics and ICT in Polish Education System 49

3.2 Informatics and ICT Curriculum

The separate lessons on using computers and ICT are called informatics. The
Informatics curriculum is in fact a realization of the statements from the education
standards.

The main goal of informatics classes in primary schools is to prepare students to
use computers and their software, mainly to be able to use them in other subjects. It
was assumed in the education standards that, at this stage of education, students
should use a computer environment adjusted to their abilities (e.g. to age) and needs.
To this end, a special software system has been designed and produced, which is an
easy and spiral introduction to the professional MS Windows environment [14], [15].

In middle schools (gimnazjum), during the informatics classes, students are
prepared to use computers, computer networks, and multimedia on a more advanced
level. It should give students a more solid background for using ICT in other subjects.
Moreover, students are introduced also to problem solving with algorithms. The
language of implementing algorithms is Logo. The MS Windows environment is used
at this stage of education.

In high schools (liceum) there are two subjects. One of them, called information
technology (IT), is the continuation of earlier students’ preparation in using
computers, networks and multimedia tools for managing information. The stress is put
on working with information in a good style, using possibilities of some tasks’
automation. There is nothing about algorithms and programming. Informatics
(computer science) is an elective subject addressed for young people who are
interested in computer science as an element of their future education. The
informatics lessons are expecting to show computer science as a discipline connected
with designing and implementing new systems of information processing. It should
include ways of solving problems in the following stages: analysis of a problem
situation, making specification, designing the solution, realization and testing the
solution. Students are introduced to classic algorithms, programming languages,
theory of data bases, programming interactive websites.

4 Informatics Maturity Exam

Students who take the informatics subject in high school, could also take the maturity
exam in it. The examination standards [16] are formulated in three areas:

− knowledge and understanding of basic concepts, methods and processes connected
with informatics,

− using knowledge and information in solving theoretical and practical tasks,
− using informatics methods in creating new information and problem solving.

There are two parts of the exam: theoretical (without the use of computers) and
practical. In both cases, the student should prepare appropriate documentation in
which his or her solution is described. The student’s work is externally moderated.

50 E. Gurbiel et al.

5 Reflections

5.1 ICT in Other Subjects

The placement, and the ways of developing computer learning support, should be
precise in the curriculum of particular subjects. It should concern curriculum content,
as well as appropriate new content and skills, which are possible only by using ICT
methods and skills. Changes in the curriculum should take into account the possibility
of computer deployment, which really will enrich known and established methods of
working.

Computer use and ICT should appear (in subjects other than computer science) in
two roles: as a didactical support, which enriches learning and teaching processes; and
as an element integrated into particular school subjects, as elements which are
inseparably connected with particular subjects.

Success in using computers in teaching depends on the level of their integration
within established methods of learning and teaching – on their integration in
curricular and in didactical support for students and teachers.

Research results concerning the efficiency of computer didactic aids indicated that
lack of effects in this field (computer use in education) is caused by their insufficient
integration with the school subjects. It is not enough to stand these machines "next to"
the teacher, to have some positive results. Their conceptual "placement" in each
region of teaching and the learning process is vital, as well as their mutual integration
[8].

In the project Meeting and learning with computer a proposal for integrating
computers with the teaching process is realized on two levels. First of all, the ICT
curriculum (addressed to the whole school) is accompanied by content from curricular
guidelines of all subjects and their connections with these curricula. Next, we propose
integration activities with ICT used in other school subjects. For this purpose we
prepared for use in other school subjects a textbook for students at the middle school
[9] and accompanying teachers' manual [10]. In the students' textbook we demonstrate
how to use computers in other school subjects using their curricula and textbooks and
taking into account how students have been prepared within their informatics classes.

In the book Learning with computer in the middle school [9] we present typical
exercises from the textbook for different subjects (on the middle school level). We
demonstrate how the student can use in doing exercises: a computer, software,
multimedia, and the Internet. In all exercises skills from computer science classes are
used. The computer doesn't replace the teacher but it could be a means of doing some
operations easier and faster than without it as well as broadening knowledge and
skills. In the examples and exercises we don't use educational software. The three
main goals of our class scenarios are: the application of skills from the informatics
classes; using them to create active ways of performing in other school subjects, and
to enrich students' skills such as using software applications, using Internet sources
and services, or multimedia files on CD-ROM disc.

Our solution that there is a separate textbook with exercises from different subjects
is not the best way of integrating ICT with the whole school curriculum. These
exercises should be placed in textbooks for these subjects. But there is a long way to
go in changing the teachers’ and authors’ of educational materials approach to using

 Informatics and ICT in Polish Education System 51

computers and networks in the learning process. We are satisfied that our textbook
plays some role in teachers-education in different departments. They could consider it
as an example of good practice.

5.2 Algorithms and Programming at Middle School Level

The informatics curriculum for middle schools includes topics concerned with
problem solving, algorithms and basic programming skills. It is the only subject in a
new education system which has a disadvantage well-known from previous solutions.
The disadvantage is a result of linking together topics typical for computer science
with topics connected with the effective use of the computer and its software. One
of the reasons that this kind of connection does not succeed, is the level of the
teachers’ preparation. It’s obvious that teaching difficult and abstract concepts at a
basic level requires some extra competencies from a teacher. Our experience shows
that it is a great difficulty to realize these topics in schools. Many teachers do not
even try to do it.

Another question: is problem solving, algorithms and development of
programming skills really essential for middle stage education? One answer is yes,
because young people at this stage of their education should understand what the
areas of interest in different knowledge disciplines actually are.

5.3 IT and Informatics Subjects at the High School Level

The problem we describe in the previous section is closely connected with informatics
education at the high school level. Young people who like playing computers and
surfing the Internet declare their interest in opting for an elective subject. They do not
know what it is really about, because there was no signal at the middle level that
problem solving, algorithms and programming need some skills of thinking,
reasoning, and understanding mathematical concepts.

Another problem is, once again, teachers’ preparation. Informatics subject in the
form described in the document Guideline for teaching mandatory topics in the
primary, middle and high school and defined by maturity examination standards is a
great challenge for the teacher. In our opinion, teachers of informatics subject in high
schools should be graduates of a computer science department. At our university, we
prepare computer science students to become teachers. And we can point to good
practice examples, when after graduating from university they work effectively and
successfully in high schools.

6 Conclusions

We have finished the work connected with education standards, curricula and learning
materials for all stages of the education system. In the year 2005, the first graduates of
the new education system will come to study in our universities. According to the
assumptions of the education system reform, they should be better prepared for using
ICT in their work.

The problem that concerns us is the shape of an informatics education more
connected with the introduction to computer science in secondary schools. The

52 E. Gurbiel et al.

question of the content and the methodology employed in introducing the basic
concepts of computer science at the secondary level is extremely important.

The second important question is, how could we facilitate and speed up integrating
ICT with other subjects? What kind of activities are the most effective?

Now, as university workers, we are engaged in changing the shape of teacher-
education. The Ministry of National Education has recently published standards of
teachers education, so it will cause further changes in the study programmes.

References

1. Apple Computer Education Team, Education Notes 2, 1996.
2. Guideline for teaching mandatory topics in the primary and high school (in Polish),

http://www.men.waw.pl/prawo/rozp_14.html
3. Gurbiel, E., Hardt-Olejniczak, G., Kołczyk, E., Krupicka, H., Sysło, M.M., Project

Meetings and Learning with Computer (in Polish),
http://www.wsipnet.pl/kluby/informatyka.html

4. R. Heinich and others, Instructional Media and Technologies for Learning, Prentice Hall,
1996.

5. Informatics for Secondary Education — A Curriculum for Schools, UNESCO, Paris, 1994.
6. Information Technology in the National Curriculum, England and Wales, January 1995.
7. Ch. Moersch, Levels of Technology Implementation, The ISTE Journal of Educational

Technology Practice and Policy, v.23, 3 Nov. 1995.
8. de Corte, E., Spojrzenie wstecz i przed siebie na uczenie si wspomagane technologi z

perspektywy bada nad uczeniem si i nauczaniem, Conference “Informatics in Schools”
proceedings (in Polish), Lublin 1997.

9. Gurbiel, E., Hardt-Olejniczak, G., Kołczyk, E., Krupicka, H., Sysło, M.M., Learning with
computer in the middle school, (in Polish) WSiP, Warszawa 2001.

10. Gurbiel, E., Hardt-Olejniczak, G., Kołczyk, E., Krupicka, H., Sysło, M.M., Learning with
computer in the middle school. Teachers' manual, (in Polish) WSiP, Warszawa 2001.

11. Gurbiel E., Hardt-Olejniczak G., Kołczyk E., Krupicka H., Sysło M.M., Informatyka.
Cz 1. Kształcenie w zakresie rozszerzonym. Podr cznik dla liceum ogólnokształcacego,
WSiP S.A., Warszawa 2002.

12. Gurbiel E., Hardt-Olejniczak G., Kołczyk E., Krupicka H., Sysło M.M., Informatyka.
Cz 2. Kształcenie w zakresie rozszerzonym. Podr cznik dla liceum ogólnokształcacego,
WSiP S.A., Warszawa 2003.

13. Gurbiel E., Hardt-Olejniczak G., Kołczyk E., Krupicka H., Sysło M.M., Informatyka.
Poradnik dla nauczycieli, WSiP S.A., Warszawa 2004.

14. Gurbiel, E., Hardt-Olejniczak, G., Kołczyk, E., Krupicka, H., Sysło, M.M., Junior
Windows und Junior Office. Einf rung in die ICT, Paderborn (Germany), Infos 2001, 17-
20.09.2001.

15. Gurbiel, E., Hardt-Olejniczak, G., Kołczyk, E., Krupicka, H., Sysło, M.M., Junior
Windows and Office-Environment for Introducing ICT w Networking the Learner, 7th IFIP
World Conference on Computers in Education WCCE 2001, 29.07.-3.08.2001, Dania.

16. Informator maturalny od 2005 roku z informatyki (in Polish)
http://www.cke.edu.pl/podstrony/inform_matur/inform_matur.html

R.T. Mittermeir (Ed.): ISSEP 2005, LNCS 3422, pp. 53–64, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Teaching Information Technology in General Education:
Challenges and Perspectives

Valentina Dagien

Institute of Mathematics and Informatics,
Akademijos str. 4, LT-08663 Vilnius, Lithuania

dagiene@ktl.mii.lt

Abstract. During the last years a need of a new policy for implementing
information and communication technology (ICT) in education has emerged.
The Strategy for ICT implementation in Lithuanian education for 2005-2007
has been developed. Standards for school students’ as well as teachers’
computer literacy have been prepared and implemented. Teaching and learning
information technology (IT) course in schools is one of the most relevant issues
in information society. The paper deals with the goals and nature of the IT
introducing into curriculum. It discuses the links with other school subjects and
estimates the relationship between the compulsory IT course and the integrated
parts as well as elective modules. The issues of general competencies essential
for a contemporary citizen and the role of ICT in their development are also
being discussed. Some suggestions in respect of developing IT curricula and
general content are presented.

1 Introduction

The Lithuanian school education mainly consists of three stages: elementary (1st-4th
grades), basic (5th-10th grades), and secondary (11th-12th grades). Full-time education
is compulsory for all children from the age 6 or 7 to 16. Almost all the secondary
level schools are state schools. There are approximately 1100 comprehensive schools
(basic and secondary) with about half a million students in the country (there are 3.5
million inhabitants in Lithuania).

ICT has rather firm position in education; its availability for teaching and learning
becomes increasingly obvious. The main discussions go on different aspects of
methodology: what are the most reasonable ways of its implementation, how the
teaching should be improved, etc.

Following the results of International Association for the Evaluation of Educational
Achievement we can get rather value-free prospect of the implementation of
computers into comprehensive schools of different countries [10, 11, 12].

We clearly may trace four main trends: 1) informatics as a separate educational
subject; 2) development of applied computer skills; 3) training of information skills;
4) integration of informatics or information technologies in the other educational
subjects.

54 V. Dagien

The model of informatics as a separate course in a comprehensive school
dominates in majority of East European countries, in which the fundamental and
academic trends of teaching are rather more dominating until nowadays. Lithuania
also falls under that category. Informatics as a separate subject was established in late
1970s and early 1980s. As a compulsory or partly compulsory subject it has been
delivered in Belarus, Bulgaria, Czech Republic, Latvia, Poland, Romania, Russia,
Slovak Republic, Hungary, Germany, and other countries [13, 5]. The course is being
changed permanently: teaching about computer and training of the programming
skills used to get more attention ten years ago, while nowadays much more
consideration is devoted to developing the skills of practical ICT use in teaching and
learning.

In today’s world all countries give rising attention to ICT implementation in
education [9]. Those countries which have informatics as a separate subject usually
treat ICT as a part of it; however, most of the time and place in the teaching process is
assigned to the technology itself, but not to its applying to the process of teaching and
learning. In order to emphasize novelty of the course in informatics and the aspect of
its applicability most of the countries, including Lithuania, have renamed it into
Information Technology.

The second trend – development of applied computer skills – actually is the part of
the course of informatics, and especially of IT. The trend is emphasized by those
countries which previously didn’t have academic course in informatics and which
don’t use the centralized way of providing computers for education but follow the will
and the possibilities of the schools themselves.

Developing of information skills in fact embraces IT trend, but is slightly more of
humanitarian studies and is coherent with libraries. J. Herring has introduced the
model for developing information skills called PLUS [6]. The further works of this
scholar is devoted to the issue of implementation of internet in educational process
[7]. There is opinion that internet and CD will become main information sources and
school will seriously have to consider this.

Implementation of computer-based technology during the lessons of each subject is
one of the main goals of informatics or IT. Such process develops in all countries,
although in a different way: it’s closely related to economical level, infrastructure and
state’s priorities over the information society, etc. Some countries and especially
those who have deep traditions of integrated teaching (for example, Denmark)
implement integrated course of IT more successfully [8]. The parallel processes are
preceded in many West European countries: on one hand, the IT trends are taken into
account, on the other hand, IT is implemented in different school subjects.

East European countries have much more problems with such integration. The
main reasons for it are the following: 1) lack of the technical means in schools; 2)
inadequate or partly inadequate curricula or even lack of it; 3) low preparation level
of teachers of different subjects to implement ICT in their teaching; 4) domination of
academic way of teaching, i.e. subjects are being taught separately and have very little
connection one to each other. Unsatisfactory attention to new teaching methodologies
which require computer-based implementation in subject’s teaching and the lack of
qualitatively new teaching means have also to be mentioned here.

 Teaching Information Technology in General Education: Challenges and Perspectives 55

2 ICT Implementation and Education Goals

ICT implementation is a complex task which includes all elements and areas of
education and influences the concept and the system of education. Different motives
have revealed the variety of educational goals that may be reached with the help of
ICT. The Strategy for ICT implementation in the Lithuanian education (for the years
2000-2004 and the new one for the years 2005-2007) provides that implementation of
ICT in education should help to realize the Lithuanian education reform, should fit
into general school objects and should satisfy public process and trends of economy in
country [15]. Therefore the declared aims are based on the upbringing goals provided
in general curricula of Lithuanian comprehensive schools and in conception for
Lithuanian education as well as on the general values and principles of school work.

Analysis of Lithuanian comprehensive schools and evaluation of goals that are
declared by educational reform has revealed that ICT implementation in
comprehensive schools would be useful for different educational purposes, such as: 1)
obtaining of a comprehensive education (on one hand, computer literacy is a
concurrent part of the comprehensive education, and on the other hand, computers are
tool allowing to get latter-day education); 2) upbringing the skills of continual and
autonomic learning as well as ability to get handle on the different information
sources; 3) stimulation of the communication and the cooperation as well as
contribution in understanding of the main principles and values of democratic society;
4) as a result of its cultural, cognitive, and cooperational nature it may benefit an
influence on each citizen’s cultural self-consciousness and humanistic values.

All of this shows that the role of ICT in Lithuanian education should be regarded
as multidimensional. Regarding the synthesis of general motivation for ICT
implementation and analysis of Lithuanian education goals, the strategy for the years
2000–2004 has provided three main goals of IT implementation: 1) to provide the
prospects and trends of integrating ICT into the Lithuanian general education, 2) to
harmonize activities of various institutions, 3) to effectively use the funds allocated
for the computerization of education. Strategy for the years 2005–2007 is
concentrated on the following goals: 1) breakthrough of ICT implementation in
school teaching and learning; 2) creation of educational computer network – well-
stocked electronic space designed for teaching and learning as well as nurturing the
conditions for modernization of education management and communication between
school societies; 3) improvement of all inhabitants’ computer competence helpful for
solving the problems of social imparity. The goals of both previous and recent
strategies embrace economical, social, pedagogical and other objectives.

3 From Informatics to Information Technology

The course in informatics started to be taught in Lithuanian comprehensive schools 20
years ago. The contents of the course, evaluation, and even the name were changed
several times; nevertheless IT has remained as a separate subject. Besides, one of the
most important components of IT is to make students of comprehensive schools ICT
literate [2]. Today so called IT course is compulsory for the 9th and the 10th grades of
basic school (68 hours in total) as well as for upper secondary school (11th and 12th

56 V. Dagien

grades, also 68 hours). Students in the 11th and the 12th grade may also choose the
optional (advanced) course of the subject. Students have to learn content defined in
the course curriculum and obtain the capability defined in the educational standards.
IT course usually is taught during the individual lessons of the subject. During the
lessons, however, an integrative nature of the course is being stressed; students are
prompt to see parallels with other subjects, to employ modern methods, to
differentiate contents, etc.

The major developments of educational reforms in Lithuania occurred in the field
of curriculum development. The new curricula and standards seek to strike a balance
between the quantity of necessary knowledge on one hand, and the acquisition of
intellectual, social and civic fluency on the other hand. Recently, IT general curricula
and general education standards for basic and upper secondary levels were developed
[3, 4]. At the moment the IT curriculum for basic education (5th-10th grades) is being
revised. An integration draft should be prepared before long.

The main aim of teaching IT in general education is to develop students’
information culture (literacy) in a broad sense. This goal is timely, urgent and of
constant value. With the course of time the conception of information culture may
change. Both basic and secondary school are striving for this goal. However, in the
latter the conception is deeper and more comprehensive.

In our opinion, the information culture is a wide concept, considerably wider than
information skills or abilities to work by computer. We consider that at present the
conception of information culture covers various abilities and skills [3, p. 367]:

• to systematize the knowledge of ICT that the students have gained before the
school or outside of it;

• to develop logical and operational thinking, operation planning skills, creativeness,
ability to improvise, self-confidence;

• to refresh their IT knowledge and improve their skills to think and act;
• to give an opportunity for students to choose the direction of their further studies in

the field of informatics;
• to develop a general literacy of students' information activities together with other

school subjects;
• to get familiar with the elementary ICT and the related concepts and to be able to

apply that creatively in daily life and cognition;
• to learn the basic concepts of ICT and understand their meaning, and put it into

practice;
• to get familiar with the history and development of IT and their impact on the

evolution of society and its culture;
• to improve their skills on ethical issues: to operate with ICT legitimately and

reasonably, to link ICT with general issues of the culture of the society;
• to foster a resolve to continuously develop the content and style of one’s

information activities.

The goal of information culture is understood as an ideal towards which all the
information education at schools should be directed, including compulsory and
optional courses devoted to informatics.

 Teaching Information Technology in General Education: Challenges and Perspectives 57

The content of information culture’s notion is constantly changing and is reliant on
technological transformations. General tasks and goals of IT teaching and learning are
defined also after the notion of information culture. It embraces a broad range of
students’ cognitive and other abilities and attitudes: starting with acquisition of the
main IT terms and ending with creative abilities of improvisation, curiosity for
innovations, and perception of cultural and ethical issues related to ICT.

Principle competencies of educated person (reading, writing, and arithmetic) which
were dominating for several centuries nowadays are replaced by other ones, such as:
information search (Web), text layout (word processing), and handling of numeric
data (spreadsheet) (Fig. 1).

Fig. 1. Changing of basic competencies in society

IT curriculum emphasizes the value-based attitudes and general skills. However,
these abilities are the objective of all informational training. The aims of separate IT
course are much more narrow and pragmatic. In the last two grades of basic school
(9th and 10th) students are taught to summarize ICT knowledge that was obtained in
school and out of it, improve their ICT skills, and are prompted to get deeper
awareness of informatics as a science which might encourage them for further studies
of the subject. The aims of general course of IT for the 11th and 12th grades are
cognitive as well, while the advanced course is intended for the training of specific
application skills in one of the three chosen areas of ICT (data base, programming
or multimedia) [4].

IT standards and contents of its courses are divided into the main ICT topics as it is
shown in Table 1. The intended aims for the 9th-10th and the 11th-12th grades are
essentially different. The IT standards for the 9th and 10th grades very precisely define
the ICT knowledge and skills the students should obtain. The IT standards for the

58 V. Dagien

11th and 12th grades are combined from two components. The first one describes
general ability, while the second one is provided to define the particular achievements
related to particular topics and chapters. General ability is rather broad and matches
the common goals of the course. The content of curriculum is close to that of
European Computer Driving License (ECDL), thus the main stress is placed on the
substantial intelligence of ICT and on the formation of practical skills.

Table 1. Contents of IT subject curricula

Compulsory course,
9-10 grades

Compulsory course,
11-12 grades

Advanced (optional)
 course, 11-12 grades

1. Computer (principles of
 the work with computer)

1. Advanced elements of
text editing

1. Data base

2. Text processing 2. Presentation 2. Multimedia
3. Information (basics of
information handling)

3. WWW and electronic
mail

3. Programming

4. Algorithms (main
concepts and commands)

4. Social and ethical
issues of using IT

 5. Using spreadsheet

Before graduating from the 12th grade students can chose IT school-leaving
examination (starting with 2006 it’ll be possible to choose State school-leaving
examination in programming). The topics of school examination fully matches the
curriculum and standard of IT compulsory course, while State examination
additionally embrace the programming module of advanced course. Both
examinations include test questions on theoretical part (mainly) and practical tasks
which rather reveal practical skills of problem solving.

4 Students’ General Computer Literacy Standard

Training of ICT literacy is closely related not only to IT course, but also to the
Students’ General Computer Literacy Standard [14], which is the key to the
evaluation in a way as well.

The term computer literacy used in the Students’ General Computer Literacy
Standard covers a wider aspect - not only skills to work with the computer but also
skills to implement IT in teaching and learning meanwhile acquiring the most general
information skills. Name of the document quite nicely reveals a generality - value on
which computer literacy’s conception is based.

Computer literacy training is based on the attitude of integrity. The Standard
clearly reveals the importance of computer literacy in training process and its
connection with IT course: “The Standard defines such computer literacy which can

 Teaching Information Technology in General Education: Challenges and Perspectives 59

be achieved only by integrating ICT into the process of education: lessons of various
subjects and activities after school, use of ICT in the school libraries. All-rounded
computer literacy cannot be achieved just by using IT during the lessons of IT
subject” [14, p. 2-3].

Standard emphasizes the necessity of value attitudes in order to apply ITC properly
and effectively in training. Student’s experience obtained in lessons of different
subjects which implement computer technology has a main role in formation of those
values.

The Standard specifies the guidelines of the most general value attitudes of
students: 1) to perceive the importance of learning in the life of society and the
importance of ICT in learning during lifetime, 2) to grasp the importance of ICT in
professional activities as well as in everyday life and to become citizens enjoying full
rights and taking an active part in society, 3) to penetrate not only the advantages
provided by ICT, but also its dangers to equal opportunities of learning and
democracy, 4) to understand that ICT shall be based on respect for traditional values
of the state and people and shall assist to use the Lithuanian language correctly, 5) to
be able to use the opportunities provided by ICT with great responsibility and
perceive the importance of observing ethical norms in this area, 6) to be interested in
the progress of ICT, improve and update skills of technology application, and
enabling to feel safe and confident working with hardware and software with great
responsibility.

Standard provides guidelines which are kind of more comprehensive notion of
computer literacy. These are the following: 1) value attitudes; 2) general ability (for
learning, work, communication, problem solving and research, critical thinking, and
evaluation); 3) thematic fields of computer literacy (main principles and notion of the
work by computer, basics of information handling, text processing and providing of
information, acquaintance with a spreadsheet and data base, social, legal, and ethical
issues).

5 Future Directions of IT Implementation into Education

The strategy of ICT implementation in Lithuanian education (for the year 2005-2007)
schedules the systematic ICT teaching from the first grades of basic school. A team of
experts has approved the IT course for the 5th and the 6th grades (68 hours in total). If
some schools do not manage to prepare for these changes starting from the year 2005,
they will be allowed to start such course one year later having more intensive course
in the 6th grade. IT involvement into comprehensive schools’ curricula of younger
grades and its integration with other subjects is based on the following:

• wide spread of these technologies and its wide range of facilities;
• natural demand of students, their parents, teachers, and a whole education society;
• necessity of IT implementing in everyday and school life;
• inclination of young people to technological innovations.

It’s considered that IT course in the younger grades will determinate the retraction
of compulsory IT course in upper grades (especially in 11th and 12th grades) and will
encourage students to implement their ICT skills in other subjects and out-of-class

60 V. Dagien

activities. However, during the transition period (2005-2010) IT course will be held in
both younger and upper grades. At the same time the IT integration to other subjects
should increase (Fig. 2).

Fig. 2. Compulsory, optional and integrated courses in Lithuanian education

The main purpose of IT course in basic school is to use the IT knowledge and skills
for better understanding of all subjects, to acquire the ability and desire for civilized
communication not only within the school community but also within the
contemporaries of the word. ICT provides a wide range of abilities especially in
students’ everyday life and encourages continuous perfection of person: it provides
more skillful use of writing, speaking, and image as tools for communication and
collaboration, cultivates self-support, continuous search of information and its
processing, skills of activity planning, and helps to form logical and systematic
thinking.

IT course should help to create conditions for students to obtain skills, knowledge,
and experience in contemporary IT; however it also should be related to perfection of
the learning process and involvement into life of information society.

Information training and encouragement of effective and proper implementation of
ICT form not only computer literacy and skills for modern work, but also evolve
moral values, if only content and training methods properly match one with each
other. Systematic IT training from the younger grades and its reasoned integration
with different subjects and themes would qualitatively improve students’ modern
competencies which are necessary for superior learning.

In the 5th and 6th grades IT course of 68 hours is suggested. Besides this, 34 hours
of IT training should be integrated into different subjects (Table 2). Such integration
could be shifted into the art lessons (e. g. theme “Computer drawing”) and Lithuanian

 Teaching Information Technology in General Education: Challenges and Perspectives 61

and foreign languages’ courses (e. g. theme “Acquaintance with internet”). The
approached themes are directly connected with already mentioned subjects.
Nevertheless, other subjects are also encouraged as well as designed activity in
several subjects.

Table 2. IT curriculum design: distribution time and themes for 5-6 grades

Themes, subthemes IT
hours

Subjects,
integration
is addressed to

Integrated
hours

1. Introduction to computer
programs
− Calculator, clock, calendar
− Simple educational programs
− Educational computer games

10

2. Principles of computer use
− Storage of information
− Files, directories
− Saving information
− Archiving
− Search information in computer
− Computer and health

6

3. Drawing with computer
− Introduction to graphic editor
− Drawing tools
− Operations with graphic objects:

rotation, flip, inversion
− Gallery
− Elements of animation

4 Art 10

4. Text and keyboard
− Keyboard, levels
− Keyboard typing tutor
− Writing with computer
− Lithuanian characters
− Fonts
− Styles
− Formatting of paragraphs
− Spell check
− Inserting graphics into texts
− Introduction to text layout
− Printing

14 Lithuanian
language

10

62 V. Dagien

Table 2. (Continued)…

5. Internet and electronic mail
− Information search in Web
− Internet and its dangers
− Downloading documents, files
− Web mail
− Reading, writing, sending emails
− Attachments, viruses in

attachments
− Chats

10 Lithuanian
language

Foreign
language

4

10

6. Projects with Logo
− Computer control understanding

through Logo program
− Control the dynamic object

(turtle): by commands, keyboard,
mouse

− Repeating
− Drawing, scanning, composition
− Using several objects (turtles)
− Turtles and their shapes
− Basics of animation

24

In the 7th and 8th grades IT course should last 34 hours and integration part in other
subjects should include 68 hours. The integration could be addressed to Lithuanian
language (themes “Text processing” and “Document creation and publication”), art
(theme “Presentation and its arrangement”, subtheme “Design elements in websites”),
and math (theme “Principles of table processing”) courses.

In the 9th and 10th grades IT course should summarize students’ knowledge, prompt
them to use their skills purposefully and pay attention to right technology
implementation and its validity. For those who would like to learn more about
computer working principles, a special course on algorithms should be provided. In
the 9th and 10th grades IT course should last 34 hours and embrace 17 integrated
hours. IT course for these grades should be more specific, intense, and claiming for
the ordered and systematic generalization of knowledge.

The suggested course integration is conditional. If some teachers of different
subjects have ability and conditions for effective IT implementation in their lessons or
other cultivation, ICT integration into these subjects should be promoted. Integrated
course should be held by teachers of both subjects, at least at the beginning. It’s
necessary to properly consider the content of the lesson or lessons, synchronize
actions, provide particular tasks, etc. That is the only way to reach a proper level of
appropriate abilities. IT teacher with the help of teachers of other subjects will be able
to plan the helpful skills for other courses.

 Teaching Information Technology in General Education: Challenges and Perspectives 63

6 Conclusions

Learning with ICT is one of the main concepts in education. At the beginning,
Informatics has been taught as an academic, knowledge-based course. Progressively
the course of Informatics has been changing to practical-based activity, which pays
main attention to information technology. IT course, as it is now called in many
countries (and Lithuania too), has become ternary one. Firstly, it’s a separate part of
the course intended to form the most general information skills and knowledge,
separate and compulsory course for all. Secondly, the course can be regarded as a
component of all subjects. It may be compared with the reading skills that are
necessary in all fields. Thirdly, it’s more specific and deep knowledge of professional
informatics and ICT. We may constantly feel the increasing need of these skills from
industry and society in general. Therefore, school should provide optional courses and
modules on different computer science issues for those who have abilities and desire
to learn it. All three mentioned parts of IT course is represented in Fig. 2.

Content of the course has an extremely important role [1]. If the main
competencies of the last century were regarded as a combination of “three R” –
Reading, wRiting, aRithmetics – our time invites us to search for something
fundamental and necessary. IT course emphasizes three main parts: information
search (Web), text layout (text processing), and work with numerical data
(spreadsheets). These three are relevant everywhere and for everybody. The fact may
be testified by the use of software designed exactly for the mentioned tasks.
Consequently, these are the things that should draw the main part of IT school
course compulsory for all.

References

1. Anderson, J., Weert, T.: Information and Communication Technology in Education. A
Curriculum for Schools and Programme of Teacher Development. Unesco (2002)

2. Dagiene, V.: The Model of Teaching Informatics in Lithuanian Comprehensive Schools.
Journal of Research on Computing in Education, Vol. 35, N. 2 (2002-2003) 176-185

3. General Curriculum and Education Standards: Pre-school, Primary, and Basic Education.
Vilnius, Ministry of Education and Science (2003) [in Lithuanian]

4. General Curriculum for General Education School in Lithuania and General Education
Standards for Grades XI-XII. Vilnius, Ministry of Education and Science (2002) [in
Lithuanian]

5. Hawkridge, D.G.: Educational Technology in Developing Nations. Plomp, T., Ely, A.D.
(eds.) International Encyclopedia of Educational Technology, 2nd ed. Great Britain,
Pergamon, (1996) 107-111

6. Herring, J.E.: Teaching Information Skills in Schools. London, Library Ass. Pub. (1996)
7. Herring, J.E.: Exploiting the Internet as an Information Resource in Schools. London,

Library Ass. Pub. (1999)
8. Ipsen, A., Thorslund, J.: Curricular Reform and Life-skills in Denmark. Curriculum

Change and Social Inclusion: Perspectives from the Baltic and Scandinavian Countries.
Final Report of the Regional Seminar, Unesco (2002) 64–69

64 V. Dagien

9. OECD Schooling for Tomorrow. Learning to Change: ICT in Schools. Education and
Skills. OECD publications. Paris, OECD Center for Educational Research and Innovation
(2001)

10. Pelgrum, W.J., Anderson, R.E. (eds.).: ICT and the Emerging Paradigm for Life Long
Learning: a Worldwide Educational Assessment of Infrastructure, Goals, and Practices.
Amsterdam, IEA (1999)

11. Pelgrum, W.J., Plomp, T.: The Worldwide Use of Computers: a Description of Main
Trends. Computers in Education, Vol. 20, N. 4, (1993) 323-332

12. Plomp, T., Anderson, R.E., Kontogiannopoulou-Polydorides, G. (eds.): Cross National
Polices and Practices on Computers in Education. Dordrecht, Kluver Academic Pub.
(1996)

13. Sendova, E., Azalov, P., Muirhead, J. (eds.): Informatics in the Secondary School – Today
and Tomorrow. Sofia (1995)

14. Students’ General Computer Literacy Standard. Information Technologies at School.
Vilnius (2002) 118-127

15. Summary of the Strategy for ICT Implementation in the Lithuanian Education. Information
Technologies at School, Vilnius, (2002) 85-103. Available: http://www.emokykla.lt/

R.T. Mittermeir (Ed.): ISSEP 2005, LNCS 3422, pp. 65–69, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Educational Standards in School Informatics in Austria

Christian Dorninger

Ministry of Education, Science and Culture,
Minoritenplatz 5, 1014 Wien, Austria

christian.dorninger@bmbwk.gv.at

Abstract. In the last two years educational standards have been an important
issue when discussing the different student achievements in upper secondary
education of the EU member countries. Standards are an indicator of quality at
school and should be applied to different subject areas in general and to
vocational education (and training). Computer science or information
technology is one of the most interesting subjects in this context: It is pretty
new in all curricula and is strongly linked to practice. The definition of different
achievement levels to understand important models and patterns of school
informatics is rather easy. There are also good links to certification standards in
industry and expert circles. Therefore, the paper outlines a model of four levels
for standards of certification in information technology skills. It fits well for 13
year (7th grade) to 18 – 20 year (12-14th grade) old students. Critical success
factors are discussed. First experiences with the model have been analysed.

1 Introduction

A government initiative in Austria from 2001 to 2004 has created and initiated a
number of projects and perspectives for schools, colleges and universities. Branding
“eFit-Austria” (www.efit.at), a support programme with about 30 Million Euro was
established, where pupils, students, teachers and educational institutions as a whole
can participate. The main activities of this initiative are as follows:

• The campaign to promote “New media in teaching at schools and universities”
with platforms and e-learning and internet skills programmes for teachers and a
project application procedure for university teachers and institutes;

• A support structure (funding, organisation, evaluation) for e-learning projects of
educational institutions (also adult education) and student groups;

• An electronic learning portal www.bildung.at, where community building and
content provision is being managed;

• A new approach to reshape the computer science studies at Austrian universities
has been established (computer science bachelor, master, and teacher-training
programmes at some universities);

• With regard to private-public-partnerships there is intensive cooperation with
industry to provide internationally acknowledged IT-certificates like Network
Academies, Networking operation systems, ERP-Software and Internet –script
languages (JAVA, PHP, ASP,…) for students (from the age of 16);

66 C. Dorninger

• An open source software initiative was launched in December 2002 to promote
working with software like LINUX, Staroffice or shareware learning platforms. A
certificate for students and teachers will raise acceptance of “free software” and
support training structures.

• Some first ideas of developing educational standards of IT subject areas in
secondary education (general education and vocational education and training) will
be launched.

Recent developments in pedagogy have focused on shifting from instruction to
problem solving. The higher independence of the learner from teacher instruction or
fixed learning programmes based on behaviouristic ideas has changed to elements of
cognitivistic or constructivistic learning models. Not only teacher-student interaction
but also working in learning environments or professional support structures
(simulation of real working places) increasingly influence the learning culture.

One important issue is to implement quality assurance at schools. This is to ensure
that the objectives of subject areas in different years can be fulfilled. One of the most
important vehicles to maintain quality is to define educational standards for important
subject areas. In Austria educational standards will be introduced for subjects like
Maths, English and German in grade 8. As for vocational education and training, in
subject areas like information technology it is easy to define valuable and reliable
educational standards.

2 What Are Educational Standards?

Educational standards define the demands on teaching and learning. They describe
objectives and aims are named for the educational work, expressed as learning
outcomes of students. Specific tasks and group of tasks must be fulfilled to master
these targets.

Educational standards describe the competences of students necessary to meet the
objectives. The competence based models depend on a specific grade and will be
written in a way to derive concrete tasks and formulate levels of testing.

Educational standards should be developed in different subjects, also in computer
science or information and communication technology. In the field of IT-skills,
important work has been done: There are lots of certificates available in the IT-sector
to get expertise in different IT-skills and in information technology some basic skills
were defined already in 1997 in Finland, Sweden or Ireland.

3 Education and Training in Information Technology

School informatics as a subject area in secondary school syllabi is fairly young and
does not have traditional approaches. School books are not really important, a lot of
spontaneous work is done and the laboratory character of the students` work is
impressive. Syllabi and curricula are very general and aim at implementing concrete
skills. The content is “open” to be designed.

All European countries have recently introduced learning standards, national ones
or international ones like the ECDL (European computer driving license). So the basic

 Educational Standards in School Informatics in Austria 67

IT-skill segment is well defined and was approved a number of years ago. The
pedagogic component of IT basic skills is not fairly outlined in the ECDL syllabus –
like group work, project work or problem solving technics. Combined with a suitable
pedagogical approach, the ECDL plus pedagogical items would be a good example of
such a quasi standard.

In Austria, further steps have been taken to deal with higher level skills: IT
industry certificates were introduced and sometimes even new ones developed.
Examples are the CISCO-networking academy, the Microsoft IT-academy, skills to
use ERP-software like MySAP (specific customising for county typical accounting)
or database qualification in the world of ORACLE. Also a certificate for open source
software (LINUX et al) has been developed.

Even if one can see some disadvantage like product near working – and loss of
general IT approaches - or the short life cycles of software versions, there is evidence
of positive development: near to expert practice, world wide accepted and sometimes
linked to e-learning courses with really good material like the CISCO-network
academy.

As the well known certificates require high level expertise (like Linux Professional
Institute modules 101 or 102), for open source software and LINUX a student skills
package to enter this new world was created. The EOSC (European open source
certificate) is now offered to young people to prove their often acquired informally
qualifications in this field.

4 A Model of IT Standard – Four Levels of Competence

Standards for IT at school informatics are related to similar constructs in language
learning (the TOEFL –test in English for example), in training of special technology
skills like in welding, manufacturing, or in quality assurance. Providing access to
these “external” certifications and integrating the required knowledge and skills into
vocational education and training school curricula has a longer tradition in Austria.

The experience in these areas forms an important basis for the discussion on
standards. Because of “open” syllabi the main responsibility is delegated to the
teachers. Quite different profiles in different schools developed – from low level
ranking in student test achievements like PISA (programme of international students
assessment) to high level ranking of good or best schools. The gap between the good
and the worse performers is to large, decided an expert group of the Austrian minister
(Bericht der “Zukunftskommission” des bm:bwk; Vienna, 2003).

Therefore, an “evaluation culture” in the Austrian education system must be
established. School programmes and system monitoring form one part this evaluation
culture, educational standards in groups of subjects another.

In information (and communication) technology four levels can be defined to
standardise skills and knowledge:

• The first level is ECDL (seven modules from general IT-knowledge, operating
system, office products to internet access) combined with a pedagogical approach
of knowledge in school informatics.

• The second level is a problem solving approach including programming language
skills and dealing with moderate algorithm in computer science. There should be a

68 C. Dorninger

link to change standard software like office products by using different data models
(e.g. to extend the knowledge of office products with macro programming via
Visual Basic for Application).

• The third level is a first expert level. External certificates are awarded. It can be
done in different subject areas like networks, database-programming, network
operation systems or web technologies. A clear occupational sub-area must be
linked to this level.

• The fourth level has to do with excellent programming knowledge and software
design concepts of computer science disciplines and basic research work together
with a grade in higher education.

With this level concept the range from grade 7 or 8 (ECDL) to higher education can
be covered. Level two can be met with upper secondary graduation, level three with
specific vocational training, practice and certification (career in an ICT- profession
field or bachelor degree in applied computer science), level four relates to a university
diploma in ICT disciplines.

5 First Experiences with IT Standards Since About 2000

After three years of practice, we have come to the following conclusions:

1. For rather a simple learning process and exam content in terms of basic skills, it
may be easier to define standards and norms. Complex know-how in IT and
knowledge in upper secondary and higher education are not easy to standardise.
We have high numbers who achieve level 1 (100.000 ECDL graduates in 3 years in
Austria!). Those, who acquire IT industry certificates, are fewer in numbers.
Educational content and skills required in the exams must be part of the school
syllabi or it must be easy to integrate it. Exams outside school programmes form a
high barrier and are not widely accepted (the CISCO academy syllabus comprises
4 semesters and the semester exams are taken by a broad group of students and
teachers. But only 30% of them take the last exam “outside the course” – a
summary of the 4 semesters. So the implementation of standards is important and
possible, but they must be implemented within the regular programme.

2. For standards there should be a kind of guarantee of acceptance in the professional
fields. If they are linked to career pathways, it is easy to argue their importance.
The more global (world wide) standards one can introduce, the bigger the link to
labour market needs, the easier IT standards will be accepted by a larger amount of
students. In vocational education and training it may be easier to get a feeling for
these developments. Standards in IT subjects are mostly world wide, connected to
specific software or products and have a short lifetime. Not really easy to integrate
them in the slow moving education sector!

Educational standards will continue to dominate parts of the discussion of school
efficiency and the way to demonstrate the beginning of lifelong learning. IT has
experience with certification and could feed its expertise into this discussion.

 Educational Standards in School Informatics in Austria 69

References

1. bm:bwk, eFit-Austria, Jahresberichte 2001, 2002 und 2001 bis 2003, Vienna, 2004.
2. Günter Haider et al., Zukunft:Schule–Strategien und Maßnahmen zur Qualitätsentwicklung,

Vienna, 2003.
3. Peter Micheuz (publisher), Standards in der Schulinformatik, Völkermarkt, 2004.
4. Eckhard Klieme et al., Zur Entwicklung nationaler Bildungsstandards, Expertise des DIPF

(Deutsches Institut für Internationale Pädagogische Forschung, 2003;
www.kmk.org/aktuell/Bildungsstandards

5. Werner Specht, Zum Stand der Entwicklung nationaler Bildungsstandards, Grundsatzpapier
des österreichischen Bildungsministeriums, ZSE (Zentrum für Schulentwicklung) in Graz,
2003.

6. Helmut Heugl, Marlies Liebscher, Bildungsstandards aus Mathematik für die Sekundarstufe
II, Jul 2004.

R.T. Mittermeir (Ed.): ISSEP 2005, LNCS 3422, pp. 70–74, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Russian Educational Standards of Informatics and
Informatics Technologies (ICT): Aims, Content,

Perspectives

Aleksandr A. Kuznetsov and Sergey A. Beshenkov

Russian Academy of Education, Pogodinskaja 8, Moskow, 119121, Russia

Abstract. Educational standards fixes three main parameters in informatics and
informatics' technology: the goals for every step of education (primary step, in-
termediate step and pre-professional step), the obligatory component of the con-
tent, and the level of it's acquaintance. The basic course is the course of 8-9
classes. Informatics' technology of solving tasks is in the focus of the basic
course. There are three aspects of the technology: "Informatics' processes and
their automatisation", "Informatics models" and "Informatics' point in manag-
ing". The three aspects are fixed in the standard and are common for the perma-
nent course of informatics (taught from the second to the eleventh class).

Educational standards set three main parameters for studies in informatics and infor-
matics technologies: the purpose for every step of learning (introductory, intermediary
and pre-professional), the obligatory component of the content, and the level of its
acquaintance.

The issue of the content of education is one of the main issues of the course in in-
formatics. In Russian schools this course is provided as a part of general education in
schools as well as universities and teachers training colleges.

As with any course which constitues a part of general education in Russia, the con-
tents of a course in informatics is based on two main principles:

- the requirement to cover the main issues of informatics; and
- the emphasis on the main types of information activities.

This approach leads to segregation of two concenters of the content of the course in
informatics, namely “informational processes” and ‘informational technologies”.
“Informational technology” is a process resulting in the creation of information prod-
ucts with specified qualities, in particular with the aid of computer and its software.

According to the modern standards and basic curriculum of Russian schools, a
course in informatics is given continually from the 2nd to 11th (last) year of school
and, as a rule, at universities. There are three main learning steps: introductory (2nd
to 5th years of school), intermediary (7th to 9th years) and pre-professional (10th and
11th years). To maintain the uniformity of all steps, the course in informatics is
based on three main topics which are covered throughout the course and are the sort
of “axiomatic statements” of the modern course in informatics: “Information and
informational processes”, “Informational modelling” and “Informational basics of
management”.

 Russian Educational Standards of Informatics and Informatics Technologies 71

These three continuous course topics in informatics are covered at every step of
learning but of course in various depths. We will consider below those topics in more
details.

The scope of issues traditionally covered by the topic “Information and informa-
tional processes” is significant for the course in informatics. At the introductory step,
the choice of tasks and learning materials is aimed at providing full description of the
concept of usage of multimedia in all fields of human activities and problems of sub-
jective interpretation of information. It lays the grounds for further studying of infor-
mational modelling, algorithms etc.

In the pre-professional step, the procedure of interpretation of information is again
in the foreground, but in a different light. Here, the perspectives are the as various
ways of interaction with technical and social systems. Generally, the steps of learning
of informational process are described in Table 1.

Table 1. Main learning steps of the topic “Information and informational processes”

Learning step Aspects of the course in
informatics

Main studied
processes

Introductory Information as a message in
the form of sequence of
symbols

Encryption, inter-
pretation

Intermediary Information as a message in
the form of sequence of
symbols that are stored,
transferred and processed
through technical equipment

Storing, transfer-
ring, processing

Intermediary and
pre-professional

Information as a message
transferable via channels
which can be kept and proc-
essed according to certain
rules

Modelling, charac-
terisation, algorith-
misation

Pre-professional Information as data and
methods of its processing

Information tech-
nologies, automati-
sation

Pre-professional
and higher educa-
tion

Information as semantical
feature of matter

Interpretation,
methods of learn-
ing and communi-
cation

Higher education Information as a resourse,
product, tool and instrument
of professional activities

Methods of practi-
cal activities, deci-
sion generation and
decision making

The modern stage of the development of education is characterised by increased at-
tention to the notion of model and the methodology of modelling.

72 A.A. Kuznetsov and S.A. Beshenkov

Table 2. Main learning steps of the topic “Informational modelling”

Learning step Aspects of the course in
informatics

Main studied
processes

Introductory Modelling as substitute for a
subject in the process of
learning, interaction and
practical activities

Comparison, col-
lating, examination
of models

Intermediary Modelling as a simplified
version of a real subject.
Informational modelling as
a scheme, image or descrip-
tion of a studied subject.

Formalised repre-
sentation of text,
graphic, numerical,
and audio informa-
tion

Intermediary and
pre-professional

Modelling as a new subject
which reflects certain quali-
ties of an original subject
which are material for the
purposes of modelling

Characterisation,
creation and inter-
pretation of tables,
diagrams, flow
charts, schemes,
formulas and algo-
rithms

Pre-professional Modelling as a way of
knowledge, means of com-
munication, tool of practical
activities

Structuring of data
and knowledge

Pre-professional
and higher educa-
tion

Modelling as physical or
informational equivalent of
a subject which operates in
certain characteristics in a
way similar to that of an
original subject

Creation of valua-
tion criteria, valua-
tion check of mod-
ellings

Higher education Modelling as a new subject
(real, informational or
imaginary) different from an
original subject, having and
reflecting qualities material
for the modelling purposes
of which allow it to fully
replace the original subject
for the given purpose

Systematic analy-
sis, design, impact
analysis

The course in informatics helps, to the largest extent possible, to classify the
knowledge that learners have about models and conscious application of informa-
tional modelling in their learning and then in their professional activities. The creation
of models in the courses of mathematics, physics, chemistry and biology is fortified
by learning, in the course in informatics, about issues related to the stages of creation
of models, analysis of their qualities, validity checks in respect of the model and the

 Russian Educational Standards of Informatics and Informatics Technologies 73

object and the aim of modelling, examining the influence of the choice of modelling
language on the quality of obtained information etc.

The process of learning modelling should be organised in such a way as to enable a
learner to try the roles of creator, observer and user of models because trying different
roles is especially important in modelling.

The main learning stages for modelling in different learning steps are described in
Table 2.

Informational technologies of task solutions are directly related to management
techniques. The main learning steps of this topic are described in Table 3.

Table 3. Main learning steps of the topic “Informational basics for management”

Learning step Aspects of the course in
informatics

Main studied
processes

Introductory Management as handling
activities of somebody or
something

Work with opera-
tors

Intermediary Management as a governing
act transferred by way of
instructions

Algorithmisation,
operating of work
of computer, opera-
tors by way of
instructions

Pre-professional Management as directed
informational interaction be-
tween a managed object and
the system of management

Purpose, mecha-
nisms, methods,
results, valuation of
quality of man-
agement

Pre-professional
and professional

Management as a mecha-
nism of self-organisation of
complex systems

Systematic and
functional analysis

Professional Management as a sum of
principles, methods, forms
and ways of influence to an
object of management with
the purpose of reaching
specified characteristics of
its functioning and/or ex-
pected results of its activi-
ties

Preparation, mak-
ing, realisation of
management deci-
sions

The issues described above served as a ground for the Federal component of a Rus-
sian standard for general studies (2004). They are also employed in key textbooks that
are used for the course in informatics in Russian schools, among them [1, 2, 3]:

74 A.A. Kuznetsov and S.A. Beshenkov

References

1. S.Az.Beshenkov, E.A.Rakitina. Informatics 10 -11 Sistematic course. Moskow (2000)
2. I.G.Semakin et al. Informatics. Basic course. oskow (2001)
3. N.V.Matveeva, E.V.Chelak, T.A.Konotopova. Informatics - 2. Moskow (2003)

R.T. Mittermeir (Ed.): ISSEP 2005, LNCS 3422, pp. 75 – 83, 2005.
© Springer-Verlag Berlin Heidelberg 2005

The Present-Day Tendencies
of Teaching Informatics in Ukraine

Oleg Spirin

Department of Information Technology, Zhytomyr Ivan Franko University,
40 vul. V.Berdychivska, 10008 Zhytomyr, Ukraine

som@zu.edu.ua

Abstract. The article describes the present-day situation and general approach
to teaching informatics in secondary schools in Ukraine. The syllabus of
teaching informatics in Ukrainian schools is described, including major topics
and the number of academic hours.

1 Major Features of the Course in Informatics at Secondary
Schools

The main objective of informatics teaching is to provide students with theoretical
knowledge in the basics of informatics and the development of practical skills in
using present-day information technology in students' every-day practical learning.

The theoretical basis comprises the following components: the concept of
information, its properties, informational processes and systems; general principles of
computer-aided problem solution based on common and application programs;
problem definition; construction of corresponding informational (mathematical in
particular) models; fundamentals of algorithmization and programming; principles of
computer hardware; and opportunities for using the Internet).

Practical skills comprise work with information input and output devices,
application software of both general and specific types: text processors, graphics
editors, electronic worksheets, database management systems, search systems,
teaching software tools, browsers for viewing hypertext pages, e-mail and
teleconference software, searching for information on the Internet etc; also skills of
development, description and implementation of some algorithms and programs based
on algorithmical language tools and real programming languages.

Depending on the type of computers, teachware and software available, teachers
can themselves choose the appropriate methods and techniques to achieve the aims of
the course. According to the methods and techniques that are chosen, teachers select
corresponding textbooks, manuals and teaching materials out of the list of resources
recommended by the Ministry of Education and Science of Ukraine, combining
various resources or giving emphasis to some of them.

Here is the list of the main topics and their sequence for the senior forms of general
secondary schools in Ukraine [1]:

1. Information and informational processes.
2. Information system.

76 O. Spirin

3. Operational system.
4. Fundamentals of disc handling.
5. Application teaching software.
6. General-purpose application software:

− graphic engine;
− text processor;
− computer presentations;
− electronic worksheet;
− databases.

7. The Internet.
8. Basics of algorithmization and programming:

− information model;
− algorithms;
− program. Programming language;
− reference to algorithms and functions;
− reference to repetitions and branching;
− table values;
− literal values;
− graphic operations.

In 2003 the Ministry of Education and Science determined the procedure of final
public testing in informatics [2]. Two options are available: an oral examination or
defence of students’ papers describing the development of application software. The
students themselves choose either of these two options. The second option can be
chosen only by the best students who have the highest academic performance in
informatics.

Teachers of informatics offer their students a list of recommended subjects for their
research papers, taking into consideration inter-disciplinary connections and needs of
teaching informatics. Students are free to take any topic which is of interest for them,
has practical significance and relevance. A student’s paper can be of educational,
demonstrational, testing or gaming nature or can combine several features. The
curriculum does not allocate any specific time for development of software by
students – they do it as part of their homework and out-of-class activities.

A specific activity in informatics is the annual competitions held at several levels:
I – school level, II – district or city level, III – regional level, IV – national level.

2 Peculiarities of Teaching Informatics at School

2.1 Existing Syllabi

Teaching informatics to senior students of Ukrainian secondary schools follows a
syllabus with three variations, depending on the facilities available at schools. The
first variant is for teaching informatics without actual use of computers, the second
variant is for DOS-based teaching of informatics and the third variant is for
WINDOWS-based teaching informatics. This three-variant syllabus has been in use

 The Present-Day Tendencies of Teaching Informatics in Ukraine 77

since the late 1990s. This syllabus can be regarded as a transition period syllabus. One
can expect that it will remain in effect for a rather long period of time, for more than
five years to come.

This is connected with insufficient and unbalanced investments in the computer
facilities of secondary schools. There is still a considerable number of schools which
have out-of-date computers or no computers at all. In the latter case, informatics is
taught basically in terms of fundamentals of algorithmization. Computer hard- and
software are studied only theoretically. Practical skills are limited to skills in
mathematical simulation, development of algorithms for problem solution, their
graphic description in the form of flow charts. Algorithms can be described in terms
of the Teaching Algorithmic Language (TAL), specifically developed in the early
1980s. The main references in this language are similar to PASCAL operators. TAL is
intended for use in paper study of algorithmization, though a translator of this
language exists which is used on old teaching hardware (mid-1980s – early 1990s).

The three-variant syllabus provides that if a school has sufficient computer
facilities, the course of informatics covers two years, the total amount of academic
hours being 102 hours (table 1.). Informatics lessons are often distributed as follows.
In the first half-year students may have one lesson a week, and in the second half-year
they have two lessons a week. Then in the second year they may have two lessons a
week in the first half and one lesson in the second half of the year. Depending on the
school curriculum, informatics can be studied in 8-9 or 10-11 forms.

Table 1. Here are the main components of the course of informatics

Topic Amount of hours
Introduction. Information and informational processes 3 hours
Information system 5 hours
Operating systems 9 hours
Basic skills of disk handling 5 hours
Application software 46 hours
INTERNET and its basic possibilities 6 hours
Fundamentals of algorithmization and programming 28 hours

2.2 Further Changes in the Existing Syllabi

Since 2003 Ukrainian schools have started the transition to profile (specialized)
teaching in senior forms. Its aim is to provide the students with basic knowledge and
skills for the job market. This education profile makes use of new syllabi in
informatics developed specifically for the changed purposes of student’s training. The
minimal compulsory amount of hours for informatics during two years of study is 70
hours. The syllabi under consideration present an updated version of the WINDOWS-
based syllabus within the earlier three-variant syllabus.

The first line is aimed at solving information problems involving information
search, use and processing. From the practical point of view it aims at training a PC
user at a corresponding level. These syllabi are used in universal-profile forms and
those specializing in Philology, the Humanities, Fine Arts and sports. In these types of

78 O. Spirin

forms informatics is studied during two years, with one class per week (the total of 70
hours). The syllabi of this line have insignificant differences in their contents and
amount of hours.

Table 2 shows the components of the course in informatics for the universal-profile
schools.

Table 2. Distribution of topics for universal-profile schools

Hours # Topic
Total 10

form
11
form

1. Introduction. Information and informational
processes.

2 2

2. Information systems and their components. 6 6
3. Application teaching software 4 4
4. General-purpose application software (graphic

and text processors, computer presentations,
electronic worksheet, databases)

34 14 20

5. Internet 6 6
6. Computer simulation. Basics of algorithmiza-

tion and programming.
12 12

 Float time 6 3 3
 Total 70 35 35

Among the application software used in Ukraine is specialized computer
teachware, certified by the Ministry of Education and Science, for example,
„Videointerpreter of search and sorting algorithms”, „Geography of continents and
oceans with maps”, „Ancient Rome”, „Electronic course in modern history”,
„Dynamic geometry package DG”, program packages GRAN-1, GRAN-2D, GRAN-
3D, GRANWIN, „Geography. Location map”, „Native language”, „Your health is in
your hands”, „Ukraine and its regions”, „Physics for a future engineer. Learning to
solve problems”, „Regional transport systems”, interactive testing systems, etc.

The second line is aimed at the practical mastery of skills essential for work with
the basic components of up-to-date computer software, familiarization with functions
of major computer devices and the basic technologies of computer-aided problem
solving, starting from the formulation and construction of information models up to
the interpretation of results. These syllabi are designed for schools (or forms)
specializing in physics, mathematics, biology, chemistry and technology. In such
schools (or forms) informatics is studied during two years, with two classes per week
(total 140 hours). The aim of the course is somewhat broader than the syllabus of the
first line. It involves understanding the theoretical basis for processes of
transformation, transmission and application of information, understanding the
meaning and role of information processes in contemporary society, and the
development of practical skills in the conscious and rational use of computers.

More hours (46-48) are allotted to the fundamentals of algorithmization and
programming. Teaching programming involves the use of the translator of one of the
programming languages (BASIC, PASCAL, C++, Visual Basic, Delphi, etc.).

 The Present-Day Tendencies of Teaching Informatics in Ukraine 79

It should be mentioned at this point that the syllabi of the first and second lines are
not satisfactory in the opinion of certain specialists in the methodologies of
informatics.

These specialists point out considerable discrepancy between the existing concept
of informatics teaching, international teaching standards, effective syllabi, the concept
of profile teaching and the real situation in Ukrainian schools. One of the reasons for
such discrepancy is absence of options at the level of teachware. At the same time
there are active disputes as regards the “Algorithmization and programming” section,
its place in the syllabus, components and order of studying topics. Most university
specialists insist that this topic should take the central place in the school course in
informatics. It should involve visual programming as its essential component.

The third line of syllabi provides for the study of informatics from the 7th or 8th
form. Such syllabi were developed for forms specializing in deep study of
mathematics, informatics and ICT. According to these syllabi, students have 2-4
hours of informatics in the 8th-9th forms (total 140-280 hours) and 4 hours per week
in the 10th form (total 280 hours).

Most syllabi provide an integrated course – “Informatics and information
technology”. 7-9-formers can have a basic course at the expense of the optional
(selective) hours provided in the curriculum. At the same time they can have the
course in technology at the expense of hours allotted to labour training.

The course in technology for 7th-9th-formers involves teaching skills of vector and
bitmapped graphics for polygraphy, multi-media programming and web-design.

In the 10th and 11th forms this integrated course is studied along one of the
profiles: computer-aided design technologies, object-oriented programming
languages, use of electronic worksheets in economics and business, web-design,
architecture and landscape design.

Besides the above-mentioned compulsory syllabi students may have access to
optional (selective) courses, such as:

− fundamentals of information technology (140 hours);
− Internet-oriented graphics programming (70 hours);
− markup language (40 hours);
− object-oriented visual programming (140 hours); etc.

2.3 Who Defines How Informatics Should be Taught?

All of the syllabi described above are approved by the Ministry of Education and
Science of Ukraine. Depending on the available computer facilities and school profile,
school administrations choose a certain syllabus. The syllabus chosen is approved by
the local educational authorities which fund schools.

Where students are aiming at higher education in universities majoring in computer
sciences, school authorities can allot more hours for deeper teaching of informatics,
negotiating the changes in the syllabus with the corresponding university.

It is up to a teacher to choose specific methods of teaching. The main thing is that
the teacher should guarantee meeting the ultimate standards of knowledge and skills
specified in the syllabus. Consequently, the syllabus defines only the type of
obligatory software, and it is up to the teacher to select the particular version.
Teachers also define the textbooks to be used in the course of study.

80 O. Spirin

2.4 Training of Teachers of Informatics

The public system of training of teachers of informatics (Fig. 1) consists of two
routes:

− 5-year university training majoring in informatics, mathematics and basic
informatics, teaching of informatics at secondary schools; or 1-2-year post-diploma
(further) course in informatics for university graduates;

− one-month free courses in informatics at regional institutions for further
pedagogical education for teachers of mathematics and physics and for computer
engineers who started their work at schools.

Working teachers of informatics take refresher courses once every five years.
These one-month courses are provided by regional institutions for further pedagogical
education. If school administrations have the opportunity to adopt a broader course of
informatics due to improved computer facilities, teachers of these schools can take a
refresher course before the scheduled time.

Teachers of Informatics
(Secondary and Vocational Schools)

Headmaster

Ministry of Education and Science

Head

Upgrading
Institutions

Rector

Universities

Head

Regional Departments
of Education

Head

District Depts
of Education

Tr
ai

ni
ng

Control ; refresher courses ; feedback

Fig. 1. Public system of training and retraining of teachers of informatics

Teachers of informatics are motivated to upgrade their professional competence by
annual competitions for the best teachers of informatics. These competitions are
organized by the regional institutions for further pedagogical education. Their winners
take part in the national competition. The winners of these competitions are awarded
diplomas and bonuses and put forward for higher professional categories, which
means higher salaries.

Teachers of informatics can upgrade their competence on their own, making use of
the national monthly journal “Computer at school and family” and the national
newspaper for teachers which highlights issues relating to the informatization of

 The Present-Day Tendencies of Teaching Informatics in Ukraine 81

secondary education, theoretical and practical issues of informatics teaching,
methodological recommendations concerning teaching new software, feature
discussion of the present-day situation in informatics teaching and its prospects,
publishes samples of final tests and assignments for the national students’ competition
in informatics, review textbooks and manuals, etc.

Alongside traditional schemes of teachers’ upgrading and retraining, an increasing
role today is played by the initiatives of individual teachers. An example of one such
initiative is the “Hot Summer” project, in which teachers of informatics submit
electronically their best lesson plans for consideration by experts, share their
successful methods and techniques. The organizers of this project collect the database
and disseminate it among the participants for further discussion and use.

Teachers of informatics have also set up regional Internet Olimpiadas, involving
the solution of advanced-level programming problems.

At the same time, the availability of qualified teachers of informatics remains a
problem for Ukrainian schools. The main reason for this is the low salaries of school
teachers in general. As a result, young promising teachers leave schools and seek
better employment in other spheres. The beginning of 2003-2004 school year
witnessed about 6,000 teachers’ vacancies in 21,000 schools, mainly of teachers of
informatics and foreign languages.

2. Teachware

One of the major problems today is the provision of adequate teachware (textbooks,
manuals, software and test programs, teaching materials) for teaching informatics.
Most of the existing textbooks which were financed by the Ministry rapidly become
out-of-date and can not follow the changing syllabi. The quality of the textbooks and
manuals is affected by the existing imperfect expertise procedure provided by the
Ministry. Often such expertise is carried out formally. Some teachers of informatics
try to fill this gap with their own teachware often developed in a hurry, lacking the
necessary experience and competence for this. The resulting teachware is not always
of appropriate quality.

This situation brought about some drastic demands for the Ministry to stop public
financing of textbooks and manuals in informatics, in order to prevent large-scale
invasion of low-quality teachware. Instead, it has been proposed that publishing
houses should publish textbooks in informatics on the basis of commercial risk. In
this way they would be able to react to rapid changes in informatics as a science and
school discipline, and teachers would be able to choose a textbook out of several
proposed titles.

3 Some Prospects of School Informatics in Ukraine

All of the description above shows that at present informatics in Ukrainian schools is
studied following a number of syllabi oriented at various specialization profiles and
levels. We expect that this trend will become even more prominent in the decade to
come. At the same time the teachers’ main efforts will be directed at searching for

5

82 O. Spirin

ways to eliminate discrepancies between the knowledge and skill standards declared
in the syllabi and the actual knowledge and skills displayed by the students.

Some definite trends relating to teaching informatics in schools are listed below:

1. The structure of the school course in informatics is likely to change. In future it is
likely to comprise three levels and follow the development of students’ intellectual
activity: 7th-8th forms – a basic course, 9th-10th forms - the main course, 11th
form – the specialized course.

2. Alongside the expected change in the course structure, the future is likely to
witness separation of the fundamental (mainly algorithmization and programming)
and applied (IT) aspects of teaching informatics at schools. This trend may lead to
differentiation of two subjects: the fundamentals course which will be taught by
teachers of informatics and the applied aspects which may be taught not only by
teachers of informatics, mathematics and physics but also by teachers of the
humanities. Such a change will bring about the necessity of reforms both in the
school teaching of informatics and in the system of university training of teachers,
their further upgrading and retraining.

3. The introduction of informatics as a subject in primary school seems quite feasible.
Some schools are carrying out the experimental teaching [3] of some introductory
courses, like “Computer ABC” (for the first-formers), “Steps to informatics” (for
the second-fourth-formers), “Introduction to informatics” (for the fifth-sixth-
formers). At the same time there is a strong belief that in primary school computers
have to be used only as a means of teaching other subjects and that this should not
be considered as teaching informatics proper.

4. Computers will be found not only in schools but also in students’ homes. We
expect that in future the students in the 5th-6th forms will show significant
computer competence and in the 7th-8th forms they will have higher knowledge
and better skills in using computers than ordinary teachers have today. This will
have to bring about adequate changes in the syllabi and teachware, and the present-
day concept of training PC users will have to be critically reassessed with the shift
to algorithmization and solving typical problems.

5. A broader range of optional (selective) courses is expected. The training of PC
users is expected to incorporate the comprehensive study of artificial intelligence
software and general expert systems. In teaching programming there is a tendency
of wider additional use of Internet-programming systems (ASP, PHP, Perl, Java,
etc.) and systems of Internet publications (HTML, XML, XHTML). Some
specialists [4] consider the possibility of incorporating LINUX systems into school
courses in informatics. Yet we do not consider the prospect of using such operating
systems and corresponding application software realistic.

6. An increase in investments in school computer facilities is quite feasible. Intensive
improvement of school computer facilities is backed by the government program
aimed at provision of every rural school with modern computers. Since 2001 2257
computer classrooms have been supplied to rural schools (about 1500 in 2004).

7. We can also expect a considerable inflow of well-trained teachers of informatics to
schools in the immediate future. This trend is reinforced by the government’s plans
to conclude social agreements with university graduates, according to which those
graduates whose tuition was covered from public funds will have to work at
schools a specified number of years.

 The Present-Day Tendencies of Teaching Informatics in Ukraine 83

8. One can expect formation of a professional association of teachers of informatics.
9. One can also expect that formerly isolated system of informatics teaching in

Ukraine will enter the wider international environment (EU in particular). This
tendency can find its realization in experience sharing, participation in international
educational projects in the field of informatics and conferences.

References

1. Informatics. Syllabi for general secondary educational institutions. – Zaporizhzhya:
Premier, 2003. – 304 pp. (in Ukrainian)

2. Methodological recommendations for the final public testing in informatics in 2002/2003
(in Ukrainian) http://www.mon.gov.ua/laws/list_1_9_39_.doc

3. V.M.Shevchenko. The structure of the course in informatics at school # 52 // Computers at
schools and in the family. – 2003. - # 2 – P.27-28 (in Ukrainian)

4. Ya.M.Glynskyy, V.A.Ryazhska. Linux-practicum in informatics. Manual. – Lviv, Deol,
2004. – 248 pp. (in Ukrainian)

R.T. Mittermeir (Ed.): ISSEP 2005, LNCS 3422, pp. 84 – 91, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Study of Information Search Systems of the Internet

Yuri Ramsky and Olga Rezina

Computer Science Department,
 M.Drahomanov National Pedagogical University,

9 Pirogov Str., Kyiv, 01030 Ukraine
rama@ukr.net, rezina_olga@mail.ru

Abstract. Qualified search for information in the internet is considered to be a
fundamental capability of pupils to be educated for the information society. The
theory of planned formation of intellectual actions is assumed as a basis of
learning of internet search systems. The paper reports on the computer teaching
program “Poshuk-META” (Retrieval Aim), a system to get acquainted with
searching the internet even without an internet-access.

1 Introduction

Information and knowledge are determinant factors of the development of modern
society and a more important national resource. Information retrieval is the issue of
the day in the information society. The retrieval activity is a basis in the educational
process of a secondary school, an academy and a professional activity for most of
people today.

The problem of information retrieval comes up before pupils at the time of self-
dependent and research work, preparation for reports and papers, selection of
additional materials for different subjects. This problem can be solved in the process
of learning of Informatics. It's necessary to form:

− Skills to define possible sources of information and the strategy of its retrieval;
− Skills to do the semantic processing of data;
− Skills to analyse and interpret findings;
− Skills to appreciate information from the point of view of its authenticity, accuracy,

adequacy for the solution of the concrete information task.

The impetuous development and active use of modern information and
communication technologies have made it possible to begin the wide-ranging
transformation of information to the electronic form and creating of a huge quantity of
information resources. The electronic form of the representation of information makes
it possible to organize the processes of preservation, processing, spreading, and
retrieval of data in a qualitatively new level.

The intensive disposal of data in the internet is the fundamental direction of the
technological development of information resources. The quantity of scientific,
educational, cultural, social internet-resources increases all the time. They are
electronic libraries and encyclopedias, electronic journals and newspapers, materials

 Study of Information Search Systems of the Internet 85

about educational institutions, school and students' unions and so on. The educational
potential of the internet can be effectively used in studies as well as during the
solution of didactical and pedagogical problems. A teacher of Informatics should help
pupils organize their work in the internet, make information retrieval easier for them,
shorten unproductive expenditures of time. Pupils must know that search systems of
the internet are effective means of information retrieval and exploration.

2 Psychological Grounds of Studying the Theme “Search Systems
of the Internet”

L.Vygotsky’s cultural-historic theory of development of higher psychic functions is
one of the leading in psycho-pedagogical science in Ukraine. It is widely used during
the discussion of problems such as person and culture, studies and development,
influence of information technologies on the development of children’s psychics.
According to the basic provisions of cultural-historic theory, signs and sign systems,
which regularly get more complicated, contribute to the development and
transformation of higher psychic functions [1].

The internet can be viewed as socio-technical system, which, together with modern
digital technologies, is based on traditional sign systems and contributes to their
quantitative complication and qualitative transformation. According to L.Vygotsky’s
views, such a socio-technical system, which regularly gets more complicated,
promotes the development and transformation of higher psychic functions. That’s
why viewing the internet as modern means of activity which stimulates psychic
development of a person, is quite grounded.

In spite of the variety of internet users’ activity, researchers single out three main
types of activity mediated by the Web: cognitive, communicative and playing [2]. We
consider the information-retrieval activity as a constituent of a cognitive activity.
Considering the internet as a sign system, working with it, and notably retrieving
information from it contributes to the psychic and intellectual development of a child.
Hence, we suppose it necessary to study internet search systems in the school course
of Informatics.

Studying of internet search systems may take place on the basis of the theory of
planned formation of intellectual actions, which is grounded by scientific works of
P.Galperin and N.Talyzina. The theory of planned formation of intellectual actions
supposes some successive stages.

At the first stage the basic motivation of the action is formed. Researchers have
come to the conclusion that internet users’ activity is poly-motivistic. Among the
main motives are: cognitive, businesslike, communicative, recreational and playing,
affiliative (the need to feel oneself as a member of some group), as well as motives of
cooperation, self-fulfillment and self-assertion [3].

We think that the task of a Informatics teacher is to form pupils’ cognitive motives
of activity in the internet and to compare them with social ones. To form positive
cognitive motivation of studying search systems of the internet, the teacher should
inform pupils about the following facts:

86 Y. Ramsky and O. Rezina

− A qualified internet user may get access to scientific and literary sources of the
leading libraries of the world;

− The majority of scientific, popular scientific and literary journals have electronic
versions available via the internet, and some journals have only electronic version.;

− The number of different electronic encyclopedias, reference-books, dictionaries,
thematic sites, present in the internet, regularly increases;

− Work with such types of resources is characterized by the availability of
convenient and effective retrieval means.

Social motivation of the retrieval activity in the internet may be raised or formed
by adducing the following facts:

− The retrieval activity is one of the leading while studying in the academy or
institute of higher education, and for many in professional activity as well;

− The majority of institutes of higher educations in Ukraine and in other country
have their own internet-sites, which offer data about faculties, specializations,
terms of admission and so on;

− Some sites inform of possibilities and terms of studying the finding work abroad,
studying the foreign language in its native country;

− Due to the information offered by the internet-sites, one may solve the problems of
rest organizing, getting goods and so on.

At the next stage of planned formation of intellectual actions there the formation of
the reference scheme of the action happens, i.e. the system of reference points and
instructions. Considering of which is necessary to perform the action mastered with
required qualities. The reference scheme of the action of information retrieval in the
internet may be like the one in Figure 1.

The reference scheme of the action presented to pupils is polished up on the basis
of training tasks.

Task 1. What is the height of Eiffel Tower? (The answer should be accompanied
by a reference to the internet page).

To the query Eiffel Tower the search engine in the first results gives out documents
that contain the answer. Three first operations of the reference scheme of the action
are carried out.

Task 2. Which space project aims at studying the processes of the active Sun?
Solving of this task suggests introducing a sequence of query-specifications (for

example, space project + active Sun) with the analysis of the results obtained. Four
operations of the reference scheme of the action are carried out.

Task 3. To find documents which inform of the results of the regional phases of the
all-Ukrainian contest “Young economy”. Take into account that the regional phase
may be called the district one.

Solving of this task demands introducing the query all-Ukrainian contest, query-
specification Young economy with the usage of the boolean operators (regional |
district) phase. It’s necessary to show pupils that simple subsequent introducing of
queries regional phase and district phase will lead to the exception from the area of
retrieval of documents, which contain the words district phase, but don’t contain the
words regional phase, which contradicts the condition of the task. All the operations
of the reference scheme of the action are carried out.

 Study of Information Search Systems of the Internet 87

YES

YES

YES

NO

NO

NO

To analyze the retrieval task.
To pick up key words of the query

To formulate the query

To address the query to search engine

Document found

To limit the area of retrieval by
query-specification

To use the boolean operators

To process the results found

To formulate the query in
another way

Document found

Document found

Fig. 1. The reference scheme of the action of retrieval in the internet

The criteria of formation of the action of retrieval in the internet is pupil’s ability to find
the information needed or to make sure that there is no such information in the Web.

3 Defining the Contents of “Search Systems of the Internet”.
Computer Teaching Program “Poshuk-META” (Retrieval Aim)

We suggest examining questions such as:

− Types of internet search systems (Subject Directories and Search Engines), their
peculiar properties;

− The principles of functioning of search engines (the processes of scanning,
indexing and ranging);

88 Y. Ramsky and O. Rezina

− The notions of information retrieval, relevance and boolean operators;
− The search engine on the example of which practical realization of the issues

considered is carried out.

It’s advisable to focus on mastering of possibilities of some search system: to
define what information space it covers, to learn to formalize information needs by
picking up key words and determining semantic links between them, to master
boolean queries of the search system to analyze the results obtained. For Ukrainian
pupils the system <META> may become such an object of studying.

Search system <META> (http://meta.ua) covers the whole Ukrainian segment of
the internet, realizes retrieval according to the list of Ukrainian sites, gives a
possibility of access to European information resources. <META> combines in itself
the functions of subject directory and search engine, is characterized by high accuracy
and speed of retrieval, processing documents by any European language with taking
into account of morphology of Ukrainian and Russian. Studying of internet search
systems is complicated by the fact that not all Ukrainian schools have an access to the
internet. The authors have set a task to create a computer program of studying search
systems without an internet-access. This was necessary :

− To present the theoretical material of the course studied in the hypertext-structure;
− To prepare examples for solving;
− To form the base of retrieval in accordance with pedagogical and educational

objectives, to pick up documents, the theme of which would be interesting and
urgent for pupils;

− To organize in this base a full-text retrieval of documents with the support of the
boolean operators;

− To work out a system of retrieval task.

Such a program was created and it got the name “Poshuk-META” (Retrieval-Aim).
Its interconnected constituents are: an electronic schoolbook, a system of examples
for demonstration, a program-trainer.

The electronic school-book contains the theoretical material presented in the
hypertext-structure. The systems Yahoo!, Google, Yandex (Russia) and <META>
(Ukraine) are the objects of demonstration.

For creating the program-trainer from the internet there have been picked up web-
documents (500 Mb), which have scientific, educational, cognitive direction. These
documents were indexed by the employees of <META>, on their basis was organized
a full-text retrieval with the support of the boolean operators of <META>. The
program processes queries in Ukrainian, Russian, English. All the program is
contained on CD.

For use of the program “Poshuk-META” there was worked out a system of
laboratory works. Here are their themes and some tasks suggested for them.

Laboratory Work 1. Simple Retrieval.
Examples of retrieval tasks:

1. What is the aim of the project Space Interferometry mission?
2. What is the firm Bolt Beranek and Newman famous for?
3. What are the peculiarities of the car Honda Civic Hybrid?

 Study of Information Search Systems of the Internet 89

The results of the retrieval must be entered into the following table:

Number of
question

Formulation of
the query

URL-address of the site
where the answer is found

The answer to the
question

Drawing up of the main results of laboratory works is done in the form of tables,
which enable to summarize the things studied.

Laboratory Work 2. Boolean Operators of <META>.

Examples of retrieval tasks – to find documents, which contain certain key words,
using boolean operators:

1. To find documents containing the word school.
2. To find documents containing the words school and lyceum at the same time.
3. To find documents containing at least one of the words school or lyceum.
4. To find documents which contain the word lyceum but don’t contain the word school.

The results of the retrieval must be entered into the following table:

Number
of question

Formulation of the query Number of documents
found

The analysis of the results obtained enables to follow the change in the number of
the documents found with the usage of boolean operators.

Laboratory Work 3. Operators of Context Retrieval. Operators of Distance
Between Words.

Task 1. With the help of the program “Poshuk-META”, to find out who is the author
of the given quotations:

1. The best mistake is the one made while studying.
2. Mathematics should be studied at least for the fact that it puts mind in order.

Task 2. To enter the suggested queries:

1. physical culture, “physical culture”;
2. computer games, “computer games”.

To analyze the numbers of documents found.

Task 3.

1. To find documents containing the words internet, technology, access.
2. To find documents containing the words internet, technology, access. The text

fragment, where the key words occur, must not exceed 10 words.
3. To find documents containing the words internet, technology, access. The text

fragment, where the key words occur, must not exceed 5 words.
To analyze the numbers of documents found.

90 Y. Ramsky and O. Rezina

Laboratory Work 4. Operators Limiting the Area of Retrieval by Certain
Fields of Web-documents.

To find with the help of the program “Poshuk-META”:

1. documents the titles of which contain the word enactment;
2. documents the titles of chapters of which contain the word legislature;
3. documents the titles of chapters of which contain the word law.

Concluding tasks:

1. To check if there is information of your native town in the retrieval base of the
program “Poshuk-META”?

2. To check if there is information of the educational institution you’d like to study at
after leaving school in the retrieval base of the program “Poshuk-META”?

3. To check if there is information about your favorite singer (music group, actor,
football-player) in the retrieval base of the program “Poshuk-META”?

We suggest such time plan of work with this program: 2-3 lessons – for learning of
theoretical material, and 4-7 lessons – for carrying out of the laboratory works. A
number of lessons depends on the level of pupils’ efficiency (for example, demons
trations may be considered or not).

4 Results of the Pedagogical Experiment

The program “Poshuk-META” was introduced into the process of studies at some
secondary schools in Ukraine. The introduction was accompanied by questioning the
284 pupils took part in the experiment.

The study has shown that: the majority of the people questioned considers the
internet as an additional source of information (87%), but most respondents prefer
entertaining kinds of resources (84%). Among other materials, pupils mentioned
database of reports as absolute leaders in the list of interest. But electronic libraries
are used only by 8% of the respondents. An important result of the survey is the fact
that almost 98% of pupils think that the skills to realize information retrieval in the
internet will be necessary for them in future studies and professional activity.

The question of search systems the pupils use was important for carrying out the
experiment. Figure 2 shows the distribution of the rating of popularity of search
systems before and after learning the theme “Studying of Information Search Systems
of the internet”.

Before studying the theme 29% of the pupils questioned couldn’t name any
information search system. After studying only 2% of pupils were ignorant. It should
also be mentioned that after studying the theme the number of pupils who know and
use in their work not one but some search systems got increased. It is underlined by
the decrease of the percentage of popularity of Rambler and increase of the rating of
search systems studied in the theme: <META> – from 5 to 22%, Yahoo! – from 6 to
9%, Yandex – from 11 to 12%, Google – from 9 to 16%. The data given show that
most pupils prefer Russian search systems and Russian-language internet-resource.

The reasons for this are insufficient knowledge of English and underestimation of the
development of the Ukrainian-language content of the internet. The authors set before
them a task to attract pupils’ attention to the Ukrainian-language segment of the internet

 Study of Information Search Systems of the Internet 91

and to show the great potential of the English-language resource. As the data given
show they managed to do it to a certain extent.

Rambler Yandex UkrNet Google MailRu Yahoo Meta Aport Others I don't know

Before learning

27%

11%

2%

9%4%
6%

5%

4%

3%

29%

After learning

26%

12%

2%

16%

5%

9%

22%

4% 2%2%

Fig. 2. Distribution of the rating of popularity of search systems

Application of the computer program “Poshuk-META” in the teaching process was
effective and expedient.

5 Conclusion

The skills to appreciate information from the point of view of its authenticity, accuracy,
adequacy for the solution of the concrete information task are formed either in the
process of learning of internet search systems or in the process of the retrieval activity
under the teacher’s supervision. The skills to carry out information retrieval in the
internet intensify pupils’ cognitive activity, raise the level of their information culture.

References

1. . . : 6- . – .3. – .: , 1983. – 368 .
(Vygotsky L.S. Complete works: In 6 vol. – Vol.3. – Moscow: Pedagogics, 1983. – 368 p.).

2. . ., . ., . . :
// / – .:

- , 2000. – . 11-39. (Babaeva Y.D., Voiskounsky A.E., Smyslova O.V. The
internet: influence on a person // Humanitarian researches in the internet / Edited by A.E.
Voiskounsky. – Moscow: Mozhaisk-Terra, 2000. – pp. 11-39.).

3. Apec o a . ., . ., . .
// / – .:

- , 2000. - . 55-76. (Arestova O.N., Babanin L.N., Voiskounsky A.E.
Internet users’ motivation // Humanitarian researches in the internet / Edited by A.E.
Voiskounsky. – Moscow: Mozhaisk-Terra, 2000. – pp. 55-76.).

R.T. Mittermeir (Ed.): ISSEP 2005, LNCS 3422, p. 92, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Why Teach Introductory Computer Science?
Reconciling Diverse Goals and Expectations

Jürg Nievergelt

Informatik, ETH, CH-8092 Zürich, Switzerland
jn@inf.ethz.ch

Abstract. Introductory computing courses emerged during the sixties, under a
variety of designations such as "programming" or "automatic computing",
offered to university students in a broad range of disciplines. Whereas the
concept of a "first course in computer science" survived four decades, and even
moved to the high school level, its goals and contents have been changing
excessively, and have not as yet reached a stable state. We review the historical
development of typical introductory CS courses and analyze the forces that
shaped them. Inspired by more mature sciences, and the way their introductory
courses evolved over centuries to simultaneously meet distinct expectations, we
argue that an introductory CS course should address three goals: the
development of skills in programming some simple system, appreciation of
intellectual achievements, and the role of information technology in society.
Although this requirement may be considered overly ambitious, we aim to show
that it can be achieved if issues are presented in terms of well-chosen examples
rather than in a general, abstract manner.

R.T. Mittermeir (Ed.): ISSEP 2005, LNCS 3422, pp. 93–103, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Teaching: People to People – About People
A Plea for the Historic and Human View

Laszlo Böszörmenyi

University Klagenfurt, Austria
laszlo@itec.uni-klu.ac.at

https://www.ifi.uni-klu.ac.at/ITEC/Staff/Laszlo.Boszormenyi

Abstract. The importance of the historical and human aspects of the didactics
of informatics is discussed. The threefold human aspects of teaching: by, for
and about people is explored. Using the example of the notion of the procedure,
the potential of the historical discussion is investigated. A strengthening of the
historical and human view is required both in university research and in the
curricula of the informatics education at both secondary and university levels.

1 Introduction

Informatics is a complex science, with roots in formal mathematics, in cybernetics
and system sciences, in electrical engineering, in economical and social sciences, in
language theory, and so on. It has applications in virtually all areas of life. This fact
alone should be sufficient motivation for great care in the teaching of the subject - far
more care than, alas, is presently the norm.

Informatics education is dominated by the idea of teaching young people how to do
things: how to program, how to use various tools and environments, how to design.
The educational process is not designed to engender understanding. In a world where
more and more people use more and more “things” with less and less understanding
about how these “things” fit into an overall context, something more is needed in our
syllabuses.

It is here that informatics could enable a certain kind of learning which is not
possible with any other discipline: the building of a bridge between abstract and real.
One component of this bridge is the relationship between a technology and the people
and historical context which gave rise to that technology. Although perhaps an
oversimplification, we can say that the subject of any education is the human mind
and that any education can and should present people, humanity, and some part of the
real world. This is particularly important in today’s increasingly virtual world and
consequently, in the way we teach informatics.

Teaching itself is a process which involves people – teacher and pupil – and its
subject should include those people who contributed, changed the course of
development, have been instrumental in deciding what would be imposed upon the
given world, why, when and within which context. This would argue for, amongst
other things, the inclusion in any informatics syllabus of an historical and human

94 L. Böszörmenyi

reflection on informatics. This is of course not only a question of good will but also of
knowledge and of an understanding which is as yet immature. This is an exiting
research field, offering beautiful, stimulating and challenging research works.

2 Human Aspects of Informatics Education

2.1 The People We Teach

No one thinks – at least I hope so – that we teach gymnastics in our schools because
we find it especially important that our children learn to turn a perfect somersault. The
purpose of teaching gymnastics is much rather to keep children healthy and to help
them to find their delight in the proper movement of their bodies and in the discipline
that is necessary to do active sports. In the case of music, it might be an important
secondary aim that children learn a certain basic repertoire of well-known music
pieces, extracted from their own traditional music as well as from international
classical music. However, it is clear in this case as well, that the primary goal is to
develop a special capability – that of enjoying music – and thus again making the
children healthier, in this case especially in their souls. At a competition of school
choirs, we are not so much interested in the number or length of the pieces the
children sing, but rather in how clean they sing, how well they keep the rhythm, and
how much joy they find in their own music. Even though this capability may be very
different in different children, studies have shown that every child has a certain ability
for music and that this can be extensively developed. In an experiment in Hungary, a
few seemingly “untalented” children were integrated into special music classes – with
such success that after a few years these “untalented” children could no longer be
distinguished from the other, presumably talented, children.

The primary goal of good teaching is always the development of capabilities.
Moreover, I dare to add rather provocative statement that proper development of
capabilities makes children healthy, whereas the failure to develop and nourish hidden
capabilities leaves children sick and impoverished. This is precisely what makes
teaching so difficult, what makes it a real art: the teacher is supposed to recognize
hidden capabilities of the children.

In the case of science it seems to be less obvious that the primary goal of teaching
is less the transfer of a certain amount of knowledge than, as with to music or
gymnastics, the healthy development of the soul and the spirit. Ironically, even in the
domain of religion, a given church often finds it more important to teach specific
dogmas than to develop the religious talents of the children. Maybe this explains why
some children who initially relate to spiritual issues and ceremonies, after an exposure
to formal religious education in the school, become skeptical and mistrustful of
religion. And in mathematics we often teach theorems and lemmas and even their
proofs, but we rarely bother to discuss how it was that the author of the theorem ever
came to the given idea. This is absent not only in teaching; the scientific community
itself largely refuses to deal with the issue of how we come to our ideas. As Dijkstra
put it [1]:

 Teaching: People to People – About People 95

“Mathematical results are published quite openly and are taught quite explicitly;
but how mathematics is done remains largely hidden. To publish besides the results
the way (and the order!) in which they were reached, to mention blind alleys as well,
to mention whether the solution was found in three months or twenty minutes [...] all
this is regarded as ‘unscientific’, and therefore, ‘bad style’. (Just try to include such
remarks in your next publication: if the referees don’t object to them, the editor
will!)”.

In religion and in mathematics, historical and human aspects get short shrift: in
informatics these issues are completely ignored. We are preoccupied with rather
secondary didactical issues such as ‘should we start teaching programming with the
object-oriented approach or in a rather traditional way’ and similar matters. Although
these questions are interesting, they cannot be answered properly if we are not able to
ask and answer the primary question: What kinds of capabilities the teacher of
informatics be trying to find, develop and enhance? Other questions, such as those of
methods and of proper age, can hardly be discussed without the context which this
question pre-supposes.

Any discussion on didactics of informatics should give serious attention to this one
basic issue; otherwise, we run the risk of doing something that leaves our children
sick and impoverished rather than healthy and rich in spirit.

2.2 The People Who Teach

Even though no proof is necessary that not only children and scientists but also
teachers are human beings, it is more than worthwhile to say a few words about the
human side of teaching. E-learning is a very popular buzzword. The idea of using the
computer to help learning is almost as old as the computer itself. And many would
agree that the computer is an excellent educational aid. However, many proponents of
e-learning go much further. Even while emphasizing that they do not to want to
eliminate human instructors, they usually want to minimize the human teaching
resource as much as possible. Another new-old trend is to use modern media to create
“super courses”, the idea being that best experts of a certain field create super panels
of such a course, which becomes thus the “best possible course”. The sad point is that
people working on such courses are not only ignoring their own, maybe less well-
known, colleagues, but more importantly they ignore the most important aspect of
teaching: and this is the human communication between teacher and pupil. The role of
a teacher, especially in informatics, must go further than just transporting knowledge.
It is the teacher who carries the responsibility of providing context to the student, of
building bridges between the abstract and the real.

In a recently held workshop in Switzerland1, secondary school students were
invited to participate, alongside adult professionals who had a hobby-level interest in
the PC, in a robotics workshop. Teams were built with one adult and one or two
teenage ‘experts’; the latter were confident of their PC prowess and regarded the
adults as their students and protégées. At least initially! The children were indeed
speedy in building a robot and in handling the initial programming and setting their

1 Conducted and reported by Dr. Ann Dünki (Dünki & Co, Switzerland).

96 L. Böszörmenyi

robots on the floor. But then came some very interesting interactions, and actually the
most significant learning experience.

The robot’s wheels were driven by motors, and the programmer could vary the
power that was exerted on the wheel drive. There were no commands that said ‘turn
left’ or ‘turn right’. In one team, the youngsters wanted their robots to turn – but did
not know how to make this happen. One of the adults, an engineer by profession, told
them to apply different levels of power to the wheel sets on each side: more power on
the right, less on the left and the robot would turn left. Skeptical, they put the idea into
action – and the robot turned. In another team, the robot was to give an acoustic signal
for different situations and states. For this, a rudimentary set of sounds, or notes, were
available and could be varied easily. These were O.K. but not exciting, until one
woman, a music teacher, started writing out the notes for some well known melodies
and had the youngsters click these into the program. Their robot instantly became
much more human, and much more attractive.

All the students benefited, but the girls blossomed. Too often, informatics is a cold
study, leaving out any considerations of usefulness. Studies have shown that women,
of all ages, tend to use computers to do things whereas men tend to focus on how the
computer, or the program or the device, works. Women tend to reject this narrow
space and to respond to informatics when it can be related to broader aspects of their
lives.

In each team, the secondary-schoolers discovered relationships between their
abstract informatics and the real world; they saw that ‘old-timers’ somehow knew
what to do, even if they did not know how. This could never happen in an e-learning
mode, which by necessity is focused, convergent, limited in its breadth. Today we
worry that the informatics teachers don’t know enough informatics, that the children
figure out the ‘how-to’ faster than their adult teachers, and based on such
considerations we think that the teacher is expendable. But if the teacher goes, who
will teach our budding programmers what to do? Who will provide them with
context? Who will help them bridge their virtual toys back to a real world? Certainly
not a computer!

If we recognize that some teachers and parents cannot, or will not, meet up with
this massive challenge then it is good if we are alarmed, good if we feel called upon
to do something. But surely not in a pure instrumental manner! No automata can
provide the fuzziness, the breadth, the diversity and the divergence which is provided
by the complement of teachers and parents which are part of a healthy and humanistic
education. We can quote again Dijkstra [1]:

“We have – despite what psychologists, pedagogues and the like may think – not
the faintest idea how knowledge, insights and habits are transferred.”

If we don’t know how children learn, we had better provide them with a large
learning environment.

2.3 The People We Teach About

In literature we deal with the actual works of excellent authors. Even if the children
learn little about the life of Shakespeare or Goethe, by reading their works they gain a

 Teaching: People to People – About People 97

personal relation to them. After a while, a good student will never confuse Goethe
with Hölderlin, later on not even with Schiller. Similarly, a student who has
developed a musical talent will quickly be able to distinguish Bach from Mozart, and
later even from Händel. The pupils understand – even if the teacher does not say this
explicitly – that the oeuvre of Goethe would not exist without a certain person, called
Goethe. If he had not lived and worked then we just wouldn’t have Faust, no matter
how sad this would be.

In the case of natural sciences and mathematics – as partly touched already – this is
different. Even if children learn the names of the most well-known scientists, the
scientific facts are taught as if they were independent of the human spirits who
discovered them. It is of course obvious that the law of gravitation was in effect
before Newton defined it. However, people did not know this. The world has been
really changed by Newton’s formal observation. It is not as if, prior to Newton,
objects were flying above the ground; but Newtonian physics opened entirely new
ways of scientific thinking and technique. (By the way, it might have closed some
other ways as well, as Goethe worried; Goethe criticized Newton in a rather novel
way, in a debate which today is mostly forgotten.)

It may make little sense to philosophize about whether or not, had Newton never
existed, another person would have discovered the law of gravitation. The heart of
this consideration is that even “objective” science is made by subjects – there is no
other choice. This fact does not make science subjective; correct scientific results are
customarily proved by others. The important implication is that science is a creative
human act which occurs within a particular historical context and that the destiny of
science and the world depends very much upon the extent to which we realize this.
Some people assume that science is in its last phase and could soon run dry; that
man’s contributions have all been made. If we believe this, then we teach dogmas,
complex yet static ‘truths’; we teach how to do something but not what we should do,
or why; we teach young minds to move around in a complex structure, but give no
hint as to how such a complex structure could be created in the first place.

We teach the “best of breed” method as if this ‘best-ness’ were dictated by some
higher power, or perhaps grown in the field like a plant. And simply dropping a few
famous names does not change anything. Rather, the teaching of informatics should
include a strong emphasis on studying the road, the development of a certain idea, the
roles of certain people, the context and drivers that catapulted certain ideas into the
forefront (and left others by the wayside). Kristen Nygaard, the inventor of what we
call today object-orientation, wrote [5]:

“We teach students very little about the production of new knowledge, and many
believe that important new ideas somehow descend upon us through ‘inspiration’. It
is true that you may get euphoric when something suddenly is understood or created
in your mind. I remember very, very clearly the exact moment, around two o’clock in
the night at the desk in the bedroom at Nesodden, January 1967, when the concept of
‘inheritance’ (or classes and subclasses) had been created. I realized immediately
that this was the solution to a very important problem Ole-Johan Dahl and I had been
struggling with for months and weeks. I also realized that the solution introduced for
the first time in a programming language a strong and flexible version of the notions

98 L. Böszörmenyi

of generalization and specialization, with all the power embedded in those concepts.
And sure enough, inheritance has become a key concept in object oriented
programming, and thus in programming in general. But was it created at that desk, at
that moment? Yes and no. Yes, because the idea was not there before two o’clock. No,
because in my opinion it could not have been created without all the previous weeks,
with discussion after discussion producing only half-baked solutions. Through that
work Ole-Johan and I had built up: (1) a large amount of information useful in
blocking unpromising avenues, (2) understanding of what criteria a solution would
have to satisfy, (3) visualization of what the implementation problems would be, (4)
families of mental models that could be used for analysis of ideas.”

 Our pupils need to learn such things. I do not plead for replacing formal
definitions and programming practice with interesting stories about great computing
scientists. But I do plead that we provide an integrated view of the ideas, their time
and place in history, and the thinking processes pursued by the creators of these ideas.
Only this will lead to understanding. Friedrich Dürrenmatt, a well-known Swiss
author, wrote a wonderful satirical drama, The Physicists. The story takes place in a
madhouse and involves three physicists. One of them tells us:

“A machine only becomes useful when it has grown independent of the knowledge
that led to its discovery. Hence today any fool can make a light bulb glow – or an
atomic bomb explode.”

2.3.1 An Historical Side-Product
Interestingly, the historical approach has numerous didactical advantages. If we
introduce new ideas in their historical sequence, then we usually provide a stepping
stone towards understanding. It does not mean of course that we should follow the
steps of historical development in a dogmatic way – no approach is good enough to be
followed dogmatically. However, where we have difficulty in deciding upon a
workable sequence, it turns out that history can often advise. Maybe the historical
advice is: do not follow the historical time line in the given case, because it was too
complicated or too much influenced by unscientific – political, economic etc. –
factors. More often, the advice will be to introduce the new ideas in their historical
sequence.

Mathematics in general is taught in this way. Very roughly, we tend to start with
the Greek mathematics and come only later to the more modern issues. The
Lobachevsky-Bolyai geometry may include the Euclidian one, but – hopefully –
nobody thinks to start with the former in the secondary schools. Similarly, object-
oriented programming includes procedural programming, but we do not have to
conclude that therefore we have to start teaching programming with object-
orientation. Actually, we may assume that there must have been good reason that
object-orientation, although introduced by Nygaard and Dahl in the late sixties, took
roughly twenty years until it was generally understood by a broad audience. This
opens at least the question as to whether it is a didactically good idea to start with this
obviously not too simple approach. Or take the following example: Parallel
programming includes sequential programming, but it is very likely that is better to
start with sequential programming – as it happened indeed historically.

 Teaching: People to People – About People 99

3 The History of a Simple Notion: An Example

In the following section I give an example of how the historical view could work, and
of how exciting the story of a basic and well-known notion is. Obviously we cannot
recount such stories for every new concept or idea. But it would be advantageous if
the teachers possessed a wealth of such historical anecdotes from which to draw. The
historical view could be an essential part of the informatics didactics education at the
universities. In this example the center of interest is not a great computing scientist,
but a simple notion. This might appear as a contradiction to the thesis before that
teaching is always about people. However, the history of a notion is always a history
of the persons who worked on it – and this is exactly this interaction between subject
and object, between process and product of thinking that makes history so fascinating.

3.1 The Notion of the Procedure

Nowadays, many universities and schools start teaching programming with the
programming language Java. Java is certainly a clean and good language and even if
it has some weaknesses, it is by far the best among the "popular" programming
languages (such as Fortran, Cobol, C and C++). My basic criticism of using Java as a
first-course language is that a number of basic programming concepts are supported
only in an indirect way, and thus the language suggests a limited view of
programming (see more in [18]). The notion of a module arises only as a special case
of a class, the notion of a procedure as a special case of a method, and the notion of a
constant as a special case of a variable. This has a certain mathematical beauty, but
makes initial understanding difficult. As if my mother, instead of saying: "Please
bring a chair to the table", had said "please, send a message to an instance of the class
chair, which is a subclass of class furniture, to be brought to the very instance of the
class table, being also a subclass of class furniture." I doubt that I could have ever
learned to speak in this way.

A negative consequence of starting with Java can be – if the teacher follows too
much the notion suggested by the language – that the pupils do not even learn the
notion of a procedure, only that of a method. This would be, however, very
regrettable, which becomes obvious, if take a look at the history of both notions.

The procedure in informatics has two roots: the mathematical function and the
algorithm.

As computers were originally intended to be pure “computing” – actually
deciphering – machines (as opposed to “controlling” machines as we mostly use them
today), the need for expressing mathematical functions arose very early.
Unfortunately, the digital computer does not fit the needs of classical, continuous
functions very well. But, as history tells us, a way was found to describe such
functions as a sequence of operations: as an algorithm [15]. Even though in
introductory courses we love to teach the famous and ancient Euclidean algorithm to
compute the greatest common divisor, the algorithm represents a relatively new
(medieval) branch of mathematics, one which for many years was not particularly
well respected. The early algorithms addressed such issues as just doubling a number,

100 L. Böszörmenyi

and later on general multiplication and division. During a certain medieval period,
addition and subtraction are said to have been taught at German universities, but in
order to learn multiplication and division an Italian university had to be visited. The
real significance of algorithms was only recognized in the 20th century, with the age
of computers. Starting with the historic work of Alan Turing on computable numbers
[2], algorithms become the central issue in automated computing. A short definition
could be: An algorithm is a precise, unambiguous specification of a finite, effective
procedure. This is where the computer term procedure comes from. An effective
procedure consists of a sequence of individual steps, each describing a single
operation. See more e.g. in [15].

Procedures appeared from the very beginning in programming languages – already
in the first practicable higher level programming language, FORTRAN. Syntactically
the procedure is similar to a mathematical function: it has a name, and parameters in
parenthesis, such as sin(x). Moreover, and here we see a difference from the usual
mathematical view, it has a body (enclosed between { and } in the “C-family” and
between the keywords BEGIN and END in the “Algol-Pascal-family”). The
procedure body contains an algorithm that computes some desired result step-by-step.
The procedure is consequently a named algorithm, computing some function value, or
performing some desired side effect. These are the most essential characteristics of
the procedure.

Another aspect is that, in its relation to other programming language constructs, the
procedure can be treated as a constant. Once defined, it can be used as often as
required; each time called, it computes the function value by applying the same
algorithm to the arbitrary input parameters. Some languages, such as Mesa or
Modula-3 [15] express this aspect in their syntax as well. In Modula-3, e.g. CONST N
= 3 means that the value 3 is assigned to the name N for the entire scope of N.
Similarly, in the declaration PROCEDURE F(x: INTEGER): INTEGER =
BEGIN … END F; the “=” sign indicates that the algorithm between BEGIN and
END is permanently assigned to the function name F, wherever F is known.

In 1971 Niklaus Wirth introduced the Pascal programming language [3], with a
concise type system. Its predecessor, the Algol-60 language [4], contained only
predefined types, with the one exception being the array construction, which could
be regarded as a type constructor (the Algol report does not use this notion yet).
Pascal goes much further, it introduces a number of type constructors and, and this is
an integral part of the whole sense of Pascal, it allows the definition of procedure
types. A procedure type declaration specifies only the head of the procedure.
Variables of a certain procedure type can be declared, and actual procedure values
(constants of further variables) can be assigned at run-time. This is what is well-
known as dynamic binding of procedures. E.g. the call on f(x) may mean either sin(x)
or cos(x), depending on the question if an assignment f:= sin resp. f:= cos was
executed before. Note that, no matter how important this issue is, it has a secondary
importance in understanding what a procedure is.

More or less parallel to the development of Pascal, Kristen Nygaard and Ole-Johan
Dahl developed the programming language Simula-67 (as a successor of Simula I, a
successor itself of Algol 60); this was the first object oriented language. Indeed,

 Teaching: People to People – About People 101

Simula-67 contained all essential features of present object oriented languages, except
one feature: that of encapsulation also known as information hiding. This was not
interesting for Nygaard and Dahl at that time: the idea of classes and inheritance was
born in searching for useful notions for modeling (simulating) real life objects and not
in searching for solutions to the software crisis. Even though Dahl worked a lot on the
theory of structured programming [7], the idea of information hiding or encapsulation
was developed later by David Parnas – and then enjoyed a hearty initial reaction of
total rejection [8].

The essential idea of object orientation is that simulated objects are described with
the help of a hierarchical classification scheme. General features are described in
classes near to the root of the hierarchy. The more specific an issue is, the further it is
from the root. E.g. a convertible could be described as a special case of an
automobile, which again could be described as a special case of a vehicle etc.
Subclasses inherit data and behavior of the super-classes and can extend, and even to
a certain extent modify them. The idea was really revolutionary at the time of its birth,
and the authors, Nygaard and Dahl, were aware of the significance of the idea of
inheritance, or “prefixing” as it was originally called, even if they could not begin to
imagine the enormous influence this idea would later have on a vast number of
subsequent programming languages. As Nygaard put it [9]:

“Usually a new idea was subjected to rather violent attacks in order to test its
strength. The prefix idea was the only exception. We immediately realized that we
now had the necessary foundation for a completely new language approach …” .

Simula-67 allows one to declare a procedure as virtual. This is a restricted form of
dynamic binding. In Pascal, the dynamic assignment of procedure values to procedure
variables is fully under the control of the programmer, which is flexible, but error-
prone. Simula-67 and the following legion of object oriented languages prefer this
restricted dynamic binding, which is nowadays well-known under the name method
overriding. Dahl describes the original concept in the following way [10]:

“If a procedure P is specified as virtual in a class C the binding scheme is semi-
dynamic. Any call for P occurring in C or in any subclass of C will bind to that
declaration of P which occurs at the innermost prefix level of the actual object
containing such a declaration (and similarly for remote accesses). Thus, the body of
the procedure P may, at the prefix level of C, be postponed to occur in any subclass of
C. It may even be replaced by more appropriate ones in further subclasses. This
binding scheme is dynamic in the sense that it depends on the class membership of the
actual object. But there is nevertheless a degree of compiler control; the access can
be implemented as indirect through a table produced by the compiler for C and for
each of its subclasses.”

An interesting extension of this story is that Niklaus Wirth (who, incidentally,
resisted the idea of object orientation for quite some time) made an effort in the
middle of the eighties to find the absolute minimal programming language support for
object orientation. In the Oberon language [11] he implemented sub-classing with the
help of so-called extendable records. Methods and method overriding were simply
implemented by record fields of type procedure. This worked of course, but was
error-prone, because a programmer might have assigned a wrong procedure – or even
none! – to a procedure-type field. Therefore, he and Mössenböck later on extended

102 L. Böszörmenyi

the language by type-bound procedures (i.e. methods) in Oberon-2 [12, 13].
Nevertheless, we can learn much from the minimalist approach of Oberon. The
following anecdote, recorded by Stephan Gehring, may help to understand this [14]:

“In a small lecture hall […] late 1988 […] Niklaus Wirth […] explained that not
only had they developed a new computer, but also an operating system and a new
programming language named Oberon. He placed a slide on Oberon onto the slide
projector, exposed the top four lines and said: «These are the features that we added
to Modula-2». He then uncovered the rest of the slide, about a dozen more lines, and
said with a triumphant smile: «And these are the features that we removed from
Modula-2! »”

3.2 Short Moral of the Long Story

Virtual procedures or methods, procedure types and variables, issues of method
overriding and method redefinition [15] etc. are all issues pertaining to the static,
dynamic, or semi-dynamic (as Dahl called it) binding of procedure values (i.e. code)
to variables denoting an action. No matter how interesting these issues are, it is
probably wiser to concentrate first on the essence of the procedure, and come only
later to the exciting story of binding.

The second and maybe more important lesson we can learn from this story is that
one single notion can lead us into unexpected new corridors of informatics. Actually,
I had originally planned to give several such examples and was then surprised to see
how long my story of a single notion has become. And it could be of course much
longer.

4 Summary and Further Work

Teaching informatics is teaching a way of thinking and understanding. I have tried to
show that such education must address much more than digital dexterity skills. In an
increasingly abstract world, I have contended that informatics education could be the
vehicle for providing a bridge to reality, a context for understanding; and that the
historical aspects of informatics could be an essential part of such an educational
process. This paper is at most a first attempt in this direction. It rather formulates the
questions than answering them. Most of the work is still to be done.

I have argued that universities which address the didactics of informatics should
pay more attention to the historical and human issues as is currently the case.
Moreover, they should devote more research effort to a most interesting and central
issue: Why do we teach informatics, what capabilities do we wish to awake in the
pupil? The leitmotif for such research could be, and this should not surprise us:

Broad education is the basis of any good teaching, including

the teaching of informatics.

 Teaching: People to People – About People 103

Acknowledgements

My thank goes to Dr. Ann Dünki for her encouragement, for the careful reading, and
for her invaluable support by critical remarks and excellent extensions.

References

1. Dijkstra, E.W.: Homo Cogitans, Personal Note EWD533, November 1975
2. Turing, Alain: On computable numbers with an application to the Entscheidunsproblem. In

London Math. Soc., pages 230–265, 1936.
3. Wirth, Niklaus: The programming language Pascal. Acta Informatica, 1(1):35–63, 1971.
4. Naur, P (as editor, coauthors: J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy,

A. J. Perlis, H, Rutishauser, K. Samelson, B. Vauquois, J. H. Wegstein, A. van
Wijngaarden, M. Woodger): Report on the algorithmic language ALGOL 60, 40 p.,
Regnecentralen 1960; Acta Polytech. Scand. 284; Numerische Mathematik 2 (1960),
pp.106-136; Comm. ACM 3, 6 (June 1960), pp. 299-314.

5. Nygaard, Kristen: “Those Were the Days”? or “Heroic Times Are Here Again”?, The
Scandinavian Journal of Information Systems, 8(2), 1996

6. Dijkstra, Edsger Wybe: Craftsman or Scientist?, Personal note EWD480, 1975 (The
manuscript was published as pages 104-109 of Edsger Wybe Dijkstra, Selected Writings
on Computing: A Personal Perspective, Springer Verlag, New York, 1982)

7. Dahl, Ole-Johan; Dijkstra, Edsger Wybe; Hoare, C. A. R.: Structured Programming,
Academic Press, 1972

8. Parnas, David: The secret history of information hiding, In Software pioneers:
contributions to software engineering, Ed. Manfred Broy and Ernst Denert, Springer-
Verlag, 2002

9. Nygaard, Kristen and Dahl, Ole-Johan: The Development of the SIMULA Languages,
ACM SIGPLAN Notices, 13(6), pp. 245-272, 1978

10. Dahl, Ole-Johan: The Birth of Object Orientation: the Simula Languages, June 2001. In
From Object-Orientation to Formal Methods, Essays in Memory of Ole-Johan Dahl,
Series: Lecture Notes in Computer Science , Vol. 2635 Owe, Olaf; Krogdahl, Stein;
Lyche, Tom (Eds.) 2004, X, 389 p.

11. Wirth, N: The Programming Language Oberon. Software – Practice and Experience 18(7):
671-690, 1985.

12. Mössenböck, H. und Wirth, N: The Programming Language Oberon-2, ETH Zürich,
Institut für Computersysteme, Oktober 1993.

13. Mössenböck, H.: Objektorientierte Programmierung in Oberon-2, Springer-Verlag, Berlin,
1993.

14. Gehring, Stephan W.: Learning the Value of Simplicity, In The School of Niklaus Wirth,
Böszörmenyi, Laszlo; Gutknecht, Jürg; Pomberger, Gustav (eds.) dpunkt.verlag, 2000.

15. Böszörmenyi, Laszlo; Weich, Carsten: Programming in Modula-3 - An Introduction in
Programming with Style Springer Verlag, Heidelberg 1996.

16. Böszörmenyi, Laszlo: Informatik in der Schule (in German), In: Erziehungskunst, Februar
1997.

17. Böszörmenyi, Laszlo; Podlipnig, Stefan: People Behind Informatics – In memory of Ole-
Johan Dahl, Edsger W. Dijsktra and Kristen Nygaard, Klagenfurt, 2003.

18. Böszörmenyi, Laszlo: Why Java is not my favorite first-course language?
Software - Concepts & Tools (1998) 19: 141-145

R.T. Mittermeir (Ed.): ISSEP 2005, LNCS 3422, pp. 104 – 115, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Preparatory Knowledge: Propaedeutic in Informatics

Susanne Loidl1, Jörg Mühlbacher1, and Helmut Schauer2

1 Institute for Information Processing and Microprocessor Technology (FIM),
Johannes Kepler University Linz, Altenbergerstr. 69, A-4040 Linz

{loidl, muehlbacher}@fim.uni.linz.ac.at
2 Department of Informatics (IFI), University Zurich,

Winterthurerstr. 190, CH-8057 Zurich
schauer@ifi.unizh.ch

Abstract. In the recent past a number of concepts have achieved prominence in
the quest for basic principles of informatics with long-term validity. Particularly
at schools providing an all-round education, it makes sense – and is necessary –
to concentrate on basic concepts. The fact is that strictly product-related
knowledge is inadequate, and in some cases already obsolete before pupils
leave school. A more systematic grasp of these concepts and their interrelations
is therefore not just desirable, but essential. Some of these “unchanging values”
in informatics are briefly introduced here, and it is shown how they can be, first,
made more comprehensible by means of applets, and second, put to work in
teaching right now, in conjunction with eLearning.

1 Introduction

In the recent past a number of concepts have achieved prominence in the quest for
basic principles of informatics with long-term validity – and these should be
playing an increasing part in the curricula of schools providing an all-round
education; the concepts in question are briefly introduced and discussed here (this
paper is a shortened version of [6]; see also [3]). Examples of such concepts are:
abstraction, particularly in connexion with modelling and recursion, differing forms
of notation (with a clear distinction between syntactic and semantic aspects), or
distinctions between static/dynamic and local/global aspects also appear important.
Again, special properties of relations, such as transitivity, symmetry or reflexivity,
and (say) the difference between identity and equivalence, are of primary
significance in informatics. The examples selected and given below (see also [10]
and [12]) are intended to show how and (especially) which concepts can be
conveyed.

The issue of how far procedural or object-oriented programming should be
included in formal education is not discussed here. While programming is an
excellent training in algorithmic thinking, it does require a certain amount of practice.
The latter counts as a skill, and its status and scope are bound to depend on the
individual type of school and the educational goals the school pursues.

 Preparatory Knowledge: Propaedeutic in Informatics 105

2 Examples of Basic Concepts in Informatics

Let us consider a typical task in information processing: determining the mass x of an
unknown object by means of a balance. To analyse this task, we start by constructing
a model [2] (Fig.2).

2.1 Modelling, Abstraction, States

Modelling involves abstraction: certain aspects of the task are deemed to be relevant,
and are taken into account in the model, while other aspects are treated as irrelevant
and thus ignored. What is deemed to be relevant or irrelevant is of fundamental
importance, and depends on the purpose of modelling. Here we ignore the size, shape
and colour of the unknown object, for instance, and consider the balance only at rest,
with three possible results of weighing: the mass of the object in the left-hand pan can
be less than, equal to or greater than the sum of the masses of all the weights in the
right-hand pan. This last point illustrates the distinction between static and dynamic
aspects of modelling and the concept of a state which a system can be in. A system of
this kind, that can be in various defined states and that switches from one to another
as a result of defined events, is called an automaton. If every subsequent state is
uniquely determined by the current state and the event in question, the automaton is
deterministic and its behaviour can be forecast. Gambling machines are typically
non-deterministic. If we consider placing a weight in a pan as an event, our model of
a balance is then a deterministic automaton. If we permit the removal of weights
previously placed, a change of state can be reversed. Changes of state can thus be
reversible or irreversible. In the case of computer applications, any action that can
be reversed by means of undo is an example of a reversible change of state.

A further important aspect is the accuracy of a weighing procedure. For instance,
we can decide in favour of a discrete model with integer weights, with which the mass
of the unknown object can be ascertained only as a whole number, while leaving it
open whether the weights are specified in grams, kilograms, etc. With the distinction
between discretely and continuously variable values we have another concept basic
to informatics.

Another key aspect of modelling is deciding what is rigid about the model and
what can be altered. For example, a given set of weights could be prescribed, or the
choice of weights could be left open. Again, the balance beam could be supported at
its midpoint in all cases, or the point of support could be shiftable, to permit a free
choice of leverage. Which the parameters of a model are, and which quantities are
treated as constant and which as variable, are thus also fundamental issues. Alan
Perlis [9] put this very neatly 30 years ago in the remark “One man’s constant is
another man’s variable”.

One special aim in the balance example, going beyond modelling as a function of
the level of abstraction selected, is a discussion about the purpose of the resulting
model. For mathematicians the equation x*a = g*b suffices, where g is the weight
used to determine x and a and b are the beam lengths. This presupposes that the aim is
to model a mechanical balance, for a weighing device in which (say) the extension of
a spring as a function of the weight applied is used to measure mass involves a
different equation.

106 S. Loidl, J. Mühlbacher, and H. Schauer

Informatics specialists using integer weights (here their order of magnitude plays a
part) need to take into account both the resulting “inaccuracy u” of the balance and
the process of the balance coming to rest; in the model they will therefore start from
an inequation |x*a - g*b| < u, or regard the equation as satisfied once the angle α is
less than an ε adapted to the purpose of weighing. So a discussion of the balance
example can well lead on in the classroom to a discussion of the difference between
formal, mathematical modelling and the sort of modelling typical of the engineering
sciences. Interpreting the findings obtained from a model will also need discussion.

The following key properties of models can thus be discussed: Completeness (in
terms of the purpose intended), freedom from contradictions (consistency), fidelity to
the original and the associated interpretation of the data provided by the model.

The metamodel for discussing modelling is shown in Fig 1.

Idea, concept

ORIGINAL

Model

Modelling
Interpretation

Real world

Fig. 1. Metamodel of the modelling process

On top of this, for informatics specialists the weighing procedure leads directly to
the concept of an algorithm.

2.2 The Concept of an Algorithm

No doubt about it, the concept of an algorithm is fundamental to training in
informatics. As indicated initially, we shall not comment on programming in a
programming language, although programming is naturally the special procedure for
informatics specialists to formulate algorithms. At this point we are more concerned
with the concept of an algorithm independently of the software context.

Let us consider the sequence of actions that are performed when an object is
weighed by means of a balance or a model that mirrors its behaviour. For instance, we
can place weights in the pan or remove them completely at random, until the balance
is in equilibrium. Apart from the fact that this procedure takes time, it comes to an
end only if the mass x of the object can be represented as the sum of a subset of the
available weights.

So let us search for a directed procedure that determines the mass x of the object in
as small a number of weighing operations as possible. This leads us to the concept of
an algorithm. If the individual steps are to be performed in a particular order, the
algorithm is called sequential. Algorithms in which the individual steps can be

 Preparatory Knowledge: Propaedeutic in Informatics 107

performed in any order, or even simultaneously, are called parallel. For example,
several weights can be placed or removed simultaneously, and thus parallel; on the
other hand the individual weighing operations are performed sequentially. The
distinction between sequential and parallel procedures is also of great importance in
informatics – we need only think of data transfer via serial or parallel interfaces, say.

As formulated here, the examples belong to the class of iterative algorithms.
Going further, we come to the issue of recursion. Often a recursive approach yields a
simple solution to a problem. “Recursive” means “with self-reference”. Recursion
occurs whenever something refers to itself.

Traditional examples of recursion, such as the Fibonacci series: Fib(n) = Fib (n-1)+
Fib(n-2) with Fib(1) = Fib(2) = 1 or n factorial: n! = n*(n-1)! with n>1 and 1! =1, are
to be found both in informatics teaching and in mathematics teaching.

However, we are more concerned with recursive thinking, the recursive description
of observations and the use of recursion to solve problems. Here comprehensible,
concrete tasks and examples adapted to the year/level in question must be found.

An initial, straightforward example of recursion from everyday life is a tree. Let us
imagine a cross-section through a tree-trunk and examine the growth rings that have
formed around the central pith. A tree one year old has one annual ring surrounding
the pith. In the general case the cross-section of a tree-trunk consists of the outermost
ring surrounding the cross-section as it was one year earlier. And this recursive
perspective continues until the “abort criterion” is satisfied, when the pith is reached!

The following example does cause a certain surprise in class (in our experience),
when one explains a succinct way of describing a queue of people waiting ahead of a
cash desk in a supermarket: a queue Q of persons P is either empty (an empty queue)
or consists of a person P followed by a queue Q. If one points out at the same time
that one ca abstract from a “person P” to any object, and introduces a non-existent
“empty” object ε in analogy to the empty set, one gets the pure concept of a queue!

By comparison, describing a queue iteratively takes much more doing. It depends
on the educational goals the school in question pursues, and on the year/level in
question, whether one then decides to tackle the next step towards EBNF (Extended
Backus Naur Form) by means of the following example, which is also excellent
training in thinking: how do we describe how a train is put together?

To put it simply, a train consists of an engine E at the head, followed by at least
one coach C. The recursive description focuses on "how is a train put together". We
can write: train = ET and T = C | CT. For practice one can then derive train = ECC,
train = ECCC, train = ECCT etc. and recall the situation with the queue for
comparison: Q= ε|P|PQ.

2.3 Time Complexity

Let us try to estimate the effort involved in our weighing algorithm. With a purely
trial-and-error approach the mean number of weighing operations is proportional to
the number of all possible subsets of the weights. If the number of weights is n, the
number of all subsets of these weights is equal to 2n, so the mean effort increases
exponentially with n. The reason for this unnecessarily great effort is that with a
purely trial-and-error approach weights are selected for the next operation
independently of the unsuccessful previous tries. No use is made of the information

108 S. Loidl, J. Mühlbacher, and H. Schauer

whether the object was lighter or heavier than the sum of the weights selected for
these tries! Actually, the largest weight value tested that was lighter than x forms the
lower limit, and the smallest weight value tested that was larger than x forms the
upper limit, of an interval that the value x to be found must lie within. The strategy
behind an optimized weighing algorithm can only be to halve this interval at each
weighing operation, by comparing x with the arithmetical mean of the interval limits.
If x is lighter than this mean, the latter becomes the new upper limit; if x is heavier
than this mean, the latter becomes the new lower limit. x has been found when it
equals the mean or the interval has been reduced to 1. Since each weight is placed
only once, the effort (number of operations required) is in linear proportion to n. This
optimized algorithm is thus much more efficient than trial and error. In connexion
with the time needed to perform an algorithm one speaks of time complexity, a
fundamental concept in informatics. Other key issues in connexion with the concept
of an algorithm include the question of whether an algorithm holds, whether a
problem is decidable, computable, etc. We return to these questions later.

2.4 Number Systems, Coding

Since the number of weighing operations required is a function of the number n of
weights, the question arises of whether the number of weights can be reduced without
restricting the range of weight values that these can represent. With a conventional set
of weights with the eight values 1, 1, 2, 5, 10, 10, 20, 50 for instance, all integer
weight values within the interval 0 to 99 can be represented. This choice of weights is

Fig. 2. Picture of a model of a mechanical balance, as an example of modelling and binary
coding (with the weights 32, 16, 8,4,2)

obviously inspired by the decimal number system. Interestingly, the sequence 1, 2, 5,
10, 20, etc. has the original property that for each pair of numbers in sequence the first
value is the integer half of the second value (the sequence 1, 2, 5, 10, 20, etc.
corresponds to the values (rounded to integers) in the European Standard sequence
E3, which assigns three logarithmically roughly equidistant values to each decade).

 Preparatory Knowledge: Propaedeutic in Informatics 109

The sequence of powers of 2 1, 2, 4, 8, 16, 32, 64, etc. also adheres to this principle;
with the corresponding binary set of weights with the seven values 1, 2, 4, 8, 16, 32,
64 all integer weight values within the interval 0 to 127 can be represented. Although
a binary set of weights of this kind is not a standard product, it is superior to the
decimal set of weights.

Fig. 2 shows the result of a weighing operation using a binary set of weights. The
weights placed in the pan correspond exactly to the positions of the ones in the binary
coding of x.

2.5 Decidability, Computability, NP Complete Problems

In connexion with questions such as whether an algorithm holds, i.e. whether we are
dealing with a decidable, computable problem, a tractable problem etc., the favourite
objection is that such questions are far too complex, go beyond schools’ educational
targets and should be reserved for the sphere of tertiary education. In this section we
want to show that simple examples that can be formulated intuitively really exist and
can be used to introduce these topics in informatics in secondary schools.

At the same time there must be a strict requirement that informatics should be
taught only by people with a relevant qualification! We accordingly take it that the
discussed topics are already known, and concentrate on the issue of satisfactory
didactic treatment.

We start by considering whether everything that occurs to one can be subjected to
algorithmic treatment, and thus ultimately to programming.

The halting problem is a good example of a problem that is easy to grasp: can one
define an algorithm that decides, for any algorithm whatever (!), whether it completes
after a finite number of steps or not? Depending on what the pupils already know, this
problem is fairly easy to describe verbally: imagine someone sitting at a PC, waiting
some time for results and becoming increasingly worried about whether the program
currently running just takes a considerable time or whether a bug has crept in and the
best thing would be to abort it. This leads to the wish for a test program that can
decide in advance whether the program in question will ever complete and provide
results. One can then point out that theoretical informatics delivers the conclusion
(which pupils might not have expected) that tasks do exist that are not computable,
i.e. not programmable, and that the halting problem is an example of such a task. At
the same time the pupils are confronted with a good reason why informatics
investigates its own basis in theoretical informatics.

At the next stage it can be assumed that from now on only computable problems
will be examined in detail. Here they are very simple, instantly comprehensible tasks
such as sorting a finite set of numbers etc. At the same time the requirement should be
to perform such tasks in the most efficient way possible, i.e. to search for good
algorithms – “good” can be defined as minimizing run time. To illustrate what counts
as a good or a less good algorithm, let us take n = 7 integers, order them graphically,
first as a linear list and then a binary search tree, and now ask how many comparisons
are needed to find out whether an integer x is not among the 7 numbers selected; this
provides a preliminary justification for the subject “Algorithms and data structures”.
If a link to mathematics is to be developed here and the pupils have the necessary
basic knowledge, the binary search resulting from this example leads to logarithms to

110 S. Loidl, J. Mühlbacher, and H. Schauer

the base 2, log2 n. The next question is how the number of comparisons increases if
one selects 2n rather than n numbers.

At the next stage a particularly impressive example is used to make it clear that
time-consuming problems cannot be solved simply by technical progress – acquiring
a faster computer. To illustrate this phenomenon, the puzzle problem discussed in
detail below can be presented; it is easy to explain:

We consider a very small jigsaw puzzle, measuring 5 by 5 pieces. All the pieces
are different, but should yield the picture intended, if they are put together correctly.

First of all one must ask the didactically central question whether the problem is
soluble at all (computable), i.e. whether it can be solved with the 25 pieces given. If
we recall that children can perform this task before they start going to school, there
does not seem to be much of a problem. However, it is clear that a computer will need
an algorithm: before tackling the puzzle problem, we must find out whether it is
computable! A simple brute-force algorithm supplies a positive answer:

• Number the pieces from 1 to 25.
• Arrange all pieces in a sequence. We thus obtain all n! sequences of the n (= 25)

numbers.
• For each resulting sequence, check whether it solves the puzzle.

In the worst case it takes n! tries to find the correct sequence!
At this point, faithful to the principle of interdisciplinary teaching, we can

introduce the concept of permutation, and use a few examples to derive the number n!
of permutations of n numbers, or even repeat the definition n! = n(n-1)! (with a glance
back to recursion).

If we omit rotations – determining the number of possibilities could get us into
didactic difficulties –and use a computer performing 1 billion checks per second, we
get the following figures: Placing: 25! = 1,55*10^25 seconds, i.e. ~ 4,9*10^11 years.
That is still 15 times as long as the time that has elapsed since the original big bang! It
is didactically effective to get the students to give an intuitive estimate of the time
required first.

Two lessons emerge from this: acquiring a faster computer does not help at all, and
we need to start hunting for a better (good) algorithm.

Fig. 3. Puzzle problem simplified with 2x2 pieces

 Preparatory Knowledge: Propaedeutic in Informatics 111

At this point it is up to the teacher to convince the pupils that procedures for
solving the puzzle problem within a realistic length of computing time are known, e.g.
by using structural data about the edges of the individual pieces to get to a solution.

However, a discussion about this leads straight to the issue of NP complete
problems, though we must be aware that this topic can be mentioned only verbally
and in simplified form. But even at this level it is perfectly suitable for awakening
pupils’ curiosity, and thus getting them interested in the science of informatics.

The following selection of examples has worked well in practice: one starts with
the Travelling-Salesman-Problem (visiting n towns without visiting any of them more
than once), which can be explained graphically without difficulty. It is also easy to
show that this problem is computable: the approach is to list all permutations of the n
towns and to check for each permutation whether it satisfies the criterion for a round
trip. In secondary education one then has no choice but to point out that, interestingly
enough, (1) for large n no method of solving the problem in a realistic length of time
has yet been found, and (2) theoretical informatics provides the following remarkable
statements: (a) there is reason to suspect that no algorithm exists to solve the problem,
and (b) according to the state of science it will never be possible to prove that the
suspicion voiced in (a) is correct.

The next step is to remind the pupils that, if their school has a large number of
classes and teachers, the timetable they get at the beginning of the school year is
unlikely to be definitive – instead, it will be a compromise (method of successive
approximation), since the task to be performed is defined as follows: obviously no
teacher can teach in two classes simultaneously, but he or she should a continuous
succession of lessons with no gaps, and the sequence of subjects per schoolday should
make sense for each class.

The remarkable thing is that the same suppositions apply in the case of this so-
called timetable problem as with the Travelling-Salesman-Problem: if n (the number
of teachers) and m (the number of classes) are very large, trial and error will not lead
to a satisfactory result. Oddly enough, though, if a good (polynomial time bounded)
solution were found, it would follow that a good solution in the same sense existed for
the timetable problem, and it would make sense to go on hunting for one. The
converse also applies: if a proof of statement (a) were found for the Traveling-
Salesman-Problem, we would know that no solution existed for the timetable
problem, either. The argument also applies in the other direction: if it can be proved
that no tractable solution exists for the timetable problem, then none exists for the
Travelling-Salesman-Problem.

The following selection of examples has worked extremely well in the classroom:
one presents the timetable problem verbally only, and then goes on to the so-called
clique problem as a further instance of an NP complete problem. It is very easy to
illustrate this by drawing a graph [11] with 5 nodes and 8 edges (Fig 4), with no need
for previous knowledge in mathematics.

As with the Traveling-Salesman-Problem, there is an opportunity here to return to
the concept of a model: here the nodes correspond to persons, and an edge is drawn if
a special relationship exists between two persons. A subset of nodes and edges is
called a clique if an edge exists between every pair of nodes.

112 S. Loidl, J. Mühlbacher, and H. Schauer

 a b

d c

e

Fig. 4. Graph with 5 nodes and a clique of four defined by a, b, c, d

In our experience classwork is enhanced by a discussion of this issue, together with
a reference to the fact that more than a thousand problems equivalent to the two
presented here are known [1]. Here Informatics teachers are confronted with the same
didactic problems as their colleagues in the natural sciences, who are obliged to draw
attention in their teaching to any number of unresolved issues. In our view it is
didactically worthwhile to point out the limits of a discipline without explaining the
underlying formal basic principles.

As a special aid in connexion with this topic, a study guide has been added to the
eLearning version of the preparatory course in informatics [10]– see section 3.2.

As regards, first, the exact definition of “tractable” by means of “big” O notation
with a polynomial to describe run-time complexity and, second, the definition of
“computable, but intractable”, we advise against tackling this in secondary education.
Even if familiarity with polynomials can be assumed, the definition of O(f(n)) for
time complexity is hard for pupils to grasp and should not be thrust upon them.

2.6 Information, Language, Alphabet

The representation of information by a code, and the distinction between the form
of this representation and its significance, i.e. between syntax and semantics, are
further basic concepts in informatics and imply the definition of information in
contrast to data and knowledge. The concept of language is closely linked to syntax
and semantics; this includes programming languages, since syntax is a set of rules for
constructing words, plus the rule that only words constructed in this way belong to the
language. Semantics defines the meaning of these words in a language.

Then again, language involves the concept of an alphabet, since a language
consists of a set of words over the alphabet, while an alphabet is defined as a set of
symbols drawn from a supply of signs.

While presenting the concept of the syntax of a language, one is bound to raise the
issue of how to describe syntax. This leads us on to “metalanguage”, and we recall
that when we were discussing models we referred to a metamodel, as diagrammed in
Fig. 1. And we also briefly referred, in our treatment of recursion, to EBNF, a concept
of a metalanguage to describe syntax.

It seems clear, though, that while there are no didactic snags involved in presenting
the concepts of an alphabet, a code and formal languages in secondary education,
given their direct relevance to practical work (programming languages), one runs up
against the limits of what is feasible in the case of metalanguages such as EBNF. If
one decides to avoid programming languages altogether as instances of formal
languages at this stage, possible alternatives are: the rules for writing syntactically

 Preparatory Knowledge: Propaedeutic in Informatics 113

correct mathematical formulae or musical notation. The latter is particularly suitable,
inasmuch as it includes semantic annotations (volume: piano, forte; tempo: presto,
etc.)!

2.7 Relations

Of course a classification of data with respect to their properties, their structure and
their relations belongs to the concepts of long-term validity with which properties
such as symmetry or equivalence, and thus equivalence classes, can be explained.

The list of concepts given here is purely exemplary and anything but exhaustive; it
is meant to encourage further discussion. However, our aim is to show that in the
context of all-round education informatics teaching must be concerned not with
technological artefacts, but with concepts of long-term validity, and can at the same
time be organized to link up with other subjects (here with mathematics); this also
applies in reverse.

3 Ways of Putting the New Media to Work

From the various figures it is already clear to what extent the new media and
eLearning can help to represent these “unchanging values” in informatics more
effectively. At FIM and also at IFI eLearning has been an important issue for years
now; at FIM the first steps in this direction were taken 20 years ago, when CBT
(Computer-Based Training) courses (concerned with programming, operating systems
etc.) were developed and offered as an enhancement of traditional teaching.

3.1 What Has Been Developed

From the focus on eLearning several tools have taken shape; these have been in use in
teaching for some years now. In particular, FIM has developed the
WeLearn.Framework, which is constantly being enlarged in scope; it currently
comprises the components, such as an open, easy-to-use eLearning environment
(WeLearn) of universal applicability; didactic models for use at universities, in
schools and in adult education; various tools and courses (in particular to implement
our ideas about introducing students to informatics) to enhance teaching in the final
years of secondary education.

Here we draw attention to [5],[8] and [10]. One study [7] has investigated how well
the learning material and the learning environment provided were accepted.

3.2 “Propaedeutic in Informatics”

A key element in realizing our ideas about introducing informatics consists of
specially prepared teaching and learning material available to students both via the
WeLearn platform and on CD. “Propaedeutic in Informatics” is an introductory
course for informatics students held by FIM at the JKU Linz. It regularly takes place
in the winter semester; and involves blended learning [4] as a didactic model: here
lectures and phases of self-organized study alternate. In the summer semester the
subject matter is treated again, for the benefit of working students, other latecomers

114 S. Loidl, J. Mühlbacher, and H. Schauer

and interested pupils in the final years of secondary education (see below); in this
case, though, the course consists of a kick-off meeting followed exclusively by
distance learning.

This course is provided not only at the JKU, but also – with a different setting – at
the University of Zurich, where students of business informatics are familiarized with
the topics discussed here, using the same electronic material. Parts of it have also
been successfully incorporated into an academically oriented course at the FH
Vorarlberg.

The electronic material currently available comprises:

• A study guide: guidance for self-organized study and an explanation of parts of the
subject matter, presented in the form of a dialogue between youngsters, and aimed
particularly at pupils in the final years of secondary education

• The entire study material in the form of illustrated, partly interactive HTML pages
• The study material in full as text, also available as printed lecture notes
• The full set of transparencies for individual lectures
• Applets, on the basis of which students can carry out experiments and simulations

and thus penetrate the subject matter. The applets discussed in chapter 2 are
included here.

As regards teaching in secondary education, the following should be borne in mind:

Parallel to the above forms, the electronic material is also issued to secondary
schools, where it can be used for teaching informatics/in preparation for Informatics
A level (see below). Secondary-school teachers with a teaching qualification in
informatics use the eLearning material (available on CD) in class, or have installed
their own WeLearn server, via which they not only make the study material available
but also help their pupils with queries, by means of newsgroups. Attention should be
drawn to the following rule at the JKU Linz: Students commencing a degree course in
informatics at the JKU after passing Informatics A level need not attend the
preparatory course in informatics, provided that the subject matter for A level roughly
corresponds to the scope of the basic principles presented in this paper.

4 Conclusion and Outlook

People often say we live in a particularly fast-moving age – and this is especially true
of the still young discipline of informatics. If we date the breakthrough in informatics
to the 1960’s, its history goes back less than 50 years, compared with a few thousand
years in the case of mathematics. Informatics has developed extremely rapidly;
particularly in the software field, the number of products available goes up by leaps
and bounds, while their half-life diminishes dramatically. It thus seems logical and
necessary to concentrate on the basic concepts, particularly in the field of secondary
education. The fact is that purely product-related knowledge and skills in the narrow
sense are inadequate, and in some cases already obsolete before pupils leave school.
A more systematic grasp of these concepts and their interrelations is therefore not just
desirable, but essential.

 Preparatory Knowledge: Propaedeutic in Informatics 115

Literature

1. Garey M.R., Johnson.D.S.: Computers and Intractability: A guide to the Theory of NP-
Completeness, W.H. Freeman, San Francisco, 1979

2. Hubwieser P.: Modellierung in der Schulinformatik. LOG IN 19, Heft 1. S.24-29, 1999
3. Informatik als Grundbildung; Informatik Spektrum, Band 27, Heft 2-4, 2004
4. Loidl, S.: The Beautiful but challenging World of Elearning. In Auer, M. E. and Auer, U.,

editors, International Conference on Interactive Computer Aided Learning, The Future of
Learning, Villach Austria, Kassel university press 2004, ISBN 3-89958-089-3

5. Loidl, S., Sonntag, M.: Using metadata in creating offline views of e-learning content; in:
Auer, M., Auer, U. (Ed.): ICL; Learning Objects and Reusability of Content, Kassel
university press 2003

6. Loidl, S. Mühlbacher, J, Schauer, H.: Preparatory Knowledge: Propaedeutic in
Informatics, Propädeutisches Informatikwissen, http://welearn-lavista.fim.uni-linz.ac.at/
(english/german), 2004

7. Mühlbacher, J., Mühlbacher, S.C., Loidl, S.: Learning Arrangements and Settings for
Distance Teaching/Coaching/Learning: Best Practice Report. In Hofer, C., Chroust, G.
(Ed.) IDIMT – 2002

8. Paramythis, A., Loidl, S.: Adaptive Learning Environments and e-Learning Standards; in:
Roy Williams (Eds.): Proceedings of the 2nd European Conference on e-Learning,
Glasgow, 2003

9. Perlis, A.J.: Epigrams on programming. SIGPLAN Notices, 17 (9),1982
10. Propädeutikum aus Informatik, http://welearn.fim.uni-linz.ac.at, 2004
11. Rosen, K.H.: Discrete Mathmatics and its Applications, 5th Edition, McGraw-Hill, 2003
12. Schauer, H.: Langlebige Standards in einer schnelllebigen Welt, CD Austria, 5/2004

A Pragmatic Approach to Spreadsheet Training
Based Upon the “Projection–Screen” Model

Karin Hodnigg

Klagenfurt University, Institut für Informatiksysteme, Austria
karin@isys.uni-klu.ac.at

Abstract. Spreadsheets are part of the educational syllabus of instruc-
tion for secondary schools in Austria. They are mainly taught using appli-
cations, disregarding the fact that building spreadsheets is programming.
But the programming nature of spreadsheets is undeniable. Data in cells
is interconnected with a rather sophisticated formula language. Since the
spreadsheet paradigm differs from common procedural or object-oriented
paradigms that students may already be aware of, teaching spreadsheets
is a complex task. Moreover, the data flow paradigm is a concept foreign
to students or trainees.

Lack of proper paradigms or computational models even complicates
the situation. Is there a so called spreadsheet didactics - and if not, how
should it look like? Should teachers train spreadsheet applications or
insist on building models before implementing? How should they consider
the spreadsheet programming viewpoint - without students scaring away
and without loosing the spreadsheet’s charm since they are said to be
easy to use? This paper presents the main problem fields, presents a
didactical model, and finally presents some rather pragmatic advice on
how to teach spreadsheets.

1 Introduction

Spreadsheets emerged in the late 1970’s, with the first systems still looking like a
common paper spreadsheet, where values and simple sum formulas could be put
into. Things developed quite quickly, offering more than only two columns (or five
in VisiCalc, respectively) to the user, with more elaborate functions, from text
interface to the modern click and point (and drag-and-drop) interface of modern
spreadsheet systems. Today the user is confronted with an enormous amount of
rows and columns, a huge amount of sometimes very complex functions, tools
and features. In our terms, but although the application environment has grown,
little has changed concerning the very basic concepts.

Spreadsheet education is mainly based upon Microsoft’s spreadsheet system
“Excel”. Students are taught to first input values, then formulas and then us-
ing the functions and features Excel offers. More precisely, problems and their
solution space is reduced to features of the spreadsheet system. While teaching
application specific features is convenient, it is in fact problematic, since this
didactical approach implies training an application, not teaching programming.

R.T. Mittermeir (Ed.): ISSEP 2005, LNCS 3422, pp. 116–129, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Pragmatic Approach to Spreadsheet Training 117

Due to its simplicity, end-users tend to see “Excel” as just another office ap-
plication. But the intuitive use of such applications where typing some values,
building some sums is sufficient for most first results conceals the fact that build-
ing a spreadsheet is programming. Even without specific training, every user who
can generate spreadsheets for the own domain. This ease of use (identifying what
to do and how to do it) contributed to the sheets enormous success. We find var-
ious definitions of spreadsheets: One rudimentary, but basic definition declares
the main objective of spreadsheet programs as “manipulation and presentation
of data found in tabular form” [Fil98]. However, the fact that this idea domi-
nates leads us to the fact that teachers have to insist on a clarification: Building
a spreadsheet means programming. Generally, students are not confronted with
any kind of data dependency paradigm, thus training the spreadsheet paradigm
with its data referencing mechanisms is - in an non–obvious but nevertheless
dangerous manner - full of pitfalls.

In this paper the notion of spreadsheets will rely on the “original paradigm”,
that is spreadsheets are functional programs in a tabular layout. Procedural ex-
tensions, such as VBA in Excel will not be considered. As already mentioned
above, the elaborates of spreadsheet users are referred to as spreadsheet pro-
grams.

1.1 Business Relevance

Why should spreadsheets be taught? When talking about the importance of
spreadsheets, the main issue is its common use:

– Spreadsheets have great impact on business decisions. Spreadsheets
applications are to be found on nearly every desktop computer [Cle03]. Be-
sides the very popular Microsoft Excel, one could imagine OpenOffice, KCalc
or Gnumeric. Researches agree on the fact that a huge number of business
decisions are based on information derived from spreadsheets. In [BCP+03],
the authors insist that “many [business decisions] are much more serious,
affecting significant financial decisions and business transactions”.

– Spreadsheet systems are easy-to-use. The success of spreadsheet sys-
tems is based on a rather simple, declarative formula language. End user
programming is made possible without high development costs. Since spread-
sheet applications already provide a simple model, the spreadsheet user can
fit the problem into the cell matrix rather than building a new model from
scratch. Thus, it is commonly believed that training efforts compared to
conventional programming are remarkably reduced.

Hence the assumption that the spreadsheet language is a “programming lan-
guage for the masses” [Moström, 1998] seems to be justified. The complexity
of spreadsheets is underestimated, though.The implementation of spreadsheets
is largely left to the “spreadsheet programmer”. But one may not forget that
spreadsheets are often used to solve very complex and evolving problems. Since
quality is one of the main issues in spreadsheet research, one must consider a
range of problem areas solely generating from the special nature of spreadsheets.

118 K. Hodnigg

2 Didactical Considerations

If teachers and trainers are challenged to explain what spreadsheets are, the
answer depends on grade of preparatory training in class. Explanations ranging
from rather simple models (“cells are kinds of connected calculators”) to sophis-
ticated essays concerning data flow or graph reduction paradigms. All of these
answers have their relevance - but none of them really fits.So, how do spreadsheet
users work? Data and references to cells are put into the spreadsheet according
to a mental model1 or according to layout considerations2. This mental model is
based upon more or less profound reflections on the problem spreadsheet users
try to solve.

But in fact, spreadsheet users (students as well as teachers and/or trainers)
do not consider themselves being programmers. [Cle03]. Since they do not see
their work as software, they shy away if training is based upon the “programming
approach”. End users suppose that spreadsheets loose their charm of being “easy-
to-use” and “easy-to-learn” if they talk about programming and not about using
“Excel”. Excel, though a brand name is quite often used as generic name for
spreadsheet systems.

Spreadsheet development is often treated very informal despite the fact that
“many applications are large and complex, and development often involves in-
teractions among multiple people”[Pan00]. In [Pan00], [Cle03] and [CHM02] two
different types of spreadsheet applications are clearly identified: On one hand, the
short living, “scratch pad” use of spreadsheets, on the other hand, the long living
problem modeling. Evolving problems lead to change requests to a spreadsheet.
This spreadsheet program maintenance is commonly handled by mostly local
and therefore dangerous adaptation to the new requirements. The maintainer’
mental model may differ from the implemented model, though. The spreadsheet
model the users have in mind is adapted - mostly without regarding further
adaption needs or possible inconsistencies in the spreadsheet program. This is
another issue spreadsheet training has to deal with.

A spreadsheet development process model and a quality assurance process
are approaches already proposed (see [RPL89],[BBN03], [RB00]). But they are
not commonly accepted among the spreadsheet community. Spreadsheets have
to be treated as software - since the impact on business decision cannot be
estimated high enough, spreadsheets have to fulfill high quality requirements.
If the development process of spreadsheets cannot be influenced (due to the
fact that end-users are unwilling to follow a structured software development
process), serious verification and auditing strategies on spreadsheet programs
have to be provided. Training must provide a deep insight into the spreadsheet
paradigm (its strength, but also its weaknesses and pitfalls) to overcome these
shortcomings.

1 In the following referred as spreadsheet model.
2 “[Spreadsheet programs] are even special programs from the perspective that the place-

ment of code is dependent on the layout of the result.” [ACM00].

A Pragmatic Approach to Spreadsheet Training 119

2.1 Spreadsheet Characteristics

The spreadsheet paradigm relies on n-dimensional3 presentation of data. There is
a range of properties which are provided by spreadsheet applications to support
the spreadsheet programmer.

– The Tabular User Interface
Organizing data in cells, rows and columns, can help users to map their
spreadsheet model into an already given and sophisticated framework rather
to invent a new one bottom-up [Cle03], e.g. object-oriented or rule-based.
The grid of a spreadsheet program can therefore be filled with data values,
labels or formulas to solve the problem the end-user has.

– Locality
Spreadsheet programmers tend not to think in global terms. Rather, they
reduce the enormous complexity of their business problem by considering
each cell being independent. Therefore, they concentrate on a very localized
view. Training should incorporate this fact because scope is a fundamental
concept to be grasped.

– High-Level Constructs
The formula language is high-level and contains simple control constructs,
e.g. the if -clause. It offers a number of arithmetic, financial, statistical and
logical functions. Combining these constructs and displaying their interme-
diate results ends up in the very high expressivity of spreadsheets while not
loosing simplicity.

– Learning Rate
To start with a first useful spreadsheet program, only sparse knowledge
of spreadsheet application specific constructs and spreadsheet paradigm is
needed. As experience grows, the programmer acquires new constructs and
uses them incrementally.

Combining an expressive high level programming language with a “powerful
visual format” for data organization and display [NM90], spreadsheet appli-
cations provide a solid user programming environment. Thus, the strength of
spreadsheets is characterized by Nardi and Miller [NM90].

1. A limited set of high-level, task-specific operations
The declarative and expressive formula language impacts the modeling of
spreadsheet programs.

2. A strong visual format
The second major spreadsheet application element is the data layout. The
tabular layout supports the solution of three crucial problems
(a) viewing data, (b) structuring data and (c) displaying data.

3 With n=2 for tabular layout or n=3 for possible further layout of data, e.g. data
cubes.

120 K. Hodnigg

2.2 Definitions on Spreadsheets

But to simplify further reading, some basic definitions are briefly reviewed.
A cell address CA is an n-tuple. In common two-dimensional spreadsheets,

the cell address is a pair (row, column) that denotes the cell’s location in the
two-dimensional matrix. A value v is an element drawn from the set of values V
= {Numbers} ∪ {Strings} ∪ {Error} ∪ {Undefined}.

A spreadsheet S consists of a set of cells. A cell C is represented by a triple
(ca : CA, v : V alue, f(< arguments >) ⇒ V alue), ca is the unique cell address,
v is the value that is displayed. The value v results from formula evaluation f
with v = eval(f). In case of f being degenerated to a constant, eval(f) yields the
identity of this constant.

Arguments to function f can be either constants or cell referencing functions.
A cell referencing function cref(src : CA, id : CA) returns the value associated
with the cell at address src⊕ id. src is the recipient cell’s own address, id added
for relative references.

The spreadsheet formula language is the basis for expressing formulas f.
f is defined as f(< arguments >) ⇒ value. f is specified by a string, starting
with “=” followed either by a function or by an operation either on constants
or on cell references. Constants are not considered as input for the formula as
there is no need for evaluation of a constant value unless the formula itself is
(re-)evaluated.

A spreadsheet program is defined as a subset of the spreadsheet, contain-
ing all non-empty formula cells and cells that are absolutely referenced. Rela-
tively referenced cells are only part of the spreadsheet program if they contain a
formula. If they contain constants, they are considered as input cells. A spread-
sheet instance then is the union of a spreadsheet program and its input data.

2.3 Graphical Representation

Cell references represent the data flow of a spreadsheet program. When building
a conceptual model of a spreadsheet instance, a data dependency representation
intuitively comes to mind. Cells are interconnected by references and informa-
tion is passed on from one cell to another. Cell references represent the arcs
where data flows. Different representations and different aggregations have been
proposed to visualize data flow in spreadsheet programs. Some common ways to
express these are:

– Data Dependency Graph (DDG)
Every (defined or “content bearing”) cell (of interest) in a spreadsheet is
represented by a vertex, and relations between cells are represented by (di-
rected) edges. This graph represents data dependencies between cells, as
shown in Fig. 1 on the next page.

– Set Relation Graph (SRG)
The Set Relation Graph is used to summarize the data dependency graph,
since a look-up from a higher level may be of interest. In a set relation graph
vertices are put into blocks or areas to visualize their dependency to other
blocks.

A Pragmatic Approach to Spreadsheet Training 121

Fig. 1. A Data Dependency Graph Example

Fig. 2. A Cell Relation Graph example

– Cell Relation Graph
Rothermel et.al. [BCP+03] define a cell relation graph that illustrates both
cell execution paths and cell relationships. Entry and exit points are specially
marked, the formulae (and their inherent control flows) are depicted, as
illustrated in Fig. 2.

Representing a spreadsheet as data dependency graph serves a dual purpose.
On one hand it is the basis for computing the evaluation sequence. On the other
hand it might enhance the users conceptualisation of what was pinned down
by a set of otherwise independent formulas that contain only references to their
direct arguments. However, data flow semantics is not in all cases an appropriate
model for spreadsheet semantics.

3 The Spreadsheet Paradigm

Generally, we agree on the fact that a spreadsheet program is software. If the
very base of spreadsheet systems is considered, programming will be met. Data in
cells is interconnected and modified to gain more information. Filby’s definition
above meets the definition of programming in this particular way. In [KCK+01],

122 K. Hodnigg

Fig. 3. The Spreadsheet Three Layer Concept

Burnett et. al. state that spreadsheets “are not just mechanisms for organizing
and displaying data: rather, they are programs that use formulas to transform
inputs into outputs.”

According to [EM94], or more detailed to [Cle03] and [CRBK98], a spread-
sheet is a matrix of cells with addresses that uniquely identify them. Every cell
can contain a value or a formula. Formulae representing the formula layer com-
pute their result values generally on the values of one ore more other cells. The
value based upon the formula evaluation is displayed for every cell. This is the the
so-called value layer. The formula can be either a built-in, application internal
function or a user-defined algorithm, hiding behind a (probably misconceived)
static value on the formula layer. The inherent nature of these two layers is one
reason for the complexity of the spreadsheet paradigm.

Mittermeir et.al. [CHM02] and Panko [Pan00] emphasize Sajaniemi’s state-
ment that “Computations in spreadsheets are hard to grasp and consequently
many errors remain unnoticed. The problem with hidden errors lies in the in-
visibility of the structure of calculations”[Saj98]. So let us take a closer look at
the nature of spreadsheets and spreadsheet applications. In Fig. 3 (based upon
Igarashi, [IMCZ98]) a model for the spreadsheet layer concept is shown, where
arcs in the “formula layer” visualize data dependencies.

The tabular layout is augmented with a visual formula language. The invisi-
bility of formulas and their immediate evaluation is probably one of the strongest
ideas of spreadsheets. The invisibility of data flow causes cognitive overhead,
since a spreadsheet user has to (iteratively) click into a cell, understand the
formula and recognize all references4 to get an overview over the spreadsheet
model behind the spreadsheets. If a spreadsheet user wants to fully understand
the (trivial) computation of cell B4 in Fig. 3, he/she has to analyze first the cells

4 And recursively the formulas in these “referenced” cells, the transitive closure.

A Pragmatic Approach to Spreadsheet Training 123

B2 and A3. Since B2 contains another computation based upon cell A2, cell A2
needs to be understood. A2 then references cell A1 that holds a constant. To
understand how a computation in a spreadsheet program works, all transitively
dependent cells have to be analyzed.

On the other hand, the concept to hide complexity eases the implementation.
On the other hand, it complicates the comprehension of the “mental model”.
Characteristically for spreadsheets, there is no formal model and/or specifica-
tion, but we may refer to a “mental model”, the spreadsheet model, that builds
the basis of the spreadsheet program. It is a fact that spreadsheets are poorly
documented. Although there are some slightly helpful tools to visualize “rela-
tions” between cells, it is a non-trivial task to understand a spreadsheet program.
Lack of a specification and lack of adequate documentation is a major software
engineering issue.

4 A Computational Model

One is tempted to ask, whether there is such a thing as a “spreadsheet lan-
guage” and if so, what this language might be. For a given product, it makes no
difference, whether one types = IF (A1 = B1; ...) or = WENN(A1 = B1; ; ...).
Likewise, it makes no difference, whether this command has been typed in, se-
lected by mouse click from some panels, or copied and then edited from a cell
holding a similar formula. The clue is that the system provides the concept of
case discrimination and this concept is presented in different linguistic forms to
the user.

But the differences in the linguistic form are rather shallow and users have
to develop a conceptual model resting on the concepts behind the functions
implemented in various spreadsheet products. Since all of these functions rest on
common mathematical concepts, users must not be blamed if they assume that
the sheet behaves in exactly the way they expect these mathematical functions to
behave. The functional programming paradigm clearly contrasts “conventional”
programming. The spreadsheet language is highly declarative as it “emphasizes on
the evaluation of expressions” [Montigel, 2002] and is mathematically traceable.

Spreadsheet languages focus on spatial relations of data, not on the tempo-
ral sequence. Nonetheless, the spreadsheet development process has some spe-
cialties that influences the resulting spreadsheet. The drag-and-drop approach
of inputting formulas and then dragging them over a (geometric) row or col-
umn area to do incremental or similar computations result in a geometric pat-
tern. This specific pattern influenced by the spreadsheet application. Different
spreadsheet system implementations provide different heuristics for these copy-
and-paste/drag-and-drop editor operations5. Whether the value of a constant is
increased, when a formula is dragged over a cell range, or not, is part of the
spreadsheet language. However, defining all components of a spreadsheet lan-
guage as such is still a “hot topic” in the spreadsheet community.

5 For a detailed discussion, please see [HK04].

124 K. Hodnigg

Spreadsheets do not lack control flow, a rather difficult programming concept,
“it is just conceptually simple” [NM90]. The programmer can only specify control
flow on the cell level with if -clauses. The absence of an explicit control flow is
one of the strengths of spreadsheet programming as simplicity is a main success
factor. The user stated formulas contain an implicit flow of control as any cell
can reference any other. Dependent cells are immediately adapted when a value
in a related cell changes.

Thus, the immediate feedback encourages a style of trial and error, cutting
and pasting, copying and modifying [ACM00] in the development process. Users
can simply and immediately check whether the cell value corresponds to the
value they expected. Spreadsheet systems are easy to use but implementing
“good” spreadsheet programs is not simple! Even so, formal methods and a
software methodology is not part of the training. It is probable that rigorous
formal methods would be misplaced in spreadsheet training since we are talking
about end user programming. However, training has to be based upon the “right”
paradigms and models.

4.1 Established Paradigms

How to teach spreadsheets? Is there a possibility to rely upon an already estab-
lished paradigm in spreadsheet training? The graphical representation as dis-
cussed above leads us to the assumption: We have data dependencies - why not
taking the data flow paradigm? Moreover, we have a graph representation - why
not taking the graph reduction paradigm? Both paradigms seem to fit - but they
are slightly different [HK04]. In fact, they differ enough to cause misconceptions
about spreadsheets.

– Different Semantics
Data flow does not fit, since in a spreadsheet program, nothing flows. Graph
reduction would correspond to the evaluation of a formula’s result, but differs
in other aspects.

– Persistence of intermediate results
Neither graph reduction nor data flow corresponds to the persistence of inter-
mediate results. Evaluation is a non-destructive operation, the input values
(and immediate results) persist. A spreadsheet program does not define one
distinctive result, moreover, intermediate results are visible to the user.

– Incorporation of loops
A very obvious difference is the incorporation of a loop concept in both the
discussed paradigms. Loops, however, are totally foreign to the traditional
spreadsheet paradigm6.

– Interactivity
The second major difference is the immediate feedback - and the interactive
evaluation process. Neither graph reduction evaluation strategies nor data
flow evaluation expresses the power of spreadsheet evaluation. Changes in a

6 Although spreadsheet applications support the notion of circular references, this is
more a dangerous and confusing issue.

A Pragmatic Approach to Spreadsheet Training 125

spreadsheet program are immediately propagated through the program to
keep the program consistent.

To a spreadsheet developer who starts from scratch, development of a spread-
sheet is much like building a house with cells being bricks that have to be placed
somewhere upon a sheet. The data dependencies on such a sheet leads us to a
notion of interdependent calculation devices. If neither graph reduction seman-
tics nor data flow semantics work, we have to take a closer look at the kind of
interdependency.

4.2 Scope and Visibility

The interactivity of the spreadsheet evaluation process then seems most impor-
tant, since this is a foreign concept to both paradigms. Interactive evaluation
means that as soon as a cell has changed, its dependent cells change, too. This
immediate change propagation when a cell “looks” at cells it is referencing, mo-
tivates a notion of observer and observed cells. According to the observer pattern
common to programmers (for a detailed discussion please see [Lar02]), one has
to imagine a network of cells that observe (“look” at) their referenced cells.

Fig. 4 revisits our small data dependency example. Let us take a closer look
at cell B2. To compute the result of its formula, a cell has to “look” at all
cell it references. B2, for example, has to see A2. Since A2 references A1, A2
has to see A1 and transitively, B2 “sees” A1. So in a spreadsheet program, an
implicit visibility order is given. B2 does not explicitly look at cells that it is not
referencing. This concept of visibility is not supported by any of the paradigms
presented above, so visibility must be added to the visualization of a common
“interconnected rubber band calculators” spreadsheet conception.

On the other hand, cells that are referencing B2 should not be visible to B2
since we do not allow circular references: B2, for example, cannot reference B4
without building the very dangerous construct of a circular reference. According
to the simple brick model, a brick rests upon underlying bricks but cannot rest
upon bricks that lies upon it. Another peculiarity has to be considered: A cell
c can be referenced from a cell anywhere on the sheet, except cells that are
somehow transitively referenced by this cell c. This concept of global scope is
the second main idea of the now presented “projection-screen” model.

Fig. 4. Scope and Visibility Example

126 K. Hodnigg

Fig. 5. Projection-Screen examples

4.3 The “Projection–Screen” Model

In this context, it makes sense to treat a cell as a kind of projection-screen device
that “reads” the values of its source cells (cells it is referencing), calculates its
result according to its formula and represents the result on its screen. This result
then can be read by any other cell, that is not part of the calculation process so
far (since this would represent a circular reference). With this notion, aggrega-
tive formulae (with range references A2:A10) can be visualized by “spotlights”,
comprising all cells that are source for the aggregative formula. Fig. 5 shows how
such a network of projection-screen devices could look like. The first example
is a short (two-level reference) formula, the second one describes an aggregative
and non-aggregative formula.

As presented in [HK04], there are some common “patterns” that can be found
in spreadsheet programs. These patterns result from the cut-and-paste and drag-
and-drop development of spreadsheets and may be a good basis for spreadsheet
training.

4.4 The Pragmatic Spreadsheet Training

Some ideas presented in this paper are now condensed in a rather informal,
pragmatic approach on spreadsheet education. The pragmatic nature of this
last section arises from the necessity of being more general since the notion
of “constant change” is native to education. This approach should reflect the
school and training reality, where a constant adaptation to the student’s needs
is necessary.

To train students spreadsheets, the projection-screen-model could be very
helpful, since it incorporates the main features of the spreadsheet paradigm,
without being very complicated. The simple view can help students to develop
a notion of data dependency with regards to immediate feedback. Students can
simply understand how cells can be interconnected. Changes in a spreadsheet
program can result in changes anywhere on the sheet (immediately). To avoid
that this fact remains unnoticed, the projection-screen model is very helpful.

A Pragmatic Approach to Spreadsheet Training 127

Students have some kind of interactive network in mind rather than a “static”
data graph where evaluation takes place after everything is defined.

1. It is simple, but building a spreadsheet implies programming
Students should be aware of what they are doing and that they are imple-
menting programs. Incremental learning is a very strong fact, but to shape
the opinions right away from the beginning is useful, when complex problems
have to be solved later on. To build a theoretical basis using the projection-
screen model would make sense. The basic ideas of spreadsheet programming
are explained with this model as well as the fact that students are program-
ming when using a spreadsheet system.

2. Be aware of what spreadsheets are (and what they are not)
A spreadsheet application offers a huge amount of different features. It is
very important that students comprehend the limits of spreadsheets. E.g.,
those are reached when iterative computation is needed where the number
of iterations varies. The projection-screen model could be very helpful for
emphasizing the main program concept. Students should be aware of compu-
tation “outside” the cells, e.g. with VB-Scripts or Makros. These values are
constant values, they do not adapt and are therefore very dangerous since
they miss an adaptivity which is not obvious.

3. One step after another - solution cell by cell
Beginners tend to “overload” a formula, with several functions within a single
cell. To stay comprehensible, it is reasonable to produce more intermediate
results. One formula for one purpose. Students should be urged to reduce
the formula complexity and use some common spreadsheet program patterns
as presented in [HK04], since referring to established patterns can ease the
understanding of spreadsheet programs.

4. Document it!
Documentation of a spreadsheet is very important due to an inevitable main-
tenance process. Nevertheless, the task of documentation is neglected. Reuse
and maintenance of spreadsheets thus become very complex. To train that
documentation in a spreadsheet program is necessary and meaningful may
have an impact on this obvious deficiency of current spreadsheets programs7.

5. Thus, think before you do it!
As with most modeling languages, the projection-screen model provides one
main benefit: “Think, before you do it.”’ To analyze a problem before simply
typing a formula that could match is badly needed. Instead of just trying to
solve a given problem, students have to model their problem with a rather
simple framework. The main issue here is: “Think more global when modeling,
but solve problems local when implementing it!”

Learning needs problems. Thus, teachers as well as trainers do have to think of
appropriate examples (transcending the common “‘Open file, change cell Xn”’-
approach). Concrete modeling of a spreadsheet program, handling the complex

7 Labeling cells areas is (not yet) part of the projection-screen model, but would be
an interesting research topic.

128 K. Hodnigg

nature of the spreadsheet paradigm has to be taken into account if new examples
and solutions for spreadsheet education are provided.

5 Conclusion

This paper presented ongoing work on spreadsheet training efforts. Spreadsheet
training is necessary, but contends with some basic difficulties. To be able to
put spreadsheet training on a fundamental basis, this paper first presented some
major problem areas and already proposed definitions and visualization concepts.
To meet training requirements, a proper definition and a delimitation of the
spreadsheet paradigm is essential to provide a appropriate didactical model.

I do not claim this approach to be complete, but it should be useful for spread-
sheet education to depart from pure application training towards a more sophis-
ticated and elaborate view on spreadsheet programming. Spreadsheet training
should be handled with the same carefulness as teaching any programming lan-
guage. As the proposed model deals with main spreadsheet issues, it inspires
much confidence that it will be helpful in classroom situations.

References

[ACM00] Yirsaw Ayalew, Markus Clermont, and Roland T. Mittermeir. Detecting
errors in spreadsheets. EuSpRIG 2000 Symposium - Spreadsheet Risks,
Audit and Development Methods, 2000.

[BBN03] Daniel Ballinger, Robert Biddle, and James Noble. Spreadsheet structure
inspection using low level access and visualization. In Proceedings of the
Fourth Australian user interface conference on User Interfaces 2003 - Vol-
ume 18, pages 91 – 94, 2003.

[BCP+03] Margaret Burnett, Curtis Cook, Omkar Pendse, Gregg Rothermel, Jay
Summet, and Chris Wallace. End-user software engineering with asser-
tions in the spreadsheet paradigm. International Conference on Software
Engineering 2003, Portland, Oregon, 2003.

[CHM02] Markus Clermont, Christian Hanin, and Roland Mittermeir. A spreadsheet
auditing tool evaluated in an industrial context. Proceedings of the 3rd
Annual Symposium of the EuSpRIG, 2002.

[Cle03] Markus Clermont. A Scalable Approach to Spreadsheet Visualization. PhD
thesis, University of Klagenfurt, 2003.

[CRBK98] Ed Huai-Hsin Chi, John Riedl, Phillip Barry, and Joseph Konstan. Princi-
ples for information visualization spreadsheets. IEEE ComputerGraphics,
18(4):p.30–38, August 1998.

[EM94] Skip Ellis and Carlos Maltzahn. Collaboration with spreadsheets. Journal
of the Brazilian Computer Society, 1(Special Edition on CSCW):pp.15–23,
1994.

[Fil98] William G. Filby. Spreadsheets in Science and engineering. Springer, 1998.
[HK04] Clermont M. Hodnigg K., Mittermeir R. Computational models of spread-

sheet devlopment: Basis for educational approaches. Proceedings of Eu-
SpRIG 2004, 5:p.153–168, 2004.

A Pragmatic Approach to Spreadsheet Training 129

[IMCZ98] Takeo Igarashi, Jock Mackinlay, Bay-Wei Chang, and Polle Zellweger. Fluid
visualization of spreadsheet structures. Proceedings of the 1998 IEEE Sym-
posium on Visual Languages, 1998.

[KCK+01] Vijay Krishna, Curtis Cook, Daniel Keller, Joshua Cantrell, Chris Wallace,
Margaret Burnett, and Gregg Rothermel. Incorporating incremental valida-
tion and impact analysis into spreadsheet maintenance: An empirical study.
In Proceedings of the International Conference on Software Maintenance,
November 2001.

[Lar02] Craig Larmann. Applying UML and Patterns. Prentice Hall, 2002.
[NM90] Bonnie A. Nardi and James R. Miller. The spreadsheet interface: A basis

for end user programming, 1990.
[Pan00] Raymond Panko. What we know about spreadsheet errors. Journal of

End Users Computing’s Special Issue on Scling Up End User Development
Valume 10, No. 2, Spring 1998, p. 15-21, 2000.

[RB00] Vaclav Rajlich and Keith Bennet. Software maintainance and evolution: A
roadmap. In Anthony Finkelstein, editor, The future of Software Engineer-
ing, 2000.

[RPL89] B. Ronen, R. Palley, and H. Lucas. Spreadsheet analysis and design. Com-
munications of the ACM 32 (1), pages p. 84–93, 1989.

[Saj98] Jorma Sajaniemi. Modelling spreadsheet audit: A rigorous approach to
automatic visualization, 1998.

R.T. Mittermeir (Ed.): ISSEP 2005, LNCS 3422, pp. 130–144, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Strategy to Introduce Functional Data Modeling at
School Informatics

Markus Schneider

Institut für Informatik,
Technische Universität München,

Boltzmannstraße 3, 85748 Garching, Germany
markus.schneider@in.tum.de

Abstract. Having analyzed standard applications by use of object oriented
modeling in the 6th and 7th grade functional data modeling is the first topic to be
discussed in the 8th grade of the mandatory subject informatics at the Bavarian
Gymnasium. First, the data flow modeling technique is introduced and the
resulting data flow models are implemented on spreadsheets maintaining the
geometrical structure of the diagrams. Yet the first data flow models show the
necessity to introduce the concept of functions in full strength. In contrast to the
mathematical way the concept of functions is introduced informally using
graphical concepts. In a second phase the data flow models are transformed to
one complex term. Exemplarily an appropriate algorithm to perform this
transformation is presented. Boolean functions and conditional expressions
deepen the modeling technique and introduce further central concepts of
informatics. Conditional expressions are discussed as functions of arity 3
modeling again commonly known structures. Finally iterative calculations are
simulated using a step by step strategy.

1 Introduction

Some reader may wonder why functional data modeling opens the mandatory subject
informatics in the 8th grade, since until now the so called classical way was favored,
i.e. the teaching of some “hard” programming skills, namely imperative-like control
structures. Moreover, one will be reminded through the attribute “functional” to the
paradigm of functional programming. Will be recursion the content of the 8th grade?
Not to raise such fears one has to emphasize that functional modeling is a pure
sequential modeling technique. Only the causal structure and the functional data flow
of a context can be represented; recursion or loop-like structure cannot and should not
be modeled.

On the other hand, a new empirical study on the learning process of students at
university level [5] has shown that students have lowest problems with the functional
modeling technique but greater problems with imperative one. So it is obvious to start
yet at school with functional data modeling (evidentially, without the concept of
recursion). Recently P.Hubwieser [4] has presented the basic principles of functional
data flow modeling for the 8th grade. The present paper deals with the details of this

 A Strategy to Introduce Functional Data Modeling at School Informatics 131

concept and offers a strategy to teach functional data modeling. The strategy results
from an experimental course carried out from May 2004 to July 2004 in the 9th grade
of a Gymnasium near Munich.

The first chapter presents the technical elements of data flow modeling and the
transformation of a model to spreadsheet applications. The second chapter, a more
mathematical one, introduces the general concept of functions informally using
graphical means. Afterwards the third chapter deals with the algorithm to compress
the data flow diagram to one term and give heuristics to implement the term in
concrete spreadsheet applications. The fourth and fifth chapters on Boolean functions
and the conditional expression deepen the concepts discussed so far and introduce at
the same time central elements of informatics. The sixth and last chapter discusses
problems demanding iterative strategies.

2 Data Flow Modeling and Spreadsheets

Data flow modeling is one of the central abilities to be taught in the 8th grade in
Informatics according the new curriculum of the Bavarian Gymnasium. Similar to the
suggestion of Hubwieser [4] we use simplified data flow diagrams containing the
following elements: Data storages represented by rectangles, data flows represented
by arrows and data transforming processes represented by ellipses.

2.1 An Introductive Example

Introducing new modeling techniques at school, one has to show students the benefits
resulting from such a technique. Therefore one has to choose examples of which the
term structure is not obvious but of which the data flow is of intuitive evidence. This
seems to be a contradiction. But this is not the case: Often students have the raw idea
to solve algebraic problems, but they cannot transform their idea to term structure. We
illustrate this by an example:

Dr. Mabuse has bought an apartment for 140 000 Euro. Having a capital
of 70 000 Euro he borrows the half of this amount from a credit
institution with an interest rate of 8% per year. Renting the apartment, he
wants to finance the credit, i.e. to pay the interests. Calculate the monthly
rent (obviously exclusive of heating) for the apartment

Capital Costs

Amount of
credit

Interest
rate

Interest
per year

Months
per
year

Rent per
month

Fig. 1. The Data flow diagram of the introductive example

132 M. Schneider

This problem is simple but complex enough not to apply some predefined formula.
To manage such problems, data flow modeling acts as a mediator between the
contexts formulated in natural language and algebraic expressions. First we establish
the data flow diagram as shown in Figure 1. Up to now, no algebraic elements are
used. The diagram shows only the data flow and the causal relations between the
objects to be calculated.

Next, the transformation processes will be modeled in detail using standard
mathematical functions (Figure 2); finally the resulting detailed model can simply be
projected to spreadsheets as shown in Figure 3.

Capital Costs

Difference Interest
rate

Multiplicat
ion

Months
per year

Division

Euro Euro

Euro Per cent

Per cent
Euro

Euro

Fig. 2. The detailed model of the introductive example

 A B C D E
1 Capital Costs

2

3 = A1 – C1 Interest

4

5

6 = B3*D3 12

7

8 = C6/E6

9

10

Fig. 3. The implementation of the model in figure 2

The detailed model in Figure 2 contains a non standard element: The arrows are
labeled with the formats of the data elements. This technique has tried and tested in
practice and it has been turned out that these annotations are of great importance for
the transformation process from data flow model to spreadsheet implementation. The
students are forced to model the various formats and the adjustment of the format can
be embedded in the automatic transformation process from data flow model to

 A Strategy to Introduce Functional Data Modeling at School Informatics 133

spreadsheet implementation. For standard spreadsheet applications this adjustment is
really necessary, since most operations are polymorphic and incorrect formats results
in subtle behavior. Moreover, this technique prepares the concept of the signature of a
function discussed below.

A hint ought to be made with respect to the naming of the transformation
processes: The above figure uses the identifiers Difference, Multiplica-
tion and Division. Some reader may ask why standard binary operations have
not been used. The answer will be given in the next chapter where we present an
algorithm to compress a data flow diagram to one single term. The use of binary
operations would make this algorithm more complex.

2.2 The Learning Targets

Analyzing the above example one recognizes the learning targets of the first phase:

• Students get to know the data flow diagram as a technique to model the functional
behavior of problems from the everyday life and they are able to apply this
knowledge.

• Students are able to transform data flow models to spreadsheet implementation
maintaining the geometrical structure of the diagram, i.e. they will not derive
compressed terms. This transformation will be done in the following way:

- Data elements and transformation processes correspond to spreadsheet cells.
- Transformation processes correspond to functions or binary operations, often

introduced with an “=”-sign.
- Arrows correspond to references inside functions.
- The format of the cells has to be adjusted according to the annotations of the

arrows.

• In the first phase we do not discuss the compressed term structure of the whole
problem. Instead we transform the data flow diagram intuitively to the spreadsheet
as shown above. So we avoid the discussion of the problem of binary operations
and their corresponding prefix-notation. This will be the topic of the next section.

2.3 Further Examples

Evidently, the data flow modeling technique described has to be deepened by suitable
examples. The introductory example mentioned above illustrates basic conditions for
suitable problems:

• The problem should be embedded in everyday contexts, so that no standard
mathematical formula can be applied.

• The term representing the solution of the problem ought to contain the standard
functions of spreadsheet applications.

Considering the current curriculum of Bavarian Gymnasia (secondary schools), tasks
like the following are conceivable:

• The so called “text-problems” (“Textaufgaben” in German), where the formal
structure of the solution is not obvious, but the data flows are of intuitive evidence
(standard mathematical textbooks offer numerous examples),

134 M. Schneider

• Percentage and interest calculations as shown above,
• Calculation of the mean value by explicit means,
• The simplification of expressions containing fractions; i.e. these expressions have

to be simplified using addition, subtraction, multiplication and division. Here the
greatest common divisor (or the lowest common multiple) plays an essential role,

• The areas (volumes) of figures (bodies) composed by standard geometric figures
(bodies).

3 The Concept of Functions

According to the current mathematic curriculum of the Bavarian Gymnasium
functions are discussed in the middle of the 8th grade. As shown in the previous
section, data flow modeling uses this concept from the very beginning in this grade.
Moreover, this modeling technique works with functions having arbitrary arity.
Therefore, the concept of function has to be introduced yet in the informatics course.
It is enough, though, to introduce this concept in an informal manner, since the formal
discussion of this concept lies beyond the scope of school mathematics and
(evidently) of school informatics.

3.1 Functions of Arity 1

Text books on school mathematics define the function (evidently the function of arity
one) as “a map from some set D to another set I which associates each element of D a
unique element of I” (see for example Barth et al., [1]). The interpretation of this
definition by a suitable data flow diagram results in the one given in Figure 4.

function
D I

element

Fig. 4. The data flow diagram of a function having arity one

Base Square
float float

Fig. 5. A concrete example of function having arity one

The basic idea for the introduction of functions in informatics is to describe a
function as graphical concept. Therefore, a function is defined as a process which
transforms each element of the data type D to a unique element of data type I.
Evidently, at school one should proceed in an inductive manner and discuss known
functions like square or clean. These functions have data flow diagrams like
shown in Fig. 5.

 A Strategy to Introduce Functional Data Modeling at School Informatics 135

Having introduced functions of arity 1 as graphical objects the functional behavior
of such objects may be characterized textually in a second step using signatures, e.g.
square (base: float): float, which is very close to the mathematical
way of function definition. Moreover, the signature smoothes the way to the syntax of
the function call which is nothing than a textual representation of the data flow
diagram (without data types).

3.2 Functions of Arity 2

Having introduced the principals of functions of arity 1, it is natural to proceed with
functions of arity 2 using functions like

power (base : float, exponent : nat) : float,
gcd (arg1 : nat, arg2 : nat) : nat,
concatenate (text1 : string, text2 : string) : string.

It is helpful to start with functions having prefix-notation. The data flow diagram
of such a function suggests the definition of a function of arity 2 as a process which
transforms two arbitrary elements of the data types D1, and D2 to a unique element of
the data type I (figure 6).

text1

Concatenate

string

string
text2

string

Fig. 6. The data flow diagram of a function having arity two

Again, the structure of the function call is just the textual representation of the data
flow diagram resulting from the signature by dropping the data types. To avoid
confusions about the order of the arguments inside the function call we use the
convention that the order of arguments corresponds to the graphical order from left to
right.

Binary operations and prefix-notation
Introducing the concept of functions in such a manner, we have no problems with
binary operations and their interpretation as functions of arity 2, since the function is
introduced primarily as a graphical concept, whereas the binary operation is a concept
of the implementation. Performing this purely syntactical conversion students
recognize intuitively the equivalence of functions having arity 2 and binary ope-
rations. In contrast to the data flow diagram and its textual representation the imple-
mentation is application-specific and some applications offer several implementation
possibilities: For example in Microsoft-Excel, the exponentiation can be implemented
both as the term x^y and power(x;y); similarly, the addition in the standard
form A1+B1 can be also expressed in the form sum(A1;B1).

136 M. Schneider

3.3 Functions of Arity Zero

Functions of arity zero ought to be discussed carefully since some standard spreadsheet
functions seem to have arity zero but in fact they use hidden variables. For example the
standard spreadsheet operations today() or random(): The result of these
functions depends on the date in the case of the operation today() or some other
influences (state of the computer, etc.), i.e. we have global, hidden variables, which
determine the result.

In contrast the function Pi() is a function of arity zero; constant data defined in a
data flow diagram can also be interpreted as function of arity zero. Though the number
π will formally be introduced yet in the 9th/10th grade, most students know this number
informally and the comparison of the functions today() or random() with the
function Pi() may be instructive for the students. However, the interprettation of data
elements as function of arity zero is perhaps to abstract.

4 From Data Flow Diagram to Compressed Terms

Yet in the first phase of data flow modeling some students will intuitively compress
some parts of the data flow diagram to one expression, since this shortens the imple-
mentation process. This chapter deals with the formal way to compress a data flow
diagram to one single term. Discussing the data flow diagram for addition of fractions
we illustrate the principal way. For brevity we restrict ourselves to the data flow
diagram describing the calculation of the numerator of the result (shown in Fig. 7):

numerator 1 denominator 1 denominator 2 numerator 2

lcd

div
div

mult mult

add

Fig. 7. Addition of fractions: The calculation of the numerator

We derivate the structure of the compressed term using a “bottom up” strategy.
The outermost function is the function ”add” in the last (5) row of the data flow
diagram. So we have initially the textual representation

add(? , ?).

 A Strategy to Introduce Functional Data Modeling at School Informatics 137

Were the question mark denotes the result of the inner function calls. The
arguments of the function add are the elements of the fourth row and one gets:

add(mult(?,?), mult(?,?)).

Inserting the arguments of the function mult results in

add(mult(nominator1,div(?,?)),
mult(div(?,?),nominator2)).

Translating the remaining graphical elements, we get finally:

add(mult(nominator1,
div(lcd(denumerator1,denumerator2),
denumerator1)),

mult(div(lcd(denumerator1,denumerator2),
denumerator2))
nominator2)).

Initially, the term presented is nothing than a textual representation of the data flow
diagram. To implement this term into a concrete spreadsheet application it has to be
adjusted to the respective application. Dependent on the application, some parts of the
term have to be translated to infix-notation or to special function-identifiers. Best, one
starts with the innermost terms, i.e. with the function div in the above example and
proceeds outwards. So, one gets first:

add(mult(nominator1,
lcd(denumerator1,denumerator2)
/denumerator1))),

mult((lcd(denumerator1,denumerator2)
/denumerator2))),
nominator2)).

After two further translations we finally have:

(nominator1*(lcd(denumerator1,denumerator2)
/denumerator1))

+((lcd(denumerator1,denumerator2)/denumerator2)*
nominator2).

The application-specific term presented here is suitable for standard application as
Microsoft-Excel for example.

5 Boolean Data Types and Boolean Functions

Some reader will wonder why to discuss Boolean expressions and functions? What is
the benefit of such a unit, since this topic has disappeared yet from some curricula in
mathematics? On one hand, the Boolean data type is a fundamental data type in
informatics appearing yet in simple expressions containing relational operators like
“=”, “>” or “<”. On the other hand, the conditional expression, which will be
discussed later, contains Boolean functions as a central element.

138 M. Schneider

Sometimes, the discussion of this topic at school is carried out abstract
emphasizing primarily the mathematical relevance. But as the some textbooks on
formal logic (see. for example R. Winter, [6]) show, this must not be the case: Taking
statements and contexts from everyday life, students realize that Boolean functions
are a natural element of our communication. As outlined above, one has to start with
examples were the mathematical solution is not obvious but were the model contains
standard Boolean functions of spreadsheet applications.

What class of problems might be suitable? Standard spreadsheet operations offer
some Boolean functions: the logic standard operations and the polymorphic Boolean
functions: greater, less, equal. The last three functions work both on
numbers and strings. Since the lexicographic order ought to be well known to students
on an informal level (telephone book, class list, etc.) problems based on the
lexicographic order seem suitable to introduce the concept of Boolean functions.

5.1 Boolean Data Types

First of all the concept of Boolean data type has to be introduced. This can be done
analyzing some simple statements, i.e. sentences which are either true or false:

• In an encyclopedia the name “Radlbacher” is found first, the name “Wastlhofer”
behind.

• The name “Häberle” is equal to the name “Häfele”.

To delimit the concept of statement from other structures one ought to compare
this statements with other grammatical structures, for example with questions like
“What is your name?” or with orders like “Write down your name!”

Modeling the data flow of the above statements one gets the data flow diagram
shown in Figure 8:

„Radlbacher“ „Wastlhofer“

found before

String String

boolean

„Häfele“

is equal

String String

boolean

„Häberle“

Fig. 8. Examples to motivate the use of boolean expressions

Interpreting these statements as functions they have a result value which is either
true or false, i.e. the result value is of the Boolean data type. Therefore, we define
Boolean functions as transformation processes of arbitrary arity and Boolean result
values.

To implement the above examples we turn to the textual representation:

• foundBefore(“Radlbacher”, “Wastlhofer”)
• isEqual(“Häberle”, “Häfele”)

 A Strategy to Introduce Functional Data Modeling at School Informatics 139

Implementing these terms, the students are really surprised recognizing that the
somehow cryptic functions foundBefore and isEqual are represented by the
common “<” and “=” operators. Beside, the teacher has the possibility to deepen the
structural similarity between the lexicographic order and the order over numbers.

Obviously the strategy presented could be carried out using numbers instead of
strings. But then one has the problem to motivate the data flow modeling: Starting
with expressions like “3 is less than 4”, one has no necessity to model the data flow,
since the final term is evident.

5.2 Complex Boolean Functions

Having introduced the basics of Boolean data types, one continues with complex
Boolean functions. Again, we discuss problems based on the lexicographic order and
combine them with the standard logic operations and, or, not.

Suitable problems may look like the following:

• Give the data flow model of a function, which determines if two names are
different.

• Give the data flow model of a function, which determines if your name is found in
an encyclopedia between the two names “Dimpflmoser” and “Schlotterbeck”.
Solving these problems one gets the following data flow diagrams:

name 1 name 2

is equal

not

string

name

boolean

boolean

„Dimpflmoser“ „Schlotterbeck“

string

less greater

and

boolean

boolean boolean

string string string

Fig. 9. Two examples of complex boolean functions

Without efforts, the logic operators not, and are introduced in a natural way.
The transformation of the data flow diagrams to compressed term and finally to
application specific form is straightforward and will not be discussed here. Having
implemented the models one ought to analyze the semantic of the standard logic
functions in detail.

6 Conditional Expressions

The conditional expression is a central control structure in Informatics. In this unit
students get to know the conditional expression as a function of arity 3, having a

140 M. Schneider

Boolean function as the first argument and two other expressions with identical data
type as second and third expression.

Though possible, it is not recommendable to begin with pure mathematical
examples. Instead one might begin with an analysis of common conditional sentences,
like the following rule applicable an hot pre-summer day:

If the temperature at school exceeds 30° at 10 o’clock, the instruction
terminates at 11 o’clock, otherwise instruction happens according to class
schedule.

The Raw analysis of this sentence shows that a conditional sentence contains three
parts:

• The condition, prefaced with “if”; this condition is either true or false.
• Two consequences; the first is carried out, if the condition is true, the second

otherwise (sometimes the second alternative is omitted).
• Therefore, the modeling of conditional sentences with conditional functions results

in a function having 3 arguments:
• A Boolean function.
• Two functions with arbitrary but identical result-data type; the first function is

called, if the condition is true, the second otherwise.
Therefore, we get a function with a data flow diagram as shown below in figure 10.

IF

Type

Type

Type

Boolean

Fig. 10. The data flow diagram of the conditional expression

The signature of such a function has the structure:

If (condition: Boolean,
true-function: TYPE, else-function: TYPE): TYPE

were TYPE denotes an arbitrary data type.

Since conditional sentences on everyday contexts cannot be implemented via

spreadsheets, more formal examples (but not necessary mathematical ones) have to be
used. Here we present the problem to compare three strings with respect to their
lexicographic order and to calculate the “greatest” among them. (It should be
mentioned that this example is too complex as unproductively example at school.
Instead one ought to proceed step by step and discuss first the analogue problem for
two strings.)

 A Strategy to Introduce Functional Data Modeling at School Informatics 141

The solution of this problem cannot be modeled using one conditional expression.
Instead, one has to nest two conditional expressions. The considerations concerning
data flow diagrams of conditional expressions suggest the model shown in Figure 11:
First, two strings are compared and the greater one is returned; afterwards this result
is compared with the third string in the same manner.

IF

String

String

Boolean

Text 2Text 1

greater

String

Text 3

IF

greater

String

String

Fig. 11. The data flow diagram to calculate the “greatest” of three strings

As above the compressed term is calculated using the “bottom up” strategy.
Translating the outermost conditional expression we get:

If(greater(?,text3),?, text3)

Now, the question marks have to be substituted by the term

If(greater(text1,text2), text1, text2).

So we get:

If(greater(If(greater(text1,text2),text1, text2),
 text3),

If(greater(text1, text2),text1, text2), text3)

Finally this implementation independent term ought to be prepared for specific
implementation:

If((If(text1>text2), text1, text2)>text3,
(If(text1>text2), text1, text2), text3)

Translating the data flow diagram to term structure, it is important to mind the
order of the arguments. As above, we have the convention that the graphical order of
arguments (left to right) corresponds to the textual one.

142 M. Schneider

The example illustrates a specific feature of functional modeling: There is no possibility to
store a result. For example, the term (If(text1>text2), text1, text2) has been
used two times and it has been calculated two times. This is due to the fact that functional
modeling lacks the concept of variables.

Finally, we present some possibilities to deepen conditional expressions:

• Calculation of interest: Dependent on the “sign of the account” the sign and
the value of the interest rate changes.

• Discount calculations: Dependent on the amount of products bought one
gets a specific discount. Here, nested conditional expressions can be used

• Further ideas for exercises can be found in standard school-textbooks on
informatics in the context of the conditional statement (for example: Fuchs et
al., [3]).

7 Iterative Calculations

Standard courses on imperative programming languages at school contain a chapter
discussing loops as a central element. In contrast, functional data models are pure
sequential structures and we have no possibility to model loop structures. Instead,
such calculations have to be carried out step by step performing the various iterations
explicitly. With respect to didactical aspects this is no disadvantage: The step by step
calculations discussed give students the fundamental experienc to recognize the
necessity of loops as an efficient tool to model repetitive structures.

A treasure of ideas on iterative calculations with spreadsheets can be found in
Dopfer G., Reimer R., [2]. Unfortunately, some interesting examples like Heron’s
algorithm to calculate the square root of a number, or the algorithms to approximate
the number π cannot be used due to curriculary conditions. Some other examples,
however, like the one on the greatest common divisor or interest calculations with
regular (or irregular) payments are undoubtedly applicable.

Though the cited textbook of Dopfer G., Reimer R. presents valuable ideas, these
ideas have to be designed for functional data modeling. In the sequel, we illustrate the
principal strategy discussing the step by step calculation of the greatest common
divisor:

Yet in the 5th grade students learn Euclid’s algorithm to calculate the greatest
common divisor of two natural numbers. Obviously, the algorithm used here ought to
show a non-recursive structure like the following:

Euclid’s algorithm to calculate the greatest common divisor of two natural
numbers a and b, gcd(a, b):

1. Let a1 = a and b1 = b;
2. If a1 equal b1, then a1 is the gcd(a, b) and the algorithm terminates
3. Calculate a2 and b2 as follows:

If a1 > b1, then a2 = a1 – b1 and b2 = b1, otherwise a2 = a1 and
b2 = b1 – a1;

4. If a2 equal b2, then a2 is the gcd(a, b) and the algorithm terminates
5. Calculate ai and bi, for i > 2 analogous until ai = bi; then gcd(a, b) = ai.

 A Strategy to Introduce Functional Data Modeling at School Informatics 143

The data flow model (Figure 12) for this algorithm is developed in two steps: First
one ought to model the global data flow to calculate the various values ai and bi. This
initial model is shown on the left side of Fig. 12. The second step deals with the data
flow model to calculate ai+1 from ai and bi. This model is given on the right side of the
figure. It shows the details of a transformation process from the left side (colored
ellipse).

a

a1 b1

b

a2 b2

a3 b3

ai bi

greater sub

if

ai+1

Fig. 12. Data flow diagrams to calculate the greatest common divisor of two numbers

The implementation of this model proceeds analogously: First, the global model is
transformed to the spreadsheet maintaining the geometrical structure. Afterwards, the
detailed model has to be compressed to one term and inserted into the respective cells
(Figure 13).

A B C
1 a1 b1

2
3
4 = If(A1>B1; A1-B1; A1) = If (A1>B1; B1; B1 – A1
5
6
7 = If(A3>B3; A3-B3; A3) = If (A3>B3; B3; B3 – A3
8
9

Fig. 13. The implementation of the data flow diagram in figure 12

Abstracting from this example, one recognizes the well known structure of loops:
The detailed (inner) model corresponds to the body of the loop, the global or outer
model to the various iterations. But in contrast to loop or recursive structures, the user
himself decides whether the algorithm terminates after a certain step or not.

144 M. Schneider

Further topics for exercises:

• The calculation of roots by nested intervals,
• Growth or decay-rates
• Interest calculations with regular (or irregular) payments; (see P. Hubwieser, 2004

for the basics of such exercises).

8 Final Remarks

To my knowlede the only official publication on functional data modeling at school is
the one of P. Hubwieser (2004) [4]. Based on this publication the author of the
present paper has taught functional data modeling from May 2004 to July 2004 in the
9th grade of a Bavarian Gymnasium near Munich. The experiences made there are
already incorporated into the strategy presented. But nevertheless, we have great lack
of suitable material. Since the mandatory subject informatics starts in 2006 with
functional data modeling in the 8th grade, it is really urgent to continue the phase of
material development. Teachers and scientists ought to conceive and evaluate
examples and problems on functional data flow modeling.

A central problem omitted here concerns the methodology of. teaching functional
data modeling: The method of project based teaching, a central element of informatics
at school, should be integrated into the course strategy by the development of suitable
worksheet sequences.

Apart from the topic discussed here the mandatory subject informatics of the
Bavarian Gymnasium offers teachers and scientists numerous fields to work on such
as data bases, imperative programming, and automata to mention only three topics of
similar urgency. These topics ought to be addressed from interested scientists.

References

1. Barth F., Federle R., Haller R., 1996: Algebra 8, Ehrenwirth Verlag
2. Dopfer G., Reimer R., 1995: Tabellenkalkulation im Mathematikunterricht, Klett-Verlag
3. Fuchs M. et al., 1994: Einführung in die Informatik, Klett-Verlag
4. Hubwieser P., 2004; Functional Modeling in Secondary Schools using Spreadsheets; in

“Education an Information Technologies” of the Official Journal of the IFIP Technical
Committee on Education, Vol. 9, Nr. 2

5. Schneider M., 2004; “An Empirical Study of Introductory Lectures in Informatics Based on
Fundamental Concepts” in “Informatics and Student Assessment” Lecture Notes in
Informatics, Vol. 1

6. Winter R., 1996: Grundlagen der formalen Logik, Verlag Harri Deutsch, 1996

R.T. Mittermeir (Ed.): ISSEP 2005, LNCS 3422, pp. 145 – 155, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Informatic Models in Vocational Training for
Teaching Standard Software

Siglinde Voß

Department of Didactics of Informatics,
Technical University of Munich,

Boltzmannstr. 3,
85748 Garching, Germany

siglinde.voss@web.de

Abstract. Users of current software are faced with ever rising requirements as
these tools are subject to more and more changes. These tools, which are getting
more and more complex, can only be used efficiently, if users are capable of an
abstract and structured approach. In further education, it is necessary to
sustainibly develop training-concepts that will give them skills irrespective of
special software.

Informatic models have proven to be suitable to teach document structures
which will be of long-term use. So users will no longer be dependent on the
knowledge of the ever-changing surface they will rather help them to
understand the working of modern software-systems.

Based on didactics of informatics the following text will present approaches
for assorted contents in the context of training Microsoft®Word and gives
information on two courses conducted in companies and the experiences made.

1 Modeling in Informatics Education

If you follow the discussion about the didactics of informatics of recent years1, you
can observe that the topic of “Modeling” in teaching informatics is often discussed
widely. Emphasing an information-centered approach, Hubwieser [2] has developed a
teaching-concept which stresses informatic modeling when teaching informatics at
grammar schools in Bavaria.

For 11- and 12-year-old pupils (form 6 and 7), he suggests an object-oriented
modeling or analysis of standard software which enables students to work with an
underlying inner structure of the documents when changing them and this will make
them independent of the fast-moving user-interface of the respective tool. [3]

At Bavarian grammar schools these aspects are part of the curriculum of the
subject “Natur und Technik” (nature and technology) with the subgroup informatics
which has been obligatory for all students in form 6 and 7 since September 2004. [4]

1 Brinda summarizes current results and the present state of research in the area of object

oriented modeling [1], p. 15ff.

146 S. Voß

Even at a number of Bavarian “Realschulen” (English equivalent: secondary
modern school) the classical subject “text processing” is replaced by a subject called
information technology that has been enlarged by contents of informatics. This
development clearly shows that knowledge about informatics is necessary for a long-
term learning of word processing: If students just know how to work with the user-
interface, they will find it much harder to apply their knowledge to similar systems.

2 Object Models can be Used to Explain and Illustrate Informatic
Phenomena in Word Processing

Although office users today do not generally have basic knowledge in informatics,
corresponding models can be used to explain and illustrate the effects of word
processing software. This could be observed in vocational training courses conducted
by the author.

The graphic representation of these models is drawn upon representations as they
can be found in the informatic text book for form 6/7 of Bavarian grammar schools
such as [5], [6] or in UML-syntax such as in [7] and [8].

But the level of abstraction must be lowered accordingly. That’s why the author
decided not to describe generally valid connections for example with the help of class
diagrams. Instead, object diagrams are used to illustrate relations of objects in
concrete documents.

Class- or object-cards were employed to list the attributes and operations of
individual objects. Having this piece of information the user can assess which options
of structuring he has or doesn’t have in connection with individual objects in a
document.

Sequence diagrams were used to illustrate the dynamics. They are suitable for the
representation of the exchange of messages between the existing objects after an
operational command of the user.

Finally state-transition diagrams clarify that objects do not always behave in the
same way; it depends what state they are in at present. For example certain operations
of objects possible cannot be called upon, if single attributes adopt certain values.

3 Carrying Out Two Vocational Training Courses

In January/February 2004 and in June/July 2004 the author conducted a vocational
training course for office users for employees of a smaller company - both were
planning to introduce the participants to “Word” and also deepen their knowledge.

In the first case there were five, in the second six participants whose background
was differing widely concerning school and professional training. The course in both
cases took place weekly for five consecutive weeks; each session lasting for three
hours. Following topics were covered:

- Session1: Basics
Formatting characters, paragraphs, sections; the simple structure of
documents and object connections

Informatic Models in Vocational Training for Teaching Standard Software 147

- Session 2: Graphics and tables:
Pixel- and vector graphics; embedded and linked graphics; forming tables,
sorting contents

- Session 3: Format styles:
Creating character- and paragraph-styles and assigning them to characters
and paragraphs; creating new styles based on already existing ones; adapting
document templates for personal usage

- Session 4: Text fields, cross references:
Positioning and connecting text fields, creating cross references with the help
of hyperlinks; adding references into strings and graphics;

- Session 5: Headers and footers:
Inserting text and graphics in headers and footers; using different headers
and footers in a document;

The typical approach in a lesson consisted of explaining and illustrating the
relevant aspects with the help of graphic models. In addition the whole process was
demonstrated on the software used. It was absolutely necessary for the users to
practice for themselves on their own computers immediately afterwards. When the
participants had questions or problems, the author only used the models taught in her
explanations. The user interface was not referred to.

The advantage of this approach among others was that the same model could be
used for both courses, although two different versions of MS-Word (MS-Word®97
and MS-Word®XP) were taken. Even if the user interfaces shows a number of
differences, the structure of the documents hasn’t changed decisively by the
replacement of MS-Word®97 of MS-Word®XP.

Of course the participants had to be shown which buttons, menus etc. had to be
used, so that the object structure of the given model could be implemented. But this
was not among the syllabus of the course. As both groups used different versions of
MS®Word and in addition every tool in most cases offers different ways to achieve the
same aim, the participants were allowed to choose the operations which they liked best.

4 Examples of the Realization of Single Contents

4.1 Topic “Basics – Inserting Columns”

One of the aspects of the first unit was arranging text in various columns. The
structure of the document can be presented by the class diagram shown in Fig. 1.

Every text document contains at least one section which is subdivided by exactly
one columngrid including at least one column. Every section contains at least one
paragraph which can contain any number of characters.

Classroom Approach

In lessons the class diagram was not referred to. Instead, the students were confronted
with a concrete example of a document and its respective object diagram.

148 S. Voß

Fig. 1. Class diagram of a simple structure of a text document

At this point the students already knew that one section can contain several
paragraphs. The item “column grid” and “column” were new. The arrow representing
the association “subdivides” shows that the column grid subdivides the section (not
just the paragraphs).

The example in Fig. 2 shows the standard situation. The text document contains
exactly one section with a column grid, which contains only one column:

 textdocument1

columngrid1

column1

section1

paragraphA

subdividesparagraphB

paragraphC

Fig. 2. Example of a text document containing one section and the corresponding object
diagram

If you want to arrange the text in the different paragraphs in various columns,
you have to insert two additional sections, as can be seen in the following object
diagram:

Informatic Models in Vocational Training for Teaching Standard Software 149

 textdocument1

columngrid1

column1

section1

paragraphA

subdivides

columngrid2

column1 column2 column3

section2

paragraphB

columngrid3

column1 column2

section3

paragraphC

subdivides

subdivides

Fig. 3. Example of a text document containing three sections with various column grids and the
corresponding object diagram

Each section has its own column grid; the latter is automatically assigned, after the
user has created a new section. For example, after you have created section3, the
column grid is immediately assigned to it. If the user inserts an additional column, the
width of the column is automatically adjusted after the operation.

 section3
create

assign

column1
insert

setColumn-
Number(1)

columngrid3

set columnnumber 2

column2
insert

set-
Width(w2)

set-
Width(w2)

setWidth(w1)

setColumn-
Number(2)

Fig. 4. Sequence diagram

150 S. Voß

The (simplified) sequence diagram (Fig. 4) shows the process described above
and is to clarify to the participants of the course that they do not have to create the
column grid themselves. It immediately is available after the creation of a section.

4.2 Topic “Graphics”

Object in text documents do not always behave in the same way. For example
some operations of a graphic object can be called upon only in certain circums-
tances. To clarify these correlations, one uses a dynamic model, the so-called
state transition diagram. States are represented by ovals, the transitions by arrows.
The transition of one state to another is caused by an event, for example a
command of the user.

A graphic is in a certain state, depending on the attribute values of the graphic. In
this respect attributes can be seen as variables. State transitions are caused by altering
attribute values.

In this case, the author has only worked with variable states relevant for the
model. For example not all four attributes for text space (at the right, left, above,
below) can be altered. This depends on the value of the attribute “textwrapping”. The
corresponding attribute “value” then is nil.

If we take these five attributes into consideration, we can make out seven states
altogether:

Table 1. States of a graphic-object and its respective attribute values

Textspace
State Textwrapping

Right Left Above Below

z1a likeCharacter nil nil Nil nil
z1b inFrontOfText nil nil Nil nil
z1c behindText nil nil nil nil

z2 aboveAndBelow nil nil not nil not nil

z3a likeBorder nil not nil nil nil
z3b likeBorderCover not nil not nil nil nil

z4 rectangular not nil not nil not nil not nil

Classroom Approach

If you only differentiate according to textspace which can be changed, some states
can be summarized, so that finally the following state-transition diagram can explain
the most important behavior patterns relating to the adjustment of textspace of a
graphic object (the attributes crossed out mean that these cannot be changed in this
respective state):

Informatic Models in Vocational Training for Teaching Standard Software 151

z3
TextspaceLeft

TextspaceRight
TextspaceAbove
TextspaceBelow

setTextwrapping(rectangular)
setTextwrapping(likeBorder)
setTextwrapping(likeBorderCover)

setTextwrapping(aboveAndBelow)

mark

setTextwrapping(likeCharacter)
setTextwrapping(inFrontOfText)
setTextwrapping(behindText)

z1
TextspaceLeft

TextspaceRight
TextspaceAbove
TextspaceBelow

z4
TextspaceLeft

TextspaceRight
TextspaceAbove
TextspaceBelow

z2
TextspaceLeft

TextspaceRight
TextspaceAbove
TextspaceBelow

isMarked

mark

markmark

Fig. 5. State-transition diagram

4.3 Topic “Format Styles”

If you include format styles, the object structures of text documents will increasingly
get more complex and manifold. Even if you restrict yourself to character- and
paragraph-styles the class diagram (Fig. 6) shows that in this case already four
different kinds of correlations are possible:

The most important format styles are paragraph-styles. The latter possess
paragraph attributes to format paragraphs assigned but also character attributes, with
which they format the whole set of characters (the so-called charactercollection)
included in the paragraph.

On the other hand, character styles can format single characters of the character
collection if wanted, that means that certain character values can be allocated to
chosen characters.

Occasionally you want to create a new paragraph- or character style which only
differs minimally from a given format style. In this case this format style can be used
as a basis for a new one. The relation isBasedOn expresses this option. If a format
styles attribute value is not defined explicitly which means that the value is nil, the
format style will select the corresponding value in the basis and pass it on.

Finally, the user can select one paragraph style in a given paragraph style which
will be relevant for the formatting of the next paragraph. The corresponding relation
is called isNext. In most cases thus a certain paragraph is related to itself.

152 S. Voß

Fig. 6. Class diagram of a text document format styles included

Classroom Approach

This time the participants of the course also get to know concrete case examples.
Here, paragraphstyleB is to be created on the basis of the given paragraphstyleA.
Paragraph1 then is to be formatted with paragraphstyleB. The structure of the
finished text document is represented by the follow object diagram:

 ParagraphStyleA

ParagraphStyleB

Paragraph1

Charactercollection1

isBasedOn

formats

Fig. 7. Object diagram with one paragraph formatted by paragraph-styles

As paragraphstyleB is generated from another one, it is not necessary that it defines
all the attribute values. Here the attribute values were specified as shown in Fig. 8:

The user now formats paragraph1 with the help of paragraphstyleB by marking
paragraph1 and finally selecting paragraphstyleB. So, paragraph1 and its character
collection1 receive all attribute values of paragraphstyleB which are defined there.

Informatic Models in Vocational Training for Teaching Standard Software 153

 ParagraphStyleB

FontType = Courier
FontSize = 10pt
FontColor = nil
isBold = nil
isItalic = nil
Underline = nil
…
IntendationLeft = nil
IntendationRight = nil
SpacingBefore = nil
SpacingAfter = nil
Alignment = justified
LineSpacing = nil
...

ParagraphStyleA

FontType = Arial
FontSize = 12pt
FontColor = black
isBold = no
isItalic = no
Underline = no
...
IntendationLeft = 0
IntendationRight = 0
SpacingBefore = 0
SpacingAfter = 0
Alignment = left
LineSpacing = single
...

Fig. 8. Object cards listing attributes and their values

All other attribute values, which are defined in paragraphstyleB are requested by
paragraphstyleB and delivered by its basis paragraphstyleA. The following sequence
diagram illustrates this process:

 Paragraph1

mark

Charactercollection

setting character
attribute values

PargraphStyleB PargraphStyleA

select
requesting missing

attribute values

delivering missing
attribute values

delivering paragraph attribute values

delivering character
attribute values

setting paragraph
attribute values

Fig. 9. Sequence diagram which illustrates the exchange of messages between various objects
by applying paragraphstyleB to paragraph1

After the single processes have finished the listed attribute values as shown in the
following object cards have been allocated to paragraph1 and charactercollection1.

154 S. Voß

 Charactercollection1

FontType = Courier
FontS ize = 10pt
FontColor = black
isBold = no
isItal ic = no
Underline = no
...

Paragraph1

IntendationLeft = 0
IntendationRight = 0
SpacingBefore = 0
SpacingAfter = 0
Alignment = justified
LineSpacing = single
...

Fig. 10. Object cards of paragraph1 and charactercollection1

5 Appraisal

With the help of two questionnaires immediately before and after the course the
author wanted to find out whether the participants benefited from the course.

0
1
2
3
4
5
6
7
8
9

10
11

basics graphics
and tables

format
styles

cross
references

headers
and footers

poor / bad

average

very good
/ good

0
1
2
3
4
5
6
7
8
9

10
11

basics graphics
and tables

format
styles

cross
references

headers
and footers

did not
take part

not
learned
anything

 learned
something

profited a
lot

Fig. 11. Appraisal of the participant´s knowledge before the course (above) and learning
progress after the course (below) dependent on the respective lesson item

In the first questionnaire the participants among other things were asked how they
assessed their own knowledge and their skills (very good, good, average, poor, bad)
in five contents (Fig. 11, above).

Informatic Models in Vocational Training for Teaching Standard Software 155

After the course they were asked to comment on the progress they had made. This
time they could tick off three options: profited a lot, have learned something, did not
learn anything (Fig. 11, below).

Although at the beginning a number of participants considered themselves as very
good or good in six cases altogether, in three of these cases they stated that they had
profited a lot, in other three cases they stated that they had at least learned something,
in two cases, people did not take part at the specific lesson.

Also, in six of eighteen cases where participants considered their own knowledge
in the different fields as average, they could profit a lot, in six cases they could learn
something and in two cases, they did not take part in the specific lesson.

At least, in 29 cases people stated before the course that their knowledge in the
respective fields was poor or bad. Later, in 21 cases of them, participants said they
had profited a lot, in five cases people at least admitted that they had learnt
something. A single person stated that he had not learnt anything. In two of these 29
cases, people did not participate in the relevant lesson.

Nearly all the participants have observed learning progress within all five ranges.
So it is possible that informatic concepts can indeed help people to learn intensive
word processing.

References

1. Brinda T.: Didaktisches System für objektorientiertes Modellieren im Informatikunterricht
der Sekundarstufe II. Dissertation, FB Elektrotechnik und Informatik, Universität Siegen,
2004

2. Hubwieser, P.: Informatik am Gymnasium. Ein Gesamtkonzept für einen zeitgemäßen
Informatikunterricht. Habilitationsschrift, Fakultät für Infromatik, Technische Universität
München, 2000

3. Frey E., Hubwieser P., Humbert L., Schubert S., Voß S.: Informatik-Anfangsunterricht. In:
LOG IN 21 (2001) 1, S. 20-32

4. Staatsministerium für Unterricht und Kultus des Landes Bayern (Hrsg.): Lehrplan für die
Klasse Informatik im G9 (10.09.2004)
http://www.isb.bayern.de/gym/informat/lehrplan/inf-6.pdf
Fachprofil informatik (10.09.2004)
http://www.isb.bayern.de/gym/informat/lehrplan/i-fachpr.pdf

5. E. Frey, P. Hubwieser, F. Winhard: Informatik 1. Objekte, Strukturen, Algorithmen. Ernst
Klett Verlag, Stuttgart, 2004

6. Siglinde Voß: Informatik in der 6. Jahrgangsstufe. In [10]
7. Balzert H.: Lehrbuch der Software-Technik; Heidelberg, Berlin; Spektrum, Akad. Verl.

Bd. 1. Software-Entwicklung, 2000
8. Oestereich B.: Objektorientierte Softwareentwicklung: Analyse und Design mit der

Unified modeling language; München, Wien: Oldenbourg, 2001
9. Voß S.: Objektorientierte Modellierung von Software zur Textgestaltung. In: [11]

10. ZBORNIK RADOVA (Hrsg.), SAVREMENE INFORMATICKE I OBRAZOVNE
TEHNOLOGIJE I NOVI MEDIJI U OBRAZOVANJU, Sombor 2004

11. Hubwieser, P. (Hrsg.): Informatische Fachkonzepte im Unterricht. Köllen, Bonn, 2003

R.T. Mittermeir (Ed.): ISSEP 2005, LNCS 3422, pp. 156 – 165, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Evolving Boxes as Flexible Tools for Teaching
High-School Students Declarative and Procedural

Aspects of Logic Programming

Bruria Haberman1 and Zahava Scherz 2,*

1 Computer Science Dept., Holon Academic Institute of Technology, and
Dept. of Science Teaching, The Weizmann Institute of Science,

Rehovot 76100, Israel
bruria.haberman@weizmann.ac.il

2 Dept. of Science Teaching, The Weizmann Institute of Science,
Rehovot 76100, Israel

zahava.scherz@weizmann.ac.il

Abstract. During the last decade a new computer science curriculum has been
taught in Israeli high schools. The curriculum introduces CS concepts and
problem-solving methods and combines both theoretical and practical issues.
The Logic Programming elective module of the curriculum was designed to
introduce to students a second programming paradigm. In this paper we
describe how we used evolving boxes, when teaching abstract data types
(ADTs), to introduce the interweaving declarative and procedural aspects of
logic programming. The following types of evolving boxes were used: (a) black
boxes that could be used transparently, (b) white boxes that could be modified
to suit specific needs, and (c) grey boxes that reveal parts of their internal
workings.

We conducted a study aimed at assessing students’ use of ADTs. The
findings indicated that the students demonstrated an integrative knowledge of
ADT boxes as programming tools, and employed unique autonomous problem-
solving strategies when using ADTs in programming.

1 Introduction

During the last decade a new computer science curriculum has been taught in Israeli
high schools. The curriculum introduces CS concepts and problem-solving methods
independently of specific computers and programming languages, along with the
practical implementation of those concepts and methods encountered in actual
programming languages [5, 6]. One elective module of the curriculum- Logic
Programming, was designed to introduce a (second) declarative programming
paradigm.

Logic programming (LP) enables programmers to concentrate on the declarative
and abstract aspects of problem solving, and usually liberates them from dealing with

* Corresponding author.

 Evolving Boxes as Flexible Tools 157

the procedural details of the computational process. However, sometimes the
procedural aspects of logic programming, besides the declarative ones, are also
encountered, especially when manipulating compound data structures. Therefore, it is
important to use suitable instructional tools to teach the interweaving declarative and
procedural aspects of programming. One way that this can be accomplished is by
using evolving programming boxes.

We developed a two-stage “Logic Programming” course, implemented in the
Prolog programming language, which was designed for high-school students. One
main goal of the course was to expose students to different aspects of logic
programming and to enhance their problem-solving and design skills in the context of
the LP paradigm. The 90-hour basic module was designed, as part of the CS
curriculum, for beginners and covers the following topics: introduction to
propositional logic and predicate logic, including logic programming, data base
programming, compound data structures, recursion, lists, introduction to abstract data
types (ADTs), and basic methods of problem solving and knowledge representation.
The 60-hour advanced module, designed for advanced students who had already
learned the basic module, introduces advanced methods of problem solving and
knowledge representation, advanced generic abstract data types, and advanced
programming techniques [11].

Being a declarative language, logic programming is suitable for knowledge
representation and content formalization [16]. Abstract data types are considered as
useful tools for CS problem solving and knowledge representation [1]. Since logic
programming abstracts the manipulation of compound data structures by hiding
procedural aspects and details of their implementation [2], it is convenient for
implementing and utilizing abstract data types; hence, it is a suitable programming
environment for teaching the notions of ADTs [11].

The abstract data type, which is discussed in both modules of the “Logic
Programming” course as a recurrent CS concept, is introduced to students as a
mathematical model with a set of operations [1]. Specification of an ADT is achieved
by formally and verbally defining its use as a model and its operations.
Implementation of an ADT is achieved by means of the logic programming language
by formulating rules to define general predicates for each of the specified ADT
operations. The actual implementation of an ADT is achieved by creating a black
box. The use of an ADT for problem solving is done by defining problem predicates
using predefined general predicates.

Here we present how we used evolving programming boxes to gradually introduce
ADTs as flexible problem-solving and programming tools. We demonstrate how
evolving boxes may be employed to foster students' ability to organize declarative and
procedural programming knowledge. We employed our instructional approach to
teach declarative and procedural aspects of logic programming. However, these tools
can be adopted to introduce similar aspects of any programming paradigm.

1.1 Evolving Programming Boxes

In this section we describe three typical types of evolving programming boxes that
can be used in different layers of abstraction.

158 B. Haberman and Z. Scherz

Black Boxes: A black box is a fully implemented component with predictable
functionality and pre-defined interface. Every black box has two components: (a) an
interface visible to the user, which describes the implemented operations; in the
context of logic programming, each general predicate is characterized by its name, its
arguments, its meaning, and assumptions that relate to the way the predicate should be
invoked during a programming process; (b) An implementation component that
encapsulates the details of how the operations (general predicates in the case of logic
programming) were implemented.

The underlying idea of using black boxes, according to the information hiding
principle, is that the end-user is only permitted to know what the black box does, and
is not allowed to know how the operation is done. Accordingly, the end-user does not
need to know how predefined operations are implemented within the black box. The
access to source code is therefore denied, and the use of black boxes is done by
transparently invoking the encapsulated predefined operations to define new
operations.

White Boxes: Black boxes are ready for use without modification but cannot be
customized to satisfy the requirements of a particular application. In contrast, white
boxes are visible modules with accessible source code, and the user is supposed to
read and understand thoroughly their internals, with the possibility of copying and
modifying them to suit his needs.

Accessibility to the code has pedagogical as well as practical aspects. More
specifically, it enables the student to learn and practice programming by: (a)
understanding how a given code was implemented according to a given specification,
(b) learning from examples how to create new and similar modules, (c) practicing
debugging and modifying a given code to suit individual needs.

Grey Boxes: When black boxes provide too little information and white boxes reveal
too much, we need to go for a middle ground, which we termed grey boxes. A grey
box reveals parts of its internal workings, not just the relations between the input and
output. The information can become as detailed as necessary where needed.
Revealing some internal information might also help the client (programmer) improve
the performance of the complete system [3].

Black, white, and grey boxes are used in programming, especially in the
development of object-oriented systems [7, 17]. White and black boxes are used to
formally define behavioral compositions expressed via contracts [12].

Educators have stated that integrating black, grey and white boxes into the process
of instruction has pedagogical benefits [7, 9, 11, 13, 15, 17]. For example, Eckstein
[7] describes how various techniques emphasize different aspects of the architectural
design of a framework, and how these techniques can be combined into a general
paradigm for instruction. Specifically, she recommends integrating the following
instructional methods: black box teaching, white box teaching, and incremental
teaching, to explain a complex object technology-based framework by using smaller
and simpler frameworks and patterns. She claims that in this way, the students
become progressively more familiar with the context of the learned framework and its
possibilities, and will recognize the overall picture and the functionality of the
framework [7]. Haberman and Ben-David Kollikant demonstrated how black boxes
can be utilized to introduce basic programming concepts to novices [9]. Haberman

 Evolving Boxes as Flexible Tools 159

used black boxes to teach beginners how to use lists in Prolog, thus avoiding the
burden of the implementation details, which were found to be very complicated [8].
Here we describe how we used evolving ADT boxes to emphasize the declarative and
procedural aspects of logic programming.

2 The Instructional Approach

According to our instructional approach, we recommend that the ADT concept be
gradually presented in 8 consecutive stages, as illustrated in Table 1. Stages 1-4 are
designed for all students (beginners and advanced); we integrated them in the basic
module of the logic programming course. We suggest that stages 5-8, which appear to
be complicated [8], should be taught exclusively to advanced students. Accordingly,
we integrated those stages into the advanced module of the course. Stages 1-3 deal
with one specific type of problem solving, namely by using predefined tools to solve
problems and to write programs. However, stages 4-7 deal with various aspects of
implementation and with the development of new tools.

Stage 8 integrates both types of problem solving and provides a set-up for learning
and using ADTs in the context of knowledge integration similar to the one described
in [3]. We suggest that in order to foster integrative knowledge, besides learning new
aspects of ADTs, students should progress in each stage, using all the tools and
methods that they acquired in previous stages. Next, we describe the activities
associated with each stage.

Stage 1 - Acquaintance with given specifications of ADTs: Initially students
become acquainted with the specification of generic abstract data types (e.g., lists,
sets, multi-sets, trees, and graphs). Suitable examples of concrete problems should be
used to illustrate the presented ADTs. Students should realize that the specification of
an ADT is independent of the implementation (programming) stage, and of the
programming environment.

Stage 2 - Use of ADTs to solve a given problem: Next, students should practice how
to choose "known" ADTs to solve a given problem. For example, students should be
able to determine that the tree- ADT is the most suitable one to present the family
parenthood relationship between the females (or males), whereas the graph-ADT
should be used to present that relationship between all the family members (without
referring to a specific gender).

Stage 3 - Use of ADT black boxes in programming: One of our main pedagogical
goals was to emphasize the declarative aspects of programming: To the end, the black
boxes are presented in terms of what they do and not how it is done. In this stage, we
emphasize the following declarative aspects: (a) the use of a black box is independent
of its implementation and therefore does not require becoming acquainted with the
implementation details; (b) the use of a black box binds to its interface. Moreover, the
use of black boxes has declarative aspects in the sense that the definition of problem
predicates is done declaratively in terms of general ADT predicates. For example, the
definition of a student in a specific class is phrased as follows: “a person is a student
in a class if he is a member of the list of students who belong in that class”. However,

160 B. Haberman and Z. Scherz

procedural aspects must be also taken into account when using black boxes to
implement declarations in order to accomplish a working program.

Accordingly, we suggest that at this stage students should practice using predefined
ADT black boxes to write computer programs that solve given problems. Specifically,
students are taught to define new problem predicates by transparently invoking
predefined general predicates. In addition, ADT black boxes should also be used by
students simply to define new general ADT predicates in terms of the predefined
ones.

Stage 4 - Specification of new ADTs: At this stage the student plays the role of a
consumer who specifies and orders a new ADT black box from his teacher. The
teacher implements the required ADT according to the student’s specifications in
terms of a black box, which is then used by the student to write his program.

Table 1. Gradual presentation of the ADT concept

Stage Emphasized Aspects of
programming

Target

Population

Acquaintance with given
specifications of ADTs

declarative

Determination of ADTs to
solve a given problem

declarative

Use of ADT black boxes in
programming

declarative and procedural

Specification of new ADTs declarative

beginners and
advanced

Acquaintance with ADT grey
boxes

procedural

Manipulation of ADT white
boxes

procedural

Implementation of new ADTs procedural

Knowledge integration and
autonomous problem solving

declarative and procedural

advanced only

Stage 5 - Acquaintance with predefined ADT grey boxes: After students became
familiar with the specifications and the use of ADTs, we suggest that they gradually
learn how to implement an ADT according to its specifications. Initially, students
become acquainted with the implementation of familiar ADTs. At this point the black
boxes that have been transparently used in the previous stage become unfolded, i.e.
the code within the black box is no longer hidden. Actually, at this point the black box
becomes a grey box – visible yet only read, and the students perform operations such
as reading the code, running the code and following up its execution in order to
understand "how it works". At this stage students are also exposed to new procedural
aspects of data implementation in terms of the language constructs (e.g., recursive

 Evolving Boxes as Flexible Tools 161

data structures) and new techniques of data manipulation (e.g., recursive list
processing).

Stage 6 - Manipulation of Predefined ADT White Boxes: At this stage the read
only boxes turn out to be white boxes and the code becomes "more" accessible in the
sense that it can also be modified. Here the following procedural aspects of
programming are emphasized: students learn advanced programming techniques and
efficiency aspects, and practice code debugging, code modification, and writing new
code from scratch.

Stage 7 - Implementation of New ADTs: After becoming acquainted with the
implementation of predefined ADT boxes, the students experience how to implement
new ADT boxes according to a defined specification. At this stage they eventually
become independent of the teacher in terms of supplying built-in programming tools.
The following procedural aspects should be emphasized: (a) an ADT is implemented
according to its specification; (b) the implementation of an ADT is encapsulated in
terms of a black box; and (c) an ADT may have alternative black box
implementations.

Stage 8 - Knowledge Integration and Autonomous Problem Solving: At this stage
students make a significant step toward attaining proficiency, and they practice
solving advanced and complex problems. To succeed in these complex missions,
students need to understand how the problem-solving patterns that they have already
acquired are connected to specific examples and to new problems; they also need to
adapt their patterns to suit more complex situations [3]. Moreover, they have to
integrate the knowledge that they have gained when learning, creating, and using
ADTs in previous stages, and to successfully incorporate it into their solving-program
processes.

On the one hand, the students start acting like autonomous standalone developers,
reusing their own tools, and on the other hand, they experience sharing tools with
peers and reuse others' tools. Actually, they employ ADTs to solve a given problem
in the following process: They try to determine familiar ADTs suited for the given
problem and use the relevant predefined black boxes. When the predefined ADTs do
not suit their needs, they specify new ADTs from scratch or modify the specification
of other ADTs, implement them in terms of black boxes, and then use them to
develop their programs. The implementation of new black boxes is done based on the
knowledge acquired when manipulating grey and white boxes.

3 Fostering Integrative Programming Knowledge

During the last few years, we have conducted an ongoing study aimed at assessing
various aspects of students' use of ADTs in the Prolog environment: (a) one part of
the study focused on students' strategies for using ADTs to develop Prolog programs
[11]; (b) another part of the study focused on the role of ADTs in the project
development process [15]; and (c) another part was concerned with students' views
toward ADTs [10].

We found that students adapted various strategies for using ADTs, some of which
proved that they correctly grasped ADT as a formal CS concept. Other students

162 B. Haberman and Z. Scherz

improvised alternative strategies, which indicated that their conception of ADT did
not match the correct CS definition. Nevertheless, the use of ADTs for problem
solving and knowledge representation helped many students to develop correct
programs regardless of the strategies they used [11]. The findings also revealed that
for most students, ADTs served as a project development organizer [15], and they
mostly expressed positive attitudes toward ADTs as problem solving and
programming tools [10].

Based on those findings, here we discuss the students’ perception of ADT boxes
from another perspective–the use of predefined modules of code as multifunctional
components for composing and editing a program.

3.1 Students’ Perceptions of ADT Boxes

We found that students had gained various perceptions of ADT boxes and of their role
in programming. Figure 1 illustrates the types of boxes that reflect students’
perceptions in terms of code transparency and accessibility. The less opaque the box
is, the more it is accessible and changeable.

Perception of box Type of box Associative activities
Sealed, inaccessible Black Box Transparent use

Visible, yet
incomprehensible “Copy
and paste”

Unfolded
Grey Box

Code cloning (duplication)

Visible, comprehensible,
yet unchangeable

Read Only
Grey Box

Comprehension of
implementation details

Problem-oriented
“Cut and paste”

Flexible
White Box

Deleting code, Asserting code

Generic Templates for
defining new predicates

White Box Code modification, rewriting,
creating new boxes

Fig. 1. Perception of ADT boxes

Sealed inaccessible black boxes: Beginners who had studied how to use ADT black
boxes but were not acquainted with their implementation, perceive the boxes as an
integral part of the programming language. Most of them consider the black box as a
sealed entity whose content is inaccessible. They believe that it is impossible to
examine the contents of the box or to change it; accordingly, they transparently
invoke general predefined predicates in order to define new problem predicates. Most
of the advanced students also use familiar generic black boxes transparently when
defining new predicates, even though they have access to the context of those boxes
and are familiar with their implementation. These students demonstrate the ability to
decide when to use a predefined code as a black box or as a white box.

Unfolded black boxes: We found that students define problem predicates by cloning
(non-transparently invoking) general predicates, and actually copy their implementa

 Evolving Boxes as Flexible Tools 163

tion from the black box to the main program. Advanced students who are familiar
with the content of the boxes usually use this strategy. Interestingly, we also found
that some of the beginners used this strategy as well, even though they were not
familiar with the box's implementation. They unfold the black box and reveal its code
only for copy and paste purposes. Most of them do not try, nor do they demonstrate
any willingness to understand the actual code inside the box. They just copy a
selected part of the code and insert it, as is, in their programs. Actually, they perceive
the ADT black box as a collection of predicates that can be duplicated and inserted in
other programs. The findings indicated that these students are convinced that a correct
program should contain all the definitions of the predicates involved. Moreover, they
believe that copying the definition of the invoked general predicate contributes to a
better understanding of the meaning of the newly defined predicates.

Read only boxes: We found that students use a white box as read only scaffolding
tool for implementation purposes. They do not copy or rewrite definitions from the
given predefined box. Instead, they first try to define problem predicates on their own,
according to the conceptual patterns they had gained through the learning process and
then check whether their definitions are compatible with those of the relevant general
predicates in the box.

Flexible problem-oriented white boxes: Many advanced students perceive the
predefined ADT box as a flexible box that can be reduced or expanded according to
the problem to be solved. The reduction of the box is done by deleting redundant
predicates. Students justify this approach by arguing that there is no point in
overloading the computer’s memory by the implementation of predefined predicates
that are not used in the problem-solving process. The expansion of the box is
accomplished by additionally implementing new, necessary general predicates that
are used to solve the given problem.

White boxes as tools for defining new predicates: Many advanced students rewrite
the definitions of general predefined predicates (instead of transparently invoking the
general predicate) to define new predicates. Actually they use them as templates and
rewrite their definitions by making small changes.

3.2 Construction of Integrative Knowledge

The findings of our study indicated that the students had constructed integrative
declarative and procedural knowledge of ADT boxes, and they employed them in
unique ways to develop programs. The use of predefined black boxes for ADT
enabled them to concentrate on high-level cognitive tasks such as problem analysis,
problem solving, and knowledge representation without the burden of knowing
complex implementation details. In contrast, the white boxes enabled students to
learn, through examples, how to implement ADTs according to a given specification,
and to practice code reuse and modification. The students defined their own rules of
using ADT boxes and demonstrated a variety of strategies of using them while writing
their programs. Those who learned and comprehended the notions of the formal ADT
concept, used it the way expert programmers do: They first try to determine the
suitable predefined ADT for the given problem and then transparently use the relevant
ADT black box. Only when the familiar predefined black boxes are insufficient to

164 B. Haberman and Z. Scherz

solve the problem, do they unfold a relevant box and make the minimal necessary
changes, or specify and implement a new ADT. Once the new ADT box is
implemented, they use it transparently as is common among professionals. In contrast,
students who are immature, and are still in the middle of the learning process,
interpret in their own way the roles of the ADT boxes. Some of them avoid using
black boxes because they believe that the encapsulation of the general predicates they
used reduces the meaning, clarity, and completeness of their programs. Others,
although beginners, transparently used predefined black boxes, and temporarily
avoided using them when they started learning about their implementation [11].

4 Conclusion

In this paper we demonstrated how evolving ADT boxes can be employed to teach the
interweaving declarative and procedural aspects of logic programming. We believe
that the suggested instructional model can be adopted to emphasize various aspects of
any programming paradigm, and can also be used to guide the students toward
proficiency in programming based on abstraction and code reuse.

We recommend that the suggested instructional model be employed while
providing the students with an appropriate learning environment that promotes
learning processes in the context of knowledge integration [4]. Various aspects of the
learning concept should be introduced in different ways by repetition through simpler
frameworks [7]. Scaffolding examples should be used to demonstrate the activities
associated with each stage of the model; appropriate exercises and support activities
should be developed to motivate students to use black boxes, comprehend the code of
white boxes, reuse code provided by others, modify code, and choose the appropriate
boxes to solve given problems. Moreover, in order to foster integrative knowledge,
students should continue, in each stage of learning, to practice and meaningfully
utilize the tools and the methods that they have previously acquired.

References

1. Aho, A.V. & Ullman, J.D. (1992). Foundations of Computer Science, W.H. Freeman and
Company.

2. Ben-Ari, M. (1995). Understanding Programming Languages. John Wiley.
3. Buechi, M. & Weck, W. (1997). A plea for Grey-Box components. Workshop on

Foundations of Object-Oriented Programming, Zürich, September 1997
Available:http://www.cs.iastate.edu/~leavens/FoCBS/buechi.html

4. Clancy, M.J. & Linn, M.C. (1999). Patterns and Pedagogy. ACM SIGCSE Bulletin, 31(1),
37-42.

5. Gal-Ezer,J., Beeri, C., Harel, D., & Yehudai, A. (1995). A high-school program in
computer science. Computer, 28(10), 73-80.

6. Gal-Ezer,J., Harel, D. (1999). Curriculum and course syllabi for high school CS program.
Computer Science Education, 9(2), 114-147.

7. Eckstein, J. (1999). Empowering framework users. In Building Application Frameworks:
Object-Oriented Foundations of Framework Design. Mohamed E. Fayad, Douglas C.
Schmidt, and Ralph E. Johnson (Eds.). John Wiley & Sons, 505-522.

 Evolving Boxes as Flexible Tools 165

8. Haberman, B. (1990). Lists in Prolog. M.S. Thesis. The Weizmann Institute of Science,
Rehovot, Israel. (in Hebrew)

9. Haberman, B. & Ben-David Kollikant, Y. (2001). Activating “black boxes” instead of
opening “zippers” – A method of teaching novices basic CS concepts. ACM SIGCSE
Bulletin, 33(3), 41-44.

10. Haberman, B. & Scherz, Z. (2003). Abstract data types as tools for project development –
High school students’ views. Journal of Computer Science Education online, January
2003. Available: http://iste.org/sigcs/community/jcseonline/

11. Haberman, B. Shapiro, E. & Scherz, Z. (2002). Are black boxes transparent? – High
school students’ strategies of using abstract data types. Journal of Educational Computing
Research, 27(4), 411-236.

12. Helm, R., Holland, M. & Gangopadhyay, D. (1990). Contracts: Specifying behavioral
compositions in Object-Oriented systems. In Proceedings of the European Conference on
Object-Oriented Programming on Object-oriented programming systems, languages and
applications (ECOOP/OOPSALA). 25, Ottawa Canada, October 1990, 169-180.

13. Kiczales, G. (1994). Why are black boxes so hard to reuse? Invited talk, OOPSLA'94.
Available: http://www.parc.xerox.com/spl/projects/oi/towards-talk/transcript.html

14. Resnick, M., Berg, R. & Eisenberg, M. (2000). Beyond black boxes: bringing transparency
and aesthetics back to scientific investigation. Journal of the Learning Sciences, 9(1), 7-30.

15. Scherz, Z. & Haberman, B. (2003). The role of abstract data types in the project
development process. Submitted to Journal of Computer Science Education.

16. Sterling, L. & Shapiro, E. (1994). The art of Prolog (2nd ed.). Cambridge, MA: MIT Press.
17. Warford, J.S. (1999). Black Box: A new Object-Oriented Framework for CS1/CS2. ACM

SIGCSE Bulletin, 31(1), 271-275.

R.T. Mittermeir (Ed.): ISSEP 2005, LNCS 3422, pp. 166 – 177, 2005.
© Springer-Verlag Berlin Heidelberg 2005

The Role of ICT and Informatics in Austria’s
Secondary Academic Schools

Peter Micheuz

University Klagenfurt, A-9020 Klagenfurt, Austria
peterm@isis.uni-klu.ac.at

Abstract. Secondary academic schools in Austria provide students with a broad
and extended general education. That is their mission. But although these
schools consider it as one of their foremost tasks to impart knowledge, they also
aim at providing students with other qualifications and skills. This paper
describes the special and important role of Informatics and ICT on the lower
and upper secondary level. Here an attempt is made to constitute the claim for
the subject Informatics as part of general education from a scientific point of
view. The recent and still ongoing shift of this subject from the upper level to
the lower level secondary education caused some confusion about the
allegedely different subjects such as introduction into Informatics, IT or ICT. In
the perception of a broad public and even of teachers these terms mean almost
the same thing. In this paper I suggest the acceptance of a broader view of the
subject Informatics. Moreover an evaluation of all ongoing informatical
activities at the secondary academic schools in Austria and subsequently the
building of a framework of informatical competence for the whole scope of
these particular schools is desirable.

1 Introduction

The question of how to deal with Informatics and later with ICT in education is as old
as the introduction of computers and the internet in schools. Social and technologic
developments, associated with an evident change from the industrial to the
information and knowledge society, left their marks also in form of an enlarged offer
of corresponding subjects in education. Governments have to facilitate the basic
conditions that schools can provide their pupils and students with a modern education
wherein Informatics and IT-relevant subjects play an important role. The importance
and significance of the subject Informatics respectively ICT can be deduced from its
weight in the timetables of all subjects in various types of schools. In this paper I will
focus on Austria's secondary academic schools (allgemeinbildende höhere Schulen,
AHS) and the relevance of this subject in these particular schools.

Secondary academic schools in Austria educate pupils in the age-groups 10 up to
18 years. About 30% of all primary school leavers in Austria attend academic
secondary schools [2]. Compulsory education in Austria ends after 9 years of school
attandance and after that about 40% are attending secondary higher schools. About
35% of these students are educated in the AHSes till the final exam ("Matura") [15].

 The Role of ICT and Informatics in Austria’s Secondary Academic Schools 167

Passing it is required for further study at university. The other 65% of the students
graduate at vocational schools providing the students with reinforced technical and
economic education. At the moment we can observe a growing tendency to attend
vocational schools for various reasons. One reason could be, that in a technically and
economically driven society, general education gets out of fashion. It also seems that
the attraction of vocational schools correlates to a certain extent with excellent
computer equipment and a wider offer of Informatics and IT-related subjects.

Some Austrian secondary academic schools in Austria reacted to this phenomenon
with a reinforced offer of Informatics education and thus improved "customer
retention". As an example, Fig. 1 shows very impressively the increase of the number
of alumni in 1996 due to the new attractive subject Informatics in the school where I
am teaching (Gymnasium Völkermarkt, Austria).

Fig. 1. Development of the number of alumni at the Gymnasium Völkermarkt

In 1996 Informatics in general was a real attraction. But this effect could not be
maintained till today. Offering just Informatics does not guarantee to attract pupils
any longer. 15 years ago introducing Informatics in the lower level of secondary
education ago was quite unusual and innovative. Hence it was a distinguishing factor
between competing schools.

2 About the Legitimation of the Subject Informatics in General
Education

Besides the very pragmatical reasons for reinforcing Informatics at schools in order to
attract pupils and to pretend progressiveness, there are other fundamental reasons
which can be considered to legitimate this subject. Many computer scientists and
teachers who are engaged in the field of Informatics didactics never end to demand an
obligatory subject Informatics at schools. Especially in Germany and Switzerland we
can find petitions for an establishment of Informatics in general education.

A widely accepted idea of general education which can be applied to the specific
curricula at schools is due to Bussmann/Heymann [5]. Hubwieser [12] and Schwill
[19] are adapting their ideas and deducing from them a viable legitimation for an
independent subject Informatics as an indispensable part of general education.
Another approach for the demand of imparting informatical competencies in schools

168 P. Micheuz

by means of an independent subject can be found at [10]. There Friedrich refines the
recommendations of the GI [20].

Another basic argument for the general character of the subject Informatics is
found in [19]. There Schwill adapts the fundamental ideas of Bruner for the field of
Informatics. Humbert [19] deduces the legitimation for this subject by a well-founded
philosophical approach of (computer) science.

To round up the arguments which can be interpreted in a wider sense for an
integrative but still independent subject Informatics the following position might be
remarkable.

"If thinking about the next generation of computers and the generation after that",
David Cliff predicts in [7] for the near future, "more immissions of natural systems
and sciences into the field of Informatics and also into curricula are a consequence".
Perhaps the amendment of secondary education in Bavaria points already in a
direction where the subject Informatics in the 6th and 7th grade is part of a broader
subject area called "nature and technics" [1].

3 Austria’s Secondary Academic Schools – A Survey with Respect
to Informatics and ICT

Is there a legitimation problem for the subject Informatics in Austria's secondary
academic schools? Since 1985, when Informatics has been established in these types
of schools, this subject has survived among the canon of obligatory subjects. But
Informatics is only obilgatory in the 9th grades for 15 year old pupils for a two-hour
lesson per week. The term "survival" is not far-fetched because in 2003 the Austrian
ministry of education reduced the amount of lessons per week for all types of schools
and for all age-groups by two. And for a certain time it was not clear that the
compulsory subject Informatics would persist. Two hours of Informatics lessons per
week in the 9th grade are assured and from the 10th to the 12th grade the subject
Informatics can be chosen as elective. But this does not imply that Informatics and
ICT are not present in the lower level of secondary academic schools. Quite the
contrary, the Informatics/ICT scenery in Austria's secondary academic schools is for
reasons of autonomous decisions made by the individual schools very alive and
dynamic. As a consequence it is very inhomogeneous.

"In 1995 a fundamental school reform was started. It provided for autonomy of
schools, giving them the possibility to develop their own characteristic school profiles
and to establish areas of emphasis. In 1999 a new curriculum was introduced for the
lower level of academic secondary schools and for general secondary schools. It
consists of core and extension areas. On the basis of this curriculum, a new
curriculum for the upper level was developed as well. It came into force in the school
year 2004/2005. Another important step in this process of enhancing quality at school
is the change from measuring input to measuring output. In this context, work is
under way for establishing the educational standards for the fourth grade of primary
school, general secondary school and academic secondary school. In this context it is
also worth mentioning that the European Computer Driving License (ECDL) has
developed into a best-practice model. Austrian pupils have passed a total of 320,000
individual modules since the year 2000. Thanks to the initiative “eFit Austria” schools

 The Role of ICT and Informatics in Austria’s Secondary Academic Schools 169

are very well equipped with PCs. In Austrian secondary technological schools one PC
is available for every four pupils. [2]"

This abstract of the recent report from Austria's Ministry of Education indicates
five remarkable statements.

1. The autonomy of schools to alter timetables and introduce new subjects
2. New curricula
3. Change from input orientation to measuring output
4. Establishment of educational standards
5. Offering and support of the ECDL (and other IT-certificates)

These items have more or less important implications for the role of Informatics
and ICT. They will be discussed in more detail in the next chapter.

4 Results of Autonomy in the Field of Informatics and ICT

Currently, there exist no comprehensive studies and statistics about the present
realizations of autonomous initiatives in general. In consideration of thousands of
schools this is not surprising. The more autonomy the less overview and vice versa.
This includes also the fact that since 1992 [23] no nationwide empirically based study
regarding Informatics and ICT in schools has been initiated.

Therefore, I am not able to quantify exactly the extent of Informatics and ICT in
Austrians secondary academic schools. But I dare to give a qualitative overview due
to informal surveys and reports.

At the lower level of secondary academic schools, autonomic decisions have
already been made for some years. Although Informatics does not explicitly occur in
the canon of obligatory subjects, there have been many initiatives in establishing
Informatics in this age group. The 10-14 year old pupils today face a wide range of
offer in the field of Informatics, which varies from school to school. In this spectrum
we find courses for typewriting, word processing, courses preparing the ECDL, non-
obligatory tutorials, and even not so few (in some federal states about 50%)
obligatory lessons in Informatics which have been established at the expense of other
subjects. Furthermore there are some models to integrate the computer and
informatical methods in Mathematics, foreign languages or other established subjects
such as Geography.

More than a decade ago this integrative approach was propagated and demanded
by ministerial enactment. But in retrospective, one can state that this did not work in a
satisfactory manner. The reasons were lack of appropriate standardized software,
insufficient hardware at that time, and therefore, last but not least, the rather poor
acceptance of the teachers involved. The situation in Germany was almost the same.
The German initiative "ITG" (Informationstechnische Grundbildung) was doomed to
fail for the same reasons.

In the meantime the conditions for ICT at schools have noticeably improved
although they are far from being perfect. It is somehow remarkable but not
astonishing that many secondary academic schools in Austria recognize the
importance of introducing ICT or even Informatics at the exspense of other subjects.

170 P. Micheuz

Due to the ministerial strategy of extending autonomous facilities also to the higher
level of secondary education it is, since this school year 2004/2005, possible to
establish Informatics also as an compulsory subject in grades higher than 9th.

5 The European View

In [9] a comprehensive survey of "Key Data on Information and Communication
Technology in Schools in Europe" is published. Many figures illustrate the state of the
school computerization, the number of computers per student, and the teacher
education which varies from country to country. In nearly all comparisons Austria is
ranked above average. This study on ICT also deals with the broad range of curricular
objectives in general lower secondary education. In detail the investigation revealed a
wide coverage of the objectives: Learning the correct use of standard software (word
processing, spreadsheets …), learning the search for information, communicating via
a network, using ICT to enhance subject knowledge, and developing programming
skills.

It is remarkable that the last item "developing programming skills" can be found in
this enumeration. The minor part of the European countries specifies programming
skills for this level of education. This situation changes significantly when we
consider the upper secondary level where only Belgium, Spain, France, Ireland, the
Netherlands, and Norway do not mention "programming skills" in their ICT-curricula.

Comparing European educational systems is a very challenging task and for
reasons of the vast variety very difficult. This task even gets more complicated in
terms of IT-literacy, ICT and Informatics at schools. Whereas the term and the subject
ICT is to a great extent unambiguous throughout Europe and its items can easily be
subsumed (see above), this does not apply to the subject Informatics. Only in very
few European countries such as Germany, Austria, Latvija, the Netherlands, there is a
special subject called Informatics at all.

Fig. 2. Spectrum of Informatics/ITC in the AHSes

 The Role of ICT and Informatics in Austria’s Secondary Academic Schools 171

A strong postulate for an independent subject Informatics has been published by
Breier [3]: "We are deliberately breaking with the integration of computer science in
affined subjects, recommended in the overall plan of the conference of federal states,
as we take the view that the reasonable handling of information and information
systems as well as the other cultural techniques, reading, writing and counting cannot
be taught integrated in other subjects". In Germany there are still efforts to legitimate
and establish Informatics as an obligatory subject also at a lower level, whereas in
Austria the responsibility for an above-average provision of Informatics is delegated
to schools.

For 20 years Informatics is a mandatory subject for all pupils in the 9th grade of
Austria's secondary academic schools and an elective subject from the 10th to the 12th
grade (see Fig. 2). In the late eighties and early nineties, when the computer played
only a minor role in the secondary lower level, there was an implicit agreement on the
content of this subject. At that time, computers with their limitations as informing and
communicating tools were not appropriate for introducing ICT for all pupils.

But with the upcoming fascinating high potentials of multimedia and networked
computers and with the ubiquitous presence of Informatics systems a veritable shift
took place. It caused a partial relocation of Informatics from higher secondary level to
lower secondary level. As a matter of fact over ten years ago, most of the pupils had
their first experience with computers at school. In contrast, today pupils are already
"digital natives" whereas teachers are "digital immigrants" [7].

In order to reinforce this statement, a recently accomplished study in 5th and 6th
grades among the 10-12 year old pupils in secondary academic schools revealed that
almost all have access to computers at home and nearly 70% to the internet.
Moreover, amost all of them have already made some pre-experience with the
computers at primary schools [16].

6 Can Informatics be Used as Generic Term for Computer
Science, ICT and IT-Literacy in Schools?

Curricular school autonomy in Austria has made it possible to establish autonomous
foci especially in the secondary lower level. The schools themselves are responsible
not only for the altered timetables where Informatics and ICT figure to a various
degree and in various forms. The spectrum ranges from a self-dependent subject
Informatics to e-Learning initiatives and to carrying out interdisciplinary projects.

IT-competency at this level is varying from school to school and from federal state
to federal state. This variety is also expressed by different synonyms and denotations
for similar, if not the same, subjects. Within this scope we can find Informatics as
well as information technology, introduction into Informatics, basic education in
Informatics or even word processing and keyboarding.

Based on informal talks with colleagues I know that this situation is not really
satisfying. But is this really Informatics what is taught at this level?

Hubwieser claims: "Unfortunately the term Informatics is misused for every
activity with the computer. The spectrum reaches from a computer aided video course
to elementary type writing on the keyboard" [12]. Like Breier, he also pleads for a
fundamental informatical education beyond the mere training of computer skills.

172 P. Micheuz

Bavarian secondary academic schools are about to implement and realize
Hubwieser's concept which focuses on six areas of computer education. There are
designing graphics and editing text, arranging files hierarchically in file systems,
achieving and transporting information by e-mail, linking extended amounts of
documents into hypertext structures, extracting significant content out of the WWW,
first steps of programming. Informatics is integrated in a subject area "nature and
technics" in the 6th and 7th grade to the extent of one hour per week. It will be
interesting if this approach of a conceptually well elaborated "real Informatics"-
scenario at a comparatively early stage can hold its promises.

Fig. 3. Standardized learning objectives for 12 years old pupils in Carinthia/Austria

Another approach of introducing Informatics in the 5th and 6th grades is on the way
in Carinthia/Austria where standards and concrete learning objectives have been
worked out for nearly all the pupils. In cooperation with more than 2/3 of the
secondary academic schools in this area, based on one-hour Informatics-education per
week, learning objectives leading to the topics illustrated in Fig. 3. have been defined.

Unlike the Bavarian concept-based approach this is a pragmatical attempt to
standardize the basic IT-skills and IT-knowledge of the pupils at an early age. They
meet the "PISA-driven" shift from input orientation to measuring output. Maybe this
collection of operationalized objectives could upset some didactics experts in the field
of Informatics since it may be regarded as an adapted subset of the modules of the
ECDL (European Computer Driving License). Is it justifiable to call this Informatics?

Historical reasons, a comparatively narrow interpretation, and concrete perception
of Informatics as an independent subject in a few countries are certainly important
reasons for separating the subject Informatics strictly from ICT. But this does not
change the fact that even now the term and subject Informatics is not well known and
accepted widely in the global (worldwide) educational context.

 The Role of ICT and Informatics in Austria’s Secondary Academic Schools 173

It is evident that Informatics at upper secondary level should meet higher demands
than at the lower secondary level. But what prevents us to legalize something which
seems to be colloquially already reality and to acquire a broader view on this term? In
order to reinforce this let me quote Mittermeir ([14]) who pleads clearly when asking
whether Informatics is a subject with strict borders or an area with open boundaries
for the second aspect. "If Informatics lessons should be more than a mental exercise,
teachers for Informatics should keep its borders open".

A traditional subject with a great affinity for Informatics is undoubtedly
Mathematics. Nobody would be thinking of referring to this subject in school or in
science by calculating or by geometry. Within the wide scope of this subject, contents
such as calculating with natural numbers, algebra, geometry, analysis, and even the
increasing use of calculators and CAS-programs have its place. Although every
comparison has its limits and puristic teachers of Mathematics might not be amused
when somebody puts Informatics at the same level as their fundamental subject, the
idea of subsuming also ICT aspects into the broad term Informatics has a certain
charm and is worth to be at least discussed.

The proverb "An error which is committed by many people is recognized as a rule
after all." has no scientific foundations, but it should act at least as a stimulant in this
discussion.

Informatical education takes place in various forms. These forms include not only
the subject Informatics proper but also the increasing use of computers in other
subjects. Computer, and, moreover, Informatics systems should be taught in an
independent subject Informatics in order to provide informatical knowledge and skills
as part of a redefined general education and of an extended cultural technique.

This measure guarantees a responsible, competent and interdisciplinary use of
computers as a tool and as well as medium. The alternative of imparting informatical
education integrated in other subjects, is reality in some schools and can be discussed,
but it can by no means replace the substantial subject Informatics.

Many secondary schools in Austria did already react, others are aware of this and it
is desirable that within the realm of autonomous decisions they maintain and establish
Informatics preferably as an obligatory subject.

7 The 9th Grade: Informatics for All

Fig. 2 reveals that the only invariant within the wide scope of informatical education
in the Austrian secondary academic schools in Austria, is the obligatory subject
Informatics in the 9th grade. All the pupils have to pass it. Historically developed and
emancipated from the subject "EDV" (electronical data processing), it has survived
the recent amendment of the new upper level of secondary academic schools. Some
years ago this subject represented for most of the pupils the first contact with a
computer and a systematical introduction to something like Informatics. This has
changed dramatically. Nowadays the differences between the informatical
competence of 15-year-old pupils can be extreme even if they have attended the same
school for four years. This is obviously an unsatisfying and untenable situation which
has to be gradually improved.

174 P. Micheuz

The importance of this compulsory "sandwich"-subject Informatics in the 9th (see
Fig. 2.) is due to the fact that it could exert a normalizing influence on the
informatical education in the previous grades. To achieve this, however, we should
first agree on minimal standards. Although the curriculum for this subject is
extremely flexible [6] and obviously takes into account the big differences in the pre-
knowledge of the pupils, measures should be taken to provide the pupils with a
minimum of informatical competencies before they enter this grade.

An aspect to be taken into account is the influence of this subject with respect to
autonomous decisions of pupils concerning further elective courses. It must not be
underestimated that a poor informatical education at this level provides students with
a wrong or false image of Informatics, and does not encourage them to choose this
subject Informatics as elective course.

8 Is Informatics in the Grades 10 to 12 only for Specialists?

The desirable but only seldomly realized systematic education in Informatics already
from the 5th grade on might suggest that the education for mastering most of the
everyday tasks is completed after the 9th grade. Such a continuous education should
guarantee to a certain extent a solid informatical fundament. Without doubt this could
apply for a certain percentage of students in one age-group, but not for all. It is highly
desirable that we encourage students to choose the subject Informatics above the 9th
grade especially in a generally educating school. Economy and society needs people
with a broad education and a profound informatical background. Therefore it is
important to make efforts to maintain or even expand an attractive offer of
Informatics in the 10th to the 12th grade also in general education.

However, recently accomplished informal surveys reveal a rather unpleasant
picture. The attractiveness of the elective courses in Informatics which are provided
from the 10th to the 12th grade is decreasing. One reason has been the overall
reduction of two lessons per week last year at all levels and subsequently the
restriction in choosing courses.

It can be estimated that this year about 20% of an age-group are choosing elective
courses in Informatics. The percentage of schools which provide a reinforced
education in Informatics with obligatory lessons at the upper secondary level is about
10% [20]. Field reports about the autonomous decisions of the schools in the upper
secondary level do not exist by now because the reform is brand-new and therefore its
implications are not transparent and noticeable yet.

Informatics at the upper level from the 10th to the 12th grade in the secondary
academic schools should continue to be an attractive offer for interested students. But
committing all the students to a special informatical education within a general
education would go too far. However, from all students can be expected that they
maintain their basic informatical competence, which they should have acquired by
passing the 9th grade. This is not the case by now as a (unpublished) study conducted
in Upper Austria 2003 has proved.

 The Role of ICT and Informatics in Austria’s Secondary Academic Schools 175

9 A Framework of Informatics at Secondary Academic Schools

Education in Informatics needs a solid and stepwise development with generous
stages of exercising and consolidation. This is only ensured if a framework of realistic
objectives for each level goes along with a sufficient amount of Informatics lessons
and, desirably, with additional applications of the computer in other subjects.

Because of the fact that many pupils have already a certain pre-knowledge in using
computers when they enter a secondary academic school it is advisable to start in the
5th grade. I recommend setting up informatical objectives for the lower level
secondary education with a preliminary quasi-certificate at the "PISA"-age, when in
Austria the pupils normally have accomplished compulsory school attendance.

On one hand, it is rather improbable that the Austrian Ministry of Education will
discontinue autonomy and switch to central regulations regarding the organizational
and curricular aspects. On the other hand, there is a strong demand for evaluation and
output measuring. But what can be measured in the realm of Informatics when there
are not even common objectives for the various levels?

Therefore, a generally accepted framework of informatical competencies as shown
in [10] could be a good basis for a consistent guideline. At the lower level of
secondary education, the syllabus of the European Computer Driving License [8] can
serve as solid basis. Proper education should facilitate the requirements of the ECDL.
But vice versa the ECDL should not dominate the Informatics education as a whole.

I can imagine that there is a high agreement on the common minimal objectives of
Informatics instruction till the 9th grade. A framework for the further grades, where
Informatics (in schools) is more and more regarded as a special branch of computer
science, is much more difficult to build. There are unfortunately very few publications
about what is really taught in Austria's secondary high schools at this level, but an
informal survey reveals enormous differences regarding the teachers' interpretation of
the curriculum of the subject Informatics. I suggest also for this level at least an
informal agreement about minimal standards without thinking instantly of the EPAs
("Einheitliche Prüfungsanforderungen") in Germany.

If one takes a look at exemplary assignments of final exams in Informatics in
Austria's secondary academic schools [20], it gets clear that the task of finding
minimal requirements for that subject is not easy but nevertheless necessary and
important. All students who are interested in these elective courses, should be
informed about the contents and requirements when choosing the subject Informatics.
Therefore, a mandatory basic framework beyond the very open Informatics
curriculum is desirable. It would provide students and teachers as well with a basic
orientation.

10 Conclusions

The situation of Informatics in Austria's the secondary academic schools differs
widely. This is due to school autonomy in terms of curricula, hardware equipment,
and, above all, the varying engagement of Informatics teachers. This leads to the
undesirable effect of big gaps regarding the informatical competencies already at an

176 P. Micheuz

early stage. This situation should be avoided by setting up a referential framework for
informatical competencies for all levels in the secondary academic schools.

Standardizing measures should be taken as soon as possible in form of an
independent subject Informatics for at least one hour per week for the lower
secondary level.

Much importance should be attached to the 9th grade where the subject Informatics
is already established. Besides the standardizing effect on Informatics in the lower
secondary level, this subject can encourage or discourage students from choosing
Informatics further on. For the most part of the student population this grade is the
tentative conclusion of a formal education in Informatics. After that students should
be able to meet the average Informatics requirements in school and in everyday life.
Although only a minor part of the student population decides to attend the subject
Informatics further on, it should be a future challenge to define a sustainable
framework for this age-group.

Finally, I suggest simplifying the terminology in the context of Informatics and
ICT-related subjects especially in the lower secondary level. As Mathematics in
schools covers the range from primitive calculating to abstract proving, I prefer the
umbrella term "subject Informatics" for a wide range of informatical activities and
contents. This includes the first systematic contact of pupils with computers as a
subject-matter and the use of computers as a tool. In the upper secondary education
this subject can and must be extended to more abstract concepts and to informatical
methods as a precondition for software development and a deeper understanding of
our digital world.

References

1. Staatsinstitut für Schulqualität und Bildungsforschung, Bayerischer Lehrplan,
http://www.isb.bayern.de/gym/nt/index.htm

2. Development of Education, Ministry of Education, Austria 2004, http://www.bmbwk.gv.at
3. Breier, Kretzschmar, Informatics in Mecklenburg-Western Pomerania: Overall plan for

computer science education in general schools, SECIII, 2002, Dortmund
4. Bruner J.S., The process of education, Cambridge Mass. 1960
5. Bussmann, H. / Heymann, H.-W.: Computer und Allgemeinbildung, Neue Sammlung, 1987
6. BMBWK, Lehrplan Informatik Oberstufe, http://www.gemeinsamlernen.at
7. Boyle R., Proceeedings of the 9th Annual SIGCSE Conference (ITICSE) Leeds, ACM,

2004
8. OCG, Homepage of the ECDL in Austria, http://www.ecdl.at
9. Eurydice, Key Data on ICT in Schools in Europe, 2004 Edition, http://www.eurydice.org

10. Friedrich S., Informatische Fachkonzepte im Unterricht, INFOS 2003, GI-Ed., p.133f
11. Hubwiser P., Informatik als Pflichtfach an bayerischen Gymnasien, in Schwill, Springer,

Potsdam, 1999
12. Hubwieser P., Didaktik der Informatik, Springer, 2000
13. Mittermeir R., Was ist Schulinformatik? In ME2001, Schriftenreihe Nr. 26, p. 3f
14. Mittermeir R., Informatik: Ein Fach oder ein Gebiet, Schulinformatik in Österreich,

Ueberreuter, Wien 2003, p. 5f

 The Role of ICT and Informatics in Austria’s Secondary Academic Schools 177

15. Micheuz P., Tu felix Austria informatica?, Schulinformatik in Österreich, Ueberreuter,
Wien 2003

16. Micheuz P., Informatics and Standards at an Early Stage, Informatics and Student
Assessment, GI Lecture Notes, 2004

17. Rechenberg P, Was ist Informatik?, Hanser, 2000
18. Schwill A., Fundamentale Ideen der Informatik, Zentralblatt für Didaktik der Mathematik
19. Humbert L., Zur wissenschaftlichen Fundierung der Schulinformatik, 2003, Siegen, Univ.,

Diss., 2003
20. GI Empfehlungen, 2000, LOG IN 2/00, Informatik-Spektrum 23 (2000)

R.T. Mittermeir (Ed.): ISSEP 2005, LNCS 3422, pp. 178–188, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Informatics Versus Information Technology – How
Much Informatics Is Needed to Use Information

Technology – A School Perspective

Maciej M. Syslo1 and Anna Beata Kwiatkowska2

1 Institute of Computer Science, University of Wroclaw
Przesmyckiego 20, 51-151 Wroclaw, Poland

syslo@ii.uni.wroc.pl
2 Faculty of Mathematics and Informatics, Nicolaus Copernicus University

Chopin str. 12/18, 87-100 Torun, Poland
abak@uni.torun.pl

Abstract. We discuss the role of computers and informatics in school education
in Poland; ‘informatics’ generally stands for ‘computer science’. Although, our
investigations are based on the situation in Polish schools, the conclusions may
apply to other countries. The main attention is paid here to didactical
approaches in teaching and learning informatics and its applications with the
emphasis on preparation for living and lifelong learning in the information
society (knowledge-based society). In recent years one can observe many
changes in schools regarding the role of computers and informatics education.
On the other hand we still have to address fundamental questions:

1. How to teach a changing discipline and how to keep track of developments
in the field of informatics and its applications?

2. What to teach, in particular to what extent one should learn a discipline
(informatics) to be able to use its applications (information technology)?

3. How to prepare teachers of informatics, IT and other subjects (but
equipped with IT) for their new role of advisers to students?

In answering these and other questions we discuss some of the solutions we
proposed and which have been introduced to Polish schools and to the system
of teacher training. In particular, we focus our attention on the didactical
approach to teaching IT-relevant subjects and the integration of IT with other
subjects and to teaching informatics (as a process of designing a computer
solution of a problem). With regard to teacher preparation, we present the
preparation standards and discuss the role of school IT co-ordinators.

We plan to demonstrate also an e-IT-book, an implementation of a new
approach to teaching and learning of new technology with the help of technology.

1 Technology in Education

1.1 Computers in Education

The development of educational technology closely follows the development of
technical equipment. In the case of computers, they were introduced to education in
the sixties of the last century. In Poland, first regular classes on informatics were

 Informatics Versus Information Technology 179

organized in two secondary schools in Wroclaw in mid sixties, just ‘a day after’ the
first mainframe computer (Elliott 803, made in the UK) was installed in the country.
The main topics were algorithms and programming in Algol. The approach was
machine oriented: electronic data processing and computer calculations according to
mathematical and engineering formulas.

The official history of computers in Polish schools started in 1985 in the beginning
of personal computer era with the first official curriculum proposed by the Polish
Computer Society. For about 10 years (micro) computers appeared mainly in teaching
informatics as a separate subject and only occasionally they were used as a teaching
aid. The main turning point appeared with the development of user-friendly human-
computer interfaces, which support user’s approach to computer use. Then the
Internet became popular and came to schools and since then it has been the main
factor which influences the way technology is applied in and integrated with
education.

In the mid 90’, a big struggle has begun among the education policy makers in
Poland to accept the term ‘information technology’ for ‘informatics for all students’
as the combination of informatics technology with other related technologies (such as
communication technology) and their applications in education and society, and
human aspects. Today ‘information technology’ is widely used in our education
system in the same meaning as ‘information and communication technology’ is used
in other countries.

In 1997 in Poland, a national initiative, called the Education Reform, has been
launched according which schools should be oriented towards across-curriculum
integration of computers, information technology, and the Internet with learning and
teaching of various subjects. Today one of the main goals of our education system is
to prepare all students to actively live in the information, knowledge-based society.

1.2 IT in the Education System in Poland

Formal education starts in Poland at the age of 7 (from 2004 it will be moved down to
6). The formal school system at primary and secondary levels consists now of three
stages:

• primary school – 1-6 grades (age 7 to 13);
• middle school (in Polish: gimnazjum) – 7-9 grades (age 13 to 16);
• high school – 10-12 grades (to 13 in certain vocational schools) – (age 16 to 19).

Information technology (IT) as a separate subject is taught in1:

• 4-6 grades of primary school, for at least 2 hours per week for one year;
• middle school, for at least 2 hours per week for one year;
• high school, for at least 2 hours per week for one year;

Moreover, in high schools students may choose informatics as a subject of
specialization and take an external final examination (matura in Polish) in that subject.

1 In primary and middle schools the subject is still called informatics, but it will be changed for

information technology in two to three years, since its curriculum is in fact on how to use
information technology across the curriculum in different subjects and applications.

180 M.M. Syslo and A.B. Kwiatkowska

The national project “Internet laboratory in every middle school” initiated in 1998
put a solid technical basis for IT education in middle schools in Poland. Today all
middle schools are equipped with at least 10 PCs and additional equipment. In 2001, a
similar project was launched “Internet laboratory in every high school” with 15 PCs
for computer laboratory and 5 PCs for a multimedia laboratory connected with a
school library.

The EU eLearning initiative [3] has set the target that by 2003 all students leaving
the school system (formal education) should be digitally literate. In Poland, this target
has been met by all students leaving middle school (when they are 16 of age) since
2002 and will be met by graduates from high schools beginning in 2005.

2 Informatics Versus Information Technology – A School
Perspective

As already mentioned, the term ‘informatics’ is used in the sense of computer science
and the term ‘information technology’ has been recently accepted in education in the
sense of applications of informatics. For the educational purpose one may assume that
informatics deals with producing new products related to computers (hardware,
software, ideas, theories, etc.) and IT is on applying and using informatics (computer
related) products.

2.1 The Era of Informatics

Informatics (in fact, elements of informatics – EI) was in Poland a part of the
curriculum for more than fifteen years (1985 – 2002). It has been taught in elementary
schools (1-8 – mainly during the last two years) and in high schools (9-12 – for one,
two, three and even four years).

There were three EI curricula approved by the Ministry of Education. The one
proposed by the team led by the first author had a very general structure and consisted
of a number of modules which could be used to design an instruction plan for
teaching EI from one up to four years with the emphasis on different aspects of
informatics, e.g. problem solving, algorithmics, application software.

There was also a textbook published (first edition appeared in 1988). It is perhaps
interesting to mention that this textbook had a new, unchanged edition every year
(two in 1995) and more than 100 000 copies have been sold. It is unusual for a book
on informatics to remain unchanged on the market for so long. It was mainly due to
the approach adopted in the book. Computers and software tools were not described
in full details but only with respect to the main theme (problem) of the presentation
and discussion. Therefore, the content of the textbook was universal although there
were some key components of the contemporary IT missed, especially related to
computer networks and computer supported communication, which have entered
schools recently. Let us list chapters of that textbook: history of computers and
informatics, how computers are designed and how they work (operating systems),
playing and learning (turtle graphics – Logo), from problems to programs (elements
of programming in Pascal), designing an own directory (data base), calculations in
mathematics (numerical methods), computing faster – efficiency of algorithms

 Informatics Versus Information Technology 181

(elements of algorithmics), writing with no pencil and paper (text editing), easy and
effective managing of a small business (spreadsheet).

There was also a package of educational software designed and produced to help
the teachers of Elements of Informatics in the main subject areas: a model of
computer and computations, operating system, programming in Pascal, designing and
running algorithms, numerical computations, statistical analysis of experimental data.
The Ministry of Education sent the package to high schools and to teachers’ colleges.

In recent years one can observe a growing awareness among teachers that the use
of computers in schools cannot be limited to a separate subject. It is recognized
however that when there were only few computers in a school and there was only one
teacher who knew how to operate them, the separate subject and a computer
laboratory in one room guaranteed the most effective use of technology. Today
however, most of the teachers are interested in using computers in their classrooms.

2.2 Information Technology and Informatics

As a part of the Education Reform, the education standards for the main subjects in
elementary and high schools have been published in 1997. The main part of the
standards consists of the list of education goals (tasks) which are to be realized and
met by schools – schools are responsible for supporting and helping students in their
cognitive and creative activities, learning, and self-development. In consequence,
students should become competent in many areas. For instance, they should:
successfully communicate and use new communication technology for that purpose;
search, sort, organize, and use information from different sources; use different
information technology and media with competence and responsibility. With respect
to informatics education the main education goal is formulated as follows:

to guarantee students the possibility of using information and communication
technology, and to prepare them to live in the information society.

Information technology (IT) is now taught as a separate subject 2 hours a week for
one year in all types of schools. Moreover, in high schools students may choose
informatics as an optional subject and take an external final examination (matura in
Polish) in that subject.

The team led by the first author has published curricula, textbooks and guidebooks
for all types of informatics and information technology subjects in schools. Moreover,
a book on using computers and information technology in ten other subjects in
gimnazjum and two elementary books on algorithmics have been also published.

2.3 IT in the Education Standards

Using IT may effectively support achieving several education goals by schools and
competences by students. We briefly review such possibilities.

In primary schools students are supposed to develop a competence in using
different sources of information and to use IT in collecting, storing and processing
information. Internet is an example of a source of information, other than books,
where students can search, store and process information.

182 M.M. Syslo and A.B. Kwiatkowska

In gimnazjum and in high schools there are many opportunities for students to use
IT and Internet. For instance, students should be prepared to individually integrate
knowledge about the past learnt from different sources of information (history); they
should have an opportunity to use different media and techniques for communication;
they should learn and have a chance to use educational software, computer networks,
electronic mail, Internet, and data bases. The following competences appear in
different education areas such as history, physics, geography: use of different
techniques for collecting, selecting, storing, processing and interpreting information,
critical use of information about public and social life, use of media in personal search
for information, use of IT to collect, process and analyze data from experiments,
collect and interpret information, e.g. coming from satellite pictures, Internet, and GIS
systems.

Moreover in high schools students are supposed to be able to use IT tools and
Internet in almost all education areas, and mainly to use libraries with electronic
sources of information, video-libraries, computer programs and other information
bases. They should be prepared to use a library as a centre for global information.

Social aspects of information age: information as a product and a source of power,
global village, and technopol are also considered.

Moreover, the following topics are discussed: multimedia; local and wide area
computer networks; searching for information in wide area networks; communication
via computer network; preparing presentations with the help of IT tools; creating
documents which are accessible in Internet.

Internet is considered as one of the most important elements of IT and of its
integration with learning and teaching. It may be both, a subject of instruction and a
tool for: information retrieval, global communication, problem solving and decision
making in almost all school subjects and off-class activities.

2.4 Methodology of Changes

After computers were introduced to schools, they themselves together with networks
have been the main IT topics of instruction. More important, however, is to be able to
use a computer as an educational aid in all areas of learning and teaching. With the
help of methods and tools of IT, old and traditional teaching material can be enhanced
and new topics and skills, which otherwise cannot be learnt and taught, can be
introduced and added.

The introduction of computers to schools in the 80’s induced high expectations for
improving education. Today, however, those expectations have not yet been fulfilled
– it is argued that this is mainly due to unrealistic assumptions about learning as a
passive process of information absorption. It is believed that to improve the results of
learning computers should be embedded in, instead of added only to, learning
environments as tools that elicit and support in students active processes of
knowledge construction and skill development.

Access to information, especially through a network, is not sufficient to enhance
learning and teaching. The amount of information is growing in exponential rate.
Therefore it is necessary to teach how to critically evaluate its contents. Learning does
not simply mean reading and watching, it should proceed through doing: performing
tasks and solving problems. To properly operate information, one has to master

 Informatics Versus Information Technology 183

several skills, e.g., building an information structure, evaluation of contents of
information, information search and retrieval, information processing and
presentation. Education should give students knowledge and skills that will enable
them to find the proper information they need.

Working with information, students should be aware of social, ethical and legal
aspects of unrestricted access to information. It applies mainly to personal data,
collected and processed in computers for different purposes. Advantages and
disadvantages of computers and computer networks in education have not been
recognized completely. Usually, teachers and educators talk about their positive
aspects and influence on learning and teaching. One has to take into account also that
school is responsible for preparing students for the years to come when they leave
school, join society, and are expected to make decisions on their own.

2.5 A Model for IT Development

In developing a curriculum for IT and informatics education it is very useful to have a
model for IT development. Such a model has been presented in the UNECSO
Curriculum [8]2. The model is not a curriculum but provides a framework which
shows the interrelationship of various components within a system and aids
understanding by all parties involved in education: students, parents, teachers,
educational administrators and policy-makers.

The model of IT development at the school level [8] consists of four stages:
emerging, applying, infusing (integrating) and transforming. It describes also stages
of teaching and learning and can be applied to learning and using IT (by students and
also by teachers), teaching IT and teaching with the help of IT. The model can also
help to understand why students, teachers, schools and other users of IT have to
follow a similar route of IT development in their personal and professional life. For
instance, in the case of preparation of teachers, they first have to learn about
computers (emerging stage) to be able to use them in their subjects (applying stage),
and then they begin to integrate IT with other teaching areas (infusing stage) and
finally (in fact, after many years) school becomes ready for transforming its role in
the community and society.

We successfully use the UNESCO model in designing curricula for schools and
teacher preparation courses.

2.6 IT Versus Informatics Education

Many people assume that anything related to computers belongs to informatics. In
education it is quite popular to use ‘informatics’ as a name for a subject and classes
which take place in a computer laboratory regardless of what students are learning
and doing (in fact, quite often they are playing computer games and surfing the web).
It happened also in our education system: informatics is the subject in primary and
middle schools although the curriculum is in fact on how to use information
technology across curriculum in different subjects and applications.

2 In fact, the first author has published a similar model, also consisting of four stages, in 1999

as a part of the project [4].

184 M.M. Syslo and A.B. Kwiatkowska

Fortunately all parties have recently accepted the term ‘information technology’ in
our education system as the name for applications of informatics and its use in other
disciplines and in every day life.

In our project on informatics and IT in education (see [4]) we assume that
informatics deals with producing ‘new products’ related to computers (hardware,
software, ideas, theories, etc.) and IT is on applying and using ‘informatics (computer
related) products’. Although this distinction does define neither informatics nor IT, it
is very useful in describing methodology of learning and teaching both subjects.

In our approach of teaching and using information technology [4] we convince a
learner to elaborate her or his style of working with information. Application software
has usually several options, which support a user in improving a style (e.g. styles,
templates, wizards, etc.). Elements of style are also very welcome when working with
information on the Internet, in searching, publishing and communicating on the net.

In teaching informatics we follow a traditional way of producing a ‘computer
product’, which consists of the three main stages:

• define a problem (i.e. its specification) and design its solution (algorithm) – this
stage supports an algorithmic thinking;

• build a computer solution (program) of the problem – it is a place for working on
programming style;

• test and evaluate the computer solution – also testing the correctness of the solution.

This approach and methodology can be applied to many sorts of problems in
informatics, also at the high school level, e.g. in: solving mathematical problems,
designing and producing a data base, designing and writing a web page, designing and
producing a multimedia presentation.

3 Teacher Preparation and Training

With regard to the level of competences in IT, all teachers in schools in Poland fall
into the following categories:

• teachers of separate informatics subjects (under different names: informatics,
information technology, computerisation, etc.);

• teachers of all other subjects, who use and integrate IT with different areas of
education;

• school IT co-ordinators.

The Standards for Information Technology and Informatics in Teacher Preparation
[6] determine what teachers in different groups should know about and be able to do
with the information technology (and informatics).

A position (function) of school IT co-ordinator was introduced to schools in
Poland by the first author in 1998. This IT co-ordinator is supposed to be a teacher of
a separate subject on IT or informatics and moreover he or she:

• leads continuous self-learning of IT of all teachers in the school; therefore a school
IT co-ordinator is responsible for building professional learning of IT into the
workplace (school);

 Informatics Versus Information Technology 185

• guides other teachers how to introduce IT to particular subjects and then integrate
the technology with different subjects; in the beginning he/she may even help other
teachers with the technology in the classroom;

• promotes and co-ordinates all changes in the school which involve IT and its use in
education and school management.

A classroom as a working place contributes only a little to teachers’ learning, so
teachers have to find an extra time for their personal development. On the other hand,
learning should happen locally. With respect to technology, school IT co-ordinators
are to help other teachers in everyday working and learning in schools.

Based on the standards [6], two types of in-service training courses have been
designed for:

• school IT co-ordinators;
• teachers of other subjects on how to use and integrate IT with different areas of

education.

It is perhaps worthwhile to mention that 30% of course time teachers attending these
courses spend working in their schools in cooperation with other teachers and with
school IT co-ordinators.

Higher (tertiary) education institutions are major resources for teachers’
professional development. They offer post-graduate in-service courses and training to
different interest groups of teachers, in IT and in other subjects. The standards [5]
serve as guidelines for accreditation of such courses and are used by the National
Accreditation Board of Higher Education Institutions for that purpose (the first author
is a member of the Board).

4 School as a Lifelong Learning Institution

The transformation to the knowledge-based society is today very high on the political
agenda. The society expects from citizens new knowledge, skills and competences
and to be active – self-motivated to pursue own personal and professional
development throughout life. Lifelong learning is the most important and promising
way to empower citizens to meet these demands. According to EU Memoranda (see
[9], and also [7] and [3]), lifelong learning is defined as all learning activity
undertaken throughout life, with the aim of improving knowledge, skills and
competences, within a personal, civic, social and/or employment-related perspective.
Therefore, lifelong learning is not limited to economic outlook and to learning
opportunities for adults only. In the implementation, main emphasis is put on the
centrality of learner, equal opportunity, and learning needs. Such approach to teaching
and learning requires all education institutions to become more learner-oriented than
program (or curriculum or institution)-centred.

Lifelong learning places new demands on all types of learning activities and
educational institutions, in particular on schools. Information technology plays an
important role in lifelong learning due to its great potential for innovation in learning
and in teaching methods, educational tools and environments. We refer the reader to
[7] where we discuss a new role of school and information technology in designing a
lifelong learning strategy for schools, teachers and individual citizens.

186 M.M. Syslo and A.B. Kwiatkowska

It is still not obvious to students and to teachers in schools, that lifelong learning
starts at the very beginning of formal education in primary schools and that tertiary
education, learning at a workplace, and adult education are just next stages of lifelong
learning, based on the foundation laid down at the beginning of education.

In the rest of this section we shortly comment on the situation of students and
teachers in our schools with regard to lifelong learning.

4.1 Students

How to adopt changes brought especially by rapid development of IT and how to
make sense and use of the vast amount of information available in the net – two main
items on the list of what students should learn in school with regard to lifelong
learning, are included in the IT curriculum for different levels of education in Polish
schools. Actually, all students have separate classes on IT in primary, middle
(gimnazjum) and high schools, so they learn how to adapt to changes in the
technology for 9 years of formal school education.

Moreover in high schools, lessons on IT are related to subjects chosen by students
as their specialization and one of the curriculum goals is to have students prepare their
own personal IT environments which then they use in continuing education.

4.2 Teachers

The role of schoolteachers with regard to lifelong learning is twofold:

• they are lifelong learners themselves to develop their own professional knowledge;
• they should develop their students as lifelong learners.

These two fields of activities need different skills and competencies. To be
prepared themselves for lifelong learning and to promote lifelong learning to students
teachers should:

• be pedagogically literate in lifelong learning and know its role in changing the
learning environment;

• know how to promote and integrate innovations in learning;
• be competent in using IT to support and manage the learning process.

Moreover, in learner-centred environments, teachers become guides, mentors, and
mediators, who mainly help and support learners.

In understanding and using IT in teaching and learning, and in education in
general, schools, teachers, and students go through four stages (see [9]): first they
discover general functions and use of IT tools (emerging stage), second they learn
how to use IT in different subjects (applying stage), then they learn how to recognise
situations in which IT could be helpful in solving (real world) problems and how to
choose appropriate methods and tools of IT (integrating stage), and finally IT
becomes integral part of the professional practice in school (transformation stage).
These stages are very important to teachers’ personal preparation and professional
practice with the use of IT: first they become IT literate (awareness stage), second,
they begin to apply IT in their subjects, then different teachers begin to integrate and
overlap different subjects, and finally they are able to design lessons on larger real-
world projects using IT tools, methods, resources.

 Informatics Versus Information Technology 187

Regarding technology, the optimal vision of education is to combine best practice
of human and machine (e-learning) teaching and providing access to non-local
instruction and resources.

5 Other Activities

1. In 2000, Association of IT Teachers (AITT) (see [2]) has been founded by a
group of school IT co-ordinators. The Association:

• by removing or diminishing geographical and psychological barriers, brings
learners closer together at local conferences and workshops, organized all over the
country in local communities or in schools;

• contributes to organization of local learning centres for students and teachers;
• promotes continuous education, in particular lifelong learning of teachers,
• promotes examples of good practice from classrooms in other classrooms;
• helps in providing access to IT for disabled students in their homes; in general,

puts special emphasis on special education.

2. Post-graduate in-service courses (350 hours of instruction) for school IT co-
ordinators are organized by the University of Wrocław.

3. Educational Forum for Information Society was founded in 2003 to co-ordinate
and organize continuous in-service training in IT for teachers from the region of
Lower Silesia. The Forum will provide infrastructure of access to lifelong learning
of teachers and will prepare projects for structural grant from the EU.

4. Conference “Informatics in School”. Institute of Computer Science, University
of Wroclaw, in cooperation with the Ministry of Education, is the main organizer
of the annual national Conference „Informatyka w Szkole” (Informatics in
Schools). In 2004, more than 500 participants from elementary and high schools,
universities, hardware and software companies attended the 20th Conference.
Among the main speakers at these conferences were in past: Alain Bron
(Switzerland), Ian Carter (UK), Margaret Cox (UK), Eric de Corte (Belgium),
Peter Gorny (Germany), Ivan Kalas (The Slovak Republic), Angela McFarlane
(UK), Raymond Morel (Switzerland), Bojidar and Evgenia Sendov (Bulgaria).

5. International events to be held in Poland in 2005: EUROLOGO and IOI.

References

1. A Model Curriculum for K-12 Computer Science, ACM, 2004.
2. Association of IT Teachers (AITT – pol. Stowarzyszenie Nauczycieli Technologii

Informacyjnej – SNTI), http://www.snti.pl/.
3. Commission of the European Communities, eLearning – designing tomorrow’s education,

Brussels, SEC (2000) 318 final.
4. Syslo M.M. (ed.), Meeting and Learning with Computers, WSiP (Publisher Company),

Warsaw 1998-2003, http://www.wsip.com.pl/serwisy/ti/. Project on informatics and IT in
education addressed to all levels of education, to students and to teachers.

188 M.M. Syslo and A.B. Kwiatkowska

5. Syslo M.M., From elements of informatics to information technology across the curriculum:
the Polish approach, Int. J. Cont. Engineering Education and Lifelong Learning 11(2001),
526-533,

6. Syslo M.M. (ed.), Standards for Information Technology and Informatics in Teacher
Preparation, presented to the Ministry of Education and Sport in Poland, Warsaw 2003.

7. Syslo M.M., Schools as Lifelong Learning Institutions and the Role of Information
Technology, in: van Weert T.J., Kendall M., Lifelong Learning in the Digital Age, Kluwer
Academic Publishers, Dordrecht 2004, pp. 99-110.

8. UNESCO, Information and Communication Technology in Education. A Curriculum for
Schools and Programme of Teacher Development, Paris 2002.

9. van Weert T.J., Kendall M., Lifelong Learning in the Digital Age, Kluwer Academic
Publishers, Dordrecht 2004.

R.T. Mittermeir (Ed.): ISSEP 2005, LNCS 3422, pp. 189–197, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Standard Software as Microworld?

Peter K. Antonitsch

Universität Klagenfurt, Austria
Institut für Informatiksysteme

Peter.Antonitsch@uni-klu.ac.at

Abstract. Traditionally programming is considered to be a core content of
informatics education. Just as traditional is the discussion of how to teach
programming at school. One major aspect seems to be the choice of a suitable
software tool allowing to focus on the basic concepts and avoiding tool-specific
overhead at the same time. Therefore, special learning environments (so called
microworlds) have been developed, designed to reduce the complexity learners
are confronted with. But – in most cases – these microworlds are a sort of iso-
lated solution and call for a shift to “real” programming environments later on.
The contrary approach is to downsize professional programming or (to be more
general) software environments to the needs of the learner, which appears to be
almost impossible due to the complexity of current software. This paper
discusses how this might be achieved though by concentrating on
programmable spread-sheet software. It points at possible didactic and
methodical benefits by teaching programming this way and presents a list of
criteria that can be helpful in deciding the relevance of software-tools for
informatics classes.

1 Microworlds

A “microworld” is defined as a learning environment that allows to get in touch with
programming basics by concentrating on the underlying concepts. Criteria that
characterize such environments are listed in [1] and [2]:

According to Papert, a microworld should allow learners to enter an “active and
self-determined process, where body knowledge can be used to communicate with
and to take control over the computer by means of a program. Learners should be able
to define, create and combine modules by making use of nothing more than the
elementary concepts of branching and iteration. In this way they can become
“architects of their own intellectual structures”. To achieve this, the learning
environment must have a clear and transparent structure and it must allow to tie up to
the “personal knowledge of the learners”.

Reichert, Nievergelt and Hartmann refer to Brusilovsky et al. ([3]) and du Boulay
et al. ([4]) when they expect from microworlds:

• reduction of complexity, i.e. the “complex machine computer” must be substituted
by a conceptually simpler machine;

190 P.K. Antonitsch

• hiding of complexity, i.e. even with a conceptually simpler machine, the program-
mer does not have to understand how the machine works internally (but he must
understand the meaning of the actions performed);

• visualisation of program runs to clarify the semantics and structure of the program;
• small scope of the programming language and a simple programming environment;
• the possibility to pose “everyday problems” that are easy to explain and easy to

understand, that stimulate problem solving activities, and where the solution is felt
to be within reach.

2 Reflection: The Role of Programming

The criteria just mentioned refer to environments for learning how to program. But
can these criteria be transferred to more general software environments that are used
in (informatics) classes? Does programming boast such a general-educative core, that
concepts for programming classes can be generalized and modified to concepts
suitable for learning activities with other (whatever?) software?

According to S. Schubert programming is “problem solving – i.e. modelling and
structuring – by making use of the principles and methods of informatics”, whereby
“the programming language has to be kept in the background” ([5]). Yet modelling
and structuring are activities that are essential whenever it comes to comprehend the
so called “real world” (see e.g. the considerations in [6]). To change the viewpoint:
Programming stands for structured decomposition and recomposition (when programs
consist of modules and corresponding interfaces), for formalization (when the con-
ceptual solution of the problem is translated into executable code) and for automation
(when the program code is executed by “a machine”), which are the three fundamen-
tal concepts of informatics, that should be the underlying subject in any informatics
course (referring to [7] and A. Schwill in [5]).

I would like to stress that I do not presume to assign a universal educative core to
programming. But I see programming as a representative for many of the principles
that must be part of informatics education in order to prepare the learners for an
increasingly information-centred world. From this perspective the criteria I mentioned
beforehand can be seen as guidelines for software environments that are rather learner-
centred than computer- or application-centred. Therefore, I propose to aggregate and
restructure the list of criteria mentioned above. This aggregation yields (see [8]):

• Scalability as aggregation of “reduction and hiding of complexity” and the de-
mand for a learning environment that is transparent and easy to survey (referring to
“small scope of the programming language” and “simple programming environ-
ment”)

• Transferability, accentuating the implicit assumption that basic concepts learned
in microworlds can be applied in “professional programming environments” quite
easily.

• Visualisation (as stated before).

Because these criteria were defined for programming, I will demonstrate their
applicability to a “hybrid” system, i.e. a standard software-system with an underlying

 Standard Software as Microworld? 191

programming environment. Besides, this points at the necessity to understand basic
programming structures even when it is only up to user-friendly adaption of ready-to-
use software.

3 Example: Spread-Sheet Programs

Spread-sheet systems with an (additional) underlying programming environment are
quite suitable for comparison with microworlds, because learners can either refer to
past experience with environments like those (e.g. working with relative and absolute
cell addressing as a first step towards automation) or are at least used to working with
tables. Therefore, the structure of the environment should be familiar and it should be
easy to tie up to the personal knowledge of the learners. Furthermore, the tables
provide a given structure to the input area, the output area and the representation area,
which helps to scale complexity and to visualize program runs.

Without giving prominence to specific software, the following considerations refer
to Microsoft Excel with Visual Basic for Applications (short: VBA) as an underlying
programming environment, simply because this software can be found in Austrian
schools quite often. But it should be mentioned, that there exist (almost) as powerful
programming environments supporting open-source spread-sheet programs. Thus the
following considerations apply to these programs as well.

3.1 Structural Scalability

Frequently, software tools possess far too much functionality to be suitable for lear-
ning purposes. Structural scalability is given, if this overwhelming functionality can
be tailored to the learner’s needs or if the structure of the software can be used to hide
certain aspects of the posed problems. In either case learners can concentrate on the
intended learning objective more easily. With Excel VBA structural scalability can be
found (at least) with regard to input, output and the data structure “array”.

Input and output can be managed via table cells (just like when working with the
accompanied spread-sheet program), by means of predefined I-/O-GUIs or rather by
defining input- and output-forms oneself. This helps to concentrate on the structure of
the program (control and data structure) because the effort for input and output can be
kept reasonably small initially (see the following code for input and output via table
cells and Fig 1 alike):

Private Sub CommandButton1_Click()
 Rem Declaration of variables
 Dim value_1 As Integer
 Dim value_2 As Integer
 Dim result As Integer
 Rem input
 value_1 = Cells(2, 2)
 value_2 = Cells(4, 2)
 Rem processing
 result = value_1 + value_2 'any operation Rem output
 Cells(6, 2) = result
End Sub

192 P.K. Antonitsch

Fig. 1. Input and output using table cells (input and output areas are highlighted by shading)

Very often the learning of program structures is made difficult because control and
data structures should be learned at the same time. The advantage of the control
structure “iteration” can be sensed thoroughly only in the context of the data structure
“array” (and vice versa). Therefore, learners have to understand two rather abstract
concepts simultaneously to make the best of it. But the structure of spread-sheets
allows the “simulation” of arrays so that learners can solely concentrate on iterations
at first and deal with arrays afterwards (see Fig. 2).

Fig. 2. Simulation of a one-dimensional array as section of a table row. This allows to focus on
control structures without having to deal with abstract data structures at the same time

 Standard Software as Microworld? 193

3.2 Methodical Scalability

A software tool shall be methodically scalable, if it encourages the use of different
learning (!) methods when dealing with a certain topic. As table-like structures are
quite common in every-day life, it is not too hard to create a “real-life situation” when
using a spread-sheet environment, even if the posed problem is rather simple and
seems to have nothing to do with real life at first glance (see Fig. 3). Moreover, the
creation of a physical representation of the problem facilitates

• understanding of the problem structure (to be understood as a process of ab-
straction),

• modelling of the problem structure (due to sensual perception),
• translation (coding) of the solution to the problem into a programming language (to

be understood as a process of further abstraction and automation) and
• to work with different forms of social interaction between the learners while the

teacher might step aside and merely watch the learners’ analysis of the problem.

Fig. 3. Methodical scaling of a problem by using a table-like infrastructure of a school building
(the position of the chalks is marked for better visibility)

3.3 Curricular Scalability

Finally, I speak of curricular scalability, if a software tool can be (re-) used in dif-
ferent (consecutive) informatics lessons, thus helping to explain different subject-
matters in the field of informatics. This is an important aspect, as it takes time to get
familiar with any new software. But time is a precious good, especially when talking
about informatics education. Since programmable standard-software of the discussed
kind can be used for application-oriented problems and for problems that call for

194 P.K. Antonitsch

programming activities alike, curricular scalability seems to be a natural fact, as long
as the topics, the corresponding methods, and the (adequate) tools are chosen
carefully. That is why I omit a detailed description of curricular scalability when
working with spread-sheet environments.

3.4 Transferability

By restriction to the paradigm of procedural (and – to some extent – object oriented)
programming, the basic control structures “sequence”, “branching”, and “iteration”,
as well as the data structure “array” can be found in any imperative programming
language. Therefore the concepts that have been learned with one of these languages
can be transferred to any other related language (see Fig. 5). This applies likewise to
“classic” microworlds! But the programming environment VBA is available for all
application programs of the Microsoft Office family, which means that the basic
program structures that have been learned with Excel VBA can be applied to a variety
of real-life problems. Furthermore, this special transferability permits insight into the
different object-models of these programs, an advantage that hardly can be over-
estimated, because very often only profound understanding of the object models leads
to profound understanding of the functionality of these programs. Just think of serial
letters, where the steps to create a serial letter change between program versions,
while the underlying database and word processing objects remain the same.

3.5 Visualisation

Visualisation has to support learners in creating mental images of complex structures
or abstract processes. But visualisations become a real benefit for learning

Fig. 4. Visualisation of the algorithm to convert a decimal number into its dual representation.
The basic concept is to arrange the remainders of division by two in reverse order, which is
emphasized by a “running bar”. A slight modification of this visualisation can guide learners to
reach a pre-concept of the data structure stack, where items are piled one upon the other and
can be taken away only from the top

 Standard Software as Microworld? 195

Fig. 5. Visualisation of memory management during the execution of a simple program, where
table cells serve as a model for storage cells. The program code is displayed in a form (that has
to be designed by the programmer) and the actual line of code is highlighted by a shaded bar.
This and the display of an “explanation window” make it easy to understand the semantics of
the program, the only purpose of which is to initialize an array with certain values. Notably the
program is coded in C, which points at the transferability of the visualized concept

Fig. 6. Raster graphic simulated by the table structure of a spread-sheet map (note that height
and width of cells are set to a small value within the graphics region!). The graphic visualizes
the process of sorting the values stored an array using the selection-sort algorithm. By creating
(animated) plots of the values over the (current) index, each sorting process reveals a specific
“sorting-pattern”

196 P.K. Antonitsch

and teaching only if they can be prepared without much effort and if they can be
easily adapted to the actual situation in class. That is exactly what software with
predefined table structure has to offer. The table structure can be used for
programming “running bars” by colouring rows or columns (see Fig. 4), it can help to
visualize “memory management” during program execution (see Fig. 5) or it even can
serve as a model for raster graphic (see Fig. 6 and [5], p. 137f) – just to mention a few
aspects of its versatility.

4 Conclusion: Standard Software as Microworld?

Those who are familiar with microworlds like the “Logo turtle” or “Kara, the
programmable lady bird" might hesitate to call spread-sheet systems “microworlds” in
spite of my attempt to show the adaptability of these environments. This scepticism is
quite understandable because first of all a microworld has to offer an optimal
environment for special learning situations when learning how to write a program.
Clearly, an optimal environment for special situations can not be provided by
“universal” software.

But if we accept “microworld” as a synonym for an adaptable (in the sense of
scalable) “learning-cosmos”, that is consistent to learners, I believe that scalability,
transferability and visualisation are applicable concepts that should enable teachers to
examine existing software with respect to its usability in class. This might be an
important step to provide optimized learning environments on the basis of
professional tools and to use their (increased) didactical and methodical potential.

Some sceptics may be not sufficiently convinced by these arguments. They may
point to software for creating web-applications, which is used in teaching informatics
with great impact, but is hardly scalable. To avoid such arguments, I focussed
specifically on the basic concepts of informatics, when I discussed what we can learn
from microworlds when using standard software systems, but I am confident that with
the additional criterion of applicability the list of concepts can be completed and made
applicable even for “advanced” software systems.

References

1. Papert S.: Mindstorms. Children, Computer and Powerful Ideas. Basic Books Inc.; New
York (1980)

2. R. Reichert R., Nievergelt J., Hartmann W.: Programmieren mit Kara. Ein spielerischer
Zugang zur Informatik. Springer Verlag; Berlin, Heidelberg (2004)

3. Brusilovsky, P., Calabrese, E., Hvorecky J., Kouchnirenko, A., and Miller P.: Mini-
languages: A way to learn programming principles. In: Education and Information
Technologies, 2(1): 65-83 (1997)

4. du Boulay, B., O’Shea, T., and Monk, J.: The black box inside the glass box: Presenting
computing concepts to novices. In: International Journal of Human-Computer Studies 51(2):
265-277 (1999)

5. Hubwieser P.: Didaktik der Informatik. Grundlagen, Konzepte, Beispiele. Springer Verlag;
Berlin, Heidelberg (2000)

 Standard Software as Microworld? 197

6. Antonitsch P.: Überlegungen zum Erreichen eines Minimalstandards im Programmierunter-
richt. In: CD Austria 5/2004, Sonderheft des bm:bwk zum Thema “Standards in der
Schulinformatik” (2004)

7. Baumann R.: Didaktik der Informatik. Ernst Klett Verlag; Stuttgart, 2., vollständig neu
bearbeitete Auflage (1996)

8. Antonitsch P.: Skalierbarkeit - Übertragbarkeit - Visualisierung. Gedanken zur
Unterrichtsrelevanz von Software-Werkzeugen. Unpublished handout (in German) to a
lecture held at “Pädagogisches Institut des Bundes in Kärnten” (March 2004)

R.T. Mittermeir (Ed.): ISSEP 2005, LNCS 3422, pp. 198–201, 2005.
© Springer-Verlag Berlin Heidelberg 2005

The Future Is Mobile – Education Meets Mobile
Communication

Werner Wiedermann

Strategic Projects / Technology Relations,
Mobilkom Austria AG & Co KG,

Obere Donaustrasse 29,
A-1020 Wien, Austria

w.wiedermann@mobilkom.at

Abstract. More than three million Austrians make their calls with A1.
Approximately 42 percent of all Austrian mobile phone users trust in the market
leader in mobile communications.

Our large market shares in attractive customer-segments offer great potential
for mobile data services. The world's first GPRS network and the first nation-
wide UMTS network in Europe show that mobilkom austria is well prepared for
the future of mobile communication.

1 Communication Moves the World

Within a single decade, mobile telephony has developed into one of the most
successful innovations of the last 50 years - comparable to the success of the PC. In
Austria alone, 5.5 million people make calls by mobile phone - placing Austrians
among the mobile phone's biggest fans.

A leader in innovations like mobilkom austria sets the pace for changes in the
market itself - and the mobile Internet is the future. We are only at the beginning of
this era, where the mobile phone is fast becoming a 'universal' tool, capable of
processing language as well as complex digital data.

 In order to guarantee our customers a first class mobile network and more
security, new technologies and a comprehensive technological infrastructure are
necessary. In October 2002, mobilkom austria took the most important step toward
that future by becoming the first European network operator to launch a UMTS1
network.

For the Austrians, the mobile phone has become an indispensable everyday tool.
This is confirmed in a recent study by the Fessel-GfK Institute, commissioned by
mobilkom austria. The mobile phone has become an everyday object. In total, every
household of Austrian mobile phone users has an average of 2.6 mobiles; we
currently have a penetration rate of nearly 92%. Since owning their mobiles 52% of
Austrians also make more calls. Nevertheless the trend is moving in a different
direction: mobile phones increasingly switched off or muted.

1 Standing for “Universal Mobile Telecommunications System”, framework for third genera-

tion (3G) mobile networks, offering transmission rates up to 2 Mbit/s.

The Future Is Mobile – Education Meets Mobile Communication 199

Thanks to the mobile phone, young mobile phone users become more spontaneous
and arrange to meet more often on short notice. They benefit especially from their
mobiles. But also senior citizens have been able to intensify their social contacts. This
study by the Fessel-GfK Institute also allowed us to identify five types of mobile
phone users.

A company truly willing to take direct social responsibility, even against the
backdrop of a 'globalized' economy, cannot ignore subjects such as the 'digital divide'
or the 'social divide'. On the contrary, mobilkom austria is actively seeking to address
those issues, in constant dialogue with the scientific world as well as with 'the man
and the woman on the street'. For us, the focus is still on the individual, not on
technology.

A quote often heard in reference to information technology tells us that "inventing
the future is the best way to predict it". Valdemar Poulsen must have had this in mind
when, in 1899, he was applying for a patent on the world's first answering machine -
undoubtedly a brilliant invention, yet during Poulsen's lifetime a rather redundant one.
Only 70 years later would there be a growing demand for this "functionality" in
society. With his invention, Poulsen was far ahead of his times; too far. Few patents
and inventions actually manage to become innovations in a true sense; technical
innovations will only be accepted if they are useful and needed.

The vision of digitally interlinking various electrical devices such as computers,
mobile phones, car radios or even refrigerators goes back at least 15 years, with roots
that reach back even further. Yet only now, with the mobile Internet and UMTS, do
we finally seem ready to take the first step towards realizing this vision.

2 Market Leadership as Responsibility

Social commitment and education sponsoring, safety and the environment are very
important to mobilkom austria. As Austria's leader both on the market and in
innovations, we want to live up to our social responsibility as a role model. mobilkom
austria's commitment is based on the concept of partnership and know-how transfer -
in these cooperative efforts, the emphasis is not on the sponsoring, but on the projects
carried out together. Besides the social aspects, the subject of "the future of society" is
also at the heart of these activities.

Trends develop in the blink of an eye; the digital, internetworking world is
transforming everyone’s life, business and private and education life. What role do we
play in this? While we can't see into the future, we can prepare ourselves for it.

Today's students, however, are sure not only to experience but also to shape the
future. We want to let their creativity and their vitality inspire us, while at the same
time making it possible for them to research and develop under ideal circumstances -
and encouraging them to ask questions.

Education and Training is not limited to locations any more. Distance based
learning has changed: from satellite-based distribution in the past to two-way
interactive videoconferencing to today’s online courses. With MOBILE BROAD
BAND, mobilkom austria now combines the advantages of high-speed data trans-

200 W. Wiedermann

mission with the advantages of complete mobility. Whether you are a teacher who
would liked to be online with your students – for example off school on a seminar - or
as a student who needs to be connected with the online training programs of his
master class: with MOBILE BROADBAND, no one has to do without the comfort of
broadband transmission while on the go. Attractive packages in combination with
easy to use hardware and set-up procedures ensure “plug & play” utilization and
access speed like in home environment. Browsing, serving and even downloading of
large files on the move is no problem any more and even makes it easier and more
convenient to communicate – for teachers and students. Broadband transmission is
based on UMTS PLUS®. With UMTS PLUS® seamless 3G service is offered in
combination of UMTS and EDGE2 . Together with WLAN3 hotspots mobilkom
austria opens the door to a new dimension of speed in mobile communication. There
is no limitation to content for mobile learning, telecommunication services and new
media projects. Any kind of materials, like charts, drawings, pictures, text and videos
can be easily sent and received. In combination with multimedia mobile phones
mobile learning has come alive and offers the possibility to study even on the way to
school or while waiting for somebody. Through advances in educational technology
in combination with mobile communication we can gain success of innovative new
approaches to learning. Today education for students, livelong learning or even off-
the-job training and can be easily integrated in every days life.

Enhanced e-learning technologies also changed our internal training strategies. For
an outstanding company like mobilkom austria market oriented education and
additional trainings are based on strategic goals to prosper successful in a dynamic
and competitive market. Our employees will be individually prepared to meet the
major demands of our business and are very pleased to deal with all the individual and
different skills of our staff. Everybody knows the situation: You are dealing with new
software tools but having no time to attend a training course. What can you do? You
can ask your colleague, you can struggle through senseless texts within the help
menus, you challenge it more or less intuitive or you do overtime to understand the
problem. But we have an alternative solution: Our e-learning centre and our internal
Employee-Self-Service-Tool “EASY” offers access to computer based trainings at
anytime and via mobile remote access from anywhere. The employees themselves
have the opportunity to control timing and location – even at home - of their
individual training lessons themselves. And even more: the possibility to transfer
know-how and to access information via these new technologies gives us competitive
advantages and a fast and competent acting.

To make the technology behind mobile phones transparent, mobilkom austria also
has been the initiator of an unique project called “Kinderuni Wien”. The aim of this
activity is to make the technology behind mobile phones understandable to children.
The kids will be able to examine pioneering mobile phones or test new technologies
such as multimedia messaging.

2 “Enhanced Data Rates for Global Evolution” boosts data transfer rates and volumes on

existing GSM/GPRS networks.
3 “Wireless Local Area Network” for high speed accessing the internet or corporate intranet.

The Future Is Mobile – Education Meets Mobile Communication 201

Mobilkom austria also offers platforms to encourage the exchange of ideas
between scientists, teachers, parents and business on the subject of children/
kids/students and new technologies. ROUNDABOUT KIDS is a series of discussions
taking place regularly since a few years, which examines subjects such as
transformation of reading and writing among children or their understanding of
technology. In co-operation with ZOOM Children’s Museum located in Vienna
mobilkom austria hosted the first European “Network Kids” symposium.

It's all about skills - innovative technology, creative students, and clear solutions to
the most complicated technical problems – that’s why mobilkom austria is active in
the field of education as well.

Author Index

Antonitsch, Peter K. 189

Beshenkov, Sergey A. 70

Boyle, Roger 37
Böszörmenyi, Laszlo 93

Clark, Martyn 37

Dagienė, Valentina 53
Dorninger, Christian 65

Gurbiel, Ewa 46

Haberman, Bruria 156
Hardt-Olejniczak, Grazyna 46
Hodnigg, Karin 116

Kolczyk, Ewa 46
Krupicka, Helena 46
Kuznetsov, Aleksandr A. 70
Kwiatkowska, Anna Beata 178

Loidl, Susanne 104

Micheuz, Peter 20, 166
Mittermeir, Roland T. 1
Mühlbacher, Jörg 104

Nievergelt, Jürg 92

Ramsky, Yuri 84
Reiter, Anton 4
Rezina, Olga 84

Schauer, Helmut 104
Scherz, Zahava 156
Schneider, Markus 130
Spirin, Oleg 75
Syslo, Maciej M. 46, 178

Voß, Siglinde 145

Weissenböck, Martin 32
Wiedermann, Werner 198

	Frontmatter
	Introduction
	Years of Informatic in Austrian Secondary Schools
	Incorporation of Informatics in Austrian Education: The Project ``Computer-Education-Society'' in the School Year 1984/85
	20 Years of Computers and Informatics in Austria's Secondary Academic Schools
	Informatics Education at Vocational Schools and Colleges in Austria

	National Perspectives
	The Transition from School to University: Would Prior Study of Computing Help?
	Informatics and ICT in Polish Education System
	Teaching Information Technology in General Education: Challenges and Perspectives
	Educational Standards in School Informatics in Austria
	Russian Educational Standards of Informatics and Informatics Technologies (ICT): Aims, Content, Perspectives
	The Present-Day Tendencies of~Teaching~Informatics~in~Ukraine
	Study of Information Search Systems of the Internet

	Fundamentals Versus ICT
	Why Teach Introductory Computer Science? Reconciling Diverse Goals and Expectations
	Teaching: People to People -- About People {\itshape A Plea for the Historic and Human View}
	Preparatory Knowledge: Propaedeutic in Informatics
	A Pragmatic Approach to Spreadsheet Training Based Upon the ``Projection--Screen'' Model
	A Strategy to Introduce Functional Data Modeling at School Informatics
	Informatic Models in Vocational Training for Teaching Standard Software
	Evolving Boxes as Flexible Tools for Teaching High-School Students Declarative and Procedural Aspects of Logic Programming
	The Role of ICT and Informatics in Austria's Secondary Academic Schools
	Informatics {\itshape Versus} Information Technology -- How Much Informatics Is Needed to Use Information Technology -- A School Perspective
	Standard Software as Microworld?
	The Future Is Mobile -- Education Meets Mobile Communication

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

