

Lecture Notes in Computer Science 3443
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Rastislav Bodik (Ed.)

Compiler
Construction

14th International Conference, CC 2005
Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2005
Edinburgh, UK, April 4-8, 2005
Proceedings

13

Volume Editor

Rastislav Bodik
University of California
Computer Science Division, #1776
Berkeley, CA 94720-1776, USA
E-mail: bodik@cs.berkeley.edu

Library of Congress Control Number: 2005922868

CR Subject Classification (1998): D.3.4, D.3.1, F.4.2, D.2.6, F.3, I.2.2

ISSN 0302-9743
ISBN-10 3-540-25411-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-25411-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11406921 06/3142 5 4 3 2 1 0

Foreword

ETAPS 2005 was the eighth instance of the European Joint Conferences on
Theory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998 by combining a number of existing and new confer-
ences. This year it comprised five conferences (CC, ESOP, FASE, FOSSACS,
TACAS), 17 satellite workshops (AVIS, BYTECODE, CEES, CLASE, CMSB,
COCV, FAC, FESCA, FINCO, GCW-DSE, GLPL, LDTA, QAPL, SC, SLAP,
TGC, UITP), seven invited lectures (not including those that were specific to
the satellite events), and several tutorials. We received over 550 submissions to
the five conferences this year, giving acceptance rates below 30% for each one.
Congratulations to all the authors who made it to the final program! I hope that
most of the other authors still found a way of participating in this exciting event
and I hope you will continue submitting.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools which support these ac-
tivities are all well within its scope. Different blends of theory and practice
are represented, with an inclination towards theory with a practical motivation
on the one hand and soundly based practice on the other. Many of the issues
involved in software design apply to systems in general, including hardware sys-
tems, and the emphasis on software is not intended to be exclusive.

ETAPS is a loose confederation in which each event retains its own identity,
with a separate program committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronized parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for “unifying” talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

ETAPS 2005 was organized by the School of Informatics of the University of
Edinburgh, in cooperation with

– European Association for Theoretical Computer Science (EATCS);
– European Association for Programming Languages and Systems (EAPLS);
– European Association of Software Science and Technology (EASST).

The organizing team comprised:

– Chair: Don Sannella
– Publicity: David Aspinall

VI Forword

– Satellite Events: Massimo Felici
– Secretariat: Dyane Goodchild
– Local Arrangements: Monika-Jeannette Lekuse
– Tutorials: Alberto Momigliano
– Finances: Ian Stark
– Website: Jennifer Tenzer, Daniel Winterstein
– Fundraising: Phil Wadler

ETAPS 2005 received support from the University of Edinburgh.
Overall planning for ETAPS conferences is the responsibility of its Steering

Committee, whose current membership is:

Perdita Stevens (Edinburgh, Chair), Luca Aceto (Aalborg and Reyk-
jav́ik), Rastislav Bodik (Berkeley), Maura Cerioli (Genoa), Evelyn
Duesterwald (IBM, USA), Hartmut Ehrig (Berlin), José Fiadeiro (Leices-
ter), Marie-Claude Gaudel (Paris), Roberto Gorrieri (Bologna), Reiko
Heckel (Paderborn), Holger Hermanns (Saarbrücken), Joost-Pieter Ka-
toen (Aachen), Paul Klint (Amsterdam), Jens Knoop (Vienna), Kim
Larsen (Aalborg), Tiziana Margaria (Dortmund), Ugo Montanari (Pisa),
Hanne Riis Nielson (Copenhagen), Fernando Orejas (Barcelona), Mooly
Sagiv (Tel Aviv), Don Sannella (Edinburgh), Vladimiro Sassone (Sus-
sex), Peter Sestoft (Copenhagen), Michel Wermelinger (Lisbon), Igor
Walukiewicz (Bordeaux), Andreas Zeller (Saarbrücken), Lenore Zuck
(New York).

I would like to express my sincere gratitude to all of these people and or-
ganizations, the program committee chairs and PC members of the ETAPS
conferences, the organizers of the satellite events, the speakers themselves, the
many reviewers, and Springer for agreeing to publish the ETAPS proceedings.
Finally, I would like to thank the organizer of ETAPS 2005, Don Sannella. He
has been instrumental in the development of ETAPS since its beginning; it is
quite beyond the limits of what might be expected that, in addition to all the
work he has done as the original ETAPS Steering Committee Chairman and
current ETAPS Treasurer, he has been prepared to take on the task of orga-
nizing this instance of ETAPS. It gives me particular pleasure to thank him for
organizing ETAPS in this wonderful city of Edinburgh in this my first year as
ETAPS Steering Committee Chair.

Edinburgh, January 2005 Perdita Stevens
ETAPS Steering Committee Chair

Preface

The program committee is pleased to present the proceedings of the 14th Inter-
national Conference on Compiler Construction (CC 2005) held April 4–5, 2005,
in Edinburgh, UK, as part of the Joint European Conferences on Theory and
Practice of Software (ETAPS 2005).

Traditionally, CC had been a forum for research on compiler construction.
Starting this year, CC has expanded its mission to a broader spectrum of pro-
gramming tools, from refactoring editors to program checkers to compilers to
virtual machines to debuggers. The submissions we received reflected the new
scope of the conference.

Program ommittee received 91 submissions (one was later withdrawn),
a significant increase from previous years.From the 90 submissions, the Program
Committee selected 21 papers, for an acceptance rate of 23%. Four of the ac-
cepted papers were tool demonstrations; the submission pool included eight such
papers. I believe this is the first CC conference that includes tool demos.

The Program Committee included 15 members representing 10 countries on
three continents. Each committee member reviewed (or delegated) roughly 19
papers. Each paper received three reviews. Sixty-eight external reviewers par-
ticipated in the review process. Committee members were allowed to submit
papers, although no paper by a committee member was selected. The Program
Committee met on December 4, 2004, in New York for a one-day meeting. All
but one of the members participated in the meeting; three members attended
via teleconference.

The work of many contributed to the success of this conference. First of all,
I want to thank the authors for the care they put into their submissions. My
gratitude also goes to Program Committee members and external reviewers for
their insightful reviews. IBM generously provided the teleconference service for
the Program Committee meeting; thanks to Kemal Ebcioglu for arranging this
service. Special thanks go to Manu Sridharan for helping to prepare and run
the Program Committee meeting. CC 2005 was made possible by the ETAPS
Steering Committee, in particular by the hard work of Don Sannella, the ETAPS
2005 Organizing Committee chair, and José Luiz Fiadeiro and Perdita Stevens,
ETAPS chairs. I would also like to thank Evelyn Duesterwald, Görel Hedin, Nigel
Horspool and Reinhard Wilhelm, all recent CC chairs, for our many discussions
on CC’s future directions. Finally, we are grateful to Andreas Zeller for accepting
the invitation to give a keynote talk.

Berkeley, January 2005 Rastislav Bod́ık

CThe

Conference Organization

Program Chair

Rastislav Bod́ık UC Berkeley, USA

Program Committee

Charles Consel LABRI, France
Grzegorz Czajkowski Sun Labs, USA
Angela Demke-Brown University of Toronto, Canada
Amy Felty University of Ottawa, Canada
Antonio Gonzalez UPC, Spain
Thomas Gross ETH, Switzerland
Jan Heering CWI, Netherlands
Roberto Ierusalimschy PUC-Rio, Brazil
Chandra Krintz UC Santa Barbara, USA
Rustan Leino Microsoft Research, USA
Eduard Mehofer University of Vienna, Austria
Michael Philippsen Universität Erlangen-Nürnberg, Germany
G. Ramalingam IBM Research, USA
Michael I. Schwartzbach University of Aarhus, Denmark
Andreas Zeller Saarland University, Germany

Referees

Ali Adl-Tabatabai, Alex Aleta, Erik Altman, Lars Bak, Siegfried Benkner, Claus
Brabrand, Mark van der Brand, Joachim Buhmann, Vipin Chaudhary, Aske
Christensen, Josep M. Codina, Jesus Corbal, Matteo Corti, Laurent Daynes,
David Detlefs, Danny Dubé, Jan van Eijck, Robert van Engelen, Xiaobo Fan,
Steve Fink, Ingrid Fischer, Kyle Gallivan, Enric Gibert, David Gregg, Dan Gross-
man, David Grove, Selim Gurun, Laurie Hendren, Michael Hind, Douglas Howe,
Daniel Jackson, Timothy Jones, Mick Jordan, Wayne Kelly, Michael Klemm,
Jens Knoop, Gabriella Kokai, Andreas Krall, Geoff Langdale, Julia Lawall, Sorin
Lerner, Chuck Liang, Christian Lindig, Josep Llosa, Lukas Loehrer, Guei-Yuan
Lueh, Carlos Madriles, Hidehiko Masuhara, Hussam Mousa, Priya Nagpurkar,
Krzysztof Palacz, Carlos Garcia Quiñones, Ramshankar Ramanarayana, Jesus
Sanchez, Dominic Schell, Florian Schneider, Bernhard Scholz, Christian Sigg,
Glenn Skinner, Sunil Soman, Walid Taha, Mads Torgersen, David Ungar, Ronald
Veldema, Xavier Vera, Jurgen Vinju, Phillip Yelland, Lingli Zhang

Table of Contents

Invited Talk

When Abstraction Fails
Andreas Zeller . 1

Compilation

Source-Level Debugging for Multiple Languages with Modest Effort
Sukyoung Ryu, Norman Ramsey . 10

Compilation of Generic Regular Path Expressions Using C++ Class
Templates

Luca Padovani . 27

XML Goes Native: Run-Time Representations for Xtatic
Vladimir Gapeyev, Michael Y. Levin, Benjamin C. Pierce,
Alan Schmitt . 43

Parallelism

Boosting the Performance of Multimedia Applications Using SIMD
Instructions

Weihua Jiang, Chao Mei, Bo Huang, Jianhui Li, Jiahua Zhu,
Binyu Zang, Chuanqi Zhu . 59

Task Partitioning for Multi-core Network Processors
Rob Ennals, Richard Sharp, Alan Mycroft . 76

Experiences with Enumeration of Integer Projections of Parametric
Polytopes

Sven Verdoolaege, Kristof Beyls, Maurice Bruynooghe,
Francky Catthoor . 91

Generalized Index-Set Splitting
Christopher Barton, Arie Tal, Bob Blainey, José Nelson Amaral 106

X Table of Contents

Memory Management

Age-Oriented Concurrent Garbage Collection
Harel Paz, Erez Petrank, Stephen M. Blackburn 121

Optimizing C Multithreaded Memory Management Using Thread-Local
Storage

Yair Sade, Mooly Sagiv, Ran Shaham . 137

An Efficient On-the-Fly Cycle Collection
Harel Paz, Erez Petrank, David F. Bacon, Elliot K. Kolodner,
V.T. Rajan . 156

Program Transformations

Data Slicing: Separating the Heap into Independent Regions
Jeremy Condit, George C. Necula . 172

A Compiler-Based Approach to Data Security
F. Li, G. Chen, M. Kandemir, R. Brooks . 188

Composing Source-to-Source Data-Flow Transformations with
Rewriting Strategies and Dependent Dynamic Rewrite Rules

Karina Olmos, Eelco Visser . 204

Verification of Source Code Transformations by Program Equivalence
Checking

K.C. Shashidhar, Maurice Bruynooghe, Francky Catthoor,
Gerda Janssens . 221

Tool Demonstrations

Hob: A Tool for Verifying Data Structure Consistency
Patrick Lam, Viktor Kuncak, Martin Rinard . 237

Jazz: A Tool for Demand-Driven Structural Testing
Jonathan Misurda, Jim Clause, Juliya Reed, Bruce R. Childers,
Mary Lou Soffa . 242

Tiger – An Interpreter Generation Tool
Kevin Casey, David Gregg, M. Anton Ertl . 246

CodeSurfer/x86—A Platform for Analyzing x86 Executables
Gogul Balakrishnan, Radu Gruian, Thomas Reps, Tim Teitelbaum . . . 250

Table of Contents XI

Pointer Analysis

A Study of Type Analysis for Speculative Method Inlining in a JIT
Environment

Feng Qian, Laurie Hendren . 255

Completeness Analysis for Incomplete Object-Oriented Programs
Jingling Xue, Phung Hua Nguyen . 271

Using Inter-Procedural Side-Effect Information in JIT Optimizations
Anatole Le, Ondřej Lhoták, Laurie Hendren . 287

Author Index . 305

When Abstraction Fails

Andreas Zeller

Saarland University, Saarbrücken, Germany
zeller@cs.uni-sb.de

Abstract. Reasoning about programs is mostly deduction: the reason-
ing from the abstract model to the concrete run. Deduction is useful
because it allows us to predict properties of future runs—up to the point
that a program will never fail its specification. However, even such a 100%
correct program may still show a problem: the specification itself may
be problematic, or deduction required us to abstract away some relevant
property. To handle such problems, deduction is not the right answer—
especially in a world where programs reach a complexity that makes them
indistinguishable from natural phenomena. Instead, we should enrich our
portfolio by methods proven in natural sciences, such as observation, in-
duction, and in particular experimentation. In my talk, I will show how
systematic experimentation automatically reveals the causes of program
failures—in the input, in the program state, or in the program code.

1 Introduction

I do research on how to debug programs. It is not that I am particularly fond of
bugs, or debugging. In fact, I hate bugs, and I have spent far too much time on
chasing and eradicating them. People might say: So, why don’t you spend your
research time on improving your specification, model checker, software process,
architecture, or whatever the latest and greatest advance in science is. I answer:
All of these help preventing errors, which is fine. But none can prevent surprises.
And I postulate that surprises are unavoidable, that we have to teach people how
to deal with them and to set things straight after the fact.

As one of my favorite examples, consider the sample program in Fig. 1 on
the following page. Ideally, the sample program sorts its arguments numerically
and prints the sorted list, as in this run (r✔):

sample 9 8 7 ⇒ 7 8 9

With certain arguments, sample fails (run r✘):

sample 11 14 ⇒ 0 11

Surprise! While the output of sample is still properly sorted, the output is not
a permutation of the input—somehow, a zero value has sneaked in. What is the
defect that causes this failure?

R. Bodik (Ed.): CC 2005, LNCS 3443, pp. 1–9, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 A. Zeller

1 /* sample.c -- Sample C program to be debugged */
2
3 #include <stdio.h>
4 #include <stdlib.h>
5
6 static void shell_sort(int a[], int size)
7 {
8 int i, j;
9 int h = 1;

10 do {
11 h = h * 3 + 1;
12 } while (h <= size);
13 do {
14 h /= 3;
15 for (i = h; i < size; i++)
16 {
17 int v = a[i];
18 for (j = i; j >= h && a[j - h] > v; j -= h)
19 a[j] = a[j - h];
20 if (i != j)
21 a[j] = v;
22 }
23 } while (h != 1);
24 }
25
26 int main(int argc, char *argv[])
27 {
28 int i = 0;
29 int *a = NULL;
30
31 a = (int *)malloc((argc - 1) * sizeof(int));
32 for (i = 0; i < argc - 1; i++)
33 a[i] = atoi(argv[i + 1]);
34
35 shell_sort(a, argc);
36
37 for (i = 0; i < argc - 1; i++)
38 printf("%d ", a[i]);
39 printf("\n");
40
41 free(a);
42 return 0;
43 }

Fig. 1. The sample program (almost) sorts its arguments

In principle, debugging a program like sample is easy. Initially, some pro-
grammer has created a defect—an error in the code. When executed, this defect
causes an infection—an error in the program state. (Other people call this a
fault, but I prefer the term infection, because the error propagates across later
states, just like an infection.) When the infection finally reaches a point where it
can be observed, it becomes a failure—in our case, the zero in the output. Given
that a failure has already occurred, it is the duty of the programmer to trace back
this cause-effect chain of infections back to the defect where it originated—the
defect that caused the failure.

As an experienced programmer, you may be able to walk your way through
the source code in Fig. 1 and spot the defect. When it comes to doing so in a
general, systematic, maybe even automated way, we quickly run into trouble,
though. The difficulty begins with the terms. What do we actually mean when
we say “the defect that caused the failure”? What are we actually searching for?

When Abstraction Fails 3

2 Errors are Easy to Detect, But Generally Impossible
to Locate

An error is a deviation from what is correct, right, or true. To tell that something
is erroneous thus requires a specification of what is correct, right, or true. This
can be applied to output, input, state, and code:

Errors in the output. An externally visible error in the program behavior is
called a failure. Our investigation starts when we determine (or decide) that
this is the case.

Errors in the input. For the program input, we typically know what is valid
and what not, and therefore we can determine whether an input is erroneous
or not. If the program shows a failure, and if the input was correct, we know
the program as a whole is incorrect.

Errors in the program state. It is between input and output that things
start to get difficult. When it comes to the program state, we frequently
have specifications that allow us to catch infections—for instance, when a
pre- or postcondition is violated. Types can be seen as specifications that de-
tect and prevent illegal variable values. Common programming errors, such
as buffer overflows or null pointer dereferences, can be specified and detected
at compile time.

Errors in the code. Unfortunately, specifications apply only to parts of the
program state: conditions apply to selected moments in time; types allow
a wide range of values; tools can only check for common errors. Therefore,
there will always be parts of the state for which correctness is not specified.
But if we do not know whether a variable value is correct, we cannot tell
whether the code that generated this value is correct. Therefore, we cannot
exactly track down the moment the value got infected, and therefore, we
cannot locate the defect that caused the failure.

Of course, we can catch errors by simply specifying more. A specification that
covers each and every aspect of a program state would detect every single error.
Unfortunately, such a specification would ne no less complex and error-prone
than the program itself.

In practice, it is the programmer who decides what is right upon examining
the program—and fixes the program according to this implied specification. In
such a cases, deciding which part of a program is in error can only be told after
the decision has been made and the error has been fixed. Once we know the
correct, right, and true code, we can thus tell the defect as a deviation from the
corrected code. In other words, locating a defect is equivalent to writing a correct
program. And we know how hard this is.

3 Causes Need Not be Errors, But Can Easily be Located

While it may be hard to pinpoint an error, the concept of causality is far less
ambiguous. In general, a cause is an event that precedes another event (the

4 A. Zeller

effect), such that the effect would not have occurred without the cause. For
programs, this means that any aspect of an execution causes a failure if it can
be altered such that the failure no longer occurs. This applies to input, state,
and code:

Causes in the input. We can change the input of the sample program from
11 14 (run r✘) to 7 8 9 (run r✔), and the failure no longer occurs. Hence,
we know that the input causes the failure.
One may argue that in any program, the input determines the behavior and
thus eventually causes any failure. However, it may be only parts of the input
that are relevant. For instance, if we run sample with 11, we find that it is
the additional 14 argument which causes the failure:

sample 11 ⇒ 11

Causes in program state. If we can change some variable during execution
such that the failure no longer occurs, we know that the variable caused the
failure.
Again, consider the failing sample run r✘. We could use an interactive de-
bugger and stop the program at main() (Line 28), change argc from 2 to 1,
and resume execution. We would find an output of 11, and thus find out
that the value of argc caused the failure.
As we can see from this example, a cause does not imply an error: The value
of argc probably is correct with respect to some implied specification; yet,
it is tied to the failure.

Causes in the code. All variable values are created by some statement in the
code; and thus, there are statements which cause values which again cause
failures.
In the sample program, there is a statement which exactly does that, and
which can (and should) be changed to make the failure no longer occur. The
interesting aspect is that we can find that statement from the causes in the
program state. If we can find a failure cause in the program state, we can
trace it back to the statement which generated it.

Once again, it is important to note that causes and errors are two orthogonal
concepts. We can tell an error without knowing whether it is a cause for the
failure at hand, and we can tell a cause without knowing whether it is an error.
In the absence of a detailed specification, though, we must rely on causality to
narrow down those statements which caused the error—in the hope that the
defect is among them.

4 Isolating Failure Causes with Automatic Experiments

Verifying that something is a cause cannot be done by deduction. We need
at least two experiments: One with the cause, and one without; if the effect
occurs only with the cause, we’re set. This implies that we need two runs of the

When Abstraction Fails 5

Table 1. One of the state differences between r✔ and r✘ causes sample to fail

Variable Value
in r✔ in r✘

argc 4 5
argv [0] "./sample" "./sample"
argv [1] "9" "11"
argv [2] "8" "14"
argv [3] "7" 0x0 (NULL)
i′ 1073834752 1073834752
j 1074077312 1074077312
h 1961 1961
size 4 3

Variable Value
in r✔ in r✘

i 3 2
a[0] 9 11
a[1] 8 14
a[2] 7 0
a[3] 1961 1961
a′[0] 9 11
a′[1] 8 14
a′[2] 7 0
a′[3] 1961 1961

program—one where the failure occurs, and one where the failure does not occur.
In debugging, this second run comes at the very end after fixing the defect—
if the failure no longer occurs, this verifies that the defect actually caused the
original failure.

However, having a passing run r✔ and a failing run r✘ initially is the key
for finding causes. The initial difference in the program input causes differences
in the program state, which propagate until we see the final difference in the
program outcome. By comparing r✔ and r✘, we can extract these differences, and
compare them to get a first idea of what caused the failure.

Again, consider the sample program. Table 1 lists the sample program states,
as well as the differences, as obtained from both r✔ and r✘ when Line 9 was
reached. (a and i occur in shell sort() and in main(); the shell sort()
instances are denoted as a′ and i′.)

Formally, this set of 12 differences is a failure cause: If we change the state
of r✔ to the state in r✘, we obtain the original failure. However, of all differences,
only some may be relevant for the failure—that is, it may suffice to change only
a subset of the variables to make the failure occur. For a precise diagnosis, we are
interested in obtaining a subset of relevant variables that is as small as possible.

Delta Debugging [3] is a general procedure to obtain such a small subset.
Given a set of differences (such as the differences between the program states
in Fig. 1), Delta Debugging determines a relevant subset in which each remain-
ing difference is relevant for the failure to occur. To do so, Delta Debugging
systematically and automatically tests subsets and narrows down the difference
depending on the test outcome, as sketched in Fig. 2. Overall, Delta Debugging
behaves very much like a binary search.

Originally, Delta Debugging was designed for program inputs. However, one
may consider a program state as an input to the remainder of the program exe-
cution; hence, it is pretty straight-forward to apply Delta Debugging on program
states to isolate causes. Applied on the differences in Table 1, Delta Debugging
would result in a first test that

6 A. Zeller

Passing state Failing state

Mixed state

?Test outcome

Fig. 2. Narrowing down state differences. By assessing whether a mixed state results
in a passing (✔), a failing (✘), or an unresolved () outcome, Delta Debugging isolates
a relevant difference

– runs r✔ up to Line 9,
– applies half of the differences on r✔—that is, it sets argc, argv[1], argv[2],

argv[3], size, and i to the values from r✘—, and
– resumes execution and determines the outcome.

This test results in the same output as the original run; that is, the six dif-
ferences applied were not relevant for the failure. With this experiment, Delta
Debugging has narrowed down the failure-inducing difference to the remaining
six differences. Repeating the search on this subset eventually reveals one single
variable, a[2], whose zero value is failure-inducing: If, in r✔, we set a[2] from
7 to 0, the output is 0 8 9—the failure occurs. We can thus conclude that the
zero being printed is caused by a[2]—which we can confirm further by changing
a[2] in r✘ from 0 to 7, and obtaining the output 7 11. Thus, in Line 9, a[2]
being zero causes the sample failure.

The idea of determining causes by experimenting with mixed program states
(rather than by analyzing the program or its run, for instance) may seem strange
at first. Yet, the technique has been shown to produce useful diagnoses for pro-
grams as large as the GNU compiler (GCC). As detailed in [2], scaling up the
general idea, as sketched here, requires capturing and comparing program states
as memory graphs [4]. Also, Delta Debugging must do more than simple binary
search; it needs to cope with interferences of multiple failure-inducing elements
as well as with unresolved test outcomes [3].

5 Locating the Statements That Cause the
Failure—Automatically

The tricky question is now: How do we get from failure-causing states to failure-
causing statements? One straight-forward way might be to look at the statements
which created the value. Alas, we won’t find such a statement for a[2]; it is never
assigned a value before Line 9.

When Abstraction Fails 7

However, it turns out that at the start of main(), in Line 28, it is not a[2]
which causes the failure, but argc—if we change the value of argc from 4 (its
value in r✘) to 3 (its value in r✔), the failure no longer occurs. Since initially,
argc caused the failure, and later, a[2], there must have been some moment in
time where this transition from argc to a[2] took place. This transition can be
isolated using binary search over time: it takes place at Line 35, at the call

shell sort(a, argc);

This is where argc stops to be a cause, and a[2] begins. This transition implies
that Line 35 causes a[2] to cause the failure—or, in other words, that we can
change Line 35 to make the failure no longer occur. Line 35 is a failure cause.

So, let us focus on Line 35 to see whether it is not only a cause, but in fact, er-
roneous. Let us assume that in the declaration shell sort(int a[], int size),
the parameter size stands for the number of elements in a[]. Then, the call in
Line 35 is wrong—simply because argc is not the number of elements in a[],
but off by one. The correct call would be

shell sort(a, argc - 1);

By changing the statement, we can re-run the test to see whether the failure still
occurs. It does not; hence, we have proven that the defect actually caused the
failure—and successfully fixed the program.

In this example, the cause transition from argc to a[2] occurred right at the
place of the defect. As a programmer, though, I may also have decided to change
shell sort() instead such that size is the number of elements in a plus one.
I could also decrease the value of argc or introduce a new variable arguments
initialized with argc - 1. This number of alternatives shows that it is difficult
to predict an exact change, say, in an evaluation. Therefore, when evaluating
whether cause transitions are effective in locating defects, one uses a measure of
closeness: If we cannot predict the exact location of the defect, how close are we
in locating it?

To evaluate a defect locator, one thus ranks the statements of the program ac-
cording to their likelihood to be defective. In our case, we’d rank the locations of
cause transitions at the top, followed by “close” locations—that is, those related
by one control or data dependency—and followed by less close locations by doing
an exhaustive breadth-first search along the system dependency graph. The as-
sumption is that a programmer starts with the most likely locations (at the top)
and then walks down the list until he or she finds the defect. In a case study [1],
it turned out that cause transitions are the best defect locators available—they
locate the failure-inducing defect twice as well as the best methods known so
far. The technique is implemented as part of the ASKIGOR debugging server
(Fig. 3).

Yet, we have just begun to explore the idea of making experimenting a part
of program analysis. There is still a long way to go before these techniques can
become part of the mainstream: in particular, extracting and mixing program
states becomes a challenge if the program is deeply interwoven with its environ-
ment. On the other hand, having automated diagnoses is not only convenient

8 A. Zeller

Fig. 3. ASKIGOR with a diagnosis for sample

for the programmer, but also may enable new generations of self-aware systems:
Think of a Web server, for instance, that automatically determines a failure cause
in its own code, and thus disables the appropriate configuration module—at least
as a temporary fix until the code is corrected.

6 Conclusion: Prevent Errors and Prepare for Surprises

Why focus on cure, when prevention is so much better? Of course, we should
continue to strive for systems that have as few defects as possible. But this must
not mean to neglect the cure altogether. In a world where software systems
become more and more complex, we must be prepared for surprises. And a
surprise is exactly what happens when the given abstraction fails, or where
there simply is no abstraction that could tell what’s right and what’s wrong.

Program analysis has long been based on abstraction alone—deducing predic-
tions from the program code that hold for future program runs. To analyze past

When Abstraction Fails 9

program runs, though, requires a much wider portfolio of techniques—simply
because there is much more data to take into account: Besides program code, we
can look at actual runs, test outcomes, version histories—any artifact created
during development is welcome. And if induction to derive common patterns
from all these instances is not enough, we can use experimentation to generate
even more. Fortunately for us, we now have the computational power available to
apply all these techniques. What we need is a confluence of static and dynamic
analysis, of deduction and induction techniques—to foster the understanding of
today’s programs, and to bring surprises and their damage to a minimum.

Acknowledgments. Thanks to all who gave me feedback on earlier instances
of this talk. Christian Lindig and Stephan Neuhaus gave valuable comments on
this paper.

References

1. Holger Cleve and Andreas Zeller. Locating causes of program failures. In Proc.
International Conference on Software Engineering (ICSE), St. Louis, Missouri, May
2005.

2. Andreas Zeller. Isolating cause-effect chains from computer programs. In William G.
Griswold, editor, Proc. Tenth ACM SIGSOFT Symposium on the Foundations of
Software Engineering (FSE-10), pages 1–10, Charleston, South Carolina, November
2002. ACM Press.

3. Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-inducing
input. IEEE Transactions on Software Engineering, 28(2):183–200, February 2002.

4. Thomas Zimmermann and Andreas Zeller. Visualizing memory graphs. In Stephan
Diehl, editor, Proc. of the International Dagstuhl Seminar on Software Visualiza-
tion, volume 2269 of Lecture Notes in Computer Science, pages 191–204, Dagstuhl,
Germany, May 2002. Springer-Verlag.

Source-Level Debugging for Multiple Languages
with Modest Programming Effort

Sukyoung Ryu and Norman Ramsey

Division of Engineering and Applied Sciences, Harvard University
{syryu, nr}@eecs.harvard.edu

Abstract. We present techniques that enable source-level debugging for multi-
ple languages at the cost of only modest programming effort. The key idea is to
avoid letting debugging requirements constrain the internal structure of the com-
piler. Constraints are minimized primarily by hiding the source-language type
system and target-machine representations from the debugger. This approach
enables us to support a new language and compiler while reusing existing ele-
ments: a multi-language, multi-platform debugger; the compiler’s implementa-
tion of source-language types and expressions; information already present in the
compiler’s private data structures; and our compile-time support library, which
helps the compiler meet its obligations to the debugger without exposing language-
dependent details. We evaluate our approach using two case studies: the production
compiler lcc and an instructional compiler for MiniJava.

1 Introduction

Wouldn’t it be nice if every high-level programming language came with a source-level
debugger? Unfortunately, debugging requires a wealth of information that depends on
both source language and target machine: what the source-level type system is, how
source-level values are represented on the target machine, how such values should be
displayed to the user, and so on. A typical debugger receives this information through
an interface like dbx “stabs” or DWARF (Linton 1990; Unix Int’l 1993). It is bad
enough that these interfaces are complex and difficult to use, but what is worse, they
overconstrain the compiler: the compiler writer must shoehorn the source language into
the debugger’s type model, and the compiler writer’s choices of representations are
limited by the debugger’s assumptions.1

We address these problems by changing the contract between the compiler and de-
bugger. Our new contract enables us to reduce programming effort by reusing code,
by reusing information already present in the compiler’s private data structures, and by
avoiding constraints on the compiler’s representation choices and phase ordering.

– We have implemented a debugger which, except for its stack walker, can be reused
even with a language or compiler that it did not previously support.

1 For example, many debuggers won’t let a compiler put a record value in a register, even if the
representation of the record fits in a machine word.

R. Bodik (Ed.): CC 2005, LNCS 3443, pp. 10–26, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Source-Level Debugging for Multiple Languages with Modest Programming Effort 11

– Rather than implement an interpreter for source-language expressions, our debugger
reuses the compiler’s code to parse expressions, type-check them, and translate them
to intermediate form.

– Our debugger receives information from a compiler through a reusable compile-time
support library. The library helps the compiler meet its obligations to the debugger
while hiding language-dependent details. Our library does not force the compiler’s
private data structures to fit the debugger’s model, does not require changing the
timing or ordering of the compiler’s phases, and does not artificially prolong the
lifetimes of the compiler’s internal data structures.
To be used with a particular compiler, the library must provide an interface in the
implementation language of that compiler. We have therefore designed the interface
in two layers: an abstract layer that is independent of implementation language (Ryu
and Ramsey 2004), and a concrete layer that contains instances for four implementa-
tion languages (C, Java, Standard ML, and Objective Caml). Each concrete instance
is backed up by an implementation.

Our primary goal is to reduce programming effort, which is notoriously difficult
to evaluate. As usual, we cannot afford a quantitative, comparative study of different
implementation techniques. Instead, we rely on simple metrics and one basic principle.

– Once we have added debugging support to a compiler, we measure the code:
• How many modules were changed? How many new modules were added?
• How big are the new modules? In changed modules, how many lines of code

were added or changed?
• How much code is duplicated (in both compiler and debugger)?

There are other software metrics, but these suffice to show that our technique requires
significantly less programming effort than standard techniques.

– Our basic principle is that the less the compiler writer is constrained, the smaller the
programming effort will be. Relevant constraints include requiring that the compiler
writer present certain information to the debugger; requiring that the information
be presented in a certain order; requiring that the information be kept live for a
certain time during compilation; and requiring that the compiler use only certain
source-language types and representations. Minimizing these constraints has been
the major idea behind the design of our support library.

Our work builds on earlier work with ldb, which used information hiding to make
it easier to retarget a debugger (Ramsey and Hanson 1992; Ramsey 1993). That work
applied only to a single language and compiler, and the contract between compiler and
debugger was too complex and put too many constraints on the compiler writer. Our
novel research contribution is a new contract, which reduces programming effort in two
ways: it minimizes constraints on the compiler, and it removes the intellectual burden
of organizing the compiler’s information in the way the debugger wants it. Instead of
falling on the compiler writer, this burden is carried by the support library.

Our new contract supports not only multiple machines, but also multiple source
languages. This does not mean every language—we assume that a language can be
executed by threads with stacks, has mutable state that can be examined, has a meaningful
notion of breakpoint, and so on. While these assumptions apply to most languages, they

12 S. Ryu and N. Ramsey

ldb Fib (stopped) > t
0 <_print:2> (Mips/mjr.c:25,2) void _print(char *s = (0x1000008c) " ")

* 1 <fib:51+0x24> (Fib.java:23,32)
void fib(Fib this = {int buffer = 10,

int[] a = {1, 1, 2, 3, 5, 8, 13, 21, 34, 55,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

}, int n = 10)
2 <main:3+0x18> (Fib.java:5,23) void main(String[] argv = {})
3 <mAiN:end+0x1c> (mininub.c:7,9)

int mAiN(int argc = 2, char **argv = 0x7fff7b24,
char **envp = 0x7fff7b34)

Fig. 1. Example stack trace showing support for multiple languages. Frame 0 contains a C proce-
dure that is part of the MiniJava run-time system; frames 1 and 2 contain MiniJava methods; and
frame 3 contains startup code written in C

may not apply to a lazy functional language, a logic language, or a constraint language,
for example. Even so, ldb can easily be applied to an interesting class of multi-language
programs. For example, Fig. 1 shows a debugger stack trace in which some frames are
implemented in C and others in the instructional language MiniJava.

2 Overview

Under a debugging contract, a compiler provides information about each program it
compiles, and the debugger uses this information to give users a source-level view at
run time. Information about a program is highly structured and may describe such el-
ements as source-language types, variables, statements, functions, methods, and so on.
We assume that in any given compiler, such elements have natural, native representa-
tions, which we call language-level objects. But a debugger that works with multiple
languages and compilers must use a representation that is independent of any compiler;
this representation is composed of elements we call debug-level objects. Under our con-
tract, a compiler uses its language-level objects to create debug-level objects, which
encapsulate the compiler’s knowledge about the source program and its representation
on the target machine. Both kinds of objects are described in Section 3.

A key property of debug-level objects is that language-dependent and machine-
dependent information is hidden from the debugger. This information hiding leaves
the compiler writer free to reflect the structure of the compiler’s language-level objects
directly in the structure of debug-level objects, reducing the effort required to create the
debug-level objects. For example, if the compiler’s natural representation of a record
type contains a list of pointers to representations of the types of the record’s fields, the
compiler writer is free to create a debug-level representation of the record type that
contains a similar list. But if the compiler’s representation of a record type instead keeps
the field information in an auxiliary symbol-table entry (Fraser and Hanson 1995, p 54),
the compiler writer is free to reflect that representation instead.

To help the compiler create debug-level objects from language-level objects, we
provide a compile-time support library. Each library function places a constraint on the

Source-Level Debugging for Multiple Languages with Modest Programming Effort 13

1 void fib(int n) throws
2 java.io.IOException {
3 int[] a = new int[20];
4 if (n > 20) n = 20;
5 a[0] = 1;
6 a[1] = 1;
7 { int i = 1;
8 while (i<=n) {
9 i = i+1;

10 a[i] = a[i-1] + a[i-2];
11 }
12 }
13 { int j = 0;
14 while (j<n) {
15 this.printint(a[j]);
16 System.out.print(" ");
17 j = j+1;
18 }
19 System.out.println();
20 }
21 }

Fig. 2. Fib.java: MiniJava code

...
.text
.globl $L.Fib.fib
.ent $L.Fib.fib

$L.Fib.fib:
$L.Fib.fib framesize=52

...
addu $22, $0, $5

.set noreorder
$L.X6:
.set reorder

addu $fp, $0, $21
beq $fp, 0, BADPTR1

$L1:
add $8, $fp, 4
addu $fp, $0, $8

.set noreorder
$L.X7:
.set reorder

ori $8, $0, 20
...

Fig. 3. Fib.s: assembly code

lifetimes of language-level objects: all the language-level objects needed to create a
debug-level object must be live at the same time. Section 4 describes these constraints
and explains how we minimize them.

Section 5 presents two case studies and makes comparisons with gdb, and Section 6
discusses related work.

3 What a Compiler Must Represent

Creating debug-level objects from language-level objects accounts for most of the pro-
gramming effort of usingldb. To explain the effort, we discuss the language-level objects
the compiler needs, the debug-level objects the compiler must create, and the associated
programming effort. We also discuss expression evaluation, which not only requires its
own effort but also affects the effort of creating debug-level objects.

To make examples concrete, we use procedure fib, shown in Fig. 2, which is written
in MiniJava. Procedure fib computes and prints Fibonacci numbers. It is translated into
the assembly file Fib.s, an excerpt of which is shown in Fig. 3.

3.1 Language-Level Objects

To create the debug-level objects that ldb requires, a compiler needs the following
language-level objects.

14 S. Ryu and N. Ramsey

– Source-code locations. The compiler must associate a source-code location with
each instance of an interesting language construct, such as the declaration of a
variable or the start of a statement. For example, in Fig. 2, the source-code location
of variable i is line 7, column 11 of file Fib.java.

– Variable placements. The compiler must know where each live variable is placed
at run time. Typically, a variable is placed either in a stack slot or in a machine
register. For example, the compiler might place variable i in a stack slot addressed
at offset −4 from register $r2. Placement may vary as the program counter changes.

– Labels. On request from the support library, the compiler must insert a label into
assembly-language output. For example, the library may ask the compiler to insert
a label to mark the start of a statement. In Fig. 3, label $L.X6 is such a label.

– Types. The compiler must know the source-language type of a variable or expression.
(If the source language is dynamically typed, it suffices that every variable and
expression have the same type, “value.”) For example, i’s type is int.

– Symbols. If a named entity is to be visible at debug time, the compiler must describe
it with a symbol. For example, if a user can ask the debugger for i’s value, the
compiler must describe i with a symbol.

– Stopping points. The compiler must identify stopping points: source-code locations
where execution of a program might stop at debug time. For example, MiniJava uses
very fine-grained stopping points: not only before and between statements, but also
before each expression, even nested expressions.

– Environments. The compiler must build an environment (symbol table) mapping
names to symbols. In a language that allows local declarations, a single name can
mean different things at different points in a program, so the compiler must be able
to reconstruct a suitable environment at each stopping point. For example, in Fig. 2,
variable i is visible in line 8’s environment but not in line 14’s environment.

Because such language-level objects already exist in a typical compiler, even a student
compiler (Aho, Sethi, and Ullman 1986; Appel 1998), providing them usually takes little
programming effort. The two exceptions are stopping points and source-code locations.
Here we have room to discuss only stopping points; source-code locations are discussed
in an expanded version of this paper (Ryu and Ramsey 2005).

Stopping points require two kinds of effort. First is the intellectual effort of deter-
mining what sorts of program points should be considered stopping points. This de-
termination is language-specific but should not be difficult; common choices include
statements, control-flow points, and declarations of named variables. (We recommend
against another common choice: source lines.) Second is the programming effort, which
we discuss in more detail in Section 3.2.

3.2 Debug-Level Objects to be Created by the Compiler

The language-level objects listed above are used to create debug-level objects. The struc-
ture of the language-level objects, especially types and symbols, necessarily reflects the
structure of the language being compiled. But different languages have different struc-
tures. How, then, can we define one set of debug-level objects that supports multiple
languages? The answer is that ldb’s debug-level objects make it possible to reflect lin-

Source-Level Debugging for Multiple Languages with Modest Programming Effort 15

guistic structure at debug level, but they do not require any particular linguistic structure
at debug level.

The interface to our support library is based on a hierarchy of types. The base type
of a debug-level object is info. Some debug-level objects can be extended with key-
value pairs (property lists) that hold information private to the compiler; such objects
are tables. Private key-value pairs (properties) are added to a table using ldbTable put.
In the C version of our interface, its declaration is

void ldbTable_put(LdbTable *t, const char *key, LdbInfo *val);

Particular instances of tables include symbols and types.

Simple objects: Source-code locations, labels, and variable placements Toldb, a source-
code location is a triple containing a file name, line number, and column number; a label
is a string; and a placement is a term in an algebra with labels, registers, and address
arithmetic. Such objects are created using constructor functions like these:

LdbSrcLoc *ldbSrcLoc_make (const char *file, int line, int col);
LdbLabel *ldbLabel_makeInCodeSpace(const char *asmname);
LdbLabel *ldbLabel_makeInDataSpace(const char *asmname);
LdbPlcmt *ldbPlcmt_makeAtLabel (LdbLabel *label);
LdbPlcmt *ldbPlcmt_makeAbsolute (char space, int offset);
LdbPlcmt *ldbPlcmt_makeShifted (LdbPlcmt *loc, int offset);
LdbPlcmt *ldbPlcmt_makeIndirect (char space, LdbPlcmt *loc, int offset);

Creating these objects typically requires modifying only a couple of existing modules.
For example, lcc required 19 lines to create label names and 13 lines to translate its
register names into ldb’s placement algebra.

Types. ldb imposes no structure on types; it uses a debug-level type only to deter-
mine how a value is printed. To support printing, each debug-level type must include a
procedure or method that prints values of that type. Writing these procedures requires
significant effort. For each type constructor in the source language, the compiler writer
must write a procedure that ldb can use to print a value whose type is formed using that
type constructor. To write such a procedure, one must know how values are represented
and how they should be printed. For printing, ldb provides a flexible prettyprinter, but
for manipulating representations, ldb provides only basic machine-level primitives like
load, store, and arithmetic. But because expressing source-level manipulations using
machine-level primitives is what a compiler does, a compiler writer is well equipped to
write printing procedures.

In what language are these printing procedures to be written? They can’t be written in
the source language of the target program, because ldb must work with multiple source
languages. They could be written in machine language, but this is a bad idea; not only can
machine code be tricky to load dynamically, but because ldb can debug over a network,
machine code compiled for ldb’s target might not run on ldb’s machine. Ideally, printing
procedures would be written in a simple, high-level scripting language. Today, popular
languages like Perl, Python, and Scheme can be embedded in applications; there are even
languages designed expressly to be embedded, like Lua and Tcl. Any of these languages
could work in ldb. But when the ldb project was started, these options did not exist.

16 S. Ryu and N. Ramsey

Instead, Ramsey and Hanson (1992, §5) chose to extend ldb with a new implementation
of an existing language: PostScript. PostScript does have some advantages, but if we
were to rebuild ldb from scratch, we would choose a language that is better known and
more friendly to programmers.

The choice of language affects the effort required to write printing procedures. This
effort, while modest, is not trivial; some examples may help you judge. A PostScript
printing procedure receives three arguments on the stack: an “abstract memory,” which
represents the state of the target program; the location of the value to be printed; and
a debug-level object containing the printing procedure. This last argument means that
printing procedures are effectively equivalent to methods in an object-oriented setting.

The basic technique can be illustrated by a very simple example; more examples
can be found in the expanded version of this paper. The lcc compiler supports two
different machine-level representations of floating-point numbers. In the debug-level
object representing a floating-point type, lcc identifies the representation by using a
private property mtype. This property, which is bound into the debug-level object using
the support-library function ldbTable put, is then used in the printing procedure:

/PF { /mtype get Memory.Fetch Put } def

The PostScript code “/mtype get” fetches the value of the mtype property, after which
the PostScript stack holds exactly the arguments needed byMemory.Fetch, which leaves
the floating-point number on the stack. As a primitive machine-level value, the floating-
point number can then be printed using ldb’s primitive Put. Crucially, the very existence
of the mtype field is hidden from the debugger.

The printing procedures that lcc uses for unsigned integers and for characters are
similar. The printing procedure for signed integers is PI:

/PI { dup 4 1 roll /mtype get Memory.Fetch
exch /bitsize get SignExtend Put } def

“dup 4 1 roll” saves a copy of the debug-level type before extracting mtype and
fetching the value. In the debug-level type, the private key bitsize is associated with
the number of bits in the integer, and it is used to sign-extend the integer before printing.

MiniJava supports only one basic type integer type, whose printing procedure is

/INT { pop Memory.Type.I32 Memory.Fetch 32 SignExtend Put } def

Because every MiniJava value fits in one word, this procedure is simpler than lcc’s
printing procedure for integers.

The examples above may be slightly intimidating, but once one masters some rudi-
mentary PostScript, writing printing procedures is straightforward. Moreover, our case
studies showed that printing procedures for lcc and MiniJava are very similar. We ex-
pect, therefore, that one could use existing printing procedures as guides to implement
new ones. And our case-study compilers do not require many printing procedures. For
example, the lcc front end recognizes 14 language-level type constructors, which it
prints using 13 printing procedures. (Some type constructors share a printing procedure,
and some types, notably char *, require specialized printing procedures.)

Source-Level Debugging for Multiple Languages with Modest Programming Effort 17

Symbols. Debug-level symbols come in four flavors: bare, with type, with type and value,
and procedure. Each flavor is also a table and so can be extended with private properties.
A bare symbol has a name and a source-code location but no other information; such
a symbol is not directly useful to ldb, but it may help a compiler writer embed the
compiler’s private data structures into debug-level objects.A symbol with only a type can
have its type printed; such a symbol might represent a language-level type.A symbol with
a type and value can have both its type and its value printed; such a symbol might represent
a language-level variable or constant. A procedure symbol can support many debug-
time operations, including enumerating formal parameters and local variables, searching
stopping points, and walking a call stack.To support these operations, a procedure symbol
must provide the name of its return type, an environment that includes its arguments,
its stack-frame size, information about callee-saved registers, its assembly-output label,
and a list of stopping points.

Because the linguistic structure of symbols is not part of the contract between ldb
and the compiler, this contract supports multiple languages and compilers. The compiler
writer must embed the compiler’s symbols into ldb’s symbols, but because each flavor
can be extended with private properties, this does not require too much programming
effort. For example, lcc maintains five kinds of symbols: types, constants, variables,
procedures, and typesyms. (The typesym is part of lcc’s private representation of a
C-language type.) Each kind is easily embedded in a debug-level symbol.

Stopping Points. At debug time, stopping points are used not only to plant breakpoints
by source-code location but also to identify the source-code location nearest the point
of a program fault. These operations require the debugger to map between object-code
locations and source-code locations. The map is defined by the set of all stopping points
in the program, so ldb requires the compiler to associate each stopping point with
both a source-code location and an object-code location. (The object-code location is
represented by an assembly-language label like $L.X6 in Fig. 3.) At a stopping point,
the debugger must be able to look up symbols, so ldb requires the compiler to associate
each stopping point with an environment.

As described in Section 3.1, the primary effort required to support stopping points
is to create an explicit, language-level representation in the compiler. Given a suitable
language-level representation, creating the corresponding debug-level object is straight-
forward. Section 5.2 discusses how we modified the lcc and MiniJava compilers to
create stopping points.

Environments. At debug time, looking up symbols by name requires an environment.
Because a compiler already maintains its own language-level environments, creating
debug-level environments should not require much programming effort. Some extra
effort may be required to propagate environments through the intermediate representation
so they can be associated with stopping points.

Compilation Unit. The ldb support library maintains an abstraction that represents the
compiler’s knowledge about the entire compilation unit. This debug-level compilation
unit is created incrementally: every time the compiler processes a top-level symbol, it

18 S. Ryu and N. Ramsey

should announce the symbol to the compilation unit. Because a symbol can be announced
from wherever it is created, little programming effort is required.

3.3 Expression Evaluation

Unlike other debuggers, which require that the source language be reimplemented inside
the debugger, ldb evaluates expressions by reusing a key component of the compiler: the
translation from source language to low-level intermediate code. After being wrapped
in a thin layer that communicates with the debugger, this translation component acts
as an expression-evaluation server. The server communicates with ldb over a TCP
connection: ldb sends ASCII to the server, and the server replies with PostScript code
that ldb interprets. To evaluate an expression, ldb sends the text of the expression to
the server, which parses the expression, type-checks it, and replies with a PostScript
procedure followed by code that, when interpreted, has the effect of evaluating the
expression (Ramsey and Hanson 1992).

Building an expression-evaluation server may require significant intellectual effort as
well as programming effort: one must define what it means to evaluate an expression at a
stopping point. For an explicitly typed language such as Java or C, this task is easy; one
can simply reconstruct the original environment in which the stopping point occurs. But
for an implicitly typed language such as Haskell or ML, an expression that is evaluated
at debug time cannot participate in type inference in the same way as an expression that
is part of the original program. For example, Hindley-Milner type variables cannot be
unified with known types but must be treated as abstract types. For such languages, the
semantics of debug-time evaluation remains a topic for future work.

Even given a semantics, implementing expression evaluation requires significant
programming effort. The process is described in detail by Ramsey (1993, Chapter 5),
but we summarize here.

– The expression server must reconstruct the language-level objects that represent
the context at a stopping point. The private contents of these objects can be stored
in property lists on ldb’s debug-level objects. An additional property, “serialize,”
should be PostScript code that, when interpreted, sends the private properties to the
expression server. To get its private data, the server asks ldb to execute “serialize.”

– Once the context has been reconstructed and an expression translated to intermediate
code, the server must turn this code into PostScript. As a stack-based language,
PostScript is an ideal target for such translation, so there is not much intellectual
effort involved. But the programming effort is proportional to the number of different
kinds of nodes in the compiler’s intermediate code, which can be considerable.

– If the expressions to be evaluated include procedure calls, the target-language run-
time system may have to be modified to be able to execute a procedure call on behalf
of ldb. Depending on the complexity of the calling convention, this feature can be
quite difficult to implement.

– If the compiler supports multiple target machines, the expression server must be
specialized to the requirements of the target being debugged. For example, the
expression server must know the sizes and alignments of basic data types. The
compiler writer may create a specialized expression server for each target, or better,
create a single expression server that is specialized at startup time.

Source-Level Debugging for Multiple Languages with Modest Programming Effort 19

It is worth noting that this effort is not absolutely required—because a debugger is
useful even without an expression-evaluation server, we can trade programming effort
for debugging functionality. In particular, if no expression-evaluation server is provided,
ldb uses a “default” evaluator that can print the values of variables only.

4 When Representations be Available

Section 3 explains what language-level objects a compiler must provide in order to create
debug-level objects for ldb. But when must these objects be provided? One strategy is
to accumulate all the objects, and once compilation is over, emit them (Ramsey 1993,
Chapter 4). Although this strategy has the merit of simplicity, it prolongs the lifetimes of
the compiler’s language-level objects, and it can complicate memory management and
slow the compiler. A better strategy is as follows:

– Create debug-level objects as soon as is convenient, possibly leaving out some parts.
For example, a procedure’s object might be created without stopping points.

– Incrementally mutate debug-level objects to accumulate missing parts.
– When all information has been accumulated, externalize the object by writing it to

assembly-language output.

The create-mutate-externalize strategy is built into the design of our support library.
The library provides the create and mutate operations for each type of debug-level ob-
ject. For example, a debug-level procedure is created without stopping points; when
a stopping point becomes available, the compiler mutates the procedure by calling
ldbProc addLocus. In the library interface, an externalize operation is exported only
for a compilation unit; other objects are externalized by the library’s implementation.

The primary benefit of our approach is that the compiler writer need not worry about
how long objects should live or when objects should be written to disk; these tasks are
handled by the support library. A secondary benefit is that the support library becomes
free to change and experiment with the external representation of debug-level objects,
perhaps to improve performance. For example, it is possible to externalize individual
objects incrementally, by writing create and mutate operations to a log. Experimentation
with these possibilities is a topic for future work.

5 Results

To assess the programming effort required by our approach, we undertook case studies
with the lcc (Fraser and Hanson 1995) and MiniJava (Appel and Palsberg 2002; Hosking
2003) compilers. We explain how programming effort is decomposed, present internal
metrics for the modifications done to each compiler, discuss the effort of creating the
compile-time support library, and compare with gdb.

5.1 Decomposition of Programming Effort

We distinguish two kinds of programming effort: modifying the compiler’s existing
phase modules and adding new utility modules. A phase module implements a phase

Must

20 S. Ryu and N. Ramsey

lcc MiniJava
core driver & total core driver & total

back ends back ends

original compiler

total modules 36 9 45 132 6 138
total source lines 13,730 4,839 18,569 5,673 1,472 7,145

Driver source 268 121
Alpha source 1,192
MIPS source 1,129 1,351
SPARC source 1,163
x86-linux source 1,087

effort to add
source locations &

stopping points

utility modules added

(none)

(none)
phase modules changed 8 0 8
• lines added 131 0 131
• lines changed 53 0 53

effort to support
MIPS hardware

utility modules added

(none)

0 1 1
• lines therein 0 49 49
phase modules changed 4 3 7
• lines added 45 429 474
• lines changed 9 1 10

effort to add
debugging support

utility modules added 6 0 6 2 0 2
• lines therein 990 0 990 343 0 343
phase modules changed 4 4 8 29 2 31
• lines added 18 43 61 340 46 386
• lines changed 0 4 4 57 9 66

effort to add an
expression-
evaluation

server

utility modules added 0 8 8

(none)
• lines therein 0 1,172 1,172
phase modules changed 24 0 24
• lines added 730 0 730
• lines changed 105 0 105

total source lines added or changed 1,843 1,219 3,062 978 534 1,512

Fig. 4. Case studies: lcc and MiniJava

C/C++ Java Fortran Pascal Modula-2
lang-exp.y 1,715 1,462 1,175 1,485 1,094
lang-lang.c 522 1,097 957 465 468
lang-lang.h 84 66 98 75 31
lang-typeprint.c 1,154 343 435 858 41
lang-valprint.c 573 527 739 1,115 39
total source lines 4,048 3,495 3,404 3,998 1,673

Fig. 5. Lines of code for gdb’s language support

Source-Level Debugging for Multiple Languages with Modest Programming Effort 21

of the compiler; a utility module is used by phase modules or by the support library.
Utility modules have well-defined interfaces and do not depend on other parts of the
code, so it is easy to add them. To modify an existing phase module requires more effort:
the compiler writer must understand how to do the modification safely. We therefore
reduce programming effort by putting most new code, especially most of the intellectual
work of creating debug-level objects, into utility modules. This organization requires
less programming effort than would be required to do the same work in phase modules.

5.2 Internal Metrics

Measurements of our two case-study compilers are summarized in Fig. 4. The block at
the top of Fig. 4 shows the sizes of the original compilers; back-end code is split by
target machine. The next four blocks summarize four kinds of modifications:

– We modified MiniJava to propagate source-code locations into intermediate code
and to define stopping points.

– We modified MiniJava to generate code that could run on MIPS hardware, not only
on the SPIM simulator (Larus 2003).

– We modified both compilers to add debugging support.
– We implemented an expression-evaluation server for lcc.

We describe three of these modifications below.
The original MiniJava compiler provided no source-code locations for symbols and

no stopping points. We modified MiniJava’s parser to capture each symbol’s source-code
location and to propagate the locations into MiniJava’s intermediate representation. We
also modified MiniJava to include a stopping point before each expression, including
nested expressions, as well as before each statement and at the end of each block. Adding
source-code locations changed only 17 lines; adding stopping points added 131 lines
and changed 36 lines.

The bulk of our effort was invested in true debugging support, which we did for
both MiniJava and lcc. Because lcc has a well-defined internal interface for emitting
debugging information, most of our effort was in writing a new implementation of that
interface. We added 6 modules to lcc: 1 big module emits debugging information,
and the other 5 implement utility functions. For MiniJava, we added 2 modules to the
core of MiniJava: 1 for variable placements and 1 for printing procedures. We had to
change 31 modules, but because MiniJava uses visitor patterns, this number is deceptively
large: of the 31 changed modules, 22 collaborate to define MiniJava’s intermediate form,
defining one type of node per module. Leaving aside these modules, we changed roughly
the same fraction of modules as in lcc: about 10%.

We implemented an expression-evaluation server only for lcc. To implement com-
munication between ldb and the server, we modified 105 lines and added 1,172 lines.
Of the 8 modules added, 1 module of 239 lines is a driver, and 1 module of 617 lines im-
plements a new back end that generates PostScript. The remaining 6 modules, totalling
316 lines, enable the expression server to be specialized at startup time; there is one
specialization module for each of 6 different architectures.

We also consider duplication of effort. Only name resolution is implemented both
by ldb and by our case-study compilers. The code is 316 lines for lcc and 77 lines for

22 S. Ryu and N. Ramsey

MiniJava. Because the compiler and debugger both need name resolution, and because
they can be implemented in different languages, we see no way to avoid this duplication.

5.3 The Compile-Time Support Library

Our case studies do not include the effort required to create ldb’s support library. We
have invested significant effort in developing four implementations of this library: one
in each of C, Java, Standard ML, and Objective Caml. If a compiler is written in one of
these languages, the appropriate library can be reused with no additional programming
effort. But if a compiler is written in another language, the library interface must be
instantiated for the new language, and the new interface must be implemented.

To instantiate the interface requires choosing suitable idioms in the new language.
But our four existing instances already embody idioms from a range of paradigms: Java
is object-oriented, Standard ML is functional, Objective Caml is both, and C is neither.
We expect, therefore, that one of the existing instances would be a good guide to creating
a new one. Furthermore, the library itself is not large; for example, the C interface is
1,154 lines, of which only 366 are non-blank, non-comment lines. The corresponding
implementation is 1,001 lines. Given a new programming language, we could probably
instantiate the library interface and implementation in less than a week.

5.4 Comparisons with gdb

Our case studies look at programming effort for individual compilers. Here, we compare
our method with gdb. According to our basic principle—the less the compiler writer is
constrained, the smaller the programming effort will be—we compare how our method
and gdb constrain the compiler writer.

The compiler writer must present certain information to the debugger. In Section 3,
we describe what language-level objects the compiler must provide. We didn’t need to
add any language-level objects to lcc; to MiniJava, we added 131 lines and modified
53 lines for source-code locations of symbols and for stopping points. These changes
affected only small, isolated parts of the compiler.

gdb does not describe its requirements clearly. Gilmore (2000, Chapter 7) tells a
compiler writer to add a new source language to gdb by providing 5 files. Fig. 5 shows the
sizes of the files for the source languages supported bygdb-5.1.1: C/C++, Java, Fortran,
Pascal, and Modula-2. Language support is three or four thousand lines of C code, except
for Modula-2. The support for Modula-2 is much smaller because it reuses the modules
for printing C types and values. Comments in the source code indicate that this reuse
is a stopgap measure, and gdb’s implementors intend eventually to implement correct
printing support for Modula-2. By contrast, ldb’s language support is three thousand
lines of C code for lcc, including its expression-evaluation server, and half that for
MiniJava, which lacks an expression server. According to Gilmore, a compiler writer
who wants to add a new language to gdb must understand at least 3 header files and
5 source files, which are 11,521 lines altogether, of which 7,727 lines are non-blank,
non-comment lines. Our support library is far smaller and simpler.

Source-Level Debugging for Multiple Languages with Modest Programming Effort 23

The information must be presented in a certain order and be kept live for a certain
time during compilation. For each symbol, gdb represents the symbol information as a
“stabstring” which is the symbol’s name appended by the encoding of type information.
While the stabstring requires a compiler to generate a symbol’s information all at once,
our support library can accumulate information incrementally, which gives the compiler
the freedom to generate different parts of the information in any order. Moreover, because
ldb uses a native-language interface, not strings, our support library can guarantee the
well-formedness of the generated information.

The less the source language is constrained, the smaller the programming effort. To
work with gdb, a compiler must use only types that gdb understands, and it must use
gdb’s representation. By contrast, our techniques hide the source-language type system
and data representations, so the compiler writer never has to change them in order to suit
the debugger—this is a whole category of programming effort we guarantee to eliminate.
For example, we kept lcc’s and MiniJava’s data representations unchanged.

The more the compiler’s code is reused, the smaller the programming effort. gdb’s code
for expression evaluation duplicates substantial functionality that is already present in
the compiler, including parsing, type checking, and generation of intermediate code.
Because the code in gdb must respect gdb’s naming conventions and other internal
constraints, it is not possible simply to reuse the corresponding code in the compiler,
even if the compiler happens to be implemented in C. By contrast, as described in
Section 3.3, our method reuses the compiler’s code.

The less the debugger’s code is revealed, the smaller the programming effort. The com-
piler writer interacts with ldb only through the compiler-support interface, which hides
the details of the debugger. By contrast, gdb requires the compiler writer read and un-
derstand large chunks of C code.

6 Related Work

There are two fundamental approaches to source-level debugging of compiled code. To
support the reverse engineering approach, a compiler generates code much as it nor-
mally would, and it emits additional information that enables the debugger to analyze
the object code and report information at the source level. To support the instrumentation
approach, a compiler or other tool modifies the program before code generation; for ex-
ample, a compiler might insert a conditional branch at every stopping point. Debuggers
that use reverse engineering include ldb, gdb, and dbx; debuggers that use instrumen-
tation include smld (Tolmach and Appel 1990; Tolmach 1992) and cdb (Hanson and
Raghavachari 1996).

Instrumentation can support debugging with modest programming effort. Instru-
mentation can also support advanced debugging features such as time travel, which is
more difficult to support using reverse engineering (Feldman and Brown 1988). Unfor-
tunately, the convenience comes at a substantial cost in performance: code instrumented
for debugging typically runs 3–4 times as long as uninstrumented code.

24 S. Ryu and N. Ramsey

The standard approach to reverse engineering, which is exemplified by dbx, gdb,
and DWARF, is for the debugger to provide a union model of all languages it supports.
Because the union model provides the interface by which the compiler tells the debugger
about the types of variables, it must include every type constructor used in any language
the debugger might support.

There are two difficulties with a union model:

– The compiler and debugger must agree on a representation for each type. Because
the representation may be machine-dependent, a different agreement may be needed
for each target machine. Typically, the compiler writer cannot choose representa-
tions for high-level values such as records and strings; the compiler must use the
representations that are assumed by the debugger.

– A union model might not include the types needed by a new language. Forcing a
new language to fit an old union model may require substantial effort, and success
is not guaranteed.

A union model exposes the details of source-language types and target-machine repre-
sentations. By hiding these details, we leave the compiler writer free to change them,
so no programming effort is expended forcing the compiler to be compatible with an
unsuitable union model.

Like ldb, the Acid debugger avoids a union model and instead prints values by us-
ing functions written in an internal programming language (Winterbottom 1994). As
with ldb, these functions must be emitted by the compiler. It is difficult to evaluate
the programming effort required for a compiler to work with Acid, but it looks similar
to the effort required to work with early versions of ldb: it appears to be up to the
compiler writer, without assistance, to emit information in the form that the debugger
expects.

A great deal of related work has been invested in debugging optimized code. To
debug optimized code, the debugger needs to know the relation between optimized code
and source code. In particular, when execution is suspended, the debugger must find
a way to explain the actual state of the machine, even if that state is not consistent
with a sequential execution of the source program. This may happen if, for example,
the optimizer has changed the order of execution, eliminated dead assignments, elimi-
nated induction variables from loops, and so on. Even for a fairly simple optimization,
building a debugger that is capable of finding such explanations requires substantial
intellectual and programming effort. This problem has engendered a large body of lit-
erature, which falls into two broad camps. Hennessy (1982) exemplifies the camp that
tries to “undo” optimizations so that the debugger can present an explanation that makes
it appear as if the program had never been optimized. Brooks, Hansen, and Simmons
(1992), Tice and Graham (1998), and Jaramillo, Gupta, and Soffa (1999, 2000) exem-
plify the camp that tries to explain how the optimized code is executed as it is. In either
camp, building a debugger requires lots of compiler support and also a deep under-
standing of optimization. We believe that debugging optimized code is orthogonal to
the problem of building a debugger that supports multiple languages, compilers, and
machines.

Source-Level Debugging for Multiple Languages with Modest Programming Effort 25

7 Conclusion

We have presented a new kind of contract between a compiler and debugger. The key
ideas are to distinguish language-level objects from debug-level objects; to build debug-
level objects incrementally; to hide the memory management and external representation
of debug-level objects in a reusable support library; and to hide language-dependent,
machine-dependent information behind the methods of the debug-level objects. The
contract supports multiple programming languages and target machines, and it helps
a compiler writer add debugging support while expending only modest programming
effort.

Acknowledgements

Anonymous referees provided helpful comments on an earlier version of this paper.
This work has been funded by anAlfred P. Sloan Research Fellowship and by National

Science Foundation grant EIA-0096091.

Bibliography

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. 1986. Compilers, Principles, Techniques, and
Tools. Addison-Wesley.

Andrew W. Appel. 1998. Modern Compiler Implementation. Cambridge University Press.
Available in three editions: C, Java, and ML.

Andrew W.Appel and Jens Palsberg. 2002. Modern Compiler Implementation in Java. Cambridge
University Press, second edition.

Gary Brooks, Gilbert J. Hansen, and Steve Simmons. 1992 (July). A new approach to debugging
optimized code. Proceedings of the ACM SIGPLAN ’92 Conference on Programming Language
Design and Implementation, in SIGPLAN Notices, 27(7):1–11.

Stuart I. Feldman and Channing B. Brown. 1988 (May). IGOR: A system for program debugging
via reversible execution. Proceedings of the ACM SIGPLAN/SIGOPS Workshop on Parallel
and Distributed Debugging, in SIGPLAN Notices, 24(1):112–123.

Christopher W. Fraser and David R. Hanson. 1995. A Retargetable C Compiler: Design and
Implementation. Addison-Wesley.

John Gilmore. 2000. GDB internals—a guide to the internals of the GNU debugger. Found in
the doc directory of gdb distribution version 5.1.1.

David R. Hanson and Mukund Raghavachari. 1996. A machine-independent debugger. Software–
Practice and Experience, 26(11):1277–1299.

John Hennessy. 1982. Symbolic debugging of optimized code. ACM Transactions on Program-
ming Languages and Systems, 4(3):323–344.

Antony Hosking. 2003. The MiniJava compiler. Provided by the author, whose email address is
hosking@acm.org.

Clara Jaramillo, Rajiv Gupta, and Mary Lou Soffa. 1999 (March). Comparison checking: an
approach to avoid debugging of optimized code. In Proceedings of the 7th European Soft-
ware Engineering Conference (ESEC) held jointly with the 7th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE), volume 1687 of Lecture Notes in
Computer Science, pages 268–284. Springer-Verlag.

26 S. Ryu and N. Ramsey

Clara Jaramillo, Rajiv Gupta, and Mary Lou Soffa. 2000 (July). FULLDOC: A full reporting
debugger for optimized code. In Proceedings of the 7th International Symposium on Static
Analysis, volume 1824 of Lecture Notes in Computer Science, pages 240–259. Springer-Verlag.

James Larus. 2003. SPIM: A MIPS R2000/R3000 simulator.
http://www.cs.wisc.edu/ larus/spim.html.

Mark A. Linton. 1990 (June). The evolution of Dbx. In Proceedings of the Summer USENIX
Conference, pages 211–220.

Norman Ramsey. 1993 (January). A Retargetable Debugger. PhD thesis, Princeton University.
Also technical report CS-TR-403-92.

Norman Ramsey and David R. Hanson. 1992 (July). A retargetable debugger. ACM SIGPLAN
’92 Conference on Programming Language Design and Implementation, in SIGPLAN Notices,
27(7):22–31.

Sukyoung Ryu and Norman Ramsey. 2004. The ldb interface. Technical Report TR-23-04,
Division of Engineering and Applied Sciences, Harvard University.

Sukyoung Ryu and Norman Ramsey. 2005 (January). Source-level debugging for multiple lan-
guages with modest programming effort (expanded version). Technical Report TR-01-05,
Division of Engineering and Applied Sciences, Harvard University.

Caroline Tice and Susan L. Graham. 1998 (July). OPTVIEW: A new approach for examining
optimized code. Proceedings of the 1998 ACM SIGPLAN/SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering, in SIGPLAN Notices, 33(7):19–26.

Andrew P. Tolmach. 1992 (October). Debugging Standard ML. PhD thesis, Princeton University.
Also technical report CS-TR-378-92.

Andrew P. Tolmach and Andrew W. Appel. 1990 (June). Debugging Standard ML without
reverse engineering. In Proceedings of the 1990 ACM Conference on LISP and Functional
Programming, pages 1–12.

Unix Int’l. 1993 (July). DWARF Debugging Information Format. Unix International, Parsippany,
NJ.

Philip Winterbottom. 1994. Acid: A debugger based on a language. In Proceedings of the Winter
1994 USENIX Conference, pages 211–222.

Compilation of Generic Regular Path Expressions
Using C++ Class Templates

Luca Padovani�

University of Bologna, Department of Computer Science,
Mura Anteo Zamboni 7, 40127 Bologna, Italy

lpadovan@cs.unibo.it

Abstract. Various techniques for the navigation and matching of data structures
using path expressions have been the subject of extensive investigations. No matter
whether such techniques are based on type information, indexing, automata, it is
desirable to synthesize implementations automatically, starting from a high-level
description of the path expressions to be traversed.

In this paper we present a library of C++ templates for the representation of
regular path expressions and their compilation into efficient backtracking algo-
rithms. The resulting code can be used to implement visitors, pattern matchers,
node collectors on regular paths over possibly heterogeneous, linked data struc-
tures.

The point of the paper is on the path compilation technique, which was inspired
by a continuation-passing, functional semantics of the path expressions. We rely
on some peculiar aspects of C++ templates to create a compilation framework that
closely follows the given semantics.

1 Introduction

The traversal of linked data structures along paths with a certain pattern is an operation
that underlies many kinds of more complex queries: the recognition of a context in the
proximity of a node in the data structure, the selection, the iteration, the visit of a set of
nodes that are related by a pattern.

Regular path expressions extend the concept of plain regular expressions to the
traversal of linked data structures. The recent diffusion of XML technologies has made
path expressions the subject of a renewed interest. Among proposed standards we cite
XPath [11, 17] and XQuery [19], but a whole plethora of languages and techniques have
been studied and developed. Optimized implementations are possibly based on type
information, indexing, finite state automata [20], tree automata [12, 15].

There are contexts, however, where optimizations are not applicable or give little
advantage if compared to backtracking algorithms for path traversal. These contexts are
often characterized by the following aspects:

� This work has been supported by the European Project IST-2001-33562 MoWGLI.

R. Bodik (Ed.): CC 2005, LNCS 3443, pp. 27–42, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

28 L. Padovani

– the data structure evolves under the effect of frequent editing operations;
– operations may change the structure arbitrarily, making it infeasible to keep track

of the state of the structure if not by considering the whole structure as “the state”;
– the patterns to be matched are sparse or linear, that is we are interested in checking

only a limited number of objects around a focused node (which is sometimes called
cursor), rather than performing an exhaustive query on whole documents.

The problem of backtracking algorithms is that their complexity grows unmanageably
as the path expressions become more complicated, the strive to make them efficient
contributes significantly to their complexity, they are seldom generic, reusable, and they
cannot be easily composed together. It is generally desirable to be able to specify the
path expressions to be traversed in a high-level language which would be compiled into
efficient traversal code.

In this paper we describe a framework for the compilation of generic regular path
expressions into backtracking algorithms. The framework is based on C++ class tem-
plates that represent path expressions. The same class templates are able to synthesize
the traversal code following the functional semantics of the path expressions being com-
piled. The bottom line is that there is no need for any tool other than the C++ compiler
itself, and the generated algorithm integrates seamlessly with the rest of the code.

The structure of the paper is as follows: in Section 2 we overview the basic constructs
of generic regular path expressions and define their set-based semantics in a way similar
to what was done for XPath in [10]. In Section 3 we define a continuation-passing, func-
tional semantics for path expressions that is equivalent to the set-based semantics. Sec-
tion 4 gives the stateless implementation of a simple but limited compilation framework
that closely follows the functional semantics. Section 5 elaborates the stateless imple-
mentation into a stateful one and shows how the library can be adapted so as to accomplish
specific tasks. Section 6 gives a brief account of related work. We conclude in Section 7
with some performance comparisons. The source code of the PET library is publicly
available at http://www.cs.unibo.it/˜lpadovan/PET/index.html.

Some knowledge of C++ templates and of the λ-calculus notation is assumed.

2 Syntax and Set-Based Semantics

We consider a linked data structure where links are represented as labelled arcs. For the
sake of simplicity, in this paper we assume that the data structure is uniform and that its
elements have all the same type Object . This assumption is relaxed in the implementation
of the library. We consider generic regular path expressions generated by the grammar of
Table 1. The expressions are generic in the sense that the finite set of atomic expressions,
denoted by the nonterminal 〈atom〉, is left unspecified. Conceptually atoms can be
classified as selectors and filters. Selectors follow labelled arcs in the data structure:
for each x, y ∈ Object , we say that s ∈ 〈atom〉 selects y from x if there is an arc
x

s→ y in the data structure. For example, in a tree data structure we may have the
“first child of” or “parent of” selectors (links), with their usual meaning. Filters can be
thought of as predicates on objects in the Object domain. In data structures with labeled
objects a typical filter is “has label l” (examples of “labels” are names, types, identifiers).

Compilation of Generic Regular Path Expressions 29

Table 1. Abstract syntax of generic regular path expressions

〈atom〉 ::= 0
| 1
| . . .

〈expr〉 ::= a a ∈ 〈atom〉
| e1 | e2

| e1 e2

| e∗

| e? 1 | e
| e+ ee∗

| en ee · · · e︸ ︷︷ ︸
n

0 ≤ n

| en,m en | en+1 | · · · | em 0 ≤ n ≤ m

Table 2. Set-based semantics of regular path expressions

S[[]] : Expr → Object → Set(Object)

S[[0]]x = ∅
S[[1]]x = {x}
S[[a]]x = a(x)

S[[e1 | e2]]x = S[[e1]]x ∪ S[[e2]]x
S[[e1 e2]]x = S[[e2]]S[[e1]]x =

⋃
y∈S[[e1]]x S[[e2]]y

S[[e∗]]x =
⋃∞

i=0 S[[ei]]x

Only two atoms are pre-defined, they are the identity selector 1 and the null selector 0
(equivalently the filters for the always-true and always-false predicates respectively).

A core path expression can be a single atom a, the alternative e1 | e2 between two
path expressions e1 and e2, the composition e1 e2 of two path expressions e1 and e2,
or the closure e∗ of a path expression e. The remaining regular path expressions can
be expressed in terms of these core expressions as shown in Table 1, hence they will
not be considered any further; the implementation, however, supports them. Note that
given two filters p1 and p2, the composition p1 p2 represents the conjunction p1 ∧p2 and
p1 | p2 represents the disjunction p1 ∨ p2.

We define the set-based semantics of a path expression e focused on an object x as
the finite set of objects selected (or reached) by e starting from x (Table 2). Borrowing
the notation from [10], we write Set(Object) for the type of a set where each element is
of type Object and Set1(Object) for the subtype of sets with at most one element. Each
atom is modelled as a function a : Object → Set1(Object). A selector s is modelled as
a function s such that, given an object x, s(x) = {y} if x

s→ y, and s(x) = ∅ if there is
no arc from x labelled s. A filter p is modelled as a function p such that, given an object
x, p(x) = {x} if x satisfies p, and p(x) = ∅ otherwise.

30 L. Padovani

Example 1 (Plain Regular Expressions). Regular expressions over sequences of symbols
in a finite vocabulary V can be seen as a special case of regular path expressions where
there is only one selector “next character” and there is one filter for each symbol a ∈ V
with the meaning “the current character is a”. As there is only one selector, the syntax
of plain regular expression does not normally have any notation for it, juxtaposition of
symbols has the meaning of concatenation.

Example 2 (XPath Expressions). The subset of XPath (version 1.0 [11]) expressions
without qualifiers can be encoded as regular path expressions. Assuming that the parent ,
first child , next sibling selectors are defined, we encode XPath axes as follows:

self ⇒ 1
child ⇒ first child next sibling∗

descendant ⇒ (first child next sibling∗)+

ancestor ⇒ parent+

following sibling ⇒ next sibling+

following ⇒ parent∗ next sibling+(first child next sibling∗)∗

The remaining XPath axes are symmetric to the shown ones.

3 Functional Semantics

The set-based semantics is very concise and clear in giving the meaning of path expres-
sions, and its naive implementation is naturally based on object sets and union operations.
If we were to compile an expression e to a function that way, the type of such functions
would be F0[[e]] : Object → Set(Object) and, for instance, the compilation rule for a
compound expression e1 e2 would look something like

F0[[e1 e2]] = λx. ∪y∈(F0[[e1]] x) (F0[[e2]] y) .

This implementation, which is typical for several XPath engines, is unsatisfactory when

1. we are not interested to knowing which nodes have been selected, but only if at least
one node was selected, or

2. we are interested to bind only a limited subset of the selected objects, or
3. we want to bind different objects to different names (perhaps because objects have

different types), or
4. we want to visit the selected objects as they are discovered.

The heart of the problem is the composition e1 e2, in particular when the path e1
selects more than one object. We cannot avoid the set-union operation as long as e1
and e2 are completely evaluated in isolation. What we need is a way to tell F [[e1]] that,
whenever it selects a node, it should proceed along the path e2 from this node and, if
this path fails, search for the next object selected by e1. We do this by adding to F [[e1]]
one more parameter, called the continuation.

Table 3 shows the continuation-passing, functional semantics of regular path expres-
sions. We adopt the λ-calculus notation with the following extensions. We use {x} to

Compilation of Generic Regular Path Expressions 31

Table 3. Functional semantics of regular path expressions

null ≡ λx.∅
id ≡ λx.{x}

fork ≡ λk1.λk2.λk3.λx.match (k1 x) with
{y} → (k2 y)

∅ → (k3 x)
A[[0]] = null
A[[1]] = id
A[[a]] = λx.a(x)

F [[]] : Expr → (Object → Set1(Object)) → Object → Set1(Object)

F [[a]] = λk.(fork A[[a]] k null)
F [[e1 | e2]] = λk.(fork (F [[e1]] k) id (F [[e2]] k))

F [[e1 e2]] = λk.(F [[e1]] (F [[e2]] k))
F [[e∗]] = λk.(fix λf.(fork k id (F [[e]] f)))

denote “some object x” and ∅ to denote “no object”. These correspond to the Some x
and None values in languages like ML or OCaml. We destruct optional values using a
simplified form of pattern matching which is only capable of discriminating a singleton
and the empty set and optionally binding a name to the value of the singleton.

The terms null, id, fork, and fix are called basic terms. The first two terms corre-
spond to the compiled versions of the 0 and 1 paths respectively. The fork term is the
basic term for backtracking: (fork e1 e2 e3 x) tries to follow the path e1 with focus
x. If it succeeds (thus reaching an object y), it continues along e2 with focus y. If it
fails, it continues along e3 with focus x. The composition of two paths e1 e2 is trans-
lated as the function corresponding to e1 to which the function corresponding to e2 is
passed as continuation. The compilation of e∗ makes use of the fix-point basic term,
fix, which is left unspecified in the semantics as it will be implemented using a peculiar
feature of C++ class templates. As usual, we require that (fix F) = (F (fix F)) for all
functions F .

Note that the function we obtain from a path expression e expects a continuation k
that “receives” the selected objects. We will see in Section 5.3 that, by varying k, one
can use the path expression to accomplish different tasks.

Let us conclude this section with a proposition stating that the set-based semantics
and the functional semantics are in a way equivalent:

Proposition 1. Let

eq = λx.λy.

{{x}, if x = y
∅, otherwise

be the filter that tests whether two objects are the same object, then we have

∀x, y ∈ Object , x ∈ S[[e]]y ⇐⇒ (F [[e]] (eq x) y) = {x} .

The proof follows by a structural induction on the path expression e.

32 L. Padovani

4 Implementation

If we were to generate code for a functional language, the rules of the functional se-
mantics in Table 3 could be used directly. As a matter of fact, when we first attacked
the problem it seemed that the only way of producing a code close to the functional
semantics was to use a functional language as target (a concrete attempt was done with
Objective Caml [21]). In C++ functions are not first-class entities (let alone continua-
tions) and moreover they can only be declared at the top-level or inside a class, hence the
compilation process would not be compositional. In particular, it would not be possible
to compile a local path expression within another C++ function, for instance as a test
expression of an if statement. We can circumvent these limitations using C++ class
templates.

C++ class templates allow the programmer to abstract the definition of a class with
respect to one or more template parameters. This way it is possible to design generic
classes that can be used with arbitrary data types. For example, the type

template <typename A, typename B>
struct Pair {
A first;
B second;

};

defines a generic Pair structure with two template parameters A and B for representing
pairs of values of arbitrary types. In order to be used, parameterized classes must be in-
stantiated with the appropriate types. The instantiation acts by substituting the abstracted
types with the provided ones. For example Pair<int, float> represents the type
of Pairs where the first component has type int and the second component has
type float. Roughly speaking, class templates can be thought of as functions operating
on and returning types.

In addition to member fields, class templates can contain member methods, member
types, and member templates as well, all of which may depend on template parame-
ters. Member methods of class templates are instantiated (that is, their actual object
code is output by the compiler) on demand when they are invoked. Upon instantiation
of a method of a class template, the compiler may decide to do code inlining for the
method’s body, or to output a standalone instance of the method to be called one or more
times.

Going back to our problem, we can let the C++ compiler output functions on demand
using templates, thus: for each basic term we define a template that has as many template
parameters as the continuation parameters of the term (none for null and id, three for
fork) and has a static member function walk accepting one parameter (the cursor) and
implementing the term semantics. This approach is possible as long as all the continuation
parameters are known at compile-time, because template instantiation must be resolved
by the C++ compiler. This condition holds: given a compiled path expression F [[e]] and
a statically-known receiving term t, no redex in (F [[e]] t) involving continuations does
depend on runtime information.

Compilation of Generic Regular Path Expressions 33

The use of templates also allows us to relax the constraint of working on homogeneous
data structures. As anticipated in the introduction, we will focus on the compilation
framework rather than on these details of the implementation. From now on we assume
that the objects of the data structure being traversed are accessed by a pointer Object*:
the walk method will accept and return a Object* value.

4.1 Basic Terms

The user has to provide a class (template) for each atom occurring in the path expres-
sions. Typically, selectors corresponds to accessors in the Object class and filters are
predicates over Object objects. The class for an atom a must provide a static walk
method accepting the current object in the path (the x variable in the specification, the
x parameter in the C++ code below) and returning a possibly null object.

Following these guidelines, the id and null atoms are implemented as follows:

struct IdTerm
{ static Object* walk(Object* x) const { return x; } };
struct NullTerm
{ static Object* walk(Object*) const { return 0; } };

According to Table 3 the term fork has four parameters. However, the first three
parameters (k1, k2, and k3) are continuations so they are represented by template
parameters:

template <typename K1, typename K2, typename K3>
struct ForkTerm {
static Object* walk(Object* x) const {
if (Object* y = K1::walk(x)) return K2::walk(y);
else return K3::walk(x);

}
};

Finally, we need to implement the fix-point operator and we do so by exploiting a
special case of parameterized inheritance. The function for which we have to compute
the fixed point is represented by the template template parameter F:

template <template <typename> class F>
struct FixTerm : public F<FixTerm<F> > { };

A variant of this construct, in which the class itself is a parameter of the class it derives
from, is known under the name of Curiously Recurring Template Pattern [7, 5].Although
there are other slightly more compact ways of implementing recursive types, this one
closely resembles the functional semantics and, anyway, it introduces no overhead if
compared to the equivalent variants (however see note 1 in Section 4.2).

Example 3. The path expression parent (parent | 1), which selects both the parent and
the grandparent of the cursor, is represented by the type

34 L. Padovani

ForkTerm<ParentTerm,
ForkTerm<ForkTerm<ParentTerm, k, NullTerm>,

IdTerm, ForkTerm<IdTerm, k, NullTerm> >,
NullTerm>

where Parent implements the parent atom and k is the atom that is supposed to receive
the selected objects.

4.2 A Template-Based Compiler

It is clear from Example 3 that types representing path expressions are not readable
and handy to work with: it would be better to use some syntax that is more closely
related to the structure of the path expressions those types derive from. Although the
concrete syntax of path expressions is affected by the application domain (as the two
examples at the end of Section 2 have shown), we can lift from the level of basic terms
to the level of the path structure. The idea, the same used in expression templates [5,
18], is to encode the structure of a path expression using types so that, for instance,
the type

SeqPath<AtomPath<ParentTerm>,
OrPath<AtomPath<ParentTerm>, AtomPath<IdTerm> > >

would represent the path expression parent (parent | 1).
C++ classes (and class templates) may contain other class template declarations. We

exploit this feature for implementing the compilation rules shown in Table 3. To this
aim, each template representing the structure of a path expression defines a member
class template Compile with a template parameter K for the continuation. The inner
Compile class must define a member type RES representing the basic term resulting
from the compilation. A look at the actual code for the AtomPath, OrPath, and
SeqPath templates should clarify the basic idea:

template <typename A> struct AtomPath {
template <typename K> struct Compile
{ typedef ForkTerm<A, K, NullTerm> RES; };

};

template <typename P1, typename P2> struct OrPath {
template <typename K> struct Compile {
typedef typename P1::template Compile<K>::RES T1;
typedef typename P2::template Compile<K>::RES T2;
typedef ForkTerm<T1, IdTerm, T2> RES;

};
};

template <typename P1, typename P2> struct SeqPath {
template <typename K> struct Compile {
typedef typename P2::template Compile<K>::RES T1;
typedef typename P1::template Compile<T1>::RES RES;

};
};

Compilation of Generic Regular Path Expressions 35

For the compilation of the StarPath construct we first define an auxiliary template
F representing λf.(fork k id (F [[e]] f)) and then we apply the fix-point operator
FixTerm to F:1

template <typename P> struct StarPath {
template <typename K> struct Compile {
template <typename f>
struct F : public ForkTerm<K, IdTerm,

typename P::template Compile<f>::RES> { };
typedef FixTerm<F> RES;

};
};

4.3 Code Improvement

The uniform treatment of selectors and filters simplifies the framework but can result into
inefficient code.When the first template argument of ForkTerm is a filter,ForkTerm’s
walk method is exceedingly complex because a filter never returns an object different
from the cursor. Depending on the type of the walk’s parameter (which need not nec-
essarily be an actual pointer), a compiler may be unable to optimize the code by itself.
Fortunately we can help the compiler improving the generated code in such cases by
using partial template specialization. Below we show an example of such optimization:

template <typename Object, typename K2, typename K3>
struct ForkTerm<IdTerm, K2, K3> {
static Object* walk(Object* x) { return K2::walk(x); }

};

Any time a ForkTerm is instantiated with IdTerm as its first template argument,
this specialization, which defines a shorter and more efficient implementation of the
walk method, will be “preferred” by the C++ compiler to the more general one.

5 Stateful Implementation

The library developed so far is relatively simple and clean and the compilation scheme
closely follows the functional semantics of path expressions. However, the use of static
walking methods prevents methods from accessing any data that is not constant or at the
global scope. For example, if we were to design a sink atom collecting any object that it
is passed to, we would have to declare a global container and access that container from
thewalkmethod of theSink class. More generally, terms can only be parameterized by

1 At the time of this writing not every C++ compiler is capable of handling correctly
the StarPath template. An alternative formulation for the RES member type which
can be successfully compiled with GCC version 3.3.3 is struct RES : public
ForkTerm<K, IdTerm, typename P::template Compile<RES>::RES> { };
Note that this type too is defined using a variant of the CRTP even if the FixTerm template
is not needed anymore.

36 L. Padovani

values that are constants with internal static linkage, because this is the only category of
values that can be passed as template parameters. Not even constant strings nor floating
point numbers, for example, can be used as template parameters.

It is possible to extend the implementation seen so far to a stateful one, that is an
implementation where term classes are allowed to have non-static member fields that
can affect (or can be affected by) the evaluation of the walk method. Since most of the
changes needed to the classes already seen are either trivial or technical, in the section
that follows we only give a few examples and a brief account for them. The interested
reader can have a look at the source code for the details.

5.1 Stateful Basic Terms

The changes required to implement stateful terms are the following:

– terms containing subterms (like fork) must have a constructor that accepts objects
representing the compiled subterms and stores them as member fields;

– the walk method must no longer be static;
– calls to the continuations must no longer be static but rather are proper method

invocations on the continuation member fields.

In IdTerm and NullTerm only the walk method changes, which is no longer
static. The stateful variant of ForkTerm is as follows, with the relevant changes
underlined:

template <typename K1, typename K2, typename K3>
struct ForkTerm {
ForkTerm(const K1& _k1, const K2& _k2, const K3& _k3)
: k1(_k1), k2(_k2), k3(_k3) { }

Object* walk(Object* x) const {
if (Object* y = k1.walk(x)) return k2.walk(y);
else return k3.walk(x);

}
const K1 k1;
const K2 k2;
const K3 k3;

};

The instances corresponding to the three continuations are passed to the constructor
and embedded in the instance of ForkTerm. Embedding the subterms (as opposed
to referencing them via pointers) is necessary because most of the time terms will
be instantiated by the C++ compiler into temporaries, and storing references to such
temporaries would likely result into dangling pointers.

Not surprisingly, the most delicate class to change is FixTerm. The problem arises
because not only the type of the stateful FixTerm must be circular (which, as we have
seen in Section 4.1, can be achieved in a relatively easy way), but also its instance as well.
The circularity of the instance must be broken somehow using a reference for otherwise
we end up with the paradoxical situation of an instance object containing a proper copy
of itself. Also, such a circular term must be constructed in “one shot” by the default C++

Compilation of Generic Regular Path Expressions 37

constructor mechanism for we do not want the user to have to manually patch circular
terms after their compilation!

The initialization of a recursive term is possible because during the instantiation of
a class, and precisely when the constructor of a derived class is initializing the base
class, it is already possible to refer to this, since the memory for the object is allocated
before initialization takes place. In particular, in the initialization of the base class it is
possible to pass *this as a constant reference to the object being instantiated. If the
base class, or any other class this reference is passed to, stores it somewhere we have the
desired circularity. To make sure that no attempt is done to copy *this, we introduce
a new term, which we call WeakRefTerm, that stores its child term as a reference
rather than as an embedded object. The WeakRefTerm’s walk method just forwards
the invocation to the child term hence it is semantically transparent:

template <typename K> struct WeakRefTerm {
WeakRefTerm(const K& _k) : k(_k) { }
Object* walk(Object* x) const { return k.walk(x); }
const K& k;

};

It is sufficient to pass WeakRefTerm(*this) to the base class to have the desired
effect of creating a finite circularity. This solution is still problematic, though, because if
a circular object gets copied (this eventually happens as continuations may be duplicated)
the default field-by-field copy constructor will break the circularity. Nor it is possible to
define a specific copy constructor that restores the circular references in the new copy.

The only possibility is to forbid the copy of circular objects, and to actually share them
when continuations are duplicated. This implies that circular objects must be allocated in
the heap, that they must provide a reference-counter for keeping track of their sharing,
and that they must be managed by a special RefTerm class which stores a pointer
to such a heap allocated object forwarding any call to it. The RefTerm is similar to
WeakRefTerm as far as the expression semantics is concerned. In addition, it acts
as a smart pointer that increases and decreases the reference counter appropriately and
eventually releases the circular object when it is no longer used.

5.2 Expression Templates

The stateful implementation also allows us to define a set of overloaded operators that
can be used to construct complex path expression types (and corresponding instances)
in a transparent way. In our implementation we have overloaded the infix operators >>
and | to be used for composition and alternatives, respectively, and the prefix operators
* and + to be used for “zero or more” and “one or more” closure operators, respectively.
We have also overloaded the bracketing operator [] to implement qualifiers (these
are special filters that verify a structural predicate, similar to XPath qualifiers) and the
function application operator () that, given a path expression e and a node x, starts up
the compilation process and evaluates e starting from x.

Example 4. The following C++ expression implements thefollowing axes as defined
in the example 2, assuming that theParent,NextSibling, andFirstChild terms

38 L. Padovani

have been defined with their intuitive meaning, and evaluates the expression from the
node x:

(*atom(Parent()) >> +atom(NextSibling())
>> *atom(FirstChild()) >> *atom(NextSibling()))(x)

5.3 Usage Patterns

Once the basic framework has been designed and implemented, it is possible to add
atoms to perform more specific operations.

Example 5 (Pattern Matching). To test whether the data structure matches a pattern
(specified as a regular path expression) p from a node x, we just write the statement

if (p(x)) { /* there is a match */ }

Example 6 (Collecting). In order to collect all the nodes selected by a regular path
expression from a node x, we introduce a filter atom Sink that stores each node that
has been encountered. The filter does not propagate nodes encountered in an earlier
traversal:

struct Sink {
Object* walk(Object* x) const {
if (sink.find(x) == sink.end()) {
sink.add(x);
return x;

} else return 0;
}
std::set<Object*> sink;

};

After the visit is completed, the Sink term can be queried to retrive the set of collected
nodes:

Sink sink;
(p >> atom(sink) >> empty())(x);
/* do something with sink */

where the expression empty() is the library’s implementation of the 0 atom.

Example 7 (visitor). To perform a user-provided operation on each node selected by a
regular path expression from a node x (without necessarily collecting the visited nodes),
a visitor class is implemented as an atom that always fails, thus forcing the backtracking
algorithm to search for any possible alternative path:

template <typename Object> struct Visitor {
bool walk(Object* x) const {
/* visit x */
return false;

}
};

Compilation of Generic Regular Path Expressions 39

Example 8 (Unique Visitor). If the data structure contains cycles, and more generally if
one wants to be sure that the each selected node is not visited more than once, a sink
term can be composed just before the Visitor atom:

Visitor visitor;
(p >> atom(Sink()) >> atom(visitor)))(x);

6 Related Work

The compilation framework that we have presented builds on top of a standard C++
compiler and heavily relies on template metaprogramming, with no need for external
tools. Although this work does not introduce new concepts, the used techniques have
been applied in original ways.

Continuations are well-known and date back to the construction of compilers based
on Continuation Passing Style (CPS, see [3]) and also to the field of denotational seman-
tics [1, 2]. In the latter case, continuations become critical in specifying the semantics
of the sequential composition of commands in imperative programming languages with
gotos. In [1], the semantics of a construct S1; S2 in an environment ρ and with contin-
uation θ is defined to be C[[S1; S2]] ρ θ = C[[S1]] ρ (C[[S2]] ρ θ) which basically is the
same rule for path composition of Table 3, except that in our context the environment ρ
plays no role.

The use of C++ templates for metaprogramming is also well-known [4, 18], and the
synthesis of types from other types using template classes is related to C++ traits [6]. In
our development it is crucial the capability of class templates to be instantiated every-
where in the source program. The compiler keeps track of which templates have been
instantiated, hence it can decide whether to do instantiation or to retrieve a previous in-
stantiation. Compared to higher-order functions in a functional programming language,
templates have the advantage that they can be expanded by inlining. The Curiously
Recurring Template Pattern (CRTP [7]), which occurs in the bibliography mainly as a
twisted mix of genericity and inheritance, is also crucial since it represents the only way
to generate implicitly recursive functions (where the recursive nature is not apparent
from the source code). Other approaches that relate templates and functional program-
ming (like the FC++ library [14, 16] or the BOOST Lambda library2) do not address
recursion but rather rely on explicitly recursive functions.

Our use of class templates is just an application of offline partial evaluation [8, 9]:
C++ may be regarded as a two-level language where template parameters represent
statically known values, and method parameters represent dynamically known values.
A path expression compiled using the rules in Table 3 results into a function where all
the continuation parameters are statically known. The C++ compiler partially evaluates
the functions obtained from the compilation process by unfolding the continuations and
recursively evaluating the resulting code.

2 http://www.boost.org/libs/lambda/doc/

40 L. Padovani

7 Final Remarks

There are several contexts where it is desirable to use backtracking algorithms for the
evaluation of regular path expressions. The code generated by the PET library is efficient
and modern C++ compilers (such as the latest versions of GCC3 or LLVM4) are capable
of tail-optimizing function calls and simple (but not trivial) path expressions are compiled
as loops instead of recursive function calls. The library is generic in that it makes no
assumptions on the data structures being traversed. The user is free to add atoms to fit
her own needs, while the library of basic terms can be written once and for all without
loosing genericity.

Table 4. Comparing PET against other query engines. The times are in milliseconds and re-
fer to 20 evaluations of the indicated paths, excluding parsing time. The factor f is the ratio
matching time/(parsing time + matching time)

Nodes PET Xalan libxml2 Fxgrep
XPath expression n ms f ms f ms f ms f

//node() 33806 238 .079 100 .008 18368 .869 4102 .054
//mrow[@xref] 750 158 .054 120 .010 3807 .579 4007 .052
//mrow[@xref]/text() 3162 161 .054 190 .015 5435 .661 3942 .053
//text()[../mrow[@xref]] 3162 202 .068 930 .068 8298 .750 - -
//*[@xref][text()] 2486 147 .050 510 .042 5634 .671 3603 .054
//text()/../*[@xref] 2486 175 .059 1220 .092 14729 .824 - -

We have made some (non-exhaustive) comparative tests of the PET library against the
implementations of XPath provided by Xalan5 and libxml26 and against the Fxgrep
XML querying tool [20]. It should be kept in mind that the compared libraries have very
different architectures. While PET produces native code, Fxgrep translates paths into
finite state automata, and libxml2 and Xalan provide interpreters for XPath expres-
sions. Table 4 shows the absolute times spent for the matching phase, as well as the ratio
given by the matching time over the total time (parsing and matching). This way, we
have tried to give a performance score that roughly measures the matching algorithm
regardless of the implementation language and architecture.

By looking at the absolute times PET outperforms the other tools in most cases. We
have to remark that while PET, Xalan, and libxml2 are C/C++ libraries, Fxgrep is
written in SML/NJ (Standard ML of New Jersey) and, as the author of Fxgrep has
recognized, this might be the main cause of its modest absolute performance. By looking
at the f ratio, PET performances are rather good. The important thing to notice in this
case is how much the ratio f varies, that is how much the absolute time depends on the
particular query. On one side we have Fxgrep, which is almost unaffected by the kind

3 http://gcc.gnu.org/
4 http://llvm.cs.uiuc.edu/
5 C++ version, see http://xml.apache.org/xalan-c/
6 http://xmlsoft.org/

Compilation of Generic Regular Path Expressions 41

of query, and this is consequence of the fact that Fxgrep uses an optimized automaton
that scans the whole document. On the opposite side, Xalan and particularly libxml2
show a significant variance. In these tools the time spent on union operations on node-
set becomes predominant in certain queries. In some cases libxml2 spends more than
90% of the total time merging node sets. The cost of computing a node set is also relative
to whether we are actually interested to know which nodes have been selected, or just
if some node has been selected (this is relevant in XPath when a path occurs within a
qualifier). The PET library roughly sits in between these two situations, and proves to
be an effective and cheap tool for the programmer.

It is also important to remark that while the other tools are targeted to XML process-
ing, PET is completely generic and provides an easily extensible compilation framework
that can be adapted to specific tasks.

References

1. Stoy, J. E. “Denotational Semantics: The Scott-Strachey Approach to Programming Language
Semantics”, MIT Press, Cambridge, Massachusetts, 1977.

2. Schmidt, D. A. “Denotational Semantics: A Methodology for Language Development”, Wm.
C. Brown Publishers, 1988.

3. Appel, A. “Compiling with Continuations”, Cambridge University Press, 1992.
4. Veldhuizen, T. “Using C++ Template Metaprograms”, C++ Report Vol. 7 No. 4, pp. 36–43,

May 1995.
5. Veldhuizen, T. “Expression Templates”, C++ Report, Vol. 7 No. 5, pp. 26–31, June 1995.
6. Myers, N. “A new and useful template technique: Traits”, C++ Report,Vol. 7 No. 5, pp. 33–35,

June 1995.
7. Coplien, J. O. “Curiously Recurring Template Patterns”, in Stanley B. Lippman, editor, C++

Gems, 135–144. Cambridge University Press, New York, 1996.
8. Jones, N. D. “An introduction to partial evaluation”, ACM Computing Surveys 28, 3, pp.

480–503, September 1996.
9. Veldhuizen, T. “C++ templates as partial evaluation”, in ACM SIGPLAN Workshop on

Partial Evaluation and Semantics-Based Program Manipula-tion (PEPM 1998), pp. 13–18,
San Antonio, TX, USA, January, 1999.

10. Wadler, P. “A formal semantics of patterns in XSLT”, in B. Tommie Usdin, D. A. Lapeyre,
and C. M. Sperberg-McQueen, editors, Proceedings of Markup Technologies, Philadelphia,
1999.

11. Clark, J., and DeRose, S. “XML Path Language (XPath)”, W3C Recommendation, 1999,
http://www.w3.org/TR/xpath

12. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison,
S., and Tommasi, M. “Tree Automata Techniques and Applications”, 1999,
http://www.grappa.univ-lille3.fr/tata

13. Eisenecker, U. W., Czarnecki, K. “Generative Programming: Methods, Tools, and Applica-
tions”, Addison-Wesley, 2000.

14. Mcnamara, B., Smaragdakis,Y. “Functional Programming in C++ using the FC++ Library”,
ACM SIGPLAN Notices, 36(4), pp. 25–30, April 2001.

15. Hosoya, H., Pierce, B. “Regular expression pattern matching for XML”, in Proceedings of
the 28th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pp.
67–80, 2001.

42 L. Padovani

16. Mcnamara, B., Smaragdakis, Y., “Functional Programming with the FC++ Library”, under
consideration for publication in Journal of Functional Programming, July 2002.

17. Clark, J., and DeRose, S. “XML Path Language (XPath) 2.0”, W3C Working Draft, 2002,
http://www.w3.org/TR/xpath20

18. Vandevoorde, D., Josuttis, N. M. “C++ Templates: The Complete Guide”, Addison-Wesley,
2002.

19. Boag S. et al., “XQuery 1.0: An XML Query Language”, W3C Working Draft, November
2003, http://www.w3.org/TR/xquery/

20. Neumann, A., Berlea, A., and Seidl, H. “fxgrep, The Functional XML Querying Tool”,
http://www.informatik.uni-trier.de/˜aberlea/Fxgrep/

21. Leroy X. et al., “Objective Caml”, http://caml.inria.fr/ocaml/

XML Goes Native:
Run-Time Representations for Xtatic

Vladimir Gapeyev, Michael Y. Levin, Benjamin C. Pierce, and Alan Schmitt

University of Pennsylvania

Abstract. Xtatic is a lightweight extension of C� offering native sup-
port for statically typed XML processing. XML trees are built-in values
in Xtatic, and static analysis of the trees manipulated by programs is
part of the ordinary job of the typechecker. “Tree grep” pattern match-
ing is used to investigate and transform XML trees. Xtatic’s surface
syntax and type system are tightly integrated with those of C�. Beneath
the hood, however, an implementation of Xtatic must address a num-
ber of issues common to any language supporting a declarative style of
XML processing (e.g., XQuery, XSLT, XDuce, CDuce, Xact, Xen,
etc.). In particular, it must provide representations for XML tags, trees,
and textual data that use memory efficiently, support efficient pattern
matching, allow maximal sharing of common substructures, and permit
separate compilation. We analyze these representation choices in detail
and describe the solutions used by the Xtatic compiler.

1 Introduction

Xtatic inherits its key features from XDuce [1, 2], a domain-specific language
for statically typed XML processing. These features include XML trees as built-
in values, a type system based on regular types (closely related to popular schema
languages such as DTD and XML-Schema) for static typechecking of computa-
tions involving XML, and a powerful form of pattern matching called regular
patterns. The goals of the Xtatic project are to bring these technologies to a
wide audience by integrating them with a mainstream object-oriented language
and to demonstrate an implementation with good performance. We use C� as
the host language, but our results should also be applicable in a Java setting.

At the source level, the integration of XML trees with the object-oriented
data model of C� is accomplished by two steps. First, the subtype hierarchy
of tree types from XDuce is grafted into the C� class hierarchy by making all
regular types be subtypes of a special class Seq. This allows XML trees to be
passed to generic library facilities such as collection classes, stored in fields of
objects, etc. Conversely, the roles of tree labels and their types from XDuce
are played by objects and classes in Xtatic; XML trees are represented using
objects from a special Tag class as labels.

Subtyping in Xtatic subsumes both the object-oriented subclass relation
and the richer subtype relation of regular types. XDuce’s simple “semantic”

R. Bodik (Ed.): CC 2005, LNCS 3443, pp. 43–58, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

44 V. Gapeyev et al.

definition of subtyping (sans inference rules) extends naturally to Xtatic’s
object-labeled trees and classes. The combined data model and type system,
dubbed regular object types, have been formalized in [3]. Algorithms for checking
subtyping and inferring types for variables bound in patterns can be adapted
straightforwardly from those of XDuce ([2] and [4]).

Xtatic’s tree construction and pattern matching primitives eschew all forms
of destructive update—instead, the language promotes a declarative style of tree
processing, in which values and subtrees are extracted from existing trees and
used to construct entirely new trees. This style is attractive from many points
of view: it is easy to reason about (no need to worry about aliasing), it inte-
grates smoothly with other language features such as threads, and it allows rich
forms of subtyping that would be unsound in the presence of update. Many other
high-level XML processing languages, including XSLT [5], XQuery [6], CDuce
[7], and Xact [8], have made the same choice, for similar reasons. However, the
declarative style makes some significant demands on the implementation, since
it involves a great deal of replicated substructure that must be shared to achieve
acceptable efficiency.

Our implementation is based on a source to source compiler from Xtatic
to C�. One major function of this compiler is to translate the high-level pat-
tern matching statements of Xtatic into low-level C� code that is efficient and
compact. A previous paper [9] addressed this issue by introducing a formal-
ism of matching automata and using it to define both backtracking and non-
backtracking compilation algorithms for regular patterns.

The present paper addresses the lower-level issue of how to compile XML val-
ues and value-constructing primitives into appropriate run-time representations.
We explore several alternative representation choices and analyze them with re-
spect to their support for efficient pattern matching, common Xtatic program-
ming idioms, and safe integration with foreign XML representations such as the
standard Document Object Model (DOM). Our contributions may be summa-
rized as follows: (1) a data structure for sequences of XML trees that supports
efficient repeated concatenation on both ends of a sequence, equipped with a
fast algorithm for calculating the subsequences bound to pattern variables; (2) a
compact and efficient hybrid representation of textual data (PCDATA) that
supports regular pattern matching over character sequences (i.e., a statically
typed form of string grep); (3) a type-tagging scheme allowing fast dynamic
revalidation of XML values whose static types have been lost, e.g., by upcasting
to object for storage in a generic collection; and (4) a proxy scheme allowing
foreign XML representations such as DOM to be manipulated by Xtatic pro-
grams without first translating them to our representation. (Because of space
constraints, we present only the first here; details of the others can be found
in an extended version of the paper [10].) We have implemented these designs
and measured their performance both against some natural variants and against
implementations of other XML processing languages. The results show that a
declarative statically typed embedding of XML transformation operations into

XML Goes Native: Run-Time Representations for Xtatic 45

a stock object-oriented language can be competitive with existing mainstream
XML processing frameworks.

The next section briefly reviews the Xtatic language design. The heart of the
paper is Section 3, which describes and evaluates our representations for trees.
Section 4 summarizes results of benchmarking programs compiled by Xtatic
against other XML processing tools. Section 5 discusses related work.

2 Language Overview

This section sketches just the aspects of the Xtatic design that directly impact
runtime representation issues. More details can be found in [11, 3].

Consider the following document fragment—a sequence of two entries from
an address book—given here side-by side in XML and Xtatic concrete syntax.

<person>
<name>Haruo Hosoya</name>
<email>hahasoya</email>

</person>
<person>
<name>Jerome Vouillon</name>
<tel>123</tel>

</person>

[[<person>
<name>‘Haruo Hosoya‘</name>
<email>‘hahasoya‘</email>

</person>
<person>
<name>‘Jerome Vouillon‘</name>
<tel>‘123‘</tel>

</person>]]

Xtatic’s syntax for this document is very close to XML, the only differences
being the outer double brackets, which segregate the world of XML values and
types from the regular syntax of C�, and backquotes, which distinguish PCDATA
(XML textual data) from arbitrary Xtatic expressions yielding XML elements.

One possible type for the above value is a list of persons, each containing a
name, an optional phone number, and a list of emails:

<person> <name>pcdata</> <tel>pcdata</>? <email>pcdata</>* </person>*

The type constructor “?” marks optional components, and “*” marks repeated
sub-sequences. Xtatic also includes the type constructor “|” for non-disjoint
unions of types. The shorthand </> is a closing bracket matching an arbitrarily
named opening bracket. Every regular type in Xtatic denotes a set of sequences.
Concatenation of sequences (and sequence types) is written either as simple
juxtaposition or (for readability) with a comma. The constructors “*” and “?”
bind stronger than “,”, which is stronger than “|”. The type “pcdata” describes
sequences of characters.

Types can be given names that may be mentioned in other types. E.g., our
address book could be given the type APers* in the presence of definitions

regtype Name [[<name>pcdata</>]]
regtype Tel [[<tel>pcdata</>]]
regtype Email [[<email>pcdata</>]]
regtype TPers [[<person> Name Tel </>]]
regtype APers [[<person> Name Tel? Email* </>]]

46 V. Gapeyev et al.

A regular pattern is just a regular type decorated with variable binders. A
value v can be matched against a pattern p, binding variables occurring in p
to the corresponding parts of v, if v belongs to the language denoted by the
regular type obtained from p by stripping variable binders. For matching against
multiple patterns, Xtatic provides a match construct that is similar to the
switch statement of C� and the match expression of functional languages such
as ML. For example, the following program extracts a sequence of type TPers
from a sequence of type APers, removing persons that do not have a phone
number and eliding emails.

static [[TPers*]] addrbook ([[APers*]] ps) {
[[TPers*]] res = [[]]; bool cont = true;
while (cont) {
match (ps) {
case [[<person> <name>any</> n,<tel>any</> t, any </>, any rest]]:
res = [[res, <person> n, t </>]]; ps = rest;

case [[<person> any </person>, any rest]]: ps = rest;
case [[]]: cont = false; } }

return res; }

The integration of XML sequences with C� objects is accomplished in two
steps. First, Xtatic introduces a special class named Seq that is a super-
type of every XML type—i.e., every XML value may be regarded as an ob-
ject this class. The regular type [[any]] is equivalent to the class type Seq.
Second, Xtatic allows any object—not just an XML tag—to be the label
of an element. For instance, we can write <(1)/> for the singleton sequence
labeled with the integer 1 (the parentheses distinguish an Xtatic expres-
sion from an XML tag); similarly, we can recursively define the type any as
any = [[<(object)>any</>*]].

We close this overview by describing how Xtatic views textual data. For-
mally, the type pcdata is defined by associating each character with a single-
ton class that is a subclass of the C� char classand taking pcdata to be an
abbreviation for <(char)/>*. In the concrete syntax, we write ‘foo‘ for the
sequence type <(charf)/><(charo)/><(charo)/> and for the corresponding se-
quence value. This treatment of character data has two advantages. First, there
is no need to introduce a special concatenation operator for pcdata, as the se-
quence ‘ab‘,‘cd‘ is identical to ‘abcd‘. This can also be seen at the type
level:

pcdata,pcdata = <(char)/>*,<(char)/>* = <(char)/>* = pcdata

Equating pcdata with string would not allow such a seamless integra-
tion of the string concatenation operator with the sequence operator. Sec-
ond, singleton character classes can be used in pattern matching to obtain
functionality very similar to string regular expressions [12]. For instance,
the Xtatic type ‘a‘,pcdata,‘b‘ corresponds to the regular expression
a.*b.

XML Goes Native: Run-Time Representations for Xtatic 47

3 Representing Trees

We now turn to the design of efficient representations for XML trees. First, we
design a tree representation that supports Xtatic’s view of trees as shared and
immutable structures (Section 3.1). The main constraint on the design is that the
programming style favored by Xtatic involves a great deal of appending (and
consing) of sequences. To avoid too much re-copying of sub-sequences, we en-
hance the naive design to do this appending lazily (Section 3.2). Finally, Xtatic
needs to inter-operate with other XML representations available in .NET, in par-
ticular DOM. In the full version of this paper [10], we show how DOM structures
can masquerade as instances of our Xtatic trees in a type-safe manner.

3.1 Simple Sequences

Every Xtatic value with a regular type is a sequence of trees. Xtatic’s pattern-
matching algorithms, based on tree automata, require access to the label of the
first tree in the sequence, its children, and its following sibling. This access style
is naturally supported by a simple singly linked structure.

Figure 1 summarizes the classes implementing sequences. Seq is an abstract
superclass representing all sequences regardless of their form. As the exact class
of a Seq object is often needed by Xtatic-generated code, it is stored as an enu-
meration value in the field kind of every Seq object. Maintaining this field allows
us to use a switch statement instead of a chain of if-then-else statements
relying on the “is” operator to test class membership.

The subclass SeqObject includes two fields, next and contents, that point
to the rest of the sequence—the right sibling—and the first child of the node.
The field label holds a C� object. Empty sequences are represented using a
single, statically allocated object of class SeqEmpty. (Using null would require
an extra test before switching on the kind of the sequence—in effect, optimizing
the empty-sequence case instead of the more common non-empty case.)

In principle, the classes SeqEmpty and SeqObject can encode all Xtatic
trees. But to avoid downcasting when dealing with labels containing primitive
values (most critically, characters), we also include specialized classes SeqBool,
SeqInt, SeqChar, etc. for storing values of base types.

XML data is encoded using SeqObjects that contain, in their label field,
instances of the special class Tag that represent XML tags. A tag object has a

SeqEmpty

Seq next
Seq contents

SeqObject

Object label
Seq next
Seq contents

SeqInt

int label
Seq next
Seq contents

SeqChar

char label

SeqAppend

Seq fst
Seq snd

Kind kind

Seq

Fig. 1. Classes used for representing sequences

48 V. Gapeyev et al.

string field for the tag’s local name and a field for its namespace URI. We use
memoisation (interning) to ensure that there is a single run-time object for each
known tag, making tag matching a simple matter of physical object comparison.

Pattern matching of labels is implemented as follows. The object (or value)
in a label matches a label pattern when: the pattern is a class C and the object
belongs to a subclass of C, the pattern is a tag and the object is physically equal
to the tag, the pattern is a base value v and the label holds a value equal to v.

3.2 Lazy Sequences

In the programming style encouraged by Xtatic, sequence concatenation is a
pervasive operation. Unfortunately, the run-time representation outlined so far
renders concatenation linear in the size of the first sequence, leading to unac-
ceptable performance when elements are repeatedly appended at the end of a
sequence, as in the assignment of res in the addrbook example in Section 2.

This observation naturally suggests a lazy approach to concatenation: we
introduce a new kind of sequence node, SeqAppend, that contains two fields,
fst and snd. The concatenation of (non-empty) sequences Seq1 and Seq2 is
now compiled into the constant time creation of a SeqAppend node, with fst
pointing to Seq1, and snd to Seq2. We preserve the invariant that neither field
of a SeqAppend node points to the empty sequence.

To support pattern matching, we need a normalization operation that ex-
poses at least the first element of a sequence. The simplest approach, eager
normalization, just transforms the whole sequence so that it does not contain
any top-level SeqAppend nodes (children of the nodes in the sequence are not
normalized). However, there are cases when it is not necessary to normalize the
whole sequence, e.g. when a program inspects only the first few elements of
a long list. To this end we introduce a lazy normalization algorithm, given in
pseudocode form in Figure 2.

The algorithm fetches the first concrete element—that is, the leftmost non-
SeqAppend node of the tree—copies it (so that the contexts that possibly share

Seq lazy_norm(Seq node) {
switch (node.kind) {
case Append: return norm_rec(node.fst, node.snd);
default: return node; } }

Seq norm_rec(Seq node, Seq acc) {
switch (node.kind) {
case Append: return norm_rec(node.fst, new SeqAppend(node.snd, acc));
case Object:
switch node.next.kind {
case Empty: return new SeqObject(node.label, node.contents, acc);
default: return new SeqObject(node.label, node.contents,

new SeqAppend(node.next, acc)); }
/* similar cases for SeqInt, SeqBool, ... */ } }

Fig. 2. Lazy Normalization Algorithm

XML Goes Native: Run-Time Representations for Xtatic 49

SeqAppend6

SeqAppend5 Seq3

SeqObject4 Seq2

SeqAppend′5

SeqAppend′4

SeqObject′4

Seq1

SeqAppend5 Seq3

SeqObject4 Seq2

SeqAppend′5

SeqObject′4

SeqEmpty1

SeqAppend6

(a) (b)

Fig. 3. Lazy normalization of lazy sequences. In (a), the leftmost concrete element has
a right sibling; in (b) it does not. Dotted pointers are created during normalization

it are not affected), and makes it the first element of a new sequence consisting of
(copies of) the traversed SeqAppend nodes arranged into an equivalent, but right-
skewed tree. Figure 3 illustrates this algorithm, normalizing the sequence starting
at node SeqAppend6 to the equivalent sequence starting at node SeqObject′

4.
Since parts of sequence values are often shared, it is not uncommon to pro-

cess (and normalize) the same sequence several times. As described so far, the
normalization algorithm returns a new sequence, e.g. SeqObject′

4, but leaves the
original lazy sequence unchanged. To avoid redoing the same work during sub-
sequent normalizations of the same sequence, we also modify in-place the root
SeqAppend node, setting the snd field to null (indicating that this SeqAppend
has been normalized), and the fst field to the result of normalization:

Seq lazy_norm_in_place(Seq node) {
switch (node.kind) {
case Append:
if (node.snd == null) return node.fst;
node.fst = norm_rec(node.fst, node.snd); node.snd = null;
return node.fst;

default: return node; } }

Interestingly, this in-place modification is required for the correctness of bind-
ing of non-tail variables in patterns. The pattern matching algorithm [4] natu-
rally supports only those pattern variables that bind to tails of sequence values;
variables binding to non-tail sequences are handled by a trick. Namely, bind-
ing a non-tail variable x is accomplished in two stages. The first stage performs
pattern matching and—as it traverses the input sequence—sets auxiliary vari-
ables xb and xe to the beginning and end of the subsequence. The second stage
computes x from xb and xe by traversing the sequence beginning at xb and copy-
ing nodes until it reaches xe. In both stages, the program traverses the same
sequence, performing normalization along the way. In-place modification guar-
antees that during both traversals we will encounter physically the same concrete
nodes, and so, in the second stage, we are justified in detecting the end of the
subsequence by checking physical equality between the current node and xe.

50 V. Gapeyev et al.

Because of creation of fresh SeqAppend nodes, the lazy normalization algo-
rithm can allocate more memory than its eager counterpart. However, we can
show that this results in no more than a constant factor overhead. A node is
said to be a left node if it is pointed by the fst pointer of a SeqAppend. There
are two cases when the algorithm creates a new SeqAppend node: when it tra-
verses a left SeqAppend node, and when it reaches the leftmost concrete ele-
ment. In both cases, the newly created nodes are not left nodes and so will not
lead to further creation of SeqAppend nodes during subsequent normalizations.
Hence, lazy normalization allocates at most twice as much memory as eager
normalization.

We now present some measurements quantifying the consequences of this
overhead on running time. The table below shows running times for two variants
of the phone book application from Section 2, executed on an address book of
250, 000 entries. (Our experimental setup is described below in Section 4.) The
first variant constructs the result as in Section 2, appending to the end. The
second variant constructs the result by by appending to the front:

res = [[<person> n, t </>, res]];

This variant favors the non-lazy tree representation from the previous subsection,
which serves as a baseline for our lazy optimizations. Since our implementation
recognizes prepending singleton sequences as a special case, no lazy structures
are created when the second program is executed, and, consequently all con-
catenation approaches behave the same. For the back-appending program, the
system runs out of memory using eager concatenation, while both lazy concate-
nation approaches perform reasonably well. Indeed, the performance of the lazy
representations for the back-appending program is within 10% of the perfor-
mance of the non-lazy representation for the front-appending program, which
favors such a representation.

eager concatenations eager normalization lazy normalization
back appending ∞ 1,050 ms 1,050 ms
front appending 950 ms 950 ms 950 ms

This comparison does not show any difference between the lazy and eager
normalization approaches. We have also compared performance of eager vs. lazy
normalization on the benchmarks discussed below in Section 4. Their perfor-
mance is always close, with slight advantage for one or the other depending
on workload. On the other hand, for programs that explore only part of a se-
quence, lazy normalization can be arbitrarily faster, making it a clear winner
overall.

Our experience suggests that, in common usage patterns, our representation
exhibits constant amortized time for all operations. It is possible, however, to
come up with scenarios where repeatedly accessing the first element of a se-
quence may take linear time for each access. Consider the following program
fragment:

XML Goes Native: Run-Time Representations for Xtatic 51

[[any]] res1 = [[]]; [[any]] res2 = [[]];
while (true) {
res1 = [[res1, <a/>]]; res2 = [[res1,]];
match (res2) {
case [[<(Tag x)/>, any]]: ...use x... } }

Since the pattern matching expression extracts only the first element of res2,
only the top-level SeqAppend object of the sequence stored in res2 is modi-
fied in-place during normalization. The SeqAppend object of the sequence stored
in res1 is not modified in-place, and, consequently, is completely renormalized
during each iteration of the loop.

Kaplan, Tarjan and Okasaki [13] describe catenable steques, which provide
all the functionality required by Xtatic pattern-matching algorithms with op-
erations that run in constant amortized time in the presence of sharing. We
have implemented their algorithms in C� and compared their performance with
that of our representation using the lazy normalization algorithm. The steque
implementation is slightly more compact—
on average it requires between 1.5 and 2
times less memory than our representation.
For the above tricky example, catenable ste-
ques are also fast, while Xtatic’s represen-
tation fails on sufficiently large sequences.
For more common patterns of operations,

Steques Xtatic
n = 10,000 70 ms 6 ms
n = 20,000 140 ms 12 ms
n = 30,000 230 ms 19 ms
n = 40,000 325 ms 31 ms

our representation is more efficient. The following table shows running times of
a program that builds a sequence by back-appending one element at a time and
fully traverses the constructed sequence. We ran the experiment for sequences of
four different sizes. The implementation using catenable steques is significantly
slower than our much simpler representation because of the overhead arising
from the complexity of the steque data structures.

4 Measurements

This section describes performance measurements comparing Xtatic with some
other XML processing systems. Our goal in gathering these numbers has been to
verify that our current implementation gives reasonable performance on a range
of tasks and datasets, rather than to draw detailed conclusions about relative
speeds of the different systems. (Differences in implementation platforms and
languages, XML processing styles, etc. make the latter task well nigh impossible!)

Our tests were executed on a 2GHz Pentium 4 with 512MB of RAM running
Windows XP. The Xtatic and DOM experiments were executed on Microsoft
.NET version 1.1. The CDuce interpreter (CVS version of November 25th, 2003)
was compiled natively using ocamlopt 3.07+2. Qizx/Open and Xalan XSLTC
were executed on SUN Java version 1.4.2. Since this paper is concerned with
run-time data structures, our measurements do not include static costs of type-
checking and compilation. Also, since the current implementation of Xtatic’s

52 V. Gapeyev et al.

XML parser is inefficient and does not reveal much information about the per-
formance of our data model, we factor out parsing and loading of input XML
documents from our analysis. Each measurement was obtained by running a pro-
gram with given parameters ten times and averaging the results. We selected
sufficiently large input documents to ensure low variance of time measurements
and to make the overhead of just-in-time compilation negligible. The Xtatic
programs were compiled using the lazy append with lazy normalization policy
described in Section 3.

We start by comparing Xtatic with the Qizx/Open [14] implementation
of XQuery. Our test is a small query named shake that counts the number of
distinct words in the complete Shakespeare plays, represented by a collection of
XML documents with combined size of 8Mb. The core of the shake implemen-
tation in XQuery is a call to a function tokenize
that splits a chunk of character data into a col-
lection of white-space-separated words. In Xtatic,
this is implemented by a generic pattern matching
statement that extracts the leading word or white

shake
Xtatic 7,500 ms
Qizx/Open 3,200 ms

space, processes it, and proceeds to handle the remainder of the pcdata. Each
time, this remainder is boxed into a SeqSubstring object, only to be immedi-
ately unboxed during the next iteration of the loop. We believe this superfluous
manipulation is the main reason why Xtatic is more than twice slower than
Qizx/Open in this example.

We also implemented several XQuery examples from the XMark suite [15],
and ran them on an 11MB data file generated by XMark (at “factor 0.1”).
Xtatic substantially outperforms Qizx/Open on all of these benchmarks—by
500 times on q01, by 700 times on q02, by six times on q02, and by over a thou-
sand times on q08. This huge discrepancy appears to be a consequence of two
factors. Firstly, Qizx/Open, unlike its commercial counterpart, does not use
indexing, which for examples such as q01 and q02 can make a dramatic perfor-
mance improvement. Secondly, we are translating high-level XQuery programs
into low-level Xtatic programs—in effect, performing manual query optimiza-
tion. This makes a comparison between the two systems problematic, since the
result does not provide much insight about the underlying representations.

Next, we compare Xtatic with two XSLT implementations: .NET XSLT
and Xalan XSLTC. The former is part of the standard C� library; the latter is
an XSLT compiler that generates a Java class file from a given XSLT template.

We implemented several transformations from the XSLTMark benchmark
suite [16]. The backwards program traverses the input document and reverses
every element sequence; identity copies the input document; dbonerow searches
a database of person records for a particular entry, and reverser reads a PCDATA
fragment, splits it into words, and outputs a new PCDATA fragment in which the
words are reversed. The first three programs are run on a 2MB XML document
containing 10,000 top-level elements; the last program is executed on a small
text fragment.

XML Goes Native: Run-Time Representations for Xtatic 53

backwards identity dbonerow reverser
Xtatic 450 ms 450 ms 13 ms 2.5 ms
.NET XSLT 2,500 ms 750 ms 300 ms 9 ms
Xalan XSLTC 2,200 ms 250 ms 90 ms 0.5 ms

Xtatic exhibits equivalent speed for backwards and identity since the
cost of reversing is approximately equal to the cost of copying a sequence in the
presence of lazy concatenation. The corresponding XSLT programs behave dif-
ferently since backwards is implemented by copying and sorting every sequence
according to the position of the elements. The XSLT implementations are rel-
atively efficient on identity. This may be partially due to the fact that they
use a much more compact read-only representation of XML documents. Xtatic
is substantially slower than Xalan XSLTC on the pcdata-intensive reverser
example. We believe the reason for this is, as in the case of shake in the com-
parison with Qizx/Open, the overhead of our pcdata implementation for per-
forming text traversal. Conversely, Xtatic is much faster on dbonerow. As with
Qizx/Open, this can be explained by the difference in the level of programming
detail—a single XPath line in the XSLTC program corresponds to a low-level
Xtatic program that specifies how to search the input document efficiently.

In the next pair of experiments, we com-
pare Xtatic with CDuce [7] on two pro-
grams: addrbook and split. The first of these
was introduced in Section 2 (the CDuce ver-
sion was coded to mimick the Xtatic version,

split addrbook
Xtatic 950 ms 1,050 ms
CDuce 650 ms 1,300 ms

i.e. we did not use CDuce’s higher-level transform primitive); it is run on a
25MB data file containing 250,000 APers elements. The second program tra-
verses a 5MB XML document containing information about people and sorts
the children of each person according to gender. Although it is difficult to com-
pare programs executed in different run-time frameworks and written in different
source languages, we can say that, to a rough first approximation, Xtatic and
CDuce exhibit comparable performance. An important advantage of CDuce is
a very memory-efficient representation of sequences. This is compensated by the
fact that Xtatic programs are (just-in-time) compiled while CDuce programs
are interpreted.

The next experiment compares Xtatic with Xact [17]. We use two programs
that are part of the Xact distribution—recipe processes a database of recipes
and outputs its HTML presentation; sortedaddrbook is a version of the address
book program introduced in Section 2 that sorts the output entries. We ran
recipe on a file containing 525 recipes and sortedaddrbook on a 10,000 entry
address book.(Because of problems
installing Xact under Windows,
unlike the other experiments, com-
parisons with Xact were executed
on a 1GHz Pentium III with 256MB

recipe sortedaddrbook
Xtatic 250 ms 1,600 ms
Xact 60,000 ms 10,000 ms

of RAM running Linux.) For both programs Xtatic is substantially faster. As
with XQuery, this comparison is not precise because of a mismatch between

54 V. Gapeyev et al.

XML processing mechanisms of Xtatic and Xact. In particular, the large dis-
crepancy in the case of recipe can be partly attributed to the fact that its
style of processing in which the whole document is traversed and completely re-
built in a different form is foreign to the relatively high level XML manipulation
primitives of Xact but is quite natural to the relatively low level constructs of
Xtatic.

The last experiment compares Xtatic with a
C� program using DOM and the .NET XPath
library, again using the addrbook example on
the 25MB input file. The C� program employs

addrbook
Xtatic 1,050 ms
DOM/Xpath 5,100 ms

XPath to extract all the APers elements with tel children, destructively re-
moves their email children, and returns the obtained result. This experiment
confirms that DOM is not very well-suited for the kind of functional manip-
ulation of sequences prevalent in Xtatic. The DOM data model is geared for
destructive modification and random access traversal of elements and, as a result,
is much more heavyweight.

5 Related Work

We have concentrated here on the runtime representation issues that we ad-
dressed while building an implementation of Xtatic that is both efficient and
tightly integrated with C�. Other aspects of the Xtatic design and implemen-
tation are described in several companion papers—one surveying the most sig-
nificant issues faced during the design of the language [11], another presenting
the core language design, integrating the object and tree data models and es-
tablishing basic soundness results [3], and the third proposing a technique for
compiling regular patterns based on matching automata [9].

There is considerable current research and development activity aimed at
providing convenient support for XML processing in both general-purpose and
domain-specific languages. In the latter category, XQuery [6] and XSLT [5] are
special-purpose XML processing languages specified by W3C that have strong
industrial support, including a variety of implementations and wide user base.
In the former, the CDuce language of Benzaken, Castagna, and Frisch [7] gen-
eralizes XDuce’s type system with intersection and function types. The Xen
language of Meijer, Schulte, and Bierman [18] is a proposal to significantly mod-
ify the core design of C� in order to integrate support for objects, relations, and
XML (in particular, XML itself simply becomes a syntax for serialized object in-
stances). Xact [17, 8] extends Java with XML processing, proposing an elegant
programming idiom: the creation of XML values is done using XML templates,
which are immutable first-class structures representing XML with named gaps
that may be filled to obtain ordinary XML trees. XJ [19] is another extension
of Java for native XML processing that uses W3C Schema as a type system
and XPath as a navigation language for XML. XOBE [20] is a source to source
compiler for an extension of Java that, from language design point of view,
is very similar to Xtatic. Scala is a developing general-purpose web services

XML Goes Native: Run-Time Representations for Xtatic 55

language that compiles into Java bytecode; it is currently being extended with
XML support [21].

So far, most of the above projects have concentrated on developing basic
language designs; there is little published work on serious implementations.
(Even for XQuery and XSLT, we have been unable to find detailed de-
scriptions of their run-time representations.) We summarize here the available
information.

Considerable effort, briefly sketched in [7], has been put into making the
CDuce’s OCaml-based interpreter efficient. They address similar issues of
text and tree representations and use similar solutions. CDuce’s user-visible
datatype for strings is also the character list, and they also implement its opti-
mized alternatives—the one described in the paper resembles our SeqSubstring.
CDuce uses lazy list concatenation, but apparently only with eager normaliza-
tion. Another difference is the object-oriented flavor of our representations.

Xact’s implementation, developed independently and in parallel with
Xtatic but driven by similar needs (supporting efficient sharing, etc.) and tar-
geting a similar (object-oriented) runtime environment, has strong similarities
to ours; in particular, lazy data structures are used to support efficient gap plug-
ging. Our preliminary performance measurements may be viewed as validating
the representation choices of both implementations. Xtatic’s special treatment
of pcdata does not appear to be used in Xact. The current implementations
of XOBE and XJ are based on DOM, although the designs are amenable to
alternative back-ends.

Kay [22] describes the implementation of Version 6.1 of his XSLT processor
Saxon. The processor is implemented in Java and, like in our approach, does
not rely on a pre-existing Java DOM library for XML data representation, since
DOM is again too heavyweight for the task at hand: e.g. it carries information
unnecessary for XPath and XSLT (like entity nodes) and supports updates.
Saxon comes with two variants of run time structures. One is object-oriented
and is similar in spirit to ours. Another represents tree information as arrays of
integers, creating node objects only on demand and destroying them after use.
This model is reportedly more memory efficient and quicker to build, at the cost
of slightly slower tree navigation. Overall, it appears to perform better and is
provided as the default in Saxon.

In the broader context of functional language implementations, efficient sup-
port for list (and string) concatenation has long been recognized as an important
issue. An early paper by Morris, Schmidt and Wadler [23] describes a technique
similar to our eager normalization in their string processing language Poplar.
Sleep and Holmström [24] propose a modification to a lazy evaluator that corre-
sponds to our lazy normalization. Keller [25] suggests using a lazy representation
without normalization at all, which behaves similarly to database B-trees, but
without balancing. We are not aware of prior studies comparing the lazy and
eager alternatives, as we have done here.

More recently, the algorithmic problem of efficient representation for lists with
concatenation has been studied in detail by Kaplan, Tarjan and Okasaki [13].

56 V. Gapeyev et al.

They describe catenable steques which support constant amortized time sequence
operations. We opted for the simpler representations described here out of con-
cern for excessive constant factors in running time arising from the complexity
of their data structures (see Section 3.2.)

Another line of work, started by Hughes [26] and continued by Wadler [27]
and more recently Voigtlander [28] considers how certain uses of list concatena-
tion (and similar operations) in an applicative program can be eliminated by a
systematic program transformation, sometimes resulting in improved asymptotic
running times. In particular, these techniques capture the well-known transfor-
mation from the quadratic to the linear version of the reverse function. It is not
clear, however, whether the techniques are applicable outside the pure functional
language setting: e.g., they transform a recursive function f that uses append to
a function f ′ that uses only list construction, while in our setting problematic
uses of append often occur inside imperative loops.

Prolog’s difference lists [29] is a logic programming solution to constant time
list concatenation. Using this technique requires transforming programs oper-
ating on regular lists into programs operating on difference lists. This is not
always possible. Marriott and Søndergaard [30] introduce a dataflow analysis
that determines whether such transformation is achievable and define the au-
tomatic transformation algorithm. We leave a more detailed comparison of our
lazy concatenation approach and the difference list approach for future work.

Acknowledgements

Parts of the Xtatic compiler were implemented by Eijiro Sumii and Stephen
Tse. Conversations with Eijiro contributed many ideas to Xtatic and this paper.
We also thank Haruo Hosoya, Alain Frisch, Christian Kirkegaard, and Xavier
Franc for discussing various aspects of this work. Our work on Xtatic has been
supported by the National Science Foundation under Career grant CCR-9701826
and ITR CCR-0219945, and by gifts from Microsoft.

References

1. Hosoya, H., Pierce, B.C.: XDuce: A statically typed XML processing language.
ACM Transactions on Internet Technology 3 (2003) 117–148

2. Hosoya, H., Vouillon, J., Pierce, B.C.: Regular expression types for XML. In:
Proceedings of the International Conference on Functional Programming (ICFP).
(2000)

3. Gapeyev, V., Pierce, B.C.: Regular object types. In: European Conference on
Object-Oriented Programming (ECOOP), Darmstadt, Germany. (2003) A prelim-
inary version was presented at FOOL ’03.

4. Hosoya, H., Pierce, B.C.: Regular expression pattern matching. In: ACM
SIGPLAN–SIGACT Symposium on Principles of Programming Languages
(POPL), London, England. (2001) Full version in Journal of Functional Program-
ming, 13(6), Nov. 2003, pp. 961–1004.

XML Goes Native: Run-Time Representations for Xtatic 57

5. W3C: XSL Transformations (XSLT) (1999) http://www.w3.org/TR/xslt.
6. XQuery 1.0: An XML Query Language, W3C Working Draft (2004)

http://www.w3.org/TR/xquery/.
7. Benzaken, V., Castagna, G., Frisch, A.: CDuce: An XML-centric general-purpose

language. In: ACM SIGPLAN International Conference on Functional Program-
ming (ICFP), Uppsala, Sweden. (2003) 51–63

8. Christensen, A.S., Kirkegaard, C., Møller, A.: A runtime system for XML trans-
formations in Java. In Bellahsène, Z., Milo, T., Michael Rys, e.a., eds.: Database
and XML Technologies: International XML Database Symposium (XSym). Volume
3186 of Lecture Notes in Computer Science., Springer (2004) 143–157

9. Levin, M.Y.: Compiling regular patterns. In: ACM SIGPLAN International Con-
ference on Functional Programming (ICFP), Uppsala, Sweden. (2003)

10. Gapeyev, V., Levin, M.Y., Pierce, B.C., Schmitt, A.: XML goes native: Run-
time representations for Xtatic. Technical Report MS-CIS-04-23, University of
Pennsylvania (2004)

11. Gapeyev, V., Levin, M.Y., Pierce, B.C., Schmitt, A.: The Xtatic experience. Tech-
nical Report MS-CIS-04-24, University of Pennsylvania (2004)

12. Tabuchi, N., Sumii, E., Yonezawa, A.: Regular expression types for strings in a
text processing language. In den Bussche, J.V., Vianu, V., eds.: Proceedings of
Workshop on Types in Programming (TIP). (2002) 1–18

13. Kaplan, H., Okasaki, C., Tarjan, R.E.: Simple confluently persistent catenable
lists. SIAM Journal on Computing 30 (2000) 965–977

14. Franc, X.: Qizx. http://www.xfra.net/qizxopen (2003)
15. Schmidt, A.R., Waas, F., Kersten, M.L., Carey, M.J., Manolescu, I., Busse, R.:

XMark: A benchmark for XML data management. In: Proceedings of the Interna-
tional Conference on Very Large Data Bases (VLDB), Hong Kong, China (2002)
974–985 See also http://www.xml-benchmark.org/.

16. DataPower Technology, Inc.: XSLTMark.
http://www.datapower.com/xml community/xsltmark.html (2001)

17. Kirkegaard, C., Møller, A., Schwartzbach, M.I.: Static analysis of XML transfor-
mations in Java. IEEE Transactions on Software Engineering 30 (2004) 181–192

18. Meijer, E., Schulte, W., Bierman, G.: Programming with circles, triangles and
rectangles. In: XML Conference and Exposition. (2003)

19. Harren, M., Raghavachari, B.M., Shmueli, O., Burke, M., Sarkar, V., Bordawekar,
R.: XJ: Integration of XML processing into Java. Technical Report rc23007, IBM
Research (2003)

20. Kempa, M., Linnemann, V.: On XML objects. In: Workshop on Programming
Language Technologies for XML (PLAN-X). (2003)

21. Emir, B.: Extending pattern matching with regular tree expressions for XML
processing in Scala. Diploma thesis, EPFL, Lausanne; http://lamp.epfl.ch/
∼buraq (2003)

22. Kay, M.H.: Saxon: Anatomy of an xslt processor (2001)
http://www-106.ibm.com/developerworks/library/x-xslt2/.

23. Morris, J.H., Schmidt, E., Wadler, P.: Experience with an applicative string pro-
cessing language. In: ACM Symposium on Principles of Programming Languages
(POPL), Las Vegas, Nevada. (1980) 32–46

24. Sleep, M.R., Holmström, S.: A short note concerning lazy reduction rules for
append. Software Practice and Experience 12 (1982) 1082–4

25. Keller, R.M.: Divide and CONCer: Data structuring in applicative multiprocessing
systems. In: Proceedings of the 1980 ACM conference on LISP and functional
programming. (1980) 196–202

58 V. Gapeyev et al.

26. Hughes, J.: A novel representation of lists and its application to the function
“reverse”. Information Processing Letters 22 (1986) 141–144

27. Wadler, P.: The concatenate vanishes. Note, University of Glasgow (1987) (revised
1989).

28. Voigtländer, J.: Concatenate, reverse and map vanish for free. In: ACM SIG-
PLAN International Conference on Functional Programming (ICFP), Pittsburgh,
Pennsylvania. (2002) 14–25

29. Sterling, L., Shapiro, E.: The Art of Prolog. MIT Press (1986)
30. Marriott, K., Søndergaard, H.: Difference-list transformation for prolog. New

Generation Computing 11 (1993) 125–157

R. Bodik (Ed.): CC 2005, LNCS 3443, pp. 59 – 75, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Boosting the Performance of Multimedia Applications
Using SIMD Instructions*

Weihua Jiang1,2, Chao Mei1, Bo Huang2, Jianhui Li2, Jiahua Zhu1,
Binyu Zang1, and Chuanqi Zhu1

1 Parallel Processing Institute, Fudan University,
220 Handan Rd, Shanghai, China, 200433

{021021073, 0022704, jhzhu, byzang, cqzhu}@fudan.edu.cn
2 Intel China Software Center, Intel China Ltd,

22nd Floor, No. 2299 Yan’an Road (West), Shanghai, China, 200336
{weihua.jiang, bo.huang, jian.hui.li}@intel.com

Abstract. Modern processors’ multimedia extensions (MME) provide SIMD
ISAs to boost the performance of typical operations in multimedia applications.
However, automatic vectorization support for them is not very mature. The key
difficulty is how to vectorize those SIMD-ISA-supported idioms in source code
in an efficient and general way. In this paper, we introduce a powerful and ex-
tendable recognition engine to solve this problem, which only needs a small
amount of rules to recognize many such idioms and generate efficient SIMD in-
structions. We integrated this engine into the classic vectorization framework and
obtained very good performance speedup for some real-life applications.

1 Introduction

Multimedia extensions (MME), e.g. Intel MMX/SSE/SSE2 [13] [14], Motorola AltiVec
 [21] etc, have become an integral part of modern processors. They enable the exploi-
tation of SIMD parallelism in multimedia applications. These SIMD ISA include not
only simple SIMD arithmetic instructions (addition, subtraction etc) but also many
domain-specific SIMD instructions to accelerate multimedia typical operations, e.g.
saturated arithmetic, which are widely used in multimedia applications.

However, these MMEs have been underutilized so far due to the immaturity of
compiler automatic vectorization support. Programmers are largely restricted to
time-consuming methods such as inline assembly or intrinsic functions [16].

Many researches have been conducted in automatic vectorization for MMEs. Most
of them have regarded this utilization as a similar problem with the vectorization for

* This research supported by: NSF of China (60273046), Science and Technology Committee of

Shanghai, China (02JC14013) and Intel-University Cooperation Project (Optimizing Compiler
for Intel NetBurst Microarchitecture).

60 W. Jiang et al.

vector machines [7] [11] [15] [16]. However, these two problems have different key
points [3]. Traditional vectorization [1] [2] focuses on how to transform source code
into vector form correctly, while the utilization of MMEs shall concentrate on how to
automatically recognize and then vectorize MME supported idioms in multimedia ap-
plications [3]. There are so many idioms needed to be recognized that an efficient and
general way is of critical importance. Some researchers exerted efforts in this direction,
the typical work is Bik et al [12]’s use of tree-rewriting technique to recognize two
kinds of operations, saturation and MAX/MIN. Simple rigid pattern match methods [6]
and specific languages (e.g. SWARC [17]) have also been used.

In this paper, we solve the key problem by introducing a powerful and extendable
recognition engine and integrating it into the classic vectorization algorithm [1] as an
extra stage. In this stage, we first normalize the program representation. Then we use an
extended Bottom-Up Rewriting System (BURS) [9] to decide possible vectorization
plans (VP) for each statement. Based on these single-statement VPs, we find out
multi-statement vectorizable idioms and their VPs. Finally, we determine the best VP
set for the loop. Experimental results show that we can vectorize many operations in
real-life multimedia applications and the performances are quite satisfactory. We
achieved a 10.86% average speedup for Accelerating Suite of Berkeley Multimedia
Workload [4][5]. Compared with the vectorization ability of Intel C Compiler (ICC)
version 8 [10], our compiler outperforms it by about 8% on average.

In short, this paper offers: (1) a uniform and flexible engine to recognize many
vectorizable idioms, (2) a mechanism to generate efficient code for vectorized idioms
and (3) very good performance for several real-life multimedia applications.

The rest of paper is organized as follows: In section 2, we show the key points in
utilizing MMEs. After briefly introducing related techniques in section 3, we present
our algorithm and discuss it in detail in section 4. In section 5, experiment results are
presented. Then comparisons between our research and previous works are made in
section 6. Finally, we end this paper by drawing conclusions in section 7.

2 Key Points in Fully Utilizing MMEs

MMEs include more domain-specific instructions than vector processors [3]. Table 1
lists those in Intel MMX/SSE/SSE2. The corresponding operations are heavily used
in real-life multimedia applications. And after manual vectorization, they contribute
to almost all speedups [4] [5]. This fact shows that the recognition of these
ISA-supported multimedia typical operations should be the focus of compiler sup-
port for MMEs.

As a result of more domain-specific instructions on MMEs, more idioms need to be
recognized than traditional vectorization. Furthermore, because of lacking direct sup-
port in high-level languages, programmers often have to use multiple statements to
express a multimedia typical operation. In such case, statements composing it are often
connected by complex control structure. Sometimes, the statements may even not be
adjacent. This fact greatly increases the number of idioms needed to be recognized. For
example, Fig. 1 gives three typical idioms to express the signed short saturated opera-
tion in C language. Therefore, it is impractical to use the traditional 1:1 special treat

 Boosting the Performance of Multimedia Applications Using SIMD Instructions 61

Table 1. Multimedia typical arithmetic instructions provided by MMX/SSE/SSE2

Function Instruction
Saturated add PADDSB/PADDSW/PADDUSB/PADDUSW
Saturated subtract PSUBSB/PSUBSW/PSUBUSB/PSUBUSW
Saturated pack PACKSSWB/PACKSSDW/PACKUSWB
Sum of absolute difference PSADBW
Min/max PMINUB/…/PMINSW/PMAXUB/…/PMAXSW
Average PAVGB/PAVGW
Multiply and add PMADDWD
Logical PAND/PANDN/PXOR/POR
Compare PCMPEQB/PCMPGTW/…/PCMPGTB

/* short a, b; int ltmp; */
#define GSM_SUB(a, b) \

((ltmp=(int)a-(int)b)\
> MAX_WORD ? MAX_WORD:\
ltmp < MIN_WORD ? \
MIN_WORD: ltmp

t = GSM_SUB(a, b)

/*short *a,*b,*c;
int t;*/
t = a[i] - b[i];
if(t>32767||t<-32768){

if(t>32767)
c[i] = 32767;

else
c[i] = -32768;

} else c[i] = t;

/*float sum; int clip;
short *sample; */
if(sum>32767.0) {

*samples = 32767;
clip++;

}elseif(sum<-32768.0)
{ *samples = -32768;

clip++;
}else *samples = sum;

 (a) (b) (c)

Fig. 1. Three variations of signed short saturated operation

ment to recognize each idiom as the number of idioms is now largely increased. It
follows that a uniform and flexible way to recognize them is much preferred.

3 Background

3.1 Classic Vectorization Algorithm

The classic algorithm for automatic vectorization [1] is illustrated in Fig. 2. Its main
idea is to reorder and vectorize statements in the loop according to data dependence.

for each loop in source code {

construct its data dependence graph.
condense each maximal strongly connected component in the graph.
topological sort the condensed graph and number the nodes
(1..m).
for i = 1 to m { // code generation

distribute node
i
 into a loop.

if node
i
 is not strongly-connected //not in a dep cycle

or can be recognized as vectorizable idiom then
vectorize node

i.

 }
}

Fig. 2. Classic vectorization algorithm

62 W. Jiang et al.

Because its objects mostly are simple arithmetic operations, it pays little attention to
code pattern and ISA support. For other few important idioms in numerical applica-
tions, e.g. MAX/MIN, it uses special treatment to recognize them.

3.2 Bottom-Up Rewriting System (BURS)

Bottom-Up Rewriting System (BURS) [9] is a code generator’s generator, which is
widely used in compiler to help generate code from IR tree. For a certain IR tree and a
set of tree patterns, there may be more than one match (covering) of the tree. BURS
uses dynamic programming to choose the lowest cost one. It accepts rules in the form of
non-terminal pattern (cost) [action] and produces tree matchers that make two
passes over each subject tree. The first bottom-up pass finds a set of patterns that cover
the tree with minimum cost. The second top-down pass executes the actions associated
with minimum-cost patterns at the nodes they matched, which is driven by the goal
non-terminal at tree root (similar with the start symbol in LR parsing).

According to the grammar in Fig. 3(a), tree FETCH(PLUS(REG,INT)) has two
coverings, namely, rule tree 1(4(6(5(2,3)))) and 1(4(8(2))) with costs 5 and 2,
respectively.

In the first traversal of the BURS tree matcher, the tree is labeled as Fig. 3(b), in
which each node is associated with minimum cost matching rule set for this subtree and
corresponding costs. The best covering 1(4(8(2))) is indicated by the goal non-terminal
goal at tree root.

Fig. 3. Example BURS Matches. Action of each rule is omitted

4 Compiler Support for MMEs

To solve the idiom recognition problem in compiler support for MMEs, we design a
powerful recognition engine and add it as an extra stage at the beginning of the classic
algorithm in Fig. 2. The enhanced algorithm, as a whole, works as follows: our engine
deals with the recognition of vectorizable language constructs (simple statements and
idioms) in each loop and the dependence relations within each construct. Besides, the
engine decides vectorization plan (VP) for each construct, i.e. the way to generate
its SIMD code. Then it comes to the classic algorithm part that handles other issues,
e.g. dependence relations between these constructs and other statements. During
dependence graph construction, the statement(s) in each construct share one node

 Boosting the Performance of Multimedia Applications Using SIMD Instructions 63

in the graph. After graph condensing, we discard those recognized constructs that
are strongly connected. For those survived, SIMD code is generated according to
their VPs.

4.1 Basic Ideas in Vectorizable Construct Recognition

A vectorizable construct is a code block in source code to express one or several related
vectorizable operations as a whole. It can be transformed into efficient SIMD code.
Recognizing such constructs and finding how to vectorize them i.e. their VPs are the
two tasks the recognition engine needs to accomplish. These two tasks are closely re-
lated. To recognize such construct, we have to know whether it is supported by MME’s
ISA and whether its vectorized form is profitable. Only during deciding its VPs can
such information be obtained. To find how to vectorize a construct, i.e. its VP, we have
to use a series of patterns (rules) to match the construct. Thus, a VP actually is a rule set
covering the construct and VP finding is a process of recognition. Therefore, we prefer
to perform these two tasks together.

During the recognition of single-statement vectorizable construct, VP selection is
needed since a construct may have more than one VP. E.g. on Intel SSE/SSE2, con-
struct c[i]=(a[i]+b[i]+1)>>1; have two VPs: one is add/add/shift/store instruction
sequence and the other is instructions average/store. If we express each statement as a
tree, then BURS is a tool available to find the best one of all the coverings (VPs).

As to the recognition of multi-statement construct, the first key problem is to uni-
form variations of multimedia operations. As mentioned in section 2, such variations
result from the complex control structure. If relations between statements were sim-
plified, the number of variations and the difficulty of recognition would be lowered.
Therefore, we first normalize the program representation. IF-conversion [18] is the
technique we used to convert control dependence to data dependence. After conversion,
statements are flattened and only related by data dependence. Besides, each statement
is composed of a statement body and several guard conditions. In this way, it does not
matter what statements look like in original source code since they are now all related
by data dependence.

Then, we have to find which statements constitute such a construct. Each statement’s
semantic information and their relations are thus needed. The latter can be obtained
from variables’ DU chains. The former can be obtained from VPs of statements since
certain VP is only linked with certain statement structure. Thus, we reuse the result of
single-statement construct recognition (represented by goal non-terminals of VP) here
to avoid redundant computation. E.g., we can know that the first statement in Fig. 1(b)
can be part of a vectorizable saturated sub construct since its VP shows that it is a
signed short subtract operation.

However, not every single statement in a vectorizable multi-statement construct can
be vectorized. E.g. though statements in Fig. 1(b) as a whole are vectorizable on
MMEs, the second statement itself is not vectorizable. To solve this problem, we regard
each statement in a vectorizable multi-statement operation as partially vectorizable and
design a goal non-terminal and a VP rule to represent it. After multi-statement construct
recognition, these partial VPs will be discarded.

64 W. Jiang et al.

After multi-statement construct recognition, selection is also needed since constructs
may have conflicts, i.e. a statement may belong to more than one construct.

To ease the introduction of our recognition algorithm, we define several concepts.

Definition 1. A vectorization plan (VP) for tree t defines a possible way to vectorize the
tree. It consists of a series of 6-tuples <r, vl, vc, sc, def, use> associated with tree nodes,
which means using rule r to vectorize the subtree rooted at the node, vl is the vector
length, vc is the amortized vectorized execution cost, sc is the sequential execution cost,
def and use mean the definition and use operands respectively.

In our system, VP rules are expressed similarly with BURS rules. In each tuple, field
sc is used to compare with field vc to show whether the VP is profitable. When rec-
ognizing a multi-statement construct, we need to know its operands from VPs of its
statements. Thus, we add field def and use here.

As mentioned above, the result of VP can be represented by its goal non-terminal.
Thus, for simplicity, we denote the vectorization plan as VP(t, n), in which t is the tree
and n is the goal non-terminal.

To be easy, we encode the VP rule information into its left-side non-terminal. It is
named as [<op>_]<category>[suffix][datatype]. E.g. ssub_exprs16 denotes the result of
using signed short saturated subtract rule to vectorize an expression.

Op category Datatype

sub(normal subtract)

ssub(saturated subtract), etc.

expr(vectorizable expression)

stmt(vectorizable statement)

s16 (signed short)

u32(unsigned int), etc

In our system, we express statements as trees. For each statement, its body and every
condition in its guard are expressed as a tree, respectively. For a tree t, t is vectorizable
if

∈∧∃
∈∧∃

conditionguardiscategory),(

bodystatememtiscategory),(

texprnntVP

tstmtnntVP .

Definition 2. Best vectorization plan BVP(t, n) is the minimal vectorized cost VP of all
VP(t, n).

Definition 3. Candidate vectorization plan set CVP_Set(t) contains all the BVPs for
tree t.

If we ignore fields vl, sc, def and use of each tuple in VP, we can find that CVP_Set
is just the result set of using BURS and rules to match a tree.

Definition 4. Multi-statement vectorization plan MVP(s1,s2,…,sn) is a vectorization
plan for multi-statement construct which is composed of statements s1, s2,…,sn . It is a
tree of 6-tuples <MVP rule, vl, vc, sc, def, use> (one for each multi-statement opera-
tion). Each field has similar meaning as its counterpart in VP tuple.

Our recognition algorithm is shown in Fig. 4. Each main step is discussed below.

 Boosting the Performance of Multimedia Applications Using SIMD Instructions 65

Normalize program respresention;
for each statement s in loop {

compute CVP_Set(s.body);
for each condition expression c in s.guard

compute CVP_Set(c);
}
find all MVPs in the loop;
select best VPs for loop;

Fig. 4. Recognition Algorithm

4.2 Normalize the Program Representation

To normalize the program representation, first, we perform a series of normaliza-
tion techniques: e.g. scalar expansion, variable range analysis [20], loop rerolling
 [3] etc.

As mentioned above, we perform IF-conversion [18] in the loop body to reduce
variations of multi-statement operations and eliminate complex control flow. It
removes branches by replacing the statements in the loop body with an equivalent
set of guarded statements. Besides normal statement body, every guarded statement
includes a guard (relative to the loop) which is composed of several condition ex-
pressions combined by and operation. As to nested loops, the inner loop as a whole
is regarded as a statement when outer loop is processed. The below code illustrates
the conversion for the outer loop.

if(guard1)
 for(…){
 if(guard2){
 if(guard3)
 stmt1;
 for(…)
 stmt2;
}}

if(guard1)
 for(…){
S1: (guard2, guard3) stmt1;
S2: (guard2) for(…) stmt2;
 }

Thus, variation (a) and (b) in Fig. 1 have the same code sequence as in Fig. 5(a)
after scalar expansion and IF-conversion. And variation (c) has the form as in Fig.
5(b).

S1: () t[i]=a[i]–b[i];
S2: (t[i]>32767) c[i]=32767;
S3: (t[i]<-32768) c[i]=-32768;
S4: (t[i]≥-32768, t[i]≤32767)

c[i]=t[i];

S1:(sum[i]>32767.0) samples[i]=32767;
S2:(sum[i]>32767.0) clip++;
S3:(sum[i]<-32768.0) samples[i]=-32768;
S4:(sum[i]<-32768.0) clip++;
(sum[i]≥-32768, sum[i]≤32767)

samples[i]=sum;
(a) (b)

Fig. 5. Saturated Operations after IF-conversion

66 W. Jiang et al.

Generally, IF-conversion can be used to utilize bit-masking instructions on
MMEs [3]. Here, we extend its usage. We regard program representation after
IF-conversion as a new IR on which our further recognition is based. After recog-
nition, we roll back those converted statements (including their guard) if they are not
vectorizable.

4.3 Compute CVP_Sets

As mentioned above, we use BURS [9] to generate CVP_Sets for every statement’s
body and guard conditions. The first bottom-up pass of BURS matcher is performed
here while the second top-down pass is performed at code generation stage.

To use BURS to compute CVP_Set, we define VP rule as extended BURS rule. The
extension is the addition of 5 fields: vl, sc, def, use and constraint. Field constraint is
added to represent constraints, e.g. dependence issues, data type etc., that are required
before applying this rule. Original cost field in BURS rule is used as vc.

We define costs of VP rule as
≅
≅

nsinstrcutiosequentialoflatency

lengthvectornsinstrcutioSIMDoflatency

sc

)()(vc .

In its bottom-up traversal, BURS matcher matches a tree and labels each tree node
its CVP_Set. In each tuple <r, vl, vc, sc, def, use>, cost vc and sc are set as the sum of
VP rule r’s vc, sc and each subtree’s vc, sc, respectively. Field def and use are simply
set as VP rule r’s def and use.

As to vector length vl, its computation is a little bit subtle because vector length
of VP rule and that of each subtree may not be equal. E.g. Assuming we have an
expression a[i]+b[i], the element type of a, b is short and int, respectively. Ac-
cording to the rules in Fig. 6, Rule tree 11(10(2),4) can successfully match it.
Vector length of each rule is 4, 4, 8 and 4, respectively. If vector length of the tree is
4, then part of load result a[i+4:i+7] will be discarded. To avoid such waste, we set
vl as the least common multiply (LCM) of vector length of VP rule and that of each
subtree. This means the tree will be executed LCM times in one vectorized loop
iteration. Thus, SIMD code generated by VP rule’s and subtrees’ semantic actions
will be duplicated LCM/vli times respectively. As to the above example, we will
generate code:

load a[i:i+7]; #rule 2

load b[i:i+3]; load b[i+4:i+7]; #rule 4

convert a[i:i+7] to int vectors a’[i:i+3] and a’[i+4:i+7]; #rule 10

a’[i:i+3]+b[i:i+3]; a’[i+4:i+7]+b[i+4:i+7]; #rule 11

Take the process of computing CVP_Set for statements in Fig. 5(a) as an ex-
ample. Parts of the related VP rules are shown in Fig. 6. Fig. 7 shows BURS
matching result.

 Boosting the Performance of Multimedia Applications Using SIMD Instructions 67

Rule vl vc sc def use constraint
1 lval_exprs16 arr[index] 8 0.751.5 root vec_arr(arr,index, s16)
2 exprs16 arr[index] 8 0.751.5 {root} vec_arr(arr,index, s16)
3 lval_exprs32 arr[index] 4 1.5 1.5 root vec_arr(arr,index, s32)
4 exprs32 arr[index] 4 1.5 1.5 {root} vec_arr(arr,index, s32)

5
ssub_stmt1s16 lval_exprs32

=exprs16–exprs16
4 0.5 0.5lval_exprs32

{exprs16[1],
exprs16[2]}

no_dep(def, use[1])
no_dep(def,use[2])

6 sub_stmts32 ssub_stmt1s16 4 0 0
ssub_stmt1

s16.def
ssub_stmt1

s16.use

7 upplimit_exprs32 exprs32>32767 4 0.5 0.5 {exprs32}
8 lowlimit_exprs32 exprs32<-32768 4 0.5 0.5 {exprs32}
9 ssub_stmt2s16 lval_exprs16=32767 8 0.5 0.5lval_exprs16

10 exprs32 exprs16 4 0.5 0.5 {exprs16}
11 exprs32 exprs32 + exprs32 4 0.5 0.5 {exprs32[1],exprs32[2]}

Fig. 6. Some VP Rules. Function vec_arr(arr, index, type) checks if arr[index] is a vectorizable
continuous array visit expression with element type as type. Function no_dep(a, b) checks if there
is no dependence between a and b

The final work before MVP finding is to compute sequential cost sc of each state-
ment (including its body and guard). It is set as the sum of each part’s lowest sc and the
fixed instruction latency for if statement dispatch.

Fig. 7. CVP_Set Computation Result for S2 in Fig. 5(a). The VP rules for S1, S3 and S4 and their
match processes are similar, hence omitted. Their results are:
CVP_Set(S1.guard) = ∅, CVP_Set(S1.body) = {<ssub_stmt1s16,…>, <sub_stmts32,…>},
CVP_Set(S3.guard) = {<lowlimit_exprs32,…>}, CVP_Set(S3.body)={<ssub_stmt3s16,…>},
CVP_Set(S4.guard.condition1)={<!upplimit_exprs32,…>}, CVP_Set(S4.guard.condition2) =
{<!lowlimit_expr s32,…>}. , CVP_Set(S4.body) = {< ssub_stmt4 s16,…>}

4.4 Find All MVPs

Based on CVP_Sets, we now begin to find all MVPs in the loop according to prede-
fined MVP rules. We define each MVP rule as <non-terminal→Stmt_Set, vl, vc, def,
use, constraint, action>. Set Stmt_Set contains statements (represented by goal
non-terminals to indicate their roles). Other fields have the same meaning with their
counterparts in VP rules. As an example, Fig. 8 shows some MVP rules.

68 W. Jiang et al.

NT Stmt_Set vl vc def use constraint

ssub_stmt
s16

{s1: () ssub_stmt1s16,
s2: (upplimit_exprs32)

ssub_stmt2s16,
s3: (lowlimit_expr s32)

ssub_stmt3s16,
s4: (!upplimit_exprs32,

!lowlimit_exprs32)
ssub_stmt4s16}

8 0.5 s4.body.def s1.body.use

DU_Chain(def(s1.body))
≡{s2.guard, s3.guard,

s4.guard, s4.body.right}
def(s2.body)≡def(s3.body)
def(s2.body)≡def(s4.body)

stmts16 {s1: () ssub_stmts16} 8 0 s1.def s1.use[1].parent
bitmask-
ing_stmt

s16

{s1: (exprs16) stmts16
s2: (exprs16) stmts16}

8 0.75 s1.body.def
{s1.guard.use,
s1.body.use,
s2.body.use}

def(s1.body)≡def(s2.body)
s1.guard≡!s2.guard

Fig. 8. MVP Rules Expamples. Action part of each rule is straightforward, thus omitted. E.g.
action of the last rule will generate code (in form of ICC intrinsic function):
“xmm1 = _mm_and_si128(use[1], use[2]); xmm2 = _mm_andnot_si128(use[1] , use[3]);
xmm3 = _mm_or_si128(xmm1, xmm2); _mm_store_si128(def, xmm3)”

Since a MVP rule represents a vectorizable operation, statements in it as a whole
constitute a simpler semantic expression than their respective original expressions. As a
result, we use the action of MVP rule and those of operands in use and def to generate
code, instead of using the actions in each statement’s CVP_Set. Semantic actions of
operands will be executed before that of MVP rule.

We find out all MVPs by constructing a VP DAG. In this DAG, every node repre-
sents a possible MVP rule match or BVP. Edge represents the inclusion relationship
between MVP node and corresponding VP nodes.

The construction algorithm is as follows:

1) Construct initial nodes. For each statement in the loop, we create a node for every
element in the Cartesian product (every possible combination) of CVP_Sets of
statement body and conditions in the guard.

2) Find a MVP rule match. It means to find a node set that meets the MVP rule, i.e.
node set is an instance of the Stmt_Set (possible with additional guards) and con-
straints are satisfied. For each found MVP rule match, we construct a new node for
it and make the node set as its children.

3) Repeat step 2 until no new MVP rule match can be found.

When a MVP rule successfully matched, a MVP node is created and annotated as
<MVP rule, vl, vc, sc, def, use>. Field def and use are set according to the def and use
field of MVP rule. E.g. the MVP rule match node for Fig. 5(a) has {a[i], b[i]} as use and
c[i] as def. Field vl is set as the least common multiply of MVP rule’s vl and vl of each
operand (def and use). Field vc is set as the sum of MVP rule’s vc and vc of each op-
erand. Field sc is set as the sum of sc of each original statement it included.

For example, for statements in Fig. 5(a), we first construct node 1 to 5 in Fig. 9
according to their CVP_Set. Then, after matching saturated subtract MVP rule, we

 Boosting the Performance of Multimedia Applications Using SIMD Instructions 69

Fig. 9. MVP DAG for Fig. 5(a). The def and use field in each node is ignored for simpilicity

construct node 6. Thus, all the MVP matches have been found and shown in this DAG.
For statements in Fig. 5(b), similar DAG can be created.

When matching MVP rules, it may be found that the statements constituting the
MVP match node have additional guard conditions besides the ones needed by the
MVP rule. If different statement has different additional conditions, this MVP rule
cannot be matched because these statements actually are embraced by different if
statements. However, if there is only one additional condition, we decompose each
node representing the related statement that hasn’t such condition into two node and
continue the match. E.g. assuming there are two nodes: (guard)S1 and S2. S1 and S2
constitute a MVP match M if guard does not exist. In such case, we decompose S2 into
two new nodes: (guard)S2 and (!guard)S2. Then (guard)S1 and (guard)S2 are matched
as a MVP node (guard)M. Such decomposition is performed on DAG. Only when the
related MVP is finally chosen will the decomposition really be performed on state-
ments. Such decomposition may increase the number of possible MVPs. However, our
goal of this step is to find all the possibilities. Next step will choose from them the best
ones. Thus, such treatment is harmless.

Fig. 10(a) introduces an example to show the MVP recognition process. It is slightly
modified from a code segment (Fig. 10(b)) in ADPCM Decoder to make it vectoriz-
able. The original version is similar to a saturated operation, but not vectorizable be-
cause valpred is a reduction variable and has different type from vpdiff. This test case is
hard to recognize because saturated subtract operation is mingled with the saturated add
in that they share the clip statement (the second if statement). We have not found any
previous research work that could deal with it. However, our approach can vectorize

if(sign[i])
 t[i]=valpred[i]

–vpdiff[i];
else
t[i]=valpred[i]

+vpdiff[i];
if(t[i]>32767)
 valpred[i]=32767;
else if (t[i]<-32768)
 valpred[i]=-32768;
else valpred[i]=t[i]

if(sign)
 valpred-=vpdiff;
else
 valpred+=vpdiff;
if(valpred>32767)
 valpred=32767;
else
if(valpred<-32768)
 valpred=-32768;

S1:(sign[i])
t[i]=valpred[i]–vpdiff[i];

S2:(!sign[i])
t[i]=valpred[i]+vpdiff[i];

S3:(t[i]>32767)
valpred[i]=32767;

S4:(t[i]<-32768)
valpred[i]=-32768;

S5:(t[i]≤32767,t[i]≥-32768)
 valpred[i]=t[i]

(a) (b) (c)

Fig. 10. Code Segment in ADPCM Decoder

70 W. Jiang et al.

Fig. 11. Match Result for Fig. 10(c). Guards are shown as real conditions instead of VPs for easy
understanding. The def and use field in each node is ignored. Dotted line is used to show the node
decomposition process. For example, node 12 and 13 are decomposed from node 5(S3 of Fig.
10(c)). So, node 13 is (!sign[i], t[i]>32767) <ssub_stmt2s16, 8, 1.25, 2> ,which represents
statement: (!sign[i], t[i]>32767) valpred[i] = 32767;. Solid line shows the inclusion relation-
ship. E.g. MVP sadd_stmt s16 (node 20) needs 4 statements (node 11, 13, 15, 17) to constitute.
Therefore, they are connected by directed lines

this example very well. Its normalized code is shown in Fig. 10(c). According to the
MVP rules in Fig. 8 and some other similar MVP rules, we can get the MVP matching
DAG in Fig. 11. It clearly shows our system’s power.

4.5 Select VPs for the Loop

After constructing the DAG, the problem now becomes how to select for each state-
ment its best VP because each statement can only be vectorized using one VP.

First, we decompose the DAG into a series of connected components (trees) (ig-
noring dotted lines). For example, DAG in Fig. 11 is decomposed as following trees:
{1, 3, 8, 9, 18}, {2}, {4}, {5}, {6}, {7}, {10−17, 19−23}. Each tree as a whole shows
how to vectorize a construct.

Then, we delete those trees whose root satisfies any of the following conditions: 1)
root.VP is only meaningful as part of MVP; 2) root.guard ≠ ∅. It means vectorized
code shall be embraced by a vectorized if statement (not bit-masking operation) which
is impossible; 3) root.sc ≤ root.vc. Such MVP is not profitable. After it, DAG in Fig. 11
has trees {1, 3, 8, 9, 18} and {10−17, 19−23} left. The former will vectorize statements
S1-S2 while the latter will vectorize S1-S5. However, S1-S2 can only be vectorized by
one VP tree. Thus, these two trees are incompatible.

We try to find the compatible tree subset with maximum weight. We define each
tree’s weight (time save of vectorization) as its root.sc−root.vc. This problem can be
formulated as a NP-complete set-covering problem (by using similar technique in
 [19]). In practice, because conflicts are rare and easy to solve, we use the greedy al-
gorithm: choose the tree that has the most number of statements and lowest cost first.
Thus, VP tree {10−17, 19−23} is selected for Fig. 11.

 Boosting the Performance of Multimedia Applications Using SIMD Instructions 71

At dependence-graph-construction stage, we make all the statements in each chosen
tree share one node in the graph. The dependence relations between these statements
are ignored since they are already checked by the constraints of VP/MVP rules.

4.6 Code Generation

In code generation stage, vectorizable nodes in the dependence graph, i.e. those that are
associated with a VP tree and not strongly connected, are vectorized on IR in the classic
way: first distribute it into a loop; then generate vectorized code according to actions of
its VP tree; loop step is set as the vl field of the VP tree root; rest loop is generated for
un-vectorizable iterations.

Since we regard each VP tree as a high-level operation, it shall contain assignment(s)
only to one variable. Thus, the “store” action in each non-root VP node is not per-
formed. E.g. the store operations to variable valpred in nodes 19-22 of Fig. 11 are
prohibited.

After vectorization on IR, two optimizations: alignment analysis and redundant
load/store are performed. Because MMEs prefer aligned data load/store, we need to lay
out the arrays and determine the alignment information for each memory access. At
present, we only scan alignment requirements for array references and try to meet them
as many as possible. For pointer references, we conservatively regard them as un-
aligned. This strategy seems to work well for our benchmarks.

To reduce the redundant load/store for arrays in vectorized constructs, we per-
form common sub-expression elimination for loads and dead code elimination for
stores.

5 Experimental Results

In this section, we demonstrate the effectiveness of the presented algorithm with ex-
perimental results. All experiments were conducted on a 2.8G Pentium 4E Processor
and 1G memory system with Redhat 9.0. The benchmark we use is Accelerating Suite
of Berkeley Multimedia Workload (ASBMW) [4] [5]. We also compare the results of
our method with ICC [10], the Intel compiler that has the state of the art vectorization
techniques. We use two versions of ICC, v7 and the latest v8, to vectorize the applica-
tions. We implement our vectorization algorithm in our C-to-C compiler Agassiz [8]
which is a research compiler developed by University of Minnesota and us. Agassiz
transforms vectorizable parts of multimedia source code into Intel SSE/SSE2 instruc-
tion set (in form of ICC intrinsic functions). The rules we added to our system are the
ones we found profitable and general enough in our real-life application study. The
output of Agassiz is compiled by ICC 7 and ICC 8 with vectorization off, respectively.
Fig.12 lists the results. All results are obtained as the average of 5 runs.

As illustrated by Fig.12, Agassiz achieved an average more than 10% speedup. In
contrast, ICC 7 and ICC 8 only achieved 1.94% and 2.37% speedup, respectively. This
is because Agassiz can vectorize almost all the constructs ICC can, which mainly are
memory copies, arithmetic operations, MAX/MIN operations, etc. Moreover, Agassiz

72 W. Jiang et al.

Application
ICC 7

option1

ICC 8

option1

Agassiz

+ICC 7

option2

Agassiz

+ICC 8

option2

gsm_decode -1.88% -3.74% 18.07% 19.25%

gsm_encode -0.70% -15.81% 12.49% 13.13%

lame 7.60% 6.29% 7.49% 6.14%

mesa_gears -2.22% 0.17% -1.67% -2.10%

mesa_morph3d -0.77% -0.78% -0.19% -0.79%

mesa_reflect 2.21% 1.38% 2.46% 2.25%

mpeg2_decode 1.07% 0.86% 3.05% 1.67%

mpeg2_encode 9.76% 37.69% 43.55% 42.03%

mpg123 3.28% 0.00% 18.90% 18.29%

timidity 1.06% -2.34% 3.78% 2.87%

Fig. 12. Speedup of vectorization. ICC compiling option1: -O2 -xW (with vectorization turned
on); ICC compiling option2: -O2 -xW -vec- (with vectorization turned off). The baseline is
compiled with option2

can vectorize constructs that ICC cannot. This fact leads to the results that Agassiz
outperforms ICC on six applications while the rest have similar performance.

We can also find that ICC 8 generated better scalar code than ICC 7 since Agas-
siz+ICC 8 had slightly smaller speedup than Agassiz+ICC 7 on most applications. As
to the vectorization capability, ICC 8 greatly outperformed ICC 7 on mpeg2_encode
since it vectorized the Sum of Absolute Difference (SAD) operation. A very strange
thing is that, though they vectorized the same parts of gsm_encode, ICC 8 greatly
slowed down it.

Though Agassiz have vectorized lots of constructs, the most important ones (con-
tributing most to speedup) are just variations of several important operations. As to
gsm_decode and gsm_encode, the most important one is saturated operation. Con-
cerning lame, the most important one is MAX operation. As to mpeg2_encode, the key
operations are SAD operation and float arithmetic operation. As to mpeg2_decode, it is
saturated pack. To mpg123, it is also saturated arithmetic. Regarding timidity, it is
floating-point operation.

Fig. 13 lists the comparison of two performance monitors after Agassiz+ICC 8
vectorization and its scalar counterparts.

We can see that execution time (clockticks, column 2) is somewhat proportional to
the number of dynamic instructions retired (column 3). In the listed applications, the
great reduction of dynamic instructions is attributed to the vectorization of multimedia
typical operations (mainly multi-statement operations) in hot loops. Thus, these op-
erations contribute to most of the speedups. The rest speedups mainly come from float
operation and integer operation of small data type. Other performance monitors such as
mis-predicted branches and L2 cache miss etc. have not changed much due to vec-
torization. Thus, they are not listed here.

 Boosting the Performance of Multimedia Applications Using SIMD Instructions 73

 Clockticks Instructions

gsm_decode 86.47% 62.18%

gsm_encode 88.73% 83.98%

lame 92.77% 85.22%

mesa_gears 98.03% 100.91%

mesa_morph3d 97.18% 100.69%

mesa_reflect 96.96% 89.48%

mpeg2_decode 98.41% 96.46%

mpeg2_encode 68.72% 42.99%

mpg123 84.42% 75.94%

timidity 96.39% 99.68%

gsm
_dec

od
e

gsm
_e

nc
ode lam

e

mesa_
gea

rs

mesa_
morp

h3
d

mes
a_

ref
lec

t

mpeg
2_d

ec
ode

mpeg2
_en

co
de

mpg
123

tim
idi

ty

Fig. 13. Performance monitors after vectorization vs. its scalar counterparts

6 Related Work

The application of traditional automatic vectorization techniques on MMEs
 [11] [15] [16] and new methods such as SLP [7] neither recognize nor vectorize those
important multi-statement idioms in real-life multimedia programs.

Realizing the importance of recognizing multimedia typical idioms, researchers
have proposed other methods. Simple pattern match based algorithm [6] requires
compiler to have one pattern for each variation of multimedia operations, thus too rigid
to be acceptable. Domain-specific language, SWARC [17], is developed to provide a
portable way to program for MMEs. But it is not popular enough.

In [12], a preprocessing before classic vectorization algorithm to detect two multi-
media typical operations (saturation and max/min) is presented. It uses tree rewriting
system to rewrite the tree step by step to recognize them. Speedup was reported for
several small kernels and 164.gzip in SPEC2000. In comparison, our algorithm shows
more applicability and power. First, our algorithm can recognize almost all kinds of
SIMD idioms in a uniform and flexible way. Second, as to the two kind operations this
method focuses on, our method puts much less constraints on the recognizable opera-
tions. For example, ours does not require the exact order of statements in a
multi-statement construct, e.g. statements s2, s3, s4 in Fig. 5(a) can appear in any order
and any other irrelevant statements could be inserted between these three statements.
We also allow the multi-statement operations appearing in forms that are more com-
plex. Thus, our method is able to recognize those variations such as Fig. 1(b), Fig. 1(c)
and Fig. 10(a) which cannot be handled by [12].

7 Conclusion

In this paper, we first showed that the key difficulty in utilizing MMEs to boost the
performance of real-life multimedia applications is how to recognize many different
profitable and vectorizable operations, especially how to recognize the variations of the
same multimedia typical operation in an efficient and general way.

74 W. Jiang et al.

Then, we introduced a powerful recognition engine to overcome such difficulty,
which only needs a small amount of rules to recognize and vectorize many operations
in real-life source code. In addition, it can find the best VP set for each loop. Thus, it
can fully exploit benefits from MMEs. It also enjoys great extendibility in that we only
need to add new operation patterns (rules) into it if new SIMD instructions appear. We
integrated this engine into the classic vectorization framework and obtained satisfac-
tory speedup for several real-life multimedia applications.

References

[1] Allen R, Kennedy K. Automatic Translation of Fortran Programs to Vector Form. ACM
Trans. on Programming Languages and Systems, 1987, 9(4): 491-542.

[2] Padua D, Wolfe M. Advanced Compiler Optimizations for Supercomputers. Comm. of the
ACM. 1986, 29(12): 1184-1201.

[3] Ren G, Wu P, Padua D. A Preliminary Study On the Vectorization of Multimedia Appli-
cations for Multimedia Extensions. Proc. of the 16th Int’l Workshop on Languages and
Compilers for Parallel Computing, 2003.

[4] Slingerland N, Smith A J. Design and Characterization of the Berkeley Multimedia Work-
load. Multimedia Systems, 2002, 8(4): 315-327.

[5] Slingerland N, Smith A J. Measuring the Performance of Multimedia Instruction Sets.
IEEE Trans. Computers, 2002, 51(11): 1317-1332.

[6] Boekhold M, Karkowski I, Corporaal H. Transforming and Parallelizing ANSI C Programs
Using Pattern Recognition. Lecture Notes in Computer Science, 1999, 1593: 673.

[7] Larsen S, Amarasinghe S. Exploiting Superword Level Parallelism with Multimedia In-
struction Sets. ACM SIGPLAN Notices, 2000, 35(5): 145-156.

[8] Zheng B, Tsai J Y, Zhang BY, Chen T, Huang B, Li J H, Ding Y H, Liang J, Zhen Y, Yew
P C, Zhu C Q. Designing the Agassiz Compiler for Concurrent Multithreaded Architec-
tures. Proc. of the 12th Int’l Workshop on Languages and Compilers for Parallel Com-
puting, 1999: 380-398.

[9] Fraser C W, Hanson DR, Proebsting T A. Engineering Efficient Code Generators Using
Tree Matching and Dynamic Programming. TR-386-92, Princeton University.

[10] Intel Corporation. Intel C++ Compiler User's Guide. 2003: http://developer.intel.com/.
[11] Sreraman N, Govindarajan R. A Vectorizing Compiler for Multimedia Extensions. Int’l

Journal on Parallel Processing, 2000.
[12] Bik A J C, Girkar M, Grey P M, Tian X. Automatic Detection of Saturation and Clipping

Idioms. Proc. of the 15th Int’l Workshop on Languages and Compilers for Parallel Com-
puters, July 2002.

[13] Intel Corporation. Intel Architecture Software Developer’s Manual, Volume 1: Basic Ar-
chitecture. 2001: http://developer.intel.com/.

[14] Intel Corporation. Intel Architecture Optimization Reference Manual. 2001:
http://developer.intel.com/.

[15] Cheong G, Lam M S. An Optimizer for Multimedia Instruction Sets. Second SUIF Com-
piler Workshop, Stanford, August 1997.

[16] Krall A, Lelait S. Compilation Techniques for Multimedia Processors. Int’l Journal of
Parallel Programming, 2000, 28(4): 347-361.

[17] Fisher R J, Dietz H G. Compiling for SIMD within a Register. Workshop on Languages and
Compilers for Parallel Computing, University of North Carolina, August 1998.

 Boosting the Performance of Multimedia Applications Using SIMD Instructions 75

[18] Allen J R, Kennedy K, Porterfield C, Warren J. Conversion of Control Dependence to Data
Dependence. Proc. of the 10th ACM SIGACT-SIGPLAN symp. on Principles of Pro-
gramming Languages, Austin, Texas, 1983: 177-189.

[19] Liao S, Devadas S, Keutzer K. A Text-Compression-Based Method for Code Size Mini-
mization in Embedded Systems. ACM Trans. on Design Automation of Electronic Systems,
1999, 4(1): 12-38

[20] Stephenson M, Babb J, Amarasinghe S. Bitwidth Analysis with Application to Silicon
Compilation. ACM SIGPLAN Conf. on Programming Language Design and Implementa-
tion, June 2000

[21] Fuller S. Motorola’s AltiVec Technology. White Paper, May 6, 1998

Task Partitioning for
Multi-core Network Processors

Robert Ennals1, Richard Sharp1, and Alan Mycroft2

1 Intel Research Cambridge,
15 JJ Thomson Avenue, Cambridge, CB3 0FD, UK

2 Computer Laboratory, Cambridge University,
15 JJ Thomson Avenue, Cambridge, CB3 0FD, UK

{robert.ennals, richard.sharp}@intel.com
am@cl.cam.ac.uk

Abstract. Network processors (NPs) typically contain multiple concur-
rent processing cores. State-of-the-art programming techniques for NPs
are invariably low-level, requiring programmers to partition code into
concurrent tasks early in the design process. This results in programs
that are hard to maintain and hard to port to alternative architectures.
This paper presents a new approach in which a high-level program is sep-
arated from its partitioning into concurrent tasks. Designers write their
programs in a high-level, domain-specific, architecturally-neutral lan-
guage, but also provide a separate Architecture Mapping Script (AMS).
An AMS specifies semantics-preserving transformations that are applied
to the program to re-arrange it into a set of tasks appropriate for ex-
ecution on a particular target architecture. We (i) describe three such
transformations: pipeline introduction, pipeline elimination and queue
multiplexing; and (ii) specify when each can be safely applied.

As a case study we describe an IP packet-forwarder and present an
AMS script that partitions it into a form capable of running at 3Gb/s
on an Intel IXP2400 Network Processor.

1 Introduction

This paper addresses an instance of a perennial general problem in the compi-
lation of concurrent systems to parallel hardware architectures:

Given a program which expresses problem-oriented concurrency, and hard-
ware which has multiple processing elements, how can we efficiently map
one to the other?

The instance we attack concerns the domain of packet processing applications
such as Internet routers, firewalls and similar network devices. The parallel hard-
ware architectures we target are Network Processors (NPs) [1, 6, 10, 23]: spe-
cialised programmable chips designed for high-speed packet processing.

NPs typically contain multiple processor cores, allowing multiple network
packets to be processed concurrently. To make a program run fast on such an

R. Bodik (Ed.): CC 2005, LNCS 3443, pp. 76–90, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Task Partitioning for Multi-core Network Processors 77

Compile

Simulate

Refine AMS

Deploy final design

AMSPacLang Program

Fig. 1. Design flow using our compiler

architecture it is necessary to partition it into a number of separate concurrent
tasks, such that the number of tasks matches the number of cores on the target
architecture. Furthermore, tasks arranged in a pipeline configuration should be
balanced, with similar latencies.

State-of-the-art programming techniques for NPs are invariably low level,
requiring the programmer to explicitly code a separate process for each core and
explicitly pass state between processes. In this way, the programmer is forced to
combine high-level application functionality with low-level architectural details
in a way that makes them difficult to separate. This results in programs that
are hard to maintain and strongly tied to a particular revision of a particular
architecture.

This paper describes a new approach, in which the high-level application
functionality is completely separated from the architectural details of any specific
NP. Our compiler takes two files as input: a high-level packet processing program
and an Architecture Mapping Script (AMS). The AMS specifies (i) how the
high-level program should be transformed into a new set of concurrent tasks
suitable for execution on a particular NP architecture; and (ii) how these tasks
should be mapped to the NP’s processing cores1. The compiler checks that the
transformations specified in the AMS are semantics-preserving.

We use the domain-specific language PacLang [4] to express the high-level
behaviour of packet processing applications in an architecturally-neutral way
(i.e. without encoding assumptions about any particular target architecture). A
PacLang program consists of multiple concurrent tasks that communicate via
shared queues. Such parallelism, and the controlled non-determinism it intro-
duces, is essential if one is to conveniently express packet processing algorithms.
For example, in an IP forwarder, non-critical, computationally expensive packets
can be processed on different tasks to critical packets, allowing critical packets
to overtake the non-critical ones.

Figure 1 illustrates the design flow that we intend programmers to follow
when using our compiler. After writing a PacLang specification and an initial
AMS for a particular architecture, the compiler is invoked and the resulting code
simulated using architecture-specific tools. Based on the profiling results derived
from simulation, the AMS is iteratively refined to explore different partitionings
and timing behaviours.

1 Although there is scope for generating an Architecture Mapping Script automatically
for particular architectures, that is not the topic of this paper.

78 R. Ennals, R. Sharp, and A. Mycroft

The contributions of this paper are: (i) a methodology for programming
multi-core Network Processors that separates architectural-details from high-
level application specification; (ii) a set of semantics-preserving program trans-
formations that re-arrange a concurrent program into a different set of concurrent
units (i.e. tasks and queues); and (iii) a whole-program analysis that determines
when it is safe to pipeline a specified task in the wider context of a whole con-
current program.

We have implemented a PacLang compiler targeting Intel IXP2400 Network
Processors [10]. To demonstrate that the techniques described in this paper are
applicable to realistic networking applications, we present a case-study showing
how an architecturally-neutral PacLang IP packet-forwarder can be transformed
into a form suitable for implementation on an Intel IXP2400 chip. We present
performance figures, showing that executing the compiled code on a 3-port Gi-
gabit Ethernet IXP2400-based system [20] achieves a forwarding rate of 3 Gb/s
(full line-rate).

For expository purposes, this paper initially presents our partitioning trans-
formations (Section 3) and safety analysis (Section 4) in the domain of Core
PacLang—a simplified version of PacLang. Later, the transformations and safety
analysis are then extended from Core PacLang to the full PacLang language
(Section 5). We finish by presenting a case-study (Section 6), related work (Sec-
tion 7), and our conclusions (Section 8).

2 Core PacLang Language

We start by considering Core PacLang: a simplified version of the PacLang
language. Unlike PacLang proper, Core PacLang is untyped, supports only value
types (no references or pointers) and has no user-defined functions.

e ← c | x | op (e1, . . . , ek) constant, local variable, primitive op

s ← if (e) s1 else s2 conditional
| while (e) s while loop
| s; s sequence
| skip do nothing
| x = e imperative assignment
| q.enq (e1, . . . , ek) enqueue
| (x1, . . . , xk) = q.deq() dequeue

d ← task t {s} task t with body s
| queue q; global queue q

p ← d1 . . . dn Core PacLang program

Fig. 2. Abstract Syntax of Core PacLang

Task Partitioning for Multi-core Network Processors 79

The abstract syntax of Core PacLang is presented in Figure 2. A program
consists of a set of declarations, each of which is either a task , t, or a queue,
q. Tasks are the unit of concurrent execution: during program execution, all
task bodies run concurrently. Tasks are statically declared; there is no dynamic
thread creation in PacLang. (Note that tasks’ names have no significance other
than providing a convenient way of referencing them in AMSes.)

Each task has a body, s, which it executes repeatedly. One can imagine that
task bodies are surrounded by an invisible “while (true)” loop. When a task
body restarts all its local variables are uninitialised. This ensures that there are
no loop-carried-dependencies between subsequent iterations of a task body.

Queues provide inter-thread communication. In Core PacLang we assume
that queue-read operations block when the queue is empty and queue-write op-
erations never block (i.e. queues are unbounded). We write q.enq(v1, . . . , vn)
to atomically enqueue values v1, . . . , vn in the queue declared with name q.
Similarly, q.deq() returns (multiple) values dequeued from q. Built-in queues,
receive and transmit represent the external network interface. receive.deq()
reads a value from the network2; transmit.enq(v) schedules value v for trans-
mission.

In untyped Core PacLang, variables do not have to be declared explicitly and
are scoped by their enclosing task.3 To simplify the presentation of subsequent
transformations we assume that all declared names (i.e. local variable names,
queue names and task names) are globally distinct.

3 Semantics-Preserving Transformations for Partitioning

In this section we present three semantics-preserving transformations that allow
programs to be repartitioned into different numbers of concurrent tasks. The first
transformation, PipeIntro (Section 3.1), divides a single task into two separate,
concurrent tasks connected in a pipeline configuration. The second transforma-
tion, PipeElim (Section 3.2), allows two pipeline stages connected via a queue to
be fused into a single task. The third transformation, QueueMux (Section 3.3),
allows multiple queues to be multiplexed onto a single queue. We first present
the transformations in the domain of Core PacLang; Section 5 shows that they
naturally extend to deal with the full PacLang language.

Although we do not prove our transformations formally in this paper, it is
necessary nonetheless to define precisely what we mean by semantics-preserving.
In previous work we presented a small-step transition semantics for PacLang [4].
The semantics is non-deterministic, making no guarantees about the interleav-
ing of concurrent tasks’ operations and making no guarantees about progress
or fairness. With reference to this semantics, we say that a transformation is
semantics-preserving iff the set of possible behaviours of the transformed pro-
gram is a subset of the possible behaviours of the source program, where the

2 Full PacLang supports a structured packet datatype to represent such packets.
3 In contrast, full PacLang supports C-like variable declaration and lexical scoping.

80 R. Ennals, R. Sharp, and A. Mycroft

possible behaviours of a PacLang program are the set of possible traces of values
on external queues (receive and transmit). In other words, transformations
can increase determinism, narrowing the set of possible behaviours, but any be-
haviour exhibited by the transformed program must have also been a possible
behaviour of the source program.

3.1 PipeIntro Transformation

The PipeIntro transformation facilitates pipelining, allowing a task t to be trans-
formed into two separate, concurrent tasks, t1 and t2—see Figure 3. Here, and
throughout the rest of this paper, we let A and B range over statements. Queue
Q is used to transfer the variables required by B (i.e. the live variables in task
t at the program point between A and B) from t1 to t2. Recall that statements
may themselves include sequences of other statements. This, and the fact that
we make the “;” operator associative, allows the PipeIntro transformation pre-
sented in Figure 3 to split task t between any two statements that are not nested
within a while loop or a conditional.

In order to preserve the semantics of a Core PacLang program, the PipeIntro
transformation can only be applied under certain conditions. In Section 4 we
present the technical details of a static analysis that determines when it is safe
to apply PipeIntro. We spend the remainder of this section highlighting the need
for a safety analysis, by giving examples of unsafe applications of PipeIntro. First
consider:

queue q1;
task t { x=q1.deq(); y=q1.deq(); transmit.enq(x,y); }

Task t continually reads pairs of values from q1 and writes them to transmit in
the order they were read. If we were allowed to apply the PipeIntro transforma-
tion arbitrarily we might choose to split between the two queue read operations,
yielding:

queue q1; queue Q;
task t1 { x=q1.deq(); Q.enq(x); }
task t2 { x=Q.deq(); y=q1.deq(); transmit.enq(x,y); }

task t {A;B} −→
queue Q;
task t1 {A; Q.enq(x1, . . . , xk)}
task t2 {(x1, . . . , xk) = Q.deq(); B}

where Q, t1 and t2 are fresh names and x1, . . . , xk are the live variables
of task t at the program point between statements A and B. (Recall the
x’s in t1 are different from the x’s in t2 because they are locally scoped.)

Fig. 3. The PipeIntro Transformation

Task Partitioning for Multi-core Network Processors 81

In the transformed program, the values on transmit might not appear in the
same order that they were read from q1. For example, task t1 may consume the
first 5 elements from the q1 before task t2 has had a chance to read q1 at all.

The unsafe application of PipeIntro given above may lead the reader to think
that a suitable safety condition may be that, in the source program, the queues
accessed (read or written) by the statements before the split point should be dis-
joint from the queues accessed by the statements after the split point. However,
this condition is not sufficient in general. Consider the following program:

queue q;
task t { q.enq(1); transmit.enq(2); }
task connect_q_to_transmit { transmit.enq(q.deq()); }

Task t task writes a “1” to q, then writes a “2” to the transmit queue and then
loops. Task connect q to transmit reads elements from q and writes them to
the transmit queue. If we now apply PipeIntro to t, splitting between the two
queue write operations, we get:

queue q; queue Q;
task t1 { q.enq(1); Q.enq(); }
task t2 { ignore = Q.deq(); transmit.enq(2); }
task connect_q_to_transmit { transmit.enq(q.deq()); }

These two programs are not semantically equivalent (even though, in the source
program, the statements on either side of the split point access disjoint queues)—
e.g. in the transformed program the trace 〈1, 1, 1〉 may appear on the transmit
queue; this is not a valid trace of the source program4.

Informally the problem is that t1 affects connect q to transmit which shares
a queue with t2. In Section 4 we present a static analysis that determines when
PipeIntro can be safely applied.

3.2 PipeElim Transformation

The PipeElim transformation allows two tasks t1 and t2 connected by a single-
reader, single-writer queue q to be fused into a single task t. In essence the code
for t2 is inlined into t1 in place of its write to q—see Figure 4. Since the queue
write operation can occur anywhere within a t1 (e.g. nested inside conditionals
or while loops) we express PipeElim in terms of a context [22], C, defined below:

C ← [·] | s;C | C;s | while (e) C
| if (e) then C else s | if (e) then s else C

In joining concurrent tasks, the PipeElim transformation essentially picks a static
interleaving of operations from t1 and t2, encoding this schedule explicitly in the
order of statements in t. For the sake of simplicity, the transformation shown in

4 The source program ensures that: (the number of 1’s on the transmit queue) ≤ (the
number of 2’s on the transmit queue) + 1.

82 R. Ennals, R. Sharp, and A. Mycroft

queue q
task t1 {C[q.enq(e1, . . . , ei)]}
task t2 {A; (x1, . . . , xi) = q.deq(); B }

−→
task t {

C[A; x1=e1; . . . ; xi=ei; B]
}

where there are no other references to q in the rest of the program; we assume that
task-local variables in t1 and t2 have been renamed so as to be disjoint.

Fig. 4. The PipeElim Transformation

Figure 4 just inlines the body of t2 into t1. Note, however, that PipeElim is merely
an instance of a more general transformation schema which may interleave the
statements from A and B with the statements of t1’s body in a variety of ways,
exploring different static schedules.

Depending on the static schedule implicitly specified by an application of
PipeElim, deadlock may be introduced. For example B might block waiting
for a queue that t1 would have written to immediately after writing to q. Al-
though such deadlocks are consistent with our subset interpretation of semantics-
preserving, they are clearly undesirable. In this paper we do not consider dead-
lock detection further; however, we are currently implementing a “deadlock and
timing analyser”5 that checks whether (transformed) PacLang programs meet
user-specified timing constraints.

3.3 QueueMux Transformation

The QueueMux transformation is used in conjunction with PipeElim to fuse con-
current tasks that are not connected in a pipeline configuration (i.e. concurrent
tasks that cannot be fused using PipeElim alone).

The effect of a QueueMux transformation on program structure is shown
in Figure 5. We start with n queues (q1, . . . , qn) each read by a single reader
task. After transformation, a task body that previously wrote a value, v, to qi

(1 ≤ i ≤ n) now writes a pair of values (i, v) to a Combined Queue, Q. A Demux
task dequeues these (i, v) pairs, testing the value of i to determine which of the
original queues v should be forwarded to.

Once a QueueMux has been applied, PipeElim can be applied as many times
as required to combine each of the reader tasks with the Demux task (see Fig-
ure 5). The case study in Section 6 demonstrates this technique in practice.

3.4 Architecture Mapping Scripts

For a particular NP architecture, A, and an architecturally-neutral PacLang
program, P, an Architecture Mapping Script (AMS) specifies both:

5 After all, for real-time reactive systems, deadlocks are just a special case of failing
to meet timing requirements!

Task Partitioning for Multi-core Network Processors 83

QueueMux

Reader-1

Reader-n

Combined Queue
Writer-1

Writer-m

Writer-1

Writer-m

Reader-1

Reader-n

Demux

Combined Queue
Writer-1

Writer-m

Reader-1

Reader-n

Demux

PipeElim

Fig. 5. Applying the QueueMux Transformation, followed by PipeElim

– how the PipeElim, PipeIntro and QueueMux transformations should be ap-
plied to P in order to refine it into a form suitable for execution on A; and

– how the tasks and queues after transformation are to be mapped onto the
low-level resources of A.

The precise syntax of Architecture Mapping Scripts is straightforward. Although
the technical details are omitted from this paper due to space constraints, the
interested reader may download real examples of AMSes from the web [11].

4 Safety Analysis for PipeIntro Transformation

Here we present a static analysis which enables the PipeIntro transformation by
conservatively determining whether the transformation is safe.

The PipeIntro transformation (as presented in Figure 3) allows a subsequent
iteration of A to start before a previous iteration of B has finished. Therefore,
the transformation is safe if an observer (who reads from transmit queues) is
unable to infer that an execution step in an iteration of A occurs before an
execution step in an iteration of B. We model this observer by adding a task to
the program that reads from all transmit queues. The analysis then determines
whether this observer task might be able to infer that an execution step in an
iteration of A occurs before an execution step in an iteration of B.

We start by considering what information a task, t, might infer about the
ordering of execution steps in other tasks. We note that a task can only infer
ordering information about other tasks’ execution steps by reading from a shared
queue. (One cannot infer anything by performing a queue write, as writes return
no information.)

We let u, v, w (in addition to t) range over tasks. We write u
t� v to mean that

task t may infer that an execution step of task u occurred before an execution
step of task v by reading a queue. The relation ‘ t�’ is defined as follows:

84 R. Ennals, R. Sharp, and A. Mycroft

1. if t and u both read from q, then t
t� u and u

t� t;
2. if t reads from q and u writes to q, then u

t� t;
3. if t reads from q and both u and v write to q, then u

t� v and v
t� u.

We justify these three cases as follows:

1. If u and t both read from q then t may be able to infer the order of its reads
w.r.t. u’s reads—e.g. let q be a queue containing sequential integers starting
from “1”. If t’s first read returns “2” then it knows that u must have read
first.

2. If u writes to q and t reads from q then t may be able to determine that its
read occurred after u’s write—e.g. if t read the value written by u. However,
it is not possible for t to infer that its read occurred before u’s write. Nor
is it possible for t to infer that any other task’s read from q has occurred
before any further task’s write to q.

3. If u and v both write to q then t may be able to infer the order in which the
writes occurred—e.g. t may perform two read operations and compare the
values returned with those expected.

But we cannot just apply these rules and ask “can the observer infer that an
execution step of A occurs before an execution step of B”. Firstly, consider the
case where task u passes information (via a shared queue) to task v. The data
transferred may reveal, to task v, the event orderings observed by task u. To
simplify the analysis we conservatively assume that every task may get to know
all orderings observed by all other tasks. Therefore, we define:

u � v
def⇐⇒ ∃t.u

t� v

i.e. u � v holds iff any task may observe that an execution step in u occurs
before an execution step in v. Secondly, we note that, if u � v and v � w then
one may use this information to deduce that an execution step of u occurs before
an execution step of w. It is thus necessary to consider �∗, the transitive closure
of �.

The PipeIntro transform as presented in Figure 3 is safe if in the transformed
program with queue Q removed, it is not the case that t1 �∗ t2.

4.1 Algorithm for PipeIntro Safety Analysis

Taking the safety analysis presented above, and making the conservative as-
sumption that all queues have readers, leads to the following simple algorithm
for determining whether a PipeIntro transformation (as presented in Figure 3)
can be applied:

1. Construct a graph, G, where nodes are tasks in the transformed program.
2. In the transformed program with queue Q removed (see Figure 3) consider

each pair of tasks, u and v, that share a queue, q. Place a directed edge from
u to v if:

Task Partitioning for Multi-core Network Processors 85

(a) u and v both read from q; or
(b) u writes to q and v reads from q; or
(c) u and v both write to q.

3. If, there is no path in G from t1 to t2 then the PipeIntro transformation can
be applied.

5 Dealing with the Full PacLang Language

The full PacLang language supports a number of constructs omitted from the
core language of Section 2 including user-defined functions, references, arrays (of
values or of queues) and global variables. Here we discuss how these additional
features impact the transformations presented in Section 3.

User-defined functions can be dealt with straightforwardly: for the purposes
of this paper we simply restrict functions to being non-recursive and then assume
all user-defined function calls are inlined (although, in practice one need only
inline a function call if the AMS requests that it be split across several tasks).

The introduction of generalised global variables is also largely straightfor-
ward6. The PipeElim and QueueMux transformations are unaffected by the in-
troduction of global variables. However, the PipeIntro safety analysis needs to
be extended accordingly (see Section 5.2).

The impact of introducing references needs to be considered more carefully.
If we permitted the unrestricted use of references then the PipeElim and Queue-
Mux transformations would remain sound, but PipeIntro would not. In the fol-
lowing subsection we explain informally why PacLang’s linear type system [4] is
sufficient to ensure that PipeIntro (as already presented) remains sound in the
PacLang domain, even when references are used.

5.1 References, Linearity and the PipeIntro Transform

The full PacLang language provides a packet datatype. Packets are dynamically
allocated blocks of structured data that can be passed-by-reference. PacLang’s
linear type system restricts the ways in which these references can be manipu-
lated, with the aim of enabling a number of optimisations, including PipeIntro.

Before considering PacLang’s linear type system, let us first consider what
would happen to the PipeIntro transformation if we permitted the unrestricted
use of packet references. Figure 6 gives an example of how unrestricted references
can lead to an unsound application of PipeIntro. For the sake of simplicity let
us consider the case where q contains a single packet reference. In this case
task t uses q to simulate a global packet variable: the first line of t reads a
packet reference from q and then immediately writes it back again. Executing
the program results in the packet’s first word being repeatedly incremented and
written to q1. As a result, a series of consecutive integers appears on q1.

6 Recall that Core PacLang already supports global queues.

86 R. Ennals, R. Sharp, and A. Mycroft

queue<packet*> q;
queue<int> q1;

task t {
packet* p = q.deq();
q.enq(p);
p[0]++;
q1.enq(p[0]);

}

−→

queue<packet*> q, Q;
queue<int> q1;
task t1 {

packet* p = q.deq();
q.enq(p);
p[0]++;
Q.enq(p);

}
task t2 {

packet* p = Q.deq();
q1.enq(p[0]);

}

Fig. 6. This code, written in a PacLang-like language without a linear type system,
shows that the unrestricted use of references can break the PipeIntro transformation

In the transformed program, task t1 can loop round many times before t2
has read anything from Q (the queue introduced by the PipeIntro transforma-
tion). As a result, by the time t2 gets round to dereferencing its local copy of
the packet pointer, the packet’s first word may have been incremented several
times. This allows traces to appear on q1 that were not possible in the source
program (e.g. 〈0, 5, 10〉). The problem is that t1 and t2 access shared state via
their packet references. The PipeIntro safety analysis, in the form presented in
Section 4, is not able to detect this sharing since it does not model aliasing. One
solution would be to perform full alias analysis as a precursor to the PipeIntro
safety analysis, using this approximate aliasing information to detect potential
accesses to shared state. Fortunately this is unnecessary as PacLang’s linear
type system [4] prevents aliasing and so would disallow the source program in
Figure 6. Thus, the PipeIntro safety analysis does not need to be modified at all.

PacLang’s linear type system does not exist merely to make PipeIntro easier.
It has a number of notable features that simplify the compilation of high-level
programs for Network Processors, while naturally capturing the style in which
many packet processing programs are already written [4].

5.2 Extending PipeIntro Safety Analysis to Full PacLang

Global Variables: The algorithm for determining safety of PipeIntro (Sec-
tion 4.1) can be extended to deal with global variables by extending the graph,
G, as follows. For each pair of tasks, u and v, that share a global variable, g,
place directed edges from both u to v and v to u if: (i) both u and v write to g;
or (ii) one of u and v writes to g and the other reads from g.

We note that global variables could be translated into operations on shared
queues. However, if we do this then the safety analysis as presented in Section 4
would deduce that the order of two reads from the same global variable may
be observed. Dealing with global variables directly leads to a more accurate
analysis.

Task Partitioning for Multi-core Network Processors 87

Bounded Queues: Consider adding language primitive HowFull(q) that re-
turns the number of elements currently on queue q. We can extend the algorithm
for determining safety of PipeIntro (Section 4.1) by extending the graph, G, as
follows. For every task, u, that does HowFull(q) add edges (u, v) and (v, u) for
any task, v, that reads or writes q.

The intuition is that if a task tests the fullness of a queue, q, then it may be
able to determine the order of its HowFull operation w.r.t. reads and writes to q.

6 Case Study

We have written a simple IPv4 unicast packet forwarding engine that employs a
longest-prefix-match route-lookup algorithm in 500 lines of architecturally neu-
tral PacLang. In this section we illustrate how our tools allow the program to
be transformed into a form capable of achieving 3Gb/s (line rate) on an Intel
IXP2400 Network Processor.

The details of IP packet forwarding are not described here (for more technical
information the interested reader is referred directly to the IETF standards [18]
and our PacLang code [11]). The purpose of this case study is to show that our
transformations can be applied to realistic, non-trivial programs.

Figure 7(i) shows the initial structure of the PacLang IP forwarder. The
program has five tasks, represented by white circles: Classify (C), IP options (O),
ARP (A), IP Route Lookup (I) and ICMP Error (E). Queues are represented by
filled circles. The receive (r) and transmit (t) queues are sources and sinks of
network packets respectively.

C tr

(i)
O

A

I E

C tr

(ii)
O

A

I2 EI1

C tr

(iii)
O

A

I2 EI1

D D,O,
A,E

C,I1

I2 t

r

(iv)

Fig. 7. Transforming the IPv4 unicast packet forwarder for IXP implementation. White
circles represent tasks, filled circles represent queues

88 R. Ennals, R. Sharp, and A. Mycroft

Our AMS for Intel IXP-series NPs applies the transformations shown graph-
ically in Figure 7. First, PipeIntro splits I into I1 and I2. Next, QueueMux
is applied to the input queues of O, A, and E, creating a new Demux (D) task.
Finally, PipeElim merges D, O, A, and E together, and merges C and I1 together.

Our safety analysis deems that the PipeIntro transformation is applicable
since, in the graph, G, constructed by the algorithm of Section 4.1, there is no
edge from I1 to any other task. Thus, there is no path from I1 to I2—the two
tasks created by the PipeIntro transformation.

The final structure of the transformed program (Figure 7(iv)) is well suited
for IXP implementation. The tasks on the packet forwarder’s critical path (the
path taken by the vast majority of incoming packets) are highlighted with thick-
lined circles. Timing analysis and simulation shows that, for our IXP2400, a 2-
stage pipelined version of the critical path is sufficient to achieve 3Gb/s packet
throughput (full line-rate on our 3-port Gigabit Ethernet board), for worst-case,
min-size packets. If greater throughput was required (e.g. if we wanted line-rate
for more than 3 ports) then we could apply PipeIntro again to increase the
pipeline depth. Our AMS maps the two tasks on the critical path to separate
micro-engines (small RISC processor cores on the IXP chip), the remaining task
to the IXP’s XScale processor core, and the queues to hardware scratch queues.

Both the source code, and the AMS that transforms it are available for down-
load [11].

7 Related Work

Transformation-based approaches to program development have been around for
a long time [3, 5] and applied to a variety of problems including circuit design [17]
and hardware/software co-design [2]. The contribution of our research is to show
that program-transformation is an appealing technique for bridging the gap be-
tween a high-level packet processing program and its low-level realisation on a
multi-core network processor.

Software Pipelining [13, 8] is a transformation that superficially sounds simi-
lar to our PipeIntro, but is actually quite different. Software Pipelining reorders
instructions in a loop so that instructions for future iterations may take place
during the current iteration. This allows loads to be hoisted and allows better use
to be made of multiple execution units on VLIW and superscalar architectures.
Unlike our work, the aim is not to split a task over several processing elements,
but to make better use of a single processor.

Our work has more in common with Hardware Pipelining [16, 19]: the division
of a circuit specification into concurrent pipeline stages such that each stage is
of roughly uniform size. However, unlike our work, the successive stages run in
lock-step with no queueing between them—a model which is inappropriate for
packet processing systems.

Previous work on automatic pipelining typically focuses on transforming a
complete sequential program into a single pipeline. In contrast, our PipeIntro
transformation and associated safety analysis extends this work, addressing the

Task Partitioning for Multi-core Network Processors 89

more general problem of determining when it is safe to pipeline a particular
concurrent task within the wider context of a whole concurrent program.

Task Assignment [15, 9] addresses the problem of assigning tasks to proces-
sors, taking into account the sizes of the tasks and the communication between
them. While this work is similar to ours in that it explores the way in which a
program can be mapped to several processors, there is no attempt to pipeline
one task between several processors.

A number of other languages for multi-core processors have been developed [7,
12, 21, 14], but these are all significantly lower level and do not allow the task
structure of a program to be changed.

8 Conclusions and Future Work

We have (i) presented a transformation-based methodology for programming
Network Processors that allows architectural details to be separated from high-
level program specification; and (ii) validated this methodology by showing how
it can be applied to a realistic packet processing application.

We have also presented a whole-program analysis that determines when it
is safe to pipeline a PacLang task. This extends previous work on automatic
pipelining by addressing the more general problem of determining when it is
safe to pipeline a particular concurrent task within the wider context of a whole
concurrent program.

We hope that the ideas presented in this paper can be applied to the auto-
matic partitioning of high-level code across multi-core architectures more gen-
erally (i.e. not just Network Processors). Since industrial trends suggest that
such architectures will become more prevalent (as silicon densities continue to
increase) we believe that this is an important topic for future research.

Acknowledgements

This research was supported by (UK) EPSRC grant GR/S68941: “High-Level
Languages for Network Processors”.

References

1. Allen, J. R., Bass, B. M., Basso, C., Boivie, R. H., Calvignac, J. L., Davis,
G. T., Frelechoux, L., Heddes, M., Herkesdorf, A., Kind, A., Logan, J. F.,
Peyravian, M., Sabhikhi, M. A. R. R. K., Siegel, M. S., and Waldvogel, M.
PowerNP network processor: Hardware, software and applications. IBM Journal
of research and development 47, 2–3 (3003), 177–194.

2. Barros, E., and Sampaio, A. Towards provably correct hardware/software par-
titioning using occam. In Proceedings of the 3rd international workshop on Hard-
ware/software co-design (1994), IEEE Computer Society Press, pp. 210–217.

3. Burstall, R., and Darlington, J. A transformation system for developing
recursive programs. In JACM 24(1) (1977).

90 R. Ennals, R. Sharp, and A. Mycroft

4. Ennals, R., Sharp, R., and Mycroft, A. Linear types for packet processing.
In Proceedings of the European Symposium on Programming (ESOP) 2004 (2004).

5. Feather, M. A system for assisting program transformation. ACM Transactions
on Programming Languages and Systems 4, 1 (January 1982), 1–20.

6. Freescale. C-5 Network Processor Architecture Guide, 2001.
7. George, L., and Blume, M. Taming the IXP network processor. In Proceedings

of the ACM SIGPLAN 2003 conference on Programming Language Design and
Implementation (2003), pp. 26–37.

8. Hwang, C.-T., Hsu, Y.-C., and Lin, Y.-L. Scheduling for functional pipelining
and loop winding. In Proceedings of the 28th conference on ACM/IEEE design
automation (1991), ACM Press, pp. 764–769.

9. Ikinci, M. Multilevel heuristics for task assignment in distributed systems. Mas-
ter’s thesis, Bilkent University, Turkey, 1998.

10. Intel Corporation. Intel IXP2400 Network Processor: Flexible, high-
performance solution for access and edge applications.
Available from: http://www.intel.com/design/network/papers/ixp2400.htm.

11. Intel Corporation. PacLang. http://sourceforge.net/projects/paclang/.
12. Intel Corporation. Microengine C Language Support Reference Manual, 2003.
13. Lam, M. Software pipelining: An effective scheduling technique for VLIW ma-

chines. In Proceedings of the ACM SIGPLAN conference on Programming Lan-
guage Design and Implementation (1988), pp. 318–328.

14. Lam, M. Compiler optimizations for asynchronous systolic array programs. In
Proceedings of the ACM SIGPLAN-SIGACT symposium on Principles of Program-
ming Languages (1998).

15. Lo, V. Heuristic algorithms for task assignment in distributed systems. IEEE
Transactions on Computers (1988), 1384–1397.

16. Marinescu, M.-C. V., and Rinard, M. High-level automatic pipelining for
sequential circuits. In Proceedings of the 14th international symposium on Systems
Synthesis (2001), ACM Press, pp. 215–220.

17. Mycroft, A., and Sharp, R. A statically allocated parallel functional language.
In Proceedings of the International Conference on Automata, Languages and Pro-
gramming (2000), vol. 1853 of LNCS, Springer-Verlag.

18. Network Working Group. RFC1812: Requirements for IP version 4 routers.
19. Papaefthymiou, M. C. On retiming synchronous circuitry and mixed integer

optimization. Master’s thesis, Massachusetts Institute of Technology, 1990.
20. Radisys. ENP-2611 network processor board. http://www.radisys.com.
21. Teja. Teja NP: The first software platform for multiprocessor system-on-chip

architectures. http://www.teja.com.
22. Winskel, G. The formal semantics of programming languages: an introduction.

Foundations of computing. MIT Press, 1993.
23. Yavatkar, R., and H. Vin (eds.). IEEE Network Magazine. Special issue on

Network Processors: Architecture, Tools, and Applications 17, 4 (July 2003).

Experiences with Enumeration of Integer
Projections of Parametric Polytopes

Sven Verdoolaege1, Kristof Beyls2,
Maurice Bruynooghe1, and Francky Catthoor3

1 Katholieke Universiteit Leuven, Department of Computer Science,
Celestijnenlaan 200A, B-3001 Leuven, Belgium

2 Department of Electronics and Information Systems, Ghent University – UGent,
Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium
3 IMEC, Kapeldreef 75, B-3001 Leuven, Belgium;

also at Katholieke Universiteit Leuven, Department of Electrical Engineering

Abstract. Many compiler optimization techniques depend on the abil-
ity to calculate the number of integer values that satisfy a given set
of linear constraints. This count (the enumerator of a parametric poly-
tope) is a function of the symbolic parameters that may appear in the
constraints. In an extended problem (the “integer projection” of a para-
metric polytope), some of the variables that appear in the constraints
may be existentially quantified and then the enumerated set corresponds
to the projection of the integer points in a parametric polytope.
This paper shows how to reduce the enumeration of the integer projection
of parametric polytopes to the enumeration of parametric polytopes. Two
approaches are described and experimentally compared. Both can solve
problems that were considered very difficult to solve analytically.

1 Introduction

Many compiler optimization techniques require the enumeration of objects of a
certain class. Examples include counting the number of calculations, accessed
memory locations or statement executions in a loop nest or parts thereof [6, 21,
23, 28, 29, 38]; calculating the number of cache misses in a loop [12, 16, 24]; com-
puting the number of dynamically allocated bytes [11]; enumerating the number
of live array elements at a given iteration (i, j) [27, 42]; counting how many
parallel processing elements can be used when executing a loop on an FPGA
[5, 22, 25] and computing the amount of communication for a given schedule of
parallel tasks on a distributed computing system [9, 26, 37].

These counts are used to drive optimizations such as increasing parallelism
[38], minimizing memory size [1, 2, 27, 38, 42], estimating worst case execution
time [28], increasing cache effectiveness [6, 16], high-level transformations for
DSP applications [23], converting software loops into parallel hardware im-
plementations [5, 18, 22, 25, 38] and minimizing communication overhead in dis-
tributed applications [9, 26, 37]. In many of these optimizations, the objects or

R. Bodik (Ed.): CC 2005, LNCS 3443, pp. 91–105, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

92 S. Verdoolaege et al.

events to be counted are modeled as the integer solutions to systems of linear
inequalities, i.e., as the elements of a set S = {x ∈ Zd | Ax + c ≥ 0 }, with
A ∈ Zn×d and c ∈ Zn. Furthermore, they often need the count in terms of a
vector of parameters p (e.g., in the presence of symbolic loop bounds):

Sp = {x ∈ Zd | Ax + Bp + c ≥ 0}. (1)

A recent efficient algorithm that computes the function from specific values of
p to the number of elements in Sp is presented in [40]. This paper considers the
more general counting problem, where some of the variables can be existentially
quantified. We propose a general solution for counting the number of elements
(in terms of parameters p) for sets that can be expressed in the form{

x ∈ Zd | ∃y ∈ Zd′
: Ax + Dy + Bp + c ≥ 0

}
. (2)

Computing the number of elements in such a set is, amongst others, needed
in the program analyses described in [1, 2, 5, 6, 9, 12, 16, 25, 26, 37, 42]. Practical
examples are discussed in an extended version of this paper, see [39].

Example 1. Consider an example adapted from [14] (Figure 1(a)). Assume we
want to know the total number of array elements accessed by the statement
in the inner loop as a function of the symbolic parameter p. This problem is
equivalent to counting the number of elements in the set

Sp = { l ∈ Z | ∃i, j ∈ Z : l = 6i + 9j − 7 ∧ 1 ≤ j ≤ p ∧ 1 ≤ i ≤ 8 }, (3)

which can be written in the same form as (2):⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

l ∈ Z | ∃
(

i
j

)
∈ Z2 :

⎛
⎜⎜⎜⎜⎜⎜⎝

1
−1
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

l +

⎛
⎜⎜⎜⎜⎜⎜⎝

−6 −9
6 9
0 1
0 −1
1 0

−1 0

⎞
⎟⎟⎟⎟⎟⎟⎠
(

i
j

)
+

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

p +

⎛
⎜⎜⎜⎜⎜⎜⎝

7
−7
−1
0

−1
8

⎞
⎟⎟⎟⎟⎟⎟⎠

≥

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

Figure 1(b) shows the array elements that are accessed for p = 3. These
elements do not correspond to the integer points in a polytope. Even after scal-
ing by 3 it still contains two “holes” (marked by × on the figure). These holes
complicate the enumeration. For p = 3, the set Sp contains 19 points, see Fig-
ure 1(b). In general, the number of points in Sp can be described by the function.
Different polynomials represent the count in different regions of the parameter
space. Following [36], we call these regions chambers. In general, the count in
each chamber is described by a step-polynomial, as defined in Section 2.

The solution to a counting problem is called the enumerator of the set of con-
straints. Without parametric variables in the counting problem, the enumerator
is an integer; otherwise the enumerator is a function that maps the values of the
parametric variables to an integer. Different applications for different types of

Experiences with Enumeration of Integer Projections 93

for j:=1 to p do
for i:=1 to 8 do
a(6i+9j-7)=a(6i+9j-7)+5

(a) Example Program

• • • • • • • •
• • • • • • • •
• • • • • • • •

j

i× ×
(b) Array elements accessed for p = 3

Fig. 1. Example adapted from [14]

constraints has led to different proposals. Below, when we refer to the complex-
ity of algorithms, we always mean for a fixed number of variables. Note that the
enumeration of even parametric polytopes is NP-hard.

Linear Inequalities. Barvinok [3] was first to propose an algorithm for enu-
merating sets defined by linear inequalities that is polynomial-time.

Parametric Linear Inequalities. Ehrhart [19] showed that the general form
of the enumerator for a certain form of parametric linear inequalities with a
single parameter is a quasi-polynomial. Clauss et al. [15] extended this theory
to handle the more general form shown in Equation (1), albeit in exponential
time complexity. De Loera et al. [17] implemented Barvinok’s [3] polynomial-
time algorithm for enumerating sets defined by linear inequalities and its
extension to compute the Ehrhart series corresponding to the dilation nP
of a polytope P . Finally, Verdoolaege et al. [40] implemented a polynomial
time algorithm for the counting problem of Equation (1).

Linear Inequalities with Existential Variables. Barvinok and Woods [4]
propose a polynomial time algorithm. No implementation has been reported,
and the extension to parameters is not obvious.

Parametric Linear Inequalities with Existential Variables. Boulet [9]
proposes to compute the enumerator of a set of parametric linear inequalities
with existential variables in two steps. First, parametric integer program-
ming (PIP) [20] is used to eliminate the existential variables, after which
Clauss’s [15] method is used to enumerate the resulting set of linear inequal-
ities. However, no extensive evaluation has been reported and the appendix
in [10] indicates that the method cannot compute the enumerator fully au-
tomatically. Meister [30] proposes a similar technique using his more general
periodic polyhedra instead of PIP. No implementation has been reported.
Clauss [13] proposed a method (recently implemented [35]) based on “thick
facets” that works for a single existential variable.

Non-parametric Presburger Formula. Presburger formulas consist of lin-
ear inequalities of integer variables, combined by existential and universal
quantifiers, disjunction, conjunction and negation. (∃,∀,∨,∧,¬). Two re-
cent methods [8, 31] represent the formula as a finite automaton to count
the number of its integer solutions in exponential time.

94 S. Verdoolaege et al.

Parametric Presburger Formula. In [33], a number of rewrite rules are pro-
posed to compute the enumerator of a parametric Presburger formula. How-
ever, the rules seem ad-hoc and no implementation has been reported, mak-
ing it hard to evaluate their usefulness in practice. In [41], a polynomial-time
algorithm for enumerating sets as in (2) is proposed without implementation.

This paper investigates the combination of PIP with our method for para-
metric polytopes [40]. This combination can handle the parametric counting
problems with existential variables reported in [2, 6, 9, 12] that were previously
considered difficult or even unsolvable. Since PIP is worst-case exponential, we
also investigate an alternative method that uses a number of simple polynomial
rewriting rules to eliminate existential quantifiers. While all existential quanti-
fiers are eliminated in our experiments on a wide range of practical applications,
some could remain. In that case, PIP can be used as a back-up to solve the
reduced problem. Theoretically, parametric Presburger formulas can be trans-
formed into a disjoint union of sets of the form (2). For the majority of the
parametric Presburger formulas we considered, this transformation could be per-
formed efficiently and automatically by the Omega library.

Section 2 introduces background on parametric polytopes and enumerators
and Section 3 two extensions for handling existential variables. An experimental
evaluation is performed in Section 4, and concluding remarks follow in Section 5.

2 Parametric Polytopes

Before tackling integer projections of parametric polytopes, we review the results
on enumeration of parametric polytopes. We refer to [40] for the details.

Definition 1. A rational polyhedron P ∈ Qd is a set of rational d-dimensional
vectors x defined by linear inequalities

P =
{
x ∈ Qd | Ax + c ≥ 0

}
, with A ∈ Zm×d and c ∈ Zm. (4)

A rational polytope is a bounded rational polyhedron.

Definition 2. A rational parametric polytope Pp with n parameters p is a set
of rational d-dimensional vectors x defined by linear inequalities on x and p

Pp =
{
x ∈ Qd | Ax + Bp + c ≥ 0

}
(5)

with A ∈ Zm×d, B ∈ Zm×n and c ∈ Zm, and such that for each fixed value p0
of p, Pp0 defines a (possibly empty) rational polytope in Qd.

All the polyhedra in this paper are rational. If the parametrization of a poly-
tope is clear from the context, subscript p is omitted. Note that the same equa-
tions that define a parametric polytope also define a potentially unbounded
(d + n)-dimensional polyhedron in the combined data and parameter space.

P ′ =
{

(x,p) ∈ Qd+n | Ax + Bp + c ≥ 0
}

Experiences with Enumeration of Integer Projections 95

Definition 3. The enumerator cP (p) of a parametric polytope Pp is a function
from the set of n-dimensional integer vectors Zn to the set of natural numbers N.4

The function value at p0, denoted cP (p0), is the number of integer points in the
polytope Pp0 .

cP : Zn → N

p0 �→ cP (p0) = #
(
Zd ∩ {x ∈ Qd | Ax + Bp0 + c ≥ 0

})
Definition 4. A step-polynomial g : Zn → Q of degree d is a function written
in the form

g(p) =
m∑

j=1

αj

dj∏
k=1

�〈ajk,p〉 + bjk� ,

with αj ∈ Q, ajk ∈ Qn, bjk ∈ Q, 〈·, ·〉 the inproduct, and �·� is the floor (greatest
integer) function. A piecewise step-polynomial f : Zn → Q consists of a subdi-
vision of Zn, called the chambers,5 each with an associated step-polynomial.

Proposition 1 ([40]). For fixed dimensions d and n, the enumerator of a para-
metric polytope can be computed as a piecewise step-polynomial in a time poly-
nomial in the input size (the number of bits needed to represent the input [34]).

Example 2. Consider the parametric polytope Pp

{ (x, y) ∈ Q2 | x + 3y ≤ 8 ∧ x + 2y + 1 ≤ 0 ∧ x + 2y + p ≥ 0 ∧ x + 3p + 11 ≤ 0 }.

Figure 2 shows Pp for different values of p. The number of integer points is given
by

cP (p) =

{
5 if p ≥ 3
− 3

4p2 + 15
4 p + 1

2� 1
2p� if 1 ≤ p ≤ 2

.

This enumerator has two chambers: { p | p ≥ 3 } and { p | 1 ≤ p ≤ 2 }. The
step-polynomial associated with the first chamber is a constant. For the second
chamber, we obtain a polynomial in the floors of p and 1

2p. Note that this is
only one of the possible representations of cP (p). For this particular example,
a much simpler representation exists with chambers { p | p ≥ 2 } and { 1 }, and
the constants 5 and 3 for the corresponding functions.

3 Existential Variables

This section considers the extension with existential variables. The general form
of these counting problems, given in Equation 2, is equivalent to

#πd

(
Z(d+d′) ∩

{
(x,y) ∈ Q(d+d′) | Ax + Dy + Bp + c ≥ 0

})

4 In [40], the symbol E is used instead of c.
5 Chambers are also called validity domains in some publications.

96 S. Verdoolaege et al.

x

y

•
•

• P1
••

••
• P3

••
••

• P5

−15−20−25−30

10

Fig. 2. Different instantiations of the parametric polytope from Example 2

where πd is the projection onto the first d dimensions. This parametric count
corresponds to the number of points in the projection of the integer points in a
parametric polytope, or integer projection of a parametric polytope for short.

Note that we cannot simply ignore the existential quantifier and count the
number of points as if the set were a parametric polytope, since for any particular
value of x there may be several values of y that satisfy the constraints. We also
cannot simply project out the existential variables since there may exist values
of x in this projection for which there is no integer value of y satisfying the
constraints. E.g., if we project P5 in Figure 2 onto the x-axis, then this projection
will contain the value −30, while there is no integer y such that (−30, y) ∈ P5.

We consider three techniques for eliminating existential variables; they are
polynomial in the input size (for fixed dimensions) but not always applicable. In
the latter case, one can fall back upon parametric integer programming to count
the set. However, this is worst-case exponential, even for fixed dimensions.

3.1 Elimination

Unique Existential Variables. The existential quantifiers introduced by tools
that automatically extract counting problems from source code can sometimes
be redundant. This occurs when for each x in the set, there is at most one integer
value for yi that satisfies the constraints. In such a case, the existential quantifier
for yi can be omitted without affecting the cardinality of the set.

Many cases can be detected when there is a constraint that involves yi but
none of the other existential variables y. Without loss of generality, we assume
the constraint establishes a lower bound on the variable yi, i.e., it is of the form

nlyi + 〈al,x〉 + 〈bl,p〉 + cl ≥ 0 (6)

with nl ∈ N. Combining this constraint with an upper bound

−nuyi + 〈au,x〉 + 〈du,y〉 + 〈bu,p〉 + cu ≥ 0 (7)

we obtain

−nu(〈al,x〉 + 〈bl,p〉 + cl) ≤ nunlyi ≤ nl(〈au,x〉 + 〈du,y〉 + 〈bu,p〉 + cu). (8)

Experiences with Enumeration of Integer Projections 97

The number of distinct integer values for nunlyi is given by the upper bound
minus the lower bound plus one. If this number is smaller than nunl, then the
two constraints admit at most one integer value for yi. That is, if

nl(〈au,x〉 + 〈du,y〉 + 〈bu,p〉 + cu) + nu(〈al,x〉 + 〈bl,p〉 + cl) + 1 ≤ nlnu (9)

for all integer values that satisfy the constraints, then yi is uniquely determined
by x and p and can therefore be treated as a regular variable, without existential
quantification. It is independent of the other existential variables because of our
assumption that one of the constraints does not involve these other variables.
Condition (9) can easily be checked by adding the negation to the existing set
of constraints and testing for satisfiability. Note that it is sufficient to find one
such pair to be able to drop the existential quantification of the variable.

Example 3. Consider the set S

{x ∈ Z | ∃y ∈ Z : x+3y ≤ 8∧x+2y +1 ≤ 0∧x+2y +p ≥ 0∧x+3p+11 ≤ 0 }.

This is the same set that appeared in Example 2, except that y is now an
existential variable. Since there is only a single existential variable, all constraints
are independent of the “other existential variables”. Using x + 2y + p ≥ 0 and
−x − 3y + 8 ≥ 0 as constraints, condition (9) yields

x + 3p + 17 ≤ 6. (10)

All elements of the set satisfy this constraint so we can remove the existential
quantification and the set S is then Pp ∩ Z, with Pp the set from Example 2.

Even if there is no single existential variable that is unique, some linear
combination of existential variables may still be unique. To avoid enumerating all
possible combinations, we only consider this case if we have two constraints that
are “parallel in the existential space”, i.e., such that dl = nld and du = −nud for
some positive integers nl and nu and an integer vector d with greatest common
divisor (gcd) 1. We compute condition (9) from (6) and (7) with yi replaced by
〈d,y〉 (du is 0 in this case). If this condition holds, we perform a change of basis
such that y′

1 = 〈d,y〉, which we now know to be unique. Such a change of basis
can be obtained through transformation by the unimodular extension of d [7].

Example 4. Consider the set S (3) from Section 1. This set satisfies the equality
l = 6i + 9j − 7, which means that 2i + 3j is unique. Transforming this set using
the unimodular extension of d = (2, 3)(

x
y

)
=
(

2 3
−1 −1

)(
i
j

)

we obtain

S = { l ∈ Z | ∃x, y ∈ Z : l = 3x−7∧−x−p ≤ 2y ≤ −x−1∧−x+1 ≤ 3y ≤ −x+8 }.

98 S. Verdoolaege et al.

Equation l = 3x − 7 provides an upper and a lower bound on x, hence Equation
(9) is trivially satisfied, ∃x can be removed and also l as it is now redundant.

S′ = {x ∈ Z | ∃y ∈ Z : −x − p ≤ 2y ≤ −x − 1 ∧ −x + 1 ≤ 3y ≤ −x + 8 }. (11)

Redundant Existential Variables. Consider again a lower bound on the ex-
istential variable yi: nlyi + 〈cl,w〉 ≥ 0, where we used cl := (al,dl,bl, cl) and
w := (x,y,p, 1) for brevity. Since we are only interested in integer values of yi,
this is equivalent to nu(nlyi + 〈cl,w〉) + nu − 1 ≥ 0, for any positive integer nu.
Similarly, for an upper bound we obtain nl(−nuyi + 〈cu,w〉) + nl − 1 ≥ 0. The
range in (8) can therefore be expanded to

−nu〈cl,w〉 − nu + 1 ≤ nunlyi ≤ nl〈cu,w〉 + nl − 1.

If this range is larger than nunl, i.e., if

nl〈cu,w〉 + nu〈cl,w〉 + nl − 1 + nu − 1 + 1 ≥ nlnu, (12)

then there is at least one integer value for each given value of the other variables.
If this holds for all pairs of constraints, then variable yi does not restrict the
solutions in any way and can be eliminated (known as the Omega test [32]).
Note that the constraints need not be independent of the other variables.

Example 5. Consider the set

S = {x ∈ Z | ∃y ∈ Z : −x − p ≤ 2y ≤ −x − 1 ∧ x ≤ −11 ∧
− x + 1 ≤ 3y ≤ −x + 8 ∧ x + 3p + 10 ≤ 0 ∧ p ≥ 3 }.

This set is shown () in Figure 3. Pairwise combining the two upper and two
lower bounds to form condition (12), we obtain 2p + 1 ≥ 4, 26 ≥ 9, −x − 1 ≥ 6
and x+20+3p ≥ 6. All of these are true in S. (In practice we would use the least
common multiple of nl and nu instead of their product.) Variable y can therefore
be eliminated and we obtain S = {x ∈ Z | x ≤ −11 ∧ p ≥ 3 ∧ x + 3p + 10 ≥ 0 }.

Independent Splits. If neither of the two heuristics above apply, we can split
the set into two or more parts by cutting the polyhedron in the combined space
along a hyperplane. By considering hyperplanes that are independent of the
existential variables, we ensure that the enumerator of the original set is the
sum of the enumerators of the parts; otherwise we would obtain sets that may
intersect, requiring the computation of a disjoint union.

In particular, we consider all pairs of a lower and an upper bound on an
existential variable that do not depend on other existential variables, i.e., they
are of the form (6). If neither condition (9) nor condition (12) is satisfied over
the whole set, then we cut off that part of the set where condition (9) does hold.
In the remaining part, condition (12) holds for this particular pair of constraints.

Experiences with Enumeration of Integer Projections 99

p = 4

x

y

• • • • •• • • • • • • • • • • • • • • • •
•

◦••
•••

•••
••

••
••

••
••

••
◦•

cP (p) =

{
5 if p ≥ 3
− 3

4p2 + 15
4 p + 1

2 1
2p� if 1 ≤ p ≤ 2

cP (p) = 5 if p ≥ 3

cP (p) = 3p if p ≥ 3

−5−10−15−20−25−30
p = 4

x

p

c P
(p

)
=

3 4
p
2

+
1
7 4
p

−
1 2
1 2

p
�

if
1

≤
p

≤
2

Fig. 3. Decomposition of the set from Example 6

Since the number of pairs of constraints is polynomial in the input size, the
number of sets we split off is also polynomial and so the whole technique, if it
applies, is polynomial in the input size (for fixed dimension). As a special case,
this technique always applies if there is only a single existential variable.

Example 6. Consider once more the set S′ (11) from Example 4. The bottom of
Figure 3 shows the projection of the corresponding polyhedron in the combined
data-parameter space onto the xp-plane and the top shows the xy-slice at p =
4. The two constraints we considered in Example 3 also appear in this set.
Condition (10) does not hold for the whole set, but instead is used to cut off
the part that we considered in Example 3. This is the leftmost part () in
Figure 3. Using the other constraints, we further split off p ≤ 2 and x ≥ −10.
The remaining part is the set discussed in Example 5.

3.2 Parametric Integer Programming

Parametric integer programming (PIP) [20] is a technique for computing the lex-
icographical minimum of a parametric polytope as a function of the parameters.
The solution is defined by rational linear expressions in both the original param-
eters and possibly some extra parameters, defined as the floors of rational linear
expressions of other parameters. Different solutions may exist in different parts
of the parameter space, each defined by linear inequalities in the parameters
(both original and extra).

PIP can help in the enumeration of integer projections of parametric poly-
topes. Consider a set S (2) with d regular variables, d′ existential variables and n
parameters. Compute the lexicographical minimum of the d′ existential variables
with the regular variables and the original parameters as parameters, i.e.,

100 S. Verdoolaege et al.

ym
(x,p) = lexmin

{
y ∈ Zd′ | Ax + Dy + Bp + c ≥ 0

}
.

Replacing y by ym
(x,p) in the definition of S does not change the number of

solutions. However, ym
(x,p) is unique (it satisfies Equation (9)) and the quantifier

can be dropped. The extra parameters that may appear in the solution can be
handled by considering them as extra (unique) existential variables in the set S.

PIP always applies but is worst-case exponential, even for fixed dimension. It
may decrease or increase the total dimension of the problem depending on the
difference between the number of extra variables and the number of existential
variables in the original problem. The dimension decreases by 1 for each such
variable since PIP introduces an equality for each of them. The total dimension
is important since the enumeration technique for parametric polytopes is only
polynomial for fixed dimension.

Example 7. Consider again the set S′ (11) from Example 4. We have:

ym
(x,p) = lexmin { y ∈ Z | −x − p ≤ 2y ≤ −x − 1 ∧ −x + 1 ≤ 3y ≤ −x + 8 }

=

{
1 − x − ⌊ 2−2x

3

⌋
if x + 3p + 2 ≥ 0

−x − ⌊p−x
2

⌋
otherwise

.

Hence S′ is the (disjoint) union of two sets S1 � S2. E.g., S1 is defined as

S1 = {x ∈ Z | ∃y, q ∈ Z : y = 1 − x − q ∧ 2 − 2x ≤ 3q ≤ 4 − 2x ∧
x + 3p + 2 ≥ 0 ∧ −x − p ≤ 2y ≤ −x − 1 ∧ −x + 1 ≤ 3y ≤ −x + 8 },

where q is the new “parameter” q = �(2 − 2x)/3�. Each new set has exactly one
extra (unique) existential variable, hence the total dimension remains constant.

4 Experiments

We count the number of integer points in formulas resulting from reuse distance
equations [6], cache miss analysis [12], memory size estimation [2] and commu-
nication volume computation [9]. An overview of these problems and details on
the specific versions of the PolyLib and Barvinok libraries we used are in [39].

4.1 Reuse Distances

We performed extensive experiments calculating reuse distances of a set of rel-
atively small but representative test programs including matrix-matrix multi-
plication and Cholesky factorization. The second column of Table 1(a) shows
the number of times a particular rule from Section 3.1 was used. The remaining
columns are explained in Section 4.2. The row “Fixed” refers to the special case
of a unique existential variable determined by an equality; “Change” refers to a
change of basis. In most of the tests we assume a cache line size of four words.
Frequently, the matrix size is a multiple of the cache line size. The resulting

Experiences with Enumeration of Integer Projections 101

Table 1. Tables with experimental results

type RD Chatterjee Balasa Boulet
Sets 19177 8+13 4 1
Fixed 3470 0+2 14 5
Change+Fixed 0 0+0 0 2
Unique 4890 8+9 0 0
Change+Unique 18 0+0 0 0
Redundant 684 0+0 2 1
Split 286 0+0 0 0
PIP 0 0+0 0 0

(a) Rule application distribution for polytopes
originating from reuse distance equations (RD),
cache miss analysis (Chatterjee), memory size
estimation (Balasa) and communication vol-
ume computation (Boulet)

#EV Dimension Decrease
? -1 0 1 2 3 4

1 6186 527 25
2 6 779 102 41 10
3 2 2 122 66 11 6
4 6 38 5 7
5 3 1 5 1
6 2 3

(b) Dimension decrease
induced by PIP in terms
of the number of existen-
tial variables (#EV)

enumerators for such cases were experimentally verified through a cache simula-
tion. PIP was never needed in these experiments. Simply ignoring the existential
quantifiers would have produced the wrong result, however, since we had to split
some sets. Curiously, some sets contained redundant existential variables, even
though they were created by Omega which should have removed them.

We also investigated the impact of the input size. For reuse distance calcula-
tion for matrix–matrix multiplication varying the sizes of the matrices, ranging
from 20 × 20 to 640 × 640, produced no measurable increase in computation
time. However, on tests where matrix sizes are not multiples of the cache line
size, Omega fails to simplify the resulting Presburger formulas, and produces in-
exact formulas containing Unknowns. We were forced to devise a way that avoids
Omega as much as possible. This modification increases the number of sets to
enumerate. For matrices of size 19 × 19 and 41 × 41, some of the resulting sets
proved too difficult to handle. For both sizes, we found at least one set where we
had to abort PolyLib after one hour while it was calculating step-polynomials.
Directly applying PIP also did not produce a result; moreover, PIP failed also
on two other sets that were handled by our reduction rules.

Next, we compared the relative performance of PIP and our rules when com-
bined with our polytope enumeration technique. A priori, we would expect that
the method with PIP would perform worse since PIP itself is worst-case ex-
ponential and the use of PIP may significantly increase the dimension of the
problem. Table 1(b) shows that this increase did not occur for our set of exam-
ples. Ignoring the 4 sets that failed to produce an answer (column “?”) as well as
the 11355 sets without existential variables (not shown in the table), of the 7952
resulting polytopes, almost 90% have the same dimension as the original set.
Furthermore, except for 8 polytopes which experience an increase in dimension,
all others have a dimension that is smaller than that of the original set. There are
even 35 polytopes with a decrease in dimension that is larger than the number

102 S. Verdoolaege et al.

 0.1

 1

 10

 100

 1000

 20 40 60 80 100 120

rules time/PIP time

 0.01

 0.1

 1

 10

 100

 0 200 400 600 800 1000

rules size/PIP size

Fig. 4. Comparison between PIP and our rules

of existential variables. The explanation for this phenomenon is that some of the
sets allow a range of rational values in one of the dimension, but only a single
integer value, e.g., 4 ≤ 5i ≤ 7. Again, this is surprising since Omega should have
discovered the corresponding equality. For the sets that PIP was able to handle,
Figure 4 shows the relative execution time on the left, for sets with an execution
time larger than 0.1s, and the relative size of the resulting enumerator on the
right, for sets where this relative size is not exactly one. We conclude that for
our set of examples, neither method has a clear performance gain over the other.

We previously reported [40] that our method for enumerating parametric
polytopes is faster, sometimes significantly, than Clauss’s method. Figure 5 pro-
vides further evidence of this improvement. The inputs are the parametric poly-
topes generated by PIP on the reuse distance sets. From a total of 18951 poly-
topes, 907 had a computation time of more than 0.1s. The implementation of
Clauss’s method failed to produce a complete result for 190 of these polytopes,
due to “degenerate domains”. The ratio of the execution times for the remain-
ing polytopes is shown for the “raw” polytopes on the left and for the polytopes
with redundant equalities removed on the right. For 17 polytopes on the left
and 8 polytopes on the right, the computation with Clauss’s method exceeds 10
minutes. The “ratio” for these polytopes is fixed to 100000 on the figures.

4.2 Other Applications

In this section, we mainly compare the combination of PIP with either Clauss’s
method or our method [40]. Applying Clauss’s method on a problem for an 8×8
processor array presented in [10] leads to a computation time of 713s. The same
problem for a 64×64 array, requires 6855s. Apparently, Clauss’s method does not
exploit equalities; first removing them reduces times to 0.04s and 1.43s. Using
our own method, which removes equalities automatically, we obtain both results
in 0.01s. The applied rules are shown in column 5 of Table 1(a).

An example in [2] counts the number of array elements accessed by 4 ref-
erences in a motion estimation loop kernel, for a number of different values of
the symbolic loop bounds. We handled the symbolic loop bounds parametrically,

Experiences with Enumeration of Integer Projections 103

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700
 0.1

 1

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700

Fig. 5. Execution time ratio for Clauss’s method compared to ours for the original
polytopes on the left and preprocessed polytopes on the right

thereby obtaining a single solution for all possible values of the symbolic loop
bounds. Using Clauss’s method (after removing equalities), counting takes re-
spectively 1.38s, 0.01s, 1.41s and 1.41s. With our method, times are 0.06s, 0.01s,
0.07s and 0.04s. The applied rules are shown in column 4 of Table 1(a).

Finally, we considered a large formula from [12]. Computation times for the
8 disjuncts range from a couple of seconds to 1.5 minutes while Clauss’s method
for one of the parametric polytopes did not finish in 15 hours. To enumerate
the whole formula, a disjoint union consisting of 13 sets was computed in less
than a second using Omega. Their enumeration times are in the same range
as those of the original disjuncts. The applied rules are shown in column 3 of
Table 1(a), with the original disjuncts on the left and the disjoint sets on the
right.

5 Conclusions

Many compiler analyses and optimizations require the enumeration of the in-
teger projection of a parametric polytope. As shown, this problem can be re-
duced to a problem of enumerating parametric polytopes, either by using PIP
or by applying a number of rewriting rules. This reduction, together with our
polynomial method for enumerating parametric polytopes [40], yields a method
that works well in practice and can solve many problems that were previously
considered very difficult or even unsolvable. Although both approaches usually
have comparable performance, there are some examples where PIP runs out of
time. Since the applicability of the rules is easy to check, it seems appropri-
ate to apply the rules first and to use PIP only when no complete reduction is
achieved.

Acknowledgements. Sven Verdoolaege was supported by FWO-Vlaanderen.
Kristof Beyls was supported by research project GOA-12051002.

104 S. Verdoolaege et al.

References

[1] S. Anantharaman and S. Pande. Compiler optimizations for real time execution
of loops on limited memory embedded systems. In RTSS, 1998.

[2] F. Balasa, F. Catthoor, and H. De Man. Background memory area estimation
for multidimensional signal processing systems. IEEE Transactions on VLSI,
3(2):157–172, 1995.

[3] A. Barvinok and J. Pommersheim. An algorithmic theory of lattice points in
polyhedra. New Perspectives in Algebraic Combinatorics, 38:91–147, 1999.

[4] A. Barvinok and K. Woods. Short rational generating functions for lattice point
problems. J. Amer. Math. Soc., 16:957–979, Apr. 2003.

[5] M. Bednara, F. Hannig, and J. Teich. Generation of distributed loop control. In
SAMOS, volume 2268 of LNCS, pages 154–170, 2002.

[6] K. Beyls. Software Methods to Improve Data Locality and Cache Behavior. PhD
thesis, Ghent University, 2004.

[7] A. J. C. Bik. Compiler Support for Sparse Matrix Computations. PhD thesis,
University of Leiden, The Netherlands, 1996.

[8] B. Boigelot and L. Latour. Counting the solutions of Presburger equations without
enumerating them. Theoretical Computer Science, 313(1):17–29, Feb. 2004.

[9] P. Boulet and X. Redon. Communication pre-evaluation in HPF. In EU-
ROPAR’98, volume 1470 of LNCS, pages 263–272. Springer Verlag, 1998.

[10] P. Boulet and X. Redon. Communication pre-evaluation in HPF. Technical report,
Université des Sciences et Technologies de Lille, 1998. AS-182.

[11] V. Braberman, D. Garbervetsky, and S. Yovine. On synthesizing parametric spec-
ifications of dynamic memory utilization. Technical Report TR-2004-03, VER-
IMAG, Oct. 2003.

[12] S. Chatterjee, E. Parker, P. J. Hanlon, and A. R. Lebeck. Exact analysis of the
cache behavior of nested loops. In PLDI, pages 286–297, 2001.

[13] P. Clauss. Counting solutions to linear and nonlinear constraints through Ehrhart
polynomials: Applications to analyze and transform scientific programs. In Inter-
national Conference on Supercomputing, pages 278–285, 1996.

[14] P. Clauss. Handling memory cache policy with integer points counting. In Euro-
pean Conference on Parallel Processing, pages 285–293, 1997.

[15] P. Clauss and V. Loechner. Parametric analysis of polyhedral iteration spaces.
Journal of VLSI Signal Processing, 19(2):179–194, July 1998.

[16] P. D’Alberto, A. Veidembaum, A. Nicolau, and R. Gupta. Static analysis of
parameterized loop nests for energy efficient use of data caches. In COLP, 2001.

[17] J. A. De Loera, R. Hemmecke, J. Tauzer, and R. Yoshida. Effective lattice point
counting in rational convex polytopes. The Journal of Symbolic Computation,
38(4):1273–1302, 2004.

[18] S. Derrien, A. Turjan, C. Zissulescu, B. Kienhuis, and E. Deprettere. Deriving
efficient control in Kahn process network. In SAMOS, 2003.

[19] E. Ehrhart. Polynômes arithmétiques et méthode des polyèdres en combinatoire.
International Series of Numerical Mathematics, 35, 1977.

[20] P. Feautrier. Parametric integer programming. Operationnelle/Operations Re-
search, 22(3):243–268, 1988.

[21] J. Ferrante, V. Sarkar, and W. Thrash. On estimating and enhancing cache
effectiveness. In LCPC, volume 589 of LNCS, pages 328–343, 1991.

[22] D. Fimmel and R. Merker. Design of processor arrays for real-time applications.
In Euro-Par ’98, LNCS, pages 1018–1028, 1998.

Experiences with Enumeration of Integer Projections 105

[23] B. Franke and M. O’Boyle. Array recovery and high-level transformations for
DSP applications. ACM TECS, 2(2):132–162, May 2003.

[24] S. Ghosh, M. Martonosi, and S. Malik. Cache miss equations: a compiler frame-
work for analyzing and tuning memory behavior. ACM Transactions on Program-
ming Languages and Systems, 21(4):703–746, 1999.

[25] F. Hannig and J. Teich. Design space exploration for massively parallel processor
arrays. In PaCT, volume 2127 of LNCS, pages 51–65, 2001.

[26] F. Heine and A. Slowik. Volume driven data distribution for NUMA-machines.
In Euro-Par, LNCS, pages 415–424, 2000.

[27] P. G. Kjeldsberg, F. Catthoor, and E. J. Aas. Data dependency size estimation
for use in memory optimization. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 22(7), July 2003.

[28] B. Lisper. Fully automatic, parametric worst-case execution time analysis. In
Workshop on Worst-Case Execution Time (WCET) Analysis, pages 77–80, 2003.

[29] V. Loechner, B. Meister, and P. Clauss. Precise data locality optimization of
nested loops. J. Supercomput., 21(1):37–76, 2002.

[30] B. Meister. Projecting periodic polyhedra for loop nest analysis. In CPC, pages
13–24, 2004.

[31] E. Parker and S. Chatterjee. An automata-theoretic algorithm for counting solu-
tions to Presburger formulas. In Compiler Construction, volume 2985 of LNCS,
pages 104–119, 2004.

[32] W. Pugh. The Omega test: a fast and practical integer programming algorithm
for dependence analysis. In Conference on Supercomputing, pages 4–13, 1991.

[33] W. Pugh. Counting solutions to Presburger formulas: How and why. In PLDI,
pages 121–134, 1994.

[34] A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons,
1986.

[35] R. Seghir. Dénombrement des point entiers de l’union et de l’image des polyédres
paramétrés. Master’s thesis, ICPS, Strasbourg, France, June 2002.

[36] B. Sturmfels. On vector partition functions. J. Comb. Theory Ser. A, 72(2):302–
309, 1995.

[37] E. Su and A. L. et al. Advanced compilation techniques in the PARADIGM
compiler for distributed-memory multicomputers. In ICS, pages 424–433, 1995.

[38] A. Turjan, B. Kienhuis, and E. Deprettere. A compile time based approach for
solving out-of-order communication in Kahn process networks. In ASAP, 2002.

[39] S. Verdoolaege, K. Beyls, M. Bruynooghe, and F. Catthoor. Experiences with
enumeration of integer projections of parametric polytopes. Report CW 395,
Department of Computer Science, K.U. Leuven, Leuven, Belgium, Oct. 2004.

[40] S. Verdoolaege, R. Seghir, K. Beyls, V. Loechner, and M. Bruynooghe. Analyt-
ical computation of Ehrhart polynomials: Enabling more compiler analyses and
optimizations. In CASES, pages 248–258, 2004.

[41] S. Verdoolaege, K. M. Woods, M. Bruynooghe, and R. Cools. Computation and
manipulation of enumerators of integer projections of +parametric polytopes.
Report CW 392, Dept. of Computer Science, K.U. Leuven, Leuven, Belgium,
2005.

[42] Y. Zhao and S. Malik. Exact memory size estimation for array computations.
IEEE Transactions on VLSI Systems, 8(5):517–521, October 2000.

Generalized Index-Set Splitting

Christopher Barton1, Arie Tal2, Bob Blainey2, and José Nelson Amaral1

1 Department of Computing Science,
University of Alberta, Edmonton, Canada

{cbarton, amaral}@cs.ualberta.ca
2 IBM Toronto Software Laboratory, Toronto, Canada

{arietal, blainey}@ca.ibm.com

Abstract. This paper introduces Index-Set Splitting (ISS), a technique
that splits a loop containing several conditional statements into sev-
eral loops with less complex control flow. Contrary to the classic loop
unswitching technique, ISS splits loops when the conditional is loop vari-
ant. ISS uses an Index Sub-range Tree (IST) to identify the structure of
the conditionals in the loop and to select which conditionals should be
eliminated. This decision is based on an estimation of the code growth for
each splitting: a greedy algorithm spends a pre-determined code growth
budget. ISTs separate the decision about which splits to perform from
the actual code generation for the split loops. The use of ISS to improve
a loop fusion framework is then discussed. ISS opportunity identification
in the SPEC2000 benchmark suite and three other suites demonstrate
that ISS is a general technique that may benefit other compilers.

1 Introduction

This paper describes Index-Set Splitting (ISS), a code transformation motivated
by the implementation of loop fusion in the commercially distributed IBM XL
Compilers. ISS is an enabling technique that increases the code scope where
other optimizations, such as software pipelining, loop unroll-and-jam, unimodu-
lar transformations, loop-based common expression elimination, can be applied.

A loop that does not contain branch statements is a Single Basic Block Loop
(SBBL). A loop that contains branches is a Multi-Basic Block Loop (MBBL).
SBBLs are easier to optimize than MBBLs. For instance, MBBLs with com-
plex control flow are not candidates for conventional software pipelining. Loop
unswitching is a transformation that can convert a MBBL into two non-control
flow equivalent SBBLs by moving a branch statement out of the original loop [1].
Loop unswitching is applicable only to loop invariant branches.

ISS recursively splits a loop with several branches into loops with smaller
index ranges and fewer branches. Contrary to loop unswitching, ISS splits loops
based on loop variant branches. In order to minimize its impact on compilation
time and code growth, ISS performs a profitability analysis to control the number
of loops that are generated. ISS is effective in removing branches that are found

R. Bodik (Ed.): CC 2005, LNCS 3443, pp. 106–120, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Generalized Index-Set Splitting 107

in the original code as well as branches that are inserted into the code by the
compiler.

Loop fusion is a code transformation that may insert branches into a loop.
Barton et al. list three fusion-preventing conditions that, if present, must be
dealt with before two control flow equivalent loops can be fused: (1) intervening
code; (2) non-identical loop bounds; and (3) negative distance dependencies
between loop bodies [2]. The classical solution to deal with the second and third
conditions requires the generation of compensatory code outside of the loops.
This compensatory code will contain one or more iterations of the loop. If this
code is generated during the loop fusion process, it becomes intervening code
between other fusion candidates. This new intervening code has, in turn, to be
moved elsewhere. Thus a cumbersome loop fusion code transformation is created.

The proliferation of intervening code during the loop fusion process can be
avoided by inserting guard branches within the loops. Guards are conditional
statements that prevent a portion of the loop code from being executed on
certain iterations. Once the loop fusion process has completed, ISS can be run
to remove the guard branches from inside the fused loops, thereby turning a
single MBBL into many SBBLs.

The main contributions of this paper are:

– A description of the new index-set splitting technique that selectively elimi-
nates loop variant branches from a loop.

– An example of the use of guards followed by index-set splitting to improve
the loop fusion framework.

– An example of the use of index-set splitting to enable other optimizations.
– Measurements indicating the changes caused by ISS in the compilation time

of applications in the development version of the IBM XL compiler.
– Run-time measurements indicating the impact of ISS on the performance of

the code generated.

The paper is organized as follows. Section 2 presents an example to motivate
ISS. Section 3 introduces the Index Sub-range Tree that is used to handle loops
with multiple split points. Section 4 describes how code growth is controlled
by the ISS algorithm. Section 5 describes how ISS is used to produce a cleaner
framework for loop fusion. Section 6 shows the use of guards for run-time bounds
checks in loop fusion. These guards are then split points for the ISS algorithm.
A discussion of how ISS can be used to enable other optimizations is provided
in Section 7. An experimental evaluation of ISS is presented in Section 8.

2 A Motivating Example

The code in Figure 1(a) executes a branch in every iteration of the loop. Although
in most modern architectures this branch is likely to be predicted correctly, the
execution of the branch requires an additional instruction in each loop itera-
tion and has the potential of disrupting the operation of the execution pipeline.
Removing a branch from inside a loop by splitting the loop into two separate,

108 C. Barton et al.

for(i=0; i<100; i++) {
if(i < m)
A[i] = A[i] * 2;

else
A[i] = A[i] * 5;

B[i] = A[i]*A[i];
}

for(i=0; i<m; i++) {
A[i] = A[i] * 2;
B[i] = A[i]*A[i];

}
for(i=m; i<100; i++) {
A[i] = A[i] * 5;
B[i] = A[i]*A[i];

}

(a) Original loops (b) Incorrect ISS

for(i=0; i<min(m,100); i++) {
A[i] = A[i] * 2;
B[i] = A[i]*A[i];

}
for(i=max(m,0); i<100; i++) {
A[i] = A[i] * 5;
B[i] = A[i]*A[i];

}

for(i=lb; i<min(m,ub); i++) {
A[i] = A[i] * 2;
B[i] = A[i]*A[i];

}
for(i=max(m,lb); i<ub; i++) {
A[i] = A[i] * 5;
B[i] = A[i]*A[i];

}

(c) Correct ISS (d) General code generated by ISS

Fig. 1. Example of application of ISS

control flow equivalent, loops is desirable because it results in a reduction of the
number of instructions executed. This splitting also produces loops with simpler
control flow that are easier to optimize.

However, the code in Figure 1(b) may produce incorrect results. Consider
the case in which m > 100. The first loop in Figure 1(b) would execute more
iterations than the original loop. A similar problem occurs with the second loop
if m < 0. Thus the correct transformation must replace these loop bounds by
min(m, 100) and max(m, 0), respectively, as shown in Figure 1(c). In general,
for a loop with lower bound lb, upper bound ub, and split point m, the code
shown in Figure 1(d) should be produced. This code transformation is called
Index-Set Splitting (ISS).

ISS is always safe, i.e., no other condition besides the structure of the loop
has to be analyzed. ISS can be applied even when the bounds and the split points
are not known at compile time. However, if relations between these values can
be discovered at compile time, loops may be eliminated or their bodies may be
simplified.

3 Index Sub-range Tree

When a loop contains two split points, ISS could be applied iteratively. For
example, ISS could be applied on the original loop creating two new loops, both
containing a single split point. ISS would then be applied to each of the new

Generalized Index-Set Splitting 109

max(m,0),min(n,100) max(m,n,0),100

E

0,min(m,n,100) max(0,n),min(m,100)

0,min(m,100) max(0,n),100

0,100

E T ET

T

Fig. 2. Index sub-range tree (IST)

loops, creating two new SBBLs. However, iterative ISS would make estimating
the potential gain of ISS and controlling the amount of code growth difficult. An
alternative solution is to build an Index Sub-range Tree (IST). For instance, the
following loop contains two split points, m and n:

for(i=0; i < 100; i++) {
if(i < m)
A[i] = A[i] * 2;

else
A[i] = A[i] * 5;

B[i] = A[i]*A[i];
}

The IST for the loop above is shown in Figure 2. The root of the IST cor-
responds to the index range for the original loop. The second level of the tree
corresponds to the two loops that are created to eliminate the first test, (i < m),
from the loop. If ISS stops at this level of the tree, two loops, each with one
branch, are created as shown in Figure 3(a). The nodes in the leaf level in the
IST correspond to the four loops that have to be created in order to eliminate
all split points, as shown in Figure 3(b).

Edges in the IST labeled with T represent the true or “then” branch of a test,
and edges labeled with E represent the “else” branch of a test. This labeling is a
convenience for the generation of code for the loop representing each node in the
tree. The code generation algorithm for a node vi starts with the original loop
code, and traverses the tree from the root to vi. At each level, if the then path
is taken, the corresponding branch is eliminated and its then code is preserved.
If the else path is taken, the else code is preserved. This process is referred to
as the elimination of “dead” inductive branches.

Figure 4 shows the elimination of dead inductive branches to generate the
loop body for the leaf node max(0,n), min(m,100) in the IST of Figure 2 (the
second loop in Figure 3(b)). Starting at the root, to reach this leaf node, the
algorithm first follows the then path, thus the text if (i < m) is eliminated but
its then code is preserved. At the next level the else path is taken. Because the
else code of the test if(i < n) is empty, the entire if statement is eliminated.

The IST correctly models nested branches. In the case of a nested branch,
the inner level branch only splits the range of the nodes for which they apply.
The IST for the loop with nested branch of Figure 5 is shown in Figure 6.

110 C. Barton et al.

for(i=0; i < min(m,100); i++) {
A[i] = A[i] * 2;
if(i < n)
A[i] = A[i] * 5;

B[i] = A[i]*A[i];
}

for(i=max(m, 0); i < 100; i++) {
if(i < n)
A[i] = A[i] * 5;

B[i] = A[i]*A[i];
}

for(i=0; i < min(m,n,100); i++) {
A[i] = A[i] * 2;
A[i] = A[i] * 5;
B[i] = A[i]*A[i];

}
for(i=max(0,n); i < min(m,100); i++) {

A[i] = A[i] * 2;
B[i] = A[i]*A[i];

}
for(i=max(m, 0); i < min(n,100); i++) {

A[i] = A[i] * 5;
B[i] = A[i]*A[i];

}
for(i=max(m,n,0); i < 100; i++) {

B[i] = A[i]*A[i];
}

(a) Elimination of first (b) Elimination of second
split point split point

Fig. 3. Handling loops with multiple split points

for(i=max(0,n); i < min(m,100); i++) {
if(i < m)

A[i] = A[i] * 2;
if(i < n)

A[i] = A[i] * 5;
B[i] = A[i]*A[i];

}

Fig. 4. Elimination of dead inductive branches

for(i=0; i < 100; i++) {
if(i < m)

A[i] = A[i] * 2;
else

if(i < n)
A[i] = A[i]*5;

B[i] = A[i]*A[i];
}

Fig. 5. A loop with nested branches

max(m,0),min(n,100) max(m,n,0),100

E

0,min(m,100)

0,100

T E

T

max(m,0),100

Fig. 6. Index sub-range tree for nested branches

Generalized Index-Set Splitting 111

4 Controlling Code Growth

Each index splitting requires the duplication of the loop that it splits. There-
fore, there is a potential for significant code growth. If this code growth is left
unchecked it may (1) prohibitively slow down the compiler by consuming compi-
lation time that would be put to better use elsewhere and (2) generate negative
instruction cache effects at run time.

To control code growth the ISS algorithm marks the root of the sub-range
tree with the code size estimate for the original loop. The code size estimate is
based on the number of machine instructions that would have been generated
for the loop being analyzed. Each node of the subtree is annotated with an
estimate of the code size that would be produced by ISS. This estimate is based
on doubling the size of the loop at the current level and subtracting the code
that is removed from each loop because of the splitting.

In the resulting IST each node is annotated with a code size estimate for
its children. The ISS is a greedy algorithm that executes a top-down breadth
first traversal of this annotated tree until either all the leaves are processed or a
specified code growth budget is consumed. If the budget is exhausted, the lowest
nodes that were visited in each branch of the tree represent the loops that are
generated by ISS.

5 Applying ISS to Loop Fusion

A loop is normalized if it has a lower bound of 0, and an increment of 1. Thus
all normalized loops have the same lower bound, increment, and direction (both
loops increase their indexes). If Li and Lj are normalized and their upper bounds
are not the same, the loops are non-conforming. Non-conforming loops can be
fused if iterations are peeled from the longer loop. However peeling iterations
from a loop is not desirable in a loop fusion framework because the peeled
iterations may become intervening code that, in turn, has to be moved to allow
future loop fusions. For instance, to fuse loops L1 and L2 of Figure 7(a), two
iterations of L2 have to be peeled as shown in Figure 7(b). Once L1 and L2 are
fused (forming L4) the code for the peeled iterations becomes intervening code

L1: for(i=0; i<n-2; i++)
A[i] = A[i] * 2;

L2: for(j=0; j<n; j++)
A[j] = A[j] + 3;

L3: for(k=0; k<n-2; k++)
A[k] = A[k] - 5;

L1: for(i=0; i<n-2; i++)
A[i] = A[i] * 2;

L2: for(j=0; j<n-2; j++)
A[j] = A[j] + 3;

A[n-2] = A[n-2] + 3;
A[n-1] = A[n-1] + 3;

L3: for(k=0; k<n-2; k++)
A[k] = A[k] - 5;

(a) Original loops (b) After peeling second loop

Fig. 7. Loop peeling example

112 C. Barton et al.

L4: for(i=0; i<n-2; i++) {
A[i] = A[i] * 2;
A[i] = A[i] + 3;

}
A[n-2] = A[n-2] + 3;
A[n-1] = A[n-1] + 3;

L3: for(k=0; k<n-2; i++)
A[k] = A[k] - 5;

L5: for(i=0; i<n-2; i++) {
A[i] = A[i] * 2;
A[i] = A[i] + 3;
A[i] = A[i] - 5;

}
A[n-2] = A[n-2] + 3;
A[n-1] = A[n-1] + 3;

(a) First fusion (b) Last fusion

Fig. 8. Loop fusion and movement of intervening code example

L1: for(i=0; i<n-2; i++)
A[i]=A[i]*2;

L2: for(j=0; j<n; j++)
A[j]=A[j]+3;

L3: for(k=0; k<n-2; k++)
A[k]=A[k]-5;

L4: for(i=0; i<n; i++)
if (i < n-2)
A[i]=A[i]*2;
A[j]=A[j]+3;

else
A[j]=A[j]+3;

L3: for(k=0; k<n-2; k++)
A[k]=A[k]-5;

L5: for(i=0; i<n; i++)
if (i < n-2)
if (i < n-2)
A[i]=A[i]*2;
A[i]=A[i]+3;

else
A[i]=A[i]+3;

A[k]=A[k]-5;
else
if (i<n-2)
A[i]=A[i]*2;
A[j]=A[j]+3;

else
A[j]=A[j]+3;

(a) Original loops (b) First fusion (c) Second fusion

Fig. 9. Loop fusion using guards

between L4 and L3, as shown in Figure 8(a). This new intervening code has to
be moved before the next fusion, as shown in Figure 8(b).

An alternative to iteration peeling is to introduce guards in the fused loop,
as shown in Figure 9. The introduction of guards prevents the generation of
additional intervening code. However, it creates fused loops with complex con-
trol flow. These complex control structures: (1) cause the dynamic execution of
more branch operations, (2) may prevent future optimizations such as software
pipelining, and (3) make instruction scheduling and register allocation more dif-
ficult. Thus once all fusions are performed, ISS separates loops fused with guards
into individual simpler loops.

6 Runtime Bounds Check

When the relationship between the upper bounds of the two loops cannot be
determined at compile time, a run-time bounds check must be performed. The

Generalized Index-Set Splitting 113

for(i=0; i<n; i++)
A[i] = A[i] * 2;

for(j=0; j<m; j++)
A[j] = A[j] * 3;

S = max(n,m);
T = min(n,m);
for(i=0; i<S; i++) {
if (i<T) {
A[i] = A[i] * 2;
A[i] = A[i] * 3;

}
else {
if(i<n)
A[i] = A[i] * 2;

else
A[i] = A[i] * 3;

}
}

S=max(n,m);
T=min(n,m);
for (i=0; i < T; i++) {

A[i] = A[i] * 2 ;
A[i] = A[i] * 3 ;

}
for (i=max(T,0); i < n; i++)

A[i] = A[i] * 2 ;
for (i=max(n,0); i < S; i++)

A[i] = A[i] * 3 ;

(a) Original loops (b) After Fusion (c) After ISS

Fig. 10. Run time bounds check example

fused loop combines the bodies of the two original loops for the minimum iter-
ation count. Residuals of the two loops can then be executed depending on the
iteration counts of the original loops.

For instance, assume that n and m in Figure 10(a) are not known at compile
time. During loop fusion we want to generate the code shown in Figure 10(b).
The upper bound of the fused loop is the maximum of the two original upper
bounds. The execution of the composition of the bodies of the two loops is
guarded by a test comparing with the minimum of the original bounds. Finally,
the remainder iterations of the longer loop are executed. Applying ISS results
in the code shown in Figure 10(c). The max(T,0) and max(n,0) in the resulting
loops are necessary to preserve program semantics.

7 ISS as an Enabling Technique

The previous sections showed that ISS can be used to simplify code generated
by optimizations such as loop fusion. ISS also enables optimizations that could
not be performed in the presence of dynamic branches. For example, consider
the loop in Figure 11(a).

This loop initializes the first 25 columns of each row in the two dimensional ar-
ray A to zero and doubles all other entries in the array. However, A is traversed in
column-major order while multidimensional arrays are stored in row-major order
in the C programming language. Thus the data reference in this loop is extremely
inefficient as it will result in a cache miss for every iteration of the inner loop (pro-
vided that the dimensions of A are larger than a cache line). Loop interchange,
is an optimization that detects this type of memory access and interchanges the
outer and inner loops to improve cache performance [3]. Unfortunately, these

114 C. Barton et al.

for (int j=0; j < 10000; j++) {
if (j < 25) {
for (int i=0; i < 10000; i++) {
A[i][j] = 0;

}
}
else {
for (int i=0; i < 10000; i++) {
A[i][j] += A[i][j];

}
}

}

for (int j=0; j < 25; j++) {
for (int i=0; i < 10000; i++) {
A[i][j] = 0;

}
}
for (int j=25; j < 10000; j++) {

for (int i=0; i < 10000; i++) {
A[i][j] += A[i][j];

}
}

(a) Original Loop (b) After ISS-enabled interchange

Fig. 11. Loop interchange enabled by ISS

loops cannot be interchanged because of the dynamic branch guarding the in-
nermost loop. After ISS has removed the dynamic branch, the code shown in
Figure 11(b) is generated. Loop interchange will then be able to interchange the
outer loop with the inner loop, resulting in a more efficient traversal of A.

Using a small test program containing the above code example, the runtime
went from 12.88 seconds without Index-Set Splitting to 0.40 seconds using Index-
Set Splitting.1 This performance improvement is a result of the two loops being
interchanged, resulting in increased cache performance. However, this transfor-
mation would not be possible if ISS did not eliminate the dynamic branch guard-
ing the inner loops, thereby creating perfect loop nests. This demonstrates the
ability of ISS to enable other optimizations, resulting in improved performance.

8 Experimental Evaluation

This section presents an experimental evaluation of a robust implementation of
ISS in the development version of the IBM XL compiler suite. When introduced
by itself in a compiler suite, ISS has the potential to degrade both compilation
time and execution time. The appeal of ISS is its integration with other loop
optimizations, as discussed in Section 7. Compile time degradation can be at-
tributed to the processing of additional loops by later optimizations. Runtime
degradation will occur if ISS creates many loops with small iteration counts or
loops that are not executed at all. When control flow reaches a loop that is not
executed, it still has to execute a test for the loop terminating condition. Also,
if the compiler is not able to eliminate min and max computations introduced
by ISS in hot paths, performance may also degrade. A careful implementation
of ISS should have only minor impact on compilation and execution time, and

1 This test program was run on the same machine used to collect results in Section 8.

Generalized Index-Set Splitting 115

thus enable subsequent optimizations to profit from a simpler loop structure in
the code. The results of this experimental study can be summarized as follows:

– A total of 107 opportunities for ISS are found in several benchmark suites
before loop fusion is applied. With the application of loop fusion, the number
of ISS opportunities increased to 133.

– ISS does not increase compilation time. For the SPEC 2000 suite the compila-
tion time is reduced by 17 seconds (0.3%). For a combination of benchmarks
from Perfect, Quetzal and NAS, this reduction is of 34 seconds (1.6 %).

– Execution time variations due to ISS alone are very small for the SPEC 2000
benchmark suite (less than 3%). For benchmarks in the Perfect suite this
variation can be larger (from 8% slower to 8% faster), but these benchmarks
have very short runtimes (less than 5 seconds).

We prototyped ISS in the development version of the IBM XL compiler suite.
Benchmarks were compiled using this development compiler and run on an IBM
p630 machine, equipped with two POWER4TMprocessors, 2048 MB of memory
and running AIX r©5.1.

8.1 Opportunities for ISS

Table 1 shows the number of opportunities to apply ISS in standard benchmark
suites. These opportunities were counted using compile-time instrumentation.
The benchmark suites listed on Table 1 were tested in their entirety. The bench-
marks not shown had no opportunities for ISS. An opportunity to apply ISS
is a loop that contains a loop variant branch that splits the range of the loop
index. The table shows that in some benchmarks there is a significant number of
loops to which ISS applies even when loop fusion is not performed. This empirical
result is evidence that ISS is a general technique that may benefit the implemen-
tation of optimizations in a compiler beyond the loop restructuring framework.
The results also show that loop fusion creates additional ISS opportunities that
can be detected and handled by our implementation.

8.2 Variations in Compilation and Execution Time

The variations in compilation time and execution time are presented in Fig-
ure 12. The bar graphs show the percentage increase in compilation time and
the percentage reduction in execution time. Thus, a negative number in Fig-
ures 12(a) and 12(c) means the compilation process is taking less time when
ISS is applied (i.e., a larger-magnitude negative number is better). Similarly, a
positive number in Figures 12(b) and 12(d) means the program execution time is
lower when ISS is applied (i.e., a higher positive number is better). The baseline
for the comparison is an optimized compilation (at level -O3 -qhot) without ISS.
In both the baseline and the ISS versions of the compiler all standard, and most
advanced, optimizations found in a commercial compiler are performed. ISS has
complex interactions with other optimizations.

116 C. Barton et al.

Table 1. Number of times that an opportunity to apply ISS was identified

Suite
Bench- No Loop Fusion Loop Fusion
mark ISS Opportunities Loops Fused ISS Opportunities

SPEC2000

bzip2 1 4 2
crafty 2 7 4
eon 1 0 1
gap 7 4 9
gzip 0 4 3

perlbmk 2 0 2
twolf 4 0 4
vpr 1 0 1

applu 2 4 3
apsi 8 4 8

equake 1 0 1
fma3d 1 36 3
galgel 6 21 6
lucas 1 2 1

sixtrack 16 26 24

Perfect

W.CS 2 1 2
W.LG 0 2 1
W.MT 1 1 2
W.SR 2 4 3
W.OC 2 0 2
W.TF 1 4 2
W.AP 8 4 8
W.SD 3 4 3
W.NA 2 4 4
W.TI 3 4 4

Quetzal lu 17 15 17
rnflow 6 8 6

NAS PBN-S
BT 1 8 1
LU 1 11 1
SP 1 9 1

NAS PBN-H

BT 1 9 1
FT 1 0 1
LU 1 7 1
SP 1 12 1
Total 107 133

The normalization to the baseline times in the presentation of percentage
variations may be misleading. Thus, for convenience, the benchmarks in Fig-
ure 12 are sorted from left to right based on their baseline compilation time. In
Figure 12(a) benchmarks located to the left of apsi have a compilation time
of less than one minute. apsi and twolf have a compilation time of less than
two minutes. Similarly, in Figure 12(c) all benchmarks to the left of W.TF have
a compilation time of less than one minute and all benchmarks to the left of

Generalized Index-Set Splitting 117

−4

−2

0

2

4

6

8
ISS Compilation Time Variations

 g

zip

luc

as

bz

ip2

 e
qu

ak
e

 v

pr

 c
ra

fty

 a

ps
i

tw

olf

 g
alg

el

ap

plu

 p
er

lbm
k

 g

ap

 g

cc

six
tra

ck

fm

a3
d

C
om

pi
la

tio
n

T
im

e
In

cr
ea

se
(%

)

(a) Compilation Time Variations

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
ISS Runtime Variations

 g

zip

luc

as

bz

ip2

 e
qu

ak
e

 v

pr

 c
ra

fty

 a

ps
i

tw

olf

 g
alg

el

ap

plu

 p
er

lbm
k

 g

ap

 g

cc

six
tra

ck

fm

a3
d

SPEC2000 Benchmarks

R
un

 T
im

e
R

ed
uc

tio
n(

%
)

(b) Execution Time Variations

−25

−20

−15

−10

−5

0

5

10
ISS Compilation Time Variations

 W

.T
I

 W

.M
T

 W

.O
C

 W

.S
D

 W

.T
F

lu

 W

.S
R

 W

.A
P

 W

.C
S

 W

.L
G

PBN−H
−L

U

PBN−S
−S

P

PBN−H
−S

P

PBN−S
−L

U

PBN−S
−B

T

PBN−H
−B

T

Perfect, Quetzal and NAS Benchmarks

C
om

pi
la

tio
n

T
im

e
In

cr
ea

se
(%

)

(c) Compilation Time Variations

−8

−6

−4

−2

0

2

4

6

8

10
ISS Runtime Variations

 W

.T
I

 W

.M
T

 W

.O
C

 W

.S
D

 W

.T
F

lu

 W

.S
R

 W

.A
P

 W

.C
S

 W

.L
G

PBN−H
−L

U

PBN−S
−S

P

PBN−H
−S

P

PBN−S
−L

U

PBN−S
−B

T

PBN−H
−B

T

Perfect, Quetzal and NAS Benchmarks

T
im

e
R

ed
uc

tio
n(

%
)

(d) Execution Time Variations

Fig. 12. Variation in the compilation time and run time using ISS on SPEC2000 (a
and b) and on the Perfect, Quetzal and NAS (c and d) benchmark suite2

W.LG have a compilation time of less than two minutes. The compilation time
of most benchmarks is not significantly impacted by ISS. applu’s compile time
increases from 207 seconds to 214 seconds. Furthermore, compilation is faster
for the benchmarks with the longest compilation times: gap, gcc, sixtrack and
fma3d. The total aggregated compilation time for the SPEC2000 suite does not
change significantly: it is reduced by 17 seconds (or 0.3%) when ISS is applied.
Thus the simplified loop structure provided to later optimizations compensates
for the time spent on ISS. Similarly, the aggregated compilation time for bench-
marks listed in Figure 12(c) is reduced by 34 seconds (1.6 %) with ISS.

The variations on execution time because of ISS are very small. As shown in
Figure 12(b) execution time variations are under 3% (reductions of 3.3 seconds in

2 Measurements did not use the official SPEC tools.

118 C. Barton et al.

lucas and fma3d and additional 3.5 seconds in crafty and 12.5 seconds in twolf
are the largest time variations). While the percentage variation in run times for
the benchmarks in Figure 12(d) are larger, the W.* benchmarks from the Perfect
suite have very short running time. The largest runtime variation in the W.*
benchmarks is 0.11 seconds. The largest variation in runtime in Figure 12(d) is
for the PBN-H-SP benchmark whose runtime increases by 1.7 seconds.

The small variations in execution time is evidence that the implementation
of ISS in this industry-strong compiler is robust. Further improvements to loop
optimizations, currently underway, that were enabled by ISS should produce
overall performance improvements.

8.3 Micro-Architecture Study

ISS does not have a significant impact on the runtime performance of the bench-
marks tested. However, a large number of loops contained ISS opportunities.
Thus, the question still arises as to the effects that ISS code changes have on
the execution of the program. Since ISS removes loop variant branches from
loops, one metric that should be affected by ISS is the number of branch mispre-
dictions incurred during the execution of a program. By monitoring hardware
performance counters, we examined the execution of several benchmarks to de-
termine the number of target address branch mispredictions.

The study revealed that crafty has a 30% increase in the number of branch
mispredictions (from 5.7 billion to 7.4 billion), while twolf’s branch mispredic-
tions increased from approximately 122 million without ISS to 1.1 billion with
ISS. These additional mispredictions should contribute to the increased running
time of these benchmarks. An analysis of the code generated for twolf and
crafty reveals that the values of the min and max statements inserted by ISS
could not be computed at compile time. The runtime execution of these min and
max statements should be the cause of the performance degradation.

Significant reductions in branch mispredictions occur in apsi (82%, from 630
million to 111 million) and fma3d (31%, from 15 billion to 10 billion). However,
these reductions did not translate into improved running times. A possible ex-
planation is that the hardware was able to recover effectively from these branch
mispredictions in the code generate by the baseline compiler.

9 Related Work

Loop unswitching is a similar technique to index-set splitting in the sense that a
loop with a condition is converted into two non-control flow equivalent simpler
loops [1]. However, as defined by Frances Allen and John Cocke, unswitching
only does the conversion when the test’s conditional is loop-independent [4]. In
contrast index-set splitting performs multiple unswitches of tests on the value
of the index variable of the loop. Another distinction between loop unswitching
and ISS is that the separate loops created by unswitching are not control flow
equivalent, while ISS creates control flow equivalent loops.

Generalized Index-Set Splitting 119

Loop fusion has been implemented in compilers for over twenty years [5].
Optimizations to loop fusion have been proposed by Gao [6], Ding [7, 8], McKin-
ley [9, 10], Allen, and Kennedy [11] among others. Most research papers on loop
transformations prescribe selective fusion of loops, i.e., a decision about the
profitability of fusing two or more loops is made during the loop fusion phase.
Placing the decision about loop groupings in the fusion leads to several graph-
based optimization algorithms. The IBM XL compilers take a different approach
to loop restructuring: maximal loop fusion is applied first and then selective loop
distribution, using several heuristics, takes place.

Allen, Callahan, and Kennedy described loop alignment as a solution to elim-
inate synchronization in the execution of parallel loops [5]. Alignment is used
to describe the Global Alignment Network (GAN) by Padua et al. GAN dis-
tributes data in a multiprocessor system. For instance GAN could partition a
vector and distribute its elements to several processors in the system to eliminate
cross-iteration dependencies when creating fully parallel loops [12].

Yang et al. propose a technique to improve the order of branches based on
run-time profile [13]. However, their technique does not reverse the order of loops
and conditionals.

10 Conclusions

This paper introduced a new code transformation that enables the unswitching
of loops that contain conditionals that are loop-dependent. Index-set splitting
was implemented in the development version of the commercial IBM XL com-
pilers and tested with four benchmark suites, including the industry standard
SPEC2000 suite. The use of ISS as a convenient tool to implement a cleaner loop
fusion transformation was also discussed.

ISS removes loop variant branches from inside a loop body, splitting the orig-
inal loop into several loops with varying ranges. The compiler can then remove
ranges that it can prove will never execute. ISS significantly impacts the gen-
erated code: the resulting loop bodies are smaller, making it easier to perform
resource allocation and instruction scheduling (including modulo scheduling).
ISS enables loop interchange, resulting in improved cache performance. ISS can
also benefit other loop optimizations, such as loop parallelization, by removing
loop-carried dependencies. On architectures where predicated instructions are
available, the removal of the loop variant branch will remove the necessity of
predicating the instructions that are control dependent on the branch. This will
prevent aborted predicated instructions from polluting execution streams.

The static evaluation of ISS discovered opportunities for application of ISS
even when loop fusion is not performed, thus indicating that ISS is a general
technique that may benefit other compilers. The dynamic measurements of per-
formance indicate that there is no significant variation in compile time and run
time due to ISS alone. Thus downstream optimizations enabled by ISS shall
produce overall performance improvements.

120 C. Barton et al.

Acknowledgments

This research was supported by the IBM Center for Advanced Studies (CAS),
and by a grant from the Collaborative Research Development (CRD) Grants
program of the National Sciences and Engineering Council of Canada (NSERC)
of Canada. Some of the infrastructure used for the experimental evaluation was
acquired through a grant from the Canadian Foundation for Innovation (CFI).

Trademarks

The following terms are trademarks or registered trademarks of International
Business Machines Corporation in the United States, other countries, or both:
IBM, POWER4, AIX and pSeries. Other company, product, and service names
may be trademarks or service marks of others.

References

1. Cooper, K.D., Torczon, L., Engineering a Compiler. Morgan Kaufmann (2004)
2. Blainey, B., Barton, C., Amaral, J.N., Removing impediments to loop fusion

through code transformations. Workshop on Languages and Compilers for Par-
allel Computing, College Park, MD (2002)

3. Wolfe, M., High Performance Compilers for Parallel Computing. Addison Wesley,
Longman (1994)

4. Allen, F.E., Cocke, J., A catalogue of optimizing transformations. In Rustin, R.,
ed., Design and Optimization of Compilers. Prentice-Hall (1972) 1–30

5. Allen, R., Callahan, D., Kennedy, K., Automatic decomposition of scientific pro-
grams for parallel execution. Symposium on Principles of Programming Languages,
Munich, Germany (1987) 63–76

6. Gao, G.R., Olsen, R., Sarkar, V., Thekkath, R., Collective loop fusion for array
contraction. Workshop on Languages and Compilers for Parallel Computing, New
Haven, Conn., Berlin: Springer Verlag (1992) 281–295

7. Ding, C., Kennedy, K., The memory bandwidth bottleneck and its amelioration by
a compiler. International Parallel and Distributed Processing Symposium, Cancun,
Mexico (2000) 181–189

8. Ding, C., Kennedy, K., Improving effective bandwidth through compiler enhance-
ment of global cache reuse. International Parallel and Distribute Processing Sym-
posium, San Francisco, CA (2001)

9. Kennedy, K., McKinley, K.S., Maximizing loop parallelism and improving data
locality via loop fusion and distribution. Workshop on Languages and Compilers
for Parallel Computing, Portland, Ore., (1993) 301–320

10. Singhai, S., McKinley, K., A parameterized loop fusion algorithm for improving
parallelism and cache locality. The Computer Journal, 40 (1997) 340–355

11. Allen, R., Kennedy, K., Optimizing Compilers for Modern Architectures, Morgan
Kaufmann Publishers (2002)

12. Padua, D.A., Kuck, D.J., Lawrie, D.H., High-speed multiprocessors and compila-
tion techniques, IEEE Transactions on Computers, 29 (1980) 763–776

13. Yang, M., Uh, G.R., Whalley, D.B., Improving performance by branch reordering.
Programming Language Design and Implementation (PLDI), Montreal, Canada,
(1998) 130–141

Age-Oriented Concurrent Garbage Collection

Harel Paz1, Erez Petrank1,�, and Stephen M. Blackburn2

1Dept. of Computer Science, Technion, Haifa 32000, Israel
{pharel, erez}@cs.technion.ac.il

2Dept. of Computer Science, ANU, Canberra ACT 0200, Australia
Steve.Blackburn@anu.edu.au

Abstract. Generational collectors are well known as a tool for shorten-
ing pause times incurred by garbage collection and for improving garbage
collection efficiency. In this paper, we investigate how to best use gener-
ations with on-the-fly collectors. On-the-fly collectors run concurrently
with the program threads and induce very short program pauses. Thus,
the motivation for incorporating generations is focused at improving the
throughput; pauses do not matter, since they are already very short. We
propose a new collection approach, denoted age-oriented collection, for
exploiting the generational hypothesis to obtain better efficiency. This
approach is particularly useful when reference counting is used to collect
the old generation, yielding a highly efficient and non-obtrusive on-the-
fly collector. Finally, an implementation is provided demonstrating how
the age-oriented collector outperforms both the non-generational and the
generational collectors’ efficiency.

1 Introduction

Dynamic memory management and garbage collection is arguably a key factor
in supporting fast and reliable large software products. However, naive garbage
collection algorithms may have undesirable effects on program behavior, most
notably long pauses and reduced throughput3. Generational garbage collection
[20, 27] ameliorates both problems by reducing the average pause times and
increasing efficiency. The basic assumption underlying generational collectors
design is the weak generational hypothesis: “most objects have short lifetimes”.
Given this hypothesis, it makes sense to concentrate the effort on young ob-
jects which are most likely to be unreachable. Generational collectors segregate
objects according to their age into two or more groups called generations, and
run frequent collections of the young generation. Keeping the young generation
small yields frequent short collections that make room for further allocations.
The older generation (or the entire heap) is collected infrequently when space is
exhausted. Full heap collections require long pauses, but are infrequent.

� Research supported by the Bar-Nir Bergreen Software Technology Center of Excel-
lence and by the IBM Faculty Partnership Award.

3 Throughput is the amount of work completed in a fixed time period.

R. Bodik (Ed.): CC 2005, LNCS 3443, pp. 121–136, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

122 H. Paz, E. Petrank, and S.M. Blackburn

If the generational hypothesis is indeed correct, we get several advantages.
First, reducing pauses is achieved for most collections. Second, collections are
more efficient since they concentrate on the young part of the heap where a high
percentage of garbage is found. Finally, the working set size is smaller both for
the program (because it repeatedly reuses the young area) and for the collector
(because most of the collections trace over a smaller portion of the heap).

On-the-Fly Garbage Collection for Multiprocessors
Many garbage collectors work while program threads are stopped. On multi-
processor platforms, it is not desirable to stop the program and perform the
collection in a single thread on one processor, as this leads both to long pause
times and poor processor utilization. A concurrent collector runs concurrently
with the program threads. The program threads may be stopped for a short time
to initiate and/or finish the collection. An on-the-fly collector is a concurrent col-
lector that does not need to stop the program threads simultaneously, not even
for the initialization or the completion of the collection cycle. Such collectors are
targeted at multiprocessors, usually employed as server machines.

1.1 This Work

In this work, we propose a new way, denoted age-oriented collection, to better
exploit the generational hypothesis with concurrent and on-the-fly garbage col-
lectors. Concurrent collectors already achieve short pause times and therefore
the main interest in using the generational hypothesis is to try and improve the
application throughput. An age-oriented collector is defined as follows.

Definition 1: An age-oriented collector is a collector that
– always collects the entire heap (unlike generational collectors),
– during a collection it treats each generation differently (like generational col-

lectors).

Age-oriented collectors differ from generational collectors because the entire
heap is always collected (infrequently). Like the generational framework, an age-
oriented collector may be instantiated in various ways, depending on the choice
of collector for the young generation and the choice of collector for the old
generation. Reasonable instantiations should handle the young generation with
a collector that is efficient with a high death rate, and handle the old generation
with a collector that is efficient with lower death rates. In particular, our flagship
instantiation of the generic age-oriented collector employs reference counting for
the old generation and mark and sweep for the young generation. The complexity
of reference counting is proportional to the number of pointer updates and the
amount of unreachable space. Therefore, it can handle huge live spaces efficiently.
Mark and sweep benefits from a high death rate since its complexity bottleneck
is the scanning of the live objects4.

4 Avoiding the sweep by using copying collectors may be even better for the young
generation, but concurrent versions of copying collectors are not easy to obtain.

Age-Oriented Concurrent Garbage Collection 123

One other instantiation that we have tried (and is now delivered) with the
Jikes RVM is a parallel age-oriented collector denoted copyMS, employing mark
and sweep for the old generation, and copying for the young generation. In this
paper, we focus on the use of concurrent age-oriented collectors, which was most
successful in practice.

We build on three previous on-the-fly collectors.

1. The on-the-fly reference counting collector of Levanoni and Petrank [19].
2. The on-the-fly mark and sweep collector of Azatchi et al. [3].
3. The generational on-the-fly collector of Azatchi and Petrank [4] that uses

collector (2) for the young generation and collector (1) for full heap collec-
tions.

The third (generational) collector that builds on the first two collectors outper-
formed the original collectors. In this paper, we also use the first and second
collector, but we combine them in an age-oriented manner. We show that the
obtained age-oriented collector outperforms even the more efficient third (gen-
erational) collector of [4].

Organization. In Section 2, we introduce the age-oriented framework and our
proposed instantiation. In Section 3, an overview of the original reference count-
ing collector [19] is presented. An overview of the age-oriented collector algo-
rithm is introduced in Section 4. Performance results are described in Section 5.
Related work is discussed in Section 6. We conclude in Section 7.

2 Age-Oriented Collection: Motivation and Overview

Although generational collectors reduce pauses and improve efficiency, they also
impose some overhead. One major overhead is the manipulation of inter-genera-
tional pointers. These are pointers that point from the old generation to the
young generation. If the young generation is collected while the old generation is
not, these pointers must be accounted for: they may be the only evidence that a
young object is reachable. Keeping record of all inter-generational pointers and
using them as roots for the young generation collection poses an overhead. Many
papers investigate reducing this overhead via efficient recording methods (e.g.,
card marking). A second overhead of generational collection is the frequent initi-
ation of young generation collections, which repeatedly involves synchronization
with the program threads, marking of all roots, etc. Using a large young gen-
eration implies less frequent collections and better throughput, but also longer
pauses (for young generation collections).

Previous on-the-fly generational collectors [14, 4] have used a fixed sized
young generation. Using a small fixed sized young generation is useful for the
stop-the-world framework as they shorten most pause times. However, the size
of the young generation does not determine the pause times with on-the-fly

124 H. Paz, E. Petrank, and S.M. Blackburn

collectors5. Hence, we can use a larger young generation in order to achieve better
throughput. It has been noted in [2, 7] that the larger the young generation is,
the more efficient the generational collector gets.

Age-oriented collectors, i.e., collectors which follow definition 1, have the
following advantages over generational collectors. Such collectors use the largest
possible young generation as they collect the old generation each time tomakemore
young generation space. Age-oriented collectors may usually avoid recording inter-
generational pointers because the entire heap is collected and inter-generational
pointers may be determined during the collection. Finally, age-oriented collectors
perform fewer collections than a generational collector. All these properties
potentially make an age-oriented collector more efficient than a generational
collector, when instantiated appropriately. Let us now motivate reference counting
for use with age-oriented collection by making a couple of observations.

First, there is a difference between using tracing and using reference counting
to collect the old generation. A tracing collection work is proportional to the
number of reachable objects, hence there is a (relatively) fixed cost for each full
collection. Delaying a tracing collection of an old generation as far as possible is
desirable as it decreases the accumulated garbage collection work. On the other
hand, the work of reference-counting is proportional to the mutators’ work and
to the number of dead objects. This work is accumulative. Thus, delaying a
reference-counting collection does not decrease the overall garbage collection
work (it only delays and accumulates it).

A second point to note is that on-the-fly collections are triggered way before
the heap gets exhausted in order to let the collection terminate concurrently
before the free space in the heap is exhausted. If the heap does get exhausted,
concurrency is lost as the program threads must wait for the collector to finish
before they can next allocate. Mutators’ halting yields poor processor utilization:
only one processor actually works (while the rest are idle).

Putting the above two observations together we get a good match for using
reference counting with the old generation in an age-oriented collector. First,
when running a collection on-the-fly we may need to trigger it more frequently
to let it terminate on time. Furthermore, whereas a generational collector col-
lects the young generation repeatedly in order to defer as much as possible the
collection of the old generation, an age-oriented collector does not make such
a deferring attempt. When reference counting is used, running a bit more fre-
quent old collections because of the concurrent setting or due to the age-oriented
framework, does not hurt the throughput.

To summarize this motivational discussion with an overview, we instantiate
the age-oriented generic collector by choosing reference counting for the old

5 We normally measure pauses induced by on-the-fly collectors when the number of
program threads is smaller than the number of CPU’s. If the number of threads
exceeds the number of processors, than large pause are induced by threads losing
the CPU to one another. The lengths of such pauses depend on the operating system
scheduler and is not attributed to the garbage collector.

Age-Oriented Concurrent Garbage Collection 125

generation and mark and sweep for the young generation. We build on a previous
generational collector of [4]. The underlying techniques come from [19], which is
reviewed in the next section.

3 Reviewing the Original Reference-Counting Collector

Section 4 describes our age-oriented collector. For completeness, we start with
a review of the sliding-views reference-counting collector [19]. The age-oriented
collector is constructed by adding some simple modifications to this collector.

The sliding-views collector [19] is an on-the-fly collector. It is a reference-
counting collector that eliminates many of the reference count updates by the
following coalescing strategy. Consider a pointer slot p that is assigned the values
o0, o1, o2, . . . , on between two garbage collections. All previous reference counting
collectors execute 2n reference count updates for these assignments: RC(o0)−−,
RC(o1)++, RC(o1)−−, RC(o2)++, . . . , RC(on)++. However, only two updates
are required: RC(o0)−− and RC(on)++.

Suppose the reference counts we have represent the heap view at the previous
collection time and we would like to update them for the current collection time.
In light of the observation above, it suffices to do the following. For each pointer
p that was modified between the two collections:

1. find p’s referent in the previous collection time (corresponding to o0 above)
and decrement its reference count, and

2. find p’s referent in the current collection time (corresponding to on above)
and increment its reference count.

It remains to devise a mechanism that records all pointers that were modified
after the previous collection. Furthermore, this mechanism should provide, for
each such pointer, its referent at the previous collection time and its referent
at the current collection time. To achieve this, a program thread maintains a
local buffer, denoted Updates buffer, in which all updated pointers are logged.
For efficiency, all pointers of an updated object are logged rather than each
single updated pointer. To make sure that each object is logged only once, a
dirty bit per object is employed to signify whether the object is logged. During
a collection, all objects are marked not dirty. Then, at the first time a thread
modifies an object, it marks the object dirty and it logs all its pointers’ previous
referents in the Updates buffer. Further modification to the (dirty) object will
not be recorded. When a new collection begins, the Updates buffer provides all
the information required to update the reference counts: it lists all modified
pointers, and keeps a record of their values before the first modification (these
are the referents of these pointers in the previous collection time). In the current
collection, the collector finds the current referent of the pointer on the heap.

A special case of modified objects are newly created objects. Such objects do
not have referents at the previous collection time since they did not exist then.
Newly created objects are created dirty (to prevent logging in the Updates buffer)
and are logged (upon creation) in a special buffer, denoted the YoungObjects

126 H. Paz, E. Petrank, and S.M. Blackburn

buffer. The collector increments the reference counts of their referents at the
current collection time, but does not need to do any related decrements.

An example appears in Figure 1. It depicts the heap and the buffers in two
subsequent collections, where the view of the former collection appears on the
left side. The YoungObjects buffer contains the six objects that were created
after the last collection. Between the two collections a pointer in A was modified
to reference C. Hence, A was logged in the Updates buffer, together with its
previous referent B (which appears next to A in a smaller font). The collector
uses this information in the following way. It iterates over the objects logged in
the Updates buffer and finds A. It decrements the reference count of B, which is
A’s descendant in the previous collection, and it increments the reference count
of C, A’s descendant at the current collection time. It then iterates over the six

HGFEDCB

Updates buffer
A

YoungObjects buffer

H

FDC

E

Roots

G

YoungObjects bufferUpdates buffer

B

A

Roots

A

B

Fig. 1. An example: heap and buffers view in 2 subsequent collections

H
ea

p
A

dd
re

ss

t1 t2 time

Sliding View

H
ea

p
A

dd
re

ss

t time

Snapshot

Fig. 2. A snapshot view at time t

vs. a sliding view at interval [t1,t2]

X X X XY Y Y Y

Z Z Z Z

into sliding
view.

to reference null. into sliding
view.

Y is recorded Y is modified

Z.

X is set to X is recorded

(d)(a) (b) (c)

Fig. 3. An example in which the reachabil-
ity of Object Z is missed by a sliding view

1. Roots := programRoots ∪ SnoopedObjects
2. for each object logged in Updates do
3. - decrement rc of its previous sliding-view descendants
4. - increment rc of its current sliding-view descendants
5. for each object logged in Y oungObjects do
6. increment rc of its current sliding-view descendants
7. reclaim objects with zero rc which do not belong to Roots recursively

Fig. 4. Reference-Counting: Collection Cycle

Age-Oriented Concurrent Garbage Collection 127

objects in the YoungObjects buffer. It increments the reference counts of their
descendants at the current collection time. For example, for the object F the
reference count of H is incremented.

Virtually, the above algorithm uses a snapshot of the heap. A snapshot at
time t is a copy of the content of each object in the heap at time t. To get an on-
the-fly collector, the program threads are not stopped simultaneously and thus
a snapshot cannot be used. Instead, a collection works with a sliding view of the
heap. A sliding view of the heap is associated with a time interval [t1,t2] (rather
than a single point in time). It provides the content of each object in the heap at
an arbitrary time t, satisfying t1 ≤ t ≤ t2. In contrast to a snapshot, objects are
not all viewed at the same time. Figure 2 depicts the difference between a sliding
view and a snapshot. Using a sliding view for collection introduces a correctness
danger: objects reachability may not be reflected correctly in the view. Figure 3
shows such example, where the reachability of Z is missed in the sliding view,
although it is reachable. A solution to this problem is a snooping mechanism. The
snooping mechanism (via the write-barrier) records any object to which a new
reference is created in the heap during the time interval [t1,t2]. Snooped objects
are considered roots, and are not reclaimed in the current collection cycle.

The main phases of the sliding views algorithm (a simplified version) are
presented in Figure 4. Further details are irrelevant for this paper and can be
found in the original paper [19].

4 The Age-Oriented Collector

This section presents our age-oriented collector. Full details (including pseudo-
code) are omitted for lack of space, and appear in our technical report [22]. Our
age-oriented collector extends the reference counting collector of [19] by using it
for the old generation and adding a tracing collection for the young generation.
The tracing collection is in the spirit of the tracing collector in [3].

The original reference counting collector of [19] iterates over all the young
objects recorded in the YoungObjects buffer, incrementing the reference counts
of their descendants, only to find out later that most of them are dead (assuming
the weak generational hypothesis). Thus, it then decrements the reference counts
of all their descendants (before deleting them). The source of this inefficiency
is that the collector does not know in advance which of the young objects are
dead, and which are reachable. The age-oriented collector avoids this problem
by wisely detecting the roots of the young generation and tracing only the small
number of reachable young objects, updating the reference counts of reachable
young objects and their descendants during the trace.

The main phases of the age-oriented collector (ignoring irrelevant on-the-fly
issues) are presented in Figure 5. As with generational collectors, one needs to
identify all young objects directly referenced by the program roots and by old ob-
jects. We denote these objects youngGenerationRoots. The age-oriented collector
obtains these roots for free from the data structure of the original collector. An
old object that references a young object must have been modified after the pre-

128 H. Paz, E. Petrank, and S.M. Blackburn

1. Roots := programRoots ∪ SnoopedObjects
2. youngGenerationRoots := Y oungObjects ∩ Roots
3. for each object logged in Updates do
4. - decrement rc of its previous sliding-view descendants
5. - increment rc of its current sliding-view descendants, while adding

young objects whose rc is incremented into youngGenerationRoots
6. trace young objects reachable from youngGenerationRoots, while
7. incrementing the rc of each object traced
8. reclaim young objects with zero rc which do not belong to Roots
9. reclaim old objects with zero rc which do not belong to Roots recursively

Fig. 5. Age-Oriented: Collection Cycle

vious collection, as the young object did not exist earlier. All modified objects are
logged in the Updates buffer. After locating the roots, the tracing of the young
generation uses the current sliding views as explained in Section 3. Dead young
objects are freed via sweep on the Y oungObjects buffer and dead old objects
are freed as usual by recursive freeing of the reference counting algorithm.

Example. We use Figure 1 to present the principles of the age-oriented collector.
The previous sliding view is depicted on the left side, and the current sliding
view is depicted on the right. The roots are depicted above the heap and the
old generation (containing A and B) is visibly separated on the left side of the
heap from the young generation, which is depicted on the right side of the heap.
When the age-oriented collector scans the objects logged in the Updates buffer
(line 3 in the pseudo-code of Figure 5), it finds A. It decrements the reference
count of B, its descendant in the previous sliding view (line 4 in the pseudo-
code), and increments the reference count of C, its current sliding-view values
(line 5). The incremented values that belong to the young generation (C) are
considered roots for the young generation tracing (line 5). An additional young
generation root is D which is directly referenced by the program roots (line 2).
Hence, the age-oriented collector traces the young generation from C and D (line
6). In comparison, the original reference counting collector would have iterated
over the six young objects incrementing the reference counts of their current
sliding view, only to find out later that the work spent on F , G, and H was
redundant.

As with any reference counting collector, this age-oriented algorithm cannot
reclaim cyclic data structures in the old generation (cyclic structures in the young
generation are collected immediately). To reclaim such structures, the tracing
sliding view algorithm of [3] is run infrequently on the full heap.

Since the on-the-fly collector we build on [19] does not move objects, the
partitioning to young and old generations is logical (as in [10, 14, 4]). A bit per
object indicates whether the object is young or old. If a young object survives a
collection, it is considered old in the next collection.

Age-Oriented Concurrent Garbage Collection 129

The new collector retains the characteristics of the original collector. In par-
ticular, it is adequate for a multithreaded environment and a multiprocessor
platform, it retains the short pauses of the original collectors, and it has the
potential to be efficient (which indeed is shown in the measurements below).

5 Platforms, Benchmarks, and Measurements

An Implementation for Java. The age-oriented collector was implemented
in the Jikes RVM [1] (using the baseline compiler of version 2.0.3), a research
Java virtual machine. The collector is suitable for any other JVM as well.

Platform and Benchmarks. We run measurements on a 4-way IBM Netfin-
ity 8500R server with a 550MHz Intel Pentium III Xeon processor and 2GB
of physical memory. The benchmarks used were the SPECjvm98 benchmark
suite and the SPECjbb2000 benchmark (described in [24]). The multithreaded
SPECjbb2000 benchmark is more important, as the SPECjvm98 are mostly
single-threaded and our algorithm, being on-the-fly, is targeted at multithreaded
programs running on multi-processors. SPECjbb2000 runs in a single JVM in
which threads represent terminals in a warehouse. It is run with one terminal
per warehouse, thus, the number of warehouses signifies the number of threads.

Testing Procedure. We used the benchmark suite using the test harness, per-
forming standard automated runs of all the benchmarks in the suite. Each bench-
mark was run five times for each of the JVM’s involved (each implementing a
different collector). The average of this 5 runs is reported. Finally, each JVM was
run on varying heap sizes. For the SPECjvm98 suite, we started with a 24MB
heap size and extended the sizes by 8MB increments until a final large size of
96MB. For SPECjbb2000 we started from 256MB heap size and extended by
64MB increments until a final large size of 704MB. It should be noted that Jikes
requires larger sizes than other JVMs because the same heap is used both for
the application and for the data structures of the JVM itself.

The Compared Collectors. The age-oriented collector was tested against 3
collectors. First, against the original reference counting collector [19], denoted
the original collector. Second, against the generational collector of [4], denoted
the generational collector. And finally, against the Jikes parallel stop-the-world
mark and sweep collector. Recall that the second (generational) collector of
[4] is a collector that builds on exactly the same two collectors of [19, 3], but
it combines them in the standard generational manner, whereas we combined
them according to the age-oriented framework.

5.1 Comparison with Related On-the-Fly Collectors

SPECjbb2000. In Figure 6 we report the throughput results for the genera-
tional collector and the age-oriented collector against the original collector with
the SPECjbb2000 benchmark. With 1-3 warehouses, the collectors do not differ

130 H. Paz, E. Petrank, and S.M. Blackburn

250 300 350 400 450 500 550 600 650 700 750
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

T
hr

ou
gh

pu
t r

at
io

 a
ga

in
st

 L
ev

an
on

i−
P

et
ra

nk

Heap size[MB]

jbb1 − Multiprocessor

generational
age−oriented

250 300 350 400 450 500 550 600 650 700 750
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

T
hr

ou
gh

pu
t r

at
io

 a
ga

in
st

 L
ev

an
on

i−
P

et
ra

nk

Heap size[MB]

jbb2 − Multiprocessor

generational
age−oriented

250 300 350 400 450 500 550 600 650 700 750
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

T
hr

ou
gh

pu
t r

at
io

 a
ga

in
st

 L
ev

an
on

i−
P

et
ra

nk

Heap size[MB]

jbb3 − Multiprocessor

generational
age−oriented

250 300 350 400 450 500 550 600 650 700 750
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

T
hr

ou
gh

pu
t r

at
io

 a
ga

in
st

 L
ev

an
on

i−
P

et
ra

nk

Heap size[MB]

jbb4 − Multiprocessor

generational
age−oriented

250 300 350 400 450 500 550 600 650 700 750
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

T
hr

ou
gh

pu
t r

at
io

 a
ga

in
st

 L
ev

an
on

i−
P

et
ra

nk

Heap size[MB]

jbb5 − Multiprocessor

generational
age−oriented

250 300 350 400 450 500 550 600 650 700 750
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

T
hr

ou
gh

pu
t r

at
io

 a
ga

in
st

 L
ev

an
on

i−
P

et
ra

nk

Heap size[MB]

jbb6 − Multiprocessor

generational
age−oriented

250 300 350 400 450 500 550 600 650 700 750
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

T
hr

ou
gh

pu
t r

at
io

 a
ga

in
st

 L
ev

an
on

i−
P

et
ra

nk

Heap size[MB]

jbb7 − Multiprocessor

generational
age−oriented

250 300 350 400 450 500 550 600 650 700 750
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

T
hr

ou
gh

pu
t r

at
io

 a
ga

in
st

 L
ev

an
on

i−
P

et
ra

nk

Heap size[MB]

jbb8 − Multiprocessor

generational
age−oriented

Fig. 6. SPECjbb2000 on a multiprocessor: throughput ratio of the generational and the
age-oriented collector for 1-8 warehouses. The higher the ratio, the better the measured
collector performs compared to the original reference counting collector. jbbi stands
for running with i terminals, i.e., i program threads

Age-Oriented Concurrent Garbage Collection 131

much, as they run concurrently on a spare processor (on our 4-way machine), and
usually manage to handle all their work while mutators are running. With 4-8
warehouses, the collector shares a processor with the program threads (yet, given
a higher priority). Thus, the efficiency of the collector influences the through-
put of the whole system. The results show that the age-oriented collector sub-
stantially outperforms the generational collector, which already performs better
than the original collector. The superiority of the age-oriented collector is usually
higher with (relatively) small heaps where more garbage collections are required.
The generational collector is less efficient on tight heaps, since full collections
cannot be postponed much. The improvements of the age-oriented are less vis-
ible with larger heaps simply because there are fewer collections, and less time
spent on collections.

SPECjvm98. Figure 7 presents comparison of the age-oriented collector with
the original collector and with the generational collector over all the suite’s
benchmarks6. When running the SPECjvm98 benchmarks on a multiprocessor,
the collector thread can run on a designated processor and hardly influence the
throughput7. The results show that the age-oriented collector performs slightly
better than both the original collector and the generational collector. Large vari-
ations in performance are especially noticeable with 213 javac. The reason for
these fluctuations is that 213 javac creates many garbage cycles in the old gen-
eration. All three collectors (the age-oriented, the generational and the original)
rely on a backup tracing collector to collect these cycles. Collection of these
cycles is triggered at irregular times resulting in the observed fluctuations.

5.2 Comparison to a Stop-the-World Collector

Using an on-the-fly collector leads to extremely short pause times, but has a
throughput cost. To measure this cost, we have compared the performance of the
age-oriented collector against the Jikes parallel stop-the-world mark and sweep
collector. In this comparison, the multithreaded SPECjbb2000 was run on a 4-
way platform, and SPECjvm98 benchmarks were run on a uniprocessor. The
results, appearing in figure 8, show that unless the heap is tight (and then the
mutators exhaust the heap before the concurrent collector is done) the overhead
incurred by running the collector concurrently is up to 10%. Obtaining short
pauses normally require a pay in the throughput. A 10% throughput reduction
is considered a small pay for a two orders of magnitude reduction in the pause
times (see pause time measurements in Section 5.3 below). The tight conditions
highlight the advantage of parallel collectors in this setting. Parallel collectors
always exploit all CPUs, while our on-the-fly collector uses only one processor
while all program threads wait for free space to allocate. An exception is seen

6 Measurements of 222 mpegaudio and 201 compress are not presented.
222 mpegaudio does not perform meaningful allocation activity. 201 compress
heavily depends on a tracing collector as it creates substantial garbage cycles, so its
measurements are not relevant for a comparison to a reference counting collector.

7 Further uniprocessor results are given in our technical report [22].

132 H. Paz, E. Petrank, and S.M. Blackburn

20 30 40 50 60 70 80 90 100
0.95

1

1.05

1.1

1.15
R

un
 ti

m
e

ra
tio

: a
ge

 o
rie

nt
ed

/L
ev

an
on

i−
P

et
ra

nk

heap size[MB]

SPECjvm98 − Multiprocessor

Jess
Db
Javac
Mtrt2
Jack

20 30 40 50 60 70 80 90 100
0.95

1

1.05

1.1

1.15

R
un

 ti
m

e
ra

tio
: a

ge
 o

rie
nt

ed
/g

en
er

at
io

na
l

heap size[MB]

SPECjvm98 − Multiprocessor

Jess
Db
Javac
Mtrt2
Jack

Fig. 7. SPECjvm98 on a multiprocessor: run-time ratio of the age-oriented collector
compared to the original collector (left) and compared to the generational collector
(right). The higher the ratio, the better the age-oriented collector performs compared
to the other collector

250 300 350 400 450 500 550 600 650 700 750
0.8

0.85

0.9

0.95

1

1.05

T
hr

ou
gh

pu
t r

at
io

Heap size[MB]

SPECjbb2000 − Against Jikes parallel

jbb1
jbb2
jbb3
jbb4
jbb5
jbb6
jbb7
jbb8

30 40 50 60 70 80 90 100
0.8

0.85

0.9

0.95

1

1.05

1.1

R
un

 ti
m

e
ra

tio

heap size[MB]

SPECjvm98 − Against Jikes parallel

Jess
Db
Javac
Mtrt
Jack

Fig. 8. SPECjbb2000 on a multiprocessor (left) and SPECjvm98 on a uniprocessor
(right): comparison against Jikes parallel mark and sweep collector. The higher the
ratio, the better the age-oriented collector performs compared to Jikes collector

with the 213 javac benchmark. This benchmark creates cycles that are promoted
to the old generation and die there. Since the age-oriented collector employs
reference-counting with the old-generation, it does not collect these garbage
cycles, causing frequent garbage collection invocations.

5.3 Pause Times

Table 1 presents the maximum pause times of the age-oriented collector and
Jikes parallel collector. Pauses were measured with a 64MB heap for SPECjvm98
benchmarks, and a 256MB heap for SPECjbb2000 with 1, 2, and 3 warehouses.
For this number of threads, no thread gets swapped out, and so pauses are due
to the garbage collection only. If we run more program threads, large pause

Age-Oriented Concurrent Garbage Collection 133

Table 1. Maximum pause time in milliseconds

Maximum pause time(ms) compress jess db javac mtrt jack jbb-1 jbb-2 jbb-3
Age-oriented 1.0 1.7 1.1 2.1 1.4 1.2 1.1 1.4 1.9
Jikes Parallel 195 261 188 643 225 376 322 417 511

times (whose lengths depend on the operating system scheduler) appear because
threads lose the CPU to other threads.

The maximum pause time of 2.1ms, measured for the age-oriented collector,
is two orders of magnitude shorter than that of Jikes parallel collector. The
length of the age-oriented pause time is dominated by the time it takes to scan
the roots of a single thread (occurring in one of the handshakes). This operation
also dominates the pause time of the previous on-the-fly collectors [19, 4], and
thus their pause times are similar (see [19, 4] for specific measurements of pause
times for these collectors). Hence, the age-oriented collector achieves a significant
throughput improvement over the original reference counting collector and over
the generational collectors, while retaining the short pause times.

It is important to note that the pauses induced by the collector do not hap-
pen frequently. If pauses of 2ms occurred once every 3ms, then pause times
would loose their meaning and we should look at mutator’s minimum utilization
(MMU). However, in our case, the pauses form a negligible part of the collection
cycle, and are split far apart from each other.

6 Related Work

Generational garbage collection was introduced by Lieberman and Hewitt [20],
and the first published implementation was by Ungar [27]. Both algorithms aimed
to reduce the running time of most collections by focusing on the young objects.

Appel [2] presented a generational collector with variable young generation
size: all its free space is devoted to the young generation. When the young gen-
eration becomes full, it collects the young generation, copying surviving objects
to the older generation, and reducing the young generation size by this space.
Major collections are executed only when the old generation occupies the entire
heap. We push this idea further by proposing to always collect the old generation
together with the young generation to make room for a large young generation.

Demers, et al. [10] presented a generational collector which does not move
objects, hence appropriate for conservative garbage collection. They partition the
heap logically (instead of physically separating between generations) by keeping a
bit per object indicating whether it is young or old. We adopt this idea. However,
their collector is not concurrent.

The study of on-the-fly garbage collectors was initiated by Steele and Dijk-
stra, et al. [25, 26, 11] and continued in a series of papers culminating in [14, 5, 17,
19, 3]. The advantage of an on-the-fly collector over a parallel collector and other
types of concurrent collectors [6, 23, 9, 15, 16, 18], is that it avoids the operation
of stopping all the program threads and incurs very short pauses.

134 H. Paz, E. Petrank, and S.M. Blackburn

Incorporations of generational collectors into on-the-fly collectors were done
by Domani et al. [14], and by Azatchi and Petrank [4]8. Both works employed
fixed-sized young generation and both showed that combining generations with
on-the-fly collectors may be useful. Domani et al. used the Doligez-Leroy-Gonthier
mark and sweep collector [13, 12] both for the collection of the young generation
and the collection of the full heap. The generational collector of [4] used the same
basic collectors that we use here for the age-oriented collector. Results show that
using these collectors for an age-oriented collection is more efficient than using
them for a generational collection.

Blackburn and McKinley [8] implemented a uniprocessor stop-the-world gen-
erational collector with reference counting for the old generation and copying
for the young. Their goal was to shorten the pauses a stop-the-world reference
counting incurs, while obtaining good throughput. They run part of the old gen-
eration collection together with the young collection in order to avoid the need
for a full collection that requires a long pause. The (controlled) pause times
they obtain are an order of magnitude larger than those obtained by on-the-fly
collectors.

7 Conclusion

We have proposed a framework of garbage collectors called age-oriented collec-
tors. These collectors exploit the generational hypothesis in a different manner
than standard generational collectors. Instead of running frequent young gener-
ation collections, the entire heap is collected infrequently, but young objects are
treated differently from old objects. An age-oriented collector does not need to
record inter-generational pointers, and avoids the overhead of initiating frequent
young generation collections. The most fitting use of age-oriented collectors is
with on-the-fly collectors and particularly when the old generation is collected
via reference counting.

We have designed and implemented an instantiation of an age-oriented collec-
tor, based on the reference counting collector of [19] and the tracing collector of
[3], in which reference counting collects the old objects and mark and sweep col-
lects the young objects. This age-oriented collector was implemented on the Jikes
RVM. Our measurements show that this collector maintains the short pauses of
the original collectors and significantly outperforms both the original reference
counting collector as well as the generational variant.

Acknowledgements. We thank Elliot (Hillel) Kolodner for helpful discussions,
and Michael Philippsen for the numerous helpful remarks on improving the read-
ability of this manuscript.

8 A partial incorporation of generations with an on-the-fly collector was used by
Doligez, Leroy, and Gonthier [13, 12]. The whole scheme depends on the fact that
many objects in ML are immutable. This is not true for Java and other imperative
languages. Furthermore, the collection of the young generation is not concurrent.

Age-Oriented Concurrent Garbage Collection 135

References

1. Bowen Alpern, C. R. Attanasio, Anthony Cocchi, Derek Lieber, Stephen Smith,
Ton Ngo, John J. Barton, Susan Flynn Hummel, Janice C. Sheperd, and Mark
Mergen. Implementing Jalapeño in Java. In ACM Conference on Object-Oriented
Systems, Languages and Applications, 34(10), pages 314–324, 1999.

2. Andrew W. Appel. Simple generational garbage collection and fast allocation.
Software Practice and Experience, 19(2):171–183, 1989.

3. Hezi Azatchi, Yossi Levanoni, Harel Paz, and Erez Petrank. An on-the-fly mark
and sweep garbage collector based on sliding view. In OOPSLA [21].

4. Hezi Azatchi and Erez Petrank. Integrating generations with advanced reference
counting garbage collectors. In Proceedings of the 12th International Conference
on Compiler Construction, CC 2003, volume 2622 of LNCS, pages 185–199, 2003.

5. David F. Bacon, Clement R. Attanasio, Han B. Lee, V. T. Rajan, and Stephen
Smith. Java without the coffee breaks: A nonintrusive multiprocessor garbage
collector. In Proceedings of Conference on Prog. Lang. Design and Impl., 2001.

6. Henry G. Baker. List processing in real-time on a serial computer. Communications
of the ACM, 21(4):280–94, 1978.

7. Stephen M. Blackburn, Richard Jones, Kathryn S. McKinley, and J. Eliot B. Moss.
Beltway: Getting around garbage collection gridlock. In Proceedings of SIGPLAN
2002 Conference on Prog. Lang. Design and Impl., pages 153–164, 2002.

8. Stephen M. Blackburn and Kathryn S. McKinley. Ulterior reference counting: Fast
garbage collection without a long wait. In OOPSLA [21].

9. Hans-Juergen Boehm, Alan J. Demers, and Scott Shenker. Mostly parallel garbage
collection. ACM SIGPLAN Notices, 26(6):157–164, 1991.

10. Alan Demers, Mark Weiser, Barry Hayes, Daniel G. Bobrow, and Scott Shenker.
Combining generational and conservative garbage collection: Framework and im-
plementations. In 17 ACM Symp. on Prin. of Prog. Lang., pages 261–269, 1990.

11. Edsgar W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and E. F. M.
Steffens. On-the-fly garbage collection: An exercise in cooperation. Communica-
tions of the ACM, 21(11):965–975, November 1978.

12. Damien Doligez and Georges Gonthier. Portable, unobtrusive garbage collection
for multiprocessor systems. In 21 ACM Symp. on Principles of Prog. Lang., 1994.

13. Damien Doligez and Xavier Leroy. A concurrent generational garbage collector
for a multi-threaded implementation of ML. In the Twentieth ACM Symp. on
Principles of Prog. Lang., pages 113–123. January 1993.

14. Tamar Domani, Elliot Kolodner, and Erez Petrank. A generational on-the-fly
garbage collector for Java. In Proceedings of SIGPLAN 2000 Conference on Pro-
gramming Languages Design and Implementation.

15. Toshio Endo, Kenjiro Taura, and Akinori Yonezawa. A scalable mark-sweep
garbage collector on large-scale shared-memory machines. In Proceedings of High
Performance Computing and Networking (SC’97), 1997.

16. Christine Flood, Dave Detlefs, Nir Shavit, and Catherine Zhang. Parallel garbage
collection for shared memory multiprocessors. In Usenix Java Virtual Machine
Research and Technology Symposium (JVM ’01), April 2001.

17. Richard L. Hudson and J. Eliot B. Moss. Sapphire: Copying GC without stopping
the world. In Joint ACM Java Grande — ISCOPE 2001 Conference.

18. Elliot K. Kolodner and Erez Petrank. Parallel copying garbage collection using
delayed allocation. In Parallel Processing Letters, volume 14, June 2004.

19. Yossi Levanoni and Erez Petrank. An on-the-fly reference counting garbage collec-
tor for Java. In ACM Conf. on Object-Oriented Systems, Lang. & Appl., 2001.

136 H. Paz, E. Petrank, and S.M. Blackburn

20. Henry Lieberman and Carl E. Hewitt. A real-time garbage collector based on the
lifetimes of objects. Communications of the ACM, 26(6):419–429, 1983.

21. OOPSLA’03 ACM Conf. on Object-Oriented Systems, Lang. & Applications, 2003.
22. Harel Paz and Erez Petrank. Age-oriented garbage collection. Technical Re-

port CS-2003-08, Technion, Israel, October 2003. http://www.cs.technion.ac.il/
users/wwwb/cgi-bin/tr-info.cgi?2003/CS/CS-2003-08.

23. Tony Printezis and David Detlefs. A generational mostly-concurrent garbage col-
lector. In Tony Hosking, editor, Proceedings of the Second International Symp. on
Memory Management, volume 36(1) of ACM SIGPLAN Notices, October 2000.

24. SPEC Benchmarks. Standard Performance Evaluation Corporation.
http://www.spec.org/, 1998,2000.

25. Guy L. Steele. Multiprocessing compactifying garbage collection. Communications
of the ACM, 18(9):495–508, September 1975.

26. Guy L. Steele. Corrigendum: Multiprocessing compactifying garbage collection.
Communications of the ACM, 19(6):354, June 1976.

27. David M. Ungar. Generation scavenging: A non-disruptive high performance stor-
age reclamation algorithm. ACM SIGPLAN Notices, 19(5):157–167, April 1984.

Optimizing C Multithreaded Memory Management
Using Thread-Local Storage

Yair Sade1, Mooly Sagiv2, and Ran Shaham3

1 Tel-Aviv University
{sadeyair, msagiv}@post.tau.ac.il �

2 Tel-Aviv University
3 IBM Haifa Laboratories
rans@il.ibm.com

Abstract. Dynamic memory management in C programs can be rather costly.
Multithreading introduces additional synchronization overhead of C memory man-
agement functions (malloc, free). In order to reduce this overhead, we ex-
tended Hoard — a state of the art memory allocator with the ability to allocate
thread-local storage. Experimental results using the tool show runtime saving of
up to 44% for a set of memory management benchmarks.

To allow transparent usage of thread-local storage, we develop a compile-time
algorithm, which conservatively detects allocation sites that can be replaced by
thread-local allocations. Our static analysis is sound, i.e., every detected thread-
local storage is indeed so, although we may fail to identify opportunities for
allocating thread-local storage. Technically, we reduce the problem of estimating
thread-local storage to the problem of escape analysis and provide an efficient
escape analysis for C. We solve the problem of escape analysis for C using exist-
ing points-to analysis algorithms. Our solution is parameterized by the points-to
information. We empirically evaluated the solution with two different methods for
computing points-to information. The usage of scalable points-to analysis algo-
rithms and the fact that our reduction is efficient, guarantees that our static analysis
technique is scalable.

1 Introduction

This paper addresses the problem of reducing the overhead of memory management
functions in multithreaded C applications by combining efficient allocation libraries
with compile-time static pointer analysis techniques.

1.1 Multithreaded Memory Management Performance

Memory allocation in C programs can be costly in general; multithreading functions
add additional complexity. Memory management implementations in C usually con-
sist of a global heap. The malloc function acquires a memory block from the global

� Supported in part by a grant from the Israeli Academy of Science.

R. Bodik (Ed.): CC 2005, LNCS 3443, pp. 137–155, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

138 Y. Sade, M. Sagiv, and R. Shaham

heap and the free function returns the memory block into the heap. The global heap
data-structure is shared among the process threads. In order to protect this shared data-
structure from concurrent accesses and race conditions, accesses are synchronized by
locking primitives such as mutexes or critical-sections. This synchronization may de-
grade performance due to the following reasons: (i) on multithreaded environments,
threads that call memory management functions concurrently are blocked by the locks;
(ii) once a thread is blocked, an expensive context-switch occurs; (iii) the lock primitives
can have an overhead even if no block occurs.

On SMP machines the problem can become acute and cause an application perfor-
mance bottleneck. It can happen when threads that are executed on different processors
call memory management functions concurrently. Those threads are blocked by the lock
primitives and the blocked processors become unutilized. This reduces the application
parallelism and may reduce throughput.

1.2 Existing Solutions

There are two main approaches for improving the performance of memory management
routines in multithreaded applications: (i) runtime solutions, and (ii) programmable solu-
tions. Runtime solutions usually provide an alternative multithreaded-efficient memory
management implementation [8, 11, 21]. In programmable solutions, the programmer
develops or exploits application-specific custom allocators, for example memory-pools
or thread-local arenas as in [1].

Runtime approaches only mitigate performance degradation — even the most effi-
cient memory management implementations have a synchronization overhead. In pro-
grammable approaches, the programmer has to design the application to work with a
custom allocator, which is not an easy task on large-scale applications, and almost im-
possible on existing systems. Moreover, programmable solutions are error prone and
might cause new bugs. Finally, in [9] it is shown that in most cases custom allocators do
not improve the performance of the applications at all.

1.3 Our Solution

Thread-Local Storage Allocator. We extended Hoard — a state of the art memory
allocator [8] by adding the ability to allocate thread-local storage. Thread-local storage
is a memory location, which is allocated and freed by a single thread. Therefore, there is
no need to synchronize allocation and deallocation of thread-local storage. Specifically,
we enhance the memory management functions with two new functions, tls malloc
and tls free. The tls malloc function acquires storage from a thread-local heap,
and the tls free function deallocates storage acquired in a thread-local heap. Both
functions manipulate the thread-local heap with no synchronization.

Additional benefit of thread-local storage is better utilization of the processor’s cache.
Modern processors maintain a cache of the recently used memory. The processor’s cache
saves accesses to the memory which are relatively expensive operations. When a thread is
mainly executed on the same processor, the locality of the thread-local storage allocations
improves the processor’s cache utilization.

Optimizing C Multithreaded Memory Management 139

Statically Estimating Thread-Local Storage. Employing thread-local storage by pro-
grammers in a language like C is far from trivial. The main difficulty is deciding whether
an allocation statement can be replaced by tls malloc. Pointers into shared data can
be accessed by multiple threads, thus complicating the task of correctly identifying
thread-local storage. Therefore, in this paper, we develop automatic techniques for con-
servatively estimating thread-local storage. This means that our algorithm may fail to
identify certain opportunities for using tls malloc. However, storage detected as
tls malloc is guaranteed to be allocated and freed by the same thread. Thus, our
solution is fully automatic.

The analysis conservatively detects whether each allocation site can be replaced by
tls malloc. This is actually checked by requiring that every location allocated by
this statement cannot be accessed by other threads. In particular, it guarantees that all
deallocations are performed in the code of this thread. Therefore, our algorithms may
be seen as a special case of escape analysis, since thread-local storage identified by our
algorithm may not escape its allocating thread. We are unaware of any other escape
analysis for C.

Our analysis scales to large code bases. Scalability is achieved by developing a flow-
and context-insensitive algorithm. Furthermore, our algorithm performs simple queries
on a points-to graph in order to determine which allocation site may be accessed by other
threads.Thus,existingflow-insensitivepoints-toanalysisalgorithms[7, 27, 30, 14, 15, 18]
can be exploited by our analysis. This also simplifies the implementation of our method.

Empirical Evaluation. We have fully implemented our algorithm to handle arbitrary
ANSI C programs. Our algorithm is parameterized by the points-to information. Thus
the precision of the analysis is directly affected by the precision of the points-to graph.
In particular, the way structure fields are handled can affect precision. We therefore
integrated our algorithm with two points-to analysis algorithms: Heinze’s algorithm
[18], which handles fields very conservatively, and GrammaTech’s CodeSurfer points-
to algorithm [30]. CodeSurfer handles fields in a more precise manner.

We have tested our implementation on a set of 7 memory management benchmarks
used by Hoard and other high performance allocators. We verified that on the memory
management benchmarks our static analysis precisely determines all opportunities for
use of tls malloc instead of malloc.

The standard memory management benchmarks are somewhat artificial. Thus, we
also applied our static algorithm to work with a multithreaded application that uses
Zlib [5], the popular compression library. Finally, we applied our algorithm on
OpenSSL-mttest which is a multithreaded test of the OpenSSL cryptographic li-
brary [4].

For 3 of the memory management benchmarks, there are no opportunities for replac-
ing malloc with tls malloc. On the other 4 memory management benchmarks, we
achieve up to 44% speedup due to use of thread-local storage. This is encouraging, given
that Hoard is highly optimized for speed.

For the Zlib library, our static algorithm detected the opportunities for using
tls malloc instead of malloc. We achieved a speedup of up to 20% over Hoard

140 Y. Sade, M. Sagiv, and R. Shaham

by using the thread-local storage allocator. This result shows the potential use of our
methods on more realistic applications.

On OpenSSL-mttest our static algorithm fails to detect opportunities for thread-
local storage. However, inspecting the runtime behavior of this benchmark, we find that
only a negligible amount of the allocated memory during the run is actually thread-
local. Therefore, even an identification of some thread-local storage for this benchmark
is not expected to yield any performance benefits. Nevertheless, the application of our
algorithm on OpenSSL demonstrates the scalability of our tool for handling large code
bases.

1.4 Related Work

Static Analysis. We reduce the problem of thread-local storage detection to the problem
of escape analysis for C. In this paper we developed an escape analysis algorithm that uses
an existing points-to algorithm. Our analysis uses points-to information generated by any
flow-insensitive points-to analysis. Flow-sensitive points-to algorithms are more precise
but less suitable for multithreaded programs, due to the thread interaction that needs
to be considered. Our analysis can use either context-sensitive or context-insensitive
points-to analysis algorithms.

There are two commonly used techniques for performing flow-insensitive points-
to analysis: (i) unification-based points-to analysis suggested by Steensgaard [27], (ii)
inclusion-based points-to analysis suggested by Andersen [7]. Generally, the unification
method is more scalable but less precise. The GOLF algorithm [14, 15] is a unification-
based implementation with additional precision improvements.

In our prototype, we used the following points-to analysis algorithms: (i) GrammaT-
ech’s CodeSurfer [30], (ii) Heintze’s points-to analysis [17, 18]. Both algorithms are
context-insensitive algorithms based on Andersen’s analysis. A specialized flow- and
context-sensitive points-to algorithm that is specialized for multithreaded programs, is
that of Rugina and Rinard [24]. The algorithm is used for multithreaded programs writ-
ten in Cilk, an extension of C. Another efficient context-sensitive points-to analysis is
Wilson and Lam analysis [29].

In this paper, we study the problem of thread-local storage identification through
escape analysis for C programs and the performance benefits obtained through the use
of thread-local storage. Escape analysis for Java has been studied extensively [13, 10, 12,
6, 23, 26] and was employed for thread-local storage in [28]. We note that there are several
differences between C and Java, which make our task non-trivial. First, in contrast to Java,
C programs may include unsafe casting, pointers into the stack, multilevel pointers, and
pointer arithmetic. These features complicate the task of developing sound and useful
static analysis algorithms for C programs. Second, explicit memory management is
supported in C, whereas Java employs automatic memory management, usually through
a garbage collection mechanism. In [11] Boehm observes that a garbage collector may
incur less synchronization overhead than in explicit memory management. This is due
to the fact that many objects can be deallocated in the same GC cycle, while explicit
memory management requires synchronization for everyfree. Our thread-local storage
allocator reduces the above synchronization overhead by providing synchronization-free
memory management constructs.

Optimizing C Multithreaded Memory Management 141

Of course it should be noted that our analysis for C is made simpler since it does
not need to consider Java aspects such as inheritance, virtual method calls and dynamic
thread allocation. The difficulties that rise in escape analysis for C programs are han-
dled by the underlying points-to algorithms. The points-to algorithms for C are rather
conservative, but interestingly they provide good empirical results when analyzing the
memory management benchmark programs.

In [28] Steensgard describes an algorithm for allocating thread-local storage in Java
using the unification-based points-to analysis described in [27]. Our simple static al-
gorithm can use an arbitrary points-to algorithm. Our prototype implementation uses
inclusion-based points-to analysis algorithms which are potentially more precise. In-
deed, one of the interesting preliminary conclusions from our initial experiments is that
in many C programs thread-local storage can be automatically identified despite the fact
that C allows more expressive pointer manipulations.

Multithreaded Memory Allocation for C. In [19] Larson studies multithreading sup-
port and SMP scalability in memory allocators. Berger’s Hoard allocator [8] is an ef-
ficient multithreaded allocator. In the paper we extend Hoard to support an efficient
thread-local storage allocation. In [21], Maged shows an extension of Hoard with an
efficient lock handling based on hardware atomic operations. In [11], Boehm suggests
a scalable multithreaded automatic memory management for C programs.

1.5 Contributions

The contributions of this paper can be summarized as follows:

– A new generic and scalable escape analysis algorithm targeted for C. The input to our
static algorithm is points-to information obtained by any flow-insensitive points-to
algorithm.

– Static estimation of thread-local storage allocations.
– Extending an existing allocator with high performance treatment of thread-local

storage.
– Empirical evaluation which shows rather precise static analysis algorithms resulting

in significant runtime performance improvements.

1.6 Outline of the Rest of This Paper

The remainder of the paper is organized as follows: Section 2 provides an overview of
our work. Section 3 describes our thread-local storage allocator. In Section 4 the static
analysis algorithm is described. Empirical results are reported in Section 5. Preliminary
conclusions and further work are sketched in Section 6.

2 Overview

This section provides an overview of the capabilities of our technique by showing its
application to artificial program fragments. These fragments are intended to give a feel
of the potential and the limitations of our algorithms.

142 Y. Sade, M. Sagiv, and R. Shaham

2.1 Escaped Locations and C Multithreading

C programs consist of three types of memory locations:

Stack Locations. Stack locations are allocated to automatic program variables and by
the alloca function.

Global Locations. Static and global variables are allocated in global locations.
Heap Locations. Heap locations are the dynamically allocated locations.

Multithreading is not an integral part of the C programming language. In this paper,
we follow the POSIX thread standard. Inter-thread communication in pthreads
is performed by pthread create function, which creates a thread and passes an
argument to the thread function. The argument may point to memory locations that
are accessible by the creator thread. After invoking the pthread create function,
these memory locations are also accessible by the new thread. However, our method can
also support different thread implementations with other inter-thread communication
methods such as message-passing or signals. Finally, we assume that each thread owns
its own stack.

We say that a heap-location escapes in a given execution trace when it is accessed
by different threads than the one in which it was allocated. A heap-location that does
not escape on any execution trace, is accessible only by a single thread. Therefore, it is
allocated and freed by the same thread. Hence, the allocation statement can be replaced
by tls malloc.

Our static analysis algorithm conservatively estimates whether a location may escape.
The estimation is performed by checking the following criteria: (i) global locations as
well as locations which may be pointed by global pointers may escape; (ii) locations
passed between threads by the operating system’s inter-thread-communication functions
and locations reachable from these locations may escape. Allocation of locations that
do not meet the above criteria are guaranteed to be accessible by a single thread [25],
thus are allocated using tls malloc.

Clearly, our algorithm is conservative and may therefore detect a certain location as
“may-escape” while there is no program execution in which this location escapes. This
may result in missing some opportunities for using thread-local storage.

2.2 Motivating Example

Figure 1 shows a program fragment that uses the pthread implementation of threads.
This program creates a thread by using the pthread create function, and waits for
its termination by using the pthread join function.

Our static algorithm detects the allocation in line 1 as a thread-local storage allocation
and replaces it with tls malloc. The location that is pointed by the assigned variable
l is accessible by a single thread. Specifically, it is allocated and freed by the foo
thread. In this case, static analysis can trivially detect the latter, since l is assigned once.
Therefore, this allocation statement can be allocated on the thread-local heap of foo.
In principle, the free statement in line 2 could be replaced by tls free. However, as
explained in Section 3.2 we extend the free statement implementation to support the
deallocation of thread-local storage with negligible overhead, thus it is also possible to
avoid replacements of the free statement with tls free.

Optimizing C Multithreaded Memory Management 143

#include <stdio.h>
#include <pthread.h>
char *g;
void foo(void *p){
char *l;
1: l = malloc(...); // Is tls malloc?
2: free(l);
3: free(p);
4: g = malloc(...); // Is tls malloc?
5: free(g);

}
int main(int argc, char **argv) {
char *x, *q;
pthread t t;
6: x = malloc(...); // Is tls malloc?
7: q = x;
8: if (get input()){

9: pthread create(&t, NULL, foo, q);
10: pthread join(t, NULL);

}
11: else {

12: free(x);
}
13: return 0;

}

Fig. 1. A sample C program

One can mistakenly conclude that the malloc in line 6 can be replaced by
tls malloc. At first glance, it seems that the location allocated in line 6 and freed in
line 12 is allocated and freed by the same thread and can therefore be allocated on the
thread-local storage. However, if we observe more closely, we can see that in line 7, that
location is assigned to the pointer q, if the condition in line 8 holds, we execute line 9
on which q is passed as a parameter to the thread function foo, and then it is finally
freed in line 3. Thus, on some executions, the location allocated in line 6 may be freed
by a different thread and therefore it cannot be allocated on the thread-local storage.
Our static algorithm correctly identifies that by observing that q is passed as a parameter
to another thread, and therefore marks the memory locations that q may points-to as
accessible by multiple threads. The flow-insensitive points-to analysis tracks the fact
that x and p are aliases to the location that is allocated in line 6. Therefore, that location
violates the conditions for thread-local storage allocation. Of course, manually tracking
pointer values for complex applications is not a trivial task and it is error prone.

The allocation in line 4 pointed by g is allocated and freed by the same thread —
the foo thread, and can therefore be safely allocated on the thread-local storage and
replaced bytls malloc. However, our static algorithm will fail to identify the memory
allocated in line 4 as thread-local. This is due to the fact that memory allocated in line 4

144 Y. Sade, M. Sagiv, and R. Shaham

is pointed by the global variable g, making it accessible by both the main and the foo
threads.

3 Thread-Local Storage Allocator

Our allocator is based on the Hoard [8] allocator which is briefly described in Section 3.1.
In Section 3.2 we describe our extensions to allow thread-local storage support in Hoard.

3.1 The Hoard Allocator

Hoard is a scalable memory allocator for multithreaded applications running on mul-
tiprocessor machines. It addresses performance issues such as contentions, memory
fragmentation, and cache-locality. In particular, it reduces contentions by improving
lock implementation and by avoiding global locks. Hoard manages a dedicated heap for
each processor. The use of dedicated processor heaps reduces the contention and also
improves the processor cache locality.

Hoard maintains two kinds of heaps: (i) a processor heap which belongs to a pro-
cessor, and (ii) a global heap which is one heap for the entire process. Each heap is
synchronized using locks. The global heap is backed by the operating system memory
management routines4. The fact that a thread is mostly executed on the same processor
helps in synchronization reduction since its processor’s heap should be unlocked when
it calls the allocator. Contention may occur if the thread is accessing the processor heap
from a different processor.

The processor heap and the global heap contain super-blocks, where a super-block is
a pool of memory blocks of the same size. When a thread attempts to allocate memory,
Hoard first tries to acquire it from its thread heap super-blocks, then (if there is no
memory available in these blocks), it attempts to allocate a super-block from the global
heap and assigns the block to the current processor. As a last resort Hoard attempts to
allocate memory from the operating system.

Hoard improves the performance significantly, however, a synchronization con-
tention may still frequently occur for the global heap (and less frequently for the processor
heap). Our extensions to Hoard reduce these kinds of synchronization contention.

3.2 Hoard Extensions

We extend Hoard to allow support for thread-local heaps. In particular, we enhance the
memory management functions with two new functions, tls malloc and tls free.
The tls malloc function acquires storage from the thread-local heap, and the
tls free function deallocates storage acquired in a thread-local heap. Both func-
tions manipulate the thread-local heap with no synchronization. In addition, we extend
the free statement implementation to deallocate thread-local storage. This extension
is made to allow a free statement to deallocate memory allocated both by a malloc
statement and a tls malloc statement.

4 Actually, Hoard uses dlmalloc [2] implementation instead of the standard operating system
memory management routines.

Optimizing C Multithreaded Memory Management 145

Fig. 2. Thread-local heaps layout

Thread-Local Heaps Implementation. In principle, we could have used the POSIX
thread specific functions (pthread setspecifc, pthread getspecific) to
allow a thread to access its corresponding thread-local heap. These functions, however,
have performance cost as Boehm shows [11]. Thus, Boehm provides a more efficient
implementation to allow a thread to access its corresponding thread-specific information.
However, Boehm’s implementation assumes a garbage-collector environment. We there-
fore develop a similar implementation for the case of an explicit allocator environment.

We maintain the thread-local heaps in a hash table (denoted further by thread-local
hash table) as shown in Figure 2. We normalize the unique thread id and use it as a key
for that table. Our implementation uses the value for a key as a pointer to a thread-local
heap ; thus, a thread accesses its thread-local heap by fetching the value in the hash table
entry corresponding to its thread id.

Our implementation assumes the following simplifying assumptions: (i) the number
of thread-local heaps is fixed. A thread may thus fail to obtain a thread-local heap. In
this case, memory is allocated using malloc. Our implementation sets the number of
thread-local heaps to2048. We expect most programs to have a smaller number of threads.
(ii) we assume a 1-1 mapping between a thread id and an entry index in the thread-local
hash table. This assumption holds for the Linux pthreads implementation.

Creation and maintenance of thread-local heaps require some overhead. We therefore
create such heaps only upon the first tls malloc request. Thread-local heaps are not
backed by the Hoard global heap, but directly by the operating-system heap. We do not
use the global heap for simplicity reasons, and because it does not affect performance on
the benchmarks we tried. Synchronization is required only when the thread-local heap
aqcuires/frees memory from the operating system.

In order to avoid trashing of allocations and deallocations of blocks from the
operating-system, we guarantee that a thread-local heap always maintains one super-
block for each size class. We call this super-block a holder super-block. The latter is
enabled by allocation of a dummy block, which prevents the deallocation of this holder
super-block. The dummy block is freed only when the holder super-block becomes full.
Using this method we can help applications that frequently allocate and deallocate small
blocks. Upon thread termination, we clean up the thread-local heap, as well as its holder
super-blocks.

tls malloc. Figure 3 shows a pseudo-code of the tls malloc implementation. In
order to allow fast access to a thread-local heap, we maintain thread-local heaps in a
hash table. Thus, tls malloc first searches the hash table for the thread-local heap
corresponding to the allocating thread. We make an optimization, and allocate a thread-

146 Y. Sade, M. Sagiv, and R. Shaham

tls malloc(size)
if no thread-local heap in the hash-table for the current thread
exists then

create thread-local heap and store in the hash-table
if no available super-block exists in thread-local heap then

if no holder super-block exists then
allocate a super-block from OS and mark as thread-local
set super-block as a holder super-block
allocate dummy block from holder super-block
insert to thread-local heap super-block list

else
free the dummy block back to the super-block
set holder super-block as regular super-block

return block from super-block

Fig. 3. Pseudo-Code for tls malloc

local heap only upon the first tls malloc request occurring in a thread; thus, threads
that do not make tls malloc requests are not affected.

Next, the tls malloc routine looks at the thread-local heap super-blocks list in
order to find a suitable super-block for the allocation. As in Hoard, each heap has super-
blocks of various allocation sizes. In case a super-block is not found, we check whether
a holder super-block exists, and allocate one if necessary. As mentioned earlier, the
holder super-blocks are used to reduce the number of the operating system’s memory
management functions calls.

Once we mark the super-block as thread-local, we save this super-block in our thread-
local hash table. The next step is acquiring a dummy block from the holder super-block,
that will prevent deallocation of the latter, even when it becomes empty. The last step
is adding this holder super-block as a part of our super-blocks list. In case we have an
allocated holder super-block that is out of free blocks, we free our dummy allocated
block and transform the holder super-block to a regular super block. Once we have a
super-block we return a block from it to the caller.

tls free. Freeing memory is performed by the tls free function. The function re-
turns the block to its super-block and frees the super-block in case it becomes empty.
As already mentioned all the thread-local heap manipulations are performed without
synchronization since only a single thread accesses the heap data.

The tls free complements the tls malloc operation, and the programmer
invokes it to free thread-local storage objects. In addition, we extend the free statement
implementation to deallocate thread-local storage. This extension is made to allow a
free statement to deallocate memory allocated both by a malloc statement and a
tls malloc statement. In particular, when a block is freed using the free function,
our allocator first checks whether the allocated block is from the thread-local heap. This
information was stored in the super-block of the block. Once we determine that the
allocated block is thread-local block we will free it appropriately.

Optimizing C Multithreaded Memory Management 147

4 Statically Identifying Thread-Local Storage

In this section, we describe our static algorithm for estimating allocation sites that can be
replaced by thread-local storage allocation. Our analysis conservatively detects whether
each allocation site can be replaced by tls malloc. In particular, it guarantees that
all deallocations are performed in the code of this thread.

We reduce the problem of finding thread-local storage to the problem of escape-
analysis. In order to determine that an allocation site can be replaced by tls malloc,
a static algorithm must ensure that all locations allocated at the allocation site are thread-
local storage, i.e., deallocated by the code of the allocating thread. Our algorithm does
that by checking stronger property for locations. Our algorithm makes sure that memory
locations allocated at an allocation site never escape their allocating thread, i.e., all
locations allocated at that site are accessed only by the allocating thread in all execution
traces. Clearly, locations that do not escape their allocating thread cannot be deallocated
by other threads, therefore we conclude that our algorithm indeed yields safe thread-local
storage information.

Our algorithm enjoys two characteristics that make it attractive for the “real-world”.
First, it scales for large code bases. Second, our algorithm is very simple to implement.
Scalability is achieved by using flow- and context-insensitive algorithms, based on simple
queries on points-to graphs in order to determine allocations sites that do not allocate
escaped memory locations. Furthermore, the points-to graph we use may be obtained by
applying as is any existing flow-insensitive points-to analysis(e.g., [7, 27, 30, 14, 15, 18,
29]). This last fact greatly simplifies the implementation of our algorithm. In fact, we
integrated our algorithm with two existing points-to analysis algorithms, as discussed
in Section 4.2.

4.1 The Algorithm

Our algorithm partitions the memory locations into two sets, may-escape locations and
the non-escaped locations. A may-escaped location may be accessed by other threads,
while a non-escaped location cannot be accessed by threads, other than its allocating
thread, on all execution paths. Our algorithm concludes that an allocation site that does
not allocate may-escape locations may be replaced by tls malloc.

Our algorithm performs simple queries on a points-to graph generated by a flow-
insensitive point-to analysis. This points-to graph is an abstract representation of all
memory locations and pointer relations that exist for all program points and for all
execution paths. A node in the graph represents an abstract memory location and an
edge in that graph represents a points-to relation.

Static analysis of C programs is not trivial. There are difficulties such as casting and
pointers arithmetic. These difficulties are tackled during the generation of the points-to
graph which is a preceding step to our analysis. Our analysis can simply traverse the
graph and bypass the problems of static analysis of C programs.

A pseudo-code of the algorithm for detecting may-escape locations is shown in
Figure 4. The algorithm traverses abstract heap locations that represent allocation sites.
For each abstract location it performs a query on the points-to graph. The query checks
whether the location is pointed by a global abstract location, or whether it is being passed

148 Y. Sade, M. Sagiv, and R. Shaham

Input: Program points-to flow-insensitive graph
Output: Partition of the locations to may-escape/thread-local
for each abstract heap location l {

if l is reachable from a global location or
l is reachable from a thread function argument or
l is reachable from a location that passed as thread
function argument

then
mark l as may-escape

else
mark l as thread-local

}

Fig. 4. Thread-local storage detection by an escape analysis for C using points-to information

�������	l �� malloc 1 �������	x

������� �������	q

��

�������	p

�������

�������	g �� malloc 4 malloc 6

Fig. 5. Flow-insensitive points-to graph for the program shown in Figure 1

as an argument to inter-thread communication functions. Otherwise all runtime locations
represented by the abstract heap location, cannot be pointed by any global location or
by inter-thread communication function arguments, and thus, the location can be safely
allocated using thread-local storage.

We can also detect deallocations of thread-local storage as follows: for each statement
of the form free(x), if all the abstract locations which may be pointed by x are
not may-escape, we can safely replace this statement by tls free. Otherwise we
conservatively assume that it may represent a location which is not allocated using thread-
local storage. In this case, the runtime implementation checks the status of this location
and deallocates it appropriately. Our experience shows that this runtime overhead is
marginal. Therefore, we decided not to implement this static optimization and leave
free statements unchanged.

Let us demonstrate the application of our algorithm by running it on the sample C
program shown in Figure 1. In Figure 5 a flow-insensitive points-to graph is shown.
The heap abstract location, representing locations allocated by the malloc in line 1, is
not pointed by any global abstract location nor by inter-thread communication function
arguments. Therefore it can be safely allocated on the thread-local heap. The heap
abstract location, representing locations allocated by the malloc in line 4, is pointed
by a global location, and therefore cannot be allocated on the thread-local heap. The
abstract heap location in line 6, may be pointed by q location which is an argument of
the inter-thread communication function, thus the location may-escape and cannot be
allocated on the thread-local heap.

Optimizing C Multithreaded Memory Management 149

The precision of our algorithm is affected directly by the precision of the underlying
points-to algorithm. One of the issues that mostly affects the precision of our algorithm
is the way the points-to algorithm handles structure fields. There exist three kinds of
points-to algorithms that respect: (i) field-insensitive points-to analysis, (ii) field-based
points-to analysis, and (iii) field-sensitive points-to analysis.

Field-insensitive points-to analysis [7, 17] ignores structure fields, thus all structure
members are abstracted to a single abstract location. Field-based points-to analysis [7, 17]
abstracts all instances of the same structure field to a single global abstract location. For
our algorithm, this means that all structure fields are considered may-escape, and cannot
be considered as thread-local storage; thus it makes little sense to use these kind of
algorithms for our purposes. Field-sensitive points-to analysis [30] is more precise than
field-insensitive point-to analysis and field-based points-to analysis. It abstracts the fields
of an allocated structure to different abstract locations.

4.2 Implementation of the Flow-Insensitive Algorithm

We have implemented our thread-local storage detection algorithm and integrated it with
two points-to graphs with varying degrees of precision. The first points-to graph was
producedbytheCLA(compile-link-analyze)pointer-analysisof[18].CLAprovidesfield-
based or field-insensitive points-to analysis. The second points-to graph was generated
by GrammaTech CodeSurfer, which provides field-sensitive points-to analysis.

Our implementation supports the analysis of programs that follow the POSIX
thread standard. In particular, we model the pthread create function (which
creates a thread and passes an argument to it) as an assignment of the thread parameter
to a global variable. Thus, memory pointed by the thread parameter is conservatively
assumed to be escaping.

The CLA based analysis scales better than the CodeSurfer based analysis, however
it provides less precise results. On the small benchmarks we used, both implementations
have been able to detect thread-local storage correctly. In general, for larger programs,
the precision of field dependent analysis (as in CodeSurfer implementation) is expected
to be better. However, we did not observe differences in the benchmarks we performed.

5 Experimental Results

In this section we describe the experimental results of our static analysis tool and our
thread-local storage allocator. Our static analysis experimental performance results were
produced on 2X2.8GHZ pentium IV processor with 1GB of memory running RedHat
enterprise Linux with a kernel version of 2.4.21. Our runtime experimental performance
results were produced on 8X700MHZ Pentium III processor with 8GB of memory
running a RedHat enterprise Linux with a kernel version of 2.4.9-e3. We compare our
allocator with the default Linux glibc malloc, and with the Hoard version 2.1.2d [8].

5.1 Benchmarks

Measuring the performance of multithreaded dynamic memory allocation in real life ap-
plications is almost impossible. The multithreaded servers are mostly I/O bound and the
effect of memory management improvements is hard to measure. Since there are no real

150 Y. Sade, M. Sagiv, and R. Shaham

Table 1. Static Analysis results. The points-to time column presents the time that the underlying
points-to analysis took. The algorithm time column presents the time that our algorithm ran on
the points-to graph. The total mallocs column presents the number of malloc statements in the
benchmark. The identified tls mallocs column presents the number of mallocs that our algorithm
actually identified as thread-local storage. The tls opportunities column presents the number of
allocation sites that are actually thread-local storage

Benchmark Description LOC points-to algorithm total identified tls
time time mallocs tls mallocs opportunities

cache-thrash [8] Cache locality test 144 < 1s < 1s 3 2 2
cache-scratch[8] Cache locality test 144 < 1s < 1s 5 3 3
threadtest [8] Scalability test 155 < 1s < 1s 3 3 3
linux-scalability [20] Scalability test 137 < 1s < 1s 1 1 1
sh6bench [3] Scalability test 557 < 1s < 1s 3 3 3
larson [19] Inter-threadallocations 672 < 1s < 1s 5 0 0
consume[8] Inter-thread allocations 141 < 1s < 1s 5 0 0
zlib[5] Use of zlib 12K 9s 62s 12 11 11
(field-sensitive) compression library
zlib[5] Use of zlib 12K 8s 1s 12 11 11
(field-insensitive) compression library
openssl mttest[4] multithreaded sll 140K 1565s 22449s N/A N/A N/A
(field-sensitive) connections
openssl mttest[4] multithreaded sll 140K 542s 39s N/A N/A N/A
(field-insensitive) connections

benchmarks for dynamic memory allocators, we applied the benchmarks used to evalu-
ate the performance of Hoard [8]. These benchmarks have become the standard defacto
benchmarks for dynamic memory allocations. They have been used by [8, 11, 19, 21].
We tested the following benchmarks: cache-trash, linux-scalability, shbench, threadtest,
cache-scratch, larson, consume 5. The first 5 benchmarks contain allocations that have
been detected as thread-local by our static analysis tool, and have been optimized to
use tls malloc instead of malloc. The last two benchmarks contain no thread-
local storage, and as expected, the static algorithm correctly determines it, and these
benchmarks have therefore not been optimized.

We have also added benchmarks of more realistic applications. The Zlib bench-
mark tests multithreaded usage of the Zlib compression library [5]. Our static analysis
algorithm successfully detected allocations as thread-local. Those allocations have been
optimized to usetls malloc instead of malloc. We also testedOpenSSL-mttest
a multithreaded test of the OpenSSL cryptographic library [4]. Our static algorithm did
not find opportunities for optimizing the program using thread-local storage. When we

5 We took all the open-source multithreaded benchmarks from [8]. There are two additional
multithreaded benchmarks (BEMengine, and Barnet-Hut) which we did not take since we did
not have their source code.

Optimizing C Multithreaded Memory Management 151

manually examined the OpenSSL-mttest code we verified that there were no thread-
local storage opportunities.

5.2 Static Analysis Results

Static analysis results are summarized in Table 1. For the first 7 benchmarks we used
Heintze’s field-insensitive pointer-analysis [18] as the underlying points-to algorithm.
All of these benchmarks are small and artificial memory management benchmarks. The
pointer-analysis time was less than a second for all of these and so was the application
of our own static algorithm. Some of the benchmarks were originally written in C++.
We ported these benchmarks to C, so we can apply our static analysis tool. For the larger
programs of OpenSSL-mttest and Zlibwe used CodeSurfer’s pointer-analysis as a
back-end for our algorithm. From the experimental results we can see that applying field-
sensitive pointer-analysis yields to a much longer execution time. The reason for this is
that the points-to graph can be exponentially larger in that case. We can also see that the
field-sensitivite analysis did not improve the analysis precision for the benchmarks we
selected, even though it is theoretically more precise.

5.3 Runtime Speedup

We executed each benchmark with a different number of threads. Each benchmark per-
forms some work that consumes a certain period of time on a single-threaded execution.
When we add threads, this work is performed concurrently and we expect the execution
time to be shorter. On an optimal allocator, there should be a linear relation between
the number of threads and the execution time. For each benchmark we performed the
following tests. (i) an execution with glibc — the default allocator of the Linux operating
system. (ii) an execution with the Hoard allocator. (iii) an execution with our allocator,
after we have optimized the benchmark to use thread-local storage allocations. Runtime
speedups for the benchmarks are shown in Figure 6. The circle line represents glibc
allocator, the triangle line represents Hoard allocator and the box line represents our
tls Hoard allocator.

The speedup on threadtest benchmark (see Figure 6(a)) is between 16% to
29% compared to the Hoard allocator. On linux-scalability benchmark (see
Figure 6(c)) the speedup is between 18% to 44% and in most cases it is around 40%.
On shbench benchmark (see Figure 6(d)), the speedup is between 2% to 14%. These
benchmark programs test pure scalability, without other issues such as processor cache
performance and memory fragmentation. As expected, we get a significant performance
improvement, since the allocator reduces the global heap contention which directly leads
to better scalability. Oncache-thrashbenchmark (see Figure 6(b)) our optimizations
do not improve Hoard. This benchmark checks the cache behavior of the allocator and
our allocator does not handle cache issues directly, even-though thread-local storage im-
proves locality. However, we discovered that when the amount of computations between
allocations is reduced, our optimized version outperforms Hoard, since the frequency
of the allocations increases the contention, and our allocator handles it better. In Zlib
benchmark (see Figure 6(e)) the speedup is between 1% to 20%. Zlib benchmark rep-
resents a more realistic application that also involves I/O processing and computations.

152 Y. Sade, M. Sagiv, and R. Shaham

Fig. 6. Thread-local storage allocator benchmark results. The X axis is the number of threads and
the Y axis is the runtime in seconds. The lines represent the glibc allocator, the Hoard allocator,
and our allocator. We obtain up to 44% runtime speedup compared to the other allocators

The performance of the Zlib benchmark drops when the number of threads increases
due to the cost of the I/O processing. However, our allocator still outperforms the others
when the number of threads increases.

Optimizing C Multithreaded Memory Management 153

5.4 Summary

From the static analysis benchmark results shown in Table 1, we can deduce that the
static algorithm successfully detects all the opportunities for thread-local storage for
the standard memory management benchmarks. The analysis time is less than a second
in these benchmarks, and the analysis is precise and identifies all opportunities for
using thread-local storage. On the Zlib benchmark we also precisely detected all the
possible opportunities for using thread-local storage. We proved that our analysis can
handle large programs by running it on OpenSSL-mttest and Zlib. We could also
see the significant performance overhead of using field-sensitive analysis.

The runtime benchmark results show that our allocator provides significant mul-
tithreaded scalability improvement for thread-local storage allocations. Moreover, our
allocator performs better, compared to different allocators, even on a single-threaded
environment. There are two potential reasons for this behavior. The first reason is that
locks have some overhead even on a single-threaded environment. The second reason is
the super-block holder, which we keep for each thread-local heap. These holders avoid
trashing between the thread-local heap and the operating system heap and improve the
locality and performance of allocation from the thread-local heap. The performance im-
provements for the Zlib benchmark result show the potential benefit of our method on
more realistic programs.

6 Conclusions

Dynamic memory management in C for multithreaded applications can become a per-
formance bottleneck. We could see the impact of the synchronization contentions by
examining the memory allocation benchmarks suite. This paper shows that a thread-
local storage allocator can significantly improve the performance of dynamic memory
management. However, manual detection of thread-local storage is almost an infeasible
task. Therefore, the paper shows that a simple sound static analysis can successfully
detect heap allocation statements that can be replaced by allocating thread-local storage.
We reduce the problem of finding thread-local storage to the escape analysis problem
for C and solve it by using flow-insensitive points-to algorithms.

References

1. Apache http Server Project. Available at http://httpd.apache.org.
2. D. Lea A Memory Allocator. Available at http://g.oswego.edu/dl/html/malloc.html.
3. Microquill inc. Available at http://www.microquill.com.
4. openssl cryptographic library. Available at http://www.openssl.org.
5. zlib compression library. Available at http://www.zlib.org.
6. J. Aldrich, E. G. Sirer, C. Chambers, and S. J. Eggers. Comprehensive synchronization

elimination for Java. Technical Report, University of Washington, Oct. 2000.
7. L. Andersen. Program Analysis and Specialization for the C Programming Language. PhD

thesis, DIKU Univ. of Copenhagen., Copenhagen, Denmark, 1994.

154 Y. Sade, M. Sagiv, and R. Shaham

8. E. Berger. Hoard: AScalable Memory Allocator for Multithreaded Applications. In Ar-
chitectural Support for Programming Languages and Operating Systems, pages 117–128,
Cambridge, Massachusetts, US, Nov. 2000.

9. E. D. Berger, B. G. Zorn, and K. S. McKinley. Reconsidering Custom Memory Allocation.
In Conf. on Object-Oriented Prog. Syst., Lang. and Appl., pages 1–12, Seattle, Washington,
US, Nov. 2002.

10. B. Blanchet. Escape Analysis for Object Oriented Languages. Application to Java. In Conf.
on Object-Oriented Prog. Syst., Lang. and Appl., pages 20–34, Denver, Colorado, US, Nov.
1999.

11. H. Boehm. Fast Multiprocessor Memory Allocation and Garbage Collection. Tech Report,
HP Labs, Dec. 2000.

12. J. Bogda and U. Hoelzle. Removing unnecessary synchronization in Java. In Conf. on Object-
Oriented Prog. Syst., Lang. and Appl., pages 35–46, Denver, Colorado, US, Nov. 1999.

13. J. Choi, M. Gupta, M. Serrano, V. Sreedhar, and S. Midkiff. Escape Analysis for Java. In
Conf. on Object-Oriented Prog. Syst., Lang. and Appl., pages 1–19, Denver, Colorado, US,
Nov. 1999.

14. M. Das. Unification-based Pointer Analysis with Directional Assignments. In SIGPLAN
Conf. on Prog. Lang. Design and Impl., volume 35, pages 35–46, Vancouver, Canada, June
2000.

15. M. Das, B. Liblit, M. Fahndrich, and J. Rehof. Estimating the Impact of Scalable Pointer
Analysis on Optimization. In Static Analysis Symp., volume 2126, pages 260–278, Paris,
France, July 2001.

16. T. Domani, G. Goldshtein, E. K. Kolodner, E. Lewis, E. Petrank, and D. Sheinwald. Thread-
local heaps for java. In Int. Symp. on Memory Management, pages 76–87, Berlin, Germany,
2002.

17. N. Heintze. Analysis of Large Code Bases: The Compile-Link-Analyse Model. Unpublished
Report, Nov. 1999.

18. N. Heintze and O. Tardieu. Ultra-fast Aliasing Analysis using cla: A Million Lines of C Code
in a Second. In SIGPLAN Conf. on Prog. Lang. Design and Impl., pages 254–263, Snowbird,
Utah, US, May 2001.

19. P. Larson and M. Krishnan. Memory Allocation for Long-running Server Applications. In
Int. Symp. on Memory Management, pages 176–185, Vancouver, Canada, Oct. 1998.

20. C. Lever and D. Boreham. malloc() performance in a multithreaded linux environment. In
USENIX, the Advanced Computing System Association, San Diego, California, US, 2000.

21. M. M. Michael. Scalable Lock-Free Dynamic Memory Allocation. In SIGPLAN Conf. on
Prog. Lang. Design and Impl., pages 35–46, Washington, US, June 2004.

22. M. Rinard. Analysis of multithreaded programs. In Static Analysis Symp., pages 1–19, Paris,
France, July 2001.

23. E. Ruf. Effective Synchronization Removal for Java. In SIGPLAN Conf. on Prog. Lang.
Design and Impl., pages 208–218, Vancouver, Canada, June 2000.

24. R. Rugina and M. Rinard. Pointer Analysis for Multithreaded Programs. In SIGPLAN Conf.
on Prog. Lang. Design and Impl., pages 77–90, Atlanta, Georgia, US, May 1999.

25. Y. Sade. Optimizing C Multithreaded Memory Management Using Thread-Local Storage.
Master’s thesis, Tel-Aviv University, Tel-Aviv, Israel, 2004.

26. A. Salcianu and M. Rinard. Pointer and Escape Analysis for Multithreaded Programs. In
Principles Practice of Parallel Programming, pages 12–23, Atlanta, Georgia, US, June 2001.

27. B. Steensgaard. Points-to Analysis in Almost Linear Time. In Symp. on Princ. of Prog. Lang.,
pages 32–41, St. Petersburg Beach, Florida, US, Jan. 1996. ACM Press.

Optimizing C Multithreaded Memory Management 155

28. B. Steensgaard. Thread-Specific Heaps for Multi-Threaded Programs. In Int. Symp. on
Memory Management, pages 18–24, Minneapolis, Minnesota, US, Oct. 2000.

29. R. P. Wilson and M. S. Lam. Efficient Context-Sensitive Pointer Analysis for C Programs.
In SIGPLAN Conf. on Prog. Lang. Design and Impl., pages 1–12, 1995.

30. S. Yang, S. Horwitz, and T. Reps. Pointer Analysis for Programs with Structures and Casting.
In SIGPLAN Conf. on Prog. Lang. Design and Impl., pages 91–103, Atlanta, Georgia, US,
May 1999.

An Efficient On-the-Fly Cycle Collection

Harel Paz1, Erez Petrank1,�, David F. Bacon2, Elliot K. Kolodner3, and V. T. Rajan2

1Dept. of Computer Science, Technion - Israel Institute of Technology, Haifa 32000, Israel
{erez, pharel}@cs.technion.ac.il

2IBM T.J. Watson Research Center
{dfb, vtrajan}@us.ibm.com

3IBM Haifa Research Lab
{kolodner}@il.ibm.com

Abstract. A reference-counting garbage collector cannot reclaim unreachable
cyclic structures of objects. Therefore, reference-counting collectors either use
a backup tracing collector infrequently, or employ a cycle collector to reclaim
cyclic structures. We propose a new concurrent cycle collector, i.e., one that runs
concurrently with the program threads, imposing negligible pauses (of around
1ms) on a multiprocessor.

Our new collector combines the state-of-the-art cycle collector [5] with the
sliding-views collectors [20, 2]. The use of sliding views for cycle collection yields
two advantages. First, it drastically reduces the number of cycle candidates, which
in turn, drastically reduces the work required to record and trace these candidates.
Therefore, a large improvement in cycle collection efficiency is obtained. Second,
it eliminates the theoretical termination problem that appeared in the previous
concurrent cycle collector. There, a rare race may delay the reclamation of an
unreachable cyclic structure forever. The sliding-views cycle collector guarantees
reclamation of all unreachable cyclic structures.

The proposed collector was implemented on the Jikes RVM and we provide
measurements including a comparison between the use of backup tracing and the
use of cycle collection with reference counting. To the best of our knowledge,
such a comparison has not been reported before.

1 Introduction

Reference counting is a classical garbage collection algorithm. Systems using reference
counting were implemented starting from the sixties [11]. However, reference-counting
garbage collectors cannot reclaim cyclic structures of objects. Thus, reference-counting
collectors must be either accompanied by a backup mark and sweep collector (run
infrequently to collect unreachable cyclic structures) or by a cycle collector.

Trying to avoid developing and maintaining an additional mark and sweep collector
on the reference-counting collected system motivated attempts to design a cycle collec-
tor [8, 10, 23]. This effort culminated in the state-of-the-art on-the-fly cycle collector of
Bacon and Rajan [5].

� Research supported by the Bar-Nir Bergreen Software Technology Center of Excellence and
by the IBM Faculty Partnership Award.

R. Bodik (Ed.): CC 2005, LNCS 3443, pp. 156–171, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Efficient On-the-Fly Cycle Collection 157

1.1 On-the-Fly Garbage Collection

Many garbage collectors were designed to work on a single thread while program threads
are stopped, the so-called stop the world setting. On multiprocessor platforms, it is not
desirable to stop the program and perform the collection in a single thread on one proces-
sor, as this leads both to long pause times and poor processor utilization. A concurrent
collector runs concurrently with the program threads. The program threads are usually
stopped for a short time to initiate and/or finish the collection. An on-the-fly collector
does not need to stop the program threads simultaneously, not even for the initialization
or the completion of the collection cycle.

The study of on-the-fly garbage collectors was initiated by Steele and Dijkstra,
et al. [30, 31, 12] and continued in a series of papers culminating in [13, 4, 17, 20, 2].
The advantage of an on-the-fly collector over a parallel collector and other types of con-
current collectors [6, 28, 9, 14, 15, 18] is that it avoids the operation of stopping all the
program threads. Such an operation usually increases the pause times. Today, on-the-fly
collectors achieve pauses as short as a couple of milliseconds, and sometimes less [17].

1.2 The Challenge

Bacon and Rajan [5] propose two cycle collectors. The simpler synchronous collector is
the most efficient cycle collector known today. It runs in a stop-the-world context. Their
more involved asynchronous collector is the only concurrent cycle collector known
today.

A typical stop-the-world cycle collector traces cycle candidates two or three times
to discover which cycles are unreachable. A concurrent cycle collector must deal with
concurrent program threads that modify the objects graph during the scan. Thus, a
concurrent collector cannot trust a scan to repeat the very same structure that a previous
scan has traversed. Furthermore, as modifications occur concurrently with the scan,
each specific scan cannot be guaranteed to view a consistent snapshot of the objects
graph at any specific point in time. This concurrency problem is the source of the two
drawbacks of Bacon and Rajan’s on-the-fly cycle collector. A practical drawback is
the reduced efficiency: the asynchronous collector employs additional checks (which
add substantial additional work) in order to make the collection safe in the presence
of concurrent program threads. A theoretical drawback is that completeness cannot be
guaranteed4. A rare race condition may prevent an unreachable cyclic structure from
being ever reclaimed.

1.3 The Solution

We present an on-the-fly cycle collector which solves these drawbacks, by employing
the sliding-views techniques [20]. The idea is to obtain a fixed view of the heap (via the
sliding-views mechanism), and then run the more efficient synchronous (i.e., stop-the-
world) cycle collector of [5] on this obtained view. The theoretical completeness problem
is immediately solved. Any unreachable cyclic structure generated before the view of

4 Completeness of a concurrent garbage collector stands for the standard liveness term in dis-
tributed computing. A collector is complete if all unreachable objects are eventually reclaimed.

158 H. Paz et al.

the heap is created can be identified in the view and reclaimed. From the practical point
of view, the use of the simpler and more efficient synchronous algorithm implies a more
efficient execution.

But there are more efficiency benefits. All previous cycle collectors required as input
a list of all reference-count decrements, in order to reclaim all garbage cycles correctly.
However, the sliding-views reference-counting collector keeps track of only a small frac-
tion of reference-count updates (and in particular decrements). This problem is solved
by improving the analysis of the cycle collector to show that the small number of decre-
ments recorded by the sliding-views mechanism suffices to reclaim all garbage cycles.
Note, that fewer decrements implies recording fewer candidates for cyclic structures,
which, in turn, implies less work on traversing these candidates and a reduction in the
cycle collector work. Finally, we improve the efficiency of the synchronous algorithm
of [5] by employing a better scheduling strategy and new filtering techniques that further
reduce the number of traced objects.

In order to check the behavior of the cycle collector in a different environment, we
also incorporated it into the age-oriented collector [27]. The age-oriented collector is
an efficient variation of generational collection that uses reference counting to collect
the old generation and tracing to collect the young generation. Cycle collectors spend a
large fraction of their time working on cycle candidates among newly allocated objects.
The age-oriented collector eliminates a large fraction of the cycles as well as a large
fraction of the cycle collector’s work, as it uses mark and sweep on the young objects
and it runs the cycle collector only on the older objects.

Organization. An overview of previous cycle collectors and the sliding-views collectors
is presented in Section 2. An overview of the new cycle collector appears in Section 3.
Results are given in Section 4. Related work is discussed in Section 5 and we conclude
in Section 6.

2 Review of Previous Collectors

This section reviews relevant previous work. We start by reviewing the algorithms for
cycle collection [23, 21, 5] and then we review the sliding-views collectors [20, 2].

In this paper the term cycle or cyclic structure refers to a strongly connected com-
ponent in the objects graph. A strongly connected component is a maximal subgraph of
a directed graph such that for every pair of vertices u, v in the subgraph, there exists a
directed path from u to v and a directed path from v to u.

2.1 Collecting Cycles in the Stop-the-World Setting

We start with the synchronous cycle collector of [5] (building on [23, 21]) that runs in
a stop-the-world manner on a single thread. Garbage cycles can only be created when
a reference count is decremented to a non-zero value ([23, 21]). The reference-counting
collector records all objects whose reference count is decremented to a non-zero value.
The cycle collector uses this list as a set of candidates that may belong to a garbage
cycle. Three colors are used to mark the state of objects. The initial color of all objects is
black. A possible member of a garbage cycle is marked gray. The white color signifies

An Efficient On-the-Fly Cycle Collection 159

an object that is identified as part of an unreachable cycle. The cycle collector runs three
traversals on all objects reachable from the candidate set as follows.

– The mark stage: traces the graph of objects reachable from the candidates, sub-
tracting counts due to internal references and marking traversed nodes gray. At the
end of this traversal, all nodes of each unreachable cyclic structure have zero ref-
erence counts, whereas each reachable structure has at least one node with positive
reference count.

– The scan stage: scans the subgraph of (gray) objects reachable from the candidates.
All objects reachable from external pointers (objects with positive reference counts
and all their descendants) are marked black. Also reference counts are restored to
reflect all outgoing pointers from black objects. All other nodes in the subgraph are
colored white (these objects are identified as forming a garbage cycle).

– The collect stage: scans the subgraph again and reclaims all white objects.

2.2 Collecting Cycles On-the-Fly

The on-the-fly cycle collection algorithm of [5] consists of two phases. In the first phase,
a variant of the above synchronous algorithm is used, but instead of reclaiming the
white nodes these nodes are recorded as potential unreachable cyclic structures. Due
to concurrent mutator activity, some of the white objects may have been incorrectly
identified and may actually be reachable. The second phase is executed only at the next
(reference-counting) collection. The potential unreachable cycles are re-examined and
those found still unreachable are reclaimed.

This collector has a theoretical drawback and a practical drawback. A garbage collec-
tor is called complete if it eventually collects all unreachable objects. The first problem
of this cycle collector is that it is not complete. Rare race conditions may prevent it from
collecting garbage cycles. An example appears in [5]. The second (practical) problem
is that the algorithm traces the candidate cycles a couple of times in the second phase
to ensure that no false garbage cycle is reclaimed. These extra scannings cause a sub-
stantial reduction in efficiency, especially for (typical) benchmarks which contain many
garbage cycles or many false cycle candidates. Moreover, additional work is required to
fix subgraphs that were not recolored black on time due to improper re-traversals.

2.3 The Sliding-Views Reference-Counting Collector

A simple version of the Levanoni-Petrank sliding-views collector is one that allows stop-
ping all program threads (mutators) simultaneously in the beginning of the collection.
Using such a halt, it is possible to get a virtual snapshot of the heap using a copy-on-write
mechanism. Each object is associated with a dirty bit which is cleared during the halt.
Then, whenever a pointer is modified, the dirty bit of the object holding this reference
is probed. If the object is dirty (i.e., has been modified previously) then the pointer
assignment may proceed with no further action. Otherwise, the object is copied to a
thread-local buffer before the assignment is executed.

This allows a reference-counting or a tracing collector to access a view of a heap
snapshot as taken during the simultaneous halt. If an object is not dirty, then its value in

160 H. Paz et al.

H
ea

p
A

dd
re

ss

t1 t2 time

Sliding View

H
ea

p
A

dd
re

ss

t time

Snapshot

Fig. 1. A snapshot view at time t vs. a sliding view at interval [t1,t2]

the heap is equal to its value at the snapshot time. The snapshot value of dirty objects
may be obtained from the local buffers. To deal with multithreaded programs, a carefully
designed write barrier is presented in [20] allowing the above write barrier to operate on
concurrent threads without requiring synchronized operations.

The collector in [20] eliminates many of the reference-count updates by updating the
reference counts according to the change in pointer values between the previous snapshot
to the current one. Consider a pointer slot that, between two garbage collections is
assigned the values o0,o1,o2, . . . ,on. All previous reference-counting collectors execute
2n reference-count updates for these assignments: RC(o0)−−, RC(o1)++, RC(o1)−−,
RC(o2)++, . . . , RC(on)++. However, it is observed that only two are required: RC(o0)−−
and RC(on)++, which buys a substantial reduction in the number of required updates.
The “o0” value of a modified slot (previous snapshot value) is exactly the value recorded
by the write-barrier when the slot is modified. The “on” value of a modified slot (current
snapshot value) is obtained according to the dirty flag, as explained above. Note, that for
pointers in newly created objects the previous referent o0 is always null. However, the
reference count of current child (on) of newly created objects should be incremented.

The algorithm described so far probably obtains short pause times, but in order to get
even shorter pause times, the sliding-views mechanism is proposed. Here, the program
threads are not halted simultaneously, but one at a time. The obtained view of the heap
is not a snapshot but a sliding view. A snapshot of the heap at time t is a copy of the
content of each object in the heap at time t. A sliding view of the heap is associated with
a time interval [t1,t2] (rather than a single point in time). It provides the content of each
object in the heap at an arbitrary time t, satisfying t1 ≤ t ≤ t2. In contrast to a snapshot,
objects are not all recorded at the same time. Figure 1 depicts the difference between a
sliding view and a snapshot.

As a snapshot view cannot be assumed anymore, correctness considerations dictate a
snooping mechanism. During the (short) time interval [t1, t2] in which the program threads
are being halted one by one, the snooping mechanism operates for each modified pointer
via the write barrier. For each modified reference, the snooping mechanism records in
a local buffer the address of the object that has acquired a new reference. These logged
addresses are considered roots for the current collection and so such objects are not
reclaimed. The view of the heap used by the collector may be thought of as a view that
is sliding in time: the heap objects are viewed at slightly different points in time. The
snooping mechanism makes sure that no reachable object is reclaimed. More details
appear in [20].

An Efficient On-the-Fly Cycle Collection 161

3 Cycle Collector Overview

In this section we provide an overview of the new collector with its main ideas stressed.
A full description including the pseudo code is provided in our technical report [26].

We first observe that if we were given a snapshot of the heap with all reference
counts updated and a list of all objects whose reference counts have been decremented
to a positive value since the last cycle collection, then we would have been able to
run the synchronous algorithm of [5] on the given snapshot and correctly identify the
garbage cycles in the heap as viewed at the snapshot. This is good news because being
a garbage cycle is a stable property and such a cycle remains unreachable, no matter
how the application behaves, until the collector reclaims its objects. Thus, unreachable
cycles can be reclaimed based on a snapshot and a list of decrements.

Next, we explain how we obtain the snapshot and the list of decrements efficiently.
We first concentrate on the first issue: obtaining the snapshot. The full list of reference-
count decrements cannot be obtained efficiently, but we will show that it is possible to
use a partial list and how that partial list can be obtained efficiently.

3.1 Obtaining a Snapshot (or a Sliding View)

The cycle collector uses the heap (or a snapshot of it) by repeatedly traversing several
subgraphs of it. To obtain a virtual snapshot of the heap that may be used for such
traversals, we use the mechanism of [20] described in Subsection 2.3. Traversing a
subgraph is done as follows (following [2]). The write barrier of [20] is employed by
the program threads. To traverse an object according to its pointer values at snapshot
time, we obtain these values in the following manner. First, the dirty bit of the object
is examined. If the object is not dirty (no pointer in the object has been modified since
the snapshot was taken), then its current state in the heap is equal to its state during the
snapshot and the collector may trace it by reading its pointers from the heap. Otherwise,
the object has been modified since the snapshot time and it is marked dirty. In this case,
the collector finds its snapshot values in the threads local buffers. After obtaining the
snapshot values, objects can be traced according to their state at the snapshot time, and
thus, repeated traces are bound to trace the same graph repeatedly.

In terms of completeness, once a garbage cycle is created, it must exist in the next
snapshot, and thus it is bound to be reclaimed by the synchronous algorithm of [5].
We also improve efficiency, since we can use the efficient synchronous algorithm of [5]
instead of using their less efficient concurrent collector. Inefficiencies originating from
the need to insure correctness in spite of program-collector races are eliminated. For
example, the entire second phase of the asynchronous algorithm of [5] is redundant:
there is no need to store identified garbage cycles and there is no need to re-examine
them during the next garbage collection by more traversals.

We now extend the discussion to using sliding views instead of snapshots in order to
obtain an on-the-fly collector. The on-the-fly collector does not halt all program threads
simultaneously, but stops each of them separately to obtain their roots and read their
buffers. This creates a sliding view of the heap associated with a short time interval
[t1, t2] instead of a snapshot.

162 H. Paz et al.

The cycle collector remains the same, except that it (obliviously) uses a sliding view
of the heap rather than a snapshot. A sliding view may incorrectly indicate that an object
is unreachable because the view does not represent the heap at a consistent point in time.
The snooping mechanism makes sure that such objects are not reclaimed, ensuring the
safety property. The snooping mechanism is explained in [20]. Let us review it shortly.

How can objects be seen unreachable in the sliding view while they are actually
reachable at all times? Suppose the sliding view is read during the interval [t1, t2]. If no
pointer is written to the heap during this time, the sliding view represents a snapshot
of the pointers in the heap taken at the time t2. However, as pointers are being written
in the heap, this snapshot gets distorted, and the view may contain values of pointers
that were updated between t1 and t2. It can be shown that if such a modified pointer
creates a false unreachable garbage cycle in the view, then a pointer must have been
written pointing to an object in this cycle during the time interval [t1, t2]. The snooping
mechanism records all objects that acquire a new reference. Thus, the object that falsely
seems unreachable in the sliding view must be snooped. Snooped objects are considered
roots, and therefore, cyclic structures containing snooped objects cannot be reclaimed.

With respect to completeness, any unreachable cyclic structure formed before the
collection begins, must be collected. The reason is that these objects are not modified
during the time interval [t1, t2] and in particular, no new pointers are being written to
objects in this cycle. Thus, none of the objects in the cyclic structure is snooped and
the view of all pointers into and in between these objects appears in the sliding view
exactly as it would have appeared had we taken a real snapshot at time t2. Thus, such an
unreachable cyclic structure must be reclaimed.

3.2 Obtaining the List of Candidates

It remains to explain how the list of objects whose reference counts was decremented is
obtained. All cycle collectors use a candidate set consisting of all newly created objects
plus all objects whose reference count is reduced to a positive value by any pointer
modification since the previous cycle collection. However, the sliding-views reference-
counting collector of Levanoni and Petrank [20] does not maintain such a list. In fact,
it is oblivious to most of the pointer updates and this obliviousness is what buys its
efficiency. A naive solution is to make the reference-counting collector record all the
extra required updates. This solution is unacceptable as it undermine the efficiency of the
reference-counting collector. Instead, we improve the analysis of the cycle collector and
show that the reduced set of candidates obtained from the Levanoni-Petrank collector
suffices. This way, we can preserve the efficiency of the reference-counting collector
and also significantly improves the efficiency of the cycle collector as fewer candidates
need to be recorded and less work is required to traverse their descendants.

Newly created objects. Taking only reference-count decrements as candidates is not
enough when the write barrier is not used with the roots. This is the case with all modern
collectors, as a write barrier on the roots is too costly. Since decrements of roots are not
accounted for, cycle collectors also include in the set of candidates all objects created
since the last collection and all objects referenced directly from the roots during the
previous collection.

An Efficient On-the-Fly Cycle Collection 163

To see that this is indeed required for all modern collectors, consider two newly
created objects that point to each other only (forming a cycle) and a root pointer that
references one of them. If the root pointer is modified, then a cycle of garbage is formed,
but it cannot be noticed from reference-count decrements. The extended candidate set
as above is enough to detect any such garbage cycle.

Obtaining the candidates. The sliding-views reference-counting collector yields almost
for free a list of newly created objects and a list of objects that were referenced by the roots
during the previous collection. We now concentrate on finding the more problematic set
of objects whose reference counts were decremented.

As the sliding-views collector reduces a large fraction of the reference-count updates,
we now claim that it is possible to collect all garbage cycles, even though we record and
consider much fewer objects as candidates. To be more precise, when a pointer p takes
the values o0, o1, o2, . . . , on between two collections, only o0 is considered as a candidate
(if its reference count is decremented to a non-zero value) by the new cycle collector.
Previous collectors considered also the objects o1, o2, . . . , on−1 as candidates but are
ignored by us. Additional relevant decrements are treated by this collector in the same
manner as previous collectors. These are decrements that are executed by the reference-
counting collector itself. When an object is reclaimed, the collector decrements the
reference counts of all its descendants. These decrements may also produce candidates
(if the descendant’s reference count is not decremented to zero).

To show that the collector does not miss a garbage cycle, we divide the argument into
2 cases: garbage cycles comprising solely of old objects and garbage cycles containing
at least one young object, where a young object is an object that has been created after
the previous sliding view (or snapshot). Both cases are properly handled.

The easy case is when an unreachable cycle includes a young object. As mentioned
earlier in this section, all young objects (surviving the reference-counting collection) are
considered candidates. Thus, this cycle will not be missed.

The more involved case is a garbage cycle containing only old objects (created before
the previous sliding view). If this cycle was reachable during the previous sliding view
and is unreachable in the current sliding view, then there exists a pointer to one of the
cycle’s objects in the previous sliding view, but this pointer does not exist in the current
sliding view. If this was a root pointer, then the cycle is considered by the fact that all
root pointers from previous collection are candidates. Otherwise, this is a heap pointer
that has been modified during the time interval between the two sliding views. The
pointer modification could originate either from the application modifying a pointer (as
in Figure 2), or from a reclamation of the object containing this pointer and the memory
manager deleting the pointer. In the first case, the change of this pointer is logged in
a local buffer causing a reference-count decrement to the object previously referenced.
In the latter case, the delete operation of the collector implies a similar reference-count
decrement. In each of these cases, this object becomes a candidate for cycle collection.
Hence, cycles containing only old objects are accounted for properly.

164 H. Paz et al.

Sliding View K+1

old2

old3

old2old1

old0

 Sliding View K

old0

old1

Fig. 2. A garbage cycle comprising solely of old objects cre-
ated between the Kth and the K +1st sliding views. The cycle
was reachable from old0 and it became unreachable because
old0 was modified. Since old0 is modified between the sliding
views, old0 (and its previous value old1) must be logged to a
local buffer that is later used by reference-counting collector.
Therefore, the reference count of old1 gets decremented in the
K +1st collection, and it is then considered as a candidate

To summarize, even though the Levanoni-Petrank reference-counting collector exe-
cutes only a small fraction of the reference-count updates, we may collect cycles correctly
using as candidates only those objects whose reference counts are decremented by this
collector to a non-zero value, plus the roots at the previous sliding view and all newly
created objects.

3.3 Checking Behavior with the Age-Oriented Collector

Newly created objects add a substantial burden on the cycle collector. Therefore, we
also used the proposed cycle collector with a collector that runs reference counting and
cycle collection on the old generation only. We chose the age-oriented collector, a twist
on generational collection that is adequate for concurrent collection. Our age-oriented
collector runs concurrent reference counting on the old generation and concurrent mark
and sweep on the young objects [27]. The age-oriented collector eliminates a large
fraction of the cycles as well as a large fraction of the cycle collector’s work since it
does not need to consider the young objects as candidates. Indeed cycle collection was
more effective in this setting. Let us say a few words about the age-oriented collector.
For a full description see [27].

The age-oriented collector keeps generations, but it does not run frequent young gen-
eration collections. The reason for allowing entire heap collections is that short pauses
are obtained by concurrency already and do not need to be obtained by short young col-
lections. The heap is collected only when it gets full. When that happens, the age-oriented
collector uses a reference-counting collector to reclaim objects in the old generation and
mark and sweep collector to reclaim objects in the young generation. Since these collec-
tions always happen together, there is no need to record inter-generational pointers. It is
important to note that the age-oriented collector is an efficient collector, in particular, it
is more efficient than the reference-counting algorithm as a stand-alone. Therefore, it is
relevant to check its performance with a cycle collector.

3.4 Reducing the Number of Traced Objects

New techniques for filtering and reducing the number of traced objects were designed and
implemented in the proposed collector. For lack of space, these techniques are omitted.
They are described in our technical report [26].

An Efficient On-the-Fly Cycle Collection 165

4 Measurements

An Implementation for Java. Our algorithm was implemented in Jikes RVM [1], a
research Java virtual machine. The entire system, including the collector itself is written
in Java (extended with unsafe primitives available only to the Java Virtual Machine
implementation to access raw memory).

Platform and benchmarks. We have taken measurements on a 4-way IBM Netfin-
ity 8500R server with a 550MHz Intel Pentium III Xeon processor and 2GB of phys-
ical memory. The benchmarks used were the SPECjvm98 benchmark suite and the
SPECjbb2000 benchmark (described in [29]). We feel that the multithreaded SPECjbb-
2000 benchmark is more interesting, as the SPECjvm98 are more appropriate for clients
and our algorithm is targeted at servers (multi-processors). SPECjbb2000 runs in a single
JVM in which threads represent terminals in a warehouse. It is run with one terminal per
warehouse, thus, the number of warehouses signifies the number of threads. We also feel
that there is a dire need in academic research for more multithreaded benchmarks. In this
work, as well as in other recent work ([4, 13]) SPECjbb2000 is the only representative
of large multithreaded applications.

Testing procedure. We used the benchmark suite using the test harness, performing
standard automated runs of all the benchmarks in the suite. Our standard automated run
runs each benchmark five times for each of the JVM’s involved (each implementing a
different collector). The average of this 5 runs is used. Finally, each JVM was run on
varying heap sizes. For the SPECjvm98 suite, we started with a 32MB5 heap size and
extended the sizes by 8MB increments until a final large size of 96MB. For SPECjbb2000
we started from 256MB heap size and extended by 64MB increments until a final large
size of 704MB.
The compared collectors. The cycle collection algorithm was incorporated into two
collectors: the Levanoni-Petrank reference-counting collector [20], and the more effi-
cient age-oriented collector [27]. Both collectors are also implemented in Jikes and are
accompanied by a backup mark and sweep collector which is run infrequently to collect
garbage cycles. For performance measurements, we ran both collectors accompanied
with our cycle collection algorithm against both collectors when using the backup mark
and sweep algorithm. This first ever reported comparison of cycle collection to a backup
tracing collector is important since these are the main two options provided to an imple-
menter of a reference-counting algorithm. In addition, we have compared characteristics
of our cycle collection algorithm (with both collectors), against the characteristics of the
previous on-the-fly cycle collector of Bacon and Rajan [4].

4.1 Performance

SPECjbb2000. Figure 3 depicts the throughput ratio between using the cycle collector
and a backup tracing collector when both are used with the Levanoni-Petrank collector.
With 1–3 warehouses the collector has a spare processor to run on, since the platform
has four processors. In this case, throughput differences occur only when the collector is
not efficient enough to free enough space for program threads with on-going allocations.

5 This is a tight heap for Jikes as it is self-hosted.

166 H. Paz et al.

250 300 350 400 450 500 550 600 650 700 750
0.8

0.85

0.9

0.95

1

1.05

1.1

T
hr

ou
gh

pp
ut

 r
at

io
: C

yc
le

 C
ol

le
ct

io
n/

T
ra

ci
ng

 B
ac

ku
p

heap size [MB]

Jbb with 1−3 warehouses − Reference−Counting

1 warehouse
2 warehouses
3 warehouses

250 300 350 400 450 500 550 600 650 700 750
0.8

0.85

0.9

0.95

1

1.05

1.1

T
hr

ou
gh

pp
ut

 r
at

io
: C

yc
le

 C
ol

le
ct

io
n/

T
ra

ci
ng

 B
ac

ku
p

heap size [MB]

Jbb with 4−8 warehouses − Reference−Counting

4 warehouses
5 warehouses
6 warehouses
7 warehouses
8 warehouses

Fig. 3. SPECjbb2000 on a multiprocessor with the reference-counting collector. The higher the
ratio, the better the cycle collector performs compared to the backup tracing algorithm

250 300 350 400 450 500 550 600 650 700 750
0.8

0.85

0.9

0.95

1

1.05

1.1

T
hr

ou
gh

pp
ut

 r
at

io
: C

yc
le

 C
ol

le
ct

io
n/

T
ra

ci
ng

 B
ac

ku
p

heap size [MB]

Jbb with 1−3 warehouses − Age−Oriented

1 warehouse
2 warehouses
3 warehouses

250 300 350 400 450 500 550 600 650 700 750
0.8

0.85

0.9

0.95

1

1.05

1.1

T
hr

ou
gh

pp
ut

 r
at

io
: C

yc
le

 C
ol

le
ct

io
n/

T
ra

ci
ng

 B
ac

ku
p

heap size [MB]

Jbb with 4−8 warehouses − Age−Oriented

4 warehouses
5 warehouses
6 warehouses
7 warehouses
8 warehouses

Fig. 4. SPECjbb2000 on a multiprocessor with the age-oriented collector. The higher the ratio, the
better the cycle collector performs compared to the backup tracing algorithm

30 40 50 60 70 80 90 100
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

R
un

 ti
m

e
ra

tio
: C

yc
le

 C
ol

le
ct

io
n/

T
ra

ci
ng

 B
ac

ku
p

heap size[MB]

SPECjvm98 (on multiprocessor) − Reference−Counting

Jess
Db
Javac
Mtrt
Jack

30 40 50 60 70 80 90 100
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

R
un

 ti
m

e
ra

tio
: C

yc
le

 C
ol

le
ct

io
n/

T
ra

ci
ng

 B
ac

ku
p

heap size[MB]

SPECjvm98 (on multiprocessor) − Age−Oriented

Compress
Jess
Db
Javac
Mtrt
Jack

Fig. 5. SPECjvm98 on a multiprocessor. The higher the ratio, the better the cycle collector performs
compared to the backup tracing algorithm

This is more noticeable on tight heaps. With 4–8 warehouses, the collector does not have
a spare processor and its use of CPU directly affects the throughput. The tracing backup
collector outperforms the cycle collector usually by 5%–10%.

An Efficient On-the-Fly Cycle Collection 167

The same measurements have been run when the cycle collector and the backup
tracing collector were used with the old generation of the age-oriented collector [27], see
Figure 4. As only old objects are collected with reference counting and cycle collection,
the behavior differs. Here, cycle collection performs usually as good as the backup tracing
collector, whereas in tight heaps in which cycle collection wins. As already observed
in [2] reference counting has an advantage on tight heaps over tracing. Here it is seen
that cycle collection is also preferable on tracing (as an add-on to reference counting)
when the heap is tight.

SPECjvm98. When running the SPECjvm98 benchmarks on a multiprocessor the
collector runs concurrently with the program thread(s) on a spare processor. Figure 5
depicts the results both with the Levanoni-Petrank reference-counting collector as well
as with the age-oriented collector. The results do not point to a clear winner. Each
application behaves somewhat differently and most of the differences are below 5%.
The only clear noticeable difference is with the 227 mtrt benchmark. In 227 mtrt
there exists an initial phase in which many objects are created and kept alive till the
end of the run. These newly created objects induce a large amount of work on the cycle
collector. During the (single) long collection, the mutators halt waiting for free space.
Performance difference on 227 mtrt is not noticeable with the age-oriented collector,
where the cycle collector is not run on this pack of young objects.

Discussion. At first glance, it may seem that backup tracing is the right choice. How-
ever, it is worth noting that modern platforms and benchmarks also run more efficiently
with tracing than with reference counting [2]. Should we give up on reference counting
and cycle collection? To our minds, the answer is no. With the direction modern com-
puting is taking, we believe that the cycle collector may become much more effective
compared to a backup tracing collector. As heaps grow larger, reference counting may
become the preferred method of choice. While tracing must traverse the live objects
in the heap, reference counting needs only account for reference-counts updates and
reclaiming dead objects 6. If future benchmarks use a large live heap or even a large old
generation, then reference counting may become the best collector, and a companion
cycle collector will be required. In that case, the cycle collector proposed here is an
effective companion and we expect it to outperform a backup tracing collector. Note
also, that the best way to use reference counting today is to run it on the old generation
only as proposed in [3, 7, 27]. In that case, running cycle collection with the reference
counting is the right choice.

4.2 Pause Times

Table 1 presents the maximum pause times of the Levanoni-Petrank reference-counting
collector accompanied by our cycle collection algorithm. Pauses were measured with
a 64MB heap for SPECjvm98 benchmarks, and a 256MB heap for SPECjbb2000 with
1, 2, and 3 warehouses. For this number of threads, no thread gets swapped out, and so
pauses are due to the garbage collection only. If we run more program threads, large

6 Actually, when the heap is tight and collections are frequent, reference counting is already
winning over tracing the whole heap [2]. But, we don’t expect heaps to be tighter in the future.

168 H. Paz et al.

Table 1. Maximum pause time in
milliseconds

Benchmarks Maximum pause
time (ms)

compress 1.0
jess 1.3
db 0.7
javac 1.7
jack 1.0
mtrt 0.9
jbb-1 0.8
jbb-2 0.6
jbb-3 1.1

Table 2. Cyclic garbage collected for each
benchmark

RC AO
cyclic cyclic cyclic cyclic

Bench- objects bytes objects bytes
marks reclaimed (in MB) reclaimed (in MB)

compress 108 84.08 0 0
jess 24 0.15 0 0
db 16 0.09 0 0
javac 1 M 67.64 0.57 M 37.02
mtrt 66052 5.78 66042 5.66
jack 8976 1.72 3360 0.62
jbb 146 0.88 0 0

pause times (whose lengths depend on the operating system scheduler) appear because
threads lose the CPU to other threads.

The maximum pause time measured for all benchmarks was 1.7 ms. The maximum
pause time of the Levanoni-Petrank reference-counting collector does not depend on
whether it is accompanied by a tracing backup or by a cycle collector. The operation that
determines the length of the pause time is the scanning of the roots of a single thread,
which occurs in one of the handshakes of the collector with the program threads.

4.3 Collector Characteristics

Amount of Cyclic Garbage. Table 2 provides, for each benchmark, the number of
garbage cycle objects reclaimed and the space they consume. As the age-oriented col-
lector only employs cycle collection on old objects, it needs to reclaim a smaller set of
garbage cycles than the reference-counting collector.

compress jess db javac mtrt jack jbb
0

0.2

0.4

0.6

0.8

1

1.2

Benchmarks

Candidates Roots: ratio compared with Bacon & Rajan

C
an

di
da

te
s

tr
ac

ed
 r

at
io

LP
AO

compress jess db javac mtrt jack jbb
0

0.2

0.4

0.6

0.8

1

1.2

Objects traced: ratio compared with Bacon & Rajan

Benchmarks

O
bj

ec
ts

 tr
ac

ed
 r

at
io

LP
AO

Fig. 6. Comparison between the new collector and the previous cycle collector of Bacon and
Rajan. On the left, comparing the number of cycle candidates and on the right the number of
traced objects. The lower the ratio, the better the new cycle collector algorithm behaves

An Efficient On-the-Fly Cycle Collection 169

The benchmarks producing a substantial amount of garbage cycles space are
213 javac and 201 compress. 201 compress creates dozens of garbage cycles com-

prised of huge objects, and thus requires only a small amount of tracing. 213 javac
however, contains thousands of garbage cycles, thus requiring a large cycle collection
work.

Amount of Tracing. Figure 6 reports the candidates examined and the objects traced
ratios when the cycle collector is run with the Levanoni-Petrank collector (LP) and age-
oriented collector (AO) compared to these of the cycle collector of Bacon and Rajan [5].
To be extremely conservative we did not include the objects scanned during the additional
verification phase of [5] (since in this phase the actual operation on some objects only
included work on their colors, i.e., they were not actually traced). Thus, the actual
advantage of the new collector is even higher than reported.

Figure 6 shows that the new cycle collector with the Levanoni-Petrank collector traces
fewer candidates compared to the previous cycle collector (of [5]) over all benchmarks7.
It usually also traces substantially fewer objects except for one case: the 227 mtrt
benchmark (discussed above). The additional saving when the cycle collector is used
with the age-oriented collector is substantial for most benchmarks.

5 Related Work

The inability of reference counting to reclaim cyclic garbage structures was first noticed
by McBeth [24]. Martinez et al. [23] (inspired by [10]) reclaim cells, which were uniquely
referenced when their count drops to zero, while when a pointer to a shared object is
deleted, a local depth-first search is applied on it. Lins [21] postponed these traversals
while saving the values of the deleted pointer in a buffer (each such value is a candidate
to be a root of a garbage cycle) and traversed the buffer at a suitable point. Bacon et
al. [5] extended Lins algorithm to a concurrent cycle collection algorithm. They also
improved Lins’ algorithm by performing the tracing of all candidates simultaneously,
reducing the number of traced objects. Lins [22] showed the algorithm can employ 2
graph traversals (instead of 3) per candidate by using an extra data structure.

6 Conclusion

We presented a new non-intrusive, complete, and efficient cycle collector adequate for use
with a reference-counting garbage collector. The new cycle collector runs concurrently
with the program threads, achieving negligibly short pauses of less than 2ms. It uses
the sliding-views reference-counting collector of Levanoni and Petrank [20] with the
synchronous cycle collector of Bacon and Rajan [5]. These algorithms do not naturally
fit together since the original cycle collector expects to get a list of all reference-count
decrements, whereas the original reference-counting collector is oblivious to most of
these decrements. However, we provide a finer analysis of cycle collection showing

7 These measurements include the new techniques reducing the number of traced objects, reported
in our technical report [26].

170 H. Paz et al.

that the information gathered by the reference-counting collector is enough to guarantee
reclamation of all unreachable cycles.

The use of the sliding-views mechanism yields a drastic improvement in efficiency.
Much of the work required to ensure concurrent correctness may be eliminated. We have
further added filtering techniques to optimize the collector’s performance. An additional
theoretical contribution is the completeness of the collector. The resulting cycle collector
is guaranteed to reclaim all garbage cycles, whereas the only available previously known
concurrent collector [5] had an (extremely rare) sequence of events that prevented it from
collecting an unreachable cyclic structure forever.

We implemented the proposed cycle collector and we provide the first direct com-
parison of running a cycle collector with reference counting against running reference
counting with a backup tracing collector. Our results show that with contemporary bench-
marks, the backup tracing collector outperforms the cycle collector, although it is the
most efficient cycle collector available. However, when the reference-counting collector
was run only on the old generation, the cycle collector performed equally to the backup
tracing collector, and even better on tight heaps. Thus on today’s platforms and bench-
marks cycle collection is effective when applied to the old generation only. In the future,
as heaps and live data become much larger, the techniques described in this work may
become a preferred and most effective method to reclaim garbage.

Acknowledgement. Ram Natahniel initiated our discussion on this problem by suggest-
ing to use algorithms for strongly connected components to efficiently locate garbage
cycles. Our attempts to follow this direction failed, but this paper has evolved. We thanks
Ram for many interesting discussions.

References

1. Bowen Alpern, C. R. Attanasio, Anthony Cocchi, Derek Lieber, Stephen Smith, Ton Ngo,
John J. Barton, Susan Flynn Hummel, Janice C. Sheperd, and Mark Mergen. Implementing
Jalapeño in Java. In OOPSLA’99 ACM Conference on Object-Oriented Systems, Languages
and Applications, volume 34(10) of ACM SIGPLAN Notices, pages 314–324, 1999.

2. Hezi Azatchi, Yossi Levanoni, Harel Paz, and Erez Petrank. An on-the-fly mark and sweep
garbage collector based on sliding view. In OOPSLA [25].

3. Hezi Azatchi and Erez Petrank. Integrating generations with advanced reference counting
garbage collectors. In Proceedings of the Compiler Construction: 12th International Confer-
ence on Compiler Construction, volume 2622 of LNCS, pages 185–199, 2003.

4. David F. Bacon, Clement R. Attanasio, Han B. Lee, V. T. Rajan, and Stephen Smith. Java
without the coffee breaks: A nonintrusive multiprocessor garbage collector. In Proceedings of
SIGPLAN 2001 Conference on Programming Languages Design and Implementation, ACM
SIGPLAN Notices, Snowbird, Utah, June 2001.

5. David F. Bacon and V.T. Rajan. Concurrent cycle collection in reference counted systems.
In Jørgen Lindskov Knudsen, editor, Proceedings of 15th European Conference on Object-
Oriented Programming, ECOOP 2001, volume 2072 of Springer-Verlag, 2001.

6. Henry G. Baker. List processing in real-time on a serial computer. Communications of the
ACM, 21(4):280–94, 1978. Also AI Laboratory Working Paper 139, 1977.

7. Stephen M. Blackburn and Kathryn S. McKinley. Ulterior reference counting: Fast garbage
collection without a long wait. In OOPSLA [25].

An Efficient On-the-Fly Cycle Collection 171

8. Daniel G. Bobrow. Managing re-entrant structures using reference counts. ACM Transactions
on Programming Languages and Systems, 2(3):269–273, July 1980.

9. Hans-Juergen Boehm, Alan J. Demers, and Scott Shenker. Mostly parallel garbage collection.
ACM SIGPLAN Notices, 26(6):157–164, 1991.

10. T. W. Christopher. Reference count garbage collection. Software Practice and Experience,
14(6):503–507, June 1984.

11. George E. Collins. A method for overlapping and erasure of lists. Communications of the
ACM, 3(12):655–657, December 1960.

12. Edsgar W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Steffens.
On-the-fly garbage collection: An exercise in cooperation. Communications of the ACM,
21(11):965–975, November 1978.

13. Tamar Domani, Elliot Kolodner, and Erez Petrank. A generational on-the-fly garbage collector
for Java. In Proceedings of SIGPLAN 2000 Conference on Programming Languages Design
and Implementation, ACM SIGPLAN Notices, Vancouver, June 2000.

14. Toshio Endo, Kenjiro Taura, and Akinori Yonezawa. A scalable mark-sweep garbage collector
on large-scale shared-memory machines. In Proceedings of High Performance Computing
and Networking (SC’97), 1997.

15. Christine Flood, Dave Detlefs, Nir Shavit, and Catherine Zhang. Parallel garbage collection
for shared memory multiprocessors. In Usenix Java Virtual Machine Research and Technology
Symposium (JVM ’01), Monterey, CA, April 2001.

16. Tony Hosking, editor. ISMM 2000 Proceedings of the Second International Symposium on
Memory Management, volume 36(1) of ACM SIGPLAN Notices, 2000.

17. Richard L. Hudson and J. Eliot B. Moss. Sapphire: Copying GC without stopping the world.
In Joint ACM Java Grande — ISCOPE 2001 Conference, Stanford University, CA, 2001.

18. Elliot K. Kolodner and Erez Petrank. Parallel copying garbage collection using delayed
allocation. In Parallel Processing Letters, volume 14, June 2004.

19. Yossi Levanoni and Erez Petrank. A scalable reference counting garbage collector. Technical
Report CS–0967, Technion — Israel Institute of Technology, Haifa, Israel, November 1999.

20. Yossi Levanoni and Erez Petrank. An on-the-fly reference counting garbage collector for Java.
In OOPSLA’01 ACM Conference on Object-Oriented Systems, Languages and Applications,
volume 36(10) of ACM SIGPLAN Notices, Tampa, FL, October 2001.

21. Rafael D. Lins. Cyclic reference counting with lazy mark-scan. IPL, 44(4):215–220, 1992.
22. Rafael D. Lins. An efficient algorithm for cyclic reference counting. IPL, 83:145–150, 2002.
23. A. D. Martinez, R. Wachenchauzer, and Rafael D. Lins. Cyclic reference counting with local

mark-scan. Information Processing Letters, 34:31–35, 1990.
24. J. Harold McBeth. On the reference counter method. CACM, 6(9):575, September 1963.
25. OOPSLA’03 ACM Conference on Object-Oriented Systems, Languages and Applications,

ACM SIGPLAN Notices, Anaheim, CA, November 2003.
26. Harel Paz, David F. Bacon, Elliot K. Kolodner, Erez Petrank, and V.T. Rajan. Efficient

on-the-fly cycle collection. Technical Report CS–2003–10, Technion, 2003.
27. Harel Paz, Erez Petrank, and Stephen M. Blackburn. Age-Oriented Concurrent Garbage

Collection. In Proceedings of the 14th Int. Conference on Compiler Construction, 2005.
28. Tony Printezis and David Detlefs. A generational mostly-concurrent garbage collector. In

Hosking [16].
29. SPEC Benchmarks. Standard Performance Evaluation Corporation. http://www.spec.org/,

1998,2000.
30. Guy L. Steele. Multiprocessing compactifying garbage collection. Communications of the

ACM, 18(9):495–508, September 1975.
31. Guy L. Steele. Corrigendum: Multiprocessing compactifying garbage collection. Communi-

cations of the ACM, 19(6):354, June 1976.

Data Slicing: Separating the Heap into
Independent Regions

Jeremy Condit and George C. Necula

Department of Electrical Engineering and Computer Science,
University of California, Berkeley

{jcondit, necula}@cs.berkeley.edu

Abstract. In this paper, we present a formal description of data slicing,
which is a type-directed program transformation technique that sepa-
rates a program’s heap into several independent regions. Pointers within
each region mirror the structure of pointers in the original heap; however,
each field whose type is a base type (e.g., the integer type) appears in
only one of these regions. In addition, we discuss several applications of
data slicing. First, data slicing can be used to add extra fields to exist-
ing data structures without compromising backward compatibility; the
CCured project uses data slicing to preserve library compatibility in in-
strumented programs at a reasonable performance cost. Data slicing can
also be used to improve locality by separating “hot” and “cold” fields in
an array of data structures, and it can be used to protect sensitive data
by separating “public” and “private” fields. Finally, data slicing can serve
as a refactoring tool, allowing the programmer to split data structures
while automatically updating the code that manipulates them.

1 Introduction

When maintaining a large software project, a seemingly trivial change to a data
structure can be largely intractable due to the amount of code that depends
upon that data structure’s layout. When programmers wish to modify a data
structure, they must weigh the benefits of these modifications against the time
required to modify the program and the risk of introducing new bugs. Compil-
ers face a similar challenge; for example, a compiler may wish to alter one of
the data structures in the program it is compiling without violating data lay-
out assumptions made by precompiled code. Such changes require a principled
approach that can achieve the desired goal automatically and without changing
the program’s semantics.

This paper introduces data slicing, a program transformation technique that
addresses this problem. Given an existing program, data slicing produces a new
program that computes the same result while splitting its data structures among
several memory regions. This transformation allows the programmer or the com-
piler to factor out portions of a data structure that must reside in a different
place in memory.

R. Bodik (Ed.): CC 2005, LNCS 3443, pp. 172–187, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Data Slicing: Separating the Heap into Independent Regions 173

Data slicing can be used to preserve backward compatibility after a program
transformation. For example, a transformation that adds new fields to existing
data structures may make the program incompatible with precompiled libraries;
data slicing can be used to separate these new fields from the old ones, allowing
the original program’s data structures to retain their original layout. As the
prototypical example of this application, we show how to instantiate data slicing
in the context of the CCured project [4] to enable extensive run-time checking
of C programs while maintaining compatibility with precompiled libraries.

Data slicing can also be applied to performance optimizations. For example,
data slicing can be used to produce an improved implementation of the instance
interleaving optimization [13], which interleaves the fields of several objects in
order to place frequently-accessed fields in the same cache line.

Finally, data slicing can be applied to security problems. For example, data
slicing can move function pointers to a separate memory region to make it more
difficult for an attacker to overwrite them. In general, data slicing acts as a refac-
toring tool that simplifies the task of making global changes to data structures.

This paper offers two main contributions. First, it presents a formal descrip-
tion of the type-directed data slicing transformation on a simple imperative
language. Second, it discusses several applications of this technique, including
CCured, instance interleaving, and security-related transformations.

2 Data Slicing

Data slicing is a program transformation that separates a program’s heap into
independent regions. The input to this transformation is a program whose base
types (e.g., integer types) have been annotated with region names. The goal
of data slicing is to produce a new program that computes the same result as
the original program while splitting the data structures in the program’s heap
into independent regions. Each region must contain only the data that has been
annotated for that region, as well as any pointers that are necessary for keeping
track of that data. We focus on the case when the regions must be independent,
in the sense that there are no pointers that cross region boundaries; however, we
will show how to relax this requirement in Sections 2.5 and 3.1.

To achieve these goals, data slicing ensures that each region in the program
mirrors the structure of the original program’s heap. For example, if the original
program’s heap contains a linked list with data whose fields are annotated with
multiple regions, then each region of the transformed program’s heap will contain
a linked list of the same length containing the list data for that region. More
precisely, there is an injective mapping mi from objects in region Ri to objects
in the original program’s heap at a given point in execution. An object A in
region Ri contains the fields of object mi(A) whose type is labelled with region
Ri. Furthermore, if object A points to object B in region Ri, then object mi(A)
points to object mi(B) in the original program’s heap. Note that base fields (i.e.,
fields whose type is a base type) will be stored in exactly one region according to
the relevant type annotation, whereas each pointer field may be split into several

174 J. Condit and G.C. Necula

data
slicing

13

7

0

10

14

R1

R1

R1

R1

R1

1

20

15

R2

R2

R2

9

42

R3

R3

R1 R2 R3

transformed program’s heaporig. program’s heap

R2

0 1
R1

R1R2

10 20

R1R2

14 15

R1

7
R3

42

R1

13
R3

9

Fig. 1. Illustration of data slicing’s effects. The dashed lines delimit the regions within
the transformed program’s heap

pointer fields, one in each region where it is necessary. Essentially, data slicing
separates base fields and replicates some pointer fields.

Figure 1 illustrates the effects of data slicing. This figure shows a program’s
heap at a specific point in time before and after data slicing. The base fields
in the original heap are annotated with region names R1, R2, and R3. In the
transformed heap, each region contains a data structure with the same shape as
the original, except that it contains only the base fields for that region as well as
any pointers needed to access those fields. Note that we have eliminated entire
objects from region R2; thus, the mapping m2 is injective but not surjective.

The remainder of this section presents the data slicing transformation for-
mally. First, we introduce a C-like language (Section 2.1), and then we define
data slicing on types and programs (Sections 2.2 and 2.3). Then, we discuss
first-class functions and partial data slicing (Sections 2.4 and 2.5).

2.1 Language

Figure 2 shows an imperative language that will be the basis for our discussion
of data slicing. The types in this language include integer types, pointer types,
structure types, and named types (t). We use void as a shorthand for struct{}.
Base types (here, the integer type) have a region qualifier that indicates the
region where this data should be placed. Region names are R1 through Rn;
throughout this paper, n will refer to the number of available regions.

The syntax for l-expressions (l) and expressions (e) is based loosely on that of
C. Binary operations (“op” in the grammar) include arithmetic and comparison,
and they may only be applied to integers in the same region. We permit casts
between integers in different regions as well as casts from pointers to integers.

Commands (c) include standard imperative constructs. We will use l1, ..., lk :=
e1, ..., ek as syntactic sugar for simultaneous assignment where all right-hand
sides are evaluated before any assignments occur. Function calls have no explicit
return value; instead, the programmer must pass a pointer to the result variable
as an argument. At the top level, a program (p) is a list of definitions (d) of func-

Data Slicing: Separating the Heap into Independent Regions 175

types τ ::= int Ri | t | τ ptr | struct{ . . . fj : τj ; . . . }
l-expressions l ::= x | l.f | ∗e
expressions e ::= n | null | new τ | e1 op e2 | &l | l

| cast〈int Rj ↪→ int Ri〉 e | cast〈τ ptr ↪→ int Ri〉 e
commands c ::= l := e | f(x) | let x : τ in c | c1; c2

| if e then c1 else c2 | while e do c
definitions d ::= f(x : τ) {c} | type t = τ
programs p ::= d p | d

Fig. 2. A C-like language used as the basis for discussing data slicing

tions and types. Type definitions allow recursive types to be defined. To simplify
the presentation, we defer the discussion of function pointers to Section 2.4. The
complete static semantics for this language can be found in Appendix A.

Using this language, we can write down the types of the objects in Figure 1.
In the original program’s heap, there are two types of objects, t and t′, as follows:

type t = struct{ p1 : t ptr; p2 : t′ ptr; f1 : int R1; f2 : int R2; }
type t′ = struct{ f1 : int R1; f3 : int R3; }

To translate a C program to this language, the programmer must add region
annotations to each field or variable whose type is a base type. The programmer
must either eliminate unsafe pointer casts or limit the use of data slicing to the
safe portions of the program using a technique discussed in Section 2.5.

2.2 Transformation of Types

We now define the data slicing transformation on types, which will guide the rest
of the transformation. In the previous section, we defined two types, t and t′,
for the objects on the left-hand side of Figure 1. Data slicing splits each object
of type t or t′ into three objects, one in each region. The resulting types are:

type t1 = struct{ p1 : t1 ptr; p2 : t′1 ptr; f1 : int R1; }
type t2 = struct{ p1 : t2 ptr; f2 : int R2; }
type t3 = struct{ p1 : t3 ptr; p2 : t′3 ptr; }
type t′1 = struct{ f1 : int R1; }
type t′2 = void
type t′3 = struct{ f3 : int R3; }

Note that the pointers of type t ptr in the original heap have been split into
pointers of type t1 ptr, t2 ptr, and t3 ptr in their respective regions. Similarly,
the pointers of type t′ ptr have been split into pointers of type t′1 ptr and t′3 ptr
in regions R1 and R3. It is unnecessary to have a pointer of type t′2 ptr in region
R2 because t′ contains no data labelled with region R2 (i.e., t′2 is void). Note
that integer fields only appear in the region to which they have been assigned.

Formally, we define a mapping TSlicei from types in the original program to
the corresponding types in region Ri of the transformed program (see Figure 3).

176 J. Condit and G.C. Necula

TSlicei(int Rj) =

{
int Rj if i = j
void otherwise

TSlicei(τ ptr) =

{
TSlicei(τ) ptr if TSlicei(τ) �= void
void otherwise

TSlicei(struct{ . . . fj : τj ; . . . }) = struct{ . . . fj : TSlicei(τj); . . . }
TSlicei(t) = ti

VSlice(τ) = struct{ . . . ri : TSlicei(τ); . . . }

Fig. 3. Data slicing transformation for types. Note that we omit void fields from the
resulting structure types

The first rule in this definition says that the sliced type for region Ri contains
only those base types that are annotated with region Ri. The rules for structures
and pointers recursively apply TSlicei, and the rule for named types transforms a
named type t into its corresponding named type ti in region Ri. (In Section 2.3,
we will define ti to be TSlicei(τ), where τ is the original definition of t.)

Two optimizations occur during this transformation. First, when the result
is a structure type, we omit fields of type void. Second, we omit pointers that
cannot be used to reach any data in region Ri, as shown in the “otherwise”
case for pointer types. For example, TSlice1(int R2 ptr ptr) = void rather
than void ptr ptr, since this type contains no information from region R1. Of
course, TSlice2 yields int R2 ptr ptr, as desired.

TSlicei gives the transformation for a specific region; however, at certain
points in the program (variables and formal parameters), we must gather the
sliced data into one structure containing the data from all regions. In Figure 3,
VSlice gives the type of this merged structure. For example, a variable or formal
parameter whose type is a pointer type would be transformed into a structure
containing one pointer for each region where the pointer’s sliced type is not void.

2.3 Transformation of Programs

In Figure 4, we show the transformation for the remaining syntactic constructs.
PSlice and DSlice transform programs and definitions. Formal parameters

are transformed with VSlice, so they include data from all regions. For type
definitions, we create one named type for each region.

CSlice defines data slicing for commands. Function calls are unchanged, since
the argument variable’s type will have been transformed with VSlice. For condi-
tionals and loops, we transform the guard expression with ESlice1, which slices
an expression with type int R1. (The guard expression must have this type.)

The assignment command is the key part of this transformation: essentially,
the transformed program performs the corresponding assignment in each region
where the type being assigned is not void. Since each region’s assignment op-
eration is performed separately, the rules for expressions and l-expressions are

Data Slicing: Separating the Heap into Independent Regions 177

PSlice(d p) = DSlice(d) PSlice(p)
PSlice(d) = DSlice(d)

DSlice(f(x : τ) {c}) = f(x : VSlice(τ)) {CSlice(c)}
DSlice(type t = τ) = type t1 = TSlice1(τ) ... type tn = TSlicen(τ)

CSlice(f(x)) = f(x)
CSlice(if e then c1 else c2) = if ESlice1(e) then CSlice(c1) else CSlice(c2)

CSlice(while e do c) = while ESlice1(e) do CSlice(c)
CSlice(let x : τ in c) = let x : VSlice(τ) in CSlice(c)

CSlice(c1; c2) = CSlice(c1); CSlice(c2)
CSlice(l := e) = LSlicei1(l), .., LSliceik(l) :=ESlicei1(e), .., ESliceik(e)

where {i1,..,ik}={i∈{1,..,n}|TSlicei(TypeOf(e)) �= void}

ESlicei(n) = n
ESlicei(null) = null

ESlicei(e1 op e2) = ESlicei(e1) op ESlicei(e2)
ESlicei(cast〈int Rj ↪→ int Ri〉e) = cast〈int Rj ↪→ int Ri〉 ESlicej(e)
ESlicei(cast〈τ ptr ↪→ int Ri〉e) = cast〈TSlicei(τ ptr) ↪→ int Ri〉 ESlicei(e)

ESlicei(new τ) = new TSlicei(τ)
ESlicei(&l) = &LSlicei(l)

ESlicei(l) = LSlicei(l)

LSlicei(x) = x.ri

LSlicei(l.f) = LSlicei(l).f
LSlicei(∗e) = ∗ESlicei(e)

Fig. 4. Data slicing transformation for programs, definitions, commands, expressions,
and l-expressions, using n regions

defined with respect to a single region, and they assume that the sliced type of
the expression in the given region is not void.

For example, suppose we want to transform the command (∗x).p2 := y,
where x has type t ptr and y has type t′ ptr. (We use the types t and t′

defined in Section 2.1.) The rule for assignment yields CSlice((∗x).p2 := y) =
LSlice1((∗x).p2), LSlice3((∗x).p2) := ESlice1(y), ESlice3(y). Thus, we will perform
the corresponding assignment in regions R1 and R3, since TSlice1(t′ ptr) �= void
and TSlice3(t′ ptr) �= void, but not in region R2, since TSlice2(t′ ptr) = void.

Now consider ESlicei and LSlicei, the slicing operations for expressions and
l-expressions, respectively. Here, we slice with respect to a specific region; for
example, when transforming a variable reference, we select the component of
that variable corresponding to the region in question. Continuing the example
above, we have LSlice1((∗x).p2) = (∗x.r1).p2 and LSlice3((∗x).p2) = (∗x.r3).p2.
Note that this slicing operation could not have been performed in region R2, since
TSlice2(t) does not have a field called p2. However, the assignment rule prevents
us from calling ESlice2 in this case, since TSlice2(t′ ptr) = void. The final result
for the example is CSlice((∗x).p2 := y) = (∗x.r1).p2, (∗x.r3).p2 := y.r1, y.r3.

The integer cast expression computes a single integer value in region Rj using
ESlicej , casts this integer to region Ri, and completes the computation in region

178 J. Condit and G.C. Necula

Ri. Since we only move a single integer value between regions, this operation
preserves the invariant that there are no inter-region pointers.

Finally, note that the pointer cast expression targets a specific region, and
this choice affects the result of the transformation. For example, the expression
cast〈t ptr ↪→ int R1〉 x would be transformed to cast〈t ptr ↪→ int R1〉 x.r1,
whereas cast〈t ptr ↪→ int R3〉 x would become cast〈t ptr ↪→ int R3〉 x.r3.
After data slicing, these expressions will yield different integers; thus, when com-
paring two pointers, the programmer must ensure that they were obtained by
casting to the same region. In this example, we cannot cast to region R2 because
our typing rules require that we cast to a region where TSlicei(τ ptr) �= void.

2.4 Handling First-Class Functions

Since data slicing splits data but not code, we cannot split a function among n
different regions in the same way that we can split a pointer. Rather, function
types are handled in the same manner as integer types: by adding a region
qualifier. To implement this scheme, we add a function type, a function name
expression, a function cast expression, and a new function invocation command.

τ ::= . . . | τ fn Ri

e ::= . . . | f | cast〈τ fn Rj ↪→ τ fn Ri〉 e
c ::= . . . | e(x)

In the function type τ fn Ri, the type τ refers to the type of the argument to
the function. Next, we add new rules to our type and program transformations:

TSlicei(τ fn Rj) =
{

VSlice(τ) fn Ri if i = j
void otherwise

ESlicei(f) = f
CSlice(e(x)) = ESlice1(e)(x)

Function argument types are transformed with VSlice. Function names are
unchanged, and function invocation retrieves the function from region R1 as
required by our type system. Function casts (not shown) resemble integer casts.

Unfortunately, this approach does not suffice for applications where data
slicing is used to preserve backward compatibility. In these applications, we start
with a program whose fields are all labelled with region R1. When we add new
fields, we label them with region R2 so that data slicing will separate these fields
from the original data structures, thus preserving the original layout of region
R1. However, the original layout of region R1 may contain function types. We
cannot label these types with region R2, because data slicing would remove them
from region R1, breaking backward compatibility. However, we cannot keep them
in region R1, because the sliced type in R1 may differ from the original type.

To solve this problem, we allow the programmer to introduce wrapper func-
tions. These functions have the appropriate type for the original data layout,
and they are responsible for calling the transformed function with arguments
from all regions. In the above example, we can annotate the function type with

Data Slicing: Separating the Heap into Independent Regions 179

region R2, and then data slicing will place a wrapper function of the appropriate
type in region R1. The wrapper’s implementation is application-specific.

For example, function types and expressions may be transformed as follows:

TSlicei(τ fn Rj) =
{

VSlice(τ) fn Ri if i = j
TSlicei(τ) fn Ri otherwise

ESlicei(f) =
{

f if TypeOf(f) = τ fn Ri

fi otherwise

The function fi is a wrapper for function f in region Ri. This wrapper func-
tion takes an argument of type TSlicei(τ), which it uses to call f . Since this
data corresponds to only one of the fields that make up VSlice(τ), the wrapper
function must fill in the rest of the fields in an application-specific manner. We
will see an example of this approach in the CCured case study (Section 3.1).

2.5 Partial Data Slicing

The variant of data slicing presented so far splits the base fields of a data struc-
ture as well as all objects that directly or indirectly point to these base fields.
In many cases, this additional slicing is wasteful; for example, when using data
slicing to preserve library compatibility, we need not split objects that will not
be shared with a library.

To solve this problem, we introduce an extension that allows pointer and
structure types to be given region annotations. A pointer of type τ ptr R1
would be split into as many as n pointers using the original rules, but all of
these pointers would be stored in region R1, despite the fact that they point
to other regions. Because all components of this pointer appear in one region,
types that contain this pointer do not necessarily need to be split. In a sense,
we introduce a limited form of inter-region pointer in exchange for the ability
to restrict data slicing to a small portion of the program. In fact, this extension
can be used to derive CCured’s technique for restricting its compatible metadata
representation [4]. Due to space constraints, we omit the remaining details.

3 Case Studies

3.1 CCured

CCured [4, 10] is a program transformation system designed to guarantee mem-
ory safety in C programs through a combination of static analysis and run-time
checks. To perform its run-time checks, CCured adds metadata to pointers, alter-
ing the layout of the program’s data structures. Unfortunately, this new layout
is incompatible with precompiled libraries, which proved to be a major obstacle
when applying CCured to large software systems such as bind and OpenSSH.
To solve this problem, CCured can separate its metadata from the original pro-
gram’s data, placing this metadata in a parallel structure [4]. Data slicing gen-
eralizes this technique, as discussed in Section 4. In this section, we show how

180 J. Condit and G.C. Necula

data slicing can be instantiated for CCured, demonstrating how one can solve
data structure backward compatibility problems with data slicing.

CCured classifies pointers into one of several pointer kinds, which determine
the metadata required by a given pointer. We will consider three CCured pointer
kinds: SAFE pointers, which carry no metadata, SEQ (“sequence”) pointers, which
carry array bound information, and RTTI (“run-time type information”) pointers,
which carry an integer identifying the dynamic type of the pointer.

CCured infers these pointer kinds based on pointer usage, and then it imple-
ments them by transforming them into C structures, as follows:

Rep(int) = int RD

Rep(τ ptr SAFE) = struct{ p : Rep(τ) ptr; }
Rep(τ ptr SEQ) = struct{ p : Rep(τ) ptr; b : int RM ; e : int RM ; }
Rep(τ ptr RTTI) = struct{ p : Rep(τ) ptr; t : int RM ; }
Rep(τ fn) = Rep(τ) fn RM

Given a type annotated with CCured pointer kinds, the Rep function gives
the representation of that type as a C type. For example, SAFE pointers are rep-
resented by a single pointer, whereas SEQ pointers also carry bounds information.
Rep adds region qualifiers as appropriate: RD for data, RM for metadata.

To make these data structures compatible with existing libraries, we can ap-
ply the data slicing transformation after the CCured transformation. In previous
work [4], we introduced functions called C and Meta to describe the types of the
separated data and metadata structures; the interested reader can verify that
C = TSliceD ◦ Rep and that Meta = TSliceM ◦ Rep. (Note that in this paper, we
use integer types instead of pointer types for the b and e fields.)

For function types, we use the wrapper function scheme from Section 2.4.
Since Rep uses region RM for all function types, the transformed functions (which
take both data and metadata as arguments) are always stored in and retrieved
from RM . In region RD, we place a wrapper whose type matches the original
type of the function. This wrapper is responsible for looking up (or generating)
appropriate metadata for its arguments before calling the transformed function.

Example of Data Slicing in CCured. The C library functions sendmsg and
recvmsg take as a parameter a pointer to a msghdr, which in turn contains an
array of iovecs. A simplified declaration for these structures is as follows:

type iovec = struct{ iov base : data ptr RTTI; iov len : int; }
type msghdr = struct{ msg iov : iovec ptr SEQ;

msg iovlen : int; msg flags : int; }
The type data is some unspecified type; for simplicity, we assume it contains

no metadata. Figure 5 shows how data slicing separates the CCured metadata
from this data structures. Once separated, the data portion can be passed di-
rectly to C library functions.

Performance. CCured has been applied to several large systems programs
(e.g., OpenSSH, bind, ftpd, sendmail, Apache modules) for which the ability

Data Slicing: Separating the Heap into Independent Regions 181

data
slicing

eb

t

b ep

msg iov msg flags
msg iovlen

iov leniov base

tp p tp t

cured program’s heap cured program’s heap after slicing

p

iov base
iov len

p p

m

msg iov

t

iov base

t

RMRD
msg iovlen

p

msg iov msg flags

Fig. 5. Illustration of data slicing in CCured. CCured’s metadata, shown in gray, is
separated into the metadata region, RM . The base and end fields are integers, not
pointers, which is why they are allowed to “point” across region boundaries. These
“pointers,” which are drawn with dashed lines, are compared but never dereferenced

to maintain compatibility with precompiled libraries was essential. In order to
determine the impact of data slicing, we also applied CCured to simple bench-
marks (olden [2] and ptrdist [1]) that can be cured without using data slicing.

These experiments were conducted on a 2.4 GHz Pentium 4 with 1 GB of
memory running Linux 2.6.6. The results are reported in Table 1. The second
and third columns show the average execution time (in seconds) of five runs
of the cured program, with and without data slicing. Standard deviations were
negligible in all cases. The third column shows the ratio of the sliced version to
the unsliced version. The fourth column shows the percentage of pointers in the
program text that required CCured metadata (i.e., were not SAFE). The final
column indicates the percentage of pointers in the program text that were split
into two pointers (i.e., one in each region). These percentages include all pointer
types and all variables, since each variable’s address is potentially a pointer.

The impact of data slicing on execution time was minimal for most of these
benchmarks. The only three cases that had more than a 1% slowdown were
anagram, em3d, and mst. The worst performance by far was shown by em3d,
which had a 63% slowdown. For such cases, it is possible to restrict data slicing
to only those portions of the program where it is necessary (see Section 2.5),
thus minimizing the overall performance impact.

There is a rough correspondence between the number of pointers needing
metadata and the number of pointers that need to be split into two pointers.
Recall that a pointer will be split into two pointers if there is CCured metadata
reachable from that pointer; thus, these two numbers will be correlated. While
these static counts give a rough estimate of the performance impact of data
slicing, they are not always reliable (compare anagram and bh); naturally, data
slicing’s performance depends significantly on how pointers are used at run time.

182 J. Condit and G.C. Necula

Table 1. Results for ptrdist and olden. We show execution time (in seconds) and
the static percentage of pointers needing metadata and of pointers that were split.
We omit ptrdist’s bh benchmark, since it uses CCured’s WILD pointer, whose current
implementation is not amenable to data slicing

Test Cured Sliced Ratio Meta Split

anagram 3.001 3.329 1.10 12% 11%
ft 2.164 2.140 0.99 2% 1%
ks 2.617 2.597 0.99 12% 6%
yacr2 0.197 0.199 1.01 11% 12%

bh 3.592 3.572 0.99 20% 13%
bisort 1.906 1.915 1.00 3% 2%
em3d 0.275 0.449 1.63 6% 18%
health 1.305 1.303 1.00 3% 2%
mst 0.651 0.677 1.04 3% 14%
perim 2.106 2.106 1.00 0% 0%
power 3.584 3.583 1.00 2% 4%
treeadd 0.417 0.420 1.01 3% 3%
tsp 2.162 2.160 1.00 0% 0%

3.2 Instance Interleaving

Data slicing can also be used to implement compiler optimizations. To illustrate
this application, we consider the instance interleaving optimization described by
Truong et al. [13]. Instance interleaving is a data layout technique that clusters
frequently-accessed (“hot”) fields from a number of instances of a data struc-
ture, improving cache performance. Unfortunately, the original implementation
required programmer intervention and had significant restrictions on the use
of these structures. Data slicing provides an alternative implementation that
addresses these problems.

Truong et al. presented instance interleaving using the following structure:

type t = struct{ a : int; b : int; c : int; d : int; }
Assume that fields a and c are accessed far more frequently than fields b and

d. To apply instance interleaving using the original approach, we would separate
the “hot” fields and add padding (represented by an ellipsis):

type t = struct{ a : int; c : int; . . . b : int; d : int; }
Now, we allocate these objects from an array that is sized according to the

amount of padding. “Hot” fields are stored in the first half of the array, and
“cold” fields are stored in the second half. The padding represents the portions
of the array that do not belong to this particular instance. The top half of
Figure 6 shows how a pointer of type t ptr points to an instance of the structure
t that is part of an interleaved array. The padding in the structure corresponds

Data Slicing: Separating the Heap into Independent Regions 183

a c ca ca

array of structures using instance interleaving

structure padding “skips”
fields of other instances

fields of one instance

a c ca ca db db db

RH RC

db db db

array of structures using data slicing
b ca d b ca d b ca d

original array of structures

data
slicing

inter-
leaving

instance

Fig. 6. Two implementations of instance interleaving. “Hot” fields are white, and
“cold” fields are gray

to the fields of the other interleaved instances. The programmer allocates from
this array by calling ialloc, a library function that manages the array.

This implementation requires that the programmer modify only the struc-
ture declaration and the allocation sites. However, pointer arithmetic, structure
assignment, and static allocation are either prohibited or extremely wasteful.

Data slicing offers an alternative implementation that solves these problems.
To use data slicing, we would assign “hot” and “cold” fields to different regions:

type t = struct{ a : int RH ; b : int RC ; c : int RH ; d : int RC ; }
After data slicing, the “hot” and “cold” fields will appear in different regions.

If we allocate objects from an array, the “hot” fields of several instances will be
allocated adjacent to one another, as shown in the bottom half of Figure 6.

The data slicing approach has many advantages. First, there is minimal pro-
grammer intervention required, which eliminates an opportunity for introduc-
ing bugs. Second, it is possible to use pointer arithmetic, structure assignment,
static allocation, and dynamically-sized arrays. Finally, we can have more than
two classes of fields; for example, we could group fields that tend to be accessed
at the same time and then assign one region to each group.

The primary disadvantage of the data slicing implementation is that in some
cases, data slicing introduces an additional pointer. In Figure 6, the pointer
into the array has been split into two pointers, one for the “hot” region and
one for the “cold” region. This splitting arises because data slicing makes no
assumptions about the size of the array. However, if we restrict data slicing
using the technique from Section 2.5, then the pointers to the “hot” and “cold”
parts of a data structure can be stored in the same region, without splitting the
data structure that contains them. Truong et al. report speedups of 1.08 to 2.52
when using instance interleaving and reordering some fields; the overhead of the
extra pointer required by data slicing should be comparatively small.

184 J. Condit and G.C. Necula

3.3 Security Applications

In this section, we present three examples that demonstrate how data slicing can
be applied to security problems.

First, data slicing can be used to isolate function pointers in a program’s
heap. Function pointers can be a security vulnerability because an errant write
that changes a function pointer could allow an attacker can gain control of the
processor [15]. To solve this problem, it is not sufficient to add an extra level of
indirection to function pointers: we could replace pointers of type τ fn ptr with
pointers of type τ fn ptr ptr, but overwriting this new pointer is still a security
vulnerability. Instead, we can label all function pointers with a special region
name and apply data slicing. As a result, all function pointers and all pointers
that indirectly point to them will be placed in this region, reducing the chances
that an attacker can overwrite them.

Second, data slicing can protect sensitive data (such as a password) that
is stored in virtual memory. Normally, the programmer must ensure that this
data is not paged to disk; otherwise, an attacker who has access to the page
file could recover the secret data [8]. If the user annotates sensitive data with a
specific region name, then data slicing will separate this data into a region that
can be marked as non-pageable. Here, data slicing automates a task that would
otherwise be a tedious refactoring exercise.

Finally, suppose the programmer wishes to share portions of an application’s
data structures with an untrusted party. If the programmer labels public and
private fields appropriately, data slicing will separate these fields into indepen-
dent data structures. Since data slicing disallows inter-region pointers, the user
is guaranteed that private data is not accessible from shared public data. Indeed,
because the private data is stored in a completely separate memory region, it
could be protected by the virtual memory system as well.

In general, data slicing provides the programmer with a refactoring tool. The
programmer can label fields that need to be removed from a data structure,
and data slicing will automatically make the desired change throughout the
program.

4 Related Work

This work originated in the design of CCured’s compatible metadata representa-
tion [4]. Unfortunately, the design of this compatible representation was largely
ad-hoc and would be difficult to adapt for other purposes; in addition, the origi-
nal presentation only showed how to transform types. Data slicing, as presented
in this paper, provides a framework for applying this transformation in a much
more general setting. In addition, we improve over previously published work by
showing how to handle first-class functions, by allowing the transformation to
split the heap into more than two regions, and by providing a detailed discussion
of the program transformation itself. Finally, we show how this technique can
be applied to other problems.

Data Slicing: Separating the Heap into Independent Regions 185

Structure splitting [3] separates infrequently-accessed fields by adding an ex-
tra level of indirection to a data structure. Data slicing provides an alternative
approach, as shown in the instance interleaving example. Unfortunately, struc-
ture splitting is inappropriate for solving backward compatibility problems, since
it adds an extra pointer to the original structure after removing fields.

Intensional polymorphism [5, 6, 7] is an approach to compiling polymorphism
that allows type information to be used at run time. This technique allows
a compiler to use efficient data representations while preserving type safety.
Data slicing solves a similar problem, since it allows the compiler to refactor
data structures automatically. Also, many of these approaches to intensional
polymorphism represent types as terms in parallel with expressions; data slicing
provides such parallel structures for arbitrary data.

One alternative approach to preserving backward compatibility is to use a
global splay tree to store metadata [9]. However, this strategy was prohibitively
expensive in CCured, since it altered the asymptotic complexity of some sim-
ple test cases. Data slicing allows constant-time metadata lookup in most cases;
global lookups are only needed by wrapper functions at library boundaries. An-
other alternative is to factor runtime checks into a “shadow process” that ex-
ecutes on another processor [11]. Data slicing has several advantages over this
approach: it is type-directed, handles first-class functions, requires less overhead,
and requires only one processor.

Program slicing, which was introduced by Weiser [14] and later surveyed by
Tip [12], extracts only those portions of a program that are relevant to computing
the value of a particular variable at a particular program point. Data slicing does
not discard any code; rather, it separates data in the heap into independent
regions. However, there is some similarity: program slicing preserves statements
that indirectly affect the value of the specified variable, and data slicing preserves
pointers from which data in a given region is reachable.

5 Conclusions

In this paper, we have introduced data slicing, a program transformation that
separates the heap into several independent regions. Using this technique, we can
add new fields to a data structure without interfering with backward compatibil-
ity, and we can also implement compiler optimizations in a principled manner.
In addition, we can implement security-related program transformations. Future
work includes investigating ways to make data slicing work in the presence of
unsafe pointer casts and automating the task of constructing wrapper functions
for function pointers.

We believe that the data slicing technique is a promising approach to a num-
ber of common software engineering problems. It is particularly useful in com-
bination with other automated program transformations, since it simplifies the
task of improving these programs while preserving backward compatibility. As
automated program transformations become more popular in practice, we be-
lieve that this technique will find a wide range of additional applications.

186 J. Condit and G.C. Necula

Acknowledgements

Thanks to Matt Harren, Scott McPeak, and Westley Weimer, whose work on
CCured made this work possible. This material is based upon work supported
under a National Science Foundation Graduate Research Fellowship.

References

1. Todd M. Austin, Scott E. Breach, and Gurindar S. Sohi. Efficient detection of
all pointer and array access errors. In SIGPLAN Conference on Programming
Language Design and Implementation, pages 290–301, 1994.

2. Martin C. Carlisle. Olden: Parallelizing Programs with Dynamic Data Structures
on Distributed-Memory Machines. PhD thesis, Princeton University Department
of Computer Science, June 1996.

3. Trishul M. Chilimbi, Bob Davidson, and James R. Larus. Cache-conscious struc-
ture definition. In SIGPLAN Conference on Programming Language Design and
Implementation, pages 13–24, 1999.

4. Jeremy Condit, Matthew Harren, Scott McPeak, George C. Necula, and Westley
Weimer. CCured in the real world. In SIGPLAN Conference on Programming
Language Design and Implementation, June 2003.

5. Karl Crary, Stephanie Weirich, and J. Gregory Morrisett. Intensional polymor-
phism in type-erasure semantics. In International Conference on Functional Pro-
gramming, pages 301–312, 1998.

6. Dominic Duggan. Dynamic typing for distributed programming in polymorphic
languages. ACM Transactions on Programming Languages and Systems, 21(1):11–
45, 1999.

7. Robert Harper and Greg Morrisett. Compiling polymorphism using intensional
type analysis. In SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 130–141, 1995.

8. Michael Howard and David LeBlanc. Writing Secure Code. Microsoft, 2002.
9. Richard W. M. Jones and Paul H. J. Kelly. Backwards-compatible bounds checking

for arrays and pointers in C programs. AADEBUG, 1997.
10. George C. Necula, Scott McPeak, and Westley Weimer. CCured: Type-safe

retrofitting of legacy code. In SIGPLAN–SIGACT Symposium on Principles of
Programming Languages, pages 128–139, 2002.

11. Harish Patil and Charles N. Fischer. Efficient run-time monitoring using shadow
processing. In Automated and Algorithmic Debugging, pages 119–132, 1995.

12. Frank Tip. A survey of program slicing techniques. Journal of programming lan-
guages, 3:121–189, 1995.

13. Dan N. Truong, François Bodin, and André Seznec. Improving cache behavior of
dynamically allocated data structures. In IEEE PACT, pages 322+, 1998.

14. Mark Weiser. Program slicing. IEEE Transactions on Software Engineering,
10:352–357, 1984.

15. Suan Hsi Yong and Susan Horwitz. Protecting C programs from attacks via invalid
pointer dereferences. In SIGSOFT International Symposium on Foundations of
Software Engineering, pages 307–316, 2003.

Data Slicing: Separating the Heap into Independent Regions 187

A Static Semantics

This section gives the static semantics for the language presented in this paper,
including first-class functions. The environment Γ maps variables to types. A
program is well-typed if the body of every function f type-checks with initial
environment Γf , which maps f ’s argument to its type. FieldType(τ, f) gives the
type of field f in the structure type τ . ArgType(f) gives the type of f ’s argument.
The predicate HasComponent(τ, i) indicates whether there is a base type in
region Ri that is reachable from τ , and it holds if and only if TSlicei(τ) �= void.
This latter fact is required by the translation of the pointer-to-integer cast.

Expressions

Γ � n : int Ri Γ � null : τ ptr Γ � new τ : τ ptr

Γ � l : τ

Γ � &l : τ ptr
τ = ArgType(f)
Γ � f : τ fn Ri

Γ � e1 : int Ri Γ � e2 : int Ri

Γ � e1 op e2 : int Ri

Γ � e : int Rj

Γ � cast〈int Rj ↪→ int Ri〉 e : int Ri

Γ � e : τ ptr HasComponent(τ, i)
Γ � cast〈τ ptr ↪→ int Ri〉 e : int Ri

L-Expressions

x ∈ Dom(Γ)
Γ � x : Γ (x)

Γ � l : τ1 τ2 = FieldType(τ1, f)
Γ � l.f : τ2

Γ � e : τ ptr
Γ � ∗e : τ

Commands

Γ � l : τ Γ � e : τ

Γ � l := e

Γ � e : τ fn R1 τ = Γ (x)
Γ � e(x)

Γ � e : int R1 Γ � c1 Γ � c2

Γ � if e then c1 else c2

Γ � e : int R1 Γ � c

Γ � while e do c

Γ [x �→ τ] � c

Γ � let x : τ in c

Γ � c1 Γ � c2

Γ � c1; c2

R. Bodik (Ed.): CC 2005, LNCS 3443, pp. 188–203, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Compiler-Based Approach to Data Security*

F. Li1, G. Chen1, M. Kandemir1, and R. Brooks2

1 Computer Science and Engineering Department,
The Pennsylvania State University, University Park, PA 16802

{feli, guilchen, kandemir}@cse.psu.edu
2 Electrical and Computer Engineering Department,

Clemson University, Clemson, SC 29634
rrb@clemson.edu

Abstract. With the proliferation of personal electronic devices and embedded
systems, personal and financial data is more easily accessible. As a conse-
quence, we also observe a proliferation of techniques that attempt to illegally
access sensitive data without proper authorization. Due to the severe financial
and social ramifications of such data leakage, the need for secure memory has
become critical. However, working with secure memories can have perform-
ance, power, and code size overheads since accessing a secure memory involves
additional overheads for encryption/decryption and/or password checks. In ad-
dition, an application code may need to be restructured to work under such a
memory system. In this paper, we propose a compiler-directed strategy to gen-
erate code for a secure memory based embedded architecture. The idea is to let
the programmer mark certain data elements, called the seed elements, as secure
(i.e., need to be stored in secure memory), and let the compiler determine the
remaining secure elements automatically. We also address the problem of code
size increase due to our strategy. The experimental results obtained through
simulations clearly show that the proposed approach is effective in reducing the
total secure memory size. The results also indicate that it is possible to reduce
the resulting code size increase by clustering accesses to secure memory.

1 Introduction

Secure memories are those that provide a secure place for the storage of sensitive in-
formation to prevent undesired accesses. Such memories are becoming increasingly
important in many embedded systems such as smartcards, health-monitoring devices,
and PDAs that store vital personal/financial information. There are different ways of
implementing secure memories. For example, crypto-memories store data in an en-
crypted form and require decryption for data access. The password-protected memo-
ries, on the other hand, require a handshaking protocol for verifying the identity of the
requester.

Secure memories, while effective in providing data protection, have at least two
problems associated with them. First, accessing a secure memory takes more execu-

* This work is supported in part by NSF Grants #0444158, #0406340, #0093082, and a grant

from GSRC.

 A Compiler-Based Approach to Data Security 189

tion cycles than accessing a non-secure (conventional) memory. The number of addi-
tional cycles for the required security checks depends on the type of the secure memory
employed, i.e., whether it is password-protected or crypto-memory. Second, secure
memory accesses consume extra energy, which may or may not be tolerated depending
on energy budget of the battery-operated embedded system under consideration. For-
tunately, in a given embedded application, not all the data elements demand security
(or at least the same level of security), and thus, not all the data elements need to be
stored in a secure memory. As an example, in an image processing application that
manipulates secure images, a certain portion of the frames can contain sensitive data
(and need to be stored in a secure memory), whereas the remaining parts can be stored
in a conventional (i.e., non-secure) memory. The problem then is to decide, given an
embedded program, the set of data elements that need to be stored in the secure mem-
ory. Since an error in making this decision can have serious consequences (as it can
compromise security of the application), it might be beneficial to automate this deci-
sion within an optimizer.

This paper proposes a compiler-directed approach to this problem. The idea is to let
the programmer mark certain data elements, called the seed elements, as secure (i.e.,
need to be stored in the secure memory), and let the compiler determine the remaining
secure elements automatically. The programmer can be conservative in determining
the seed elements; however, more accurate she is in marking such elements, the
smaller the total number of secure elements determined by the approach. It should be
noticed that, since the seed elements can be assigned to other data elements in the ap-
plication, the final set of secure elements determined by our approach is normally lar-
ger than the seed elements alone. We use a compiler-directed program analysis that
captures such assignments of seed elements and keeps track of the elements that need
to be stored in the secure memory. Since our approach determines the minimum set of
secure elements, it reduces the secure memory space required by the application. In
addition, reducing the number of secure elements both improves execution cycles and
reduces memory energy consumption. However, since secure and non-secure mem-
ory accesses typically make use of different load/store operations, one needs to be
careful in not excessively increasing the size of the generated code. To address this is-
sue, this paper also proposes and evaluates a loop iteration scheduling scheme. The
experiments with this scheduler indicate significant savings in the code memory space
requirements.

We implemented the proposed approach within an optimizing compiler and per-
formed several experiments with five embedded benchmark codes. Our experimental
results obtained through simulations clearly show that the proposed approach is effec-
tive in reducing the secure memory size, and the overheads associated with working
under secure memories.

The remainder of this paper is structured as follows. The next section gives an
overview of secure memories. Section 3 presents the details of our code and data
partitioning for secure memories. Section 4 presents results from our experimental
evaluation, and Section 5 discusses related work. Finally, Section 6 concludes the
paper.

190 F. Li et al.

2 Secure Memory Background

The basic secure memory architecture consists primarily of a cryptographic engine and
a normal memory unit. The cryptographic engine facilitates the encryption/decryption
of the data transmitted between the CPU and the secure memory. Secure memories
[5,11] can additionally support mechanisms for password protection and authentication
in addition to the encryption functionality. The encryption and decryption are per-
formed based on whether a secure load/store is desired. The instruction set architec-
ture is augmented by special secure load and secure store operations. These secure
memory operations can be implemented through the use of an additional bit in the in-
struction format, which can be set by the compiler during code generation. If this bit is
set, a load operation requires the read data to be decrypted before it is fed to the
datapath, and a store operation requires the data to be encrypted before it is written into
the memory. However, normal loads and stores incur no additional performance pen-
alty as they can identify that the encryption/decryption can be bypassed early in the in-
struction decode stage. The encryption scheme typically employs block encryption that
translates a given plain text to a cipher text of the same length. Hence, there are no
complexities involved with mapping the encrypted data on to the memory.

Since the data is stored in an encrypted form, the proposed technique counteracts
other non-intrusive techniques such as microscope probing, determining electromag-
netic flux, and using laser beams [22,8]. Circumventing other unauthorized programs
from accessing the data locations is also possible in this technique. The compiler, in
addition to marking load/stores as secure, can also generate a unique encryption key
for use in the program. Consequently, even if another program uses a secure load or
store operation on an illegal location, the operation will not be permitted since the
keys would not match. The work presented in this paper can be also be defined as the
problem of determining the type of each memory operation (secure vs. non-secure).

3 Code and Data Partitioning

The main problem that makes it difficult to generate code for a memory architecture
that is composed of both secure and non-secure memories is that one does not want to
compromise any security, but at the same time one does not want to incur severe per-
formance or power overheads due to ensured security. In the following discussion, we
first list the constraints under which our compiler-driven approach operates. Follow-
ing that, we give the details for identifying the set of elements that need to be stored
in the secure memory, and the details of a scheduling scheme that can be used for
minimizing the code size increase.

3.1 Constraints

In restructuring an embedded application code for execution in a secure memory
based environment, there are three major constraints that need to be addressed:

 A Compiler-Based Approach to Data Security 191

o Security Constraint: All sensitive data elements must be assigned to secure
memory. Note that, this is a correctness issue since failing to satisfy this con-
straint can lead to serious consequences and is not acceptable.

o Overhead Constraint: The data memory space occupied by the secure data ele-
ments must be minimized. In addition, the performance (execution cycles) and
energy overheads imposed by the secure accesses must be minimized. In fact,
this is one of the main goals of this paper.

o Code Size Constraint: The size of the generated code should not be excessively
large since this can increase the code memory demand. Both this and the previ-
ous constraint are important; but, if they are not satisfied, correctness is not af-
fected (unlike the security constraint).

It must be noted that, some of these constraints can conflict with each other. For ex-
ample, if one keeps the set of secure elements larger than necessary, this can increase
overheads but can also reduce the increase in code size (as the accesses to secure and
non-secure memories are not excessively interleaved and thus can be clustered in a
compact manner), and thus a more compact code can be generated.

3.2 Details

3.2.1 Determining Secure Elements
Our approach tries to reduce performance/energy overheads and code size under the
security constraint. That is, without compromising security, we want to reduce the
overheads to the greatest extent possible.

Our focus is on array-based embedded applications, where multi-dimensional ar-
rays are operated on using a series of nested loops. Let seed(Uk) be the set of seed
elements (as specified by the programmer) from array Uk. Then, the set of secure
elements, denoted secure(.), is initially set to ∪k seed(Uk), that is, the union of all
seed(Uk) sets. If an element si of secure(.) is used on the right-hand-side (RHS) of a
statement that assigns a new value to an sj that does not currently belong to secure(.),
then we perform:

secure(.) secure(.) ∪ sj.

In other words, the set of secure elements is augmented by sj. The main reason for
this is the possibility for some malicious entity to determine the value of si by looking
at (i.e., observing) the value of sj as well as the values of the other non-secure ele-
ments used in the assignment statement in question, if sj is not treated as secure.
Therefore, we conservatively add sj to secure(.).

However, the problem of determining whether si is actually used to update sj is not
a trivial one. This is because we are dealing with array indices that are expressed in
terms of loop iterators (and potentially loop-independent constants), which take mul-
tiple values during the course of execution. To identify such assignments carefully,
we employ a polyhedral approach that expresses loop based computations and array
accesses using Presburger formulas. Consider the following generic loop nest:

 for I :: Is, Ie

 Uj[Rj(I)] H{Uk[Rk(I)]}

192 F. Li et al.

In this nest, I represents a vector formed by the loop iterators from top to bottom; Is
and Ie are loop bounds (also expressed as vectors); Uj and Uk are arrays; Rj and Rk are
array references to arrays Uj and Uk, respectively (which are functions of I); and H is
a general function. Note that both Uj and Uk can be multi-dimensional.

Suppose now that an element of array Uk, say Uk[x], are in the secure(.) set. To de-
termine the corresponding element from array Uj, say Uj[y], that also needs to be
placed into the secure(.) set, we first determine the loop iteration L that accesses
Uk[x]. That is, we find an L such that:

Rk(L) = x and Is L Ie.

In the second step, we determine the element from array Uj accessed by L. In
mathematical terms, we determine a y such that:

Rj(L) = y.

Finally, we perform:

secure(.) secure(.) ∪ Uj[y].

Note that, this can easily be extended to the case where we have multiple array refer-
ences on the RHS. In this way, starting with the seed elements, our approach keeps
increasing the secure(.) set each time an assignment statement is processed. There-

Input: loop nests L1, L2, … Ln;
 seed(Uk) for each array Uk.
Output: secure(.).

secure(.) = ∪k seed(Uk);
changed = true;
while (changed) do
 oldsecure = secure(.);

foreach loop nest Li do
 foreach statement Si in Li
 assume that Refl is the LHS reference in Si;
 foreach reference Refr on the RHS of Si
 E = the set of elements in secure(.) that can be

 accessed by Refr;
 L = the set of iterations at which Refr accesses

 elements in E;
 NewS = elements accessed by Refl in iterations L;
 secure(.) = secure(.) ∪ NewS;
 endfor
 endfor
endfor
if (oldsecure != secure(.)) then
 changed = true;
else
 changed = false;
endif

endwhile

Fig. 1. Algorithm for calculating secure(.)

 A Compiler-Based Approach to Data Security 193

fore, the complexity of the approach is proportional to the number of the assignment
statements in the application code being analyzed. It should be noticed that, after se-
cure(.) is updated, we might have more secure elements referenced on the RHS. This
is because, it is possible that the same array element can be accessed by both the LHS
and RHS references within a given loop nest. Therefore, we need to repeat the above
process until we cannot add more elements into secure(.). We want to emphasize that
this approach tries to keep the size of the secure(.) set as small as possible. Fig. 1
gives our algorithm for calculating secure(.). In the innermost loop of this algorithm,
we first calculate the iterations, L, in which the RHS of the statement being consid-
ered accesses some elements from the current secure(.) set. Then, we add all the ele-
ments accessed by the LHS of this statement in iterations L to secure(.). It can be seen
that if secure(.) is changed after all the statements have been processed, which is indi-
cated by a boolean variable changed, we repeat the same process again for all the
statements until further processing would not add more elements to secure(). In our
implementation, these elements are determined using a polyhedral tool called the
Omega Library [13]. The Omega Library provides a set of routines for manipulating
linear constraints over integer variables, Presburger formulas, and integer tuple rela-
tions and sets.

3.2.2 Reducing Code Size
It must be noted, though, our approach explained thus far does not do any specific op-
timization for reducing the code size. In fact, it just determines the smallest set of data
elements that need to go to the secure memory (and this also helps reduce the runtime
performance overheads of working with secure memory). An important point is that,
if the accesses to secure and non-secure memories are interleaved (in the output code
generated), this can increase the resulting code size dramatically since these two types
of memories are typically accessed using different types of load instructions (distin-
guished using a bit in the instruction format), as explained in Section 2. As an exam-
ple, consider a loop nest that accesses five one-dimensional arrays, U1, U2, U3, U4,
and U5:

for i :: 1, N
... U1[i], U2[i], U3[i], U4[i], U5[i] ...

Pi U1 U2 U3 U4 U5 Iterations U1 U2 U3 U4 U5
P1 s s s s s 1 s n n s s
P2 s s s s n 2 n n s s n
P3 s s s n s 3 n s s s s
… …
P32 n n N n n N s s n n s

(a) (b)

Fig. 2. (a) Possible load patterns (Pi) for a loop iteration that accesses five arrays. (b) Example
load patterns for different iterations. In both (a) and (b), s represents loadsecure, and n represents
loadnonsecure

194 F. Li et al.

After our approach has been applied, different loop iterations can have different
load instruction patterns from each other (i.e., different combinations of secure and
none secure loads). For each array reference, there are two possible load instructions:
loadsecure and loadnonsecure. For all the five array references in this example, there
are 32 (=25) possible load (instruction) patterns as shown in Fig. 2(a). In each row of
this figure, s (or n) means that loadsecure (or loadnonsecure) is used to load the corre-
sponding array element. The original loop nest might not be able to cover such cases
due to different load patterns exhibited by the different iterations (i.e., in generating
code, we cannot keep the original loop structure). A naïve way that the compiler can
generate code is to fully unroll the original loop nest, and use the appropriate load in-
structions for each iteration. Fig. 2(b) presents such a scenario of complete unrolling.
In this figure, each row represents an iteration, and there are a total of N iterations.
The last five columns represent accesses to our five arrays, U1, U2, U3, U4, and U5.
Each row gives the load pattern for the five array references in the corresponding it-
eration. In a real environment, iteration number N could be very large, e.g., more than
one million. Consequently, the naïve solution leads to considerable code expansion in
this case. At this point, one might point out that there could be some regularity in the
load patterns across the iterations. But, since the seed sets for these arrays, seed(Uk)
(1 k 5), are specified by the programmer (i.e., they can exhibit very irregular pat-
terns), the compiler might not be able to extract any regularity from the load patterns
and generate simple loop nest(s) to enumerate them. Even if this is possible, the com-
piler has to unroll all the iterations first before it can analyze the unrolled loop itera-
tions, and this could be a significant overhead for the compiler in terms of both mem-
ory space and performance.

An alternative that we employ here is a load pattern centric approach. This ap-
proach can be explained as follows. Let us first assume that there is no loop-carried
dependence in the original loop nest above. For each load pattern among the 32 possi-
bilities, we calculate the set Gi (1 i 32) containing the iterations that have that load

G1

sssss

G2

ssssn

G3

sssns

G32

nnnnn

G1,1

sssss

G2,1

ssssn

G3,1

sssns

G32,1

nnnnn

G1,2 G2,2 G3,2 G32,2

G1,m G2,m G3,m G32,m

(a)

(b)

Fig. 3. (a) Sample iteration groups when there is no loop-carried dependence. Each Gi (1 i 32)
contains the iterations that have the load pattern given above the corresponding node. (b) Ex-
ample iteration groups when there are loop-carried dependences. The arrows indicate the de-
pendences

 A Compiler-Based Approach to Data Security 195

pattern. For example, we can obtain the iteration set, G3, for load pattern P3 (sssns),
using the Omega Library. That is, using the Omega Library, we build a set that con
tains only the iterations that generate the pattern sssns. Fig. 3(a) illustrates this sce-
nario. In this figure, each node represents a set of iterations with the same pattern
(written above the node), and there are 32 nodes associated with 32 possible load pat-
terns. Once we obtain all the iteration sets Gi, we make use of the “codegen” utility
provided by the Omega Library. Given an iteration set, the Omega Library can gener-
ate the corresponding loop nest(s) that enumerates all the loop iterations in that set.
Note that, in the ideal case, each node results in a single loop nest. However, if the it-
erations in a given group could not be enumerated using a single loop nest, the Omega
Library can generate multiple nests with the same pattern, and this may lead to an in-
crease in the size of the generated code.

The approach discussed above needs some modifications when there are loop-
carried dependences. Fig. 3(b) illustrates such a scenario. In this figure, all the itera-
tions (in the nest for which code is being generated) form a layered dependence graph.
Each node Gij represents a subset of Gi, the iterations that have the load pattern Pi
given in Fig. 2(a). Note that, each iteration in node Gij (j>1) depends on at least some
iteration in Gi’,j-1. The arrows in the graph indicate the dependences between the
nodes. It should be emphasized that there cannot be any dependence from Gij to Gi’j’,
where j’ j. Obtaining such a graph can be done in an iterative way. For each Gi
(1 i 32), we determine all iterations in Gi that do not depend on any other iteration,
and add them to Gi1. After all the nodes in layer j have been built, we add Gi,j+1 the it-
erations (from the remaining iterations in Gi) that depend only on the iterations in
Gi’j’, where j’ j. This process is repeated until all the iterations have been assigned to
the nodes in the graph. When the entire process is complete, we can schedule the
nodes of this graph using any scheduling algorithm (e.g., list scheduling). Then, using
the “codegen” utility provided by the Omega Library, we generate code for each node
(when we visit that node during scheduling). Fig. 4 gives our scheduling algorithm,

Input: dependence graph G for iteration groups
Output: loop nests that load all the elements in the iteration groups

Ready = all nodes that have no predecessor;
Scheduled = Ø;
while (Ready Ø)
 remove a node n from Ready;
 codegen(n);
 added n to Scheduled;
 for each successor p of n in G do
 if (all of p’s predecessors are in Scheduled) then
 add p to Ready;
 endif
 endfor
endwhile

Fig. 4. Scheduling algorithm for the dependence graph of iteration groups

196 F. Li et al.

which is a variant of list scheduling, in the pseudo-code format. In this algorithm, at
any scheduling step, we select a node whose all predecessors are already scheduled,
so that the dependence requirements can be observed. After selecting a node, we use
the “codegen” utility to generate the loop nest(s) that can enumerate the iterations in
the group represented by this node. As can be seen, this code generation strategy is
oriented towards reducing the number of static load operations in the generated code
(through load pattern reuse).

4 Experimental Evaluation

We implemented the proposed strategy within an optimizing compiler built upon
SUIF [2], and made experiments with five different embedded benchmark codes. Ba-
sically, our compiler reads the input code using SUIF, and fills the Omega Library
data structures with necessary information. After this, the Omega Library determines
the set of secure elements and secure loop iterations, and the collected information is
used by the compiler to construct the dependence graph between the iteration groups.
The algorithm given in Fig. 4 is invoked on this dependence graph. Each node of this
graph is processed by the Omega Library and the generated enumeration codes are
translated into the SUIF internal structures, which in turn is used for emitting the out-
put code. Table 1 shows the five embedded benchmark codes used in this study. The
second column gives a brief description of each benchmark, and the third column
gives the total data sizes (i.e., the total number of array elements manipulated by the
benchmark).

In our experiments, we use the memory access latency values shown in Table 2,
which are typical of those memories used in 3.5MHz smartcards [21]. We define the

Table 1. The benchmarks used in this study

Benchmark Brief Description Dataset Size

Med-Im04 medical image reconstruction 825.55KB
MxM triple matrix multiplication 1,173.56KB

Radar radar imaging 905.28KB

Shape
pattern recognition
and shape analysis

1,284.06KB

Track visual tracking control 744.80KB

Table 2. The latency values used in our experiments

Access Type Non-secure Secure
Read 25msec 42msec
Write 50msec 67msec

 A Compiler-Based Approach to Data Security 197

seed size as follows: (the total number of seed elements marked by the program-
mer)/(the total number of input elements). We performed experiments with different
seed sizes.

The graph in Fig. 5 gives the secure and non-secure memory sizes (percentages)
determined by our approach for different sizes of the seed set (as specified by the pro-
grammer), namely, seed sizes of 10%, 25%, and 50%. We see from these results that the
average secure memory sizes (across all applications) are 29.6%, 55.7%, and 66.9% for
the seed sizes of 10%, 25%, and 50%, respectively. Note that, if we conservatively as-
sume that all data elements are secure (i.e., without any compiler analysis), their total
sizes (as given in the last column of Table 1) would determine the required capacity

0%

20%

40%

60%

80%

100%

10
%

25
%

50
%

10
%

25
%

50
%

10
%

25
%

50
%

10
%

25
%

50
%

10
%

25
%

50
%

Med-
Im04

MxM Radar Shape Track

M
em

or
y

S
pa

ce
 D

iv
is

io
n

secure non-secure

Fig. 5. Memory space division between secure and non-secure components

0

10

20

30

40

50

10
%

25
%

50
%

10
%

25
%

50
%

10
%

25
%

50
%

10
%

25
%

50
%

10
%

25
%

50
%

Med-
Im04

MxM Radar Shape Track

N
or

m
al

iz
ed

 M
em

or
y

A
cc

es
s

T
im

e
(%

)

Fig. 6. Memory access time

198 F. Li et al.

of the secure memory (i.e., for each bar in Fig. 5, the secure portion would be 100%).
In other words, through our compiler-directed approach, we are able to reduce the re-
quired secure memory size significantly. The graph in Fig. 6 illustrates how our ap-
proach impacts the memory access time. The experiments have been performed in a
simulation environment that models a simple five-stage pipelined embedded machine.
The values, again given for different seed sizes, are normalized with respect to the
case when all data elements are stored in and accessed from the secure memory. We
see that our approach reduces the memory access time of this naïve scheme by 64.8%,
60.2%, and 58.7% for the seed sizes of 10%, 25%, and 50%, respectively. Although
not quantified here explicitly, one can also expect similar savings in energy consump-
tion as well.

After having presented our secure memory size and performance results, we next
focus on the code size increase due to our compiler-based approach. As mentioned
earlier, this increase occurs due to the requirement that we have different types of load
operations for different types of memories (i.e., secure vs. non-secure). The first bar
for each benchmark in Fig. 7 gives the percentage increase in code size when our
code re-ordering strategy explained in Section 3.2.2 is used. We see that the code size
increase incurred (with respect to the code size where all the data is stored in and ac-
cessed from non-secure memory) is about 84% when averaged over all five bench-
marks. On the other hand, the second bar for each benchmark represents the code size
increase if we use our approach without code reordering (iteration group scheduling).
In this case, we observe an average of 243% increase in code size. These results
clearly emphasize the importance of our code reordering component.

It is to be noted that the number of secure elements typically determines the capac-
ity of the secure memory in an embedded system. This size of the memory is an im-
portant consideration when the underlying secure memory employs additional fabrica-
tion steps such as metal shielding that add to the cost of the secure memory. While the
approach presented so far is very effective in achieving a reduction in the number of
secure elements, one can further reduce the secure memory space needed by consider-
ing the lifetimes of secure data elements.

0%
50%

100%
150%
200%
250%
300%
350%

M
ed

-
Im

04

M
xM

R
ad

ar

S
ha

pe

T
ra

ck

N
or

m
al

iz
ed

 C
od

e
S

iz
e

with reordering without reordering

Fig. 7. Impact of code reordering

 A Compiler-Based Approach to Data Security 199

The main rationale behind the approach studied in this part of the paper is that not
all the secure elements are needed for the entire duration of the program execution. In
this part of our presentation, we evaluate a framework based on linear algebra to de-
termine (and increase the number of) the cases where the lifetime of two secure array
elements do not overlap with each other. When this happens, these two array elements
can share the same location in the secure memory, thereby reducing the demand in the
secure memory capacity. For array-based embedded applications, in a given loop nest,
one can define the lifetime of an array element as the difference (in loop iterations)
between the time it is first assigned (written) and the time it is last used (read). For a
given array index a (which might be multi-dimensional), the start of its lifetime is re-
ferred to as S(a), whereas the end of its lifetime is denoted using E(a) - both in
terms of loop iterations. Using these definitions, the lifetime vector for this array ele-
ment can be given as s = E(a) - S(a), where “-“ denotes vector subtraction. Note that
the lifetime of a is expressed as a vector as in general there might be multiple loops in
the nest, and expressing lifetime as a vector allows the compiler to measure the im-
pact of loop transformations on it. As an example, if an array element (that is accessed
in a nest with two loops) is produced in iteration (2 2)T and consumed (i.e., last-read)
in iteration (6 7)T, its lifetime vector is s = (6 7)T - (2 2)T = (4 5)T. It should be
noted that before S(a) and after E(a) the secure memory location allocated to this ar-
ray element could be used for storing another array element (which belongs to the
same array or to a different array). Obviously, the shorter the difference between E(a)
and S(a), the better, as it leaves more room for other secure elements.

As stated earlier in Section 3.2.1, the loops in an array-based program surrounding
any statement can collectively be represented using a column vector (called the itera-
tion vector) I = (i1 i2 … in)

T, where n is the number of the enclosing loops. Here, ik is
the kth loop index from top. The loop range or affine bounds of these loops can be
described by a system of inequalities, which define a polyhedron. The integer values
that can be taken on by I collectively define the iteration space of the nest. In a simi-
lar fashion, data (memory) layout of an array can also be represented using a polyhe-
dron. This rectilinear polyhedron, called the index space, is delimited by array
bounds, and each integer point in it, called an array index, is represented using an in-
dex vector a = (a1 a2 … am)T, where m is the number of dimensions of the array.
Based on the iteration space and index space (data space) definitions, an array access
(i.e., an array reference) can be defined as a mapping from iteration space to index
space, and can be described as GI + o. Assuming a nest with n loops that accesses an
array of m dimensions, in the expression above, I denotes the iteration vector, G is an
m × n matrix (called the access matrix or the reference matrix, and o is an m-entry
constant vector (called the offset vector) [26]. As an example, in a nest with two
loops (i1 and i2) that contains array reference X1[i1+2][i2-3], G is two-by-two identity
matrix and o = (2 -3)T.

The application of a loop transformation represented by a square, non-singular ma-
trix T can be accomplished in two steps [26]: (i) re-writing loop body and (ii) re-
writing loop bounds. For the first step, assuming that I is the original iteration vector
and J = TI is the new (transformed) iteration vector, each occurrence of I in the loop
body is replaced by T

-1J (note that T is invertible as the transformation must be one-

200 F. Li et al.

Fig. 8. Impact of lifetime analysis

to-one). In other words, an array reference represented by GI+o is transformed to GT

-

1J+o. Determining the new loop bounds, however, is more complicated and, in general,
may require the use of complex methods such as Fourier-Motzkin elimination (a
method for solving an affine system of inequalities [26, 3]). One can see that applica-
tion of a loop transformation changes the execution order of loop iterations and, con-
sequently, the order in which array elements are accessed. As a result, a loop trans-
formation T changes the lifetime vectors as well.

In more technical terms, let s = Ie – Is be the original lifetime vector for an array
element, where Is is the first iteration that accesses the array element, and Ie the last
access. After applying T, we have Ie’ = TIe and Is’ = TIs. Now, we have:

s’ = Ie’ – Is’ = TIe – TIs = T (Ie – Is).

That is, if s is the original lifetime vector, s’ is the transformed lifetime vector. Our
objective is then to select a suitable T such that s’ = (0 0 0 … 0 0 1)T for as many ar-
ray references that access secure elements as possible. In other words, we want to
achieve the minimum lifetime vector. Note that, while a more sophisticated imple-
mentation can try other lifetime vectors as well (for s’) – as long as they are smaller
than the original lifetime vector s – in this paper we restrict ourselves to s’ = (0 0 0 …
0 0 1)T. Obviously, a loop transformation (T) must also preserve the data dependences
in the code. In our approach, when we determine a candidate loop transformation, we
check whether it preserves data dependences in the code; if it does not, we drop it
from consideration.

The memory space results with the lifetime analysis are presented in Fig. 8. All the
applications in our experimental suite show significant improvements when the life-
time analysis for secure array elements explained above is used. That is, when appli-
cable, the lifetime analysis of secure elements can be very effective in practice. On an
average, using lifetime analysis reduces the secure memory size by 15.3% over our
base approach that does not employ any lifetime analysis.

0%

20%

40%

60%

80%

100%

Base Lifetime-Based
Analysis

S
ec

ur
e

M
em

or
y

S
iz

e

Med-Im04 MxM Radar
Shape Track

 A Compiler-Based Approach to Data Security 201

5 Related Work

Several prior efforts address the problem of secure remote execution using a circuit
based model as part of the general problem of confidentiality [1,9,27,28]. The integ-
rity of the computation is the ability of the circuit owner to verify the correctness of
the execution of the circuit. This problem has been widely studied from the general
reliability angle but not from the viewpoint of a malicious server. In a framework
proposed by [23,24], the privacy of a function is assured by an encrypting transforma-
tion on that function. Yee [29] suggested proof-based techniques in which the un-
trusted host has to forward a proof of correctness of execution together with the result.
In [17,18], a function is encrypted using error coding and sent to the untrusted host
that provides the cleartext input. The enciphered output generated by the host is then
sent back to the original host, where it is decrypted and the result is verified. The de-
crypted result matches the result which would have been obtained if the original func-
tion had been directly applied to the cleartext input. The authors argue for the need of
tamper proof hardware (TPH) to store and provide the control flow between the nu-
merous functions that make up a program. Control flow is located on the TPH and is
supplied to the untrusted host. In contrast to these studies, our work is more oriented
towards using secure memory in an embedded system. Techniques similar to our use
of the Omega Library have been suggested in [19] and [20] in an entirely different
context (optimizing data cache locality and interprocessor communication). Slicing
[25] is a well-studied program analysis technique that can be used for different opti-
mization goals. In comparison to these studies, our approach targets secure access to
data with minimal performance and power overheads.

6 Conclusions

The need for protecting sensitive data from illegal access has resulted in the adoption of
secure memories in embedded systems such as smartcards. It is anticipated that securing
data will become important for other embedded systems and applications as well. This
is because ensuring data security can impose overheads such as increased memory cost,
code size, reduced performance or higher power consumption. This work focuses on
transforming code structures, with the help of a polyhedral tool, to minimize these over-
heads when selectively protecting sensitive data identified by the programmer. Experi-
mental results demonstrate that the proposed approach provides required data security
by keeping the performance and code size overheads under control.

References

[1] M. Abadi and J. Feigenbaum. Secure circuit evaluation. Journal of Cryptology, 2(1):112,
1990.

[2] S. P. Amarasinghe, J. M. Anderson, C. S. Wilson, S.-W. Liao, B. R. Murphy, R. S.
French, M. S. Lam and M. W. Hall. Multiprocessors from a Software Perspective, IEEE
Micro, June 1996.

202 F. Li et al.

[3] C. Ancourt and F. Irigoin. Scanning polyhedra with DO loops. In Proceedings of the 3rd
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 39-
50, 1991.

[4] R. J. Anderson, M. G. Kuhn. Low Cost Attacks on Tamper Resistant Devices. In M. Lo-
mas, et al. (eds.), Security Protocols, In Proceedings of the 5th International Workshop,
LNCS 1361, pp. 125-136, Springer-Verlag, 1997.

[5] Atmel Secure Memories. http://www.atmel.com/products/SecureMem/.
[6] C. Collberg, C. Thomborson, and D. Low, A Taxonomy of obfuscating transformations.

Technical Report #148, Department of Computer Science, University of Auckland,
July 1997.

[7] C. Collberg, C. Thomborson, and D. Low. Manufacturing cheap, resilient, and stealthy
opaque constructs. In Proceedings of the 25th ACM Symposium on Principles of Pro-
gramming Languages, pages 184-196, January 1998.

[8] J.-F. Dhem and E. Faber. Built-in hardware security: smart cards and crypto-processors.
Embedded tutorial. In Proceedings of International Conference on Computer Design,
2001.

[9] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a complete-
ness theorem for protocols with honest majority. In Proceedings of the 19th Annual ACM
Symposium on Theory of Computing,} pages 218--229, New York City, May 1987.

[10] F. Hohl. An approach to solve the problem of malicious hosts. Universitaet Stuttgart Fa-
kultaet Informatik, Bericht Nr. 1997/03, 1997.

[11] Infineon Technologies. Security Chips and ICs. http://www. infineon.com/products
[12] W. Jansen and T. Karygiannis. Mobile agent security. NIST Special Publication, 800-19,

http://csrc.nist.gov/mobileagents/publication/sp800-19.pdf, August 1999.
[13] W. Kelly and W. Pugh. A Framework for Unifying Reordering Transformations. Techni-

cal Report, University of Maryland Institute for Advanced Computer Studies. Dept. of
Computer Science, Univ. of Maryland, April 1993.

[14] P. Kilpatrick, D. Crookes, and M. Owens. Program slicing: A computer aided program-
ming technique. In Proceedings of the Second IEEE / BCS Conference on Software En-
gineering, pp. 602-604, 1988.

[15] C. Linn and S. Debray. Obfuscation of wxecutable code to improve resistance to static
disassembly. In Proceedings of the 10th ACM Conference on Computer and Communi-
cation Security, October 2003.

[16] S. Loureiro. Mobile Code Protection, Ph. D.Dissertation, Institut Eurecom, 2001.
[17] S. Loureiro, L. Bussard, and Y. Roudier. Extending tamper-proof hardware security to

untrusted execution environments. In Proceedings of CARDIS, 2002.
[18] S. Loureiro and R. Molva. Function hiding based on error correcting codes. In Proceed-

ings of the International Workshop on Cryptographic Techniques and Electronic Com-
merce, pages 92--98, City University of Hong-Kong, July 1999.

[19] W. Pugh and E. Rosser. Iteration space slicing and its application to communication op-
timization. In Proceedings of the International Conference on Supercomputing, 1997.

[20] W. Pugh and E. Rosser. Iteration space slicing for locality. In Proceedings of Languages
and Compilers for Parallel Computing, 1999.

[21] W. Rankl and W. Effing. Smart Card Handbook. pp.71,421. John Wiley and Sons, 1997.
[22] J. Quisquater and D. Samyde. Electromagnetic Analysis: Measures and Countermeasures

for smart cards. E-Smart 2001, LNCS 2140, pp. 200-210, 2001.
[23] T. Sander and C. F. Tschudin. Towards mobile cryptography. In Proceedings of the 1998

IEEE Symposium on Security and Privacy, pp. 215--224, Oakland, California, May
1998.

 A Compiler-Based Approach to Data Security 203

[24] T. Sander and C. Tschudin. On software protection via function hiding. In Proceedings of
the Second Workshop on Information Hiding, Portland, Oregon, USA, April 1998.

[25] M. Weiser. Program slicing. IEEE Transactions on Software Engineering, pages 352-
357, July 1984.

[26] M. Wolfe. High Performance Compilers for Parallel Computing, Addison-Wesley Pub-
lishing Company, 1996.

[27] A. C. Yao. Protocols for secure computations. In Proceedings of the IEEE Symposium on
Foundations of Computer Science, pages 160--164, Chicago, 1982.

[28] A. C. Yao. How to generate and exchange secrets. In Proceedings of the IEEE Sympo-
sium on Foundations of Computer Science, pages 162--167, Toronto, 1986.

[29] B. Yee. A sanctuary for mobile agents. Technical Report CS97-537, Department of
Computer Science and Engineering, UCSD, April 1997.

[30] X. Zhang and R. Gupta. Hiding Program Slices for Software Security. First Annual
IEEE/ACM Symposium on Code Generation and Optimization, pp. 325-336, San Fran-
cisco, CA, March 2003.

Composing Source-to-Source Data-Flow
Transformations with Rewriting Strategies

and Dependent Dynamic Rewrite Rules

Karina Olmos and Eelco Visser

Institute of Information and Computing Sciences, Utrecht University,
P.O. Box 80089, 3508 TB Utrecht, The Netherlands

karina@cs.uu.nl, visser@acm.org

Abstract. Data-flow transformations used in optimizing compilers are also use-
ful in other programming tools such as code generators, aspect weavers, domain-
specific optimizers, and refactoring tools. These applications require source-to-
source transformations rather than transformations on a low-level intermediate
representation. In this paper we describe the composition of source-to-source
data-flow transformations in the program transformation language Stratego. The
language supports the high-level specification of transformations by means of
rewriting strategy combinators that allow a natural modeling of data- and control-
flow without committing to a specific source language. Data-flow facts are prop-
agated using dynamic rewriting rules. In particular, we introduce the concept
of dependent dynamic rewrite rules for modeling the dependencies of data-flow
facts on program entities such as variables. The approach supports the combina-
tion of analysis and transformation, the combination of multiple transformations,
the combination with other types of transformations, and the correct treatment of
variable binding constructs and lexical scope to avoid free variable capture.

1 Introduction

Optimizing compilers rely on data-flow facts to perform optimizations [1, 12]. Data-flow
optimizations such as constant propagation, copy propagation, and dead code elimina-
tion transform or eliminate statements or expressions based on data-flow information
that is propagated along the control-flow paths of the program. The implementation of
these optimizations is hidden from programmers using the compiler. Data-flow trans-
formations are useful outside the core of compilers as well. In generative programming,
high-level and model-driven code generation, refactoring, aspect weaving, open compil-
ers, and domain- and application-specific optimization, transformations are an essential
part of program development. While data-flow optimizations in compilers are usually
implemented to work on fixed low-level intermediate representations, these applica-
tions require transformations on source code in high-level programming languages.
Furthermore, compiler optimizations are traditionally implemented in general purpose
languages, optimizing for speed of the transformations rather than productivity of the
transformation writer. Higher productivity can be achieved using a language and en-
vironment that provides more support for the domain of program transformation. For

R. Bodik (Ed.): CC 2005, LNCS 3443, pp. 204–220, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Composing Source-to-Source Data-Flow Transformations 205

such an environment for source-to-source transformations to be widely applicable it
should cover a wide spectrum of transformational tasks. That is, it should not be specific
to one source language and should not restrict support to one type of transformation.
Rather, it should provide high-level abstractions for modeling control- and data-flow
of the language under consideration, and it should support combination of data-flow
transformations with other types of program manipulation such as template based code
generation. Also, the environment should not require abstraction from details of program
representation and should for instance support handling issues of scope of variables and
help to avoid problems such as free variable capture.

In this paper we describe the composition of source-to-source data-flow transfor-
mations in the program transformation language Stratego [19]. The language is not
restricted to data-flow transformations nor is it restricted to transformations on a spe-
cific source language. Instead of building-in knowledge about data-flow, Stratego pro-
vides high-level ingredients for composing data-flow transformations on abstract syn-
tax trees. These ingredients are rewrite rules for definition of basic transformations,
programmable rewriting and traversal strategies for the composition of tree traver-
sals and controlling the application of rewrite rules, dynamic rewrite rules for prop-
agation of context-sensitive information such as data-flow facts, and dynamic rule
combinators for modeling control-flow (forks in data-flow). In particular, we intro-
duce the concept of dependent dynamic rewrite rules for modeling dependencies of
data-flow facts on program entities such as variables. Together these techniques
support:

– An abstract interpretation style of data-flow transformation that allows the combi-
nation of data-flow analysis and transformation in the same traversal.

– The correct treatment of variable binding constructs and lexical scope to avoid free
variable capture and to restrict the application of transformation rules to the scope
where they are valid.

– The definition of generic data-flow strategies, which allow concise specifications of
data-flow transformations, and the concise combination of multiple transformations
into ‘super-optimizers’.

– The combination of data-flow transformations with other types of transformations,
reuse of elements of a transformation in other transformations, and easy experimen-
tation with alternative transformation strategies.

We proceed as follows. In the next section we describe rewrite rules, strategies,
and dynamic rules and illustrate their use in a specification of constant propagation.
In Section 3 we motivate the need for dependent dynamic rules and illustrate their use
in a specification of copy propagation. In Section 4 we generalize the strategies for
constant propagation and copy propagation into a generic strategy for forward data-flow
propagation and instantiate the strategy to common-subexpression elimination. We also
show how, using the same generic strategy, the components of these transformations can
be combined in a single super-optimizer. In Section 5 we discuss previous, related, and
future work.

206 K. Olmos and E. Visser

2 Rewriting Strategies and Dynamic Rules

In this section we show how rewriting strategies in combination with dynamic rewrite
rules can be used to compose data-flow transformations on abstract syntax trees, using
constant propagation as running example. Throughout the paper we use a subset of Ap-
pel’s Tiger language [2] as the source language for transformations. The abstract syntax
of this subset is defined in Fig. 1 However, none of the techniques we present are specific
to this language. We assume the reader to be familiar with the basic notions and infras-
tructure for source-to-source transformations on abstract syntax trees, including parsing,
tree representation, and pretty-printing. For an overview of the specific infrastructure
used in the Stratego/XT framework we refer to [19].

2.1 Local Transformations with Rewrite Rules

Basic transformations on abstract syntax trees can be defined using tree or term rewrit-
ing. A rewrite rule (p1 -> p2) defines the transformation of a tree that matches the
left-hand side p1 of the rule to the instantiation of the right-hand side p2 of the rule.
Term rewriting is the normalization of a tree by exhaustively applying a set of rewrite
rules. Fig. 2 shows some typical rewrite rules for constant folding and unreachable code
elimination. Note that we use concrete syntax [18] to describe the abstract syntax tree
patterns in the left-hand side and right-hand side of the rules. That is, a phrase such as
|[if i then e1 else e2]| denotes a tree pattern If(Int(i),e1,e2)where i ,
e1 , and e2 are meta-variables. Using the rules from Fig. 2 the arithmetic expression 2
+ 3 + 7 rewrites to 12 and the conditional expression if 0 then x := 1 else x
:= 2 reduces to x := 2.

d ::= var x := e
e ::= x | str | i | e1 ⊕ e2 | f(e∗

,) | x := e | (e∗
;) | if e1 then e2 else e3

| while e1 do e2 | let d∗ in e∗
; end

Fig. 1. Abstract syntax for a subset of Tiger with ⊕ the usual arithmetic, relational, and Boolean
operators. The non-terminals x, f , str, and i denote variables, functions, string, and integer
constants, respectively. e∗

; denotes a list of zero or more expressions separated by semicolons

EvalBinOp : |[i + j]| -> |[k]| where <add>(i , j) => k
EvalBinOp : |[i * j]| -> |[k]| where <mul>(i , j) => k
EvalWhile : |[while 0 do e]| -> |[()]|
EvalIf : |[if 0 then e1 else e2]| -> |[e2]|
EvalIf : |[if i then e1 else e2]| -> |[e1]| where <not(eq)>(i ,|[0]|)

Fig. 2. Some rewrite rules for constant folding and unreachable code elimination

Term rewriting is declarative since rewrite rules can be defined independently and
are automatically applied by a rewriting engine. The correctness of the combined trans-

Composing Source-to-Source Data-Flow Transformations 207

formation can be established by the correctness of the individual rules. However, static
rewrite rules are not sufficient for defining data-flow transformations. A rewrite rule can
only use information from the term to which it is applied, not from its parents or sib-
lings in the abstract syntax tree. Data-flow transformations typically need information
from assignments and variable declarations that are higher-up in the tree. For example,
consider the constant folding and propagation transformation in Fig. 3 The fact that the
variable x is constant allows constant folding in many of the subsequent expressions.
However, this requires the propagation of the initial constant value of x to its uses; e.g.,
folding the expression x + 1 is only possible after replacing x with its value.

2.2 Context-Sensitive Transformations with Dynamic Rewrite Rules

To extend rewriting to propagation of context-sensitive information requires (1) the dy-
namic (run-time) definition of rewrite rules and (2) the careful control of their application.
We first consider the use of dynamic rewrite rules to propagate data-flow information
in a control-flow graph and then argue that this approach can also be applied to abstract
syntax trees. In the next subsection we then show how this transformation on abstract
syntax trees is realized in Stratego.

The left diagram in Fig. 4 depicts the control-flow graph of the example program
in Fig. 3 The nodes correspond to the assignments and conditionals in the program
before and after transformation. The traversal of the graph follows the control-flow of
the program, which corresponds to following the direction of the arrows from entry to
exit. At nodes with more than one outgoing edge, the traversal subsequently visits each
branch and synchronizes at the merge point. Data-flow facts are represented by a set of
dynamic rewrite rules (x -> i) that rewrite an occurrence of a variable to its constant
value. Since the set of propagation rules can be different at each point in the program,
the edges of the graph are annotated with the rules that are valid at that point of the
traversal.

At each node of the graph, first the right-hand side of the assignment is transformed by
rewriting variables in the expression to constant values, if applicable, and attempting to
apply constant folding rules such as in Fig. 2 For example, y := x + 1 is transformed
to y := 3 + 1 by application of the rule x -> 3 and then reduced to y := 4 by
constant folding. Next, an assignment x := e causes the undefinition of any rules with
x as left-hand side, since these are no longer valid. Finally, if the assignment has a
constant value as right-hand side (x := i), a new rewrite rule x -> i is defined.

Multiple propagation rules for different variables can be defined at the same time. For
example, after the y := x + 1 assignment both rules x -> 3 and y -> 4 are valid.

(x := 3; y := x + 1;
if foo(x)
then (y := 2 * x; x := y - 2)
else (x := y; y := 23);
z := x + y)

⇒

(x := 3; y := 4;
if foo(3)
then (y := 6; x := 4)
else (x := 4; y := 23);
z := 4 + y)

Fig. 3. Example of constant propagation

208 K. Olmos and E. Visser

However, only one rule can be defined with the same left-hand side. For example, The
assignment x := y replaces the rule x -> 3 with the rule x -> 4. At a fork in the
control-flow, that is at a node with more than one outgoing edge, each branch starts with
the rule-set valid at the branching node. That is, each edge is annotated with a clone of
that rule-set. At the merge point only those rules that are consistent in all branches are
maintained. In the example, the rules for y are inconsistent at the merge point and are
undefined. In the case of loops this process should be repeated until a stable set of rules
is obtained.

A control-flow graph traversal of a program can also be realized by traversing its
abstract syntax tree. This requires visiting the nodes of the tree in the order that they
would be visited in a traversal of the graph. The right diagram in Fig. 4 depicts the
abstract syntax tree of the example program. Simulation of the traversal corresponds
basically to a depth-first left-to-right traversal of the syntax tree. Realization of the
constant propagation transformation on abstract syntax trees thus requires

– traversal of the abstract syntax tree to visit expressions in the right order
– dynamic definition of rules to reflect the constant assignments
– application of dynamic propagation rules and static constant folding rules
– forking and combining rule-sets to model forks in data-flow

2.3 Realization in Stratego

The Stratego program in Fig. 5 defines a constant propagation transformation strategy
implementing the propagation of dynamic rules as described above. In the rest of this

Composing Source-to-Source Data-Flow Transformations 209

prop-const =
PropConst <+ prop-const-assign <+ prop-const-declare
<+ prop-const-let <+ prop-const-if <+ prop-const-while
<+ (all(prop-const); try(EvalBinOp))

prop-const-assign =
|[x := <prop-const => e >]|
; if <is-value> e then rules(PropConst.x : |[x]| -> |[e]|)

else rules(PropConst.x :- |[x]|) end

prop-const-declare =
|[var x := <prop-const => e >]|
; if <is-value> e then rules(PropConst+x : |[x]| -> |[e]|)

else rules(PropConst+x :- |[x]|) end

prop-const-let =
?|[let d* in e* end]|; {| PropConst : all(prop-const) |}

prop-const-if =
|[if <prop-const> then <id> else <id>]|
; (EvalIf; prop-const

<+ (|[if <id> then <prop-const> else <id>]|
/PropConst\ |[if <id> then <id> else <prop-const>]|))

prop-const-while =
?|[while e1 do e2]|
; (|[while <prop-const> do <id>]|; EvalWhile

<+ (/PropConst* |[while <prop-const> do <prop-const>]|))

Fig. 5. Constant propagation transformation strategy

program P ::= (rules | strategies) d∗

definition d ::= h = s | h : r
header h ::= f(f∗

, |x
∗
,) | f(f∗

,) | f
rule r ::= p1 -> p2 (where s)?

pattern p ::= str | i | r | x | c(p∗
,) | (p∗

,) | [p∗
, |p] | [p∗

,] | <s> p | <s>
strategy s ::= ? p | ! p | {x∗

, : s} | <s> p | s => p
| s1 ; s2 | f(s∗

, |p
∗
,) | f(s∗

,) | f
| s1 <+ s2 | s1 < s2 + s3 | if s1 then s2 (else s3)?
| fail | id | not(s) | where(s) | let d∗ in s end
| rules(drd∗) | {|f∗

, : s |} | s1 /f∗
, \ s2 | /f∗

, * s
dyn. rule def. drd ::= h((.|+)p)? :(+)? dr | h((.|+)p)? :- p

dyn.rule dr ::= r | r depends on p

Fig. 6. Abstract syntax of a subset of Stratego. The following additional non-terminals are used:
str, i and r denote string, integer, and real constants; x a pattern variable, c a constructor, f a
strategy operator. Operators are listed in the order of precedence; in particular ; has precedence
over <+. Note that the use of concrete syntax for patterns and congruence strategies is not covered
by this abstract syntax definition

210 K. Olmos and E. Visser

section we examine the components of this definition and informally introduce the
Stratego constructs that they use. The definition of a subset of the abstract syntax of
Stratego in Fig. 6 should be helpful in understanding the structure of Stratego programs.
A full description of the language is beyond the scope of this paper; see [4, 19].

Rules and Strategies. Rewrite rules as described in Section 2.1 are the basic entities of
Stratego programs. A named rule f : p1 -> p2 transforms a term matching pattern p1
to the instantiation of pattern p2. Some example rewrite rules are shown in Fig. 2 using
concrete syntax for the term patterns. Stratego extends the basic notion of term rewriting
with programmable strategies for the controlled application of rewrite rules. A rule with
name f defines a transformation from terms to terms. A rule may fail to apply to a term,
e.g., when its left-hand side does not match the term it is applied to. Strategies combine
rules into more complex transformations using a number of strategy combinators. Since
rules can fail, strategies can fail to apply to a term as well. Strategy definitions of the
form f = s name a strategy expression. Thus, Fig. 5 introduces six, mutually recursive,
definitions that compose the constant propagation strategy prop-const.

The basic strategy combinators are sequential composition s1; s2 (first apply s1
and then s2) and deterministic choice s1 <+s2 (first apply s1, if that fails apply s2). Note
that sequential composition has higher precedence than deterministic choice. Thus, the
prop-const strategy defines a choice between seven cases, which are tried in turn until
one succeeds.

Term Traversal. In order to transform sub-terms of a term, a strategy needs to traverse
the term. While in conventional languages traversal requires a tedious enumeration of
all elements of the data structure and their traversal, Stratego supports generic traversal
through one-level traversal combinators [20]. One of these combinators is all(s),
which applies s to each direct sub-term of the subject term. Thus, the basic schema of
the prop-const strategy is

prop-const = PropConst <+ (all(prop-const); try(EvalBinOp))

which either applies the PropConst dynamic rule to replace a variable by a constant
value or recursively visits the direct sub-terms with a recursive call to the prop-const
strategy (all(prop-const)) and then tries to apply a constant folding rule. The other
cases in the definition of prop-const introduce exceptions to the generic traversal. For
example, only the right-hand side of an assignment should be visited, and the branching
of the conditional statement requires special care.

In addition to generic traversal, Stratego supports data-type specific traversal by
means of congruence operators. For each constructor c with arity n in the abstract
syntax tree format, a corresponding strategy c(s1, ..., sn) is defined that applies only
to c terms, applying the si strategies to the corresponding sub-terms. For example, the
strategy expression If(prop-const,id,id) applies the prop-const strategy only
to the first argument of If terms. Note that id is the identity strategy that always
succeeds. We can write such congruences again using the concrete syntax of the source
language, where we enclose the argument strategies in <.>. For instance, the strategy
|[if <prop-const> then <id> else <id>]| denotes If(prop-const,id,id).

Composing Source-to-Source Data-Flow Transformations 211

Pattern Matching. While the prop-const-if definition Fig. 5 uses a congruence to
recognize a conditional statement, the prop-const-let and prop-const-while def-
initions use a pattern match strategy for this purpose. A pattern match ?p matches the
subject term against the pattern p, binding the meta-variables in the pattern. The con-
struct s => p is syntactic sugar for s; ?p, i.e., first applying strategy s and then match
the result against p. The concrete syntax congruence operators in prop-const-assign
and prop-const-declare are combinations between traversal and matching; the use
of a meta-variable in a congruence denotes matching that variable. Thus, the strategy
|[x := <prop-const => e >]|denotesAssign(Var(?x), prop-const => e); it
entails application of the prop-const strategy only to the right-hand side of an assign-
ment and binding the result to the meta-variable e .

Dynamic Rules. The elements we have examined so far concern the traversal order of the
abstract syntax tree. The next aspect is the definition of dynamic rules for propagation of
constant assignments. The prop-const-assign and prop-const-declare strategies
examine the right-hand side expression e of an assignment and variable declaration,
respectively, after these have been transformed. If the expression is a constant value, a
new dynamic rule is defined with as left-hand side the variable x from the left-hand side
of the assignment and as right-hand side the constant value e . Thus for an assignment |[
a := 3]| the rule |[a]| -> |[3]| is defined. In general, a dynamic rule definition
rules(f : p1 -> p2) defines a new rule f : p′

1 -> p′
2 with p′

1 and p′
2 the original

patterns in which variable bindings from the context of the definition are substituted.
If the right-hand side expression is not a constant value, the prop-const-assign

and prop-const-declare strategies undefine the PropConst rule with x as left-hand
side. This is necessary in constant propagation since an assignment invalidates earlier
assignments to the same variable. For example an assignment |[a := b + 4]| after
|[a := 3]| invalidates the |[a]| -> |[3]| rule.

Dynamic Rule Scope. Dynamic rules are usually related to elements of the source pro-
gram such as variables. Therefore, rules should only be applied to those parts of the tree,
where they are ‘in scope’. This is managed using the dynamic rule scope construct {| R
: s |}, which limits the scope of R rules to the strategy s. That is, all R rules defined
during the execution of s are removed when leaving the scope. This is necessary in a
case such as the following:

let var x := 17
in let var y := x + 1

in let var x := y+1 in () end
end; print(x)

end

⇒

let var x := 17
in let var y := 18

in let var x := 19 in () end
end; print(17)

end

Without scoping the dynamic rule produced from the assignment x := 19 in the inner
scope would be used for the print(x) call, and produce print(19) instead.

In fact, not all rules defined within s are removed on leaving the scope. Rules can be
defined relative to a named dynamic rule scope. For this purpose prop-const-declare
labels the current scope with the name of the declared variable (notation:PropConst+x).
The dynamic rule definitions by prop-const-assign are relative to the scope of the

212 K. Olmos and E. Visser

variable (notation: PropConst.x) to ensure that the rule is still visible when later scopes
are exited. Therefore, the rule for x defined in the scope for y is not removed when leaving
that scope.

Dynamic Rule Intersection. As discussed above, when encountering a fork in the control-
flow the current rule-set should be distributed over the branches and merged afterwards.
For this purpose, Stratego provides dynamic rule intersection and union operators. The
intersection operator s1 /PropConst\ s2 applies both strategies s1 and s2 to the cur-
rent term in sequence, but distributes the same rule-set to both strategies. Afterwards the
rule-sets are merged into one by keeping only those rules that are consistent in both sets.
The union operator s1 \PropConst/ s2 is similar, but keeps all rules instead. Thus,
the traversal of the branches of the conditional statement is defined as

|[if <id> then <prop-const> else <id>]|
/PropConst\ |[if <id> then <id> else <prop-const>]|

first visiting the left branch and then the right branch, keeping only the propagation rules
that are valid after both branches.

The fixed-point version /PropConst* s of the intersection operator repeats the
application of s until a stable rule-set is obtained. The transformation is applied each
time using the original term; only the result of the last application is used to replace the
term. Thus, the traversal of while statements is defined as

/PropConst* |[while <prop-const> do <prop-const>]|

In fact, in the implementation of dynamic rules the rule-sets are not actually cloned.
Instead, changes to the rule-set are stored in a fresh ‘change-set’ for each branch. These
changesets are merged at the meet-point. Thus, the effort of merging two rule-sets is
proportional to the number of rules in the change-sets rather than the number of rules in
the rule-set.

Combining Analysis and Transformation. The constant propagation strategy defined in
Fig. 5 combines analysis and transformation; the analysis of which variables are con-
stant and the actual substitution of these constant values interact. This combination is
strictly more expressive than the conventional approach of performing separate anal-
ysis and transformation phases. The application of constant folding may enable new
constant propagations and the application of unreachable code elimination through the
EvalIf and EvalWhile rules may discard entire sub-terms that an analysis would have
to consider. This phenomenon is illustrated by the following example from [8]:

(x := 10;
while A do
if x = 10 then dosomething()
else (dosomethingelse(); x := x + 1);

y := x)

⇒
(x := 10;
while A do
dosomething();

y := 10)

Since the assignment to x in the loop is never reached, the conditional statement can be
reduced to its first branch.

Composing Source-to-Source Data-Flow Transformations 213

3 Dependent Dynamic Rewrite Rules

While dynamic rules as presented in the previous section can be used to implement con-
stant propagation, they cannot be used for all data-flow transformations without changes.
In constant propagation a propagation rule maps a variable to a constant expression. Prop-
agation rules are undefined when an assignment to the variable is encountered. However,
in optimizations such as copy propagation and common-subexpression elimination there
are multiple variables that affect a propagation rule. We illustrate the problems using
copy propagation. An assignment of a variable to a variable introduces a copy. In copy
propagation these copies are replaced by their original. For example, the occurrence of
a in the second assignment of (a := b; c := d + a) is replaced by the variable b
to produce (a := b; c := d + b). The following dynamic rule definition for copy
propagation follows naturally from the constant propagation approach:

copy-prop-assign = ?|[x := y]|;
if <not(eq)>(x ,y) then rules(CopyProp.x : |[x]| -> |[y]|)

else rules(CopyProp.x :- |[x]|) end

Here we assume that the definition is embedded in a similar traversal strategy as that for
constant propagation. However, it is incorrect in a number of ways.

(1) Insufficient Dependencies. The rule is not undefined when the variable in its
right-hand side changes. For example, in the program (a := b; b := foo(); c :=
d + a) the variable a in the last statement will be replaced by b even though its value
changed in the second statement. Thus, a CopyProp rule should be undefined when any
of its variables is assigned.

(2) Free Variable Capture. The rule is not undefined when the local variable shadows
the variable in the right-hand side. For example, in the program

let var a := bar() var b := baz()
in a := b; let var b := foo() in print(a) end end

the occurrence of a in the call to print will be replaced with b, which now refers to the
variable in the inner scope. Thus, a CopyProp rule should be undefined in a local scope
when the local variable is used in the rule.

(3) Escaping Variables. The rule is not undefined when its target is going out of
scope. For example, in the following program

let var a := bar() in let var b := foo() in a := b end; print(a) end

the assignment a := b causes the definition of a dynamic rule a -> b, which replaces
the variable a in print(a) by b, which is then used outside its scope. This suggests
that a CopyProp rule should be defined in the local scope, i.e., the scope in which the
assignment lives. However, in the following variant of the program

let var a := bar() var c := baz()
in let var b := foo() in a := b; a := c end; print(a) end

the assignment a := c leads to a copy propagation rules which can be applied in the
outer scope, since neither a nor c are declared in the inner scope. Thus, a CopyProp rule
should be defined in the innermost scope of the variables involved, but not necessarily
the innermost scope.

214 K. Olmos and E. Visser

copy-prop-declare = ?|[var x := e]|
; where(new-CopyProp(|x ,x))
; where(try(<copy-prop-assign-aux> |[x := e]|))

copy-prop-assign = ?|[x := e]|
; where(undefine-CopyProp(|x))
; where(try(copy-prop-assign-aux))

copy-prop-assign-aux = ?|[x := y]|
; where(<not(eq)>(x ,y))
; where(innermost-scope-CopyProp => z)
; rules(CopyProp.z : |[x]| -> |[y]| depends on [(x ,x), (y ,y)])

innermost-scope-CopyProp =
get-var-names => vars ; innermost-scope-CopyProp(elem-of(|vars))

Fig. 7. Specification of copy propagation with dependent dynamic rules

This sums up the problems with the extrapolation of the use of dynamic rules for
constant propagation to transformations involving variables in the right-hand sides of
rules. The first two problems are solved by means of dependent dynamic rules, the last
problem is solved by defining rules in the innermost scope of all variables involved. A
correct definition of copy propagation using these techniques is presented in Fig. 7 Note
that the traversal part of the specification is similar to the one of constant propagation
and is omitted.

A dependent dynamic rule is a dynamic rule that declares its dependencies on program
entities such as variables. The depends on clause of a dependent rule declares a list of
pairs of the scope and value of the dependencies. For example, a copy propagation rule
|[a]| -> |[b]| depends on the object variables a and b, entailing the dependency
list [(a,a),(b,b)]. In the case of the Tiger transformations in this paper, variable
names are used as scope labels and as dependencies. However, this is not necessarily the
case in general, which motivates the distinction. Rule dependencies are used to undefine
or shadow a dynamic rule when one of its dependencies is changed. For example, if
the object variable b is assigned to, all copy propagation rules in which that variable is
involved become invalid. For this purpose, a mapping from dependencies to the rules
they affect is maintained. For a dependent dynamic rule R , the strategies undefine-R ,
new-R , and innermost-scope-R solve the problems discussed above.

(1) The undefine-R (|dep) strategy undefines all rules depending on dep . It
should be used when the meaning of dep has changed, e.g. in copy-prop-assign.

(2) The new-R (|l ,dep) strategy labels the current scope with l and locally unde-
fines any rules that depend on dep . This strategy is typically used when encountering a
local declaration for dependency dep with scope label l , e.g., in copy-prop-declare,
and avoids rules depending on dep living in external scopes from being applied, which
would result in free variable capture.

(3) The innermost-scope-R (s) strategy examines the labels in the scopes for
R starting with the most recent one, producing the first for which s succeeds. This is

Composing Source-to-Source Data-Flow Transformations 215

used in the definition of innermost-scope-CopyProp to obtain the innermost scope
label for the set of variables in an expression. Thus, in copy-prop-assign-aux, new
CopyProp rules are defined in the innermost scope z , which is the innermost scope of
x and y . This ensures that the rule is removed as soon as one of its dependencies goes
out of scope. As a consequence rules are only applied to those parts of the tree where
both variables are in scope, avoiding variables to escape from their scope.

Dependent dynamic rules are a generative extension of basic dynamic rules. Thus,
the effect of dependent dynamic rules can be achieved using only basic dynamic rules,
but the implementation of the administration of dependencies and their mapping is
rather tedious. The language feature supports the reuse of this code pattern by means
of a code generator in the compiler, which can also exploit the internal representation
of dynamic rules.

4 Generic Data-Flow Transformation Strategies

The definition of copy propagation in Fig. 7 is very similar to the definition of constant
propagation in Fig. 5 The difference between the two transformations is restricted to the
optimization specific strategies for handling declarations and assignments. Control flow
constructs for forking and iteration share a common strategy with the dynamic rule name
as only difference. The generic forward propagation strategy for Tiger (forward-prop)
in Fig. 9 allows individual optimizations to focus on their essential elements by reusing
the code for the common parts of the transformation. A dual strategy for backwards
propagation is defined in similar fashion [14].

The forward-prop strategy is parameterized with strategies that are applied at cer-
tain stages of the transformation of a language construct. The strategies transform,
before and after are local rewrites of a construct and can be used to tune the trans-
formation. Further parameters are the names of rules to be intersected (Rs1) and unified
(Rs2) at fork and join points, and rule names (Rs3) that are part of the transformation,
but do not require a dynamic rule operation at confluence points.

Common-Subexpresson Elimination. Fig. 10 presents an instantiation of forward-prop
for common-subexpression elimination (CSE). CSE is a transformation that replaces
common expressions with a variable that already contains the value of the expression.
For example, CSE transforms (a := b + c; d := b + c) to (a := b + c; d :=
a). By instantiating forward-prop, we can focus on the definition of the conditions
that enable the propagation of non-trivial expressions by defining CSE rules. Scoping
and undefining of dynamic rules are handled in the forward-prop strategy. This is a

super-opt =
forward-prop(prop-const-transform, bvr-before,
bvr-after; copy-prop-after; prop-const-after; cse-after
| ["PropConst", "CopyProp", "CSE"], [], ["RenameVar"])

Fig. 8. ‘Super’ transformation combining constant propagation, copy propagation, common-
subexpression elimination, and bound variable renaming

216 K. Olmos and E. Visser

forward-prop(transform, before, after | Rs1 , Rs2 , Rs3) =
<conc>(Rs1 , Rs2 , Rs3) => RsSc ; <conc>(Rs1 , Rs2) => RsDf ;
let
fp = prop-assign <+ prop-declare <+ prop-let <+ prop-if <+ prop-while

<+ transform(fp) <+ (before; all(fp); after)

prop-assign =
|[<id> := <fp>]|
; (transform(fp)

<+ before; ?|[x := e]|; undefine-dynamic-rules(|RsDf ,x); after)

prop-declare =
|[var <id> := <fp>]|
; (transform(fp)

<+ before; ?|[var x := e]|; new-dynamic-rules(|RsSc ,x ,x);after)

prop-let =
?|[let d* in e* end]|
; (transform(fp) <+ {|~RsSc : before; all(fp); after |})

prop-if =
|[if <fp> then <id> else <id>]|
; (transform(fp)

<+ before ; (|[if <id> then <fp> else <id>]| /~Rs1 \~Rs2 /
|[if <id> then <id> else <fp>]|); after)

prop-while =
?|[while e1 do e2]|
; (transform(fp)

<+ before; /~Rs1 \~Rs2 /* |[while <fp> do <fp>]|; after)
in fp
end

Fig. 9. A generic strategy for forward propagation transformations

cse = forward-prop(cse-transform, id, cse-after | ["CSE"], [], [])

cse-transform(recur) = fail

cse-after = try(cse-assign <+ cse-declare <+ CSE)

cse-declare = ?|[var x := e]|; where(<cse-assign> |[x := e]|)

cse-assign = ?|[x := e]|
; where(<pure-and-not-trivial(|x)> |[e]|)
; where(get-var-dependencies => xs)
; where(innermost-scope-CSE => z)
; rules(CSE.z : |[e]| -> |[x]| depends on xs)

Fig. 10. Common-subexpression elimination using generic forward propagation strategy

Composing Source-to-Source Data-Flow Transformations 217

major simplification of the implementation of CSE, since we do not have to handle all
the control-flow constructs separately in this specific optimization.

Combining Transformations. The forward-prop strategy uses generalized versions
of the dynamic rule combinators to deal with multiple rules. The new-dynamic-rules
and undefine-dynamic-rules strategies apply the new-R and undefine-R rules for
all parameter rules. Similarly, the /Rs1 \Rs2 / and /Rs1 \Rs2 /* operators generalize
the intersection and union operators to a single combined operator, which performs
intersection over the first set of rules and union over the second. Thus, the generic
forward propagation strategy can apply different analyses and transformations at the
same time by combining elements from several one issue transformations.As an example,
Fig. 8 shows a strategy that combines constant propagation, copy propagation, common-
subexpression elimination, unreachable code elimination and bound-variable renaming.
We have included bound-variable renaming on the fly in this combined transformation
to avoid dynamic rules from being unnecessarily undefined/shadowed.

5 Discussion

Previous Work. Scoped dynamic rules were introduced in [17] to overcome the lim-
itations of the context-free nature of static rewrite rules with applications to bound
variable renaming, function inlining, and dead code elimination. A first version of con-
stant propagation based on that design is described in [13]. Scoped dynamic rules have
been extended, improved, and formalized in [4], introducing labeling of scopes to pro-
vide more fine-grained control over the definition and removal of dynamic rules, and
introducing the fork, intersection, union and fixed-point operations on sets of dynamic
rules. The contributions of this paper with respect to that work are the introduction of
dependent dynamic rules, the definition of generic data-flow transformation strategies,
and the combination of data-flow transformations. In the technical report version of this
paper [14] we also present a generic backwards propagation strategy, the other instanti-
ations of the generic forward propagation strategy used in the combined optimizer and
a specification of partial redundancy elimination, illustrating how two separate analyses
(backwards and forwards) can communicate via annotations.

Related Work. A discussion of techniques for data-flow transformations is beyond the
scope of this paper. Rather, we focus on languages and tools that automate part of the
effort of producing program data-flow transformations.

Program analyzer generators such as Sharlit [16] and PAG [11] produce analyz-
ers from a specification of the flow values and flow functions for the problem at hand.
In Sharlit [16] these have to be implemented in C++ following the conventions of the
tool. PAG provides a dedicated domain-specific language for all aspects of the speci-
fication. These tools do not support combined super-analyses, nor the specification of
transformations; applications of analysis and transformation are alternated.

Graph transformation tools such as optimix [3] and the tools of De Moor et al. [7,
6] provide a transformation-oriented approach, aiming at declarative specification of
individual transformations, in contrast to the global approach of data-flow analyses.

218 K. Olmos and E. Visser

An optimix program consists of a set of rewrite rules on a graph representation of a
program. The graph can be extended with additional edges to express analysis results.
Transformation is by exhaustive application of rules. Lacey and De Moor [7] use graph
rewrite rules with temporal logic conditions to check properties of the control-flow
graph; that is, enabling conditions are checked from the point of view of the node that is
transformed, rather than as a global analysis. Path logic programming [6] is a variation
on this approach using path patterns, regular expressions over paths through the control-
flow graph of a program that express the properties that should hold on all or some
paths to the node subject to transformation. The drawback of these approaches is that
pattern matching requires performing a global program analysis and a search for graph
nodes that match a certain pattern. After applying a transformation, the analysis needs to
be redone. Obtaining efficient optimizers requires incrementally updating the analysis
information after applying transformations. There is some progress in this area [15]
with a technique for compositional analysis based on path expressions. Our approach
provides effective procedures for finding data-flow redices in abstract syntax trees.

Combination of analysis and transformation is not only desirable from the point
of view of performance, but can also produce better results. Wegman and Zadek in-
troduced conditional constant propagation, a combination of constant propagation and
unreachable code elimination [21], which produces better results than applying the two
transformations in sequence. Click and Cooper [5] formally defined in which cases in-
tegrating two data-flow analyses results in better results than a sequential application
of the individual analyses, and they combined constant propagation, unreachable code
elimination and value numbering. Rather than implementing such combined transfor-
mations in dedicated algorithms, we provide high-level constructs for the composition
of such combined transformations. In this sense our work is most related to that of
Lerner et al. who have developed a series of frameworks [8, 9, 10] for the composition
of data-flow transformations in a modular way. Similarly to our approach they combine
analysis and the application of transformations as long as they share the same direction.
There is a difference in perspective, though; while we model program analysis by dy-
namic transformation rules, they let the analysis framework simulate transformations.
Another difference is that their frameworks operate on fixed control-flow graph represen-
tations. In contrast, Stratego is not specifically designed for data-flow transformations.
Rewrite rules, strategy combinators, and dynamic rules are useful in a wide variety of
transformations. In addition, our approach handles variable bindings correctly.

Conclusion. We have presented a language for the concise specification of source-to-
source data-flow transformations. The generic high-level constructs allow adaptation
of the approach to other programming languages with little effort; we have used the
approach to implement optimizations in a compiler for the Octave language. Transfer
functions are elegantly captured by dynamic rewrite rules and confluence operators
for intersection or fixed-point applications are used to specify program analysis and
transformation. The language supports combination of analysis and transformation in
one traversal and the combination of multiple transformations in the same traversal.

The techniques presented in this paper are supported by Stratego/XT 0.14, which is
available from http://www.stratego-language.org/.

Composing Source-to-Source Data-Flow Transformations 219

Acknowledgments. We thank Martin Bravenboer for his help with the preparation of
this paper, Tom de Vries and the anonymous referees for their comments on a previous
version of this paper, and Oege de Moor and Ganesh Sittampalam for the discussions of
specification of optimizers.

References

1. A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and Tools. Addison-
Wesley, 1986.

2. A. Appel. Modern compiler implementation in ML. Cambridge University Press, 1998.
3. U. Assmann. How To Uniformly Specify Program Analysis and Transformation. In

T. Gyimóthy, editor, Internationational Conference on Compiler Construction (CC’96), vol-
ume 1060 of LNCS, pages 121–135, Linköping, Sweden, 1996. Springer.

4. M. Bravenboer, A. van Dam, K. Olmos, and E. Visser. Program transformation with scoped
dynamic rewrite rules. Technical Report UU-CS-2005-005, Institute of Information and
Computing Sciences, Utrecht University, 2005.

5. C. Click and K. D. Cooper. Combining analyses, combining optimizations. ACM Transactions
on Programming Languages and Systems, 17(2):181–196, March 1995.

6. S. Drape, O. de Moor, and G. Sittampalam. Transforming the .NET intermediate language
using path logic programming. In C. Kirchner, editor, Proceedings of the Fourth ACM SIG-
PLAN Conference on Principles and Practice of Declarative Programming (PPDP’02), pages
133–144, Pittsburgh, Pensylvania, USA, October 2002. ACM.

7. D. Lacey and O. de Moor. Imperative program transformation by rewriting. In R. Wilhelm,
editor, Proceedings of the 10th International Conference on Compiler Construction, volume
2027 of LNCS, pages 52–68. Springer Verlag, 2001.

8. S. Lerner, D. Grove, and C. Chambers. Combining dataflow analyses and transformations. In
SIGPLAN Symposium on Principles of Programming Languages (POPL’02), pages 270–282,
Portland, Oregon, January 2002.

9. S. Lerner, T. Millstein, and C. Chambers. Automatically proving the correctness of compiler
optimizations. In Programming Language Design and Implementation (PLDI’03), pages 220
– 231. ACM SIGPLAN, June 2003.

10. S. Lerner, T. Millstein, E. Rice, and C. Chambers. Automated soundness proofs for dataflow
analyses and transformations via local rules. In Principles of Programming Languages
(POPL’05), pages 364–377. ACM SIGPLAN, January 2005.

11. F. Martin. PAG an efficient program analyzer generator. International Journal on Software
Tools for Technology Transfer STTT, 2(1):46–67, November 1998.

12. S. Muchnick. Advanced compiler design and implementation. Morgan Kaufmann, 1997.
13. K. Olmos and E. Visser. Strategies for source-to-source constant propagation. In B. Gramlich

and S. Lucas, editors, Workshop on Reduction Strategies (WRS’02), volume 70 of ENTCS,
page 20, Copenhagen, Denmark, July 2002. Elsevier Science Publishers.

14. K. Olmos and E.Visser. Composing source-to-source data-flow transformations with rewriting
strategies and dependent dynamic rewrite rules. Technical Report UU-CS-2005-006, Institute
of Information and Computing Sciences, Utrecht University, 2005.

15. G. Sittampalam, O. de Moor, and K. F. Larsen. Incremental execution of transformation spec-
ifications. In SIGPLAN Symposium on Principles of Programming Languages (POPL’04),
pages 26–38. ACM, January 2004.

16. S. W. K. Tjiang and J. L. Hennessy. Sharlit—A tool for building optimizers. In ACM SIGPLAN
’92 Conference on Programming Language Design and Implementation, July 1992.

220 K. Olmos and E. Visser

17. E. Visser. Scoped dynamic rewrite rules. In M. van den Brand and R. Verma, editors,
Rule Based Programming (RULE’01), volume 59/4 of ENTCS. Elsevier Science Publishers,
September 2001.

18. E. Visser. Meta-programming with concrete object syntax. In D. Batory, C. Consel, and
W. Taha, editors, Generative Programming and Component Engineering (GPCE’02), volume
2487 of LNCS, pages 299–315, Pittsburgh, PA, USA, October 2002. Springer-Verlag.

19. E. Visser. Program transformation with Stratego/XT: Rules, strategies, tools, and systems in
StrategoXT-0.9. In C. Lengauer et al., editors, Domain-Specific Program Generation, volume
3016 of LNCS, pages 216–238. Spinger-Verlag, June 2004.

20. E. Visser, Z.-e.-A. Benaissa, and A. Tolmach. Building program optimizers with rewriting
strategies. In Proceedings of the third ACM SIGPLAN International Conference on Functional
Programming (ICFP’98), pages 13–26. ACM Press, September 1998.

21. M. Wegman and F. Zadeck. Constant propagation with conditional branches. ACM Transac-
tions on Programming Languages and Systems, 13:181–210, April 1991.

Verification of Source Code Transformations by
Program Equivalence Checking

K.C. Shashidhar1,2, Maurice Bruynooghe2,
Francky Catthoor1,3, and Gerda Janssens2

1 Interuniversitair Micro-Elektronica Centrum (IMEC) vzw, Leuven, Belgium
2 Departement Computerwetenschappen, Katholieke Universiteit Leuven, Belgium
3 Departement Elektrotechniek (ESAT), Katholieke Universiteit Leuven, Belgium

{kodambal, catthoor}@imec.be, {maurice, gerda}@cs.kuleuven.ac.be

Abstract. Typically, a combination of manual and automated trans-
formations is applied when algorithms for digital signal processing are
adapted for energy and performance-efficient embedded systems. This
poses severe verification problems. Verification becomes easier after con-
verting the code into dynamic single-assignment form (DSA). This paper
describes a method to prove equivalence between two programs in DSA
where subscripts to array variables and loop bounds are (piecewise) affine
expressions. For such programs, geometric modeling can be used and it
can be shown, for groups of elements at once, that the outputs in both
programs are the same function of the inputs.

1 Introduction

In the recent years, embedded processor systems have emerged as pervasive plat-
forms for multimedia and telecom systems. They are highly resource-constrained
and there is an increasing stress on rigorous optimization of the software that
runs on them. Current compiler optimizations, though powerful, are insufficient
to meet the resource constraints. Designers apply domain specific optimizations
to obtain programs with a better performance/energy consumption trade-off.

Accesses to the data memory hierarchy are the most time and energy con-
suming operations in data-intensive applications. Globally applied loop trans-
formations, expression propagations and algebraic transformations can reduce
their cost. Guided by elaborate cost models, experienced designers apply them
manually or use ad-hoc tools in a transformation phase prior to compilation.
The process is error prone and testing hampers designer’s productivity. We
present a formal and automated method for the verification of such transfor-
mations.

Fig. 1 shows an artificial example where program (b) has been derived from
(a) through expression propagations, loop and algebraic transformations. The
functions, when executed, take inputs A[] and B[], and assign the computed
values to the elements of the output array C[]. Ignoring possible overflow, integer
addition is both associative and commutative. Hence, both programs compute

R. Bodik (Ed.): CC 2005, LNCS 3443, pp. 221–236, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

222 K.C. Shashidhar et al.

void foo(int A[], int B[], int C[])
{
 int k, tmp1[256], tmp2[266], tmp3[256];

 for(k=0; k<256; k++)
s1: tmp1[k] = A[2*k] + f(B[k+1]);
 for(k=10; k<138; k++)
s2: tmp2[k] = B[k-8];
 for(k=10; k<266; k++){
 if(k >= 138)
s3: tmp2[k] = B[k-8];
s4: tmp3[k-10] = f(A[2*k-19]) + tmp2[k];
 }
 for(k=255; k>=0; k--)
s5: C[3*k] = tmp1[k] + tmp3[k];
}

void foo(int A[], int B[], int C[])
{
 int k, tmp4[256], tmp5[256];

 for(k=0; k<256; k++){
t1: tmp4[k] = f(A[2*k+1]) + A[2*k];
t2: tmp5[k] = B[k+2] + tmp4[k];
t3: C[3*k] = f(B[k+1]) + tmp5[k];
 }

}

a b

Fig. 1. Example of an original (a) and transformed (b) program function pair

the same outputs for the same inputs, i.e., they are input-output equivalent. Our
method automates the checking of their input-output equivalence.

The method handles a decidable subset of structured, imperative programs
that are in dynamic single-assignment form, have only piecewise-affine expres-
sions as subscripts to array variables and bounds of for-loops, and have static
control-flow free from side-effects. It relies on code pre-processing methods to
convert programs commonly seen in practice into the subset. For programs
in this subset, we introduce a representation that captures both computation
and the true data dependencies (Sec. 2). This representation exposes the invari-
ant properties for the transformations and can deal with algebraic transforma-
tions (Sec. 3). Equivalence is shown by checking that a one-to-one correspondence
exists between the two programs in their computation and in the data dependen-
cies between the individual elements of their observable array variables (Sec. 4).
It neither relies on any information about the particular instances of the trans-
formations that were applied nor on the order of their application. It scales well
for larger problem sizes (Sec. 5). Prior work outlines our method and discusses
its application in embedded systems design [13]. This paper formally presents
the method and explains how recurrences in data dependencies are handled. In
Sec. 6, we situate our work with respect to other approaches.

2 Program Representation

We assume an imperative programming language that has array data struc-
tures and has a form of for-loops to control iteration. Our current tools are
focused on C. The analysis is intra-procedural and the equivalence is checked
between two procedures (functions). They can call other functions (common to
both) to the extent that those functions can be considered as side effect free
operators.

Verification of Source Code Transformations 223

2.1 Class of Allowed Programs

Programs we can handle have the following properties:

1. Dynamic single-assignment: Every memory location is written only once.
Optimizing compilers use the static single-assignment (SSA) form [6] to fa-
cilitate optimizations which still can write the same array element several
times. This is not the case with dynamic single-assignment (DSA) form; it
eliminates all false dependencies. Methods for conversion to DSA are de-
scribed in [7, 16]. We also require that functions are free from side-effects.

2. Piecewise-affine expressions: Subscripts in the arrays and expressions in the
bounds of the for-loops are all piece-wise affine in the iterator variables
of the enclosing for-loops. Additionally, the expressions can also include
operators like mod, div, max, min, floor and ceil. This allows representing
the addressing relationships between elements of arrays as affine inequalities
in integers and makes it possible to use well-understood dependence tests
(for example, the Omega test [12]) to solve those systems.

3. Static control-flow: There are no data-dependent while-loops in the pro-
grams. We assume that data-dependent while-loops have been converted to
for-loops with worst-case bounds and a global if-condition on its body; and
the data-dependent if-conditions in the program have been converted into
data dependencies by using if-conversion [1].

4. No pointer references: Programs are free from pointer references. Pointer-to-
array conversion methods (for example, [15]) can be used here.

The class is not unduly restrictive for the application domain. In fact, it is
advantageous to bring programs into such a form before applying global trans-
formations as this form creates more freedom for the transformations and the
tools used for guiding the transformations can do a better job [5].

2.2 Array Data Dependence Graphs

Scalars can be considered as one element arrays. Hence, which element is assigned
by a (assignment) statement depends on the instantiation of the subscripts of the
assigned array. The subscripts can depend on the values of the surrounding iter-
ators when the statement appears inside a nest of for-loops. Which values the
subscripts take during execution can be described in closed form as an integer do-
main in a multi-dimensional geometrical space. Such descriptions which record a
variety of information related to the statements and dependencies among them
are together referred to as the geometrical or polyhedral representation. This
representation is commonly used for dependence analysis by optimizing compil-
ers [2, 3, 17]. Here we briefly review the main elements.

Let us consider a statement s of the form

s: v[fi1(�kd)]. . .[fin
(�kd)] = exp(· · · , u[fj1(�kd)]. . .[fjm

(�kd)], · · ·);
where �kd = (k1, . . . , kr, . . . , kd) is the vector of iterator variables of the surround-
ing for-loops. Let lr(�kr−1), ur(�kr−1) and sr(�kr−1) be affine functions defining

224 K.C. Shashidhar et al.

respectively the lower and upper bounds, and the stride of iterator kr. Finally,
assume execution of the for-loops is controlled by affine expressions cr(�kr−1)
and execution of the statement s by cd+1(�kd). Then we can define the following:

Definition 1 (Iteration Domain, D). Integer domain in which each point
[k1, . . . , kd] represents exactly one execution of the statement s:

D := {[k1, . . . , kd] | (
d∧

r=1

kr ∈ Z ∧ (lr(�kr−1) ≤ kr ≤ ur(�kr−1)) ∧ cr(�kr−1) ∧

(∃αr ∈ Z | kr = αrsr(�kr−1) + lr(�kr−1))) ∧ cd+1(�kd)}.

Definition 2 (Definition Domain, Wv). Integer domain in which each point
[i1, . . . , in] represents exactly one write to v[i1]. . .[in], an element of the array
v defined by the statement s with iteration domain D:

Wv := {[i1, . . . , in] | (
n∧

r=1

ir = fir
(�k)) ∧ �k ∈ D}.

Definition 3 (Operand Domain, Ru). Integer domain in which each point
[j1, . . . , jm] represents exactly one read from an element u[j1]. . .[jm], of an
operand array u in statement s with iteration domain D:

Ru := {[j1, . . . , jm] | (
m∧

r=1

jr = fjr
(�k)) ∧ �k ∈ D}.

Definition 4 (Dependency Mapping, Mv,u). A mapping associated with a
statement, between a defined array v and an operand array u. Each instance
[i1, . . . , in] → [j1, . . . , jm] in the mapping indicates that element u[j1]. . .[jm] is
read when the element v[i1]. . .[in] is written by the statement s with iteration
domain D:

Mv,u := {[i1, . . . , in] → [j1, . . . , jm] | (
n∧

r=1

ir = fir
(�k))∧(

m∧
r=1

jr = fjr
(�k))∧�k ∈ D}.

For example, the definitions given above for statement s4 in the original
function in Fig. 1 are:

D := {[k] | 10 ≤ k < 266 ∧ k ∈ Z}
Wtmp3 := {[d] | d = k − 10 ∧ k ∈ D} RA := {[d] | d = 2 ∗ k − 19 ∧ k ∈ D}

Rtmp2 := {[d] | d = k ∧ k ∈ D}
Mtmp3,A := {[d1] → [d2] | d1 = k − 10 ∧ d2 = 2 ∗ k − 19 ∧ k ∈ D}
Mtmp3,tmp2 := {[d1] → [d2] | d1 = k − 10 ∧ d2 = k ∧ k ∈ D}

Verification of Source Code Transformations 225

tmp3tmp1

+

+

f

C

+

f

A B

tmp2

1

1 1

1

1 2

22

tmp5

+

+

f

A

C

+

f

tmp4

1

1

1

1

1 2

2

2

B

s5

s1 s4

s2 s3

t1

t2

t3

a b

Fig. 2. The ADDGs of program functions in Fig. 1. Array A1 and A2 in the dependency
mapping of tmp4 in (b) refer to different occurrences of A in statement t1

A data dependence exists between two statements s and t when s produces
values and t consumes them, i.e., s has definition domain Wv, t has operand
domain Rv and Wv ∩ Rv �= ∅. Dependencies are represented at a fine grained
level. The assigned array depends either on the consumed array or on the main
operator of the rhs. In the latter case, the operator in turn depends on its
arguments which are either other operators or arrays. The set of all dependencies
can be represented as an array data dependence graph (ADDG).

Definition 5 (Array Data Dependence Graph, ADDG). The ADDG of a pro-
gram is a directed graph G = (V, E), where the node set V is the union of arrays
used in the program (array nodes) and the operator occurrences (operator nodes)
of the statements and the edge set E represents the dependencies. An edge with
operator node as source is labeled by the operand position of its destination; an
edge with an array as source is labeled with the statement identifier of the assign-
ment. Array nodes of defined arrays are annotated with the dependency mappings
of the statement.

Whereas standard data dependence graphs used in high-performance com-
pilers represent dependencies at the statement level, we use more detailed de-
pendencies. Also, a data dependence (reverse flow), denoted by a directed edge,
refers not just to a single value, but to a set of values. A dependency mapping
(Def. 4) corresponds to a path with the defined array as source and the operand
array as destination (paths that pass through zero or more operators). Fig. 2
shows the ADDG representations of the programs of Fig. 1.

An array v is an internal array if
⋃

Wv =
⋃

Rv, i.e. each produced element
is consumed; it is an input array if

⋃
Wv = ∅, i.e., no element is produced; and

an output array if
⋃

Rv ⊂ ⋃
Wv, i.e. some of its elements are not consumed.

226 K.C. Shashidhar et al.

In the example, the original function has {A, B} as input, {tmp1, tmp2, tmp3} as
internal and {C} as output arrays. A path u, o1, . . . , on, v with u and v array
nodes and o1, . . . , on operator nodes represents a data-flow between v and u
which is described by the dependency mapping Mu,v. We can also associate a
dependency mapping with a path across several array nodes.

Definition 6 (Transitive Dependency Mapping, M∗
v0,vn). Let p be a path in

an ADDG starting in array node vo, ending in array node vn and passing through
array nodes v1, . . . , vn−1 (n ≥ 0). Using �� for the natural join4 of two relations:

M∗
v0,vn :=

⎧⎨
⎩

I (the identity) n = 0
Mv0,v1 n = 1
Mv0,v1 �� Mv1,v2 �� . . . �� Mvn−1,vn otherwise

Definition 7 (Data Dependence Path). A path between two array nodes is
a data dependence path iff its transitive dependency mapping is non-empty.

The transitive dependency mapping from an output to an input node is called
the output-to-input mapping. The set of output-to-input mappings characterizes
the data-flow of the computation.

For example, in the ADDG of the original function in Fig. 2 the output-to-input
mapping from C to B on the rightmost path is given by

M∗
C,B := MC,tmp3 �� Mtmp3,tmp2 �� Mtmp2,B

:= {[d1] → [d2] | d1 = 3 ∗ k ∧ d2 = k + 2 ∧ 128 ≤ k < 256 ∧ k ∈ Z}.

The data dependence paths from a node v can be used to identify the program
slices contributing to the computation of the elements of v. The outgoing edges of
v partition the elements of the array and different paths correspond to different
slices of the computation. Also an operator node has different outgoing edges.
They correspond to different operands of the operator; they all contribute to the
computation by the operator and hence belong to the same slice.

An ADDG can have cycles, in which case it has cyclic paths. A cyclic data de-
pendence path indicates the presence of a recurrence in the computation: arrays
in a cyclic path have elements whose value depend on other elements of the same
array. While an ADDG with a cycle has infinite paths, all data dependence paths
are finite as the program is composed of terminating for-loops. We return to
recurrences in Sec. 4.2.

An internal array node acts as a buffer and can be eliminated from a given
path (because the program is in DSA).

Operation 1 (Internal Array Node Elimination). Let the outgoing edges
of an internal array node w be (w, x1), . . . , (w, xk) with labels s1, . . . , sk and
let Mw,t1 , . . . ,Mw,tk be the corresponding dependency mappings. Let p be a path

4 x → z ∈ F �� G ⇔ ∃y s.t. x → y ∈ F ∧ y → z ∈ G.

Verification of Source Code Transformations 227

(possibly including operators) from an array node u to w and s be the label of
the outgoing edge of u on p and Mu,w the associated dependency mapping. Let
the incoming edge on w on p be (v, w) with the label l. The node w is eliminated
on the path p from u as follows:

- ∀i, 1 ≤ i ≤ k: add the edge (v, xi) and if u = v, label it as s.si, else label it as l
- Replace Mu,w by the transitive dependency mappings M∗

u,t1 ,. . . ,M
∗
u,tk

- Remove the edge (v, w).

In the above operation, when v is an operator node and k > 1, v has multiple
operands with the same position label. Such operands correspond to disjunct
slices of the computation.

3 Transformations and Their Effect

In this section, we discuss three categories of transformations that we allow and
their effect on the ADDG representation of the program function.

Global Loop Transformations. Loop transformations are usually classified
into structure preserving and structure modifying categories. The former cate-
gory includes such transformations as loop permutation, interchange, skewing,
reversal and bumping, and those that can be derived from combining them.
The latter includes loop distribution, fission, splitting, merging, folding, fusion,
strip-mining, tiling and unrolling. Structure preserving transformations only af-
fect the iteration domains of statements. While the graph structure of the ADDG
remains, the associated dependency mappings are affected. A transformation
preserves correctness when the output-to-input mappings for the paths of the
same computation on the transformed ADDG is identical to the output-to-input
mappings in the original ADDG. Structure modifying transformations can result
in a re-distribution of definition domains of the involved arrays. For example,
in the original function, the rightmost path splits at array node tmp2 and par-
titions the output-to-input mappings from the output array C to input array B
for the same computation. Therefore, the invariant for the correctness of these
transformations is that, the union of output-to-input mappings for the paths of
the same computation on the transformed ADDG must be identical to a similar
union of mappings in the original ADDG.

Expression Propagations. Expression propagation involves both introduc-
tion and elimination of intermediate arrays for partial computations in the pro-
gram function. For example, a statement with a summation of three terms on
the right-hand side can be converted into two statements with summation of two
terms each, by the introduction of an intermediate array. Another possibility is
that a set of values are recomputed, instead of reused. The effect of expres-
sion propagation on the ADDG of the program function is insertion/elimination of
array nodes on the paths of the ADDG and/or duplication of sub-ADDGs. The in-
variant for the correctness of the propagation transformations is the same as for

228 K.C. Shashidhar et al.

p1 p2 p2 p1p3

p

p1 p2 p3

p

p1

p2

(b) Commutativity(a) Associativity
p p

p3p1 p2

p

p

p1 p2 p3 p4

p

p1

p3 p4

p2

p

p2p3p4p1

(c) Combination of both

Fig. 3. AC transformations

+

f

C

f

A

1 1

+

ff

1 1

B AB

Ca b

1 2 3 4 4 1 2 3 4

s5 t3

Fig. 4. ADDGs after flattening

loop transformations. That is, the output-to-input mappings for the paths of the
same computation on the transformed ADDG is identical to the output-to-input
mappings in the original ADDG.

Global Algebraic Transformations. Algebraic transformations exploit prop-
erties of operators and user-defined functions and modify the data-flow in order
to improve efficiency or to enable the other transformations. Several statements
can be involved as can be seen in Fig. 1, where these transformations have been
applied across expressions of multiple statements. The ADDGs of the two func-
tions, as shown in Fig. 2, also reflect this. Most of these transformations just
rely on the associativity and/or commutativity properties of the operators like
addition and multiplication on a data-type such as integer. We distinguish:

Associativity. Let ⊕ be an associative operator. Fig. 3(a) shows two computa-
tions that are equivalent due to associativity. To integrate associativity in our
method, we replace the graph fragment by its normal form: A single ⊕ operator
with a variable number of arguments as shown on the right of Fig. 3(a). This
does not affect the output-to-input mappings of the ADDG. In addition, internal
array nodes receiving input from another ⊕ operator can be eliminated. This
results in the following operator:

Operation 2 (Flattening). Process all successor nodes of an associative ⊕-
node p as follows: if it is an internal array node, apply internal array node
elimination. If it is another ⊕-node o, eliminate it: let l be the label of the edge
(p, o) and let (o, s0), . . . , (o, sn) be the outgoing edges. For all the outgoing edges
of p with label (k > l), replace the label k by k + n and add edges (p, si) with
labels l + i. Remove the edge (p, o). Repeat flattening on p until all its successor
nodes are either input nodes or operator nodes other than ⊕.

Note that elimination of a node adds new children to the root node, which
are in turn processed and that the order of the nodes is preserved. Fig. 4 shows

Verification of Source Code Transformations 229

the effect on the ADDGs of Fig. 2. On the left, note the two outgoing edges with
the same label, they correspond to disjunct slices of the computation.

Commutativity. A commutative operator allows to permute the arguments as
shown in Fig. 3(b). As a consequence, one cannot use the labels on the edges to
find corresponding arguments for operators that should perform the same com-
putation. E.g., the +-nodes of Fig. 4 are commutative. To find the correspondence
between their arguments, a matching operation is needed.

Operation 3 (Matching). Given a pair of commutative operators in two dif-
ferent ADDGs matching selects pairs of corresponding edges. To do so, it has to
look-ahead in the subtrees of the edges, using information about operator labels
and transitive dependency mappings to eliminate candidates. This boils down to
a recursive application of the method described in Sec. 4.

Consider the two addition operators in the two ADDGs of Fig. 4. Edge 1 in the
left ADDG pairs with edge 4 in the right ADDG, as they are the only ones leading to
the input array A. Both +-nodes haves two edges leading to an operator labeled
f , so further look-ahead is needed. In both cases, one of the operator nodes leads
to input array A and the other to B, hence the correct pairing is (2, 1) and (3, 3).
Finally, the left ADDG has two edges labeled 4, leading to input array B, also edge
2 of the right ADDG leads to B, resulting in two pairs (4, 2).

Combination of associativity and commutativity. Operators can be both associa-
tive and commutative, increasing the number of equivalent forms, as illustrated
in Fig. 3(c) for the �-operator. As already explained on our example, the flat-
tening operation has to be followed by a matching operation.

Other Properties. Operations for handling other properties (distributivity, in-
verse of an operator, identity element of an operator, evaluation of constant
values) can be developed in a similar way by a combination of reduction to a
suitable normal form and matching.

4 Equivalence Checking Method

We start by introducing a sufficient condition for equivalence between programs.
Next, in Sec. 4.1, we explain a traversal based method to check the condition.
Finally, in Sec. 4.2 we discuss how recurrences are tackled.

Two programs are equivalent when they have identical outputs for identical
inputs. Assuming they have the same input and output arrays, we distinguish
the following two conditions. For each output element in both programs:

Cond-A: The set of output-to-input mappings is the same; and
Cond-B: The computation is the same.

Together, they ensure that each output element is obtained by applying
the same function on the same input elements, i.e., that both programs are

230 K.C. Shashidhar et al.

equivalent. The ADDG is an abstraction of the computation that allows one to
do the verification for groups of elements at once. The verification is based on
a synchronous traversal of the ADDGs from output to input. Using the structure
of the ADDGs, the dependency mappings and the operators, it is verified whether
both programs perform the same computation.

4.1 Synchronized Traversal of Two ADDGs

Starting with a proof obligation about the equality of the outputs we try to
reduce it to proof obligations about equality of inputs that are trivially satisfied.

Definition 8 (Proof Obligation). Given two ADDGs, G1 and G2. A primi-
tive proof obligation is of the form (v1, v2, M∗

O,v1 , M
∗
O,v2), where v1 and v2 are

arrays from G1 and G2, respectively, and M∗
O,v1 and M∗

O,v2 are transitive depen-
dency mappings with identical domains, i.e., dom(M∗

O,v1) = dom(M∗
O,v2). A proof

obligation is a conjunction of primitive proof obligations.

Definition 9 (Truth of Proof Obligation). A proof obligation is true if each
of its primitive proof obligations is true. A primitive proof obligation (v1, v2, M∗

O,v1 ,
M∗

O,v2) is true if v1[M∗
O,v1(i)]= v2[M∗

O,v2(i)] for all i in dom(M∗
O,v1) for any exe-

cution of the program.

Operation 4 (Proof Initialization). A first requirement is that the data-flow
is correct, i.e., each read element is either input or has been written before.
A second requirement is that both programs output the same set of elements.
These requirements need to be checked before the actual verification by inspecting
definition and operand domains of statements.

For each output array Oi in both G1 and G2, let Wi be the total definition
domain of Oi (the union of the definition domains of the defining statements).
Let pi be the primitive proof obligation (Oi, Oi, M∗

Oi,Oi , M
∗
Oi,Oi) with dom(M∗

Oi,Oi) =
Wi. The initial proof obligation is the conjunction of all pi.

Obviously, the initial proof obligation implies equivalence of both programs.

Definition 10 (Terminal Proof Obligation). A primitive proof obligation
p = (v1, v2, M∗

O,v1 , M
∗
O,v2) is terminal iff v1 and v2 are input arrays.

A terminal proof obligation is true according to Def. 9 iff v1 = v2 and M∗
O,v1 =

M∗
O,v2 , i.e., the output-to-input mappings select the same elements in the same

input arrays.
The following reduction introduces primitive proof obligations where the

nodes are not arrays; such obligations are auxiliary obligations, which have not
been given a formal meaning. They are further reduced in subsequent reductions.

Operation 5 (Reduction of Primitive Proof Obligation). Let the primi-
tive proof obligation to be reduced be p = (v1, v2, M∗

O,v1 , M
∗
O,v2). The reduction gen-

erates a set (conjunction) of new primitive proof obligations that
replaces p.

Verification of Source Code Transformations 231

Case 1. v1 is an array node. For each successor node of v1 that is an array
node an array-array reduction is applied and for each successor node of v1
that is an operator node an array-operator reduction is applied.

- Array–array reduction. Suppose that the successor node is the array node
a. For every dependency mapping Mv1,a, M∗

O,a := M∗
O,v1 �� Mv1,a is com-

puted, and the proof obligation (a, v2, M∗
O,a, restrict(M

∗
O,v2)) is added, where

restrict(M∗
O,v2) is the projection of M∗

O,v2 on dom(M∗
O,a).

- Array–operator reduction. Suppose that the successor node is the operator
node f. The proof obligation (f, v2, M∗

O,v1 , M
∗
O,v2) is added.

Case 2. v2 is an array node: this case is similar to Case 1.
Case 3. v1 and v2 are both operator nodes v1 = v2 = �. If � is associative,

apply flattening on �-node on both sides. Let x1, . . . , xk′ and y1, . . . , yl′ be the
successor nodes of v1 and v2, with labels {1, . . . , k} and {1, . . . , l} respectively,
for edges between them (where k ≤ k′ and l ≤ l′). If � is commutative,
apply matching. Let xi be matched with ym(wi), where wi = label(v, xi). If
� is neither associative nor commutative, then m(wi) = wi. For each pair
(xi, ym(wi)), ∀i, 1 ≤ i ≤ k′, (xi, ym(wi), M1, M2) is added, such that, if xi

(resp. ym(wi)) is an operator node, then M1 = M∗
O,v1 (resp. M2 = M∗

O,v2),
else M1 := M∗

O,v1 �� Mv1,xi (resp. M2 := M∗
O,v2 �� Mv2,ym(wi)

).

The method is summarized in Algorithm 1. The actual implementation uses
the proof obligations and reasons over the program representation without ma-
nipulating its initial structure.

Algorithm 1: Outline of the equivalence checker.
Input: ADDGs G1 and G2 of the two functions.
Output: If they are equivalent, return True, else return False, with diagnostics.
P ←− ProofInitialization()
while P �= ∅ do

p ←− SelectObligation()
if TerminalObligation(p) then

if not TrueObligation(p) then
return (False, errorDiagnostics)

else
newObligations ←− ReduceObligation(p)
if newObligations = ∅ then

return (False, errorDiagnostics)
else

P ←− (P \ {p}) ∪ newObligations

return True

4.2 Handling Recurrences in the ADDG

Recurrences are detected when reduction leads to an array node that has already
been visited. Clearly, it is inefficient to step through each instance of a recurrence.

232 K.C. Shashidhar et al.

foo(int A[], int B[]){
 int k, c[256];
 c[0] = f2(A[0]);
 for(k=1; k<256; k++)
 c[k] = f2(f1(c[k-1]));
 B[0] = f1(c[255]);
}a

foo(int A[], int B[]){
 int k, r[256];
 r[0] = f1(f2(A[0]));
 for(k=1; k<256; k++)
 r[k] = f1(f2(r[k-1]));
 B[0] = r[255];
}

foo(int A[], int B[]){
 int k, tmp[256];
 tmp[0] = f2(A[0]);
 for(k=1; k<256; k++)
 tmp[k] = tmp[k-1];
 B[0] = f1(tmp[255]);
} b c

Fig. 5. Example program functions with recurrences

In most practical cases it can be avoided by computing the relation with the set of
values at the end of the coil of recurrence, called the across-recurrence mapping.
The key operation that enables such a computation is the positive transitive
closure of an integer tuple relation.

Definition 11 (Across-recurrence Mapping). Suppose we have a recur-
rence with v, w1, . . . , wk, v as the internal array nodes in the cycle that is en-
tered on a path from array u. Then the transitive dependency mapping for the
cycle from v back to v is given by, M∗

v,v := Mv,w1 �� Mw1,w2 �� · · · �� Mwk,v. The
across-recurrence mapping between u and v is the transitive dependency mapping
between u and v that is across the recurrence on v and it relates the elements of
u to the elements of v that are assigned outside the cycle on the same path. It is
defined as, MR

u,v = Mu,v �� M′
v,v, where M′

v,v is calculated as follows:
- Compute positive transitive closure of the recurrent mapping: m := (M∗

v,v)
+

- Get domain and range of the computed closure: d := domain(m); r := range(m)
- Get domain and range of the end-to-end mapping: d′ := (d − r); r′ := (r − d)
- Restrict the closure to the tuples in the end-to-end mapping:

M′
v,v := {x → y |x → y ∈ m ∧ x ∈ d′ ∧ y ∈ r′}.
For a tuple relation F , its positive transitive closure F+, is a tuple rela-

tion defined as x → z ∈ F+ ⇔ x → z ∈ F ∨ ∃y s.t. x → y ∈ F ∧ y → z ∈ F+. A
remark here is that exact transitive closure of a relation in closed form is not
computable in the general case. A sufficient condition [9] for its computation is
that, if the tuple of the relation is [�k1] → [�k2], then �k2 = �k1 + �c, where �c is a
vector of integer constants.

Depending on the nodes that appear in the cycle of recurrence, we distinguish
two possible cases of recurrences in an ADDG.

Recurrence without computation. In this case, no operator nodes are present in
the recurrence cycle. Fig. 5(a) shows an example program having such a recur-
rence without computation. During traversal (or during array node elimination),
if such a recurrence is encountered on a given path, the across-recurrence map-
ping is computed and this essentially eliminates the cycle on the path. This is
illustrated in the Fig. 6(a), where v is the array at the entry to the cycle and no
operator nodes exist on the path p.

Recurrence with computation. In this case, operator nodes are present in the
recurrence cycle. Fig. 5(b) and (c) show an example of equivalent program pair

Verification of Source Code Transformations 233

p

w1

wk

(a) Without computation

G

G

v

v

p

(b) With computation

G1 G2

v

f1

f2

q

v

f2

f1

f1

f2

r

f1

f2

v

f1

f2

G2

t

f2

f1

v

f2

f1

G2

f2

f1

u

u

Fig. 6. Two cases of recurrence

that have such a recurrence with computation. When confronted with this re-
currence, it is required that the across-recurrence mapping be computed on the
two corresponding ADDGs in a synchronized way. That is, we need to ensure that
the new dependency mappings computed account for the same computation. In
order to be able to do that we first have to get identical sequence of operators
on the recurrence cycles on both the ADDGs. This is achieved by unfolding.

Operation 6 (Unfolding). Suppose G1 and G2 are the ADDGs being traversed
in synchronization and we detect a recurrence on one of them, say, G1, with
(f1, . . . , fk, f1) as operator nodes on the cycle. The traversal ensures that the
corresponding nodes traversed on G2 are also (f1, . . . , fk, f1). If a recurrence
is also detected at this point on G2, we are done. Otherwise, we unfold G1, by
stepping through the recurrence along with G2 as many times as it takes to reveal
a cycle with identical sequence of operators on G2.

Fig. 6(b) shows G1 with cycle p and G2 with the basic possibilities for a
cycle, viz,, operators shifted by one (q), unfolded once completely (r) and both
unfolded once and shifted by one (t). In the example pair in Fig. 5(b) and (c),
the operator is shifted by one in the transformed program.

Once we have established matching cycles on the two sides by unfolding, we
have transitive dependency mappings for the two corresponding cycles, M1 :=
{[�a1] → [�a2] |C1} and M2 := {[�c1] → [�c2] |C2}, where C1 and C2 are affine
constraint expressions. Now, in order to compute the across-recurrence mapping
that ensures same computation on both sides we combine the two transitive
dependency mappings and use the combined mapping M as the dependency
mapping for the cycle, given by, M := {[�a1, �c1] → [�a2, �c2] | C1 ∧ C2}, where
the vector variables in the formulae describing M1 and M2 are made distinct
by renaming. This mapping is used for the computation of the mapping M ′

as described in the Def. 11. M ′ is then split into M ′
1 and M ′

2 along the same
dimensions that were combined earlier. These mappings are used in calculating
the across-recurrence mappings on the respective ADDGs.

234 K.C. Shashidhar et al.

5 Discussion

As we described, the method is a synchronized traversal on the two ADDGs.
Our method traverses corresponding paths only once and tables all established
equivalences. Therefore, if we assume that the number of maximal slices of
computation in the ADDGs is very small compared to their sizes, the complex-
ity of the traversal is linear in the size of the larger of the two ADDGs, i.e.,
O(max(|V1| + |E1|, |V2| + |E2|)). The operations on the integer domains and re-
lations, that our method calls, are based on checking the validity of Presburger
formulae, whose best known upper bound has triple-exponential complexity in
the length of the constraint expressions. However, the expressions are usually
small enough in practice and the operations are feasibly computed with a de-
pendence test like Omega Test [12]. Therefore, we can assume the time for these
operations to be bounded by a constant. Hence, the overall complexity is still in
the order of the traversal.

With a prototype implementation of the method, we have been able to check
equivalences of real-life program pairs efficiently. For programs with 1000 lines
of uncommented C code, with control and data-flow complexity comparable to
real-life signal processing algorithm kernels, the tool took less than 100 seconds
on a standard desktop [14].

Typically, as can be expected, the original and the transformed program pairs
seen in practice do not fall in the class that we have assumed for our method,
at least not in all respects. But as discussed in Sec. 2.1, some restrictions can
be relaxed by using code-preprocessing tools. They are used to pre-process the
initial and the transformed programs separately, before passing them to our
equivalence checker. For instance, using tools that are available to us in-house,
we are able to handle programs that are not in DSA and also not having static
control-flow (because of data-dependent if-conditions). Additionally, since ours
is an intra-procedural method, by inlining functions in both programs using a
function-inlining tool, we are able to verify correctness of inter-procedural code
transformations from the categories that we handle.

6 Related Work

Undecidability of the program equivalence problem implies that any effort start
with the definition of a decidable class of programs that is of interest. Hence, the
problem has been addressed by various researchers for different program classes
with different applications in mind. The problem we address is distinct by its
central requirement to represent and maintain the relationships among elements
of the arrays in the programs in closed form. Unrolling deeply nested loops
with large bounds is clearly infeasible for real-life signal processing programs.
To add to this, algebraic transformations will require an infeasible search for
normalization on a combination of the unrolled statements. Hence, we restrict
our discussion of related work to methods that do not propose loop unrolling.

Verification of Source Code Transformations 235

Translation validation [8, 11] and fractal symbolic analysis [10], both present
methods which show semantic equivalence of two versions of programs. In the
case of the former, the comparison is between the source and the target code.
These methods are distinct from ours in that they essentially try to heuristi-
cally infer a sequence of legal transformations that can relate the two programs.
Instead, we are able to directly check for equivalence of programs that are in
a suitable language class. Also, their methods do not handle algebraic transfor-
mations. The work most related to ours, because we address the same class of
programs, is the algorithm recognition method presented in [4]. Again, algebraic
transformations are not handled by them. Another distinction is that, all these
methods do not pay attention to debugging support which is very important in
the context of source code transformations.

7 Conclusions

We have presented a program equivalence checking method that enables verifica-
tion of global source code transformations. The transformations considered are
the ones that are widely reported in current practice relating to development of
data-intensive software for high-performance and low-power systems. The pro-
gram class handled is also the one that is often referred to in the literature
relevant to the application domain of the transformations. The method is fully
automatic and efficient. Hence, we believe that it provides a practical addition
to the toolbox used by programmers applying source code transformations.

References

1. J. R. Allen, K. Kennedy, C. Porterfield, and J. D. Warren. Conversion of control
dependence to data dependence. In POPL, pp. 177–189. ACM, 1983.

2. R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures. Morgan
Kaufmann Publishers, 2001.

3. U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Publishers, 1988.
4. D. Barthou, P. Feautrier, and X. Redon. On the equivalence of two systems of

affine recurrence equations. In 8th Euro-Par, pp. 309–313. Springer, 2002.
5. F. Catthoor, S. Wuytack, E. de Greef, F. Balasa, L. Nachtergaele, and A. Van-

decappelle. Custom Memory Management Methodology: Exploration of Memory
Organization for Embedded Multimedia System Design. Kluwer Publishers, 1998.

6. R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently
computing static single assignment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems, 13(4):451–490, 1991.

7. P. Feautrier. Array expansion. In ICS, pp 429–441. ACM, 1988.
8. B. Goldberg, L. Zuck, and C. Barrett. Into the loops: Practical issues in transla-

tion validation for optimizing compilers. In International Workshop on Compiler
Optimization Meets Compiler Verification, ENTCS. Elsevier, 2004.

9. W. Kelly, W. Pugh, E. Rosser, and T. Shpeisman. Transitive closure of infinite
graphs and its applications. Intl. Journ. of Parallel Prog., 24(6):579–598, 1996.

236 K.C. Shashidhar et al.

10. N. Mateev, V. Menon, and K. Pingali. Fractal symbolic analysis. ACM Transac-
tions on Programming Languages and Systems, 25(6):776–813, 2003.

11. G. C. Necula. Translation validation for an optimizing compiler. In SIGPLAN
Programming Language Design and Implementation, pp. 83–95. ACM, 2000.

12. W. Pugh. A practical algorithm for exact array dependence analysis. Communi-
cations of the ACM, 35(8):102–114, 1992.

13. K. C. Shashidhar, M. Bruynooghe, F. Catthoor, and G. Janssens. Functional
equivalence checking for verification of algebraic transformations on array-intensive
source code. In Design, Automation and Test in Europe. IEEE, 2005.

14. K. C. Shashidhar, M. Bruynooghe, F. Catthoor, and G. Janssens. Automatic Ver-
ification of Source Code Transformations on Array-Intensive Programs: Demon-
stration with Real-life Examples. Tech. Rep. CW 401, Dept. of Computer Science,
Katholieke Universiteit Leuven, Belgium, 2005.

15. R. A. van Engelen and K. A. Gallivan. An efficient algorithm for pointer-to-array
access conversion for compiling and optimizing DSP applications. In International
Workshop on Innovative Architectures for Future Generation High-Performance
Processors and Systems, pp. 80–89. IEEE, 2001.

16. P. Vanbroekhoven, G. Janssens, M. Bruynooghe, H. Corporaal, and F. Catthoor.
A step towards a scalable dynamic single assignment conversion. Tech. Rep. CW
360, Dept. of Computer Science, Katholieke Universiteit Leuven, Belgium, 2003.

17. M. Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley
Publishing Company, 1996.

Hob: A Tool for Verifying Data Structure Consistency

Patrick Lam, Viktor Kuncak, and Martin Rinard

Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology

{plam, vkuncak, rinard}@csail.mit.edu

Abstract. This tool demonstration presents Hob, a system for verifying data struc-
ture consistency for programs written in a general-purpose programming language.
Our tool enables the focused application of multiple communicating static anal-
yses to different modules in the same program. Using our tool throughout the
program development process, we have successfully identified several bugs in
both specifications and implementations of programs.

1 Introduction

Hob is a static analysis framework that verifies that program implementations satisfy
their specifications. Using Hob, developers can apply multiple pluggable analyses to
different parts of a program, applying each analysis to the modules for which it is most
appropriate. Each Hob analysis plugin verifies that program modules 1) properly imple-
ment their specifications; and 2) respect the preconditions of the procedures that they
call. Program modules often encapsulate data structures, and many data structures main-
tain a dynamically changing set of objects as their primary purpose; we have therefore
found that set specifications allow developers to express crucial data structure interface
properties, including in particular, the preconditions needed by typical data structure
operations to successfully execute. Hob’s common set specification language therefore
enables different analyses to effectively communicate with each other.

The Hob project addresses the program verification problem [1, 5]. Our tool sup-
ports assume/guarantee reasoning and data refinement. The techniques embodied in the
Hob tool are particularly suited for expressing and verifying data structure consistency
properties: Hob allows static analysis plugins to verify that data structure preconditions
hold upon entry to a data structure, that data structure operations preserve data structure
invariants, and that data structure operations conform to their specifications.

Our technique is designed to support programs that encapsulate the implementations
of complex data structures in instantiatable leaf modules, with these modules analyzed
once by very precise, potentially expensive analyses (such as shape analyses or even
analyses that generate verification conditions that must be manually discharged using a
theorem prover or proof checker). The rest of the program uses these modules but does
not directly manipulate the encapsulated data structures. These modules can then be
analyzed by more efficient analyses that operate primarily at the level of the common set
abstraction. Given the scalability issues associated with precise data structure verification
techniques, this kind of approach is the only way to make these analyses viable in practice.

R. Bodik (Ed.): CC 2005, LNCS 3443, pp. 237–241, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

238 P. Lam, V. Kuncak, and M. Rinard

We have implemented our analysis framework and populated this framework with
three analysis plugins: 1) the flags plugin, which is designed to analyze modules that use
a flag field to indicate the typestate of the objects that they manipulate [3]; 2) the PALE
plugin, which implements a shape analysis for linked data structures (we integrated
the Pointer Analysis Logic Engine analysis tool [4] into our system); and 3) the theo-
rem proving plugin, which generates verification conditions designed to be discharged
manually using the Isabelle interactive theorem prover [6]. We have used our analysis
framework to analyze several programs; our experience shows that it can effectively 1)
verify the consistency of data structures encapsulated within a single module and 2)
combine analysis results from different analysis plugins to verify properties involving
objects shared by multiple modules analyzed by different analyses. We have observed
that our approach reduces the program annotation effort, improves the performance of
the resulting analysis, and extends the range of programs to which each component
analysis is applicable in isolation.

2 The Hob Approach

We next describe how developers write implementations and specifications for Hob. A
program to be analyzed contains a number of modules. Each module is analyzed by
an analysis plugin; plugins ensure that the module’s implementation conforms to its
specification and that the module satisfies all preconditions for the calls that it makes.

2.1 How Analysis Plugins Work

The basic task of an analysis plugin is to certify that the implementation for a module
conforms to its specification and that the module meets all preconditions for calls that it
makes. Implementation sections for modules in our system are written in a standard Java-
like memory-safe imperative language supporting arrays and dynamic object allocation.
Module specification sections give preconditions and postconditions for procedures in
the boolean algebra of sets; these conditions are augmented with a modifies clause,
which states the frame condition for the procedure. Specification modules may also
name global boolean predicates to be tracked by the analysis. Finally, since modules may
implement their specifications in a variety of ways, the abstraction section of a module
describes the relationship between the module’s implementation and its specification;
each analysis plugin has a specialized syntax for abstraction settings, suitable for the
type of properties checked by that plugin. An abstraction section may additionally state
representation invariants applicable to the data structure implemented in that module.

In general, the Hob system analyzes individual modules as follows. For each module,
Hob examines the implementation, specification, and abstraction sections of that module,
as well as the specifications of all procedures that the module invokes. Hob first uses
the abstraction function (from the abstraction section) to translate the requires and
ensures clauses into the internal representation of the specialized analysis that will
analyze the module (as specified in the abstraction section). Hob then conjoins the
representation invariant to the translated requires and ensures clauses. Finally,

Hob: A Tool for Verifying Data Structure Consistency 239

Hob invokes the specified analysis plugin to verify that each procedure conforms to its
translated requires and ensures clauses.

2.2 Verifying Cross-Module Properties and Simplifying Specifications

Modules may belong to analysis scopes [2].A scope encloses a number of program mod-
ules and designates a subset of these modules as exported modules; it also states scope
invariants that always hold outside the scope. Scopes serve two purposes: they enable the
specification and verification of cross-module invariants by identifying the subset of a
program in which an invariant is expected to hold, and they combat annotation aggrega-
tion by hiding irrelevant sets from callers. Scopes are key to our system’s verification of
invariants containing sets from different modules: by designating the exported modules
as external access points, and because scope invariants are preserved outside a scope, it
is sufficient to check the scope invariants upon exit from a scope, therefore reducing the
annotation and analysis burden which would otherwise be associated with scope invari-
ants. Scopes also shield callers from irrelevant detail: only sets from exported modules
may occur as free variables in specifications for modules in different scopes. This serves
to bound the detail required in procedure specifications: the specification of procedure
p belonging to scope C need only contain the effects of procedures on sets in C and sets
belonging to exported modules outside C.

Hob specification sections may also use defaults to simplify procedure preconditions
and postconditions. A default is a clause that is automatically conjoined to procedure
preconditions and postconditions across a specified program pointcut, unless explicitly
suspended. In our example applications, we use defaults for ensuring that initialization
predicates hold everywhere in a program except in the initial state; these defaults free
the developer from the burden of manually conjoining the initialization predicate to a
substantial portion of the program’s specifications.

3 Hob in Practice

We have coded up several benchmark programs, using our system during the devel-
opment of the programs. Our benchmarks include the water scientific computation
benchmark, a minesweeper game, and programs with computational patterns from
operating-system schedulers, air-traffic control, and program transformation passes.
These benchmarks use a variety of data structures, and we have therefore implemented
and verified sets, set iterators, queues, stacks, and priority queues. Our implementations
range from singly-linked and doubly-linked lists and tree insertion (all verified using
the PALE plugin) through array data structures (verified using the theorem proving
plugin with the Isabelle theorem prover used to discharge verification conditions); our
largest benchmark (water) contains approximately 2000 lines of implementation and
500 lines of specification. The Hob project homepage is

http://cag.csail.mit.edu/˜plam/hob/

240 P. Lam, V. Kuncak, and M. Rinard

This homepage links to the O’Caml source tarball and publicly readable Subversion
repository, further explains our example applications, and includes past presentations
about Hob. Hob is distributed under the GNU General Public License.

The Hob infrastructure contains several general components that perform tasks re-
quired by all analyses. The implementation language component can parse and type-
check implementation sections. It produces an abstract syntax tree and methods that
allow analyses to conveniently access this representation. The specification component
can parse and type check specification sections and provides access to the resulting ab-
stract syntax tree. Large parts of abstraction sections are expressed in a language that
is specific to each analysis. The abstraction section component parses those parts of the
abstraction section syntax that are common to all analyses and uses uninterpreted strings
to pass along the analysis-specific parts. Using these components, it is fairly simple to
create new analysis plugins and apply them to analyze more types of data structures. Our
implementation consists of approximately 10,000 lines of O’Caml code, to which the
flag plugin contributes 2000 lines, the PALE plugin another 700 lines, and the theorem
proving plugin 1000 lines; the rest of the code is shared analysis infrastructure.

We next present an example of a client code that Hob successfully verifies.

impl module UseList {
format Node {}
proc use() {

Node n1;
Node n2;
n1 = new Node();
n2 = new Node();
List.add(n1);
List.add(n2);
List.remove(n2);
List.remove(n1); } }

spec module UseList {
proc use1()

requires List.Content = {}
modifies List.Content
calls List
ensures List.Content’ = {}; }

abst module UseList {
use plugin "flags"; }

This UseList example is analyzed by the flags plugin; it uses a List module, which
is verified by the PALE plugin. Note that the UseList module does not define any sets
itself; it relies on the List module to store its Node objects in a linked list. The flags
plugin verifies the use procedure by propagating boolean formulas; upon procedure
entry, the Content set from list is assumed to be empty (this condition is verified in
all callers of use.) After the pair of List.add operations completes, the Content
set is known to contain the elements {n1, n2} (by incorporating the postcondition of
List.add). Finally, the pair of List.remove operations ensures that Content is
empty at the end of the procedure, ensuring the stated procedure postcondition.

4 Conclusion

The program analysis community has produced many precise analyses that are capable
of extracting or verifying quite sophisticated data structure properties. Issues associated
with using these analyses include scalability limitations and the diversity of important
data structure properties, some of which will inevitably elude any single analysis.

The Hob tool can apply a full range of analyses to programs composed of multiple
modules. The key elements of the Hob approach include modules that encapsulate object
fields and data structure implementations, specifications based on membership in abstract

Hob: A Tool for Verifying Data Structure Consistency 241

sets, and invariants that use these sets to express (and enable the verification of) properties
that involve multiple data structures in multiple modules analyzed by different analyses.
We anticipate that our techniques will enable the productive application of a variety
of precise analyses to verify important data structure consistency properties and check
important typestate properties in programs built out of multiple modules.

References

1. C. A. R. Hoare. The verifying compiler: still a Grand Challenge for computing research.
ETAPS Invited Lecture, April 2003.

2. P. Lam, V. Kuncak, and M. Rinard. Crosscutting techniques in program specification and
analysis. In P. Tarr, editor, Proceedings of the Fourth Conference on Aspect-Oriented Software
Development, 2005.

3. P. Lam, V. Kuncak, and M. Rinard. Generalized typestate checking for data structure consis-
tency. In 6th International Conference on Verification, Model Checking and Abstract Interpre-
tation, 2005.

4. A. Møller and M. I. Schwartzbach. The Pointer Assertion Logic Engine. In Proc. PLDI, 2001.
5. G. Nelson. Techniques for program verification. Technical report, XEROX Palo Alto Research

Center, 1981.
6. K. Zee, P. Lam, V. Kuncak, and M. Rinard. Combining theorem proving with static analysis for

data structure consistency. In International Workshop on Software Verification and Validation
(SVV 2004), Seattle, November 2004.

Jazz: A Tool for Demand-Driven
Structural Testing

Jonathan Misurda1, Jim Clause1, Juliya Reed1, Bruce R. Childers1,
and Mary Lou Soffa2

1 University of Pittsburgh, Pittsburgh PA 15260, USA
{jmisurda, clausej, juliya, childers}@cs.pitt.edu
2 University of Virginia, Charlottesville VA 22904, USA

soffa@cs.virginia.edu

Abstract. Software testing to produce reliable and robust software has
become vitally important. Testing is a process by which quality can be
assured through the collection of information about software. While test-
ing can improve software quality, current tools typically are inflexible
and have high overheads, making it a challenge to test large projects.
We describe a new scalable and flexible tool, called Jazz, that uses a
demand-driven structural testing approach. Jazz has a low overhead of
only 17.6% for branch testing.

1 Introduction

In the last several years, the importance of producing high quality and robust
software has become paramount. Testing is an important process to support
quality assurance by gathering information about the software being developed
or modified. It is, in general, extremely labor and resource intensive, accounting
for 50-60% of the total cost of software development [1]. The increased emphasis
on software quality and robustness mandates improved testing methodologies.

To test software, a number of techniques can be applied. One class of tech-
niques is structural testing, which checks that a given coverage criterion is sat-
isfied. For example, branch testing checks that a certain percentage of branches
are executed. Other structural tests include def-use testing in which pairs of
variable definitions and uses are checked for coverage and node testing in which
nodes in a program’s control flow graph are checked.

Unfortunately, structural testing is often hindered by the lack of scalable
and flexible tools. Current tools are not scalable in terms of both time and
memory, limiting the number and scope of the tests that can be applied to large
programs. These tools often modify the software binary to insert instrumentation
for testing. In this case, the tested version of the application is not the same
version that is shipped to customers and errors may remain. Testing tools are
usually inflexible and only implement certain types of testing. For example, many
tools implement branch testing, but do not implement node or def-use testing.

In this paper, we describe a new tool for structural testing, called Jazz, that
addresses these problems. Jazz uses a novel demand-driven technique to apply

R. Bodik (Ed.): CC 2005, LNCS 3443, pp. 242–245, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Jazz: A Tool for Demand-Driven Structural Testing 243

different testing strategies in an efficient and automatic way. Our method relies
on test plans that describe what test instrumentation should be inserted and
removed on-demand in executing code to carry out testing strategies. A test
plan is a “recipe” that describes how and where a test should be performed. The
approach is path specific and uses execution paths of an application to drive the
instrumentation and testing. Once a test site is covered, the instrumentation is
dynamically removed to avoid performance overhead.

Jazz uses a specification language to describe what to test. From the speci-
fication, a test plan can be automatically generated by a test planner. The test
specification describes what tests to apply and under what conditions to apply
them. The specification language can be described with a GUI or through a
textual representation. Jazz implements a GUI, a test planner, and a dynamic
instrumenter for demand-driven testing. Jazz is incorporated as a plug-in in
Eclipse and the IBM Jikes Java Research Virtual Machine. It supports branch,
node and def-use testing over code regions in a program.

2 Testing Java Programs

To carry out a test with Jazz, a user constructs a test specification with a GUI.
Next, the graphical specification is converted into a textual form in a language
called testspec. A testspec specification includes the relevant code segments to
be tested and the actions needed in the testing process. Once the user is ready
to test the program, the specification is passed to a test planner. This step
translates the specification into a test plan. In the next step, the test plan is
used by the dynamic instrumenter to instrument the program and determine
coverage. Finally, the test results are displayed by the GUI.

2.1 Test Specification

In testing a software application, a developer may wish to apply different tests
to various code regions. The tests are also often applied with different coverage
criteria. The Jazz GUI can specify the tests to apply, where to apply them, and
under what conditions. A coverage criterion can also be specified for each region.
As shown in Figure 1, the GUI lets an user create and apply a test specification.
To illustrate user interaction with the tool, the figure shows several steps. The
figure shows that the user has selected several source lines in the Eclipse source
editor (step 1). The selected lines are used to build a test specification. In this
case, lines 343-356 in the file Compress.java have been selected as a test region
for branch testing. When a region is selected, a test specification is created and
displayed by the GUI. Test specifications are shown in a “specification viewer”
window (step 2). A specification may be changed or deleted from this window.

To run the current tests, the user clicks a button on the toolbar (step 3).
Jazz automatically invokes the test planner, Jikes and the dynamic instrumenter.
When the program completes, the test results are displayed as a bar graph in
the specification viewer (step 4). The GUI also highlights covered and uncovered
source lines in the Eclipse editor window.

244 J. Misurda et al.

Fig. 1. Branch coverage GUI for Jazz

2.2 Test Planner

Using the test specification, the test planner decides how to test Java methods.
The test planner is invoked every time a method is loaded by Jikes’ Just-in-Time
compiler. The planner checks whether there is a test specification for any portion
of the method. If a specification exists, then the planner generates a test plan for
the relevant code in the method. Thus, only methods that are actually loaded
and executed are tested.

The main function of the test planner is to produce a test plan that determines
where and how to instrument a method to do the test actions. The test plan
describes how best to dynamically instrument a method to determine coverage.
To generate a test plan, the planner identifies the locations where to instrument
a test region, when to insert and remove instrumentation at each location, and
what to do at each location. Typically, instrumentation locations correspond
to basic blocks where coverage information is collected. For example, in def-use
testing, there is instrumentation at each variable definition and all uses reachable
from a definition.

Instrumentation is inserted and removed on-demand as the program exe-
cutes. For example, in node testing, when a particular basic block is executed,
instrumentation is inserted in successor blocks. Once a block is hit, its instru-
mentation can be removed because the block is covered. In branch and def-use
testing, the planner ensures that instrumentation remains until all edges or all
uses of a definition are covered.

Finally, the planner determines what actions to perform at each location.
The actions are encoded in a “payload” that is executed at each location. In
node testing, the payload updates coverage information, inserts instrumentation
at successor blocks, and removes the instrumentation in the current block. The

Jazz: A Tool for Demand-Driven Structural Testing 245

payloads for branch and def-use testing are similar, except they check whether
all edges or def-use pairs are covered.

2.3 Dynamic Instrumenter

With the test plan from the planner, the dynamic instrumenter provides the func-
tionality to insert and remove instrumentation at run-time. This interface is tar-
geted by the test planner. Dynamic instrumentation (that can be removed/
inserted at run-time) is implemented with fast breakpoints[2]. A fast breakpoint
replaces an instruction in the targetmachine codegeneratedwitha jumptoabreak-
point handler that invokes the test instrumentation payload from the test planner.

3 Experimental Results

We investigated Jazz’s performance and compared it to a traditional approach
based on static instrumentation. To ensure a fair comparison, we implemented
a separate tool that uses static instrumentation in our framework. This tool
instruments a method’s binary code before run time and does not remove in-
strumentation. It is similar to IBM Rational PurifyPlus and JCover. Jazz and
the static tool differ only in on-demand versus static instrumentation. In the
experiments, all loaded methods were covered and the benchmarks were run on
a Linux 2.4 GHz Pentium IV with 1 GB RAM.

We measured run-time when the benchmarks were run directly in Jikes with-
out testing, with Jazz and with the static tool. For brevity, we summarize the
run-times only for branch testing. When run without testing, the benchmarks
take 13.8-44.7 seconds. With the static branch testing tool, run-time is increased
dramatically. It varies from 20.7-96.1 seconds and incurs an overhead of 11.7-
241% (average 89.9%) over native execution. Jazz has much lower run-times than
the static tool. Its run-time is 20.6-43.9 seconds and the performance overhead
is only 0.3% to 7.8% (average 17.6%). Jazz has less overhead than the static tool
because instrumentation is inserted and removed on-demand.

4 Summary

This paper described a new tool, called Jazz, for software testing of Java pro-
grams that relies on a novel scheme for dynamically inserting and removing
instrumentation on-demand. The performance results with Jazz are very en-
couraging: The average overhead for branch testing with Jazz was only 17.6%.

References

1. W. Perry: Effective Methods for Software Testing. John Wiley and Sons, Inc., New
York, 1996.

2. P. Kessler: Fast breakpoints: Design and implementation. ACM SIGPLAN Confer-
ence on Programming Languages, Design and Implementation, 1990.

Tiger – An Interpreter Generation Tool

Kevin Casey1, David Gregg1, and M. Anton Ertl2

1 Department of Computer Science, Trinity College, Dublin 2, Ireland
{Kevin.Casey, David.Gregg}@cs.tcd.ie

2 Institut für Computersprachen, TU Wien, A-1040 Wien, Austria
anton@complang.tuwien.ac.at

Abstract. Tiger (Trinity Interpreter GEneratoR) is a new interpreter
generator tool along the lines of vmgen, but with significant improvements
in flexibility and feedback. Support for important new features such as
instruction specialisation, replication and improved analysis of code at
runtime are presented. A simple ‘C’ virtual machine imported into Tiger
is used for demonstration purposes. Various realistic benchmarks (such
as sorting and Davis-Putnam backtracking algorithms) are used to show
the utility of these new features in Tiger.

1 Introduction

Tiger is a new interpreter generator tool along the lines of vmgen[1], but with
significant improvements in flexibility and feedback. Some of these features which
are to be demonstrated are outlined briefly in the remainder of this document.

2 Input Language

A typical opcode defined in Tiger is depicted as follows:

ADD SP(int a, int b - int c)
IP(- next);
c=a+b;

The first token is the opcode name, then followed either by the stack behaviour
(SP) or the instruction stream behaviour (IP). The stack behaviour specifies
what types and instances needs to be popped off the stack before the core of
the opcode is to be executed and what is to be pushed onto the stack after the
core of the instruction has completed. The ‘-’ symbol represents the separator
between what is to be popped and what is to be pushed in the stack descriptor.
The instruction stream behaviour allows us to specify what operands are to be
loaded from the instruction stream (none in this case). The ‘-’ symbol represents
the end of the current instruction. The keyword next indicates that another
instruction will follow in the instruction stream. Tiger uses the stack and in-
struction stream descriptors supplied and the code core specified to generate ‘C’
code for the instruction.

R. Bodik (Ed.): CC 2005, LNCS 3443, pp. 246–249, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Tiger – An Interpreter Generation Tool 247

3 Instruction Specialisation

Often in a compiler we find that certain operands occur in combination with
particular opcodes quite frequently. For example, if we find that a large number
of PUSHINT 0 instructions occur in our interpreter, we might consider replacing it
with a single instruction PUSHINT 0. The advantage of this is that the PUSHINT 0
instruction no longer requires an extra read from the instruction stream (to
retrieve the operand), since the operand is ’hardwired’ into the instruction. For
example:

+SPECIAL PUSHINT 0;

generates code for the PUSHINT instruction seen above, but where the operand
a is specialised to 0 (#defined to 0). This eliminates the instruction stream
read. Tiger provides support for a translation-time specialisation of opcodes
in the form of a variable argument vm specialise macro. For example, when
translating an opcode with a single operand:

OPCODE’=vm_specialise(OPCODE,OPERAND);

This macro will attempt to find a specialised version of OPCODE,OPERAND and will
return the original opcode if no specialisation has been found, or the specialised
version if one has been found. For unspecialised opcodes, the application of the
macro has no computational cost.

4 Instruction Replication

One strategy to improve branch prediction accuracy in interpreters is to create
copies of commonly occurring opcodes. The idea here is that using multiple
copies of an opcode increases the number of entries in the Branch Target Buffer
(BTB) due to the extra dispatches in the code. Tiger supports the creation of
replications in the following manner.

+ALIAS OPCODE COUNT;

This creates COUNT copies (in addition to the original) of OPCODE. Tiger also
creates a macro vm alias and supporting data structures to facilitate the inclu-
sion of these aliases into the instruction stream (replacing the original). During
the code-translation phase this macro can be used to replace original versions of
opcodes with their copies in the following way:

OPCODE’=vm_alias(OPCODE)

If the opcode is not replicated at all, then OPCODE’=OPCODE (and there is no com-
putational cost associated with the macro). For replicated instructions however,
each successive call to vm alias yields the next copy of the opcode in a cyclical
order. Tiger maintains an array of counters and replication counts to support
this approach.

248 K. Casey, D. Gregg, and M.A. Ertl

5 Superinstructions

The generation of compound instructions, or superinstructions is quite straight-
forward in Tiger. If one finds that the sequence of instructions PUSHINT ADD oc-
cur quite frequently, one could define a superinstruction PUSHINT ADD as follows:

PUSHINT_ADD = PUSHINT ADD;

Superinstruction parsing routines for greedy parsing and optimal parsing are
also supplied with Tiger. The parse tables for all superinstructions are combined
into a large compressed Deterministic Finite-state Automata which is accessed via
the supplied routines.The actual implementation of theDFA is as a number of over-
lapping hashtables, one hashtable for each set of transitions from a particular state.

6 Specialised Superinstructions

Tiger also allows the creation of specialised superinstructions. In the example
above, we came across the PUSHINT ADD superinstruction. If we encountered
the instruction sequence PUSHINT 1 ADD sequence, we could decide to create a
specialised superinstruction such as:

PUSHINT1_ADD = PUSHINT 1 ADD;

Tiger will then generate the superinstruction and modify the parsing tables so
that this instruction will be added automatically when applicable.

7 Other Optimizations

Early Loading: On some architectures it is advantageous to retrieve the address
of the next instruction as early in the current instruction as possible. In opcodes
where the keyword next appears in the instruction stream specifier, Tiger will
automatically retrieve the address of the next instruction from that slot in the
instruction stream. This will happen at the beginning of the current instruction.
This optimisation can be turned on or off easily, making a determination of its
utility relatively straightforward.

Deferred Reading/Writing allows the reading or writing of an item in the
stack/instruction stream descriptors to be deferred until the programmer wishes
it to happen. This mechanism is accomplished by the use of the +DEFER directive
which is used in combination with automatically generated macros. For example,
a +DEFER might be useful in a conditional branch where we do not want to
load the target address from the instruction stream unless we have tested the
condition and are sure the branch is to take place.

8 Diagnostics

Histogram: Turning on the histogram option creates a logfile containing a
frequencies of all opcode calls. A tool is provided that interprets this data and

Tiger – An Interpreter Generation Tool 249

generates a Scaled Vector Graphic (SVG) file containing a histogram that can
be viewed in a web-browser.

Indirect Branch Data: Virtual machine interpreters execute an indirect branch
for each VM instruction executed. The prediction accuracy of these branches has
a huge impact on running time. Tiger generates data and graphs which allow us
to visualize the order in which instructions are executed, and estimate the indi-
rect branch prediction accuracies. Figure 1 depicts a sample output of this tool,
showing the transitions between VM instructions, along with their frequency
and an estimate of their indirect branch misprediction rate.

NOT

11,520,795 0%

JFALSE

64,735,992 77%

11,520,795

PUSHAL

102,705,447 37%

23,827,251

POP

41,926,355 21%

19,394,970

ASSIGN

15,501,107 0%

15,501,107

ADD

26,477,364 58%

DEREF

98,972,729 84%

18,765,720 80,204,612

PUSHAG

18,794,450 0%

11,519,556

11,534,478

PUSHAC

60,960,609 89%

49,317,192

LE

11,549,474 51%

11,549,474

MUL

11,521,069 66%

11,520,520

LT

22,605,571 76%

18,735,297

DUP

30,915,493 74%

11,520,795

19,394,698

11,519,556

37,065,745

18,794,449

Fig. 1. Automatically generated instruction-transition graph

Reference

1. M. A. Ertl, D. Gregg, A. Krall, and B. Paysan. vmgen — A generator of efficient
virtual machine interpreters. Software—Practice and Experience, 32(3):265–294,
2002.

CodeSurfer/x86—A Platform for Analyzing
x86 Executables�

Gogul Balakrishnan1, Radu Gruian2, Thomas Reps1,2,
and Tim Teitelbaum2

1 Comp. Sci. Dept., University of Wisconsin
{bgogul, reps}@cs.wisc.edu

2 GrammaTech, Inc.
{radu, tt}@grammatech.com

Abstract. CodeSurfer/x86 is a prototype system for analyzing x86 ex-
ecutables. It uses a static-analysis algorithm called value-set analysis
(VSA) to recover intermediate representations that are similar to those
that a compiler creates for a program written in a high-level language.
A major challenge in building an analysis tool for executables is in pro-
viding useful information about operations involving memory. This is
difficult when symbol-table and debugging information is absent or un-
trusted. CodeSurfer/x86 overcomes these challenges to provide an ana-
lyst with a powerful and flexible platform for investigating the proper-
ties and behaviors of potentially malicious code (such as COTS compo-
nents, plugins, mobile code, worms, Trojans, and virus-infected code) us-
ing (i) CodeSurfer/x86’s GUI, (ii) CodeSurfer/x86’s scripting language,
which provides access to all of the intermediate representations that
CodeSurfer/x86 builds for the executable, and (iii) GrammaTech’s Path
Inspector, which is a tool that uses a sophisticated pattern-matching
engine to answer questions about the flow of execution in a program.

1 Introduction

In recent years, there has been a growing need for tools that analyze executables.
Computer-security issues provide one motivation: one would like to ensure that
third-party applications do not perform malicious operations, and in this context
it is important for analysts to be able to decipher the behavior of Trojans, worms,
and virus-infected code. Static analysis provides techniques that can help with
such problems; however, there are several obstacles that must be overcome:

– For potentially malicious programs, symbol-table and debugging information
is either entirely absent, or cannot be relied upon if present.

� Supported by Air Force (AFRL/Rome) SBIR contracts F30602-01-{C-0112, C-
0051}, ONR contracts N00014-{02-C-0188, 03-C-0502, 01-1-0708, 01-1-0796}, and
NSF grant CCR-9986308.

R. Bodik (Ed.): CC 2005, LNCS 3443, pp. 250–254, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

CodeSurfer/x86—A Platform for Analyzing x86 Executables 251

– Instructions that perform memory operations use explicit memory addresses
and indirect addressing, which complicates the task of understanding the
overall behavior of the code.

Several others [3, 2, 10, 5, 12] have proposed algorithms for statically analyzing
executables. However, existing tools assume the presence of symbol-table and/or
debugging information, or ignore instructions with memory operands altogether,
or assume that an instruction with memory operands can write-to/read-from any
part of memory. None of these solutions are satisfactory in terms of understand-
ing how an x86 executable works. Recently, Balakrishnan and Reps developed
a static-analysis algorithm, called value-set analysis (VSA), to recover informa-
tion about the contents of memory locations and how they are manipulated by
an executable [1]. By combining VSA with facilities provided by the IDAPro
and CodeSurfer toolkits, we have created CodeSurfer/x86, a prototype tool for
browsing, inspecting, and analyzing x86 executables. From an x86 executable,
CodeSurfer/x86 recovers an intermediate representation that is similar to what
would be created by a compiler for a program written in a high-level language.
In this document, we emphasize the facilities of CodeSurfer/x86 that provide
an analyst with a powerful and flexible platform for investigating the properties
and behaviors of an x86 executable.

Because CodeSurfer/x86 works on the actual executable code that is run
on the machine, it automatically takes into account platform-specific aspects of
the code, such as the positions (i.e., offsets) of variables in the run-time stack’s
activation records. This is a key ability, because many security exploits depend
on platform-specific features, such as the structure of activation records. In this
sense, CodeSurfer/x86 is a “higher fidelity” tool than most tools that analyze
source code.

2 CodeSurfer/x86

CodeSurfer/x86 is the outcome of a joint project between the Univ. of Wisconsin
and GrammaTech, Inc. CodeSurfer/x86 makes use of both IDAPro [9], a disas-
sembly toolkit, and GrammaTech’s CodeSurfer system [4], a toolkit for building
program-analysis and inspection tools. Fig. 1 shows the various components of
CodeSurfer/x86. This section sketches how these components are combined in
CodeSurfer/x86.

An x86 executable is first disassembled using IDAPro. In addition to the
disassembly listing and control-flow graphs, IDAPro also provides access to the
following information: (1) procedure boundaries, (2) calls to library functions
(identified using an algorithm called the Fast Library Identification and Recog-
nition Technology (FLIRT) [7]), and (3) statically known memory addresses
and offsets.

IDAPro provides access to its internal resources via an API that allows users
to create plug-ins to be executed by IDAPro. We created a plug-in to IDAPro,
called the Connector, that creates data structures to represent the informa-
tion obtained from IDAPro. The IDAPro/Connector combination is also able to

252 G. Balakrishnan et al.

create the same data structures for dynamically linked libraries, and to link them
into the data structures that represent the program itself. This infrastructure
permits whole-program analysis to be carried out—including analysis of the code
for all library functions that are called.

Value added beyond IDA Pro

CodeSurfer

Build SDG

Browse

Binary

Connector
Value-set
Analysis

Initial estimate of
• code vs. data
• procedures
• call sites
• malloc sites

IDA Pro

Build
CFGs

Parse
Binary

• fleshed-out CFGs
• fleshed-out call graph
• used, killed, may-killed

variables for CFG nodes
• points-to sets
• reports of violations

Binary
Rewriter

Decompiler

Security
Analyzers

User Scripts

Fig. 1. Organization of CodeSurfer/x86

Based on the data struc-
tures in the Connector, we
implemented a static analy-
sis algorithm called value-set
analysis (VSA) [1]. VSA does
not assume the presence of
symbol-table and debugging
information.3 Hence, as a first
step, a set of data objects
called a-locs (for “abstract lo-
cations”) is determined based
on the static memory ad-
dresses and offsets provided by
IDAPro. VSA is a combined
numeric and pointer-analysis
algorithm that determines an
over-approximation of the set of numeric values or addresses that each a-loc
holds at each program point. The set of addresses and numeric values is re-
ferred to as a value-set. A key feature of VSA is that it tracks integer-valued and
address-valued quantities simultaneously. This is crucial for analyzing executa-
bles because numeric values and addresses are indistinguishable in an executable.

Note that IDAPro does not identify the targets of all indirect jumps and
indirect calls, and therefore the call graph and control-flow graphs that it con-
structs are not complete. However, the information computed during VSA can
be used to augment the call graph and control-flow graphs on-the-fly to account
for indirect jumps and indirect calls. In fact, the relationship between VSA and
the preliminary IRs created by IDAPro is similar to the relationship between a
points-to-analysis algorithm in a C compiler and the preliminary IRs created by
the C compiler’s front end. In both cases, the preliminary IRs are fleshed out
during the course of analysis.

Once VSA completes, the value-sets for the a-locs at each program point
are used to determine each point’s sets of used, killed, and possibly-killed a-
locs; these are emitted in a format that is suitable for input to CodeSurfer.
CodeSurfer takes in this information and builds a collection of IRs, consisting
of abstract-syntax trees, control-flow graphs (CFGs), a call graph, and a system
dependence graph (SDG). An SDG consists of a set of program dependence
graphs (PDGs), one for each procedure in the program. A vertex in a PDG
corresponds to a construct in the program, such as a statement or instruction,

3 Although VSA does not need debugging/symbol-table information, in principle, it
would be possible to extend VSA to use such information.

CodeSurfer/x86—A Platform for Analyzing x86 Executables 253

a call to a procedure, an actual parameter of a call, or a formal parameter of a
procedure. The edges correspond to data and control dependences between the
vertices [6]. The PDGs are connected together with interprocedural edges that
represent control dependences between procedure calls and entries, and data
dependences between actual parameters and formal parameters/return values.

Dependence graphs are invaluable for many applications, because they high-
light chains of dependent instructions that may be widely scattered through
the program. For example, given a instruction, it is often useful to know its
data-dependence predecessors (instructions that write to locations read by that
instruction) and its control-dependence predecessors (control points that may
affect whether a given instruction gets executed). Similarly, it may be useful to
know for a given instruction its data-dependence successors (instructions that
read locations written by that instruction) and control-dependence successors
(instructions whose execution depends on the decision made at a given con-
trol point).

3 CodeSurfer/x86 Facilities

As described in the Section 2, given an executable as input, CodeSurfer/x86
builds a collection of IRs for it. In addition to building the IRs, CodeSurfer/x86
also checks whether the executable conforms to a “standard” compilation model—
i.e., a runtime stack is maintained; activation records (ARs) are pushed onto the
stack on procedure entry and popped from the stack on procedure exit; a proce-
dure does not modify the return address on the stack; the program’s instructions
occupy a fixed area of memory, are not self-modifying, and are separate from
the program’s data. If it cannot be confirmed that the executable conforms to
the model, then the IR is possibly incorrect. For example, the call-graph will be
incorrect if a procedure modifies the return address on the stack. Consequently,
CodeSurfer/x86 issues error reports if it finds one or more violations of the “stan-
dard” compilation model. The analyst can go over these reports and determine
whether they are false alarms or real violations.

CodeSurfer’s GUI supports browsing (“surfing”) of an SDG, along with a
variety of operations for making queries about the SDG—such as slicing [8] and
chopping [11].4 The GUI allows a user to navigate through the assembly code
using these dependences in a manner analogous to navigating the World Wide
Web. CodeSurfer’s API provides a programmatic interface to these operations,
as well as to lower-level information, such as the individual nodes and edges of
the program’s SDG, call graph, and control-flow graph, and a node’s sets of used,

4 A backward slice of a program with respect to a set of program points S is the set
of all program points that might affect the computations performed at S; a forward
slice with respect to S is the set of all program points that might be affected by
the computations performed at members of S [8]. A program chop between a set
of source program points S and a set of target program points T shows how S can
affect the points in T [11]. Chopping is a key operation in information-flow analysis.

254 G. Balakrishnan et al.

killed, and possibly-killed a-locs. By writing programs that traverse CodeSurfer’s
IRs to implement additional program analyses, the API can be used to extend
CodeSurfer’s capabilities.

CodeSurfer/x86 can be used in conjunction with GrammaTech’s Path Inspec-
tor, which is a tool that uses a sophisticated pattern-matching engine to answer
questions about the flow of execution in a program. The Path Inspector checks
sequencing properties of events in a program, which—in the context of security
analysis, for example—can be used to answer such questions as “Is it possible
for the program to bypass the authentication routine?” (which indicates that
the program may contain a trapdoor).

With the Path Inspector, such questions are posed as questions about the
existence of problematic event sequences; after checking the query, if a prob-
lematic path exists, it is displayed in the Path Explorer tool. This lists all of
the program points that may occur along the problematic path. These items are
linked to the disassembly; the analyst can navigate from a point in the path to
the corresponding assembly-code element. In addition, the Path Inspector allows
the analyst to step forward and backward through the path, while simultane-
ously stepping through the assembly code. (The code-stepping operations are
similar to the single-stepping operations in a traditional debugger.)

References

1. G. Balakrishnan and T. Reps. Analyzing memory accesses in x86 executables. In
Comp. Construct., pages 5–23, 2004.

2. C. Cifuentes and A. Fraboulet. Interprocedural data flow recovery of high-level
language code from assembly. Technical Report 421, Univ. Queensland, 1997.

3. C. Cifuentes, D. Simon, and A. Fraboulet. Assembly to high-level language trans-
lation. In Int. Conf. on Softw. Maint., pages 228–237, 1998.

4. CodeSurfer, GrammaTech, Inc., http://www.grammatech.com/products/codesurfer/.
5. S.K. Debray, R. Muth, and M. Weippert. Alias analysis of executable code. In

Princ. of Prog. Lang., pages 12–24, 1998.
6. J. Ferrante, K. Ottenstein, and J. Warren. The program dependence graph and

its use in optimization. Trans. on Prog. Lang. and Syst., 3(9):319–349, 1987.
7. Fast library identification and recognition technology, DataRescue sa/nv, Liège,

Belgium, http://www.datarescue.com/idabase/flirt.htm.
8. S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence

graphs. Trans. on Prog. Lang. and Syst., 12(1):26–60, January 1990.
9. IDAPro disassembler, http://www.datarescue.com/idabase/.

10. A. Mycroft. Type-based decompilation. In European Symp. on Programming, 1999.
11. T. Reps and G. Rosay. Precise interprocedural chopping. In Found. of Softw. Eng.,

1995.
12. X. Rival. Abstract interpretation based certification of assembly code. In Int.

Conf. on Verif., Model Checking, and Abs. Int., 2003.

A Study of Type Analysis for Speculative
Method Inlining in a JIT Environment

Feng Qian� and Laurie Hendren
{fqian, hendren}@sable.mcgill.ca

School of Computer Science, McGill University

Abstract. Method inlining is one of the most important optimizations
for JIT compilers in Java virtual machines. In order to increase the num-
ber of inlining opportunities, a type analysis can be used to identify
monomorphic virtual calls. In a JIT environment, the compiler and type
analysis must also handle dynamic class loading properly because class
loading can invalidate previous analysis results and invalidate some spec-
ulative inlining decisions. To date, a very simple type analysis, class hi-
erarchy analysis (CHA), has been used successfully in JIT compilers for
speculative inlining with invalidation techniques as backup.
This paper seeks to determine if more powerful dynamic type analyses
could further improve inlining opportunities in a JIT compiler. To achieve
this goal we developed a general dynamic type analysis framework which
we have used for designing and implementing dynamic versions of several
well-known static type analyses, including CHA, RTA, XTA and VTA.
Surprisingly, the simple dynamic CHA is nearly as good as an ideal
type analysis for inlining virtual method calls. There is little room
for further improvement. On the other hand, only a reachability-based
interprocedural type analysis (VTA) is able to capture the majority of
monomorphic interface calls.

1 Introduction

The Java programming language [3] encourages programmers to write compact
classes and small methods to obtain great engineering benefits. However, using
small methods requires frequent method calls. A high performance Java virtual
machine heavily relies on JIT compilers to reduce calling overhead.

Even though the direct overhead of virtual calls is low, further performance
improvement is often obtained from method inlining and optimizations on in-
lined code. Inlining creates larger code blocks for program analyses and improves
the accuracy of intraprocedural analyses which must often handle method calls
conservatively. Thus, method inlining is a very important part of a Java opti-
mizer because it further reduces method call overhead and also increases other
opportunities for optimizations.

� The author is currently affiliated with Goolge Inc., 1600 Amphitheatre Parkway,
Mountain View, CA 94043, USA. This research was done while the author was at
McGill University.

R. Bodik (Ed.): CC 2005, LNCS 3443, pp. 255–270, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

256 F. Qian and L. Hendren

A key step of method inlining is to decide which method(s) can be inlined
at a call site. This can be achieved by using information conveyed via language
constructs such as final and private declarations (which provide restrictions on
which methods could be called), or the information can be gathered using a
type analysis which determines which runtime types may be associated with a
receiver, and hence which methods may be called. Another alternative is to pro-
file targets of call sites. Inlining based on language constructs and type analyses
results is conservative at analysis time and it supports direct inlining that maxi-
mizes optimization opportunities. In this paper, we study method inlining using
type analysis results.

Static type analyses for Java programs [8,5,19,20] are not directly applicable
to JIT compilers because of dynamic features of Java virtual machines. The type
set of a variable might have new members as new classes are loaded and thus
optimizations based on old results could be invalidated. Various techniques have
been devised to use dynamic class hierarchy analysis for directly inlining in the
presence of dynamic class loading and JIT compilation.

In this paper we evaluate the effectiveness of several dynamic type analyses for
method inlining in a Java virtual machine (Jikes RVM [1]). We built a common
type analysis framework for expressing dynamic type analyses and used the
results of these analyses for speculative inlining with invalidations. We then used
this framework to perform a study of how many method calls can be inlined for
the different varieties of type analyses.

We were also interested in finding the upper bound on how many calls that
can be inlined, to determine if more accurate type analyses are required. To
gather this information we used an efficient call graph profiling mechanism [16]
to log call targets of each virtual call site. The logged information is used as
an ideal type analysis for re-executing the benchmark. We compare the inlining
results of other type analyses to the ideal one. In order to measure the maximum
inlining potential of a type analysis, we also relaxed the size limit on inlining
targets.

Our results were quite surprising. The simple CHA is nearly as good as the
ideal type analysis for inlining virtual method calls and leaves little room for
improvement. On the other hand, CHA is less effective for inlining interface
calls. Further, we found that the majority of interface invocations are from a
small number of hot call sites which are used in a very simple pattern.

In order to capture the monomorphic interface calls we developed dynamic
VTA, which is a whole-program analysis. We analyzed the effectiveness and
costs of this whole-program approach. We found that the main difficulty of such
a dynamic whole-program analysis is that it requires large data structures which
must co-exist with application data in the heap.

Our objective is to understand how well a dynamic type analysis can perform
with respect to method inlining in a JIT compiler, and what opportunities there
are for improvement. In this study, we made following contributions:

– a limit study of method inlining using dynamic type analyses on a set of
standard Java benchmarks;

A Study of Type Analysis for Speculative Method 257

– development and experience of an interprocedural reachability-based type
analysis in a JIT environment; and

– interesting observations in speculative inlining.

We introduce the necessary background in Section 2. In Section 3, we describe
the design of a common type analysis framework for speculative inlining. The
limit study results are also presented in this section. The whole-program VTA
type analysis is described in Section 4 with experimental results. Related work is
discussed in Section 5. Finally, in Section 6, we conclude with some observations
and plans for future work.

2 Background

Java methods can be categorized into two types: non-virtual and virtual. Static
and instance initialization methods are non-virtual, and the rest of the methods
are virtual. A JIT compiler can bind a non-virtual call and its target at compile
time, if the callee method has been resolved. Static binding enables efficient
implementation of non-virtual calls. For example, a resolved non-virtual call
takes two instructions in Jikes RVM [13].

The beauty of object-oriented programming languages comes from supporting
virtual methods. In the Java programming language, a virtual call has the form
of <x, A.m()> where x is a variable pointing to objects of type A or its subtypes,
and m() is the method signature. The real target of each invocation depends on
the type of object pointed to by the variable x at runtime. The object pointed
to by x is called the receiver of the call, and m() is a callee method signature.

In the Java virtual machine specification, virtual methods are invoked by
invokevirtual or invokeinterface instructions, depending on whether the declaring
class of the callee method is a class or interface. A virtual call is slightly more
expensive than a non-virtual one since it requires method lookup. By taking
advantage of single inheritance, the invokevirtual bytecode is implemented by
three instructions in Jikes RVM. The implementation of invokeinterface is much
more expensive than invokevirtual due to multiple inheritance. Alpern et al. [2]
give an excellent introduction and provide an efficient solution to the problem.

Due to polymorphism, a virtual call may invoke several different methods
in the course of program execution. Compilers can use a static type analysis or
profiling information to devirtualize the call to a set of possible target methods
and inline one or several of them into the caller. The Java execution model allows
dynamic class loading which loads classes only on first use, and lazy compilation
which compiles methods only on first execution. A new challenge of type analyses
in a JIT environment is to handle these dynamic features properly.

An easy solution to dynamic class loading is to guard inlined code with
runtime checks. Detlefs and Agesen [9] pioneered this technique in Sun’s JVM.
Given a virtual call site <x, A.m()>, a type analysis (e.g. CHA) might be able
to prove the call site is monomorphic at compile time and the target is A.m(). If
a JIT compiler chooses to inline the call site, it generates a class test instruction

258 F. Qian and L. Hendren

comparing x’s type to A. The inlined A.m() is executed only if the runtime check
succeeds, otherwise a normal virtual call is made.

The drawback of the class test is that it only covers the case when an object
type is A. If the object type is a subclass B which does not override A.m(), the
control falls to the normal virtual call, even though the target is still A.m().
Method tests fix the problem by testing the target method address instead of
the receiver’s type. After instructions loading x’s type information (A or B), the
compiler generates one more instruction to obtain the target address of m() from
the type information (A.m() even if the type is B). The inlined code is protected
by a test of the target address to the address of A.m(). A single method test can
cover more classes than a class test with the cost of one load instruction in the
fast path.

Method and class tests have direct runtime overhead and optimizations on
inlined code are limited by conditional test instructions. Detlefs and Agesen [9]
pointed out that, in a Java virtual machine, a compiler can directly inline cur-
rently monomorphic call sites induced by CHA. When dynamic class loading
makes an inlined monomorphic call site be polymorphic, the class loader must
invalidate the compiled method which directly inlined the call site. The next in-
vocation of an invalidated method triggers recompilation using the new, correct
CHA results. To ensure the approach is safe for compiled methods running on
threads, it requires a static analysis (invariant argument analysis [9]) to prove
the preexistence of receiver variables of inlined calls.

The invariant argument analysis may not always succeed in removing method
and class tests for inlined monomorphic calls. Ishizaki et al. [12] presented a code
patching technique to remove the direct overhead of all method and class tests for
monomorphic call sites in the presence of dynamic class loading. Code patching
uses CHA to identify monomorphic calls at compile time. Each inlined call site
has a backup path which does normal virtual invocation. The compiler records
the addresses at the beginning of inlined code and the start of backup path.
It also registers a dependency of the inlined site on the assumption that the
call is monomorphic. When dynamic class loading happens and invalidates the
assumption, the compiler patches the code at the beginning of inlined code by a
direct jump instruction to the address of the backup path. The virtual machine
can optionally reset the invalidated method’s entry in the virtual method table.

A static type analysis calculates conservative type sets for variables in object-
oriented programs. Class hierarchy analysis (CHA) [8] assumes all subtypes of
a variable’s declaring type are in the runtime type set of the variable. Rapid
type analysis (RTA) [5] performs a one pass scan of the program and prunes
the CHA results by removing types that do not have an allocation site in the
program. XTA [20] is a simple interprocedural type analysis. It uses one set to
represent all variables in a method, and propagates type sets along call edges.
Variable type analysis (VTA) [19] is a fast reachability-based interprocedural
type analysis. Each variable has a type set and the analysis uses intraprocedural
data-flow. More advanced analyses have higher costs. One focus in our study is

A Study of Type Analysis for Speculative Method 259

to show how to adopt these static type analyses to a JIT environment and to
study their effectiveness on speculative method inlining.

3 A Type Analysis Framework Supporting Speculative
Inlining

A static analysis is performed at compile-time and must make conservative as-
sumptions that include all possible runtime executions. A static type analysis
answers a basic question: what is the set of all possible runtime types of variable
v at program point P . A dynamic type analysis is performed in a JIT environ-
ment, and therefore it is time-sensitive. It answers a query similar to a static
one, except the answer is not for all executions, but for execution prior the time
of answering the query. The results may change over program’s execution. In
order to use type analysis results for optimizations in a JIT environment, there
are a few requirements we set for the analysis:

dynamic: it has to handle Java’s dynamic features seamlessly, such as dynamic
class loading, reference resolution, and JIT compilation;

conservative: analysis results must be correct at analysis time with respect
to the executed part of the program;

just-in-time: the analysis should be able to notify clients when previous
analysis results are about to change during execution.

A dynamic type analysis fits into a Java virtual machine without changing
the lazy strategy of handling class loading and compilation. The conservativeness
ensures optimizations based on analysis results are correct at the analysis time
(it might be invalidated in the future). If the analysis can update its results
just-in-time, it can be used for speculative optimizations with some invalidation
mechanisms. Our objective is to design a type analysis framework supporting
speculative inlining in a JIT compiler.

3.1 Framework Structure

We designed a type analysis interface shown in Figure 1. In a Java method,
a call site is uniquely identified by the method and a bytecode index. Given
the method and bytecode index, the getNodeId method returns a node ID for
further queries. The node ID allocation decides the granularity of different type
analyses. For example, CHA and RTA use a single ID for all call sites, XTA
allocates a node ID for all call sites in the same method, and VTA assigns
different IDs to different call sites. The lookupTargets method returns an array
of targets resolved by using reaching types of the node with a given callee method
signature. The detailed lookup procedure is the same as virtual method lookup,
defined by the JVM specification [14]. An inline oracle makes inline decisions
according to the lookup results.

If the type analysis finds a monomorphic call site (with only one target), then
the oracle decides to perform speculative inlining (using preexistence or code
patching). It must register a dependency via the checkAndRegisterDependency

260 F. Qian and L. Hendren

method. A dependency says that, given a node and a callee method signature,
a compiled method (cm) is valid only when the lookup results have one target
that is the same as the parameter target.

After registering the dependency successfully, any change in the type set of
the node causes verification of dependencies on this node. The verifyDependency
method is called by the type analysis when the node has a new reaching type. For
each dependency of the node, the verification procedure performs method lookup
using the new reaching type and the callee method signature. If the lookup re-
sult is different from the target method of the dependency, the compiled method
must be invalidated immediately.

public interface TypeAnalysis {
public int getNodeId(VM_Method caller, int bcindex);
public VM_Method[] lookupTargets(int nodeid, VM_Method callee);
public boolean checkAndRegisterDependency(int nodeid,

VM_Method callee,
VM_CompiledMethod cm,
VM_Method target);

protected void verifyDependency(int nodeid, VM_Class newKls);
}

Fig. 1. TypeAnalaysis interface

A TypeAnalysis implementation has to monitor system events such as class
loading, method compilation, etc. We have implemented several type analyses as
depicted in Figure 2. We used JikesRVM v2.3.0 with the FastAdaptiveCopyMS
configuration. JikesRVM implemented dynamic CHA, and we re-implemented it
in our framework. CHA and RTA only differentiate classes that participate in
the reaching type sets. We made a new variation of CHA, called ITA, to only
allow classes with instances to participate in reaching types. XTA and VTA share
many components. A special class, IdealTypeAnalysis, uses profiled results for
the purpose of our limit study. All implementations satisfy the requirements
defined at the beginning of this section. A client, StaticInlineOracle, uses the
analysis results for speculative inlining.

3.2 A Limit Study of Method Inlining Using Dynamic Type
Analyses

An Ideal Type Analysis. To measure how precise a type analysis could be, we
need an ideal type analysis for comparison. If a benchmark runs deterministically,
we can profile targets in the first run, and then use the profiled targets as faked
analysis results for the second run.Weuse an inexpensive call graph profilingmech-
anism [16] to gather call targets. An IdealTypeAnalysis parses the profiled targets
for call sites, and the lookupTargets method returns profiled target(s) for a call site.

Experimental Approach. An inline oracle has to balance the benefits and
costs of inlining. Excessive inlining may blow up code size and slow down the
execution. Therefore, a JIT compiler usually sets a size limit on inlined targets

A Study of Type Analysis for Speculative Method 261

StaticInlineOracle

DependencyDatabase

XTA VTA

CHA RTA ITA

InlineOracle

<<interface>>

<<interface>>

TypeAnalysis

AbstractTypeAnalysis

OneSetTypeAnalysis

IdealTypeAnalysis

Fig. 2. Type analysis framework diagram

using some heuristics. Hazelwood and Grove [11] described the size heuristic
used in Jikes RVM. For the purpose of our study, we would like to measure the
maximum potential of a type analysis for method inlining without a size limit.
However, inlining all call sites is not feasible. Instead, we only inline the most
frequently invoked call sites, without a size limit.

Benchmarks. Our benchmark set includes the SpecJVM98 suite [18], Spec-
JBB2000 [17], a CFS subset evaluator from a data mining package Weka [22],
a simulator of certificate revocation schemes [6], and a variation of the simula-
tor interwoven with AspectJ code for detecting calls that return null on error
conditions.

Table 1 summarizes dynamic characteristics of benchmark executions. We ig-
nored call sites in the RVM code and Java libraries compiled into the boot image.
Virtual and interface calls are measured separately. Columns labeled total report
the total counts of invocations in each category. Columns labeled #hottest are
numbers of hottest call sites, ranked in the top 100, whose invocations are more
than 1% of total in Columns 2 and 5. Columns labeled coverage are percentages
of invocations contributed by these hottest call sites.

It is interesting to point out that, for most of the benchmarks, the majority
of invocations are from a small number of hot call sites. Fewer than 25 call sites
exceed the 1% threshold. Only about half of the benchmarks have more than
1M interface invocations. These benchmarks have fewer than 11 hot interface
call sites that contribute to more than 92% of invocations.

The 213 javac benchmark includes a large amount of auto-generated code.
Invocation counts are spread over many call sites. SpecJBB2000 has a large code
base as well, and it runs much longer than other benchmarks. Hot call sites
selected by our 1% threshold contribute only about 34% of total invocations.

262 F. Qian and L. Hendren

Table 1. Coverage of the hottest call sites

benchmark invokevirtual invokeinterface
total #hottest coverage total #hottest coverage

201 compress 2,191M 7 89% 0 N/A N/A
202 jess 964M 25 71% 0 N/A N/A

205 raytrace 2,837M 16 29% 0 N/A N/A
209 db 762M 8 99% 149M 5 99%

213 javac 688M 10 20% 34M 5 92%
222 mpegaudio 846M 25 80% 2M 11 98%

228 jack 264M 22 74% 46M 11 93%
SpecJBB2000 8,162M 9 34% 146M 7 99%

CFS 639M 15 92% 0 N/A N/A
simulator(orig) 44M 5 71% 0 N/A N/A

simulator(aspects) 162M 13 72% 0 N/A N/A

A list of hottest call sites are provided to the inline oracle. The size limit is
removed for call sites in the list. Thus, the inline oracle can exploit the potential
of a type analysis as much as possible.

As we discussed in Section 5, a virtual call site can be inlined using different
techniques:

– direct: direct inlining if the called method is private or final;
– preex: direct inlining with invalidation checks if the receiver can be proved

to be preexistent prior method calls;
– cp: guarded inlining with code patching;
– mt or ct: guarded inlining with method or class tests.

If a call site is currently monomorphic according to the analysis results,
guards are chosen as a command line option. It can be code patching or method/-
class tests. For our experiment we used code patching since it has less runtime
overhead.

Monomorphic interface calls can be directly inlined if the receiver is preexis-
tent, or inlined with guards. We found that, in our benchmark set, receivers of
nearly all hot interface calls cannot be proven to be preexistent by an invariant
argument analysis. Thus, in our results, we omit the preex category for inter-
face calls. We also performed another experiment where the inline oracle inlined
polymorphic call sites (guarded by method or class tests) that had 1 or 2 targets
resolved using type analysis results. However, this did not lead to significantly
more inlined calls (only 213 javac has a 2% increase). Thus, we do not inline
polymorphic calls in our experiment reported here.

Limit Study Results. Table 2 compares the results of dynamic CHA and Ide-
alTypeAnalysis. Each benchmark has two rows: ideal and cha, showing dynamic
counts of inlined calls using different type analyses. Virtual and interface calls are
presented separately. Column total is the count of invocations in each category.
In the virtual category, dynamic CHA did nearly as perfect a job as the ideal

A Study of Type Analysis for Speculative Method 263

type analysis in most benchmarks, except 213 javac and simulator(aspects).
On these benchmarks, the majority of dynamic invocations are contributed by
monomorphic call sites. The sum of direct, preex and cp is close to the coverage
in Table 1. 213 javac leaves a small gap between cha and ideal (5% of virtual
calls could not be solved by CHA), and CHA does not resolve 19% monomorphic
virtual calls of simulator(aspects) that were proven to be preexistent by the
ideal type analysis. In the interface category, column 8 shows that a large portion
of interface invocations are from monomorphic call sites as well. Dynamic CHA
is ineffective on inlining interface calls. Furthermore, the other two simple type
analyses, RTA and ITA, did not improve the results of inlining interface calls
because common interfaces are implemented by different classes that are likely
to be instantiated.

Table 2. Limit study of method inlining using type analyses

virtual interface
total direct preex cp total cp mt

201 compress ideal 2,191M 99% 0 0 0 0 0
cha 2,191M 99% 0 0 0 0 0

202 jess ideal 994M 58% 6% 21% 7M 0 0
cha 994M 58% 6% 21% 7M 0 0

205 raytrace ideal 2,837M 0 50% 41% 0 0 0
cha 2,837M 0 50% 41% 0 0 0

209 db ideal 762M 31% 0 67% 150M 99% 0
cha 762M 31% 0 67% 150M 0 0

213 javac ideal 701M 28% 7% 15% 35M 95% 0
cha 701M 27% 7% 10% 35M 0 0

222 mpegaudio ideal 846M 73% 3% 0 2M 57% 0
cha 846M 73% 3% 0 2M 57% 0

228 jack ideal 258M 13% 16% 39% 46M 86% 0
cha 258M 12% 15% 39% 46M 25% 8%

SpecJBB2000 ideal 8,250M 32% 29% 11% 148M 99% 0
cha 8,119M 32% 29% 12% 146M 0 0

CFS ideal 639M 38% 6% 52% 0 0 0
cha 639M 38% 6% 52% 0 0 0

simulator ideal 44M 99% 0 0 0 0 0
(original) cha 44M 99% 0 0 0 0 0
simulator ideal 162M 11% 19% 53% 0 0 0
(aspects) cha 162M 11% 0 53% 0 0 0

Discussion. Simulator(aspects) is an interesting benchmark. Injecting As-
pectJ advice code increases the number of invocations and changes inlining
behaviors dramatically. In the original benchmark, nearly all virtual calls are
monomorphic and can be directly inlined. With aspects, dynamic CHA misses
all monomorphic calls in the preex category. After looking at the benchmark
closely, we found this is due to the generic implementation of pointcuts.

264 F. Qian and L. Hendren

The pointcut implementation boxes primitive values in objects and passes
them to AspectJ libraries. The value is then unboxed after the library call. The
original code for unboxing looks like

int intValue(Object v) {
if (v instanceof Number)
return ((Number)v).intValue();

......
}

The single call site of ((Number)v).intValue() contributes 19% preex invoca-
tions. Dynamic CHA failed to inline this call site because the Number class has
several subclasses, Integer, Double, and Long, and the call site is identified as
polymorphic.

This particular problem can be solved in two ways: 1) use a context-sensitive
reachability-based type analysis, or 2) change the implementation of unboxing
to facilitate the type analysis. We changed the method to use a tighter type,
Integer, in the type cast expression, then the call site becomes directly inline-
able.

Since the number of hot interface call sites is small, we investigated them one
by one. It turns out these hot interface calls are used in a similar pattern:

// <TYPE> is java.util.Vector, java.util.Hashtable, etc.
Enumeration e = <TYPE>.elements();
......
while (e.hasMoreElements())
index[i++] = (Entry)e.nextElement();

Enumeration is an interface in java.util package. The while loop makes two or
more interface calls for enumerating elements of underlying data structures. Dy-
namic CHA assumes all implementations of the interface are in the runtime type
set of e, although each <TYPE> class returns a specific implementation. Without
interprocedural information or inlining the <TYPE>.elements() method, a type
analysis cannot produce precise type information of e. Therefore, these interface
call sites cannot be inlined by using dynamic CHA.

From this limit study, we conclude that:

– most virtual calls in standard Java benchmarks are monomorphic;
– dynamic CHA is nearly perfect for inlining virtual calls;
– dynamic CHA is ineffective on inlining interface calls;
– to assist compiler optimizations, a programmer should use precise types when

it does not sacrifice other engineering benefits;
– a large percentage of interface calls are monomorphic and used in a simple

pattern, but it requires an interprocedural analysis to discover the precise
type of the receiver.

4 Dynamic Interprocedural Type Analysis

In Section 3, we presented a type analysis framework for supporting speculative
inlining. We also presented the results of our limit study of method inlining which

A Study of Type Analysis for Speculative Method 265

showed that dynamic CHA is not strong enough for inlining interface calls. In
this section, we present an interprocedural, reachability-based, type analysis that
is suitable for inlining interface calls.

There are two different approaches to performing a dynamic interprocedural
analysis in a Java virtual machine. A whole-program analysis analyzes all classes
and methods that can participate the program execution. A demand-driven anal-
ysis only analyzes the part of code related to a request. In this paper we focus
on the whole-program approach.

We designed and implemented a dynamic version XTA in our previous work
[16] as an example of how to deal with dynamic class loading and reference
resolution. However, due to lack of intraprocedural data-flow information, XTA
results are very coarse. Although the computed type sets are smaller than ones
from CHA, it still could not recognize important monomorphic interface call
sites. From the method inlining study, we found XTA results were no better
than dynamic CHA.

4.1 Dynamic Variable Type Analysis (VTA)

Design. VTA [19] uses intraprocedural data flow information to propagate type
sets. Given a Java program (all application and library classes), static VTA
constructs a directed type flow graph G = (V, E, τ) where:

– V is a set of nodes, representing local variables, method formals and returns,
static and instance fields, and array elements;

– E is a set of directed edges between nodes, an edge a → b represents an
assignment of a’s value to b;

– τ : V → T is a map from a node to a set of types (classes).

We use the same approach outlined in [16] to adopt the static VTA to a
JIT compiler. In the whole-program approach, the constraint collector monitors
method compilation events at runtime. Before a method is compiled, the con-
straint collector parses the bytecode and creates VTA edges. The collector uses
the front-end of the optimizing compiler in Jikes RVM, which converts bytecode
to a three address intermediate representation, HIR. Several optimizations are
performed during translation. An HIR operand has a declaring type.

Dynamic VTA analysis is driven by events from JIT compilers and class
loaders. Figure 3 shows the flow of events. In the dotted box are the three
modules of dynamic VTA analysis: VTA graphs, the analysis (include constraint
collector), and dependency databases.

Many system events can change the VTA graph. Whenever the graph is
changed (either the graph has an new edge, or a node has a new reaching type),
a propagator propagates type sets of nodes (related to changes) until no further
change occurs. Whenever the reaching type set of a node has a new member, the
analysis verifies dependencies on this node registered by inlining oracles (see Sec-
tion 3). The oracle has a chance to perform invalidation if inlining assumptions
are violated.

266 F. Qian and L. Hendren

dependency
databases

3

6

compilers

profiling
callgraph 2

1

4

classloaders
5

analysis

dependencies
inlining

inline
oracle

VTA graphs

Fig. 3. Model of VTA events

Propagations. To support speculative optimizations, the analysis must keep the
results up-to-date whenever a client makes queries. An eager approach propagates
new types whenever the VTA graph is changed. The second approach is to cache
graph changes when collecting constraints of a method, and batch propagations at
the end of constraint collection. The third approach, as suggested in [15], performs
depth-first search (DFS) on nodes that a client makes queries on. Whenever the
graph changes, it has to perform DFS on all nodes whose types were used for spec-
ulative optimizations to verify that the optimizations are not invalidated by new
changes. In our study, we found both eager and batch propagations are efficient,
with respect to the total execution time of each benchmark. 213 javac takes up
to 1.7 seconds and other benchmarks take less than 1 second.

Effectiveness of dynamic VTA. Not surprisingly, VTA is able to handle
the simple pattern of interface calls in our benchmarks set. Table 3 compares
dynamic counts of inlined interface calls. We omitted benchmarks with few in-
terface calls. Dynamic VTA is able to catch all monomorphic interface calls and
allows them to be inlined by using code patching.

Table 3. Comparison of VTA and IdealTypeAnalysis for inlining interface calls

benchmark Ideal(cp) VTA(cp)
209 db 99% 99%

213 javac 95% 95%
228 jack 86% 86%

SpecJBB2000 99% 99%

Our preliminary performance measurement shows Ideal type analysis yields a
small performance improvement over CHA. Due to heavier GC workload intro-
duced by VTA graphs, 213 javac and SpecJBB2000 slowed down when using
the copying mark-sweep collector. Recently we switched to a generational mark-
sweep collector, which promotes most of VTA graph objects to old generations.
The impact of GC has been reduced. Table 4 compares the best run of 10 runs
of two benchmarks. Unfortunately, both 209 db and SpecJBB2000 trigger bugs

A Study of Type Analysis for Speculative Method 267

in the generational mark-sweep collector in the version of JikesRVM that we are
using for our implementation.1

Table 4. Performance comparison using VTA and CHA (GenMS)

benchmark CHA VTA speedups
213 javac 3.924s 3.900s 0.6%
228 jack 2.514s 2.460s 2.1%

Memory overhead of whole-program VTA. Although dynamic VTA al-
lows the JIT compiler to utilize maximum inlining opportunities, the cost of
whole-program VTA is also high. Using 213 javac as an example, VTA analysis
increases the live data by 60%. It is clear that the whole-program interprocedural
analysis has a very high memory overhead.

5 Related Work

We discussed some related work of method inlining while introducing the back-
ground in Section 2. The section discusses additional related work on the topic.

Ishizaki et al. [12] conducted an extensive study of dynamic devirtualization
techniques for Java programs. In their experiments, size limits were put on in-
lined targets, and techniques using dynamic CHA were shown to inline about
46% of virtual calls (execution counts). Our study answers the question of what
is the limit of method inlining using different type analyses. By lifting the size
limit on hottest call sites, we were able to understand the maximum inlining po-
tential using a type analysis. Our limit study shows that CHA performs nearly
as well as an ideal type analysis for inlining.

Pechtchanski and Sarkar [15] presented a framework for dynamic optimistic
interprocedural analysis (DOIT) in a JIT environment. For each method, the
DOIT analysis builds a value graph similar to a VTA graph. However, due to
lack of a complete dynamic call graph, DOIT does not track type flow between
method calls (parameters and returns). Instead, it uses conservative subtypes of
declaring types of method parameters and returns. DOIT is good at obtaining
precise type information for fields whose values are assigned in one method and
used by another method. Our work focused on limit study of method inlining
using type analyses, including online interprocedural analyses based on dynamic
call graphs. Our results independently confirms that dynamic CHA is effective
for inlining virtual calls in Java programs.

Profiled-directed inlining is effective to identify profitable inlining targets at
polymorphic call sites. However, profile-directed inlining requires runtime tests
to guard the inlining target. Our focus is on exploiting unguarded inlining op-
portunities exposed by type analyses.

1 It is possible that this issue will be resolved when we upgrade our implementation
to the lastest version of JikesRVM.

268 F. Qian and L. Hendren

6 Conclusions, Observations and Future Work

In this paper we have presented a study on the limits of speculative inlining.
Somewhat to our surprise we found that using dynamic CHA for speculative
inlining is almost as good as using an “ideal” analysis, for inlining virtual method
calls. However, for even simple uses of interface calls, none of dynamic CHA,
RTA, ITA or XTA gives enough information for determining that interface calls
are monomorphic. Rather, to detect these opportunities, one requires a stronger
type analysis and we presented a dynamic version of VTA for this purpose.

Our experiments with our dynamic VTA do show that it provides detailed
enough type information to identify inlining opportunities for interface calls in
our benchmark set. However, we also note that the memory overhead of our whole
program approach to dynamic VTA is quite large, and we plan to investigate an
alternative demand-driven approach.

In addition to these main contributions of the paper, we also made several
other general observations about speculative method inlining.

Observation 1. The conventional wisdom is that inlining increases optimiza-
tion opportunities. However, in the presence of speculative optimizations, in-
lining may reduce optimization opportunities as well. Figure 4 shows such an
example. In Figure 4(a), the method Foo.m() is declared as virtual, but not over-
ridden. Thus the call site in the child method is a candidate of direct inlining
based on the receiver’s preexistence prior method call (Figure 4(b)). However,
if a compiler inlines child() into parent(), and the receiver of foo.m() is not
preexistent prior the parent(), the call site can only be inlined with a guard as
in Figure 4(c). Since the frequency of calling foo.m() is much more than calling
child(), the performance of parent() might not be maximized. This pattern
did happen in the 213 javac benchmark.

parent() {
Foo f = getfield
this.child(f);
}

child(Foo foo) {
while(cond)
foo.m()

}

(a)
source

parent() {
Foo f = getfield
this.child(f);

}

child(Foo foo) {
while (cond)
inlined Foo.m(foo)

}

(b) inline Foo.m
only

parent(){
Foo f = getfield
while(cond)
if (Foo.m is currently final)
inlined Foo.m(f)

else
Foo.m(f)

}

(c) inline child, then
Foo.m

Fig. 4. An example where inlining can reduce optimization opportunities

The above dilemma could be resolved by using on-stack replacement tech-
nology [10,21] or thin guards [4]. Indeed, method invalidation performs on-stack
replacement at method entries. A compiler can insert a general on-stack replace-

A Study of Type Analysis for Speculative Method 269

ment point after the statement Foo f = getfield with a condition that Foo.m is
currently final. The compiler can directly inline the body of Foo.m into the loop.

Observation 2. Our second observation is that inlining decisions may be af-
fected by library implementations. A Java virtual machine is bundled with
a specific implementation of Java class library. For example, the GNU class-
path [7] is an open-source implementation of Java libraries and used by many
open source Java virtual machines, including Jikes RVM. The implementation
of Hashtable.elements() in the GNU classpath (version 0.07) returns ob-
jects of a single type Hashtable$Enumerator. The implementation in Sun’s
JDK 1.4.2 04, however, may return objects of Hashtable$EmptyEnumerator and
Hashtable$Enumerator. Several hot interface call sites in our benchmark set
would not be directly inlined if using Sun’s JDK.

Future Work. Based on this study we have concluded that a type analysis for
invokeinterfaces is an important area of research, and we are currently working
on a demand-driven analysis and compact graph representation to reduce the
costs of dynamic VTA. We are also looking at more applications of dynamic
interprocedural analysis in JIT compilers. A new research topic is to investigate
the effectiveness of compiler optimizations on different design patterns.

Acknowledgments. This work was supported, in part, by NSERC. We would
like to thank Navindra Umanee for his proofreading of this paper. We also ap-
preciated anonymous reviewers’ constructive comments.

References

1. B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D. Choi,
A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvinov,
M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd,
S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The Jalapeño Virtual
Machine. IBM Systems Journal, 39(1):211–238, February 2000.

2. B. Alpern, A. Cocchi, S. J. Fink, D. Grove, and D. Lieber. Efficient Implemen-
tation of Java Interfaces: Invokeinterface Considered Harmless. In Proceedings of
the Conference on Object-Oriented Programming Systems, Languages, and Appli-
cations (OOPSLA’01), pages 108–124, 2001.

3. K. Arnold, J. Gosling, and D. Holmes. The Java Programming Language (Third
Edition). Addison-Wesley, 2000.

4. M. Arnold and B. G. Ryder. Thin Guards: A Simple and Effective Technique for
Reducing the Penalty of Dynamic Class Loading. In 16th European Conference for
Object-Oriented Programming (ECOOP’02), pages 498 – 524, 2002.

5. D. F. Bacon and P. F. Sweeney. Fast Static Analysis of C++ Virtual Function
Calls. In Proceedings of the Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA’96), pages 324 – 341, Oct. 1996.

6. Certrevsim. http://www.pvv.ntnu.no/ andrearn/certrev/sim.html.

270 F. Qian and L. Hendren

7. Gnu classpath. http://www.gnu.org/classpath.
8. J. Dean, D. Grove, and C. Chambers. Optimization of Object-Oriented Programs

Using Static Class Hierarchy Analysis. In 9th European Conference on Object-
Oriented Programming (ECOOP’95), pages 77 – 101, Aug. 1995.

9. D. Detlefs and O. Agesen. Inlining of Virtual Methods. In 13th European Confer-
ence on Object-Oriented Programming (ECOOP’99), pages 258 – 278, June 1999.

10. S. J. Fink and F. Qian. Design, Implementation and Evaluation of Adaptive
Recompilation with On-Stack Replacement. In International Symposium on Code
Generation and Optimization (CGO’03), pages 241 – 252, March 2003.

11. K. Hazelwood and D. Grove. Adaptive Online Context-Sentitive Inlining. In
International Symposium on Code Generation and Optimization (CGO’03), pages
253 – 264, March 2003.

12. K. Ishizaki, M. Kawahito, T. Yasue, H. Komatsu, and T. Nakatani. A Study of
Devirtualization Techniques for a Java Just-In-Time Compiler. In Proceedings of
the Conference on Object-Oriented Programming, Systems, Languages, and Appli-
cations (OOPSLA’00), pages 294–310, 2000.

13. JikesTM Research Virtual Machine. http://www-124.ibm.com/developerworks/-
oss/jikesrvm/.

14. T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-
Wesley, 1996.

15. I. Pechtchanski and V. Sarkar. Dynamic optimistic interprocedural analysis: A
framework and an application. In Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages 195 – 210, 2001.

16. F. Qian and L. Hendren. Towards Dynamic Interprocedural Analysis in JVMs. In
3rd Virtual Machine Research and Technology Symposium (VM’04), pages 139 –
150, May 2004.

17. Spec JBB2000 benchmark. http://www.spec.org/jbb2000/.
18. Spec JVM98 benchmarks. http://www.spec.org/osg/jvm98/index.html.
19. V. Sundaresan, L. J. Hendren, C. Razafimahefa, R. Vallée-Rai, P. Lam, E. Gagnon,

and C. Godin. Practical Virtual Method Call Resolution for Java. In Proceedings
of the Conference on Object-Oriented Programming, Systems, Languages, and Ap-
plications (OOPSLA’00), pages 264–280, 2000.

20. F. Tip and J. Palsberg. Scalable Propagation-based Call Graph Construction
Algorithms. In Proceedings of the Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA’00), pages 281–293, Oct. 2000.

21. Urs Hölzle and Craig Chambers and David Ungar. Debugging Optimized Code
with Dynamic Deoptimization. In Proceedings of the Conference on Programming
Language Design and Implementation, pages 32 – 43, 1992.

22. Weka 3: Data Mining Software in Java. http://www.cs.waikato.ac.nz/ml/weka/.

Completeness Analysis
for Incomplete Object-Oriented Programs

Jingling Xue and Phung Hua Nguyen

Programming Languages and Compilers Group,
School of Computer Science and Engineering,

University of New South Wales, NSW 2032, Sydney, Australia

Abstract. We introduce a new approach, called completeness analysis,
to computing points-to sets for incomplete Java programs such as library
modules or applications in the presence of dynamic class loading. One
distinctive feature of this work is that the access and modification proper-
ties of fields are taken into account. By combining with a whole-program
points-to analysis, completeness analysis yields not only the required
points-to sets but also determines which points-to sets and call sites are
complete (when the pointed-to objects and target methods are statically
resolvable) or not. Such a compositional approach yields more precise
points-to sets than those computed by the points-to analysis alone. In
addition, our technique also determines (for the first time) which objects
may be incompletely detectable, i.e., may be missing in some statically
computed points-to sets. We provide experimental evidence to demon-
strate that better analysis precision in benchmarks is obtained when the
field access and modification properties are exploited. In particular, we
are able to find significantly more complete and mono call sites in an in-
complete program, which is useful in devirtualisation and inlining. Our
analysis is simple since it is flow- and context-insensitive and achieves
these improvements at reasonably small analysis costs.

1 Introduction

For object-oriented languages such as Java and C�, points-to analysis finds
many applications in compilers and software engineering. However, most exist-
ing points-to analysis methods [9, 13] require the whole program to be available.
Their inadequacies are being recognised as modern applications rely increasingly
more on component programming and software libraries. When applied to com-
ponents or library modules alone, whole-program methods may yield incomplete
points-to sets (i.e. the ones that may not contain all the pointed-to objects at
run time), and consequently, incomplete call sites (i.e., the ones whose sets of
target methods resolved statically may not contain all methods invoked at run
time). In addition, these methods cannot tell whether or not a points-to set or
call site is complete or not, making their results hardly useful. The situation
is further aggravated by some features in Java and C�. Due to the presence of
dynamic class loading and/or native methods, an application written in these
languages may be incomplete in its entirety at analysis time.

R. Bodik (Ed.): CC 2005, LNCS 3443, pp. 271–286, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

272 J. Xue and P.H. Nguyen

This work addresses the problem of computing the points-to sets for an incom-
plete object-oriented program and also determining at the same time whether
these sets and call sites are complete or not. There are some existing methods
that are proposed (intentionally or otherwise) to solve this problem. The extant
analysis (EA) [16] is developed mainly to support devirtualisation and inlining.
For that reason, EA takes as input the points-to sets for a program and produces
as output the set of runtime types in the analysed program for each reference. As
a by-product of this process, one can deduce that the point-to set of a reference
is complete iff all its runtime types are guaranteed to be known in the analysed
program. Several techniques reported in [20, 21] combine points-to analysis and
escape analysis [2, 4]. Their results can be used to determine the completeness
of points-to sets and call sites.

A common problem with these earlier efforts is that they do not exploit
the access and modification properties of fields although similar properties for
methods are considered somewhat. As a result, they do not provide sufficient
precision about the completeness of points-to sets and call sites. Given an in-
complete program, applying whole-program analysis alone is inadequate because
the reciprocal modification effects between the program and unknown code are
not accounted for. In the presence of unknown code, some points-to sets are in-
evitably incomplete. As a result, some alias relations cannot be determined based
on the computed points-to sets alone. In order to obtain better analysis preci-
sion, we believe that the reciprocal modification effects between an incomplete
program (i.e., the analysed code) and the unknown (i.e., unanalysed) code must
be taken into account as accurately as possible. In this work, we exploit the ac-
cess and modification properties of fields (static or instance) to improve analysis
precision. To substantiate this claim, we present a flow- and context-insensitive
analysis, called completeness analysis (CA), for incomplete Java programs and
demonstrate its benefits in increasing analysis precision in benchmark programs.

The contributions of this work are summarised as follows:

– We present a new compositional approach to conducting points-to analysis
for incomplete Java program. By composing with a whole-program points-
to analysis, we obtain not only the points-to sets for the program but also
determine which point-to sets and call sites are complete or not.

– We exploit the access and modification properties of fields in our analysis.
To the best of our knowledge, this is the first work using these properties
to compute the points-to sets for incomplete object-oriented programs. As
a result, our points-to sets are more precise than those computed by the
points-to analysis alone.

– We introduce for the first time the notion of object detectability, which
played an important role in completeness analysis. A compile-time object cre-
ated in an analysed program is incompletely detectable if it may be pointed to
by a reference at run time but is missing in its statically computed points-to
set and (completely) detectable otherwise. Since the access and modification
properties of fields are considered, object detectability is different from ob-
ject reachability used in escape analysis [2, 4, 20, 21]. If an object escapes
from a function or thread, so are all the reachable objects. If an object is in-

Completeness Analysis for Incomplete Object-Oriented Programs 273

completely detectable, a directly or indirectly reachable object may be either
completely or incompletely detectable.

– We have implemented our complete analysis in Soot [19]. When the access
and modification properties of fields are exploited, we obtain better analysis
precision in benchmarks, in particular, significantly more mono call sites,
i.e., more opportunities for devirtualisation and inlining.

The rest of this paper is organised as follows. Section 2 introduces the lan-
guage model used. Section 3 presents our completeness analysis. Section 4 dis-
cusses our experimental results. Section 5 reviews the related work. Section 6
concludes the paper and discusses some future work.

2 Language Model

For simplicity, we describe our approach for a subset of Java with the features
most relevant to points-to analysis. The points-to analysis for a Java program
is carried out in an intermediate representation (IR) of the program. As our
approach is flow- and context-insensitive, IR consists of only the seven kinds of
statements listed in Table 1. Furthermore, the features such as multi-inheritance
interface and multi-threading do not pose any problems. Of the seven statements,
the first and last are explained below and the other five are self-explanatory.

In Java, objects can be created either explicitly via new or implicitly, say, via
a Java reflection method newInstance. In the latter case, the object creation
statement can be replaced by = new C if C is detected statically to be the class
name of the implicitly created object. Otherwise, the object creation statement
used is = new Unknown, where Unknown can be any class in the analysed
program or any new class that may be loaded dynamically at run time.

For notational convenience, each method is denoted op(p0, . . . , pn, r), where
p0, . . . , pn are its n + 1 formal input parameters and r its formal output param-
eter. As is clear in Table 1, the return statements in a method are not explicitly
represented. Instead, every return statement in a method is replaced by an as-
signment to the formal output parameter of that method. Correspondingly, a call
site has the form op(a0, . . . , an,), where a0, . . . , an are the n + 1 actual input

Table 1. Instruction set for the IR on which points-to analysis is conducted, where �

and r are reference variables, f a field, op a method name, and C a class name

Syntax Semantics

� = new C Object Creation
� = r Assignment

� = C.f Static Field Load
C.f = r Static Field Store
� = r.f Instance Field Load
�.f = r Instance Field Store

op(a0, . . . , an, �) Call Site

274 J. Xue and P.H. Nguyen

parameters and is the actual output parameter. If op is an instance method,
then a0 denotes the receiver of the call. Otherwise, op is static and can be con-
veniently regarded as an instance method if a0 is set to be the name of the class
in which op is declared. In Java, parameter passing is call by value.

Accesses to arrays are handled similarly to instance field accesses by introduc-
ing a special field, say, sf. We do not distinguish accesses to different components
of an array. For example, x[i] and x[j] are both represented by x.sf.

The term fixed call site is used to denote (1) an invokestatic, (2) an
invokespecial, (3) a call site whose (unique) target is declared to be final
or in a final class, or (4) a sealed call site [22]. All other kinds of call sites
are called non-fixed. In a fixed call site, all target methods that may be invoked
are known at compile time. This is obvious in the first three cases. The target
methods of a sealed call site are confined to be in the underlying sealed package.

The term reference is used to denote all kinds of accesses such as variable
accesses, static field accesses and instance field accesses.

The semantics of the following field and method modifiers in Java are ex-
ploited in our analysis: private, protected, public and final. In the absence
of the first three modifiers, the default (i.e., package) access is assumed.

3 Completeness Analysis for Incomplete Programs

The whole-program points-to analysis requires the entire program, i.e. all its
classes and methods, to be available at analysis time. An incomplete program
includes only a subset of these classes. In addition, some methods in a class (e.g.,
native methods) may be unavailable to participate in static analysis.

3.1 Incomplete Programs

Definition 1. An incomplete program, F , is a triple F = 〈LF , MF , FF 〉, where
LF is the set of classes in F , MF the set of methods in LF and FF the set
of fields declared in LF such that (1) all classes in LF except the root class
java.lang.Object have all their superclasses in LF , (2) there is not a reference
in MF whose type is not in LF , (3) there is not a read/write to a field not in
FF , and finally, (4) there is not an access (i.e., a call) to a method not in MF .

According to this definition, our work is applicable to library modules or
applications supporting native methods and dynamic class loading.

We use IMF ⊆ MF to denote the set of all analysed methods whose code is
available for static analysis and define EMF = MF \IMF . Although the methods
in EMF are unanalysed, their signatures are always available by Definition 1.

SF denotes the set of statements and ØF the set of compile-time objects
created in IMF , respectively. Let VF be the set of references in SF .

Let UF symbolise the unknown code, i.e., the code in EMF and outside F .
Let us define the (in)accessibility of the fields and methods in IMF with

respect to UF . A method in IMF is accessible if it can be invoked in UF and
inaccessible otherwise. A field in F is accessible if it can be accessed by some

Completeness Analysis for Incomplete Object-Oriented Programs 275

statements in UF and inaccessible otherwise. For example, a private field is
inaccessible if there does not exist any unanalysed method in the class in which
the field is declared. Fi

F denotes the set of all inaccessible fields in F .
Let F

f
F be the set of all final fields in F . In Java, final fields are initialised

only once in the initialisers or constructors in analysed methods.

3.2 Applying Whole-Program Analysis to F

We use an Andersen-style analysis [1, 9] because of its reasonable precision and
efficiency. Let PTF () be the points-to-set of a reference in VF . By convention,
we assume that PTF () = ∅ if �∈ VF . The points-to analysis requires an
approximation of the call graph for F . A call graph is the relation CF ⊆ SF ×MF

such that (s, op) ∈ CF iff s is a call site statement and op is a method that may be
a target of the call site. We use CHA (Class Hierarchy Analysis) [5] to construct
such a call graph. A more precise alternative [17] is to construct the call graph
on-the-fly as the points-to sets of call site receivers are being computed. However,
the improved precision may not justify the computational cost [9].

An analysed program F consists of only the seven different kinds of state-
ments given in Table 1. The rules for computing the points-to sets of F are:

Rule P1. If ∃ s : [= new C] ∈ SF , then {os} ⊆ PTF ().

Rule P2. If ∃ s : [= r] ∈ SF , then PTF (r) ⊆ PTF ().

Rule P3. If ∃ s : [= C.f] ∈ SF then PTF (C.f) ⊆ PTF ().

Rule P4. If ∃ s : [C.f = r] ∈ SF then PTF (r) ⊆ PTF (C.f).

Rule P5. If ∃ s : [= r.f] ∈ SF then PTF (r.f) ⊆ PTF ().

Rule P6. If ∃ s : [.f = r] ∈ SF ∧ ∃ ′.f ∈ VF s.t. PTF () ∩ PTF (′) �= ∅, i.e.,
 and ′ are aliases (with nonempty points-to sets), then PTF (r) ⊆ PTF (′.f)

Rule P7. If ∃ s : [op(a0, . . . , an,)] ∈ SF ∧∃ op(p0, . . . , pn, r) ∈ MF s.t. (s, op) ∈
CF , then PTF (a0) ⊆ PTF (p0), . . . , PTF (an) ⊆ PTF (pn) and PTF (r) ⊆ PTF ().

The points-to analysis for F consists of solving the constraints for all its
statements to determine the points-to sets of all references in the program.

3.3 Inadequacies of Whole-Program Analysis

When a whole-program points-to analysis technique is applied to an incomplete
program F , the following two assumptions are conventionally made:

– All methods in EMF are considered to have an empty body.
– The points-to sets of all formal input parameters of all methods that are

accessible (in the unknown code UF) are initialised to be empty.

276 J. Xue and P.H. Nguyen

CF

Call Site

Method

Method

Call Site
unknown code UF

Case 1

Case 2

Fig. 1. Two kinds of troublesome missing caller-callee relations in CF

Due to the lack of knowledge about UF , a reference (inside F or outside) is
said to be incomplete if its statically computed points-to set may not contain
some object pointed to at run time – such an object can be created either
inside F or outside. In addition, a call site in F may be incomplete when the
set of target methods that are statically resolved may not contain a method
that is invoked at run time – such a method is declared in the unknown code
outside F . (The methods in EMF cannot be missing since their declarations are
available.)

There are several reasons why a points-to sets can be incomplete. First, while
the call graph CF constructed using CHA over-approximates all caller-callee re-
lations within F , some relations that happen during program execution can be
missing if F is incomplete. As illustrated in Figure 1, there are two kinds of
troublesome missing caller-callee relations in CF . In Case 1, the objects passed
to an unknown method in UF can be used in an unknown way. In addition,
the type of the returned object is unknown. In Case 2, the situation is re-
versed. Second, static fields can be accessed by the unknown code UF . Third,
due to the first two reasons, instance fields can also be accessed indirectly in
UF .

Finally, if some points-to sets are incomplete, the alias relations captured by
Rule P6 may also be incomplete. This is because and ′ can still be aliases even
if PTF () ∩ PTF (′) = ∅. So Rule P6 needs to be augmented later by Rule C6.

3.4 Completeness Analysis (CA)

In the previous section, we argued that whole-program analysis is inadequate
if the analysed program is incomplete. In this section, we present a technique,
called completeness analysis (CA), to detect which points-to sets and call sites
may be incomplete and which compile-time objects may be missing (i.e., incom-
pletely detectable) in some points-to sets. Our approach is compositional. By
combining with a whole-program points-to analysis technique, our completeness
analysis also produces at the same time the points-to sets with better precision
(Theorem 1).

Our approach is flow- and context-insensitive. If an analysed program F is not
incomplete, Rules P1 – P7 given in Section 3.2 are sufficient. Otherwise, we rely
on Rules C1 – C9, which are introduced in Section 3.4, to carry out the so-called
completeness analysis. By applying both sets of rules to an incomplete program
F and solving the derived constraints for all the statements in F iteratively, the
desired results are found as a fixed point to these constraints.

Completeness Analysis for Incomplete Object-Oriented Programs 277

3.4.1 Completeness; Detectability; Aliases

Let P(F) be the set of all possible programs that include F as a subset. Let
W ∈ P(F). Let MW be the set of methods in the program W and VW the
set of the reference variables in MW . The following two concepts are defined
conceptually (but not physically constructed). Let PTW () be the points-to set
of ∈ VW observed during program execution. Let CW be the call graph of W
also observed during program execution.

To determine which objects may be missing in some points-to sets and which
references may have such points-to sets, the following notions are introduced.

Definition 2. An object o ∈ ØF is incompletely detectable if ∃ W ∈ P(F) such
that

– ∃ ∈ VF : o ∈ PTW () \ PTF (), or
– ∃ ∈ VW \ VF : o ∈ PTW ().

and (completely) detectable otherwise. A reference ∈ VF is incomplete if ∃ W ∈
P(F) such that PTW () \ PTF () �= ∅ and complete otherwise. Every reference
 ∈ VW \ VF in every program W ∈ P(F) is incomplete, i.e., every reference
 �∈ VF is incomplete.

Recall the convention that PTF () = ∅ if �∈ VF . Therefore, an object in
ØF is incompletely detectable if it may be pointed to by a reference (inside
F or outside) at run time but is missing in its statically computed points-to
set. A reference (inside F or outside) is incomplete if it may point to an object
at run time such that the object is missing in its points-to set. Note that a
complete reference may or may not include incompletely detectable objects in
its points-to set.

To find out the missing caller-callee pairs (s, op) in the call graph CF ⊆
SF ×MF (built statically), the notion of incomplete call site is introduced below.
Essentially, a call site in F is incomplete if its set of statically resolved target
methods does not include a method that may be invoked at run time.

Definition 3. If ∃ W ∈ P(F) ∧ ∃ s ∈ SF ∧ ∃ op ∈ MW s.t. (s, op) ∈ (CW \ CF),
then s is said to be an incomplete call site and complete otherwise.

We discussed earlier that the points-to sets computed for an incomplete pro-
gram is insufficient to determine all the alias relations. The notions of refer-
ence completeness and object detectability are used below to provide an over-
approximation of all missing aliases.

Definition 4. Let and ′ be two references in W ∈ P(F). Both are aliases,
denoted C-Alias(, ′), if is incomplete and ′ is either incomplete or complete
with its points-to set containing at least one incompletely detectable object, or
vice versa.

According to the above definition, C-Alias(,) is true iff is incomplete.

278 J. Xue and P.H. Nguyen

3.4.2 Rules

Let Oi, Ri and Si be the set of incompletely detectable objects, incomplete
references and incomplete call sites in an incomplete program F , respectively.
Rules C1 – C9 for computing these sets are introduced below. In each rule,
the statements or field accesses (among others) to which the rule is applied is
indicated. There are no extra rules for object creation statements = new C,
where C is a known class in F , and for assignment statements since they are
covered by Rules P1 and P2.

Rule C1 (s : [= new Unknown]). os ∈ Oi, where os is the object created at s.

In the following two rules for static fields, the corresponding access and mod-
ification properties are used to determine whether they are applicable.

Rule C2 (C.f = r). If f �∈ Fi
F , then PTF (r) ⊆ Oi.

As f �∈ Fi
F , there may exist a static load = C.f in the unknown code UF ,

where �∈ VF , i.e., ∈ VW \VF for some W ∈ P(F). By Rule P4, C.f will point
to the objects pointed to by r. But these objects may be assigned to in UF . By
Definition 2, the objects that r points to are marked as incompletely detectable.

Rule C3 (C.f). If f �∈ (Fi
F ∪ F

f
F), then C.f ∈ Ri.

If f �∈ (Fi
F ∪F

f
F), there may exist a static store C.f = r in the unknown code

UF , where r �∈ VF . The objects pointed to by r may not appear in the points-to
set of C.f when F is analysed. By Definition 2, C.f is incomplete.

If the access and modification properties of instance fields were ignored, the
following two rules would be sufficient for handling instance field loads and stores.
We discuss them first in order to motivate Rules C4 – C6 used in our analysis.

Rule S1 (.f). If ∈ Ri ∨ PTF () ∩ Oi �= ∅, then .f ∈ Ri.

Rule S2 (.f = r). If ∈ Ri ∨ PTF () ∩ Oi �= ∅, then PTF (r) ⊆ Oi.

If the access and modification properties of f are ignored, we must assume
conservatively the existence of an instance field access ′.f in the unknown code
UF , where ′ �∈ VF . If ∈ Ri∨PTF ()∩Oi �= ∅, then C-Alias(, ′) may hold, i.e.,
 and ′ are potentially aliases. However, when F is analysed as a whole program,
PTF () ∩ PTF (′) = ∅ is possible. In this case, Rule P6 will not be applied. We
need Rule S1 for the following reason. If there exists a store ′.f = r in UF , the
pointed-to objects by r may not belong to the points-to set of .f . By Definition
2, .f is incomplete. We need Rule S2, because if there exists a load into ′.f in
UF , then all the objects pointed by r may be incompletely detectable.

By exploiting the access and modification properties of instance fields, we
have relaxed the assumption about the always existence of of a field access ′.f
in the unknown code UF . Rules S1 and S2 are replaced by Rules C4 – C6.

Rule C4 (.f). If f �∈ (Fi
F ∪ F

f
F) ∧ (∈ Ri ∨ PTF () ∩ Oi �= ∅), then .f ∈ Ri.

Completeness Analysis for Incomplete Object-Oriented Programs 279

Rule C5 (.f = r). If f �∈ Fi
F ∧ (∈ Ri ∨PTF ()∩Oi �= ∅), then PTF (r) ⊆ Oi.

Rule C6 (.f = r). If f ∈ (Fi
F ∪ F

f
F) ∧ ∃ ′.f ∈ VF s.t. C-Alias(, ′) holds,

then PTF (r) ⊆ PTF (′.f).

Rule C4 is refined from Rule S1 since it is applied only when there may be
an instance field store ′.f = r in the unknown code UF . Rule C5 is refined from
Rule S2 since it is applied only when there may be an instance field access ′.f in
UF . In this case, the objects pointed to by ′.f may be incompletely detectable
since they can be assigned to a reference in UF . Rule C6 is applied only when
′.f ∈ VF holds. In this case, there cannot be any store of the form ′.f = r in
UF . If and ′ are aliases, then a store to ′.f is also a store to .f in disguise.
Rule C6 is the rule in completeness analysis that enables better points-to sets
to be computed. In this rule, = ′ is possible. So the rule will be applied if is
incomplete, since by Definition 4, C-Alias(,) is true iff is incomplete.

Rule C7 (s : [op(a0, . . . , an,)] for Case 1 in Figure 1). There are three
parts:

1. Suppose s is a non-fixed call site. If a0 ∈ Ri ∨ (PTF (a0) includes an instance
of Unknown), then s ∈ Si.

2. If s ∈ Si, then PTF (a1), . . . ,PTF (an) ⊆ Oi and ∈ Ri.
3. If there exists (s, op) ∈ CF such that op ∈ EMF , then

(a) PTF (a1), . . . ,PTF (an) ⊆ Oi and ∈ Ri, and
(b) A0 ⊆ Oi, where A0 is the set of all receiver objects in PTF (a0) on which

op is invoked at s (A0 can be statically determined from PTF (a0)).

Part 1 determines whether a call site is incomplete or not. As discussed in
Section 2, a fixed call site is complete since its set of target methods can be
statically resolved. Under the stated conditions, an overriding method in a class
outside F may be invokable at s. Such a caller-callee relation is not available in
the call graph CF . Thus, s is incomplete by Definition 3. Clearly, s is incomplete
if a0 is incomplete or complete but may point to an instance of Unknown.

Part 2 applies to a call site at which an unknown method op outside F may be
invoked. The objects pointed to by a1, . . . , an may be missing in the points-to sets
of the corresponding formal input parameters of op, and thus, are incompletely
detectable. The receiver a0 is excluded since it is the incompleteness of a0 rather
than the nature of its pointed-to objects that causes op to be invoked at s. The
actual output parameter is incomplete since its points-to set may not include
the object returned by the unknown method op.

Part 3 applies to a call site at which an unknown method op in EMF may
be invoked. Therefore, Part 3(a) is exactly the same as Part 2. In Part 3(b),
the receiver objects that cause op to be invoked are marked as incompletely
detectable since they may be assigned to some unknown references in op.

Rule C8 (op(p0, p1, . . . , pn, r) ∈ MF for Case 2 in Figure 1). If op is acces-
sible (i.e., invokable) in UF , then p0, , . . . , pn ∈ Ri and PTF (r) ⊆ Oi.

280 J. Xue and P.H. Nguyen

If op is accessible, there may exist a call site s : [op(a0, . . . , an,)] in UF .
The effect of the assignments due to parameter and result passing cannot be
considered when F is analysed. Thus, the points-to sets of pi and cannot contain
the objects in the points-to sets of ai and r, respectively. Hence, p0, . . . , pn are
incomplete and all objects pointed to by r are incompletely detectable.

Rule C9 (PTF (r)⊆PTF (r′) Created by Rules P1 – P7 and C6). If r ∈ Ri,
then r′ ∈ Ri.

The incompleteness of points-to sets is propagated during the points-to anal-
ysis. If r is incomplete, a missing object in its points-to set is also missing in the
points-to set of r′ when PTF (r) ⊆ PTF (r′). So r′ is incomplete by Definition 2.

As explained in Section 3.4, we combine Rules P1 – P7 and C1 – C9 to
compute not only the points-to sets of all references but also the information
about the completeness of references and call sites as well as object detectability.

Thanks to Rule C6, such a compositional approach enables better points-to
sets to be computed. Essentially, a reference may be accurately identified as
being complete even though it is incomplete if Rule C6 is not used.

Theorem 1. Let r be a reference in F . Let PTF (r) be the points-to set of r
computed according to CA. Let PT ′

F (r) be computed according to CA′, i.e., a
version of CA in which C4 – C6 are replaced by S1 and S2. The following two
statements are true: (a) if r is complete in CA′, then r is also complete in CA,
and in addition, PTF (r) = PT ′

F (r), (b) if r is incomplete in CA′, then r may
be complete or incomplete in CA, and in addition, PTF (r) ⊇ PT ′

F (r).

4 Experiments

In this section, we provide experimental evidence that completeness analysis can
yield better precision when the field access and modification properties are ex-
ploited. We have implemented our completeness analysis in Soot [19], a bytecode
to bytecode optimiser. In Soot, only whole-program analyses and optimisations
are supported. A preprocessing translator converts Java bytecode into a three-
address IR called Jimple. The points-to sets for an analysed program are com-
puted using the points-to analysis pass in Soot [9]. We have implemented our
completeness analysis by composing it with this existing points-to analysis.

Due to the space limitation, we discuss briefly how we have handled some
other Java language features not present in Table 1. Java exceptions are dealt
with as follows. All formal input parameters of a catch statement are initialised
to be incomplete. All objects that may be thrown by a throw statement are
marked as incompletely detectable objects. Reflection methods are treated as
native ones with some extra rules. For example, all fields that may be accessed
by get or set are considered as accessible fields. We do not address the Java
class reloading since it may potentially modify code on-the-fly and so could affect
our assumptions about the analysed program. We also assume that all native
methods respect the access and modification properties of fields and methods.

Completeness Analysis for Incomplete Object-Oriented Programs 281

In our experiments, three approaches are compared: CA, CA0 and EA. CA
denotes our complete analysis technique. CA0 is the version of CA when the
field modifiers are ignored. Precisely, the following changes are made to our
rules. Rules C4 – C6 are replaced by Rules S1 and S2 and Rule C2 – C3 by:

Rule S3 (C.f = r). PTF (r) ⊆ Oi.

Rule S4 (C.f). If f �∈ F
f
F , then C.f ∈ Ri.

The extant analysis1 (EA) [16] can be used for completeness analysis even
though it was originally designed for inlining and devirtualisation. EA is chosen
because it is applicable to incomplete Java programs and can also be carried out
based on the same kind of points-to analysis, i.e., flow- and context-insensitive
Andersen-style points-to analysis. In EA, an extant reference is complete while
a non-extant reference is incomplete. A call site is complete if its receiver is
complete and incomplete otherwise. EA cannot handle object detectability since
their extant or non-extant objects can be completely or incompletely detectable.

4.1 Benchmarks

Table 2 gives some statistics about the 12 benchmarks used in our experiments.
The first seven are from SPECjvm98, jbb is from SPECjbb2000, jlex is a Java
scanner generator from Princeton University, jtar is GNU’s tar ported to Java
(version 1.21), jtb is a Java tree builder from Purdue University (version 1.2.2),
and finally, soot (version 2.0.1) is the Java bytecode-to-bytecode optimiser [19],
in which our completeness analysis is implemented.

In our experiments, the analysed program for a benchmark consists of all
classes in the application and the classes in Java library reachable statically
from the application. The analysis starts with the methods in these classes that
may be invoked from outside and continues to analyse the methods that may
be reachable statically from these methods. All packages in a benchmark are
assumed to be sealed [18]. For each benchmark (including application and library
code), Columns 2 – 4 give the total number of its classes, methods and fields
and Columns 5 – 8 summarise the access and modification information about
its fields. These statistics show convincingly the existence of opportunities for
completeness analysis to exploit the field modifiers for better analysis precision.

4.2 Analysis Precision

Table 3 compares CA, CA0 and EA in finding complete points-to sets, call
sites and detectable objects in the application part of a benchmark. In all the
benchmarks, CA is more precise than CA0, which is more precise than EA.

CA performs better than CA0 because CA fully exploits the field modifiers
in Rules C2 – C6 while CA0 considers only the final modifier in Rule S4. As

1 We do not make the optimistic assumptions as in [16] and ignore all fixed call sites
(defined in Section 2) in Tables 3 and 4 since they can all be resolved statically.

282 J. Xue and P.H. Nguyen

Table 2. Java Applications

Benchmark Classes Methods
Fields

Total
Inaccessible Final

Static Instance Static Instance
compress 2059 21563 5245 730 1647 1865 491
jess 2201 22226 5314 732 1699 1862 488
db 2051 21563 5229 727 1634 1862 488
javac 2225 22764 5491 730 1799 1928 488
mpegaudio 2104 21896 5364 770 1724 1896 488
mtrt 2073 21699 5265 728 1669 1862 488
jack 2104 21844 5301 731 1666 1864 490
jbb 2158 22677 5736 913 1888 1989 491
jlex 652 6345 1571 325 662 492 142
jtar 2132 22092 5560 911 1746 2035 495
jtb 785 7926 2012 361 723 540 141
soot 2459 20062 3842 374 2290 644 491
total 23003 232657 55930 8032 19147 18839 5181

Table 3. Benefits from exploiting field access and modification modifiers

Benchmark
Points-to sets Objects Non-fixed call sites

Total
Complete

Total
Completely
detectable Total

Complete

EA CA0 CA CA0 CA EA CA0 CA
compress 205 4 46 106 24 5 23 11 3 3 3
jess 4685 152 1176 1679 458 37 78 677 23 92 235
db 353 29 91 164 23 8 13 140 36 38 84
javac 9437 123 1604 2045 808 44 109 1932 40 143 288
mpegaudio 2876 4 1435 2404 1040 1 1013 37 0 0 3
mtrt 1330 75 284 516 128 22 35 868 118 156 195
jack 2848 49 938 1469 218 16 41 851 13 98 498
jbb 10222 522 2341 3389 577 166 266 2521 152 222 629
jlex 2532 1633 2038 2169 184 77 91 553 452 484 486
jtar 3123 273 1177 1770 272 45 73 483 66 197 303
jtb 11780 176 2888 3192 820 25 77 2676 253 609 772
soot 81762 2501 13011 21369 5631 484 1080 25987 1080 2313 6176
total 131153 5541 27029 40272 10183 930 2899 36736 2236 4355 9672

shown in Table 2, a benchmark typically has a significant number of fields that
are inaccessible by the unknown code and/or that embrace the final modifier.
Taking advantage of their existence has resulted in more accurate analysis. Com-
pared to CA0, CA has found 49.0% more complete points-to sets, 122.1% more
complete call sites and 211.7% more detectable objects overall.

In EA, all the field modifiers are ignored. CA0 performs better than EA
mainly due to the fact that CA0 distinguishes completely from incompletely
detectable objects while EA does not. As a result, CA0 has succeeded in clas-
sifying many non-extant references as complete references. The exploitation of

Completeness Analysis for Incomplete Object-Oriented Programs 283

Table 4. A comparison of analysis techniques in determining mono call sites

Benchmark EA CA0
CA

Increase over EA(%) Increase over CA0 (%)
compress 3 3 3 0.0 0.0
jess 23 92 235 921.7 155.4
db 36 38 83 130.6 118.4
javac 40 143 243 507.5 69.9
mpegaudio 0 0 3 n/a n/a
mtrt 118 156 195 65.3 25.0
jack 10 95 489 4790.0 414.7
jbb 152 220 623 309.9 183.2
jlex 452 484 484 7.1 0.0
jtar 66 197 303 359.1 53.8
jtb 253 609 772 205.1 26.8
soot 1080 2295 5928 448.9 158.3
total 2233 4332 9361 319.2 116.1

the final modifier in Rule S4 contributes about 4.0% and 0.1% to the improved
precisions of CA0 in determining complete points-to sets and call sites, respec-
tively. The concept of object detectability has other applications. For example, it
has helped us in developing an interprocedural side-effect analysis for incomplete
programs, which cannot be discussed here due to the space limitation.

The knowledge about whether a call site is complete or not can be exploited
in a number of ways. A complete call site is a call site whose targets are guaran-
teed to be in the analysed program. Some compiler optimisations can be applied
to complete call sites. A complete call site that has a unique target can be de-
virtualised or inlined without any test (Section 4.3). In addition, some complete
call sites such as invokeinterface can be virtualised or annotated to eliminate
unnecessary dynamic type checks associated with them.

4.3 Mono Call Sites

A call site is a mono call site if it has a unique target method. These call
sites can be devirtualised or inlined safely without any runtime tests. Table
4 compares CA, CA0 and EA in detecting the mono call sites from among the
set of the non-fixed call sites in the application part of each benchmark. CA has
detected significantly more mono call sites than CA0 and EA. CA improves EA
by 319.2% overall. By exploiting the field modifiers, CA performs as well as CA0
in compress and jlex and outperforms CA0 in all the remaining benchmarks,
resulting in a total increase of 116.1% in analysis precision.

4.4 Analysis Costs

Our experiments are conducted on a 2.4GHz Intel Xeon PC with 2GB memory.
Figure 2 gives both the time and memory overheads of the points-to analysis
and completeness analysis combined relative to the points-to analysis alone. The

284 J. Xue and P.H. Nguyen

-2

0

2

4

6

8

10

A
n

al
ys

is
 T

im
e

In
cr

ea
se

 (
%

)

co
m

pre
ss

jes
s db

jav
ac

m
peg

au
dio

m
trt

jac
k

jb
b

jle
x

jta
r jtb

so
ot

to
ta

l

Time Memory

Fig. 2. Analysis costs of completeness analysis relative to the points-to analysis alone

analysis time for jlex has decreased slightly and that for jtb remains unchanged.
The analysis times for the remaining benchmarks range from 3.4% (for db) to
9.1% (for soot). The overall time increase for all the benchmarks is 6.2%. Due
to Rule C6, the number of iterations required for constructing some point-set
sets can be reduced. The memory overheads for all the benchmarks are small,
ranging from 3.9% and 7.3%. The overall memory increase is only 5.9%.

5 Related Work

Many points-to analysis techniques exist for object-oriented programs but there
is little work done when these programs are incomplete. However, points-to anal-
ysis for incomplete programs in imperative languages has been studied [7, 15].

Rountev et al. [14] study points-to analysis for incomplete Java programs in
order to detect receiver types. Their approach works by creating placeholders
that serve as representatives for unknown code. A limitation of this work is that
dynamic class loading is not permitted. Chatterjee et al. [3] present a points-
to analysis for library modules in order to find def-use relations. The analysis
evaluates a parameterised points-to solution for each method and propagates
conservative assumptions about the clients of the library in a top-down manner.
A limitation of this approach is that it does not examine the effects of threads.

Extant analysis [16] is designed for the purposes of specialising Java programs
in the presence of dynamic class loading. The technique partitions the references
of a program into two categories: (unconditionally) extant references when they
only point to the objects whose runtime types are in the analysed program and
conditionally extant (i.e., non-extant) references otherwise. Our experimental re-
sults show that our completeness analysis yields more precise information about
the completeness of points-to sets and call sites.

Escape analysis [2, 4, 20, 21] detects the objects that never escape out of a
method or thread. An object escapes a method if its lifetime may exceed the
lifetime of that method. An object that does not escape a method can be possibly
allocated on the method’s stack frame. If an object does not escape a thread, no
other threads can access the object. The synchronisation operations associated
with the object can be eliminated. For these reasons, if o is an escaped object, so
will the objects pointed to by o.f . This facilitates the above two optimisations.
However, in completeness analysis, if o is incompletely detectable, the objects
pointed to by o.f may be completely or incompletely detectable. Therefore, an

Completeness Analysis for Incomplete Object-Oriented Programs 285

incompletely detectable object is an escaped object but the converse is not true.
So our object detectability analysis is different from escape analysis.

Some dynamic points-to analysis techniques for Java [8, 10, 12] restrict them-
selves only to the classes loaded during program execution. They do not deter-
mine the completeness of points-to sets. As a result, the analysis and optimisa-
tion techniques that make use of the points-to information may require runtime
invalidation and recompilation mechanisms, which can hurt performance.

None of these above approaches exploit the access and modification properties
of fields when computing points-to sets. These properties are, however, exploited
in other kinds of analyses. Immutability analysis [11] is a technique for detecting
mutability of fields and classes in a Java program. Field analysis [6] exploits the
declared access restrictions placed on fields in order to determine such useful
properties of these fields as exact type, nonnull, may leak and only init.

6 Conclusion
In this paper, we describe a framework for points-to analysis and optimisation
for incomplete object-oriented programs. As an analysed program is incomplete,
some of its points-to sets and call sites may be incomplete. We present an com-
pleteness analysis technique combined with a whole-program points-to analysis
to determine which points-to sets (call sites) may be incomplete in the sense that
their pointed-to objects (target methods) are not statically resolvable. We intro-
duce the notion of object detectability and show how such an information can
be obtained as part of the completeness analysis. To the best of our knowledge,
this is the first work that exploits the field access and modification properties in
performing completeness analysis for incomplete object-oriented Java programs.
We demonstrate by experiments that such an exploitation leads to better analy-
sis precision. Our approach is compositional, which enables better points-to sets
to be computed than those obtained when the points-to analysis is applied alone.

In this paper, completeness analysis is combined with a flow- and context-
insensitive points-to analysis. One future work is to extend our approach to
accommodate other kinds of points-to analyses. Another future work is to exploit
type-based alias analysis to improve the precision of the results.

References

1. Lars Ole Andersen. Program Analysis and Specialization for the C Programming
Language. PhD thesis, DIKU, University of Copenhagen, May 1994.

2. Bruno Blanchet. Escape analysis: Correctness proof, implementation and exper-
imental results. In 25th Annual ACM Symposium on Principles of Programming
Languages, pages 25–37, January 1998.

3. Ramkrishna Chatterjee and Barbara G.Ryder. Data-flow-based testing of object-
oriented libraries. Technical Report 433, Rutgers University, 2001.

4. Jong-Deok Choi, Manish Gupta, Mauricio J. Serrano, Vugranam C. Sreedhar, and
Samuel P. Midkiff. Escape analysis for Java. In 14th ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages and Applications, pages 1–
19, November 1999.

286 J. Xue and P.H. Nguyen

5. Jeffrey Dean, David Grove, and Craig Chamber. Optimization of object-oriented
programs using static class hierarchy analysis. In 5th European Conference on
Object-Oriented Programming, volume 952, pages 77–101. Springer, Aug. 1995.

6. Sanjay Ghemawat, Keith H. Randall, and Daniel J. Scales. Field analysis: Getting
useful and low-cost interprocedural information. In ACM SIGPLAN ’00 Confer-
ence on Programming Language Design and Implementation, June 2000.

7. Mary Jean Harrold and Gregg Rothermel. Separate computation of alias informa-
tion for reuse. IEEE Transaction on Software Engineering, 22(7):442–460, 1996.

8. Martin Hirzel, Amer Diwan, and Michael Hind. Pointer analysis in the presence of
dynamic class loading. In 18th European Conference on Object-Oriented Program-
ming, June 2004.

9. Ondřej Lhoták and Laurie Hendren. Scaling Java points-to analysis using Spark. In
12th International Conference on Compiler Construction, volume 2622 of LNCS,
pages 153–169, Warsaw, Poland, April 2003. Springer.

10. Igor Pechtchanski and Vivek Sarkar. Dynamic optimistic interprocedural analysis:
a framework and an application. In 16th ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages and Applications, October 2001.

11. S. Porat, M. Biberstein, L. Koved, and B. Mendelson. Automatic detection of
immutable fields in Java. In Proceedings of CASCON 2000, 2000.

12. Feng Qian and Laurie Hendren. Towards dynamic interprocedural analysis in
JVMs. In 3rd ACM SIGPLAN Symposium on Virtual Machine Research and Tech-
nology, May 2004.

13. Atanas Rountev, Ana Milanova, and Barbara G. Ryder. Points-to analysis for
Java based on annotated constraints. Technical Report DCS-TR-424, Rutgers
University, November 2000.

14. Atanas Rountev, Ana Milanova, and Barbara G. Ryder. Fragment class analysis
for testing of polymorphism in java software. In 25th International Conference on
Software Engineering, May 2003.

15. Atanas Rountev and Barbare G. Ryder. Practical points-to analysis for programs
built with libraries. Technical Report 410, Rutgers University, February 2000.

16. Vugranam C. Sreedhar, Michael Burke, and Jong-Deok Choi. A framework for
interprocedural optimization in the presence of dynamic class loading. In ACM
SIGPLAN ’00 Conference on Programming Language Design and Implementation,
pages 196–207, June 2000.

17. M. Streckenbach and G. Snelting. Points-to for Java: A general framework and an
empirical comparison. Technical report, University Passau, November 2000.

18. Sun Microsystems. Java 2 software development kit version 1.2.2, July 1999.
19. Raja Vallée-Rai, Laurie Hendren, Vijay Sundaresan, Patrick Lam, Eti-

enne Gagnon, and Phong Co. Soot: a java optimization framework.
http://www.sable.mcgill.ca/soot, 1999.

20. Frédéric Vivien and Martin C. Rinard. Incrementalized pointer and escape anal-
ysis. In ACM SIGPLAN ’01 Conference on Programming Language Design and
Implementation, pages 35–46, June 2001.

21. John Whaley and Martin Rinard. Compositional pointer and escape analysis for
Java programs. In 14th ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages and Applications, pages 187–206, November 1999.

22. Ayal Zaks, Vitaly Feldman, and Nava Aizikowitz. Sealed calls in Java packages.
In 15th ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages and Applications, October 2000.

Using Inter-Procedural Side-Effect Information
in JIT Optimizations�

Anatole Le, Ondřej Lhoták, and Laurie Hendren

Sable Research Group, McGill University, Montreal, Canada
{ale44,olhotak,hendren}@sable.mcgill.ca

Abstract. Inter-procedural analyses such as side-effect analysis can provide in-
formation useful for performing aggressive optimizations. We present a study of
whether side-effect information improves performance in just-in-time (JIT) com-
pilers, and if so, what level of analysis precision is needed.

We used SPARK, the inter-procedural analysis component of the SOOT Java
analysis and optimization framework, to compute side-effect information and en-
code it in class files. We modified Jikes RVM, a research JIT, to make use of
side-effect analysis in local common sub-expression elimination, heap SSA, re-
dundant load elimination and loop-invariant code motion. On the SpecJVM98
benchmarks, we measured the static number of memory operations removed, the
dynamic counts of memory reads eliminated, and the execution time.

Our results show that the use of side-effect analysis increases the number of
static opportunities for load elimination by up to 98%, and reduces dynamic field
read instructions by up to 27%. Side-effect information enabled speedups in the
range of 1.08x to 1.20x for some benchmarks. Finally, among the different levels
of precision of side-effect information, a simple side-effect analysis is usually
sufficient to obtain most of these speedups.

1 Introduction

Over the past several years, just-in-time (JIT) compilers have enabled impressive im-
provements in the execution of Java code, mainly through local and intra-procedural
optimizations, speculative inter-procedural optimizations, and efficient implementation
techniques. However, JITs do not generally make use of whole-program analysis infor-
mation, such as conservative call graphs, points-to information, or side-effect informa-
tion, because it is too costly to compute it each time a program is executed. However,
all non-trivial data types in Java are objects always accessed through indirect references
(pointers), so one would expect optimizations using side-effect information to enable
significant further improvements in performance of Java programs.

The purpose of the study presented in this paper is to answer two key questions.
First, is side-effect information useful for the optimizations performed in a modern JIT,
and can it significantly improve performance? Second, what level of precision of the
side-effect information and the underlying analyses used to compute it is required to
obtain these performance improvements?

� This work was supported, in part, by NSERC and FQRNT.

R. Bodik (Ed.): CC 2005, LNCS 3443, pp. 287–304, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

288 A. Le, O. Lhoták, and L. Hendren

To study these questions, we implemented a system consisting of an ahead-of-
time inter-procedural side-effect analysis, whose result is communicated to a modi-
fied JIT containing optimizations that we adapted to take advantage of the side-effect
information.

We implemented the side-effect analyses using the SPARK [16, 15] points-to anal-
ysis framework, a part of the SOOT [29] bytecode analysis, optimization, and anno-
tation framework. The side-effect analysis makes use of points-to and call graph in-
formation computed by SPARK. The resulting side-effect information is encoded in
class file attributes for use by the JIT using the annotation framework [21] included in
SOOT.

We chose Jikes RVM [2] as the JIT for our study, and made several modifications
to it. First, we added code to read in the side-effect information produced in our anal-
ysis. We then modified several analyses and optimizations to take advantage of the
information, including local common subexpression elimination, heap array SSA con-
struction, redundant load elimination, and loop-invariant code motion. Finally, we in-
strumented Jikes RVM both to count the static opportunities for performing optimiza-
tions, and to insert instrumentation code to measure the dynamic effects of the improved
optimizations.

The contributions of this paper are the following:

– This is the first published presentation of the side-effect analysis that we have
implemented in SOOT using points-to and call graph information computed by
SPARK.

– To our knowledge, this is the first study of the run-time performance improvements
obtainable by taking advantage of side-effect information in a range of optimiza-
tions in a Java JIT.

– We present empirical evidence that the availability of side-effect information in a
Java JIT can enable significant performance improvements of up to 20%.

– We show that although precise analyses provide significantly more optimization
opportunities when counted statically, most of the dynamic improvement is ob-
tainable even with relatively simple, imprecise analyses. In particular, a side-effect
analysis based on a call graph constructed using an inexpensive Class Hierarchy
Analysis (CHA) already provides a very significant improvement over not having
any side-effect information at all. This confirms what has been observed on other
languages such as Modula-3 and C.

The remainder of this paper is organized as follows. Section 2 is devoted to our
side-effect analysis in SOOT, the call graph and points-to analyses that it depends on,
issues with encoding its result in class file attributes, and the precision variations with
which we experimented. In Section 3, we describe how we modified the optimizations
in Jikes RVM to take advantage of side-effect information. In Section 4, we present
the benchmarks that we used, our experiments, and our empirical results. We discuss
related work in Section 5, and we conclude with Section 6.

Using Inter-Procedural Side-Effect Information in JIT Optimizations 289

2 Side-Effect Analysis in Soot

We implemented side-effect analysis in SOOT [29], a framework for analyzing, opti-
mizing, and annotating Java bytecode. The side-effect analysis depends on two other
inter-procedural analyses, call graph construction and points-to analysis. We describe
how we construct a call graph in Section 2.1. An important difference from most other
work on call graph construction is that to obtain a conservative side-effect analysis,
we need to ensure that our call graph includes all methods invoked, including those
invoked implicitly by the Java VM. In Section 2.2, we briefly explain the output of
SPARK, our points-to analysis framework [16,15]. Section 2.3 explains how we put the
information from these two analyses together and produce side-effect information. In
Section 2.4, we briefly note some issues with encoding the side-effect analysis results
in class file attributes to communicate them to the JIT. Finally, in Section 2.5, we de-
scribe how variations in the precision of the call graph and points-to analyses affect the
side-effect information.

2.1 Call Graph Construction

To perform an inter-procedural analysis on a Java program, information about the pos-
sible targets of method calls is required. This information is approximated by a call
graph, which maps each statement s to a set cg(s) containing every method that may
be called from s. Constructing a call graph for a Java program is complicated by the
fact that most calls in Java are virtual, so the target method of the call depends on the
run-time type of the receiver object.

In our study, we compared two different methods of computing call graphs. First,
we computed call graphs using Class Hierarchy Analysis (CHA) [8], an inexpensive
method which considers only the static type of each receiver object, and does not require
any inter-procedural analysis. Second, we used a points-to analysis (discussed in the
next section) to compute the run-time types of the objects that the receiver of each call
site could point to, and we determined the target method that would be invoked for each
run-time receiver type.

Several important, but subtle, details of the Java virtual machine (VM) complicate
the construction of a conservative call graph suitable for side-effect analysis. In a Java
program, methods may be invoked not only due to explicit invoke instructions, but also
implicitly due to various events in the VM. Whenever a new class is first used, the
VM implicitly calls its static initialization method. The set of events that may cause
a static initialization method to be called is specified in [17, section 2.17.4]. In our
analysis, we assume that any of these events could cause the corresponding static ini-
tialization method to be invoked. Each static initialization method is executed at most
once in a given run of a Java program. Therefore, we use an intra-procedural flow-
sensitive analysis to eliminate spurious calls to static initialization methods which must
have already been called on every path from the beginning of the method. In addition,
the standard class library often invokes methods using the doPrivileged methods
of java.security.AccessController. Our analysis models these with calls
of the run method of the argument passed to doPrivileged. Methods may also
be invoked using reflection. In general, it is not possible to determine statically which

290 A. Le, O. Lhoták, and L. Hendren

methods will be invoked reflectively, and our analysis only issues a warning if it finds a
reachable call to one of the reflection methods. However, calls to the newInstance
method of java.lang.Class are so common that they merit special treatment. This
method creates a new object and calls its constructor. In our analysis, we conservatively
assume that any object could be created, and therefore any constructor with no param-
eters could be invoked.

To partially verify the correctness of the computed call graph, we instrumented the
code to ensure that all methods that are executed at run time were included in the call
graph and reachable from the entry points. To do this, we computed the set of methods
that are not reachable from the entry points through the call graph, and modified them
to abort the execution of the benchmark if they do get invoked at run time. Although
this does not prove that every possible run-time call edge is included in the computed
call graph, it does guarantee that every executed method is considered in call graph
construction. To further check that our overall optimizations were conservative on the
benchmarks studied, we verified that the benchmarks produced identical output in all
configurations, including with the optimizations disabled.

2.2 Points-to Analysis

We use the SPARK [16, 15] points-to analysis framework to compute points-to infor-
mation. For each pointer p in the program, it computes a set pt(p) of objects to which
it may point. The most common kind of pointer is a local variable of reference type
in the Jimple representation of the code. Local variables appear in field read and write
instructions as pointers to the object whose field is to be read or written, and in method
invocation instructions as the receiver of the method call, which determines the method
to be invoked. In addition, pointers are introduced to represent method arguments and
return values, static fields, and special values needed in simulating the effects on point-
ers of native methods in the standard class library. Typically, an object is an allocation
site; we model all run-time objects created at a given allocation site as a single entity. In
addition, we must include special objects for run-time objects without an allocation site,
such as objects created by the VM (the argument array to the main method, the main
thread, the default class loader) and objects created using reflection. For some of these
special objects, we may not know the exact run-time type. Therefore, we conservatively
assume that their run-time type may be any subtype of their declared type.

SPARK performs a flow-insensitive, context-insensitive, subset-based points-to anal-
ysis by propagating objects from their allocation sites through all pointers through
which they may flow. SPARK has many parameters for experimenting with variations
of the analysis that affect analysis efficiency and precision. In this study, we experi-
mented with four points-to analysis variations. We explain the variations in more detail
in Section 2.5.

2.3 Side-Effect Analysis

The side-effect analysis consists of two steps, which are discussed in this section. First,
we compute a read and write set for each statement. Second, we use the read and write
sets to compute dependencies between all pairs of statements within each method.

Using Inter-Procedural Side-Effect Information in JIT Optimizations 291

For each statement s, we compute sets read(s) and write(s) containing every static
field s f read (written) by s, and a pair (o, f) for every field f of object o that may be read
(written) by s. These sets also include fields read (written) by all code executed during
execution of s, including any other methods that may be called, directly or transitively.
The read and write sets are computed in two steps. In the first step, we compute only the
direct read and write sets for each statement in the program, ignoring any code that may
be called from the statement. The result of the points-to analysis is used to determine the
possible objects being pointed to by the pointer in each field read or write instruction.
In the second step, we continually aggregate the read and write sets of each method and
propagate them to all call sites of the method, until a fixed-point is reached. During the
propagation, the call graph is used to determine the call sites of each method.

Once the read and write sets for all statements have been computed, for each method,
we compute an interference relation between all the read and write sets in the method.
Two sets interfere if they have a non-empty intersection. From the interference rela-
tion on read and write sets, we construct four dependence relations between statements
(read-read dependence, read-write dependence, write-read dependence, write-write de-
pendence). For example, there is a read-write dependence between statements s1 and
s2 if the read set of s1 and the write set of s2 interfere. It is the dependences between
statements that we encode in class files for the JIT to use in performing optimizations.

2.4 Encoding Side-Effects in Class File Attributes

All of the analyses described in the preceding sections are performed on Jimple, the
three-address intermediate representation (IR) used in SOOT. In order to communicate
the analysis results to a JIT, we must convert them to refer to bytecode instructions
during the translation of Jimple to bytecode. SOOT includes a universal tagging frame-
work [21] that propagates analysis information through its various IRs, and encodes it in
class file attributes. An important complication in this process is that one Jimple state-
ment may be converted to multiple bytecode instructions. However, Jimple is low-level
enough that whenever a Jimple instruction has side-effects, exactly one of the bytecode
instructions generated for it has those side-effects. Therefore, for each type of Jimple
instruction, we identify the relevant bytecode instruction to the tagging framework, and
it attaches the side-effect information to that instruction.

Another complication in communicating the side-effect information is that some
methods have a large number of statements with side-effects. Since the dependence
relations may have size quadratic in the number of instructions with side-effects, a naive
encoding of the dependence relations is sometimes unacceptably large. However, we
have observed in those cases, many of the read and write sets in the method are identical.
Therefore, we add a level of indirection. Instead of expressing the dependence relations
in terms of statements, we enumerate all distinct read and write sets, and express the
dependence relations between those sets. For each statement, we indicate which set it
reads and writes. The resulting encoding has size Θ(m2 +n), where n is the number of
statements, and m is the number of unique sets. In an earlier study [15, Sections 6.2.2
and 6.2.6], we observed that this encoding limits the annotation size to acceptable levels.

292 A. Le, O. Lhoták, and L. Hendren

otf-fs

otf-fb aot-fs

aot-fb

CHA

none

Fig. 1. Relative Precision of Analysis Variations

2.5 Analysis Variations

In this section, we briefly explain the differences between the analysis variations that we
compare in our empirical study in Section 4. Figure 1 gives an overview of the relative
precision of the variations, with precision increasing from bottom to top.

For the first variation, none, we compute no side-effect information at all, and rely
only on the internal analysis in the Jikes RVM JIT for optimizations. This means that any
method call in the code is conservatively assumed to read and write anything in the heap.

Our second variation, CHA, is to compute side-effects using a call graph, but with-
out performing any points-to analysis. We construct the call graph using CHA, as de-
scribed in Section 2.1. In this case, the side-effect information contains a list of all fields
possibly read and written at each call site; the JIT takes advantage of the knowledge that
no other fields will be accessed. However, this analysis does not distinguish between the
same field of different objects.

The remaining variations all take advantage of points-to information of different
levels of precision to distinguish different objects. We describe these differences only
briefly, because although they do affect the analysis precision measured statically, we
found their effect on the dynamic behaviour of real benchmarks to be negligible.

In a field-based analysis (fb), a single points-to set is used for each field regardless of
which object it is a field of. On the other hand, a field-sensitive analysis (fs) computes
a separate points-to set for each pair (object, field). Therefore, if an object is written
to b1.a and a different object is written to b2.a, and if b1 and b2 are known to
not be aliases, then a field-sensitive analysis determines that b1.a and b2.a point
to different objects. In contrast, a field-based analysis does not make this distinction
because it considers only the field a, and ignores the objects (b1 and b2).

To propagate points-to sets inter-procedurally, a points-to analysis requires an ap-
proximation of the call graph, but we use the points-to information to build the call
graph. We resolve this circular dependency by either building an imprecise initial CHA
call graph only for the use of the points-to analysis (aot), or by constructing the call
graph on-the-fly as the points-to analysis proceeds (otf): as points-to sets grow, we add
edges to the call graph.

3 Optimizations Enabled in Jikes RVM

The JIT compiler that we modified to make use of side-effect information is the Jikes
Research Virtual Machine (RVM) [2]. Jikes RVM is an open source research platform
for executing Java bytecode. It includes three levels of JIT optimizations (0, 1 and 2).

Using Inter-Procedural Side-Effect Information in JIT Optimizations 293

We adapted three optimizations in Jikes RVM to make use of side-effect information:
local common sub-expression elimination (CSE), redundant load elimination (RLE)
and loop-invariant code motion (LICM). Sections 3.1 to 3.3 describe each of these op-
timizations and the changes that we made. Because side-effect information refers to the
original bytecode of a method, bytecodes that come from an inlined method need to be
treated specially. Section 3.4 describes how we dealt with this case.

3.1 Local Common Sub-expression Elimination

The first optimization in Jikes RVM that we modified to make use of side-effect in-
formation is local CSE. This optimization is only performed within a basic block. The
algorithm for performing CSE on fields is described in Figure 2(a). A cache is used
to store the available field expressions. The algorithm iterates over all instructions in a
basic block, and processes them. There are two parts in this process. The first is to try
to replace each getfield or getstatic instruction encountered by an available expression.
If one is available, it is assigned to a temporary variable and the getfield or getstatic
instruction is replaced by a copy of the temporary. If none is available, a field expres-
sion is added to the cache for the getfield or getstatic instruction. For every putfield and
putstatic instruction, an associated field expression is also added to the cache. The sec-
ond part is to update the cache according to which expressions the current instruction
kills. A call or synchronization instruction kills all expressions in the cache. A put-
field or putstatic of some field X will remove any expression in the cache associated
with field X.

In this algorithm, we used side-effect information to reduce the set of expressions
killed (lines 13 and 15 in Figure 2(a)). When the current instruction is a field store

(a)
1: for each basic block bb do
2: cache = createNewEmptyCache();
3: for each instruction s in bb do
4: if isVolatileFieldLoadOrStore(s) then
5: continue
6: if isGetField(s) or isGetStatic(s) then
7: if cache.availableExpression(s) then
8: T = findOrCreateTemporary(expression(s))
9: replace s by copyTemporaryInstruction(T)

10: else
11: add expression(s) to cache
12: else if isPutField(s) or isPutStatic(s) then
13: add expression(s) to cache
14: if isPutField(s) or isPutStatic(s) of field X then
15: remove all expressions with field X from cache

(excluding expression(s))
16: else if s is a call or synchronization then
17: remove all expressions from cache

(b)
1 A obj1 = new A();
2 A obj2 = new A();
3 i = obj1.x;
4 obj2.x = 10;
5 nothing();
6 j = obj1.x;

Fig. 2. Local common sub-expression (a) original algorithm (b) example

294 A. Le, O. Lhoták, and L. Hendren

or a call, we only remove from the cache entries that have a read-write or write-write
dependence with the current instruction in the side-effect analysis.

An example is shown in Figure 2(b). Without side-effect information, the compiler
would conservatively assume that statement obj2.x = 10 could write to memory lo-
cation obj1.x and that the call to nothing() could write to any memory locations.
In contrast, the side-effect analysis would specify that there is no dependence between
these instructions, and thus enable the replacement of the load of obj1.x on line 6 by
an available expression (line 3).

3.2 Redundant Load Elimination

The redundant load elimination algorithm relies on extended Array SSA (also known
as Heap Array SSA or Heap SSA) [10] and Global Value Numbering [3]. We explain
the general idea of the algorithm below. For a detailed description, please refer to [10].

The algorithm transforms the IR into heap SSA form. A heap array is created for
each object field. The object reference is used as the index into this heap array. For
example, line 2 of Figure 3(a) would be represented as ”heap array X [a] = 2” meaning
that a store is performed in heap array X at index a (the object reference).

After the transformation to heap SSA form is completed, global value numbers
are computed. The global value numbering computes definitely-different (DD) and
definitely-same (DS) relations for object references. The DD relation distinguishes two
object references coming from different allocation sites, or when one is a method pa-
rameter and the other one is the result of a new statement. The DS relation returns true
when two object references have the same value number (one is a copy of the other).

Once global value numbers are computed, index propagation is performed. The in-
dex propagation solution holds the available indices into heap arrays at each use of a
heap array. Scalar replacement is performed using the sets of available indices. Note
that in the algorithm, these sets actually contain value numbers of available indices. For
simplicity, we consider sets of available indices.

For increasing the number of opportunities for load elimination, we used side-effect
information during the heap SSA transformation and in the DD relation. During the
heap SSA construction, without side-effect information, each call instruction is anno-
tated with a definition and a use of every heap array. With side-effect information we
annotate a call with a definition of a heap array, say X, only if there is a write-read or
write-write dependence between the call and the instruction using heap array X. Simi-
larly we annotate a call with a use of a heap array if there is a read-read or read-write
dependence. We also use side-effect information when the DD relation returns false.
Two instructions having no data dependence is equivalent to DD(a, b) = true, where a
and b are the object references used in the instructions.

In Figure 3(a), without side-effect information, since a and b are method parame-
ters, DD(a, b) = false. Thus, only {b} is available after line 3. This allows the load of
b.x on line 9 to be eliminated. Since it is conservatively assumed that calls can write to
any memory location, the available index set after nothing() on line 10 is the empty
set. Line 12 represents a merge point of the available index sets after line 7 and 10. The
intersection of these two sets is the empty set. After the load of a.x on line 14, {a}
is available. Since DS(a, b) = false, the load of b.x on line 15 cannot be eliminated.

Using Inter-Procedural Side-Effect Information in JIT Optimizations 295

(a)
1 int foo(A a, A b, int n) {
2 a.x = 2;
3 b.x = 3;
4

5 int i;
6 if(n > 0) {
7 i = a.x;
8 } else {
9 i = b.x;

10 nothing();
11 }
12 // Merging point: a phi is
13 // placed here in heap SSA
14 int j = a.x;
15 int k = b.x;
16 return i + j + k;
17 }
18

19 public static void
20 main(String[] args) {
21 foo(new A(), new A(), 1);
22 }

(b)
1 int foo(A a, A b, int n) {
2 t1 = 2;
3 a.x = t1;
4 t2 = 3;
5 b.x = t2;
6

7 int i;
8 if(n > 0) {
9 i = t1;

10 } else {
11 i = t2;
12 nothing();
13 }
14 // Merging point: a phi is
15 // placed here in heap SSA
16 int j = t1;
17 int k = t2;
18 return i + j + k;
19 }
20

21 public static void
22 main(String[] args) {
23 foo(new A(), new A(), 1);
24 }

Fig. 3. Redundant load elimination example (a) before (b) after

Using side-effect analysis, since a.x has no dependence with b.x (line 2 and 3) the
available index set after line 3 is {a, b}. Thus, loads of a.x and b.x on line 7 and 9
can be eliminated. The available index set after line 7 is {a, b}, and after line 10, it is
also {a, b}, since nothing() has no side-effect. The intersection at the merge point
(line 12) results in the set {a, b}. The load of a.x can then be removed on line 14. The
available index set after line 14 is {a, b}, allowing load elimination of b.x on line 15.
The resulting code after performing load elimination is shown in Figure 3(b).

3.3 Loop-Invariant Code Motion

The LICM algorithm in Jikes RVM is an implementation of the Global Code Motion
algorithm introduced by Click [7] and is adapted to handle memory operations. As such,
it requires the IR to be in heap SSA form. We provide the basic idea of the algorithm
below. For more details, see [7].

The algorithm schedules each intruction early, i.e. finds the earliest legal basic block
that an instruction could be moved to (all of the instruction’s inputs must dominate
this basic block). Similarly, it finds the latest legal basic block for each instruction
(this block must dominate all uses of the instruction’s result). Instructions such as phi,
branch or return cannot be moved due to control dependences. Between the earliest
and latest legal basic blocks, the heuristic is to place instructions in the basic block with
the smallest loop depth. Global Code Motion differs from standard loop-invariant code
motion techniques in that it moves instructions after, as well as before, loops.

In Figure 4(a), the compiler first transforms the code into heap SSA form and
without side-effect information assumes that method nothing() can read and write
any memory location. As a result, the compiler will be unable to move the loads of

296 A. Le, O. Lhoták, and L. Hendren

(a)
1 do {
2 i = i + a.x;
3 j = i + a.y;
4 nothing();
5 } while(i < n);

(b)
1 t = a.x;
2 do {
3 i = i + t;
4 nothing();
5 } while(i < n);
6 j = i + a.y;

Fig. 4. Loop-invariant code motion example (a) before (b) after

(a)

1 Offset main() {
2 0 main b0
3 1 main invoke foo
4 }
5 foo() {
6 0 foo b1
7 1 foo invoke bar
8 }
9 bar() {

10 0 bar b2
11 1 bar b3
12 }

(b)
1 Offset
2 main() {
3 0 main b0
4 0 foo b1
5 0 bar b2
6 1 bar b3
7 }

Fig. 5. Inlining example (a) before (b) after

a.x and a.y outside of the loop. With side-effect information, knowing that method
nothing() does not read or write to a.x or a.y, the loads of a.x and a.y will be
moved before and after the loop respectively, resulting in the code in Figure 4(b).

3.4 Using Side-Effect Information for Inlined Bytecode

The side-effect attribute provides information about data dependences between instruc-
tions and refers to a bytecode by using its offset. Since the side-effect analysis is com-
puted ahead-of-time, and thus is not aware of the JIT inlining decisions, the side-effect
attribute does not have entries for inlined bytecodes. In Figure 5(a), let’s assume that
calls to foo() and bar() are inlined, resulting in the code in Figure 5(b). Since an
inlined bytecode is associated with its original offset in the IR, it is, in general, incorrect
to retrieve side-effect information for an inlined bytecode in the current method. For ex-
ample, in the side-effect attribute of method main() in Figure 5(b), information about
offset 0 is associated with bytecode b0, not b1 or b2, which are from other methods.

To handle this case, we keep track of inlining sequences for each instruction. When
comparing two bytecodes, we retrieve the least common method ancestor of the two
bytecode inlining sequences, and use the side-effect information associated with that
method. If a bytecode originally comes from that common method, we use its offset.
Otherwise, we retrieve the invoke bytecode that it comes from in the common method,
and use the offset associated with this invoke bytecode.

For example, in Figure 5(b), the least common method ancestor for bytecodes b0
and b1 is main(). Since b0 originally comes from main(), we use its offset (i.e.
0). Since b1 was not originally part of main(), we retrieve the invoke bytecode that

Using Inter-Procedural Side-Effect Information in JIT Optimizations 297

it comes from in main(), i.e. invoke foo. We then use the offset associated with
this invoke bytecode (i.e. 1). Thus, when inquiring about data dependences between
bytecodes b0 and b1, we lookup information for offsets 0 and 1 in the side-effect
attribute for method main(). Similarly, for bytecodes b1 and b2 we lookup offsets 0
and 1 in the side-effect attribute of method foo() (same result for b1 and b3). For
bytecodes b2 and b3, we lookup offsets 0 and 1 in the side-effect attribute of bar().

4 Experiments

4.1 Environment and Benchmarks

We modified Jikes RVM version 2.3.0.1 to use side-effect information in the optimiza-
tions described in the previous section. We used the production configuration (namely
FastAdaptiveCopyMS) in Jikes RVM with the JIT-only option (every method is com-
piled on first invocation and no recompilation occurs thereafter). We ran the SpecJVM98
[1] benchmarks (size 100) with Jikes RVM at optimization level 1 and 2 using the six
side-effect variations described in section 2. A description of the benchmarks is given
in Table 1. For each benchmark and at each optimization level, we show the number of
memory reads per second performed (load density). This shows how important mem-
ory operations are in each benchmark. We expect the benchmarks with high load densi-
ties, compress, raytrace, mtrt and mpegaudio, to benefit most from side-effect analysis.
We computed side-effect information using the development version of SOOT, revi-
sion 1621.

Table 1. Benchmark description and load density property

Load density
1000’s

Benchmark Description Level 1Level 2

compress Lempel-Ziv compressor/uncompressor 207383138570
jess A Java expert shell system based on NASA’s CLIPS system 56371 68353
raytrace Ray tracer application 106271127806
db Performs several database functions on a memory-resident database 7140 11776
javac JDK 1.0.2 Java compiler 21645 19208
mpegaudio MPEG-3 audio file compression application 82137179070
mtrt Dual-threaded version of raytrace 92599122821
jack A Java parser generator with lexical analyzers (now Java CC) 14632 15240

We ran our benchmarks on two different architectures to see whether we would get
similar trends in our results. The first system that we used runs Linux Debian on an Intel
Pentium 4 1.80GHz CPU with 512Mb of RAM. The second one also runs Linux Debian
on an dual processor AMD Athlon MP 2000+ 1.66GHz CPU with 2Gb of RAM. For
our experiment, Jikes RVM was configured to run on a single processor machine.

298 A. Le, O. Lhoták, and L. Hendren

4.2 Results

Our primary goal for this study was to see whether side-effect information could im-
prove performance in JITs, and if so, our secondary objective was to determine the level
of precision of side-effect information required. To obtain accurate answers to these
questions, we measured for each run the static number of loads removed in local CSE
and in the redundant load elimination optimization, and the static number of instructions
moved in the loop-invariant code motion phase. These numbers provide us details on
how much improvement each optimization achieves statically using side-effect infor-
mation. We also measured dynamic counts of memory load operations eliminated and
execution times (best of four runs, not including compilation time). The architecture-
independent dynamic counts help us see whether a direct correlation exists between a
reduction in memory operations performed and speedups.

It should be noted that although we used the JIT-only option in Jikes RVM where
no method recompilation is expected, some optimizations such as inlining can cause
invalidation and recompilation. In this case, for our static numbers, we only counted
the number of static loads eliminated (in local CSE or load elimination) or instructions
moved (in LICM) in the last method compilation before execution.

To examine the effect of side-effect analysis in both local and global optimizations,
we ran our benchmarks using Jikes RVM at optimization level 1 and 2. For level 1,
only local CSE uses side-effect information. For level 2, local CSE, redundant load
elimination and loop-invariant code motion use side-effect analysis. We present in the
next two sections our results for level 1 and level 2 optimizations.

Optimization Level 1. Level 1 optimizations in Jikes RVM include standard opti-
mizations such as local copy propagation, local constant propagation, local common
sub-expression elimination, null check elimination, type propagation, constant folding,
dead code elimination, inlining, etc. Among these, only local CSE uses our side-effect
analysis for eliminating getfield and getstatic instructions.

When running our benchmarks with Jikes RVM at optimization level 1 (which also
includes all level 0 optimizations), the use of the five side-effect variations (CHA, aot-

Table 2. Level 1 results

static counts dynamic counts Intel AMD
benchmark side-effect getfield getstatic getfield getstatic time(s) speedup time(s) speedup

compress
none
any

108
112 (3.7 %)

1
2

1 871 398 009
1 871 397 929 (0.0 %)

33 418 641
33 418 641

9.215
9.395 0.98x

9.185
9.184 1.00x

jess
none
any

229
245 (7.0 %)

0
1

209 404 162
209 402 840 (0.0 %)

2 326 905
2 326 905

4.583
4.615 0.99x

3.756
3.77 1.00x

raytrace
none
any

166
188 (13.3 %)

0
1

287 993 152
287 979 508 (0.0 %)

1 359
1 359

4.276
4.198 1.02x

2.71
2.662 1.02x

db
none
any

130
133 (2.3 %)

0
3

160 088 294
160 087 709 (0.0 %)

96 012
96 012

22.023
22.054 1.00x

22.434
22.453 1.00x

javac
none
any

415
431 (3.9 %)

0
1

149 595 624
149 407 295 (0.1 %)

4 028 976
4 028 946

11.047
11.215 0.99x

7.097
7.177 0.99x

mpegaudio
none
any

340
347 (2.1 %)

174
176

456 136 442
455 026 631 (0.2 %)

52 215 347
52 215 346

8.874
8.219 1.08x

6.189
5.85 1.06x

mtrt
none
any

166
188 (13.3 %)

0
1

291 501 667
291 474 379 (0.0 %)

2 063
2 063

4.744
4.727 1.00x

3.148
3.087 1.02x

jack
none
any

470
663 (41.1 %)

1
2

50 029 731
49 579 043 (0.9 %)

1 534 965
1 534 977

6.095
6.108 1.00x

3.524
3.509 1.00x

Using Inter-Procedural Side-Effect Information in JIT Optimizations 299

fb, aot-fs, otf-fb and otf-fs) produced identical static and dynamic counts, and similar
runtimes. To avoid repeating identical results, we grouped these five side-effect varia-
tions under the name any in the side-effect column of Table 2, and the time reported
is the average execution times of runs using these five side-effect variations. The val-
ues in brackets denote the percentage increase in static opportunities or the percentage
decrease in dynamic counts when compared with the none side-effect variation.

Table 2 shows that using side-effect information in local CSE increased the num-
ber of static opportunities for getfield elimination by 2% to 41%, but only resulted in
a decrease of up to 0.9% dynamically (getstatic instructions are almost unaffected).
As a result, most benchmarks have similar execution times with or without side-effect
analysis. However, the use of side-effect information produced speedups of 1.08x and
1.06x for mpegaudio on our Intel and AMD systems, and 1.02x for raytrace on both
systems. Although the dynamic counts show a reduction in load instructions, we note
small slowdowns for compress and jess on our Intel system, and javac on both Intel
and AMD machines. These slowdowns were reproducible, and are possibly due to sec-
ondary effects such as register pressure or cache behaviour.

These results show that the simplest side-effect analysis, CHA, is sufficient for level 1
optimizations in Jikes RVM. Only local CSE uses side-effect analysis, and since it is
only performed on basic blocks (typically small in Java programs), the effect is minimal.

Optimization Level 2. The more advanced and expensive analyses and optimizations
in Jikes RVM are level 2 optimizations. They include redundant branch elimination,
heap SSA, redundant load elimination, coalescing after heap SSA, expression folding,
loop-invariant code motion, global CSE, and transforming while into until loops. As
described in section 3, we made use of side-effect information in the heap SSA con-
struction, redundant load elimination, and loop-invariant code motion.

Our benchmarks were run at optimization level 2 in Jikes RVM (all level 0 and 1
optimizations are also performed), and produced identical counts and similar runtimes
for the side-effect variations aot-fb, aot-fs, otf-fb and otf-fs (except for one case in
compress where the static number of loads eliminated is 388 for aot-fb and aot-fs, and
389 for otf-fb and otf-fs). Thus, we grouped these four variations of side-effect analysis
that are based on points-to analysis under the name PTA in Tables 3 and 4. In Table 4,
the time under PTA is the average runtime of these four variations.

The first part of Table 3 shows that using side-effect information in RLE increased
static opportunities for getfield removal by 8% to 79%. There were very few improve-
ments for removing getstatic instructions, but the increase was large for aload (array
load) instructions for some benchmarks (jess, raytrace, mpegaudio and mtrt). For ray-
trace and mtrt, the total load increase when combining these three bytecode instructions
is 98%. Interestingly, PTA improved over CHA for all benchmarks except jack.

The second part of Table 3 shows static counts of instructions moved during LICM.
The last two columns are the total instructions moved when LICM is performed on
high-level (HIR) and low-level (LIR) intermediate representation in Jikes RVM. Note
that memory operations are not moved during LICM on LIR; interestingly, the use
of side-effect information in HIR optimizations enabled some other transformations
that allowed some instructions to be moved during LICM on LIR. We see that side-
effect analysis enabled an increase in the number of moved getfield by up to 19%,

300 A. Le, O. Lhoták, and L. Hendren

Table 3. Level 2 static results

redundant load elimination (RLE) loop-invariant code motion (LICM)
benchmark side-effect getfield getstatic aload getfield total HIR total LIR

compress
none
CHA
PTA

359
386 (7.5 %)
388 (8.1 %)

4
5 (25.0 %)
5 (25.0 %)

0
0
0

87
90 (3.5 %)
90 (3.5 %)

118
122 (3.4 %)
122 (3.4 %)

29
29
29

jess
none
CHA
PTA

722
1050 (45.4 %)
1106 (53.2 %)

1
2 (100.0 %)
3 (200.0 %)

129
149 (15.5 %)
196 (51.9 %)

139
144 (3.6 %)
161 (15.8 %)

280
287 (2.5 %)
309 (10.4 %)

250
251 (0.4 %)
255 (2.0 %)

raytrace
none
CHA
PTA

342
613 (79.2 %)
613 (79.2 %)

1
2 (100.0 %)
2 (100.0 %)

32
84 (162.5 %)
127 (296.9 %)

87
96 (10.3 %)
96 (10.3 %)

184
210 (14.1 %)
210 (14.1 %)

54
56 (3.7 %)
56 (3.7 %)

db
none
CHA
PTA

243
274 (12.8 %)
274 (12.8 %)

1
4 (300.0 %)
4 (300.0 %)

2
2
3 (50.0 %)

61
64 (4.9 %)
64 (4.9 %)

88
92 (4.6 %)
92 (4.6 %)

31
32 (3.2 %)
32 (3.2 %)

javac
none
CHA
PTA

1519
1842 (21.3 %)
1847 (21.6 %)

26
30 (15.4 %)
30 (15.4 %)

90
101 (12.2 %)
108 (20.0 %)

44
48 (9.1 %)
48 (9.1 %)

116
121 (4.3 %)
121 (4.3 %)

479
479
479

mpegaudio
none
CHA
PTA

706
804 (13.9 %)
804 (13.9 %)

212
216 (1.9 %)
216 (1.9 %)

367
370 (0.8 %)
426 (16.1 %)

128
152 (18.8 %)
152 (18.8 %)

299
327 (9.4 %)
327 (9.4 %)

98
102 (4.1 %)
102 (4.1 %)

mtrt
none
CHA
PTA

342
613 (79.2 %)
613 (79.2 %)

1
2 (100.0 %)
2 (100.0 %)

32
84 (162.5 %)
127 (296.9 %)

87
96 (10.3 %)
96 (10.3 %)

184
210 (14.1 %)
210 (14.1 %)

55
57 (3.6 %)
57 (3.6 %)

jack
none
CHA
PTA

678
999 (47.4 %)
999 (47.4 %)

2
16 (700.0 %)
16 (700.0 %)

69
69
69

23
23
23

39
39
39

58
58
58

and the total instructions during HIR by up to 14%. For only one benchmark (jess),
using PTA side-effect information allowed more instructions to be moved than CHA.
There were no putstatic, aload or astore instructions moved, and only one additional
putfield moved for javac (not shown). Note that since RLE is performed before LICM,
improved side-effect information can cause loads that would have been moved in LICM
to be removed in RLE. Therefore, to measure the impact of side-effect information on
LICM, we disabled RLE when collecting the static LICM counts. We do not show
static counts for local CSE, which are minimal because redundant load elimination is
performed before local CSE.

In the first part of Table 4, we see that side-effect analysis enabled a reduction in
dynamic getfield operations by up to 27%, but only reduced getstatic and aload instruc-
tions by up to 3%. For compress and jess, using PTA side-effect information allowed
a larger reduction of getfield than CHA. For mpegaudio, it improved the removal of
aload instructions. The second part of the table shows speedups achieved for compress,
raytrace, mtrt and mpegaudio. The speedups vary from 1.08x to 1.17x on our Intel sys-
tem, and from 1.02x to 1.20x on AMD. On both systems, mpegaudio has the largest
speedup. These benchmarks are the ones with the highest load densities (Table 1), and
the ones that we expected would benefit the most from side-effect information.

A higher level of precision of side-effect information made a difference in perfor-
mance for compress and mpegaudio. Using PTA side-effect analysis vs CHA increased
the speedup of compress from 1.08x to 1.11x on Intel, and 1.02x to 1.05x on AMD. For
mpegaudio, it went from 1.11x to 1.17x on Intel and from 1.15x to 1.20x on AMD.

These results show that using side-effect analysis in global optimizations improved
opportunities for load elimination and moving instructions, reduced dynamic load

Using Inter-Procedural Side-Effect Information in JIT Optimizations 301

Table 4. Level 2 dynamic results

dynamic counts Intel AMD
benchmark side-effect getfield getstatic aload time(s) speedup time(s) speedup

compress
none
CHA
PTA

836 681 238
713 879 612 (14.7%)
694 156 483 (17.0%)

29 585 886
29 585 886
29 585 886

450 569 851
450 569 851
450 569 851

10.423
9.635
9.386

1.08x
1.11x

9.503
9.316
9.03

1.02x
1.05x

jess
none
CHA
PTA

193 400 124
177 280 681 (8.3%)
141 340 271 (26.9%)

2 326 905
2 326 905
2 326 572 (0.0%)

74 199 530
74 197 591 (0.0%)
74 188 965 (0.0%)

4.889
4.945
4.872

0.99x
1.00x

3.949
3.962
4.002

1.00x
0.99x

raytrace
none
CHA
PTA

278 990 954
217 369 769 (22.1%)
217 369 769 (22.1%)

1 359
1 359
1 359

70 558 731
70 189 162 (0.5%)
70 125 938 (0.6%)

4.38
3.93
3.905

1.11x
1.12x

2.735
2.607
2.615

1.05x
1.05x

db
none
CHA
PTA

160 085 986
154 814 883 (3.3%)
154 814 883 (3.3%)

96 012
96 012
96 012

113 165 950
113 165 950
113 165 950

22.625
22.605
22.471

1.00x
1.01x

23.212
23.222
23.141

1.00x
1.00x

javac
none
CHA
PTA

129 704 466
123 962 720 (4.4%)
123 962 933 (4.4%)

3 728 755
3 726 381 (0.1%)
3 726 306 (0.1%)

3 947 221
3 947 158 (0.0%)
3 947 133 (0.0%)

10.962
11.138
11.142

0.98x
0.98x

7.154
7.21
7.231

0.99x
0.99x

mpegaudio
none
CHA
PTA

258 084 245
254 421 559 (1.4%)
254 421 559 (1.4%)

16 092 989
16 075 411 (0.1%)
16 075 411 (0.1%)

796 126 083
794 492 856 (0.2%)
773 557 981 (2.8%)

9.319
8.41
7.932

1.11x
1.17x

5.977
5.175
4.987

1.15x
1.20x

mtrt
none
CHA
PTA

282 145 314
220 136 202 (22.0%)
220 136 202 (22.0%)

2 063
2 063
2 063

71 578 275
71 124 467 (0.6%)
70 998 019 (0.8%)

4.681
4.201
4.208

1.11x
1.11x

2.88
2.788
2.796

1.03x
1.03x

jack
none
CHA
PTA

46 154 208
42 805 654 (7.3%)
42 805 654 (7.3%)

1 534 965
1 530 924 (0.3%)
1 530 924 (0.3%)

5 727 775
5 727 775
5 727 775

6.097
6.122
6.101

1.00x
1.00x

3.505
3.47
3.51

1.01x
1.00x

operations, and improved performance in runtimes. Benchmarks with higher load den-
sities benefited most from side-effect information. The results also show that points-to
analysis improves side-effect information compared to only using CHA, but that the
differences between points-to analysis variations are negligible.

5 Related Work

Early side-effect analyses for languages with pointers by Choi et al. [4] and Landi
et al. [14] made use of may-alias analysis to distinguish reads and writes to locations
known to be different. These analyses were mainly targeted at analysis of C, so the call
graph was assumed to be mostly static. Therefore, in comparison with our work, in that
setting, the information about pointers was most important, while the call graph was
much easier to compute.

In contrast, Clausen’s [6] side-effect analysis for Java was based on a call graph
constructed with a CHA-like analysis, but it did not use any pointer information. This
analysis computed read and write information for each field, ignoring which specific
object contained the field read or written. In comparison with our work, Clausen’s anal-
ysis is most similar to our CHA-based side-effect analysis. Clausen applies his analysis
results in an ahead-of-time early Java bytecode optimizer to a similar set of optimiza-
tions as we do: dead code removal, loop invariant removal, constant propagation, and
common subexpression elimination.

When evaluating the precision of points-to analyses, it is common to report the size
of the points-to sets at field read and write instructions, as in [18, 25]. Rountev and
Ryder [26] evaluate their points-to analysis for precompiled libraries in this way. Other

302 A. Le, O. Lhoták, and L. Hendren

points-to analysis work [19, 28, 13, 27] takes this evaluation one step further, by also
computing read and write sets summarizing the effects of entire methods, rather than
just individual statements, and propagating this information along the call graph. This
is similar to the read and write set computation we mention in Section 2.3. In general,
these studies conclude that differences in precision of the underlying analyses do have
a significant effect on the static precision of side-effect information.

Chowdhury et al. [5] study the effect of alias analysis precision on the number of
optimization opportunities for a range of scalar optimizations. However, they only mea-
sure the static number of optimizations performed (rather than their run-time effect),
and their benchmarks are mostly pointer-free C programs, some translated directly from
FORTRAN, so they find, unsurprisingly, that alias analysis precision has little effect.

Studies measuring the actual run-time impact of code optimized using side-effect
information are surprisingly rare. Ghiya et al. [11, 12] measure the effectiveness of
side-effect information on the run-time efficiency of code produced by an optimizing
compiler for C. Diwan et al. [9] study redundant load elimination in Modula-3, us-
ing declared types to conservatively approximate aliasing relationships, and method
read/write set summaries. The results of Diwan et al. on Modula-3 and Ghiya et al. on
C are comparable to ours on Java. In particular, all three studies show that significant
run-time improvements are possible, and that even simple, imprecise alias information
enables many of the improvements. Razafimahefa [24] performs loop invariant code
motion using side-effect information on Java in an ahead-of-time bytecode optimizer,
and reports run-time speedups comparable with ours on an early-generation Java VM.

Pechtchanski and Sarkar [20] present a preliminary study of a framework which al-
lows programmers to provide annotations indicating absence of side-effects. Like our
side-effect information, these annotations are communicated to Jikes RVM in class file
attributes and used to improve optimizations. Only limited, preliminary, empirical re-
sults of the effect of these annotations are provided, and verification of the correctness
of the programmer-provided annotations has yet to be done.

In summary, existing work on other languages largely agrees with our findings on
Java. Some side-effect information is useful for real run-time improvements from com-
piler optimizations. Although precision of the underlying analyses tends to have large
effects on static counts of optimization opportunities, the effects on dynamic behaviour
are much smaller; even simple analyses provide most of the improvement. Distinctions
of our work from previous work are that we provide a study of run-time effects of side-
effect information on Java, and that we show how to communicate analysis results from
an off-line analyzer to a JIT.

6 Conclusion

In this study, we showed that side-effect analysis does improve performance in just-in-
time (JIT) compilers, and that relatively simple analyses are sufficient for significant
improvements. On level 1 optimizations, side-effect analyses had little impact on per-
formance, except for one benchmark. On level 2 optimizations, however, our results
showed an increase of up to 98% of static opportunities for load removal, a reduction
of up to 27% of the dynamic fields reads, and execution time speedups ranging from

Using Inter-Procedural Side-Effect Information in JIT Optimizations 303

1.08x to 1.20x. As we expected, using side-effect analysis had the largest impact on the
benchmarks with high load densities.

The feasibility of performing side-effect analysis inside the JIT is a topic for future
research. The dynamic call graph construction presented in [23,22] is a first step in this
work.

References

1. SPEC JVM98 benchmarks. http://www.spec.org/osg/jvm98/.
2. B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D. Choi, A. Cocchi, S. J.

Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo, J. R.
Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan,
and J. Whaley. The Jalapeño virtual machine. IBM Syst. J., 39(1):211–238, 2000.

3. B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of variables in programs.
In Proceedings of POPL 1988, pages 1–11, 1988.

4. J.-D. Choi, M. Burke, and P. Carini. Efficient flow-sensitive interprocedural computation
of pointer-induced aliases and side effects. In Proceedings of POPL 1993, pages 232–245,
1993.

5. R. A. Chowdhury, P. Djeu, B. Cahoon, J. H. Burrill, and K. S. McKinley. The limits of alias
analysis for scalar optimizations. In CC 2004, volume 2985 of LNCS, pages 24–38, 2004.

6. L. R. Clausen. A Java bytecode optimizer using side-effect analysis. Concurrency: Practice
and Experience, 9(11):1031–1045, Nov. 1997.

7. C. Click. Global code motion/global value numbering. In Proceedings of PLDI 1995, pages
246–257, 1995.

8. J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented programs using static
class hierarchy analysis. In ECOOP 95, volume 952 of LNCS, pages 77–101, 1995.

9. A. Diwan, K. S. McKinley, and J. E. B. Moss. Type-based alias analysis. In Proceedings of
PLDI 1998, pages 106–117, 1998.

10. S. J. Fink, K. Knobe, and V. Sarkar. Unified analysis of array and object references in
strongly typed languages. In Static Analysis Symposium, pages 155–174, 2000.

11. R. Ghiya and L. J. Hendren. Putting pointer analysis to work. In Proceedings of POPL 1998,
pages 121–133, 1998.

12. R. Ghiya, D. Lavery, and D. Sehr. On the importance of points-to analysis and other memory
disambiguation methods for C programs. In Proceedings of PLDI 2001, pages 47–58, 2001.

13. M. Hind and A. Pioli. Which pointer analysis should I use? In Proceedings of ISSTA 2000,
pages 113–123, 2000.

14. W. Landi, B. G. Ryder, and S. Zhang. Interprocedural modification side effect analysis with
pointer aliasing. In Proceedings of PLDI 1993, pages 56–67, 1993.

15. O. Lhoták. Spark: A flexible points-to analysis framework for Java. Master’s thesis, McGill
University, Dec. 2002.

16. O. Lhoták and L. Hendren. Scaling Java points-to analysis using Spark. In CC 2003, volume
2622 of LNCS, pages 153–169, Warsaw, Poland, 2003.

17. T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-Wesley, Read-
ing, MA, USA, second edition, 1999.

18. A. Milanova, A. Rountev, and B. G. Ryder. Parameterized object sensitivity for points-to
and side-effect analyses for Java. In Proceedings of ISSTA 2002, pages 1–11, 2002.

19. G. Olivar. Fast points-to and side-effect analysis for the McCAT C compiler. M.Sc. project,
McGill University, http://citeseer.ist.psu.edu/350797.html, Apr. 1997.

304 A. Le, O. Lhoták, and L. Hendren

20. I. Pechtchanski and V. Sarkar. Immutability specification and its applications. In Proceedings
of the 2002 Joint ACM-ISCOPE Conference on Java Grande, pages 202–211, 2002.

21. P. Pominville, F. Qian, R. Vallée-Rai, L. Hendren, and C. Verbrugge. A framework for
optimizing Java using attributes. In CC 2001, volume 2027 of LNCS, pages 334–354, 2001.

22. F. Qian and L. Hendren. A study of type analysis for speculative method inlining in a JIT
environment. In CC 2005, LNCS, Edinburgh, Scotland, April 2005. Springer.

23. F. Qian and L. J. Hendren. Towards dynamic interprocedural analysis in jvms. In Virtual
Machine Research and Technology Symposium, pages 139–150, 2004.

24. C. Razafimahefa. A study of side-effect analyses for Java. Master’s thesis, McGill University,
Dec. 1999.

25. A. Rountev, A. Milanova, and B. G. Ryder. Points-to analysis for Java using annotated
constraints. In Proceedings of OOPSLA ’01, pages 43–55, 2001.

26. A. Rountev and B. G. Ryder. Points-to and side-effect analyses for programs built with
precompiled libraries. In CC 2001, volume 2027 of LNCS, pages 20–36, 2001.

27. B. G. Ryder, W. A. Landi, P. A. Stocks, S. Zhang, and R. Altucher. A schema for inter-
procedural modification side-effect analysis with pointer aliasing. ACM Transactions on
Programming Languages and Systems, 23(2):105–186, Mar. 2001.

28. P. A. Stocks, B. G. Ryder, W. A. Landi, and S. Zhang. Comparing flow and context sensitivity
on the modification-side-effects problem. In Proceedings of ISSTA 1998, pages 21–31, 1998.

29. R. Vallée-Rai, E. Gagnon, L. J. Hendren, P. Lam, P. Pominville, and V. Sundaresan. Opti-
mizing Java bytecode using the Soot framework: is it feasible? In CC 2000, volume 1781 of
LNCS, pages 18–34, 2000.

Author Index

Amaral, José Nelson 106

Bacon, David F. 156
Balakrishnan, Gogul 250
Barton, Christopher 106
Beyls, Kristof 91
Blackburn, Stephen M. 121
Blainey, Bob 106
Brooks, R. 188
Bruynooghe, Maurice 91, 221

Casey, Kevin 246
Catthoor, Francky 91, 221
Chen, G. 188
Childers, Bruce R. 242
Clause, Jim 242
Condit, Jeremy 172

Ennals, Rob 76
Ertl, M. Anton 246

Gapeyev, Vladimir 43
Gregg, David 246
Gruian, Radu 250

Hendren, Laurie 255, 287
Huang, Bo 59

Janssens, Gerda 221
Jiang, Weihua 59

Kandemir, M. 188
Kolodner, Elliot K. 156
Kuncak, Viktor 237

Lam, Patrick 237
Le, Anatole 287
Levin, Michael Y. 43
Lhoták, Ondřej 287
Li, F. 188
Li, Jianhui 59

Mei, Chao 59
Misurda, Jonathan 242
Mycroft, Alan 76

Necula, George C. 172
Nguyen, Phung Hua 271

Olmos, Karina 204

Padovani, Luca 27
Paz, Harel ,121 156
Petrank, Erez 121, 156
Pierce, Benjamin C. 43

Qian, Feng 255

Rajan, V.T. 156
Ramsey, Norman 10
Reed, Juliya 242
Reps, Thomas 250
Rinard, Martin 237
Ryu, Sukyoung 10

Sade, Yair 137
Sagiv, Mooly 137
Schmitt, Alan 43
Shaham, Ran 137
Sharp, Richard 76
Shashidhar, K.C. 221
Soffa, Mary Lou 242

Tal, Arie 106
Teitelbaum, Tim 250

Verdoolaege, Sven 91
Visser, Eelco 204

Xue, Jingling 271

Zang, Binyu 59
Zeller, Andreas 1
Zhu, Chuanqi 59
Zhu, Jiahua 59

	Frontmatter
	Invited Talk
	When Abstraction Fails

	Compilation
	Source-Level Debugging for Multiple Languages with Modest Programming Effort
	Compilation of Generic Regular Path Expressions Using C++ Class Templates
	XML Goes Native: Run-Time Representations for {\sc Xtatic}

	Parallelism
	Boosting the Performance of Multimedia Applications Using SIMD Instructions
	Task Partitioning for Multi-core Network Processors
	Experiences with Enumeration of Integer Projections of Parametric Polytopes
	Generalized Index-Set Splitting

	Memory Management
	Age-Oriented Concurrent Garbage Collection
	Optimizing C Multithreaded Memory Management Using Thread-Local Storage
	An Efficient On-the-Fly Cycle Collection

	Program Transformations
	Data Slicing: Separating the Heap into Independent Regions
	A Compiler-Based Approach to Data Security
	Composing Source-to-Source Data-Flow Transformations with Rewriting Strategies and Dependent Dynamic Rewrite Rules
	Verification of Source Code Transformations by Program Equivalence Checking

	Tool Demonstrations
	Hob: A Tool for Verifying Data~Structure~Consistency
	Jazz: A Tool for Demand-Driven Structural Testing
	Tiger -- An Interpreter Generation Tool
	CodeSurfer/x86---A Platform for Analyzing x86 Executables

	Pointer Analysis
	A Study of Type Analysis for Speculative Method Inlining in a JIT Environment
	Completeness Analysis for Incomplete Object-Oriented Programs
	Using Inter-Procedural Side-Effect Information in JIT Optimizations

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

