


Lecture Notes in Computer Science 3367
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Wee Siong Ng Beng Chin Ooi
Aris Ouksel Claudio Sartori (Eds.)

Databases,
Information Systems,
and Peer-to-Peer
Computing

Second International Workshop, DBISP2P 2004
Toronto, Canada, August 29-30, 2004
Revised Selected Papers

13



Volume Editors

Wee Siong Ng
National University of Singapore
Singapore-MIT Alliance
4 Engineering Drive 3, Singapore, Malaysia
E-mail: ngws@comp.nus.edu.sg

Beng Chin Ooi
National University of Singapore
Department of Computer Science
School of Computing
Kent Ridge, Singapore 117543, Malaysia
E-mail: ooibc@comp.nus.edu.sg

Aris Ouksel
University of Illinois at Chicago
Department of Information and Decision Sciences
601 South Morgan Street, Chicago, IL 60607, USA
E-mail: aris@uic.edu

Claudio Sartori
University of Bologna
Department of Electronics, Computer Science and Systems
Viale Risorgimento, 2, 40136 Bologna, Italy
E-mail: claudio.sartori@unibo.it

Library of Congress Control Number: 2005921896

CR Subject Classification (1998): H.2, H.3, H.4, C.2, I.2.11, D.2.12, D.4.3, E.1

ISSN 0302-9743
ISBN 3-540-25233-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11404033 06/3142 5 4 3 2 1 0



Preface

Peer-to-peer (P2P) computing promises to offer exciting new possibilities in dis-
tributed information processing and database technologies. The realization of
this promise lies fundamentally in the availability of enhanced services such as
structured ways for classifying and registering shared information, verification
and certification of information, content-distributed schemes and quality of con-
tent, security features, information discovery and accessibility, interoperation
and composition of active information services, and finally market-based mech-
anisms to allow cooperative and non-cooperative information exchanges. The
P2P paradigm lends itself to constructing large-scale complex, adaptive, au-
tonomous and heterogeneous database and information systems, endowed with
clearly specified and differential capabilities to negotiate, bargain, coordinate,
and self-organize the information exchanges in large-scale networks. This vision
will have a radical impact on the structure of complex organizations (business,
scientific, or otherwise) and on the emergence and the formation of social com-
munities, and on how the information is organized and processed.

The P2P information paradigm naturally encompasses static and wireless
connectivity, and static and mobile architectures. Wireless connectivity com-
bined with the increasingly small and powerful mobile devices and sensors pose
new challenges to as well as opportunities for the database community. Infor-
mation becomes ubiquitous, highly distributed and accessible anywhere and at
any time over highly dynamic, unstable networks with very severe constraints
on the information management and processing capabilities. What techniques
and data models may be appropriate for this environment, and yet guarantee or
approach the performance, versatility, and capability that users and developers
have come to enjoy in traditional static, centralized, and distributed database en-
vironments? Is there a need to define new notions of consistency and durability,
and completeness, for example?

This workshop concentrated on exploring the synergies between current
database research and P2P computing. It is our belief that database research has
much to contribute to the P2P grand challenge through its wealth of techniques
for sophisticated semantics-based data models, new indexing algorithms and ef-
ficient data placement, query processing techniques, and transaction processing.
Database technologies in the new information age will form the crucial compo-
nents of the first generation of complex adaptive P2P information systems, which
will be characterized by their ability to continuously self-organize, adapt to new
circumstances, promote emergence as an inherent property, optimize locally but
not necessarily globally, and deal with approximation and incompleteness. This
workshop examined the impact of complex adaptive information systems on cur-
rent database technologies and their relation to emerging industrial technologies
such as IBM’s autonomic computing initiative.



VI Preface

The workshop was collocated with VLDB, the major international database
and information systems conference. It offered the opportunity for experts from
all over the world working on databases and P2P computing to exchange ideas
on the more recent developments in the field. The goal was not only to present
these new ideas, but also to explore new challenges as the technology matures.
The workshop provided also a forum to interact with researchers in related dis-
ciplines. Researchers from other related areas such as distributed systems, net-
works, multiagent systems, and complex systems were invited.

Broadly, the workshop participants were asked to address the following gen-
eral questions:

– What are the synergies as well as the dissonances between the P2P comput-
ing and current database technologies?

– What are the principles characterizing complex adaptive P2P information
systems?

– What specific techniques and models can database research bring to bear on
the vision of P2P information systems? How are these techniques and models
constrained or enhanced by new wireless, mobile, and sensor technologies?

After undergoing a rigorous review by an international Program Committee
of experts, including online discussions to clarify the comments, 14 papers were
finally selected. The organizers are grateful for the excellent professional work
performed by all the members of the Program Committee. The keynote address
was delivered by Ouri Wolfson from the University of Illinois at Chicago. It was
entitled “DRIVE: Disseminating Resource Information in Vehicular and Other
Mobile Peer-to-Peer Networks.” A panel, chaired by Karl Aberer from EPFL
(Ecole Polytechnique Fédérale de Lausanne) in Switzerland, addressed issues on
next-generation search engines in a P2P environment. The title of the panel was
“Will Google2Google Be the Next-Generation Web Search Engine?”

The organizers would particularly like to thank Wee Siong Ng from the Uni-
versity of Singapore for his excellent work in taking care of the review system and
the website. We also thank the VLDB organization for their valuable support
and the Steering Committee for their encouragement in setting up this series of
workshops and for their continuing support.

September 2004 Beng Chin Ooi, Aris Ouksel, Claudio Sartori
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Adelhard Türling, Stefan Böttcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Dissemination of Spatial-Temporal Information in Mobile Networks
with Hotspots

Ouri Wolfson, Bo Xu, Huabei Yin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Wayfinder: Navigating and Sharing Information in a Decentralized
World

Christopher Peery, Francisco Matias Cuenca-Acuna,
Richard P. Martin, Thu D. Nguyen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

CISS: An Efficient Object Clustering Framework for DHT-Based
Peer-to-Peer Applications

Jinwon Lee, Hyonik Lee, Seungwoo Kang, Sungwon Choe,
Junehwa Song . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231



 

W.S. Ng et al. (Eds.): DBISP2P 2004, LNCS 3367, pp. 1–15, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Data Management in Mobile Peer-to-Peer Networks1 

Bo Xu and Ouri Wolfson 

Department of Computer Science, University of Illinois at Chicago 
{boxu, wolfson}@cs.uic.edu 

Abstract. In this paper we examine the database management of spatio-
temporal resource information in mobile peer-to-peer networks, where moving 
objects communicate with each other via short-range wireless transmission. 
Several inherent characteristics of this environment, including the dynamic and 
unpredictable network topology, the limited peer-to-peer communication 
throughput, and the need for incentive for peer-to-peer cooperation, impose 
challenges to data management. In this paper we propose our solutions to these 
problems. The proposed system has the potential to create a completely new 
information marketplace. 

1   Introduction 

A mobile peer-to-peer network is a set of moving objects that communicate via short-
range wireless technologies such as IEEE 802.11, Bluetooth, or Ultra Wide Band 
(UWB). With such communication mechanisms, a moving object receives 
information from its neighbors, or from remote objects by multi-hop transmission 
relayed by intermediate moving objects. A killer application of mobile peer-to-peer 
networks is resource discovery in transportation. For example, the mobile peer-to-
peer network approach can be used to disseminate the information of available 
parking slots, which enables a vehicle to continuously display on a map to the driver, 
at any time, the available parking spaces around the current location of the vehicle. 
Or, the driver may use this approach to get the traffic conditions (e.g. average speed) 
one mile ahead. Similarly, a cab driver may use this approach to find a cab customer, 
or vice versa.  Safety information (e.g. a malfunctioning brake light in a vehicle) can 
also be disseminated in this fashion. 

A mobile peer-to-peer network can also be used in matching resource producers 
and consumers among pedestrians.  For example, an individual wishing to sell a pair 
of tickets for an event (e.g. ball game, concert), may use this approach right before the 
event, at the event site, to propagate the resource information.  For another example, a 
passenger who arrives at an airport may use this approach to find another passenger 
for cab-sharing from the airport to downtown, so as to split the cost of the cab. 
Furthermore, the approach can be used in social networks; when two singles whose 
profiles match are in close geographic proximity, one can call the other's cell phone 
and suggest a short face-to-face meeting.  

                                                           
1  Research supported by NSF Grants 0326284, 0330342, ITR-0086144, and 0209190. 
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The approach can also be used for emergency response and disaster recovery, in 
order to match specific needs with expertise (e.g. burn victim and dermatologist) or to 
locate victims. For example, scientists are developing cockroach-sized robots or 
sensors that are carried by real cockroaches, which are able to search victims in 
exploded or earthquake-damaged buildings [4]. These robots or sensors are equipped 
with radio transmitters. When a robot discovers a victim, it can use the data 
dissemination among mobile sensors to propagate the information to human rescuers.  
Sensors can also be installed on wild animals for endangered species animal 
assistance. A sensor monitors its carrier's health condition, and it disseminates a 
report when an emergency symptom is detected. Thus we use the term moving objects 
to refer to all, vehicles, pedestrians, robots, and animals.   

We would like to comment at this moment that in our model a peer does not have 
to be a moving object, and databases residing on the fixed network may be involved. 
In many cases there are both moving peers and fixed peers, and they collaborate in 
data dissemination. For example, a sensor in the parking slot (or the meter for the slot) 
monitors the slot, and, while unoccupied, transmits the availability information to 
vehicles nearby. Or all the slots in a parking lot may transmit the information to a 
fixed 802.11 hotspot via a wired network, and the hotspot announces the information. 
In either case, the vehicles that receive the information may propagate it to a wider 
area via the mobile peer-to-peer network approach. In such an environment the 
mobile peer-to-peer network serves as a supplement/extension to the fixed-site based 
solution. 

Compared to static peer-to-peer networks and static sensor networks, mobile peer-
to-peer networks have the following characteristics that present challenges to data 
management.  

1. Dynamic, unpredictable, and partitionable network topology. In our 
environment the peers are physically mobile, and sometimes can be highly mobile 
(consider vehicles that move in opposite directions at 120 miles/hour relative speed). 
The traffic density can vary in a big range from rush hours to midnight. The 
underlying communication network is thus subject to topology changes and 
disconnections. Peer-to-peer or sensor network approaches that require pre-defined 
data access structures such as search routing tables used in Gridella [12], Chord [14] 
and spanning trees used in Cougar [15] and TinyDB [13, 21] are impractical in such 
an environment. 

2. Limited peer-to-peer communication throughput. The communication 
throughput between two encountered peers is constrained by the wireless bandwidth, 
the channel contention, and the limited connection time. For example, previous 
investigations into Bluetooth links have suggested 2 seconds as a typical setup time 
between two unknown devices [22]. This gives less than 2 seconds for data transfer 
when two vehicles encounter each other at 120 miles/hour relative speed (assuming 
that the transmission range is 100 meters). The limited throughput requires that the 
communication be selective such that the most important data are communicated.  

3. Need for incentive for both information supplier and information propagators. 
Like many other peer-to-peer systems or mobile ad-hoc networks, the ultimate 
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success of mobile peer-to-peer networks heavily relies on cooperation among users. 
In P2P systems, incentive is provided for peers to participate as suppliers of data, 
compute cycles, knowledge/expertise, and other resources. In mobile ad-hoc 
networks, incentive is provided for mobile hosts to participate as 
intermediaries/routers. In mobile peer-to-peer networks, the incentive has to be 
provided for participation as both suppliers and intermediaries (namely brokers). 

The objective of our Dissemination of Resource Information in Vehicular 
Environments (DRIVE) project is to build a software platform that addresses the 
above issues and can be embedded within a hardware device attached to moving 
objects such as vehicles, personal digital assistants (PDAs), and sensors. The DRIVE 
platform consists of the following components: 

1. Data Model. We introduce a unified data model for spatio-temporal resources in 
mobile peer-to-peer applications related to transportation, disaster recovery, mobile 
electronic commerce, and social networks. We illustrate how the data model can be 
used to represent various resource types even though these resource types are utilized 
in quite different ways.  

2. Data Dissemination. We propose an opportunistic approach to dissemination of 
reports regarding availability of resources (parking slot, taxi-cab customer, 
dermatologist, etc.). In this approach, a moving object propagates the reports it carries 
to encountered objects, i.e. objects that come within transmission range; and it obtains 
new reports in exchange. For example, a vehicle finds out about available parking 
spaces from other vehicles. These spaces may either have been vacated by these 
encountered vehicles or these vehicles have obtained this information from other 
previously encountered ones. We call this paradigm opportunistic peer-to-peer (or 
OP2P). 

3. Total Ordering of Resources by Relevance. With OP2P, a moving object 
constantly receives reports from the objects it encounters. If not controlled, the 
number of availability reports saved by an object will continuously increase, which 
will in turn increase the communication volume in future exchanges. Thus, to deal 
with the throughput challenge, we investigate techniques that prioritize the reports 
exchanged. These techniques provide a total rank in terms of relevance for all the 
reports across all the resource types stored in a moving object's reports database. The 
key issue is how to quantify the tradeoffs between the contributions of different 
attributes to the utility of a report.  

4. Query Language and Query Processing. With OP2P, each peer m maintains a 
local reports database. The collection of the local databases of all the peers forms a 
virtual database to the database application in m. So the query language component 
and the query processing component deal with how to query this virtual database and 
how the query is processed. 

5. Economic Model. Our incentive mechanisms are based upon virtual currency [5]. 
Each peer carries virtual currency in the form of a coin counter that is protected from 
illegitimate manipulation by a trusted and tamper resistant hardware module [6]. Each 
coin is bought for a certain amount of real money but it cannot be cashed for real 
money. We analyze the requirements to the economic model and propose possible 
solutions. 
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6. Information Usage Strategy. This component deals with how a resource 
consumer should use the received reports to take possession of a resource. This is 
important when the resource can only be exclusively used by one object at one time. 
Consider for example a driver who is looking for a parking slot. The driver may 
receive reports of multiple parking slots, and these parking slots may be in different 
orientation and distance with respect to the driver's current location. Then the question 
is which parking slot the driver should go to (namely, pursue). 

7.  Transaction Management. This component aims to study a spectrum of solutions 
to transactional and consistency issues that arise in report dissemination, and 
minimize dependence on any centralized structure.  

All the components are divided into three layers as shown in Figure 1. The bottom 
is the data layer, which implements the data model for the spatio-temporal resources. 
Above the data layer is the support layer. This layer defines how the data is 
disseminated and how queries are processed. It also contains transaction management. 
The top is the utility layer, which contains the modules relevant to utilization of the 
resource information, including relevance evaluation, query language, economic 
model, and usage strategies. 

 

 

Fig. 1. The architecture of DRIVE 

The rest of the paper is organized as follows. Section 2 introduces the data model 
and report ordering. Section 3 discusses OP2P data dissemination. Section 4 presents 
the query language and discusses query processing. Section 5 discusses the economic 
model. Section 6 discusses information usage strategies and transaction management. 
Section 7 discusses relevant work. Section 8 concludes the paper. 

2   Data Model 

2.1   Resource Model 

In our system, resources may be spatial, temporal, or spatio-temporal. Information 
about the location of a gas station is a spatial resource. Information about the price of 
a stock on 11/12/03 at 2pm is temporal. There are various types of spatio-temporal 
resources, including parking slots, car accidents (reports about such resources provide 
traffic-jam information), taxi-cab requests, ride-sharing invitations, demands of 
expertise in disaster situations, and so on. Formally in our model there are N resource 
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types T1, T2, ..., TN . At any point in time there are M resources R1, R2, ..., RM, where 
each resource belongs to a resource type. Each resource pertains to a particular point 
location and a particular time point, e.g. a parking slot that is available at a certain 
time, a cab request at a street intersection, invitation of cab-sharing from airport to 
downtown from a passenger wishing to split the cost of the cab, or the demand of 
certain expertise at a certain location at a certain time. We assume that resources are 
located at points in two-dimensional geospace. The location of the resource is referred 
to as the home of the resource. For example, the home of an available parking space is 
the location of the space, and the home of a cab request or a cab-sharing invitation is 
the location of the customer. For each resource there is a valid duration. For example, 
the valid duration of the cab request resource is the time period since the request is 
issued, until the request is satisfied or canceled.  The valid duration of the cab-sharing 
invitation starts when the invitation is announced and ends when an agreement is 
reached between the invitation initiator and another passenger. A resource is valid 
during its valid duration. 

Let us comment further about spatial resources, such as gas stations, ATM 
machines, etc. In these cases the valid duration is infinite. Opportunistic 
dissemination of reports about such resources is an alternative paradigm to geographic 
web searching (see e.g. [7]). Geographic web searching has generated a lot of interest 
since many search-engine queries pertain to a geographic area, e.g. find the Italian 
restaurants in the town of Highland Park. Thus instead of putting up a web site to be 
searched geographically, an Italian restaurant may decide to put a short-range 
transmitter and advertise via opportunistic dissemination. In mobile systems, this also 
solves some privacy concerns that arise when a user asks for the closest restaurant or 
gas station. Traditionally, the user would have had to provide her location to the 
cellular provider; but she does not need to do so in our scheme. In our scheme, the 
transmission between two vehicles can be totally anonymous. 

2.2   Peers and Validity Reports 

The system consists of two types of peers, namely fixed hotspots and moving objects. 
Each peer m that senses the validity of resources produces validity reports. Denote by 
a(R) a report for a resource R. For each resource R there is a single peer m that 
produces validity reports, called the report producer for R. A peer may be the report 
producer for multiple resources. Each report a(R) contains at least the following 
information, namely resource-id, create-time, and home-location. Resource-id is the 
identification of R that is unique among all the resources of the same type in the 
system; create-time is the time when report a(R) is created (it is also the time when R 
is sensed valid); home-location is the home of R.  

In the parking slots example, a sensor in the parking slot (or the meter for the slot) 
monitors the slot, and, when the slot becomes free, it produces a validity report. In the 
car accident example, the report is produced by the sensor that deploys the air-bag. 

a(R) may contain other information depending on the resource type of R. For 
example, a parking slot report may include the time limit of the parking meter; a 
single-matching request may include the sender's personal information such as 
occupation and age; and so on. We say that a(R) is a type Ti report if R is a type Ti 
resource.  
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Let a(R) be a type Ti report. At any point in time, a peer m is either a consumer or 
a broker of a(R). m is a consumer of a(R), and a(R) is a consumer report to m, if m is 
attempting to discover or find a type Ti resource. m is a broker of a(R) and a(R) is a 
broker report to m, if m is not attempting to discover/find Ti but is brokering a(R), i.e. 
the only purpose of m storing a(R) is to relay it to other peers.  

2.3   Reports Relations 

There are two relations in the reports database of a peer m. One is the consumer 
relation, which stores all the reports that m knows about and for which m is a 
consumer. Another is the broker relation, which stores all the reports that m knows 
about and for which m is a broker. The two relations have a common object-relational 
schema. The schema contains three columns: (i) resource-type which indicates the 
type of the reported resource; (ii) resource-id; (iii) report-description, which is an 
abstract data type that encapsulates all the attributes of a report. All the report 
description data types inherit from a single data type called AbstractReport. 
AbstractReport contains two attributes, namely create-time and home-location. Thus 
every report description data type has these two attributes. 

2.4   Report Relevance 

Given the memory and communication-throughput constraints, it is desirable that the 
most important or useful reports are communicated during an encounter. One possible 
approach that appears to achieve this goal is that the receiver explicitly expresses the 
criteria for the reports it is interested in receiving. For example, "Give me all the 
reports a(R) such that the distance between R and me is smaller than 1 mile and the 
age of a(R) (i.e. the length of the time-period since the creation of a(R)) is less than 1 
minute." However, this does not guarantee a total order of the reports; on the other 
hand such a total order is necessary to ensure that most relevant reports are exchanged 
first (such that if disconnection occurs before the exchange completes, the loss is 
minimal), and that the less relevant reports are purged from memory before more 
relevant ones.  

Our approach is to rank all the reports in a peer's reports database in terms of their 
relevance or expected utility, and then the reports are communicated and saved in the 
order of their relevance. Or, the reports requested and communicated are the ones 
with a relevance above a certain threshold. The notion of relevance quantifies the 
importance or the expected utility of a report to a peer at a particular time and a 
particular location.  

Let a(R) be a type Ti report. The relevance of a(R) to a consumer at time q and 
location p represents the importance or the expected utility of a(R) to the consumer at 
q and p. The relevance of a(R) to a broker at time q and location p represents the 
importance or the expected utility of a(R) to future consumers of the report that the 
broker estimates it will encounter. The question is how to evaluate the relevance such 
as to provide a total order of all the reports across all the reports relations within a 
peer.  

We consider reports ranking a multiple attribute decision making (MADM) 
problem [11]. We adopt a hierarchical weighting structure. At the first level of the 
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weighting hierarchy, each resource type Ti is assigned a weight (priority) that 
represents the importance of Ti relative to other resource types. At the second level, 
each attribute of Ti is assigned a weight that represents the importance of that attribute 
relative to other attributes of Ti. When ordering reports, each report is assigned a score 
that is a weighted aggregation of the normalized values of each attribute. Then the 
reports are sorted based on their scores. 

3   Data Dissemination 

We assume that each peer is capable of communicating with the neighboring peers 
within a maximum of a few hundred meters. One example is an 802.11 hotspot or a 
PDA with Bluetooth support. The underlying communication module provides a 
mechanism to resolve interference and conflicts. Each peer is also capable of 
discovering peers that enter into or leave out of its transmission range. Finally, each 
peer is equipped with a GPS system so that (i) the peer knows its location at any point 
in time and (ii) the clock is synchronized among all the peers. 

When two peers m1 and m2 encounter each other, m1 first requests consumer 
reports from m2 with relevance (according to the relevance metadata of m1) above the 
lowest relevance in m1's consumer relation. Then m1 requests broker reports from m2 
with relevance above the lowest relevance in m1's broker relation.  

We would like to emphasize that in our model, the interactions among peers are 
completely self-organized. The association between a pair of peers is established 
when they encounter each other and is ended when they finish the exchange or when 
they are out of the transmission range of each other. Other than this there is no other 
procedure for a peer to join or leave the network. 

4   The Economic Model 

In this section we introduce an economic model that stimulates peers to participate in 
report dissemination even if they are not interested in using a resource. The economic 
model needs to satisfy the following requirements: 

It should handle two categories of reports, depending on whether the producer or 
the consumer pays for the reports.  Reports that the owner is interested in advertising 
are producer-paid. Reports that the consumer is interested in knowing are consumer-
paid. A resource may have both producer-paid and consumer-paid reports, if both the 
producer and the consumer are willing to pay for the reports. For example, reports 
that include the location of a gas station may be producer-paid because the gas station 
wishes to advertise them to neighboring vehicles. They may also be consumer-paid 
because a consumer may be willing to pay for a gas station report if he really needs 
one. Similarly for taxi-cab requests and reports of available parking slots. 

1. It should consider peers that may be producers, consumers, and brokers.  For 
consumer paid reports, both producers and brokers should be incentivized. For 
producer paid reports, brokers should be incentivized. 
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2. It should allow any peer to turn-off the spatio-temporal information module. But 
if it turns on the spatio-temporal information module, then the module behaves 
according to the economic model. 

3. It should protect from the following attacks: (i) A peer creates and sells 
fictitious validity reports; (ii) A propagator modifies a report; (iii) A consumer-paid 
report is overheard by an intruding-consumer that that does not pay; in other words, 
an intruder overhears the legitimate transfer of the report to a consumer; (iv) A peer 
illegitimately increases its virtual currency counter. 

Now we present our solution that satisfies the above requirements. Section 4.1 
introduces two fundamental components of our economic model, namely virtual 
currency and the security module. Section 4.2 discusses producer-paid reports. 
Section 4.3 discusses consumer-paid reports.  

4.1   Virtual Currency and the Security Module 

The system circulates a virtual currency called coins. The coins owned by each peer is 
represented by a coin counter that is physically stored in that peer. The coin counter is 
decreased when the peer pays out for buying validity reports and increased when the 
peer earns in for selling. Each peer has a trusted and tamper resistant hardware 
module called the security module. A common example of a low-cost security module 
is smart card with an embedded one-chip computer [6]. The coin counter is stored in 
the security module and thus is protected from illegitimate manipulation. Each coin is 
bought for a certain amount of real money but it cannot be cashed for real money, and 
therefore the motivation for breaking into the security module is significantly 
reduced. The validity reports database, including the consumer relation and the broker 
relation, are stored in the security module. 

When two moving objects m1 and m2 encounter each other, if both m1 and m2 have 
their security module open, then m1 and m2 start a secure session to trade validity 
reports2. The trading policy is implemented in the security module. For each resource 
type T, the owner/user of a moving object may decide not to participate in the 
exchange of type T reports. The owner/user may also turn off the security module. 
However, if it participates in the game, then security module behaves according to the 
economic model. 

4.2   Producer-Paid Reports 

In our prior work [19], we studied producer-paid reports. At a high level, the 
producer-paid model works as follows. When a resource R is announced by its 
producer, the producer loads with the report a(R) a certain number of coins, C, called 
the initial budget of a(R). When a(R) is received by a peer, it carries a certain budget 
C0. A peer earns a flat commission fee f each time it transmits the report to another 
peer. The remaining budget of the report is divided between the sender and receiver 
(in order for both to keep propagating the report). 
                                                           
2 The secure session is established based on some public key infrastructure that is omitted in 

this paper due to space limitations. 
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Intuitively, the higher the initial budget, the more peers can be reached. In [19] we 
determined the tradeoff between the initial budget and the effect of advertisement (i.e. 
the percentage of peers reached by the advertisement).  

4.3   Consumer-Paid Reports 

Each report a(R) is acquired by the security module of a peer in one of the following 
two modes: 

1. Consumer. In consumer mode, the report a(R) is saved in the consumer relation. 
The consumer relation is accessible by the user so the user can read a(R). The 
consumer buys new reports according to some strategy (see section 6) but cannot sell 
them. The price of a report is a function of the relevance of the report.  

2. Broker. In broker mode the report a(R) is saved in the broker relation. The 
broker relation is not accessible by the user so the user cannot read a(R). Thus the 
user in broker mode cannot directly benefit from a(R). The security module simply 
stores a(R) and forwards it to other peers. A broker pays a percentage of the price of 
the report. It is paid the same percentage when selling the report to another broker, 
and it is paid the full price when selling the report to a consumer. How to setup the 
percentage to maximize the incentive is a subject of our future work. The received 
payment constitutes the incentive of the broker to participate in the game. A broker 
may sell a(R) to multiple consumers or brokers. A producer always operates in broker 
mode for the reports it transmits. 

Validity reports acquired in consumer mode are consumer reports, and reports 
acquired in broker mode are broker reports. At a particular peer a report cannot switch 
between broker and consumer. 

For reports which both the producer and the consumer are willing to pay for, the 
producer-paid policy and the consumer-paid policy can be combined. For example, 
initially the report is producer-paid. After the carried budget is used out, the report 
becomes consumer-paid. 

5   Query and Query Processing 

With OP2P, each peer m maintains a local reports database. The collection of the 
local databases of all the peers forms a virtual database to the database application in 
m. In this section we discuss the query interface to this virtual database and the query 
processing issue. 

5.1   Query Language 

In order to motivate the design of our query language, first let us give several typical 
example queries a user may issue in our environment. These queries are expressed in 
natural language. 

Example 1: Consider a transportation application where a passenger needs to transfer 
from one bus route to another. Assume that buses can wait for transfer passengers for 
certain amount of time. Now a transfer passenger Bob wants to transfer to route #8 at 
a certain intersection P. Bob expects to arrive at P at 10:10. Usually a bus driver is 
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willing to wait at a stop for a transfer passenger for at most 2 minutes. So Bob wants 
to notify a route #8 bus to wait him if the bus arrives at P between 10:08 and 10:10.  

Example 2: A hotspot collects the average traffic speed on the inbound 2-miles 
stretch of the I-290 highway that is centered at the hotspot.  

Example 3: Alert when more than 50 taxi cabs are within a certain area at the same 
time. 

Example 4: A driver wants to know all the parking slots located inside the downtown 
area and the relevance of which is higher than 0.5. 

We believe that declarative languages like SQL are the preferred way of express 
such queries. DRIVE uses the following query template.  

SELECT select-list [FROM reports] WHERE where-clause 
[GROUP BY gb-list [HAVING having-list]] 
[EPOCH DURATION epoch [FOR time]] 
[REMOTE query-destination-region [BUDGET]] 

The SELECT, FROM, WHERE, GROUP BY and HAVING clauses are very 
similar to the functionality of SQL. The relation name reports represents the virtual 
database. 

The optional EPOCH DURATION clause specifies the time between successive 
samplings and for how long the query lasts (see [21]). 

The optional REMOTE clause specifies whether the query is to be answered by 
the local database or is to be evaluated in a remote geographic region. If the 
REMOTE clause is used, then a query-destination-region should be further specified; 
it indicates that the query should be disseminated to all the peers in the specified 
region. If the REMOTE clause is omitted, then the query is processed locally. 

BUDGET specifies how much budget in virtual currency the user is willing to 
spend for disseminating the query and collecting the answers. If BUDGET is omitted, 
then the database system automatically sets a budget based on the distance to the 
query-destination-region, the size of the query-destination-region, the peer density, 
and so on.  

Our query template is similar to that provided by TinyDB [21] or Cougar [15]. 
The difference is that we have the REMOTE…BUDGET clause discussed above. 

Finally, we define a member function Rel() for each report description data type. 
This function takes as input a set of attributes and it returns the relevance using the 
input as the relevance attributes. 

Now we illustrate how our query template can be used to express the query 
examples given at the beginning of section 4.1 (Queries for examples 2-4 are omitted 
due to space limitations). 

Example 1: The following query notifies a route #8 buses to wait if the bus arrives at 
P between 10:08 and 10:10. 

SELECT resource_id 
FROM reports 
WHERE resource-type=BUS and report-description.route_no=8 and 

WITHIN_DISTANCE_ SOMETIME_BETWEEN(report-description.Traj, P, 0, 
10:08, 10:10) 

REMOTE route_of_bus_ #8 



 Data Management in Mobile Peer-to-Peer Networks 11 

 

route_no and Traj are two attributes of a bus report. Traj is the trajectory  
of the bus moving object; it defines the object's future location as a piece-wise  
linear function from time to the two-dimensional geography. 
WINTIN_DISTANCE_SOMETIME_BETWEEN(a,b,c,d,e) is a predicate introduced 
in [17]. It is true iff the distance between moving object a and point location b is 
within c some time between d and e. In our example it is true iff the bus arrives at P 
some time between 10:08 and 10:10. 

If a route #8 bus receives the query and it will wait, then the bus sends Bob an 
answer to the query.  

5.2   Query Processing 

We focus on remote query processing. A remote query from moving object m is 
processed in three steps. First, the trajectory of the querying moving object is attached 
to the query, so that the answering objects know where to return answers. As 
explained earlier, the trajectory defines the object's future location as a piecewise 
linear function from time to the two-dimensional geography. It may be constructed 
based on the shortest path between the origin and the destination of the object, and the 
traffic speeds on each road segment along the path. The origin and destination are 
provided, for example, by the car navigation system. In the second step, the query is 
disseminated from m to the moving objects in the query-destination-region (given in 
the REMOTE clause). Finally the answers are returned to m. We concentrate on the 
query dissemination step and the answer delivery step in the rest of this section. 

Query dissemination. Simple flooding can always be used for query dissemination, 
but this may unnecessarily incur a high communication cost. For example, if the 
receiving object is moving away from the query destination region, then propagating 
the query to it may be wasteful. So the question is: when a moving object m1 that is 
carrying a query encounters another moving object m2, how m1 decides whether to 
forward the query to m2? The objective is to reach an optimal tradeoff between 
communication cost and accuracy of answers. We postulate that the decision should 
depend on the location and the moving direction of m2 relative to the query-
destination-region, the shape of the query-destination-region, the density of moving 
objects, and the budget of the query. 

Answer Delivery. There can be several strategies to propagate the answer back to the 
query originator m.  First, each moving object can send m the answers it is aware of; 
in turn, m consolidates the results (e.g. eliminates duplicates). The second possibility 
is that a leader is elected in the query-destination-region; the leader collects and 
consolidates the answers of the responding objects, before delivering them to m. The 
third possibility is a hybrid, hierarchical solution, in which leaders of small sub-areas 
propagate to leaders of larger areas.  

6   Information Usage Strategies and Transactional Issues 

Information Usage Strategies 
When multiple consumers hear about the same competitive resource (such as a 
parking slot or a cab customer), they may all head to that resource, leading to 
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contention. In order to address this phenomenon of “herding”, a consumer needs to be 
selective when buying and acting on reports. In our prior work [1] we proposed an 
approach called Information Guided Searing (IGS) strategy to address this issue. In 
this approach, a consumer goes to a resource only when the relevance of the report is 
higher than an adaptive threshold. We compared by simulations the above 
information usage with the naive resource discovery approach where information is 
not used. The results showed that in some cases IGS cuts discovery time by more than 
75%. We are studying strategies for using information to capture (i.e. reach before 
other competitors) geospatially distributed resources.  

Transactional Issues 
The transaction between two peers consists of a handshake initiation that includes the 
types of resources each one is interested in consuming/brokering, followed by the 
report exchange and coin charge/credit for each report.  Observe that these operations 
must be executed as a distributed atomic transaction. For example, the credit of one 
account should be committed only if the debit of the other account is committed; and 
in turn, this should occur if and only if the corresponding report was received 
properly. Therefore, the transaction must be followed by a commit protocol. The 
problem is that, due to the high mobility at which the transaction occurs, the commit 
protocol between two peers may not begin or may not complete.  

We propose to resolve this problem by a Mobile Peer-to-Peer Transaction 
(MOPT) mechanism which is a combination of an audit trail (or log) maintained 
online in the security module, and a central bank to which the audit trails of all peers 
are transmitted periodically, e.g. once a day. Our proposed MOPT mechanism has an 
online component that executes at the security module for each transaction, and an 
offline component.  

The online component of MOPT at a security module S performs the following 
functions. It keeps a log of the reports that have been exchanged and the credit/debit 
charged for each one.  The records of this log correspond to the log records in 
database transaction recovery. When a transaction completes unsuccessfully, then the 
user of S is still charged and can use the reports it received, and gets credit for the 
reports it (thinks it) sold. So if a broker B sent a report to a consumer C, but didn't 
receive the commit message, it still gets (temporary) credit. 

The offline component of MOPT, at the end of the day sends to a central bank the 
logs of the transactions that completed unsuccessfully during the day. After receiving 
all the logs from all the peers, the central bank does the following for the transactions 
that completed unsuccessfully at one or both participants (thus it ignores transactions 
that completed successfully at both participants). If the same transaction completed 
unsuccessfully at both participants, then the traces from the respective security 
modules are used to settle the credit/charge to both accounts. In the example above, if 
C didn't receive the report, B's credit will be reversed. If the transaction completed 
unsuccessfully at only one of the participants, i.e. the transaction is absent from the 
other security module trace, this fact indicates how the account at the unsuccessful 
participant should be settled. In this case, in the example above, B's credit will be 
made permanent. 

Observe that our MOPT mechanism needs to remember only the logs of 
unsuccessfully completed transactions, but can forget successfully completed 
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transactions. Considering that peers may execute thousands of transaction per day, 
this is an important property. 

Observe that this offline banking mechanism violates to some extent our principle 
of a completely decentralized economy. We will examine the framework/principles 
that can be enforced for a given level of decentralization. For example, assume that it 
is tolerable that occasionally peers may receive reports without paying, and some 
other peers may transmit resources without being paid. However, the system should 
provide integrity for the total amount of virtual currency in the system, namely virtual 
currency should not be lost or created. What is the maximum amount of 
decentralization allowed by this framework? Can the central bank be eliminated by 
doing so? In other words, we consider the semantic properties of our mobile peer-to-
peer application to enable maximum decentralization; and this distinguishes our 
research from the extensive body of existing work on transactions/serializability 
issues. 

7   Relevant Work 

Traditional Peer-to-Peer Approaches 
A traditional peer-to-peer approach like Gnutella [20] could be used to search spatio-
temporal resources, the problem addressed in this paper. In Gnutella, a query for a 
resource type (expressed by key words) is flooded on the overlay network (within 
predefined hops), and replies are routed back to the querying node along the same 
path as the query message. In other words, resource information is pulled by the 
querying node from the resource producer. This generates two problems in our 
context. First, since resources are transient and consumers do not know when they are 
generated, a consumer will have to constantly flood its query in order to catch 
resource information. Second, this does not work if there is not a path between the 
querying node and the resource producer. In our approach, a resource report is pushed 
by the resource producer to consumers via opportunistic dissemination and the 
dissemination area is automatically bounded by information prioritization. Gridella 
[12] and DHT systems such as Chord [14] have similar problems as Gnutella in that 
they use a pull model. In addition, Gridella and DHT systems require that the 
complete identifier (or key) of the searched data item be provided in a query, whereas 
in our case a consumer does not know a priori the keys of the searched resources. 

Resource Discovery and Data Dissemination in Mobile  Distributed  Environments 
Resource discovery and data dissemination in mobile distributed environments have 
been repeatedly studied (see e.g. [3, 16, 8]). Some use the gossiping/epidemic 
paradigm [16, 8] which is similar to our OP2P approach. All this work considers 
dissemination of regular data items rather than spatio-temporal information. None of 
them discusses information prioritization and incentive mechanisms. 

Static Sensor Networks 
A database approach has been applied to static sensor networks in Cougar [15], 
TinyDB [13], and direct diffusion [2]. All these methods require that a certain graph 
structure such as a tree be established in the network such that each node aggregates 
the results returned by its downstream nodes and its own result, and forwards the 
aggregation result to its upstream node. However, in our environment, due to the 
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dynamic and unpredictable network topology, such a graph structure is hard to 
maintain. Our distributed query processing relies on opportunistic interactions 
between mobile nodes and therefore is totally different than Cougar and TinyDB. 

Incentive Mechanisms for P2P and MANET 
Our economic model, including virtual currency, security module, and consumer-paid 
policy, is inspired by the work of Buttyan and Hubaux [5] on stimulating packet 
forwarding in MANET. In their work, a node receives one unit of virtual currency for 
forwarding a message of another node, and such virtual currency units (nuglets) are 
deducted from the sender (or the destination). In our model, however, the amount of 
virtual currency charged by an intermediary node (broker) for forwarding a report is 
proportional to the expected benefit of the report, the latter depending on the dynamic 
spatio-temporal properties of the report (age and distance) as well as various system 
environmental parameters.  

To the best of our knowledge, our work is the first one that attempts to quantify 
the relevance of spatio-temporal information and to price based on the benefit of 
information to the consumer rather than the cost of forwarding it. This distinguishes 
our work from many other incentive mechanisms (see e.g. [9, 10]) which concentrate 
on compensating forwarding cost in terms of battery power, memory, CPU cycles. In 
a vehicular network such cost is negligible. 

8   Conclusion 

In this paper we devised a platform for dissemination of spatial and temporal 
resource-information in a mobile peer-to-peer network environment, in which the 
database is distributed among the moving objects. The moving objects also serve as 
routers of queries and answers. The platform includes spatio-temporal resource data 
model, database maintenance via opportunistic peer-to-peer interactions, relevance 
evaluation for information prioritization, query language and query processing, 
economical model that provides incentive for peers to participate as information 
suppliers and intermediaries, information usage strategies, and transaction 
management.  

In general, we feel that the P2P paradigm is a tidal wave that has tremendous 
potential, as Napster and Gnutella have already demonstrated for entertainment 
resources. Mobile P2P is the next step, and it will revolutionize dissemination of 
spatial and temporal resources. For example, location based services have been 
considered a hot topic for quite some time, and it has been assumed that they have to 
be provided by a separate commercial entity such as the cellular service providers. 
The approach outlined in this paper can provide an alternative that bypasses the 
commercial entity.  
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Abstract. Peer-to-peer systems offer an efficient means for sharing data
among autonomous nodes. A central issue is locating the nodes with data
matching a user query. A decentralized solution to this problem is based
on using routing indexes which are data structures that describe the con-
tent of neighboring nodes. Each node uses its routing index to route a
query towards those of its neighbors that provide the largest number of
results. We consider using histograms as routing indexes. We describe a
decentralized procedure for clustering similar nodes based on histograms.
Similarity between nodes is defined based on the set of queries they match
and related with the distance between their histograms. Our experimen-
tal results show that using histograms to cluster similar nodes and to
route queries increases the number of results returned for a given num-
ber of nodes visited.

1 Introduction

The popularity of file sharing systems such as Napster, Gnutella and KaZaA has
spurred much current attention to peer-to-peer (p2p) computing. Peer-to-peer
computing refers to a form of distributed computing that involves a large number
of autonomous computing nodes (the peers) that cooperate to share resources
and services [11]. A central issue in p2p systems is identifying which peers contain
data relevant to a user query. There two basic types of p2p systems with regards
to the way data are distributed among peers: structured and unstructured ones.

In structured p2p systems, data items (or indexes) are placed at specific peers
usually based on distributed hashing (DHTs) such as in CAN [13] and Chord [6].
With distributed hashing, each data item is associated with a key and each peer
is assigned a range of keys and thus items. Peers are interconnected via a regular
topology where peers that are close in the key space are highly interconnected.
Although DHTs provide efficient search, they compromise peer autonomy. The
DHT topology is regulated since all peers have the same number of neighboring
peers and the selection of peers is strictly determined by the DHTs semantics.
Furthermore, sophisticated load balancing procedures are required.
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In unstructured p2p systems, there is no assumption about the placement of
data items in the peers. When there is no information about the location of data
items, flooding and its variation are used to discover the peers that maintain
data relevant to a query. With flooding (such as in Gnutella), the peer where
the query is originated contacts its neighbor peers which in turn contact their
own neighbors until a peer with relevant data is reached. Flooding incurs large
network overheads, thus to confine flooding, indexes are deployed. Such indexes
can be either centralized (as in Napster) or distributed among the peers of the
system providing for each peer a partial view of the system.

In this paper, we use a form of distributed index called routing index [3].
Each peer maintains a local index of all data available locally. It also maintains
for each of its links, one routing index that summarizes the content of all peers
reachable through this link within a given number of hops. We propose using
histograms as local and routing indexes. Such histograms are used to route range
queries and maximize the number of results returned for a given number of peers
visited.

In addition, we use histograms to cluster peers that match the same set
of queries. The similarity of two peers is defined based on the distance of the
histograms used as their local indexes. The motivation for such clustering is
that once in the appropriate cluster, all relevant to a query peers are a few links
apart. In addition, we add a number of links among clusters to allow inter-cluster
routing. Our clustering procedure is fully decentralized.

Our experimental results show that our procedure is effective: in the con-
structed clustered peer-to-peer system, the network distance of two peers is
proportional to the distance of their local indexes. Furthermore, routing is very
efficient, in particular, for a given number of visited peers, the results returned
are 60% more than in an unclustered system.

Preliminary versions of a clustering procedure based on local indexes appears
in [12] where Bloom filters are used for keyword queries on documents. The
deployment of histograms as routing indexes for range selection queries, the
routing procedure and the experimental results are new in this paper. As opposed
to Bloom filters that only indicate the existence of relevant data, histograms
allow for an ordering of peers based on the estimated results they provide to a
query. This leads to a clustered p2p system in which the network distance of two
peers is analogous to the estimated results.

The remainder of this paper is structured as follows. In Section 2, we intro-
duce histograms as routing indexes and appropriate distance metrics. In Section
3, we describe how histograms are used to route queries and to cluster relevant
peers. In Section 4, we present our experimental results. Finally, in Section 5, we
compare our work with related research, and in Section 6 offer our conclusions.

2 Histograms in Peer-to-Peer Systems

We assume a p2p system with a set N of peers ni. The number of peers changes
as peers leave and join the system. Each peer is connected to a small number
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of other peers called its neighbors. Peers store data items. A query q may be
posed at any of the peers, while data items satisfying the query may be located
at many peers of the system. We call the peers with data satisfying the query
matching peers. Our goal is to route the query to its matching peers efficiently.

2.1 Histograms as Routing Indexes

We consider a p2p system where each peer stores a relation R with a numeric
attribute x and focus on routing range selection queries on x. Our approach is
based on using local indexes to describe the content of each peer. In particular,
each peer n maintains a summary, called local index, that describes its content. A
property of the index is that we can determine, with high probability, whether
the peer matches the query based on the index of the peer, that is, without
looking at the actual content of the peer. We propose using histograms as local
indexes.

A histogram on an attribute x is constructed by partitioning the data distri-
bution of x into b (≥ 1) mutually disjoint subsets called buckets and approximat-
ing the frequencies and values in each bucket. Histograms are widely used as a
mechanism for compression and approximations of data distributions for selec-
tivity estimation, approximate query answering and load balancing [7]. In this
paper, we use histograms for clustering and query routing in p2p systems. We
consider equi-width histograms, that is, we divide the value set of attribute x into
ranges of equal width and keep the percentage of x’s occurrences for each bucket.
In addition, we maintain the total number of all tuples (the histogram size).

We denote by LI(n) the histogram used as the local index of peer n. Besides
its local index, each peer n maintains one routing index RI(n, e) for each of its
links e. RI(n, e) summarizes the content of all peers that are reachable from n
using link e at a distance at most R. The routing indexes are also histograms
defined next.

We shall use the notation H(n) to denote a histogram (used either as a local
index LI(n) or as a routing index RI(n, e)), Hi(n) to denote its i-th bucket,
0 ≤ i ≤ b − 1, and S(H(n)) to denote its size. Then,

Definition 1 (Histogram-Based Routing Index). The histogram-based
routing index RI(n, e) of radius R of the link e of peer n is defined as fol-
lows: for 0 ≤ i ≤ b − 1, RIi(n, e) = (Σp∈P LIi(p) ∗ S(LI(p))/Σp∈P S(LI(p)) and
S(RI(n, e)) = Σp∈P S(LI(p)) where P is the set of all peers p within distance R
of n reachable through link e.

An example is shown in Fig. 1. The set of peers within distance R of n is
called the horizon of radius R of n.

As usual, we make the uniform frequency assumption and approximate all
frequencies in a bucket by their average. We also make the continuous values
assumption, where all possible values in the domain of x that lie in the range
of the bucket are assumed to be present. However, there is a probability that
although a value is indicated as present by the histogram, it does not really exist
in the data (false positive). This is shown to depend on the number of buckets,
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Fig. 1. The local indexes of peers 1, 2, 3, and 4 and the routing index of link e of peer
1 for radius R = 2, assuming that local indexes LI(2), LI(3) and LI(4) have the same
size

the number of tuples and the range of the attribute. Details can be found in the
Appendix.

For a given query q, the local histogram LI(n) of peer n provides an esti-
mation of the number of results (matching tuples) of peer n, while the routing
index RI(n, e) provides an estimation of the number of results that can be found
when the query is routed through link e. We denote by results(n, q) the actual
number of results to query q and by hresults(H(n), q) the number of results
estimated by the histogram H(n). Let a query qk = {x: a ≤ x ≤ a + k ∗ d},
where d is equal to the range of each bucket, 0 ≤ k ≤ b and a = c ∗ d, where
0 ≤ c ≤ b − 1. We also consider the queries q< = {x: x ≤ a} and q> = {x: x ≥
a}. Note that query q> is the same with query qb.

We can estimate results(n, q) using the histogram H(n) of peer n based on
the type of the query q as follows:

– qk: hresults(H(n), qk) = S(H(n)) ∗ Σ
((a+k∗d)/d)
i=a/d Hi(n)

– q<: hresults(H(n), q<) = S(H(n)) ∗ Σ
a/d
i=0Hi(n)

– q>: hresults(H(n), q>) = S(H(n)) ∗ Σb
i=a/dHi(n)

We defined the query qk as starting from the lower limit of a bucket (a =
c * d), for simplicity.

2.2 Using Histograms for Clustering

Ideally, we would like to route each query q only through the peers that have
the most number of results (top-k matching peers). To express this, we define
PeerRecall as our performance measure. PeerRecall expresses how far from the
optimal a routing protocol performs. Let V be a set of peers (V ⊆ N), by
Sresults(V, q) we denote the sum of the numbers of results (i.e., matching tuples)
returned by each peer that belongs to V .

Sresults(V, q) = Σv∈V results(v, q) (1)

Definition 2 (PeerRecall). Let V isited (V isited ⊆ N) be the set of peers
visited during the routing of a query q and Optimal (Optimal ⊆ N) be the
set of peers such that |Optimal| = |V isited| and v ∈ Optimal ⇔ results(v, q)
≥ results(u, q), ∀ u /∈ Optimal. We define PeerRecall as: PeerRecall(q) =
Sresults(V isited, q)/Sresults(Optimal, q).
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Intuitively, to increase PeerRecall, peers that match similar queries must be
linked to each other. This is because, if such peers are grouped together, once we
find one matching peer, all others are nearby. The network distance between two
peers ni and nj , dist(ni, nj) is the length of the shortest path from ni to nj . In
general, peers that match similar queries should have small network distances.
Our goal is to cluster peers, so that peers in the same cluster match similar
queries. The links between peers in the same cluster are called short-range links.
We also provide a few links, called long-range links, among peers in different
clusters. Long-range links serve to reduce the maximum distance between any
two peers in the system, called the diameter of the system. They are used for
inter-cluster routing.

To cluster peers, we propose using their local indexes. That is, we cluster peers
that have similar local histograms. For this to work, the distance (d) between
two histograms must be descriptive of the difference in the number of results to
any given query.

Property 1. Let LI(n1), LI(n2) and LI(n3) be the local indexes of three peers
n1, n2 and n3. If d(LI(n1), LI(n2)) ≥ d(LI(n1), LI(n3)), then
|results(n1, q)/S(LI(n1)) -results(n2, q)/S(LI(n2))| ≥|results(n1, q)/S(LI(n1))
- results(n3,q)/S(LI(n3))|.

That is, we want the distance of two histograms to be descriptive of the
difference in the number of results they return for a given query workload. In
the following, as a first step we consider how two well-known distance metrics
perform with respect to the above property.

Histogram Distances. The L1-distance of two histograms H(n1) and H(n2)
is defined as:

Definition 3 (L1 Distance Between Histograms). Let two histograms H(n1)
and H(n2) with b buckets, their L1 distance, dL1(H(n1), H(n2)) is defined as:
dL1(H(n1), H(n2)) = Σb−1

i=0 |Hi(n1) - Hi(n2)|.
Let us define as

L1(i) = Hi(n1) − Hi(n2). (2)

then
dL1(H(n1), H(n2)) = Σb−1

l=0 |L1(l)| (3)

The histograms we study are ordinal histograms, that is, there exists an
ordering among their buckets, since they are built on numeric attributes. For
ordinal histograms, the position of the buckets is important and thus, we want
the definition of histogram distance to also take into account this ordering. This
property is called shuffling dependence. For example, for the three histograms
of Fig. 2, the distance between histograms H(n1) and H(n2) that have all their
values at adjacent buckets (Hi(n1) and Hi+1(n2) respectively) should be smaller
than the distance between histograms H(n1) and H(n3) that have their values
at buckets further apart. This is because, the difference of results for peers n1
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H(n1) H(n2) H(n3)

Fig. 2. Intuitively, the distance between H(n1) and H(n2) should be smaller than the
distance between H(n1) and H(n3)

and n2 is smaller for a larger number of range queries than for peers n1 and
n3. The shuffling dependence property does not hold for dL1 , since the three
histograms have the same pair-wise distances.

We now consider an edit distance based similarity metric between histograms
for which the shuffling dependence property holds. The edit distance between
two histograms H(n1) and H(n2) is the total number of all necessary minimum
movements for transforming H(n1) to H(n2) by moving elements to the left or
right. It has been shown that this is expressed by the following definition [2]:

Definition 4 (Edit Distance Between Histograms). Let two histograms
H(n1) and H(n2) with b buckets, their edit distance, de(H(n1), H(n2)) is defined
as: de(H(n1), H(n2)) = Σb−1

i=0 |Σi
j=0(Hj(n1) − Hj(n2))|.

Let us define as

pref(l) = Σl
i=0Hi(n1) − Σl

i=0Hi(n2) (4)

then
de(H(n1), H(n2)) = Σb−1

l=0 |pref(l)| (5)

Let a query qk = {x: a ≤ x ≤ a + k ∗ d, where d is equal to the range of each
bucket and 0 ≤ k ≤ b}.

Given that a is chosen uniformly at random from the domain of x, then the
difference in the results is equal to:

|hresults(H(n1), qk)/S(H(n1)) − hresults(H(n2), qk)/S(H(n2))| =
Σb−1

j=0 |pref(j + k) − pref(j − 1)| (6)

where pref(j) = 0 for j ≥ b − 1 and j < 0.
From Equation 6, for k = b − 1 that is for queries x ≥ a Property 1 holds. It

also holds for x ≤ a. It does not hold however, in general.
To summarize, the L1 distance satisfies Property 1 for q0 (that is for queries

that cover one bucket), while the edit distance satisfies Property 1 for q< and
q> (which is the same with qb).

3 Query Routing and Network Construction

We describe next how histogram-based indexes can be used to route a query
and to cluster similar peers together. We distinguish between two types of links:
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short-range or short links that connect similar peers and long-range or long links
that connect non-similar peers. Two peers belong to the same cluster if and only
if there is a path consisting only of short links between them. We describe first
how queries are routed and then how long and short links are created.

3.1 Query Routing

A query q may be posed at any peer n. Our goal is to route the query q through
peers that give a large number of results for q. Ideally, we would like to visit
only those peers that provide the most results. To maximize PeerRecall, we use
a greedy query routing heuristic: each peer that receives a query propagates it
through those of its links whose routing indexes indicate that they lead to peers
that provide the largest number of results. The routing of a query stops either
when a predefined number of peers is visited or when a satisfactory number of
results is located. Specifically, for a query q posed at peer n:

1. First, n checks its local index and if the index indicates that there may be
matching data locally, it retrieves them.

2. Then, n checks whether the maximum number of visited peers (MaxV isited)
has been reached or the desired number of matching data items (results) has
been attained. If so, the routing of the query stops.

3. Else, n propagates the query through the link e whose routing index gives
the most matches (hresults(RI(n, e), q) > hresults(RI(n, l), q), ∀ link l 	=
e) and e has not been followed yet. If hresults(RI(n, e), q) = 0, ∀ link e that
has not been followed, query propagation stops.

By following the link e whose hresults(RI(n, e), q) returns the largest value,
the query is propagated towards the peers with the most results and thus
PeerRecall is increased.

When a query reaches a peer that has no links whose routing indexes indicate
a positive number of results, or when all such links have already been followed,
backtracking is used. This state can be reached either by a false positive or when
the desired number of results has not been attained yet. In this case, the query
is returned to the previous visited peer that checks whether there are any other
links with indexes with results for the query that have not been followed yet,
and propagates the query through one or more of them. If there are no such
matching links, it sends the query to its previous peer and so on. Thus, each
peer should store the peer that propagated the query to it. In addition, we store
an identifier for each query to avoid cycles. Note that this corresponds to a
Depth-First traversal.

To avoid situations in which all routing indexes indicate that there are no
results, initially we use the following variation of the routing procedure. If no
matching link has been found during the routing of the query, and the current
peer n has no matching links (hresults(RI(n, e), q) = 0 ∀ link e of n), which
means that the matching peers (if any) are outside the radius R of n, then the
long-range link of this peer is followed (even if it does not match the query).
The idea is that we want to move to another region of the network, since the
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current region (bounded by the horizon) has no matching peers. In the case that
the peer has no long-range link or we have already followed all long-range links,
the query is propagated through a short link to a neighbor peer and so on until
a long-range link is found.

3.2 Clustering

We describe how routing indexes can be used for distributed clustering. The idea
is to use the local index of each new peer as a query and route this towards the
peers that have most similar indexes.

In particular, each new peer that enters the system tries to find a relevant
cluster of peers. Then, it links with a number SL of peers in this cluster through
short links. Also, with probability Pl, it links with a peer that does not belong
to this cluster through a long link. Short links are inserted so that peers with
relevant data are located nearby in the p2p system. Long links are used for
keeping the network diameter small. The motivation is that we want to be easy
to find both all relevant results once in the right cluster, and the relevant cluster
once in another cluster, thus increasing PeerRecall.

When a new peer n wishes to join the system, a join message that contains
its local index LI(n) is posed as a query to a well known peer in the system.
The join message also maintains a list L (initially empty) with all peers visited
during the routing of the join message. The join message is propagated until up
to JMaxV isited peers are visited.

Whenever the join message reaches a peer p the procedure is the following:

1. The distance d(LI(n), LI(p)) between local indexes LI(n) and LI(p) is
calculated.

2. Peer p and the corresponding distance are added to list L.
3. If the maximum number of visited peers JMaxV isited is reached, the rout-

ing of the join message stops.
4. Else, the distances d(LI(n), RI(p, e)) between the local index LI(n) of the

new peer n and the routing indexes RI(p, e) that correspond to each of the
links e of peer p are calculated.

5. The message is propagated through the link e with the smallest distance
that has not been followed yet, because there is a higher probability to find
the relevant cluster through this link. When the message reaches a peer with
no other links that have not been followed, backtracking is used.

When routing stops, the new peer selects to be linked through short links to
the SL peers of the list L whose local indexes have the SL smallest distances
from the local index of the new peer. It also connects to one of the rest of the
peers in the list through a long link with probability Pl.

An issue is how the peer that will be attached to the new peer through
the long link is selected. One approach is to select randomly one of the rest of
the peers within the list (that does not belong to the SL peers selected to be
linked through short links). Another approach is to select one of the rest of the
peers within the list with a probability based on their distances from the new
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peer. Thus, we rank these peers based on their distances, where the first in the
ranking is the one with the smallest distance and has rank = 0. The second
in the ranking has rank = 1 and so on. The probability that a specific peer
from the list is selected with respect to its ranking is: α * (1 − α)rank, where
0 < α < 1. The smaller the value of α, the greater the probability to create a
long link with a more dissimilar peer.

4 Experimental Results

We implemented a simulator in C to test the efficiency of our approach. The size
of the network varies from 500 to 1500 peers and the radius of the horizon from 1
to 3. Each new peer creates 1 to 2 short links (SL = 1 or 2) and one long link with
probability Pl = 0.4. The routing of the join message stops when a maximum
number (JMaxV isited) of peers is visited. The routing of a query stops when
a maximum number (MaxV isited) of peers is visited. Both numbers are set to
5% of the existing peers. Each peer stores a relation with an integer attribute
x ∈ [0, 499] with 1000 tuples. The tuples are summarized by a histogram with
50 buckets. 70% of the tuples of each peer belong to one bucket, and the rest are
uniformly distributed among the remaining buckets. The tuples in each bucket
also follow the uniform distribution. The input parameters are summarized in
Table 1.

Table 1. Input parameters

Parameter Default Value Range

Number of peers 500 500-1500
Radius of the horizon 2 1-3
Number of short links (SL) 2 1-2
Probability of long link (Pl) 0.4
Perc of peers visited during 5
join (JMaxV isited)
Perc of peers visited 5
during search (MaxV isited)
Histogram-related parameters
Number of buckets (b) 50
Domain of x [0, 499]
Tuples per peer 1000
Range of queries 2 0-4

We compare first the two distance metrics. Then, we evaluate the clustering
and the query routing procedures.

4.1 Histogram Distance Metrics

We run a set of experiments to evaluate the performance of the two histogram
distance metrics (the L1 and the edit distance). For simplicity of presentation,
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in the reported experiment, we use histograms with 10 buckets and x ∈ [0, 99].
We used a workload with queries having range (k) varying from 0 (covering
data in 1 bucket) to 4 (covering data in 5 buckets). We use 10 histograms H(i)
0 ≤ i < 10 with 10 buckets each, that have 70% of their data in bucket i and the
rest uniformly distributed among the other buckets. We compute the distance
of each histogram with H(0) using the two distance metrics. Our performance
measure is the difference in the number of results for each histogram with H(0),
that is:

|hresults(H(n), qk)/S(H(n)) − hresults(H(0), qk)/S(H(0))|, 1 ≤ n < 10
with respect to the distance of the respected histograms (that is, whether Prop-
erty 1 is satisfied).

Figure 3(left) shows the results when the L1 distance is used. Due to the
nature of the data, all compared histograms have the same distance. The distance
of the histograms has no relation with the difference in the number of results.
This is because the L1 distance compares only the respective buckets of each
histogram without taking into account their neighboring buckets which however
influence the behavior of queries with ranges larger than 0.

The edit distance (Fig. 3(right)) outperforms L1. In particular, as the distance
between the histograms increases, their respective differences in the results also
increases. However, for each query range this occurs until some point after which
the difference in the results becomes constant irrespectively of the histogram
distance. This is explained as follows. The edit distance between two histograms
takes into account the ordering of all buckets, while a query with range r involves
only r + 1 buckets, and thus it does not depend on the difference that the two
histograms may have in the rest of their buckets. For example, for a query
with range 0, the difference in the results remains constant while the histogram
distances increase. This is because the query involves only single buckets while
the edit distance considers the whole histogram. Thus, the edit distance works
better for queries with large ranges.

We also calculated the average performance of the two distance metrics for
a mixed query workload of queries with range from 0 to 4 (Fig. 4). L1 has
the worst overall performance since although the distance between the various
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Fig. 3. Relation of the number of results returned with the histogram distance using
(left) the L1 distance and (right) the edit distance



26 Y. Petrakis, G. Koloniari, and E. Pitoura

0

5

10

15

20

25

30

0 1000 2000 3000 4000 5000 6000

pe
rc

en
ta

ge
 o

f d
iff

er
en

ce
 in

 r
es

ul
ts

 (
%

)

histogram distance

L1_dist
edit_dist

Fig. 4. Comparison of histogram distances

histograms is constant, the difference in the number of results increases. The
edit distance behaves better. The difference in results increases until a point and
then it becomes constant. If we continue with ranges larger than 4, this point
occurs later.

4.2 Cluster Quality

In this set of experiments, we evaluate the quality of clustering. For these ex-
periments, we assume a query workload with range 2 (whose results occupy 3
buckets). We compare the constructed clustered network with a randomly con-
structed p2p system, that is a p2p system in which each new peer connects
randomly to an existing peer (random construction and routing) (random).

We measure the average histogram distance between the peers that are at
various network distances from each other in the created p2p network. We use
a network of 500 nodes and radius 2, and conduct the same experiment for
SL = 1 (Fig. 5(left)) and SL = 2 (Fig. 5(right)). As the network distance
between two peers increases, their histogram distance increases too, for both
histogram distance metrics and for both 1 and 2 short links. This means that
the more similar two peers are, the closer in the network they are expected to
be. The rate of increase of the histogram distance is large when the network
distance is small and decreases as the network distance increases, due to the

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8

hi
st

og
ra

m
 d

is
ta

nc
e

network distance

random
L1_dist

edit_dist

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6

hi
st

og
ra

m
 d

is
ta

nc
e

network distance

random
L1_dist

edit_dist

Fig. 5. Cluster quality with (left) SL = 1 and (right) SL = 2
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denser clustering of similar peers in a particular area of the network (e.g., the
formation of clusters of similar peers). The edit distance has a larger increase
rate for large network distances (4 and above for 2 short links and 6 and above
for 1 short link) than the L1 distance (which remains nearly constant for these
network distances). The conclusion is that in the network built using the edit
distance, some kind of ordering among the peers in different clusters is achieved.
For the random network, the histogram distance is constant for all network
distances, since there is no clustering of similar peers.

4.3 Query Routing

In this set of experiments, we evaluate the performance of query routing using
as our performance measure PeerRecall (as defined in Def. 2). We compare the
constructed clustered network with a randomly constructed p2p, that is a p2p
system in which each new peer connects randomly to an existing peer (random
construction and routing) (random). We also consider a randomly constructed
p2p system that uses histograms only for query routing (random join).

We use a network of 500 peers and examine the influence of the horizon in the
query routing performance for SL = 1 (Fig. 6(left)) and SL = 2 (Fig. 6(right)).
The radius varies from 1 to 3; we use queries with range = 2. Using histograms
for both clustering and query routing results in much better performance than
using histograms only for routing or not using histograms at all. For radius 2
and for 2 short links, we have the best performance. For 1 short link, PeerRecall
increases as the radius of the horizon increases, since each peer has information
about the content of more peers. For 2 short links, PeerRecall decreases for
radius greater than 2. The reason is that there are more links, and thus, much
more peers are included within the horizon of a particular peer (when compared
with the network built using 1 short link). Thus, a very large number of peers
correspond to each routing index. This results in losing more information than
when using radius 2. Thus, for each type of network there is an optimal value of
the radius that gives the best performance.
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Fig. 7. Varying the number of nodes

Next, we examine how our algorithms perform with a larger number of peers.
We vary the size of the network from 500 to 1500. Radius is set to 2 and we
use 2 short links and queries with range = 2. As shown in Fig. 7, PeerRecall
remains nearly constant for both histogram distance metrics and outperforms
the random join and the random networks.

5 Related Work

Many recent research efforts focus on organizing peers in clusters based on their
content. In most cases, the number or the description of the clusters is fixed and
global knowledge of this information is required. In this paper, we describe a fully
decentralized clustering procedure that uses histograms to cluster peers that an-
swer similar queries. In [1], peers are partitioned into topic segments based on
their documents. A fixed set of C clusters is assumed, each one corresponding
to a topic segment. Knowledge of the C centroids is global. Clusters of peers are
formed in [17] based on the semantic categories of their documents; the semantic
categories are predefined. Similarly, [4] assumes predefined classification hierar-
chies based on which queries and documents are categorized. The clustering of
peers in [10] is based on the schemes of the peers and on predefined policies pro-
vided by human experts. Besides clustering of peers based on content, clustering
on other common features is possible such as on their interests [8].

In terms of range queries, there has been a number of proposals for supporting
them in structured p2p systems. In [15], which is based on CAN, the answers of
previous range queries are cached at the appropriate peers and used to answer
future range queries. In [16], range queries are processed in Chord by using an
order-preserving hash function. Two approaches for supporting multidimensional
range queries are presented in [5]. In the first approach, multi-dimensional data
is mapped into a single dimension using space-filling curves and then this single-
dimensional data is range-partitioned across a dynamic set of peers. For query
routing, each multi-dimensional range query is first converted to a set of 1-d range
queries. In the second approach, the multi-dimensional data space is broken up
into “rectangles” with each peer managing one rectangle using a kd-tree whose
leaves correspond to a rectangle being stored by a peer.
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Routing indexes were introduced in [3] where various types of indexes were
proposed based on the way each index takes into account the information about
the number of hops required for locating a matching peer. In the attenuated
Bloom filters of [14], for each link of a peer, there is an array of routing indexes.
The i-th index summarizes items available at peers at a distance of exactly i
hops. The peer indexes of [9] use the notion of horizon to bound the number of
peers that each index summarizes.

6 Conclusions and Future Work

In this paper, we propose using histograms as routing indexes in peer-to-peer
systems. We show how such indexes can be used to route queries towards the
peers that have the most results. We also present a decentralized clustering pro-
cedure that clusters peers that match similar queries. To achieve this, we use the
histograms of each peer and test how the L1 and the edit histogram distances can
be used to this end. Our experimental results show that our clustering procedure
is effective, since in the constructed clustered peer-to-peer system, the network
distance of two peers is proportional to the distance of their histograms. Fur-
thermore, routing is very efficient, since using histograms increases the number
of results returned for a given number of peers visited.

This work is a first step towards leveraging the power of histograms in peer-to-
peer systems. There are many issues that need further investigation. We are cur-
rently working on defining more appropriate distance metrics and multi-attribute
histograms. We are also developing procedures for dynamically updating the
clusters. Another issue is investigating the use of other types of histograms (be-
sides equi-width ones).
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Appendix

False Positive Probability for a Histogram. Let H be a histogram for
an integer attribute x ∈ [Dmin, Dmax] (x can take D = Dmax − Dmin + 1
distinct values). H has b buckets. Let a query x = A. We assume that each
peer has n tuples that follow uniform distribution. Then in each bucket we
have n/b tuples. The probability that we do not have a query match, that is,
there does not exist a tuple with value x = A in the data summarized by H
is P (query no match) = ((D − 1)/D)n. The probability that the histogram
indicates a match is: P (hist match) = 1 − ((b − 1)/b)n (it is sufficient that one
tuple falls into the bucket that A falls into as well). The range of each bucket is
D/b. Thus the probability of having a query no match while we had a histogram
match is: P1 = ((D/b − 1)/(D/b))n/b = ((D − b)/D)n/b. Thus, the false positive
probability is according to the formula of Bayes:
P (fp) = P (hist match / query no match) = P1 ∗ P (hist match)/P (query no
match) ⇒

P (fp) = (((D − b)/D)n/b ∗ (1 − ((b − 1)/b)n))/((D − 1)/D)n. (7)
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Abstract. Peer-to-Peer infrastructures are emerging as one of the important data
management infrastructures in the World Wide Web. So far, however, most work
has focused on simple P2P networks which tackle efficient query distribution to
a large set of peers but assume that each query can be answered completely at
each peer. For queries which need data from more than one peer to be executed
this is clearly insufficient. Unfortunately, though quite a few database techniques
can be re-used in the P2P context, P2P data management infrastructures pose
additional challenges caused by the dynamic nature of these networks. In P2P
networks, we can assume neither global knowledge about data distribution, nor the
suitableness of static topologies and static query plans for these networks. Unlike in
traditional distributed database systems, we cannot assume complete information
schema and allocation schema instances but rather work with distributed schema
information which can only direct query processing tasks from one node to one
or more neighboring nodes.

In this paper we first describe briefly our super-peer based topology and
schema-aware distributed routing indices extended with suitable statistics and de-
scribe how this information is extracted and updated. Second we show how these
indices facilitate the distribution and dynamic expansion of query plans. Third we
propose a set of transformation rules to optimize query plans and discuss different
optimization strategies in detail, enabling efficient distributed query processing in
a schema-based P2P network.

1 Introduction and Motivation

P2P computing provides a very efficient way of storing and accessing distributed re-
sources, as shown by the success of music file sharing networks such as Gnutella, where
simple attributes are used to describe the resources. A lot of effort has been put into
refining topologies and query routing functionalities of these networks. A new breed
of P2P applications inspired from earlier systems like Napster and Gnutella has more
efficient infrastructures such as the ones based on distributed hash tables. Less effort
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has been put into extending the representation and query functionalities offered by such
networks. Projects exploring more expressive P2P infrastructures [17, 2, 1, 10] have only
slowly started the move toward schema-based P2P networks.

In the Edutella project [7, 17] we have been exploring several issues arising in that
context, in order to design and implement a schema-based P2P infrastructure for the
Semantic Web. Edutella relies on the W3C metadata standards RDF and RDF Schema
(RDFS) to describe distributed resources, and uses basic P2P primitives provided as
part of the JXTA framework [9]. In the ObjectGlobe project [5, 15] we have designed
and implemented a distributed data network consisting of three kinds of suppliers: data-
providers, which supply data, function-providers, that offer (an extensible set of) query
operators to process data, and cycle-providers, which are contracted to execute query
operators. ObjectGlobe enables applications to execute complex queries which involve
the execution of operators from multiple function providers at different sites (cycle
providers) and the retrieval of data and documents from multiple data sources. Both sys-
tems, Edutella and ObjectGlobe, have to deal with complex queries in a highly dynamic,
distributed, and open environment.

Although distributed query optimization and execution are well known issues inves-
tigated in database research, distributed query processing in schema-based P2P networks
is novel. Middleware systems, e.g., Garlic [12], have been used to overcome the het-
erogeneity faced when data are dispersed across different data sources. In [16] central
mapping information of all participating is used to provide access to distributed data
sources. [19] introduces so called mutant query plans, which encapsulate partially eval-
uated query plans and data. Loss of pipelining during execution limits the general appli-
cability for distributed query processing, and no user-defined operators are supported.
AmbientDB [3] executes SQL queries over a P2P network. The approach is based on
distributed hash tables and does not take into account user-defined operators.

Very recent work of Stuckenschmidt et al. [25] exploits schema paths for optimizing
queries on distributed RDF repositories. Their approach constructs the overall query plan
in a mediator-like manner and uses replicated schema paths (which serve as a global al-
location schema of the data) to determine which portions of the query plan can be pushed
to the data sources. The approach does not handle the case that individual portions of the
pushed query plan can be further distributed. In a highly distributed environment like
a P2P network it is, however, a scalability concern to assume global knowledge of the
allocation schema. For example, the update behavior of the join indices will be a prob-
lem in such an environment, as new data sources with new RDF properties joining the
network will lead to an enormous growth of all join indices and huge transfer costs. Our
approach addresses in particular load balancing strategies during query plan generation
and mechanisms for the dynamic placement of operators. Their query processing facil-
ities are limited to joins and selections. User-defined operators are not considered but
needed in case multiple resources contribute data to the same property, which potentially
leads to an enormous explosion of the search space.

To enable dynamic, extensible, and distributed query processing in schema-based
P2P networks, where we need to evaluate complex queries requiring data from several
peers and where both standard query operators and user-defined code can be executed
nearby the data, we have to distribute query processing to the (super-)peers. Since each
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peer in a P2P network usually has varying resources available, e.g., regarding bandwidth
or processing power, exploiting the different capabilities in a P2P network can lead to
an efficient network architecture, where a small subset of peers, called super-peers [27],
takes over specific responsibilities for peer aggregation, query routing, and mediation.

In such an architecture, super-peers can, on the one hand, provide query processing
capabilities, and on the other hand functionality for the management of index structures
and for query optimization. Super-peer based P2P infrastructures are usually based on
a two-phase routing architecture, which first routes queries in the super-peer backbone,
and then distributes them to the peers connected to the super-peers. Our routing mech-
anism is based on two distributed routing indices storing information to route within
the super-peer backbone and between super-peers and their respective peers [18]. The
query processors at the super-peers can be dynamically extended by special-purpose
query operators that are shipped to the query processor as part of the query plan. In
this way, query evaluation plans (QEPs for short) with user-defined code, e.g., selection
predicates, compression functions, join predicates, etc., can be pushed from the client
to the (super-) peers where they are executed.

Furthermore, super-peers have to provide an optimizer for dynamically generating
good query plans from the queries they receive. We utilize these distributed query pro-
cessing capabilities at the super-peers and distribute the user’s query to the corresponding
super-peers. This distribution process is guided by the (dynamic) distributed routing in-
dices, which correspond to the (static) data allocation schema in traditional distributed
DBMSs. However, as the index is dynamic and itself distributed over the super-peers,
static query optimization as used in distributed DBMSs is not possible. Query optimiza-
tion must be therefore be dynamic and based on the data allocation schema known at
each super-peer.

This paper is based on the framework presented in [6] and focuses on appropriate
query optimization in P2P networks. First, we describe our super-peer based topology
and schema-aware distributed routing indices enriched with additional statistics. Second,
we describe how these statistics are extracted and updated. In section 3, we describe
how these indices facilitate the distribution and dynamic expansion of query plans. In
section 4 , we propose transformation rules to optimize query plans and discuss different
optimization strategies. Finally, we conclude with a short overview of the implemented
systems and future work.

2 Distributed Routing Indices

Efficient query routing is one of the corner stones of advanced P2P systems. We rely on
a super-peer topology with “schema-aware” routing indices.

The HyperCuP Topology. Super-peers are arranged in the HyperCuP topology. The
HyperCuP algorithm as described in [21] is capable of organizing super-peers of a P2P
network into a recursive graph structure called a hypercube that stems from the fam-
ily of Cayley graphs. Super-peers join the HyperCuP topology by asking any of the
already integrated super-peers which then carries out the super-peer integration pro-
tocol. No central maintenance is necessary for changing the HyperCuP structure. The
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Fig. 1. Routing Example Network

basic HyperCuP topology enables efficient and non-redundant query broadcasts. For
broadcasts, each node can be seen as the root of a specific spanning tree through the
P2P network. Peers connect to the super-peers in a star-like fashion. Figure 1 shows an
example super-peer based P2P network.

Routing Indices. Our super-peers [18] employ routing indices which explicitly ac-
knowledge the semantic heterogeneity of schema-based P2P networks, and therefore
include schema information as well as other possible index information. The indices are
local in the sense that all index entries only refer to direct neighbors (peers and super-
peers). Network connections among the super-peers form the super-peer backbone that
is responsible for message routing and integration/mediation of metadata.

Our super-peer network implements a routing mechanism based on two indices
storing information to route within the P2P backbone and between super-peers and their
respective peers. The super-peer/peer routing indices (SP/P indices) contain information
about each peer connected to the super-peer, including schema and attribute information
from the peers. On registration the peer provides this information to its super-peer. In
contrast to other approaches (Gnutella, CAN [20]), our indices do not refer to individual
content elements but to peers (as in CHORD [24]). The indices can contain information
about peers at different granularities: schemas, schema properties, property value ranges
and individual property values. Details are described in [18]. Using indices with different
granularities enables us to state queries at different levels of accuracy. In order to avoid
backbone broadcasting we use super-peer/super-peer routing indices (SP/SP indices) to
forward queries among the super-peers. These SP/SP indices are essentially extracts and
summaries from all local SP/P indices maintained in the super-peers. Similar to the SP/P
indices they contain schema information at different granularities, but refer to the super-
peers’neighbors in the super-peer backbone. Queries are forwarded to super-peer neigh-
bors based on the SP/SP indices, and sent to connected peers based on the SP/P indices.

Statistics in the Routing Indices. The routing indices as described so far enable the
efficient routing of queries. Nevertheless, additional information (statistics, physical
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Table 1. SP/P Index of SP1 at Different Granularities

Granularity SP/P Index of SP1

Schema
dc P1, P0

lom P1, SP3

Property
dc:subject P1 [13], P0 [16]
dc:language P1 [15]
lom:type P1 [10]

Property lom:type “exercise” P1 [10]
Value dc:language “de” P0 [15]

parameters of the network, etc.) both in the SP/P and the SP/SP routing indices are
necessary to enhance the optimization process and enable the choice of the best query
execution plan. As mentioned in the introduction we aim at using approved techniques
and methods in databases, particularly from distributed database systems. The most
important parameters for query optimization in this context are number and size of the
stored documents at the different peers. This information is provided by the peers during
the registration process. The following piece of the RDF-Schema PeerDescription shows
the definition of the property elementCount, used for the documents count at a given
peer at the property-value level.

(...)

<rdf:Property rdf:ID="elementCount">
<rdfs:isDefinedBy rdf:resource="http://www.learninglab.de/˜brunkhor/rdf
/PeerDescription#"/>
<rdfs:label>elementCount</rdfs:label>
<rdfs:comment>An integer that specifies how often an element has occured.

Used in conjunction with hasPropertyValues.</rdfs:comment>
<rdfs:range rdf:resource="http://www.w3c.org/2000/01/rdf_schema#Literal"/>
<rdfs:domain rdf:resource="#Peer"/>

</rdf:Property/>

(...)

If we register documents only at the property value level, we can derive the infor-
mation for the property level by accumulating the number and size of documents for
each property. Multi-valued properties like dc:author complicate this aggregation. His-
tograms [11] can help to obtain more precise estimates. For this paper, we assume that
the registration occurs at property level, property value level, and property value range
level. The schema level can be considered as meta-level, which can be used to answer
general queries (e.g. “Which standards are used to annotate documents at Peer x?”).
Thus, the information about the number and size of documents are not relevant at this
level. Table 1 shows the SP/P routing index of super-peer SP1 including statistics at
different granularities. In the following we will restrict the discussion on the size (si)
and the number (n) of available documents. However, it is easily possible to add further
useful statistics such as minimum, maximum, and average values and the total number of
documents at each peer. If a peer Py (re-)registers or leaves a given super-peer SPx with
a schema element set including document statistics Sy(s1(n1, si1), . . . , sm(nm, sim)),
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an update of the SP/P and the SP/SP indices is needed. The algorithm for building and
updating the SP/P routing indices described before remains unmodified. The peers sim-
ply register including their statistics information in addition to the schema elements.
The update information of the SP/SP indices propagated via messages however must be
extended as follows:

1. SPx derives the total number and size of the documents (and potentially further
statistics) registered by the peers for each schema element si ∈ Sy and sends these
statistics combined with si to its neighbors in its spanning tree.

2. Any other super-peer in the spanning tree of SPx updates its SP/SP index and derives
the total number and size of the documents in its SP/SP index at each si ∈ Sy and
forwards the data to its neighbors.

3 Plan Generation, Distribution and Optimization

Using the indices described in the previous section we can now describe how query plan
generation and distribution proceeds in our P2P network.

3.1 Distributed Plan Generation

In contrast to traditional distributed query optimization approaches, we cannot generate
the query plan statically at one single host. Therefore we have to generate an abstract
query plan at a super-peer which is partially executed locally and where we push other
parts of the query plan to its neighbors. The plan generation at each super-peer therefore
involves five major steps as depicted in Figure 2 and is described in details in [6].

First, the received query (stated in our SQL dialect) is parsed and transformed into
an internal representation which is a decomposition of the query into its building blocks.
Then, the local indices are consulted to determine the location of the required resources.
For this purpose we have to distinguish between resource directions (RDs) and phys-
ical resources (PRs). Users specify the desired information by giving properties and
property-values restricting logical resources (LRs). These LRs are bound to RDs resp.
PRs where all levels of granularity of the indices have to be considered. Multiple RDs
and PRs can contribute data for the same LR. Based on the bindings, a local query plan is
generated. As super-peers have a very limited view of the whole P2P network (only the
neighbors are known), it is obvious that no comprehensive static plan in the traditional
sense can be produced. Therefore, we determine which sub-plans have to be delegated
to the neighboring (super-)peers. The remaining parts constitute the input to the local

Parse
Bind

Resources

Generate &
Optimize

Sub-Queries

Instantiate
Local Plan

Distribute
Subqueries

SP/SP Index
SP/P Index

Query

Fig. 2. Plan Generation at a Super-Peer
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plan. To perform cost based optimization, the optimizer uses statistics of the input data,
the network topology, and the hosts. The optimizer may collect and use response times,
transfer rates, and even result sizes from previous query executions. Finally, the local
query plan is instantiated at the super-peer, all user-defined code is loaded, the communi-
cation path to the super-peer which uses this part of the query plan as input is established,
and the remaining sub-queries are distributed to the corresponding super-peers, where
they are processed further.

3.2 Query Optimization

Let us now describe some of the details involved in the optimization process at a super-
peer. We employ a transformation-based optimizer starting with an initial query plan.
The optimizer applies equivalence transformations and determines the cost of the gen-
erated alternatives using a cost model. In contrast to bottom-up approaches employed
in traditional dynamic programming based optimization we can stop at any time with a
complete and valid query plan. In our implementation we use iterative improvement to
enumerate plan alternatives. Superior techniques as shown in [22] are applicable.

In the following we present the set of the most important transformation rules, focus-
ing on the ones relevant to processing joins and unions within the P2P context. Further
rules can be added easily. Furthermore we extend conventional cost models taking the
special requirements of P2P query processing into account. During the optimization pro-
cess we employ heuristics that favor query plans with few sub-plans as this leads to more
robust distributed query execution. A huge number of wide spread sub-plans accessing
the same documents would be more error-prone and often inefficient to execute. Our
decision also implies, that less messages are exchanged between the (super-) peers and
less data is transferred.

The Initial Query Plan. The initial (canonical) query plan accesses only logical re-
sources and is constructed in the following way: Use all join predicates and join the
logical resources. If logical resources could not be joined due to a lack of join predi-
cates, the Cartesian product includes them into the query plan. Thereafter, all remaining
selection predicates and user-defined filters are applied on top of the query plan. Finally,
the result is submitted to the client.

The Transformation Rules. The initial query plan is optimized top-down using a
transformation-based optimizer. In such an approach we apply a set of transformation
rules to the query plan and generate alternatives, which are then ranked using our cost
model. The best (local) query plan is executed. Transformation rules are represented as

{inputQEP} [condition/action]
{outputQEP}

where one input query plan is transformed into an output query plan. The condition/action
part may be omitted. We assume that the transformations are executed at host HL. If HL

is a super-peer, we have access to the local routing indices SPP and SPSP.

Basic Transformation Rules. We can express the Bind Resources step explained in the
previous subsection as the following Binding Transformation:
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[.5em]
{LR} [

PRj@Pj ∈ match(SPP), RDk@SPk ∈ match(SPSP)
]{⋃

j

PRj@Pj ∪ ⋃
k

RDk@SPk

}

The function match consults the local indices and determines the location of the matching
resources. The LRs are bound to RDs, if a corresponding data source is found in the SP/SP
index. Using the SP/P index, LRs are bound to PRs, i.e., the URIs of registered resources.
Multiple RDs and PRs can contribute data for the same LR. This is expressed by the union
of RDs and PRs. PRj@Pj denotes that the j-th bound PR belongs to the corresponding
LR and references a resource at peer Pj . A similar argument applies for the RDs.

Applying the following two transformations to a query plan pushes selections and
user-defined filters down towards the data sources. This enables us to reduce the amount
of transferred data early. {

σ(A op B)
}{

σ(A) op σ(B)
} {

σ(op(A))
}{

op(σ(A))
}

Here, A and B are arbitrary sub-plans.
The next two rules apply the associative and commutative laws to unions, joins, and

Cartesian products.{
(A op B) op C

} [
op ∈ {∪, ,×}]{

A op (B op C)
} {A op B} [

op ∈ {∪, ,×}]
{B op A}

Again, A, B, and C denote arbitrary sub-plans.
Finally, each operator is annotated with the host where it is to be executed. This is

done bottom up from the leaves of the operator tree which constitute PRs and RDs. The
annotations of the leaves are given by the first transformation rule. An operator can be
executed on host HL, if all its inputs are computed at HL.

{A@H1 op B@H2} [H1 	= H2]
{A@H1 op@HL B@H2}

{A@H1 op B@H2} [H1 = H2]
{A@H1 op@H1 B@H1}

{
op(A@H1)

}{
op@H1(A@H1)

}
A and B are sub-plans and op@H1 indicates that the operator op is executed at host
H1. This rule enables us to execute mobile code at remote hosts, e.g., to push selective
filter predicates, complex join predicates, or compression functions to the data sources.

The plans generated by the rules so far typically have one union operator for each
logical resource. The degree of parallelism can be increased and distributed computing
resources can be utilized better if operators are distributed over the P2P network.

Optimization Strategy: Union of Joins. As shown above, several PRs and RDs can
contribute data for the same LRs. The simplest way for incorporating the data for such
an LR would be to union all the accessed physical resources before any other operation
is considered for that LR. This would be done by the binding transformation. This naive
strategy would produce good plans in some cases, but query optimization would be
limited and possibly better plans might never be considered. Thus, several alternatives
for the naive query plan must be considered by applying equivalence transformations.
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Table 2. Explosion of the Search Space

configuration number of plans
UJ([2, 2]) 8
UJ([3, 3]) 385
UJ([4, 4]) 144705
UJ([5, 5]) 913749304

To increase the degree of distribution, the query plan can be transformed using the
following transformation which turns the join of unions into a union of joins:

{
(A1 ∪ . . . ∪ An) (B1 ∪ . . . ∪ Bm)

}{
(A1 (B1 ∪ . . . ∪ Bm)) ∪ . . . ∪ (An (B1 ∪ . . . ∪ Bm))

}
If many RDs and PRs are bound to LRs and when this rule is applied recur-
sively in combination with the associative and commutative laws the number of plans
which have to be considered during query optimization is huge. [4] has derived a lower
bound for the number of alternatives when joining two LRs, consisting of n1 and n2
bound resources:

UJ(n1, n2) =
n1∑

j=1

({
n1

j

}
bell(n2)j

)
+

n2∑
j=1

({
n2

j

}
bell(n1)j

)
− bell(n1)bell(n2)

In this definition
{

m
k

}
denotes the Stirling number of the second kind which represents

the number of ways a set with m elements can be partitioned into k disjoint, non-empty
subsets. The term bell(m) denotes the Bell number which represents the number of ways
a set with n elements can be partitioned into disjoint, non-empty subsets. The definition
of UJ follows the construction of a query plan starting from its canonical form. First
we have to select a LR constituting of different bindings. Each such binding has to be
joined with an expression which is equivalent to the other LR. All these expressions are
counted by the call to the function for the Bell numbers. At the end we have to consider
duplicate QEPs which are generated when for every appearance of a LR in a QEP the
same partitioning is selected. If the same partitionings are selected, the order in which
the LRs are used in the construction of a QEP does not matter anymore. Therefore, the
last term of the definition of UJ includes the number of QEPs with that property. Table 2
gives an impression of the search space explosion, the generated plan may have a huge
number of sub-queries.

Optimizing by Collecting Resources. A very promising heuristics in a distributed envi-
ronment is to collect as many bindings of one LR as possible at one host. To implement
this strategy, the optimizer determines one “collecting host” to collect all data of one
logical resource. Other hosts are informed to send all data to the collecting host (in
the following this is done by the CollectSend Operator). In contrast to the canonical
query plan this collecting host is determined dynamically and may change during query
execution, i.e., we can place the resource-collecting union at an arbitrary (super-) peer.
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{⋃
j

PRj@Pj ∪ ⋃
k

RDk@SPk

} [
HC ∈ ⋃

j

Pj ∪ ⋃
k

SPk

]
{

CR(LR)@HC ∪
HC �=Hj⋃

j

CollectSend(HC , LR)@Pj ∪
HC �=Hk⋃

k

CollectSend(HC , LR)@SPk

}
(a) Collecting Host Selection

{
CollectSend(HC , LR)

} [
PRj@Pj ∈ match(SPP),
RDk@SPk ∈
match(SPSP)

]
{
CollectSend(HC , LR)@Pj , . . . , CollectSend(HC , LR)@SPk

}
(b) Propagate CollectSend{

CollectSend(HC , LR)
} [

PRj@Pj ∈ match(SPP),
RDk@SPk ∈
match(SPSP)

]
{

Send(HC ,
⋃
j

PRj@Pj ∪ ⋃
k

RDk@SPk)@HL

}
{
CR(LR)

} [
PRj@Pj ∈ match(SPP),
RDk@SPk ∈
match(SPSP)

]
{

Receive@HL ∪ ⋃
j

PRj@Pj ∪ ⋃
k

RDk@SPk

}

(c) Execute CollectSend (d) Execute Collect Resource At Host

{
CR(LR)

} [
PRj@Pj ∈ match(SPP), RDk@SPk ∈ match(SPSP),
HC ∈ ⋃

j

Pj ∪ ⋃
k

SPk, setForward(LR, HC)

]
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

CR(LR)@HC ∪
HC �=Hj⋃

j

CollectSend(HC , LR)@Pj

∪
HC �=Hk⋃

k

CollectSend(HC , LR)@SPk

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(e) Forward Collect Resource

Fig. 3. Transformation Rules for the “Collect Resources” Strategy

In well clustered networks it is useful to place the collecting union operator nearby the
majority of the data and to ship only a few resources.

To include this strategy in our query optimization, we introduce Collect Resources
(CRs) which can be used in the previous rules like bound resources. Additionally, we
propose the following five transformation rules (shown in Figure 3):

– First, the collecting host HC is selected from the set of all referenced neighbors
(taken from the PRs and RDs) (Figure 3(a)). Then, we replace all bound resources,
i.e., PRs and RDs, of the input plan with a collect resource which is executed at HC

and CollectSend operators are pushed to the other neighbors. These CollectSend
operators ship all data of the LR to the collecting host HC .

– When a CollectSend operator is received by a host, it can be propagated to all its
matching neighbors (Figure 3(b)) which are determined from the local indices. The
plan is split into multiple parts which are distributed broadcast-like to the neighbors.

– Hosts can also execute the CollectSend operator (Figure 3(c)). This is treated as a
binding transformation where results are sent back to the collecting host.

– A collecting host can execute the CR operator by accepting resources belonging to
the given LR (Figure 3(d)). The results are sent from sub-plans built by the latter
two transformations. Additionally, resources are bound using the local indices.
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SP4
SP3

P4P3P2

u: LRps: LRd r: LRp
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CR(LRp)
CollectSend
(SP3, LRp)
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P4P3P2
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(a) Initial Query Plan (b) Collecting Host (c) Forward Collect
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SP2

SP4
SP3

P4P3P2

CR(LRp) CollectSend
(SP3, LRp)

u: LRps: LRd r: LRp

forward:
LRpaP3

SP2

SP4
SP3

P4P3P2

Send(P3, r)Receive(LRp)     uU
u: LRps: LRd r: LRp

forward:
LRpaP3

(d) Propagate CollectSend (e) Execute Collect Resources
and CollectSend

Fig. 4. Example Applications of “Collect Resources” Accessing LRp

(Thin lines demonstrate the query plan during instantiation, bold lines show the flow of results.)

– Finally, the CR operator can also be forwarded to a neighbor (Figure 3(e)). This
means that first, we choose the new collecting host HC from the neighbors and set
an appropriate forward. The CR is pushed to HC and all matching neighbors are
instructed to send their data for LR to HC . During query instantiation a CollectSend
operator follows the forwards and creates a proper Send operator with the actual
collecting host as target. Thus, results are sent directly to the correct host.

Figure 4 illustrates the rules querying resources of LRp, i.e., the documents r and
u. Starting at SP2 as the local host with the initial query plan (Figure 4(a)), SP3 is
selected as collecting host of LRp (Figure 4(b)) and a CollectSend informs SP4 to send
all documents regarding LRp to SP3. SP3 decides to forward the CR to P3 where the
results are sent directly back to the initial caller (bypassing SP3 and SP2) (Figure 4(c)).
SP4, on its part, propagates the CollectSend operator to P4 (Figure 4(d)). Finally, P4
finds out by considering SP3 to send the local resource r to P3 and P3 executes the CR
operator and returns u and the received document r (Figure 4(e)).

Splitting and Distributing the Query Plan. Valid query plans must be completely
annotated and all resources must be bound. The best query plan is split into a local plan
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Algorithm 1 Splitting the Query Plan
1: QL = Q
2: QR = ∅
3: function splitP lan(op)
4: for all childOp ∈ op.children do
5: if childOp.host == op.host then
6: splitP lan(childOp)
7: else
8: QR.put(childOp.host, Send(op.host, childOp))
9: replace(QL, childOp, Receive(childOp.host))

10: end if
11: end for
12: end function

and multiple remote query plans. The remote plans are shipped to the referenced hosts
where the optimization process continues on the smaller query plans. The local query
plan is instantiated and combines the results of the remote query plans.

Algorithm 1 splits (in DFS manner) a QEP into the local plan QL and the remote
plans. The remote plans are stored in the mapping QR from the host where to execute the
remaining query parts onto the query plan itself. One remote host may execute multiple
sub-plans. The recursive function is called with the top-level operator of the query plan.
Then the child operators are examined. If a child is executed at the same host, i.e., the
local host, the function is called recursively. Otherwise, this is the root of a remote sub-
plan and a Send operator is put on top of the sub-plan including the child operator. The
remote sub-plan is separated from the local plan and a Receive operator at the local host
is responsible for the connection to the remote plan.

The Cost Model. Some of the parameters used for our cost model are stored within the
local SP/P and SP/SP indices as described in Section 2, others are determined periodically
by the runtime environment. In our distributed query processing environment we are
interested in the plan with the lowest response time. Such a response time cost model
was devised in [8] and explicitly takes parallelism and pipelining into account.

The most important parameters of query optimization in traditional databases are
number and size of intermediary results. The same applies to P2P query processing,
where we utilize the number of documents and the overall/maximum/minimum size of
the registered resources for estimating the costs of a query plan. Our cost model also
considers physical properties of the network, e.g., the network bandwidth, the latency,
and the number of hops to the neighbors. But it is also important to know CPU and
memory load of the local (super-) peer and the neighbors, as especially the super-peers
are in danger of being overloaded, when too many queries execute operators at the super-
peers. This would slow down query execution, so the optimizer should be aware of the
current load situation of the local super-peer and the neighboring (super-) peers and
generate alternative query plans, e.g. by using the “Collect” strategy, which enables the

Note, that these are always neighboring hosts.
1

1
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query optimizer to place operators on low loaded hosts. For these reasons, we utilize load
information as one important parameter for the optimizer’s cost model. Load collectors
are used to collect data for the optimizer’s view of the load situation of all relevant
resources at the neighboring hosts. We measure the average CPU and memory load on
(super-) peers and send the current situation to the neighbors. The optimizer’s view of
the load situation is updated at intervals of several seconds to prevent overloading the
network. Using this information the optimizer at each (super-) peer can decide whether
a sub-plan can be pushed to a neighbor, or—in the case of an overload—an alternative
query plan would produce faster results.

Additionally, adapting the techniques presented in [23], our cost model can be ex-
tended to take the response time of “similar” queries, i.e., queries accessing the same
index entries, into account.

4 Implementation

The discussed techniques for processing and optimizing complex queries in the highly
dynamic and open environment of schema-based super-peer networks are already imple-
mented in Edutella. The Edutella System [7] which constitutes an RDF-based metadata
infrastructure for JXTA [13] is an open source project written in java.

The organisation of the super-peer backbone in the HyperCup-topology occurs dy-
namically. The distributed routing indices are also built and updated dynamically based
on the registration files of the peers/super-peers.

We distinguish between metadata statistics such as document count and file size
and network statistic parameters. The metadata statistics are automatically extracted
from the registration files and stored in the SP/P and SP/SP routing indices. The net-
work statistic parameters can be extracted at a given super-peer in an active way (e.g.
memory load) by asking the neighboring super-peers or in a passive way by storing
for example the response time of a given super-peer or peer. The statistics are cur-
rently used during the plan generation. The complex query processing modules are
included in the package net.jxta.edutella.complexquery. We also implemented a sub-
package net.jxta.edutella.complexquery.graph for the visualization of the QEPs. The
subpackage net.jxta.edutella.complexquery.work includes all classes needed for the ex-
ecution of the QEP’s different steps.

The complex query processing techniques are also implemented in QueryFlow [14,
15] which is based on ObjectGlobe [5], building upon earlier work by some of the authors
on distributed query processing. A demonstration of the QueryFlow-based implementa-
tion was given in [26].

5 Conclusion and Further Work

Peer-to-Peer data management infrastructures are emerging as one of the important
infrastructures for data intensive networks on the World Wide Web. In this paper we have
investigated query distribution and query optimization issues for schema-based peer-to-
peer networks, which use complex and possibly heterogeneous schemas for describing
the data managed by the participating peers. Specifically, we have focussed on address-
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ing one particularly severe shortcoming of current peer-to-peer networks, i.e. that they
are unable to handle queries which need data from several peers to compute answers.

Comparing P2P data management networks to conventional distributed and feder-
ated database systems, we have identified specific additional challenges which make it
impossible to apply distributed database query planning and optimization techniques
in a straightforward way. We have therefore specified an innovative query routing and
planning architecture based on distributed routing indices managed by a suitably con-
nected set of super-peers, which makes distributed query processing available also in
P2P data management networks. We have discussed how to use transformation-based
techniques for incremental query optimization at each super-peer, and specified a set of
transformation rules, relevant for processing joins and unions in such a network. These
techniques allow us to place query operators next to data sources and utilize distributed
computing resources more effectively.

Future work will concentrate on the further investigation of simulations and ex-
periments to evaluate and extend our current set of transformation rules. We will also
evaluate the use of additional statistics useful as input to our query plan generation more
intensively.
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Abstract. We present the InfoBeacons system, in which a peer-to-peer network of
beacons cooperates to route queries to the best information sources. The routing in
our system uses techniques adapted from information retrieval. We examine rout-
ing at two levels. First, each beacon is assigned several sources and routes queries
to those sources. Many sources are unwilling to provide more cooperation than
simple searching, and we must adapt traditional information retrieval techniques
to choose the best sources despite this lack of cooperation. Second, beacons route
queries to other beacons using techniques similar to those for routing queries to
sources. We examine alternative architectures for routing queries between bea-
cons. Results of experiments using a beacon network to search 1,000 information
sources demonstrates how our techniques can be used to efficiently route queries;
for example, our techniques require contacting up to 70 percent fewer sources than
random walk techniques.

1 Introduction

There is an explosion of useful data available from dynamic information sources, such
as “deep-web” data sources, web services, web logs and personal web servers [3]. The
Internet and web standards make it possible and easy to contact a source and retrieve
information. But the proliferation of sources creates a challenge: how to find the right
source of information for a given query? Peer-to-peer search mechanisms are useful
for finding information in large scale distributed systems, but such mechanisms often
rely on the explicit cooperation of information sources to export data, data summaries
or data schemas to aid in searching. Many data sources are unwilling to provide this
cooperation, either because they do not want to export valuable information, or because
they do not want to modify their service software and expend the resources necessary
to cooperate with a peer-to-peer system.

How can we build a peer-to-peer system that is useful for searching large numbers of
distributed sources when those sources will not provide more cooperation than simple
searching? Our approach is to build a network of peers, called InfoBeacons, that are
loosely-coupled to the information sources: beacons connect to sources and utilize their
existing search interface, but do not expect tight schema integration, data summary
export, or any other high-level cooperation from the source. InfoBeacons act to guide
user keyword queries to information sources, where the actual processing of queries is
done, and then retrieve results and return them to the user. As such, the InfoBeacons
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network is similar to a super-peer network, except that the beacons do not expect the
same level of cooperation from sources (i.e. exporting their indexes) that super-peers
expect. In order to choose appropriate sources for a given query, we adapt techniques
from networked information retrieval [14, 16, 13]. These techniques allow us to gather
information about a source’s content, and then predict how good that source will be for a
given query. As a result, we can route queries through the system to the most appropriate
sources, and avoid overburdening sources with irrelevant queries.

In this paper, we describe how the InfoBeacons system uses IR techniques to perform
query routing. In particular, we describe routing at two levels. First, each beacon is
responsible for several sources, and uses IR-style ranking to route a query to the best
sources. A beacon cannot rely on sources to export a summary of their content, so the
beacon builds up its own summary by caching the results of previous queries. The beacon
then uses this cache to determine how to route future queries. Second, multiple beacons
are connected in a peer-to-peer network, and IR-style ranking is used to determine how
queries are routed through the beacon network. Many beacons can cooperate in this
way to provide a system that searches a very large number of sources, while keeping
the resource requirements low for each individual beacon. We examine two approaches
to inter-beacon routing. In the hierarchical approach, a “superbeacon” uses IR-style
ranking to choose among beacons, in the same way that beacons use ranking to choose
among sources. In the flat approach, beacons treat each other as regular sources, forming
a flat topology composed of both beacons and sources. A beacon routes queries to the
most promising “neighbor,” which may be a source or another beacon.

We have implemented an InfoBeacons prototype to route queries to information
sources using our techniques. Experiments using our prototype to route queries to sources
containing information downloaded from the Internet demonstrate that our techniques
perform better than random walks, an efficient and scalable peer-to-peer routing mech-
anism [23, 1]. In ongoing work we are comparing our techniques to other routing ap-
proaches, such as those in [32, 20].

Content searching using information retrieval in peer-to-peer networks has been stud-
ied before [27, 26, 30]. Our work goes beyond these existing systems to examine using
IR for routing between peers in addition to content searching. Moreover, our system
focuses on searching over frequently-changing, uncooperative Existing tech-
niques, such as [26], assume that sources will export inverted lists for their content,
and that these inverted lists do not require too many updates. General routing in peer-to-
peer networks has also been studied extensively (for example, [32, 20, 23, 1, 28, 10, 21]).
Some of these systems use a limited form of content-based routing based on document
identifiers [28] or on keywords in document metadata (such as the title) [21]. Our work
focuses on full-text content-based searching and routing, which presents new perfor-
mance challenges. Other systems are not based on content, and instead route queries
based on network topology [32, 23, 1] or peer processing capacity [10]. Routing ap-
proaches based on content, topology and capacity can be complementary, and it may be
possible to combine these approaches. More related work is discussed in Section 5.

In this paper, we examine how information retrieval techniques can be adapted to route
queries in a peer-to-peer system. Specifically, we make the following contributions:

sources.
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• We show how a beacon can route queries to appropriate sources using a ranking we
have developed called ProbResults. (Section 2)

• We discuss how beacons can also use ProbResults to route queries to other bea-
cons. We examine both hierarchical and flat approaches for inter-beacon routing.
(Section 3)

• We present results from a preliminary experimental study comparing our routing
techniques to existing techniques. Our study shows that ProbResults outperforms ex-
isting source selection techniques, and that both the hierarchical and flat approaches
outperform random walk-based routing in our beacon network. (Section 4)

We examine related work in Section 5, and discuss our conclusions and future work in
Section 6.

2 Routing Queries to Information Sources

In the InfoBeacons system, beacons connected in a peer-to-peer network work together to
guide user queries to useful information sources. Beacons accept user keyword queries,
connect to sources, submit the queries to sources, retrieve results, and return them to the
user. The user is therefore shielded from the complexity of choosing and searching many
different sources. A beacon is like a meta-querier such as GlOSS [16] or CORI [13], but
adapted to work in a peer-to-peer manner with uncooperative sources. The differences
between a beacon and existing meta-queriers are summarized in Section 5, and quantita-
tive comparisons are presented in Section 4. User queries in our system are conjunctions
of multiple terms, although our techniques can be extended to deal with general boolean
queries.

In this section, we focus on the techniques a single beacon uses to route queries among
its information sources. While each each beacon is only responsible for a few sources
(say, 100 or so), the system scales to large numbers of sources by routing queries between
multiple beacons (as described in Section 3). In this way, the resource requirements on
each beacon are kept low. In fact, beacons are designed to be very lightweight peers,
so that they can run in the background on a PC-class machine. Beacons can be run by
users, data sources, libraries, ISPs, and so on.

It is too expensive to send every query to every source, so the beacon must determine
the most appropriate sources for each query. Ideally, each source would export a summary
of its content to help the beacon route queries. However, many Internet information
sources are willing to accept queries and return results, but are unwilling to provide more
cooperation by exporting their contents, content summaries, or schema information. As
a result, a beacon must learn which sources are good for each queries, while relying
only on the sources’ basic search interface. We say in this case that the beacon is loosely
coupled to the information sources.

Beacons learn about sources by caching results from previous queries, and then use
these results to choose appropriate sources for future queries. The architecture that the
beacon uses to carry out this process is shown in Figure 1. This figure shows four main
components:
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Fig. 1. Beacon architecture

• The user query interface, which accepts queries from users and returns results.

• The source wrappers, which submit queries to different information sources and
retrieve results.

• The cache, which caches results from information sources.

• The routing logic, which uses the cache to choose which sources to route new queries
to.

The source wrappers are lightweight: they only handle the task of connecting to the
source, submitting a keyword query, and retrieving results. They do not perform complex
schema translation or use advanced features of the sourceAPI. Techniques for generation
of source wrappers have been studied by others; see for example [31]. This loose coupling
ensures that it is cheap to integrate a new source, so that the system is tolerant to sources
constantly appearing and disappearing.

We have developed a function, called ProbResults, to determine where to route
queries. ProbResults uses the beacon cache to predict the number of results that a source
will return containing the given query words; this predicted number is called the Pro-
bResults score. The user specifies a desired number of results, and sources are contacted
in order of decreasing ProbResults score until enough results have been found. (If the
local sources cannot supply enough results, other beacons are contacted; see Section 3.)
The ProbResults function uses several values:

• nQ: the number of terms in the query Q

• Rs
i : the number of past results from source s that contained query word i

• tqs: the total number of times that source s has been queried by the beacon

The ProbResults score for site s for a query Q is calculated by:

ProbResultsScores
Q =

nQ∏
i=1

Rs
i /tqs

Each Rs
i /tqs term represents the expected number of results (for any query) from s that

contain query word i. Multiplying the Rs
i /tqs values produces an aggregate score for all
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of the query words. We experimented with other ways of combining the Rs
i /tqs terms

(such as addition or taking the max) but found that multiplication worked best because it
gave a higher score to sources that return results containing all of the query terms than to
sources that return results containing several instances of just some of the query words.

In order to keep the beacon lightweight, the beacon cache does not contain whole
documents, but instead only retains statistics about the word distributions in the results
returned from each source. In fact, the only information that is needed for each source
s is the Rs

i value for each word and the tqs value for the source. To cache a new result
document, the beacon parses the document, extracts the words, and increments the Rs

i

values for each word for the source s. The result is that the beacon cache is very compact,
and experiments show that a beacon responsible for 100 sources needs only a few tens
of megabytes of cache. If necessary, the cache size can be bounded, resulting in graceful
degradation in performance. Detailed results on the cache size are presented in [11].

Consider two sources s1 and s2 that are managed by the same beacon B. Source
s1 contains chemistry papers, while s2 contains retail customer survey responses. After
several queries, a portion of the beacon cache might contain:

exothermic oxygen reactions product consumer tqs

s1 70 80 120 0 40 100
s2 10 15 80 130 210 150

The numbers in this table represent the Rs
i counts for each word and source. Now imagine

that a user submits a query for “exothermic reactions” to B. The ProbResults score for s1
is (70/100)×(120/100) = 0.84, while the score for s2 is (10/150)×(80/150) = 0.036.
Thus, the beacon B would first contact s1 to search for “exothermic reactions.” This
makes sense, since site s1 contains chemistry literature, and the beacon cache reflects
that more previous results from s1 contain “exothermic” and “reactions” than those from
s2. On the other hand, if the user searches for “consumer reactions,” we would expect s2
to receive a higher ProbResults score, and it does, scoring 0.75 (compared to 0.48 for s1).

The ProbResults function is adapted from the Ind metric used in the bGlOSS infor-
mation retrieval system [16]. ProbResults differs from Ind in several key ways in order to
work in a loosely-coupled, dynamic peer-to-peer architecture. First, ProbResults tries to
characterize both the behavior and the content of a source, while Ind focuses only on the
content. For example, the Rs

i value used by ProbResults counts documents once per time
they are returned as a query result, not just once overall (as in Ind). Thus, ProbResults
gives higher weight to documents that are returned multiple times, better characterizing
the behavior of the source in response to queries. Characterizing a source’s behavior
helps compensate for the inexact picture a loosely-coupled beacon has of the source’s
content. Another difference is that both the tqs and Rs

i values are constantly updated in
the beacon cache, unlike in GlOSS, where a static source summary is constructed. As a
result, ProbResults produces scores that are tuned to the current behavior of the source,
unlike Ind, whose scores can become stale over time. Results in Section 4 show that
ProbResults produces better predictions in our system than the Ind ranking.

Two optimizations are useful to significantly improve the accuracy of the ProbResults
function. First, if the beacon cache contains no information for a particular query word
i for a given source s, a non-zero minimum value Pmin is used, instead of zero, for
Rs

i /tqs. This minimum probability addresses the fact that the cache is an incomplete
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summary of a source’s content. In the example above, the Rs1
i value for “product” for s1

might be zero because s1 does not have any documents containing the term “product,”
or because the documents containing “product” have not yet been cached; the beacon
does not know which case is correct. Without Pmin, a source for which only some of
the query words appeared in the cache would have a score of zero. Given a query for
“product exothermic reactions,” we still would prefer source s1 over some source s3 for
which Rs3

i is zero for all three query terms. Using Pmin instead of 0/100 for “product”
ensures that the ProbResults score for s1 for this query is non-zero.

The second optimization, called experience weighting, weights the Rs
i values in the

beacon cache to reflect the beacon’s experience with word i as a query word. If a query
containing word i is sent to source s and the source returns results, the Rs

i value is
multiplied by a constant experience factor EF . If a query containing word i returns
no results from s, then Rs

i is divided by EF . Experience weighting allows the beacon
to refine its cache statistics based on the behavior of the source, and to make better
predictions despite having incomplete information about the source’s query model or
content changes at the source.

Due to space limitations, both of these optimizations, as well as experimental results
demonstrating their utility, are described elsewhere [11].

3 Routing Queries Between Beacons

Different sources contain widely varying information, and a single beacon may not have
the right sources to answer a given query. Even though a user initially submits his query
to a single beacon, that beacon may have to forward the query to several other beacons
in order to retrieve results. The simplest approach would be for the beacon to send the
query to all of its neighbor beacons, but this flooding approach is too expensive in a large
scale system. In this section we examine how a beacon can intelligently route queries to
other beacons.

One approach is to use existing peer-to-peer routing techniques. For example, a
beacon could forward each query to a randomly selected neighbor. Such “random
walks” [23, 1] have been shown to be an effective and scalable way of routing queries
in a peer-to-peer network. However, no content information is used during the routing
process, and such information could be used in routing to reduce the number of contacted
peers while still returning high quality results.

Beacons use the ProbResults ranking to route queries to information sources. We can
extend this approach to use ProbResults to route queries between beacons. In particular,
we study two mechanisms for routing queries between beacons:

• Hierarchical: A “superbeacon” caches results from beacons, and uses this cache
along with ProbResults to choose beacons for a given query.

• Flat: Each beacon’s neighbor beacons are treated as regular sources, and ProbResults
produces a single ranking of both information sources and neighbor beacons.

An example of the hierarchical approach is shown in Figure 2(a). As the figure
shows, the superbeacon is connected to the rest of the system’s beacons, who are in turn
connected to the system’s sources. Each query is submitted to the superbeacon, which
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(a) (b)

Fig. 2. Beacon network topologies: (a) hierarchical, (b) flat

uses ProbResults to rank the beacons for that query. The superbeacon routes the query to
beacons in decreasing order of ProbResultsScore, until it has received enough results to
satisfy the user’s threshold. As with regular beacons, the superbeacon caches the results
it receives for use in routing future queries.

One alternative approach we examined was to have each beacon send a copy of its
cache to the superbeacon, and have the superbeacon evaluate the query against each
cache to determine which beacon is best. This approach may result in more accurate
routing, since the superbeacon would have more information about each beacon. How-
ever, while each beacon’s cache is small, in a large scale system there are likely to be
many beacons, and a large amount of space would be required to store a copy of every
beacon’s cache. Our goal is to keep beacons, even the superbeacon, as lightweight as
possible, and therefore it is infeasible to expect the superbeacon to store copies of all of
the beacon caches. As a result, we chose the approach described above, where the super-
beacon keeps its own compact cache of results from the beacons and uses ProbResults
to perform the routing.

Unfortunately, the hierarchical approach still may not be scalable enough. The super-
beacon must know about all of the beacons in the system, and must perform processing
on every user query. This degree of centralization is contrary to the decentralized philos-
ophy of peer-to-peer systems, since the superbeacon can quickly become a bottleneck
hindering the performance of the system.

A more scalable approach is to maintain the routing information in a decentralized
manner, which is the goal of the flat architecture. An example of the flat architecture
is shown in Figure 2(b). As this figure shows, a beacon’s neighbors consist of both
information sources and other beacons, forming a one-level “flat” topology. Each beacon
caches results both from information sources and from other beacons. For each query,
ProbResults is used to produce a single ranking of neighbors, and these neighbors are
contacted in order of decreasing ProbResults score until enough results have been found.
For example, a beacon might first route the query to an information source with a score
of 0.9, then to a neighbor beacon that has a score of 0.8, then to another information
source with a score of 0.7, and so on.

The flat approach avoids the centralization of the hierarchical approach, since there
is no beacon that has to process every query or know about every other beacon. A
disadvantage of the flat approach is that each beacon has less information than the
superbeacon would, and thus prediction accuracy may suffer.
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(a) (b)

Fig. 3. Flat topologies: (a) random, (b) spanning tree. (Information sources omitted for clarity)

In experiments with our beacon prototype, we found that the topology of the flat
network had a large impact on performance. Initially, we constructed a random topology,
connecting each beacon with a randomly chosen set of beacon neighbors. An example
of this topology is shown in Figure 3(a). In this topology, a given beacon has a path
to all of the other beacons (and sources) along each of its beacon neighbor links. This
means that the same documents can appear as results from any of these neighbor links,
and, after a while, the ProbResults ranking begins to assign the same score to all of the
beacon neighbors. This prevents the beacon from making effective routing decisions and
performance suffers.

If we instead use a spanning tree topology, as in Figure 3(b), the inter-beacon routing
performs better.A distinct set of beacons and sources is reachable along any given beacon
neighbor link. The result is that the beacon’s ProbResults scores effectively distinguish
between the information available along each of the neighbor links, improving routing
accuracy. Results in Section 4 demonstrate the performance improvement of the spanning
tree topology.

It is possible that other peer-to-peer routing strategies might be used to route queries
among beacons, including other strategies reported in the literature [32, 20]. As part of
our ongoing work we are conducting experiments to compare these strategies to our
ProbResults-based routing techniques.

4 Experimental Results

We have conducted a set of experiments to test the performance of our techniques. In
these experiments, we used the beacon network to route keyword queries to information
sources, and counted the total number of information sources contacted for each query.
Our goal is to minimize the number of unnecessary sources contacted, so that we can
reduce the load on sources, improve response time and enhance overall scalability.

Our results can be summarized as follows:

• The ProbResults function is more effective than a random-walk routing strategy in
routing queries to a beacon’s information sources, reducing the number of sources
contacted per query by 90 percent. ProbResults is also more effective than routing
strategies developed in non-peer-to-peer systems, such as GlOSS and CORI, reducing
the number of contacted sources per query by at least 35 percent.
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• Using a spanning tree topology to connect beacons in the flat architecture provides
higher performance than a random graph topology, reducing the number of contacted
sources per query by 23 percent.

• The hierarchical architecture provides the best performance overall; beacons in this
architecture contact 70 percent fewer sources per query compared to beacons using
a random walk strategy. The flat architecture, which avoids the potential bottlenecks
of a centralized superbeacon, also provides good performance, with 31 percent fewer
sources contacted per query compared to random walks.

We describe these results in more detail in this section.

4.1 Experimental Setup

In our experiments, we used a beacon network to route queries among 1,000 Internet
information sources. To ensure our experiments were repeatable, we created our own
information sources on machines in our lab, and populated them with HTML documents
downloaded from 1,000 .com, .net, .gov, .edu and .org websites. Each information source
managed documents downloaded from one website, and processed keyword searches
using the vector space model with TF/IDF weighting. The total number of documents
at all sources was 166,145, for a total of 4.0 GB. Each source had between 1 and 2,303
documents. Some sources had many documents and some had few, just as in the actual
Internet.

We used synthetically generated keyword queries so that we could evaluate our
system with a large query set. The distribution of query terms in our generated queries
matched the observed distribution of several real query sets as reported in [7], namely,
that the most frequent query terms are terms that are neither too common nor too rare
in the document corpus. Queries had between one and six terms.

We assume that each user specifies a threshold T : the number of desired document
results. This is similar to a search engine, where users usually only look at the first page
or two of results. Here, we used T = 10, although other experiments (omitted here)
show that our results and techniques generalize to other values of T .

Our beacon prototype is implemented in C++, and uses XML messages carried over
HTTP to communicate between beacons.Also, a beacon accepts user queries and returns
results via XML over HTTP, and queries information sources using HTTP.

4.2 Routing Queries Between Information Sources

First, we conducted an experiment to examine the performance of our techniques for
routing queries between information sources. In this experiment, we used our beacon
prototype to route queries between 100 sources selected randomly from our total set
of 1,000. We used 40,000 queries generated from the terms in the content of these 100
sources. We compared several routing mechanisms:

• ProbResults: Our ranking function, described in Section 2.

• Ind: The Ind ranking function, used in the bGlOSS system [16].

• Max: The Max ranking function, used in the vGlOSS system [16].
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Fig. 4. Routing queries to information sources

• CORI: The ranking function used in the CORI system [13].

• Random: Queries are routed to randomly selected sources.

The Ind, Max and CORI ranking functions are defined in [16, 13]. The GlOSS and
CORI systems require that sources export their data to a central index to aid in routing,
a requirement that is not feasible if sources are uncooperative. In such a case, query
probing can be used instead: a set of randomly chosen queries are sent to the source and
the results are used to substitute for the full source content [8]. This is the approach we
use in our experiments.

The results are shown in Figure 4. The horizontal axis in this figure shows the number
of queries submitted to the beacon, and the vertical axis shows the average number of
sources contacted per query. Initially the beacon using ProbResults performs poorly,
but as the cache warms up, the performance improves. Eventually (after about 5,000
queries), the beacon using ProbResults performs better than a beacon using the other
techniques. With a warm cache, a beacon using ProbResults contacts 52 percent fewer
sources than one using CORI, 35 percent fewer than one using Max, 55 percent fewer
than one using Ind, and 90 percent fewer than one using Random (62.3 sources per
query, not shown). ProbResults performs well because it effectively tracks the behavior
of sources in response to queries. The warm-up time of the beacon cache is a disadvantage
compared to existing techniques; in ongoing work, we are examining using query probing
to accelerate the warming time.

We have also examined the quality of returned information, and experimented with
smaller and larger numbers of sources per beacon, with sources that have larger content
databases, and with sources that have frequently changing content. In each case, a beacon
using ProbResults performs better than one using Ind, Max, CORI or Random. These
results are discussed in detail in [11].

4.3 Beacon Network Topologies in the Flat Architecture

Next, we examined the impact of the beacon network topology in the flat architec-
ture. Recall that in this architecture, each beacon treats its neighbor beacons as regular
sources, and produces a single ProbResults ranking of beacons and sources in order to
route queries. We used a network of 50 beacons to route queries to 1,000 information
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Fig. 5. Flat architecture topologies

sources. In general, we expect beacons to be assigned to 100 or so sources, but we felt
that a network of only ten beacons was too small for our experiments. In ongoing work
we are conducting experiments with larger numbers of beacons and sources. A total of
40,000 queries generated from content at all sources were submitted to randomly chosen
beacons.

We examined two topologies for the connections between beacons:

• Random network: connections were made between randomly chosen beacons to form
a general graph. Each beacon had an average of 5 beacon neighbors.

• Spanning tree: connections were made between randomly chosen beacons to form
a spanning tree. Each beacon had up to 4 beacon neighbors.

In both cases, the links between beacons were bi-directional.
The results are shown in Figure 5. As the figure shows, under both topologies, the

performance of the network improves as the beacon caches warm up. However, the
improvement is most noticeable with the spanning tree topology. After about 20,000
queries the beacon network only needs to contact 316 sources per query in order to find
results, compared to 412 with the random topology (30 percent more than the spanning
tree topology). With the random network, the warming of the beacon caches produces
improvements in routing to information sources, but this improvement is cancelled by
the ineffective routing to other beacons. In contrast, with the spanning tree topology,
beacons route queries to other beacons more effectively, and thus overall the routing
improves as the beacon caches warm up.

The spanning tree topology is used with the flat architecture for the rest of the
results reported in this paper. In ongoing work, we are examining other topologies and
techniques to further optimize the flat routing architecture.

4.4 Routing Queries Between Beacons

We conducted an experiment to examine the performance of our techniques for routing
queries between beacons. We used a network of 50 beacons to route queries to 1,000 in-
formation sources. As before, we submitted 40,000 queries to randomly chosen beacons.
We compared the following techniques:

• Hierarchical architecture: A superbeacon used ProbResults to route queries to bea-
cons, who then routed them to information sources.
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Fig. 6. Routing queries between beacons

• Flat architecture: Beacons used ProbResults to route queries to their neighbors in a
flat topology of sources and beacons.

• Random walk among beacons: Beacons were organized into a network with a random
topology (with an average of 5 neighbors), and random walking was used to route
queries between beacons.

• Random walk among sources: Information sources were organized into a network
with a random topology (with an average of 5 neighbors), and random walking was
used to route queries between sources.

The two random walk approaches allowed us to examine different aspects of our tech-
niques: random walk among beacons uses beacons but not IR-style routing between
them, while random walk among sources uses a traditional unstructured peer-to-peer
architecture instead of the beacon network.

The results are shown in Figure 6. As the figure shows, the best performance is
achieved using the hierarchical architecture. The superbeacon, despite having limited
information about the data accessible at each beacon, still has enough information to
make informed routing decisions using the ProbResults metric.

The beacon network using the flat architecture contacts 2.3 times as many sources
compared to the hierarchical approach (after the caches are warm). Unlike the super-
beacon, which processes all 40,000 queries, each beacon in the flat architecture only
sees a fraction of the queries. As a result, beacons in the flat architecture cache fewer
results than the superbeacon, and have less information for making routing decisions.
The result is less routing accuracy. The flat architecture may still be preferred, however,
since it avoids the potential bottlenecks of the centralized superbeacon approach.

The flat architecture performs better than either random walk approach, contacting at
least 31 percent fewer sources (after the caches are warmed). The beacons are able to use
their cached information and the ProbResults ranking to make better routing decisions
than the random walk. This demonstrates the value of information retrieval-style ranking
to the query routing process.

Finally, the random walk among beacons approach performs only marginally better
than the random walk among sources approach. This result demonstrates that the beacon
routing among sources is not by itself sufficient in a network of distributed beacons; user
queries must also be carefully routed to the proper beacons.

In ongoing work, we are examining further optimizations to our routing techniques,
and comparing our techniques to other peer-to-peer routing strategies (such as [32, 20]).
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5 Related Work

Several systems have been developed to perform information retrieval using a peer-to-
peer architecture [27, 26, 30]. Beacons actually handle the “source selection” problem,
while individual sources handle the “information retrieval” problem.

Meta-queriers such as GlOSS [16] and CORI [13] perform source selection, and
beacons are similar to metaqueriers but adapted in several ways to work into a peer-to-
peer architecture. First, the beacon is loosely coupled to the information source, while
many existing systems require sources to export their contents or content summaries.
This allows the beacons to work with sources that are not willing to provide more
cooperation than simple searching. Loose coupling also makes it inexpensive to integrate
a new source, addressing the high turnover observed in many peer-to-peer systems.
Second, meta-queriers tend to be centralized, while in our system, sources are managed
in a decentralized way by many beacons. Our approach enhances the scalability of the
system. Third, existing systems usually build up a static characterization of the source
contents, while a beacon constantly adapts its cache in response to new results. Our results
show that continual adaptation improves source selection performance (especially when
content is changing frequently; see [11]).

Several peer-to-peer systems have been developed to perform source selection [3, 15].
These systems, like metaqueriers, expect sources to export content summaries to aid in
routing. The Harvest system is an early example, with “brokers” that are similar to our
beacons [6]. Harvest combines source data export with search engine-style crawling of
static content through modules called “gatherers.” Unlike Harvest, our system requires
neither source export, nor that the data be crawlable (as much hidden-web data is not).

Other systems that search multiple sources include data integration systems and
search engines. Data integration systems, including traditional [9] and P2P systems [18,
17, 24] require tight schema integration. These systems construct complex schema map-
pings [4] or assume that most of the data has similar structure [18]. In a large scale
system such as the Web, it is too expensive to construct all the required mappings, and
data is structured in a wide variety of ways. Compared to these systems, our approach
trades strong query semantics for enhanced scalability. Search engines [25] can search
over HTML pages at many sites but do not deal well with uncrawlable or “hidden” data
in web databases. Our approach uses sources’ own query processors to search “hidden”
data. Some search systems assume a consistent classification scheme or topic hierarchy
to which sources can be assigned to aid in routing (such as in [19, 29]) but it is not
clear that sources can always be assigned a single, unambiguous topic or that a single
hierarchy is equally useful to all users.

Various approaches to routing in peer-to-peer systems have been proposed [32, 20, 23,
1, 28, 10, 21]. Our system uses the full text of content to aid in routing, while existing sys-
tems focus on document metadata, query statistics, network topology, or peer-processing
capacity. It may be possible to combine our approach with existing approaches to achieve
even more accuracy in routing.

Caching of data to improve performance has been well studied in many contexts,
including the web [2], database systems [12], information retrieval [22] and peer-to-peer
search [5]. Usually, data from a known source is cached to hide latency, not necessarily
for source selection.
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6 Conclusions and Future Work

We have examined how techniques adapted from information retrieval can be used to
route queries in a peer-to-peer system. Our goal is to route queries to the best informa-
tion sources, and allow those sources to perform the actual query processing. A network
of beacons works together to perform the routing. In particular, we examined routing
at two levels. First, individual beacons use ProbResults, a ranking adapted from in-
formation retrieval, to route queries to individual sources. Our techniques perform well
despite limited cooperation from sources. Second, beacons also use ProbResults to route
queries to other beacons. We presented two approaches for inter-beacon routing. In the
hierarchical approach, a single superbeacon chooses among beacons, who then choose
among sources. In the flat approach, beacons route queries to beacon neighbors if those
neighbors have a higher ProbResults score than the beacon’s sources. Experimental re-
sults demonstrate that our techniques are more effective than random walks for routing
queries to information sources. These results show the value of using full-text content
information when conducting peer-to-peer routing. In ongoing work, we are examining
further routing optimizations, and comparing to other existing routing schemes.
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Abstract. Peer-to-peer applications are used to share large volumes of
data. An important requirement of these systems is efficient methods for
locating the data of interest in a large collection of data. Unfortunately
current peer-to-peer systems either offer exact keyword match function-
ality or provide inefficient text search methods through centralized in-
dexing or flooding. In this paper we propose a method based on popular
Information Retrieval techniques to facilitate content-based searches in
peer-to-peer systems. A simulation of the proposed design was imple-
mented and its performance was evaluated using some commonly used
test collections, including Ohsumed which was used for the TREC-9 Fil-
tering Track. The experiments demonstrate that our approach is scalable
as it achieves high recall by visiting only a small subset of the peers.

1 Introduction

Peer-to-peer systems [1, 2] have emerged as a powerful paradigm for exchang-
ing data. They are used by millions of users for file sharing over the Internet.
Typically, available systems use a centralized design or a flooding model for lo-
cating files and routing in the system. There have also been several academic
peer-to-peer system proposals that offer very efficient key lookups. These sys-
tems are based on implementing a Distributed Hash Table (DHT) over the peers
and they impose a certain structure on the overlay network constructed by the
peers. In DHTs, a key lookup can typically be resolved by exchanging O(logN)
messages where N is the number of peers in the system. Examples of DHTs
include Chord [3], CAN [4], Pastry [5] and Tapestry [6].

As the amount of data shared in peer-to-peer systems increases, it becomes
very important to support content-based search of documents efficiently. Unfor-
tunately, available systems do not provide efficient methods for keyword search.
File sharing peer-to-peer systems use a central index or flooding to support key-
word searches, neither of which is very desirable due to scalability and efficiency
concerns. Different proposals have been made to improve the search efficiency in
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these systems [7, 8, 9, 10] based on selective query forwarding, notion of gossip,
and topic segmentation. DHTs, on the other hand, only support exact match
lookups since they use hashing to distribute the objects in the system. If the
exact key is not known, the users cannot locate the objects they are looking for.
Several methods have been proposed to provide keyword search capabilities for
DHTs [11, 12, 13, 14]. However these methods, with the exception of [14], only
provide keyword matching and are subject to load balancing problems as some
popular keywords in real systems tend to appear and be queried more frequently
than others. They are also susceptible to polysemy (words having multiple mean-
ings) and synonymy (multiple words having the same meaning). However, these
problems have been extensively addressed by the Information Retrieval commu-
nity for centralized document retrieval. One popular solution is Latent Seman-
tic Indexing (LSI) [15]. LSI facilitates the retrieval of relevant documents even
when some of the query keywords do not appear in the documents. pSearch [14]
is the first peer-to-peer system to use LSI to reduce the feature vectors of the
documents, which are then used for distributing document information among
the peers. pSearch requires the maintenance of a multidimensional CAN. As
mentioned in [14], pSearch is less efficient as the size of the corpus increases.
Alternatively, Zhu et al. [16] use Locality Sensitive Hash Functions to provide
semantic search over DHTs, and Koloniari et al. [17] employ multi-level bloom
filters to route XML path queries and to build content-based overlay networks.

Our design for content-based similarity search is similar to pSearch as we
employ Information Retrieval techniques to extract feature vectors from docu-
ments and use them to determine the locations of the document indices in a
DHT (Chord [3] in our case). This provides content-based search as it uses LSI
for feature vector extraction. Unlike pSearch, our approach is independent of
corpus size and hence is scalable. Any type of data, such as documents, images,
or music files, can be queried with our design as long as there is a meaning-
ful method to extract feature vectors from the objects. It can also be used to
answer other types of queries such as “Find the top k documents/images which
are similar to a given sample.”, which are common in information retrieval and
image retrieval systems. Another interesting possibility is to employ our design
for searching the Web using a distributed model rather than a centralized one.
For example, most commercial search engines crawl millions of web pages and
build a centralized index to find the web pages that contain certain keywords.
They typically index a small fraction of the Web and scalability will be a se-
rious problem for such centralized systems considering the rapid growth of the
Web. A peer-to-peer approach with scalability and decentralization properties
would significantly improve performance. ODISSEA [18] investigates the issue
of designing a P2P-based search engine for the Web. Li et al. [19] analyze the
feasibility of peer-to-peer keyword search over the Web and conclude that it is
feasible with certain optimizations and compromises. In general, a peer-to-peer
approach provides the following benefits over a centralized design:

– Due to the underlying peer-to-peer architecture, the system is scalable, ro-
bust (no single point of failure), fault-tolerant, decentralized, and dynamic.
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– Distributing the load over many peers is more cost effective than maintaining
a dedicated site to handle the central index.

– When a new document is inserted into the system, the associated index
information is created and becomes accessible to other peers immediately.

The rest of the paper is organized as follows: In Sect. 2 we present background
to our work. Section 3 explains the basics of our document distribution model.
Section 4 discusses some improvements to the basic design in order to provide
load balancing. Experimental results are presented in Sect. 5, and the last section
concludes the paper.

2 Background

In this section we introduce the Vector Space Model for document representation
and Latent Semantic Analysis for reducing the size of vectors while preserving
information related to synonymy and polysemy. Finally we present Chord, the
underlying peer-to-peer structure used in our system.

2.1 Vector Space Model (VSM)

In this model, a document is represented as a term vector [20]. Each component
of the vector represents the importance of the corresponding term within the
document. Components are calculated using TFxIDF scheme, where TF (term
frequency) is the frequency of the term within the document and IDF (inverse
document frequency) is the inverse of the number of documents in which the
term appears. The idea behind this scheme is that terms that appear more
frequently in a document are good candidates for representing this document,
whereas terms that appear in too many documents should be penalized.

A document set with d documents can be represented by a t × d term-
document matrix, which is obtained by combining the vector representations
of all documents, where t is the number of distinct terms appearing in the set.

Each query is also represented as a vector, which is the weighted sum of
the vectors of the terms appearing in the query. A common similarity measure
is cosine similarity, which is the cosine of the angle between the vectors. The
cosine similarity between two n-dimensional vectors A and B is expressed as:

cos θ = A·B
|A||B| =

∑n

i=1
AiBi√∑n

i=1
A2

i

√∑n

i=1
B2

i

2.2 Latent Semantic Indexing (LSI)

VSM suffers from synonymy and polysemy. LSI addresses this problem by trying
to discover associations between terms and documents (implicit semantic struc-
ture) in the document set [15]. It uses Singular Value Decomposition (SVD) to
approximate the original term-document matrix [21].

Consider a t×d dimensional term-document matrix, X, where d is the number
of documents and t is the number of distinct terms in the document set. X can
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be decomposed into the product of 3 matrices: X = UΣV T . This is called
the singular value decomposition of X. U and V are orthogonal matrices with
dimensions t × m and d × m respectively, where m is the rank of X. Σ is an
m × m diagonal matrix with the singular values of X in decreasing order along
its diagonal. LSI uses a simple technique to reduce the sizes of the resulting
matrices to get optimal approximations to X. Among the singular values in Σ,
the first k largest ones are kept and the remaining ones are set to zero. The zero
rows and columns of Σ are deleted and a new matrix, Σk, of dimensions k ×k is
obtained. By deleting the corresponding columns and rows from U and V , two
new matrices Uk and Vk are obtained. The new matrix Xk = UkΣkV T

k is of rank
k and is an approximation of the original term-document matrix X. The rows
of the VkΣk matrix can be considered as the reduced vector representations for
the documents. Hence each document is represented by a vector of size k, rather
than the original t dimensional vectors. Although t is very large, i.e., tens of
thousands for a fairly large data set, it has been shown that selecting the value
of k between 100 − 300 for LSI yields good results [15, 22].

2.3 Chord

Chord [3] is a P2P system that implements a Distributed Hash Table. It uses
an m-bit identifier ring, [0, 2m − 1], for routing and locating objects. Both the
objects and the peers in the system are assigned m-bit keys through a uniform
hash function and mapped to the identifier ring. An object is stored at the peer
following it on the ring, i.e., its successor.

Each peer maintains a finger table for efficient routing. The finger table of a
peer contains the IP addresses and Chord identifiers of O(logN) other peers, i.e.,
its neighbors, that are at exponentially increasing distances from the peer on the
identifier ring, where N is the number of peers in the system. Peers periodically
exchange refresh messages with their neighbors to keep their finger tables up to
date. Chord is designed for very efficient exact-key lookups. A lookup request
is delivered to its destination via O(logN) hops. At each hop, the request is
forwarded to a peer from the finger table whose identifier most immediately
precedes the destination point. In Fig. 1, peer P1’s request for document d is
routed through P2 and P3 to d’s successor P4, by following the links from the
local finger tables.

Chord is a dynamic system in which peers can enter or leave the system at
will. When a new peer wants to join, it is assigned an identifier and it sends a
join request toward this identifier through an existing Chord peer. The affected
finger tables are updated accordingly and the keys that are assigned to the new
peer are transferred from its successor. Similarly, upon departure of a peer, its
keys are assigned to its successor and the affected finger tables are updated.

3 Document Distribution Model

In this section, we describe our system which provides content-based document
search over the Chord peer-to-peer system. We first introduce the general design
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Fig. 1. An example Chord system

and then discuss each step in more detail. Possible improvements to the basic
model are discussed in Sect. 4.

We use VSM to extract the feature vectors of the documents, which are then
reduced to a lower dimensional space using LSI. Associated with each document
is a document index which contains the location (IP address) and the vector
of the document. Each document index is stored at multiple locations in the
system. The document indices are distributed over the Chord system according
to the document vectors in such a way that documents that are semantically
similar to each other are mapped to nearby locations on the Chord ring. When
a query is issued, its feature vector is computed. The queries are then routed
in the system according to their vectors and the document indices stored at the
destination peers are checked for possible results. A query may result in multiple
lookups in order to improve accuracy.

3.1 Computing Document Vectors

The initial feature vectors of the documents are extracted using VSM. The
calculated term-document matrix is then reduced using LSI to transform the
document vectors into a low dimensional space, which is called the LSI space.
However, this process requires global knowledge about the document collection,
for example to compute the IDF of the terms. Since our system is designed for a
dynamic distributed environment, it is not feasible to access all the documents.
Fortunately, it has been shown that LSI works efficiently if it is provided with
a small representative subset (sample set) of the whole document set [23, 24].
Hence the basis of the LSI space and the IDF of the terms are calculated only
for the sample set. This information is called the global information and used by
the peers to calculate the document vectors locally.

We assume that a well-known peer in the system is assigned the task of
managing global information about the system. It uses a randomly sampled
subset of the documents to compute the initial global information, which is
then distributed to all peers in the system. This peer periodically samples some
documents from the system and incrementally updates the global information
accordingly in order to reflect the properties of the documents currently shared
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in the system [21]. If the change in the global information is above a certain
threshold, the global information is recalculated and disseminated to the peers.
Assuming that the general characteristics of the document set changes slowly
over time, the global information needs not to be disseminated frequently. For
sampling, a set of random Chord keys are generated and the peers responsi-
ble for these keys are contacted to retrieve sample documents. To disseminate
information, an efficient P2P broadcast protocol can be used, such as the one
proposed in [25].

The peers compute the vector representations of the documents locally using
the global information. The vectors of the documents are computed by extracting
the frequencies of the terms in the documents and then calculating the weighted
sum of the term frequencies and the corresponding term vectors (folding-in).

3.2 Publishing Documents

The document indices need to be distributed among the different peers in the
P2P environment1. The distribution scheme should satisfy the following require-
ments:

– Indices of similar documents are stored at the same peer,
– Given a query vector, it is possible to identify the peers that are likely to

store the indices of documents that are similar to the query,
– Indices are distributed evenly among the peers.

The traditional Chord uniformly distributes objects on the peers regardless
of content. Our main challenge is to develop a content-based hash function that
maps the higher dimensional vectors to the single dimensional Chord ring. This
content-based hash function needs to capture the notion of similarity used for
retrieval. Due to the popularity of the cosine similarity measure, we distribute
and retrieve documents based on this measure. Our hashing scheme is based on
the similarity of a document to a set of preselected reference documents, which
is called the reference set. The vectors of the reference documents are referred
to as reference vectors. Reference vectors are selected only once at the system
initiation time while computing the initial global statistics, and then used by
every peer in the system. New peers can simply obtain the reference set from
any other peer while joining the system. In our experiments, we used 2 different
schemes for selecting the reference vectors. First, we picked them randomly from
the initial sample set, and second we clustered the initial sample set and used
the cluster centroids as references.

For each document, we compute the cosine of the angle between the document
vector and each reference vector. The cosine of the angle between a document
vector and a reference vector is called the reference cosine of the document
with respect to this reference. The references are then sorted by reference cosine
values in decreasing order. The sorted list of references is called the reference list

1 The process of storing a document’s index in the system will be referred to as
publishing the document.
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of the document. The top elements of the reference list of a document are the
references that are closest to the document in terms of cosine similarity. Note
that each document has a potentially different ordering of the references, which
is one of the permutations of the reference set.

Example 1: We use a simple example to illustrate the above process. Consider a
large set of documents. For simplicity, assume that each document is represented
by a 2-d vector. We will focus on the following four documents:

d1=[0.45 0.89], d2=[0.56 0.83], d3=[0.41 0.91], d4=[0.95 0.32].
We get the following cosine similarity values between each pair of documents

(corresponding angles in degrees are shown in parenthesis):
cos(d1, d2)=0.992 (7.1) cos(d1, d3)=0.999 (2.1) cos(d1, d4)=0.707 (45.0)
cos(d2, d3)=0.987 (9.3) cos(d2, d4)=0.789 (37.9) cos(d3, d4)=0.681 (47.1)

These values suggest that the first three documents, d1, d2, and d3, are similar
to each other, whereas d4 is not similar to the other three documents.

Consider a reference set with 8 reference vectors: R0=[0.32 0.95], R1=[0.80
0.60], R2=[0.14 0.99], R3=[0.89 0.48], R4=[0.37 0.93], R5=[0.16 0.99], R6=[0.50
0.87], and R7=[0.94 0.35].

We start by computing the reference list of d1. First, we calculate the reference
cosine values for each reference, and then get the reference list of d1 after sorting
the reference vectors in decreasing order of the cosine values:

RC(d1)={0.990,0.845,0.949,0.800,0.997,0.956,0.999,0.733}
RL(d1) = R6, R4, R0, R5, R2, R1, R3, R7.

Repeating the same steps, we obtain the reference lists for each document:
RL(d2) = R6, R4, R0, R1, R5, R2, R3, R7.
RL(d3) = R4, R6, R0, R5, R2, R1, R3, R7.
RL(d4) = R7, R3, R1, R6, R4, R0, R5, R2.

We make two observations regarding the reference lists of the documents:
1. If two documents are similar, then they have many common references at

the top positions of their reference lists. For example, d1, d2, and d3 have the
same set of vectors (R6, R4, and R0) at the top three positions of their lists.
However, these three documents do not share any of the top three references
with d4, which is in fact not similar. Thus the top vectors in the reference
lists of the documents can be used to distribute documents among peers so
that similar documents are mapped to close locations on the Chord ring.

2. Even if two documents are similar and share some top references in their
lists, these references may appear in slightly different positions. For exam-
ple, the top two references are (R6,R4) for d1 and d2, and (R4,R6) for d3.
Our design should be able to handle such mismatches so that even if two
similar documents have common references at slightly different positions,
they should be mapped to nearby locations.
Given the reference list of a document, we use it to determine where to store

the document. Since documents tend to be large, a typical approach is to leave
the actual document stored wherever it was created, and use the Chord peer
to maintain a document index, which contains a pointer to the peer storing the
document (IP address)and the vector of the document. Thus the peer storing the
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index can locally calculate the similarity of the document to a query during query
lookup using the document vector.

The reference list is hashed to the Chord identifier space as follows: Pick the
top K reference ID’s in the reference list. Concatenate their binary representa-
tions, with the highest relevant reference as the high order bits. If there are any
remaining bits in the Chord bit representation, fill it with zeros. In our experi-
ments, we use K = 2, and hence use the top pair of references to hash a document
to a peer in the Chord ring. Thus, for example, document d1 and d2 would hash
to the same peer since they share the same top 2 references. However, d3 will not
map to the same peer although it does share a lot of similarity with d1 and d2.

In light of the above observations, we store multiple indices for each document
based on multiple pairs chosen from the top reference vectors from a document’s
reference list. For example, d1 in Example 1 can be published for the reference
pairs (R6, R4), (R6, R0), and (R4, R0). The number of indices to be published for
each document, docPerm, is a system parameter, and poses a tradeoff between
the storage space and recall rate. Storing more replicas of a document’s index
requires more storage but also provides better chances of finding this document
when it is in fact similar to a query. A peer can decide on the value of docPerm
for a document depending on different criteria. For example if the document
is considered important, its index can have more replicas. Another important
decision is the choice of the different reference pairs. Our experiments suggest
that choosing the reference pairs from the top five references of the reference list
provides good results.

Example 2: We now continue Example 1 to demonstrate the index distribution
process. Assume we publish d1 for the pairs (R6, R4), (R6, R0), and (R4, R0) in
a Chord system that uses 10-bit keys. Since there are 8 references, each reference
number can be represented by 3 bits. The Chord key corresponding to (R6, R4) is
1101000000 because 6 = (110)2 and 4 = (100)2. Similarly, the keys corresponding
to (R6, R0) and (R4, R0) are 1100000000 and 1000000000 respectively. The index
of d1 is therefore stored at the peers that are responsible for these three keys.
This process is illustrated in Fig. 2. Now consider document d3 with reference
pairs (R4, R6), (R4, R0), and (R6, R0). The reference pair (R4, R0) will map an
index of d3 at the same peer where d1’s reference pair (R4, R0) mapped to. Hence
d1 and d3, which are similar with respect to their reference lists, will be mapped
to the same peer.

R 6 R 4

R 4

(     ,     )
(     ,     )

R

R

R 6

0

(     ,     )
0

1101000000
1100000000
1000000000

2R   ,R   ,0 R   ,5R   ,4Reference List (d1) = {R   ,6 1R   , R   }73R   ,
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Fig. 2. Publishing a document index at multiple locations on the Chord ring
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Note that if we use 7 reference vectors instead of 8, then no key with ‘111’
prefix will be generated and a portion of the Chord ring will remain unused.
Therefore the number of references should be a power of 2 for better utilization
of the Chord ring.

3.3 Query Lookup

When a query is issued, its feature vector is computed and reduced into the LSI
space. Similar to the distribution of document indices, the reference list of the
query is calculated and the reference pairs are selected to lookup the query. The
key for each lookup is calculated from the corresponding reference pair in the
same way as the document index keys are calculated. The query is then routed
to multiple locations on the Chord ring using these keys. Increasing the number
of lookups for a query, i.e., queryPerm, results in more accurate answers but also
causes extra network traffic and processing load.

Each lookup request contains the query vector. After the lookup message is
delivered, the destination peer checks the local indices and identifies the doc-
uments similar to the query. The results are then sent back to the peer that
initiated the query. The initiator peer collects the results of all lookup requests
and returns the top results.

A peer can also choose to perform a progressive lookup so that the query
answer is incrementally refined at each step. In this case, the querying peer
generates only one lookup request for the query. If the results returned by this
lookup are not satisfactory, then another lookup request corresponding to some
other reference pair is generated and the query answer is refined using the results
of this lookup. The querying peer continues the progressive lookup process until
the cumulative results returned are satisfactory.

4 Load Balancing in the System

The basic model developed in the previous section may lead to an imbalanced
load distribution among the peers. Some peers in the system may store more
index information or answer more query lookups than others. We propose two
enhancements to the basic model for solving this problem.

4.1 Multi-level Reference Sets

In the basic model, pairs of references are used to generate the Chord keys for the
document indices. If there are 2r reference vectors, then the document indices
are distributed to 2r ∗2r = 22r distinct locations on the Chord ring. For example,
in a system with 25 = 32 references, only 210 Chord locations are utilized for
storing indices. If the number of peers in the system exceeds 210, some of the
peers will not be responsible for any of these locations and thus will not store any
document indices. Although the basic key generation schema is enough when the
number of participating peers is less than 22r for a system with r references, the
model should be able to support more peers. Therefore a new schema is needed
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that provides finer distribution of the indices, i.e., maps the document indices
to more locations on the ring.

We propose to use multiple levels of references to further refine the mapping
of document indices to the Chord ring. Instead of one reference set, multiple
reference sets are maintained. Each document has a reference list associated
with each reference set. One reference pair from each reference list is then used
to construct different portions of the key. Assuming that 2 reference sets with 2r

references each are used, the leftmost 2r bits of the Chord key can be constructed
according to the reference pair from the first set, whereas the next 2r bits are
determined by the reference pair from the second set. With this approach, 22r ∗
22r = 24r locations can be addressed using 2 reference sets of 2r reference vectors.
Note that if we choose to use the basic schema with two times (2r + 2r = 2r+1)
the reference vectors rather than using the 2-level schema, we can only address
2r+1∗2r+1 = 22r+2 locations. For example, increasing the the number of reference
vectors from 32 to 64 in the basic schema increases the address space from 210

to 212, whereas it can be increased to 220 with 2 sets of 32 reference vectors.
Note that the same reference sets and the order are used by every peer, however
the number of reference pairs and the pairs themselves for publishing documents
and looking up queries are chosen locally by the individual peers.

A nice property of the multi-level schema is that the documents that have
the same first level pair and different higher level pairs are assigned to closer
locations on the ring since the first level reference pair is used to construct the
most significant bits of the key. When the number of peers in the system is small,
these documents are likely to be stored at the same peer. Hence the higher level
reference vectors will be effective as the number of peers in the system increases.

4.2 Load Aware Peer Joins

Some documents can be very popular and shared by many peers. All replicas of
a popular document or a large group of very similar documents will be hashed
to the same locations on the Chord ring, causing hot spots in the system. As a
result, the peers that are responsible for those hot spots will have a higher load
in terms of both the number of indices stored and the queries received.

To alleviate this problem, we propose Load Aware Peer Joins so that when a
new peer joins the system, the join request is forwarded toward a heavily loaded
peer, allowing it to reduce its load by transferring some of its indices to the
new peer. In order to enable this forwarding, each peer in the system keeps load
information about its neighbors in its routing table. The peers piggyback their
load information on the refresh messages they exchange with their neighbors.
Whenever a peer receives a join request, it checks its routing table to find the
neighbor with the highest load. If the load on that neighbor is greater than this
peer’s load, the join request is forwarded to that neighbor. The join request is
forwarded until it reaches a peer whose load is higher than the load of every peer
in its routing table. This peer then divides the key range it maintains into two
and assigns one half to the new peer.

In our experiments we only consider the number of indices stored at a peer as
its load, however other information, such as the number of messages processed
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or the number of lookup requests received, can easily be incorporated into the
load value. When a peer needs to divide its key range, it sorts the stored indices
by their keys and uses the key of the median index as the split point. Thus the
load, i.e., the number of indices stored, is divided evenly between this peer and
the new peer. Note that peer failures are handled by the underlying Chord layer.

5 Experimental Results

We have evaluated the performance of our approach using a simulator imple-
mented on top of the Chord Simulator2.

5.1 Experimental Setup

All collections were indexed with the SMART3 system [26]. The default stop list
and stemmer of SMART were enabled and atc term weighting was used during
the runs. We used LAS2 from SVDPACKC4 for computing the SVD of the term-
document matrix. All experiments were performed on a machine with dual Intel
Xeon 2GHz processors and 1GB of main memory, running Linux RedHat 8.0.

Data Sets
We used three data sets for the experiments (Table 1 summarizes the information
about these data sets):
MED5 : Contains 1033 medical abstracts and 30 queries.
Ohsumed6 : Consists of 348,566 documents from the online medical information
database (Medline) over a period of five years (1987-1991) [27]. It was used for
the TREC-9 Filtering Track [28]. It includes 63 queries.
Test10k: Created by randomly choosing 10000 documents from the Ohsumed
collection. 63 queries from the Ohsumed collection were used as queries. This
data set was used for calibrating the system and as an intermediate step for our
scalability experiments.

Table 1. Data sets used in the experiments

Data Set Doc. No Term No Doc-Term Assoc No Query No Query Term No
MED 1033 7996 54,478 30 9.93
Test10k 10,000 39,567 624,512 63 4.87
Ohsumed 348,542 108,697 14,294,276 63 4.89

When indexing Ohsumed, we randomly sampled 20% of the documents and
discarded the terms that appear in only one sampled document. The term-

2 Available at http://www.pdos.lcs.mit.edu/chord/.
3 We used SMART version 11.0 from Cornell University, which is available at

ftp://ftp.cs.cornell.edu/pub/smart.
4 Available at http://www.netlib.org/svdpack/.
5 Available at ftp://ftp.cs.cornell.edu/pub/smart.
6 Available at http://trec.nist.gov/data.html.
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document matrix had 69903 documents, 59428 terms and 14,245,007 nonzero
entries. Indexing the sample set with SMART took around 5 minutes. Comput-
ing the SVD of the term-document matrix and folding-in the remaining docu-
ments took around 25 minutes. For the other two data sets, no sampling was
used and no terms were discarded. All the documents were indexed using the
abstract field. The queries were indexed based on the description field.

Evaluation Metrics
In the experiments, we measured the recall rate, the number of peers contacted
for a query, and the distribution of indices among the peers. Our main focus
was to determine the efficiency of our system for retrieving a fixed number, k,
of documents that are most similar to given queries. We compared our system
against centralized LSI. For each query, the top k documents obtained by running
LSI on the whole data set, set A, were considered as the actual results. Then we
used our system to retrieve k documents, set B, and computed the percentage
of the actual results included in B. The recall rate for a query is computed as
follows: Recall = |A∩B|

|A| × 100%. We set k to 15. This is a reasonable value since
most users only view the top 10 results when searching the Web [14]. Each lookup
for a query returned the top 15 local results from the destination peers and these
results were merged at the querying peer to compute the final result. Note that in
this case, since we are interested in the top k documents and |A| = |B|, precision
and recall values are the same.

Selecting Reference Pairs
The reference pairs for publishing indices and looking up queries were selected
from the top 5 reference vectors. To determine the reference pair order, we ex-
ecuted sample queries over the sample set when computing the initial global
information. The document indices were published and then queried for all pos-
sible pairs. The reference pair order is determined by the retrieval rate of each
reference pair. We ran a set of queries over the Test10k data set and determined
the return effectiveness of different reference pairs. Based on these experiments,
we determined the following ordered list of 21 possible reference pairs for pub-
lishing documents: {1,1}, {1,2}, {2,3}, {3,2}, {2,1}, {4,3}, {5,2}, {1,3}, {1,4},
{1,5}, {2,4}, {2,5}, {3,4}, {3,5}, {3,1}, {4,2}, {4,5}, {4,1}, {5,3}, {5,4}, {5,1}.
Thus the reference pairs for publishing a document are determined according to
this order based on the value of docPerm. For example, if docPerm=3, d1 from
Example 1 is published for the reference pairs (R6, R6), (R6, R4), and (R4, R0).
The identity pair, {1,1}, is used for a more uniform index distribution over the
Chord ring. If we did not use the identity pair, a more complex algorithm would
be needed for creating the Chord keys corresponding to the reference pairs, be-
cause the keys in certain portions of the Chord ring would never be utilized. The
identity pair is used only once to avoid the overloading of the peers responsible
for these pairs.

Setting docPerm to a big value is usually affordable because it only requires
limited additional storage for storing the replicas of the index. However, increas-
ing queryPerm is more costly as it increases the number of visited peers and
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the bandwidth consumed for processing a query. To reduce the query reference
pairs, if the pair {i,j} is used, we ignored the inverse of the pair, i.e., {j,i}. Hence
the 21 possible pairs reduce to the following: {1,1}, {1,2}, {2,3}, {1,3}, {2,5},
{1,4}, {1,5}, {3,4}, {2,4}, {4,5}, {3,5}.

5.2 Results Without Load Balancing

For the experiments, three different scenarios were used: 1) MED data set over
100 peers, 2) Test10k data set over 1000 peers, and 3) Ohsumed data set over
10000 peers. The documents in the data sets were evenly assigned to peers and
the peers joined an initially empty system. The queries were issued after all peers
joined the system and initiated at randomly chosen peers. The reported results
are the average values over all the queries.

We first ran the system without implementing the load balancing schemes
discussed in Sect. 4. We used 32 randomly selected reference vectors. Figure 3
shows the corresponding recall rates for different values of docPerm (1 to 21) and
queryPerm (1 to 11) for each scenario. The best results are obtained from MED
data set (Figure 3(a)). Even with docPerm=1 and queryPerm=1, 48.2% of the
actual results are retrieved. It goes up to 94.9% with increasing docPerm and
queryPerm. As the data set and system size increase, the recall rates decrease
but they are still quite good. This shows that the system is scalable because
the recall rates do not degrade much when there are big increases in system
size and data set size. For Test10k data set (Figure 3(b)), the recall rate starts
from 38.8% and goes up to 94.7%, while varying between 47.6% and 89.4% for
Ohsumed data set (Figure 3(c)). The recall improvements gained by increasing
the values of queryPerm and docPerm diminish as their values increase. Setting
the value of queryPerm between 4-8 results in good recall. When queryPerm=8
and docPerm=15, the recall rates are 93.1, 86.5, and 81.6 respectively for each
scenario.

As seen in Figs. 3(b) and 3(c), when queryPerm is 1, the recall rate remains
constant. That is because the query only goes to the peer corresponding to the
identity pair, and thus increasing docPerm, i.e., publishing document indices for
reference pairs other than the identity pair, does not improve the result. For the
MED data set, however, the results do improve because there are very few peers
in the system and the document indices published for other pairs are also likely
to be assigned to the peer that is queried. The graphs for Test10k and Ohsumed
data sets demonstrate very similar behavior, showing that the idea of selecting
the reference pair order according to the sample set works.

Table 2 shows the average number of peers contacted to answer a query
for different values of queryPerm for each scenario. The path length increases
linearly with queryPerm as expected. More importantly, it scales well in terms
of the number of peers. A single lookup visits 3.16 peers (0.32%) in a 1000 peer
system, whereas it visits 7.02 peers (0.07%) when the peer number is increased
to 10000. Thus our system delivers high recall by visiting very few peers.
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Fig. 3. Recall rates before implementing Load Balancing schemes

5.3 Results with Load Balancing

We also ran the system after incorporating the load balancing strategies. We used
two levels of reference sets with 32 randomly selected references at each level.
When constructing the keys, only one reference pair was selected from the second
level and combined with the pairs selected from the first level. Figure 4 shows
the corresponding recall rates. Load balancing reduces recall rates because the
documents are now distributed at a finer granularity with more reference vectors.
The amount of decrease is proportional to the number of peers: It is very little
for MED data set (Figure 4(a)) and much larger for Ohsumed (Figure 4(c)).
The recall now changes from 19.37% to 54.71% for Ohsumed data set. As seen
from Table 2, the number of visited peers for processing a query does not change
much after implementing load balancing.

Although the recall rates are high with the basic design, the distribution
of indices can be very skewed. Figure 5 shows the index distribution for each
scenario before and after the load balancing schemes are implemented. The peers
in the system are sorted in decreasing order of the number of indices they are
assigned. The X axis shows the percentage of peers, and the corresponding values
are the percentage of indices assigned to these peers. In the figure, Optimal shows
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Table 2. Average number of peers visited to answer a query

MED over Test10k over Ohsumed over
query 100 peers 1000 peers 10000 peers
Perm Before LB After LB Before LB After LB Before LB After LB

1 1.43 1.50 3.16 3.21 7.02 7.50
2 2.87 2.93 6.44 6.67 14.10 14.33
4 5.93 5.70 12.91 13.37 27.65 28.59
8 11.93 11.47 26.00 26.49 55.86 57.81
11 16.50 15.57 35.81 36.57 76.11 79.02

the result for the ideal case where every peer in the system is assigned the same
number of indices. Without load balancing, the index distribution is very skewed
for Ohsumed data set. All the indices are stored at only 10% of the peers. This
shows that the distribution of indices becomes very imbalanced in the basic
design when the number of peers in the system is large. Our load balancing
strategies, greatly improved the index distributions in all three cases, however
at the expense of inferior recall.

Reference Vector Selection
Finally, we evaluated the effect of the number and selection criteria of refer-
ence vectors on the system performance. We measured the recall rates using the
Ohsumed data set over 10000 peers with load balancing implemented. For refer-
ence vector selection, we used two methods: 1) Selecting randomly, 2) Clustering
the sample set and using the cluster representatives as references. For clustering,
k-Means clustering was used. Figure 6 shows the recall rates for different number
of references with random selection and cluster selection when queryPerm is 8.
The graph validates our two predictions:

1) When the number of references is fixed, cluster selection provides better
results. For 32+32 references (two levels), recall rates go up to 58.84% for cluster
selection and 51.64% for random selection. 2) Using more references decreases
the recall rates. For example, when 64+64 clustered references are used, the
highest recall is 56.93, while it is 58.84% when 32+32 clustered references are
used. We also note that the index distribution gets better as the number of ref-
erences increases, and random selection provides better distribution than cluster
selection.

5.4 Discussion

The proposed architecture demonstrated efficient and scalable retrieval perfor-
mance. The experiments suggest that setting the value of queryPerm between
4-8 and docPerm between 11-21 returns good recall rates. For the Ohsumed
data set over 10000 peers with queryPerm=8 and docPerm=18, 83.4% recall is
achieved by visiting 55.86 peers (0.56%) when there is no load balancing, and
50.4% recall is achieved by visiting 57.81 peers (0.58%) when load balancing
is implemented. Thus the system can be configured for high recall (if the load
imbalance among the peers is tolerable) or for more balanced load distribution
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Fig. 4. Recall rates after implementing Load Balancing schemes

with moderate recall. A similar tradeoff is posed by the reference selection crite-
ria. Clustered references provide better recall rates than random references, but
with a more skewed index distribution.

The storage and bandwidth requirements of the system is reasonable. A doc-
ument index contains a 100-dimensional vector (100x4B) and some additional
information (~100B). The size of an index is around 0.5KB. The amount of stor-
age needed to store 10000 indices is only 5MB. Thus it is usually affordable to
have a greater docPerm. For example, publishing a document with docPerm=21
takes 10.5KB. The data transferred to process a single query lookup, L, can be
computed as: L = p · Q + k · I, where p is the average path length in the system,
Q is the query message size, k is the number of results returned, and I is the
size of an index. The total amount of data transferred to process a query, B, is:

B = queryPerm · L = queryPerm · (p · Q + k · I)
Both Q and I are 0.5KB. p is independent of the number of documents, query
length, and document length, and increases logarithmically with the number of
peers. Using the data from Table 2 for the 10000 peer system, the total amount of
data transferred to answer a query with queryPerm=11 is = 11·(7·0.5+15·0.5) =
121KB.
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6 Conclusion

In this paper, we presented an architecture for efficient content-based document
search over peer-to-peer systems. Our design is built on top of a structured P2P
system, i.e., Chord [3]. We introduced a model for distributing and retrieving
the index information for documents over a Chord ring using the feature vectors.

Due to properties inherited from the underlying P2P layer, the system is
robust against peer joins and failures. When a new peer joins, it immediately
starts serving by obtaining the assigned indices from an existing peer. Upon the
departure or failure of a peer, the indices previously assigned to that peer are
dynamically assigned to another peer.

The experiments demonstrate that our approach is both scalable and efficient
for real data sets. Compared to prior work, our approach is based on solid IR
techniques and results in good recall and precision performance.
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Abstract. Similarity search in metric spaces represents an important
paradigm for content-based retrieval in many applications. Existing cen-
tralized search structures can speed-up retrieval, but they do not scale
up to large volume of data because the response time is linearly in-
creasing with the size of the searched file. In this article, we study the
problem of executing the nearest neighbor(s) queries in a distributed
metric structure, which is based on the P2P communication paradigm
and the generalized hyperplane partitioning. By exploiting parallelism
in a dynamic network of computers, the query execution scales up very
well considering both the number of distance computations and the hop
count between the peers. Results are verified by experiments on real-life
data sets.

1 Introduction

Peer-to-peer (P2P) communication has become a prospective concept for pub-
lishing and finding information on the ubiquitous computer networks today. Most
P2P systems so far support only simple lookup queries, i.e. queries that retrieve
all objects with a particular key value, for example [1] and [2]. Some recent work
has extended this functionality to support range queries over a single attribute
[3]. However, an increasing amount of data today can only be effectively searched
through specific (relative) measures of similarity.

For example, consider a P2P photo-sharing application where each user pub-
lishes photographs tagged with color histograms as its metadata. A typical query
in such a system would contain similarity predicates asking for photographs with
color histograms which are not very different from the color histogram of the
query photo sample.

The problem of retrieving elements from a set of objects that are close to a
given query reference (using specific similarity criterion), has a lot of applications
ranging from the pattern recognition to the textual and multimedia information
retrieval. The most general abstraction of the similarity concept, which is still
indexable, uses the mathematical notion of the metric space.

The advantage of the metric space approach to the data searching is its “ex-
tensibility”, because in this way, we are able to perform the exact match, range,
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and similarity queries on any collection of metric objects. Since any vector space
is covered by a metric space with a proper distance function (for example the
Euclidean distance), even the n-dimensional vector spaces are easily handled.
Furthermore, there are numerous metric functions able to quantify similarity
between complex objects, such as free text or multi-media object features, which
are very difficult to manage otherwise. For example, consider the edit distance
defined for sequences and trees, the Hausdorff distance applied for comparing
shapes, or the Jacard coefficient, which is often used to assess similarity of sets.
Recently, the problem has attracted a lot of researchers with the goal of devel-
oping techniques able to structure collections of metric objects in such a way so
that the search requests are performed efficiently – see the recent surveys [4] and
[5].

Though metric indexes on single computers are able to speedup query execu-
tion, the processing time is not negligible and it grows linearly with the size of
the searched collection. Such property has recently been confirmed by numerous
experiments in [6]. The evaluation of metric distance functions can also take a
considerable amount of computational time. To search the partitioned space, we
usually have to compute distances (using the metric function) between many ob-
jects. The time to compute a distance can also depend on the size of compared
objects. For example, the edit distance of two strings has the computational
complexity O(n · m), where n and m represent the number of characters in the
compared strings.

The distributed computer environment of present days is a suitable frame-
work for parallel execution of the queries. With such infrastructure, parallel
distance computations would enhance the search response time considerably.
Modern computer networks have a large enough bandwidth, so it is becoming
more expensive for an application to access a local disk than to access the RAM
of another computer on the network. In this paper, we try to apply current
approaches to the distributed data processing – Scalable and Distributed Data
Structures (SDDS) and Peer to Peer (P2P) communication – to the metric space
indexing. The motivation and the basic concepts of our proposal have been pub-
lished in [7] considering only the similarity range queries. In this paper we show
how such idea can be extended to the important case of similarity predicates,
specifically the nearest neighbors queries.

The rest of the paper is organized as follows. In Section 2, we summarize the
principles of metric queries, while in Section 3 we introduce a formal definition
of the distributed metric index. Section 4 describes the strategies for the near-
est neighbor search, which are experimentally evaluated in Section 5. Section 6
concludes the paper.

2 Metric Space and Similarity Queries

The mathematical metric space is a pair (D, d), where D is the domain of objects
and d is the distance function able to compute distances between any pair of
objects from D. It is typically assumed that the smaller the distance, the closer
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or more similar are the objects. For any distinct objects x, y, z ∈ D, the distance
function d must satisfy the following properties:

d(x, x) = 0 reflexivity,
d(x, y) > 0 strict positiveness,
d(x, y) = d(y, x) symmetry,
d(x, y) ≤ d(x, z) + d(z, y) triangle inequality.

Let F ⊆ D be the data-set. There are two basic types of similarity queries. The
range query retrieves all objects which have a distance from the query object
q ∈ D at most the specified threshold (range or radius) ρ:

{x ∈ F | d(q, x) ≤ ρ}.

The nearest neighbor query returns the object that is the nearest (having the
shortest distance) to the query object q. We can extend this type of query to
return k nearest objects that form a set K ⊂ F defined as follows:

|K| = k ∧ ∀x ∈ K, y ∈ F − K : d(q, x) ≤ d(q, y).

Other forms of similarity queries concern the similarity joins and the reverse
nearest neighbor queries. In this article, we concentrate on the most frequent
(the most natural) form of similarity queries – the nearest neighbors queries.

3 Principles of GHT*

The GHT* structure was proposed in [7] as a distributed metric index for similar-
ity range queries. In this paper, we provide a new formalization of this approach
and extend the capabilities of the GHT* with methods for processing the nearest
neighbors queries.

3.1 Architecture of GHT*

In general, the scalable and distributed data structure GHT* consists of network
nodes, peers, that can insert, store, and retrieve objects using similarity queries.
The GHT* architecture assumes that:

– Peers communicate through the message passing paradigm. For consistency
reasons, each request message expects a confirmation by a proper acknowl-
edgment message.

– Each peer participating in the network has a unique Network Node IDentifier
(NNID).

– Each peer maintains data objects in a set of buckets. Within a peer, the
Bucket IDentifier (BID) is used to address a bucket.

– Each object is stored exactly in one bucket.

An essential part of the GHT* structure is the Address Search Tree (AST). In
principle, it is a structure based on the Generalized Hyperplane Tree (GHT) [8],
which is one of the centralized metric space indexing structures. In the GHT*,
the AST is used to actually navigate to the (distributed) buckets when data
objects are stored and retrieved.
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NNID or BID

Inner node

Legend:

Peer 2 Peer 3

Peer 1

< p1, p2 >

↙ ↘
< p3, p4 > < p5, p6 >

↙ ↘ ↙ ↘
b1 b1 b3 n1

Fig. 1. The GHT* network (a) and an example of Address Search Tree (b)

3.2 Address Search Tree

The AST is a binary search tree, whose inner nodes hold routing information and
the leaf nodes represent pointers to the data. Specifically, the inner nodes always
store a pair of pivots – these are some representative metric objects from the
data-set – and respective pointers to the left and the right subtrees. An example
of AST can be seen in Figure 1b. When searching for a place where to store a new
object, we start in the root and compute distances between the inserted object
and the pivots. If the distance to the first pivot is smaller than the distance to
the second pivot, we navigate to the left subtree of that inner node, otherwise,
the right subtree is considered. This process is recursively repeated until a leaf
node is reached.

The data objects are stored in buckets that are held either locally (thus we
can address the bucket by its BID) or on another peer, which can be identified by
a proper NNID. Therefore, the AST has always one of those two types of pointers
in leaf nodes. Whenever the navigation procedure reaches the leaf node of the
AST, the inserted object is stored either locally in the respective bucket (if a BID
identifier is found) or on a remote peer (if an NNID identifier is encountered).

In order to avoid hot-spots caused by the existence of a centralized node
accessed by every request, a form of the AST structure is present in every peer.
Due to the autonomous update policy, the AST structures in individual peers
may not be identical – with respect to the complete tree view, some sub-trees
may be missing. However, the GHT* provides a mechanism for updating the
AST automatically during the insertion or search operations.

Figure 1a illustrates the AST structure in a network of three peers. The
dashed arrows from the leaves indicate the NNID pointers while the solid ar-
rows represent the BID pointers. In case of identical ASTs on all peers, each
peer knows all the other peers and the proper routing is done just in one step.
However, the growth of replication is linear. The GTH* is also able to use the so
called logarithmic replication scheme where the replicated data grows in a log-
arithmic way. In this case, each peer knows only few neighbor peers by keeping
complete AST paths only to its local buckets. With such scheme, the routing
is logarithmic in the worst case. The full explanation of the replication can be
found in [7]. In the following, we introduce a notation and operators, which will
help us define the insertion and search algorithms more precisely.
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Address Search Tree Notation

Definition 1. Suppose that LBID is the set of all possible BIDs and LNNID is
the set of all possible NNIDs. The set of all possible ASTs TAST of the data-set
F is formed by the following rules:

– LBID ⊂ TAST ; i.e., every BID pointer is a legal AST.
– LNNID ⊂ TAST ; i.e., every NNID pointer is a legal AST.
– Let 〈p1, p2〉 ∈ F × F . Let Tl ∈ TAST and Tr ∈ TAST . Then the triple

〈〈p1, p2〉, Tl, Tr〉 ∈ TAST .
– The set TAST contains nothing else.

Observe that every T ∈ TAST is a rooted binary tree, where leaf nodes are
elements of LBID or LNNID and the inner nodes are the pairs 〈p1, p2〉. Every
inner node contains two pointers: one to the left subtree (Tl) and one to the
right subtree (Tr). For example, given the metric objects p1, p2, p3, p4, p5, p6, the
BIDs b1, b2, b3, and the NNID n1, a possible address search tree T ∈ TAST

of three levels could be: 〈〈p1, p2〉, 〈〈p3, p4〉, b1, b2〉, 〈〈p5, p6〉, b3, n1〉〉, as Figure 1b
illustrates.

Definition 2. Let r(T ) be the function that returns the root node of the tree
T ∈ TAST . In particular, the node returned by r(T ) is a pair 〈p1, p2〉, a BID
pointer, or an NNID pointer.

Definition 3. We represent a path of a generic tree T ∈ TAST , called BPATH,
with a string of n binary elements {0, 1}: p = (b1, b2, . . . , bn). Given a BPATH
p, the function S(T, p) returns the subtree reached by p on the tree T , as in the
following:

S(T, ()) = T

S(〈〈p1, p2〉, Tl, Tr〉, (b1, . . . , bn)) =

{
S(Tl, (b2, . . . , bn)) if b1 = 0
S(Tr, (b2, . . . , bn)) if b1 = 1

Let p = (p1, . . . , pn) and s = (s1, . . . , sm) be two BPATHs, the concatenation
operator + is defined as p+s = (p1, p2, . . . , pn, s1, s2, . . . , sm). The concatenation
operator can be easily extended for sets of BPATHs. Let Q = {q1, q2, . . . , qn} be
the set of BPATHs, then p + Q = {p + q1, p + q2, . . . , p + qn}.

Pruning mechanism. In order to search in an AST T , we need an algorithm
able to execute a query in the tree. For this purpose we define the traversing
operator Ψ . In principle, the operator examines every inner node (i.e. nodes with
pairs of two pivots 〈p1, p2〉) and it decides which subtree to follow. Such pruning
is based on the well known generalized hyperplane principles from [8].
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Definition 4. Given an AST T , a metric object q, and a non negative real
number ρ, the traversing operator Ψ(T, q, ρ) returns a set of BPATHs as follows:

Ψ(lbid, q, ρ) = {()},
Ψ(lnnid, q, ρ) = {()},

Ψ(〈〈p1, p2〉, Tl, Tr〉, q, ρ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(0) + Ψ(Tl, q, ρ) if d(p1, q) − ρ ≤ d(p2, q) + ρ

(1) + Ψ(Tr, q, ρ) if d(p1, q) + ρ > d(p2, q) − ρ

(0) + Ψ(Tl, q, ρ)
∪

(1) + Ψ(Tr, q, ρ)
if both conditions qualify

The algorithm Ψ works as follows. If T is only composed of a leaf node n (the
first two cases of the definition), then Ψ(T, q, ρ) corresponds to a single empty
BPATH (). For the other cases, the algorithm recursively traverses T , on the basis
of the query range (q, ρ), as in the search algorithm of the GHT. If for the root
node 〈p1, p2〉 the condition d(p1, q) − ρ ≤ d(p2, q) + ρ holds, we concatenate all
the BPATHs of the Ψ(Tl, q, ρ) to the simple BPATH (0). Whenever d(p1, q)+ρ >
d(p2, q)−ρ, we concatenate all the BPATHs of the Ψ(Tr, q, ρ) to the BPATH (1).
Note, that the conditions can be met simultaneously. When the radius ρ = 0,
which corresponds either to the exact match query or to the process of insertion,
a single BPATH is returned.

3.3 Insert and Range Search Algorithms

Insertion of an object starts at the peer, which is asking for insertion, by travers-
ing its AST from the root to a leaf using the function Ψ with ρ = 0. If a BID
pointer is found, the inserted object is stored in this bucket. Otherwise, the
found NNID pointer is applied to forward the request to the proper peer where
the insertion continues recursively until an AST leaf with the BID pointer is
reached.

Algorithm 1
procedure Insert(x, p)

Sp = S(T, p);
{p1} = Ψ(Sp, x, 0);
n = r(S(Sp, p1));
if n ∈ LNNID then

send a request for Insert(x,p1) to peer with NNID n;
if n ∈ LBID then

insert x in local bucket with BID n;

Algorithm 1 formalizes this insertion procedure, where x is the inserted ob-
ject and p represents the path in the AST traversed so far (using the BPATH
notation), which is initially empty, i.e. p = (). If the search is forwarded to
another peer, the p parameter contains the BPATH already traversed by the
sending peer.
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Algorithm 2
procedure RangeSearch(q,ρ,p)

Sp = S(T, p);
P = Ψ(Sp, q, ρ);
for each pi ∈ P

n = r(S(Sp, pi));
if n ∈ LNNID then

send a request for RangeSearch(q,ρ,pi) to peer with NNID n;
if n ∈ LBID then

search (q, ρ) in local bucket with BID n;
end for each

By analogy to insertion, the range search also starts by traversing the local
AST of the querying peer. The AST is traversed by using the operator Ψ with the
query object q and the search radius ρ. As already explained, the function Ψ can
assign both the sub-trees as qualifying. For all qualifying paths having an NNID
pointer in their leaves, the query request is recursively forwarded (including its
known BPATHs) to the respective peers until a BID pointer occurs in every leaf.
The buckets (with the respective BIDs) are then searched for matching objects.

4 Searching for Nearest Neighbors

Whenever we want to search for similar objects using the range search, we must
specify the maximal distance of objects that qualify. However, it can be very
difficult to specify the radius without some knowledge about the data and the
used metric space. For example, the range ρ = 3 of the edit distance metric
represents less than four edit operations between the two strings, which has a
clear semantic meaning. However, a distance of two color-histogram vectors of
images is a real number, which cannot be so easily quantified. When a too small
query radius is specified, the result set can even be empty and a new search
with a larger radius is needed to get a result. On the other hand, queries with
too large query radii might be computationally expensive, and the response sets
might contain many not significant objects.

An alternative way to search for similar objects is to use the nearest neighbors
queries. Such queries guarantee the retrieval of k most relevant objects, that is
the set of k objects with the shortest distances to the query object q. Though the
problem of executing k nearest neighbors (kNN) queries is not new and many
algorithms have been proposed in the literature, see for example [9] for many
references and additional readings, the distributed kNN query processing have
not been systematically studied.

4.1 kNN Search in GHT*

In principle, there are two basic strategies how the kNN queries can be evaluated.
The first strategy starts with a very large query radius, covering all the data
in a given data-set, to identify a degree to which specific regions might contain
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searched neighbors. Such information is stored in a priority stack (queue) so that
the most promising regions are accessed first. As objects are found, the search
radius is reduced and the stack adjusted accordingly. Though this strategy never
accesses regions not intersecting the query region that is bound by the distance
to the k-th nearest neighbor of the query, the processing of regions is strictly
serial. On a single computer, the approach is optimum [9], but not convenient for
distributed environments aiming at exploiting parallelism. The second strategy
starts with the zero radius to locate the first region to explore and then extends
the radius to locate other candidate regions, if the result set is still not correct.
In this article, we adopt the second approach.

4.2 kNN Algorithm

In our algorithm, we first search for the bucket with a high probability of the
occurrence of the nearest neighbors. In particular, we access the bucket in which
the query object would be stored using the insert operation. In the accessed
bucket, we sort its objects according to their distances with respect to q. As-
sume that there are at least k objects in the bucket, so the first k objects, i.e.
the objects with the shortest distances to q, are the candidates for the result.
However, there may be other objects in different buckets that are closer to the
query than some of the candidates. In order to check it out, we issue a similarity
range search with the radius equal to the distance of the k-th candidate. In this
way, we get a set of objects of the cardinality always greater than or equal to
k. If we sort all the retrieved objects and retain the first k with the shortest
distances, we get the exact answer to the query.

If less than k objects are found in the first accessed bucket, other strategy
must be applied because we do not know the upper bound on the distance to the
k-th nearest neighbor. We again execute the range search operation, but we have
to estimate the radius. If we get enough objects from the range query (at least
k), we are done – the result is again the first k objects from the sorted result of
the range search. Otherwise, we have to expand the radius and try again (i.e.
iterate) until enough objects are received. There are two possible strategies how
to estimate the radius.

Optimistic strategy. The objective is to minimize the costs, i.e. the number of
accessed buckets and distance computations, by using a not very large radius,
at the risk that more iterations are needed if not enough objects are found. In
the first iteration we use the bounding radius of the candidates, i.e. the distance
to the last candidate, despite of the fact that we have less than k candidates.
The optimistic strategy hopes that there are enough objects in the other buckets
within this radius. Let x be the number of objects returned from the last range
query. If x ≥ k, we are done, otherwise, we expand the radius to ρ + ρk−x

k and
iterate again.

Pessimistic strategy. The estimated radius is chosen rather large so that the
probability of next iteration is minimum, risking excessive (though parallel)
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bucket accesses and distance computations. To estimate the radius, we use the
distance between pivots of the inner nodes, because the pivot selection algorithm
(described in [7]) chooses pivots as the most distant pair of objects available.
More specifically, the pessimistic strategy traverses the AST from the leaf with
the pointer to the bucket up to the tree root and applies the distance between
pivots as the range radius. Every iteration climbs one level up in the AST until
the search terminates or the root is encountered. If there are still not enough
retrieved objects, the maximum distance of the metric is used and all the objects
in the structure are evaluated.

Algorithm 3
procedure kNN(q,k,p)

Sp = S(T, p);
{p1} = Ψ(Sp, x, 0);
n = r(S(Sp, p1));
if n ∈ LNNID then

send a request for kNN(q,p1) to peer with NNID n;
if n ∈ LBID then

compute distances to all objects in local bucket with BID n;
A = sort object using the distances, smallest first;
do

ρ = EstimateRadius(); // Using some strategy
O = RangeSearch(q, ρ, ());
insert sort objects O into A using distances computed by the

range search;
repeat until |A| < k

end if

4.3 Implementation Issues

As an extension of the algorithms above, several optimization strategies have
been implemented. To avoid multiple accesses to the same buckets, the so called
BPATH sets are used during the range searches in the kNN iterations. In par-
ticular, if the distances to all objects in a bucket are evaluated during a range
search, this bucket is never accessed again in the following iterations. Naturally,
the first bucket (the one with candidate objects) is never searched twice.

If objects are sent to other peer during the query evaluation, the distances
computed so far are always present in the message. Therefore the peer, which
is sorting the result set, never repeats distance computations and only performs
a rather quick merge sort of the distances. Unless necessary, we send only the
object identities between peers and not the whole objects, which can be large.
Recall that a range search can return more than k objects. In this way, the peer
which initiated the query, only receives the matching objects and not all the
intermediate results.
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5 Performance Evaluation

In this section, we present results of performance experiments that assess differ-
ent aspects of our GHT* prototype implemented in Java. We have conducted
our experiments on two real-life data-sets. First, we have used a data-set of
45-dimensional vectors of color image features with the L2 (Euclidian) metric
distance function (VEC ). This data-set have a normal distribution of distances
and every object has the same size (45 numbers). The second data-set is formed
by sentences of the Czech national corpus with the edit distance function as the
metric (TXT ). The distribution of distances in this data-set is rather skewed –
most of the distances are within a very small range of values. Moreover, the size
of sentences varies significantly. There are sentences with only a few words, but
also quite long sentences with tenths of words.

For the experimental purposes, we have used 100 independent computers
(peers) connected by a high-speed network. Essentially, every peer provides some
computation capacity, which is used during the object insertion and the query
evaluation. We have used some of the peers to insert the data and the others
to execute queries. The number of peers storing the data was automatically
determined by the size of the data-set, because the number and capacity of
buckets on individual peers was constant.

Notice that our prototype uses the simplest bucket structure – a linked list of
objects – which needs to examine every object in a bucket in order to solve the
query. By applying a metric index on individual peers, the performance would
significantly improve.

5.1 Performance Characteristics

In our experiments, we have measured different performance related characteris-
tics of the query evaluation. In order to quantify the CPU costs, we have counted
the number of distance computations necessary to evaluate a nearest neighbor
query. The number is the sum of the computations incurred during the naviga-
tion (i.e. while searching in the AST) and the computations necessary to evaluate
the query in the accessed buckets. The total number of distance computations
corresponds to the number of distance computations that would be needed in
a centralized environment. The parallel cost is the maximal number of distance
computations evaluated on a peer or a set of peers accessed serially. As we have
already explained, the evaluation algorithm for a kNN query consists of sequen-
tial steps. At the beginning we have to find the first bucket and examine its
objects (see Section 4.2), then, we iterate using the range search with the esti-
mated radii. Naturally, the distance computations evaluated during these steps
must be considered serial.

We also measured the number of accessed buckets, which are of a limited
capacity. In our experiments, we have used a maximum of 2,000 objects per
bucket and maximally 5 buckets per a peer. The average bucket occupation was
about 50%. We have measured the total number of buckets accessed during a
query and the number of buckets accessed per a peer.
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Finally, we have measured the number of messages exchanged between peers.
The total number of messages can be seen as a representation of the network
load. However, most of the messages are sent in parallel, because one peer can
send a message to multiple peers. In specific situations, a peer must forward a
message to a more appropriate peer. The number of those forwardings is usually
called the hop count. In our experiments, we have measured the maximal hop
count to execute a query. The hop count represents the sequential part of the
message passing process, i.e. its parallel cost.

We do not use the execution time of the query evaluation as the relevant
measure, because there are many factors (such as the speed of peer processors,
the congestion of the network, the load of peers, etc.) that can directly influence
the execution time of a query.

For comparison reasons, we also provide the costs of a range search for every
experiment. The radius ρ is adjusted so that it represents the minimal bounding
radius of the set of objects returned by the corresponding kNN query.

Every value in the graphs represents the average obtained from execution of
50 queries with different query objects and fixed k. We only show results for the
pessimistic strategy, but with 1,000 objects per bucket on average, the strategy
was only applied for evaluating queries with k > 1, 000. In such situation, nearly
all the objects in the data-set had to be accessed to solve the query. Therefore,
the performance of the optimistic strategy was practically the same.

5.2 kNN Search Performance

In this set of experiments, we have analyzed the performance of the kNN search
with respect to different k on data-sets of 10,000 objects. Results are summarized
as graphs in Figure 2 for the VEC and Figure 3 for the TXT data-sets. Our
experiments show that the parallel costs of our kNN queries remain quite stable
for the increasing k while the total costs (note that graph values are divided by
10 and the x axis has a logarithmic scale) grow very quickly with the number
of neighbors k. Note, that for k values greater than 100 for VEC (and values
over 10 for TXT) almost all the objects had to be accessed and the distances to
the query objects computed. However, this is not a general observation and it
is strictly dependent on the distance distribution in the processed data. In the
figures, we also show the costs of the corresponding range search, that is the
range search with the radius equal to the distance of the k-th nearest neighbor.
Naturally, the performance is better, but the overhead incurred by the kNN
algorithm seems to be constant, not dependent on the value of k.

5.3 kNN Search Scalability

The effect of growing data-sets on the performance of queries (i.e. the scalability)
is usually the worst problem with the centralized metric indices. For example,
experiments with the D-Index [6] structure using the same TXT data-set have
shown that a kNN query takes around 4 seconds for the data-set size of 10,000
and about 40 seconds for the size of 100,000 objects (sentences) – the increase
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Fig. 2. Dependence of different costs on k for the VEC data-set
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Fig. 3. Dependence of different costs on k for the TXT data-set

of the search costs in a centralized structure is linear with respect to the size of
the data-set. Our experiments with the GHT* exhibit nearly constant parallel
costs even when the data-set grows. Contrary to the D-Index, we have always
achieved the response time around 2 seconds.

The leftmost graphs in Figures 4 and 5 confirm the scalability of the GHT*
considering the number of distance computations – the cost around 4,000 com-
putations remains stable even for the full data-set of 100,000 objects. The middle
graphs show the number of forwarded messages, which in fact represent the num-
ber of peers actually addressed. This number is increasing, because more peers
are used to store the data, therefore more peers have to be accessed in order to
solve the query. The hop count, shown in the last graph, is slowly rising with
the growing data-set. Compared to the range search, the values for the kNN are
higher, because there is always the overhead with locating the first bucket. The
observed increase of the number of hops seems to be logarithmic.
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Fig. 4. The scalability of GHT* while resizing the VEC data-set
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Fig. 5. The scalability of GHT* while resizing the TXT data-set

6 Conclusions

To the best of our knowledge, the problem of distributed index structures sup-
porting the execution of the nearest neighbors queries on metric data sets has
not been studied yet. The GHT* structure stores and retrieves data from do-
mains of arbitrary metric spaces and satisfies all the necessary conditions of the
scalable and distributed data structures. It is scalable in that it distributes the
structure over more and more independent peer computers. The parallel search
time for kNN queries becomes practically constant for arbitrary data volume,
and the hop count grows logarithmically. It has no hot spots – all clients and
servers use as precise addressing scheme as possible and they all incrementally
learn from misaddressing during insertion or search. Finally, node splits are per-
formed locally without sending multiple messages to many other peers.

Our future work will concentrate on strategies for updates (object deletion),
pre-splitting policies, and more sophisticated strategies for organizing buckets.
An interesting research challenge is to consider other metric space partitioning
schemes (not only the generalized hyperplane) and study their suitability for
implementation in distributed environments.
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Abstract. In this paper we propose a Peer-To-Peer (P2P) architecture using a tree
based indexing scheme which allows for efficient lookup and range query services
on documents in the network. We also present a basic load balancing technique
by assigning a new node that joins the network to a heavily loaded area to take on
some of load of its peers. Given a query, we need to search only a small number
of nodes to locate matching documents hence making the architecture scalable.
We also take into account the fact that nodes in a P2P environment need not have
the same capability. We implemented a simulator and performed experiments to
study to the performance of our proposed architecture. The results show that our
proposed architecture is scalable and highly efficient when handling range queries.

1 Introduction

Peer-to-Peer (P2P) systems [1, 2, 3, 4] have presented an alternative to existing web re-
source sharing. The simplicity and efficiency of the P2P concept has made it an attractive
choice for a platform for sharing data. Web sharing till recently has been mainly based
on the client-server model with a small number of nodes handling very concentrated
resources which require sophisticated techniques such as load balancing as well as large
network bandwidth.

Search and Resource discovery mechanisms in recent years have grown in importance
with the advent of various file sharing applications like Napster [2] and Gnutella [4].
As a result it has generated great interest in research as well as industrial community
[5, 6, 7, 8, 9, 10, 11, 12, 13]. Search in a P2P system can be broken down into three major
categories. In the centralized indexing architecture [2] a centralized server stores the
index (a unique identifier) of all the peers. This centralized server is also responsible
for handling all queries issued by the various peer nodes. Although implementation
is easy, scalability issues harm its cause. Concentrating all the indexing and location
information on a single node allows for a single point of failure and making it a potential
target for Denial of Service (DOS) attacks. Furthermore centralization violates the very
essence of P2P. On the other hand, in a decentralized indexing architecture as described
in [14, 3], search usually involves broadcasting or multicasting the query across the
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network. These systems too suffer from scalability and performance issues caused by
the flooding mechanism. A user is not guaranteed to retrieve queried data even though
it exists in the network. [14, 15, 16] give us a third kind of search in P2P systems which
is a distributed index that makes use of a hashing technique. Such a method guarantees
that data will be retrieved if it exists in the network. The number of messages required
to locate the data is usually in the scale of log(N ) as opposed to N in the completely
decentralized scheme where N is the number of nodes in the network. Although this
scheme alleviates the scalability problem faced in the previous two schemes, it struggles
when faced with a critical requirement of any retrieval system : a range query. A range
query is useful when finding resources with an approximate attribute value and we might
want to locate all resources with attribute values smaller or larger than a certain value.

We propose a P2P architecture that distributes the indexing information among a
subset of nodes of the P2P network. We distribute the index which is built up from a
group of nodes to resemble a tree structure. Each node in the tree maintains minimal
information about its sub-tree such as local information (IP address etc.) of its immediate
parent,children,siblings and neighbours.Their definitions are explained later in Section 3.
In addition a node also maintains the range information of all its children, i.e. highest
attribute value for each child. All this information can be easily obtained when a node
joins the index tree and when data is inserted into the network.

Since a node needs only to maintain very minimal information and the amount of
information is almost constant as opposed to those proposed by distributed hashing
techniques[14, 15, 16], which grow with the number of participant nodes in the network,
our proposed architecture proves to be more scalable.
This paper describes our contribution in terms of

– Capability Awareness: each peer node decides for itself the number of records and
number of children it can handle. This value need not be the same for all peer nodes
in the network.

– Fast Lookup of Information : given a keyword, the cost of the finding the peer node
hosting the record is proportional to log(N ) where N is the number of nodes in the
network. Refer Section 4

– Efficient Range Query : The performance of range queries in our proposed archi-
tecture is comparable to the costs incurred for information lookup in the order of
log(N ).

– Load Balancing : New peer nodes are assigned to areas where the load is heavier
and thus take some of the load off the heavily loaded nodes.

Section 2 presents some of the related work in the area. Section 3 describes our
model and related algorithms in some detail. Section 4 presents our results derived from
performance analysis experiments conducted on our system and finally we conclude with
a summary of our findings as well as possible future work on the proposed architecture
in Section 5.

2 Related Work

The first generation of P2P systems were mainly file sharing applications such as Napster,
Gnutella and Freenet. Napster was one of the earliest applications to take the concept of
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P2P technology to the people. Napster uses a number of centralized servers to maintain
the index of files being shared by all participating peers. A peer issuing a query will
send the query to an assigned server which searches through the database and returns
the search result back to the querying peer. The returned results are used by the querying
peer to establish contact with those peers sharing the necessary information.

Another technique is the distributed hash table (DHT) [14, 15, 16, 17] In this tech-
nique, documents are associated with a key, produced from mapping attributes of the
document such as file name through technique like consistent hashing. Each node in
the system is assigned a set of keys and is responsible for storing the keys. To locate a
document in the network, a node issues a lookup operation and the request is routed to
the node responsible for the key. The responsible node returns the record(s) found in the
storage to the querying node. DHT supports fast lookup and provides assurance that if a
document exists in the network, it will be found. However, most of the DHT techniques
failed to support range query due to the use of hashing techniques. In addition, most of
the systems assumes all the nodes to have equal capability which is not the case most of
the time.

The problem of efficient queries on a range of keys is described in [18] which comes
up with a solution based on CAN [15]. These newer P2P systems not only provide a
more deterministic structure and performance guarantees in terms of logical hops but
also take advantage of network proximity.

Some work has been done on storage in distributed systems in a manner allowing for
fast lookups. [19] introduces a distributed data structure called RP* which provides for
ordered and dynamic files on multicomputers and thus for more efficient processing of
range queries and of ordered traversals of files. This allows them to support fast lookup
and range queries. The authors mainly focus on an organization scale and assume the
availability of multicast.

3 System Architecture

As mentioned earlier the indexing scheme is based on a rooted tree structure as shown
in Figure 1. Each node in the tree is maintained by a peer in the network. However there
are exceptional cases where peers can host more than one node. Each node n in the tree
is connected to a parent node (if not the root), a sibling node (if any), a neigbour node
(if any) and a set of m children where m ≥ 0. The tree can be broken down into levels
as shown in Figure 1. Each node on a particular level is connected to the node on its left
and to the node on its right. If the nodes share the same immediate parent node, they are
known as siblings. This is the case for node 112 and 113. If the connected nodes do not
share the same immediate parent, they are known as neighbours. This is the case for 113
and 121. A node a is known to be the ancestor of a node n if there is a downward direct
path from a to n. 12 is the ancestor of 1212. Similarly a node d is the descendant of a
node n if there is a direct upward path from d to n. In the figure, 1211 is the descendant
of 1.

Each of these connections is used to route a message to the next level or towards the
destination when inserting or querying a document. Our routing mechanism is similar
to searching in search tree. In order to achieve this, each node in the tree is responsible
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Fig. 1. Tree Index Architecture

for a range of values. In addition, each node will be required to store the minimum and
maximum value of each of the sub-trees rooted at its children. This information can be
obtained when documents are being inserted into the network, since all the documents
to be inserted into the descendants of n will have to pass through node n.

The tree index structure is a dynamic structure where nodes can join or leave at any
point of time. The tree grows as peers join the network. Although a tree structure is
being used, operations such as insertion and deletion can originate from any node in the
network, rather than only from the root of the tree. This mechanism prevents a particular
node from overloading and avoids a single point of failure in the network. However,
being a P2P system, the peers are autonomous and very often unpredictable. A peer
can leave the network or even fail without giving any prior warning to its connected
peers. For instance, when a node leave the network, the descendants of the node will be
disconnected from the parent of the departing node. In order for the network to continue
efficient and correct operation some kind of a recovery mechanism needs to be in place
to fix the network.

3.1 Join

A peer intending to join the P2P network would need to connect with at least one of
the peers already in the network. We present two methods by which a peer can join the
network namely random join and preventive join.

Random Join. Assuming a peer p, which intends to join the network, contacts a node n
in the network, p will send a join request message, JOIN-REQ, to n. Three possibilities
may occur. If n does not have any children, it will add p as its child. If n has child nodes
but can still take on more, it will then assign p to its vacant child node slot. On the other
hand, if n is full and cannot support any more children, it sends n’s JOIN-REQ message
to one of its children c, and c continues the process until p is being assigned to a node.
After being assigned to a node, p establishes a connection with its siblings and direct
neighbours by querying its parent for their location information. This usually results in
splitting of set of records stored in the exisiting neighbor nodes. The splitting algorithm
is explained in detail in Section 3.3.

Preventive Join. In the preventive join scheme , after the peer p contacts n, it sends
a JOIN-REQ message to n. Instead of directly accepting p as its descendant, n first
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compares its load with that of its neighbouring peers. If any of the peers has a higher
load, n forwards the join request message sent by p to the highest load peer for further
processing. This is done so that the new node can hopefully take on some of the load
of its new neighbour thus balancing the load distribution to an extent. This is done for
a preset TTL or until n’s load is the highest among the neighbours. When n’s load is
higher, it accepts p as its descendant. The process is similar to random join except that n
checks the load of its children and forwards the JOIN-REQ message to a peer with the
highest load.

Figure 2 shows us an example of how a new node wishing to join the network under
the preventive join scheme gets inserted into the network. A new peer node, newP ,
establishes a connection with node 112 and sends a join request message. At this point
in time node 112 compares its load (40%) with its siblings, node 111 (50%) and node
113 (60%). Since node 113 has a heavier load than node 112, node 112 forwards the
join request message to node 113. Node 113 repeats the process, only this time node
113 has a neighbour, node 121 with a heavier load (70%). Node 113 now forwards the
join request message to node 121. Node 121 checks the load of its only sibling node 122
and find out it cannot forward the join request message any further. Node 121 still has
the capability to take on one more child node and the new peer node, newP is accepted
here as the new child, 1213.

3.2 Leave

The peers in the network can leave at any point of time. When a peer leaves, it can
leave by informing its ’connected’ peers, and arrange for an alternative peer to take over
its position and stored information. On the other hand, if a peer leaves without giving
any notification to the rest of the peers, the directly connected peers will have to figure
out themselves in order to mend the broken link. A peer that has left the network must
be fixed in order for the structure to continue working. This section looks at different
scenarios under which a node ’leaves’ the network and various approaches to handle a
peer’s departure.

Depart. A simple scenario is when a peer informs its direct connected peers before
departing. The departing peer has enough time to pass the necessary information to the
other peers. The departing peer transfers its responsibility for the node to either its parent
or one of its children. The successor inherits all the information currently hosted by the
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peer and creates a virtual node to handle the responsibility. This is done by sending a
leave message to its parent and children. Upon receiving the message, the parent and
its children return a message indicating their current load (i.e., how many nodes it is
responsible for) and the duration they have stayed in the network. We assume the longer
a peer stays in the network, the more reliable it is. Based on this information, the peer
will assign its current responsibility to the lower load and more reliable peer.

Failure. When a node fails, things get a little complicated. In this case, a node leaves the
network without informing any of other peers, leaving a broken link among the peers. The
broken link must be fixed to prevent complication of other operations such as searching
for documents or inserting documents into the network. There are two strategies a node
can employ to restablish a broken link, each with its own advantages and disadvantages.

The first strategy is to take proactive action. When a peer detects a parent failure it will
immediately try to recover the parent node. This is possible if either the communication
protocol is a connection oriented protocol or each node periodically sends ’heartbeats’
to its connected nodes. This proactive strategy fixes a connection immediately after
detecting failure hence ensuring that the network is always functioning properly and
very likely will prevent further complication in the process of the network recovery
caused by multiple node failure. The drawback of this strategy is that it might cause
unnecessary effort in cases where the failure is temporary. For instance, if a peer is down
for a very short period of time due to some network failure or power surge, there is a
very high possibility the peer will reconnect with its peers when it comes back alive.

On the other hand, a peer can choose to be lazy, i.e. to fix the link only when
required. This strategy solves the problem of fixing a link in the case of a temporary
failure described earlier. However, fixing the connection only when required might result
in increased response times when carrying out tasks such as node-join, query or insertion.
Furthermore, multiple node failure in the vicinity complicates the situation a great deal.

When a peer detects a broken link it tries to establish a functioning direct ancestor. In
Figure 3, node 121 suddenly fails without informing any of its connected peers. Suppose
at some point in time node 1211 detects this failure when it tries to access its parent.

1

11 12

111 112 113 121 122

1211 1212

Level 0

Level 2

Level 3

Root

Level 1

1121

X

Fig. 3. Node Failure
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Since the parent has failed, there is no point in asking the siblings for information of
the failed node. The best bet is to ask the nearest neighbour to find an ancestor which
is either the neighbour or a sibling of an ancestor of the failed parent node. In this case,
node 1211 contacts node 1121 which forwards the request all the way up to node 11
which is the sibling of node 12, the parent of the failed node and the grandparent of node
1211. Node 12 has some information about the range information of its children and this
can be used to recreate the failed node thus fixing the broken links.

On the other hand if a node with no children fails, its sibling or parent tries to fix
the broken link by simply taking over the range the failed node was responsible for. In
Figure 4, when node 1211 fails, if the parent node 121 discovers this failure it can simply
use the information is has about the range of node 1211 and take over responsibility.
But if a sibling, node 1212 discovers the broken link it contacts its parent, node 121 and
obtains the range information of the failed node and takes over responsibililty.

3.3 Insertion

When a peer decides to share a document, it will advertise the attributes of the document
(filename etc) in the network. In this discussion, we refer the act of advertising the
attribute of the document as insertion. Insertion is the process of determining where the
record will be hosted. To insert a document into the network, a peer will create a message
INSERT-REQ with a record describing the document in the following format

< attribute,document id,document source >

where attribute is the searchable feature of the document, document id is the identifier
to be used when retrieving the document and document source is the location where
the document is being stored (IP address,URL etc).

The insertion process can be broken down into two steps. The first is to determine
the insertion start point. Insertion start point is the node where as the name suggests an
insertion starts. The insertion point will be the root of the insertion tree. The second step
is the actual document record insertion procedure.

The first step of the insertion begins with the peer sending the INSERT-REQ message
to itself. When the INSERT-REQ message is received , a node checks the attribute to
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see if it falls in its sub-tree’s range. This process is rather straightforward. If the attribute
does not fall within the range or the range is undefined (i.e. the node and its descendants
are not hosting any document record), the node forwards the INSERT-REQ message to
its parent. On the other hand, if the attribute falls within the range or the node does not
have a parent (i.e. the node is the root of the tree), the node will be the insertion start
point.

The second step in the insertion process involves the placement of the document
record. The process starts at the insertion start point determined in the previous step.
One of the descendants of the insert start point will be chosen to host the record. The
decision process is as follows. At this stage we know that the attribute mentioned falls
in the range of the sub-tree. When examined against the range values of the node, two
possibilities arise: the range falls within the node’s range or it falls within the range of
sub-trees rooted at one of the children.

In the first scenario, the node stores the document record and hence is responsible
for the record. In the second scenario, the node checks to see if the record falls in the
range of one of its children and forwards the INSERT-REQ message to the child which
is responsible for the record for further processing until a node is found where the record
can be inserted. Once the record is stored, the node sends an INSERT-ACK message to
the machine where the document is stored, as an acknowledgment of the completion of
the insertion process.

After inserting the record at the chosen node, the node checks its load against its
storage capacity. If it is overloaded, it splits into half and passes the upper half (higher
value) to either its neighbour on its immediate right or one of its children. The splitting
algorithm is shown in Figure 5

3.4 Deletion

When a peer decides to unshare or remove a document from its storage, it will have to
inform the node that hosts the record of the document. If the node has the INSERT-ACK
message, it can simply send a DELETE-REQ message together with the document record
to the node responsible for hosting the record. If the INSERT-ACK is not implemented,
the process of deleting a document will be very similar to the process of inserting
document. It has the two steps which is analogous to the insertion process i.e. determine
deletion start point and removing the document record.

The first step in the deleting process is exactly the same as the insertion process.
A node that receives a DELETE-REQ will check if the attribute falls within its range.
If not, it will forward the request to its parent. The process continues until a node that
responsible for the attribute is found. When this root node for the sub-tree is found, the
next step will be to determine the actual node that will host the record. Starting from
the sub-tree’s root, the node checks if it hosts the record. If it does host the record, it
will remove the record from its database and return a DELETE-ACK message to the
initiating node and the delete process will end here. If it doesn’t, the node will forward
the DELETE-REQ to the child for which the attribute is within range and when this
child is found, the record is deleted.

.
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Algorithm Split
Input: PeerNode peer
3. if(peer.right.parent = peer.parent)
4. Split peer’s stored records into half
5. if(peer.right.range=null OR peer.children =0)
6. Transfer higher half to peer.right
7. Update peer.parent range information
8. else
9. Transfer higher half to peer.firstChild
10. else /*different parent*/
11. splitNode = FindSplitNode(peer)
12. if(!splitNode)
13. Split peer’s stored records into half
14. Transfer higher half to splitNode
15. Propagate range information change

till splitNode.parent
16. else
17. No Splitting Possible

Fig. 5. Split Algorithm

3.5 Search Query

Two types of search are allowed in the system: exact-match and selective range. The
search mechanisms are discussed below.

Exact Match. Exact-Match search starts with node creating a query message,SEARCH-
EXACT, together with a record

<search location, keyword>

where search location is the location information (e.g. IP address) for the node that
issues the search and keyword is the search attribute. We first determine the starting
point for the search. It starts with a node sending the SEARCH-EXACT message to
itself. When a node receives the message, it checks the search keyword against its sub-
tree range. For keywords that fall outside the range, the SEARCH-EXACT message
will be routed to the node’s parent. If the node is the root of the whole tree or the
keyword falls within the node’s sub-tree range, it compares the search keyword with
its range values.The possibilities are: keyword falls outside the sub-tree range, keyword
falls within the range, keyword is greater than the range. For the first case, the node will
send an empty result to the querying node indicating that the keyword being sought for
does not match any value. For the second case, if the records exist, they should be within
the range. The node checks its records and return the result to the querying node. The
searching process ends there. For the last case, the keyword being search is within the
node’s sub-tree range but greater than its range. The node searches the index containing
its children’s sub-tree range and forwards the SEARCH-EXACT message to the child
node that has a sub-tree range that matches the keyword to continue the process.
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Algorithm FindSplitNode
Input: PeerNode peer
Output: PeerNode splitNode
1. if(peer.parent = null AND
2. peer.right = null AND
3. peer.right.parent!=peer.parent)
4.. FindSplitNode(peer.parent)
5. else
6. if(!peer.right)
7. /* cant find a peer node to split */
8. return null
9. else
10. return peer.right

Fig. 6. FindSplitNode Algorithm

Range. Range search creates SEARCH-RANGE message together with the record
<search location, operator, keyword1,[keyword2]>. Search location is as described in
the exact-match search. Operator is the search operator and for this work we will only
consider two of them: "start with" and "between". The keyword1 and keyword2 are the
search keyword. Depending on the operator used, keyword2 is optional.

After creating SEARCH-RANGE message, the peer first sends the query message
to itself. Similar to the first step of exact-match search, the SEARCH-RANGE message
is forwarded to a node that has a sub-tree range that contains the keywords. However,
the difference is when the operator value is between, both the keyword1 and keyword2
must falls within the sub-tree range.

Instead of only one node returning results to the querying peer, a range search might
have more than one node returning results to the querying peer because the query range
might span over more than one node. Apart from this, the selective range search is very
similar to exact-match query.

4 Performance Analysis

We conducted detailed simulation to study the proposed architecture and the effect of
different joining mechanisms discussed in previous section. In this section we discuss
the experiment setting and the finding of the experiments. Firstly, we show the load of
the root node, in terms of messages processed, as compared to the number of messages
in the network. Secondly we show the cost of joining the network for the two different
joining mechanisms. Thirdly, we present the effect of the joining mechanisms on the
number of records stored in nodes. Finally, we present performance of the proposed
architecture for exact-match and range query.
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4.1 Performance Measure

We use path length as a measure of performance. Path length (PL) is defined as the
number of hops a node takes to answer its query. Throughout the experimental study we
recorded

– Maximum path length (Max) : the maximum value of the number of hops an opera-
tion takes in the entire experiment. This gives us an idea of the worst case scenario.

– Average path length (Ave) : the total number of hops for the entire experiment over
the total number of operations performed.

4.2 Experimental Setting

We vary the number of nodes in the network, N , each being set a maximum capacity
of 20. For each of these settings, we insert 10 x N number of records where N = 4000,
8000, 12000, 16000 and 20000. The experiment is conducted 10 times and the result
is averaged to get the final result. For every new node that joins the network, 10 new
records are inserted and 50 new search queries are performed.

Figure 7 shows the number of messages in the network for every simulation steps. The
number of messages processed by root node of the tree architecture is significantly less
than the amount of messages in the network. The messages processed by an arbitrary

Fig. 7. Messages in network Fig. 8. PL for joining network

Fig. 9. PL for exact-match query Fig. 10. PL for range query
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Fig. 11. Maximum records stored

node is only about 15% of those by root node. Despite of this, the load at the root
node are constant even when the messages in the network increases, this suggest the
scalability of the architecture. In addition, the high load at the root node does not represent
possibly single point of failure as the processed of messages could be easily taken over
by immediate children node of the root.

4.3 Joining Mechanism

We study the effect of different joining mechanisms discussed in Section 3.1 on the
maximum record a node has to store and the results are presented in Figure 11. We infer
that the preventive join mechanism, refer Section 3.1, evenly distributes the records
across the peer nodes in the network.

In the random join scheme when a new peer node contacts one of the existing nodes
in the network it has already been decided that this new node will become a descendant
of the contacted node. This scheme does not take into account the load factor of its new
parent and neighbors. On the other hand in the preventive join scheme the new peer
node is led to the area of nodes which is more heavily loaded and helps to an extent in
alleviating the load of its new neighbors or siblings.

In addition, we study the effect of these joining mechanisms on the path length for
joining process. The results are presented in Figure 12. We can see that the path length
for preventive join mechanism is greater than the random join mechanism due to the
extra work required for load balancing.

Next, we study the performance of exact query and range query operations in the pro-
posed architecture. For each set of experiment, we record the average path length and the
maximum path length needed to resolve a query. We use the same set of records as those
inserted in exact query experiment to study the performance of a range query. However,
when searching, we randomly choose two keys in the set of records and devise range
queries for values that fall within the range. The results are plotted in Figure 9 and 10.

While the number of node in the network increases, the increase of the path length
for searching processes is very minimal. This suggest the scalability of the architecture.
Furthermore, the architecture is able to support range query with minimal increase in
the maximum path length as compared to exact matched query. We also noticed that the
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Fig. 12. PL for joining network

path length for searching with the preventive join mechanism is greater than with random
join mechanism. This could be the effect of more balanced architecture in random join
mechanism. The preventive join mechanism tend to increase the height of the tree and
causes the maximum path length to increase. However, on the average path length, the
differences are insignificant.

5 Conclusion and Future Work

We proposed an architecture for a P2P network that is able to scale up to a large number
of nodes. Despite of being a tree architecture, we have shown in the experiment that the
number of messages processed by root node is significantly lesser than total number of
messages in the network. We also show that the performance of joining network as well
as searching process is proportional to log(N). We have also introduced a preventive
joining mechanism where nodes joining the network are assigned to heavily loaded areas
in the network to alleviate some of the load in the nodes there. In addition, our proposed
architecture allows peers to define their capability and decide what is the maximum
number of records it can store. This is an important achievement as peers in a P2P
network are not required to have the same capability.

We are currently working on node replication issues in order to make the architecture
more resilient and caching techniques to further enhance the search performance. In
addition, we are also devising more efficient ways to further reduce messages handled
by top level nodes by utilizing sibling/neighboring link.
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Abstract. We describe the design of PIRS, a peer-to-peer information
retrieval system. Unlike some other proposed approaches, PIRS does
not require the centralization of data onto specially designated peers. It
is therefore applicable to a larger environment. We explain our design
decisions, analyzing its benefits and potential shortcomings. We then
show that PIRS significantly improves over search performance found in
todays P2P file sharing systems.

1 Introduction

Many of today’s peer-to-peer (P2P) file sharing systems were initially conceived
as successors to Napster, which was used primarily for the exchange of music. As
such, they are designed to allow simple annotation of files, including the artist
and song title.

As long as a file’s metadata are well-known, searches are simple. A query
matches a file if its terms are substrings of the metadata’s terms. For example,
consider two instances of the same song, annotated by the terms “Smashing
Pumpkins 1979,” and “Pumpkins Greatest Hit 1979,” respectively. A query for
a query “Smashing Pumpkins Greatest Hits” (which likely refers to the song)
will not return either instance.

This problem illustrates a limitation of P2P search: It requires the user to
know the exact metadata associated with an instance of the file to perform
a successful search. This is problematic for the naive user, who is unaware of
annotation conventions, or for a user not looking for a particular song, but for a
particular type of music (e.g., “songs from bands from Chicago”). This problem
is exacerbated by the fact that many song files are automatically annotated
using Web databases, such as freedb.org. Such annotation results in the identical
annotation of all copies of a particular song, and gives users disincentives to make
their own annotations.

The goal of this paper is to describe how information retrieval (IR) can help
alleviate this problem in a P2P environment. In our analysis, we spend some time
describing the characteristics of P2P systems, and the degree to which existing
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P2P systems possess them in Section 2. In Section 3, we informally describe the
P2P file sharing model. We describe the design of PIRS, our P2P IR System,
in Section 4, and present some experimental results in Section 5. In Section 6,
we discuss PIRS’s compatibility with other work, as well as the future of P2P
IR. We make concluding remarks and discuss future work Section 7.

2 Limits of Current Work in P2P Information Retrieval

2.1 Characteristics of P2P Systems

As described in [1], P2P systems are characterized by low maintenance over-
head, improved scalability and reliability, synergistic performance, increased au-
tonomy, privacy, and dynamism. P2P systems are inexpensive to maintain and
have good scalability because they use the full resources of all participants, who
function as both clients and servers. They are more reliable, because the fail-
ure of any one peer does not disable the entire system. They offer synergistic
performance because peers can utilize resources (e.g., data, CPU cycles, disk
space) that are underutilized by others. They are dynamic, allowing peers to
autonomously join and leave the system, and thereby changing the types of
resources offered. They offer privacy because P2P networks lack central authen-
tication servers. P2P systems are therefore ideal in environments populated by
many autonomous users with dynamic needs and surplus resources.

These characteristics distinguish P2P systems from previous technologies,
such as distributed computing, and ad-hoc communication. Distributed com-
puting refers to computing on a platform where resources are located on many
physically distinct locales. Unlike P2P systems, these resources may be highly in-
tegrated and interdependent. Ad-hoc communication refers to a communication
platform in which a client can automatically join an existing network. Ad-hoc
networking deals with the lower-level communication infrastructure on which
P2P systems can be built. P2P computing is therefore a unique paradigm that
creates new possibilities for information technologies.

2.2 The Limits of Information Retrieval Using Web Search
Engines

The Internet offers a medium by which everyone can easily gather, and share
information. Today, the dominant paradigm for sharing information is via the
Web. Organizations set up Web servers that host Web sites where they can pub-
lish information. Individuals also have a chance to publish information through
personal Web pages or blog pages. To access this information, users simply type
in the appropriate URL into a Web browser.

There is a gap, however, in bringing together information publishers and
consumers–how exactly does one find the appropriate URL that points to desired
information? Today, this gap is bridged by Web search engines, such as Google.
A consumer enters some relevant terms into Google, which returns heuristically-
defined best matches.
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The problem with relying on Google to find published data is that publishers
must wait for Google to crawl their Web pages before they appear in any search
results. Because crawling occurs only periodically, material published today will
not be found for some time. Another problem is that Google caches indexed
content. Once this happens, publishers lose control over the dissemination of
their material [2]. Furthermore, the results returned by search engines can be
suspect. For example, rankings can be influenced by commercial interests [3].
Finally, centralizing query services limits the scalability and reliability of the
search engine: A single server can only index so much content (Google claims to
index slightly more than 4 billion Web pages, which is considered only a small
fraction of those available), and also is a single point of failure. A more relevant
example is Napster, whose centralized architecture made it easy prey for legal
attacks.

Recent P2P file sharing systems that focus on file transfer, such as BitTorrent
[4] suffer from the same problems as Web search engines. BitTorrent is different
from Gnutella in that the former focuses on download performance, whereas
the latter focuses on search. BitTorrent allows a client to download a single
file from multiple sources simultaneously, thereby improving performance, and
distributing load. However, it relies on Web search engines to provide search
capabilities for shared content, and therefore has all the problems discussed
above.

P2P systems solve many of these problems. Because queries are sent directly
to data sources, results are up-to-date and reflect the currently available data.
Upon receipt of results, the peer can use custom algorithms to rank them. This
eases their perusal as users have more trust in their rankings. Finally, there is
no single point of failure with P2P systems. A query likely returns results even
with the failures of multiple nodes [5].

2.3 Current Peer-to-Peer Information Retrieval Systems and
Their Limits

Work on P2P information systems has focused on either bandwidth efficiency, or
the development of unifying data models. The PeerSearch system [6] is built on
top of the CAN routing infrastructure [7]. CAN places content in a P2P network
based on its hash value. PeerSearch proposes to create a distributed index, which
is partitioned and similarly placed on a network. This deterministic placement
of content improves bandwidth efficiency by constraining the way a query is
routed. (The original version of Gnutella, in contrast, floods queries over the
network [8].) In [9], the authors take a similar approach. They assume a hybrid
networking architecture where some the peers that are deemed more reliable and
capable act as servers. These servers, besides routing queries, also store metadata
statistics, such as term frequencies, that are used by traditional IR algorithms.

Other systems, such as Edutella [10] and PeerDB [11] propose data models
that standardize the way data and services are published and queried.

While these systems have much potential, they are limited due to the con-
straints that they put on the infrastructure and applications. The PeerSearch
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system works best in an environment where peers are reliably connected to the
Internet. This is necessary because shared content is centralized in certain peers
based on their hash values. The loss of a peer results in the loss of all its associ-
ated content or the transfer of massive quantities of data. Furthermore, it takes
control of data placement out of the users’ hands. These characteristics violate
the principles of P2P systems that are described in Section 2.1. A solution to this
problem is to replicate content by applying multiple hash functions on content.
This is problematic as well, because it increases both the amount of data every
peer must maintain and network traffic as well. Notably, no work we know of has
been done on P2P information retrieval in highly dynamic environments where
peers frequently join and leave the network.

Edutella and PeerDB focus more on standards than on information retrieval.
Standardization, however, tends to raise the bar for entry into a network because
it forces users to do more work to publish content. This has the effect of limiting
the amount of data that are published, thereby reducing the network’s overall
usefulness [12].

Note that it is not our goal to be purists in P2P system design. The popularity
of Napster (in terms of market impact and user satisfaction) demonstrates that,
under certain conditions, there is no need. At the same time, pure P2P systems
were shown to have scalability problems [13], which can be alleviated by the
use of a hybrid architecture [14]. However, the fact that a system works without
being purely P2P does not mean that it might not work better if it were so.

3 Model

In a typical file sharing model, each peer (which we may refer to as a client
or a server, depending on the context) maintains a set of shared files (or data
objects). Each file is annotated with a set of metadata terms, contained in a
descriptor. The particular terms contained in a descriptor of an instance of a file
is user-tunable.

Users create queries to find files in the P2P system. A query is a metadata
set that a user thinks best describe a file. These queries are routed to reachable
peers. (Queries generally do not reach all peers due to network conditions or
details of the routing protocol.) Returned are pointers to instances of files that
match the query, and the file’s metadata set. The matching criterion is for all
the query terms to be substrings of some term of the file’s metadata set.

Users study the returned metadata sets to decide on the file to download.
Once the user makes her selection, she downloads the file by selecting its asso-
ciated file pointer. The client follows the pointer, downloads the file, and then
becomes a server for an instance of that file.

Note that although our discussion uses music file sharing as an application,
it also applies to other applications. For example, an HTML document is also a
file that can analogously be annotated with metadata in the form of META tags.
The terms in the META tags can be tuned independent of the “content” of the
HTML document.
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4 The Design of PIRS

4.1 Goals

Our goal is to design a P2P IR system that focuses on client behavior and is fully
distributed. The system must make little or no assumptions about the underly-
ing communication infrastructure and the behavior of servers (i.e., other peers).
For example, CAN routing and PeerSearch (mentioned above in Section 2) tac-
itly assumes that the network is stable and servers are reliable. Consequently,
although these systems have potentially excellent performance, violating either
of these assumptions results in the loss of either queries or data. In this light,
these systems tend to fall somewhat between the categories of distributed and
P2P systems.

A system that does not make assumptions about the communication infras-
tructure and behavior of peers avoids these problems. The obvious questions to
ask therefore are:

1. How well would such a P2P IR system work? For example, IR requires global
statistics about the available data for effective ranking. In a highly dynamic
environment, such statistics are hard to yield. Furthermore, even if such data
were available, would it be possible to implement IR ranking functions in a
P2P application? The question here is about performance in terms of query
result quality as well as computational complexity.

2. Could such a system adapt to changes in system conditions? Making no as-
sumptions in designing a P2P system may be too conservative an approach.
In some cases, the network and peers are capable and reliable. Can the P2P
system take advantage of this condition, if available? Gnutella’s Ultrapeer
architecture demonstrates adaptability; it conserves bandwidth given a sta-
ble environment, but also works (albeit less efficiently) in an unstable one
[14].

Our goal is to answer these two questions. To do this, we describe the design
of PIRS. In doing this, we highlight the complexities of applying IR techniques
to a P2P environment.

4.2 Overview

PIRS is designed to combine the search capabilities of information retrieval sys-
tems with the dynamic network management of P2P systems. It works by man-
aging metadata in such a way as to gradually increase the variety of queries that
can be answered for a given file. This is done by adapting the annotation of
a particular file to match query patterns. PIRS accomplishes its goals in three
ways:

1. Metadata collection (Section 4.3) - Collect as much metadata as possible
for a shared file, using various means. Increasing the amount of metadata
increases the likelihood that a query will find matches. For simplicity, the
size of the metadata set is generally limited in size, thus a decision must be
made as to which metadata to maintain.
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2. Metadata distribution (Section 4.4) - Heuristically replicate metadata from
other peers when downloading a file. By sharing metadata from multiple
peers, the variety of queries that can be matched for a given file increases.
Again, the client must decide on a limited set of metadata to maintain.

3. Metadata use (Section 4.5) - Utilize IR techniques to rank results, disam-
biguating them, and thereby improving the likelihood of a correct download.

The processes of metadata collection, distribution, and use work together
to improve the search capabilities of PIRS. Ostensibly, they can work indepen-
dently to improve search, but with diminished benefits. For example, IR ranking
functions alone can be incorporated into Gnutella, without PIRS’s metadata
distribution techniques.

By design, PIRS is simple to incorporate into many existing P2P protocols.
This is a consequence of its functionality being concentrated on client behav-
ior, and its independence from networking infrastructure. Many existing P2P
protocols focus on aspects of query routing, which is independent of PIRS’s
functionality. Consequently, PIRS can be built on top of many of today’s pop-
ular P2P file sharing applications, such as Gnutella and FastTrack. We discuss
this in more detail in Section 6.

PIRS Versus Other P2P IR Systems. The major difference between PIRS
and other P2P IR systems is that PIRS treats metadata as a dynamic resource
that should be managed collectively by all peers. Effective management of meta-
data improves query result quality. The inspiration of this work stems from the
notion that, from a client’s perspective, the P2P network is a repository of files,
each of which is described collectively by a body of metadata. The better a file’s
body of metadata describes the file, the easier the file should be to find.

Current P2P IR systems do not have this perspective. They treat each down-
load as an individual transaction, without regard to how it (the download) affects
the file’s body of metadata. The download of a file generally also results in the
replication of that file’s metadata from a particular server. The downloading
client becomes an additional server for the file, but with marginal benefit, be-
cause the clients it serves are exactly those which the original server serves. The
additional server’s role in the network is largely redundant.

4.3 Metadata Collection

Metadata collection is the process by which a file is annotated with identifying
terms. We now describe how metadata collection is typically done in commercial
P2P systems. We also describe a unit of metadata that PIRS exploits for good
performance.

Metadata terms are directly used for query matching. It is therefore impor-
tant to build into PIRS effective means of annotating files. One of these means
includes creating an easy to use user interface, which encourages users to add
metadata. Other means include automatic annotation via metadata foraging and
the use of intrinsic file characteristics.
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Recent versions of P2P file sharing systems offer templates that help a user
annotate certain types of files, such as audio files, using special application-
specific fields [15]. These templates structure metadata, potentially increasing
the query matching possibilities.

Much metadata are also automatically foraged from Internet sources. For
example, when wav files are ripped from commercial compact disks, the rip-
ping software automatically collects ID3 metadata (e.g., title, artist) [16] for
it from Web sites such as freedb.org. Other metadata are intrinsic to the file.
Such metadata include the size of the file, its filename, and the last time it was
accessed. Making these metadata available for querying requires some simple
programming.

Finally, some systems automatically derive useful metadata from the intrinsic
characteristics of the file. BitTorrent, for example, generates a unique hash key
(e.g., an SHA-1 hash [17]) for each file, which can simplify its search and be a
means of validating the file’s contents [4]. A hash key can also be used to group
files that are returned by queries.

PIRS uses a file’s hash key for validating and grouping files. Such use of
the hash key has not been universally adopted. LimeWire’s Gnutella groups by
filename, file type, and file size [18]. BearShare and eDonkey only use hash keys
to authenticate files.

One problem with requiring all files to be annotated with a hash key is its
computational cost. This problem has been acknowledged by BearShare, which
claims that computing keys in a background process takes only 25% of a CPU’s
cycles [19]. Hash keys can also be computed while a file is being downloaded,
extracted (if it is compressed), or ripped. Piggybacking these processes amortizes
the cost of computing the hash key.

Maintaining a hash key for files also does not hurt PIRS’s compatibility with
existing P2P file sharing systems. It would be treated as another generic unit of
metadata by a peer that did not realize its significance.

4.4 Metadata Distribution

Metadata distribution is the process by which peers exchange metadata with
each other in order to describe a file. In this process, each peer does just a
little work to better collectively describe shared data. This process complements
metadata collection in building an effective body of metadata for each shared
file.

Metadata distribution is crucial for two reasons. First, if metadata are not
distributed among multiple nodes, then the system may become vulnerable. If
all metadata were concentrated on a single node (e.g., as with Napster), the
system becomes unusable if that node becomes unreachable. This vulnerability
violates a basic principle of P2P systems.

Second, data that are not distributed properly could leave correlations in term
occurrences, which limit the degree of query matching. For example, assume
there are two metadata ripping systems for song files: one extracts the album
name (denoted t1) and the song’s track number (t2), and the other extracts the
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album’s label (t3) and year (t4). If files were only annotated using these two
rippers, then a query, {t1, t3} would not return any results due to the matching
criterion.

PIRS distributes metadata in a way that avoids this problem. During a query,
it groups all metadata for each unique file in the results. When a user selects a
file, metadata are heuristically replicated from the file’s group onto the client.
Grouping of unique files is straightforward, as each result is assumed to contain
the file’s hash key. The heuristics we consider for metadata replication include:

– Server terms (server) - The client selects the metadata that exist on the
single server from which it downloads. This is the solution that is commonly
used in today’s P2P file sharing systems. It is notable for its simplicity.

– Most frequent terms in the group (mfreq) - The client selects the terms
that occur most frequently in the group. The justification for this approach
stems from the assumption that, because these terms appear so much, they
are strongly associated with the file, and therefore most likely to occur in
queries.

– Least frequent terms (lfreq) - The client selects the terms that occur least
frequently in the group. The usefulness of this approach is that these terms
help distinguish this file from others. It also balances out the term distribu-
tion.

– Random terms (rand) - The client randomly selects terms from the group,
maximizing the number of term combinations.

– Random terms based on freq (wrand) - The client randomly selects terms
from the group weighting more frequently occurring terms proportionately
higher. Like rand, this technique also increases the number of term combi-
nations, but gives preference to more commonly occurring terms.

In the last four techniques, mfreq, lfreq, rand, and wrand, the client selects
metadata terms until it reaches a system defined limit.

These metadata distribution techniques are an improvement over the current
technique of replicating metadata from a single server. They increase the variety
and sizes of metadata sets, and thereby should improve their ability to accurately
describe a file. The effects they have on the states of bodies of metadata vary,
however, and a goal of the PIRS project is to examine their effects of query
results quality.

4.5 Metadata Use

IR style ranking in P2P systems is difficult, due to certain characteristics of
P2P systems. For example queries are short and peers are unreliable. PIRS acts
a testbed for both traditional and P2P-specific ranking functions. Specifically,
we use PIRS to determine the dependence of ranking functions on metadata
distribution techniques.

We consider five ranking functions. Some of these techniques are classical IR
techniques, and some are unique to P2P file sharing:
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– Group size (gsize) - The number of results in a group. A large GS indicates
that either a particular file has large support for satisfying a query, or that
the file is generally popular, and is therefore something desirable anyway.

– Term frequency (tf) - Counting the number of times query terms appear in a
file’s metadata. Terms that occur frequently in metadata sets likely represent
the contents of the file.

– Precision (prec) - Dividing TF by the total number of terms in the group.
Precision adjusts for problems with TF caused by large metadata sets.

– Cosine similarity (cos) - Cosine similarity maps group descriptors and the
query to vectors. It ranks highest the groups with the descriptor vectors that
have the highest cosine similarity to the query vector.

We implemented other ranking functions, such as term frequency with in-
verse document frequency (tf/idf from [20]). Tf/idf, however, requires some
modification, because global information on the number of documents in which
each term appears, required by tf/idf, does not exist in P2P systems. We in-
stead approximate document frequency by the number of query results in which
a term appears. Since tf/idf is another variation of vector space model ranking,
of which cos is a representative, and its performance is not much different, we
do not further discuss it.

4.6 Implementation Issues

Due to the distributed nature of a P2P system, query results arrive at clients
asynchronously, over a period of time. The client must be able to display these
results and update their rankings in real-time.

PIRS groups each of the N results in O(log N) time using the hash key.
It also updates rankings for all results within O(N2) time, depending on the
ranking function. While this complexity is a current upper bound, it is within the
O(N2 log (N)KM) complexity of grouping of Limewire’s Gnutella [18], where K
and M are grouping similarity metrics. More details about the implementation
of grouping and ranking in PIRS are posted on the authors’ Web sites.

5 Experimental Results

We now demonstrate the effect that metadata distribution and ranking have
on query result quality via simulation. We measure performance by the number
successful queries (i.e., those that lead to the download of the desired data
object) that the clients perform. We do not consider traditional IR metrics, such
as precision and recall. Precision measures the percentage of correct results to a
query, and is irrelevant because, in our model, the user requests a specific data
object, and any replica of the desired data object will satisfy her. For the same
reason, recall, the percentage of possible results returned, is also irrelevant in
our model.
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5.1 The Simulator

The design of our simulator is based on observations and analyses of P2P file
sharing systems. In the event that relevant design parameters are unavailable,
we borrow from work on done on Web information systems and IR.

The major objects in our simulator are terms, data objects, peers, and queries.
The universal set of terms T that can describe a data object is finite, and each
term is assigned a relative access probability based on the accepted Zipf distribu-
tion [21]. A random number of terms from T are assigned to each data object’s
(Fi) universal term subset (Ti) based on the initial Zipf distribution. The terms
of each data object’s universal term subset are then reassigned probabilities ac-
cording to a Zipf distribution to diversify term usage, as described in [22]. For
example, a term that is rarely associated with one data object need not be so
for another. We call the set of probabilities that terms will be associated with a
data object the data object’s natural (term) distribution.

We also make the generally unrealistic assumption that terms are indepen-
dent. For example, the occurrence of “Britney” in a descriptor is independent of
the occurrence of “Spears”. This is incorrect in general, but is common practice,
as it simplifies the simulation environment without making it trivial. Note, how-
ever, that this term independence assumption is not unique to our work. Such
an assumption is heavily relied upon in the probabilistic information retrieval
model in IR.

Each data object is also associated with an access probability, according to a
Zipf distribution. This conforms to the access patterns observed for Web objects
that were described in [23]. Observations of data object frequency in a P2P
system also suggest a high access skew [24].

Initially, a random number of copies of each data object are instantiated,
each with a subset of its universal term subset in its descriptor. These copies are
assigned to random clients.

There are a fixed number of peers and a fixed number of data objects in the
system. At each iteration of the simulation, a random peer is chosen to download
a random data object based on the data object’ access probability distribution.
To do this, the peer generates a query of random length containing a subset of the
data object’s universal term subset. We assume that length distributions follow
those of Web search engines, and use the empirical distribution described in [25].
Personal observations of queries in LimeWire’s query monitor window seems to
corroborate this assumption. Each term in the query is randomly chosen based
on the data object’s natural term distribution.

The query is routed to a random subset of servers. We do not send the query
to all servers because, in practice, only a subset of them is reachable at any time
[24]. The servers return results that fulfill the matching criterion (Section 3) to
the client.

Client Behavior. If more than one group forms in response to a query, then
the client ranks the groups. The highest ranked group is selected for download.
Although, in general, the user may be equally likely to select any one out of the
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first few highest ranked groups, all else being equal, we can generally assume
that she will select the one that is highest ranked.

We say that the query is successful if the desired data object is ranked first
and downloaded. In an unsuccessful query, either the incorrect group is ranked
first and downloaded, or there are no results.

Once the data object is downloaded, the user has a probability of manually
annotating the data object with some personally chosen terms. These terms
are randomly chosen from the data object’s universal term subset, based on
the natural term distribution. This is the only way that the variety of terms
that exists in the system for a data object can increase beyond what exists at
initialization. If the user downloads the incorrect data object, then she may
mis-annotate it in this step, leading to incorrect metadata for the data object.

After this is done, the client heuristically copies some of the chosen group’s
metadata into the replica’s descriptor, with the constraint that only a limited
number of terms may be copied. The data object is then available for other peers
to find in subsequent iterations of the simulation.

We do not model freeriders or malicious users. Freeriders are users who down-
load, but do not upload data objects. Since they do not contribute any metadata
to the system, they do not affect the results. Malicious users are those who may
contribute misleading metadata for data objects to the system. These users may
affect the rankings, but only marginally. Rankings are based on the aggregate
metadata of a group of users, not on the metadata of an individual.

Table 1. Parameters Used in the Simulation

Parameter Value or Range
Number of peers 1000
Number of data objects 1000
Number of terms in universal set 10000
Number of terms in the universal set of a data object 100-150
Maximum descriptor size for a data object on a peer (terms) 20
Number of terms in initial descriptors 3-10
Number of replicas of each data object at initialization 3
Probability that a peer is reachable 0.5
Probability of client adding metadata 0.05
Number of Terms Added by client 1-5
Query length 1-8, dist from [25]
Number of queries 10000
Number of trials 50

The parameters we use in the experiments are shown in Table 1. The size
of the simulation is scaled down to reveal any convergences in the results more
quickly. More significant than the scale of the simulation are the relative values
of each parameter, such as the total number of possible terms for a data object,
versus the number of terms with which each data object is initially annotated.
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Fig. 1. Number of Successful Queries vs. Metadata Distribution Technique for Multiple
Ranking Functions

These numbers are based on observations from other studies [26, 24], as well as
personal observations. For example, song data objects that appear on Gnutella
networks typically have about three or more types of information associated with
them from ID3 data: artist, song name, album name, track number, etc. This is
reflected in the Number of terms in initial descriptors parameter.

We performed fifty trials with each set of parameters and report the aver-
age results. The 95% confidence intervals generally were well within 4% of the
reported mean–the results are statistically significant. However, to simplify the
presentation of the main results, we do not present them.

5.2 Results for Various Combinations of Metadata Distribution
and Ranking

We see that gsize is the best ranking function regardless of metadata distribution
technique in 1. This is somewhat surprising, considering its simplicity. Gsize
works relatively well because only the correct data object will likely contain all
query terms, and thereby satisfy the matching criterion. Other data objects’
descriptors may be near-misses. Cos does a distant second best. It does poorly
because the matching criterion does not return an unbiased sample of results; all
results contain all query terms. It therefore cannot discriminate between relevant
and irrelevant very well. Finally, prec and tf are subject to the same problems
they have in traditional IR; they are highly influenced by large metadata sets or
by noise.

We also see that the metadata distribution techniques that randomize the
metadata (rand and wrand) do best on average. Furthermore, the combination
of rand and gsize do the best. However, no ranking function in combination
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with wrand outperforms gsize with lfreq. The reason that lfreq does better
than wrand in this case is that lfreq is better at increasing the total number
of terms in the body of metadata for a data object. Wrand replicates common
terms, introducing a skew. Descriptor space is therefore occupied by repetitions
of common terms. Lfreq, in general, replicates terms that do not occur fre-
quently. It therefore has the effect of replicating every term in the long run.
This larger body of metadata is in this sense more descriptive, resulting in more
relevant results for a query. Besides gsize, the best performing ranking function
using wrand is cos. This is expected, because cos requires term frequencies to
be skewed in order to work correctly. Lfreq, by comparison, does worse with
cos, because it results in uniform distributions of terms in bodies of metadata.

Server and mfreq do poorly because they fail to mix the metadata dur-
ing distribution. Server simply replicates a single server’s descriptor. Mfreq
replicates terms that have already been frequently replicated. This does little to
increase the variety of descriptors that describe a data object.

6 Discussion

6.1 Compatibility with Existing Technologies

A feature of PIRS is that it is compatible with Gnutella. A PIRS peer inter-
acts with others via message passing. These messages are in standard Gnutella
format, and no special messages are required. Furthermore, no special architec-
tures are required by PIRS. PIRS simply allows peers to create and respond to
queries in a way that is transparent to standard Gnutella peers. A PIRS peer
can therefore readily integrate itself into an established P2P file-sharing system.

In a similar vein, PIRS can also take advantage of optimizations designed for
Gnutella-like P2P systems. Routing optimizations, such as shortcuts [27] and
Ultrapeers [14] are available. Search optimizations, such as specially designated
index nodes are also possible [9]. In the latter case, although special index nodes
improve the quality of search results, they do not obviate the need for metadata
distribution and client-side ranking of results.

6.2 The Outlook for Peer-to-Peer Information Retrieval

P2P file sharing system vendors have been actively pursuing new markets. Kazaa,
for example, has adapted its networks for content distribution for media com-
panies, online dating with MatchNet, and voice-over-IP telephony with Snype
[28]. These new applications will surely bring new users into the area.

Other industry trends seem to indicate that P2P information retrieval will be
a strategic technology in the near future. Google is currently working on Puffin,
a desktop search tool that helps users find information stored on their desktops
[29]. Whether this is a counterattack to Microsoft’s Longhorn [30] strategy or
not, it signals a new focus on harnessing the information stored on desktops.

P2P file sharing has been a consistently active Internet activity for the last
several years. This condition shows no sign of weakening, despite recent legal
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actions by the recording industries [31]. As the user base and variety of P2P ap-
plications grows, PIRS and other P2P search tools will only gain in significance.

7 Conclusion

P2P file sharing is a popular activity among Internet users, and shows little signs
of slowing down. As volumes of data grow, so does the need for good IR to sort
through the results. PIRS, our P2P IR system is one solution. It is compatible
with current P2P file sharing systems, but more powerful.

PIRS is flexible, as P2P systems should be. Unlike other work in P2P IR,
it allows for unpredictable user behavior, and makes no assumptions about the
underlying network. As a dynamic system, it also escapes some of the problems
that exist when using centralized systems, such as Web search engines; data can
be made available much quicker.

PIRS is unique in that it allows users to tune the ways in which a client
distributes metadata. It treats the metadata that exist in all instances of a data
object in the system as a collective description of the data object. With improved
descriptiveness, query results improve in quality.

PIRS also includes various ranking functions. Our simulation results show
that the effectiveness of ranking somewhat depends on the metadata distribution,
and that the correct combination can improve performance from 15% up to 90%.

We are currently considering the relationship between the matching criterion
and ranking functions. The current matching criterion is based on conjunctive
queries. Although this economizes on bandwidth consumption, it may reduce
the quality of queries results. We are considering the effect of alternatives, such
as disjunction. We will focus on server-side responses to queries.
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Abstract. Today, there is an increasing demand to share data with complex data
types (e.g., multi-dimensional) over large numbers of data sources. One of the
key challenges is sharing these data in a scalable and efficient way. This paper
presents the design of ZNet, a P2P network for supporting multi-dimensional data.
ZNet directly operates on the native data space, which is partitioned dynamically
and mapped to nodes within the network. Particular attention is given to reduce
load imbalance among nodes due to skewed data distribution. Results from an
extensive simulation study show that ZNet is efficient in routing and processing
range queries, and provides good load balancing.

1 Introduction

Today, there is an increasing demand to share complex data types (e.g., multi-
dimensional) and to support complex queries (e.g., range queries). For example, in
grid information services, computing resources are typically characterized by multi-
ple attributes like the type of operating systems, CPU speed and memory size. It is not
uncommon for such a system to search for resources that meet multiple attribute require-
ments, e.g, a resource with LINUX operating system and CPU speed of 1-2 GFlop/sec.
As another example, in sensor networks, data or events are also characterized by a set
of attributes. For a sensor network that monitors the weather, a typical query may be
like this, to find regions whose temperature falls between [0,10] degrees, wind speed in
[30,40] nautical miles, and so on.

One of the key challenges for these systems is to share these multi-dimensional data in
a scalable and efficient way. Due to a large number of data sources, a centralized approach
is always not desirable, sometimes, it may not even be feasible (e.g., in sensor networks).
Though P2P technology, as an emerging paradigm for building large-scale distributed
systems, could be used for sharing data in a scalable way, today’s P2P systems are unable
to cope well with complex queries (range queries) on multi-dimensional data. Early P2P
systems, such as Gnutella[6], mainly depend on flooding techniques for searching, thus
they offer no search guarantee; moreover, data availability could not be ensured unless
all nodes in the network are visited. While more recent systems, such as Chord[13] and
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CAN[9], can guarantee data availability and search efficiency, they are mainly designed
for exact key lookup; range queries cannot be supported in most cases.

In this paper, as one of the initial attempts to address the above challenges, we present
the design of ZNet. ZNet directly operates on the native data space, which is partitioned
and then mapped to nodes within the network. ZNet focuses on addressing two important
issues. The one is load balancing. We want to make sure that each node contains nearly
the same amount of the data. Since data distribution in multi-dimensional data space may
not be uniform, if the space is partitioned and assigned to nodes evenly, some nodes may
contain more data than others. In ZNet, this issue is addressed by dynamically choosing
subspaces which may be densely populated to be split further, so that space could be
partitioned in a way that follows the data distribution.

The second issue is to facilitate efficient indexing and searching. Our basic idea is
to partition the space in a quad-tree-like manner with some subspaces being recursively
partitioned. To facilitate searching, all subspaces resulted from one partitioning are
ordered by a first order Space Filling Curve (SFC). As such, the whole data space(multi-
dimensional) is mapped to 1-dimensional index space by SFCs at different orders. Two
data that are close in their native space are mapped to the same index or indices that are
close in the 1-dimensional index space, which are then mapped to the same node or nodes
that are close together in the overlay network. Any SFC could be used for the mapping.
In our current implementation, Z-ordering is chosen mainly due to its simplicity. Skip
graph [2] is extended as the overlay network topology (nonuniform node distribution in
ZNet makes DHT-based P2P networks (such as Chord) unsuitable). From an extensive
simulation study, it shows that ZNet is good in load balancing when the data distribution
changes little, and efficient in supporting range searches.

The rest of the paper is organized as follows: Section 2 discusses the related work;
Section 3 presents the system design in space partitioning, searching and load balancing;
The experimental results are presented in Section 4; And finally, section 5concludes the
whole paper.

2 Related Work

Existing P2P systems can be generally classified as unstructured or structured. For un-
structured systems (such as Gnutella [6]), there has no guarantee on data availability
and search performance. Therefore, research on range query support in P2P is mainly
focused on structured systems.

There are two kinds of structured P2P systems: DHT-based and skip-list based. DHT-
based systems, like Chord [13], CAN [9], Pastry [10], and Tapestry [15], use a distributed
hash table to distribute data uniformly over all nodes in the system. Though DHT systems
can guarantee data availability and search efficiency on exact key lookup, they cannot
support range searches efficiently, as hashing destroys data locality. Skip graph [2] and
SkipNet [7] are two skip-list based systems, which can support range queries. However,
they did not address how data are assigned to nodes. As such, there is no guarantee about
data locality and load balancing in the whole system.

In [3], Chord and skip graph are combined into one system to support range searches.
Chord is used to assign data to nodes, while skip graph is used to do range searches.
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Though load balancing can be ensured in [3], searching is not efficient, which is at a cost
of O(log m), where m is the number of data.

Most work supports range queries by drawing its inspiration from multi-dimensional
indexing in the database research [5]. Specifically, locality-preserving mapping is used to
map data that are close in their data space to nodes that are close in the overlay network.
For example, in [1], the inverse Hilbert mapping was used to map one dimensional data
space (single attribute domain) to CAN’s d-dimensional Cartesian space; and in [12],
the Hilbert mapping was used to map a multi-dimensional data space to Chord’s one
dimensional space. Though [12] can support multi-dimensional range queries, its per-
formance is poor when the data is highly skewed as the node distribution (which follows
data distribution) is not uniform any more. DIM [8] supports multi-dimensional range
queries in sensor networks by using k-d trees to map multi-dimensional space to a 2-d
geographic space. Load balancing, unfortunately, is not addressed in DIM.

Different from above work, MAAN [4] uses a uniform locality preserving hashing to
map attribute values to the Chord identifier space, which is devised with the assumption
that the data distribution could be known beforehand. Multi-attribute range queries were
supported based on single-attribute resolution. In our work, we do not assume any a
prior knowledge on the data distribution, and load balancing is achieved fully based on
heuristics that partition dense subspaces.

Still, there are some other orthogonal work. pSearch[14], proposed for document
retrieval in P2P networks by extending CAN, bears some similarity to our work in load
balancing. However, its main focus is to retrieve some relevant documents, and not to
support range searches. [11] proposed a framework based on CAN for caching range
queries. By caching the answers of range queries over the network, future range queries
can be efficiently evaluated.

3 ZNet

The whole system consists of a large number of nodes, each publishing its data objects
(multi-dimensional) and sending queries for other data objects over the network. Range
query is the kind of query ZNet is mainly interested in.

To support range queries efficiently, data that are close in their native space needs to
be mapped to nodes that are close in the network. In ZNet, a kind of locality preserving
mapping is used, and multi-dimensional data space is mapped to 1-dimensional index
space by z-curves at different orders. And also, by extending skip graph as the overlay
network, queries can be routed efficiently in ZNet, with each node maintaining O(logN)
neighbors (N is the number of nodes). Besides query processing, ZNet also addresses
the load balancing issue. Two strategies are employed in ZNet to reduce load imbalance.
All this will be described next in detail.

3.1 Space Partitioning and Mapping

In ZNet, data space is partitioned in a way as in the generalized quad-tree, that is, each
partitioning halves the space in all dimensions. As such, for d dimensions, 2d subspaces
are generated from one partitioning. We call each of such subspaces a zone.
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Partitioning always occurs when a new node joins and the joining destination (an
existing node in the network) has only one zone; if the joining destination has more than
one zone, it just passes part of its zones to the new node. Zones from one partitioning
are at the same level, which is one level lower than the level of the zone where the
partitioning occurs. For the first node ( and also the node in the network), it covers the
whole data space (at level 0 ).

By filling zones (from one partitioning) with a first order z-curve, each zone which
is at a certain level ( call z-level) corresponds to a z-value in 0..2d −1 (for d-dimensional
space), which can be computed in the following way: suppose the centroid before
partitioning (at z-level i) is (Ci,0, Ci,1, ..., Ci,d−1) (for z-level 0, the centroid is (0.5,
0.5, ..., 0.5)), the centroid of a new zone (at z-level i + 1) generated from partition-
ing is (Ci+1,0, Ci+1,1, ..., Ci+1,d−1), then the new zone’s z-value at z-level i + 1 is
(b0b1..bd−1)2, where bk is 0, if Ci+1,k is less than Ci,k; otherwise it is 1 (k = 0..d − 1).

A zone in the space can be uniquely identified by its z-address. For a zone Z at lth
z-level, its z-address will be like z1z2...zl, where zi is the z-value’s binary represen-
tation of a zone which is at i z-level and contains Z. Z’s z-address can be recursively
constructed: first, z1 is decided in the same way as the above z-value computation by
comparing Z’s centroid with the centroid (0.5, 0.5, ..., 0.5) at z-level 0; then z2 is decided
by comparing Z’s centroid with the centroid of the zone of z-value z1, and so on, until
the level is l.

The z-address of a point in the space is the same as the z-address of a zone which
covers the point and is at the lowest z-level. Since the space is unevenly partitioned,
z-addresses of two points may be of different lengths. When comparing two z-addresses
of different lengths, only the prefix part of the longer one is compared to the shorter one.

Figure 1 illustrates the space partitioning process in a 2-dimensional data space. In
the figure, (a) is the initial state of the data space (z-level 0). After the first partitioning
(b), four zones are generated with z-values from 0 to 3 (corresponding z-addresses are
from 00 to 11). The new zones are at z-level 1. In (c), zone 00 (the zone’s z-address is
00) is further partitioned, forming the second level (z-level 2). Suppose zone 0010 is
partitioned again, the third level (z-level 3) will be formed.
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0001 0010
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00110001 0011
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Fig. 1. Z-curves at different levels (0-3)

In sum, by z-curves at different levels (lower level z-curves correspond to higher
order of z-curves), multi-dimensional data space is mapped to 1-dimensional index
space. Meanwhile, this 1-dimensional space is mapped to nodes in the network. In
ZNet, each node always contains continuous zones (zones are continuous in the sense
that their z-addresses are continuous).
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3.2 Query Routing and Resolving

Since routing in ZNet is based on skip graph[2], in this subsection, we will give a brief
description of skip graph first, then we describe query routing and resolving in ZNet in
detail.

Skip Graph. Skip graph generalizes skip list for distributed environments. Each node
in a skip graph is a member of multiple linked lists at �logN� skip-levels, where N is the
number of nodes. The bottom skip-level is a doubly-linked list consisting of all nodes in
increasing order by key. Which lists a node belongs to is controlled by its membership
vector, which is generated randomly. Specifically, a node is in the list Lw at skip-level
i, if and only if w is a prefix of its member vector of length i.

Membership Vector
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Level 2

Level 1
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HDB
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H

L1:

111011101001110010100000
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L00:

L10:
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G
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FB

FEDCBA

Fig. 2. A skip graph with 3 skip-levels

Figure 2 gives a example of a skip graph with 3 skip-levels. In the figure, there
are 8 nodes (from A to H),each of which has one key (not shown in the figure). For
simplicity, membership vectors of nodes are distinct, which are chosen from 000 to 111
(in implementation, the membership vectors are randomly generated, which could be
same). At skip-level 0, all nodes are doubly-linked in sequence by their keys. At skip-
level 1, there are two lists: L0, L1. Since the first bit of the membership vectors of nodes
A, C, E, G is 0, these nodes belong to L0. So are nodes for other lists.

Each node ( except the first and the last node) in a list has two neighbors: left neighbor
and right neighbor. For example, in Figure 2, node C has two neighbors B, D at skip-
level 0. At skip-level 1, in L0, it also has two neighbors A, E. At skip-level 2, it has only
one neighbor G. All neighbors of a node form the node’s routing table. When searching,
a node will first check its neighbors at the highest skip-level. If there is a neighbor whose
key is not past the search key, the query will be forwarded to the neighbor; otherwise,
neighbors at a lower skip-level are checked. For example, in Figure 2, suppose node C
receives a query, whose destination is F . C will first check its neighbor at skip-level 2,
G. Since G’s key is larger than F ’s key, searching will go down to skip-level 1. Among
C’s neighbors at skip-level 1 (A and E), E is qualified, whose key is between C’s key
and the search key F . The query will be forwarded to E, and so on. The search operation
in a skip graph with N nodes takes expected O(log N) time. Note each node has only
one key.

Query Routing in ZNet. Skip graph was proposed to handle range queries with one
key per node, thus each node needs to maintain O(logm) state, where m is the number
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Fig. 3. A routing example

of keys. In addition, in skip graph, there is no description about how keys are assigned
to nodes in the system, thus making no guarantee about system-wide load balancing.

In ZNet, since zones mapped to each node are continuous (each node covers contin-
uous z-addresses ), and also, load balancing is ensured among nodes, ZNet can extend
skip graph for query routing while not having its problems. In ZNet, each node maintains
only O(log N)state, where N is the number of nodes.

When given a search key (a point), a node will first transform the point to a z-address,
which is then compared to z-addresses covered by the node’s neighbors as defined in
skip graph. Complexities for routing in ZNet rise in that the z-address of a search point
may not be able to be fully resolved initially due to uneven space partitioning.

For example, in Figure 3, the space is partitioned among 8 nodes, A(00,01)( A
contains z-addresses 00 and 01), B(1000,1001), C(101000), D(101001), E(101010),
F (101011), G(1011), J(11). The membership vector of each node is shown as in the
figure 2, thus, A has 3 neighbors B, C, E; B has 4 neighbors, and so on. Suppose A
receives a point query, whose destination is node D. Since A’s zones are at z-level 1,
it can only transform the point to z-address (10) according to z-address transformation
process (A has no idea about the complete space partitioning status ). For z-address (10),
two of A’s neighbors are qualified: C, E. At current implementation, we just randomly
choose one. Suppose E is chosen, and the query will be forwarded to E. When the query
arrives at E, another z-address transformation will be done again, and at this time, full
z-address (101001) of the search point is obtained (since zones covered by both E and
D are at same z-level). By choosing D from E’s neighbors as the forwarding node, the
query is finally resolved.

Therefore, given a search point, a node may only get a prefix of the point’s full
z-address, due to incomplete knowledge about space partitioning. With each routing
step, however, the point’s z-address will become more refined. The routing convergence
can be ensured, since with each routing, the query is routed closer to the destination.
However, the routing cost in ZNet may be a little worse than O(logN), where N is the
number of nodes. In the worst case, the cost could be O(l*logN), where l is the deepest
z-level in the space.

Range Query Resolving. In ZNet, range queries are resolved in a recursive way. The
Algorithm is shown in Figure 5, including two parts(A and B).

For d-dimensional space, a range query QR will be like ([l0, h0], ..., [ld−1, hd−1]).
When a node receives such a query, it will first decide the routing z-level (l), whose space
covers the query range (line 1 in A). For a node, besides its own space (it is responsible
for), it also has knowledge about the spaces which cover its space. For example, figure 4
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Fig. 4. Level Spaces

shows the network status for a 2-d space after 5 nodes joining. In the figure, nodes A, B
are at z-level 2 (zones covered by them are at z-level 2). So are for nodes C, D. However,
nodes A, B and nodes C, D have different knowledge about spaces. For node A, its
own space, level 2 space, level 1 space are shown respectively in (a)’s, (b)’s, (c)’s shaded
area. Node B’s level 1 space and level 2 space are same as node A’s.

Based on the z-level l, a node can compute the smallest and largest z-address of QR:
the smallest z-address of QR (zL) is the z-address of point(l1, ..., ld), and the largest
z-address of QR (zH) is the z-address of point (h1, ..., hd). (line 2-3 in A).

Then the query is routed at l, checking nodes whether their l level space overlaps
with QR. If a node whose l level scope space does not overlap with QR, it needs to find
a neighbor from its routing table which is closer than itself to the lowest z-address (line
1-3 in B); else the node checks whether it is at z-level l, if it is at l ( this means that the
node’s own space overlaps with QR), it will send a message to the query initiator (line
5-6 in B); if it is not at l , the query will go down one lower z-level and repeat the whole
process (line 8-10 in B).

Two methods are employed about how a query is routed at a certain z-level when a
node’s level space overlaps with the range. One is one-way, that is, the query is always
routed from the smallest z-address to the largest z-address. For this method, unnecessary
visits may be incurred. Another method is two-way, the query is partitioned into two
parts which will be routed at a z-level along opposite directions to avoid unnecessary
visits: in one direction, the query is always forwarded to nodes which contain larger
z-addresses than the current node’s at the z-level; in the other direction, the query is
always forwarded to nodes which contain smaller z-addresses than the current node’s at
the z-level. Figure 5 only shows two-way method (line 11-18 in B).

3.3 Node Join and Leave

When a new node joins the network, it needs to find an existing node X in the network to
get some space it is responsible for (How X is decided is described in next subsection).
After X splits its space, the new node will build its routing table by selecting neighbors
in the network, according to its membership vector which is generated randomly (maybe
same as another node’s membership vector). The join cost of a node is at O(logN).

For example, in Figure 3, suppose node J joins the network and node B is chosen
to split the space. J will first insert itself in skip-level 0 (in the skip graph). Suppose
z-addresses covered by B are smaller than ones covered by J , J will choose B and C as
its skip-level 0 neighbors. Neighbors at upper skip-levels are decided by J’s membership
vector. Suppose J’s initial generated membership vector is 110 (which is the same as
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Part A: N .RangeSearch(QR)

1. l=DecideRouteZLevel(QR);
// decide the lowest and highest z-address of QR

2. zL = LowestZAddress (QR, l)
3. zH = HighestZAddress (QR, l)
4. RangeSearch1(QR, zL, zH , l)

Part B: N .RangeSearch1(QR,zL,zH ,l)
// QR is the query range;
// zL and zH are the lowest and highest
// z-addresses of QR at l;

1. If N at z-level scope space doesn’t overlap zL − zH
2. M = FindCloserNode(zL)
3. M .RangeSearch1(QR, zL, zH , l)
4. else
5. If N is at l
6. send message to query initiator
7. else
8. l=l+1;
9. QR = QR ∩ N ’ l level space
10. N .RangeSearch(QR)

// route at two-way;
11. If zL − zH contains the largest z-address covered by N at l
12. reset zL
13. M = FindCloserNode(zL)
14. M .RangeSearch1(QR, zL, zH , l)
15. If zL − zH contains the smallest z-address covered by N at l
16. reset zH
17. M = FindCloserNode(zH)
18. M .RangeSearch1(QR, zL, zH , l)

Fig. 5. Range Search in ZNet

D’s), it will choose B as its neighbor at skip-level 1, D as its neighbor at both skip-level
2 and 1. At this time, a new skip-level (3) will be generated, D is its only neighbor at
skip-level 3.

ZNet can route correctly as long as the bottom skip-level neighbors of each node
are maintained, since all other neighbors contribute only to routing efficiency, not rout-
ing correctness. Thus, each node in ZNet maintains redundant neighbors (in the right
neighbor-list and the left neighbor-list) which include the closest (right and left ) neigh-
bors along the bottom skip-level list to deal with node failure or departure. A back-
ground stabilization process runs periodically at each node to fix neighbors at upper
skip-levels.
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3.4 Load Balancing

In ZNet, we only consider load balancing from storage perspective, since routing load
balance is achieved due to the symmetric nature of skip graphs.

If two nodes contain nearly the same number of indices, then loads on these two nodes
will be nearly the same. We try to balance data distribution among nodes by choosing
appropriate nodes and splitting their space when new nodes join the network. Currently,
two strategies are employed in ZNet: In the first strategy, when a node joins the network,
it randomly chooses one data object which has already published to the network, and
uses the point which corresponds to the data object as the join destination. And then the
join request is routed to the node whose space covers the point. In the second strategy, m
such candidates are used, the one whose corresponding destination node has the heaviest
load is chosen as the joining destination. The second strategy could achieve better load
balancing than the first one, however, the join cost is m times higher.

With large number of nodes, nodes should be distributed in a way which is approxi-
mately proportional to the data distribution. A large number of nodes will be clustered
in the space which is densely populated. Also, another benefit from this kind of joining
is that the publishing cost of a new joining node could be saved ( suppose that most data
objects in a node are similar, they will be published into nearby nodes ).

One problem with above load balancing is that it only considers static data distribu-
tion. Thus, when there is data evolution, the load will not be balanced anymore. As future
work, we plan to use the following method to address this problem: a node first gets load
information about other nodes either by enquiring its neighbors or by random walks on
the overlay network, then the node which is less loaded (under a certain threshold) will
leave the network and rejoin to the node which is more loaded (above a certain threshold).

4 Experimental Results

In this section, we evaluate our system via simulation. We first measure how index
distribution are balanced in the network, followed by the test of average lookup cost of
routing in ZNet; Then we focus on range queries.

The set of experiments are done on synthetic datasets of increasing dimensionality,
which are generated based on normal distribution. By default, we use data sets with
skewed 8-dimensional 300,000 data points, and 6,000 nodes in the network. The dimen-
sionality of data in the experiments is varied from 4 to 20, and the number of nodes is
varied from 2,000 to 10,000.

4.1 Load Balancing

We measure load balancing mainly in data distribution among the nodes in network. Two
approaches are employed to balance the load: one is LB-1, the other is LB-x. In LB-1,
when a node joins, a random point of a data object (published by the node) is chosen as
a representative for the node to decide the join destination; In LB-m (m > 1), m such
candidates are used and tried, the one whose corresponding destination has the heaviest
load is finally chosen for node joining. In the experiment, we choose m to be 5. Larger
m is also tried, however, no further improvement is observed.
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Fig. 6. Load Balance Measurement

Our approaches are compared with two cases: One is an ideal case, where each node
contains the same amount of data; The other is an extreme case, where the data space is
partitioned and assigned to nodes evenly.

In Figure 6, nodes are sorted in decreasing order according to the number of data
contained by them. From the figure, we can see that, when space is assigned to nodes
evenly, 80% of indies are inserted in 5% of nodes, the data distribution among nodes
is severely unbalanced. Both LB-5 and LB-1 achieve good load balancing, with LB-5
close to the ideal case. LB-5 is better than LB-1, since it makes the decision according
to the current load distribution in the network. This figure shows that our approaches,
esp., LB-5, follow the data distribution well. All following experiments are done with
LB-5 assumed.

4.2 Average Lookup Cost

In this set experiment, we measure average lookup cost for point queries in ZNet.
The lookup cost is measured by the number of hops between two random selected

nodes, averaged over 10 times the network size. Figure 7 shows the effect of network
size on lookup cost. As shown in the figure, the average lookup cost increases with the
network size (which is a little more than 0.5 ∗ logN ).

4.3 Range Search Cost

We focus on two metrics for measuring range searches:

– Processing Cost: The number of nodes whose spaces overlap the query range. These
nodes are needed to search their virtual databases for query results;

– Routing Cost: The number of nodes for routing the query only. These nodes are
visited for routing the query to nodes whose spaces overlap the query range;

Three factors are involved for range searches: network size, the dimensionality, and
the query range size. Thus, to measure the cost for range queries, we vary these three
factors respectively at each time. All range queries are generated according to the data
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distribution: queries are clustered in dense data area, which can be initiated from any
node in the network. For each measurement, results are averaged over 200 randomly
generated range queries with fixed range size, each is initiated from 100 random nodes
in the network.

Two methods (one-way and two-way) are compared in terms of the routing cost with
the network size varied (same trends are observed with dimensionality and query range
size varied).

Effect of Network Size. To measure the effect of network size over the cost, we fix
query range size at each dimension to be 0.2. Data set is the same for all network sizes.

As shown in Figure 8, the processing cost increases with the network size, since more
nodes are clustered in the dense data area according to our space partitioning method.
For the routing cost, the routing costs of both one-way and two-way increase with the
network size also, however, two-way method visits less nodes than one-way method.

High processing and routing costs in Figure 8 are mainly due to the relatively high
dimensionality (8) we used in the experiments.With higher dimensionality, the clustering
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of z-ordering becomes worse. When the dimensionality is low, the cost is much lower.
The effect of dimensionality on cost is tested next.

Effect of Dimensionality. The effect of dimensionality is measured by fixing query
selectivity. Because of small selectivity we choose, range queries are covered by only
one node when dimensionality is 4 and 8 (in Figure 9). However, even with a small query
selectivity, we can see from the figure that the number of processing nodes increases
quickly when dimensionality increases. This is because the range size of a query with
the same selectivity increases rapidly with higher dimensionality. Consequently, much
bigger data space has to be searched, more nodes have to be visited for routing.

Effect of Range Size. Finally, we test the effect of range size on costs. The query range
size at each dimension is varied from 0.1 to 0.5. As shown in Figure 10, range size has
much effect on the number of processing nodes and routing cost. With larger query range
size, more nodes in ZNet need to be visited for processing or routing, since more nodes
are clustered in dense data area and our queries are also clustered in the dense area.
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5 Conclusion

In this paper, we described the design of ZNet, a distributed system for efficiently sup-
porting multi-dimensional range searches. ZNet directly operates on the native data
space, which are partitioned dynamically and assigned to nodes in the network. By
choosing appropriate subspaces to be split further, load imbalance could be reduced.
By ordering subspaces in Z-curves of different granularity levels, we could extend skip
graph to support efficient routing and range searches. Results from a simulation study
show that ZNet is efficient in supporting range searches, esp. when dimensionality is not
very high. In future work, we plan to address the load balancing problem when the data
distribution is dynamic, and the efficiency problem when the dimensionality is high.

Acknowledgements. The authors would like to thank Beng Chin Ooi and Yingguang Li
for their helpful discussion.
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Abstract. We initiate a study on the effect of the network topology
on the performance of Peer-to-Peer (P2P) information retrieval systems.
The emerging P2P model has become a very powerful and attractive
paradigm for developing Internet-scale systems for sharing resources,
including files, or documents. We show that the performance of Infor-
mation Retrieval algorithms can be significantly improved through the
use of fully distributed topologically aware overlay network construc-
tion techniques. Our empirical results, using the Peerware middleware
infrastructure, show that the approach we propose is both efficient and
practical.

1 Introduction

In the last few years, the new emerging Peer-to-Peer (P2P) model has become
a very powerful and attractive paradigm for developing Internet-scale file sys-
tems [20, 13, 22, 23, 25] and sharing resources (i.e., CPU cycles, memory, storage
space, network bandwidth) [24, 10] over large scale geographical areas. This is
achieved by constructing an overlay network of many nodes (peers) built on top
of heterogeneous operating systems and networks. Overlays are flexible and de-
ployable approaches that allow users to perform distributed operations such as
information retrieval [9, 32] without modifying the underlying physical network.

The first wave of P2P systems implement unstructured P2P overlays [13] in
which no global structure or knowledge is maintained. To search for data or
resources, messages are sent over multiple hops from one peer to another with
each peer responding to queries for information it has stored locally. Structured
P2P overlays [22, 23, 25] implement a distributed hash table data structure in
which every data item can be located within a small number of hops, at the
expense of keeping some state information locally at the nodes. Recently more
efficient query routing techniques based on routing indices [8], heuristics [30] and
caching [32] were proposed.

However, an important problem that these systems have not fully considered
is how the heterogeneity of the underlying infrastructure affects the performance
of the information retrieval algorithms/systems. The P2P infrastructure can en-
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Fig. 1. Typical end-to-end delays from Riverside to sites around the world

compass resources with different processing and communication capabilities, lo-
cated across different geographical areas. As a result, retrieving information over
Internet-scale environments is subject to greater variations due to unpredictable
communication latencies, excessive resource consumption and changing resource
availability. Figure 1 shows typical end-to-end delays from Riverside to different
sites around the world.

P2P systems are very effective mechanisms to share and store documents,
because their decentralized nature allows easy additions, updates, large storage,
and offers fault-tolerant properties through the use of replication and caching.
However, a system for storing large amounts of data should also provide efficient
search mechanisms, and the decentralized nature of the unstructured P2P net-
works hinders the use or the maintenance of the indexing structures traditionally
used in Information Retrieval. So the effective use of P2P systems for document
storage depends on new efficient and distributed solutions to the problem of
finding the documents one is looking for.

In the paper we focus on keyword search, that is, we aim to find the docu-
ments that contain a given set of query terms. There is a lot of recent work on
improving keyword search in unstructured P2P networks (section 2 provides an
overview). A common theme in this work is the use of the number of messages
as a metric of the performance of the technique. While this is justified when the
algorithm is network-agnostic and does not use the characteristics of the network
to improve the search, we believe that taking advantage of this knowledge can
significantly improve the performance of Information Retrieval and allow us to
design techniques that make the problem practical in Internet-scale systems.

Our Contribution: In this paper we initiate a study on the design of fully
distributed P2P information retrieval techniques that are topologically aware
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and can take advantage of the network characteristics to optimize the efficiency of
the search. We consider and evaluate the impact of the use of topologically aware
overlay network constructions on the accuracy and the performance of currently
proposed fully distributed P2P information retrieval techniques. Although the
necessity of topologically-aware overlays has been widely addressed in the context
of structured overlays [4, 21, 29, 33], it hasn’t received the same attention in the
context of unstructured overlay networks. More specifically:

(i) We discuss and evaluate the performance of information retrieval algorithms
over topologically-aware Internet-scale overlays. We consider both agnostic tech-
niques that do not maintain any knowledge of the data distribution in the net-
work (BFS and RBFS), as well as techniques that collect past statistics (>RES,
ISM). We describe the Random and BinSL overlay construction techniques and
describe the advantages and disadvantages of the BinSL technique for the P2P
Information Retrieval problem.
(ii) We study the impact of the overlay construction techniques on the infor-
mation retrieval algorithms using our Peerware infrastructure. Our objective is
to improve the latency, while maintaining the accuracy of the results. We note
here that our results show that the use of topologically-aware overlays minimizes
network delays while maintaining high recall rates and a low number of messages.

The remainder of the paper is organized as follows: In section 2 we outline
search techniques that have been proposed for efficient information retrieval in
unstructured P2P networks. In section 3 we describe the Random and BinSL
overlay construction techniques and describe their advantages and disadvan-
tages. Section 4 describes our experimental methodology and our middleware
infrastructure. In section 5 we present our experimental evaluation and section 6
concludes the paper.

2 Search Techniques for Unstructured P2P Networks

In this section we provide a brief overview of techniques and algorithms that
can be used to perform content-based searches in P2P system. The techniques
do not use any global knowledge, thus they are completely decentralized and
scale well with the size of the network. We consider a network of n nodes
(peers). We assume that Du is the set of documents that are stored in peer
u. We assume that each document d is characterized by a sequence of key-
words, and let s(d) be the (unordered) set of keywords in d. Given a query
q, itself a set of keywords, the result of the query should be the answer set
{(d, u)|u is a peer and q ⊂ s(d) and d ∈ Du}, that is, the documents in the net-
work that include the keywords in q.

Agnostic Techniques: Breadth First Search (BFS) and Random BFS
(RBFS): BFS is a technique widely used in P2P file sharing applications, such
as Gnutella [13]. BFS sacrifices performance and network utilization for the sake
of simplicity. It works as follows : A node v generates a Query message q when
it wants to search for contents located on other peers. v propagates q to all its
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neighbor peers. When a peer u receives a Query request, it first propagates q
further by again along its neighbors (except the sender), and then searches its
local repository for relevant matches. If some node w has a match, w generates a
QueryHit message to transmit the result. QueryHit messages are sent along the
same path that carried the incoming Query messages. The disadvantage of BFS
is that a query is consuming excessive network and processing resources because
a query is propagated along all links. In order to avoid flooding the network with
queries, as the network might be arbitrary large, each query is associated with
a time-to-live (TTL) field which determines the maximum number of hops that
a given query should be forwarded.

In [16] we propose and evaluate the Random Breadth-First-Search (BFS)
technique (see figure 2a). RBFS improves over the naive BFS approach by al-
lowing each node to forward the search request to only a fraction of its peers.
This fraction can be selected at random and is a parameter to the mechanism
(in our experiments we used a fraction of 0.5, so that a peer propagates the re-
quest to half its peers, selected at random). This technique uses fewer messages
than BFS, however it may miss large segments of the network since it is random
and may not choose a particular link that could propagate the query to such
segments.

The Most Results in the Past Heuristic (>RES): In [30], Yang et al.,
present a technique where each node forwards a query to some of its peers based
on some aggregated statistics. The authors compare a number of query routing
heuristics and mention that the Most Results in Past (>RES) heuristic has the
best satisfaction performance. A query is defined to be satisfied if Z, for some
constant Z, or more results are returned. In >RES a peer u forwards a search
message to the k peers which returned the most results for the last 10 queries.

The technique is similar to the Intelligent Search Mechanism we describe be-
low, but uses simpler information about the peers, and is optimized to find Z
documents efficiently (for a fixed Z) rather than finding as many documents as
possible. The nature of >RES allows it to explore the larger network segments
(which usually also contain the most results) and the most stable neighbors (the
peers that have routed back many queryhits), but it doesn’t manage to explore
the nodes which contain content related to the query. We therefore characterize
>RES a quantitative rather than qualitative approach.

The Intelligent Search Mechanism (ISM): In [16] we propose the Intelligent
Search Mechanism (ISM) which is a fast and efficient mechanism for information
retrieval in unstructured P2P networks (figure 2b).

Keys to improving the speed and efficiency of the information retrieval mech-
anism is to minimize the communication costs, that is, the number of messages
sent between the peers, and to minimize the number of peers that are queried for
each search request. To achieve this, a peer estimates for each query, which of its
peers are more likely to reply to this query, and propagates the query message
to those peers only.



140 D. Zeinalipour-Yazti, V. Kalogeraki, and D. Gunopulos

Fig. 2. Searching in a peer-to-peer network using Random Breadth First Search
(RBFS) and the Intelligent Search Mechanism (ISM)

The Intelligent Search mechanism consists of two components that run locally
in each peer:

The Profile Mechanism is used to maintain the T most recent queries and the
corresponding queryhits along with the number of results. Once the repository
is full, the node uses the Least Recently Used (LRU) replacement policy to keep
the most recent queries.

The RelevanceRank (RR) function is used by a node Pl to perform an online
ranking of its neighbors in order to determine to which ones to forward a query
q. To compute the ranking of each peer Pi, Pl compares q to all queries in the
profiling structure, for which there is a queryhit, and calculates RRPl

(Pi, q) as
follows: RRPl

(Pi, q) =
∑

j = ”Queries answered by Pi”
Qsim(qj , q)α ∗ S(Pi, qj)

The deployed distance metric Qsim is the cosine similarity[1] and S(Pi, qj) is
the number of results returned by Pi for query qj . RR allows us to rank higher
the peers that returned more results. α allows us to add more weight to the most
similar queries. For example, when α is large then the query with the largest
similarity Qsim(qj , q) dominates the formula. If we set α = 1 all queries are
equally counted, while setting α = 0 allows us to count only the number of results
returned by each peer (essentially, the >RES heuristic). In the experiments we
forward the query to the half best neighbors, plus to a random neighbor to brake
out of potential cycles.

ISM works well in environments which exhibit strong degrees of query local-
ity and where peers hold some specialized knowledge. Our study on the Gnutella
network shows that it exhibits a strong degree of query locality [31].

Other Distributed Techniques and Algorithms: In the following we de-
scribe other proposed distributed techniques; there is a lot of work on centralized
systems however this is not directly relevant to our problem. In [8], Crespo et
al., present a hybrid technique where each peer builds indices using aggregate
information on the contents of the documents of its peers. In the PlanetP [9]
system, participating nodes build a global inverted index which is partially con-
structed by each node. The framework is based on bloom filters, which capture
the index of some node, and which are randomly gossiped across the community.
In a different approach, the pSearch [26] system explores semantic spaces by us-
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ing advanced techniques from the Information Retrieval field. It uses the Vector
Space Model (VSM) and Latent Semantic Indexing (LSI) to generate a semantic
space which is then distributed on top of a CAN [22] structured P2P overlay.

In the Random Walker model, which is presented in [19], each node forwards a
query message by selecting a random neighbor and the query message is called a
walker. This model however doesn’t use any explicit technique to guide the query
to the most relevant content. In APS [27] each node deploys a local index, which
captures the relative probability of each neighbor to be chosen as the next hop
for some future request. The main difference with Random Walkers is that in
APS a node utilizes feedback from previous searches to probabilistically guide
future walkers.

Distributed file indexing systems such as CAN[22] and Chord[25] allow peers
to perform efficient searches using object identifiers rather than keywords. These
systems, usually referred as Structured Overlays or Distributed Hash Tables
(DHT), use a specific structure with some hashing scheme that allows peers to
perform object lookup operations getting in return the address of the node stor-
ing the object. A disadvantage of DHTs is that they consider only the problem
of searching for keys, and thus cannot perform content-based retrieval. Recent
work in [12] shows that content-based query resolution is feasible in DHT sys-
tems if these are using Rendezvous Points (RP). More specifically the framework
proposes the registration of the content (i.e. attribute-value pairs that describe
the content) at RPs. Queries might then be routed, using Chord, to a prede-
fined set of RPs which consequently resolve the query. Finally Freenet [7], is
another distributed information storage and retrieval system that uses instead
an intelligent Depth-First-Search (DFS) mechanism to locate the object keys in
the system. The advantage of DFS search is that a small set of peers can be
queried quickly and efficiently; however by its nature it can take a long time if
we want to find all the results to a query.

3 Overlay Topologies for Efficient Network Utilization

In this section we discuss two distributed overlay construction techniques that
can be deployed in the context of unstructured overlay networks. Let G = (V, E)
be an overlay topology, with a vertex set V = {1, 2, ..., n} and an edge set E,
which represents the overlay connections between the vertices in V . Assume that
a user, is connected to some vertex v and that it uses one of the search techniques
outlined in the previous section in order to search for content in G. Then his
query is expected to form a spanning tree T which spans over the subgraph G′

(G′ ⊂ G). The main goal of an overlay construction technique is to minimize the
Aggregate Delay (ΔT ) which is the sum of the delays w associated with each
edge in the tree T , more formally defined as following: ΔT =

∑
∀ε∈T

w(ε).

It is important to notice that the delay cost associated with each edge might
be different for each direction between two nodes vi and vj (i.e. delay(vi → vj)
	= delay(vj → vi)). This happens because packets on the Internet may follow dif-
ferent itineraries or because the upstream and downstream bandwidth of a node
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Fig. 3. Visualization of a Connected (Random) and Disconnected (SS) graph of 1000
peers (degree=6) using the Fruchterman-Reignold visualization model in Pajek [2].
Random and BinSL topologies have the advantage that they remain connected while
SS topologies get disconnected because each node greedily selects other close-by nodes

might greatly vary (e.g. Cable/ADSL Modem Users). Another interesting point
is that the construction of an optimal overlay is known to be NP-complete [11]
therefore the following popular algorithms are based on heuristics.

Random Topology: In this algorithm, each vertex vi selects its d neighbors
by randomly choosing d other vertices. This is the algorithm deployed in most
current P2P networks such as [13, 17] and its main advantages are that it is
simple, does not require any knowledge on the distances, and leads to connected
topologies if the degree d > log2n [3].

BinSL Topology: In [21], Ratnasamy et al. propose the Short-Long (SL) over-
lay construction technique. SL alleviates the network unawareness of the Random
Topology in the following way: Each vertex vi, selects its d neighbors by pick-
ing the d/2 nodes in the system that have the shortest latency to itself (these
connections are called short links) and then selects another d/2 vertices at ran-
dom (these connections are called long links). Therefore SL requires the nxn
IP-latency matrix in order to find the latencies between the various node pairs.
The intuition behind this algorithm is that the d/2 connections to ”close-by”
nodes will result in well-connected clusters of nearby nodes, while the random
links serve to keep the different clusters interconnected and the overall graph
connected. It is important to mention that by only selecting the shortest latency
nodes will in most cases result in disconnected graph topologies. This can be
observed in the visualization of figure 3 where we visualize a random and a short
(SS) topology of 1000 peers.

Although the SL construction technique works well in practice, it is limited
by the fact that some node in the system needs to know the ”physical” distances
between all node pairs (i.e. an nxn IP-latency adjacency matrix). In practice such
centralized architectures don’t scale well, are expensive and are vulnerable to de-
nial of service attacks. In order to overcome the global knowledge requirement
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of the SL algorithm, Ratnasamy et al. propose the BinSL topology construction
technique [21], which is a distributed adaptation of the SL algorithm. Since the
adjacency-matrix of IP latencies is not available in a distributed setting, BinSL
deploys the notion of distributed binning in order to approximate these latencies.
More specifically each node calculates the round-trip-time (RTT) from itself and
k well-known landmarks {l1l2..lk} on the Internet. The numeric ordering of the
latencies represents the ”bin” the node belongs to. Latencies are then further
classified into level ranges. For instance if the latencies are divided into 3 levels
then; level 0 accounts for latencies in the range [0,100), level 1 for the range
[100,200) and level 2 for all other latencies. The level vector is then augmented
to the landmark ordering of a node yielding a string of the type ”l2l3l1 : 012”. It
is expected that nodes belonging to the same bin will be topologically close to
each other although false positives are possible, that is, some nodes do belong to
the same ”bin” although they are not topologically close to each other. We will
investigate the accuracy of the binning scheme in the experimental section.

Other Topologically-Aware Construction Techniques: Recently an ap-
proach to create resilient unstructured overlays with small diameters was pro-
posed in [28]. In the proposed algorithm a node selects from a set of k nodes,
r nodes at random (r⊂k) and then finds from the rest f=k-r nodes the ones
that have the largest degree. This algorithm results in networks with power-law
distributions of node degrees differentiating from Random and BinSL in which
we have a uniform distribution.

Topologically-aware overlays have also been addressed in the context of Struc-
tured P2P overlays in [4, 21, 29, 33]. These systems however rely on some hashing
scheme which allows nodes to quickly send messages to some destination node.
Although structured overlays are of particular importance in applications such
as decentralized web caches [15], they are not appropriate for content-based re-
trieval systems [9, 32] and large-scale systems with transient user populations [5].

Application-layer multicast systems such as Narada [6] initially construct a
richer connected graph (mesh) and then use some optimization algorithm to
generate a mesh that has certain performance properties. As part of the mesh
quality improvement algorithm, Narada nodes randomly probe each other and
calculate the perceived gain in utility. BinSL is simpler and cheaper in terms
of messages. It is furthermore designated for larger groups of members, which
might leave and join in an ad-hoc manner.

4 Experimental Evaluation Methodology

Our experimental evaluation focuses on three parameters: (i) the aggregate
tree delay (ΔT ) which is a metric of network efficiency for a given query that
spans in the sub-graph G’, (ii) the recall rate, that is, the fraction of docu-
ments each of the search mechanisms retrieves, and (iii) the overhead of the
techniques, that is, the number of messages that are consumed in order to find
the results. As the baseline of comparison we used the results retrieved by query-



144 D. Zeinalipour-Yazti, V. Kalogeraki, and D. Gunopulos

 0

 2

 4

 6

 8

 10

 0  100  200  300  400  500  600  700  800  900  1000

F
re

qu
en

cy
 o

f R
ep

lic
at

io
n

Documents (each consists of 132 articles)

NIST TREC Los Angeles Times Document Replication

Frequency of Replication

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  20  40  60  80  100  120

F
re

qu
en

cy
 o

f T
er

m
 R

ep
lic

at
io

n

Keywords found in the Queries

TREC50x2 Experiment - Query Term Distribution

Frequency of Replication

Fig. 4. a) Data Replication scheme for the TREC-LATimes dataset, b) Query
Term Frequency distributions for the TREC50x2 queryset

ing the collection in a centralized setting (i.e. as a corpus of documents) which
therefore returns all relevant documents. We chose to implement the algorithms
that require only local knowledge (i.e. BFS, RBFS, >RES and ISM) over Ran-
dom and BinSL topologies of the same size and degree.

The TREC Dataset: We use two series of experiments which are based on
the TREC-LATimes dataset which is a document collection that consists of
randomly selected articles that appeared on the LA Times newswire from 1989
to 1990. The size of this dataset is 470MB and it contains approximately 132,000
articles. These articles were horizontally partitioned into 1000 xml documents
each of which was subsequently indexed using the Lucene [18] IR API. These
indexes, which are disk-based, allow the efficient querying of text-based sources
using many IR features. We then generate Random and BinSL topologies of 1000
peers in which each peer shares one or more of the 1000 documents (see figure 4a).
We use this scheme in order to provide some degree of article replication. We
don’t use the ”qrels” relevance judgments, since the compared algorithms don’t
attempt to address the issue of precise document retrieval. We will refer to these
peers as the TREC-LATimes Peerware.

For the evaluation of the TREC-LATimes corpus we will use, as indicated by
NIST, the TREC ”topics” 300-450. One problem with the provided 150 queries
is that the query term frequency is very low and most terms are presented
only once. This is not a realistic assumption since studies on real P2P networks
(e.g. [31]) indicate that there is a high locality of query terms. Therefore we used
the 150 queries to derive the TREC50x2 dataset, which consists of a set a =”50
randomly sampled queries out of the initial 150 topics”. We then generated a
list b of another 50 queries which are randomly sampled out of a. TREC50x2
is then the queries in a and b randomly shuffled and the distribution of query
terms can be viewed in figure 4b.

Simulating Network Distances: Evaluating distances in network topologies
requires a dataset in which the IP latencies are not synthetic. We didn’t chose
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to use a real dataset of ≈300,000 IPs found in the Gnutella network [31], as
obtaining the distances among the different hosts was practically not feasible.
We therefore chose to base our experiments on the measurements of the Active
Measurement Project (AMP) [14], at the National Laboratory for Applied Net-
work (NLAR). AMP deploys a number of monitors distributed along 130 sites to
actively monitor the Internet topology. AMP monitors ping and traceroute each
other at regular intervals and report the results back to the project servers. Most
of the current 130 monitors currently reside in the U.S with a few exceptions of
some other International sites.

In our experiments we use an AMP 1.8 GB snapshot of traces obtained on
the 30th of January 2003. The set includes data from 117 monitors out of which
we extracted the 89 monitors which could be reversed DNS (i.e. given their IP
we obtained a DNS name). We then construct the nxn IP-latency matrix (for
all n=89 physical nodes), that contains the latency among all monitors. Since
all 89 hosts are located at different domains, we chose to incorporate some de-
gree of host replication per domain. Our study in [31] shows that hosts in a real
overlay network, such as Gnutella, exhibit this characteristic. More specifically
we randomly replicate each host [1..k] times. In our experiments we set k = 24
which generated distances for all 1000 nodes in the TREC-LATimes Peerware.

Peerware Simulation Infrastructure: In order to benchmark the efficiency
of the information retrieval algorithms, we have implemented Peerware1, a dis-
tributed middleware infrastructure which allows us to benchmark different query
routing algorithms over large-scale P2P systems. We use Peerware to build a de-
centralized newspaper network which is organized as a network of 1000 nodes.
Our experiments are performed on a network of 75 workstations (each hosting
a number of nodes), each of which has an AMD Athlon 800MHz-1.4GHz pro-
cessor with memories varying from 256MB-1GB RAM running Mandrake Linux
8.0 (kernel 2.4.3-20) all interconnected with a 10/100 LAN. Peerware is written
entirely in Java and comes along with an extensive set of UNIX shell scripts that
allow the easy deployment and administration of the system.

Peerware consists of three components: (i) graphGen which pre-compiles net-
work topologies and configuration files for the various nodes participating in a
given experiment, (ii) dataPeer which is a P2P client that is able to answer to
boolean queries from its local xml repository using the Lucene IR Engine [18],
and (iii) searchPeer which is a P2P client that performs queries and harvests
answers back from a Peerware network. Launching a Peerware of 1000 nodes
can be done in approximately 10-20 seconds while querying the same network
can be performed in around 250ms-1500ms.

The Discarded Message Problem: We define the DMP problem in the
following way: Node Pk receives some query q with TTL1 at time t1. Pk first
checks if it has forwarded the same query (identified by GUID) in the past. If
yes, it will immediately discard the message in order to avoid forwarding the

1 Details about the Peerware infrastructure can be found in [32].
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message several times. If not, it will decrease TTL1=TTL1-1 and forward q to
some of Pk’s peers. Now what happens if node Pk receives the same query q
with some TTL2, where TTL2 > TTL1 at some time t2, where t2 > t1? Most
of the commercial P2P clients will discard q. The result is that a query reaches
fewer nodes than expected. We fix the problem by allowing the TTL2 message to
proceed. Of course there is some redundancy which will add up in the ”number
of messages” graph (approximately 30% in the experiments).

5 Experiments

In this section we describe a series of experiments that attempt to investigate
the effect of the Random and BinSL overlay topology structure on the recall
rate and the messaging of the various information retrieval search techniques
that were described in section 2. We are particularly interested in investigate if
the BinSL topology can indeed minimize the aggregate network delay without
sacrificing the recall rate.

Efficiency of Landmarks in BinSL: The first experiment, we attempt to find
the right number of landmarks, as this plays an important role on how small the
ΔT becomes in a fixed size network. By using more landmarks, the number of
false positives also decreases as we have fewer collisions in the landmark ordering
codes of hosts that are not topologically close to each other. In figure 5a, we cal-
culate the sum of the delays w associated with all edges in the respective graphs
G (1000 peers each with an average degree of 6). This sum is more formally
defined as ΔG =

∑
∀ε∈G

w(ε) and we use this metric, instead of the Aggregate

Delay ΔT , as it is independent of the deployed search technique. In BinSL, we
first randomly sample out of the original network the set of landmarks.2 The

2 In a real setting, peers would have a predefined list of well chosen landmarks (i.e.
globally spread HTTP or DNS servers).



On Constructing Internet-Scale P2P Information Retrieval Systems 147

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0  1  2  3  4  5  6  7  8  9  10

A
gg

re
ga

te
 D

el
ay

 p
er

 Q
ue

ry
 (

m
s)

Number of queries (x10)

RANDOM Topology  - Aggregate Delay with TTL=6 and TREC50x2

BFS Search, TTL=5
RBFS Search
>RES Search

ISM Search

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0  1  2  3  4  5  6  7  8  9  10

A
gg

re
ga

te
 D

el
ay

 p
er

 Q
ue

ry
 (

m
s)

Number of queries (x10)

BINSL Topology  - Aggregate Delay with TTL=6 and TREC50x2

BFS Search, TTL=5
RBFS Search
>RES Search

ISM Search

Fig. 6. Aggregate Delay for the evaluation of the TREC50x2 queryset using the
Random (left) and BinSL (right) topology

figure indicates that by using no landmarks, the BinSL topology is essentially
a Random topology. This happens because a node selects all its connections
at random which makes ΔG of the Random and BinSL topologies identical. By
adding a few landmarks (i.e. 1-10), ΔG decreases substantially, after which point
ΔG decreases at a lower rate. Therefore by selecting an arbitrary large number
of landmarks may not be very efficient as each landmark probing comes with
an additional network cost and because the ΔG parameter of the network graph
may not significantly drop.

Although figure 5a shows that by using 20 landmarks might be satisfactory
for a network of 1000 nodes, in practice the network size might not be known a
priori. In figure 5b, we plot the ΔG parameter for networks of different sizes. The
figure indicates that the Random Topology does not scale very well with respect
to the ΔG parameter. By using BinSL and 20 landmarks on the other hand, the
ΔG parameter decreases by 46% from what the Random topology uses, while
using 40 landmarks drops ΔG by 54%. We can see that although we doubled the
number of landmarks the ΔG parameter improved by only 8%. The picture also
shows that the lower bound provided by SL is on average 66% less than what
the random topology requires, but SL is not feasible in practice as it requires
global knowledge. In the experiments presented in the subsequent subsections,
we set the number of landmarks to 20.

Minimizing Network Delays: In our second experiment, we investigate if we
can minimize the Aggregate Delay ΔT of a query that spans in the subgraph G’,
while retaining high recall rates and low messaging. In the BFS case, we con-
figure each query messages with a TTL parameter of five since this technique
is consuming extraordinary amounts of messages. With this setting, query mes-
sages are able to reach 859 out of the 1000 nodes.3 Therefore it was expected
that BFS’s recall rate would be less than the recall rate obtained by evaluating

3 With a TTL of 6 and 7, we would be able to reach 998 and 1000 nodes at a cost of
8, 500 messages/query and 10, 500 messages/query respectively.
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the whole dataset in a centralized setting. The rest techniques (i.e. RBFS, ISM
and >RES), use a TTL of 6 as they offer reduced messaging, which allows us
to explore the network graph deeper while maintaining low messaging. Finally,
the average time to perform a query for the BFS case is in the order of 1.5
seconds but results start streaming back to the query node within the first few
milliseconds. In the first row of figure 7, we plot the Aggregate Delay ΔT for the
Random (left) and BinSL (right) topology. The two figures indicate that by us-
ing BinSL any of the presented search techniques, can reduce the ΔT parameter
by a factor of three.

Maintaining High Recall Rates and Low Messaging: So far we have seen
that by using a BinSL topology we are able to reduce the ΔT parameter. How-
ever this single parameter is not enough in the context of information retrieval
applications, as these applications are required to return the most relevant doc-
uments. Furthermore, if some search technique always explored the shortest la-
tency neighbors then the ΔT parameter would be minimal but the query would
with very high probability get locked in some region and would not explore the
larger part of the network graph. This would consequently reduce the recall rate
which is not desirable.

In figure 7, we plot the recall rate and the number of messages required by
the different search algorithms using the Random and BinSL topologies pre-
sented in the previous subsection. The figures indicate that we can maintain the



On Constructing Internet-Scale P2P Information Retrieval Systems 149

same levels of recall rate and messages while keeping the ΔT parameter low. In
the same figures we can also observe the effectiveness of each search technique.
More specifically, BFS requires almost 2.5 times more messages than the other
techniques. The ISM search technique on the other hand, learns from its profil-
ing structure and guides the queries to the network segments that contain the
most relevant documents. On the other hand both RBFS’s and >RES’s recall
fluctuate, which indicates that >RES may behave as bad as RBFS if the queries
don’t follow some repetitive pattern.

6 Conclusions and Future Work

We considered and evaluated the impact of the use of topologically aware over-
lay network constructions on the accuracy and the performance of currently
proposed fully distributed P2P information retrieval techniques.

Our empirical results show that the use of the topologically-aware BinSL
overlay network construction technique significantly improves the latency times
for all the information retrieval techniques we considered. These included both
agnostic techniques (BFS, RBFS), and techniques that used past statistics (ISM,
>RES), and we compared the performance of the BinSL overlay network with
a random graph of the same average degree. In all cases, the accuracy remained
approximately the same.

Our results clearly show the advantage of our approach. In our future work
we plan to design new techniques that tightly integrate the construction of the
overlay network with the actual information retrieval mechanism.
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Abstract. We argue the case for a new paradigm for architecting structured P2P
overlay networks, coined AESOP. AESOP consists of 3 layers: (i) an architecture,
PLANES, that ensures significant performance speedups, assuming knowledge
of altruistic peers; (ii) an accounting/auditing layer, AltSeAl, that identifies and
validates altruistic peers; and (iii) SeAledPLANES, a layer that facilitates the
coordination/collaboration of the previous two components. We briefly present
these components along with experimental and analytical data of the promised
significant performance gains and the related overhead. In light of these very
encouraging results, we put this three-layer architecture paradigm forth as the
way to structure the P2P overlay networks of the future.

1 Introduction

P2P networks have recently been receiving an everincreasing recognition and attention.
Given the desirable characteristics and the inherent promises of the peer-to-peer com-
puting paradigm, attention is likely to increase in the coming years. Within the related
research a fundamental problem of "routing" (lookup) in P2P networks has received
special attention; given a request arriving at a specific peer node, for a document id,
route the request to the peer in the network, which stores the document.

Recent research in P2P networks has largely focused on structuring efforts for the
network overlay so to ensure the fast routing of requests to the peers storing the requested
objects. Most prominent in these efforts is a class of P2P network overlays based on Dis-
tributed Hash Tables (DHTs). DHT-based solutions [1, 2, 3, 4] can provide routing in the
steady-state case in O(logN) hops, in a network of N peers, providing routing efficiency
and scalability. These performance characteristics constituted an important step forward,
compared to the original, pioneering attempts for "unstructured" P2P networks [5, 6].
In unstructured networks related overheads are much higher and no guarantees can be
given for the efficiency or the locating of the requested documents.

Currently, there are efforts underway for bridging this structure chasm: unstruc-
tured networks are being enriched with DHTs (e.g., Limewire[7] and Mnet[8] (ex-
Mojonation[9]) with Chord[2]) and structured networks aim to deal effectively with the
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operational characteristics found in applications built on top of unstructured networks
(e.g., Structella [10]).

1.1 Our Perspectives and Position

Real-World Perspective. Our starting position is that our world consists of altruists,
selfish people, and of others with behavior ranging in between, with a non-negligible
percentage of the last category showing altruistic behavior if given the incentives to
do so. Within the world of P2P networks this fact has been clearly manifested and
documented: take as example the ’free riders’[11] phenomenon, first measured in the
Gnutella network.

The bad news is that the great majority of Gnutella peers were proven to be free riders
(more than 70%). And this is indeed very bad news for DHT-style overlays, since the
great majority of peers may be joining the network and leaving very soon thereafter – [12]
have show that the median session duration in Gnutella and Napster is approximately
60 minutes! There also exist other independent reports offering evidence that half of the
peer population is changing almost every half an hour[13].

The good news are that a non-negligible percentage of the peers were proven to be
altruistic1. In Mojonation[9], more than 1-2% of all users, stayed connected almost all
the time. In Gnutella, 1% (10%) of peers served about 40% (90%) of the total requests
[11], while [12] have shown that the longer a node has been up, the more likely it is
to remain up. Note that the routing algorithm in Gnutella acts as a counter-incentive
to acting altruistically, flooding peers with requests. Also, the majority of Mojo Nation
users were dissatisfied with it and that is why they permanently disconnected. Thus, we
conjecture that, by giving incentives (to avoid the so-called tragedy of the commons)
and taking away such counter-incentives, more network nodes will be willing to act
altruistically.

Research Perspective. Looking at related research in DHT-structured P2P networks,
one notices that given a highly-dynamic environment, routing performance degrades to
O(N) hops (that is, if the network remains connected). Fundamentally, this is due to the
difficulty in keeping up with the required updates to routing state for special neighbors
which ensure O(logN) hops in the steady-state case. Much to their credit, the authors in
[14] studied how to guarantee in highly-dynamic cases O(logN) routing performance.
To do this, O(log2N) so-called stabilization “rounds” need be ran by every node every
half-life to update routing state (successors, predecessors, and fingers). However, this (i)
transfers overhead from routing to the stabilization phases, (ii) this solution is expensive,
yielding a total message overhead of O(NlogN) per half life: e.g., each node in an one-
million node network needs to run on the order of 400 stabilization rounds, say, every

1 There is some disagreement whether this is true altruistic behaviour or a positive externality
(i.e., a benefit to the community that results from peers acting in their own self- interest);
Nonetheless, be it altruism or "altruism", the benefits to the community contributed by these
peers are recognized by all!

For this reason and for brevity in the remaining discussion we refer to altruistic nodes
implying both altruistic and powerful nodes.
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half hour!, and (iii) detecting the presence/absence of low-bandwidth nodes (which are
the great majority) during stabilization is time- consuming and highly error prone (think
of nodes behind 56Kbits lines). Hence, given the huge scales and the highly- dynamic
nature of the vast majority of peers, current architectures fail to ensure O(logN) routing
in the highly- dynamic case.

Furthermore, even O(logN) hops, achieved in steady-state assuming ’good node
behavior’, may not be good enough; after all, these are overlay hops with each being
translated into multiple physical network hops. In addition, even O(logN) hops over
peers with low bandwidth will definitely create performance problems. Finally, within
the DHT world there is a complete lack of attention on exploiting powerful peers in
order to improve performance.

But even when considering the unstructured P2P research efforts, one also notices
a lack of considerable attention on research exploiting the heterogeneities among peer
nodes [12].As an exception, [15] talk about exploiting powerful nodes, which are thought
of consisting of a number of smaller, “virtual” nodes. This transforms several hops
among weaker nodes, into internal “virtual hops” within a powerful peer. [16] presents
distributed algorithms to force-flow increased loads towards more capable nodes.

But still, heterogeneity means more than a mere distinction between powerful and
weak nodes; there is also heterogeneity with respect to their behavior, being altruistic or
selfish. For example, there will be powerful nodes that will not be acting altruistically.
It is reasonable to expect that altruistic nodes will tend to have greater (processing,
memory, and bandwidth) capabilities, willing to share them (when not in use) with
others (practically at very small extra costs, given the flat-rate resource pricing) . This
expectation has been validated in [13].

Despite this, the aforementioned related work has made some good progress, show-
ing the way in exploiting powerful nodes. Similar to our work, they are criticizing DHTs
and structured overlays in failing to cope with highly-dynamic environments, such as
the ones expected in sharing P2P networks [17]. However, this led them to avoid using
structured overlays, which unfortunately led to their inability to deliver definite perfor-
mance guarantees, with respect to routing hop counts and robustness. Conversely, we
follow a different path; we add further structure to DHTs, leveraging altruistic peers.
In this way, we can deliver definite performance guarantees for the steady-case and,
perhaps more importantly, for the highly-dynamic cases. Over and above any hop-count
improvements, we ensure a more stable infrastructure, especially during high churn[18].

Fundamental Peer Characteristics and Implications. In general, in this work we
define altruistic peers to be the peers having the following characteristics. They:

– stay connected for significantly longer periods of time, and
– are willing and possess the necessary capacity to accept greater loads.

With these altruists’ characteristics in mind we revisit the “traditional” arguments
about routing hot spots and about the overhead in dealing with the frequent topology
changes inherent in P2P networks. Specifically:

– It is a good idea to concentrate most routing chores at altruistic peers; these peers are
willing to carry extra load and have the required capabilities to do so. This results in
more efficient routing than forcing weaker nodes to partake heavily in the routing
tasks.
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– The above decision will undoubtedly create greater routing tables at altruists. Tra-
ditionally, this causes greater reorganization overhead incurred when nodes enter
and leave the network. However, the additional routing table entries of altruists will
concern other altruistic peers. Because these stay connected for long periods of time,
maintaining the freshness of this extra routing state does not result in prohibitively
increased bandwidth overheads.

Our Position and Contributions. This paper intends to show how to leverage the
coexistence of altruists and selfish peers found in real-life networks and harness them to
improve routing performance. We will focus on structured networks, and in particular
we will base our proposal on the desirable characteristics of Chord2, which include its
simplicity, its acceptability within the community (as evidenced by the systems utilizing
it, which include Limewire, MNet, Sun’s JXTA, and others) and its flexibility [19].
However, the proposed architecture can also be applied on other DHTs as well. More
specifically, our position is:

1. Weaving into the structured P2P network architectures the behavior and capabil-
ity differences of peers, much-needed, quantifiable, and significant further routing
speedups can be attained.

2. Routing speedups should refer to hop counts, routing state size and maintenance
requirements, and robustness, and they should not be achieved by transferring over-
head to other system operation phases (e.g., stabilization).

3. Routing speedups should pertain to the steady-state and highly-dynamic cases.
4. Altruistic and powerful nodes can be harnessed to offer these significant efficiency

gains, while requiring that only a very small percentage of peers be altruistic, being
burdened with only small overheads.

5. A software layer responsible for identifying and managing altruistic and powerful
nodes can go long ways in offering these significant efficiency gains, while requiring
that only a very small percentage of peers be altruistic, being burdened with only
small overheads.

6. As a result, a paradigm that facilitates the cooperation of an altruist-based architec-
ture and an auditing/accounting layer identifying altruist nodes is needed in order
to take the next step in structured P2P network architectures.

2 PLANES: Altruists to the Rescue

In PLANES, node and document IDs consist of m bits, allowing N ≤ 2m nodes and
documents. A small percentage of nodes (i.e. A << N ) is altruistic.

2.1 Architecting Layered, Altruism-Based P2P Networks

The fundamentals of our approach are:

1. The N nodes are partitioned into DHT-structured clusters. For each cluster, a DHT-
structured overlay network is created. (Note that any similar structure of choice

2 Due to this, the log()-notation in the examples to follow refers to base-2 logarithms.
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Fig. 1. An Example Network with
N=30, C=6, S=5

Fig. 2. Forming Clusters in an
Altruism-based P2P Network – A
Chord Ring of Chord Rings

can be used instead of DHTs, such as [20, 21] yielding similar relative performance
gains to that we show for DHTs). Given the desired cluster size, S, and the number
of clusters, C, overall, C = N

S clusters are formed.
2. Each node requires minimal overhead for associating node IDs with cluster IDs (e.g.

by hashing node IDs to cluster IDs).
3. The vast majority of a cluster’s peers are selfish. Within each cluster there exists at

least one altruistic peer.
4. Altruistic peers maintain greater routing state, with an entry for all other altruists,

creating a completely connected altruistic overlay network. Thus, communication
between altruistic nodes (and thus between clusters) requires 1 hop3. Later, we will
do away with the complete connectivity requirement.

5. Within every DHT cluster, all nodes maintain routing state for their neighbors, as
required by the cluster’s DHT. Thus, each node has O(logS) neighbors. Also, all
nodes keep routing state pointing to the altruistic node(s) in their cluster.

Routing is performed in two levels:

1. Across clusters, from any node to a node in a different cluster: given the completely-
connected altruistic overlay network, routing to reach any cluster from outside the
cluster requires two overlay hops: one hop from a node to its altruist and another
from this altruist to the altruist of the target cluster.

2. Within clusters, from any node (including an altruistic node) to another node in the
same cluster: routing is performed by sending the message over the cluster DHT
network.

Fig. 1 visualizes an example layered P2P network.

Forming Clusters Using Consistent Hashing. We present one possible alternative for
cluster formation.

1. Clusters are assigned IDs as follows:
ID(ci) = 2m

C · (i − 1), i = 1, . . . , C

3 In practice, we talk about a "highly-connected" altruistic network, and O(1) hops since complete
connectivity is hard to achieve.
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2. Using consistent hashing[22]4 each node ID is mapped to one of the C cluster IDs:
node nj is assigned to cluster ci if ID(ci) < ID(nj) < ID(ci+1). Thus, step
1 partitions a Chord ring into C subrings, onto which node IDs are assigned (see
fig. 2).

3. Using consistent hashing once more each node ID is placed within its cluster
(subring).

Figure 2 illustrates the clusters fomred for a network of eight clusters.

2.2 PLANES Algorithms

Routing. The routing algorithm is called at a node with srcNodeId, requesting docId,
and produces the nodeId storing this document. In the algorithm, there are two functions
used to send messages: send() and Route() (uses the cluster’s DHT to route the message).

PLANESRouting (srcNodeId, docId): nodeId
1: srcNodeId.send (srcAltrNodeId, docId); /* send request to altruist within source cluster */
2: ClusterId := srcAltrNodeId.ConsistentHash(docId); /* id target cluster */
3: destAltrNodeId:=srcAltrNodeId.LookUp (ClusterId); /* get target cluster’s altruistic node id

*/
4: srcAltrNodeId.send (destAltrNodeId, docId); /* send to target cluster’s altruistic peer */
5: nodeId := destAltrNodeId.Route (ClusterId, docId); /* route to node in target cluster and

return its id */

Addition and Deletion of Documents. The id of the document being added is hashed
to, first, the proper cluster and then, using the cluster’s DHT document addition protocol,
to one of the cluster’s nodes where it is stored. Deleting a document requires no extra
state maintenance.

Addition and Deletion of Peer Nodes. A node (altruistic or not) ni joins the network,
as usual, by finding the address of any member node, say of cluster cs. Communicating
with it, finds the address of the altruistic node for cs. Then the id of the cluster to which
it will belong, cd, is determined by hashing the id of ni, as explained earlier in sec. 2.1
(discussing cluster formation using consistent hashing). The altruistic node of the target
cluster cd is then found using the altruist for cs. Finally, ni joins the DHT structure of
the target cluster, using the DHT join protocol and including an entry in its routing table
for the cluster’s altruist.

Adding an altruist also involves communication within the altruist network to store
the altruist network’s routing table and update the other altruists’ tables to include it.
Further, all DHT-cluster nodes need add an entry for it.

A node leaving the network affects only the cluster’s DHT structure, calling on the
leave protocol of the DHT. Altruist deletion requires informing its cluster nodes and may

4 Consistent hashing ensures that, with high probability, all clusters will have equal numbers of
peer nodes (with negligible differences).



AESOP: Altruism-Endowed Self-organizing Peers 157

require finding a replacement for it, e.g., if it is the last altruist for its cluster. This can be
done examining its local routing table and selecting another altruist (typically one that
is associated with a small number of clusters).

2.3 Performance of Routing in PLANES

To illustrate the improved efficiency, we first present a simple “winning configuration”
for PLANES. We set C = N

logN , yielding S = logN . Furthermore, we structure each
cluster network using a DHT, as explained in sec. 2.1.

Routing Hop-Count Efficiency. This configuration will ensure routing in O(logS) =
O(log(logN)) hops, in the steady-state case, within each cluster. This follows straight-
forwardly from the adoption of a DHT-cluster organization and the O(1) hop-count
routing between the altruistic nodes.

The “hard” case occurs when peers join and leave the network concurrently with
such high rates that the DHT cannot maintain fresh routing states (i.e., information about
neighbors of nodes). Depending on the adopted DHT organization, the probability of
facing this “hard” case varies. However, in highly dynamic networks, as argued earlier,
the performance of routing will degrade to O(N). Since DHTs guarantee routing hop
counts in this case in the order of the size of the DHT network, it follows that with our
architecture, in this highly dynamic case, routing is ensured in O(S) = O(logN) hops,
given the O(1) hops between the altruists.

The existence of N
logN clusters implies requiring a number of at least N

logN altruistic
peers (one per cluster). However, note that as N increases, an increasingly smaller
percentage of N is required: e.g., for 1000 nodes, 10% of the nodes need be altruistic;
for one million nodes, only 5% of the nodes need be altruistic.

The following examples, quantify the improvements. For simplicity, in most dis-
cussions we drop the O-notation, since the constant factors should be the same for our
architecture and for DHT-style architectures.

Routing Performance at Larger Scales: Example. Consider a (N =) one million
node network. Then, routing in a traditional DHT overlay requires (logN =) 20 hops,
in the steady-state. In the highly-dynamic case, DHT routing requires O(N) hops – a
gloomy prospect!

For altruism-based routing we assume that 5% (50,000) of peers are altruistic. Having
one altruistic node per cluster, each cluster will have about logN ≈20 peer nodes and the
routing within each cluster will require log(logN) ≈4 hops and 6 in total, after adding
the two hops needed to get to the source and destination clusters’ altruistic nodes, in the
steady-state case. Therefore, in similarly-sized networks, routing hop-count efficiency
is improved by a factor of better than 3×.

In the highly-dynamic case, when large numbers of peers join and leave the network
concurrently and frequently and the special neighbors structure of the DHT cluster
breaks, altruism-based routing requires O(S) = O(logN) ≈20 DHT hops, plus 2 for
reaching the target cluster. This yields an impressive improvement of several orders of
magnitude!

Routing Performance at Smaller Scales: Example. For smaller size networks, with
one thousand peer nodes, traditional solutions yield a routing hop count about (logN =)
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10 and 1000 in the steady-state and highly-dynamic cases, respectively. With altruism-
based routing, the steady-state routing hop count is about 3 (i.e. log(log1000) and the
highly-dynamic case is about S = log1000 = 10, yielding improvement factors of about
2× (after accounting for altruistic network hops) and about two orders of magnitude,
respectively.

2.4 PLANES Architecture Extensions

In dynamic systems, the main concern is the overhead for maintaining freshness of rout-
ing state about altruists, which may become expensive or even impossible to maintain,
breaking the complete-connectivity of the altruistic network. We first work in two di-
mensions: (i) reduce the required number of altruists and (ii) reduce their routing state.
Then, we discuss an architecture without complete connectivity for the altruists network.

PLANES with Fewer Altruists: Riding the Log() Factor... We present an extended
architecture, showing how to offer small sacrifices in routing speedups, to secure dramatic
reductions in the overhead for maintaining altruist network routing state.

We architect the network to consist of C = N
z×logN clusters, yielding a cluster

size of S = z × logN for an appropriately-valued integer z. The key is to note that:
(i) the required number of altruists (which is equal to C) decreases by a factor equal
to z; and (ii) the routing hop count within each DHT cluster increases by logz, since
logS = log(z × logN) = logz + log(logN).

Example: with one million nodes and z = 6, C ≈ 8335 clusters, cutting the state and
freshness overhead requirements by a factor of 6× (going from a 50,000 altruistic-nodes
network down to 8335 nodes). In return, instead of routing in <5 hops within the DHT
cluster, we now require about <7 hops (log120 ≈ 7). Taking this point further, using
z = 50, results in 1000 clusters, each with 1000 nodes in it. Routing within each cluster
now needs 10 hops; and the required number of altruists are now reduced by a factor
of 50×.

Thus, we can still ensure significant speedups in routing (by a factor of about 2×
for the steady-state case and by orders of magnitude in the highly-dynamic case). At the
same time, the overhead for maintaining high connectivity within the altruistic network,
is dramatically reduced, since the number of altruists has been drastically reduced.
Finally, we stress that requiring such a small percentage (0.1%) of altruistic nodes is not
unrealistic [11, 12, 13].

PLANES with Less Altruism, and/or Less Power: Keep on Clustering... Alterna-
tively (or complementarily) to the previous architecture, one can adopt the same layering
principle recursively with respect now to the altruistic network. The motivation for this
is twofold: (i) reduce further the overhead for maintaining complete/high connectivity
between altruists, and (ii) exploit possible heterogeneities among altruists.

Fig. 3 outlines our approach for a three-layer P2P network. This network now includes
a clustered altruistic P2P network with A = 50, 000 altruistic nodes, partitioned in
C = 390 clusters (AltNets), each of S = 128 altruistic nodes. This configuration is
obtained by employing the C = A

z×logA configuration presented earlier and applied
now for the altruistic network of A nodes, with z = 8.
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Fig. 3. A Multilevel Altruism-based P2P Network

Altruists belong in AltNet, or in Alt2Net. In the network in Figure 3 the network has
N =1,000,000 nodes, with 5% (50,000) altruistic nodes being organized into two levels
(of 390 altruistic clusters - AltNets - with 128 altruists each and an Alt2Net network of
390 altruists, one for each AltNet cluster). Each DHT cluster (DHTNet) consists of 20
nodes. Each DHTNet is served by anAltNet, with eachAltNet serving 128 DHTNets.All
AltNets and the Alt2Net are as before (almost) completely connected. The requirements
in order to maintain this high connectivity are further drastically reduced: altruists within
an AltNet (Alt2Net) need have 128 (390) neighbors. This represents a reduction by a
factor of about 400 to 128, respectively.

At the same time, the significant routing speedups are maintained. For the example
one-million-node network, instead of requiring two hops to reach the target DHT cluster,
now two or four hops are required for this purpose (depending on whether the source
and destination nodes are served by the same AltNet overlay, or not, respectively). So
a total of about 6-8 hops are required: 2-4 to reach the target DHT cluster and about 4
to reach the target node within it. This gives a speedup of about 2.5 to 3×, compared to
the 20 hops required in the steady-state case for the plain DHT architecture. Again, in
the highly-dynamic case, the speedup is several orders of magnitude.

Note that, the more layers we deploy, the less the routing state powerful peers have
to maintain. The latter, however, comes at the expense of routing hops. Whether more
layers are suitable or not is highly dependent on the characteristics of the network and
the actual application.

PLANES Without Altruistic Network Complete Connectivity. Altruistic networks
can also be structured using a DHT, doing away with the completely-connected network.
The layered routing algorithm presented earlier, needs to be updated to combine steps 3
and 4 and call on the DHT’s routing operation to send the request to the target cluster.

Routing without Complete Connectivity: The altruists form a Chord unit ring onto which
altruistic node ids are placed. In addition, cluster ids are mapped to the same ring (like
document ids are mapped to Chord rings). Thus, altruists are responsible for clusters, as
nodes are responsible for documents in Chord networks. Routing then at the top layer
(i.e., from a source-cluster altruist to the destination cluster altruist) is done by routing
through the altruists’ Chord ring for the destination cluster id. The other steps remain
the same.
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Consider a network with N = 1,000,000, nodes with S = C =
√

N =1,000.
Employing a DHT for the C =1,000 altruists does not improve hop counts in the steady-
state case: about logC (=10) hops would be required to route through the altruists’ DHT
and logS (=10) hops to route within the target cluster’s DHT.

However, this still leverages the characteristics of altruists to yield high routing
performance in the highly-dynamic case. Since we assume that the altruist routing state
about their neighbors can be maintained even in the highly- dynamic case, routing within
it requires O(logC) = O(log

√
N). But even in the unlikely case where this cannot be

achieved, routing within the altruists’ DHT will require O(C) = O(
√

N). Routing
within the cluster DHTs requires in the highly-dynamic case O(S) = O(

√
N). Thus,

overall, O(
√

N) hops are required, a drastic improvement compared to DHTs, making
this architecture highly desirable.

Finally, in the architecture of sec. 2.4, altruist DHTs can be used at one level only.
This still enjoys smaller hop counts in the steady-state and highly-dynamic cases, and
requires a percentage of completely-connected nodes.

3 AltSeAl: Altruism Sealed

SeAl[23] is a software layer we have developed for identifying selfish peers and giving
them incentives to behave fairly so to improve load balancing and overall data-access
performance. SeAl can be transparently incorporated in structured and unstructured
networks. Here we outline AltSeAl, a modified version of SeAl, addresssing the needs
of AESOP.

3.1 The Monitoring/Accounting Layer

The basic idea is that all transactions between peers result in the creation of tokens
(called “Transaction Receipts” or TRs) that can be used much like “favors” in real life;
the peers rendering favors (i.e. sharing resources) gain the right to ask peers receiving
favors to somehow pay them back in the future or get “punished” otherwise.

All of these operations are performed transparently to the user. Nodes keep track of
the favors they render or receive (i.e. store the corresponding TRs) in two “favor lists”:
the “Favors-Done” (Fd) and “Favors-Owed” (Fo) lists. Moreover, nodes in AltSeAl are
characterized by their “altruism score” (denoted by ni.A). This is simply a function of
|Fd| and |Fo|, where |X| denotes the size of the set X . For example, we can consider
|Fd| − |Fo| or |Fd|

|Fo| as possible altruism score functions.
If node n1 shares a resource r1 and node n2 accesses it, the favor-lists mechanism

enables n1 to selectively redirect a subsequent incoming request for r1 to n2. AltSeAl
nodes autonomously and independently set an upper (ni.Amax) and a lower (ni.Amin)
threshold value for their score. When they rate higher than ni.Amax they always redi-
rect incoming requests (if possible), while never redirecting when rating lower than
ni.Amin. In all other cases, nodes with a tunable probability decide whether to serve or
redirect.
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3.2 Favors and Complaints

In the previous scenario, if n2 serves the redirected request, then the corresponding favor
is marked as paid-back. Otherwise, n1 may choose to use the corresponding TR – i.e.
TRn2

n1
(r1) – as a means of accusing n2 of acting selfishly. This is accomplished in the

following manner. AltSeAl uses a DHT overlay of its own to store “complaints”. n1
sends TRn2

n1
(r1) to the appropriate node – say n3 – on this DHT (found by hashing

the TR itself). n3 then acts as an arbitrator between n1 and n2; it can ask (both) nodes
to verify TRn2

n1
(r1) and have n2 pay back the corresponding favor. If the verification

succeeds but n2 still refuses to play fair, n3 stores TRn2
n1

(r1) for other nodes to know. If
the verification fails, n3 may choose to similarly “complain” about the perjurer peer.

What’s more interesting is that, if n2 chooses to go altruist at some time, it can go out
on the DHT, collect all filed complaints, and selectively pay them back, thus improving
its status with respect to the community. Note that, while complaints are sent out to the
DHT, TRs concerning favors done or paid-back are kept locally at the altruistic peer.
Moreover, to keep storage requirements constant as the system evolves, we use an aging
scheme for stored TRs.

TRs are constructed using strong (e.g. public-key) cryptographic primitives, while
nodes inAltSeAl are equipped with a public/private key-pair and identified using a digest
of their public key, also used to verify TRs. Thus, nodes can’t fake TRs or refuse the
validity of a TR, unless they change their ID (key-pair). Furthermore, AltSeAl deploys
a feedback mechanism rather than a penalizing one – requests are queued and served
in a prioritized manner, while the actual resources allocated for serving these requests
(e.g. bandwidth, storage, etc.) vary, based on the overall “score” of the served peers.
Moreover, peers commence their lifecycle in the system with the worst possible score,
thus having no incentive to change their ID or mount a Sybil [24]-class attack.

3.3 SeAled PLANES: AltSeAl and AltNets

AESOP requires the capability to find the IDs of a number of altruistic peers, asyn-
chronously with respect to when they assumed such a status. In the context of AltSeAl,
altruism can be expressed using the “altruism score”. For example, only peers with
|Fd|
|Fo| ≥ 2 may be deemed altruists. Proofs of altruism are also needed. In AltSeAl, TRs

of favors rendered or paid-back can serve for this purpose5. Using these TRs, further
auditing is possible, validating a peer’s claims for altruism.

Finally, AESOP needs a structure to manage altruists. We use a second DHT-based
(e.g. Chord[2]) overlay for the altruists – the AltDHT. As soon as a node n is proved to
be an altruist, the AddToAltDHT(n) routine is called. This routine:

1. Is directed to the node n′, responsible for maintaining the “complaints” for n.
2. n′ audits n, retrieving its white records and checking the locally-stored black records

for it.
3. If the audit is successful (i.e. n’s altruism score is higher than the system’s altruism

threshold), n′ computes an altruist ID (e.g. by hashing the concatenation of the string

5 We’ll call such “positive” TRs the white records, as opposed to “negative” TRs called the black
records.
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“Altruist” and n’s ID) and, using the DHT node addition protocol, it adds n to the
AltDHT. If the audit fails, n′ returns an error to n.

4. Whenever a node is promoted to the AltDHT it assumes special responsibilities (e.g.
routing).

5. When a peer loses its altruist status (e.g. its altruism score drops below the corre-
sponding threshold), it is removed from the AltDHT using the DHT’s node deletion
protocol.

Note that peers have a natural incentive not to cheat staying in AltDHT when they
wish not to be altruists, since they receive extra load. In addition, peers in AltDHT can
perform random audits: periodically, they choose a random ID n′′ from those in AltDHT
and calculate its altruism score. Peers that are discovered to cheat can be ejected! A
more elaborate (but also more resource-hungry) approach to verifiable monitoring and
auditing is described in [23].

With this infrastructure in place, discovering altruists is straightforward. To discover
k altruists we can, for example, compute a random ID, use AltDHT to locate the node
responsible for it and then follow k successor pointers (if AltDHT is implemented using
Chord).

4 The Performance of AltSeAl

We have simulated AltSeAl. Our performance results show that AltSeAl performs very
well in terms of network/storage overhead and the number of transactions required to
audit all nodes.

4.1 Experimental Setup

Our experimental setup assumes that AltSeAl operates in a music-file sharing context,
with file sizes (in Mbytes) uniformly distributed in the range 3-10 (for an average size
of 6.5 Mbytes). The simulated network consists of 2,500 nodes, sharing 50,000 distinct
documents, replicated across peers following a Zipf access distribution, with α = 0.7 and
1.2 [25] (for a total of approximately 50.200 and 51,350 documents respectively). We
have also tested our system with larger node populations (with similar results), but with
not as many queries, due to CPU and memory constraints, and thus report only on the
2500-node case here. The simulation runs for 200,000 requests. Requests arrive at the
system following a Poisson distribution, such that every peer will make approximately 5
requests per day of simulated time. The documents requested follow a Zipf distribution
too, with similar results for both α values (0.7 and 1.2). Due to space considerations, we
report only on the α = 1.2 cases.

The peer population consists of 90% (70%) free-riders and 10% (30%) altruists, with
network connections ranging (uniformly) from 33.6kbps (modem) to 256kbps (cable)
lines for selfish peers, and from 256kbps to 2Mbps (T1) lines for altruists. Furthermore,
all peers may fail or deny service with a probability of 0.2, and delete/unshare files with
a probability of 0.1.

Finding a peer sharing a file and downloading the file are both 1-hop operations. All
AltSeAl operations are run on top of a DHT, thus every AltSeAl transfer is assumed
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to take O(log(N)) = 11 hops on average (for the 2500-node network). As we’ll show
shortly, in spite of this handicap, AltSeAl incurs negligible network overhead. Moreover,
should AltSeAl be operating on top of store-and-forward networks, such as FreeNet or
AChord, the observed network and storage overhead would be orders of magnitudes
smaller.

Peers compute their scores using |Fd| − |Fo|. Altruistic (selfish) peers redirect in-
coming requests with probabilities 0, 1, and 0.5, when their score is below their lower
threshold, above their upper threshold, or within these values respectively.

The simulation results are depicted in fig. 4 and 5. In the simulation the TR aging
mechanism was off, hence the linear growth of the storage overhead (fig. 5). Even with
this handicap, AltSeAl inflicts on average a mere 0.16% storage overhead. Moreover,
the network overhead stabilizes to at most approximately 0.7%, while more than 90%
of the total node population has been audited, after the first 5k requests (fig. 4).
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5 Conclusions

The coexistence of altruistic and selfish peers in P2P networks has been well documented.
With this paper we PLANES; an architectural paradigm harnessing these characteristics,
weaving them into the structured network architecture. We argued for the need and have
shown how to achieve significantly greater routing efficiency in such networks for both
the steady-state and highly-dynamic cases, without transferring routing overheads to
other system functionalities, and while introducing significant efficiency gains in terms
of hop counts, routing state size and maintenance requirements, and robustness.

We presented several architectures and algorithms offering trade-offs between routing
speedups vs the required number of altruists and their routing state and between routing
path lengths in the steady-state case vs altruist-network connectivity requirements. The
end result is that extremely small percentages of altruistic nodes are required, being
burdened with small overheads, and introducing steady-state routing speedups by factors
of up to 2-4×, and by several orders of magnitude in the highly-dynamic case. At the
same time, total routing state size is reduced by a factor of about 2×, which leads to
improved robustness.

Furthermore, routing robustness is improved due to the smaller total routing state and
the isolation of the ill-effects of selfish behavior within small clusters of peers. Because
of the above and its simplicity, we believe the proposed paradigm is viable and realizable
and we offer it as the way to structure the P2P networks of the future.

Finally, we presented a number of open problems whose solution can ensure sig-
nificant further performance gains. In a related thread we are developing a software
monitoring/auditing layer that can seamlessly and efficiently discover altruistic nodes
within the network [23]. In addition, we are developing a protocol suite integrating this
layer with the PLANES architecture. The two components lead to a self-organizing,
altruist-inspired, dynamic P2P network architecture, maintaining the highly desirable
performance characteristics of PLANES, as presented here.
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Abstract. As in a centralized environment, XML data processing in a peer-to-
peer environment relies on basic relations between two XML fragments such as 
containment, subset, difference and intersection. Fast calculation of such 
relations based only on logical expressions like XPath is known to be a major 
challenge. Recently XML patterns have been introduced to model and to 
identify handy subclasses of XPath. We introduce a model for XML data based 
on their DTDs, tailored to the needs of distributed data processing. In order to 
meet the required granularity for data processing, our model combines concepts 
of tree patterns and search trees to represent XML fragments. Besides the given 
overview and properties of our search tree pattern model, we give an 
introductive example of the usage of such patterns in a peer-to-peer XML 
caching environment. It enables a peer’s cache manager to partially contribute 
to other peer's requests. Identifying suitable and flexible classes of our newly 
introduced search tree patterns, we show that our model supports fast and 
resource preserving logical XML data processing, and we show how such 
classes can be tailored to a specific application domain and how access focus 
changes to XML data can be adapted.  

Keywords: mobile databases, XML, query patterns, XPath, caching, peer-to-peer. 

1   Introduction  

Whenever XML data is exchanged, processed and cached on computers within a 
network, data management meets new challenges. For example, in networks of 
resource-limited mobile devices, efficient usage of data storage and data 
transportation over a wireless network is a key requirement [17,6,5]. In such a 
network, a common situation is that a client queries for data of a dedicated source.  
Within such a network, it may be of considerable advantage to share and exchange 
cached XML data among several neighboring clients, compared to a solution where 
data is only transferred between each requesting client and a dedicated server. One of 
the main new challenges in such a data sharing scenario is the organization of the data 
space which is shared among the clients.  

This includes specifying how the data space can be divided into handy fragments, 
how to profit from the distribution of data according to these fragments, and how 
cooperative usage in a network can enhance data processing. 
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A basic challenge is to identify handy classes of logical representations for XML 
fragments to build a cooperative framework for data sharing and data exchange. Data 
processing components in such a framework must decide on the fly, i.e. without 
losing time for extensive intersection tests and difference fragment computations on 
XML data, whether or not an XML fragment can be used in order to fulfill an 
operation. 

To enable collaborative use of partial XML information, we identify two 
requirements. Firstly, for any such fragments used in the framework, it shall be easy 
to decide whether or not they intersect, which parts intersect and which parts differ 
and to easily (re-)join them (with minimal operating costs). Secondly, most XPath 
query results can be represented by such fragments or joins of such segments with 
little or no dispensable offset (fitting granularity). Obviously, there is a conflict 
between the requirement of a fitting granularity and the need for an overall fast 
processable set of fragments accepted by all collaborative clients. We address this 
conflict and present a suitable subset of fragments, that can be adjusted based on 
access frequency analysis.  

The remainder of our paper is organized as follows. In Section 2, we shortly 
introduce ST-patterns and give an introductory example for their usage in a peer-to-
peer environment. In order to express the required granularity of XML fragments, we 
introduce our formal framework in Section 3. We present the properties of ST-
patterns in Section 4 and present ST-pattern processing in Section 5. We show how to 
use ST-patterns for the distributed caching example in Section 6. In Section 7, we 
discuss related work and summarize and conclude our contribution in Section 8. 

2   Motivation 

In the field of mobile data processing where mobile clients might use their resources 
in cooperation, data management optimization concepts are limited by processing 
power, available memory and the amount of available energy. Thus, a collaborative 
use of data fragments will only be accepted if it is easy to manage. 

This chapter gives an introductory example of how a fragmentation of an XML 
data source can be used to decrease response time and save communication resources 
using a collaborative caching mechanism.  

2.1   Brief Introduction into the Concept and Terminology 

Within Section 3, we introduce so called ST-patterns, which can be regarded as a 
subclass of XPath expressions used to select specific XML fragments of a global 
master XML document. We use particular ST-patterns belonging to a predefined 
subclass of ST-patterns, called STSET, in order to logically describe the partitioning of 
the XML document’s schema space. In the framework, ST-patterns describe so called 
pattern fragments containing partial application data that are stored, exchanged and 
processed as handy data units in a data processing network. 
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2.2   Overview and Scenario 

Within our system, each participating node that provides XML data is called a 
dedicated server for that data. The dedicated server, as with other participants, 
organizes its data space and its data according to a class of ST-patterns called STSET. 
The union of all these ST-patterns forms an ST-pattern STU that describes the 
logically available data in the cache. Besides the dedicated server, other participants, 
called caching servers, might offer a caching service.  

Whenever a client wants to request data using an XPath query, it looks up its 
cache for any partial fragments of the answer and sends the request for the missing 
fragments as an ST-pattern STREQ to a caching server.  

If the caching server cannot completely answer the request, it can forward a 
reduced version of the incoming request and at the same time send the pattern 
fragments of the request it has cached as a partial response. The originator of the 
request collects and (re-)joins the pattern fragments as they arrive, and might store the 
result in its own cache.  

2.3   Segmentation Caching in Peer-to-Peer Environments 

In a peer-to-peer environment, each client could act as an intermediate caching server. 
As routing delivers the request to a master server, each client on the route can 
contribute locally available pattern fragments, send them immediately to the 
originator of the query, and in parallel rewrite the original query and thus reduce the 
amount of requested data. 

This is possible and attractive for two major reasons. First, the costs for another 
client to contribute are minimized by using the concept of ST-patterns. We expect that 
the savings of time and transport costs by data sharing will clearly come out as an 
average advantage for each participating client. Second, costs for contributing are 
dominated by transmitting the locally available pattern fragments. In networks where 
a (potentially contributing) client is a routing node between server and originator of 
the request, it would have communication costs in any case. Since it would receive 
and send the data as a router anyway, as an intermediate caching server, some data 
has to be looked up and sent in the case of contributing partial results.  

2.4   Expected Behavior in Peer-to-Peer Environments 

For applications with hot spots and frequent similar requests, we expect enormous 
savings, if the choice of the ST-pattern class guarantees that frequent requests can be 
represented by pattern fragments with minimal or no dispensable offset. Each cached 
pattern fragment found in the local cache or an intermediate cache server guarantees a 
saving of time and transmission resources. For infrequent requests, it is acceptable to 
have some overhead.  

Especially in networks with limited bandwidth such as Bluetooth or clients with 
other wireless access, we expect enormous savings. For example, self organizing ad-
hoc networks of mobile clients organize their routing dynamically. In such a scenario, 
the discussed peer-to-peer approach, where each client on the requested route can 
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contribute pattern fragments, seems very promising. We can formulate the cost 
reduction as follows. Let C be a set of tuples (j, i) where each tuple represents the 
client ci that contributes the pattern fragment pj to the actual request. Furthermore, the 
costs for transporting a pattern fragment pj from client ci to ci-1 are expressed as costs 

(pj, ci) and can depend, for example, on distance, 
bandwidth, sending power and power supply. For a 
client c0 that requests n frequent pattern fragments {p1, 
…, pn} from a master XML document of client cm, 
routing its request through the path of nodes ci with i  
{1, …, m-1}, transport costs can be reduced to: 

 
See Figure 1 for an example topology. Besides the reduction of transport costs, we 

also expect a time saving based on two observations. First, since all ci know the 
request earlier than cm, the response is already started as the request reaches the first ci 
that can contribute a pattern fragment. Second, the time period between the start of 
the first response package in cm and the arrival in c0 (known as pipeline initiation 
time) is reduced, since data packages to be transferred are already spread along the 
route from cm to c0. 

3   Framework for ST-Patterns 

We use XML patterns as logical data descriptions for data processing. In this context 
we need logical descriptions that are easy to handle and that allow a good degree of 
granularity. By granularity, we mean that it must be possible to split any logical 
description into several parts. This technique can be used to archive handy sizes of the 
fragments represented by the description. For an example (compare the DTD of 
Figure 2), standard tree patterns allow us to describe a fragment that holds all the 
contact nodes and to split it into two patterns. One part holding all contact names and 
the other holding all the corresponding images. Assuming that the names are the most 
frequently needed information, the split separating two fragments by the condition of 
the sibling’s labels 'name' and 'image' is a good partitioning. However, the latter 
pattern describes an XML fragment including all images of all offers and this 
fragment might still be too large for efficient processing. Because tree patterns like 
these can’t be split any more, we expand the definition of XML patterns to so called 
ST-patterns which support a higher granularity.  

To achieve this granularity, we introduce ST-patterns based on split nodes that 
partition a node’s child set and introduce operations and properties on ST-patterns. 

             costs (pj, ci) -                   costs (pj, ci). 

Without caching:  
Each pj has to be trans-
ported over a link m times. 

j=1 to n each (j, i)  C 
i=1 to m

k=i to m

Savings because of 
 caching. Fig. 1. Example topology 
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3.1   Formal Framework 

We next introduce models for basic objects of our 
framework. Starting with simple models for DTDs, 
XML documents and XML patterns, we develop a 
formal framework for so called ST-patterns and  
ST-pattern fragments used as basic components in our 
data processing.  As a running example, we use a car-
selling catalog based on the DTD given in Figure 2. 

Similar to [20], in the following we use  = {n1, n2, 
n3, …} as an infinite set of nodes,  = {e1, e2, e3, …} 
as a finite set of element names and Q = {v1, v2, v3, 
…} as a infinite, ordered set of data values. 

 

 

 

3.2   DTD Trees 

DTDs describe the structure of valid XML documents. DTD trees are a simplified 
model for DTDs. Each element, text-node and attribute occurring in such a DTD is 
converted to a node in our DTD model, i.e. in the DTD tree. The parent-child relation 
(and the attribute-relation) between the elements and the attributes of a DTD are 
represented by directed edges within the DTD tree. For each element name, the model 
formally expresses these relations by using its branching constraints. A branching 
constraint describes the set of allowed children element names and for each allowed 
child it specifies the multiplicity relation as being one-to-many or one-to-one (short * 
or 1). For example in Figure 3, a DTD tree is shown that allows car nodes to occur in 
arbitrary quantity under an offer node, whereas attribute nodes are always restricted to 
a single occurrence per parent element. 

  

Fig. 3. Example DTD tree 

 
 

Fig. 2. Example DTD 
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Definition 3.2.1. A DTD tree D (over alphabet ) is a triple ( , r, b), where  
(1) r   is the root label 
(2) b:   {(e1, m1), … ,(ek, mk) | ei  , mi  {1,*} with i  {1, … , k}, ei = ej  i = j,  
k <= | | } associates to each node name a branching constraint {(e1, m1), … ,(ek, mk)}. 

     A graphical representation for a DTD tree can be seen in Figure 3. Usually the '*' 
multiplicity relation is denoted to the edges whereas the '1' is omitted. The DTD tree 
can be easily constructed from a DTD, extracting the branching constraints as parent-
child relations and converting multiplicity relations as follows: 1, ?  1 and +, *  *. 
Recall that a DTD is in general stricter than the corresponding DTD tree, since the 
DTD tree is a simplified model. 

3.3   XML Data Model 

XML data models can be distinguished by whether or not they support sibling order. 
Whereas, for content centric documents sibling order is considered to be important, 
we stick to unordered siblings as commonly expected in the context of data centric 
documents. XML data trees are simplified models for these data centric XML 
documents. They simplify the richness of XML syntax to labeled trees containing 
data. There are two commonly known data tree models for XML data. In contrast to a 
single node type model [20], we use a leaf data tree model that distinguishes between 
data and navigation nodes. Attributes and all elements being leaf nodes are 
represented as data nodes, whereas internal elements are represented as navigation 
nodes. Non-empty element nodes are split into a pair of nodes containing a navigation 
node and a data node.  

The leaf data tree model represents an XML document as a set of tree-connected 
element names with attached data values in its leaf nodes. We next define the 
containment property, the three operations union, intersection and difference for leaf 
data trees and give a classification for such trees based on DTD trees.   

Definition 3.3.1. An XML leaf data tree (short LDT) T (over alphabet ) is a triple  
(t, , ), where:  

(1) t is a finite rooted tree with navigation nodes Nn(t)  N and data nodes Nd(t)  N,  

(2) : Nn(t)  Nd(t)   is the node labeling function and 

(3) : Nd(t)  Q is the value mapping, mapping a value to each node  Nd(t) 

Definition 3.3.2. An LDT T1 (t1, 1, 1) is contained in an LDT T (t, , ) if 

(1) t1 is a subtree of t containing the root and  
(2) 1, 1 are the restrictions of ,  to the nodes of t1. 

The following two definitions are required for the formal definition of the 
difference operation in 3.3.5. 

Definition 3.3.3. Whenever t is a finite rooted tree and n  t is a node in t, we use 
dln(n, t) as a shortcut for the set of descendent leaf nodes of n in t. 
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Definition 3.3.4. For two LDTs T' (t', ', '), T'' (t'', '', '') where T' and T'' are both 
contained in a master LTD M (tm, m, m), let Ndisp (tm, t', t'') be the dispensable set of 
navigation nodes for a difference operation of T' and T''. Ndisp is defined as: 

Ndisp (tm, t', t'') = {n  tm | n  N(t'), n  N(t'') and (dln(n, t') ⊆ dln(n, t'')}. 

Definition 3.3.5. The (a) union (b) intersection (c) difference of two LDTs T' (t', ', 
'), T'' (t'', '', '') where T' and T'' are both contained in a master LTD M (tm, m, m) 

is an LDT T (t, , ), where:  

(1) t is a subtree of tm reduced to Nn(t)   Nd(t) with 

(a) Nn(t) = Nn(t')  Nn(t'') and Nd(t) = Nd(t')  Nd(t'') 

(b) Nn(t) = Nn(t')  Nn(t'') and Nd(t) = Nd(t')  Nd(t'') 

(c) Nn(t) = Nn(t')  \  Ndisp (t, t', t'') and Nd(t) = Nd(t')  \  Nd(t'') 

(2)   is the restrictions of '  '' to the nodes of t. 

(3)  is the restrictions of '  '' to the nodes of t. 

     Notice that ', '' and ', '' map to identical values for nodes in Nn(t')  Nn(t'') and 

Nd(t')  Nd(t'') because T', T'' are both contained in M. Thus there is no conflict and 

the restriction is well defined. 

Definition 3.3.6. An LTD T=(t, , ) is valid according to a DTD tree D=( , r, b), if 
the root of t is labeled r and if for each node n  t its branching constraint b( (n)) = 
{(e1, m1), … , (eq, mq)} holds. The branching constraint for a node n  t holds, if n has 
only children with label ei, i  {1, .., q}in t and for each (ei mi) in b( (n)) with mi=1, n 
has only one or zero child nodes c in t with label (c) = ei . 

Definition 3.3.7. The set of all LDTs, that are valid according to a given DTD tree D,  
is denoted by valid(D).  

3.4   ST-Patterns 

Tree patterns are used in the context of XML as expressions that describe XML 
fragments (LTDs) of a master XML document. These patterns can be regarded as tree 
models for XML queries. Nodes of a pattern can be labeled with any tag name in . 
To keep our model simple, we here withhold common abbreviations such as the 
wildcard ‘*’ or the relative paths ‘//’, used to express 'any label' and 'a node sequence 
of zero or more interconnected nodes'.  The directed edges in XML patterns represent 
parent-child relations defined in the DTD.  

In contrast to basic XML patterns [9], we are only interested in rooted patterns 
because they describe XML fragments that correspond to absolute XPath expressions.  

Furthermore, we use the same terminology for patterns as used for XML 
documents. For example, we call all nodes that can be reached from a current node by 
outgoing edges, the node’s children. The incoming edge of a current node starts from 
the node’s parent, all children of a node are in sibling relation, and the transitive 
closure of all nodes reached by outgoing (incoming) edges is called the set of 
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descendent (ancestor) nodes. We say that a pattern is formed of pattern nodes Np, and 
we formally define: 

Definition 3.4.1. A simple root pattern SRP = (t, , D) is a labeled tree under a DTD 
tree D=( , r, b) where 

(1) t is a rooted tree and Np is the set of the nodes of t,  
(2)  associates with each np  Np a node name in  
(3) sibling pattern nodes np  Np in t must have distinct labels. 

     The nodes np  Np are called pattern nodes of SRP. 
 
     ST-patterns are an extension of simple root pattern by additional nodes called split 
nodes. They form a simple intuitive query language for XML data that is sufficient for 
a wide range of applications. We don't want to present another query language for 
XML here, since XPath and XQuery are widely accepted standards. We formally 
introduce ST-patterns to provide a simple and flexible data representation model for 
fast intermediate XML data processing. See Figure 4 to 6 for example ST-patterns.     

ST-patterns are associated to the DTD tree D=( , r, b) of the master document 
they query. We again represent ST-patterns as trees, composed of pattern nodes and 
split nodes. As in simple root patterns, starting at the root, pattern nodes select nodes 
of an LDT by specifying node names for child nodes. We call a pattern node for 
which an equally labeled leaf node in D exists a data node representative and a 
pattern node for which an equally labeled inner node in D exists a navigation node 
representative. 

Additionally, an ST-pattern can restrict the former selection by conditions on data 
values. Such conditions are expressed as membership of the data value in a certain 
interval I over Q and are represented as split nodes. We treat the equality relation as a 
special case where left- and right boundary of the interval have equal values. A 
special condition is the remaining set, meaning: 'any value in Q that is not specified 
by a given sibling split node's condition'. Combinations of disjunctions and 
conjunctions of split nodes are organized as (sub-)decision trees. Split nodes in a 
parent-child relation form conjunctions, whereas split nodes not being in a parent-
child relation form disjunctions.   

Split nodes are related to two nodes in the corresponding DTD tree which might 
have equally named corresponding nodes in the ST-pattern. See figure 5 for an 
example. The two related nodes are called split parent and reference node (short ref. 
node). The split parent always has a corresponding, equally labeled pattern node in 
the ST-pattern. It is the first pattern node on the split node’s ancestor-axis. The 
corresponding node in the DTD tree is equally labeled and has a one-to-many 
multiplicity relation. This relation indicates that the sub-fragment rooted at the split 
parent is constrained by the split node. The ref. node points out the node values that 
are tested by the split node's interval condition. It must be a descendent leaf node of 
the split parent in the DTD tree. A pattern node corresponding to the ref. node might 
also be found in the ST-pattern, representing the selection of the constrained node. 
The path from split parent to ref. node in the DTD tree is stored together with the 
interval constraint in the split node of the ST-pattern. Formally we define an ST 
pattern as an extended root pattern. 
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Definition 3.4.2. Given a DTD tree D and an order O for D's leaf nodes, an ST-
pattern STP=(t, , I, p, D, O) is a labeled tree where 

(1) t is a rooted tree and N = Np  Ns is the set of nodes of t,  

np  Np are called pattern nodes, ns  Ns are called split nodes. 
(2)  associates with each node a node name in .  
• Sibling pattern nodes np  Np in t must have distinct labels. 
• Sibling split nodes ns  Ns in t must have the same label. 
(3) I associates to each split node an interval condition [ileft, iright] or the special 

condition remaining set. 
• At most one node in each set of sibling split nodes can have the condition 

remaining set. 
• Sibling split nodes ns must not have overlapping intervals.  
(4) p specifies a relative path identifying a dedicated ref. node for each split node. 
Moreover, t is constrained by the following: 
• the root must be a pattern node; 
• Each split node ns is either a child of another split node according to a predefined 

ref. node order O, or ns is a child of a pattern node np, for which the following 
holds. Let npp be the first node on the ancestor axis of np in the pattern that is a 
pattern node. The node labeled (npp) in the corresponding DTD tree D has a 
branching constraint that contains a one-to-many multiplicity relation for (ns), 
i.e. ( (ns),*). 

3.5   Pattern Fragments: Answers to ST-Pattern 

When we use the ST-pattern as a query on a master LDT M, the answer itself forms 
an LDT T' called pattern fragment.  Before we formally define a pattern fragment, we 
introduce mixed edges, split node sequences and the fulfillment of a split node’s 
condition. 

Definition 3.5.1. A mixed edge in an ST-pattern P=(t, , I, p, D, O) is an edge {ns, np} 
from a split node to a pattern node in t. We call all ancestor nodes, starting at np up to 
the first split parent, a split node sequence.  

For example in Figure 5 the edge (year, year[2000, ]) in the left pattern is a 
mixed edge indicating that all nodes with additional arrow reference form a the split 
node sequence of the split node labeled ‘year[2000, ]’. 

Proposition 3.5.2. We observe that by definition a split node sequence is of the 
following form: np1, ns1 … nsn, np2, where the nsi, i ∈{1,…,n} are an arbitrary amount 
of split nodes, np1 is a pattern node (the related split parent) and np2 is the pattern node 
belonging to a mixed edge. 

Like in database theory, we regard a given valid XML document X as an 
interpretation of the DTD tree D, that assigns the truth value true to every rooted 
path found in the XML document X and assigns the truth value false to every rooted 
path allowed by D but not found in X. Furthermore, the interpretation X maps a path 
from the document root to an attribute value v or to a text value v in X to the value v. 
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Definition 3.5.3. Let a given XML document X be an interpretation of a DTD tree D, 
let an ST-pattern P=(t, , I, p, D, O) describe an LTD T=(t', ', ') where t’ is a subtree 
of X, let C be a condition of a split node ns with a given split parent np in t. Let  p(np) be 
a path in t’ that corresponds to the labels found on the path to np in t. Then we call C 
fulfilled in t', if X maps the path p(np) + '/' +  (ns) to a value v that is in the interval i(ns).  

Definition 3.5.4. Given an ST-pattern P=(t, , I, p, D, O) for an LDT M=(tm, m, m) 
corresponding to a DTD tree D. A pattern fragment (also called an answer to P) is an 
LTD T', created by the mapping from the nodes of t into the nodes of tm such that: 

(1) Each edge {n1, n2} between pattern nodes in t is mapped into an edge {m1, m2} of 
tm, if (n1)= m (m1) and (n2)= m (m2) and n1 has at least one descendent data 
node representative in P.  

(2) Given a split node sequence np1, ns1 … nsn, np2, each mixed edge {ns, np2} in t is 
mapped onto an edge {m1, m2} of tm, if (np1)= m (m1) and (np2)= m (m2), if for 
each split node in the split node sequence the condition can be fulfilled in M. 

Definition 3.5.5. Two pattern fragments that are contained in an LDT M intersect, if 
their ST-patterns map to some identical data nodes in T. 

Corollary 3.5.6. Properties of pattern fragments T', T'' contained in an LDT M 
• T', T'' have at least one overlapping navigation node in T (the root) 
• T', T'' might intersect. 
 

 
Fig. 4. Two ST-patterns: ST1 and ST2 

 

 
Fig. 5. The two ST-patterns of figure 4 expanded for the ref. nodes 'type' and 'year' 
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Fig. 6. The ST-patterns: difference(ST1, ST2), intersection(ST1, ST2), union(ST1, ST2) 

4   Properties and Operations on ST-Patterns 

In this paragraph, we introduce the three operations union, intersection and difference, 
mapping two given ST-patterns onto a resulting ST-pattern. Therefore, we firstly 
define space equality for ST-patterns and the two operations compress and extend, 
used to 'space equally' transform ST-patterns e.g. for normalization purposes. 

Definition 4.0.1. Two ST-patterns are space equal for a given DTD tree D, if the 
pattern fragments T', T'' they describe are identical for any T  valid(D). 

4.1   Expansion and Compression of ST-Patterns 

Split nodes in an ST-pattern being siblings are called a decision group. For example, 
in Figure 5 the two split nodes being siblings with the intervals [- , 1999] and [2000, 

] form a decision group. For simplicity, let's assume that the set Q of data values is 
the rational numbers. If the union of all intervals found in a decision group forms Q, 
as in the above example, the decision group is called complete. Thus, a decision group 
containing a split node with the special constraint remaining set is always complete.  

Expansion adds additional split nodes underneath a split parent to the pattern, 
expanding the sub-decision trees for a specific ref. node. See Figure 5 for the 
expanded patterns of Figure 4. 

Algorithm 4.1.1. (Expansion of an ST-Pattern) 
Given (1) an ST-pattern P=(t, , i, p, D, O), (2) a split parent np  t, (3) a ref. node nr 
that is not used as a ref. node in t and that has a corresponding node in D that is both, 
labeled (nr) and descendent to the node labeled (np) and (4) a decomposition of Q as 
a set of non-overlapping intervals I = {i1, … , in} where the union of all elements of I 
forms Q, the expansion of an ST-pattern P' = (t, , i, p, D, O) can be constructed as 
follows: 

01  for each edge (n1, n2) in t with p(n1) < p(nr) < p(n2) according to the pre-defined 
  ref. node order O, do the following in t { 
02   t.edges.removeEdge(n1, n2) ; 
03   for each interval i in I { 
04   nsi = new splitNode (nsi. = (nr), nsi.p= path(nr), nsi.i = ii) ; 
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05    t.nodes.addNode(nsi) ; 
06   t.edges.addEdge(n1, nsi) ; 
07   nsi.append(descendentTree(n2)) ; 
08  }} 

     The algorithm of 4.1.1 can be extended for split parents np that are not in Np  Ns 
but in D and to ref. nodes nr that are already used as ref. nodes in P. The reverse 
operation of an expansion is called a compression (both, the extended expansion and 
the compression is not shown in this paper). The following corollary holds for these 
extended conditions too. 

Corollary 4.1.2. An expansion P' of an ST-pattern P for a given DTD tree is space 
equal to its origin P for any split parent in D, any allowed ref. node in D and any 
decomposition of Q.  

We are now ready to define the three operations union, intersection and difference 
for ST-patterns.  

Definition 4.1.3. The (a) union (b) intersection (c) difference of two ST-patterns P', 
P'' for a given DTD tree D and DTD tree leaf order O, is an ST-pattern P, where the 
answer to P for any LTD M  valid(D) is identical to the (a) union (b) intersection (c) 
difference of the answers of P' and P'' for M. 

Within the next Section we show how to compute the union, intersection and 
difference of two ST-patterns. We close this Section by defining the property of 
intersection for ST-patterns by their data node representatives. 

Definition 4.1.4. Based on the intersection operation, we define two ST-patterns to 
intersect, if their intersection contains data node representatives. - If two ST-patterns 
do not intersect, we call them disjointed. 

5   Evaluating ST-Patterns 

After completely presenting our formal framework for ST-patterns, in section 3 and 4, 
we show in the following, how the operations for ST-patterns can be computed and 
present fast processable ST-pattern subclasses. 

5.1   Node Matching for ST-Patterns 

A classification for ST-patterns can be given by their ref. node sets and the ref. nodes 
predefined order.  

Definition 5.1.1. The ref. node set of an ST-pattern P (t, , I, p, D, O) RNSET(P), is the 
set containing all node names of nodes in t referred to as ref. nodes. 

Definition 5.1.2. Two ST-patterns P' = (t', ', I', p', D', O'), P'' = (t'', '', I'', p'', D'', O'') 
corresponding to the same DTD tree D' = D'', are said to be built on the same ref. 
node base ( RNSET(P') , O' ), if RNSET(P')=RNSET(P'') and the orders O' and O'' order 
all pairs of elements of RNSET(P'') in the same way.  
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Definition 5.1.3. The set of all ST-patterns built on the same ref. node base ({r1, …, 
rn}, O) for a given DTD D and is called subclass({r1, …, rn}, D, O). 

Corollary 5.1.4. The set of ST-patterns under D and O, as well as subclass({r1, …, 
rn}, D, O) is closed under union, intersection, and difference.  

     In Section 6 we will discuss the runtime of ST-pattern processing. Therefore, we 
here shortly define the level distance as a further classification.  

Definition 5.1.5. The level distance of a set of ST-patterns STSET = {P1, … , Pi} 
corresponding to a DTD tree D is  
|  RNSET(Pi ) where Pi  STSET | - min ( { ( | RNSET(Pi ) | ) | Pi  STSET} )  

Corollary 5.1.6. Each set of ST-patterns STSET for a given DTD can be transformed 
by space equal expansions of STSET members, into a set ST'SET that is in subclass({r1, 
…, rn}, D, O) for {r1, …, rn} =   RNSET(Pi ) where Pi  STSET. 

5.2   Node Matching as Basic ST-Patterns Algorithm 

Next, we shortly introduce node matching as a basic algorithm for ST-pattern 
operations. After showing how to process ST-patterns, we address the needed 
adjustments for the intersection operation in 5.3. 

Definition 5.2.1. A root path rpath(n) of a node n, in an (ST-)pattern is the path 
containing all pattern nodes on the ancestor axis of n. 

Definition 5.2.2. Given two ST-patterns P' = (t', ', I', p', D, O), P'' = (t'', '', I'', p'', D, 
O) in subclass({r1, …, rn}, D, O) for any {r1, …, rn}, two nodes n1  t' and n2  t'' are a 
match, if  

1. their root paths are equal: rpath(n1) = rpath(n2)  
2. their node names are equal: (n1) =  (n2)  
3. if n1, n2 are spit nodes: 

• they refer to the same ref. node: p(n1) = p(n2) 

• their interval conditions intersect: I(n1)  I(n2)  Ø 

The node matching algorithm maps two given ST-patterns P' (t', ', I', p', D, O), P'' (t'', 
'', I'', p'', D, O) onto a resulting ST-pattern P. It starts at the root of both patterns and 

compares and tries to match equivalent nodes in each pattern by traversing both 
patterns in parallel. The algorithm is initiated with n1= root(t') and n2= root(t''). 

Whenever a match is found, the pair’s child nodes can be processed by an 
operation-dependent function calling e.g. Algorithm 5.3.1 or Algorithm 5.3.2.  

Algorithm 5.2.3. Function Node Matching 

01 ST-pattern  nodeMatching (Operation oper, Node n1, Node n2) { 
02 ST-pattern  P =  new ST-pattern(D, O) ; n = new Node() ;  
03 case oper of  
     intersect: n = intersection(n1, n2) ; 
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     union:  n = union(n1, n2) ; 
     difference:  n = difference(n1, n2) ; 
 end case;  
04 for each n1.child() c1i { 
05 if (c1i.isInMatch = (c1i, c2i)) then n.append( nodeMatching(oper, c1i, c2i));} 
06 P.append (n) ;  
07 return P ; } 

To apply the node matching algorithm to any two ST-patterns corresponding to a 
given DTD tree, we need to adjust them to the same ref. node base. For example, if in 
ST1 a split node referring to 'year' is found and no such node exists in ST2, we expand 
ST2 for the ref. node 'year'. As input for the expansion, we use the conditions found in 
ST1 and add the remaining set condition to complete the decision group, if needed. 

The needed adjustment can be seen as a preprocessing step. To keep the 
processing fast, this adjustment can be done on the fly in the matching process using 
no additional parsing runs. A drawback of expansion is in the possible exponential 
growth of the ST-pattern, because each expansion adds a level to the ST-pattern. 
Therefore, we will restrict ST-patterns in the following section, to keep the level 
distance minimal. 

5.3   Processing of ST-Patterns 

The processing of any two nodes compared in the matching algorithm depends on 
whether or not they are a match, and it follows operation-dependent tasks. We 
describe how to handle some operations next. For example, for the operator-patterns 
ST1 and ST2 of Figure 4, the expanded ST-patterns can be seen in Figure 5. Here, we 
identify the needed expansions for each ST-pattern, one for the ref. node 'type', the 
other for the ref. node 'year' and thus expand both initial patterns. The calculated 
result for the three discussed operations for ST-patterns is shown in Figure 6.  

Given two ST-patterns P', P''  subclass({r1, …, rn}, D, O) for some ri, D, O, the 
intersection operation on P', P'' defined in 4.1.3 can be computed using the node 
matching algorithm of 5.2.3 with the following function intersection. 

Algorithm 5.3.1. Function intersection 

01 Node  intersection(Node n1, Node n2)  { 

02  Node  n = new SplitNode( ) ; n. = (n1) ; n.p= p(n1) ; n.I = I(n1)  I(n2) ;  

03 return n ; } 
Given two ST-patterns P', P''  subclass({r1, …, rn}, D, O) for some ri, D, O, the 

union operation on P', P'' defined in 4.1.3 can be computed using the node matching 
algorithm of 5.2.3 with the following function union. 

Algorithm 5.3.2. Function union 

01  Node union(Node n1, Node n2) { 
02    Node n = new Node ( ) ; 
03     if (n1 ,n2) is a match of split nodes with Intervals I(n1), I(n2){ 

04   create the intervals I1 = I(n1) \ I(n2), I2 = I(n2) \ I(n1), I3 = I 4 = I(n1)  I(n2) ; 
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05   for each such not empty interval Ii=1 to 4 do { 
06   si = new SplitNode( ) ; si. = (n1) ; si.p= p(n1) ; si.I = Ii ; } 
07   s1.append(descendentTree(n1)) ;   s3.append(descendentTree(n1)) ;  
08   s2.append(descendentTree(n2)) ;   s4.append(descendentTree(n2)) ;  
09   n.append(s1) ;   n.append(s2) ;  
10   n.append (nodeMatching(union,s3, s4)) ; } 
11  else{  //(n1 ,n2) is a match of pattern nodes   
12   n = n1;  
13   for each child node ci of n1 in P' or n2 in P'' with ci.isInMatch does not exist{ 
14    n.appendTree(ci) ; } 
15   for each child node ci of n1 in P' or n2 in P'' with ci.isInMatch =  (n'1i, n'2i) { 
16    n.appendTree( nodeMatching(union,n'1i, n'2i) ) ;  }} 
17  return (n) ; } 

Given two ST-patterns P', P''  subclass({r1, …, rn}, D, O) for some ri, D, O, the 
difference operation on P', P'' defined in 4.1.3 can be computed similar to 5.3.2. 
 
     As the algorithms show, we mainly need one node matching run to calculate any 
of the three operations, visiting each node of P' and P'' at maximum once. For the 
union and difference operations, recursive calls organize the correct splitting of 
matching split nodes with intersecting intervals into three nonintersecting intervals. 
This process can expand a sub-decision tree by the factor 3. Thus, an upper bound for 
the size of a union ST-pattern for two ST-patterns P', P'' on the same expansion level 
as operands is 3*(max(|P'|, |P''|)). An upper bound for the size of a difference ST-
pattern is 3*|P'|, for an intersection ST-pattern it is min(|P'|, |P''|).   

5.3.3.   Proposition  
Intersection,  union  and  difference  operations  for  ST-patterns  P',  P''  on  the  same 
expansion level can be done in p-time and p-space.  

6   Data Processing Based on ST-Patterns 

As motivated in Section 2, we use ST-patterns to describe XML data fragments 
(pattern fragments) during data processing in our distributed system.  

6.1   Choice of the ST-Pattern Set 

We restrict participating clients to the use of a certain subset STSET of ST-patterns. 
This set must be chosen with care, taking into account the addressable granularity and 
the complexity of processing. In Definition 5.1.3 we introduce the class subclass({r1, 
…, rn}, D, O) that is closed under union, intersection and difference. Any two ST-
patterns in such a subclass have a level distance of 0, which guarantees fast 
processing in time and space. Such a subclass might be a good choice for STSET. As 
long as the level distance is kept small, any other choice will do, if the granularity is 
set up according to the application domain’s need. The granularity of a subclass({r1, 
…, rn}, D, O) can be adjusted by the right choice of the set of ref. nodes {r1, …, rn}. 
Whereas the amount of ref. nodes is a degree for the granularity, the ref. nodes 
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themselves specify the attribute values in the master document that are selection 
criteria. The order O is a weighting on these nodes. An access frequency analysis for 
queries can be used to identify the n most frequently constrained data node names in 
queries to set up a well adjusted ref. node set and order. The decomposition of Q for 
each node in the ref. node set is not discussed in this paper and left open as an 
individual degree. 

This setup of STSET is even flexible in the context of focus changes. Recurrent 
access frequency analysis can update the set of ref. nodes by adding and deleting 
nodes or by changes in the node order O. Such updates can be easily applied to ST-
patterns by expansion, compression or rearrangements in the ST-patterns’ sub-
decision trees. Alternatively, an expanded interim set STSET, including the old and 
new ST-pattern class can be used, accepting a temporary higher level distance. This 
will lead to a higher robustness, as the processing of requests which conform to both 
the old and new setup is still possible. 

As a client wants to query XML data e.g. by an XPath query, this XPath query 
first has to be mapped on an ST-pattern in STSET. As the granularity of STSET is still 
restricted, this mapping will map the XPath query to an ST-pattern that might address 
a pattern fragment that is a superset of the fragment addressed by the XPath query. 
We call the difference between these two fragments the mapping offset. If STSET is set 
up with care, this mapping offset should be small or none for frequent queries and 
acceptable for infrequent queries. 

6.2   Use of ST-Patterns in the Caching Scenario 

In the distributed caching example, each participating client holds an ST-pattern 
expression STU, describing all available XML data in its cache. As a client wants to 
request data by an XPath expression, it first maps the XPath expression to an ST-
pattern STREQ in STSET with minimal mapping offset. This can be done by querying a 
so called schema tree, that is extended for the given ST-pattern subclass with the 
XPath expression [1]. The client then calculates, whether its local cache contains any 
needed data by computing STLOCAL = intersect(STSET, STU). If STLOCAL  Ø it can 
send a reduced request ST'REQ = difference(STREQ, STLOCAL) to a neighbour client. 
These steps can be accomplished by any participating client using a minimum of 
resources, because of two reasons. First, only small logical representatives for XML 
fragments are processed, and no 'physical data' is involved so far. Second, the 
involved operations generate only a small workload. As a participating client finds out 
that it can contribute to a request, it has to extract the partial result from its cache. 
This again can be done very fast, if the STU is used as an index tree for the cached 
data, especially for the intervals of sibling split nodes. 

As partial fragments reach the requesting client, they have to be joined for further 
processing. Therefore, the XML data must support IDs for each node with a 
multiplicity constraint 'one-to-many'. Prepared like this, any two pattern fragments 
that are answers to ST-patterns can be joined on the deepest node with a multiplicity 
constraint 'one-to-many' in the intersection ST-pattern of the two patterns. Depending 
on the caching strategy, the client also might update its cache with the newly obtained 
data and update STU by  STU = union(STU , STREQ). 
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6.3   Properties of Pattern Operations 

ST-patterns are a light-weight solution for XML data processing, not only restricted to 
cache management. To summarize, evaluating operations on ST-patterns can be done 
by adapting basic XML match algorithms using a single parsing run. For the 
difference operation and the union operation, the generation of series of descendent 
split nodes can cause exponential expansion of sub-decision trees. This expansion can 
be prevented by keeping the level distance of the class of ST-patterns that is used 
minimal, for example by restricting the used ST-patterns to a specific ref. node set 
subclass of D and O.    

Similar to the more complex XPath expressions, ST-patterns are used to select 
fragments of an underlying XML document and thereby address the document with a 
fine granularity, allowing conjunctions and disjunctions. For example, any ST-pattern 
can be split into two patterns, where each of the resulting patterns addresses a 
fragment with about half the size of the fragment the original patterns addressed. 
Thus, any fragmentation granularity can be achieved. 

Patterns can be represented as short strings, e.g. in so called numbering scheme 
representation form. For example, the pattern ST1 shown in Figure 4 can be encoded 
as the string 1,2,8,[2000, ]10,9,10,11. Numbers in the string correspond to the 
document order position of a node in the DTD tree and act as the node’s ID. Special 
notation must only be introduced for our extensions. The entry [2000, ]10 represents 
the interval of a split node that is related to the ref. node 10.  

Moreover, ST-patterns enable us to virtually process any XML data for a given 
DTD by the operations union, intersection and difference, as long as we work on 
XML fragments (LTD trees) that can be expressed as ST-patterns.  

7   Related Work 

Tree patterns are well known in the context of XML data processing and are 
especially used to improve query response times. To search frequent XML tree 
patterns in XML documents [11] is a widely adapted technique and is used for various 
applications, ranging from indexing optimal access paths [3, 20, 14] to the 
formulation of various classes of XML queries [16, 13]. We follow these approaches, 
as we use frequent access tree patterns to achieve optimization goals. With the latter 
two approaches, we have in common to use tree patterns to specify subclasses of 
queries. Tree patterns represent the tree-structure of XML query languages like XPath 
[9] or XQuery [4]. In the context of querying and maintaining XML data, Abiteboul 
[15] shows a solution for representing and querying incomplete XML data. The 
presented incomplete data trees have similarities to our STU representations in each 
client, in that they use conditions on the elements’ data values and that they are based 
on DTDs. Different to our approach, their incomplete tree focuses on missing data, 
whereas our approach argues on partially available data.  

In comparison to all these approaches, we use tree patterns to identify sets of 
pattern fragments and include not only DTD restrictions but also constraints on 
selected data values. A caching strategy based on frequently accessed tree patterns is 
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introduced in Yang [12]. We extend the approach of classical patterns presented in 
Yang [12] to ST-patterns including predicate filters, which enable us to express finer 
XML granularity. Our approach also differs in that we support cooperative caching by 
restricting the allowed ST-patterns to an easy to handle and resource preserving 
subclass STSET.  

A different approach for XML caching is to check whether cached data can 
contribute to a new request by testing the intersection of cache entries and an XPath 
query [18] and thereafter compute difference fragments as partial results [19]. Such 
tests are known to be NP-hard for XPath expressions [10, 8] and difference 
computations are known to be resource consuming. In comparison, our approach 
focuses on efficient computation and thereby requires only minimal resource 
consumption. 

8   Summary and Conclusions 

We expect ST-pattern fragmentation to be a solution for splitting a huge XML 
document into handy atomic units to support fast data processing based on simple and 
fast intersection and containment decisions, e.g. in the area of caching, replication or 
query processing.  

The drawback of using normalized data units is a clipping offset caused by 
answering a request by a slightly bigger superset. This is acceptable, since frequent 
requests can be answered with minimal or no clipping offset based on a well adjusted 
restriction to a subclass of ST-patterns. 

Especially in the area of mobile data processing, it is important to minimize 
communication costs and to preserve the mobile client’s resources. Besides 
communication resources, we keep shared CPU resources to a minimum because 
costly intersection or containment tests are reduced to fast operations on simple 
logical expressions. In the context of collaborative data processing, it is important that 
participating clients interact and interchange data based on a set of predefined data 
units. Otherwise, advantages of collaboration will be consumed by adjusting and 
comparing (slightly) different data objects. 

[1] describes a continuative approach using an ST-pattern’s partitioning, that is 
restricted to a set of not intersecting ST-patterns. Currently, we implement a mobile 
peer-to-peer approach which will use ST-pattern caching for any data exchange. In 
our further research, we address the challenge of segmentation adaptation and update 
propagation for the overall system. Adapting ST-patterns towards dependent patterns, 
not containing the decision criteria, and distributed query processing [21, 2] based on 
ST-patterns, seem to be further promising steps. 

As far as we know, we are the first to expand tree patterns for XML using 
additional selection criteria at the node level containing conjunctions and disjunctions 
to support fine granularity. 

We use these ST-patterns to model virtual schema expansion. Our solution is 
especially tailored to adapt to continuous context switches in query behavior, 
supporting e.g. a fine granularity in hot spot areas. 
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Abstract. In this paper we examine the dissemination of reports about 
resources in mobile networks with hotspots, where hotspots, vehicles and 
sensors communicate with each other via short-range wireless transmission. 
Each disseminated report represents information about a spatial-temporal event, 
such as the availability of a parking slot at a particular time or the detection of 
an injured in an earthquake damaged building. We propose an opportunistic 
dissemination paradigm, in which a moving object transmits the reports it 
carries to encountered peers and obtains new reports in exchange. We address 
two issues in such an environment. First, we develop an architecture that allows 
a moving object to receive resource reports opportunistically. Second, we study 
how the received reports are used by a consumer to reduce resource discovery 
time. The proposed system has the potential to create a completely new 
information marketplace. 

1   Introduction 

Consider an urban area with hundreds of thousands of vehicles. Drivers and 
passengers in these vehicles are interested in information relevant to their trip. For 
example, a driver would like his/her vehicle to continuously display on a map, at any 
time, the available parking spaces around the current location of the vehicle. Or, the 
driver may be interested in the traffic conditions (e.g. average speed) one mile ahead. 
Such information is important for drivers to optimize their travel, to alleviate traffic 
congestion, or to avoid wasteful driving. The challenge is processing queries in this 
highly mobile environment, with an acceptable delay, overhead and accuracy. One 
approach to solving this problem is maintaining a distributed database stored at fixed 
sites that is updated and queried by the moving vehicles via the infrastructure wireless 
networks. Potential drawbacks of this approach are (i) the responses to queries may be 
outdated, (ii) the response time may not meet the real-time requirements, and (iii) 
access to infrastructure communication service is costly, (iv) currently there is no 
business model to provide a return-on-investment for setting up and operating the 
fixed sites, and (v) the solution is not robust; particularly, it is vulnerable to failures of 
the fixed servers. In this paper we explore a new paradigm that is based on peer-to-
peer communications.  

                                                           
1 Research supported by NSF Grants 0326284, 0330342, ITR-0086144, and 0209190. 
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We assume that each moving object (e.g. vehicle) has processing power (see [14]), 
and the capability of communicating with its neighbors. This communication can be 
enabled by a local area wireless protocol such as IEEE 802.11 [8], Ultra Wide Band 
(UWB) [22], or CALM [6]. These protocols provide broadband (typically tens of 
Mbps) but short-range (typically 50-100 meters) peer-to-peer communication. These 
communication capabilities exist already in experimental projects [23, 2] and are 
being planned for deployment on a large scale environment [9]. Similar 
communication capabilities are being planned between sensors in the infrastructure 
and moving vehicles [9]. With such communication mechanisms, a moving object 
receives the desired information from its neighbors, or from remote objects by multi-
hop transmission relayed by intermediate moving objects. Thus, resource 
dissemination is performed in a mobile peer-to-peer network. 

Compared to the traditional fixed-site based information query, this paradigm (“of 
the vehicles, by the vehicles, for the vehicles”) has the following advantages.  First, it 
provides better information authenticity, accuracy, and reliability, especially for real-
time information. Consider for example parking space availability. Information 
collected from a vehicle that is leaving a parking slot tends to be more reliable than 
that from the fixed site. Second, it is free of charge, assuming that vehicles are willing 
to relay messages for free (in exchange for their messages being relayed). A back of 
the envelope calculation reveals that the cost (in terms of fuel) of communicating with 
encountered vehicles is less than a cent per day, even if the communication is 
continuous throughout the day.    

The mobile peer-to-peer approach can also be used in matching resource 
producers and consumers among pedestrians.  For example, an individual wishing to 
sell a pair of tickets for an event (e.g. ball game, concert), may use this approach right 
before the event, at the event site, to propagate the resource information.  For another 
example, the approach can be used in singles matchmaking; when two singles whose 
profiles match are in close geographic proximity, then one can call the other's cell 
phone and suggest a short face-to-face meeting.  

The approach can also be used for emergency response and disaster recovery, in 
order to match specific needs with expertise (e.g. burn victim and dermatologist) or to 
locate injured. For example, scientists are developing cockroach-sized robots that are 
able to search victims in exploded or earthquake-damaged buildings [18]. These 
robots are equipped with radio transmitters. When a robot discovers a victim, it can 
use the mobile peer-to-peer approach to disseminate the discovery, and home in on 
the target far more quickly than searchers using more conventional means. Thus we 
use the term moving objects to refer to all, vehicles, pedestrians, and robots.   

We would like to comment at this moment that in our model a peer does not have 
to be a moving object. In many cases there are both moving peers and fixed peers, and 
they collaborate in data dissemination. For example, a sensor in the parking slot (or 
the meter for the slot) monitors the slot, and, while unoccupied, transmits the 
availability information to vehicles nearby. Or all the slots in a parking lot may 
transmit the information to a fixed 802.11 hotspot via a wired network, and the 
hotspot announces the information. In either case, the vehicles that receive the 
information may propagate it to a wider area via the mobile peer-to-peer approach. In 
such an environment the mobile peer-to-peer network serves as a supplement/extension 
to the fixed-site based solution. 
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In this paper we propose to examine an opportunistic approach to dissemination of 
reports regarding availability of resources (parking slot, taxi-cab customer, 
dermatologist, etc.). In this approach, an object propagates the reports it carries to 
encountered objects, and obtains new reports in exchange. For example, an object 
finds out about available parking spaces from other objects. These spaces may either 
have been vacated by these encountered objects or these objects have obtained this 
information from other previously encountered ones. Thus the parking space 
information transitively spreads out across objects. Similarly, information about an 
accident or a taxi cab customer is propagated transitively. In this paper we explore 
this information propagation paradigm, which we call opportunistic peer-to-peer (or 
OP2P). 

In this paper, we will study how a resource consumer should use the received 
reports to discover a resource type. This is important when the resource can only be 
exclusively used by one object at one time. Consider for example a driver who is 
looking for a parking slot. The driver may receive reports of multiple parking slots, 
and these parking slots may be in different orientation with regard to the driver's 
current location. Then the question is which parking slot the driver should go to 
(namely, pursue). In this paper we propose an information usage strategy called 
Information Guided Searching (or IGS), that takes both the distance and the age of the 
resource report into considerations. With IGS, a consumer chooses resource-reports 
based on a spatial-temporal relevance function that represents the likelihood that the 
resource is available when the consumer reaches it. The consumer always pursues the 
resource whose relevance is the highest and is above a certain threshold. We 
experimentally compare IGS with the naive strategy where the information is not 
used, in terms of resource discovery time, namely the length of the period of time 
starting when the consumer starts to look for a resource type until the consumer 
captures a resource. The experiments show that IGS always results in reduced 
discovery time compared to blind search (i.e. the information is not used). In some 
cases IGS cuts discovery time by more than 75%.  

In summary, this paper makes the following contributions. First, we introduce a 
data model for spatio-temporal resources in applications related to transportation, 
disaster recovery, and mobile electronic commerce, and we develop an architecture 
for opportunistic dissemination of information about these resources. Second, we 
propose an information usage strategy and compare it with the naive strategy for 
resource discovery. We show that the information usage strategy is consistently better 
than the naive strategy and may cut discovery time by more than 75%.  

Let us emphasize that although the experiments conducted in this paper use the 
peer-to-peer model, the developed resource data model and the information usage 
strategy hold in a cellular wireless communication environment as well. These 
approaches are applicable to applications that need match making based on attributes, 
regardless whether the resource information is received from a peer or from a server 
through the cellular infrastructure.  

The rest of the paper is organized as follows. Section 2 develops the architecture. 
Section 3 discusses the information usage strategy and evaluates the benefit of 
resource information. Section 4 discusses relevant work. Section 5 concludes the 
paper and discusses future work. 
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2   System Architecture 

2.1   Resource Model 

In our system, resources may be spatial, temporal, or spatio-temporal. Information 
about the location of a gas station is a spatial resource. Information about the price of 
a stock on 11/12/03 at 2pm is temporal. There are various types of spatio-temporal 
resources, including parking slots, car accidents (reports about such resources provide 
traffic-jam information), taxi-cab requests, ride-sharing invitations, demands of 
expertise in disaster situations, and so on. Formally in our model there are N resource 
types T1, T2, …, TN . At any point in time there are M resources R1, R2, …, RM, where 
each resource belongs to a resource type. Each resource pertains to a particular point 
location and a particular time point, e.g. a parking slot that is available at a certain 
time, a cab request at a street intersection, invitation of cab-sharing from airport to 
downtown from a passenger wishing to split the cost of the cab, or the demand of 
certain expertise at a certain location at a certain time. We assume that resources are 
located at points in two-dimensional geospace. The location of the resource is referred 
to as the home of the resource. For example, the home of an available parking space is 
the location of the space, and the home of a cab request or a cab-sharing invitation is 
the location of the customer. For each resource there is a valid duration. For example, 
the valid duration of the cab request resource is the time period since the request is 
issued, until the request is satisfied or canceled.  The valid duration of the cab-sharing 
invitation starts when the invitation is announced and ends when an agreement is 
reached between the invitation initiator and another passenger. The valid duration of 
an accident starts when it occurs, and lasts until it is cleaned up. The valid duration of 
a victim-assistance-request starts when the person is injured, and lasts until a rescuer 
reaches him/her. We say that a resource is valid during its valid duration. 

Let us comment further about spatial resources, such as gas stations, ATM 
machines, etc. In these cases the valid duration is infinite. Opportunistic 
dissemination of reports about such resources is an alternative paradigm to geographic 
web searching (see e.g. [13]). Geographic web searching has generated a lot of 
interest since many search-engine queries pertain to a geographic area, e.g. find the 
Italian restaurants in the town of Highland Park. Thus instead of putting up a web site 
to be searched geographically, an Italian restaurant may decide to put a short-range 
transmitter and advertise via opportunistic dissemination. In mobile systems, this also 
solves some privacy concerns that arise when a user asks for the closest restaurant or 
gas station. Traditionally, the user would have had to provide her location to the 
cellular provider; but she does not need to do so in our scheme. In our scheme, the 
transmission between two vehicles can be totally anonymous. 

2.2   Peers and Validity Reports 

The system consists of two types of peers, namely fixed hotspots and moving objects. 
Each peer o (either hotspot or moving object) that senses the validity of resources 
produces validity reports. Denote by a(R) a report for a resource R. For each resource 
R there is a single peer o that produces validity reports, called the report producer for 
R. o is referred to as the producer of each report it produces. A peer may be the report 
producer for multiple resources. Report a(R) contains the home of R and a timestamp. 
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The timestamp is the time at which the report is transmitted to a peer by its producer. 
Report a(R) is valid as long as R is valid. For each resource type T, a peer o has a 
validity reports database, or reports database. 

In the parking slots example, a sensor in the parking slot (or the meter for the slot) 
monitors the slot, and, when the slot becomes free, it produces a validity report. When 
the parking slot is occupied, the report is removed from the reports database. In the 
cab request example, the customer who needs a cab may click an application icon on 
her PDA, or press a button in a station at the closest intersection (similar to road-
crossing buttons in the USA). The PDA or the station produces a report that indicates 
the location of the customer. The report is removed from the reports database once the 
customer takes a cab (this can be sensed, for example, by the cab sending a 
notification to the station). In the car accident example, the report is produced by the 
sensor that deploys the air-bag. 

At any point in time, the reports database for a resource type in a peer o stores two 
categories of validity reports. The first category are the reports produced by o for 
resources that are currently valid. These are referred to as the native reports of o. The 
second group are the reports received by o from other peers (when and how the 
reports are received is discussed in 2.3). These are referred to as the foreign reports of 
o. A native report a(R) is inserted into the reports database once it is produced, and it 
is deleted from the reports database when R becomes invalid.  For example, if the 
meter for a parking slot is also a hotspot (i.e. a peer), then its reports about the 
monitored parking slot are native, and other reports are foreign. If a hotspot monitors 
all the parking slots in a lot, then all the reports about these slots are native. 

2.3   Relevance Model 

With OP2P, a peer constantly receives validity reports from the peers it encounters. If 
not controlled, the number of reports saved and communicated by a peer may 
continuously increase. In order to limit the data exchange volume, we employ a 
relevance function that prioritizes the availability reports. The relevance of a report 
a(R) to a peer o, the consumer, is determined by a spatio-temporal function, which 
decreases as the distance of the reported resource from o and the time elapsed from 
report-generation increase. In this paper we use the following relevance function: 

)0,())((Rel ≥⋅−⋅−= βαβα dteRa        (1) 

where t is the number of time units since a(R) is transmitted by its producer, and d is 
the travel distance from the home-location of R to the consumer. α and β are non-
negative constants that represent the decay factors of time and distance respectively. 
α and β may vary per resource type and per each individual peer.  Observe that this 
function is always positive, indicating that each report always has some relevance, 
and it decreases as t and d increase. 

Let us consider competitive resources, i.e. resources that require a consumer to 
physically reach them ahead of other consumers in order to occupy or possess them 
(e.g. parking slots, cab requests, or highway assistance requests).  Accident reports 
may inform many consumers of the accident, thus they are not competitive. We now 
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show that for a competitive resource R, under some conditions the relevance of a 
report a(R) equals to the probability that R is valid when the consumer reaches it.  

Theorem: Assume that the length of the valid duration (see subsection 2.1) of R is a 
random variable with an exponential distribution having mean u. Assume further that 
the speed of the consumer is v. If u/1=α  and )/(1 vu ⋅=β , then the relevance of a 
report a(R) is the probability (at report acquisition time) that the resource R is valid 
when the consumer reaches R.  

Proof idea: Consider a consumer that receives a(R)  t time units after the report has 
been transmitted by the producer of a(R), and at that time the consumer is at distance 
d from R. If   u/1=α  and )/(1 vu ⋅=β , then the relevance of the report is:  

)(
1

)(Rel v

d
t

ueR
+⋅−

=                      (2) 

For an exponential distribution, the probability that R is still valid b time units 

after a validity report is transmitted is ube− . Observe that the consumer will reach 
the resource t+d/v time units after the validity report has been transmitted, thus the 
theorem follows.  

The theorem motivates our definition of the relevance function (at least for 
resources with exponentially distributed valid-duration).  

Observe that we implicitly made two assumptions in order to determine d and t. 
The first assumption is that each consumer knows its location when receiving a(R), so 
d can be computed. The second assumption is that the clock between the report 
producer and the consumer is synchronized, so t can be accurately computed. Both 
assumptions can be satisfied if each peer is equipped with a GPS that reports both 
location and time.  

The relevance function we use in this paper is one example in which the relevance 
decays exponentially per time and distance. But there are other possible types of 
relevance functions in which other behaviors may be exhibited. Furthermore, other 
factors such as the travel direction with respect to the home of a resource may be 
considered in the relevance function. However, in this paper we confine ourselves to 
time and distance alone. 

2.4   Peer-to-Peer Report Exchange 

Each peer is capable of communicating with the neighboring peers within a maximum 
of a few hundred meters. One example is an 802.11 hotspot or a PDA with Bluetooth 
support. The underlying communication module provides a mechanism to resolve 
interference and conflicts. Each peer is also capable of discovering peers that enter 
into or leave out of its transmission range. For example, in 802.11 a node detects 
appearance and leaving of neighboring nodes via periodical beacon messages [8]. 

The user of a peer specifies to the communication module what types of validity 
reports she is interested in exchanging. And for each such type, the user further 
specifies the maximum number of reports she wishes to receive during an exchange. 
This number is referred to as the interest threshold and is denoted by M. When two 
peers A and B encounter each other, if both A and B have their communication 
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module open, then A and B start a session to exchange validity reports. During each 
encounter, for each resource type T that B is interested in, A computes the relevance 
of each report a(R) in its reports database. If a(R) is a native report, then A updates 
the timestamp of a(R) to be the current time before computing the relevance of a(R). 
Finally, A chooses the top M relevant reports and transmits them to B. Upon receiving 
each report a(R), B checks whether there is a report a(R)' in its reports database that 
reports R. If not, B saves a(R). Otherwise, B saves a(R) if the timestamp of a(R) is 
greater than that of a(R)', and discards a(R) otherwise.  

We would like to emphasize that in our model, the interactions among peers are 
completely self-organized. The association between a pair of peers is established 
when they encounter each other and is ended when they finish the trading or when 
they are out of the transmission range of each other. Other than this there is no other 
procedure for a peer to join or leave the network. 

3   Benefit of Report Dissemination  

In this section we evaluate how much a consumer gains when searching for a resource 
using the validity reports it receives, compared to not using the resource information. 
Specifically, we evaluate how much time is saved when a consumer uses validity 
reports to capture a resource. First we describe two strategies for a consumer to 
discover resources, one using validity reports and the other which does not do so. 
Then we compare these two strategies.    

3.1   Resource Discovery Strategies 

The first resource discovery strategy is a naive one, called blind search, or BS. With 
this strategy, a consumer moves around the area where a resource of interest could 
possibly be located, and it takes possession of the first resource that is valid at the 
time when the consumer reaches it. For example, a driver who is looking for a parking 
slot simply drives around all the streets that are within walking distance from the 
place to visit and parks at the first parking slot that is seen available. The area within 
which the consumer looks for a resource is referred to as the search space.  

The second strategy is information guided search, or IGS. With this strategy, a 
consumer starts with a blind search, and a relevance threshold H0. The search 
continues until either a resource is valid at the time the consumer reaches it, or some 
validity report a(R) is received. In the latter case, the consumer evaluates the 
relevance of a(R) and goes to R (i.e. attempts to capture R) if the relevance of a(R) 
(i.e. Rel(a(R))) is higher than the predefined threshold H0. If R is invalid when the 
consumer reaches it, then the consumer discards a(R), returns to the closest point in 
the search space, and continues the blind search. Clearly, if a valid resource is passed 
by on the way to R, then the consumer captures it and the search ends. If another 
report a(R') is received during the trip to R, and the relevance of a(R') (i.e. Rel(a(R'))) 
is higher than Rel(a(R)), then the consumer goes to R' and sets the relevance threshold 
to Rel(a(R')). Thus the relevance threshold keeps increasing while the consumer 
receives more relevant reports.   

Our concept of the relevance threshold is used to alleviate the phenomenon of 
herding, which occurs when the consumers that hear about the same resource all head 
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to that resource, leading to high contention. The relevance threshold prevents all, but 
the most likely to capture it, from pursuing the resource. In subsection 3.2 we will 
provide an approach to determining the threshold H0.  

3.2   Comparison of Resource Discovery Strategies 

In this subsection we compare IGS and BS in terms of how long it takes a consumer 
to discover a resource, with each one of them. First we define the performance 
measure, and then we describe the simulation method. Finally we present the 
simulation results. 

3.2.1   Definition of Discovery Time 
For a competitive resource, discovery means that the moving object captures the 
resource, i.e. it arrives to the resource while the resource is still valid. For example, 
discovering a parking slot means that the driver reaches the parking slot before it is 
occupied; discovering a cab customer resource means that the cab driver reaches the 
customer before the customer hires another cab; The discovery time is the length of 
the time period starting when the user starts to search the resource type, and ending 
when a resource of that type is captured. 

3.2.2   Simulation Method 
We synthetically generated and moved objects within a 1mile×1mile grid network. 
The distance between two neighboring grid points is 0.1 mile (approximately the 
length of one street block). Hotspots are placed on intersections (see Fig. 1). There is 
only one consumer in the system. The search space of the consumer is a square 
centered at the center of the grid network and with side length 0.6 mile. This square is 
referred to as the search square. All the other moving objects participate in 
opportunistic data dissemination but are not interested in capturing any resource. 
These objects are referred to as brokers. 

For each broker i, we randomly chose two points on the grid network, and assigned 
them as the start point and the first stop of i respectively. The path of i is the shortest 
path between the start point and the first stop. i moves along its path from the start 
point to the first stop at a constant speed. When the first stop is reached, another 
random point is chosen as the second stop of i,  and i  moves from the first stop  to the 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The grid network, hotspots, search square, brokers and the consumer 
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second stop at the same constant speed. And so on. The motion speed of a broker is 
randomly chosen from the interval [v-5, v+5] where v is a parameter.  

Resources are generated only at hotspots. At each hotspot, the length of the valid 
duration of a resource follows an exponential distribution with mean 30 seconds, and 
the time length of the invalid duration follows an exponential distribution with mean 
30×k seconds. k is a parameter. It represents the ratio between the length of time a 
resource is invalid, and the length of time it is valid. We use this ratio to model the 
competition for the resource generated by other consumers, and refer to this ratio as 
the invalidity-to-validity ratio. In other words, instead of simulating multiple 
consumers competing for resources, we simulate a single consumer; but each resource 
is valid for only 30 seconds approximately, and 30×k seconds it is unavailable. 
Each hotspot announces exactly one resource, and the home of that resource is the 
location of the hotspot. The transmission range is the same for all the hotspots and all 
the moving objects. We use Equation (2) defined in section 2.3 as the relevance 
function and use the route-distance as the distance metric. The route-distance 
between two locations on the grid network is the length in miles of the shortest path 
between them on the grid network. 

In each exchange a peer acquires the single most relevant report.  
There are six parameters for each simulation run (see Table 1). Among these 

parameters, the transmission range r, the motion speed v, the broker density g, the 
hotspot density s, and the invalidity-to-validity ratio k are referred to as environmental 
parameters since they define the environment with respect to communication, traffic 
and resource generation.  The relevance threshold is not an environmental parameter. 

Table 1. Parameters and their values  

Parameter Symbol Unit Value 
Transmission range r meter 50, 100, 150, 200 

Motion speed v miles/hour 10, 20, 30, 40, 50, 60 
Broker density g brokers/mile2 0, 50, 100, 150, 200 

Invalidity-to-validity ratio k  10, 20, 30, 40, 50 

Relevance threshold H0  
0, 0.1, 0.2, 0.3, 0.4,  

0.5, 0.6, 0.7, 0.8, 0.9 
Hotspot density s hotspots/mile2 17, 36, 100 

 

If the hotspot density is 100, then there is a hotspot at each intersection. If the 
hotspot density is 36, then there is a hotspot for every two intersections, i.e. the 
distance between any two neighboring hotspots is 0.2 miles. If the hotspot density is 
17, then there is a hotspot for every three intersections, i.e. the distance between any 
two neighboring hotspots is 0.3 miles. 

Each simulation run is executed as follows. At the beginning of the simulation 
run, g brokers are generated and they start to move at the same time (time 0). 
Resources are generated and the initial state of each resource is either valid or invalid 
with the probability of being valid 1/(k+1). When two peers are with the transmission 
range, they exchange reports. Each exchange completes instantaneously, i.e. it takes 
time 0. At the 500-th simulated second, the consumer is introduced at a random point 
along the search square and its initial moving direction is either clockwise or counter-
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clockwise with equal probability. The consumer moves at the constant speed v. The 
consumer looks for resources using the search square as the search space. The 
simulation run terminates when the consumer successfully captures a resource. The 
length of the time period since the consumer is introduced up to the end of the 
simulation run is the discovery time of that run. 

For each set of parameters, we ran 1000 simulation runs and averaged the 
discovery times of each simulation run. The average discovery time is the discovery 
time for that set of parameters.  

3.2.3   Simulation Results 
The results show that IGS consistently outperforms BS. In some cases the discovery 
time of IGS is less than one-fourth that of BS. This indicates that the validity reports 
help shortening the discovery time dramatically.  

Relevance threshold. Fig. 2 shows how the discovery time of IGS changes per the 
relevance threshold H0. From the figure it can be seen that IGS has the best 
performance (i.e. the minimum discovery time) when H0=0.1. Above 0.1, the 
discovery time of IGS increases as H0 increases. This is because as the relevance 
threshold increases, the consumer uses fewer reports. This means that even reports 
with a low relevance are better than no reports at all. IGS is equivalent to BS when 
H0=1.0, because in this case IGS degenerates to BS (both strategies capture the 
resource only when the consumer is at the resource). Let us point out that the optimal 
relevance threshold varies depending on the environmental parameters. However, our 
simulations provide an approach to determining the optimal H0 given the 
environmental parameters.  

We identified the optimal H0 for each set of environmental parameters. We found 
that in all the cases the optimal H0 varies within a small range from 0.0 to 0.2. In 
many cases the optimal H0 is 0.0. Even when the optimal H0 is not 0.0, the discovery 
time obtained with the optimal H0 is very close to that obtained with H0=0.0. This is 
because, during the consumer's trip to the reported resource, it has the same chance of 
capturing a valid resource as if it uses the BS strategy. Thus going to a reported 
resource can only decrease but not increase the discovery time, regardless of the 
report relevance. Note that H0 is the threshold for the first candidate resource that the 
consumer attempts to capture. However, it does not necessarily indicate the relevance 
(of the report) of the resource that is eventually captured. 
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Fig. 2. Discovery time versus initial relevance threshold H0 
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From now on throughout the rest of this section, when we present the performance 
of IGS, we use the discovery time that is obtained with the optimal H0. 

Impact of broker density and transmission range. The discovery time of IGS 
decreases as the transmission range increases, and as the broker density increases 
(Fig. 3 and Fig. 4). Intuitively, as the values of these two parameters increase, the 
interactions among peers become more frequent, and thus the newly generated reports 
get propagated more quickly and reach the consumer sooner. These reports have 
higher relevance and therefore give the consumer a higher probability of capturing a 
resource. The fact that the discovery time decreases as the broker density increases 
indicates the effect of peer-to-peer interactions on speeding up information 
propagation. Note that the discovery time of BS is not affected by the transmission 
range and the broker density. 
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Fig. 3. Discovery time versus broker density Fig. 4. Discovery time versus transmission 
range 

Impact of invalidity-to-validity ratio. Fig. 5 shows the discovery time of IGS and 
that of BS as functions of the invalidity-to-validity ratio. It can be seen that the 
discovery time of IGS and that of BS both increase as the invalidity-to-validity ratio 
increases, which is natural. However, the discovery time of IGS increases with a 
lower rate than that of BS. This suggests that IGS is particularly useful in an 
environment where the competition for the resources is high.  

Hotspots density. Fig. 6 shows the discovery time of IGS and that of BS as functions 
of the hotspot density. It can be seen that the discovery time of IGS and that of BS 
both decrease as the hotspot density increases. This is because in our simulation 
resources are generated only at hotspots. So with a lower hotspot density, fewer valid 
resources exist in the system at a time. Further observe that the difference between 
IGS and BS does not change per hotspot density. This suggests that the hotspot 
density has little impact on the advantage of IGS over BS. 

Motion speed. Fig. 7 shows the discovery time of IGS and that of BS as functions of 
the motion speed of the consumer. The discovery time of IGS and that of BS both 
decrease as the motion speed increases. This is clearly due to the fact that a higher 
motion speed gives the consumer a better chance to reach a valid resource before the 
resource is re-captured. Further observe that the ratio between the discovery time of 
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IGS and that of BS decreases as the motion speed increases. This suggests that IGS is 
particularly suitable for a higher speed environment. 
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Fig. 6. Discovery time versus hotspot density 
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Fig. 7. Discovery time versus motion speed 

4   Relevant Work 

Different resource discovery architectures (SLP [4], Jini [12], Salutation [7], and 
UpnP [21]) have been developed for ubiquitous computing environments over the last 
few years. Typically these architectures consist of a dedicated directory agent that 
stores information about different services or data, a set of protocols that allow 
resource providers to find a directory agent and to register with it, and a naming 
convention for resources. In highly mobile environments, due to high variability of 
the network topology we cannot rely on any one component being always available. 
Therefore, it is important to develop methods that use opportunistic exchanges rather 
than a dedicated directory. 

Peer-to-peer networks [10, 15] and architectures [16] have all been studied in 
previous works. There are two major differences between our model and traditional 
peer-to-peer approach. First, in our environment the participating parties are 
physically mobile, and sometimes can be highly mobile (consider vehicles that move 
in opposite directions at 120 miles/hour relative speed). The object density can vary in 
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a big range from rush hours to midnight. The underlying communication network is 
thus subject to topology changes and disconnections. In such an environment a 
moving object does not necessarily always have neighboring objects to communicate 
with, and even if it does, the set of the neighbors is not fixed. Furthermore, there does 
not always exist a communication path between a pair of peers. These characteristics 
defeat the applicability of typical peer-to-peer frameworks that rely on peers to 
forward queries (e.g. Gnutella [3], DHTs like [20]). Second, in our environment 
information sharing is opportunistic. Pre-defined data access structures such as search 
routing tables used in Gridella [1] are impractical in mobile ad hoc networks. They 
are replaced by opportunistic peer-to-peer interactions. 

A lot of work has been done on data dissemination in mobile environments (e.g. 
[17, 19, 11, 5]). However, all this work considers regular data items but not spatial-
temporal ones. So the benefit of data dissemination is measured differently than here. 
In the existing work, the benefit of data dissemination is usually measured by the 
level of the consistency between the disseminated copies and the master copy. It does 
not consider how the data is used. In our work we use the spatio-temporal relevance 
function to express the utility of data (loosely speaking, to measure the consistency), 
and we analyze how the information is used, and what benefit in terms of time-saving 
it provides.  

Goel et al [27] study the dissemination of traffic-speed information in both peer-
to-peer and infrastructure environments, and evaluates the benefit of traffic-speed 
information in terms of travel time reduced compared to if information is not used. 
However, the approach considers only non-competitive resources (traffic-speeds) 
whereas we consider both non-competitive resources and competitive resources in our 
model, and we evaluate the benefit of competitive resources. Moreover, they do not 
discuss information prioritization of reports in terms of their relevance.  

Finally, this paper differs from our prior work [24, 25, 26] in multiple aspects. The 
model is more general in the sense that it allows resources to be advertised by the 
stationary hotspots in addition to moving objects (in [24] resources are advertised by 
moving objects only). The hotspots not only announce reports but also exchange 
reports with moving objects. In other words, hotspots announce resources other than 
their own (in [25] hotspots only announce resources they produce). The information 
usage is new, and the evaluation of the benefit of information is also new ([25] also 
evaluates benefit but using a much simpler simulation model and it does not discusses 
information usage).   

5   Conclusion 

In this paper we devised an architecture and a data model for dissemination of spatial 
and temporal resource-information in a mobile peer-to-peer communication 
environment, in which the database is distributed among the hotspots and moving 
objects. We analyzed IGS, the information guided resource discovery strategy, and 
determined that IGS reduces search time compared to blind search, and by how much. 
We also determined how the time savings varies as a function of the environmental 
parameters, such as the number of brokers, the competition for resources reflected in 
the valid/invalid time ratio, the speed of the moving objects, the number of hotspots 
producing resources, and the transmission range.   
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In general, we feel that the P2P paradigm is a tidal wave that has tremendous 
potential, as Napster and Gnutella have already demonstrated for entertainment 
resources. Mobile P2P is the next step, and it will revolutionize dissemination of 
spatial and temporal resources. For example, location based services have been 
considered a hot topic for quite some time, and it has been assumed that they have to 
be provided by a separate commercial entity such as the cellular service providers. 
The approach outlined in this paper can provide an alternative that bypasses the 
commercial entity. Although in this paper we used traffic examples, as mentioned in 
the introduction, the applications range from social networks to disaster recovery to 
mobile electronic commerce.  

In terms of future work, much remains to be done. For example, incentive 
mechanisms need to be developed to stimulate peers to participate as suppliers of 
resource information and/or intermediaries for information propagation. Strategies 
that best utilize the received information need to be investigated in a realistic traffic 
and resource operation environment. Other forms of interactions, e.g. peer-to-peer 
broadcast rather than pair-wise exchange, are also worth studying.  In this paper, we 
assumed a memory-less probabilistic distribution for the valid-time of a resource. We 
will examine with other distributions such as a normal distribution. 

Acknowledgements: We thank Aris Ouksel for helpful discussions. 

References 

1. Karl Aberer, Manfred Hauswirth, Magdalena Punceva, Roman Schmidt. Improving Data 
Access in P2P Systems, IEEE Internet Computing, 6(1), January/February 2002. 

2. CarTalk. http://www.cartalk2000.net/ 
3. Gnutella website. http://gnutella.wego.com 
4. E. Guttman, C. Perkins, J. Veizades, M. Day, Service Location Protocol, Version 2. 

RFC2608, June 1999. http://www.ietf.org/rfc/rfc2608.txt 
5. H. Hayashi, T. Hara, and S. Nishio. Cache Invalidation for Updated Data in Ad Hoc Net-

works. Proc. Int'l Conf. on Cooperative Information Systems (CoopIS'03), 2003. 
6. http://www.etsi.org/etsi_radar/cooking/rub11/transport_a.htm 
7. http://www.salutation.org/ 
8. IEEE Computer Society. Wireless LAN Medium Access Control (MAC) and Physical Layer 

(PHY) Specifications. 1997. 
9. Intelligent Safety Efforts in America. http://www.its.dot.gov/speeches/madridvii2003.ppt 

10. V. Kalogeraki, A. Delis, D. Gunopulos: Peer-to-Peer Architectures for Scalable, Efficient 
and Reliable Media Services. IPDPS 2003.  

11. G. Karumanchi, S. Muralidharan, and R. Prakash. Information Dissemination in 
Partitionable Mobile Ad Hoc Networks. Proc. Symposium on Reliable Distributed Systems 
(SRDS'99), pp.4-13, 1999. 

12. W. Keith Edwards, Core JINI, Prentice Hall, 1999.  
13. A. Markowetz, et al. Exploiting the Internet As a Geospatial Database, International 

Workshop on Next Generation Geospatial Information, 2003. 
14. New Microsoft Goal: A computer in every car. http://www.usatoday.com/tech/news/2003-

12-01-ms-cars_x.htm 



 Dissemination of Spatial-Temporal Information in Mobile Networks with Hotspots 199 

15. W.S. Ng, B. C. Ooi, K.L. Tan, A. Zhou. PeerDB: A P2P-based System for Distributed Data 
Sharing. International Conference on Data Engineering (ICDE'2003), Bangalore, 2003. 

16. M. Papazoglou, B. Krämer, J. Yang. Leveraging Web-Services and Peer-to-Peer Networks. 
In Proceedings of CAiSE 2003, June, 2003.  

17. M. Papadopouli and H. Schulzrinne. Effects of Power Conservation, Wireless Coverage 
and Cooperation on Data Dissemination Among Mobile Devices. MobiHoc 2001, October 
4-5, 2001, Long Beach, California. 

18. Robo-rescuers increase disaster victims' chances. 
http://firechief.com/ar/firefighting_roborescuers_increase_disaster/ 

19. K. Rothermel, C. Becker, and J. Hahner. Consistent Update Diffusion in Mobile Ad Hoc 
Networks. Technical Report 2002/04, Computer Science Department, University of 
Stuttgart, 2002. 

20. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan. Chord: A Scalable Peer-
to-Peer Lookup Service for Internet Applications. In Procs. ACM SIGCOMM, 2001. 

21. Universal Plug-and-Play (UPnP) Forum, Microsoft Corporation.http://www.upnp.org.  
22. Ultra-wideband (UWB). http://www.ubisense.net/technology/uwb.html 
23. E. Welsh, P. Murphy, P. Frantz. A Mobile Testbed for GPS-Based ITS/IVC and Ad Hoc 

Routing Experimentation. International Symposium on Wireless Personal Multimedia 
Communications (WPMC), Honolulu, HI, Oct. 2002. 

24. B. Xu, A. Ouksel, O. Wolfson, Opportunistic Resource Exchange in Inter-vehicle Ad Hoc 
Networks, Proc. of 2004 IEEE International Conference on Mobile Data Management, 
Berkeley, California, Jan. 2004. 

25. O. Wolfson, B. Xu, P. Sistla. An Economic Model for Resource Exchange in Mobile Peer-
to-Peer Networks. Proceedings of the 16th International Conference on Scientific and 
Statistical Database Management (SSDBM'04), Santorini Island, Greece, June 2004. 

26. O. Wolfson, B. Xu. Opportunistic Dissemination of Spatio-Temporal Resource Information 
in Mobile Peer-to-Peer Networks. Accepted, to appear in 1st International Workshop on 
P2P Data Management, Security and Trust (PDMST'04), Zaragoza, Spain, Sept. 2004. 

27. S. Goel, T. Imielinski, K. Ozbay, and B. Nath, Grassroots: A Scalable and Robust 
Information Architecture. Technical Report DCS-TR-523, Department of Computer 
Science, Rutgers University, June 2003. http://paul.rutgers.edu/~gsamir 

 



Wayfinder: Navigating and Sharing Information
in a Decentralized World

Christopher Peery, Francisco Matias Cuenca-Acuna,
Richard P. Martin, and Thu D. Nguyen

Department of Computer Science, Rutgers University, Piscataway, NJ 08854
{peery, mcuenca, rmartin, tdnguyen}@cs.rutgers.edu

Abstract. Social networks offering unprecedented content sharing are rapidly
developing over the Internet. Unfortunately, it is often difficult to both locate and
manage content in these networks, particularly when they are implemented on cur-
rent peer-to-peer technologies. In this paper, we describe Wayfinder, a peer-to-peer
file system that targets the needs of medium-sized content sharing communities.
Wayfinder seeks to advance the state-of-the-art by providing three synergistic ab-
stractions: a global namespace that is uniformly accessible across connected and
disconnected operation, content-based queries that can be persistently embedded
into the global namespace, and automatic availability management. Interestingly,
Wayfinder achieves much of its functionality through the use of a peer-to-peer
indexed data storage system called PlanetP: essentially, Wayfinder constructs the
global namespace, locates specific files, and performs content searches by posing
appropriate queries to PlanetP. We describe this query-based design and present
preliminary performance measurements of a prototype implementation.

1 Introduction

Social networks offering unprecedented content sharing such as Gnutella, KaZaA, and
DMOZ are rapidly developing over the Internet. Unfortunately, locating specific infor-
mation in these networks can often be frustrating, particularly when they are implemented
using current peer-to-peer (P2P) technologies. For example, the Direct Connect system
(http://www.neo-modus.com) used by a local file sharing community allows the brows-
ing of each individual node’s shared content but does not support a global browsable
namespace. Consequently, over 25TB of data is completely fragmented across more than
8000 individual listings without any way for the users to collaboratively organized this
shared information. To exacerbate the problem, content search is quite primitive, content
ranking is not supported, and it is impossible to reason about data availability because of
extensive disconnected operation1. This state-of-the-art is common to other P2P systems
such as KaZaA (http://www.kazaa.com) and eMule (http://www.emule-project.net).

Managing shared content is also difficult, particularly when users participate in mul-
tiple networks, as users must manually track content replicas across multiple publishing
infrastructures and their local writable storage systems. This problem is further exacer-
bated as users increasingly depend on multiple devices such as PCs, laptops, and PDAs,

1 Consistent with [2, 24], traces show that most users connect for less than a few hours a day.

W.S. Ng et al. (Eds.): DBISP2P 2004, LNCS 3367, pp. 200–214, 2005.
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some of which may frequently change their connectivity and bandwidth status, requiring
explicit reasoning about the impact of disconnected operation.

In this paper, we present Wayfinder, a novel P2P file system that seeks to address the
above limitations by presenting three synergistic abstractions: a global namespace that
is uniformly accessible across connected and disconnected operation, content-based
queries that can be persistently embedded into the global namespace, and automatic
availability management. We choose to build around a file system paradigm for wide ac-
cessibility: data stored in files are easily accessible through a wide range of applications,
including simple utilities such as cat, grep, and awk. Given this central paradigm,
the three abstractions then serve to unify the fragmented views of data spread across
multiple users and their devices, providing device-independent name and content ad-
dressing that naturally encompasses disconnected operation. Underneath the global data
view, Wayfinder automatically manages the replication and placement of data to achieve
specified availability targets.

In the remainder of this section, we describe the three abstractions mentioned above
in more details. In the body of the paper, we describe Wayfinder’s design and a prototype
implementation; in particular, a key aspect of Wayfinder’s design is that its abstractions
are all implemented as queries against meta-data stored in an underlying P2P indexed
storage layer called PlanetP [7]. Thus, we briefly describe PlanetP, how Wayfinder lever-
ages PlanetP’s indexing capabilities and query language to implement its exported ab-
stractions, and how Wayfinder uses a light-weight distributed hash table (DHT) as a
caching infrastructure to make its query-based design efficient. Finally, we close with
some thoughts on the benefits that can be derived from enhancing PlanetP’s query lan-
guage, particularly as shared content are increasingly structured via XML.

Global Namespace. Wayfinder constructs its global namespace by overlaying the local
namespaces of individual nodes within a sharing community as shown in Figure 1. Each
node’s local namespace is called its hoard and consists of a directory structure and files
stored in a local persistent storage system. The community may, at any point, split into
multiple connected subsets, each with its own shared namespace, and later rejoin to
recreate the entire global namespace. In essence, Wayfinder presents a shared view of
all data stored across any set of connected nodes that expands and contracts smoothly
on node arrival and departure.

Wayfinder adopts the above merging approach as opposed to today’s mounting ap-
proach because it provides three important advantages. First, it provides users with a
consistent browsing experience similar to the web but avoids the binding of names to
specific devices. In particular, it allows any user to contribute content to any portion of the
namespace by binding files to appropriate names within the local namespace of any of his
devices; indeed, a user can modify any portion of the namespace by modifying, adding,
and deleting files and directories provided that they have the necessary rights to do so2.
This makes it possible for any Wayfinder community to collaboratively organize shared
information in a manner similar to the web-based DMOZ project (http://dmoz.org).

2 Wayfinder implements a security model that allows a community to control write access to files
and directories. A discussion of this model is beyond the scope of this paper, however. We refer
the interested reader to [19].
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Fig. 1. Wayfinder dynamically constructs a shared namespace across any set of connected devices
by merging their local hoards. This figure shows 3 nodes originally being connected so that the
shared namespace is the merged view of hoards H1 through H3. When the community is partitioned
into 2 connected subsets, Wayfinder maintains a merged view for each subset. When the subsets
reconnect, Wayfinder dynamically re-merges the shared namespace

Second, it reduces the data management overheads by removing the need for users
to explicitly reason about what replica resides on which device. As shall be seen, when
a user accesses a file, Wayfinder will locate the latest version of that file within the con-
nected community. Wayfinder also detects and automatically resolves conflicts that arise
because of changes made during disconnected or partitioned operation. Wayfinder main-
tains sufficient information for users to manually resolve these conflicts if the automatic
resolution is semantically incorrect.

Finally, a merging approach naturally encompasses partitioned and disconnected
operation as shown in Figure 1. At the extreme, disconnected operation simply means
that the namespace will include only the local hoard; thus, while the amount of accessible
content may change, the manner in which users browse the namespace and access files
does not.

Semantic Directories. A key lesson from the web is that successful management and
sharing of large volumes of data require both browsing, i.e., name addressing, and con-
tent search, i.e., content addressing. To date, however, browsing and content search have
typically been viewed as two separate approaches for locating and organizing infor-
mation. Wayfinder seeks to integrate these two approaches through the implementation
of semantic directories [11, 12], which are search queries that are embedded into the
persistent file system namespace.

Semantic directories provide a powerful organizational paradigm because they al-
low users to create a persistent namespace that automatically binds content to multiple
browsing paths. For example, a file discussing content search in P2P file systems might
be found through two completely different pathnames, with one leading to a query for
“content search” and the other to a query for “P2P file systems,” without requiring users
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to explicitly create these name bindings. While individual users can of course pose ei-
ther of these queries independent of the namespace, devising “good” queries is often a
difficult art. In our lab, we often share good web queries with each other; e.g., “look
this up using the following query.” Embedding queries into the namespace will allow
users to easily preserve and share good queries. Users will also benefit from each other’
fine-tuning of search results; for example, each addition of a file that is relevant to but
does not match a query benefits the next user that browses the semantic directory looking
for relevant information.

As shall be seen, semantic directories are periodically reevaluated to reflect changes
in the shared data collection, thus turning the file system namespace into an active
organizational tool. Further, similar to the HAC file system [12], Wayfinder allows users
to explicitly fine-tune the content of a semantic directory rather than having to manipulate
the query until it returns the exact set of desired files. Finally, Wayfinder implements
an approximation of the TFxIDF vector space ranking algorithm so that files inside a
semantic directory can be ordered based on their relevance to the directory’s query.

Automatic Availability Management. Providing high data availability is a fundamental
aspect of a file system. Achieving high availability in P2P systems, however, can be quite
difficult because of the extensive disconnection already mentioned. Wayfinder addresses
this problem by automatically replicating data to achieve explicitly specified availability
targets. Wayfinder continuously monitors and predicts the availability of nodes in a
sharing community in order to make replication and placement decisions. In addition,
we are exploring a novel user-centric availability model that addresses the combined
problem of hoarding, that is, ensuring the presence of data on a specific device for
disconnected operation, and availability, which is typically defined as the probability of
successful access when connected to a server. Our ultimate goal is to support a unified
metric where a file is available if it can be accessed, regardless of the accessing device’s
connectivity state. Wayfinder seeks to provide high user-centric availability, which works
together with the dynamic global namespace to remove the need for users to explicitly
reason about what replica resides on which device across connected and disconnected
operations. This aspect of Wayfinder is still at the exploratory stage, however, and so
will not be described further in this paper.

Design and Implementation Status. Wayfinder stores each node’s hoard in the node’s
local file system and stores its meta-data in PlanetP, which is a P2P indexed data stor-
age layer that supports a simple boolean query language for data retrieval. Wayfinder
then uniformly constructs its file system namespace, locates specific files, and performs
content searches by posing appropriate queries to PlanetP.

We have implemented a Wayfinder prototype that is sufficiently complete to support
the transparent execution of common applications such as cvs, emacs, latex, gv, etc. on
Linux. Currently, Wayfinder targets medium size communities of hundreds to several
thousands of users as the common unit of social interaction. A good example of such
a social group is the local P2P network already mentioned above that is comprised
of several thousand students sharing approximately 25TB of data. Sharing within our
laboratory (and department) is another example environment where we are deploying
and using Wayfinder.
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Our Contributions Include:

– The design and preliminary evaluation of a P2P file system that unifies name and
content addressing in the context of a global browsable and writable namespace.
Critically, our system supports content addressing and ranking without requiring
any centralized indexing.

– The unification of two recent paradigms for building robust decentralized systems,
distributed hash tables (DHT) [26] and replication using gossiping, to build a robust
and efficient P2P file system.

2 Background: PlanetP

We begin by briefly describing PlanetP since Wayfinder uses it as a distributed data
store for its meta-data. PlanetP is a toolkit that provides three building blocks for the
construction of robust, medium-scale P2P applications: a gossiping module [7, 9], an
indexed storage system and distributed query processing engine, and a lightweight ac-
tive DHT. PlanetP’s indexed storage system stores information as bindings of the form
{k1, k2, ..., kn} → o, where ki is a text key, o is an arbitrary object, and we say that
keys(o) = {k1, k2, ..., kn}. Stored objects are retrieved by specifying queries comprised
of text keys combined using three operators, and (∧), or (∨), and without (−). For ex-
ample, a query (“cat” ∧ “dog” − “bird”) would retrieve the set {o | ({cat, dog} ⊆
keys(o)) ∧ ({bird} 	⊆ keys(o))}.

When a binding {k1, k2, ..., kn} → o is inserted into PlanetP3 at a particular node,
PlanetP stores o in a persistent store local to that node, e.g., a BerkeleyDB database [25],
and k1, k2, ..., kn in a two-level index. The top level of this two-level structure is a
globally replicated key-to-node index, where a mapping k → n is in the index if and
only if at least one binding {..., k, ...} → o has been inserted at node n. The second
level is comprised of a set of local indexes, one per node, which maintains the key-to-
object mappings for all bindings inserted at each node. The global index is currently
implemented as a set of Bloom filters [4], one per participating node, and is loosely
synchronized over time using the gossiping module [7].

To evaluate a query posed at some node n, PlanetP uses n’s replica of the global index
to identify target nodes that may contain relevant bindings. Then, PlanetP can either
forward the query to all targets for exhaustive retrieval or to only a subset of targets that
are likely to contain the most relevant objects. Contacted target nodes evaluate the query
against their local indexes and return URLs and relevance rankings for matching objects
to n. PlanetP’s relevance ranking is computed using an approximation of the text-based
TFxIDF vector space ranking algorithm [6].

To complement the gossip-based persistent indexed store, PlanetP also implements
an active unreliable DHT. This DHT is active in that stored objects can execute on
the hosting nodes but unreliable in that it may loose objects arbitrarily because nodes
may leave (fail) without redistributing their portions of the DHT. There are two main

3 We often refer to the indexed data store as just PlanetP when the reference is clear within the
surrounding context.
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Fig. 2. An overview of Wayfinder’s architecture. Solid arrows inside PlanetP indicate bindings
of keys to waynodes while dashed lines indicate implicit bindings of waynodes to file/directory
replicas. Note that only a few waynodes are shown for clarity

expected use of this DHT: weak serialization of potentially conflicting operations and
caching of soft state such as those reconstructible from data in the indexed store to
enhance performance.

We have shown that PlanetP’s content ranking algorithm can achieve similar accuracy
to a centralized implementation of TFxIDF [6]. In addition, PlanetP is extremely robust,
even for highly volatile communities, and currently scales well to thousands of nodes [7]
(hence the “medium-scale” label).

3 Files and Directories

We now describe how Wayfinder implements files and directories.As already mentioned,
Wayfinder stores each node’s hoard in the node’s local file system and stores its meta-
data in PlanetP (Figure 2). More specifically, each hoard is a sub-directory comprised of
a portion of the files in the global namespace and the corresponding directory structure.
Each file and directory can have many replicas across the community, with each replica
described by a small data structure called a waynode. The set of all waynodes comprises
Wayfinder’s meta-data and is stored in PlanetP, where each waynode is bound to a set of
content keys and a unique file or directory ID key. Wayfinder then constructs the global
namespace, locates individual files, and performs content searches by posing appropriate
queries to PlanetP. To make this query-based design efficient, Wayfinder caches query
results in PlanetP’s DHT. As shall be seen, Wayfinder only caches soft state, which can
be arbitrarily lost at any point in time without affecting its correctness.

Files. Each Wayfinder file is identified by a unique identifier while each replica is de-
scribed by a waynode. Each waynode contains a file ID, a version, a content hash, and
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a URL indicating where the replica can be retrieved. Each waynode is stored in Plan-
etP, bounded to the replica’s file ID and keys extracted from the replica’s content. Each
replica of a file /path/name is stored at path/name in some hoard.

More specifically, suppose that the hoard of a node n is stored at /WFRoot in n’s
local file system. When a file /path/f is opened, Wayfinder first retrieves f ’s ID from the
meta-data associated with /path (see below) and queries PlanetP for all the waynodes
of all replicas of f to compute the latest version and where replicas or diffs can be
retrieved. To avoid this expensive operation in the future, Wayfinder caches the result
in the DHT. Cache entries are active objects that can receive and process information
about updates and so can persist in the cache indefinitely; in our current implementa-
tion, they are discarded after not having been accessed within some threshold period of
time.

Then, if n does not have a local replica of f , Wayfinder retrieves a copy, stores it at
/WFRoot/path/f, and creates a new waynode for this replica and inserts it into PlanetP.
The new waynode contains the same file ID and version number but has a new URL
pointing to n’s hoard. On the other hand, if n has an old version, Wayfinder updates the
local copy to the latest version and updates the waynode to the new version number.
Finally, Wayfinder completes the open on the local replica. Creation works similar to
open except that Wayfinder generates a new file ID for the newly created file.

If f was opened for write, on closing, Wayfinder increments the replica’s version
number (in the waynode) and updates the meta-data object cached in the DHT for f if one
exists. Wayfinder also computes a diff that contains all changes since the open and stores
it in /WFRoot/path together with f. (Of course, diffs are hidden from the user’s view
of the directory in the global namespace.) Diffs allow nodes to update replicas of large
files without downloading the entire file. Diffs also allow Wayfinder to unroll changes
as necessary to resolve write conflicts (see Section 4). Finally, Wayfinder schedules the
file to be indexed in the background; if the file has already been indexed in the past, then
Wayfinder can do an incremental index using just the diff. Once the index is completed,
Wayfinder rebinds the waynode to the extracted content keys.

Directories. When a user opens or creates a file /path/f at a node n, Wayfinder creates
the directory path in n’s hoard if it does not already exist. Thus, directories are replicated
across nodes’hoards as well, although as shall be seen, they are only partially replicated.
Directories are uniquely identified by their pathnames since directories with the same
name are merged in the global view.

Each directory replica is represented by a waynode that stores all the name-to-replica
bindings in the local hoard. That is, if a directory path in n’s hoard contains two files, f1
and f2, then the waynode for /path would contain two bindings, one binding the name
f1 to f1’s ID and one binding f2 to f2’s ID. Each directory waynode w is inserted into
PlanetP as a binding {“/path”} → w. Then, to construct a global view of a directory
/path (for example, when the user does an ls), Wayfinder retrieves all waynodes bound
to the key “/path” and merges their content.

We also cache directory views for efficiency. Similar to our caching of file meta-data,
we choose to continuously update cached directory views; thus, whenever a node adds
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or deletes a file, if a view of the file’s parent directory exists in the cache, then it updates
the cache view to reflect the operation.

Semantic Directories. A semantic directory is one whose name maps to a content
query [11]. In Wayfinder, mkdir creates a semantic directory if the first character of
the name is a “$”. Currently, a semantic directory’s name just consists of a sequence
of space-separated terms that are combined using the “and” operator to form the query.
Each semantic directory has a set of attributes that can optionally be set to direct the
ranking and display of matching files.

On creation, a semantic directory is populated with files within its scope that matches
the directory’s query. A file is defined to match a query if the keys that its waynodes,
i.e., the waynodes of the replicas with the latest version, are bound to satisfy the query.
Depending on its attributes, a semantic directory can be populated with all matching files
or only a subset of highly ranked files. Wayfinder periodically reevaluates each semantic
directory’s query to refresh its content; the reevaluation period is a user-specifiable
attribute of the directory.

When a user creates a semantic directory /a/b, if a is a regular directory, then the
user has a choice of populating b with matching files from the entire file system (global
scope) or only files contained in a (parent scope). If a is a semantic directory, however,
then only parent scoping is allowed. Thus, a chain of three semantic directories b/c/d
would give three sets of files equivalent to the queries b, b ∧ c, and b ∧ c ∧ d.

Similar to [12], Wayfinder’s semantic directories can be directly manipulated by
users. That is, users can add files to or remove files from a semantic directory just like a
normal directory. Files explicitly removed by a user are never brought back by a reeval-
uation although they can be added back explicitly. Likewise explicitly added files are
never removed by reevaluation, even if their content do not match the directory’s query.

Semantic directories are implemented as follows. When a node accesses a semantic
directory, a replica is created in its hoard along with a waynode. The waynode is used to
record explicit user manipulations of the semantic directory at that node, i.e., additions
and deletions. On (re)evaluation, Wayfinder poses the directory’s query to PlanetP and re-
trieves all waynodes that matches the query.Wayfinder also gathers all waynodes describ-
ing replicas of the directory. It then modifies the set of matching file by the union of the
actions contains in the directory waynodes.Actions are ordered using logical timestamps;
conflicting operations are resolved conservatively, favoring addition over deletion.

The result of the above evaluation is cached in memory until the next evaluation.
When a file inside a semantic directory is accessed, a copy of it is downloaded to the
hoard just as for a normal directory. If that file is later accessed through another pathname,
or if a local replica already exists, Wayfinder only keeps one copy in the hoard and uses
hard links to support accesses through the different pathnames.

4 Consistency

Wayfinder exports a weak consistency model similar to that of Bayou [20] for both
directories and files to support partitioned operation—recall that Wayfinder continues to
operate even when the sharing community is splintered into several disconnected parts.
In this section, we describe this consistency model and its implications for users.
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Files. Recall that when a user attempts to access a file f at some node n, n simply
opens the latest version of f that it can find. This essentially implements a “single copy,
any version availability” model [13]. Under partitioned operation, this model can lead
to users seeing stale data and conflicting non-concurrent writes because of incomplete
hoarding within n’s partition or recent writes outside of n’s partition. (Note that these
problems can arise even when the entire community is connected: when cached entries in
the DHT are lost, gossiping delays may give rise to inconsistent views of the global index,
which in turn may lead to inconsistent actions. These inconsistencies are subsumed by
those arising from partitioned operation, however, and so are dealt with similarly.)

The above inconsistencies are inherent to any system that supports partitioned oper-
ation. Wayfinder’s replication approach (not described here) reduces the probability of
accessing stale data. To address write conflicts, Wayfinder maintains a version vector in
each waynode, where a new version extends the vector with a monotonically increasing
number and the ID (a hash of a public key) of the writer. Then, when Wayfinder detects
write conflicts, it imposes an arbitrary but deterministic and globally consistent order-
ing on the changes. This allows nodes to resolve conflicts without the need to reach a
communal consensus.

For example, suppose Wayfinder detects two waynodes for the same file with con-
flicting versions [(x,1)(y,2)] and [(x,1)(z,2)]. Further suppose that y < z according to
their integer values. Wayfinder would then apply the diff between [(x,1)] and [(x,1)(z,2)]
to [(x,1)(y,2)] to get the version [(x,1)(y,2)(z,2)]. To address the cases when this reso-
lution is semantically incorrect—although often, similar to CVS conflict resolution, this
automatic resolution may be correct—Wayfinder allows users to manually merge diffs to
create a new, semantically correct version. Continuing the example, Wayfinder allows a
user to create a new version [(x,1)(y,2)(z,2)(u,3)] by providing the [(x,1)] version using
diff rollback and the two conflicting diffs.

Directories. Wayfinder also supports a “single copy availability” model for directory
accesses. Suppose a user at some node n attempts to access a directory /path/dir. This
access will succeed if any node in n’s partition has a replica of /path/dir. For similar
reasons as above, this model can cause users to not see bindings that actually exist,
see bindings that have been deleted, and create conflicting bindings. Since replicating
files involve replicating their ancestor directories, our replication approach also reduces
the probability of incomplete views. To resolve conflicting bindings when creating a
directory view, Wayfinder renames the bindings in the DHT cache entry and notes this
rebinding. When a user attempts to access a file through the renamed binding, Wayfinder
notifies the user of the conflict so that a permanent rebinding can be affected.

To delete a binding /path/f, Wayfinder unlinks path/f in the local hoard, removes
f from the cached entry of /path in the DHT, and publishes a delete notification to
PlanetP. Whenever a node accesses /path, it will see the delete and remove its own local
replica if it has one. Each node also periodically looks for delete notices and removes
any corresponding local replicas. Delete notifications are discarded after an expiration
period currently set to four weeks. Thus, it is possible for a node that was offline for
longer than this period to bring back a copy of a deleted file when it comes back on-line.
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Table 1. Results of the Modified Andrew Benchmark using the Linux NFS, original JNFSD and
the JNFSD linked with Wayfinder running in isolation and connected to a large community of
nodes

Modified Andrew Benchmark
Phase Linux NFS JNFSD Wayfinder: 1 Node Wayfinder: Worst Case

1 0.02 s 0.04 s 0.04 s 0.10 s
2 0.18 s 0.37 s 0.82 s 1.51 s
3 1.03 s 0.82 s 0.85 s 1.08 s
4 0.84 s 1.58 s 1.64 s 1.82 s
5 2.09 s 3.13 s 3.30 s 3.49 s

Total 4.16 s 5.94 s 6.65 s 8.01 s

To delete a directory, Wayfinder deletes all files within the directory as described
above and deletes the directory itself from the hoard. When processing delete notifica-
tions, a node also recursively delete ancestor directories if the deleted binding was the
last in that directory. This implementation has two implications. First, since deleted files
can reappear, so can deleted directories. Second, deleting the last binding in a directory
effectively deletes that directory as well.

Finally, since we depend on nodes to update cached directory entries in the DHT
to reflect changes, these entries may become stale when a node goes offline, modifies
its local hoard, then returns. To address this problem, cached entries are automatically
discarded after an expiration period. Also, when a node rejoins an online community, it
lazily walks through its hoard and updates any stale cached entries. When two connected
subsets join, cached entries for the same directory are merged.

5 Performance

We now consider the performance and robustness of a prototype implementation. Results
presented here are preliminary since we are just starting to use Wayfinder on a daily basis.

Our prototype is written in Java and uses a modified JNFSD server [16] to export
its services as a locally mounted user-level NFS system. All experiments are performed
on a cluster of PCs, each equipped with an 800MHz PIII processor, 512MB of memory,
and a 9GB SCSI disk. Nodes run Linux 2.2.14 and Sun’s Java 1.4.1 2 SDK. The cluster
is interconnected by a 100Mb/s Ethernet switch.

Each Wayfinder node caches meta-data retrieved from the DHT in local memory
for 10 seconds. In our current setup, this reduces the impact of accessing the DHT
through Java RMI, which requires on order of 2.5ms for a single RPC. When Wayfinder
is used by communities connected over the Internet, this caching reduces the impact of
communication over the WAN. Note that this caching is similar to caching done by the
Linux NFS client (3–30 seconds), although Linux has a more sophisticated policy of
when to disregard the cache.

Andrew Benchmark. Table 1 shows the running time for the Modified Andrew Bench-
mark [15] for Linux NFS, the unmodified JNFSD, and Wayfinder. The benchmark con-
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sists of five phases executed by a single client: (1) create a directory structure, (2) copy
a set of files into the directory structure, (3) stat each file, (4) grep through the files, and
(5) compile the files. In all cases, the NFS server and client ran on the same machine for
comparison against when Wayfinder is running on a single node. For Wayfinder, “Worst
Case” reflects performance for the hypothetical scenario where the community is very
large so that each access to the DHT requires a message exchange. Since all operations
are performed on a single client, these remote DHT accesses are the most significant
source of overhead for this benchmark.

Observe that Wayfinder imposes little overhead when the workload is not entirely
comprised of file system operations. In particular, Wayfinder imposes insignificant over-
heads for phases 4 and 5, when the client is grepping and compiling, respectively. Phase
1 and 2 impose higher performance penalty, particular phase 2 where each copy requires
Wayfinder to compute a diff and to synchronously flush the corresponding waynode
from the local cache, forcing a remote DHT update. Currently, the computation of a diff
involves copying the entire file at an open which we plan to optimize in the future by
implementing copy-on-write. Phase 3 benefits from the cache footprint resulting from
phase 2 and so imposes only a modest amount of overhead.

We thus conclude that while Wayfinder does impose visible overheads on basic file
system operations. These overheads are quite acceptable given that the prototype is a
largely un-tuned Java program. We also observe that the Andrew Benchmark gives the
worst case scenario for Wayfinder: all operations are performed at a single client and so
gives no measure of Wayfinder’s effectiveness for collaborative workloads.

Scalability and Robustness. We now show the advantage of Wayfinder’s dual nature,
using gossiping for robustness to failures and caching in the DHT for scalable perfor-
mance. In this experiment, we turn off the caching at the local node to force accesses to
use either the DHT or PlanetP’s retrieval.

Figure 3(a) plots the time required for a single node to perform a complete traversal
of a namespace, e.g., doing an “ls -R” vs. community size with, and without, the use
of caching in the DHT. The namespace is a complete trinary directory tree of depth 3,
giving a total of 41 directories with each directory containing 1 file. Each node hoards
the entire namespace.

As expected, the scan time without caching in the DHT grows linearly with com-
munity size since computing each directory view requires contacting all nodes. With
caching, however, the scan time rises only slightly with community size as more and
more cached entries are stored at remote nodes; this curve has an asymptote, however,
corresponding to the cost of a network access per directory access.

On the other hand, Figure 3(b) shows Wayfinder’s robustness to loss of DHT data.
In this experiment, we run a sequence of scans and, in two instances, we simulate node
crashes by causing 2 and 4 nodes, respectively, to drop all of their DHT entries and leave
the community. The scan is performed over a similar (albeit slightly smaller) directory
structure as before but where each file is replicated only twice so that each crash leaves
some files with only one replica. Observe the rise in scan time right after the simulated
failures because some directory views had to be reconstructed. These scans correctly
recreated all views, however, and re-cached them.
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Fig. 3. (a) Time required to scan a namespace plotted against community size. (b) Scan time in the
presence of node failures; x-axis is a sequence of scans, dotted vertical lines indicate node failures,
and solid vertical lines indicate the return of failed nodes. 2 nodes failed after scan 6 while 4 nodes
failed after scan 14. The vertical bar gives the standard deviation for scan time across 10 samples

6 Related Work

Several previous efforts have investigated the provision of a global namespace spanning
multiple file and publishing systems [18, 21]. However, these efforts were more fo-
cused on providing individual users with logical namespaces that span multiple file
systems rather than a communal namespace that can be collaboratively organized.
The Federated File System (FFS) [27] is probably closest to our work with respect
to namespace construction but FFS is targeted specifically for a cluster rather than a P2P
community.

The Semantic File System [11] introduced the concept of semantic directories, which
was further developed in the HAC File System [12]. Wayfinder implements this abstrac-
tion in the context of P2P systems. Wayfinder also introduces content ranking within
semantic directories.

Many projects have recently explored P2P file systems. However, to our knowl-
edge, none of these systems have considered content search and ranking. Further dif-
ferences are as follows. The Secure Read-Only File System [10] and the Cooperative
File System [8] are read-only publishing file systems. Farsite [1], a general read/write
server-less file system, shares many common goals with our work. However, Farsite
targets a corporate environment with significantly different characteristics than our tar-
get environments and so its design and implementation is significantly different from
Wayfinder. Oceanstore [22] and Pangaea [23] are more concerned with extreme scaling
than Wayfinder and so their designs and implementations are also significantly different
than Wayfinder. Ivy [17] is a P2P file system that stores its data blocks in a DHT. This
approach is fundamentally different than ours and may lead to unacceptably high data
movement for highly dynamic communities [5, 3]. Finally, Bhagwan et al. have consid-
ered automatic availability management in the context of a storage system built around
a DHT [3]. This system’s replication approach is similar to that of Wayfinder (although
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this aspect of our work is not described here) but it does not target disconnected operation
nor content search and ranking.

Several projects have addressed the enhancement of data management capabilities
in P2P networks. For example, Harren et al. are exploring the introduction of complex
query languages to P2P systems, particular in the context of systems built on DHTs [14].
The Piazza project is seeking to support the sharing of heterogeneous, semantically rich
data in P2P systems [29]. These efforts are complementary to ours in that more powerful
querying languages and engines on top of semantically rich data will likely increase
Wayfinder’s capability for providing a convenient yet powerful collaborative information
sharing environment.

Tang and Dwarkadas recently investigated content search and ranking for DHT-based
P2P systems [28]. This work is similar to PlanetP’s content search and ranking albeit it
targets a different underlying building block for P2P systems.

7 Conclusions and Future Work

We have presented Wayfinder, a novel P2P file system that seeks to unify publishing,
searching, and collaborative organization within the context of a file system to better
support the needs of medium-sized content sharing networks. Specifically, we have de-
scribed two of the three critical abstractions exported by Wayfinder: a global namespace
that merges devices’ local namespaces into a unified view and semantic directories that
allow the namespace to actively organize the shared information. We have shown how
Wayfinder implements these abstractions on top of a P2P indexed data store; specifi-
cally, Wayfinder stores all of its meta-data in this data store. Wayfinder then constructs
the global namespace, locates specific files, and performs content searches by posing
appropriate queries to the underlying storage system. We have also described how to
make this query-based design efficient by caching the query results in an unreliable
DHT. Finally, we have given preliminary performance measurements collected from a
prototype to show that we can achieve reasonable performance.

We are currently in the process of deploying Wayfinder inside our lab (and hopefully
within our department) for actual use to evaluate Wayfinder’s impact on everyday data
management tasks. We are also pursuing two directions of future work. First, we are
exploring the usefulness of Wayfinder’s semantic directories as well as the opportunity
to improve its content ranking capabilities by observing users’access patterns and explicit
manipulations of semantic directories. For example, if a user explicitly adds a file to a
semantic directory or accesses a lowly ranked file frequently, we might be able to use
the content of these files to “improve” the query through keyword expansion.

Second, we are exploring how PlanetP can support a more complex query language.
Harren et al. [14] have pointed out that such an effort can be rewarding as it can sig-
nificantly enrich ways in which applications like Wayfinder can help users locate and
manage shared content more effectively4. Concurrently, we will also explore the storage
of Wayfinder’s files as well as its meta-data in PlanetP. In essence, we seek to explore a

4 Interestingly, PlanetP already supports part of the API identified by Harren et al. as being useful
for implementing complex query languages in P2P systems.
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content management and sharing system where coherent views, e.g., files and directo-
ries, are just results of appropriate queries posed on an underlying “sea of data.” Such a
hybrid system is powerful in that it supports a simple file system API yet also provides
the benefits of a powerful underlying data management system. For example, in our
current system, a semantic directory can be thought of as a dynamic “attraction” point,
where new content entering the system related to a set of keywords will automatically
be listed. Yet, applications accessing such a directory simply opens, reads, and writes
the directory without having to know anything about the underlying data management
capabilities. One can imagine equivalent semantic files that can serve to attract snippets
of information; current PDA address books and calendars are examples of how such
semantic files might be useful.
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Abstract. Distributed Hash Tables (DHTs) have been widely adopted in many 
Internet-scale P2P systems. Emerging P2P applications such as massively multi 
player online games (MMOGs) and P2P catalog systems frequently update data 
or issue multi-dimensional range queries, but existing DHT-based P2P systems 
can not support these applications efficiently due to object declustering. Object 
declustering can result in significant inefficiencies in data update and multi-
dimensional range query routing. In this paper, we propose CISS, a framework 
that supports efficient object clustering for DHT-based P2P applications. While 
utilizing DHT as a basic lookup layer, CISS uses a Locality Preserving  
Function (LPF) instead of a hash function. Thus, CISS achieves a high level of 
clustering without requiring any changes to existing DHT implementations. 
Technically, we study LPF encoding function, efficient routing protocols for 
data updates and multi-dimensional range queries, and cluster-preserving load 
balancing. We demonstrate the performance benefits of CISS through simulation. 

1   Introduction 

Distributed Hash Table (DHT)-based overlay networks [15][17][20][21] have re-
cently emerged as a scalable and efficient infrastructure for wide-area data manage-
ment. DHT is already adopted in many P2P systems including a wide-area file system 
[5] and an Internet-scale query processor [9]. These P2P systems mainly focus on an 
environment in which data updates are rare and exact match queries are the norm. 
However, emerging P2P applications frequently update data or issue range queries. 
For example, MMOGs intensively generate streams of updates such as players' loca-
tions and status [3][10]; P2P catalog systems intensively issue multi-dimensional 
range queries such as interest area queries [13]. 

Existing DHT-based P2P systems [5][9] can not support such applications effi-
ciently due to object declustering. These P2P systems use a hash function to distribute 
objects randomly across different peer nodes. Thus, while they are effective in achiev-
ing a high level of load balancing, objects are totally declustered; even highly co-
related objects are spread over different peer nodes. Such object declustering can 
result in significant inefficiencies in both data update and multi-dimensional range 
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query routing. In data-intensive P2P applications such as MMOGs, DHT lookups 
have to be performed at every data update even though consecutive data updates are 
semantically close. Thus, it increases not only the communication overhead of the 
DHT layer, but also the latency of update routing. However, when objects are clus-
tered, semantically close updates can be routed to the same peer node without having 
to perform additional lookups. In multi-dimensional range query-intensive P2P appli-
cation such as P2P catalog systems, queries search for semantically related objects. 
Thus, when totally declustered, each key value in a query range should be enumerated 
and individually searched for via a separate DHT lookup. However, when objects are 
clustered, multiple key values can be searched for via a single lookup. Thus, the num-
ber of DHT lookups needed for query processing can be greatly reduced. 

In this paper, we propose CISS (Cooperative Information Sharing System), a 
framework that supports efficient object clustering for DHT-based P2P applications. 
While utilizing DHT as a basic lookup layer, CISS uses a Locality Preserving Func-
tion (LPF) instead of a hash function. Thus, CISS achieves a high level of object 
clustering without requiring any changes to existing DHT implementations. Conse-
quently, CISS significantly reduces the number of DHT lookups needed for data up-
dates and multi-dimensional range queries. 

In realizing CISS, there are three technical issues that must be taken into consid-
eration. First, CISS has to construct an N-bit key from multiple attributes for each 
object while preserving locality. In order to preserve locality, the keys of two objects 
should be similar if attribute values of those objects are semantically related. The LPF 
is responsible for this key encoding. The LPF first encodes each attribute value to a 
shorter-length bit key. It then maps multiple such shorter-length bit keys to a one-
dimensional N-bit key using the Hilbert SFC. Since the data types of each attribute 
can be diverse in practice, the LPF needs to be able to encode the attributes of various 
data types. We describe this encoding scheme in Section 4.1 with practical examples.  

Second, CISS must support efficient routing protocols for data updates and multi-
dimensional range queries in order to maximize the benefits of object clustering. To 
route data updates efficiently, we propose a caching-based update routing protocol. 
This routing protocol does not perform additional lookups if streams of updates be-
long to the key range of the most-recently-searched peer node. Each peer node man-
ages semantically related objects and data updates are also usually semantically close. 
Thus, streams of updates belong to the same node with high probability. To route 
multi-dimensional range queries efficiently, we propose a forwarding-based query 
routing protocol that performs a minimal number of costly DHT lookups. In addition, 
our query routing protocol prevents query congestion.  

Third, CISS must perform load balancing while preserving object clustering. 
Since each peer node in CISS manages semantically related objects, a skewed distri-
bution of objects and queries results in significant load imbalance. To prevent hot-
spots, load balancing must be performed. However, load balancing mechanisms in 
existing DHT-based systems such as virtual servers [4][5][14][20] destroy the object 
clustering property. When using virtual servers, physical peer nodes can manage non-
contiguous key ranges, i.e. multiple virtual servers. In order to preserve object cluster-
ing, physical peer nodes must manage contiguous key ranges. We propose two novel 
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load balancing schemes, local-handover and global-handover, which preserve object 
clustering even after load balancing is achieved. 

The rest of the paper is organized as follows. Section 2 reviews related work in the 
area of object clustering in P2P overlay networks. In Section 3, we describe the archi-
tecture of CISS. In Section 4, we explain technical issues faced in realizing CISS, 
including LPF, data and query routing protocols and cluster-preserving load balanc-
ing. Section 5 presents results from simulation studies of CISS. Finally, Section 6 
concludes with a discussion of our plans for future work. 

2   Related Work 

In existing DHT-based P2P systems [5][9], exact matching queries are efficiently 
processed in O(log S) time, where S is the number of nodes in the P2P overlay net-
work. However, streams of data updates and multi-dimensional range queries are not 
supported well due to object declustering in such systems. Recent research has fo-
cused on alleviating these shortcomings. 

Much of this research [1][7][11][18] attempts to provide simple one-dimensional 
range queries over P2P overlay networks. In [1][18], the authors extend CAN [15] for 
range queries by utilizing query flooding techniques. In [7][11], they propose newly 
designed range addressable P2P frameworks which are not compatible with existing 
DHT implementations. 

CLASH [12] and PHT [16] apply an extensible hashing technique to DHTs. 
They efficiently achieve an adaptive object clustering as well as support range  
queries. Due to the need for depth searching, an exact match lookup takes 
O(log(D)⋅log(S)) time, where D is the maximum depth of the key and S is the num-
ber of nodes. However, multi-dimensional range queries have not been considered 
yet in these research projects. 

Squid [19] supports multi-dimensional range queries over DHTs by using the Hil-
bert Space Filling Curve (SFC). Recursive refinement of queries in Squid signifi-
cantly improves the performance of query routing, but it can incur query congestion. 
Thus, the overall scalability of a DHT-based P2P system is limited. 

From the standpoint of real systems, much of this previous research did not  
consider several critical technical issues. First, it is not clear how to encode real 
attribute values to N-bit routing keys. In this paper, we clearly describe such an 
encoding scheme with practical examples. Second, even though many previous 
works focused on query routing, in fact it is data updates that are the major per-
formance bottleneck of data-intensive P2P applications. We propose an efficient 
update routing protocol to address this. Finally, cluster-preserving load balancing 
has not been considered yet in those previous works. Load balancing is essential for 
such P2P systems to be able to work under real environments. However, the bene-
fits of object clustering can be destroyed if we directly apply previous load balanc-
ing schemes [4][5][14][20]. Our cluster-preserving load balancing schemes are 
novel in that sense. 
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3   System Architecture 

CISS is designed for a three-tier P2P system as shown in Figure 1. Such three-tier 
architecture is similar to existing DHT-based P2P systems [5][9]. While CISS uses 
DHT as a basic lookup layer by using DHT interfaces, P2P applications utilize 
CISS as an Internet-scale data management system. For data updates and queries, 
an interface using a simple conjunctive normal form language is provided to appli-
cations (see Table 1). CISS, like common P2P systems, consists of client and server 
modules. The client module of CISS receives data updates or queries from P2P 
applications. It then routes them to rendezvous peer nodes for processing. Before 
routing them, the client module leverages an LPF to encode multiple attributes of an 
object to an N-bit routing key. This key is used to perform a DHT lookup to search 
for rendezvous peer nodes in the P2P overlay network. The server module of CISS 
stores data to its repository and processes queries. It then returns matched results to 
requesting peer nodes. The load balancer in the server module is responsible for 
cluster-preserving load balancing. 

Client module Server module

Query 
Requestor Repository

Data
Sender

LPF

Query 
Respondent

Data
ReceiverLoad 

Balancer

CISS

Distributed Hash Table (DHT)Distributed Hash Table (DHT)

P2P Applications (MMOGs, P2P catalog systems, etc)

 

Fig. 1. CISS Architecture 

Table 1. Interfaces for DHT and CISS 

DHT CISS 
Lookup(key)  IP address Update: (A1= value)  (A2=value) …. 

Join () Query: PredicateA1 PredicateA2 ….

Leave() Predicate = Attribute Operator Value 
Operators = {>, <, =} 
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Fig. 2. Chord DHT 

The scalable and robust nature of CISS stems primarily from utilizing DHT. We 
explain CISS using Chord [20] as an example DHT environment though any DHT 
implementation could be used. DHT [15][17][20][21] organizes highly distributed 
and loosely coupled peer nodes into an overlay network for storing and querying a 
massive number of objects. In a DHT environment, not only the placement of data 
objects on nodes, but also the join and leave of nodes in the overlay network can be 
done efficiently without any global knowledge. As shown in Figure 2, five peer nodes 
cooperatively manage an N-bit key space, where N is 4. Each node has a unique node 
identifier and is responsible for the key range between itself and its predecessor node.  

From a database point of view, there are two attractive characteristics for using a 
DHT-based overlay network. 

First, content-based searching in peer to peer networks – DHT makes it possible 
to implement content-based search networks. Multiple attributes of an object are en-
coded to form an N-bit key which is used to update and locate that object. Data up-
dates and exact match queries which are encoded to the same N-bit key are routed to 
the same rendezvous peer node. After query processing, the matching results are re-
turned to the querying nodes. This rendezvous point approach achieves content-based 
searching effectively by avoiding query flooding.  

Second, efficient wide-area data indexing – It is critical that searches for the ren-
dezvous peer node responsible for a given N-bit key should be done efficiently. DHT 
theoretically ensures that any peer node can look up any object using that object's N-
bit key in O(log S) time, where S is the number of peer nodes in the overlay network. 
Lookups proceed in a multi-hop fashion; each node maintains information (IP ad-
dresses) about a small number of other nodes (neighbors) and forwards the lookup 
message recursively to the neighbor that is nearest to the N-bit key of the object. 

4   Technical Issues 

In this section, we describe three technical issues and novel solution approaches in 
realizing CISS. Specifically, the LPF encoding function, efficient routing protocols 
for data updates and multi-dimensional range queries and cluster-preserving load 
balancing are examined. 
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4.1   Locality Preserving Function (LPF) 

The LPF constructs N-bit keys of objects while preserving locality. As shown below, 
this encoding is done in two steps. 

Step1:{(A1 = value)  (A2 = value) ….}  {bitsA1  bitsA2 ….} 

Step2:{bitsA1  bitsA2 ….}  N-bit key of object 
 

The LPF first encodes each attribute value to a smaller-sized bit key. It then maps 
multiple bit keys to a one-dimensional N-bit key by using the Hilbert SFC. Both steps 
preserve the locality of objects. Each attribute is encoded to N / D (= M) bits if D 
attributes are used for key encoding. As a practical value, we can use N = 160 and D = 
2. Thus, M = 80. We select N = 160 to be compatible with Chord [20] implementation 
which uses 160-bit key. Also, D = 2 because two-dimensional range queries are 
dominantly issued in both MMOGs and P2P catalog systems. If an attribute of an 
object is not encoded as part of an N-bit key, queries on this attribute must be routed 
to all nodes in the P2P overlay networks. Thus, all attributes referred to in dominantly 
issued queries must be encoded to bit keys in order to avoid query flooding. We de-
scribe the technical details of each step as follows. 
 
Step1: Bit key encoding of each attribute while preserving locality – LPF classi-
fies data types of attributes into Numerical and String types, and applies differ-
ent encoding schemes accordingly. We explain each encoding scheme with practical 
examples. The encoding scheme for the Numerical type handles int, long, 
float, double and DATE data-types. 

For instance, MMOG (see Figure 3) use Numerical attributes. Players are the 
objects, and their x and y coordinates are the object attributes. In order to preserve 
locality, each attribute value is simply rescaled by multiplying a coefficient, 2M / 
(Maximum of attribute value). For example, {x=60  y=70} where the maximum of 
each attribute value is 100 is encoded to {x=1010  y=1011} if M is four. In the 
same way, a two-dimensional range query in Figure 3 is also encoded to {(0101 < x < 
1110)  (0011 < y < 1110)}. Therefore, objects will be clustered well if the positions 
of the objects are similar. 

For the String type, we propose a hash-concatenation encoding scheme. P2P 
catalog systems (see Figure 4) use String attributes. Catalogs are the objects and 
categorized by two attributes, location and product. Each attribute value is represented 
using a hierarchical naming structure. For example,  

A1: location = USA.New York.White Plains.79 North Broadway  

(“USA” is the value of the topmost level in the hierarchy, “New York” 
is the second highest and so on) 

A2: product = Electronics.Computer.HP.Inkjet Pinter 

(“Electronics” is the value of the topmost level in the hierarchy,   
“Computer” is the second highest and so on) 
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Audio

location=USA.New York.White Plains.79 North Broadway 
product=Electronics.Computer.HP.Inkjet Printer
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   Fig. 3. MMOGs                                             Fig. 4. P2P catalog systems 

Dominantly issued queries are two-dimensional range queries such as Q1 and Q2 
in Figure 4 1 . Within each level in the hierarchy, partial string matching (ex. 
USA.N*.White Plains) is not usual. Thus, clustering according to the hierarchy is 
enough, while clustering between similar string values in same level is not necessary. 

The hash-concatenation scheme hashes the value of each level in the hierarchy 
into M / d bits, where d is the hierarchy depth. It then concatenates the hashed values 
one after another. In practice, d is determined by an application. To hash a variable-
length string value of each level to a fixed-length bit representation, a modified SHA-
1[20] hash function is used2. Queries are also encoded in the same way. The tables 
below show encoding examples when M is 80 and the hierarchy depth d is 4. Thus, 
each string in the hierarchy is hashed to 20 bits. 

 
 

A1: location = USA.New York.White Plains.79 North Broadway    
h20(USA)·h20(New York)·h20(White Plains)·h20(79 North Broadway) 

A2: product = Electronics.Computer.HP.Inkjet Pinter   
h20(Electronics)·h20(Computer)·h20(HP)·h20(Inkjet Printer)  

•    

Q1: location = h20(USA)·h20(New York)·h20(Albany)*  
product = h20(Electronics)·h20(Computer)·h20(HP)* 

Q2: location = h20(USA)·h20(New York)·h20(White Plains)*  
product = * (* means a wild card) 

 

 

                                                           
1 Although String type keyword queries such as “%keyword%” are popular in P2P file  

sharing, we do not tackle such queries because they do not benefit from object clustering. 
2 SHA-1[20] hashes a string to the randomized 160-bit. A string of each level has to be hashed 

to M / d bits which is less than 160. Thus, just M / d prefix bit of SHA-1 is used as a hashed 
value. 
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Our hash-concatenation scheme is useful in two aspects. First, due to hashing, a 
variable-length string is encoded to a fixed size bit length. Second, locality is pre-
served due to the concatenation scheme. Bit keys with similar hierarchical struc-
tures are closely clustered. In contrast, previous string-to-bit encoding schemes such 
as serial numbering and prefix encoding [3][19] are not feasible in P2P environ-
ments. The serial numbering scheme, which stores all mappings from strings to 
serial numbers, can not add new values easily. If new values in the hierarchy are 
added, all peer nodes have to update their mapping. Prefix encoding also can not 
categorize variable length strings well. Since this scheme encodes only the prefix 
characters of a string due to limited bit length, objects are not clustered well accord-
ing to the hierarchy. 

 

Fig. 5. Hilbert SFC 

Step2: Mapping multiple bit keys to a one-dimensional N-bit key while consider-
ing multi-dimension clustering – Many schemes have been studied to map multi-
dimensional keys to a one-dimensional key [2]. Space Filling Curve (SFC) is a well-
known scheme. It includes z-ordering, Gray code and the Hilbert SFC. We use the 
Hilbert SFC because it has better object clustering properties compared to other SFCs. 
It can be implemented with a simple state machine. As an example, the Hilbert SFC 
maps {x=1010  y=1011} to 10001011. The Hilbert SFC has two interesting proper-
ties: recursion and locality preservation. Figure 5 shows the recursion. The locality 
preserving property can be described as follows. Points which are close to each other 
along the space filling curve map to points which are close in the multi-dimensional 
space. We utilize this property for the multi-dimensional range query routing protocol.  

4.2   Efficient Routing Protocols for Data Updates and Multi-dimensional Range 
Queries 

CISS supports efficient routing protocols to maximize the benefit of object clustering: 
a caching-based update routing protocol for data updates and a forwarding-based 
query routing protocol for multi-dimensional range queries. Both of them signifi-
cantly reduce the number of costly DHT lookups, and thus improve the efficiency of 
data-intensive and multi-dimensional range query-intensive P2P applications. We 
describe the technical details as follows.  
 

2nd or- 3rd order

�

1st order 
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Fig. 6. Caching-based update routing protocol 

Caching-based update routing protocol: As shown in Figure 6, the CISS client 
caches the key range of the most-recently-searched rendezvous node. Thus, the CISS 
client does not perform additional DHT lookups if streams of updates belong to the 
cached key range (cache hit). Streams of updates belong to the same node with high 
probability. It is because each peer node manages a semantically contiguous key 
range and data updates are usually semantically close. For example, in MMOGs, a 
subsection of the virtual world is managed by a peer node. Players will spend signifi-
cant amounts of time in a given subsection and therefore their data will belong to the 
same node with high probability. To quantify the performance benefit of this update 
routing protocol, we measure the hit ratio of the key range cache. In our experiments, 
we also measure the hit ratio under various data mobility values because the hit ratio 
is directly affected by a data mobility value. The cached key range can be stale due to 
DHT topology changes (e.g. leave and join of nodes). Thus, a TTL (Time-To-Live) 
mechanism is utilized to maintain the consistency of the cached key range. After the 
TTL expires, the CISS client performs a DHT lookup to refresh the cached key range. 

 

 

Fig. 7. Forwarding-based query routing protocol 
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Forwarding-based query routing protocol: For multi-dimensional range query 
routing, we propose a forwarding-based query routing protocol that reduces costly 
DHT lookups by forwarding a query to succeeding peer nodes. Multi-dimensional 
range queries involve multiple contiguous key ranges in CISS. To reduce the number 
of DHT lookups for those multiple key ranges, the forwarding-based query routing 
protocol utilizes the object clustering property of CISS. Assume that a user issues a 
multi-dimensional range query (10*, *) which is mapped to the two dotted curves in 
the gray area as shown in Figure 7. The Query Requester in CISS client module finds 
the first keys from the each contiguous curve using LPF, which are 100000 and 
110100. The Query Requester then searches matching peer nodes via DHT lookups 
for the two keys. If matching peer nodes are found, the Query Requester sends the 
query (10*, *) to the Query Respondents in the CISS server modules of those peer 
nodes. The Query Respondent generates a result and sends it to the Query Requester. 
If the key range for the result is larger than the key range managed by the node, the 
Query Respondent forwards the query to the succeeding peer node without having to 
perform any more DHT lookups. Query forwarding is repeated until all relevant data 
are found for the result. In CISS, the number of DHT lookups is determined by the 
number of separate curves describing the query. In addition, the number of query 
forwarding messages depends on the size of the query range as well as the topology of 
a P2P overlay network. In experiments, we show that the forwarding-based routing 
protocol outperforms existing DHT-based query routing protocols in terms of the 
number of messages needed for query processing.  

In Squid [19], authors suggested a mechanism to resolve a multi-dimensional key-
word and range query by embedding a tree structure into the P2P overlay network 
topology. In this mechanism, all queries should be routed to the peer matching the 
cluster prefix 0 or 1 for query refinement. Thus, the peer can be the congestion point, 
which can result in one point of failure. However, our forwarding-based query routing 
protocol does not incur such a query congestion problem while supporting efficient 
query processing with few DHT lookups.  

4.3   Cluster-Preserving Load Balancing 

CISS supports two load balancing schemes: local-handover and global-handover. In 
order to achieve load balancing, both of them hand over the partial key range man-
aged by an overloaded node to lightly loaded nodes. However, in contrast to the pre-
vious virtual server approach, our approach does not destroy the object clustering 
property. Thus, it still maintains the benefit of object clustering to process data update 
and multi-dimensional range queries. 

In local-handover, the overloaded node hands over a part of its own key range to 
one of its neighbor nodes (predecessor or successor). This can be done easily by a 
leave followed by a join. Figure 8 shows a local-handover example. When node B 
gets overloaded, it hands over a part of its key range to its predecessor node A or 
successor node C. If A takes the load of B, A leaves the DHT-based overlay network 
and joins again closer to B so as to adopt the part of B’s key range. This reduces the 
key range which B must manage, and the B’s key range is therefore decreased. 
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                  Fig. 8. Local-handover                                Fig. 9. Global-handover 

Table 2. Load Balancing Cost 

 Local-handover Global-handover 
DHT routing  
table updates 

• O(log S) messages • O(log S) messages 

Object Trans-
ferring 

•   From the overloaded node 
to the neighbor node 

• From the overloaded node 
to the victim node 

• From the victim node to the 
successor of victim node. 

Victim   
Probing 

• None • n DHT lookups 

 

Similarly, C can take B‘s load if B leaves and joins again. Even after the local-
handover is performed, each node still manages a contiguous key range. Thus, object 
clustering is preserved. However, cascading load propagation can occur in this 
scheme. If a neighbor node also gets overloaded due to the local-handover, it will also 
perform a local-handover to its neighbor node, and so on. 

To alleviate this shortcoming, we propose global-handover. In this scheme, an 
overloaded node hands over a part of its key range to a victim node instead of a 
neighbor node. After probing randomly selected nodes in the DHT-based overlay 
network, the most lightly loaded node is determined as a victim node. Figure 9 shows 
a global-handover example. If node D is determined as a victim node, an overloaded 
node B makes D leave. Node D then joins as a predecessor of B and takes over a 
contiguous sub-range of B’s key range. Also, D’s successor node E manages contigu-
ous key range. Thus, object clustering is still preserved. 

Table 2 shows the load balancing cost of both schemes. First of all, the cost for 
updating the DHT routing table is the same since the node leave and the node join 
occurs only once in both schemes. The cost of the object transferring from the over-
loaded node to the lightly loaded node is also the same. However, global-handover 
requires additional object transferring cost as well as a victim-probing cost. The addi-
tional object transferring cost is required because the victim node should hand over all 
of its objects to its successor node before leaving the overlay network. For victim 
probing, it is necessary to collect load information from n randomly selected nodes. 
Thus, it requires n DHT lookups. To minimize the load balancing cost, CISS per-
forms global-handover only when the cascading load propagation is expected if local-
handover were to be used. 
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We are currently investigating some technical details for the proposed schemes in-
cluding overload detection, load estimation and victim selection algorithms. For effi-
cient load estimation, we are developing a histogram-based algorithm. To hand over 
the proper amount of load, all nodes have to know their own load information in de-
tail. However, it is not practically possible to maintain load information for each key. 
Thus, each node divides its key range into several sub-ranges and then maintains a 
histogram for the number of requests in each sub-range. 

5   Experiments 

In this section, we demonstrate the performance benefit of CISS compared to existing 
DHT-based P2P systems which use a hash function. For our experiment, we have 
implemented a C++-based simulation engine which includes the Hilbert SFC-based 
LPF, the core functions of the CISS client and server module and a Chord-based DHT 
overlay network. The simulation has been performed for three overlay network to-
pologies which consist of 1000, 10000 and 100000 peer nodes respectively. The iden-
tifier of each node is randomly generated.  To exclude the effects of dynamic topol-
ogy changes, we did not simulate node leaves or joins. We detail the performance of 
the proposed routing protocol in the simulation results below. 

5.1   Data Update Performance 

In each simulation, 1000, 10000 and 100000 mobile clients in a virtual world generate 
their position updates periodically for the workload of the simulator. Before updating 
its position, the mobile client checks whether its current position is in the cached key 
range. If a cache miss occurs, it looks up the node that is responsible for its current 
position. The mobile clients are designed to wander the [0, 212] × [0, 212] square vir-
tual world based on the ns-2 random waypoint mobility model [6]. Each mobile client 
updates its position every 125 milliseconds (for comparison, the first-person shooter 
Quake II updates a player’s position every 50ms); a position consists of two attrib-
utes: an x-coordinate and a y-coordinate. The simulation is run for 300 seconds. 

  

Fig. 10. Hit ratio of the key range cache 
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To measure the performance benefit of the caching-based update routing protocol, 
we use the hit ratio of the key range cache. Figure 10 depicts the average hit ratio of 
the key range cache over all the mobile clients having the same mobility value. A 
mobility value of 1 means that a mobile client can move maximum one pixel length in 
the [0, 212] × [0, 212] virtual world during one position update period. From the Figure 
10, we see that this update routing protocol significantly reduces the number of look-
ups for position updates (by up to 93% with 100000 nodes), whereas with hash func-
tion, the mobile client has to look up the node responsible for its current position at 
every position update. Because the range of mobile client movement is much smaller 
than the range managed by the responsible server, the hit ratio is high for low mobil-
ity values. The larger the mobility value, the lower the hit ratio. However, even with a 
high mobility value of 256, the update routing protocol achieves a 35% hit ratio with 
100000 nodes. Figure 10 also shows the hit ratio variation according to the number of 
nodes. The range managed by each node increases as the number of peer nodes de-
creases. Thus, the hit ratio with a 1000 node topology, which has larger range size 
than the other ones, is the highest. 

5.2   Multi-dimensional Range Query Performance 

To implement multi-dimensional range queries, we used a P2P catalog system as an 
example application. The catalog is categorized by two attributes (location and prod-
uct); each attribute consists of four levels. We have performed experiments for each 
of ten query types. For example, 

 Q(4,4): Queries with both attributes having values in the top four levels of the 
hierarchy, e.g. (location: USA.New York.White Plains.79 North Broadway, 
product: Electronics. Computer.HP.Inkjet Pinter). 

 Q(4,3): Queries with one attribute having values in the top four levels and the 
other attribute having values in the top three levels. e.g.(location: USA.New 
York.White Plains.79 North Broadway, product: Electronics.Computer.HP.*). 

   
            Fig. 11. # of DHT lookups                Fig. 12. # of DHT forwarding messages 

     The other queries Q(4,2), Q(4,1), Q(3,3), Q(3,2), Q(3,1), Q(2,2), Q(2,1) and Q(1,1) 
are similarly generated. In our experiment, the LPF constructs 24-bit keys. Thus, each 
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attribute is encoded using 12 bits. We simulated all possible combinations for each of 
the ten queries.  

Figure 11 shows the average number of DHT lookups for the ten types of que-
ries in log-scale. When the size of the query range becomes large, the number of 
DHT lookups is significantly reduced. This is clearly shown from Q(3,3) to Q(1,1) 
where the difference in the number of lookups required for CISS compared to the 
hash-based approach is dramatically illustrated. This is achieved due to the object 
clustering effect of CISS. Queries like Q(3,3), Q(2,2) and Q(1,1) are mapped to one 
contiguous curve on the Hilbert SFC. For such queries, only one DHT lookup is 
necessary for query processing in our forwarding-based query routing protocol. 
However, Q(4,4) is an exact matching query. Thus, in this case the number of DHT 
lookups required for CISS is the same as that for the hash-based approach. Finally, 
in cases Q(4,3), Q(4,2) and Q(4,1), one attribute is specified exactly. These results 
in a decrease in object clustering and therefore decreased performance benefit. 
Nevertheless, CISS still performs two times better than the hash-based approach for 
these queries.  

Figure 12 shows the average number of query forwarding messages when all peer 
nodes manage the same size key range. As shown in the figure, the first nine types of 
queries with 1000 nodes and seven types of queries with 10000 and 100000 nodes do 
not need query forwarding. The results for these queries can be retrieved from the 
peer node found out by a DHT lookup. On the other hand, in the cases of Q(1,1) with 
1000 nodes and Q(2,2), Q(2,1), Q(1,1) with 10000 and 100000 nodes, query forward-
ing is necessary because the query range size is larger than the key range size which 
the peer node manages. However, the forwarding cost is just one message whereas a 
DHT lookup may cost several messages. Figure 11 and Figure 12 demonstrate that the 
total number of messages for query processing is significantly reduced in our for-
warding-based query routing protocol. 

6   Conclusion and Future Work 

We have described CISS, a framework that supports efficient object clustering for 
DHT-based peer-to-peer applications, especially data-intensive and multi-
dimensional range query-intensive P2P applications. While utilizing a DHT-based 
overlay network as a scalable and robust lookup layer, CISS uses a Locality Pre-
serving Function (LPF) instead of a hash function. Thus, CISS achieves a high level 
of object clustering without requiring any changes to existing DHT implementa-
tions. Our simulation studies show that a caching-based update routing protocol 
reduces the number of DHT lookups for data updates by up to 93% with 100000 
peer nodes, and a forwarding-based query routing protocol for multi-dimensional 
range queries outperforms existing DHT-based P2P systems by up to an order of 
magnitude. We are currently developing the cluster-preserving load balancing 
mechanism in detail. 
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