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Preface

This volume contains the papers presented at the 11th International Conference
on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR), held
from March 14 to 18, 2005, in Montevideo, Uruguay, together with the 5th In-
ternational Workshop on the Implementation of Logics (organized by Stephan
Schulz and Boris Konev) and the Workshop on Analytic Proof Systems (orga-
nized by Matthias Baaz).

The call for papers attracted 77 paper submissions, each of which was re-
viewed by at least three expert reviewers. The final decisions on the papers were
taken during an electronic Program Committee meeting held on the Internet.
The Internet-based submission, reviewing, and discussion software EasyChair,
provided by the second PC co-chair, supported each stage of the reviewing pro-
cess. But the most important work was, of course, done by the 34 PC members
and their external reviewers, who provided high-quality reviews. After intense
discussions to resolve conflicts among the reviewers, the Program Committee
decided to accept 33 papers.

The conference program also included 4 invited talks, by Jiirgen Giesl, Alex-
ander Leitsch, Helmut Seidl, and Igor Walukiewicz, which are documented by
short or extended abstracts in these proceedings. In addition, Martin Abadi
held a tutorial on Reasoning About Security Protocols, and Ian Horrocks on
Description Logic Reasoning.

Apart from the authors, invited speakers, tutorialists, Program Committee
members, and external reviewers, we would like to thank the other people and
organizations that made this LPAR a success: the Local Arrangements Chair,
Alberto Pardo, and all the other people involved in the local organization; the
Chair for Automata Theory at TU Dresden, the Kurt Gddel Society, and the
European Union (in the Information Society Technologies programme of the
European Commission, Future and Emerging Technologies under the IST-2001-
33123 CoLogNET project), which provided partial funding for our invited speak-
ers; and the Centro Latinoamericano de Estudios en Informatica (CLEI), which
provided scholarships for several Latin American participants of the conference.

January 2005 Franz Baader
Andrei Voronkov
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CERES in Many-Valued Logics*

Matthias Baaz! and Alexander Leitsch?

! Institut fiir Computermathematik (E-118),
TU-Vienna, Wiedner Hauptstrafie 8-10,
1040 Vienna, Austria
baaz@logic.at
2 Institut fiir Computersprachen (E-185),
TU-Vienna, Favoritenstrafle 9,

1040 Vienna, Austria
leitsch@logic.at

Abstract. CERES is a method for cut-elimination in classical logic
which is based on resolution. In this paper we extend CERES to CERES-
m, a resolution-based method of cut-elimination in Gentzen calculi for
arbitrary finitely-valued logics. Like in the classical case the core of the
method is the construction of a resolution proof in finitely-valued log-
ics. Compared to Gentzen-type cut-elimination methods the advantage
of CERES-m is a twofold one: 1. it is easier to define and 2. it is compu-
tationally superior and thus more appropriate for implementations and
experiments.

1 Introduction

The core of classical cut-elimination methods in the style of Gentzen [8] consists
of the permutation of inferences and of the reduction of cuts to cuts on the
immediate subformulas of the cut formula. If we switch from two- valued to
many-valued logic, the reduction steps become intrinsically tedious and opaque
[3] in contrast to the extension of CERES to the many-valued case, which is
straightforward.

We introduce CERES-m for correct (possible partial) calculi for m-valued
first order logics based on m-valued connectives, distributive quantifiers [7] and
arbitrary atomic initial sequents closed under substitution. We do not touch
the completeness issue of these calculi, instead we derive clause terms from the
proof representing the formulas which are ancestor formulas of the cut formulas;
the evaluation of these clause terms guarantees the existence of a resolution
refutation as core of a proof with atomic cuts only. This resolution refutation
is extended to a proof of the original end-sequent by adjoining cut-free parts
of the original proof. Therefore, it is sufficient to refute the suitably assembled
components of the initial sequents using a m-valued theorem prover [2].

* supported by the Austrian Science Fund (FWF) proj. no P16264-N05

F. Baader and A. Voronkov (Eds.): LPAR 2004, LNAI 3452, pp. 1-20, 2005.
© Springer-Verlag Berlin Heidelberg 2005



2 M. Baaz and A. Leitsch

2 Definitions and Notation

Definition 1 (language). The alphabet X consists of an infinite supply of vari-
ables, of infinite sets of n-ary function symbols and predicate symbols er o con-
tains a set W of truth symbols denoting the truth values of the logic, a finite
number of connectives o1,...,0.,, of arity ni,...,nm,, and a finite number of

quantifiers Q1, ..., Q.

Definition 2 (formula). An atomic formula is an expression of the form

P(tq,...,t,) where P is an n-ary predicate symbol in X' and ty, ..., t, are terms
over X. Atomic formulas are formulas.
If o is an n-ary connective and Ay, ..., A, are formulas then o(Ay,...,A,)

s a formula.
If Q is quantifier in X and x is a variable then (Qx)A is a formula.

Definition 3 (signed formula). Let w € W and A be a formula. Then w: A
18 called a signed formula.

Definition 4 (sequent). A sequent is a finite sequence of signed formulas. The
number of signed formulas occurring in a sequent S is called the length of S and
is denoted by 1(.5). S is called the unsigned version of S if every signed formula
w: A in S is replaced by A. The length of unsigned versions is defined in the
same way. A sequent S is called atomic sz’ is a sequence of atomic formulas.

Remark 1. Note that the classical sequent (Va)P(x) F Q(a) can be written as
f: (Vo) P(z),t: Q(a).

m-valued sequents are sometimes written as m-sided sequents. We refrain
from this notation, because it denotes a preferred order of truth values, which
even in the two-valued case might induce unjustified conclusions.

Definition 5 (axiom set). 4 set A of atomic sequents is called an axiom set
if A is closed under substitution.

The calculus we are defining below is capable of formalizing any finitely
valued logic. Concerning the quantifiers we assume them to be of distributive
type [7]. Distribution quantifiers are functions from the non-empty sets of truth-
values to the set of truth values, where the domain represents the situation in
the structure, i.e. the truth values actually taken.

Definition 6. Let A(z) be a formula with free variable x. The distribution
Distr(A(x)) of A(x) is the set of all truth values in W to which A(z) evalu-
ates (for arbitrary assignments of domain elements to x).

Definition 7. Let g be a mapping 2V — W. In interpreting the formula
(Qx)A(x) via q we first compute Distr(A(x)) and then q(Distr(A(z))), which is
the truth value of (Qx)A(x) under the interpretation.
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In the calculus defined below the distinction between quantifier introductions
with (strong) and without eigenvariable conditions (weak) are vital.

Definition 8. A strong quantifier is a triple (V,w,w’) (for V.C W) s.t.
(Qz)A(z) evaluates to w if Distr(A(z)) €V and to w’ otherwise. A weak quan-
tifier is a triple (u,w,w’) s.t. (Qz)A(z) evaluates to w if u € Distr(A(x)), and
to w' otherwise.

Remark 2. Strong and weak quantifiers are dual w.r.t. to set complementation.
In fact to any strong quantifier there corresponds a weak one and vice versa. Like
in classical logic we may speak about weak and strong occurrences of quantifiers
in sequents and formulas.

Note that strong and weak quantifiers define merely a subclass of distribution
quantifiers. Nevertheless the following property holds:

Proposition 1. Any distributive quantifier can be expressed by strong and weak
quantifiers and many valued associative, commutative and idempotent connec-
tives (which are variants of conjunction and disjunction).

Definition 9 (LM-type calculi). We define an LM-type calculus K. The ini-
tial sequents are (arbitrary) atomic sequents of an axiom set A. In the rules of
K we always mark the auziliary formulas (i.e. the formulas in the premiss(es)
used for the inference) and the principal (i.e. the inferred) formula using dif-
ferent marking symbols. Thus, in our definition, classical N-introduction to the
right takes the form

I't:AT I,t:B*
I''t:ANB”

If IT - I, A is a sequent then II = I') A" indicates that all signed formulas in
A are auziliary formulas of the defined inference. I' - A,w: A* indicates that
A:w*is the principal formula (i.e. the inferred formula) of the inference.

Auziliary formulas and the principal formula of an inference are always sup-
posed to be rightmost. Therefore we usually avoid markings as the status of the
formulas is clear from the notation.

logical rules:
Let o be an n-nary connective.For any w € W we have an introduction rule
o:w of the form
r,AT ... T AL

Fw:o(n(Ay, ..., Ay, A))*

olw

where [(Aq, ..., A, A) =n (the A; are sequences of signed formulas which are
all auziliary signed formulas of the inference) and w(S) denotes a permutation
of a sequent S.

Note that, for simplicity, we chose the additive version of all logical intro-
duction rules.
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In the introduction rules for quantifiers we distinguish strong and weak intro-
duction rules. Any strong quantifier rule Q:w (for a strong quantifier (V,w,w"))
is of the form

Foup: AT, Ala) ™
Iow: (Qr)A(x)”

Q:w

where « is an eigenvariable not occurring in I'y and V = {u1, ..., un}.
Any weak quantifier rule (for a weak quantifier (u,w,w’)) is of the form

Tou: A"t

—— Q:w

I'w: (Qr)A(x)

where t is a term containing no variables which are bound in A(x). We say that
t is eliminated by Q: w.

We need define a special n-ary connective for every strong quantifier in order
to carry out skolemization. Indeed if we skip the introduction of a strong quan-
tifier the m (possibly m > 1) auziliary formulas must be contracted into a single
one after the removal of the strong quantifier (see definition of skolemization
below). Thus for every rule

I ug: A(a1)+, e U A(ozm)Jr
Iw: (Qr)A(x)"

Q:w

we define a propositional rule

T, u1:14(t)'~_7 .. ,um:A(t)+
Iyw: A(t)*

CQ:U)

This new operator cg can be eliminated by the de-skolemization procedure after-
wards.

structural rules:
The structural rule of weakening is defined like in LK (but we need only one
weakening rule and may add more then one formula).

r
A

)

w

for sequents I' and A.
To put the auziliary formulas on the right positions we need permutation
rules of the form
... F,

Fry o Frn)

where T is a permutation of {1,...,n} and the F; are signed formulas .
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Instead of the usual contraction rules we define an n-contraction rule for any
n>2and Fy =...=F, =F:

I F,...,F,

F7F c:n

In contrast to LK we do not have a single cut rule, but instead rules cut
for any w,w' € W with w # w'. Any such rule is of the form

NwA I'uw':A
r,r

CUtww’

Definition 10 (proof). A proof of a sequent S from an aziom set A is a
directed labelled tree. The root is labelled by S, the leaves are labelled by elements
of A. The edges are defined according to the inference rules (in an n-ary rule
the children of a node are labelled by the antecedents, the parent node is labelled
by the consequent). Let N be a node in the proof ¢ then we write ¢.N for the
corresponding subproof ending in N. For the number of nodes in ¢ we write ||@||.

Definition 11. Let K be an LM-type calculus. We define P[K] as the set of all
K-proofs. PY[K] is the subset of P[K| consisting of all proofs with cut-complezity
< i (P°[K] is the set of proofs with at most atomic cuts). PY[K] is the subset of
all cut-free proofs.

Ezample 1. We define W = {0,u,1} and the connectives as in the 3-valued
Kleene logic, but introduce a new quantifier D (“D” for determined) which gives
true iff all truth values are in {0,1}. We only define the rules for V and for D,
as no other operators occur in the proof below.

0:A4,1: A 0:B,1:B 1:A,1:Bv

1:.AV B 1
wAwB 0:A,0: B )

u: AV B Viu 0:AVv B V0
0:A(a),1: A A
O:Al), LA Al

1: (Dz)A(x) 0: (Dzx)A(z)

where « is an eigenvariable and t is a term containig no variables bound in
A(x). Note that D:1 is a strong, and D:0 a weak quantifier introduction. The
formula u: (Dx)A(x) can only be introduced via weakening,.

For the notation of proofs we frequently abbreviate sequences of structural rules
bei *; thus 7" + V:u means that V:u is performed and permutations before
and/or afterwards. This makes the proofs more legible and allows to focus on
the logically relevant inferences. As in the definition of LM-type calculi we mark
the auxiliary formulas of logical inferences and cut by +, the principle ones by
*.
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Let ¢ be the following proof

O |~
o
=
=
&
<
Q<
&=
<
/_:g\.
i?,
—
>
E,
E
<
Q
&
et

) wPOL LPE) L,

0: P(5 ) P, w P () nowQ®T L
0 P(O)w PRV Q) 1 PD) Do

0: (D2)(P(x) v Q@)", 0:P(B)", LPE)T
0:(Da)(P() v Q()), 1:(Dx)P()"

we have to define )’ as our axiom set must be atomic. We set

V' =¢(A, B){A « P(a), A — Q(a)}

and define
Y(A,B) =

S,0:A4,1: A S,0:B,1: B S,1:A,1: B T,0:A,1:A T,0:B,1:B T,1:A,1:B
0:A, uwA,u: B, 1: AV B Vil 0:B, wAu:B, 1: AV B
0:AV B, wAwB, :AVB V:0
0:AV B, u:AvVB, 1:AVB Vi

For S =0: A, w:A,u:B and T = 0: B, w: A,u: B. It is easy to see that the
end sequent is valid as the axioms contain 0: A, u: A,1: A and 0: B, uw: B,1: B as
subsequents.

Definition 12 (W-clause). A W-clause is an atomic sequent (where W is the

set of truth symbols). The empty sequent is called empty clause and is denoted
by O .

Let S be an W-clause. S’ is called a renamed variant of S if S’ = Sn for a
variable permutation 7.

Definition 13 (W-resolution). We define a resolution calculus Ry which
only depends on the set W (but not on the logical rules of K). Ry operates
on W -clauses; its rules are:
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1. resyyr for all w,w’ € W and w # w’,
2. w-factoring for w € W,
3. permutations.

Let S:Tyw: A and S": T, w': A" (where w # w') be two W -clauses and

ST w': A" be a variant of S’ s.t. S and S" are variable disjoint. Assume that
{A, B’} are unifiable by a most general unifier o. Then the rule resy.,, on S, S’
generates a resolvent R for

R=1TI01"0.
Let S:T'yw: Ay, ..., w: Ay, be a clause and o be a most general unifier of
{A1,..., A} Then the clause

S T'o,w: Ao

is called a w-factor of S.

A W -resolution proof of a clause S from a set of clauses S is a directed labelled
tree s.t. the root is labelled by S and the leaves are labelled by elements of S. The
edges correspond the applications of w-factoring (unary), permutation (unary)
and resyyy (binary).

It is proved in [1] that W-resolution is complete. For the LM-type calculus
we only require soundness w.r.t. the underlying logic. So from now on we assume
that K is sound.

Note that we did not define clauses as sets of signed literals; therefore we need the
permutation rule in order to “prepare” the clauses for resolution and factoring.

Definition 14 (ground projection). Let v be a W-resolution proof and

{z1,...,x,} be the variables occurring in the indexed clauses of . Then, for all
ground terms ty, ..., ty, {1 «— t1,...,21 «— t,} is called a ground projection
of 7.

Remark 3. Ground projections of resolution proofs are ordinary proofs in K;
indeed factoring becomes n-contraction and resolution becomes cut.

Definition 15 (ancestor relation). Let

Slzf,Af e Syt I AT
S: I w: A* .

be a an inference in a proof ¢; let u be the occurrence of the principal signed
formula w: A in S and v;; be the occurrence of the j-th auxiliary formula in S;.
Then all v;; are ancestors of .

The ancestor relation in ¢ is defined as the reflexive and transitive closure of
the above relation.

By S(N,$2) (S(N,$2)) we denote the subsequent of S at the node N of ¢
consisting of all formulas which are (not) ancestors of a formula occurrence in
0.
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Ezample 2. Let (A, B) as in Example 1:

S,0:A,1: A S,0:B,1:B S,1: A, 1: B T,0:A,1:A T,0:B,1:B T,1:A,1:B
0: A", w:A,u:B, 1: AV B vl 0:B", wAu:B, 1. AV B
0:AV B, w:A,u:B, 1: AV B V0
0:AVB', w:AVB, :.AVB

T+ Viu

Let Ny be the root of (A, B) and p be the occurrence of the first formula
(0: AV B) in N. The formula occurrences which are ancestors of p are labelled
with {. The marking is not visible in S and T where the ancestors occur. In the
antecedent Np, Ny of the binary inference V:0 we have S(Ny,{u}) = 0: A and
S(Na, {u}) = 0: B.

3 Skolemization

As CERES-m (like CERES [6] and [5]) augments a ground resolution proof with
cut-free parts of the original proof related only to the end-sequent, eigenvariable
conditions in these proof parts might be violated. To get rid of this problem,
the endsequent of the proof and the formulas, which are ancestors of the end-
sequent have to be skolemized, i.e eigenvariables have to be replaced by suit-
able Skolem terms. To obtain a skolemization of the end-sequent, we have to
represent (analyze) distributive quantifiers in terms of strong quantifiers (cover-
ing exclusively eigenvariables) and weak quantifiers (covering exclusively terms).
This was the main motivation for the choice of our definition of quantifiers in
Definition 9. The strong quantifiers are replaced by Skolem functions depending
on the weakly quantified variables determined by the scope. Note that distribu-
tive quantifiers are in general mixed, i.e. they are neither weak nor strong, even
in the two-valued case.

3.1 Skolemization of Proofs

Definition 16 (skolemization). Let A:I'yw: A be a sequent and (Qx)B be a
subformula of A at the position A where Qx is a maximal strong quantifier in
w: A. Let y1,...,Ym be free variables occurring in (Qx)B, then we define

sk(A) = Iw: A[B{z — f(y1,---,Ym)}]r

where [ is a function symbol not occurring in A.

If w: A contains no strong quantifier then we define sk(A) = A.

A sequent S is in Skolem form if there exists no permutation S’ of S s.t.
sk(S") £ S'. S is called a Skolem form of S if S’ is in Skolem form and can be
obtained from S by permutations and the operator sk.

The skolemization of proofs can be defined in a way quite similar to the
classical case (see [4]).
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Definition 17 (skolemization of K-proofs). Let K be an LM-type calculus.
We define a transformation of proofs which maps a proof ¢ of S from A into a
proof sk(¢) of S’ from A’ where S’ is the Skolem form of S and A’ is an instance
of A.

Locate an uppermost logical inference which introduces a signed formula w: A
which is not an ancestor of a cut and contains a strong quantifier.

(a) The formula is introduced by a strong quantifier inference:

Yla]
S ug: A(a)+, ey U A(a)+
S: Iyw: (Qz)A(z)”
in ¢ and N', N be the nodes in ¢ labelled by S’, S. Let P be the path from the root

to N', locate all weak quantifier inferences &; (i=1,...,n) on P and all terms t;
eliminated by &;. Then we delete the inference node N and replace the derivation

¥ of N by

Q:w

¢[f(tla v atn)]
S Lour: A(f(tr, ot )t A(F(f1, 1)) T
So: Tyw: A(f(t1, ...y tn))*

CcQ - w

where f is a function symbol not occurring in ¢ and cq is the connective corre-
sponding to Q. The sequents on P are adapted according to the inferences on P.

(b) The formula is inferred by a propositional inference or by weakening (within
the principal formula w: A) then we replace w: A by the Skolem form of w: A
where the Skolem function symbol does not occur in ¢.

Let ¢' be the proof after such a skolemization step. We iterate the procedure
until no occurrence of a strong quantifier is an ancestor of an occurrence in the
end sequent. The resulting proof is called sk(¢). Note that sk(¢) is a proof from
the same aziom set A as A is closed under substitution.

Definition 18. A proof ¢ is called skolemized if sk(¢) = ¢.

Note that skolemized proofs may contain strong quantifiers, but these are
ancestors of cut, in the end-sequent there are none.

Ezxample 3. Let ¢ be the proof from Example 1:
P11 P2

0: (D2)((P(x) v Q(x)) v R(x)), L: (Dx)P(x)
where ¢ =
(¥")

0: P(a) V Q(a), u: P(a) V Q(cx), 1: P(a) V Q(v) 4w

0: P(a) V Q(a), u: P(a) vV Q(a), u: R(a)", 1: P(a) V Q(a) Viu
0:4(0) ¥ Q(a). w(Pla) VQ(a) V Rla) ", LP@)VQ@)
0: (D) ((P(x) V Q(x)) V R(x))", 0: P(a) VQ(a)", 1: P(a) V Q(a)" D1 .

0: (Dz)((P(z) V Q(x)) V R(x)), 1: (Dz)(P(z) vV Q(z))” ’
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and ¢2 =

0:P<> (ﬂ), P(ﬂ)+, u:cz<6>*+7r

0: P(3 ), PEVOW®™, 1:PB) oo
(D) (Pla) v Q) 0 P, 1P D1
0: (Da)(P(x) V Q(x)), L: (Dx)P(x)"

The proof is not skolemized as the endsequent contains a strong quantifier
occurrence in the formula 1: (Dx)P(x). This formula comes from the proof ¢s.
Thus we must skolemize ¢o and adapt the end sequent of ¢. It is easy to verify
that sk(¢s) =

0: P(c), u:P(c), 1'P( ) 4w
0: P(c), 1:P(c), w: P(c)", w:Q(e)™ | v
0: P(c), u: P(c) vV Q <c)*+, 1: P( ) . +’D.O
0: (Da)(P(x) v Q(x))", 0: P(c)", 1: P(¢)” cp1 '
0: (Dz)(P(x) VQ(:U)) 1: P(e)”
Then sk(¢) =
o1 sk(¢2) cut

0: (Dx)((P(z) vV Q(x)) V R(x)),1: P(c)

Note that ¢; cannot be skolemized as the strong quantifiers in ¢ are ances-
tors of the cut in ¢.

3.2 De-Skolemization of Proofs

Skolem functions can be replaced by the original structure of (strong and weak)
quantifiers by the following straightforward algorithm at most exponential in the
maximal size of the original proof and of the CERES-m proof of the Skolemized
end sequent: Order the Skolem terms (terms, whose outermost function symbol
is a Skolem function) by inclusion.The size of the proof resulting from CERES-m
together with the number of inferences in the original proof limits the number
of relevant Skolem terms. Always replace a maximal Skolem term by a fresh
variable, and determine the formula F in the proof, for which the correspond-
ing strong quantifier should be introduced. In re-introducing the quantifier we
eliminate the newly introduced connectives cg. As the eigenvariable condition
might be violated at the lowest possible position, where the quantifier can be
introduced (because e.g. the quantified formula has to become part of a larger
formula by an inference) suppress all inferences on F such that F occurs as side
formula besides the original end-sequent. Then perform all inferences on F. This
at most triples the size of the proof (a copy of the proof together with suitable
contractions might be necessary).
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3.3 Re-introduction of Distributive Quantifiers

The distributive quantifiers are by now represented by a combination of strong
quantifiers, weak quantifiers and connectives. A simple permutation of inferences
in the proof leads to the immediate derivation in several steps of the representa-
tion of the distributive quantifier from the premises of the distributive quantifier
inference. The replacement of the representation by the distributive quantifier is
then simple.

4 CERES-m

As in the classical case (see [5] and [6]) we restrict cut-elimination to skolemized
proofs. After cut-elimination the obtained proof can be re-skolemized, i.e. it can
be transformed into a derivation of the original (unskolemized) end-sequent.

Definition 19. Let K be an LM-type calculus. We define SK[K] be the set of
all skolemized proofs in K. SK” [K] is the set of all cut-free proofs in SK[K]
and, for all i > 0, SK'[K] is the subset of SK[K]| containing all proofs with
cut-formulas of formula complexity < i.

Our goal is to transform a derivation in SK[K] into a derivation in SK°[K]
(i.e. we reduce all cuts to atomic ones). The first step in the corresponding
procedure consists in the definition of a clause term corresponding to the sub-
derivations of an K-proof ending in a cut. In particular we focus on derivations
of the cut formulas themselves, i.e. on the derivation of formulas having no
successors in the end-sequent. Below we will see that this analysis of proofs,
first introduced in [5], is quite general and can easily be generalized to LM-type
calculi.

Definition 20 (clause term). The signature of clause terms consists of that
of W-clauses and the operators ®™ and Q™ for n > 2.

— (Finite) sets of W-clauses are clause terms.
— If X1,...,X,, are clause terms then ®"(X1,...,X,,) is a clause term.
— If X1,...,X,, are clause terms then @™ (X1,...,X,,) is a clause term.

Clause terms denote sets of W-clauses; the following definition gives the
precise semantics.

Definition 21. We define a mapping | | from clause terms to sets of W-clauses
in the following way:

|S| =C for sets of W-clauses S,
o™ (X1,..., Xa)| = IXil,
i=1

| ®TL (X17 st 5X7L)| = merge(|X1|, L) ‘X’n|)7
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where
merge(Sy,...,S8p) ={S1...5, |51 €81,...5, €S, }.

We define clause terms to be equivalent if the corresponding sets of clauses are
equal, i.e. X ~Y iff | X| =1Y].

Definition 22 (characteristic term). Let K be an LM-type calculus, ¢ be a
proof of S and let {2 be the set of all occurrences of cut formulas in ¢. We define
the characteristic (clause) term ©(¢) inductively:

Let N be the occurrence of an initial sequent S’ in ¢. Then O(¢p)/N = {S(N, 2)}
(see Definition 15).
Let us assume that the clause terms ©(¢) /N are already constructed for all nodes

N in ¢ with depth(N) < k. Now let N be a node with depth(v) = k + 1. We
distinguish the following cases:

(a) N is the consequent of M, i.e. a unary rule applied to M gives N. Here we
simply define

O(p)/N = O(p)/M.

(b) N is the consequent of My, ..., M,, forn > 2, i.e. an n-ary rule x applied
to My, ..., M, gives N.

(bl) The auziliary formulas of x are ancestors of §2, i.e. the formulas occur
in S(M;, 2) for alli=1,...,n. Then

O(¢)/N = &"(O(p)/My,...,0(p)/My).

(b2) The auxiliary formulas of x are not ancestors of (2. In this case we
define

O(9)/N = @"(O(p)/ My, ..., O(p)/My).

Note that, in an n-ary inference, either all auxiliary formulas are ancestors of
2 or none of them.

Finally the characteristic term ©(¢) of ¢ is defined as O(¢) /Ny where Ny is
the root node of ¢.

Definition 23 (characteristic clause set). Let ¢ be proof in an LM-type
calculus K and ©(¢) be the characteristic term of ¢. Then CL(¢), defined as
CL(¢) = |©(¢)|, is called the characteristic clause set of ¢.

Remark 4. If ¢ is a cut-free proof then there are no occurrences of cut formulas

in ¢ and CL(¢) = {O}.
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Ezample 4. Let ¢ be the skolemized proof defined in Example 3. It is easy to
verify that the characteristic clause set CL(¢') is

{u: P(c),

0: P(a), 0: P(a), 1: P(cx)
0: P(ar), 0:Q(e), 1: Q)
0: P(a), 1: P(a), 1: Q(v)
0: Q(«), 0: P(«), 1: P(x)
0:QLe). 0:Q(0). 1:Q(0)
0:Q(a), 1: P(a), 1:Q(a)}.

The set CL(¢') can be refuted via W-resolution for W = {0,u,1}. A W-
resolution refutation is (0f stands for O-factoring) v =

0: P(a), 0: P(«), 1: P(a) u:P(c)
0: P(c), 0: P(c) of

0: P(c) u: P(c) reso
D u

resiqy

A ground projection of vy (even the only one) is 7/ = y{a «— ¢} =

0: P(c), 0: P(c), 1: P(c) w:P(c)
0: P(c), 0: P(c)

0: P(c) ¢ u: P(e)
. cutoy

cutiy

Obviously 7/ is a proof in K.

In Example 4 we have seen that the characteristic clause set of a proof is
refutable by W-resolution. This is a general principle and the most significant
property of cut-elimination by resolution.

Definition 24. From now on we write {2 for the set of all occurrences of cut-
formulas in ¢. So, for any node N in ¢ S(N, §2) is the subsequent of S containing
the ancestors of a cut. S(N, §2) denotes the subsequent of S containing all non-
ancestors of a cut.

Remark 5. Note that for any sequent S occurring at a node N of ¢, S is a
permutation variant of S(N, £2),S(N, 2).

Theorem 1. Let ¢ be a proof in an LM-calculus K. Then there exists a W -
resolution refutation of CL(¢).

Proof. According to Definition 22 we have to show that

(x) for all nodes N in ¢ there exists a proof of S(N, 2) from Sy,
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where Sy is defined as |©@(¢)/N]| (i.e. the set of clauses corresponding to N, see
Definition 22). If Ny is the root node of ¢ labelled by S then, clearly, no ancestor
of a cut exists in S and so S(Nog, {2) = O. But by definition Sy, = CL(¢). So
we obtain a proof of O from CL(¢) in K. By the completeness of W-resolution
there exists a W-resolution refutation of CL(¢).

It remains to prove (x):
Let N be a leaf node in ¢. Then by definition of CL(¢) Sy = {S(N, §2)}. So
S(N, £2) itself is the required proof of S(N, {2) from Sy.

(IH):
Now assume inductively that for all nodes IV of depth < m in ¢ there exists a
proof ¥ of S(N, 2) from Sy.

So let N be a node of depth n + 1 in ¢. We distinguish the following cases:

(a) N is the consequent of M, i.e. N is the result of a unary inference in ¢. That
means ¢.N =
o.M

S(V)

By (IH) there exists a proof ¢y of S(M, 2) from Sy;. By Definition 22
Sy = Sur. If the auxiliary formula of the last inference is in S(M, 2) we
define ¢y =

Ym
g "

Obviously S’ is just S(N, £2).
If the auxiliary formula of the last inference in ¢.N is not in S(M, 2) we
simply drop the inference and define ¥ = ¥.M. As the ancestors of cut did
not change ¥y is just a proof of S(N, 2) from Sy.

(b) N is the consequent of an n-ary inference for n > 2, i.e. p.N =

O.My ... 6.M,
S(N)

By (IH) there exist proofs ¢, of S(M;, §2) from Sy, .

(b1) The auxiliary formulas of the last inference in ¢.N are in S(M;, £2), i.e.
the inference yields an ancestor of a cut. Then, by Definition 22

SN:SMlLJ...USMn.

Then clearly the proof ¢y:

LY SRR 1)) VR

1% v

is a proof of S’ from Sy and S’ = S(N, £2).
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(b2) The auxiliary formulas of the last inference in ¢.N are not in S(M;, 2),
i.e. the principal formula of the inference is not an ancestor of a cut.
Then, by Definition 22

Sy = merge(Sny, - -, S, )-
We write S; for Sy, and v; for ¢y, I; for S(M;, 2) and define

D; = merge(Sy,...,Si),
Ai :Flv"'7Fi7

for i = 1,...,n. Our aim is to define a proof ¥ of S(N, 2) from Sy
where Sy = D,,.

We proceed inductively and define proofs x; of A; from D;. Note that
for ¢ = n we obtain a proof x,, of S(Mz, 2),...,5(M,, §2) from Sy, and
S(N,2)=S(M,2),...,5(M,, 2). This is just what we want.

For i = 1 we define x1 = .

Assume that ¢ < n and we already have a proof x; of A; from D;. For
every D € S;41 we define a proof x;[D]:

Replace all axioms C in y; by the derivation

C,D
D.C "

and simulate y; on the extended axioms (the clause D remains passive).
The result is a proof x'[D] of the sequent

D,...,D,A,.

Note that the propagation of D through the proof is possible as no
eigenvariable conditions can be violated, as we assume the original proof
to be regular (if not then we may transform the 1); into proofs with
mutually disjoint sets of eigenvariables) . Then we define x;[D] as

X'[D]
A, D

c+

Next we replace every axiom D in the derivation ;1 by the proof y;[D]
and (again) simulate ;1 on the end-sequents of the x;[D] where the
A; remain passive. Again we can be sure that no eigenvariable condition
is violated and we obtain a proof p of

Aia"'aAi;Fi+1'

from the clause set merge(D;,S;1+1) which is D;;1. Finally we define

Xi+1 =
p

A o T
Ai7Fi+1

Indeed, xi4+1 is a proof of A; 1 from D;y;. &
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Like in the classical case ([6]) we define projections of the proof ¢ relative to
clauses C' in CL(¢). The basic idea is the following: we drop all inferences which
infer ancestors of a cut formula; the result is a cut-free proof of the end sequent
extended by the clause C'. Of course we do not obtain cut-elimination itself, but
instead a cut free proof of the end sequent extended by a clause. These cut-free
proofs are eventually inserted into a resolution proof, which eventually gives a
proof with atomic cuts only.

Lemma 1. Let ¢ be a deduction in SK[K] of a sequent S. Let C be a clause
in CL(¢). Then there exists a deduction ¢[C] of C,S s.t. §[C] is cut-free (in
particular ¢(C) € SKY[K]) and ||p[C]|| < 2 * ||¢].

Proof. Let Sy be |©(¢)/N| (like in the proof of Theorem 1). We prove that

(x) for every node N in ¢ and for every C' € Sy there exists a proof T'(¢, N, C')
of C,S(N, 2) s.t.
1T(¢, N, C)|| < 2[[¢.N].

Indeed, it is sufficient to prove (x): for the root node Ny we have S = S(No, £2)
(no signed formula of the end sequent is an ancestor of £2), ¢».Ny = ¢ and
CL(¢) = Sn,; so at the end we just define ¢[C] = T (¢, Ny, C) for every C €
CL(9).

We prove x by induction on the depth of a node N in ¢.
(IB) N is aleaf in ¢.

Then, by definition of Sy we have S = {S(N, 2)} and C: S(N, £2) is the only
clause in Sy. Let I' = S(N, 2). Then S(N) (the sequent labelling the node N)
is a permutation variant of C, I" and we define T'(¢, N,C) =

S(N)
cr

If no permutation is necessary we just define T'(¢, N,C) = S(N). In both cases
IT(¢, N, O)[| <2 =2[¢.N].
(IH) Assume (%) holds for all nodes of depth < k.
Let N be a node of depth k + 1. We distinguish the following cases:

(1) N is inferred from M via a unary inference x. By Definition of the clause
term we have Sy = Sps. So any clause in Sy is already in Sy, .
(1a) The auxiliary formula of x is an ancestor of 2. Then clearly S(N, §2) =

S(M, £2) and we define T'(¢, N,C) = T (¢, M, C). Clearly

IT(¢, N, O = [IT(¢, M, O)|| <(1my 2[lo-M|| < 2([¢.N|.
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(1b) The auxiliary formula of 2 is not an ancestor of £2. Let I' = S(M, 2), I"" =

S(N, £2); thus the auxiliary formula of z is in I'. By (IH) there exists a
proof ¢: T(¢p, M,C) of C, I" and |9 < 2||¢.M]||. We define T'(¢, N,C) =

(¥)
c,r

cr '’

Note that x cannot be a strong quantifier inference as the proof ¢ is
skolemized and there are no strong quantifiers in the end sequent. Thus
T (¢, N, C) is well-defined. Moreover

IT(¢, N, C)|| = [ T(¢, M, C)l| + 1 <(rry 2| 6-M || + 1 < 2[|¢.N].

(2) N is inferred from Mj, ..., M, via the inference = for n > 2. By (IH) there
are proofs T(¢, M;,C;) for i = 1,....,n and C; € Sy, Let S(M;, 2) = I;
and S(N, Q) =TI7,...,I. We abbreviate T(¢, M;,C;) by ;.

(2a) The auxiliary formulas of = are in I,...,[,. Let C be a clause in Sy.
Then, by definition of the characteristic clause set, C' = C1,...,C, for
C; € Sy, (Sn is defined by merge). We define T'(¢, N, C) as

(1) (1hn)
oIy ... Cn 1T,

Cr.... Ol 10"
1y---sbmydgy--sdp

By definition of || || we have

l6- N =1+ |6,
=1
]| < 2l¢.M;| by (1H)

Therefore

IT(¢, N,C)| =14+ > [lwsill < 1+2> [l¢.M;]| < 2]|¢.N].

=1 i=1

(2b) The auxiliary formulas of = are not in I1,...,I5,. Let C by a clause
in Sy. Then z operates on ancestors of cuts and Sy = |J]_, Sus,, thus
C € Sy, for some ¢ € {1,...,n}. Moreover I'/ =I5 fori=1,...,n. We
define T'(¢, N, C) as

(%)
C,I; w
C7Fqu17'"7Fi717[‘i+17~-~>Fn
C 1.1, T

Then
1T (¢, N, O < [[vhill +2 < 2]|¢. N
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This concludes the induction proof. &

Ezample 5. Let ¢’ be the proof from Example 3. We have computed the set
CL(¢') in example 4. We select the clause C:0: P(«), 0: P(«), 1: P(«) and com-
pute the projection ¢'[C]:

(@), w:Qa), 0: Pa), 1: P(a)
P(a), u: P(a), u:Q(a)
1: Pa), w: P(a) V Q(a )
0: P(a), 0: P(«), 1: P(a), w: P(a) V Q(a), w: R(cx) Viu
0: P(a), 0: L: P(a), u: (P(a) vV Q(a ))VR( )
0: P(a), 0: P(), 1: P(a), 0: (Da)((P(z) v Q(x)) V R(x))
0: P(a), 0: P(),1: P(a), 0:(Dz)((P(x) v Q(x)) vV R(x)), 1: P(c)

Let ¢ be a proof of S s.t. ¢ € SK[K] and let v be a W-resolution refutation
of CL(¢). We define a ground projection 7" of v which is a K-proof of O from
instances of CL(¢). This proof 7/ can be transformed into a proof 7/[¢] of S from
the axiom set A s.t. 7/[¢] € SK[K] (7/[¢] is a proof with atomic cuts). Indeed,
~' is the skeleton of the proof of S with atomic cuts and the real core of the end
result; 7/[¢] can be considered as an application of 4’ to (the projections of) ¢.

Theorem 2. Let ¢ be a proof of S from A in SK[K] and let v be a ground
projection of a W-refutation of CL(¢). Then there exists a proof v'[¢] of S with
v'[¢] € SK°[K] and

IVl < IV 112 * NIl + 1(S) + 2).
Proof. We construct v/[¢]:

(1) Replace every axiom C' in v by the projection ¢[C]. Then instead of C' we
obtain the proof ¢[C] of C,S. For every occurrence of an axiom C in vy we
obtain a proof of length < 2 ||¢|| (by Lemma 1).

(2) Apply the permutation rule to all end sequents of the ¢[C] and infer S, C.
The result is a proof ¥[C] with [[[C]]| < 2 * ||¢]| + 1.

(3) Simulate 7 on the extended sequents S,C, where the left part S remains
passive (note that, according to our definition, inferences take place on the
right). The result is a proof x of a sequent S,...,S from A s.t.

Il < Y1 @ floll + 1) + lIvl-

Note that x is indeed a K-proof as all inferences in +" are also inferences of
K.

(4) Apply one permutation and contractions to the end sequent of y for obtaining
the end sequent S. The resulting proof is 7'[¢], the proof we are searching for.
As the number of occurrences of S in the end sequent is < ||7/|| the additional
number of inferences is < 1+1(.5)*||7'||. By putting things together we obtain

1[I < 1112 * 81l + 1(S) +2).
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Looking at the estimation in Theorem 2 we see that the main source of
complexity is the length of the W-resolution proof 4’. Indeed, v (and thus +')
can be considered as the characteristic part of 7/[¢] representing the essence of
cut-elimination. To sum up the procedure CERES-m for cut-elimination in any
LM-type logic K cab be defined as:

Definition 25 (CERES-m).

input :¢ € P[K].

construct a Skolem form ¢' of ¢.
compute CL(¢").

construct a W -refutation v of CL(¢’).
compute a ground projection v of .
compute 7'[¢'] (+/[¢'] € SKO[K]).
reskolemize +'[¢'] to ¢ (¢ € PY[K]).

Ezample 6. The proof ¢ from Example 1 has been skolemized to a proof ¢’ in
Example 3. In Example 4 we have computed the characteristic clause set CL(¢’)
and gave a refutation v of CL(¢’) and a ground projection v': v{a < c}. Recall

!

v

0: P(c), 0: P(c), 1: P(c) w:P(c) cut
0:P(c), 0:P(c) e
0: P(c) u: P(e) ;
O CULOy

and the instances C] = u: P(¢) and C} = 0: P(¢), 0: P(c), 1: P(c) of two signed
clauses in CL(¢’) which defined the axioms of 4/. We obtain 4/ [¢'] by substituting
the axioms C7,C% by the projections ¢[C1], #[C4] (#[C%] is an instance of the
projection computed in Example 5). The end sequent of ¢’ is

S: 0: (Dx)((P(x) vV Q(z)) V R(z)), 1: P(c)

So we obtain +'[¢'] =

(¢'[C£]) (4[C1])
0: P(c), 0: P(c), 1 () S7r u: P(e )7S
S, 0: P(e), 0: P(c )7 P(c) S, u.P(c) cut (6[C})
S, S, O.P( ), 0: P(c) " wP(e), S
S, S, 0: P(c) ¢ S, u: P(c) Ft
S S, S et
g c

5 Conclusion

Besides establishing a feasible cut-elimination method for many-valued first order
logics the main aim of this paper is to demonstrate the stability of CERES
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w.r.t. cut elimination problems beyond classical first order logic. The authors
are convinced, that this stability of CERES will it enable to incorporate intrinsic
non-classical logics such as intuitionistic logic and possibly to extend CERES to
the second order case, where inductive methods of cut-elimination fail by Gédel’s
Second Incompleteness Theorem.
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Abstract. Resolution-based calculi are among the most widely used
calculi for theorem proving in first-order logic. Numerous refinements of
resolution are nowadays available, such as e.g. basic superposition, a cal-
culus highly optimized for theorem proving with equality. However, even
such an advanced calculus does not restrict inferences enough to obtain
decision procedures for complex logics, such as SHZQ. In this paper,
we present a new decomposition inference rule, which can be combined
with any resolution-based calculus compatible with the standard notion
of redundancy. We combine decomposition with basic superposition to
obtain three new decision procedures: (%) for the description logic SHZQ,
(i) for the description logic ALCHZ Qb, and (#i4) for answering conjunc-
tive queries over SHZQ knowledge bases. The first two procedures are
worst-case optimal and, based on the vast experience in building efficient
theorem provers, we expect them to be suitable for practical usage.

1 Introduction

Resolution-based calculi are nowadays among the most widely used calculi for
theorem proving in first-order logic. The reasons for that are twofold. On the
theoretical side, the initial resolution calculus was significantly refined to obtain
various efficient calculi without losing soundness or completeness (e.g. [2,15]).
On the practical side, implementation techniques for efficient theorem provers
have been devised and applied in practice (an overview is given in [21]).
Because of its popularity, resolution is often used as a framework for deciding
various fragments of first-order logic. The fundamental principles for deciding a
first-order fragment £ by resolution are known from [12]. First, one selects a
sound and complete resolution calculus C. Next, one identifies the set of clauses
N¢ such that for a finite signature, N, is finite and each formula ¢ € £, when
translated into clauses, produces clauses from A. Finally, one demonstrates
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closure of Nz under C, namely, that applying an inference of C to clauses from
N produces a clause in M. This is sufficient to obtain a refutation decision
procedure for £ since, in the worst case, C will derive all clauses of N;. An
overview of decision procedures derived by these principles is given in [8].

The calculus C should be chosen to restrict inferences as much as possible
without losing completeness. Namely, an unoptimized calculus usually performs
unnecessary inferences which hinder closure of N under C. Consider the decision
procedure for SHZQ™ description logic we presented in [11]. This logic provides
so-called number restrictions, which are translated into first-order logic using
counting quantifiers. We translate counting quantifiers into (in)equalities, and
decide SHZ Q™ by saturation under basic superposition [3,14]. The prominent
feature of basic superposition is the basicness restriction, by which superposi-
tion into terms introduced by unification can be omitted without compromising
completeness. This restriction is crucial to obtain closure under inferences.

Interestingly, this approach does not yield a decision procedure for the slightly
more expressive DL SHZQ [9] (SHZ Q™ allows number restrictions only on roles
without subroles). Namely, basic superposition alone is not restrictive enough to
limit the term depth in conclusions. Therefore, we present decomposition, a new
inference rule which can be used to transform certain conclusions. We show that
decomposition is sound and complete when combined with basic superposition,
which is interesting because of a non-standard approach to lifting used in basic
superposition; however, the rule can be combined with any saturation calculus
compatible with the standard notion of redundancy [2].

Decomposition indeed solves the motivating problem since it allows us to
establish the closure under inferences for SHZQ, and even yields an optimal de-
cision procedure?. Furthermore, decomposition proves to be versatile and useful
for other decidable fragments of first-order logic: we extend the basic superposi-
tion algorithm to handle ALCHZ Qb, a description logic providing safe Boolean
role expressions. As for SHZ Q, this algorithm is optimal. Finally, we derive a de-
cision procedure for answering conjunctive queries over SHZ Q knowledge bases.
Based on the vast experience in building efficient theorem provers, we believe
that these algorithms are suitable for practice.

All results in this paper have been summarized in a technical report [10].

2 Preliminaries

Description Logics. Given a set of role names Ng, a SHZQ role is either some
R € Npg or an tnverse role R~ for some R € Nr. A SHZQ RBox KBg is
a finite set of role inclusion axioms R T S and transitivity axioms Trans(R),
for R and S SHZQ roles. As usual, for R € N, we set Inv(R) = R~ and
Inv(R™) = R, and we assume that, if R C S € KBg (Trans(R) € KBr), then
Inv(R) C Inv(S) € KB (Trans(Inv(R)) € KBg) as well. A role R is simple if for
each role S C* R, Trans(S) ¢ KBg (C* is the reflexive-transitive closure of C).

4 Optimal under the assumption that numbers in number restrictions are coded in
unary.
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Given a set of concept names No, SHZQ concepts are inductively defined as
follows: each A € N¢ is a SHZ Q concept and, if C'is a SHZ Q concept, R a role,
S a simple role, and n an integer, then ~C', C1 M Cs, VR.C, and < n S.C' are also
SHIQ concepts. As usual, we use C; U Cy, 3R.C, > n S.C' as abbreviations for
—(=C1 M =Cy), -VR.~C, and ~(< (n — 1) S.C). A TBox KBy is a finite set of
concept inclusion axioms C'C D. An ABox KB 4 is a finite set of axioms C(a),
R(a,b), and (in)equalities a ~ b and a % b. A SHZQ knowledge base KB is a
triple (KB, KB7, KB 4). The semantics of KB is given by translating it into
first-order logic by the operator 7 from Table 1. The main inference problem is
checking KB satisfiability, i.e. determining if a first-order model of 7(KB) exists.

The logic SHZQ™ is obtained from SHZQ by restricting roles in number
restrictions < n S.C' and > n S.C to very simple roles; a role S is very simple in
KBg if there is no role S’ with S’ £ S € KBg. The restriction ALCHZQ of
SHZQ is obtained by disallowing transitivity axioms Trans(R) in RBoxes.

Considering complexity, we must decide how to measure the size of concepts
and knowledge bases. Here, we simply use their length, and assume unary coding
of numbers, i.e. |[<nR.C|=n+1+|C|.

Basic Superposition. We assume the standard notions of first-order clauses with
equality: all existential quantifiers have been eliminated using Skolemization;
all remaining variables are universally quantified; we only consider the equality
predicate, i.e. all non-equational literals A are encoded as A ~ T in a multi-
sorted setting; and we treat = as having built-in symmetry. Moreover, we assume
the reader to be familiar with standard resolution [2].

Basic superposition [3,14] is an optimized version of superposition which
prohibits superposition into terms introduced by unification in previously per-
formed inferences. Its inferences rules are formalized by distinguishing two parts
of a clause: (i) the skeleton clause C' and (ii) the substitution o representing
the cumulative effects of all unifications. Such a representation of a clause C'o is
called a closure, and is written as C'-o. A closure can conveniently be represented
by marking the terms in Co occurring at variable positions of C' with []. Any
position at or beneath a marked position is called a substitution position.

The calculus requires two parameters. The first is an admissible ordering
on terms =, i.e. a reduction ordering total on ground terms. If > is total on
non-ground terms (as is the case in this paper), it can be extended to literals
by associating, with each literal L = sot, o € {~,%}, a complexity measure
cr, = (max(s,t),pr, min(s,t)), where pr is 1 if o is &, and 0 otherwise. Now
Ly > Ly iff ¢, > cr,, where cr, are compared lexicographically, with 1 > 0.
The second parameter of the calculus is a selection function which selects an
arbitrary set of negative literals in each clause.

The basic superposition calculus is a refutation procedure. If a set of closures
N is saturated up to redundancy (meaning that all inferences from premises in N
are redundant in N), then N is unsatisfiable if and only if it contains the empty
closure. A literal L - o is (strictly) maximal w.r.t. a closure C' - o if no L' € C
exists, such that L'c = Lo (L'c = Lo). A literal L - o is (strictly) eligible for
superposition in (C'V L) - o if there are no selected literals in (CVL)-o and L-o
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Table 1. Semantics of SHZQ by Mapping to FOL

Concepts to FOL: 7y (A, X) = A(X) Ty (CMN D, X) =my(C,X)ANmy(D, X)
wy(0C, X) = =1y (C, X) Ty (VR.C, X) 7 Yy : R(X,y) i 72(C,v)
Ty (SnS.C,X)=Vy1,...,ynt+1: SX,yi)) AN m(Coys) > i Ryj
Axioms to FOL: #(C C D) =Vz: my(C,z) — my(D, x)
T(RCS)=Vz,y: R(z,y) — S(z,y)
m(Trans(R)) = Va,y,z : R(z,y) A R(y, 2) — R(z, z)

KB to FOL: m(R) =¥z, y: R(z,y) <R (y,7)
w(KBRr) = v a€KkBr T a) A RENR w(R)
n(KBT) = vV a€KBr () v

T(KBa) =y c(ayekny v(Cr 0N Riapyexs , Bla, DA
ambeKB 4 AR ON  qegp , @
7(KB) = n(KBRr) An(KB1) ANw(KB A)
X is a meta variable and is substituted by the actual variable.
7 is defined as m, by substituting ;) for all y(,, respectively, and m, for 7.

Table 2. Inference Rules of the BS Calculus

1) o= MGU(sp,wp|p) and 0 = po,

i) t0 % s0 and v0 F wo,

11) (s &~ t) - 0 is strictly eligible for superposition,
w) (w = v)-0 is strictly eligible for superposition,
v) s~ 10 ¥ wh ~ b,

vi) wl|p is not a variable.

1) o= MGU(sp,wplp) and 0 = po,

1) to % s6 and v % wb,

11) (s & t) - 6 is strictly eligible for superposition,
w) (w % wv) -0 is eligible for resolution,

v) wlp is not a variable.

Positive superposition:

(Cvs=t)-p (DVw=wv)-p
(CVDVwltly=v)-0

Negative superposition:

(Cvsmt)-p (DVwzwv) p
(CVDVwltly #v)-0

Reflexivity resolution:

(CVs#t)-p
C-6

1) o = MGU(sp,tp) and 6 = po,
1) (s %) - 0 is eligible for resolution.

—~—

Equality factoring: ) ,
(i) o= MGU(sp,s'p) and 0 = po,

(CVvsmtVvs =t) p (i6) t0 % s0 and t'60 ¥ 5’0,
(CVtEI VS ~t)-0 (i17) (s ~ t) - 0 is eligible for superposition.

(i) E; are of the form (C; V 4;) - p, for 1 <1 <mn,
Ordered Hyperresolution: (i6) Eis of the form (DV —B1 V...V =Bg)-p,
(i77) o is the most general substitution such that
FEi1...E, E A;0 = B;6 for 1 <i<n,and 6§ = po,
(Ci1V..VChoVD)-0 (iv) A; -6 is strictly eligible for superposition,
(v) —Bj;-0 are selected, or nothing is selected, i = 1
and —Bj - 0 is maximal w.r.t. D - 0.

is (strictly) maximal w.r.t. C' - o; Lo is eligible for resolution in (C'V L) - o if it
is selected in (C'V L) - o or there are no selected literals in (C'V L) -0 and L - o
is maximal w.r.t. C'- 0. We denote basic superposition with BS and present its
inference rules in Table 2. The ordered hyperresolution rule is a macro inference,
combining negative superposition and reflexivity resolution. The closure FE is
called the main premise, and the closures F; are called the side premises. An
overview of the completeness proof and compatible redundancy elimination rules
are given in [10].
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3 Motivation

To motivate the need for decomposition, we give an overview of our procedure for
deciding satisfiability of a SHZ Q™ knowledge base KB using BS from [11] and
highlight the problems related to deciding full SHZQ. We assume that KB has
an extensionally reduced ABox, where all concepts occurring in ABox assertions
are atomic. This is without loss of generality, since each axiom C(a), where C
is complex, can be replaced with axioms Ac(a) and Ac C C, for Ac a new
concept; this transformation is obviously polynomial.

3.1 Deciding SHZQ ™ by BS

Eliminating Transitivity. A minor problem in deciding satisfiability of KB are
the transitivity axioms, which, in their clausal form, do not contain so-called
covering literals (i.e. literals containing all variables of a clause). Such clauses
are known to be difficult to handle, so we preprocess KB into an equisatisfiable
ALCHIQ™ knowledge base 2(KB). Roughly speaking, we replace each transi-
tivity axiom Trans(S) with axioms VR.C' C VS.(VS.C), for each R with S C* R
and C' a concept occurring in KB. This transformation is polynomial.

Preprocessing. We next translate 2(KB) into a first-order formula 7(KB) ac-
cording to Table 1. Assuming unary coding of numbers, 7(KB) can be computed
in polynomial time. To transform 7(KB) into a set of closures =Z(KB), we apply
the well-known structural transformation [16]. Roughly speaking, the structural
transformation introduces a new name for each non-atomic subformula of 7(KB).
It is well-known that 7(KB) and Z(KB) are equisatisfiable, and that Z(KB)
can be computed in polynomial time.

For any KB, all closures from = (KB) are of types from Table 3; we call them
ALCHI Q™ -closures. We use the following notation: for a term ¢, with P(¢) we
denote a disjunction of the form (=)Pi(t) V ...V (7)P,(t), and with P(f(z))
we denote a disjunction of the form Pq(fi(x)) V...V Pu(fm(z)) (notice that
this allows each P;(fi(z)) to contain positive and negative literals). With (t) we
denote that the term ¢ may, but need not be marked. In all closure types, some of
the disjuncts may be empty. Furthermore, for each function symbol f occurring
in Z(KB), there is exactly one closure of type 3 containing f(z) unmarked; this
closure is called the R-generator, the disjunction P¥(x) is called the f-support,
and R is called the designated role for f and is denoted as role(f).

Parameters for BS. We use BSpy, to denote the BS calculus parameterized as
follows. We use a standard lezicographic path ordering [7,1] (LPO) for comparing
terms. LPOs are based on a precedence > p over function, constant, and predicate
symbols. If the precedence is total, LPO is admissible for basic superposition.
To decide ALCHZ Q™ , we can use any precedence such that f >pc>pp>p T,
for any function symbol f, constant ¢, and predicate symbol p. We select all
negative binary literals in a closure. On ALCHZ Q™ -closures BSpy compares
only terms with at most one variable, and LPOs are total for such terms. Hence,
literals in ALCHZ Q™ -closures can be compared as explained in Section 2.
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Table 3. Types of ALCHZ Q™ -closures

1| =R(z,y) V Inv(R)(y, )

2| ~R(z,y) vV S(z,y)

3| P ()V R(z, (f(z)))

4P UC)VR([f z)],z) o

5|Pi(z) VP2 ((f(2)) vV (fi(x)) =/ (f3{))

6| P1(z) vV P2([g(x)]) VPs((f([g(x)])) v = (t:i) =/# ;)

where ¢; and ¢; are either of the form f([g(x)]) or of the form x
NPi(x) vV —R@,y)VE20y)V yi=my;
SR (@), B VP(6) V{00~ (6)
where ¢, ¢; and t; are either some constant b or a functional term f;([a])
Conditions:
(i): In any term f(t), the inner term ¢ occurs marked.
(i1): In all positive equality literals with at least one function symbol,
both sides are marked.
i): Any closure containing a term f(t) contains Pf(¢) as well.
): In a literal [fi(¢)] = [f;(t)], role(f:) = role(f;).
v): In a literal [f(g(z))] = z, role(f) = Inv(role(g)).
)): For each [f;i(a)] = [b] a witness closure of the form R({a), (b)) V D exists,
with role(f;) = R, D does not contain functional terms or negative
binary literals, and is contained in this closure.

Closure of ACCHZ Q™ -closures under Inferences. The following lemma is central
to our work, since it implies, together with a bound on the number of ACCHZ Q™ -
closures, termination of BS pr,. The proof is by examining all inferences of BSpy,
for all possible types of ALCHZ Q™ -closures.

Lemma 1. Let Z(KB) = Ny,...,N; U{C} be a BSpr-derivation, where C' is
the conclusion derived from premises in N;. Then C is either an ALCHIQ™ -
closure or it is redundant in N;.

Termination and Complexity Analysis. Let |KB]| denote the size of KB with
numbers coded in unary. It is straightforward to see that, given a knowledge base
KB, the size of a set of non-redundant ALCHZ Q™ -closures over the vocabulary
from Z(KB) is exponentially bounded in |KB|: let r be the number of role
names, a the number of atomic concept names, ¢ the number of constants, f
the number of Skolem function symbols occurring in Z(KB), and v the maximal
number of variables in a closure. Obviously, r, a, and ¢ are linear in |KB| and,
for unary coding of numbers, f and v are also linear in |KB|. Thus we have at
most (f+1)%(v+c) terms of depth at most 2, which, together with the possible
marking, yields at most t = 2(f + 1)%(v + ¢) terms in a closure. This yields
at most at + rt? atoms, which, together with the equality literals, and allowing
each atom to occur negatively, gives at most ¢ = 2(at + (r + 1)t?) literals in
a closure. Each closure can contain an arbitrary subset of these literals, so the
total number of closures is bounded by 2¢. Thus we obtain an exponential bound
on the size of the set of closures that BSpy, can derive. Each inference step can
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be carried out in exponential time, so, since BSpy is a sound and complete
refutation procedure [3], we have the following result:

Theorem 1 ([11]). For an ALCCHZIQ™ knowledge base KB, saturating =(KDB)
by BS pr, with eager application of redundancy elimination rules decides satisfia-
bility of KB and runs in time exponential in |KB|, for unary coding of numbers.

3.2 Removing the Restriction to Very Simple Roles

For a SHZQ knowledge base KB containing number restrictions on roles which
are not very simple, the saturation of Z(KB) may contain closures whose struc-
ture corresponds to Table 3, but for which conditions (i) — (vi) do not hold; we
call such closures ALCHZ Q-closures. Let KB be the knowledge base containing
axioms (1) — (9):

RCT = —-R(z,y) VT (z,y) (1) ~C(z) v i(([j([xf)(]a;)x]; 8(1);
S CT= ﬁS(I,y) V T(z,y) (2) T([ (x) w) (12)
CLE3RT = ~C(a) V iz, f(2)) © o@DV e ~e (3)

TC3S™.T = 5 (z,9(x) (4) o
= ’ ﬁC([g(x)]) R([g(x)] ,x) (14)
TC<L<1T = ~T(z,y1) V-T(z,y2) Vy1 = y2 (5) D(lg(z)]) (15)
35T £ D = ~S(y) v Dl) O D@ v -Clls@) (16)
3R.T C —D = —R(z,y) V ~D(z) (7) ~C(lg(x)]) (17)
TCC= Cx) (®) O (18)

=S7 (z,y) V S(y,x) 9)

Consider a saturation of =(KB) by BS pr, producing closures (10) — (13). For
(13), Condition (v) is not satisfied: role(f) = R # Inv(role(g)) = Inv(S™) = S.
This is because in (5), a number restriction was stated on a role that is not very
simple. Now (13) can be superposed into (3), resulting in (14), which is obviously
not an ALCHZ Q-closure.

If KB were an ACLCHZ Q™ knowledge base, Condition (v) would hold, so we
would be able to assume that a closure R([g(z)],x) exists. This closure would
subsume (14), so we would simply throw (14) away and continue saturation.

Since Condition (v) does not hold, a subsuming closure does not exist, so
in order not to lose completeness, we must keep (14) and perform further in-
ferences with it. This might cause termination problems: in general, (14) might
be resolved with some closure of type 6 of the form C([g(h(x))]), producing a
closure of the form R([g(h(x))],[h(x)]). The term depth in the binary literal is
now two, and it may be used to derive closures with ever deeper terms. Thus,
the set of derivable closures becomes infinite, and we cannot conclude that the
saturation necessarily terminates.

A careful analysis reveals that various refinements of the ordering and the
selection function will not help. Furthermore, the inference deriving (14) is nec-
essary. Namely, KB is unsatisfiable, and the empty closure is derived through
steps (15) — (18), which require (14).
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4 Transformation by Decomposition

To solve the problems outlined in Subsection 3.2, we introduce decomposition, a
transformation that can be applied to the conclusions of some BS inferences. It
is a general technique not limited to description logics. In the following, for x a

vector of distinct variables z1, ..., z,, and t a vector of (not necessarily distinct)
terms t1,...,tp, let {x — t} denote the substitution {z1 > t1,..., 2, — t,},
and let Q([t]) denote Q([t1], ..., [tn])-

Definition 1. Let C - p be a closure and N a set of closures. A decomposition
of C-p w.rt. N is a pair of closures Cy - pV Q([t]) and Cs - 0V =Q(x) where
t is a vector of n terms, x is a vector of n distinct variables, n > 0, satisfying
these conditions: (1) C = Cy U Cy, (ii) p = 0{x — t}, (iii) x is exactly the
set of free variables of Ca0, and (iv) if Cy- 0V -Q'(x) € N, then Q = @',
otherwise @ is a new predicate not occurring in N. The closure Cy - 0 is called
the fixed part, the closure C - p is called the variable part and the predicate Q) is
called the definition predicate. An application of decomposition is often written
as C-p ~ C1-pVQ([t]), C2- 0V -Q(x).

Let & be a BS inference with a most general unifier o on a literal Ly, -n from
a main premise Dy, - n and with a side premise Dy - 1. The conclusion of £ is
eligible for decomposition if, for each ground substitution T such that £T satisfies
the constraints of BS, we have =Q(t)T < Ly,not. With BS* we denote the BS
calculus where decomposition can be applied to conclusions of eligible inferences.

The definition of eligibility is defined to cover the most general case. In the
following, we use a simpler test: £ is eligible for decomposition if =Q(t) < L,no,
or a literal L € Dy exists such that =Q(t) < Lno. The latter is a sufficient
approximation, since LnoT < L,,no7 for each 7 as in Definition 1.

E.g., consider superposition from [f(g(z))] =~ [h(g(x))] into C(z)V R(z, f(x))
resulting in D = C([g(x)]) V R([g(x)],[h(g(x))]). The conclusion is not an
ALCHI Q-closure, so keeping it might lead to non-termination. D can be de-
composed into C([g(x)]) V Qr,s([g(z)]) and =Qr, r(z) V R(z, [h(z)]), which are
both ALCHZ Q-closures. The inference is eligible for decomposition if we ensure
that =Qr, r(g(z)) < R(g(z), h(g(z))) (e.g. by using R >p Qg in LPO).

The soundness and completeness proofs for BS™ are given in [10]; here we
present the intuition behind these results. As shown by Lemma 2, decomposition
is sound: it merely introduces a new name for Cs - 6. Any model of C' - p can
be extended to a model of C; - pV Q([t]) and Cs - 0 V =Q(x) by adjusting the
interpretation of Q.

Lemma 2. Let Ny,...,N; be a BST-derivation, and let Iy be a model of Ny.
Then for i > 1, N; has a model I; such that, if the inference deriving N; from
N;_1 inwvolves a decomposition step as specified in Definition 1 introducing a
new predicate Q, then I; = I;_1 U{Q(S) | s is a vector of ground terms such that
C20{x — s} is true in I;_1}; otherwise I; = I;,_1.

The notion of variable irreducibility is a central concept in the completeness
proof of basic superposition. Roughly speaking, a closure C - p7 is a wvariable
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irreducible ground instance of C-p w.r.t. a ground and convergent rewrite system
R if substitution positions in C'- p7 are not reducible by rewrite rules in R. We use
this to prove completeness, by showing that decomposition is compatible with
the usual notion of redundancy for BS [3,14], as shown by Lemma 3. We do so
in two steps. First, the eligibility criterion ensures that (*) ground instances of
Cy-pV Q([t]) and Cs - 6 V ~Q(x) are smaller than the corresponding ground
instances of D,, - n. Second, (**) for each variable irreducible ground instance
C - pr of C - p, there are variable irreducible ground instances E; and Ey of
Cy-pV Q([t]) and Cy - 0 vV =Q(x), respectively, such that {Eq,Ex} = C - pr.
Property (**) holds since the terms t are extracted from the substitution part of
C'-p. Effectively, (**) means that decomposition does not lose “relevant” variable
irreducible ground instances of C'-p which are used in the proof. Actually, closures
Cy-pVQ([t]) and Cs-0V—-Q(x) can have “excessive” variable irreducible ground
instances without a counterpart ground instance of C' - p. However, this is not a
problem, since decomposition is sound.

Lemma 3. Let € be a BS inference applied to premises from a closure set N
resulting in a closure C-p. If C'- p can be decomposed into closures Cy-pV Q([t])
and Cy - 0 V —Q(x) which are both redundant in N, then the inference £ is
redundant in N.

Soundness and compatibility with the notion of redundancy imply that BS™
is a sound and complete calculus, as shown by Theorem 2. Note that, to obtain
the saturated set N, we can use any fair saturation strategy [2]. Furthermore, the
decomposition rule can be applied an infinite number of times in a saturation,
and it is even allowed to introduce an infinite number of definition predicates.
In the latter case, we just need to ensure that the term ordering is well-founded.

Theorem 2. For Ny a set of closures of the form C-{}, let N be a set of closures
obtained by saturating Ny under BST. Then Ny is satisfiable if and only if N
does not contain the empty closure.

For a resolution calculus C other than BS, Lemma 2 applies as well. Further-
more, if C is compatible with the standard notion of redundancy [2], Lemma 3
holds as well: (*) holds for C identically, and (**) is needed only for BS, due to a
non-standard lifting strategy. Hence, decomposition can be combined with any
such calculus.

Related Work. In [17] and [6] a similar rule for splitting without backtracking
was considered, and in [18] a similar separation rule was introduced to decide
fluted logic. Decomposition allows replacing complex terms with simpler ones,
so it is different from splitting (which does not allow component clauses to con-
tain common variables) or separation (which links component clauses only by
literals without functional terms). Furthermore, by the eligibility criterion we
make decomposition compatible with the standard notion of redundancy. Thus,
decomposition becomes a full-fledged inference rule and can be applied an in-
finite number of times in a saturation. Finally, combining decomposition with
basic superposition is not trivial, due to a non-standard approach to lifting.
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5 Applications of Decomposition

To show the usefulness of decomposition, in this section, we use it to extend the
algorithm from Section 3 to obtain three new decision procedures.

5.1 Deciding ALCHIQ

Definition 2. BS},, is the modification of the BSpr, calculus where conclusions
are decomposed, whenever possible, as follows, for an arbitrary term t:

D-pVR(t],[f1)]) ~ D-pV Qr([t])
~“Qr,f(x) V R(z, [f(z)])
D-pV R([f()],[t]) ~ D- P\/anv(R)f([t])

“Qinv(r).f(x) V R([f(2)], )

and where the precedence of the LPO is f >p ¢ >p p >p Qg y >p T, for any
function symbol f, constant symbol ¢, non-definition predicate p and definition
predicate Qs y.

For a (possibly inverse) role S and a function symbol f, the predicate Qg s
is unique. Since R([f(x)], z) and Inv(R)(z, [f(x)]) are logically equivalent by the
operator T, it is safe to use Qv (r),s as the definition predicate for R([f(z)],z).

Inferences of BS pr, when applied to ALCHZ Q-closures, derive an ALCHZ Q-
closure even if conditions (i7) — (vi) are not enforced. The only exception is the
superposition from a closure of type 5 or 6 into a closure of type 3, but such
closures are decomposed by BS},; into two ALCHZQ-closures; the inference
is eligible for decomposition since ~Qr, () < R(t,g(t)) (which is the maximal
literal of the closure of type 3 after unification). Furthermore, Qg ¢ is unique for a
pair of S and f, so the number of definition predicates is polynomially bounded.
This allows us to derive an exponential bound on the number of ALCHZ Q-
closures as in Theorem 1 and thus to obtain a decision procedure.

Theorem 3. For an ALCHIQ knowledge base KB, saturation of Z(KB) by
BSEL decides satisfiability of KB, and runs in time exponential in |KB|.

5.2 Safe Role Expressions

A prominent limitation of ALCHZQ is the rather restricted form of role expres-
sions that may occur in a knowledge base. This can be overcome by allowing for
safe Boolean role expressions in TBox and ABox axioms. The resulting logic is
called ALCHZQb, and can be viewed as the “union” of ALCHZIQ and ALCT Qb
[20]. Using safe expressions, it is possible to state negative or disjunctive knowl-
edge regarding roles. Roughly speaking, safe role expressions are built using
union, disjunction, and relativized negation of roles. This allows for statements
such as Vz,y : isParentOf (x,y) — isMotherOf (z,y)V isFatherOf (z,y), but does
not allow for “fully negated” statements such as: Va,y : ~isMotherOf (z,y) —
isFatherOf (x,y). The safety restriction is needed for the algorithm to remain in
ExXPTIME; namely, it is known that reasoning with non-safe role expressions is
NExPTIME-complete [13].
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Definition 3. A role expression is a finite expression built over the set of roles
using the connectives L, M and — in the usual way. A role expression E is safe if
each conjunction of the disjunctive normal form of E contains at least one non-
negated atom. The description logic ACCHZI Qb is obtained from ALCHIQ by
allowing concepts AE.C,VE.C, > nE.C and < n E.C, inclusion axioms E C F
and ABox azioms E(a,b), where E is a safe role expression, and F is any role
expression. The semantics of ALCHZQD is obtained by exrtending the operator
7w from Table 1 in the obvious way.

We assume w.l.o.g. that all concepts in KB contain only atomic roles, since
one can always replace a role expression with a new atomic role and add a
corresponding role inclusion axiom. Hence, the only difference to the case of
ALCHIQ logic is that KB contains axioms of the form F T F, where E is
a safe role expression. Such an axiom is equivalent to the first-order formula
@ =Vax,y: m(-EUF). Assume that F is in disjunctive normal form; since it is
safe, = F is equivalent to a conjunction of disjuncts, where each disjunct contains
at least one negated atom. Hence, translation of ¢ into first-order logic produces
closures of the form I' = =Ry (z,y) V...V 2R, (z,y) V S1(z,y) V...V S (z,y),
where n > 1,m > 0. Computing the disjunctive normal form might introduce an
exponential blow-up, so to compute Z(KB) we use structural transformation,
which runs in polynomial time, but also produces only closures of type I".

Next, we consider saturation of Z(KB) using BS},;, and define ALCHZ Qb-
closures to be of the form as specified in Table 3 where closures of type 2 are
replaced with closures of the form I" above. Since in BS},; all negative binary
literals are selected and a closure of type 3 always contains at least one negative
binary literal, it can participate only in a hyperresolution inference with closures
of type 3 or 4. Due to the occurs-check in unification, side premises are either
all of type 3 or all of type 4. Hyperresolvents can have two forms, which are
decomposed, whenever possible, as follows, for S(s,t) = S1(s,t) V...V Sp(s,t):

P(2) VS [f@)]) ~ O5r@ (fg [f(@)]) for 1<i<m

) V
O ) VU] ) o

. oz “Qinv(s;) \% T orl<i:<m

P VSU@HD B s 1)V oV Qg 10

Again, we decompose a non-ALCHZ Qb-closure into several ALCHZ Qb-closures.
Hence, we may establish the bound on the size of the closure set as in Subsec-
tion 5.1, to obtain the following result:

Theorem 4. For an ALCHZQb knowledge base KB, saturation of Z(KB) by
BST, decides satisfiability of KB in time exponential in |KB|.

5.3 Conjunctive Queries over SHZQ Knowledge Bases

Conjunctive queries [5] are a standard formalism for relational queries. Here, we
present an algorithm for answering conjunctive queries over a SHZQ knowledge
base KB. To eliminate transitivity axioms, we encode KB into an equisatisfiable
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ALCHTQ knowledge base 2(KB) [11]. Unfortunately, this transformation does
not preserve entailment of ground non-simple roles. Hence, in the following we
prohibit the use of non-simple roles in conjunctive queries (such roles can still
be used in KB), and focus on ALCHZOQ.

Definition 4. Let KB be an ALCHZIQ knowledge base, and let x1,...,x, and
Y1, ..., Ym be sets of distinguished and non-distinguished wvariables, written as
x and y, respectively. A conjunctive query over KB, denoted as Q(X,y), is
a conjunction of DL-atoms of the form (—)A(s) or R(s,t), where s and t are
individuals from KB or distinguished or non-distinguished variables. The basic
inferences for conjunctive queries are:

— Query answering. An answer of a query Q(x,y) w.r.t. KB is an assignment
0 of individuals to distinguished variables, such that 7(KB) = Jy : Q(x0,y).

— Query containment. A query Qa(x,y2) is contained in a query Q1(x,y1)
w.r.t. KB if 1(KB) EVx : [3yz2: Q2(x,y2) — Jy1 : Q1(x,y1)].

Query containment is reducible to query answering by well-known transfor-
mations of first-order formulae: Q2(x,y1) is contained in @Q;(x,y2) w.r.t. KB
if and only if a is an answer to Q1(x,y1) over KB U {Q2(a,b)}, where a and
b are vectors of new distinct individuals, not occurring in Q1(x,y1), Q2(x,y2)
and KB. Therefore, in the rest we only consider query answering.

Let KB be an ALCHZQ knowledge base. Obviously, for a conjunctive query
Q(x,y), the assignment 6 such that fx = a, is an answer of the query w.r.t. KB
if and only if the set of closures I'" = Z(KB)U{—-Q(a,y)} is unsatisfiable, where
—Q(a,y) is the closure obtained by negating each conjunct of Q(a,y).

A conjunctive query Q(a,y) is weakly connected if its literals cannot be de-
composed into two subsets not sharing common variables. W.l.o.g. we assume
that Q(a,y) is weakly connected: if (a,y) can be split into n weakly con-
nected mutually variable-disjoint subqueries Q1(a1,y1),...,Q@n(an,yn), then
m(KB) | Algz‘gn Jyi : Qi(as,y;) if and only if 7(KB) = Jy; : Q:(ay,y;) for
all 1 < i < n. The subqueries @Q;(a;,yi) can be computed in polynomial time, so
this assumption does not increase the complexity of reasoning.

A slight problem arises if =Q)(a,y) contains unmarked constants: assuming
that a; € a; and o} € a! for ¢ € {1,2}, a superposition of a1 = a} V az = af into
—Q1(a1,y1) and =Q2(az,y2) may produce a closure ~Q1(a},y1)VQ2(a%,y2).
Such an inference produces a conclusion with more variables than each of its
premises, thus leading to non-termination. To prevent this, we apply the struc-
tural transformation to —=Q(a,y) and replace I/ with I, where for each a € a,
O, is a new predicate unique for a, z, is a new variable unique for a, and x, is
the vector of variables obtained from a by replacing each a € a with z,:

I' = Z(KB) U{~Q(Xa,y) V \/ =04 (74)} U U{Oa(a)}

aca aca

The sets I'" and I are obviously equisatisfiable. In the rest we write O, (xa)
for \/ ,ca 7Oa(x4). We now define the calculus for deciding satisfiability of I:
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Definition 5. BS;Q is the extension of the BST,; calculus, where the selection
function is as follows: if a closure C contains a literal =O4(x,), then all such
literals are selected; otherwise, all negative binary literals are selected. The prece-
dence for LPO is f >p ¢ >p p >p Oy >p Qrf >p Pap >p 1. In addition
to decomposition inferences from Definition 2, the following decompositions are
performed whenever possible, where the t; are of the form fi1(... fim(x)...):

(VAD V-V () = _JOmn 8- Rean

C- P 4 Pa,b
C'P\/Oa(<b>) ~ ﬁpa,b\/oa(b)
Definition 6. The class of CQ-closures w.r.t. a conjunctive query Q(a,y) over
an ALCHZQ knowledge base KB is the generalization of closures from Table 3
obtained as follows:

— Conditions (iii) — (vi) are dropped.

— Closure types 5 and 6 are replaced with a new type 5, which contains all
closures C' satisfying each of the following conditions:

1. C contains only equality, unary or propositional literals.

2. C contains only one variable x.

3. The depth of a term in C is bounded by the number of literals of Q(a,y).

4. If C contains a term of the form f(t), then all terms of the same depth in
C are of the form g(t), and all terms of smaller depth are (not necessarily
proper) subterms of t.

5. Only the outmost position of a term in C can be unmarked, i.e. each
functional term is either of the form [f(t)] or of the form f([t]).

6. Equality and inequality literals in C' can have the form [f(t)] o [g(t)] or
[Fg(t)] o] for o € {=, 7).

— Closure type 8 is modified to allow unary and (in)equality literals to contain
unary terms whose depth is bounded by the number of literals in Q(a,y); only
outermost positions in a term can be unmarked; all (in)equality literals are
of the form [f(a)] o [b], [f(t)]o[g(t)], [f(g(t)]o[t] or (a)o(b), foro € {=~,7}
and t a ground term; and a closure can contain propositional literals (—)pap-

— A new query closure type contains closures of the form —Q([a],y)V p, where
Q([a],y) is weakly connected, it contains at least one binary literal and p is
a possibly empty disjunction of propositional literals p = \/(—)pa,b-

— A new initial closure type contains closures of the form —Oa(Xa)V-Q(Xa,y).

We show the closure of CQ-closures under BSgQ in [10]. Roughly speaking,
since all literals =0, (z,) are selected, the only possible inference for an initial
closure is hyperresolution with —p, , VO, (b) or O, (a), generating a query closure
with marked terms. Propositional symbols p, 5 are used to decompose closures
resulting from superposition into O, (b); since such literals are smallest in any
closure, they cannot participate in inferences with a closure of type 5.

Consider an inference with a closure =Q([a],y) V p such that Q([a],y) is
weakly connected. Since all constants are marked, superposition into such a
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closure is not possible. The only possible inference is hyperresolution with side
premises of type 3, 4 and 8 with a unifier o. If Q([a],y) contains a constant
or if some side premise is ground, then Q([a],y)o is ground because Q([a],y)
is weakly connected. Otherwise, since the query closure is weakly connected,
the hyperresolution produces a closure of the form \/(—)A;([¢;]) with ¢; of the
form f;1(... fi,m(z)...). This closure does not satisfy condition 4 of C Q-closures,
8o it is decomposed into several closures of type 5'; eligibility is ensured since
=Q (4,1, () < (—)Ai(t;), and (=) A;(t;) originates from some side premise Fjo.
All side premises contain at most one functional term of depth one, so the depth
of functional terms in the conclusion is bounded by the length of the maximal
path in Q([a],y), which is bounded by |Q(a,y)|.

To build a term of the form fi(... f,n(z)...), one selects a subset of at most
|Q(a,y)| function symbols; the number of such subsets is exponential in |Q(a, y)|.
This gives an exponential bound on the closure length, and a doubly exponential
bound on the number of CQ-closures, leading to the following result:

Theorem 5. For a conjunctive query Q(a,y) over an ALCHZQ knowledge base
KB, saturation of I' by BSgQ decides satisfiability of I' in time doubly exponen-
tial in |KB| + |Q(a,y)|.

Related Work. Answering conjunctive queries over the related description logic
SHf was considered in [19]. In this approach, transitive roles can be used in
the queries, but SHf does not provide inverse roles. Conjunctive queries were
also considered in [4]. To the best of our knowledge, this is the first work that
considers answering conjunctive queries over description logic knowledge bases
in the framework of resolution.

6 Conclusion

We have proposed decomposition, a general inference rule applicable to any res-
olution calculus compatible with the standard notion of redundancy. This rule
transforms certain conclusions of the calculus at hand, and thus can be used to
turn a resolution calculus into a decision procedure.

For three decidable fragments of first-order logic, we present three decision
procedures obtained by combining basic superposition with decomposition, and
by choosing an appropriate term ordering and selection function. More precisely,
we obtain two new decision procedures for checking satisfiability of SHZQ and
ALCHI Qb knowledge bases, and a procedure for answering conjunctive queries
over SHZQ knowledge bases. The first two procedures are worst-case optimal,
and we expect them to be suitable for implementation due to the vast experience
in building saturation theorem provers. An implementation of these algorithms
is under way, and we hope to soon be able to confirm our expectations.

In addition, we plan to extend the algorithm for ALCHZ Qb to support ar-
bitrary role expressions, and to find a way to handle transitivity directly within
our calculus, to avoid the reduction and to allow transitive roles in queries.
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Abstract. We introduce Abstract DPLL, a general and simple abstract r
ule-based formulation of the Davis-Putnam-Logemann-Loveland (DPLL)
procedure. Its properties, such as soundness, completeness or termina-
tion, immediately carry over to the modern DPLL implementations with
features such as non-chronological backtracking or clause learning. This
allows one to formally reason about practical DPLL algorithms in a
simple way. In the second part of this paper we extend the framework
to Abstract DPLL modulo theories. This allows us to express—and for-
mally reason about—state-of-the-art concrete DPLL-based techniques
for satisfiability modulo background theories, such as the different lazy
approaches, or our DPLL(T) framework.

1 Introduction

Most state-of-the-art SAT solvers [MMZ1T01,GN02] today are based on dif-
ferent variations of the Davis-Putnam-Logemann-Loveland (DPLL) procedure
[DP60,DLL62], a procedure for deciding the satisfiability of propositional for-
mulas in conjunctive normal form.

Starting essentially with the pioneering work on the GRASP [MSS99] and
SATO [Zha97] systems, the spectacular improvements in the performance of
DPLL-based SAT solvers achieved in the last years are due to i) better imple-
mentation techniques, such as, e.g., the 2-watched literal approach for unit propa-
gation, and ii) several conceptual enhancements on the original DPLL procedure
aimed at reducing the amount of explored search space such as non-chronological
backtracking, conflict-driven lemma learning, and restarts.

Because of their success, both the DPLL procedure and its enhancements
have been recently adapted to satisfiability problems in more expressive logics
than propositional logic. In particular, they have been used to build efficient
solvers for the satisfiability of (certain classes of ) ground first-order formulas with
respect to theories such as the theory of equality, of the integer/real numbers,
or of arrays [ACG00,ABC*02,BDS02,dMR02,FJOS03,GHN*04].
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Altogether, it has become non-trivial to reason formally about the properties
of such enhanced DPLL procedures and their extensions to satisfiability modulo
theories (SMT). However, so far there have been no attempts to do so in the
literature, to our knowledge at least, except for a work by Tinelli [Tin02] (one
of these authors). That work describes DPLL and DPLL modulo theories at
an abstract, formal level by means of a sequent-style logical calculus. This cal-
culus consists of a few deterministic derivation rules, modelling the constraint
propagation mechanism of the DPLL procedure, and one branching rule, mod-
elling the non-deterministic guessing step of DPLL. Because of the branching
rule the calculus produces derivation trees. As a consequence, it can explictly
model neither backtracking (chronological or not) nor lemma learning—they are
metalogical features for the calculus. Also, the calculus implicitly assumes the
procedure to keep track of the current truth values of all clauses, which is not
the case in practical implementations.

In this paper we address these limitations of Tinelli’s calculus by modelling
the DPLL procedure and its SMT extensions as transitions systems. While still
as declarative in nature as the calculus in [Tin02], our transition systems can
explicitly model various features of state-of-the-art DPLL-based solvers, thus
bridging the gap between abstract calculi for DPLL and actual implementations.

In Section 2, using transition systems defined by means of conditional tran-
sition rules, we introduce general and simple abstract formulations of several
variants of propositional DPLL, and discuss their soundness, completeness, and
termination. These properties immediately carry over to modern DPLL imple-
mentations with features such as non-chronological backtracking and learning. In
fact, we also explain and formalize what is done by the different implementations.
For example, we explain how different systems implement our backjumping rule,
how devices such as implication graphs are just one possibility for computing
new lemmas, and how standard backtracking is a special case of the backjumping
rule.

We also provide a general and simple termination argument for DPLL pro-
cedures that does not depend on an exhaustive enumeration of all truth assign-
ments; instead, it cleanly expresses that a search state becomes more advanced if
an additional unit is deduced, the higher up in the search tree the better—which
is the very essence of the idea of backjumping.

Our transition systems allow one to formally reason about practical DPLL
implementations in a simple way, which to our knowledge had not been done
before. In Section 3 we extend the framework to Abstract DPLL modulo theories.
This allows us to express—and formally reason about—most state-of-the-art
DPLL-based techniques for satisfiability modulo background theories, such as
various so-called lazy approaches [ACG00,ABC*02,BDS02,dMR02,FJOS03] and
our own DPLL(T) framework [GHNT04].
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2 The Abstract DPLL Procedure

The DPLL procedure works by trying to build incrementally a satisfying truth
assignment for a given propositional formula F' in conjunctive normal form. At
each step, the current assignment M for F' is augmented either by a process of
boolean constraint propagation, which deduces deterministically from M and F
the truth value of additional variables of F', or by a non-deterministic guess, or
decision, on the truth value of one of the remaining undefined variables.

Modern implementations of DPLL use efficient constraint propagation algo-
rithms, and sophisticated backtracking mechanisms for recovering from wrong
decisions. We provide here a general abstract framework for describing both
constraint propagation and backtracking in DPLL-based systems.

In this section we deal with propositional logic. Atoms are propositional
symbols from a finite set P. If p € P, then p is a positive literal and —p is a
negative literal. The negation of a literal [, written —l, denotes —p if [ is p, and
pif I is =p. A clause is a set of literals and a cnf (formula) is a set of clauses.
A (partial truth) assignment M is a set of literals such that {p, -p} C M for no
p. A literal [ is true in M if [ € M, is false in M if =] € M, and is undefined
otherwise. M is total if no literal of P is undefined in M. A clause C is true in
M if CNM # 0, is false in M, denoted M = —C, if all its literals are false in M,
and is undefined otherwise. A cnf F is true in M (or satisfied by M), denoted
M = F, if all its clauses are true in M. In that case, M is called a model of F'.
If F has no models then it is unsatisfiable. We write F = C (F = F’) if the
clause C (cnf F) is true in all models of F. If F' = F’ and F’ = F, we say that
F and F’ are logically equivalent. We denote by C V [ the clause D such that
leDand C=D\{l}.

2.1 The Basic DPLL Procedure

Here, a DPLL procedure will be modeled by a transition system: a set of states
together with a relation, called the transition relation, over these states. States
will be denoted by (possibly subscripted) S. We write S = S’ to mean that
the pair (S,5”) is in the transition relation, and then say that S’ is reachable
from S in one transition step. We denote by =* the reflexive-transitive closure
of =>. We write § =' 8" if S =* S’ and S’ is a final state, i.e., if S’ = 9"
for no S”.

A state is either fail or a pair M | F, where F is a finite set of clauses and
M 1is a sequence of annotated literals. We will denote the empty sequence of
literals by @, unit sequences by their only literal, and the concatenation of two
sequences by simple juxtaposition. We will not go into a complete formalization
of annotated literals; it suffices to know that some literals [ will be annotated
as being decision literals; this fact will be denoted here by writing (¢ (roughly,
decision literals are the ones that have been added to M by the Decide rule given
below). Most of the time the sequence M will be simply seen as a set of literals,
denoting an assignment, i.e., ignoring both the annotations and the fact that M
is a sequence and not a set.
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In what follows, the transition relation will be defined by means of (condi-
tional) transition rules. If F'is a cnf formula and C' is a clause, we will sometimes
write F,C in the second component of a state as a shorthand for F'U {C'}.

Definition 1. The Basic DPLL system consists of the following transition rules:

UnitPropagate :

M|F,CVvl = MI|F,CVI if {%Si;dfﬁmde
Decide :

MIE e[ e o
Fail :

M| FC — Jail if {% )czor;ffins no decision literals
Backjump :

there is some clause C V1 s.t.:
MEN|F — MU|F i TECVIE and M= S0

" is undefined in M
" or =’ occurs in a clause of F

Below we will show that the transition relation terminates when starting from
(| F, that is, there exist no infinite sequences of the form §} | F = S} = ...,
and we will define a Basic DPLL procedure to be any procedure taking an input
enf F and computing a sequence ) | F =" S.

Of course, actual DPLL implementations may use the above rules in more
restrictive ways, using particular application strategies. For example, many sys-
tems will eagerly apply UnitPropagate, but this is not necessary; in fact, below we
will show that any strategy is adequate: the final state produced by the strategy
will be either fail, when F' is unsatisfiable, or else a state of the form M | F’
where M is a model of F'. This result holds even if UnitPropagate is not applied
at all. Similarly, most implementations will try to minimize the number of ap-
plications of Decide. Others may apply it only with literals [ belonging to some
clause that is not yet true in M (in that case the procedure can also terminate
if M is a non-total model).

Ezxample 2. In the following sequence of transitions, to improve readability we
have denoted atoms by natural numbers, negation by overlining, and written
decision literals in bold:

0| 1v3, 1v4vsv2, 1v2 = (Decide)
3 | 1v3, 1v4vsv2, 1v2 = (UnitPropagate)
31 | 1v3, 1v4vsv2, 1v2 = (UnitPropagate)
312 | 1v3, 1v4vsv2, 1v2 = (Decide)
3124 | 1v3, 1v4vsv2, 1v2 = (UnitPropagate)
31245 | 1v3, 1v4Vvsv2, 1v2 Final state: model found. O
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Concerning the rules Fail and Backjump, we will show below that if in some
state M | F there is a conflict, i.e., a clause of F' that is false in M, it is
always the case that either Fail applies (if there are no decision literals in M)
or Backjump applies (if there is at least one decision literal in M). In fact, in
most implementations Backjump is only applied when such a conflict arises, this
is why it is usually called conflict-driven backjumping. Note that M can be seen
as a sequence Mg Iy My ... l;; M}, where the [; are all the decision literals in M.
As in actual DPLL implementations, such a state is said to be in decision level
k, and the literals of each I; M; are said to belong to decision level 1.

Ezxample 3. Another example of application of the Basic DPLL rules is:

0| 1v2, 3v4, 5v6, 6V5V2 = (Decide)
1| 1v2, 3v4, 5V6, 6V5V2 = (UnitPropagate)
12| 1v2, 3v4, 5V6, 6vV5v2 = (Decide)
123 | 1v2, 3v4, 5V6, 6V5v2 = (UnitPropagate)
1234 | 1v2, 3Vv4, 5V6, 6V5V2 = (Decide)
12345 | 1v2, 3v4, 5V6, 6V5v2 = (UnitPropagate)
123456 | 1v2, 3v4, 5V6, 6V5v2 = (Backjump)

125 | 1v2, 3v4, 5V6, 6V5V2

Indeed, before the application of Backjump there was a conflict: the clause 6V5v2
is false in 1 2 3 4 5 6. We have backjumped from decision level 3 to decision
level 1, whereas standard backtracking would reverse only the last decision, and
return to 1 2 3 4 5 (decision level 2). The Backjump rule applies here because
we can take 1V5 playing the role of the backjump clause C' V1’ in the definition
of the rule. In fact, one can always take a disjunction of negated decision literals
for this (see the proof of Lemma 6). But in practice one can usually find better
backjump clauses by conflict analysis, that is, by analyzing the so called conflict
graph (see, e.g., [MSS99] for details). O

The Backjump rule makes progress in the search by returning to a strictly
lower decision level, but with the additional information given by the literal I’
that is added to it. In most DPLL implementations the backjump clause C' Vv I’
is added to the clause set as a learned clause (conflict-driven clause learning).
However, in this Basic system the second component of each state (the clause
set) remains unchanged; this will change in Subsection 2.3 when the learning rule
is added. In fact, for some readers it may be surprising that backjumping can be
done without clause learning. Such a distinction gives the system more flexibility,
allowing it to model, for example, the original DPLL procedure [DLL62].

2.2 Correctness of Basic DPLL

In what follows, (possibly subscripted) F' and M will always denote finite clause
sets and annotated literal sequences, respectively.
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Lemma 4. If ) | F =* M | F then the following hold.

1. All the atoms in M are atoms of F'.

2. M contains no literal more than once and is indeed an assignment, i.e., it
contains no pair of literals of the form p and —p.

8. If M is of the form My ly My ... l,, My, wherely,... 1, are all the decision
literals of M, then F U {ly,...,l;} &= M; for alli in0...n.

Theorem 5 (Termination). There exist no infinite sequences of the form

Proof. We define a well-founded strict partial ordering > on states, and show
that each rule application M | F = M’ | F’ is decreasing with respect to this
ordering, i.e., M | F = M’ | F'.

Let M be of the form My Iy My ... I, My, wherely, ..., are all the decision
literals of M. Similarly, let M" be Mg 13 My ... I}, M,,.

Let N be the number of distinct atoms (propositional variables) in F'. It is not
difficult to show that p, p’ and the length of M and M’ are always smaller than
or equal to N. Define m(M) to be N — length(M), that is, m(M) is the number
of literals “missing” in M for M to be total. Now define: M | F = M’ | F’ if

(i) there is some ¢ with 0 < ¢ < p, p’ such that

m(Mo) = m(M}), ... m(M;—1) =m(M/_,), m(M;) >m(M]) or

(ii) m(Mo) = m(Mg), ... m(M,)=m(M)) and m(M)>m(M').
Comparing the number of missing literals in sequences is clearly a strict ordering
(i.e., it is an irreflexive and transitive relation) and it is also well-founded, and
hence this also holds for its lexicographic extension on tuples of sequences of
bounded length. It is easy to see that all Basic DPLL rule applications are
decreasing with respect to > if fail is added as an additional minimal element.
The rules UnitPropagate and Backjump decrease by case (i) of the definition and
Decide decreases by case (ii). O

In the previous termination proof one can observe that DPLL search pro-
gresses (that is, it makes progress w.r.t. =) by adding a literal to the current
decision level (by UnitPropagate), by adding an additional decision level (Decide)
or, which is especially interesting, by what the Backjump rule does, i.e., adding
an additional literal to a previous decision level, even if all the work done in later
decision levels is “thrown away”.

Note that it is not trivial to check whether a state is final, because of the
Backjump rule. But in practice Backjump is applied only if there is a conflict.
If in a state M | F there is no conflict, and UnitPropagate and Decide are not
applicable either (i.e., there are no undefined literals in M), then one can of
course stop because M is a model of F'.

Lemma 6. Assume that ) | F =* M | F and that M = =D for some clause
D in F. Then either Fail or Backjump applies to M | F.
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Proof. If there is no decision literal in M, it is immediate that Fail applies.
Otherwise, M is of the form My Iy My ... I, M, for some n > 0, where
ly,..., 1, are all the decision literals of M. Since M = —D, we have, due to
Lemma 4-3, that FU{ly,...,l,} E —D. Now consider any 7 in 1...n such that
Fu{ly,...,;} =—-D,and jin 0...i—1 such that FU{l4,...,l;,;} = —-D. We
will show that then backjumping to decision level j is possible.

Let C be the clause =1 V...V =l;, and note that M is of the form M’ ;11 N.

Then Backjump applies to M | F' as: M' ;41 N | F = M’ =l; | F because
for the clause C' Vv —l; all three conditions of the Backjump rule hold. In fact:

(i) F = CV —l; because FU{ly,...,l;,l;} = —D implies, being D a clause
in F, that F' = =l; V...V =l; V =l;. We also obviously have that M’ = =C.

(ii) —l; is undefined in M’ (by Lemma 4-2) and

(iii) either I; or —l; occurs in a clause of F' (by Lemma 4-1). O

It is interesting to observe that the smaller the j in the previous proof the
better, because one can backjump “higher up”. Note also that, if we take i to
be n and j to be n — 1, the Backjump rule models standard backtracking.

Lemma 7. If) | F ="' M | F, then M |= F.

Definition 8. A Basic DPLL procedure is any procedure taking an input cnf F
and computing a sequence () | F =" S.

Now, we can prove that our Basic DPLL system, and hence any Basic DPLL
procedure, provides a decision procedure for the satisfiability of cnf formulas.

Theorem 9. The Basic DPLL system provides a decision procedure for the sat-
isfiability of enf formulas F, that is:

1. 0| F = fail if, and only if, F is unsatisfiable.
2. 0| F =" M| F if, and only if, F is satisfiable.
3. If)| F=' M | F then M is a model of F.

Proof. For the left-to-right implication of property 1: if () | F ="' fail then
there is some state M | F such that () | F =* M | F = fail, there is no
decision literal in M and M = —C for some clause C' in F. By the case i = 0
of Lemma 4-3 we have that F' = M, and so F' |= =C. However, since C is a
clause in F' it follows that F' is unsatisfiable. For the right-to-left implication of
property 1, if () | ' #="' fail, then by Theorem 5 there must be a state M | F
such that ) | F ==' M | F. Then F is satisfiable by Lemma 7.

For property 2, if § | F ==' M | F then F is satisfiable by Lemma 7.
Conversely, if () | F #=' M | F, then by Theorem 5 again, () | F ="' fail and
hence F' is unsatisfiable by property 1. Property 3 is again Lemma 7. a

The previous theorem does not just prove the desirable properties for a con-
crete DPLL procedure; rather, it proves the correctness of any procedure ap-
plying these steps, with any strategy. For example, the designer of a practical
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DPLL implementation is free to choose her own heuristic for selecting the next
decision literal in Decide, or choose the priorities between the different rules.

Note that we may have ) | F ="' M | F and also §) | F ="' M’ | F, for
different M and M’.? Then, the formula F is satisfiable and both M and M’
are models of F.

2.3 DPLL with Clause Learning

Definition 10. The DPLL system with learning consists of the four transition
rules of the Basic DPLL system, plus the following two additional rules:
Learn :
M| F — M|FC if {all atoms of C occur in F

FEC
Forget :
M|F,C = M|F if{F}zC’

In these two rules, the clause C' is said to be learned and forgotten, respectively.
In the following, we denote by =1, the transition relation defined by the DPLL
system with learning.

Ezample 11. (Example 3 continued). When applying Backjump, many actual
DPLL implementations learn the backjump clause:

1234 | 1v2, 3Vv4, 5V6, 6V5V2 =  (Decide)
12345 | 1v2, 3Vv4, 5V6, 6V5V2 =1 (UnitPropagate)
123456 | 1v2, 3v4, 5V6, 6V5V2 =, (Backjump)
125 | 1v2, 3v4, 5V6, 6V5V2 = (Learn)
125 | 1v2, 3v4, 5V6, 6V5V2, 1V5

When backjumping to decision level j, the backjump clause C'VI’ (in the example
1V5) is always such that, if it had existed the last time the procedure was at
level j, the literal I’ could have been added by UnitPropagate. Learning such
clauses hence avoids repeated work by preventing decisions such as 5, if, after
more backjumping, one reaches again a state similar to this decision level j
(where “similar” roughly means that it could produce the same conflict). Indeed,
reaching such similar states frequently happens in industrial problems having
some regular structure. The use of Forget is to free memory by removing a clause
C, once a search region presenting such similar states has been abandoned. In
practice this is usually done if the activity of C (i.e., the number of times C
causes some conflict or some unit propagation) has become low [MMZ*01]. O

The results given in the previous subsection for Basic DPLL smoothly extend
to DPLL with learning, and again the starting point is the following.

3 Confluence, in the sense of, e.g., rewrite systems is not needed here.
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Lemma 12. If( | F =5 M | F’ then the following hold.

1. All the atoms in M and all the atoms in F' are atoms of F'.

2. M contains no literal more than once and is indeed an assignment, i.e., it
contains no pair of literals of the form p and —p.

3. F' is logically equivalent to F.

4. If M is of the form My 1y My ... 1, M,, wherely,...,l, are all the decision
literals of M, then F U {ly,...,l;} E M, for alli=0...n.

Proof. 1t is easy to see that property 3 holds. Using this fact, the other properties
can be proven similarly to the proof of Lemma 4.

Theorem 13 (Termination of = 1). There exist no infinite sequences of the
form 0 | F =1, S1 = ... if no clause C is learned infinitely many times
along a sequence.

Proof. The ordering used in Theorem 5 can also be applied here, since, by
Lemma 12, atoms appearing in any state are atoms of F. Therefore an infi-
nite sequence of the form () | F =, S; = ... cannot contain any infinite
subsequence of contiguous = steps, and must hence contain infinitely many
Learn or Forget steps, which is not possible since there are only finitely many
different clauses with atoms in F, and no clause C is learned infinitely many
times along the sequence. a

Note that the condition that no clause C' is learned infinitely many times is in
fact a necessary and sufficient condition for termination. This condition is easily
enforced by applying at least one rule of the Basic DPLL system between two
successive applications of Learn. Since states do not increase with respect to the
ordering used in Theorem 5 when Learn is applied, any strict alternation between
Learn and Basic DPLL rules must be finite as well. As with the basic DPLL
system, we have the following definition and theorem (with identical proof).

Definition 14. A DPLL procedure with learning is any procedure taking an
input cnf F' and computing a sequence ) | F =% S where S is a final state with
respect to the Basic DPLL system.

Theorem 15. The DPLL system with learning provides a decision procedure
for the satisfiability of cnf formulas F, that is:

1. 0| F =Y fail if, and only if, F is unsatisfiable.

2.0 | F =% M| F', where M | F' is a final state with respect to the Basic
DPLL system, if, and only if, F is satisfiable.

3. If0| F =% M| F', where M | F' is a final state with respect to the Basic
DPLL system, then M is a model of F.
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3 Abstract DPLL Modulo Theories

This section deals with procedures for Satisfiability Modulo Theories (SMT),
that is, procedures for deciding the satisfiability of ground?* cnf formulas in the
context of a background theory T. Typical theories considered in this context
are EUF (equality with uninterpreted function symbols), linear arithmetic (over
the integers and over the reals), some theories of arrays and of other data struc-
tures such as lists, finite sets, and so on. For each of these theories there exist
efficient procedures (in practice) that decide the satisfiability, in the theory, of
conjunctions of ground literals. To decide efficiently the satisfiability of ground
cnf formulas, many people have recently worked on combining these decision
procedures with DPLL based SAT engines. In this section we show that many
of the existing combinations can be described and discussed within the Abstract
DPLL framework.

In the rest of the paper we consider first-order logic without equality—of
which the purely propositional case we have seen until now is a particular
instance. We adopt the standard notions of first-order structure, satisfaction,
entailment, etc., extended with the following. A theory is a satisfiable set of
closed first-order formulas. A formula F' is (un)satisfiable in a theory T, or T-
(in)consistent, if there is a (no) model of T' that satisfies F', that is, if T'U F' is
(un)satisfiable. If F' and G are formulas, F' entails G in T, written F |1 G, if
TE-FVG IfF|=rGand G =r F, we say that F and G are T -equivalent.
We extend the notion of (partial truth) assignment M from Section 2 to a set
of ground first-order literals in the obvious way. We say that M is a T-model of
a ground formula F' if M, seen as the conjuction of its literals, is T-consistent
and M =1 F.

In the following we will use T' to denote a background theory T such that
the satisfiability in T" of conjunctions of ground literals is decidable. To decide
the satisfiability of ground cnf formulas we consider again the DPLL systems
introduced in the previous section—with arbitrary ground atoms now used in
place of propositional symbols—and add new rules for dealing with 7. However,
in the side conditions of the rules presented in the previous section, entailment
between formulas is now replaced by entailment in T between formulas. That is,
the condition F' |= C in Learn and Forget is now F' = C, the Backjump rule is

there is some clause C' VI’ s.t.:
FlEeErCVvl and M E-C
" is undefined in M
" or =’ occurs in a clause of I

MUEN|F = MU|F if

and Decide, Fail and UnitPropagate remain unchanged. We point out that the
rules of the previous section can now be seen as a particular instance of the new
ones if we consider 7" to be the empty theory.

4 By ground we mean containing no variables—although possibly containing constants
not in 7'.
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3.1 A Simple Example: The Classical Very Lazy Approach

One way for dealing with SMT is what has been called the lazy approach
[dMR02,ABC*02,BDS02,FJOS03]. This approach initially considers each atom
occurring in a formula F' to be checked for satisfiability simply as a proposi-
tional symbol, and sends the formula to a SAT solver. If the SAT solver returns
a propositional model of F' that is T-inconsistent, a ground clause, a lemma,
precluding that model is added to F' and the SAT solver is started again. This
process is repeated until the SAT solver finds a T-consistent model or returns
unsatisfiable. The main advantage of such a lazy approach is its flexibility, since
it can easily combine any SAT solver with any decision procedure for conjunc-
tions of theory literals, as long as the decision procedure is able to generate such
lemmas.

The addition of these lemmas can be modelled by the following rule, which
we will call Very Lazy Theory Learning:

MIM =F
MIM, | F = 0 | F, =lyv.. V=lyv—l if { {l,.... 1.} C M
LA Al =l

Combining this rule with the four Basic DPLL rules, or with the six rules
of DPLL with learning, the resulting Very Lazy DPLL system terminates if
no clause is learned infinitely many times, since only finitely many such new
clauses (built over input literals) exist. For this condition to be fulfilled, ap-
plying at least one rule of the Basic DPLL system between any two Learn ap-
plications does not suffice. It suffices if, in addition, no clause generated with
Very Lazy Theory Learning is ever forgotten. The system is also easily proved cor-
rect as it is done in the following subsection, by observing that M, seen as the
conjunction of its literals, is T-consistent for every state M | F' that is final with
respect to Basic DPLL and Very Lazy Theory Learning. However, in what follows
we will focus on other more interesting—and in practice better—lazy techniques,
based on tighter integrations between DPLL and theory solvers.

3.2 Less Lazy Approaches

It is clear that, as soon as a DPLL procedure reaches a state M | F with a
(possibly non-total) T-inconsistent M, the corresponding lemma can already be
added. Furthermore, it is also not necessary to restart from scratch once the
lemma has been added. These ideas can be modelled by the following rule.

Definition 16. The Lazy Theory Learning rule is the following:

{llv7ln}gM
MlM1 ” F = MlMl ” F, _‘ll\/...\/_'ln\/_\l if ll/\/\ln ':T =l
LV Nl Nl ¢ F

The Lazy Theory DPLL system consists of this rule and the six rules of DPLL
with learning. In the following, we denote by = the transition relation defined
by the Lazy Theory DPLL system.
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Note that the lemma —i; V...V -l, V-l added by an application of the
Lazy Theory Learning rule is, by construction, always false in M [, making ei-
ther Fail or Backjump applicable to the resulting state. In practice, one of these
two rules is always applied immediately after Lazy Theory Learning. This makes
the third test in the rule—introduced here to ensure termination—unnecessary.

This DPLL system is still called lazy because it does not consider any theory
information until a T-inconsistent partial interpretation M [ has been reached.
As we will see, this is the essential difference between these lazy approaches and
the DPLL(T) approach that is described in Subsection 3.3 below.

All the results below are proved as in the previous section. However, the
following key lemma is needed to show that for any state of the form M | F' that
is final with respect to Basic DPLL and Lazy Theory Learning, M is T-consistent
and M ’:T F.

Lemma 17. Let 0 | Fo =5, M | F. If M is T-inconsistent then the rule
Lazy Theory Learning applies to M | F.

Theorem 18 (Termination of = 1). There exists no infinite sequence of
the form § | F =rr S1 =1 ... if no clause C is learned by Learn or
Lazy Theory Learning infinitely many times along a sequence.

Definition 19. A Lazy Theory DPLL procedure for T is any procedure taking
an input enf F and computing a sequence ) | F =% S where S is a final state
with respect to the Basic DPLL system and Lazy Theory Learning.

Theorem 20. The Lazy Theory DPLL system provides a decision procedure for
the satisfiability in T of enf formulas F, that is:

1. 0| F =} fail if, and only if, F is unsatisfiable in T.

2.0 | F =35, M | F', where M | F' is a final state wrt the Basic DPLL
system and Lazy Theory Learning, if, and only if, F is satisfiable in T.

3. If0 | F =%, M| F', where M | F' is a final state wrt the Basic DPLL
system and Lazy Theory Learning, then M is a T-model of F.

Systems such as CVC Lite [BB04] are concrete implementations of Lazy
Theory DPLL. Usually, in such implementations the Lazy Theory Learning rule
is applied eagerly, that is, with an empty M, as soon as the current partial in-
terpretation becomes T-inconsistent. Therefore, the soundness and completeness
of the approach followed by CVC Lite is a particular instance of the previous
theorem.

3.3 The DPLL(T) Approach with Eager Theory Propagation

The Lazy Theory DPLL systems we have seen are lazy in the sense that they use
theory information only after a theory-inconsistent partial assignment has been
generated. In this subsection we describe the DPLL(T) approach [GHNT04] with
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eager theory propagation, which allows the use of theory information as soon as
possible. This new information reduces the search space by discovering the truth
value of literals otherwise considered to be unassigned. Moreover, it does this
without sacrificing modularity or flexibility: combining arbitrary theory decision
procedures for conjunctions of literals with a DPLL system is as simple as for
the lazy approaches such as that of CVC Lite. The key idea behind DPLL(T) is
the following rule:

Definition 21. The Theory Propagate rule is the following:

ME=rl
M| F = MI| F if <1 or-l occurs in a clause of F
l is undefined in M

The DPLL(T) system with eager theory propagation consists of this rule and
the siz rules of DPLL with learning. We denote by = papu(r) the transition
relation defined by the DPLL(T) system with eager theory propagation where
Theory Propagate has priority over all the other rules.

All results as in the previous sections apply here, including termination under
the usual assumption (since Theory Propagate also decreases with respect to the
ordering > used in Theorem 5). The only additional ingredient needed is the
following lemma.

Lemma 22. If 0| Fy = Bapu(r) M | F' then M is T-consistent.

Proof. This property is true initially, and all rules preserve it, by the fact that
M = 1if, and only if, M U {=l} is T-inconsistent: the rules only add literals to
M that are undefined in M, and Theory Propagate adds all literals [ of F' that
are theory consequences of M, before any literal =/ making it T-inconsistent can
be added to M by any of the other rules. a

Definition 23. A DPLL(T) procedure with Eager Theory Propagation for T is
any procedure taking an input cnf F' and computing a sequence §) | F :>*$Edp”(T)
S where S is a final state wrt Theory Propagate and the Basic DPLL system.

Theorem 24. The DPLL system with eager theory propagation provides a de-
cision procedure for the satisfiability in T of cnf formulas F', that is:

1.0 F :>!Edp”(T) fail if, and only if, F is unsatisfiable in T.

2.0|F = Bapu(ry M | ', where M | F” is a final state wrt the Basic DPLL
system and Theory Propagate, if, and only if, F' is satisfiable in T

3. If0 | F = Bapu(ry M | F', where M | F is a final state wrt the Basic
DPLL system and Theory Propagate, then M is a T-model of F.

In practice, the DPLL(T) approach can be implemented, very much in the
spirit of the CLP(X) scheme in constraint logic programming, by building a com-
ponent DPLL(X) common to all theories, and instantiating it with solvers for dif-
ferent theories T to obtain different DPLL(T) procedures. At each state M | F,
the theory solver only sees the part M and communicates to the DPLL(X) en-
gine any input literals entailed by M in the given theory. More details on an
architecture for concrete DPLL(T) systems can be found in [GHNT04].
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3.4 The DPLL(T) Approach with Non-exhaustive Propagation

For some theories eager Theory Propagate is expensive in an actual implemen-
tation. For example, in our experience with EUF, this is the case for detecting
input literals entailed by disequations. However, using the information coming
from the “cheap enough” applications of Theory Propagate is extremely useful
for pruning the search space. Therefore one would like to have a combination of
Theory Propagate, for the cheaper cases, and Lazy Theory Learning, for covering
the incompletenesses of Theory Propagate making the equivalent of Lemma 22
hold. This is actually what is done in the DPLL(T) implementation of [GHNT04].

Definition 25. The DPLL(T) system with non-exhaustive theory propagation
consists of the Lazy Theory Learning and Theory Propagate rules and the six rules
of DPLL with learning. We denote by = Ngapu(T) the transition relation defined
by the DPLL(T) system with eager theory propagation.

Definition 26. A DPLL(T) procedure with Non-Exhaustive Theory Propaga-
tion for T is any procedure taking an input cnf F' and computing a sequence
01 F =Npapu(ry S where S is a final state with respect to the Basic DPLL
system and Lazy Theory Learning.

A necessary and sufficient condition for ensuring the termination of the pre-
vious system is again that no clause can be learned by Lazy Theory Learning
or Learn infinitely many times. In practice, this can be achieved by the same
strategy presented in Subsection 3.2. Hence, we have:

Theorem 27. The DPLL system with non-exhaustive theory propagation pro-
vides a decision procedure for the satisfiability in T of cnf formulas F, that is:

1. 0| F 2’NEdp”(T) fail if, and only if, F' is unsatisfiable in T.

2.0 | F = Npapu(ry M | F', where M | F' is a final state wrt Basic DPLL
and Lazy Theory Learning, if, and only if, F is satisfiable in T .

3. If0| F = Neapu(r) M | F', where M | F' is a final state wrt Basic DPLL
and Lazy Theory Learning, then M is a T-model of F.

4 Conclusions

We have presented a declarative formal framework for modeling DPLL-based
solvers for propositional satisfiability or for satisfiability modulo theories. We
have shown that the essence of these solvers can be described simply and ab-
stractly in terms of rule-based transition systems over states consisting of a truth
assignment and a clause set.

The declarative and formal nature of our transition systems makes it easier to
prove properties such as soundness, completeness or termination of DPLL-style
algorithms. Furthermore, it facilitates their comparison as their differences can
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be more easily seen as differences in the set of their transition rules or in their
rule application strategy.

The approach we presented is as flexible and declarative as the one followed
in [Tin02], which first formulated basic DPLL and DPLL modulo theories ab-
stractly, as sequent-style calculi. But it considerably improves on that work
because it allows one to model more features of modern DPLL-based engines
directly within the framework. This contrasts with the calculi in [Tin02] where
features as backjumping and learning can be discussed only at the control level,
in terms of proof procedures for the calculi.
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Combining Lists with
Non-stably Infinite Theories

Pascal Fontaine, Silvio Ranise, and Calogero G. Zarba

LORIA and INRIA-Lorraine

Abstract. In program verification one has often to reason about lists
over elements of a given nature. Thus, it becomes important to be able
to combine the theory of lists with a generic theory T modeling the
elements. This combination can be achieved using the Nelson-Oppen
method only if T is stably infinite.

The goal of this paper is to relax the stable-infiniteness requirement.
More specifically, we provide a new method that is able to combine the
theory of lists with any theory T of the elements, regardless of whether
T is stably infinite or not. The crux of our combination method is to
guess an arrangement over a set of variables that is larger than the one
considered by Nelson and Oppen.

Furthermore, our results entail that it is also possible to combine T" with
the more general theory of lists with a length function.

1 Introduction

In program verification one has often to decide the validity or satisfiability of
logical formulae involving lists over elements of a given nature. For instance,
these formulae may involve lists of integers or lists of booleans.

One way to reason about lists over elements of a given nature is to use the
Nelson-Oppen method [12] in order to modularly combine a decision procedure
for a theory modeling lists with a decision procedure for a theory modeling the
elements. This solution requires that the theory of the elements be stably infinite.
Unfortunately, this requirement is not satisfied by many interesting theories such
as, for instance, the theory of booleans and the theory of integers modulo n.

In this paper, we show how to relax the stable infiniteness require-
ment. More specifically, let Ty be the two-sorted theory of lists involving a sort
elem for elements, a sort list for flat lists of elements, plus the symbols nil, car,
cdr, and cons. For instance, a valid formula in Tj; is

x = cdr(cons(a, nil)) — x % cons(b,y) .

We consider the theory Tje, that extends Tji; with a sort int for the integers, the
symbols 0, 1, +, —, < for reasoning over the integers, and a function symbol
length whose sort is list — int. For instance, a valid formula in T, is

x % cdr(cons(a, nil)) — length(x) > 0.

F. Baader and A. Voronkov (Eds.): LPAR 2004, LNAI 3452, pp. 51-66, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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We then provide a combination method that is able to combine Tje, with any
theory Tyem modeling the elements, regardless of whether Teem is stably infinite
or not.

The core ideas of our combination method are:

— modifying the Nelson-Oppen method in such a way to guess an arrangement
over an extended set of free constants, and not just the shared ones.

— appropriately computing a certain minimal cardinality kg, so that we can
ensure that the domain of the elements must have at least kg elements.

1.1 Related Work

The importance of reasoning about lists is corroborated by the numerous flavors
of theories of lists [1,3,4,13,14,18] present in literature, as well as by the increasing
number of tools [6,7,11,15,16,19] containing some capabilities for reasoning about
lists.

The idea of guessing an arrangement over a larger sets of free constants was
already used by Zarba in order to combine the theory of sets [24] and the theory of
multisets [22] with any arbitrary theory T of the elements, regardless of whether
T is stably infinite or not. This idea was also used by Fontaine and Gribomont [8]
in order to combine the theory of arrays with any other non-necessarily stably
infinite theory 7.

The idea of computing minimal cardinalities was used by Zarba [23] in order
to combine the theory of finite sets with a non-necessarily stably infinite theory
T of the elements, in the presence of the cardinality operator. This idea was also
exploited by Tinelli and Zarba [20], who provided a method for combining any
shiny theory S with any non-necessarily stably infinite theory 7. Examples of
shiny theories include the theory of equality, the theories of partial and total
orders, and the theories of lattices with maximum and minimum.

2 Many-Sorted Logic

2.1 Syntax

We fix the following infinite sets: a set sorts of sorts, a set con of constant
symbols, a set fun of functions symbols, and a set pred of predicate symbols.
We also fix an infinite set of variable symbols for every sort in sorts.

A signature X is a tuple (S, C, F, P) where S C sorts, C' C con, F C fun,
P C pred, all the symbols in C' have sorts in S, and all the symbols in F, P
have sorts constructed using the sorts in S. If X' = (S, C, F, P) is a signature,
we sometimes write X° for S, X¢ for C, X¥ for F, and X for P.

If ¥y = (51,C1, F1,P1) and Xy = (So,Cy, Fo, P5) are signatures, we write
21 Q 22 when Sl Q SQ, Cl Q CQ, F1 Q FQ, and P1 Q Pg. If 21 = <51,Cl7F1,P1>
and Xy = (Sq, Cq, Fy, Py) are signatures, their union is the signature Xy U Xy =
<Sl USs, CrUCsy, FL U Fy, P U P2>.
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Given a signature X' and a set of variables, we assume the standard notions
of Y-term, Y-atom, X-literal, X-formula. If ¢ is either a term or a formula, we
denote by wvars, (@) the set of variables of sort o occurring in .

In the rest of this paper we identify a conjunction of formulae @1 A -+ A ¢y,
with the set {1, ..., @, }. In addition, we abbreviate literals of the form —(s = t)
with s % t.

2.2 Semantics

Definition 1. If X is a signature, a >-INTERPRETATION A over a set of variables
V is a map which interprets:!

— each sort o € X° as a non-empty domain A,;
— each variable z € V of sort o as an element z € A,;
— each constant symbol ¢ € € of sort o as an element ¢ € A,;

— each function symbol f € XF of sort o1 x --- x 0, — 7T as a function
fA:AU1 XX As, — A

— each predicate symbol p € XF of sort o1 X --- X 0, as a subset P4 of
Asy X - X Ap, . O

A Y-formula is satisfiable if it evaluates to true under some X-interpretation.

Let A be an X-interpretation over the set of variables V, and let X/ C X and
V' C V. We denote by A~ "V’ the interpretation obtained from A by restricting
it to interpret only the symbols in X’ and variables in V’. For convenience, A~ l
also denotes A>"V.

A X -structure is a X-interpretation over an empty set of variables.

2.3 Theories

Following Ganzinger [9], we define theories as sets of structures rather than as
sets of formulas. More formally:

Definition 2. A Y-THEORY is a pair (¥, A) where X is a signature and A is a
set of Y-structures. O

Definition 3. Let T be a X-theory, and let X' C (2. An {2-interpretation A is
a T-INTERPRETATION if A¥? € T. O

A formula is T'-satisfiable if it evaluates to true under some T-interpretation.
Given a Y-theory T, the ground satisfiability problem of T is the problem of
deciding, for each ground X-formula ¢, whether or not ¢ is T-satisfiable.

Definition 4. Let X be a signature, let S C X5 be a nonempty set of sorts, and
let T' be a X-theory. We say that T' is STABLY INFINITE with respect to S if every
ground XY-formula ¢ is T-satisfiable if and only if there exists a T-interpretation
satisfying ¢ such that A, is infinite, for each sort o € S. O

! Unless otherwise specified, we use the convention that calligraphic letters denote in-
terpretations, and that the corresponding Roman letters, appropriately subscripted,
denote the domains of the interpretations.
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Definition 5 (Combination of theories). Let T; = (X;, A;) be a theory, for
i = 1,2. The COMBINATION of Ty and Ty is the theory comb(Ty,Ts) = (X, A)
where ¥ = X1 U Xy and A = {A| A* € A and A2 € A,}. O

2.4 The Theory of Integers

Let us fix a signature X, containing a sort int for the integers, plus the constant
symbols 0 and 1 of sort int, the function symbols + and — of sort int X int — int,
and the predicate symbol <, of sort int X int.

Definition 6. The STANDARD int-STRUCTURE is the X,-structure A specified
by letting Ajx = Z and interpreting the symbols 0, 1,4+, —, < according to their
intuitive meaning over Z. O

Definition 7. The THEORY OF INTEGERS is the pair Tiny = (Xint, {A}), where
A is the standard int-structure. O

The ground satisfiability problem of Tj,; can be decided by using methods
based on integer automata [21], the omega test [2,17], or appropriate extensions
of the Fourier-Motzkin method [10].

2.5 Lists

Let A be a non-empty set, and assume that the special object 1 does not belong
to A.2 A list x over A of length n is a map z : N — AU {L} such that z(i) € A,
for i < n, and x(¢) = L, for i > n. We write |z| = n to indicate that the length
of the list x is n. We denote by A* the set of lists over A.

We denote by nil the empty list, that is, nil(i) = L, for each i € N. We denote
by car and cons the partial functions defined as follows: given a list z # nil, we
let car(z) = x(0), whereas cdr(x) is the unique list y such that y(n) = z(n+1),
for each n € N.

Given an element e € A and a list 2 in A*, we denote by cons(e,z) the list
y such that y(0) = e, and y(n + 1) = z(n), for each n € N.

2.6 The Theory of Lists

We fix a signature X, containing a sort elem for elements and a sort list for lists
of elements, plus the constant symbol Lgem of sort elem, the constant symbols
nil and L of sort list, the function symbols car of sort list — elem, the function
symbol cdr of sort list — list, and the function symbol cons of sort elem x list —
list.

Definition 8. A STANDARD list-STRUCTURE A is a Yjis-structure satisfying the
following conditions:

2 Using this special object L to define lists is not fundamental but it is convenient for
the following.
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-1 ¢ Aelem;
- Alist - (Aelem)*;
— qilt = nil;

- carA(ml) (Leem)™;

— cdr(nil) = (L)

— car (a:) = car(x), for each = € Ajg such that x # nil;

— cdr(z) = cdr(z), for each 2 € Ajg such that z # nil;

— cons”(e, ) = cons(e, ), for each e € Agem and = € Ajig;. O

Note that although car and cdr are partial functions, standard list-structures
interpret the symbols car and cdr as total functions. In particular, all standard
list-structures ensure that the constants Leem and Lj; have the same interpre-
tations of the terms car(nil) and cdr(nil), respectively. However Lejem and Ly
may be interpreted by any element and list in the respective domain. There are
thus many standard list-structures.

Definition 9. The THEORY OF LISTS is the pair Tjist = (Xjist, A), where A is
the set of all standard list-structures. 0

As a by product of the results of this paper, we will see that the ground
satisfiability problem of T} can be decided by appropriately adapting Oppen’s
decision procedure for a one-sorted theory of lists without nil [14].

2.7 The Theory of Lists with a Length Function

We fix a signature X, containing all the symbols in Yi,; and Xjs, plus the
function symbol length of sort list — int.

Definition 10. A STANDARD len-STRUCTURE A is a Xe,-structure satisfying
the following conditions:

— A%m is the standard int-structure;
— A% ig a standard list-structure;
— length™ () = |z], for each z € Ajg. O

Definition 11. The THEORY OF LISTS WITH A LENGTH FUNCTION is the pair
Tien = (Xien, A), where A is the set of all standard len-structures. O

The ground satisfiability problem of Ti, can be decided by appropriately
adapting a decision procedure for a two-sorted theory of recursively defined data
structures with integer constraints [25].

3 The Combination Method

Let Yeem be a signature such that X5 = {elem}, and let Teem be any Sejem-
theory, not necessarily stably infinite with respect to the sort elem. Assume
that the ground satisfiability problem of Tgem is decidable. We now describe a
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Decomposition List Integer Element
- > — succeed
phase phase phase phase
fail fail fail

Fig. 1. The phases of our combination method

combination-based decision procedure for the ground satisfiability problem of
T= CO'rnb(lrelem; Tien)-

In our combination method we use as black boxes a decision procedure for
the ground satisfiability problem of T¢jem and a decision procedure for the ground
satisfiability problem of T;,;. We also use—albeit not strictly as a black box—
Oppen’s decision procedure for recursively defined data structures.

Without loss of generality, we restrict ourselves to conjunctions I of literals
in sepamte form: I' = Felem U Ent U Dist U [1Iength where:

(a) Telem containg only Xeem-literals;
(b) I} contains only Xi..-literals;
(¢) @ist contains only flat Xy -literals of the form

TRY, TRy, r ~nil,

e~ J—elem ) T =~ J—Iis’c ’ = cons(e, y) ’

where eq, e9, e are elem-variables and x,y are list-variables;

(d) Iength contains only literals of the form u = length(z) where u is an int-
variable and z is a list-variable;

(e) for each list-variable z € varsjs,(I"), either x ~ nil or = % nil is in .

Notice that, given a set of literals in 7', it is easy to build an equisatisfiable
separation verifying (a),(b),(d) the usual way [12] by introducing fresh variables.
However to furthermore ensure (¢) and (e), and in particular to eliminate all
occurences of car and cdr, it is necessary to include disjunctions to the set of
literals. For efficiency concerns, this transformation is done at the formula level;
it is described in Section 5.

Our combination method consists of the four phases depicted in Figure 1,
and described below.

3.1 Decomposition Phase

Let I = I'siemUint ULTist U length be a conjunction of literals in separate form. Also
let Velem = varselem(List) U { Lelem } and Vit = wvarsiise(I7). In the decomposition
phase we non-deterministically guess an equivalence relation ~ejem of Velem, and
we construct the following set of literals:

Qelem = {€1 R €2 | €1 ~elem €2} U {e1 % €2 | €1, %elem €2} -
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Note that our decomposition phase differs from the one of Nelson-Oppen
method. In fact, in the Nelson-Oppen method one guesses an equivalence relation
over the smaller set of variables varseem(Lelem) N varseem(Llist). We need to use
the larger set Veem because we do not have any stable infiniteness assumption
over the theory Tgem of the elements.

3.2 List Phase

In the list phase we essentially employ Oppen’s decision procedure for recursively
defined data structures. By not using Oppen’s procedure just as a black box, we
will later be able to use the information constructed in this phase in the later
phases of our method. (Cf. Section 5.)

More in detail, in the list phase we construct the least equivalence relation
~ist Of Viist satisfying the following conditions:

(a) if x &y is in Iig then x ~jg ¥;
(b) if x1 = cons(ey,y1) and xo ~ cons(eq, y2) are in [, and €1 ~elem €2 and

Y1 ~iist Y2 then xq ~ijse Ta;

(c) if x1 =~ cons(e1,y1) and xo =~ cons(eq, ya2) are in g, and x1 ~jist 22 then
€1 ~elem €2 and Y1 ~iist Ya.

Furthermore, we construct the relation <5y of Vit defined by letting x <jist ¥
if and only if there are list-variables z’,y’ € Vit and an elem-variable e € Vgem
such that & ~js @', y ~ist ¥, and the literal y’ ~ cons(e, z) is in Ijig.

We end our method by outputting fail if at least one of the following con-
ditions does not hold:

(C1) If x ~jst y then the literal % y is not in Iig;
(C2) There are no two literals  ~ nil and y ~ cons(e, z) in I} for which

T ~list Y5
(C3) The relation < is well-founded.

If instead all conditions (C1)—(C3) hold, we proceed to the next phase.

3.3 Integer Phase

In this phase we extract integer constraints from the conjunctions It and Ijength,
as well as from the equivalence relation ~jg constructed in the list phase.
More in detail, we generate a fresh int-variable u,, for each list-variable x in
Viist, and we construct the following set of literals
Qint = {uy 0|z ~nilisin g} U
{ugy > 0|z #nilisin Nig} U
{ugz =uy + 1|z~ cons(e,y) is in It} U
{u = u, | u~length(z) is in INength } U
{us = uy | & ~ist y} -
Then, we check whether I,; U, is Tine-satisfiable. If this is not the case, we
end our method by outputting fail; otherwise we proceed to the next phase.
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3.4 Element Phase

We will prove later that when we reach this point we can already conclude that
Oelem U Tist ULing U length is Tien-satisfiable.? Therefore, we can effectively compute
the minimal integer ko for which there exists a Tjen-interpretation A satisfying
Qelem U ﬂist U Ent U Eength such that kO = |A’4e|em|~4

Let {|elem| > ko} denotes the set of disequalities {e; % e; | 1 <i < j < ko},
where the e; are fresh elem-variables. The last step of the element phase consists
of checking whether I'ejem U Qelem U {|elem| > kg } is Tyem-satisfiable. If this is not
the case, we end the method by outputting fail; otherwise we happily output
succeed.

4 Correctness

In this section we prove that our combination method is correct. Clearly, our
method is terminating. The following proposition shows that our method is also
partially correct.

Proposition 12. Let Teem be a Sejem-theory such that X5 = {elem}, let T =
comb(Teiem; Tien), and let I' = Ijem UTint UL jist Ul length be a conjunction of literals
in separate form. Then the following are equivalent:

1. I' is T-satisfiable.
2. There exists an equivalence relation ~eem 0f vVarseiem(List)U{ Lelem } for which
our method outputs succeed. O

PROOF. Remember that Vejem = varseem (List) U { Lelem } and Vige = varsys ().
(I = 2). Let M be a T-interpretation satisfying I". We define an equivalence
relation ~gem over Veem by letting

€1 ~elem €2 < e{w = eé\/‘ , for each eq,es € Vaem -

We claim that if we guess ~cem as defined above, then our method outputs
succeed. To see this, let ~js; be the equivalence relation constructed in the list
phase, and let =j;;; be the equivalence relation of Vs defined as follows:

_ M M
T=ity <~ T =Yy ,

for each x,y € Vit -
By construction =i satisfies conditions (a)—(c) in the list phase. Therefore,
we have ~jist C =jist, that is:

T ~ist Y == T =ist Y for each z,y € Vit -

3 A Tien-interpretation satisfying cetem U Iist U It U Tength is denoted by C in the second
part of the proof of Proposition 12.

4 One way of computing ko is to use [25] to check, for increasing k, whether there exists
a Tien-interpretation A satisfying celem U Liist U int U Llength such that |Aeem| = k.
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conditions (C1)—(C3) of the list phase. Therefore, our method does not output
fail when executing the list phase.

Next, we claim that our method also does not output fail when executing
the integer phase. To justify the claim, we need to show that i, U qine is Tint-
satisfiable. Indeed, by again using the fact that ~jiss C =jet, it is possible to verify
that a Tj,c-interpretation satisfying It U ajne can be obtained by extending M
to the variables u, by letting

By using the fact that ~j C =, one can verify that ~g satisfies all

upt = |2M],

o for each list-variable z € Vjiq; .

It remains to show that our method outputs succeed when executing the
element phase. To see this, let ky be the minimal integer computed in the element
phase. By construction, M satisfies Igem U Qelem- Moreover, since M satisfies
Oelem U Liist U Lint U Liength, it must have at least ko elements. It follows that M
is a Tyem-interpretation satisfying Iyem U ctelem U {|elem| > ko }.

(2 = 1). Let ~gem be an equivalence relation of Ve for which our method
outputs succeed. Denote by ~j;s; and <|;s; the relations of Vjis; constructed in the
list phase, and denote by kg the minimal integer computed in the element phase.
Next, note that there exists an interpretation A satisfying I'ejem Utelem U{ |elem| >
ko} and a Tiy-interpretation B satisfying Iine U tint.

Using A and B, we define a Tjen-interpretation C satisfying aejem U Ljnt U List U
Diength by first letting Cejem = Aelem U X, where X is any infinite set disjoint from
Aeglem- We also let:

, for all e € varseem(I'),

u€ =B, for all u € varsin(I) .

In order to define C over the list-variables in Vi, we fix an injective function
h: (Vist / ~ist) — X. Note that h exists because Vg is finite and X is infinite.

Next, we proceed by induction on the well-founded relation <. Thus, let
2 € Viit. Then:

— In the base case, we let ¢ be the unique list of length u” containing only
the element h([z]~,,). In other words, z¢(i) = h([z]~,,) for i < u®, and
2¢(i) = L for i > u5.

— In the inductive case, fix a list-variable y such that z <&t y. Then there
exists variables z’,9’, e such that  ~s 2/, y ~jisc ¥/, and the literal 2’ =~
cons(e,y’) is in Iisr. We let 2€ = cons(e€, (y')°).

Note that C is well-defined over the list-variables. Furthermore, by construc-
tion C is a Tien-interpretation satisfying celem U Iint U Liist U Llength-

It follows that there exists a Tje,-interpretation D satisfying celem U Ling U
Tist U Dength and such that |Dejem| = ko. But then, we can use D and A to obtain
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1: ¢ := preprocess(p)

2: % — abs(p)

3: while ¢* # false do

4:  I'* «— pick_assign(o®)

5. '« prop2fol(I"*)

6:  (p,m) < check_sat(I")

7. if p=fail then

8: P — p* A\ —fol2prop(T)
9:  else

10: return succeed
11:  end if

12: end while

Fig. 2. haRVey’s main loop

a T-interpretation M satisfying I" by letting Meem = Aejem and

eM = e, for all e € X5, U varseiem(I)
M= fA for all f € X5,

M= pA for all p € X%,

I for all u € varsine(I") .

In order to define M over the list-variables, fix an injective function g : Dejem —
Aglem- For convenience, also let g(L) = L. Note that g exists because |Dejem| =
ko < |Aelem|- We let:

M) = g(2P (i), for all x € vars;st(I") and i € N.
By construction, M is a T-interpretation satisfying I n

From Proposition 12 and the fact that our combination method is terminat-
ing, we obtain the following decidability result.

Theorem 13 (Decidability). Let Tejem be a Xeem-theory such that the ground
satisfiability problem is decidable. Then the ground satisfiability problem of the
theory comb(Teem, Tien) is decidable. O

5 Using the Combination Method

In this Section, we describe how to lift the proposed combination method to
efficiently (at least in practice) handle arbitrary Boolean combinations of ground
literals. The method is a refinement of the main loop of haRVey [6] (cf. Figure 2),
a prover based on a combination of Boolean solving and satisfiability checking
modulo theories. The idea is to obtain a propositional abstraction ¢® of a formula
¢ (cf. abs) and to enumerate all the propositional assignments (cf. pick_assign).
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If an assignment, refined to a conjunction of first-order literals (cf. prop2fol),
is found satisfiable modulo the background theory (cf. check_sat returns with
p = fail), then we are entitled to conclude the satisfiability of . Otherwise, a
new assignment is considered. For efficiency, it is crucial to reduce the number
of invocations to check_sat. To this end, it is required that check_sat returns
a conflict set 7 (which is a subset of the input set of literals) so that all the
propositional assignments sharing that set can be eliminated in one shot.’

We now give some details of the implementation of the functionalities in
Figure 2 which are peculiar to using the combination method in Section 3. In
particular, we describe how to satisfy the requirements necessary for the method
to work correctly (see beginning of Section 3) and, most importantly, we explain
how to compute the ~jix and <jis¢ of Section 3.2.

Function preprocess. A flat atom is an atom of the form p(ci,...,cy,), ¢ =~
fler,oiyem), 1 & ¢ or ¢; = d, where p is n-ary predicate symbol (n > 0), f is
an m-ary function symbol (m > 0), ¢; is an element of par, and d is a constant.
A flat literal is either a flat atom or the negation of a flat atom of one of the
two forms —p(cy,...,¢n) or ¢1 % ca. A formula is said to be flattened if all its
literals are flat. It is easy to get an equisatisfiable flattened formula from any
ground formula by introducing fresh variables to name subterms.

The preprocessing step also removes all occurrences of car and cdr in the
formula using the following equivalences

ex~car(z) = (r=nl A ex Lgem) V (&0l A (Fist y)(z =~ cons(e,y)))
(y=~nil Az~ Lig) V (y#nil A (Jelem €)(y = cons(e, x)))

x & cdr(y)

For instance, p[a & car(x)] is equisatisfiable to p[a & €] A e & car(z). In this last
formula, the atom e ~ car(x) has always positive polarity. In a later step, it can
be replaced by (z ~ nil A e~ Lgem) V (z 2 nil A (Fjist v)(z = cons(e,y)))
and since the polarity is positive, the existential quantifier can be Skolemized by
simply introducing a fresh variable. Exhaustively applying this transformation
gives a new ground formula, without car and cdr.

Finally, and still by introducing fresh variables, functions cons and length are
made to appear only in unit clauses of the form cons(e, z) = y or length(z) = w.
For instance formula [cons(e, x) % y] is replaced by @[y’ % y] Ay’ =~ cons(e, ).

Function pick_assign. The function pick_assign is implemented by the Boolean
solver and returns a propositional assignment satisfying ¢®. It is easy to tune
the solver to make pick_assign return a propositional assignment I'* such that
prop2fol(I'*) contains the literals representing the fact that each list variable is
equal to nil or not.

5 Best results are obtained in practice when this set is chosen to be minimal: an
unsatisfiable set such that each subset is satisfiable.
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Function check_sat. First of all, we notice that, thanks to preprocess, the func-
tion pick_assign returns a set I' of literals which can be put in separate form
satisfying conditions (a)—(e) at the beginning of Section 3 by simply partitioning
the literals.

Our combination method uses decision procedures for the quantifier-free frag-
ment of arithmetic and for the theory of acyclic lists. While we use a decision
procedure for the first theory as a black box, we require the decision procedure
for the theory of acyclic lists to be able to return ~j;s; and <j;s;. For this reason,
we detail below how to do this.

Reasoning About Acyclic Lists

We introduce a graph structure encapsulating all constraints on the Tjs;-models
of a set of equalities of the form = ~ y, e & €/, * =~ cons(e,y), where z, y are
list-variables, and e, ¢’ are elem-variables. In fact, this structure is implicitly
computed by the algorithm described in [14]. We here make it explicit, and
explain how to extract relations ~j; and <t from it. The structure may also
be used in order to guide the guessing in Section 3.1.

From now on, if not otherwise specified, nil is treated as any other variable.
An equality = ~ nil can thus be seen as an equality between two different list
variables. Given finite sets of list and element variables, a list-graph is a tuple
<wista Velem, Slist, 3e|em> with

— Vist (Velem) s a partition of list (resp. element) variables. It is the set of list
(resp. element) nodes. Variables in a node are labels for that node;

— Siist (Selem) i a function from Vi to subsets of Vi (resp. Veem). Given a list
node u, Sjst(t) (Selem(w)) is the set of list (resp. element) successors of w.

A Tjist-interpretation A agrees with a list-graph if the following conditions are
met:

— if # and y label the same node then A | z &~ y, where z and y are both
element variables or both list variables;

— if y labels the list successor of x then A |= Je x =~ cons(e, y);

— if e labels the element successor of x then A = Jy = ~ cons(e, y).

Assume L is a Tj-satisfiable set of equalities of the form z ~ y, e = ¢/, z ~

cons(e,y). Then there is a list-graph G such that, for every T} -interpretation
A, A agrees with G if and only if A is a model of L. Indeed, the following graph
verifies this property:

— 2 and y label the same node if and only if L | © ~ y,° where z and y are
both element variables or both list variables;

— y labels the list successor of z if and only if L |=is Je © & cons(e, y);

— e labels the element successor of z if and only if L et Jy = ~ cons(e, y).

6 Eiist denotes logical consequence in the theory of lists. That is L s © & y if every
Tiist-model of L is a model of = ~ y.
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Fig. 3. example of canonical list-graph

This graph is unique. It is such that, for each v € Vi, sist(v) and Selem(v) are
either a singleton or the empty set. In other words, every list node has at most
one list successor, and one element successor. In fact, it can be showed that
every node has two or zero successor, since the cdr and car functions are not
explicitly used in the set of equalities. If nil labels a list-node, then this node has
no list successors. It is acyclic in the sense that ) is acyclic. Finally, for each
u, v € Viist, if siist (1) = siist (v), siist (1) # 0, Selem (1) = Selem(v), and seiem(u) 7# 0,
then v = v. In other words, two different list nodes must not have the same list
and element successors.

This graph will thus be called the canonical list-graph for a set of equalities.
For instance, the canonical list-graph for the set of equalities

y = cons(ey, x),x & cons(eg, 2), T A cons(eq, u),t & cons(es, )

is given in Figure 3.

Given the canonical list-graph for a set of equalities, we have that x ~jis; ¥ is
true if and only if x and y both label the same list node and <s is the transitive
closure of the list successor relation.

Computing Canonical list-Graphs

To compute the canonical graph for a set of equalities, three transformations on
list-graphs are necessary:

— a congruence step replaces two lists nodes u and v such that sjst(u) = sjst (V)
and Seiem (%) = Selem(v) by a unique node u U v.” The new node inherits all
successors of the nodes it replaces. All list nodes which had u or v as list
successor are made to have u U v as list successor.

— a list unification step (Unify-cdr) replaces two list successors u and v of one
node t by a unique node u U v. The new node inherits all successors of the
nodes it replaces. All list nodes which had u or v as list successor are made
to have u Uwv as list successor.

— an element unification step (Unify-car) replaces two element successors u
and v of one node ¢t by a unique node v U wv. All list nodes which had u or v
as element successor are made to have u U v as list successor.

" Remember u and v are disjoint sets of list variables.
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D
Congruence: ] C ) —
L]
T ~
D
Unify-car: —

Fig. 4. Transformation steps

These transformations are depicted in Figure 4.

Let L be a set of equalities of the form z ~ y, e &~ €/,  ~ cons(e, y). To build
the canonical graph for this set, the first operation is to compute the reflexive,
symmetric and transitive closure of all equalities between variables in the set
L. Second, for every equality cons(e,z) ~ y, the nodes labeled by 2 and e are
made list and element successors of the node labeled by y. Third, the graph
is unified, beginning with nodes without parent, finishing with those without
successor, using unification steps (beginning with all element unification steps).
Last, the congruence rule is applied, from the nodes without successors, to the
nodes without parents. In presence of nil, a postprocessing ensures that the node
it labels has no successor.

If the graph happens to be cyclic, or if nil happens to have a successor, the
procedure fails. In that case the initial set of equalities is unsatisfiable. A careful
implementation of this procedure is linear in time [14].

The obtained graph (after a finite number of transformation steps) is indeed
the canonical graph: every Tjg-interpretation A agreeing with a graph G also
agrees with the graph obtained from G by a transformation step. That ensures
that every model of L agrees with the final graph. To show that every Tjs:-
interpretation agreeing with the graph is also a model for L, it suffices to show
that every equality of L is trivially satisfied by any interpretation agreeing with
the graph.

There is a Tjs-interpretation agreeing with a canonical list-graph, such that
every node is assigned to a different element or list. As a consequence, satisfia-
bility checking of a set of literals in T}t can be simply implemented by building
the canonical list-graph for all equalities in the set, and check afterward if no
inequality has both members labeling the same node.
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Two final remarks are in order. First, the list-graph may be build before
guessing an arrangement of the element variables, and may be used to guide
this guessing. Indeed it is not necessary to consider an qelem implying that two
variables labeling the same node in the list-graph are different. Second, for the
algorithm in Figure 2 to be efficient, it is required also that check_sat returns
a small (minimal, if possible) conflict set 7 out of the input set of literals. For
instance, the decision procedure for acyclic lists should produce small unsatisfi-
able subsets of the input set of literals, or be able to give the equations necessary
to deduce a given equality from a satisfiable set. We believe this is possible by
adapting the method developed for congruence closure in [5].

6 Conclusion

We presented a combination method that is able to combine a many-sorted
theory Tien, modeling lists of elements in the presence of the length operator with
a theory Tejem modeling the elements.

Our method works regardless of whether the theory of the elements is stably
infinite or not. We were able to relax the stable infiniteness requirement by
employing the following basic ideas:

— guess an arrangement larger than the one computed by Nelson and Oppen;
— compute a certain minimal cardinality kg, so that we can ensure that the
domain of the elements must have at least kg elements.

Future works include implementing the proposed method in haRVey, and in
particular, study heuristics to make it more efficient, and investigate extending
the procedure for acyclic lists to compute minimal conflict sets. On the theo-
retical side, it remains to determine the exact complexity of the algorithm, and
examine the proposed combination when some sorts (elem, list, int) are equal.
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Abstract. Abstract model generation refers to model generation for
abstract clause sets in which arguments of atoms are ignored. We give
two abstract clause sets which are obtained from normal clause sets. One
is for checking satisfiability of the original normal clause set. Another is
used for eliminating unnecessary clauses from the original one. These
abstract clause sets are propositional, i.e. decidable. Thus, we can use
them for preprocessing the original one.

1 Introduction

The use of abstraction seems to be helpful in many subfields of artificial intelli-
gence [10,7,4,3,2]. The most common use of abstraction in theorem proving has
been to abstract the problem, to prove its abstracted version, and then to use
the structure of the resulting proof as guides in searching for the original prob-
lem. This assumes that the structure of the abstract proof is similar to that of
the original problem. The most common approach is to integrate the abstract
proving into the deduction process by specifying clause selection functions that
imitate the abstract proof. On the other hand, there is another approach which
uses the abstract proving as a preprocessing step in the (ground) prover [8].

The benefit of preprocessing a set S of clauses can be large. In the extreme
S may be solved in the preprocessing stage. In this paper, we use model gener-
ation [6,5] as a procedure for preprocessing S rather than proving S. We apply
model generation to abstractions of S. We present two types of abstraction;
c-abstraction and d-abstraction. In these abstractions, we abstract away all ar-
guments from atoms. Thus, abstract clause sets are propositional.

S is satisfiable if its d-abstraction is satisfiable. In this case, we determine its
satisfiability without proving S itself. If a clause in S contains an atom whose
abstraction is not in the model of c-abstraction of S, the clause is unnecessary
for checking unsatisfiability. Thus, the clause can be eliminated.

This c-abstraction based elimination is a kind of simplification which sim-
plifies a set of clauses. Its effect is parallel to that of a simplification operation
eliminating pure literals [15]. However, their strength is not comparable. That
is, the former can eliminate more clauses than the latter does in some cases, and
vice versa. We evaluate effects of abstract model generation for preprocessing
with all CNF problems in the TPTP problem library.

F. Baader and A. Voronkov (Eds.): LPAR 2004, LNAI 3452, pp. 67-78, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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2 Model Generation

Throughout this paper, a clause —A;V...V—-A,,VBiV...V B, isrepresented
in implicational form: Ay A... AN A,, — By V...V B, where A; (1 <i <m) and
B; (1 < j < n) are atoms; the left hand side of “—” is said to be the antecedent;
and the right hand side of “—” the consequent.

A clause is said to be positive if its antecedent is true (m = 0), and negative
if its consequent is false (n = 0); otherwise it is mized (m # 0,n # 0). A
clause is said to be wiolated under a set M of ground atoms if with some ground
substitution ¢ the following condition holds: Vi(1 < i < m)A4;0c € M AVj(1 <

A model generation proof procedure is sketched in Fig. 1. The procedure MG
takes a partial interpretation Me¢ (model candidate) and a set of clauses S to be
proven, and builds a (sub)proof-tree of S.

A leaf labeled with T tells us that a model of S has been found as a current
model candidate. If every leaf of the constructed proof-tree is labeled with L, .S
is unsatisfiable; otherwise S is satisfiable. In the latter case, at least one leaf is
labeled with T or at least one branch grows infinitely.

procedure MGTP(S) : P; /* Input(S):Clause set, Output(P):Proof-tree of S */
return(MG(0,9));

procedure MG(Mc, S) : P;/* Input(Mc): Model candidate */
1. (Model rejection) If a negative clause (A1 A ... A A,y — false) € S is

[
violated under Me with a ground substitution o, return( | )
2. (Model extension) If a positive or mixed clause (A3 A ... A A,, — By V
..V B,) € S is violated under M¢ with a ground substitution o,

B O—
AN

where P, = MG(McU{B;c},5) (1 <i<n).
3. (Model finding) If neither 1 nor 2 is applicable, return (‘i‘},

Fig. 1. Model generation procedure

3 Abstract Clauses

An abstract atom of P(ty,...,t,) is an atom P. That is, the abstract atom ab-
stracts away its arguments. Henceforth, we will use capital letters A, B, Ay, By, ...
as denoting normal atoms, and small letters a, b, a1, b1, ... as denoting abstract
atoms corresponding to the capital letters.
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A d-abstract clause of A1 A...NA,, — B1V...VB, isaclause a1 A...Aa,, —
b1 V...Vb,. A set of d-abstract clauses obtained from a normal clause set S by
replacing normal clauses with d-abstract ones is denoted by d_abs(.S).

Theorem 1. Let S be a set of clauses. If d_abs(S) is satisfiable, then S is sat-
1sfiable.

d_abs(S) is a set of propositional clauses, so, checking its satisfiability is
decidable, while checking satisfiability of S is generally undecidable!.

Ezample 1 (D-abstraction). Let S = {p(z) Aq(z) A s(y) — false, p(x) Ar(zx) —
S(f(@), a() — r(@) v s(f(2)), px) = a@) v r(y), true — p(a)}, then
d_abs(S) ={pAqAs— false, pAr — s, g—1rVs, p—qVr true — p}.

d-abs(S) has a model {p,r, s} and thus is satisfiable. Therefore, we conclude
S is satisfiable.

C-abstract clauses of A{A...ANA,, — B1V...VB, aren clauses a1 A...Aa,, —
b1, ay N...Nay, — by, ---, and a1 A ... A a,, — b,. Note that there is no c-
abstract clause for a negative clause A; A ... A A, — false.

A set of c-abstract clauses obtained from a normal clause set S by replacing
normal clauses with c-abstract ones is denoted by c_abs(S). Note that negative
clauses are eliminated in c_abs(S) and all clauses in c_abs(S) are Horn clauses.
Therefore, we obtain a unique model of c_abs(S) with the model generation
procedure.

A clause A; A...NA,, — B1 V...V B, is relevant to a set A of abstract
atoms if Vi(1 < i < m)(a; € A), otherwise, irrelevant. If a clause C(€ S) is used
for model extension or rejection in the model generation procedure on S, C' is
relevant to the model of ¢_abs(S). Thus, we obtain the following lemma.

Lemma 1. Let S be a set of clauses, P be a proof tree of S, M be a model of
c.abs(S), and C = Ay N...NA,, — By V...V B, €5 be a clause used for model
extension or rejection in P. Then, Vi(1 < i < m)a; € M where a; is the abstract
atom of A;(1 <i <m). That is, C is relevant to M.

Proof. Let C* = A¥A.. . NAF, — BFV...vBF € S be a clause used for the k-th
model extension or rejection in P. We can easily show the following property by
induction on k: Vi(1 <i < m)af € M AVj(1<j< n)b;“ € M where a¥ is the
abstract atom of A¥(1 <i < m) and b? is the abstract atom of Bf(l <j<n).
This property implies the lemma. a

The lemma says that if a clause C'(€ S) is irrelevant to the model of c_abs(.5),
then C'is never used for model extensions or rejections in the model generation
procedure on S. Therefore, we ignore irrelevant clauses when we apply the model
generation procedure on S.

! d_abs(S) is exactly the same as the propositional abstraction proposed by Plaisted [7]
and thus folklore. But, it is still interesting to see experimental data on all satisfiable
problems from the TPTP library.
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Theorem 2. If the model generation determines that a set S of clauses is un-
satisfiable, then it also determines that S\IR(S) is unsatisfiable, where IR(S) =
{C|C is irrelevant to M} and M is a model of c_abs(S).

The model generation is a sound and complete proof procedure [1], therefore,
we obtain the corollary.

Corollary 1. Let S be a set of clauses. Then, S is unsatisfiable iff S\ IR(S) is
unsatisfiable.

By proving S\ ITR(S) instead of S, we can diminish its execution cost if
IR(S) # 0. If S\ TR(S) = 0, we conclude that S is satisfiable. When I R(S) = 0,
we may decrease the number of clauses in S by applying the same consideration
on the set CON(S) = {Bi1A...AB, = A4V...VA, | (A1A...NA, —
B1V...VB,) € S} which is obtained from the contrapositive set of S by reversing
every literal polarity. Thus, we obtain a process which eliminates unnecessary
clauses in S:

(1) Let S be a set of clauses.

(2) i=0, Sp=S.

(3) Siy1 = S;\IR(S;),i=i+1.

(4) Ifi=1o0r S; # S;_1, then S; = CON(S;) and goto (3).
(5) If 4 is an even number, then S; = CON(S;).

We stop the process when it reaches a fixpoint gotten as S; = S5;_1. Then,
we try to prove the final S; instead of S.

Ezample 2 (C-abstraction). Let S(= Sp) be a set of 6 clauses from C1 to C6:

Cl:r(z) — false C2:v(x) —r(x) C3:s(x)—r(x)
C4:q(z) — s(x) Vu(z) C5:p(x) — q(z) C6:true — p(a)

Then, c-abstraction c_abs(Sy) is a set of the following clauses:

C2i:v—r (C31:5—r Cd:q—s
Clds:q—u Chy:p—q C6;1:true —p

We obtain the model {p, ¢, u, s, r} of c_abs(Sy) with model generation. The
clause C?2 is irrelevant to this model and thus eliminated. So, S; = {C1,C3,C4,
C5,C6}, then S; = CON(S,) = {C1¢,C3%,C4%,05%,C6%} where

C1% :true — r(x) 03¢ :r(x) — s(x) C4° : s(x) Au(z) — q(x)

C5% : q(z) — p(x) C6 :p(a) — false
Next, we obtain the model {r, s} of c_abs(S;). Therefore, C4°, C5% and C6¢
are irrelevant to this model and thus eliminated. So, Sy = {C1¢,C3%}, then

Sy = CON(S2) = {C1,C3}. We continue this process until no clause is elimi-
nated. Finally, S3 becomes an empty set. Thus, we conclude S is satisfiable.
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4 Experimental Results

The method is implemented on top of a constraint logic programming system B-
Prolog [17]. We use all 5522 CNF problems in the TPTP problem library version
2.7.0 [13,14]. We remove equality axioms using the tptp2X utility (distributed
with TPTP) with option “-t rm_equality:rsftp” from each problem if any.
The problems were run on a DELL computer (Mobile Intel Pentium IIT 650MHz
CPU, 512MB memory, Linux 2.6.0).

If a problem S contains equality which is represented using the equal/2
predicate in TPTP, we simply add a positive unit clause “true — equal” to
d_abs(S) and c_abs(S) before preprocessing. In other words, we assume that all
individuals are equal in d-abstraction and the equal/2 predicate is relevant in
c-abstraction.

4.1 D-Abstraction: Checking Satisfiability

In 766 satisfiable first-order problems, 223 problems are determined as satisfiable
with their d-abstract clause sets, within one second for each. Table 1 (a) shows
the number of problems solved by d-abstraction for each problem domain in
TPTP. The first column shows domain names, and the second column shows the
number of problems solved and the number of satisfiable first-order problems in
that domain. For example, there are 17 satisfiable first-order problems in the
BOO domain. Among them, 4 problems are solved by d-abstraction. 45 % of
223 problems are in the SYN category and 19 % are in the NLP category. Table
1 (b) shows similar information for every problem rating?. The effectiveness of
d-abstraction seems to be independent of the problem domains and ratings.

4.2 C-Abstraction: Eliminating Unnecessary Clauses

In 5522 CNF problems, 725 problems are reduced by c-abstraction based elimi-
nation. For the ALG, COM, FLD, GRA, HEN, HWC, KRS, LDA, RNG, ROB,
SWC, and TOP categories, no problem is reduced. The average preprocessing
time is 3.75 seconds for 725 problems. More than 90% problems are reduced
within one second for each, while 35 problems need more than ten seconds for
reducing. All these 35 problems are in the SYN category and consist of more
than 1000 clauses.

Table 2 (a) shows the numbers of problems reduced with c-abstraction for
each problem domain. For example, there are 83 CNF problems in the HWV
category. 31 problems of them are reduced. For the NLP and SYN categories,
more than half of the problems are reduced.

2 In the TPTP distribution, each problem file consists of a header part and a body
part. The header part contains information about problem. The rating filed is in the
header part. The rating gives the difficulty of the problem. It is a real number in the
range 0.0 to 1.0, where 0.0 means that the problem is easy and 1.0 means that the
problem is hard.
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Table 1. Numbers of problems solved by d-abstraction
(a) Domain (b) Rating

ALG | 0/2||GRA | 0/0||[LCL | 10/44||RNG 5/10 0.00{91,/232(|0.67| 0/80
ANA | 2/2||GRP |12/75||LDA 0/0[|ROB 2/5 0.14| 41/79(|0.71]18/29
BOO |4/17||HAL | 0/0||MGT| 2/11||SET 4/12 0.17| 4/33((0.83] 0/1
CAT |6/10||HEN | 3/3||MSC 1/2||SWC 0/1 0.29| 18/25((0.86|14/51
COL | 0/6|{HWC| 2/2|INLP |42/236||SWV 3/9 0.33| 3/109(|1.00| 0/12
COM| 0/0|[HWV| 6/8||NUM 4/7||SYN |100/216 0.43] 15/18
FLD | 0/0||KRS 2/8||PLA 2/2||TOP 1/19 0.50] 0/41
GEO |0/17||LAT | 8/22||PUZ | 2/20 0.57| 19/56

Table 2. Numbers of problems reduced by c-abstraction
(a) Domain (b) Ratio(%)
ALG | 0/15||GRA 0/1||LCL 4/527||RNG| 0/104 0-9 | 87{|50-59| 19
ANA| 4/21||GRP |17/791||LDA 0/23||ROB 0/38 10-19| 6/|60-69| 55
BOO| 1/133||HAL 0/0||MGT 3/78||SET | 5/706| [20-29| 32||70-79|118
CAT | 2/62||HEN | 0/67||MSC 2/13||SWC| 0/423| [30-39| 17|/80-89|167
COL |13/193||HWC 0/6||NLP |156/258||SWV 5/21 40-49(108{|90-99(116
COM 0/8|[HWV| 31/83||NUM| 5/315||SYN [462/839
FLD | 0/279||KRS 0/17||PLA 2/32||TOP 0/24
GEO| 6/253||LAT | 1/104||PUZ 6/82

Table 2 (b) shows the ratio of remaining clauses to the original ones. For
example, the first row indicates that there are 87 problems less than 10 % clauses
of which are remaining after reduction. There are 57 problems which are reduced
to the empty sets. All such problems are determined as satisfiable without proof.

In order to measure the c-abstraction effect, we solved all 725 problems, by
using three provers with a time limit of 600 seconds: DCTP 1.31 [12], Vampire
7.0 [9], and E 0.82 [11]3. These provers attended the CADE ATP system com-
petition CASC-J2[16]. Vampire 7.0 won the first place in the MIX and FOF
divisions, DCTP 1.31 won the third place in the EPR division, and E 0.82 won
the third place in the MIX division.

Table 3 (a) shows summaries of c-abstraction effects on these three provers.
The “before” column shows statistics for the original clause sets, while the “after”
column shows statistics for their reduced clause sets. The last row shows the
average cpu time in seconds. The parenthetic number in the “after” column
shows the cpu time including preprocessing. Table 3 (b) shows a detailed version
of (a). We succeed in enhancing performance of the three provers: The numbers
of problems solved are increased from 642 to 647 for DCTP, from 626 to 642 for
Vampire, and from 650 to 661 for E.

3 DCTP runs with options “negpref -complexity -fullrewrite -alternate -resisol”.
Vampire runs with options “—mode casc-j2 -p off -t 600”.
E runs with options “-s —print-statistics -xAuto -tAuto —memory-limit=384 —tptp-

NS })

m
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Table 3. Effect of c-abstraction

(a) Summary

DCTP 1.31 Vampire 7.0 E 0.82
ALL before[ after before[ after before[ after
Attempted 725
Solved 642 647|626 642|| 650 661
Av. Time(s)|[ 6.15]5.10(9.28)([ 11.69[7.68(8.80)|| 5.43[11.64(15.73)
(b) Category summary
Domain DCTP 1.31 Vampire 7.0 E 0.82
(Attempted) |[before]  after before] after before[  after
ANA 0 1 1 1 1 1
(4) -l 0.0(0.08)|| 15.53] 15.28(15.36)|| 46.61|36.98(37.06)
BOO 1 1 1 1 1 1
(1) 0.0{ 0.0(0.07){{150.09 0.46(0.53)|| 22.66| 0.50(0.57)
CAT 1 1 0 0 0 0
(2) 0.0] 0.0(0.08) - - N -
COL 4 4 4 4 0 0
(13) 12.69| 6.61(6.73)[|159.39]159.22(159.33) - -
GEO 1 1 1 1 1 1
(6) 0.0] 0.0(0.07)] 0.73] 0.11(0.18)| 0.86] 0.48(0.55)
GRP 17 17 7 8 9 11
(17) 1.05| 1.05(1.12)|| 3.45]  3.11(3.19)|] 1.62| 1.35(1.43)
HWV 22 25 28 28 30 29
(31) 1.50] 0.08(0.17)|| 12.76 4.67(4.77)|| 2.04[10.50(10.59)
LAT 1 1 0 0 0 0
(1) 0.01| 0.01(0.09) - - - -
LCL 4 4 1 4 0 4
(4) 0.00| 0.00(0.08)[235.93 0.37(0.45) -l 0.85(0.93
MGT 3 3 3 3 3 3
(3) 0.03| 0.03(0.11)|| 11.30] 11.39(11.47)| 0.51] 0.52(0.60)
MSC 2 2 2 2 2 2
(2) 0.01] 0.0(0.07)|| 0.41 0.27(0.34)|| 0.49] 0.52(0.59)
NLP 126 126 140 140 146 146
(156) 0.05] 0.04(0.14)|| 9.96 8.56(8.66)| 3.19(33.17(33.27)
NUM 5 5 2 5 2 5
(5) 0.0] 0.0(0.08)[] 0.12 0.33(0.40)|| 0.49] 0.60(0.67)
PLA 2 2 2 2 2 2
(2) 0.01] 0.0(0.08)|| 0.13 0.12(0.20)|| 0.49] 0.48(0.56)
pPUZ 6 6 5 6 6 6
(6) 0.03] 0.03(0.11)|| 0.13 0.27(0.35)|| 0.51| 0.51(0.59)
SET 4 4 4 4 3 4
(5) 0.09] 0.05(0.13)|| 79.62| 18.24(18.31)|| 0.49|82.65(82.73)
SWV 5 5 4 5 4 5
(5) 0.01] 0.0(0.08)|| 84.62 0.31(0.39)|| 0.62] 0.57(0.65)
SYN 438 439|421 428|440 441
(462) 8.76(7.39(13.52)|| 9.05 6.57(8.20)|| 6.69| 4.87(10.95)
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There is a series of 10 satisfiable problems in the NLP domain which have a
negative effect on E. The average proving times for these problems are increased
by 440 seconds after c-abstraction. This is a major cause why the average run
time of E is increased from 5.48 seconds to 11.68 seconds.

C-abstraction effects on Vampire and E seem to be stronger than that on
DCTP. This is due to the fact that there exist problems which have no positive
clause or no negative clause. These problems are obviously satisfiable. But, for
such problems, Vampire and E sometimes consume a lot of cpu time (or reach a
time limit) while DCTP immediately stops. There are 18 such cases for Vampire
and 11 cases for E. These problems become empty sets by c-abstraction, so it is
easy to determine them as satisfiable?

Table 4. Positive and negative effects of c-abstraction

Problem || Time || No. of clauses || DCTP 1.31 || Vampire 7.0 E 0.82

(secs) original[reduced before[ after before[ after before[ after
ANA006-1 || 0.08 14 5] T.0.] 0.00] T.0.] T.O] T.0] T.O.
BOO008-1 0.07 21 1| 0.00| 0.00{150.09| 0.46{ 22.66| 0.50
COL092-2 0.12 195 183|| 24.66| 12.96|| T.O.] T.O.|| T.0.| T.O.
HWV009-1|| 0.10 92 66| T.O.| 0.10{f 0.54| 0.20{| 0.56| 0.57
HWVO031-1 0.10 93 67/ T.0.| T.O.|| T.O.| T.O.|| 35.22|283.71
NLP037-1 0.08 66 12| 0.02| 0.00|| 65.30| 0.10{| 0.51| 0.50
NLP186-1 0.11 108 99|| T.0.| T.O. 0.25| 0.26|| 34.69|538.11
NUM288-1 0.07 12 0 0.0 0.0|| T.O.| 0.44| T.0.] 0.85
SET787-1 0.08 14 12 0.34| 0.21f 71.12] 71.55|| T.0.|329.16
SWV017-1 0.09 37 5/ 0.01| 0.00]|215.64| 0.44|| 0.55| 0.51
SYN597-1 0.08 28 23 5.36| 5.37| 30.91{209.20 3.47] T.O.
SYN599-1 0.08 29 25(| 89.48| 89.57(/209.29(162.53|| 42.30| 5.07
SYN610-1 0.08 30 26|| T.0.| T.O.|| 15.18]209.38 5.17| 2.87
SYN624-1 0.07 35 26 0.25] 0.25 4.80| 61.30(|111.65] 0.68
SYN708-1 0.09 83 61| T.0.| T.O.|| 36.04[124.57|| 72.27| 60.82
SYNT42-1 0.08 31 0|| 0.04| 0.00/[169.80| 0.10|| 0.67| 0.49
SYN813-1 1.69 504 378|| 34.41| T.O.|| 13.59| 9.19| 10.71] 2.96
SYNS818-1 |{104.59 2621 1397(|258.68| 87.32|| T.O.| T.O.|| 59.65| 18.31
SYNR&21-1 27.53 1716 712|| 56.24(122.71|| T.O.| 26.52| T.O.| 5.42
SYNR22-1 33.15 1768 1138|| 65.15| 34.17|| T.O.| 59.11|| T.O.| 71.08
SYN897-1 0.86 122 97| T.O.| 4.85 2.26| 1.87 1.35| 1.11
SYN912-1 2.72 1780 247|| 61.90| 0.62|| T.0.| T.0O.|| T.O0.] T.O.

Table 4 shows problems which exhibit positive or negative effect of c-abstraction
on the 3 provers. The second column shows cpu times for preprocessing in sec-
onds, the third the number of original clauses, and the fourth the number of

4 Vampire regards an empty clause set as an error of the input and aborts. We treat
such a case as a normal proof which tells that the set is satisfiable.
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clauses remaining after preprocessing. The last 6 columns show proving time of
the 3 provers. The “before” column shows the time for the original clause sets,
while the “after” column shows the time for their reduced clause sets. “T.0O.”
indicates that the problem is not solved in 600 seconds.

We succeeded in enhancing the provers’ performance for several problems. For
example on SYN912-1, DCTP’s proving times is decreased from 61.90 seconds
to 0.62 seconds after 2.72 seconds preprocessing which decreases the number of
clauses from 1780 to 247. Vampire and E can prove SYN822-1 in 59.11 and 71.08
seconds respectively after preprocessing, while they cannot prove it within 600
seconds before preprocessing.

On the other hand, there are some problems which show negative effects of c-
abstraction. For example on NLP186-1, E’s proving time is increased from 34.69
seconds to 538.11 seconds. DCTP can not prove SYN813-1 within 600 seconds
after preprocessing, while it can prove the same problem in 34.41 seconds before
preprocessing. There is another type of problem which show both positive and
negative effects. For example, SYN624-1 shows a negative effect on Vampire and
a positive effect on E: Vampire’s proving times is increased from 4.80 seconds to
61.30 seconds while E’s proving time is decreased from 111.65 seconds to 0.68
seconds.

There are some satisfiable problems which are reduced to empty sets of
clauses in DCTP’s preprocessing phase after c-abstraction based clause elimi-
nation. In these problems, 48 problems are not reduced to empty sets without c-
abstraction. This indicates that c-abstraction based clause elimination enhances
the effects of other preprocessing operations.

4.3 C-Abstraction Based Elimination and Pure Literal Elimination

A pure literal is a literal in a clause that cannot be resolved against any literal in
any clause. Clauses that contain pure literals can be eliminated, because such a
clause cannot contribute a resolution proof. Pure literal elimination has a similar
effect to c-abstraction’s because c-abstraction based preprocessing eliminates
clauses which contain literals irrelevant to model generation.

Pure literal elimination is sometimes stronger and sometimes weaker than c-
abstraction based elimination. The strength comes from a unification operation
which is necessary to the former but unnecessary to the latter. On the other
hand, weakness comes from (model generation) inferences which are necessary
to the latter but unnecessary to the former.

In 5522 CNF problem, 562 problems are reduced by pure literal elimination.
This indicates that c-abstraction is applicable to more problems than pure literal
elimination. The average elimination time is 4.49 seconds for 562 problems. More
than 85% of the problems are reduced within one second for each, while 38
problems needs more than ten seconds for reducing. Pure literal elimination
takes more time than c-abstraction does on average. This is caused by the task
of unification.

Table 5 (a) shows the numbers of problems reduced by pure literal elimination
for every problem domain. Table 5 (b) shows the ratio of remaining clauses to
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Table 5. Pure literal elimination

(a) Domain (b) Ratio(%)
ALG| 0/15|[GRA| 0/1|[LCL | 0/527|[RNG| 0/104 0-9 [18|[50-59] 13
ANA| 3/21||GRP [13/791||LDA |  0/23|[ROB| 0/38]  |10-19| 4||60-69| 27
BOO| 0/133||HAL 0/0||MGT 4/78||SET 2/706 20-29| 3||70-79| 43
CAT | 1/62|[HEN | o/67||MSC| o0/13||[sWC| 0/423]  |30-39| 5//80-89| 98
COL |13/193||HWC 0/6||NLP [142/258||SWV 0/21 40-49| 2{|90-99|350
coM| 2/8||HWV| 6/83|[NUM| 0/315||SYN |358/839
FLD | 0/279||/KRS 0/17||PLA 1/32||TOP 0/24
GEO| 6/253||LAT | 0/104||PUZ | 11/82

(c) Effect
DCTP 1.31 Vampire 7.0 E 0.82
ALL before[ after before[ after before[ after
Attempted 562
Solved 509 510 485 485 507 509
Av. Time(s)|| 6.98]6.77(11.63)| 7.10/6.70(8.25)|| 4.82|13.37(18.15)

the original ones. There are 350 problems which are in the ratio from 90% to
99%. This is 3 times as many as those of c-abstraction (cf. Table 2). We may
say that the clause elimination effect of c-abstraction is generally stronger than
that of pure literal elimination.

Table 5 (¢) shows the summaries of pure literal elimination effects on the
provers. A little effect can be seen on the performance of the provers. Indeed,
there is no change in terms of problems solved within 600 seconds after prepro-
cessing for Vampire. The influence of pure literal elimination upon the perfor-
mance of these provers is weaker than that of c-abstraction.

There are 752 problems which are reduced by c-abstraction based elimina-
tion or pure literal elimination. They can be classified into 4 groups by the set
inclusion relation as follows: (1) A is a proper subset of B, (2) A equals B, (3)
A is a proper superset of B, and (4) there is no set inclusion relation between A
and B, where A is a problem (i.e. a set of clauses) reduced by c-abstraction base
elimination and B is a problem reduced by pure literal elimination. There are
333 problems in the first group, 182 in the second, 62 in the third, and 175 in the
fourth. This indicates that pure literal elimination is different from c-abstraction.
And it seems reasonable to suppose that the latter gains the ascendancy over
the former with respect to clause elimination.

By the way, it is possible to apply pure literal elimination after c-abstraction.
Our experiment shows that only simple problems are further reduced by pure
literal elimination after c-abstraction. Thus, pure literal elimination after c-
abstraction has no influence upon the performance of DCTP, Vampire, and E.
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4.4 C-Abstraction Combined with D-Abstraction

Among 725 problems reduced by c-abstraction, there are 87 problems which are
determined as satisfiable by d-abstraction. We don’t need to prove these prob-
lems anymore. Is is natural to combine c-abstraction with d-abstraction. Table
6 shows the summary of c-abstraction effects on the remaining 638 problems.
The parenthetic number in the “after” column shows the cpu time including
c-abstraction and d-abstraction.

Table 6. Effect of C-abstraction on problems passed through d-abstraction

DCTP 1.31 Vampire 7.0 E 0.82
ALL before[ after before[ after before[ after
Attempted 638
Solved 556 560 565 567 585 583
Av. Time(s)|| 7.06]5.86(10.83)( 8.86|8.71(10.09)| 5.97|13.10(17.87)

There is a positive effect on DCTP. The number of problems solved is in-
creased from 556 to 560 and the average cpu time is decreased from 7.06 seconds
to 5.86 seconds. For Vampire, c-abstraction barely has a positive effect. The
number of problems solved is increased from 565 to 567, but the average cpu
time is almost unchaged. Unfortunately, there is a negative effect on E. The
number of problems solved is decreased from 585 to 583 and the average cpu
time is increased from 5.97 seconds to 13.10 seconds.

5 Conclusion

Preprocessing a set of clauses has a great impact on the success of a subsequent
automated reasoning system. We have introduced two abstractions of the given
clause set for preprocessing it. Experimental results show that these abstrac-
tions are effective for several problems. 29% of satisfiable first-order problems
in TPTP are determined as satisfiable with their d-abstract clause sets. 13% of
CNF problems in TPTP are reduced with d-abstraction.

C-abstraction sometimes has positive effects and sometimes negative effects
on state-of-the-art theorem provers: DCTP, Vampire, and E. As a whole, without
d-abstraction, these provers profit from c-abstraction. On the other hand for
the problems passed through d-abstraction, DCTP and Vampire profit from
c-abstraction, but E does not. This situation may be improved if we find a
combination of the provers’ options that fit for c-abstraction. Furthermore, the
combination of the proposed method and other preprocessing operations can
enhance their abilities.
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Flat and One-Variable Clauses: Complexity of Verifying
Cryptographic Protocols with Single Blind Copying
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Abstract. Cryptographic protocols with single blind copying were defined and
modeled by Comon and Cortier using the new class C of first order clauses,
which extends the Skolem class. They showed its satisfiability problem to be in
3-DEXPTIME. We improve this result by showing that satisfiability for this class
is NEXPTIME-complete, using new resolution techniques. We show satisfiability
to be DEXPTIME-complete if clauses are Horn, which is what is required for
modeling cryptographic protocols. While translation to Horn clauses only gives a
DEXPTIME upper bound for the secrecy problem for these protocols, we further
show that this secrecy problem is actually DEXPTIME-complete.

1 Introduction

Several researchers have pursued modeling of cryptographic protocols using first order
clauses [3,6,15] and related formalisms like tree automata and set constraints[5,11,12].
‘While protocol insecurity is NP-complete in case of a bounded number of sessions [14],
this is helpful only for detecting some attacks. For certifying protocols, the number of
sessions cannot be bounded, although we may use other safe abstractions. The approach
using first order clauses is particularly useful for this class of problems. A common safe
abstraction is to allow a bounded number of nonces, i.e. random numbers, to be used in
infinitely many sessions. Security however still remains undecidable [5]. Hence further
restrictions are necessary to obtain decidability.

In this direction, Comon and Cortier [6,8] proposed the notion of protocols with single
blind copying. Intuitively this restriction means that agents are allowed to copy at most
one piece of data blindly in any protocol step, a restriction satisfied by most protocols
in the literature. Comon and Cortier modeled the secrecy problem for these protocols
using the new class C of first order clauses, which extends the Skolem class, and showed
satisfiability for C to be decidable [6] in 3-DEXPTIME [8]. The NEXPTIME lower
bound is easy. We show in this paper that satisfiability of this class is in NEXPTIME, thus
NEXPTIME-complete. If clauses are restricted to be Horn, which suffices for modeling
of cryptographic protocols, we show that satisfiability is DEXPTIME-complete (again
the lower bound is easy). While translation to clauses only gives a DEXPTIME upper
bound for the secrecy problem for this class of protocols, we further show that the secrecy
problem for these protocols is also DEXPTIME-complete.

For proving our upper bounds, we introduce several variants of standard ordered
resolution with selection and splitting [2]. Notably we consider resolution as consisting
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of instantiation of clauses, and of generation of propositional implications. This is in the
style of Ganzinger and Korovin [10], but we enhance this approach, and generate in-
teresting implications to obtain optimal complexity. More precisely, while the approach
of Ganzinger and Korovin [10] has a single phase of instantiation followed by proposi-
tional satisfiability checking, we generate certain interesting propositional implications,
instantiate them, and iterate the process. We further show how this technique can be em-
ployed also in presence of rules for replacement of literals in clauses, which obey some
ordering constraints. To deal with the notion of single blind copying we show how terms
containing a single variable can be decomposed into simple terms whose unifiers are of
very simple forms. As byproducts, we obtain optimal complexity for several subclasses
of C, involving so called flat and one-variable clauses.

Outline: We start in Section 2 by recalling basic notions about first order logic and
resolution refinements. In Section 3 we introduce cryptographic protocols with sin-
gle blind copying, discuss their modeling using the class C of first order clauses, and
show that their secrecy problem is DEXPTIME-hard. To decide the class C we start
with the subclass of one-variable clauses in Section 4 and show its satisfiability to be
DEXPTIME-complete. Satisfiability of the fragment of C involving flat clauses is shown
to NEXPTIME-complete in Section 5. In Section 6, the techniques from the two cases
are combined with further ideas to show that satisfiability for C is NEXPTIME-complete.
In Section 7 we adapt this proof to show that satisfiability for the Horn fragment of C is
DEXPTIME-complete.

2 Resolution

We recall standard notions from first order logic. Fix a signature X' of function symbols
each with a given arity, and containing at least one zero-ary symbol. Let r be the maximal
arity of function symbols in X. Fix a set X = {x1, X2, X3, .. .} of variables. Note that
X1,Xa, ... (in bold face) are the actual elements of X, where as x,y, z, 1,91, . .. are
used to represent arbitrary elements of X. The set T'x;(X) of terms built from X' and X
is defined as usual. T's; is the set of ground terms, i.e. those not containing any variables.
Atoms A are of the form P(t1,...,t,) where P is an n-ary predicate and ¢;’s are terms.
Literals L are either positive literals +A (or simply A) or negative literals — A, where
A is an atom. —(—A) is another notation for A. & denotes 4+ or — and F denotes the
opposite sign (and similarly for notations ', F',...). A clause is a finite set of literals.
A negative clause is one which contains only negative literals. If M is any term, literal or
clause then the set fv(M ) of variables occurring in them is defined as usual. If C; and Cs
are clauses then C V Cy denotes C1 UC5. C'V{ L} is written as C'V L (In this notation, we
allow the possibility of L € C).If C4, .. ., C,, are clauses such that fv(C;) Nfv(C;) = 0
for i # j, and if C; is non-empty for ¢ > 2, then the clause C; V ...V C, is also
written as C7 U ... U C), to emphasize this property. Ground literals and clauses are
ones not containing variables. A term, literal or clause is trivial if it contains no function
symbols. A substitution is a function o : X — Tx(X). Ground substitutions map
every variable to a ground term. We write 0 = {x1 — t1,...,2, — t,} to say that
xio =t;forl <i <mandzoc = xforx ¢ {x1,...,2,}. If M is a term, literal,
clause, substitution or set of such objects, then the effect Mo of applying o to M is
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defined as usual. Renamings are bijections ¢ : X — X. If M is a term, literal, clause
or substitution, then a renaming of M is of the form Mo for some renaming o, and an
instance of M is of the form Mo for some substitution o. If M and N are terms or
literals then a unifier of M and N is a substitution ¢ such that Mo = No. If such a
unifier exists then there is also a most general unifier (mgu), i.e. a unifier o such that
for every unifier o’ of M and N, there is some ¢ such that ¢’ = oo’. Most general
unifiers are unique upto renaming: if o1 and o2 are two mgus of M and N then o is
a renaming of o5. Hence we may use the notation mgu(M, N) to denote one of them.
We write M[xq,...,x,] to say that fv(M) C {z1,...,z,}. If t1,... ¢, are terms
then M|[ty,...,t,] denotes M{x1 +— t1,...,2, — t,}. If N is a set of terms them
MI[N] = {M[t1,...,tn] | t1,...,tn € N} If M is a set of terms, atoms, literals or
clauses them M[N]| = U,,ca; m[N]. A Herbrand interpretation H is a set of ground
atoms. A clause C' is satisfied in ‘H if for every ground substitution o, either A € H
for some A € Co, or A ¢ H for some —A € Co. A set S of clauses is satisfied in H
if every clause of S is satisfied in H. If such a H exists then S is satisfiable, and 'H is
a Herbrand model of S. A Horn clause is one containing at most one positive literal.
If a set of Horn clauses is satisfiable then it has a least Herbrand model wrt the subset
ordering.

Resolution and its refinements are well known methods for testing satisfiability of
clauses. Given a strict partial order < on atoms, a literal A is maximal in a clause
C if there is no literal +'B € C with A < B. Binary ordered resolution and ordered
factorization wrt ordering < are defined by the following two rules respectively:

CiVA —BV(Qy CiV+AvV+B
CioV Cyo CioV Ao

where 0 = mgu(A, B) inboth rules, A and B are maximal in the left and right premises
respectively of the first rule, and A and B are both maximal in the premise of the second
rule. We rename the premises of the first rule before resolution so that they don’t share
variables. The ordering < is stable if: whenever A; < As then Aj0 < Aso for all
substitutions 0. We write S = SU{C'} to say that C is obtained by one application of
the binary ordered resolution or binary factorization rule on clauses in .S (the subscript
denotes the ordering used).

Another resolution rule is splitting. This can be described using tableaux. A tableau
is of the form Sy | ... | Sy, where n > 0 and each S;, called a branch of the tableau, is
a set of clauses (the | operator is associative and commutative). A tableau is satisfiable
if at least one of its branches is satisfiable. The tableau is called closed if each S;
contains the empty clause, denoted O. The splitting step on tableaux is defined by the
rule: 7 | S —sp T | (S\{C1UC2}) U{C1} | (S\{C1UC2})U{Cs} whenever
C1 U Cy € S and C7 and C5 are non-empty. Cy and C5 are called components of the
clause C7 LI Cy being split. It is well known that splitting preserves satisfiability of
tableaux. We may choose to apply splitting eagerly, or lazily or in some other fashion.
Hence we define a splitting strategy to be a function f such that 7 —,,; f(7) for all
tableaux 7. The relation = . is extended to tableaux as expected. Ordered resolution
with splitting strategy is then defined by the following rule: 77 =« ¢ f(72)if 71 =< Ts.
This provides us with a well known sound and complete method for testing satisfiability.
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For any binary relation R, R* will denote the reflexive transitive closure of R, and R
will denote the transitive closure of R.

Lemma 1 ([2]). For any set S of clauses, for any stable ordering <, and for any splitting
strategy f, S is unsatisfiable iff S =< ; T for some closed T.

If all predicates are zero-ary then the resulting clauses are propositional clauses.
In this case we write S F, 7" to say that every Herbrand model of S is a Herbrand
model of T'. This notation will also be used when S and T are sets of first order clauses,
by treating every (ground or non-ground) atom as a zero-ary predicate. For example
{P(a),—P(a)} F, Obut {P(z),—P(a)} ¥, 0.5 F, {C} is also written as S &, C.
If S, C then clearly So F, Co for all substitution o.

3 Cryptographic Protocols

We assume that X contains the binary functions {_}_and (_, _) denoting encryption and
pairing. Messages are terms of Tx;(X). A state is of the form S(M, ..., M) where
S with arity n is from a finite set of control points and M, are messages. It denotes
an agent at control point S with messages M, in its memory. An initialization state
is a state not containing variables. A protocol rule is of the form Sy (M, ..., M,,) :
recv(M) — So(Ni, ..., Ny) : send(N). Here M;, N; are messages, and M and N are
each either a message, or a dummy symbol ? indicating nothing is received (resp. sent).
For secrecy analysis we can replace 7 by some public message, i.e. one which is known to
everyone including the adversary. The rule says that an agent in state Sy (M1, ..., M,,)
can receive message M, send a message N, and then move to state So(Ny, ..., Ny,),
thus also modifying the messages in its memory. A protocol is a finite set of initialization
states and protocol rules. This model is in the style of [9] and [5]. The assumption of
single blind copying then says that each protocol rule contains at most one variable
(which may occur anywhere any number of times in that rule). For example, the public-
key Needham-Schroeder protocol below
A— B:{A Na}tk,
B— A: {NA7NB}KB
A— B: {NB}KB
is written in our notation as follows. For every pair of agents A and B in our system
(finitely many of them suffice for finding all attacks against secrecy [7,6]) we have two
nonces N} ; and N3 ; tobe used in sessions where A plays the initiator’s role and B plays
the responder’s role. We have initialization states Inito(A, N ;) and Respo(B, N3 5)
for all agents A and B. Corresponding to the three lines in the protocol we have rules
for all agents A and B:
Initg (A, N} 5):recv(?) —  Inity (A, N} g):send({(A, N ) b ip)
Respo(B, N,%B):recv({<Aﬂ x>}KB) —>Resp1(B, €, N,%B):Send({<xﬂ N/%B>}KA)
Init1 (A, N} g)irecv({(Nhg, 2) } i, )— ita(A, Nig, z):send({z} k)
Resp1(B,z, N3g):recv({N3g}tk,)  —Respa(B,x, N3g):send(?)
Any initialization state can be created any number of times and any protocol rule
can be executed any number of times. The adversary has full control over the net-
work: all messages received by agents are actually sent by the adversary and all mes-
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sages sent by agents are actually received by the adversary. The adversary can ob-
tain new messages from messages he knows, e.g. by performing encryption and de-
cryption. To model this using Horn clauses, we create a unary predicate reach to
model reachable states, and a unary predicate known to model messages known to
the adversary. The initialization state S(Mj, ..., M,) is then modeled by the clause
reach(S(Mj, ..., M,)), where S is a new function symbol we create. The protocol rule
S1(My,...,Mp,) : recv(M) — S3(Ny,...,Ny,) : send(N) is modeled by the clauses
known(N) V —reach(Sy (M, ..., My,)) V —known (M) and reach(Sz(Ny, ..., Ny))
V —reach(Sy (M, ..., M,,)) V —known(M). Under the assumption of single blind
copying it is clear that all these clauses are one-variable clauses, i.e. clauses con-
taining at most one variable. We need further clauses to express adversary capabil-
ities. The clauses known({x1}x,) V —known(x;) V —known(xz) and known(x;) V
—known({x1 }x,) V —known(xz) express the encryption and decryption abilities of the
adversary. We have similar clauses for his pairing and unpairing abilities, as well as
clauses known(f(x1,...,%Xp)) V —known(x1) V...V —known(x,,) for any function f
that the adversary knows to apply. All these are clearly flat clauses, i.e. clauses of the form
C =V £P(fih, ... 2%)VV i, £5Q;(x)), where {z}, ... a% } = fv(C) for
1 < i < k. Asymmetric keys, i.e. keys K such that message {M } i can only be de-
crypted with the inverse key K !, are also easily dealt with using flat and one-variable
clauses. The adversary’s knowledge of other data c like agent’s names, public keys, etc
are expressed by clauses known(c). Then the least Herbrand model of this set of clauses
describes exactly the reachable states and the messages known to the adversary. Then
to check whether some message M remains secret, we add the clause —known (M) and
check whether the resulting set is satisfiable.

A set of clauses is in the class V) if each of its members is a one-variable clause. A
set of clauses is in the class F if each of its members is a flat clause. More generally we
have the class C proposed by Comon and Cortier [6,8]: a set of clauses S is in the class
C if for each C' € S one of the following conditions is satisfied:

— (' is a one-variable clause

-C = \/f:1 £ P (u[fi(2h, ... 2l )]) Vv \/;:1 +;Q;(x;), where for 1 < i < k we
have {z},..., 2! } = fv(C) and u; contains at most one variable.

If all clauses are Horn then we have the corresponding classes V; Horn, F Horn and
CH orn. Clearly the classes V; (resp. Vi Horn) and F (resp. F Horn) are included in the
class C (resp. CHorn) since the u;’s above can be trivial. Conversely any clause set in C
can be considered as containing just flat and one-variable clauses. This is because we can
replace a clause C'V £ P(u[f (21, ..., zy)]) by the clause C'V £ Pu(f(z1,...,x,)) and
add clauses —Pu(x) V P(u[z]) and Pu(z) V —P(u[x]) where Pu is a fresh predicate.
This transformation takes polynomial time and preserves satisfiability of the clause set.
Hence now we need to deal with just flat and one-variable clauses. In the rest of the
paper we derive optimal complexity results for all these classes.

Still this only gives us an upper bound for the secrecy problem of protocols since
the clauses could be more general than necessary. It turns out, however, that this is not
the case. In order to show this we rely on a reduction of the reachability problem for
alternating pushdown systems (APDS). In form of Horn clauses, an APDS is a finite set of
clauses of the form (i) P(a) where a is a zero-ary symbol, (ii) P(s[z])V —Q(t[x]) where
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s and t involve only unary function symbols, and (iii) P(z) V — Py (z) V — P (z). Given
such an APDS S, a ground atom P(t) is reachable if P(t) is in the least Herbrand model
of S,i.e.if SU{—P(t)} is unsatisfiable. Reachability in APDS is DEXPTIME-hard [4].
We encode this problem into secrecy of protocols, as in [9]. Let K be a (symmetric) key
not known to the adversary. Encode atoms P(t) as messages {(P, t)} x, by treating P
as some data. Create an initialization state .S (no message is stored in the state). Clause
(i) is translated as S : recv(?) — S : send({(P, a)} k). Clause (ii) is translated as
S reev({{(Q, t[x]) } k) — S : send({(P, s[z]) } k). Clause (iii) is translated as .S : recv
({(Pr,y2) e, {(Po, 2) } ) — S : send({(P, x) } i ). The intuition is that the adversary
cannot decrypt messages encrypted with K. He also cannot encrypt messages with K.
He can only forward messages which are encrypted with K. However he has the ability
to pair messages. This is utilized in the translation of clause (iii). Then a message { M } i
is known to the adversary iff M is of the form (P, ¢) and P(t) is reachable in the APDS.

Theorem 1. Secrecy problem for cryptographic protocols with single blind copying,
with bounded number of nonces but unbounded number of sessions is DEXPTIME-hard,
even if no message is allowed to be stored at any control point.

4 One Variable Clauses: Decomposition of Terms

We first show that satisfiability for the classes V; and V; Horn is DEXPTIME-complete.
Note that although we consider only unary predicates, this is no restriction in the case
of one-variable clauses, since we can encode atoms P(t1,...,t,) as P'(fn(t1...,t,))
for fresh P’ and f,, for every P of arity n. As shown in [6,8], ordered resolution on
one-variable clauses, for a suitable ordering, leads to a linear bound on the height of
terms produced. This does not suffice for obtaining a DEXPTIME upper bound and
we need to examine the forms of unifiers produced during resolution. We consider
terms containing at most one variable (call them one-variable terms) to be compositions
of simpler terms. A non-ground one-variable term t[z] is called reduced if it is not
of the form u[v[z]] for any non-ground non-trivial one-variable terms u[z] and v[z].
The term f(g(z), h(g(x))) for example is not reduced because it can be written as
f(z, h(x))[g(z)]. The term f’(x, g(x), a) is reduced. Unifying it with the reduced term
f'(h(y),g(h(a)),y) produces ground unifier {x — h(y)[a],y — a} and both h(y) and
a are strict subterms of the given terms. Indeed we find:

Lemma 2. Ler s[x] and t[y] be reduced, non-ground and non-trivial terms where x # y
and s[z] # t[x]. If s and t have a unifier o then xo,yo € U[V] where U is the set of
non-ground (possibly trivial) strict subterms of s and t, and V' is the set of ground strict
subterms of s and t.

In case both terms (even if not reduced) have the same variable we have the following
easy result:

Lemma 3. Let o be a unifier of two non-trivial, non-ground and distinct one-variable
terms s|x] and t[x]. Then xo is a ground strict subterm of s or of t.
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In the following one-variable clauses are simplified to involve only reduced terms.

Lemma 4. Any non-ground one-variable term t[x] can be uniquely written as t[x] =
tifta[. .. [tn]z]] .. .]] where n > 0 and each t;[z] is non-trivial, non-ground and reduced.
This decomposition can be computed in time polynomial in the size of t.

Above and elsewhere, if n = 0 then ¢1 [t2[. .. [t,[z]] . . .]] denotes x. Now if a clause
set contains a clause C = C’ V £P(t[z]), with t[z] being non-ground, if t[z] =
ti[. .. [tn[z]] - . .] where each ¢; is non-trivial and reduced, then we create fresh predicates
Pty...t; for 1 < i < p— 1 and replace C by the clause C’' V £Pty ...t,_1(tn[z]).
Also we add clauses Pty ...t;(t;41[z]) V —Pty ... t;p1(x) and —Pty .. .t (i1 [x]) V
Pty ... tip1(xz) for 0 < i < n — 2 to our clause set. Note that the predicates Pt; .. .t;
are considered invariant under renaming of terms ¢;. For ¢ = 0, Pty ...t; is same as
P. Our transformation preserves satisfiability of the clause set. By Lemma 4 this takes
polynomial time and eventually all non-ground literals in clauses are of the form £ P(t)
with reduced ¢. Next if the clause set is of the form SU{C; UC5 }, where C is non-empty
and has only ground literals, and C5 is non-empty and has only non-ground literals, then
we do splitting to produce S U {C1} | S U{Cs}. This process produces at most expo-
nentially many branches each of which has polynomial size. Now it suffices to decide
satisfiability of each branch in DEXPTIME. Hence now we assume that each clause is
either:

(Ca) a ground clause, or

(Cb) a clause containing exactly one variable, each of whose literals is of the form
+P(t[x]) where ¢ is non-ground and reduced.
Consider a set S of clauses of type Ca and Cb. We show how to decide satisfiability of
the set S. Wlog we assume that all clauses in S of type Cb contain the variable x;. Let
Ng be the set of non-ground terms ¢[x;] occurring as arguments in literals in .S. Let Ngs
be the set of non-ground subterms ¢[x1] of terms in Ng. We assume that Ng and Ngs
always contain the trivial term x1, otherwise we add this term to both sets. Let G be
the set of ground subterms of terms occurring as arguments in literals in S. The sizes
of Ng, Ngs and G are polynomial. Let S be the set of clauses of type Ca and Cb which
only contain literals of the form +P(¢) for some ¢ € Ng U Ng[Ngs[G]] (observe that
G C Ngs[G] C Ng[Ngs[G]]). The size of ST is at most exponential.

For resolution we use ordering <: P(s) < Q(t) iff s is a strict subterm of ¢. We
call < the subterm ordering without causing confusion. This is clearly stable. This is the
ordering that we are going to use throughout this paper. In particular this means that if
a clause contains literals +P(z) and +'Q(¢) where t is non-trivial and contains x, then
we cannot choose the literal +P(x) to resolve upon in this clause. Because of the simple
form of unifiers of reduced terms we have:

Lemma 5. Binary ordered resolution and ordered factorization, wrt the subterm order-
ing, on clauses in ST produces clauses which are again in St (upto renaming).

Hence to decide satisfiability of S C ST, we keep generating new clauses of ST
by doing ordered binary resolution and ordered factorization wrt the subterm ordering
till no new clause can be generated, and then check whether the empty clause has been
produced. Also recall that APDS consist of Horn one-variable clauses. Hence:

Theorem 2. Satisfiability for the classes Vi and V1 Horn is DEXPTIME-complete.
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5 Flat Clauses: Resolution Modulo Propositional Reasoning

Next we show how to decide the class F of flat clauses in NEXPTIME. This is well known
when the maximal arity r is a constant, or when all non-trivial literals in a clause have
the same sequence (instead of the same sef) of variables. But we are not aware of a proof
of NEXPTIME upper bound in the general case. We show how to obtain NEXPTIME
upper bound in the general case, by doing resolution modulo propositional reasoning.
While this constitutes an interesting result of its own, the techniques allow us to deal
with the full class C efficiently. Also this shows that the generality of the class C does
not cost more in terms of complexity. An e-block is a one-variable clause which contains
only trivial literals. A complex clause C'is a flat clause \/%_, &, P;(fi(«%, ... 2% ) V
\/é.:1 +;Q,(x;) in which k > 1. A flat clause is either a complex clause, or an e-clause
which is defined to be a disjunction of e-blocks, i.e. to be of the form C [z ]U. . .UC), [z,]
where each C; is an e-block. e-clauses are difficult to deal with, hence we split them to
produce e-blocks. Hence define e-splitting as the restriction of the splitting rule in which
one of the components is an e-block.

Recall that r is the maximal arity of symbols in 2. Any complex clause C' can be
renamed to make it good i.e. such that fv(C) C X, = {x1,...,%,}. An e-block C
can be renamed to make it good i.e. of the form C[x,11]. The choice of X, is not
crucial. Now notice that ordered resolution between complex clauses and e-blocks only
produces flat clauses, which can then be split to be left with only complex and e-blocks.
E.g. Resolution between P (x1) V —Ps(x2) V P3(f(x1,%2)) V —Ps(g(x2,x1)) and
Py(g(x1,%x1)) V—Ps(h(x1)) V Ps(x1) produces P; (x1) V —Pa(x1) V Ps(f(x1,%1)) V
—Ps(h(x1)) V Ps(x1). Resolution between P (x,-41) and — Py (f(x1,%2)) V P5(x1) V
P, (x2) produces P5(x1) V Py(x2) which can then be split. The point is that we always
choose a non-trivial literal from a clause for resolution, if there is one. As there are finitely
many complex clauses and e-blocks this gives us a decision procedure. Note however
that the number of complex clauses is doubly exponential. This is because we allow
clauses of the form P; (fl (X1 , X1, XQ)) V Pg(fg (XQ, Xl)) V Pd(f3 (Xg, X1, Xg)) V..., ie.
the nontrivial terms contain arbitrary number of repetitions of variables in arbitrary order.
The number of such variable sequences of 7 variables is exponentially many, hence the
number of clauses is doubly exponential. Letting the maximal arity r to be a constant,
or forcing all non-trivial literals in a clause to have the same variable sequence would
have produced only exponentially many clauses. In presence of splitting, this would
have given us the well-known NEXPTIME upper bound, which is also optimal. But we
are not aware of a proof of NEXPTIME upper bound in the general case. To obtain
NEXPTIME upper bound in the general case we introduce the technique of resolution
modulo propositional reasoning.

For a clause C, define the set of its projections as 7(C) = C[X,.]. Essentially projec-
tion involves making certain variables in a clause equal. As we saw, resolution between
two complex clauses amounts to propositional resolution between their projections. De-
fine the set U = {f(z1,...,2,) | f € Y andeach z; € X, } of size exponential in
r. Resolution between e-block C; and a good complex clause C'y amounts to proposi-
tional resolution of a clause from C[U] with C5. Also note that propositional resolution
followed by further projection is equivalent to projection followed by propositional res-
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olution. Each complex clause has exponentially many projections. This suggests that
we can compute beforehand the exponentially many projections of complex clauses
and exponentially many instantiations of e-blocks. All new complex clauses generated
by propositional resolution are ignored. But after several such propositional resolution
steps, we may get an e-clause, which should then be split and instantiated and used
for obtaining further propositional resolvents. In other words we only compute such
propositionally implied e-clauses, do splitting and instantiation and iterate the process.
This generates all resolvents upto propositional implication. The difference from the
approach of Ganzinger and Korovin [10] is that they have a single phase of instantiation
followed by propositional satisfiability checking. In contrast, we compute certain inter-
esting propositional implications which are further instantiated, and iterate the process.
We now formalize our approach.

For a set S of clauses, let comp(.S) be the set of complex clauses in .S, eps(S) be
the set of e-blocks in S, 7(S) = (Jocg 7(C) and I(S) = S Un(comp(S)) Ueps(S)[U].
For sets S and T of complex clauses and e-blocks, write S C 7' to mean that:

—if C' is a complex clause in S then |(T") F, 7(C'), and

—every e-block in S can be renamed as some C[x,4+1] € T

For tableaux 77 and 75 involving only complex clauses and e-blocks we write 7; C 75
if 7; can be written as S; | ... | S, and 75 can be written as 73 | ... | T}, (note same
n) such that S; C T; for 1 < ¢ < n. Intuitively 73 is a succinct representation of 7.
Define the splitting strategy f as the one which repeatedly applies e-splitting on a tableau
as long as possible. The relation = ¢ provides us a sound and complete method for
testing unsatisfiability. We define the alternative procedure for testing unsatisfiability
by using succinct representations of tableaux. We define » by the rule: 7 | S » 7 |
SU{C1[xr41]} | .. | SU{Ck[Xr41]} whenever |(S) F, C = C4[x;,]U...UCk[x;,],
C'is an e-clause, and 1 < 4y,...,%; < r. Then » simulates = ;:

Lemma 6. If S is a set of complex clauses and e-blocks, S © T and S =< 5 T, then

all clauses occurring in T are complex clauses or e-blocks and T »* T’ for some T’
such thatT T T,

Hence we have completeness of »:

Lemma 7. [faset S of good complex clauses and e-blocks is unsatisfiable then S »* T
for some closed T.

Proof. By Lemma 1, S =* . Sy | ... | S, such that each S; 5 O. Since all complex
clauses and e-blocks in S are good, we have S C S. Hence by Lemma 6, we have some
Ty,...,T, suchthat S »* Ty | ... | T, and S; C T; for 1 <i < n. Since O € S; and
0O is an e-block, hence O € T; for 1 < i < n. O

Call aset S of good complex clauses and e-blocks saturated if the following condition
is satisfied: if I1(S) Fp, Bi[x;, ] U ... U Bg[x;,] with 1 < q,...,49; < r, each B; being
an e-block, then there is some 1 < j < k such that Bj[x,11] € S.

Lemma 8. IfS is a satisfiable set of good complex clauses and e-blocks then S w* T | T
for some T and some saturated set T of good complex clauses and e-blocks, such that

O¢T.
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Proof. We construct a sequence S = Sy C S; C Sy C ... of good complex clauses
and e-blocks such that S; is satisfiable and S; »* S;+1 | Z; for some 7; for each 1.
S = 5 is satisfiable by assumption. Now assume we have already defined So, . .., S;
and 7o, ..., Ti—1. Let C' = Bi[xu|U... U B,ﬁ,[xikl} for 1 <1 < N be all the possible

e-clauses such that 1(.S;) F, C, 1 <4l ..., iﬁw < r. Since S; is satisfiable, S; U {C? |
1 <1 < N} is satisfiable. Since Xy oo, Xl are mutually distinct for 1 < [ < N,
vl

there are 1 < j; < k; for 1 < [ < N such that SiU{Bél[xiz_] |1 <1< N}is
Ji

satisfiable. Let S;11 = S; U {B;l [xr41] | 1 <1 < N} S;yq is satisfiable. Also it is
clear that S; »* S;11 | 7; for some 7;.If S; 1 = S; then S; is saturated, otherwise S, 1
has strictly more e-blocks. As there are only finitely many good e-blocks, eventually we
will end up with a saturated set 7" in this way. Since T is satisfiable, O ¢ T. From
construction it is clear that there is some 7 such that S »* 7 | T.. O

Theorem 3. Satisfiability for the class F is NEXPTIME-complete.

Proof. The lower bound comes from reduction of satisfiability of positive set constraints
whichis NEXPTIME-complete [1]. For the upper bound let S be a finite set of flat clauses.
Repeatedly apply e-splitting to obtain f(S) = S1 | ... | Sy S is satisfiable iff some
S; is satisfiable. The number m of branches in f(S) is at most exponential. Also each
branch has size linear in the size of S. We non-deterministically choose some .S; and
check its satisfiability in NEXPTIME.

Hence wlog we may assume that the given set .S has only complex clauses and e-
blocks. Wlog all clauses in .S are good. We non-deterministically choose a certain number
of good e-blocks Bj[X;+1], ..., BN[Xr41] and check that T = S U {B1[xp41], - - -,
By [x,41]} is saturated and O ¢ T'. By Lemma 8, if S is satisfiable then clearly there is
such a set 7. Conversely if there is such a set 7', then whenever 7' »* 7, we will have
T =T | T’ for some 7'. Hence we can never have T' »* 7 where 7 is closed. Then
by Lemma 7 we conclude that T is satisfiable. Hence S C T is also satisfiable.

Guessing the set 7" requires non-deterministically choosing from among exponen-
tially many e-blocks. To check that 7" is saturated, for every e-clause C' = B [x;,] U
L UBg[x, ], with 1 <idq,...,4, <r,and B;[x,41] ¢ T for1 < j <k, we check that
(T) ¥, C,ie. |(T)U—C is propositionally satisfiable (where ~(L; V...V L,,) denotes
{—Li,...,—L,}). This can be checked in NEXPTIME since propositional satisfiability
can be checked in NPTIME. We need to do such checks for at most exponentially many
possible values of C'. O

6 Combination: Ordered Literal Replacement

Combining flat and one-variable clauses creates additional difficulties. First observe
that resolving a one variable clause Cy V £P(f(s1[x], ..., sp[z])) with a complex
clause FP(f(z1,...,xxs)) V Cs produces a one-variable clause. If s;[z] = s;[x] for all
x; = x;, and if Cy contains a literal P(x;) then the resolvent contains a literal P(s;[z]).
The problem now is thatevenif f(s1[x], ..., s,[z]) isreduced, s;[2] may not be reduced.
E.g. f(g(h(z)), ) is reduced but g(h(z)) is not reduced. Like in Section 4 we may think
of replacing this literal by simpler literals involving fresh predicates. Firstly we have to
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ensure that in this process we would not generate infinitely many predicates. Secondly
it is not clear that mixing ordered resolution steps with replacement of literals is still
complete. Correctness is easy to show since the new clause is in some sense equivalent to
the old deleted clause. However deletion of clauses arbitrarily can violate completeness
of the resolution procedure. The key factor which preserves completeness is that we
replace literals by smaller literals wrt the given ordering <.

Formally a replacement rule is of the form A; — A, where A; and As are (not
necessarily ground) atoms. The clause set associated with thisrule is {A; V—Ay, — A1 V
As}. Intuitively such a replacement rule says that A; and A, are equivalent. The clause
set cl(R) associated with a set R of replacement rules is the union of the clause sets
associated with the individual replacement rules in R. Given a stable ordering < on
atoms, a replacement rule A; — A, is ordered iff A5 < A;. We define the relation
—ras: S =g (S\ {£A10V C}) U {£A30 VvV C} whenever S is a set of clauses,
+A10vC €S, A] — Ay € R and o is some substitution. Hence we replace literals
in a clause by smaller literals. The relation is extended to tableaux as usual. This is
reminiscent of the well-studied case of resolution with some equational theory on terms.
There, however, the ordering < used for resolution is compatible with the equational
theory and one essentially works with the equivalence classes of terms and atoms. This
is not the case here.

Next note that in the above resolution example, even if f(s1[z],. .., s,[z]) is non-
ground, some s; may be ground. Hence the resolvent may have ground as well as non-
ground literals. We avoided this in Section 4 by initial preprocessing. Now we may
think of splitting these resolvents during the resolution procedure. This however will be
difficult to simulate using the alternative resolution procedure on succinct representations
of tableaux because we will generate doubly exponentially many one-variable clauses.
To avoid this we use a variant of splitting called splitting-with-naming [13]. Instead of
creating two branches after splitting, this rule puts both components into the same set,
but with tags to simulate branches produced by ordinary splitting. Fix a finite set P of
predicate symbols. P-clauses are clauses whose predicates are all from IP. Introduce fresh
zero-ary predicates C for P-clauses C' modulo renaming, i.e. C, = Cyiff Cio = Cy
for some renaming o. Literals +C for P-clauses C are splitting literals. The splitting-
with-naming rule is defined as: S — 5, (S \ {C1 U Ca}) U{C1 V —Co,Ca V Ca}
where C LI Cy € S, (5 is non-empty and has only non-splitting literals, and C; has at
least one non-splitting literal. Intuitively C5 represents the negation of Cs. We will use
both splitting and splitting-with-naming according to some predefined strategy. Hence
for a finite set Q of splitting atoms, define Q-splitting as the restriction of the splitting-
with-naming rule where the splitting atom produced is restricted to be from Q. Call this
restricted relation as — g ;. This is extended to tableaux as usual. Now once we have
generated the clauses C; V —C5 and C5 Vv Cy we would like to keep resolving on the
second part of the second clause till we are left with the clause Cs (possibly with other
positive splitting literals) which would then be resolved with the first clause to produce
C1 (possibly with other positive splitting literals) and only then the literals in C; would
be resolved upon. Such a strategy cannot be ensured by ordered resolution, hence we
introduce a new rule. An ordering < over non-splitting atoms is extended to the ordering
<, by letting ¢ <, A whenever ¢ is a splitting atom and A is a non-splitting atom,
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and A <, B whenever A, B are non-splitting atoms and A < B. We define modified

ordered binary resolution by the following rule:
CiVA —BV(y

010' V CQO'

where o = mgu(A, B) and the following conditions are satisfied:
(1) C4 has no negative splitting literal, and A is maximal in C}.
(2) (a) either B € Q, or

(b) C'y has no negative splitting literal, and B is maximal in Cs.
As usual we rename the premises before resolution so that they don’t share variables.
This rule says that we must select a negative splitting literal to resolve upon in any
clause, provided the clause has at least one such literal. If no such literal is present in the
clause, then the ordering <, enforces that a positive splitting literal will not be selected
as long as the clause has some non-splitting literal. We write S =~ S U {C'} to say
that C' is obtained by one application of the modified binary ordered resolution or the
(unmodified) ordered factorization rule on clauses in S. This is extended to tableaux as
usual. A Q-splitting-replacement strategy is a function f such that 7 (—g_pep U —spi
U —r)* f(7) for any tableaux 7 . Hence we allow both normal splitting and Q-splitting.
Modified ordered resolution with Q-splitting-replacement strategy f is defined by the
relation: S = s f(T) whenever S = T. This is extended to tableaux as usual.
The above modified ordered binary resolution rule can be considered as an instance
of ordered resolution with selection [2], which is known to be sound and complete
even with splitting and its variants. Our manner of extending < to <, is essential for
completeness. We now show that soundness and completeness hold even under arbitrary
ordered replacement strategies. It is not clear if such rules have been studied elsewhere.
Wilog we forbid the useless case of replacement rules containing splitting symbols. The
relation < is enumerable if the set of all ground atoms can be enumerated as A1, Ao, . ..
such that if A; < A; then 4 < j. The subterm ordering is enumerable.

Theorem 4. Modified ordered resolution, wrt a stable and enumerable ordering, with
Q-splitting and ordered literal replacement is sound and complete for any strategy. I.e.
forany set S of P-clauses, for any strict stable and enumerable partial order < on atoms,
for any set R of ordered replacement rules, for any finite set Q of splitting atoms, and
Sor any Q-splitting-replacement strategy f, S U cl(R) is unsatisfiable iff S >tr7T
Jfor some closed T.

For the rest of this section fix a set S of one-variable [P-clauses and complex P-clauses
whose satisfiability we need to decide. Let Ng be the set of non-ground terms occurring
as arguments in literals in the one-variable clauses of S. We rename all terms in Ng to
contain only the variable x,1,. Wlog assume x,1; € Ng. Let Ngs be the set of non-
ground subterms of terms in Ng, and Ngr = {s[x, ;1] | s is non-ground and reduced,
and for some t, s[t] € Ngs}. Define Ngrr = {s1[...[sm]...] | s1[.--[sn]...] € Ngs,
m < n, and each s; is non-trivial and reduced}. Define the set of predicates Q = { Ps |
P € P,s € Ngrr}. Note that P C Q. Define the set of replacement rules R =
{Ps1...8m-1(8m[Xr11]) = Ps1...8m([Xr41]) | P$1...8m € Q}. They are clearly
ordered wrt <. Let G be the set of ground subterms of terms occurring as arguments in
literals in S. For the rest of this section the set of splitting atoms that we are going to use is
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Qo = {£P(t) | P € P,t € G}. Their purpose is to remove ground literals from a non-
ground clause. All sets defined above have polynomial size. We also need the set Ngr; =
{XTJrl}U{f(sla AR Sn) ‘ Elg(tla s atm) € Ngr‘{sla ey Sn} = {tla s ,tm}} which
has exponential size. These terms are produced by resolution of non-ground one-variable
clauses with complex clauses, and are also reduced. In the ground case we have the set
Gy = {f(s1,---,8n) | Fg(t1,. ... tm) € G| {s1,...,8n} = {t1,...,t}} of expo-
nential size. For a set P’ of predicates and a set U of terms, the set P’[U] of atoms is
defined as usual. For a set V' of atoms the set —V" and +V of literals is defined as usual.
The following types of clauses will be required during resolution:

C1 clauses C'V D, where C'is an e-block with predicates from Q, and D C £0Q.

C2 clauses C'V D where C' is a one-variable clause with literals from +Q(Ngr;), C
has at least one non-trivial literal, and D C Q.

C3 clauses C'V D where C'is anon-empty clause with literals from +=Q(Ngry [Ngrr[G1]]),
and D C +Q,.

C4 clauses C'V D where C = \/\_ +,Pi(fi(z},... 2% ) v \/é‘:1 +;Q;(z;) is a

complex clause with each P; € Q, each @; € Pand D C +£0Q

We have already argued why we need splitting literals in the above clauses, and why
we need Ngr; instead of Ngr in type C2. In type C3 we have Ngrr in place of the set Ngs
that we had in Section 4, to take care of interactions between one-variable clauses and
complex clauses. In type C4 the trivial literals involve predicates only from P (and not
Q). This is what ensures that we need only finitely many fresh predicates (those from
Q \ P) because these are the literals that are involved in replacements when this clause
is resolved with a one-variable clause. The Qq-splitting steps that we use in this section
consist of replacing a tableau 7 | S by the tableau 7 | (S\{CV L})u{CV—L,LV L},
where C is non-ground, L € £P(G) and C'V L € S. The replacement steps we are
going to use are of the following kind:

(1) replacing clause C[x] = C V £P(t1[... [tn[s[z]]]...]) by clause Cslz] = C V
+Pty ... ty(s[z])} where P € P, s[x,1] € Ngr is non-trivial, and ¢[...[t,]...] €
Ngrr. We have {C1[x,+1]} U cl(R)[Ngrr] Ep Co[x,41].

(2) replacing ground clause Cy = C'V £P(t1]...[tnlg]]-..]) by clause Co = C V
+Pty...t,[g]} where P € P,g € Ngrr[Gi] and ¢1][...[t,]...] € Ngrr. This replace-
ment is done only when ¢1]... [t,[g]] - ..] € Ngrr[Ngrr[G1]] \ Ngr1[Ngrr[G;]]. We have
{C1} Ucl(R)[Ngrr[Ngrr[G1]]] Fp Co.

Define the Qg-splitting-replacement strategy f as one which repeatedly applies first
e-splitting, then the above Qy-splitting steps, then the above two replacement steps till
no further change is possible. Then = - _ ; z gives us a sound and complete method for
testing unsatisfiability.

Asin Section 5 we now define a succinct representation of tableaux and an alternative
resolution procedure for them. As we said, a literal LeQ represents — L. Hence for
a clause C' we define C as the clause obtained by replacing every 4L by the literal
FL. This is extended to sets of clauses as usual. As before U = {f(z1,...,2,) | f €
X, and each z; € X,.}. The functions eps and comp of Section 5 are now extended to
return e-blocks and complex clauses respectively, possibly in disjunction with splitting
literals. For a set S of clauses, define ov(.5) as the set of clauses of type C2 in S. The
function 7 is as before. We need to define which kinds of instantiations are to be used
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to generate propositional implications. For a clause C, define 1, (C) = {C} U C[U] U
C[U[NgrrUNgrr[Ngrr[G1]]]JUC[Ngr1]UC[Ngr1[Ngrr[G1]]]. These are the instantiations
necessary for e-blocks. Define |2 (C') = {C'}UC[Ngrr[G;]]. These are necessary for one-
variable clauses. Define I35(C) = {C}. Ground clauses require no instantiation. Define
14(C) = 7(C) U C[Ngrr U [Ngrr[Ngrr[G1]]]]- These are necessary for complex clauses.
For a set S of clauses, define 1;(S) = (Jo g :(C). Fora set S of clauses of type C1-C4
define I(S) = SUIl;(eps(S))Ulz(ov(S))Uls(comp(S))Ucl(R)[NgrrUNgrr[Ngrr[G1]]].
Note that instantiations of clauses in ¢/(R) are necessary for the replacement rules, as
argued above. For a set T' of clauses define the following properties:

(Pl7) C satisfies property Pl iff C’[XTH] eT.

(P27) C satisfies property P2 iff (T ) l2(Clxrt1])-
(P37) C satisfies property P3r iff [(T') E,, I5(C).
(P4r) C satisfies property P4, iff |(T) E, 14(C).

For sets of clauses S and T, define S Q T to mean that every C € S is of type
Ci and satisfies property Pip for some 1 < ¢ < 4. This is extended to tableaux as
usual. The alternative resolution procedure for testing unsatisfiability by using succinct
representations of tableaux is now defined by therule: 7 | S » 7 | SU{C1[x,41]UD} |

SU{Cs[xrq1]} | ... | SU{Ck[xr+1]} whenever I(S) F, C[x;,]U...UCk[x;,]UD,
each C; is an e-block, 1 < iy,... i, < rand D C +Qq. The simulation property now
states:

Lemma9. If SC T and S =, jr T then T »* T’ for some T' such thatT T T
Hence as for flat clauses we obtain:

Theorem 5. Satisfiability for the class C is NEXPTIME-complete.

7 The Horn Case

We show that in the Horn case, the upper bound can be improved to DEXPTIME.
The essential idea is that propositional satisfiability of Horn clauses is in PTIME in-
stead of NPTIME. But now we need to eliminate the use of tableaux altogether. To
this end, we replace the e-splitting rule of Section 6 by splitting-with-naming. Ac-
cordingly we define the set of splitting atoms as Q@ = Qy U Q; where Q; = {6 |
C'is a non-empty negative € — block with predicates from P}. We know that binary res-
olution and factorization on Horn clauses produces Horn clauses. Replacements on
Horn clauses using the rules from R produces Horn clauses. Q;-splitting on Horn
clauses produces Horn clauses. E.g. clause P(x1) V —Q(x1) V —R(x2) produces
P(x1)V—Q(x1)V——R(x2) and — R(x3)V—R(x2). Qo-splittingon P(f(x))V—Q(a)
produces P(f(x1)) V ——Q(a) and —Q(a) V —Q(a) which are Horn. However Qo-
splitting on C' = —P(f(x1)) V Q(a) produces C; = —P(f(x1)) V —Q(a) and Cy =
Q(a) vV Q(a). Cy is not Horn. However C; = C and Cy = —Q(a) V Q(a) are Horn. Fi-
nally, as Q7 has exponentially many atoms, we must restrict their occurrences in clauses.
Accordingly, for 1 <4 < 4, define clauses of type Ci’ to be of the form C'V E where C'is
of type Ci, E C £Q1,C'V Fis Horn and E has at most  negative literals (C is defined
as before, hence it leaves atoms from Q; unchanged). Now the Q-splitting-replacement
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strategy f first applies Q1-splitting as long as possible, then applies Q-splitting as long
as possible and then applies the replacement steps of Section 6 as long as possible. Suc-
cinct representations are now defined as: S T 7' iff for each C' € S, C'is of type Ci’
and satisfies Pip for some 1 < ¢ < 4. The abstract resolution procedure is defined as:
Tw» TU{B1[x,+1]V—q2V...V—q;UDUE}U{¢;V B;[x;41] | 2 < i < k} whenever
|(T) ':p Q, C = Bl[xil] U...u Bk[xik] D UE,QiS HOI'l’l, 1 S il,...,ik S r,
Bj is an e-block, B; is a negative e-block and ¢; = B; for 2 < ¢ < k, D C +Q and
E C +09Q; such that if k£ = 1 then E has at most r negative literals, and if £ > 1 then F/
has no negative literal.

Lemma 10. If ST T and S =< s S' thenT »* T' for some T" such that S" C T".

Now for deciding satisfiability of a set of flat and one-variable clauses we proceed
as in the non-Horn case. But now instead of non-deterministically adding clauses, we
compute a sequence S = Sy » S1 B S, ... starting from the given set S, till no more
clauses can be added, and then check whether O has been generated. The length of this
sequence is at most exponential. Computing S; 11 from S; requires at most exponential
time because the number of possibilities for C' in the definition of B above is exponential.
(Note that this idea of Q;-splitting would not have helped in the non-Horn case because
we cannot bound the number of positive splitting literals in a clause in the non-Horn
case, whereas Horn clauses by definition have at most one positive literal). Also note
that APDS can be encoded using flat Horn clauses. Hence:

Theorem 6. Satisfiability for the classes C Horn and F Horn is DEXPTIME-complete.

Together with Theorem 1, this gives us optimal complexity for protocol verification:

Theorem 7. Secrecy of cryptographic protocols with single blind copying, with bounded
number of nonces but unbounded number of sessions is DEXPTIME-complete.

8 Conclusion

We proved DEXPTIME-hardness of secrecy for cryptographic protocols with single
blind copying, and improved the upper bound from 3-DEXPTIME to DEXPTIME. We
improved the 3-DEXPTIME upper bound for satisfiability for the class C to NEXP-
TIME in the general case and DEXPTIME in the Horn case, which match known lower
bounds. For this we invented new resolution techniques like ordered resolution with
splitting modulo propositional reasoning, ordered literal replacements and decomposi-
tions of one-variable terms. As byproducts we obtained optimum complexity for several
fragments of C involving flat and one-variable clauses. Security for several other decid-
able classes of protocols with unbounded number of sessions and bounded number of
nonces is in DEXPTIME, suggesting that DEXPTIME is a reasonable complexity class
for this class of protocols.
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1

Propositional logic can be used to model and compute a plethora of problems.
Typically one constructs a theory such that its models encode solutions to the
problem of interest. Recently there has been a dramatic improvement in the
performance of programs for finding models, see e.g. [15,18,10]. However, most
of these programs are SAT-solvers, restricting their input to instances of the
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Abstract. There is a trend to study extended variants of propositional
logic which have explicit means to represent cardinality constraints. That
is accomplished using so-called c-atoms. We show that c-atoms can be
efficiently reduced to a general form of Exact Satisfiability. The general
X;SAT problem is to find an assignment for a CNF such that exactly i
literals are true in each clause for any ¢ > 1. We show that this prob-
lem is solvable in time O(1.4143™) (where n is the number of variables)
regardless of i if we allow exponential space. For polynomial space, we
present an algorithm solving X;SAT for all i strictly better than the triv-
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Introduction

satisfiability problem. That raises at least two issues:

1. It forces the formulation of unnecessarily large theories even for quite simple
constraints.
To exactly solve SAT one must deploy exponential-time algorithms where
no other base than 2 is known. While several ways trying to work around
this have been proposed such as incomplete solvers using randomized and /or
heuristic methods, fact remains that SAT has a very difficult structure.
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As for the first issue, several extensions to the basic language have been pro-
posed such as equality, pseudo boolean constraints and c-atoms, see e.g. [13,5,1].
We will return to the c-atoms later.

The second issue makes it clear that it would be desirable to find another less
hard problem capable of expressing interesting theories. Such a problem would
by necessity be NP-hard. However, it might have a structure allowing faster
algorithms than SAT. In this paper we will focus on one such candidate.

One well-studied variant of SAT is EXACT SATISFIABILITY, X SAT (sometimes
denoted just XSAT), which asks for an assignment such that exactly one literal
is true in every clause. It is NP-complete, even when restricted to clauses of
maximum length 3 (a problem called X;3SAT or ONE-IN-THREE SAT), see [9]. It
is closely related to problems such as EXACT HITTING SET and has sometimes
been treated in connection with these, see [7]. Exact algorithms for X;SAT and
X1 3SAT have been presented by several authors [6,8,11,16,4,3]. The so-far best
algorithms by Byskov et al. [3] have running times in O(1.1003™) (for X;3SAT)
and O(1.1748™) (for X;SAT). Note that X;13SAT in earlier papers usually was
denoted X3SAT.

A natural extension of X;SAT is the problem X;SAT, asking if a formula allows
an assignment to the variables such that exactly ¢ literals are true in each clause.
In the context of propositional logic modelling, X;SAT is of interest when it comes
to means to represent cardinality constraints. Such extensions have been studied
by e.g. [14,5,2,19]. They accomplish the extension using so-called cardinality
atoms (although the author of [19] does not use the name, he does use the
concept). A cardinality atom is an expression k{a1,...,a,}m, where a1,...,a,
are boolean variables and the expression is true iff at least k£ and no more than
m of the a;’s are true. One way to handle the cardinality atoms is by compiling
(reducing) them into ordinary SAT clauses and then using SAT-solvers. Liu and
Truszezynski [14] describe two possible reductions. First a method that does not
introduce any new variables but increases the number of clauses exponentially.
They dismiss this technique: “This approach ... is practical only if & and m are
small (do not exceed, say 2). Otherwise the size ... quickly gets too large for SAT
solvers to be effective.” They also present a second method that does not have
this problem. However, the reduction more than doubles the number of variables.
Rather than compiling the c-atoms away, Liu and Truszczyniski investigates the
possibility of keeping them and then applying an incomplete search method. In
effect, they deal with a formula having different kinds of clauses (ordinary SAT
clauses as well as different kinds of c-atoms).

Note that an X;SAT clause (a1 V az...ay) is not just a special case of the
c-atom h{ai,as...a,}i. If we add the new variable b into the X;SAT clause,
then finding a model for the modified clause (bV a1 Vas...a,) is tantamount to
finding a satisfying assignment for the c-atom i—1{ay, as .. .a, }i. Repeating the
procedure, we obtain a transformation that is more efficient than transforming
to SAT, as this reduction introduces i — h new variables. Also, we see that X;SAT
well captures interesting properties of c-atoms. We hope that the algorithms and
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tools presented here will facilitate a better utilization of the c-atoms in practice
as well as enhancing our theoretical understanding of these constraints.

This paper will show that X;SAT is solvable in time O(1.4143™), where n
is the number of variables, if a space consumption in O(1.1893") is allowed.
This method is an application of a general algorithm for a special class of NP-
complete problems described by Schroeppel and Shamir [17]. While of theoretical
interest, showing that the running time does not necessarily depend upon ¢, the
use of exponential space is of course highly undesirable. For practical use, in the
context of c-atoms, we present a branch-and-bound algorithm with polynomial
space requirements that obtains a running time considerably better than the
trivial O(2™) bound.

In the following presentation we first give some preliminaries and definitions.
Section 3 presents some features of the language X;SAT. Then follows Section 4
which presents and analyzes exact algorithms for deciding X;SAT in polynomial
space. Section 5 shows how to deal with X;SAT using exponential space. Con-
clusions and a brief discussion about our results and possible future research
directions are given in Section 6.

2 Preliminaries

A propositional variable (or variable for short) has either the value true or false.
A literal is a variable p or its negation p. The literal p is true iff the corresponding
variable p has the value true and p is true iff the corresponding variable p has
the value false. A clause is a number of literals connected by logical or (V). The
length of a clause x, denoted |z|, is the number of literals in it. We will sometimes
need a sub-clause notation in this way: (a VbV C), such that C = ¢y V... V¢, is a
disjunction of one or more literals. In the following, literals will be indicated by
lower-case letters and sub-clauses by upper-case letters. A formula is a sequence
of clauses connected by logical and (A). Var(F ) for a formula F' denotes the set
of variables of F'. The degree of ¢, denoted 0(c), is the number of clauses that
contain either ¢ or ¢. If §(c¢) = 1 we call ¢ a singleton. If §(c¢) > 3 we say that ¢
is heavy.

Substitution of a by ¢ in the formula F is denoted F(a/d); the notation
F(a/d;b/~) indicates repeated substitution: F(a/d)(b/~) (first a is replaced and
then b). We will assume that the substitution operation also takes care of some
trivial simplifications such as replacing the occurence of a V @ in a clause with
true. F(B/ false), where B is a disjunction of literals, means that every literal
of B is replaced by false. For a given disjunction of literals B=aVbVeé..., B

is the inversion of B, i.e., B=aVbVec....

F=(avbVve)A(@avbVvd)A(EcVd)
M = {a,b,& d}

Fig. 1. An instance F' of X2SAT and a model M of F'
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The Ezxact i Satisfiability Problem (X;SAT) for a formula is to find an assign-
ment to the variables such that exactly ¢ literals are true in each clause. Such
an assignment is known as a model. Given a formula F', an assignment to the
variables is inconsistent if any clause has no true literal (it is unsatisfied) or
more than i true literals (it is over-satisfied). Figure 1 shows a formula in X2SAT
and a model for it. The languages X1SAT, X2SAT, X3SAT etc. are referred to as
sublanguages of X;SAT. Note that X;SAT is not the language L = {F | such that
there is a truth assignment for F' making the same number of literals true in
every clause}, but rather, L = |J;2, X;SAT.

In the branch-and-bound algorithm for X;SAT to be presented later, the recur-
sive decomposition will create various kinds of constraints represented as clauses,
that is, when setting the variables of a clause, other clauses will be affected. For
instance, the clause (a VbV ¢V d)X258T  which requires two true literals to be
satisfied, will become (a v bV ¢)X15AT if ¢ is set to true. When there are dif-
ferent types of clauses in a formula, we say that it is mized. Depending on how
many true literals a clause needs to be satisfied we will use notations such as
(aVbVeVd)X2SAT and the like.

For terms such as NP-completeness etc., the reader is referred to [9]. The
notation p; <P p, means that there exists a polynomial transformation from
the problem p; to the problem ps.

When analyzing the running time of the algorithms, we will encounter re-
currences of the form T'(n) < Zle T(n — r;) + poly(n). They satisfy T'(n) €
O(7(r1,...,rg)"™) where 7(r1, ..., 1) is the largest, real-valued root of the func-
tion

k
fla)=1-3 o (1)

see [12]. Since this bound does not depend on the polynomial factor poly(n),
we ignore all polynomial-time calculations. Let R = Zle r; and then note
that due to the nature of the function f(z) = 1 — Zle x~ ", the smallest
possible real-valued root (and hence the best running time) will appear when
each r; is as close to R/k as possible, i.e., when the decrease of size of the
instance is balanced through the branches. Say for instance that R = 4,k = 2.
Then 7(1,3) = 7(3,1) &~ 1.4656 and 7(2,2) ~ 1.4142. We will refer to this as
the balanced branching effect. We will use the shorthand notation 7(r*...) for
T(rr...r,...), eg., 7(5%,3%) for 7(5,5,3,3,3).
——

k

3 Properties of the X;SAT Problem

The X;SAT problem is obviously NP-complete since X1SAT <P X;SAT: any oc-
currence of the literal a is replaced by i occurences. The reduction gives a hint
that X;SAT might be harder to solve for higher i, which indeed seems to be the
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case for polynomial space algorithms. Surprisingly, this does not hold for the
exponential space algorithm to be presented.

One property of X;SAT that will prove useful in the following algorithms is
given in this lemma:

Lemma 1. A formula F, where each variable occurs at most twice, can be re-
duced in polynomial time to a formula F', such that F' € X1SAT iff ' € X;SAT,
the number of variables is increased only by a polynomial amount and each vari-
able in F' occurs at most twice.

Proof. For clarity of presentation we consider a special case, namely the clause
z=(aVbVcVd)X2SAT which we want to transfer into X;SAT clauses. As any
pair of the literals may be both false, both true or one true and one false
in any combination, they cannot appear in the same X;SAT clause. A possible
solution is this reduction from z:

aVkVvDXSAT (kvim oy q)X1SAT

(
(bvmvV n}){X;iI;T (IvnVp\Vr)XiSAT
(c )71

(

It is straightforward to verify that this construction works and is extendible to
other exact constraints and clause lengths.

The following is needed in the main algorithm for X;SAT:

Corollary 1. For a formula F where each variable occurs at most twice, it is
polynomial time decidable whether F € X;SAT.

The corollary follows from Lemma 1 and the fact that for a formula F' where
each variable occurs at most twice, one can apply polynomial-time matching
techniques to see whether there is an X1SAT model. These techniques were first
described by Porschen et al. in [16] in the context of X13SAT. They can easily be
extended to general X;SAT formulae, see e.g. [4].

In [7] Drori and Peleg introduced the name canonization for all the various
polynomial time pruning rules that can be applied to an instance of X;SAT. For
example, a clause (a V b)XlSAT € F implies that one of a and b, but not both,
must be true, and so F can be replaced by F(a/b). Some of these rules extend
to X;SAT, other not. We here present the ones used in this paper. It is straight-
forward to see that they can be performed in polynomial time and that they do
not change the X;SAT satisfiability when applied to a formula F.

1. Pick an X;SAT clause with ¢ + k singletons. Remove k singletons.

2. Pick a clause (a V b)X15AT  remove it and let F := F(a/b)

3. Pick an X;SAT clause A such that |A| = i. Remove it and let F' := F(a;/true)
for all literals a; of A.

4. Pick two clauses (aVbVA)X15AT and (avbvB)X1SAT and let F := F(b/ false)

5. For two X;SAT clauses (A) and (AV B) let F := F(B/ false)
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6. If there are two clauses z = (AV B)X254T and y = (A Vv B)X25AT such that
|B| mod 2 =1 or |B| > 4, then let F':= {&}
7. If there are two clauses z = (AV bV ¢)X254T and y = (A VbV &) X25AT  then
let F:= F(b/c)
8. For two X;SAT clauses (a V A) and (A VD), let F := F(a/b)
9. If there are two clauses (a V AV b)X25AT and (@ Vv AV ¢)X25AT  then let
F:=F(b/e)
10. If there are two clauses (a VbV AV ¢)X254T and (@ Vv bV AV d)X25AT  then
let F:= F(c/d)
11. If there are two clauses (aVbVevdVev A)X28AT and (avbvevdvev B)X2SAT,
then let F':= {@}
12. If there are two clauses (aVbVeVdV A)X2SAT and (avbvevdy B)X2SAT,
then let F' := F(A/ false; B/ false)
13. If there are two clauses (a VbV eV A)X25AT and (@ Vv bV eV B)X25AT then
let F:= F(A/false; B/ false)

Clause Length x;SAT X2SAT X3SAT X4SAT
1 * * * *
9 * * * *
333 < 145" 33 < 145" * s
447 < 142" 674 < 157" 4MVH < 1427 K
55%% < 1.38" 10™° < 1.59" 10™/° < 1.59™ 57/ < 1.38"

66™% < 1.35"
777 < 1.33"
8 8"/% < 1.30"
99"/ < 1.28"

15™/% < 1.58"
217 < 1.55"
28"/% < 1.52"
36™/9 < 1.49"

20"/6 < 1.65"
35"/7 < 1.67"
56"/% < 1.66"
84"™/9 < 1.64"

15™/6 < 1.58™
35"/7 < 1.67"
70" < 1.71"
126™/° < 1.72"

10 10™/10 < 1.26™ 45™/10 < 1.47™ 120™/1° < 1.62" 210™/° < 1.71"

Fig. 2. Running times for D; should it always encounter the same kind of clause; ‘¥’

indicates polynomial time

4 Polynomial Space Exact Algorithms for X;SAT

The basic idea behind all known poly-space algorithms for X;SAT has been DPLL
branching. One way to deal with X;SAT is to generalize the approach so that for
a certain clause y, we test all (\z;l) assignments to the variables of y making 4

literals true. That makes (Iz;l) recursive calls, in each of which |y| variables are
removed — when i literals are true, the rest have to be false and so |y| variables
are set. Of course the length of y is crucial for the running time. Short clauses (in
comparison with ¢) are good w.r.t. the running time. However, as opposed to the
ordinary SAT-problem, long clauses are also good. In Fig. 2 is an overview of the
first sublanguages of X;SAT and the first clause lengths. Each entry is calculated
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as (lf‘)n/lyl. Note that for a fixed 4, this table is polynomial time computable (as-
suming that the longest clause length is a polynomial in ). Hence, we can easily
find a clause which is the best choice, i.e., gives the fastest running time. We call
such a clause preferable. As the formula changes during the recursive decompo-
sition of generalized DPLL branching different clauses will become preferable.
The following algorithm elaborates on this idea. For clarity of presentation we
assume that a variable occurs in each clause at most once. (Laxation of this
would not introduce any new worst case, however, it would introduce some un-
interesting technicalities.) We also assume that in the substitution, if a (partial)
assignment is made such that any clause becomes over-satisfied or too short to
ever be satisfied, then the unsatisfiable formula F = {@} is returned. The pur-
pose of Line 2 is to limit the number of singletons in the following lines. It works
by forcing a certain percentage of the variables to be heavy. The choice of 3/5 is
rather arbitrary — it works well for the first sublanguages. As will become clear
in the time complexity analysis it is reasonable to believe that for higher i a
larger constant will give a better trade-off. Note that when F' is small enough
Line 2 is applicable and so the recursion ends. Line 1 will limit the number of
singletons in a preferable clause when the clause is long. The benefit of this will
be clear in the time complexity analysis.

Algorithm D;(F)

1. If there is an X;SAT clause with ¢ 4+ k singletons then remove k of those
singletons;

2. If 3/5 or less of the variables are heavy then cycle through all possible assign-
ments to these variables. For each such partial assignment to the variables,
transform the instance to an X;SAT instance, using the reduction of Lemma
1, then use the matching techniques by Porschen et al. to decide whether
there is a model. Answer ‘Yes’ if such a model is found and ‘No’ otherwise;

3. Pick a preferable clause y with as few singletons as possible and make
(") recursive calls, each call having the form D;(F(ay/true;as/true. ..
a;/true;a;11/ false. . .)).

Theorem 1. D;(F) decides whether F € X;SAT

Proof. Line 1 is a canonical rule. Line 2 is correct by Lemma 1 and the correctness
of the matching techniques. Line 3 is correct since all models for F' must have @
literals true in y.

We now examine D; w.r.t. to time complexity. Let T, indicate the running
time of D;(F).

Theorem 2. For every fized i, Tp, is in

m 1/m n
O (max {mgx( ; ) , 1.5157} ) C o(2™)
'igjn
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Proof. Line 1 takes polynomial time to execute. As for line 2, we can safely
disregard the polynomial time work spent on matching. Hence the interesting
thing is the size of the recursion tree, which is 23"/5 ~ 1.5157". Similarly for line
3, we disregard the polynomial work done. The recursion tree of D;(F') has size
at most (T)n/m and so the big-Oh expression is justified.

To justify the o(2") inclusion, first note that (T)n/m — glos (T)T
2 1082 (T) Then, remember that (T) is the number of subsets of size ¢ whose el-
ements are picked from a set of size m. As the powerset has size 2", (T) is always
smaller than that. Hence it follows that log, (7') < m and so g log2 (7) < on,

It is interesting to note that already the above rough analysis shows that
the running time is better than any known DPLL-style algorithm for SAT. This
indicates the practical usefulness of X;SAT in the context of c-atoms — X;SAT
seems to have a more benign structure than SAT. We now try to refine the
analysis to achieve a tighter upper time bound. Unfortunately, in order to do
that we need to know the worst clause length for every sublanguage. Looking
again at Fig. 2 one could think that the worst clause length is 2i 4+ 1. However,
that is not always the case. Extending the table, one sees that the pattern is
changed for X;12SAT where the worst clause length is 26. It is still an open problem
where to find the worst clause length for a given sublanguage. However, for the

first sublanguages we can perform a better analysis:

Theorem 3. For X2SAT, X3SAT and X4SAT Tp, is in O(1.5157™), O(1.6214™)
and O(1.6848™), respectively.

Proof. Starting with X2SAT, we need to take a closer look at Line 3.

Once Line 3 has been applied, the formula is likely to have become mixed, and
so in the general case, y might be a clause requiring one or two true literals. If y
requires one true literal we have a worst clause length of 3, where 3 branches are
made, in each of which 3 variables are removed. If the algorithm always did this
branching, we would have a branching tree of size O(1.4423™). If y requires two
true literals, we will have a worst case when |y| = 5. If D, always had to branch

upon such a y, we would have a running time in O ((g)n/5) C O(1.5849™).

However, note that due to the previous cases and the fact that y has the smallest
possible number of singletons, at most one variable of y is a singleton. (Line 1
is not strong enough to impose this, but Line 2 ensures that there are clauses
with at least 4 heavy variables.) That means that in each of the 10 calls, other
clauses will be affected. As y was most preferable, all clauses must have length
5, and of the 10 calls at most one call will not set a literal true in another clause
(only one combination of the non-singletons will not set a literal true). Hence, for
the worst case, in 9 of the recursive calls the algorithm will in the immediately
following step encounter an X;SAT clause of length 4 and in one recursive call
encounter an XoSAT clause of length 4. This means that we will have an upper
time bound O(c") where ¢ = 7(95,9%%) ~ 1.5149. In this case, Line 2 will decide
the overall running time of the algorithm.
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Looking at Fig. 2, let us examine the other clause lengths that are possible
worst-case candidates.

1. Clause length 4: In this case there will be at most one singleton in the clause
picked and so we get ¢ = 7(753,73) ~ 1.5113.

2. Clause length 6: As 25%6 = 2.4 there may be two singletons in the clause we
picked. Hence we get ¢ = 7(11'%5,112'19) ~~ 1.5055.

3. Clause length 7: As 25—7 = 2.8 there may be two singletons in the clause we
picked. Hence we get ¢ = 7(139°6,132'15) ~ 1.4657.

4. Clause length 8: 2—58 = 3.2 but Line 2 prevents the possibility of three sin-
gletons. Hence we get ¢ = 7(15257,15221) ~ 1.4345.

When it comes to X3SAT and X4SAT the analysis is almost identical. Here ¢
will be 7(133%15,13220) and 7(17123°6 17379) | respectively.

The use of canonization has proved fruitful in the construction of algorithms
for X;SAT, and so one could hope that the use of more canonical rules would im-
prove D; further (in terms of proven upper time bounds). However, the problem
is that while canonization helps improve many cases such as overlaps between
clauses, many singletons and few occurrences of high degreed variables, yet the
worst case of the algorithm still remains, namely: all clauses have the worst pos-
sible length, no pair of clauses share more than one variable and there are many
heavy variables. For XoSAT the author has constructed an algorithm that obtains
a better upper time than D;. The algorithm Do (F') carefully chooses variables
to branch on, uses canonization, and arrives at the bad case described. Then the
algorithm picks a clause that has two heavy variables a and b. It makes three re-
cursive calls, Do(F(a/true; b/true)), Do(F(a/b)) and Dy(F(a/ false; b/ false)).
By a careful case analysis of how Ds behaves in the three calls, an interesting
time bound can be established. When this case is no longer applicable, it can
be shown that there are sufficiently few heavy variables left and the cycling and
matching technique can be used.

Algorithm Dy (F)

0. Canonize F and if |Var(F)| < 10 then perform an exhaustive search to find
a model

1. Pick a clause (a VbV A)X15AT or a clause (aVvbVe)X25AT: return Do(F(a/b))
OR Dy(F(a/false;b/ false))

2. Pick a clause (aVbVevd) X254, return Dy (F(a/b; ¢/d)) OrR Do(F(a/b;c/d;b/d))

3. Pick two clauses (a VbV ¢V A)X25AT and (@ Vv bV ¢V B)X25AT guch that
Var(A) N Var(B) = @; return Do(F(c/true;a/b)) or Do(F(c/false))

4. Pick two clauses (a VbV ¢V A)X28AT and (a v bV ¢ v B)X28AT; return
D5 (F(b/¢ a/true)) orR Do(F(b/¢; a/false)) OR Do(F(b/ false;c/ false))

5. Pick two clauses (a VbV A)X254T and (av bV B)X25AT: return Do(F (a/true;
b/true)) OR Dy(F(a/false;b/true)) OrR Do(F(b/ false))

6. Pick two clauses © = (AV B)X25AT and y = (AV C)X25AT such that |A] > 2;
return Do(F U (A)X25AT) or Dy(F U (A)X15AT) or Dy(F(A/ false)).



104

7.

8.
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Pick a clause = (a V bV A)X25AT such that a and b are heavy; return
Dy(F(a/true; b/true)) orR Do(F(a/b) OR Do(F(a/false;b/ false).

Cycle through all possible assignments to the heavy variables. For each such
partial assignment to the variables, transform the instance to an X;SAT in-
stance, using the reduction of Lemma 1, then use the matching techniques
by Porschen et al. to decide whether there is a model. Answer ‘Yes’ if such
a model is found and ‘No’ otherwise.

The following theorem establishes the correctness of Ds:

Theorem 4. Dy(F) will correctly decide whether F' has an XoSAT model.

Proof. We look at the cases of Ds:

0.
1.

S

=2

Correct by assumption.

If the clause is an X;SAT clause both a and b cannot be true, so the two
cases 1) one of a and b is true; 2) both are false, cover all possibilities.
If the clause is (@ V bV €)X254T | we have seen that this clause in effect is
identical to (a VbV ¢)X15AT and so this is also correct.

. The two cases cover all possibilities: either it holds that one of a and b and

one of ¢ and d are true, or it holds that both a and b are true and the other
two false or vice versa.

. When ¢ = true it holds that a # b
. Both of b and ¢ cannot be true, and so all possible cases are covered.
. One of b = true and b = false holds. In the first case one of a = true and

a = false holds.

. Two, one or zero variables of A are true.
. The second branch covers the two possibilities a = true,b = false and

a = false,b = true.

. Correct by Lemma 1 and the correctness of the matching techniques.

The time complexity analysis consists of a number of case and sub-case anal-

yses. Typically the analysis of a case m will establish an upper time bound U,
“for this case” which should be interpreted: if throughout the whole execution
of the algorithm, « is the only case applicable, then U, is an upper bound of
the execution time. Hence one can easily see that an overall upper time bound

for

the algorithm is the maximum U; established for all cases j.

Theorem 5. Algorithm Ds runs in time O(1.4511™)

Proof. We examine each of the cases:

0.
1.

Runs in polynomial time.

We look at the possible subcases:

(a) We picked a clause (a VbV ¢V d)*15AT: In the first branch, the call
Do(F(a/b)) will make the substitution operation apply the following
steps: the clause will become (bV bV ¢V d)*15AT which will become
(true V ¢V d)X15AT which will remove the clause and replace ¢ and d by
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false and hence 3 variables are removed. The second branch will result
in the following steps: (false V false V ¢V d)X15AT (¢ v d)X15AT  The
clause (¢Vd) will then be immediately taken care of by the canonization
step following. Hence, this case runs in O(7(3,3)") C O(1.2600™) time.

(b) We picked a clause (aVbVe)X1SAT: In the first branch, when a is replaced
by b, the other literal will be put to false by the substitution operation,
so two variables are removed. In the other branch, when a = b = false,
the clause (¢)X15AT is created and so, three variables are removed in this
branch. Hence, this case runs in time O(7(3,2)™) C O(1.3248").

(c) We picked an X;SAT clause longer than 4. The worst case is when the
clause has length 5. This case runs in O(7(4,2)") C O(1.2721™) time.

(d) We picked a clause (aV bV &)X29AT This case runs in time O(7(3,2)") C
0(1.2721™).

. We have a running time for this case in O(7(2,3)™) C O(1.2600™).
. As the formula has been canonized, |A U B| > 3 and so in the first branch

at least 5 variables are removed (c is true and bV b equals true and so
the literals of A and B are set to false). Hence we have a running time in
O(7(5,1)™) C O(1.3248™) time.

. This case runs in O(7(4,4,2)™) C O(1.4143™) time.
. This case runs in O(7(5,5,1)") C O(1.4511™) time.
. Doing a naive analysis like in previous cases, looking only at the direct

effects we would obtain very bad figures. For example, assume |z| = |y| =5
and |A| = 2, we would reason that in the first branch 2+3+3 variables are
removed, in the second 1 variable and in the third 2 variables, giving an
upper bound in O(7(8,1,2)") C O(1.6408™). However, if one broadens the
perspective to the branchings that will be done immediately afterwards, we
end up with better time bounds. In our example, the first branch we cannot
say more about, and so we stay with 8 variables removed. In the second
branch, however, we will have the two clauses (B)*15AT and (O)X15AT,
Following their way downward the recursion tree we see that effectively, there
will be four branches and the number of variables removed are 7,6,6 and 5,
respectively (the one variable removed by the explicit creation of (A)X15AT
included). We may continue and reason similarly about the third branch,
however, the figures we obtained are good enough: O(7(8;7,6,6,5;2)" C
0(1.4401™). Note that the sign ;" is used to help the reader see how the
expansion is done. We now look at the remaining cases:
(a) For |A| =2, we have already described the worst case, because if any of
B and C are longer than 3 we will be able to remove more variables.
(b) For |A| = 3; if |B] = |C| = 2 we note that the second branch can
be expanded to two branches due to the explicit creation of (A)X1SAT
and so we get a running time in O(7(4;5,4;3)) C O(1.4253"). If |B| =
2,|C| = 3 we note that the second branch can be expanded to four
branches and we get a running time in O(7(5; 5,6, 6,7;3)™ C O(1.4276™).
If |B] = |C| = 3 we may expand each of the three branches, the first
to two branches, the second to eight branches and the third to two,
thereby obtaining a running time in O(7(9,8;8,8,7,7,7,6,9,8;8,7)" C
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0(1.3993™). When we look back in the complexity analysis we see that
the worst case possible for any X;SAT clause or any X3SAT clause shorter
than 5 is that in one branch 2 variables are removed and in the other 3.
As this was the case for all extra branchings when |B| = |C| = 3 we are
now done with the subcase of |A| = 3.

(c) For |A| = 4, we note that due to the canonical rules |z|+ |y| > 10, and so
the first subcase to consider is |B| = 1, |C| = 2. As a matter of fact, we
will have only two branches, because in the third branch the formula will
immediately be found unsatisfiable by the canonization. Hence this case
runs in O(7(3,2)™ C O(1.3248™) time. If |B| = |C| = 2 a naive analysis
show that we have a running time in O(7(4,2,4)" C O(1.4143™). For
|B| = |C| = 2 we also have the bound O(7(4,2,4)" C O(1.4143™). For
|B| = 2,|C| = 3 we get the bound O(7(5;4,4;4)) C O(1.3888"). If
|B| = |C| = 2 we get a running time in O(7(6;3,3;4)) C O(1.4459™) and
this is clearly the worst case for |A| = 4.

(d) For |A| =5, if |B| =1, |C| = 2, we get a running time in O(7(3,2,5))" C
0(1.4300™). |B| = |C| = 2 gives a bound O(7(4,2,5)™) C O(1.3803™). If
|B| = 2,|C| = 3 we get a running time in O(7(5,1,5))™ C O(1.4511™).
For |B| > 2,|C| = 3 we have a bound O(7(6;4,2;5)™) C O(1.4352") (the
second branch is expanded by making use of (4)X15AT) The other cases
are better than this last one. We also see that for |A| > 5 we will have
no case worse than the ones already analyzed.

. We know that there are XoSAT clauses a € y, a € ¢, b € z and b € 2z’ which,

by the earlier cases, are all different from x, do not share any other variables

than a and b and are at least 5 in length. That means that there is a subset

of the formula looking like this (a indicates a or a):

y=(aVeVc v C)XeSAT

y = (aVvdvd v D)X2SAT

z=(aVbVa Va'Vv A)X2SAT

z=(bVveve v E)X2SAT

o = (b\/ f vV f/ vV F)XQSAT

We will examine the cases depending on |z|, using the same expanded view

as in the previous case:

(a) If [x| = 5 then there are five variants depending on the actual look of @
and b — none of the dotted variables is negated, one is negated, etc.
None of the dotted is negated: this case runs in O(7(21,19%,175,15%,13;
3,4;4,5))™ C O(1.4413™) time. The first branch can be extended into 16
branches, taking care of the four X;SAT clauses created by a = b = true.
The first figure, 21, is 5 (obtained from ) +4 44+ 4 + 4 (obtained from
the other four clauses). Note that due to the balanced branching effect,
the worst case will be when |y| = |y/| = |z] = |/| = 6.

One of the dotted is negated: this case runs in O(7(17,15%,133,11; 3, 4;
8,6,9,7)") C 0(1.4138™) time.

Two of the dotted are negated: this case runs in O(7(13,11,11,9; 3, 4;
12,10,10,8,13,11,11,9)") C O(1.4001") time.
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Three of the dotted are negated: this case runs in O(7(9,7;3,4; 16,143,
123,10,17,153,13%,11)") C O(1.3934™) time.

All of the dotted are negated: this case runs in O(7(5;3, 4;20,18%, 165,
14%,12,21,19%,17%,15%,13)") C O(1.3920™) time.

(b) For |z| = 6 we can of course make the same subcase analysis as above,
however, by now we have seen that due to the balanced branching effect,
we only need to look at the case when no dotted is negated. This case has
a running time in O(7(22,20,20°, 185,164, 14;4,4;4,5))" C O(1.4396™).

(c¢) For |z| = 7, in the third branch, when a = b = false, there will be a
X2SAT clause of length 5 created. We will not expand that branch and so
we get a running time in O(7(23,21%4,195,174,15; 5, 3;2))™ C O(1.4400™)
time. Clearly, there is no need to examine the cases when |x| > 7 — they
will all be better than this one.

8. As all clauses have at least length 5 and contains at most one heavy variable,
the ratio —heavy variables— to |Var(F)| is at most 2/12. 21/¢ ~ 1.1225 and
the so-for worst case runs in O(1.4511™). Hence we see that this case will
not be the worst case.

5 Solving X;SAT in Exponential Space

From the above algorithms and properties presented, it seems reasonable that
the running time of an algorithm for deciding X;SAT should always depend heav-
ily upon the actual i. However, that is not always the case. In the early 1980’s,
Shroeppel and Shamir found a way to solve a class of NP-complete problems in
time O(2"?) C O(1.4143") and space O(2"/*) c O(1.1893"). There has been
a recent interest in this kind of algorithms, for instance [20]. There are two
conditions a problem must satisfy in order for the algorithm of Shroeppel and
Shamir to be applicable: first, that given a solution (or rather an assignment
in the solution space), the problem instances satisfied by the solution must be
enumerable in polynomial time and space, and second, that a problem instance
can be split in a way such that the split operation enjoys certain algebraic prop-
erties. One could think that the enumerability requirement makes the algorithm
unapplicable to problems involving Boolean formulae (given an assignment one
can construct an infinite set of formulae for which that is a model). However,
we may consider the formula fixed and so the requirement boils down to simple
evaluation. In the context of X;SAT, a possible implementation of their algorithm
looks like this: The X;SAT instance is described by a list of variables and a list of
numbers indicating for each clause how many true literals it needs to be satisfied,
i.e., i. Now split the variable list in four parts and for each part, tabulate all
possible assignments to the variables, and for each assignment make a list indi-
cating for each clause how many literals became true. We now have four tables
and want to scan them to see if there a four lists which can be piece-wise added
so that the list (¢,4,%...) is obtained. If these four lists are found the formula has
an X;SAT model. We will not go into details on how the search is done. Instead,
we will restate the main theorem of Shroeppel and Shamir and then prove that
the split-operation described for X;SAT makes the theorem applicable.
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Theorem 6. (Shamir and Shroeppel) If a set of problems is polynomially
enumerable and has a monotonic composition operator, then its instances of size
n can be solved in time T = O(2"/?) and space S = O(2"/*4).

In the above described representation of X;SAT the requirement of polynomi-
ally enumerability is satisfied as, for a fixed formula, simple evaluation reveals
whether an assignment satisfies the formula. A composition operator & is mono-
tonic iff

1. for all problem instances P’ and P”, |P' & P"| = |P'| + |P"|

2. for any two solutions 2’ to P’ and z”” to P” there is a simple concatenation
z'x” which is a solution to P’ & P”.

3. for every solution x to P any any represenation of x as x’x”, there are
problems P’ and P” such that 2’ solves P’, '’ solves P and P = P’ ® P”.

4. P' @ P” can be computed in polynomial time (of the lengths of P’ and P”).

In our case, @ is the concatenation of the variable lists of P’ and P” and the
piece-wise addition of the list of numbers. Clearly it is monotonic.

6 Discussion and Conclusions

We have shown that c-atoms can be efficiently reduced to an NP-complete prob-
lem called X;SAT which is novel to this paper. X;SAT has a nice structure allowing
the construction of algorithms faster than the trivial O(2") bound. It is likely
that exact model checkers that are to deal with c-atoms would benefit from
working with formulae consisting of both SAT clauses as well as X;SAT clauses.

When it comes to further improved algorithms, there are several possible
directions. In the past, the algorithms for X;SAT have benefitted greatly from
new canonical rules. For instance the special resolution rule which has been
so successfully applied in [3]. Unfortunately, that very rule does not extend to
other sublanguages of X;SAT. However, there are probably other rules that will
prove useful. Better tools for analyzing the run time complexity of the extended
DPLL-style algorithms presented in this paper would also be helpful.

Due to the low upper time bounds for X;SAT (“low” for an NP-complete
problem), no randomized algorithms have been proposed, to the best of our
knowledge. However, such algorithms should be of interest for the general X;SAT
problem if deployed in incomplete model checkers.
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Abstract. We present BCiC, a system for verifying and authenticating code that
combines language-based proof methods with public-key digital signatures. BCiC
aims to augment the rigor of formal proofs about intrinsic properties of code by
relying on authentication and trust relations. BCiC integrates the Binder security
language with the Calculus of (Co)Inductive Constructions (CiC). In this respect, it
is a descendant of our previous logic BLF, which was based on LF rather than CiC.
This paper focuses on the architecture and implementation of BCiC. In addition
to a logical inference engine, the design most notably includes a network com-
munication module for the efficient exchange of logical facts between hosts, and
a cryptography module for generating and checking signatures. The implementa-
tion cooperates with the Open Verifier, a state-of-the-art system for proof-carrying
code with modular checkers.

1 Introduction

Modern software comes from a multitude of sources, and it often comes in pieces.
Some applications dynamically link to libraries, some are extended with applets or
plug-in modules, and others can be automatically updated. In every case, policies and
mechanisms for establishing trust in new code are essential. When the new code is signed
with a public-key digital signature, trust in the code may be based on trust in its signer.
More generally, trust in the code may result from authenticating the source of the code.
However, such trust has limits: many signers are unknown or only partly known to the
consumers of code, and even reputable signers make mistakes. Therefore, evaluating the
code itself and its properties is also important. It can yield fundamental safety guarantees,
as in Java bytecode verification [17], and it need not burden code consumers with proofs
of code properties, as research on proof-carrying code (PCC) [18] demonstrates. (With
PCC, code comes accompanied by safety proofs, and consumers need only check, not
generate, the proofs.) Nevertheless, formal specification and analysis of code remain
difficult and often incomplete, particularly when we go beyond basic memory-safety
guarantees.

In this paper we present an approach and a system for establishing trust in code that
combine signatures and proofs. We define a policy language that allows references to
signed assertions and supports reasoning about trust in the signers. The policy language
can also express theorems about code properties, and supports reasoning about the cor-
rectness of proofs of the theorems. The final decision to run code, and what privileges
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(© Springer-Verlag Berlin Heidelberg 2005
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to give to the code, may require both signatures from trusted parties and direct proofs
of code safety. For instance, it may require a partial proof of safety with trusted, signed
assertions as hypotheses.

Specifically, we introduce BCiC, a system for verifying and authenticating code that
combines language-based proof methods with public-key digital signatures. BCiC aims
to augment the rigor of formal proofs about intrinsic properties of code by relying on
authentication and trust relations. BCiC integrates the Binder security language [10] with
the Calculus of (Co)Inductive Constructions (CiC) [8]. In this respect, it is a descendant
of our previous logic BLF [22], which was based on LF [13] rather than CiC. Here we
go beyond our work on BLF by designing and building a concrete system. In addition to
a logical inference engine, the design most notably includes a network communication
module for the efficient exchange of logical facts between hosts, and a cryptography
module for generating and checking signatures. The implementation cooperates with
the Open Verifier [6], a state-of-the-art system for proof-carrying code with modular
checkers.

After considering previous and related work in Section 2, we give a short example in
Section 3 and present a high-level overview of our system in Section 4. In Section 5 we
define the syntax and logical meaning of policies, and describe the implementation of
the logical inference engine. In Section 6 we present two important components of the
system in more detail, the cryptography module and the network module. In Section 7
we describe the integration of BCiC with the Open Verifier. We conclude with some
comments on future work in Section 8.

2 Related Work and Background

Many existing systems combine reason and authority in some way. Checking the validity
of an X.509 certificate involves a combination of trusting principals and reasoning about
the transitivity of certification. Environments that execute network code often combine
static typechecks of the code with signature checks [17,11,15]. These systems can verify
only fixed, simple properties of the code. PCC allows more interesting properties to be
checked, but existing work on PCC [18, 1,3, 19] assumes that properties and proof rules
are fixed ahead of time between the code producer and the code consumer; they also do not
support signatures in their reasoning. Our previous paper [22] contains further discussion
of related work, in particular of research on proof-carrying authentication [2,4, 16]. For
the sake of brevity we do not reproduce that material here; it is somewhat less relevant
for the present paper.

BLFis alogic for authorizing code that combines reason and authority [22]. The logic
in our new system is similar to BLF but, instead of combining Binder [10] and LF [13],
it combines Binder and CiC, the Calculus of (Co)Inductive Constructions [8], used in
the Coq tool [21, 5]. We switched to CiC in order to allow the use of Coq for theorem
proving. We have found that inductive definitions for data structures yield significant
advantages in proofs. The Coq environment also allows a high degree of organization
and automation, and is thus friendly to large-scale theorem proving efforts. Our formal
description in Section 5 is an updated version of our previous presentation, adapted to
the new choice of logical framework.
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Although the change in logical framework is significant, the primary difference
between our current and previous work is that BCiC has a definite system architecture
and a concrete realization whereas BLF does not. Previously we implemented BLF in
an abstract way. All computation was contained in one machine and the interactions
between hosts were simulated. Public-key digital signatures were considered abstract
terms; no actual cryptographic algorithms were used. Similarly, logical formulas were
manipulated abstractly. In our present work the implementation is concrete. Signatures
and logical formulas have concrete representations as binary bit strings in a standardized
format. Hosts communicate with one another over the Internet in order to share data,
following the formal semantics of the import and export functions in Section 5. We
have also connected our system with an actual PCC framework, the Open Verifier, as
described in Section 7.

The implementation of our communication structure, in which pairs of hosts syn-
chronize and exchange new information, is inspired by work on replicated databases and
database synchronization [9, 14]. In our case, the database which is being synchronized
is a set of logical statements.

3 An Example

This section motivates and introduces some components of the system through an ex-
ample.

Suppose that Alice is a user who requires that every program she executes nei-
ther access memory incorrectly nor use too many resources. There may be a relatively
straightforward way to prove memory safety for the programs of interest, but not one for
characterizing resource usage. Moreover, excessive resource usage may not be viewed as
very harmful when there is someone to blame and perhaps bill. Accordingly, Alice may
want proofs for memory safety but may trust Bob on resource usage. Alice constructs a
policy that includes:

use R in
forallobj P:program

mayrun (P) :- sat(safe P), economical (P)
economical (P) :- Bob says economical (P)
end

The first line indicates that R applies, as an environment. This environment is a set of
constructors and proof rules that define the syntax of programs and the rules employed
for proving memory safety. It is specific to a particular programming language and proof
methodology. For instance, R may contain the following snippet, which defines standard
constructs for memory access:

mem : Type
sel : mem -> val -> val
upd : mem -> val -> val -> mem

The second line of the policy (forallobj P:program)isauniversal quantification
over all programs P. The first clause indicates that Alice believes that she may execute a
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program P if there is a proof that P is memory safe and she thinks that P is economical.
The second clause reflects Alice’s trust in Bob. In more complex examples, other clauses
may provide other ways of establishing economical (P). The operator says, from
Binder, represents assertions by principals. The sat construct is a special logic predicate
that holds when there is a CiC proof of its argument. The other predicates (mayrun and
economical) are user-defined predicates.

In turn, Bob trusts Charlie to write only economical programs, and has in his policy:

use R in

forallobj P:program

economical (P) :- Charlie says mine (P)
end

where mine is another user-defined predicate.

Suppose further that Charlie supplies a program PO that Alice wishes to execute.
Charlie produces a CiC proof, P£f, of memory safety of the program. Charlie publishes
his proof by asserting proof (Pf), specifically by typing the command bcicclient
assert proof (Pf). The predicate proof does not have any built-in logical mean-
ing; it simply serves for introducing the proof Pf. Similarly, Charlie asserts mine (PO).

Alice, Bob, and Charlie all run BCiC servers in the background. When the servers
are set up, they are given the address of an existing server. From that point, they syn-
chronize and receive a list of all other known servers. Once connected, they occasionally
choose other servers with which to synchronize. After sufficient synchronization, Alice
can deduce economical (P0) and Charlie says proof (Pf). After the logic
inference engine checks the proof Pf, Alice obtains sat (safe P0).Now when Alice
queries mayrun (P0), she receives the answer “yes” and is prepared to run PO.

4 Overview

Although our system must implement the logic presented in the next section in order to
support reasoning about signatures and proofs (like the reasoning in the example), the
system is much more than a bare implementation of the logic. In such a bare implementa-
tion, for instance, signed statements may simply be logical expressions—appropriate for
initial experimentation but not much else. In order to be useful, signed statements must
have concrete, secure digital representations. Thus, in our system, signatures employ
cryptography; they are unforgeable and tamper-evident. Furthermore, our system deals
with communication over an insecure network. The network module should minimize
the need for manual user intervention for synchronization.
The implementation has several parts:

— The parser understands the syntax of the logic and can translate between textual
and abstract syntax tree representations.

— The logic interpreter performs deductions in the logic from a set of given statements
to produce a larger (but still finite) set of deduced statements.

— The cryptography module implements the necessary cryptographic operations, such
as generating and checking signatures.
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— The network module can communicate statements over the network.

— The user interface accepts textual input from the user and determines which action
should be taken. The user interface is a simple command-line utility that communi-
cates with an existing daemon over a secure local socket.

— The supervisor is in charge of coordinating the global behavior of the program.
It loads existing databases of statements, decides when to communicate on the

network, sign statements, draw inferences, and accept input from the user.

— The policy gives rules for deciding when code should be executed, who to trust

initially about what, and so forth.

Figure 1 shows the organization of these components in the system. Boxes represent
code modules, circles represent data. The figure also shows the Open Verifier; this part

is explained in Section 7.
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5 BCiC’s Policy Language

This section presents the syntax and semantics of our policy language in a somewhat
abbreviated fashion. Details can be found in the appendix. The interested reader is also
encouraged to refer to corresponding descriptions for BLF [22] for additional explana-
tions. What we describe here, however, should suffice for understanding the rest of this

paper.

5.1 Formal Presentation of the Language

The policy language has both a user syntax (defined in Figure 2 of the appendix) and
an internal syntax (in Figure 4). The user syntax allows proof rules to be stated in
environments of the formuse R in ... end.Ontheother hand, the internal syntax
records proof rules at every point where they are employed, as extra parameters rather
than with use. A simple annotation function translates from the user syntax into the
internal syntax (Figure 3). Rulesets (type signatures) are typed according to the identifiers
that they define. In this respect, BCiC is more constrained than BLF. Therefore, when
one quantifies over rulesets, only rulesets with the proper definitions are considered.

The logical meaning of policies is given by proof rules (in Figure 5). These proof rules
rely on the CiC typing relation (written -¢;¢). They also rely on conversions to normal
form, as calculated by Coq. In other respects, the proof rules are a fairly ordinary logical
system for standard logical constructs. We formulate them as sequent deductions [12].

The import function is used for determining the logical meaning of signed statements
received over the network. It is a partial function that takes a key and a formula and
returns a new formula. Our method for importing statements follows Binder. An atomic
formula A signed with a key U is imported as U says A. Itis also possible to export
and import some (but not all) non-atomic formulas. A clause can be imported from U
only if the head of the clause is not already quoted with says. If the original clause
is H :- B, then the imported clause will be U says H :- B’ where B’ is the original
body with every formula F' without a says prefix replaced with U says F. In terms
of g-formulas and d-formulas as used in the formal syntax, a g-formula G without a
says prefix is translated to U says G. A g-formula of the form V' says G remains
unchanged in translation. A d-formula D without says gets translated to U says D,
while d-formulas of the form V' says D are untranslatable.

5.2 The Logic Interpreter

The logic module is responsible for managing the fact database and responding to queries.
Initially the fact database contains only the facts in the local policy. After synchronizing
with other hosts and exchanging signed statements, the fact database will grow. The main
job of the logic interpreter is finding all possible logical deductions within the database
and adding them to the database.

This method of answering queries is bottom-up evaluation. The bottom-up approach
has the advantage that it is simple and clearly exhaustive. In contrast, the termination of
top-down inference for Datalog (and therefore for Binder) requires tabling, which can
give rise to subtle issues [20, 7]. Moreover, bottom-up evaluation immediately offers a
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convenient memoizing capability. Although bottom-up evaluation can require more time
and space than top-down evaluation, we believe that bottom-up evaluation is practical
for our application.

The basic operation of the logic interpreter is as for BLF except for term normal-
ization. The interpreter repeatedly examines the database and systematically attempts to
apply every term to every other term. If the application succeeds, then the new result is
normalized and added to the database and the process repeats. Normalization is done in
a module that applies the rules for CiC using code borrowed from Coq.

Although the logic interpreter always terminates on pure Datalog policies, it need not
terminate on policies that make a non-trivial use of CiC. Infinite loops may happen when
applying one dependent type to another results in a more complicated type. Fortunately,
we have not seen this behavior in practice. Moreover, it should be possible to define a
syntactic restriction that guarantees termination. We have such a restriction in BLF, and
believe that we know how to port it to BCiC if it proves necessary.

6 Other System Modules

This section describes the cryptography module and the network module in more detail.

6.1 The Cryptography Module

The cryptography module is based on Xavier Leroy’s library for OCaml, cryptokit,
a library that provides cryptographic primitives. We use these primitives for generating
keys, for signing, and for verifying signatures. We rely on RSA signatures with a key
length of 1024 bits, and we apply SHA-1 hashing before signing. Each signed logical
statement is accompanied by public-key information about the signer. Verifying that
Alice signs statement X leads to an entry in the fact database, with the formula Alice
says X. We serialize and deserialize statements using the Marshal standard library
functions of OCaml.

When keys are not managed securely, the integrity of every signature is suspect.
Therefore, following standard practices, we store secret keys in encrypted form, keyed
to the hash of a passphrase supplied by the user. We use AES encryption and SHA-1
hashes for storing secret RSA keys.

6.2 The Network Module

The network module is only in charge of communicating signed statements between
hosts, not determining their logical meaning. When new statements become available,
the logic inference module must decide how they are to be interpreted. When the logic
inference algorithm adds new unquoted conclusions (that is, formulas without says)
to the database, the cryptography module creates new signatures and stores them in the
database, and the network module communicates them to other hosts.

Network communication is done using TCP/IP connections on a specific port. Users
may leave a Unix daemon running at all times waiting for connections, if they wish. When
two BCiC nodes connect, they follow a protocol to decide which statements are known
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to one and not the other. These statements are then transmitted over the connection.
Connections can be scheduled to occur automatically with randomly chosen partners
at regular intervals, or can be requested manually by users. Full-time servers may run
the daemon and automatically communicate with one another, while individual client
machines may rather connect to the nearest server sporadically at a user’s request.

The most interesting aspect of the network module is the algorithm for coordinating
updates. When nodes connect, they must decide who has new statements that need
to be transmitted. Simply transmitting all the statements at every connection would
be tremendously inefficient. A slightly more realistic possibility is a naive protocol in
which each node hashes every statement in its database and communicates the entire set
of hashes to the other node. Then it is easy for each node to decide which statements it
must send. If n is the total number of statements known by both sides, then the naive
protocol takes O(n) steps per synchronization.

The naive protocol is likely not to be efficient enough in the long run. The size of the
fact databases will steadily increase over time, if nothing else because expiration and
revocation are rare (and they are not even modeled explicitly in the logic, although the
implementation deals with them). More specifically, we may estimate the performance
of the naive protocol as follows. A large library may be composed of several hundred
functions. The library provider may wish to declare some functions correct by assertion
and to verify other, simpler functions. One way to do this is for the library provider to
sign assertions for each of the functions separately. As new versions of library functions
become available, new statements will be generated. A fairly typical Linux operating
system in our lab currently uses 652 libraries and 2777 applications. If every library
requires 100 statements and releases 10 major versions a year, with each version con-
taining 10 function updates, and every application releases 10 new versions a year, then
the database will initially contain 67977 statements and will increase by 92970 state-
ments each year. After two years the naive protocol will be exchanging 5 Mb at each
connection. Even if one reduces the number of statements at the expense of statement
size by signing one large conjunction that contains statements for all the functions in a
library release, the protocol will still be exchanging 2.7 Mb at each connection after two
years.

There are many possible solutions to the synchronization problem. It is not too hard
to imagine methods that record timestamps or remember which facts have already been
communicated to other servers. We chose to implement a recursive divide-and-conquer
protocol that does not require any extra storage outside the databases themselves. It is
asymptotically efficient for small updates between large databases.

Our approach requires that every statement in every database be hashed and stored
sorted by hash value. Our protocol synchronizes ranges of hash values between two
databases. To synchronize two entire databases, the protocol is performed over the entire
range of possible hash values. To synchronize all hash values between L and H, first
both participants extract all hash values in their databases between L and H. Each list is
encoded and hashed, then exchanged between the participants. A special token is used
to represent the hash of the empty list. If the hash values agree, then both databases are
already synchronized and the protocol terminates. If one hash is nonempty and one is
empty, then the protocol terminates and the participant with the nonempty list knows
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they must transfer the contents of the list. If both hashes are nonempty and differ, then
the range of hash values is split into two equal subranges, L to M and M to H. The
protocol is then applied recursively on these two subranges. (We could also use more
than two subranges, of course.) If n is the total number of statements known by both
sides, and m is the maximum number of statements known by one side that are not
known by the other, then an update takes O(m logn) steps.

Transmitting one large batch of data is often much faster than performing several
rounds of communication to determine which parts of the data should be sent. By com-
municating the number of statements that were hashed at each exchange, the implemen-
tation can switch to the naive protocol when the number falls beneath a threshold. In
experiments we found the optimal threshold to be approximately 1200 children for con-
nections between computers in our lab and a laptop off campus. The network module of
BCiC uses the naive protocol on databases of size 1200 or smaller, and uses the recursive
protocol on larger databases.

7 Integrating BCiC with the Open Verifier

The Open Verifier [6] supports verifying untrusted code using modular verifiers. Pro-
grams are expressed in a low-level assembly language with formally specified semantics.
Code producers may provide verification modules for creating proofs of code safety on
demand, rather than actual proofs. Figure 1 illustrates the workings of the Open Verifier.
The code, verifier extension module, and metadata on the right are untrusted and provided
by the code producer. The trusted components on the left (the fixpoint module, post-
condition generator, and checker) communicate with the untrusted verifier extension in
order to generate a conjunction of invariants with proofs.

In this section we explain how BCiC can be connected to the Open Verifier. We focus
on what we have implemented: a scheme in which the Open Verifier can call BCiC. We
also discuss, more briefly, a scheme in which BCiC can call the Open Verifier.

7.1 The Open Verifier Calling BCiC

Supplementing the Open Verifier with BCiC makes verification with plug-in verifiers
even more flexible. Instead of requiring that verifiers be able to prove code safety abso-
lutely, we allow the verifiers to use assumptions that are trusted because they have been
asserted by trusted authorities. This arrangement might be necessary for difficult safety
properties. It also allows a verifier to prove something different than required if there is
a trusted assumption that says that the property proved implies the required property. In
particular, the verifier may do a “proof by typechecking”: it may typecheck a program,
and a trusted assumption may declare that typechecked programs are safe.

In the normal operation of the Open Verifier, the fixpoint module collects invariants
that must be verified. First the fixpoint module supplies an initial invariant to the post-
condition generator. The strongest post-condition is calculated and then passed to the
untrusted verifier extension, which responds with weaker invariants and proofs that they
are indeed weaker. These proofs are checked using Coq by the checker module. The
weaker invariants are collected in the fixpoint module, which continues to calculate a
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fixpoint of invariants by possibly sending more invariants back to the post-condition
generator.

The connection between BCiC and the Open Verifier affects the communication
between the post-condition generator, the untrusted verifier extension, and the checker.
We have integrated BCiC so that when the Open Verifier decides that it needs justification
for a weaker invariant, instead of the Open Verifier asking the extension directly, BCiC
first checks its database of facts. If the statement already appears in the database, then
the extension is never queried and the Open Verifier continues as if the justification
were received. If the statement is not in the database, then the extension is asked for the
justification as usual.

This scheme allows the BCiC database to short-circuit the interactive proof protocol
at any point. Untrusted code can be asserted to be safe without any proof. In this case
there must be an entry in the BCiC database that corresponds to the first query that
the Open Verifier provides to the extension. In particular, this scheme handles “proofs
by typechecking”. When the extension can verify that the code typechecks but cannot
justify the soundness of the typechecking rules, the soundness lemmas can appear in the
BCiC database.

7.2 BCiC Calling the Open Verifier

Currently the Open Verifier is limited to verifying a single, generic memory-safety
property. This focus is reasonable in light of current verification techniques, but allowing
signatures opens the door to handling other properties. BCiC can support reasoning about
those properties, calling the Open Verifier when appropriate.

For this purpose, we envision a mechanism whereby the conclusions of the Open
Verifier can be used as new facts in the BCiC database. More specifically, the conclusions
of the Open Verifier are represented as logical facts in BCiC, with a new predicate
verified. We are currently refining our design and implementation of this scheme,
and a mechanism for running programs subject to BCiC policies.

8 Conclusion

In this paper we describe BCiC, a system for reasoning about code that can combine
proofs of code properties and assertions from trusted authorities. We present the un-
derlying logic, show the architecture of the system itself, and describe our method of
integration with the Open Verifier. Going from an abstract logic to an actual system
requires a fair amount of work and a number of significant design choices. Although our
system is still experimental, we believe that it shows one possible avenue for progress
in code authentication and verification.

So far we have used BCiC for experimenting with small programs created to exercise
various features of theorem provers. Perhaps the most important remaining work is to
apply BCiC to large, useful programs. Clearly BCiC can handle those programs—at least
in uninteresting ways—since it subsumes technologies that scale well (typechecking,
public-key digital signatures). Going further, it would also be interesting to deploy the
system in an environment where many users may place different amounts of trust in
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many programs. This deployment would allow more experimentation with policies and
would test the effectiveness of the network protocol.
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Appendix

This appendix contains Figures 2 through 5. These figures provide details of the formal
syntax and semantics of BCiC. Some additional background and informal explanations
can be found with the formal presentation of BLF [22].
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(var, rsvar, termvar, cicvar) ::= (identifier)
{policy) ::= [(dform).]"

(predicate) ::= (identifier)

(principal) ::= (key) | (var)

(argument) ::= (identifier) | (key) | (var) | (expr)

| (ruleset)
(ruleset) ::= (rsvar) | (actualruleset) | (rsvar); (ruleset)
(actualruleset) ::= ruleset ( [(identifier) : (Ifterm).]" )

(expr) ::= (termvar) | (cicvar) | type | set | prop | {(expr) (expr)
| (expr) — (expr) | {{(cicvar) : {(expr)} (expr)
| [{cicvar) : {expr)] (expr)

(gform) ::= (atomic) | (gform), (gform) | (gform); (gform)
exists (var) (gform)

existrules (rsvar) : (rulesettype) (gform)
existsobj (termvar) : (expr) (gform)

use (ruleset) in (gform) end

(dform) ::= (atomic) | (dform), (dform)
| (dform) :- (gform) | forall (var) {dform)
| forallrules (rsvar) : (rulesettype) (dform)
| forallobj (termvar) : (expr) (dform)
| use (ruleset) in (dform) end

(atomic) ::= [ (principal) says | sat({expr))
| [ (principal) says ] believe((expr))
| [ (principal) says | (predicate)

( [ (argument) [, (argument) |* ] )

(rulesettype) ::= [ (identifier) [, (identifier) |* |

Fig. 2. Syntax
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(A, Blr = [A]g, [B]r
[4; Blr = [Alr; [B]r
[D :- Glr = [D]r - [G]r
[forall z D|g = forall z [D]r
[exists = G]r = exists z [G]r
[forallrules r: T D|gr = forallrules r: T [D]r
[existrules r: T G]r = existrules r: T [G]r
[forallobj z:T D]r = forallobj' Rz :T [D]r
[existsobj z: T G]r = existsobj’ Rz : T [G]r
[use R in A end]r = [A]p:r/
[P says X|r = P says [X]|r
[sat(T)]r = sat’(R,T)
[believe(T)|r = believe'(R,T)

[P(a17a25 .. '7an)]R = P(al7a27 o '7an)

Fig. 3. Annotation function

(gform) ::= (atomic) | (gform), (gform) | (gform); (gform)
| exists (var) (gform)
| existrules (rsvar) : (rulesettype) (gform)
| existsobj’ (ruleset) (termvar) : {expr) {gform)

(dform) ::= (atomic) | (dform), (dform)
| (dform) :- (gform) | forall (var) (dform)
| forallrules (rsvar) : (rulesettype) (dform)
| forallobj’ (ruleset) (termvar) : (expr) (dform)

(atomic) ::= [ (principal) says ] sat’((ruleset), (expr))
| [ {principal) says ] believe’({ruleset), (expr))
| [ (principal) says | (predicate)
( [ (argument) [, (argument) |* | )

Fig. 4. Internal syntax
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———  Ais atomic
AT=AA
()= A I'=¢(4) . :
¢ is a permutation
I'=s A I'= A
I'=A I'= A I'D,D= A I'= A GG
D= A I'=ACG D= A I'=AG
Di,Dy, ' = A I'=AG I'= A Ge
(D17D2)7F2>A F:>A,(G1,Gz)
F:>A,G D,F:}A F:>A,G1,G2
D:-G T =A I' = A, (G1;G2)
D[A/z],forall z D, ' = A I' = A exists z G,G[A/z]
forallz D, "= A I' = Ajexists z G

D[O/z], forallobi’ Rz :T D, = A RbtcicO:T
forallobj’ Rxz:T D, I’ = A

I' = Ajexistsobj’ Rz : T G,G[0/x] Rbtcic O:T
I' = A,existsobj’ Rz :T.G

DIR/r], forallrules r D,I' = A I' = A,existrules r G,G[R/]

forallrulesr D, ' = A I' = A existrules r G
RbtcicO:T I = A, sat'(R, {IB : T}B) RbtcicO:T
I' = A sat/(R,T) I' = A, sat/(R, B[O/xz])
I' = A,believe’(R,T),sat'(R,T)
I' = A believe'(R,T)
I' = Abelieve(R,{z:T}B) RtcicO:T
I' = A, believe’(R, B[O/z])
I'= Ajsat/(R,{z: T}B) I = A,sat/(R,T)
x does not occur in B
I' = A,sat/(R, B)
I' = A believe'(R,{z:T}B) I = A,believe’(R,T)
x does not occur in B
I' = A, believe'(R, B)

I' = A, sat/(R,T")
T and T have the same normal form in ruleset R
I'= A sat/(R,T)
I' = A, believe'(R,T)
T and T” have the same normal form in ruleset R
I' = A/ believe'(R,T)

Fig. 5. Proof rules
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Abstract. The hybrid logic H(@) is obtained by adding nominals and
the satisfaction operator @ to the basic modal logic. The resulting logic
gains expressive power without increasing the complexity of the satisfi-
ability problem, which remains within PSpace. A resolution calculus for
'H(@) was introduced in [5], but it did not provide strategies for ordered
resolution and selection functions. Additionally, the problem of termina-
tion was left open.

In this paper we address both issues. We first define proper notions
of admissible orderings and selection functions and prove the refutational
completeness of the obtained ordered resolution calculus using a stan-
dard “candidate model” construction [10]. Next, we refine some of the
nominal-handling rules and show that the resulting calculus is sound,
complete and can only generate a finite number of clauses, establishing
termination. Finally, the theoretical results were tested empirically by
implementing the new strategies into HyLoRes [6,18], an experimental
prototype for the original calculus described in [5]. Both versions of the
prover were compared and we discuss some preliminary results.

1 Introduction

Modal logics are languages which offer relatively high expressive power, but
which, unlike full classical first-order logic, have a decidable satisfiability prob-
lem [12] (deciding satisfiability for the basic modal logic is PSpace-complete).
Traditional modal logics, though, suffer from some important expressive limita-
tions: 1) they can’t make explicit reference to concrete elements of the domain,
and 2) they can’t express equality between elements. Hybrid logics [11] are a
family of extensions of classical modal logics that aim to solve these limitations
by the introduction of nominals and special modal operators.

Intuitively, a nominal is a name for an element of a model even though, from
a syntactic point of view, it behaves like a proposition symbol and can be used
wherever the latter is acceptable. For instance, if ¢ and j are nominals, and p is
a proposition symbol, we can write formulas such as i Ap A (r)(p A [r]j). In this
paper we will consider only the basic hybrid logic H(@), i.e., the extension of
the basic modal logic with nominals and the satisfaction operator @, that allows
the evaluation of a formula at a specific element of the model.

F. Baader and A. Voronkov (Eds.): LPAR 2004, LNAI 3452, pp. 125-141, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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Formally, the set of formulas of H(@) is defined with respect to a signature
S = (PROP,NOM, REL), where PROP = {p, ¢, r,...} (the proposition symbols),
NOM = {i,j,k,...} (the nominals), and REL = {ry,rq,73,...} (the relation
symbols) are infinite, enumerable, pairwise disjoint sets. ATOM = PROP UNOM
is the set of atomic symbols. Given a signature S the set of H(@)-formulas over
S is defined as:

H@) z=a |~ eAg" | (r)e]Qup

where a € ATOM,; n € NOM, » € REL and ¢, ¢’ € H(@). The remaining standard
operators (V, —, [r], etc.) are defined in the usual way.

Definition 1 (validity). A hybrid model is a structure M = (W, {rM | r €
REL}, V') where W is a non-empty set (the domain of the model, whose elements
are called states), r™ C W xW is a binary relation for eachr € REL, V(p) C W
for each p € PROP, and V(n) = {w} for some w € W when n € NOM.

Given a hybrid model M = (W, {r™ | r € REL}, V) and an element w € W,
the satisfiability relation M,w |= ¢ (read “model M satisfies the formula ¢ at
state w”) is defined as follows:

M,wEa iff weV(a), a € ATOM
M,w ¢ iff MwlEep
M,w = 1 ANpa iff M,wE @1 and M,w = ¢
M,w = (ryo iff exists w € W such that v™ (w,w') and M,w' |= ¢
M,wE Que iff M,w' =, withw' € V(n).

The logic H(@) introduces, through nominals and @, a weak notion of equality
reasoning. For example, the formulas

Q;i (reflexivity),

Q;j <« Q;i (symmetry),

(Q;5 NQjk) — @k (transitivity), and

@Q;7 — (¢ < ¢(i/7)) (substitution by identicals)

are tautologies of H(@). This notion is not present in the basic modal logic
and it can be shown that H(Q@) is strictly more expressive [2]. Nevertheless, its
satisfiability problem remains within PSpace [3].

The most successful automated theorem proving implementations for modal
logics are based on the tableau method and much of their outstanding perfor-
mance is due to the heavy use of several heuristics and refinements [8]. However,
a number of these heuristics don’t work or become rather involved when the
underlying logic allows some form of equality. When nominals are added, the
performance of the tableaux-based theorem provers is severely affected. In this
scenario, it makes sense to investigate other kinds of algorithms. In particular, we
will discuss resolution, the most successful automated theorem proving method
for first-order logic with equality [10,9].

In [5] a resolution based calculus for H(@) is proposed. The formulation of
the calculus that we will present takes formulas in negation normal form, i.e.,
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the negation operator can only be applied to atoms!. As a consequence, both V
and [ ] become primitive symbols. Let S = (PROP,NOM, REL) be a signature,
we define the set H™" (@) as follows:

HW (@) n=al-aleVe [one [(rellrle| Qi
where a € ATOM, r € REL, i € NOM and ¢, ¢’ € H¥F(@Q). We will call formulas
of the form Q;p, @-formulas. We will consider, from now on, only formulas of
HNNF(@), unless the contrary is stated.

Like the resolution calculus for first-order logic, the hybrid resolution calculus
works on sets of clauses. A clause, in this context, is a set of arbitrary H¥N* (@)
@-formulas. A clause represents the disjunction of its formulas, but there’s no
additional restriction regarding the form of the formulas (i.e., they do not need
to be literals). It is worth noting that to allow only @-formulas in a clause is not
an expressivity limitation in terms of satisfiability: a formula ¢ is satisfiable if
and only if for an arbitrary nominal ¢ not occurring in ¢, @,y is satisfiable.

Given a formula ¢ € H¥¥ (@), we define ClSet(¢) = {{Q;p}}, for i an arbi-
trary nominal not occurring in ¢. We can now define ClSet™ () — the saturated
set of clauses for ¢ — as the smallest set that includes ClSet(y) and is saturated

under the rules of the resolution calculus R[H*(@)] given in Figure 1, where
i,7 € NOM and p € PROP.

ClU{Q@;(p1 A p2)} ClU{Q@;i(p1 V p2)}

A \%
( ) ClU{@i(pl} ( ) ClU{@igﬁl,@i(pg}
CluU {@ﬂpg}
Clyu {@Zp} Cly U {@iﬁp}
(RES) ClyuCly

Cliu{Q;[rle} ClaU{Q;(r)j} Clu{Qi(r)e}

) —cn Uenuap (D) GG (@ufrygy Tor 2mewd €NOM
ClU {80}
Clu {@1@Jtp}
©) ~cr0Ta,0}
SYM) &rofe,n REF) — (PAR) — 0 el U Lo /i)

Fig. 1. The Resolution Calculus R[H"""(@)]

We can group these rules according to their role. The (A), (V) and (@) rules
handle formula simplification. The ({r)) rule does a mild skolemization, assigning
a new name (through a new nominal) to an element of the model which was

! The restriction to formulas in negation normal form simplifies the definition of ad-
missible orderings and selections functions, but it also have effects on the calculus
as we can see in Figure 1 where the (RES) rule applies only to literals.
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existentially quantified (through a diamond). The (RES) rule works like the
resolution rule for first-order logic, while the ([r]) rule encodes a non-trivial
unification plus a resolution step. Finally, the (SYM), (REF) and (PAR) rules
are the standard set of rules for equality handling in (function free) first-order
logic resolution [9].

The construction of ClSet™(p) is a correct and complete algorithm to decide
satisfiability for H¥* (@) (and hence for H(@)): ¢ is unsatisfiable if and only if
the empty clause {} is an element of ClSet™(¢) [5]. However, ClSet*(¢) might be
an infinite set because each application of the (r)-rule introduces a new nominal.
Thus, there are formulas whose satisfiability this algorithm can’t decide in a finite
number of steps. In Section 4 we show how to turn this calculus into a decision
method for H(@).

A standard technique to regulate the generation of clauses in resolution for
first-order logic is called ordered resolution with selection functions [10]. The
general idea is to establish certain conditions under which it is safe to chose
a literal from each clause such that rules are to be applied to a clause only
to eliminate its chosen literal. The ordered resolution calculus with selection
functions is refutationally complete for first-order logic when an ordering > with
certain properties is used (see [10] for further details). In the following sections
we develop similar strategies for R[H"(@)].

2 Ordered Hybrid Resolution with Selection Functions

In the context of resolution systems, an ordering between formulas is called
admissible when it can be used in a calculus of ordered resolution, preserving
refutational completeness. In this section we propose an ordered resolution cal-
culus for H™"(@).

The following definitions are standard (see, e.g. [13]). A binary relation > is
called an ordering if it is transitive and irreflexive; if, additionally, for any two
distinct elements x and y one of x = y or y = x holds, > is said to be total.
An ordering > is called well-founded when there is no infinite chain z; > x5 >
x3.... Let = be an ordering between formulas, and let’s indicate with ¢[¢], a
formula ¢ where 1 appears at position p. We say that > has the subformula
property if o], = ¥ whenever p[¢], # ¥, and that it is a rewrite ordering
when @[Yn], = @[], iff Y1 > 2. A well-founded rewrite ordering is called
a reduction ordering, and if it also has the subformula property, it is called a
simplification ordering. We will use the same symbol to denote both an ordering
on formulas and its standard extension to clauses.

We can now define the notion of admissible ordering for resolution on H¥*(@).

Definition 2 (admissible ordering). An ordering = over H¥N* (@) is admis-
sible if it is a total simplification ordering satisfying the following conditions for

all o, € HNNF(Q) and all i,j € NOM:

A1) ¢ =i for all p € NOM
A2) if ¢ =, then Q;p = Q;1)
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A3) if (r)i is a proper subformula of ¢, then ¢ = (r)j
Ag) [rli= (r)j.

Condition A1l states that nominals must be smaller than formulas other than
nominals, condition A2 requires the operator @ not to affect the ordering among
formulas, condition A3 introduces a very weak notion of structural complexity,
while condition A4 prioritizes [ ] over ( ).

It is easy to show that the conditions in Definition 2 are not too restrictive,
and that there actually exists orderings satisfying them. A standard method
for building simplification orderings is by using the lexicographic path orderings
(>1po), (see [13] for a definition), which is defined given a set of operators O
and an ordering > on O (the precedence), over the set of well formed terms
T(O). When the ordering > is well-founded (and total), then >;,, is a (total)
simplification ordering.

In this context, since we will define an ordering based on lpo, it will be
convenient to treat @, ( ) and [ ] as binary operators: Q(-,-) : H¥*(@) x NOM —
HNNF(@)2, ()(, ) : REL x HMF(Q) — HF(Q) and [](,-) : REL x HMF(Q) —
HNNF(@) but we will keep the notation @, ¢, (r)¢ and [r]e.

We give the following constructive definition of an admissible ordering based
on lpo over the set O = PROPUNOMURELU{—, A, Vv, @, (), []} with the obvious
arities (note that HN*(@) C T'(0)).

Definition 3. Given a hybrid signature S = ({p; | i € N}, {n; | ¢ € IN}, {r; |
1 € IN}), let O be the set S U {—,A,V,Q,[ ],{ )}, and define the precedence
relation > C O x O as the transitive closure of the set

{(@v _‘)7 (_'7/\)7 (/\,\/), (\/7[ ])7 ([ ]7< >)} U
{(< >77Ai)7 (Tiapj)a (pjank) | iaj,k € ]N} U
{(ri,r5), (pisps), (niymy) [ 0> 5}

By definition, > is total, irreflexive and well-founded. Let =, be the Ipo over
HNNF(Q) that uses > as precedence. It follows that >=,, must be a total simpli-
fication ordering. Finally, define >}, as

size(p) > size(v)), or

o =n Y iff { size(p) = size(V) and @ =ipo ¥

where size(p) is the number of operators in p.
Proposition 1. >j s an admissible ordering.

Observe that no admissible ordering can be defined using lpo alone. It suffices
to note that there’s no way to guarantee (r')(r)i =y, (r)j when r >=,, r’ and
J >ipo 1, which violates A3. Unless stated otherwise, from now on we will use >
to refer to some arbitrary but fixed admissible ordering.

2 The order of the parameters of this operator has been chosen to simplify Definition 3
and the proof of Proposition 1.
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Clu{Q;(p1 A p2)} Clu{Q;(p1V p2)}

*) Clu{@;p1} (V) ClU{Q;p1,Qp2}
Clu {@i(pz}
(RES) Clyu {@gi uCé;:J {@iﬁp}
([T’D Cly U {@z[r}@} Cly U {@z(T’)]} (<T’>) CcluJ {@2<7”>g0} for a newj c NOM
CliuClaU{Q;p} Clu{@;(r)j} and ¢ ¢ NOM
Clu{Q;p}
CluU {@z@Jga} CluU {@1—‘2}
@ FuTg,r BED —
(SYM) Clu{Qjip .. . (PAR) Cl,u{Q;i} ClaU{p(j)} ifj =i and

Ctu{Qij} CLiuClU{p(i/i)}  »(j) = Q@i
Restrictions: Assume an admissible ordering > and a selection function S.
In the following, ¢ and v are the formulas explicitly displayed in the rules.
The main premise of each rule is the rightmost, the other premise (in rules
with two premises) is the side premise.

— If C = C"U{p} is the main premise, then either S(C) = {¢} or, S(C) =0

and {p} > C".
— If D = D' U {9} is the side premise, then {¢} = D’ and S(D) = 0.

Fig. 2. The Resolution Calculus RO°[H""F(@)]

Finally, in resolution for first-order logic, a selection function may chose only
negative literals from a clause. As we work with clauses which can contain arbi-
trary @-formulas from H™"(Q) we define “negative literals” as the complement
of the set PLIT of positive literals, where PLIT = @;j | Q;p | @;(r)j, for
i,7 € NOM, p € PROP and r € REL.

Definition 4 (selection function). A function S from clauses to clauses is a
selection function if and only if, for every clause C we have S(C) C C, |S(C)| <
1 and S(C)NPLIT = 0.

We are now ready to formulate the strategy of ordered resolution with selection
functions for HM"(@). Figure 2 contains the rules of the calculus.

The rules of ROS[H™*(@)] differ from the ones in Figure 1 only in the ad-
dition of some restrictions, both local (in the ({r)), (SYM) and (PAR) rules)
and global. Notice that, as an effect of the global restrictions, there is only one
formula in each clause that may be involved in an inference. We will call this
formula the distinguished formula of the clause.

3 Refutational Completeness of R*[H™"(@)]

The standard proof of refutational completeness for first-order logic resolution
is via the generation of potential Herbrand models [10]. In this section we start
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by showing that an appropriate notion of Herbrand model can be defined for
hybrid languages containing nominals and Q.

The following result was established in [20] for CPDL a version of PDL
(Propositional Dynamic Logic [17]) extended with hybrid operators, but it holds
for any hybrid logics containing nominals and @. For N a hybrid model, let
diag(N), the diagram of N, be the set diag(N) = {¢ | ¢ € PLITand N |
ptU{—¢ | ¢ € PLIT and N }£ ¢}, and call a model named if each state of its
domain satisfies at least one nominal.

Theorem 1 (Scott’s Isomorphism Theorem). Let M and N be two count-
able, named hybrid models. Then M and N are isomorphic iff M = diag(N).

Based on Theorem 1 we can define hybrid Herbrand models as follows:

Definition 5 (Herbrand model). Let S = (PROP,NOM,REL) be a hybrid
signature. A hybrid Herbrand model for H(@Q) over S is any set I C PLIT.

We identify a Herbrand model with a set of positive literals. This set will uniquely
define certain hybrid model.

Definition 6. Given a hybrid Herbrand model I, let ~; be the minimum equiv-
alence relation over NOM that extends the set {(i,7) | Q;5 € I'}. We now define
the hybrid model uniquely determined by I as (W {r! | r € REL}, V1) where

Wl =NOM/.,

rf = {([j], [k]) | @;(r)k € I}
Vi) ={lj]| Q;peI},pc PROP
V(i) = {[i]},i € NOM.

where NOM/ ., is the set consisting of equivalence classes of ~r, and [i] is the
equivalence class assigned to © by ~y.

From now on, we will not distinguish between a hybrid Herbrand model I and
its associated model. We will say, for instance, that a formula Q;¢p is true in
whenever it is satisfied by its associated model (as we are always referring to
@-formulas no explicit point of evaluation is needed).

The following theorem (easily proved using Theorem 1) shows that we can
work with Herbrand models instead of arbitrary models.

Theorem 2. Given I', a set of @-formulas of H(Q) over a signature S =
(PROP,NOM, REL), I' has a hybrid model if and only if it has a hybrid Her-
brand model over the signature S’ = (PROP,NOM U NOM’, REL), where NOM’
is a numerable set disjoint from NOM.

We are now ready to prove the refutational completeness of RO*[H ¥ (@)]. The
idea is to build a candidate Herbrand model from an arbitrary (and potentially
infinite) set of clauses, such that if the least clause of the set is not true under this
model, then the calculus must allow the derivation of a new clause which will also
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fail to be true in the model. By definition, the empty clause is the smallest clause
in any admissible ordering, and it can be shown that admissible orderings ensure
that any consequent of a rule is smaller than the main premise. We will, thus,
prove that the process leads to either the construction of a Herbrand model for
the initial formula (i.e., the initial formula was satisfiable), or to the inclusion of
the empty clause in the saturated set (i.e., the initial formula was unsatisfiable).

The definition of a candidate model given below is more complex than the one
in [10]. This is because the latter was used for first-order logic without equality,
while in H(@) we have to deal with equalities of the form @;j.

Definition 7 (o). Given a hybrid Herbrand interpretation I, we define the
following substitution of nominals by nominals:

or={i—gli~cr jAVE)(k~rj — k=)

o substitutes each nominal with the least nominal of its class, which is taken
as the class representative.

Definition 8. We define the set of simple formulas of H (@) over S as:
SIMP ::= @;j (with i > j)| Qp| @Q;—a | Q;(r)j | Q;[r]e
where i, j € NOM, p € PROP, a € ATOM, r € REL and ¢ € H™"(Q).

Let N be a fixed set of clauses. The following three definitions must be taken as
a unit. They are presented separately for clarity but are mutually recursive.

Definition 9 (I¢). Let C be a clause (not necessarily in N ), we name Io the
hybrid Herbrand interpretation given by \Jos pep-

Definition 10 (reduced form). Let C be a clause and ¢ its mazimal formula.
If ¢ € SIMP and either a) ¢ € PLIT and ¢ = oy, or b) ¢ = Q;[r]yp and
1 =107, ; then we say that both ¢ and C are in reduced form.

Definition 11 (e¢). Let C be a clause (not necessarily in N ). If it simultane-
ously holds that: a) C € N, b) C is in reduced form, ¢) The mazimal formula in
C is in PLIT, d) C is false under I, and e) S(C) = 0; then ec = {}, where ¢
is the maximal formula in C; otherwise, ec is the empty set.

We say that C produces ¢ if ec = {} and call it a productive clause. I¢ is the
partial interpretation of N below C'. Only those clauses whose maximal formula
 is a positive literal and have no selected formulas may be productive.

Definition 12 (candidate model). Iy, a candidate model for N, is defined
as Ucen €C-
If a clause C'is false under I, we say that C' is a counterezample of I. Analyzing all

the rules of the calculus and considering separately those distinguished formulas
that are not in reduced form, the following result can be proved.
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Proposition 2. Let N be a set of clauses and C € N be the minimum coun-
terexample of Iy, with respect to an admissible ordering =. If C' # {}, then there
exists an inference using one of the rules of the calculus such that:

1. C is the main premise

2. the side premise (when present) is productive

3. all the consequents are smaller, with respect to >, than C and at least one
of them is a counterexample of I .

Proof. Using Definition 2 we can easily check that every consequent in the cal-
culus is smaller than the main premise of its inference. The hard part of the
proof is to verify that a proper side premise (when required) exists.

Let ¢ be the distinguished formula of C. If ¢ & SIMP, C' is trivially the
premise of some unary rule and the proposition holds. Now, suppose ¢ € SIMP
is not in reduced form; this means that some clause D produces @Q;j for an @
occurring in . It is easy to check that, in this case, (PAR) can be applied on
D and C. Finally, if ¢ is in reduced form, it must be of the form @;—a (for
a € ATOM) or @;[r]y. The first case is handled either by the (REF) or the
(RES) rules, and the proof is analogous to the standard one for first-order logic.

The latter case deserves more attention. The non-trivial part of the proof is
to see that a clause in N must produce some @,(r)j such that @;v) is false in
In; but this follows from the fact that C is a counterexample in reduced form
and that, for any k,I € NOM, if Qil € Iy, then | = ko, .

Refutational completeness can be easily established from Proposition 2.

Theorem 3. RCS[H"*(Q)] is refutationally complete.

4 Termination of the Calculus

In this section we show how the calculus ROS[HNF(@)] can be turned into a
decision procedure for satisfiability. We will introduce the necessary changes to
ensure that for any formula ¢ € H(Q), ClSet™ () is a finite set. If this condition
holds, implementing an algorithm that computes ClSet™(¢) in finite time (e.g.,
the “given clause algorithm” [23]) is straightforward.

The calculus R[H""F(@)] of Figure 1 can trivially generate an infinite sat-
urated set of clauses as the ((r)) rule can be applied on fo