

Lecture Notes in Artificial Intelligence 3419
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Boi Faltings Adrian Petcu
François Fages Francesca Rossi (Eds.)

Recent Advances
in Constraints

Joint ERCIM/CoLogNet International Workshop
on Constraint Solving and Constraint Logic Programming, CSCLP 2004
Lausanne, Switzerland, June 23-25, 2004
Revised Selected and Invited Papers

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Boi Faltings
Adrian Petcu
Ecole Polytechnique Federale de Lausanne (EPFL)
School of Computer and Communication Sciences
Institute of Core Computing Science
Artificial Intelligence Laboratory
IN (Ecublens), 1015 Lausanne, Switzerland
E-mail: {boi.faltings,adrian.petcu}@epfl.ch

François Fages
Institut National de Recherche en Informatique et en Automatique - INRIA
Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay Cedex, France
E-mail: Francois.Fages@inria.fr

Francesca Rossi
University of Padova
Department of Pure and Applied Mathematics
Via G.B. Belzoni 7, 35131 Padova, Italy
E-mail: frossi@math.unipd.it

Library of Congress Control Number: 2005921905

CR Subject Classification (1998): I.2.3, F.3.1, F.4.1, D.3.3, F.2.2, G.1.6, I.2.8

ISSN 0302-9743
ISBN 3-540-25176-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 11402763 06/3142 5 4 3 2 1 0

Preface

Constraint programming is a very successful fifth-generation software technol-
ogy with a wide range of applications. It has attracted a large community of
researchers that is particularly strong in Europe.

In particular, constraint programming is the focus of the Working Group on
Constraints of the European Research Consortium for Informatics and Mathe-
matics (ERCIM) as well as a major interest of the European Network on Com-
putational Logic (CoLogNET). These groups jointly sponsored a workshop on
Constraint Satisfaction and Constraint Logic Programming (CSCLP 2004) held
June 23–25 at the Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzer-
land. It was hosted by the Artificial Intelligence Laboratory of the EPFL, which
is also a member of both groups.

This book presents a collection of papers that are either revised and extended
versions of papers accepted at the workshop, or were submitted in response to
the open call for papers that followed. The 15 papers in this volume were selected
from 30 submissions by rigorous peer review.

The editors would like to take the opportunity to thank all authors and
reviewers for the hard work they contributed to producing this volume. We also
thank ERCIM and CoLogNET for their support of the workshop and the field
of constraint programming in general. We hope the reader will find this volume
helpful for advancing their understanding of issues in constraint programming.

December 2004 Boi Faltings
Adrian Petcu

François Fages
Francesca Rossi

Organization

This workshop was jointly organized as the 9th Meeting of the ERCIM Working
Group on Constraints, coordinated by François Fages, and the 2nd Annual Work-
shop of the CoLogNET area on Constraint Logic Programming, coordinated by
Francesca Rossi.

Organizing Institutes

The organization was handled by the EPFL, INRIA and the University of Padua.

Organizing and Program Committee

Boi Faltings EPFL, Switzerland
Adrian Petcu EPFL, Switzerland
François Fages INRIA, France
Francesca Rossi University of Padua, Italy

Sponsoring Organizations

VIII Organization

Referees

Ola Angelsmark
Alexis Anglada
Roman Bartak
Nicolas Beldiceanu
Claudio Bettini
Stefano Bistarelli
Lucas Bordeaux
Berthe Y. Choueiry
François Fages
Jie Fang
Stephan Frank
Renker Gerrit
Joel Gompert
Venkata Praveen Guddeti
Brahim Hnich
Petra Hofstedt
Alan Holland
Peter Jonsson

Irit Katriel
T.K. Satish Kumar
Arnaud Lallouet
Steve Prestwich
Paraskevi Raftopoulou
Arathi Ramani
Stefan Ratschan
Igor Razgon
Dirk Reckmann
Francesca Rossi
Olga Tveretina
Petr Vilim
Richard Wallace
Toby Walsh
Armin Wolf
Neil Yorke-Smith
Yaling Zheng
Peter Zoeteweij

Table of Contents

Constraint Propagation

GCC-Like Restrictions on the Same Constraint . 1
Nicolas Beldiceanu, Irit Katriel, and Sven Thiel

A Note on Bilattices and Open Constraint Programming 12
Arnaud Lallouet

Pruning by Equally Constrained Variables . 26
Igor Razgon and Amnon Meisels

Search

Trying Again to Fail-First . 41
J. Christopher Beck, Patrick Prosser, and Richard J. Wallace

Characterization of a New Restart Strategy
for Randomized Backtrack Search . 56

Venkata Praveen Guddeti and Berthe Y. Choueiry

Dynamic Distributed BackJumping . 71
Viet Nguyen, Djamila Sam-Haroud, and Boi Faltings

A Value Ordering Heuristic for Local Search
in Distributed Resource Allocation . 86

Adrian Petcu and Boi Faltings

Automatically Exploiting Symmetries in Constraint Programming 98
Arathi Ramani and Igor L. Markov

New Structural Decomposition Techniques
for Constraint Satisfaction Problems . 113

Yaling Zheng and Berthe Y. Choueiry

Applications

Algorithms for the Maximum Hamming Distance Problem 128
Ola Angelsmark and Johan Thapper

A System Prototype for Solving Multi-granularity Temporal CSP 142
Claudio Bettini, Sergio Mascetti, and Vincenzo Pupillo

X Table of Contents

Computing Equilibria Using Interval Constraints . 157
Lucas Bordeaux and Brice Pajot

Constraint-Based Approaches to the Covering Test Problem 172
Brahim Hnich, Steven Prestwich, and Evgeny Selensky

Super Solutions for Combinatorial Auctions . 187
Alan Holland and Barry O’Sullivan

Better Propagation
for Non-preemptive Single-Resource Constraint Problems 201

Armin Wolf

Author Index . 217

GCC-Like Restrictions on the Same Constraint

Nicolas Beldiceanu1, Irit Katriel2, and Sven Thiel2

1 LINA FRE CNRS 2729, École des Mines de Nantes, FR-44307 Nantes Cedex 3, France
Nicolas.Beldiceanu@emn.fr

2 Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany
{irit,sthiel}@mpi-sb.mpg.de

Abstract. The Same constraint takes two sets of variables X and Z such that
|X |= |Z| and assigns values to them such that the multiset of values assigned to
the variables in X is equal to the multiset of values assigned to the variables in
Z. In this paper we extend the Same constraint in a GCC-like manner by adding
cardinality requirements on the values. That is, for each value we have a lower
and upper bound on the number of variables that can be assigned this value. We
show an algorithm that achieves arc-consistency for this constraint and a faster
algorithm that achieves bound-consistency for a restricted case of it.

1 Introduction

The Same(X = {x1, . . . ,xn},Z = {z1, . . . ,zn}) constraint [2] is defined on two sets X and
Z of distinct variables such that |X |= |Z| and each a ∈ X ∪Z has a finite domain D(a).
A solution is an assignment of values to the variables such that the value assigned to
each variable belongs to its domain and the multiset of values assigned to the variables
of X is identical to the multiset of values assigned to the variables of Z.

This constraint can be used to model simple scheduling problems such as the one
described in [2]: The organization Doctors Without Borders [11] has a list of doctors
and a list of nurses, each of whom volunteered to go on one rescue mission in the next
year. Each volunteer specifies a list of possible dates and each mission should include
one doctor and one nurse. The task is to produce a list of pairs such that each pair
includes a doctor and a nurse who are available on the same date and each volunteer
appears in exactly one pair.

In the setting described above, the number of potential rescue missions on each day
is infinite, so we do not care how the doctor-nurse pairs are distributed between the
dates. This paper deals with a variant of Same which we call Same With Cardinalities
(SWC) and which allows us to model the doctor-nurse problem when for each date
there is a minimum number of missions that must be staffed and a maximum number
of missions that are possible. The reader should be reminded of the Global Cardinality
Constraint (GCC) [5, 7, 8, 10], which is defined on one set of variables and specifies for
each value the minimum and maximum number of variables that are to be assigned this
value.

Formally, the SWC(X = {x1, . . . ,xn},Z = {z1, . . . ,zn},C = {cv1 , . . . ,cvn′ }) constraint
is specified on two sets X and Z, each containing n assignment variables, and a third set
C of n′ count variables. With each assignment variable a∈ X ∪Z we associate a domain

B. Faltings et al. (Eds.): CSCLP 2004, LNAI 3419, pp. 1–11, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 Nicolas Beldiceanu, Irit Katriel, and Sven Thiel

D(a) ⊆ D = {v1, . . . ,vn′ }. The count variable cvi refers to vi ∈ D and its domain is an
interval D(cvi) = [Li,Ui]. A solution to the SWC constraint is an assignment of values
to the variables in X ∪Z such that:

– Each a ∈ X ∪Z is assigned a value in its domain D(a).
– Each cvi is assigned a value in the interval D(cvi).
– The multiset of values assigned to the variables of X is equal to the multiset of

values assigned to the variables of Z.
– The number of variables in X (and hence also in Z) which are assigned the value vi

is equal to the number assigned to cvi .

In other words, for a tuple t ∈ Dn and a value v ∈ D, let occ(v,t) be the number of
occurrences of the value v in t. Then the set S of all solutions to the constraint is:

S = {(u1, . . . ,un ; w1, . . . ,wn ; o1, . . . ,on′) |
∀ j u j ∈ D(x j) ∧ ∀ j w j ∈D(z j) ∧
∀i occ(vi,(u1, . . . ,un)) = occ(vi,(w1, . . . ,wn)) = oi ∈ D(cvi)}.

1.1 Arc-Consistency and Bound-Consistency

Given a constraint with domains for the variables, the first question is whether S �= /0,
which means that there is at least one assignment of values to the variables that satisfies
the constraint. The second question is whether there are efficient filtering algorithms for
this constraint. That is, algorithms that shrink the domains of the variables by removing
values that cannot participate in any solution. The arc-consistency problem is to reduce
the domain of each variable a such that D(a) is the projection of S onto the component
that corresponds to a. That is, a value v remains in D(a) iff there is a solution to the con-
straint in which a is assigned the value v. In the bound-consistency problem we assume
that the values are linearly arranged, i.e., v1 < · · ·< vn′ and for each a∈ X ∪Z, D(a) is a
contiguous interval of values, i.e., D(a) = [D(a),D(a)]. The problem is to shrink the in-
tervals to the minimum sizes such that S⊆D(x1)×·· ·×D(xn)×D(z1)×·· ·×D(zn)×
D(cv1)×·· ·×D(cvn′). I.e., the domain of the kth variable is bound-consistent iff S con-
tains at least one tuple whose kth component equals the smallest (largest) value in it.

1.2 SWC = 2×GCC?

The SWC constraint can be modeled by two Global Cardinality constraints [5, 7, 8, 10],
one on the set X and the other on the set Z, where count variables which are associated
with the same value are not duplicated. We show here that consistency for all of the
variables of the GCC constraints (including assignment and count variables) does not
imply consistency for the SWC constraint.

In our example, |X |= |Z|= 2 and |Y |= 4. The domains of the assignment variables
are: D(x1) = {1,2}, D(x2) = {3,4}, D(z1) = {1,2,3,4} and D(z2) = {3,4} and the
domain of each count variable is {0,1}. By examining the variable-value graphs1 shown
in Figure 1, one can easily see that all values are consistent with respect to the two GCC

1 This construction will be formally defined in Section 2.

GCC-Like Restrictions on the Same Constraint 3

3

x2

[0,1][0,1][0,1][0,1]

41 2

z1 z2

3

[0,1][0,1][0,1][0,1]

41 2

x1

[0,1][0,1][0,1][0,1]

41 2

z1 z2x1 x2

3

Fig. 1. Example showing that consistency of the two GCC’s does not imply consistency of the
SWC constraint (even when all cardinalities are in [0,1]).

constraints GCC({x1,x2},{cv1 ,cv2 ,cv3 ,cv4}) and GCC({z1,z2},{cv1 ,cv2 ,cv3 ,cv4}), but
that an arc-consistency or bound-consistency computation for the SWC constraint would
remove 3 and 4 from the domain of z1: If z1 is assigned 3 or 4, then 1 and 2 cannot both
be assigned to the same number of variables from X and Z because one of them must
be assigned to x1 and neither can be assigned to z2.

1.3 Filtering with Flows/Matchings

Network flows were used to design filtering algorithms for several globals constraints.
These algorithms follow a general scheme: the constraint is modeled as a network such
that there is a correspondence between feasible integral flows in the network and solu-
tions to the constraint. The algorithm finds a feasible flow in this network, constructs
the residual graph with respect to this flow and computes the strongly connected com-
ponents (SCCs) of the residual graph. Then, it is shown how to use the flow and the
SCCs to reduce the domains of the variables to arc-consistency or bound-consistency.

Régin was the first to use this approach when he designed an arc-consistency al-
gorithm for the AllDifferent constraint [9], which he later generalized for the Global
Cardinality Constraint [10]. Mehlhorn and Thiel [6] showed that this scheme gives rise
to a faster bound-consistency algorithm for AllDifferent. They noticed that in the bound-
consistency problem, the network on which the flow and SCC computations need to be
performed has a certain structure, convexity, which can be exploited in order to perform
these computations more efficiently. Katriel and Thiel [5] showed how to exploit con-
vexity to achieve a fast bound-consistency algorithm for GCC. Later, the authors [2]
defined the Same and UsedBy constraints and designed arc-consistency and bound-
consistency algorithms for them, which also follow the flow-based paradigm. The net-
works that model the Same and UsedBy constraints are more complex than the ones
used for AllDifferent and GCC, a fact that also complicates the filtering algorithms,
in particular the efficient bound-consistency algorithms. In this paper we show how to
model the SWC constraint. The network we use resembles the one that was used for
the Same constraint, but the capacity requirements for the values add a new twist: until
now, all networks consisted of a bipartite graph with a node for each value on one side
and a node for each variable on the other side, plus two special nodes. The network we
use for SWC breaks away from this line: each value is modeled by two nodes that are
connected by an edge. This structure complicates things even further, in particular in
the bound-consistency computation.

1.4 Filtering for the SWC Constraint

In the next section we present filtering algorithms for the assignment variables of the
SWC constraint. The first algorithm achieves arc-consistency and runs in time O(n2n′).

4 Nicolas Beldiceanu, Irit Katriel, and Sven Thiel

The second algorithm achieves bound-consistency in the restricted case of SWC in
which D(cvi) = [0,1] for all 1≤ i≤ n′. It runs in time O(nn′). As we have noted above,
SWC is a GCC-like restriction of the Same constraint. Similarly, the case in which
D(cvi) = [0,1] for all i is analogous to the AllDifferent constraint [6, 9, 12] which is the
special case of GCC in which the capacities for all variables are [0,1].

2 An Arc-Consistency Algorithm for SWC

We represent the SWC constraint as a flow problem in a directed graph �G = (V,�E) which
we call the variable-value graph. The nodes of �G are V = {X ∪Z ∪Yin∪Yout ∪{s, t}}
where Yin = {yin

1 , . . .yin
n′} and Yout = {yout

1 , . . .yout
n′ }. In other words, there is a node a for

each variable a ∈ X ∪Z, there are two nodes yin
i ,yout

i for each value vi where 1≤ i≤ n′

and there are two additional nodes s and t. The edges of �G are:

– For each x j ∈ X and i ∈ D(x j), (x j,yin
i) ∈ �E with capacities [0,1].

– For each z j ∈ Z and i ∈D(z j), (yout
i ,z j) ∈ �E with capacities [0,1].

– For each 1≤ i≤ n′, (yin
i ,yout

i) ∈ �E with capacities [Li,Ui].
– For each 1≤ j ≤ n, (s,x j) ∈ �E with capacities [1,1].
– For each 1≤ j ≤ n, (z j,t) ∈ �E with capacities [1,1].
– (t,s) ∈ �E with capacities [n,n].

Table 1. Domains of the variables for our ex-
ample.

j D(x j) D(z j)
1 [1,2] [2,3]
2 [3,4] [4,5]
3 [4,6] [4,5]

Table 2. Domains of the count variables for
our example.

i 1 2 3 4 5 6
[Li,Ui] [0,1] [1,2] [0,3] [1,4] [0,2] [0,1]

[0,1]

x1 x2 z3z2z1x3

i=1

[0,1]

[1,1]

[3,3]S T

i=4

[1,4]

i=5

[0,2]

i=6

[0,1]

i=2

[1,2]

i=3

[0,3]

Fig. 2. The variable-value graph for the example in Tables 1 and 2.

Figure 2 shows the graph �G for the following input. |X | = |Z| = 3 and |Y | = 6.
The domains of the variables of X ∪Z are as in Table 1 and the domains of the count
variables are as in Table 2.

The following definition comes from flow theory. See Figure 3 for an example of a
feasible flow.

GCC-Like Restrictions on the Same Constraint 5

[1,1]

[0,1]

[3,3]S T

[0,1]

i=3

[0,3]

i=6

[0,1]

i=5

[0,2]

i=4

[1,4]

i=2

[1,2]

x1 x2 z3z2z1x3

i=1

Fig. 3. An integral feasible flow in the graph of Figure 2. The solid edges carry flow and the
dashed edges do not.

Definition 1. Given a directed graph �G = (V,�E) with lower and upper capacities le,ue

for each edge e ∈ �E, a feasible flow in �G is a function f : E → R such that

1. Flow Conservation: For each node v ∈V,

∑
{u|(v,u)∈�E}

f (v,u) = ∑
{w|(w,v)∈�E}

f (w,v).

2. Capacities: For each e ∈ �E, le ≤ f (e) ≤ ue.

An integral feasible flow is a feasible flow such that for all e ∈ �E, f (e) is an integer.

Lemma 1. There is a one-to-one correspondence between the integral feasible flows in
�G and the solutions to the constraint.

Proof. Let f be an integral feasible flow in �G. For each x ∈ X , the amount of flow
coming into x (from s) is exactly 1, hence there is exactly one y∈Yin which is connected
to x by an edge that carries non-zero flow. Similarly, the flow out of each z ∈ Z (to t) is
exactly 1 so there is exactly one y ∈Yout which is connected to z by an edge that carries
non-zero flow. For each a ∈ X ∪Z, let I(a) be the index of this node y. That is, I(a) = i
such that y ∈ {yin

i ,yout
i }.

Then we can construct the solution

SWC({I(x1), . . . , I(xn)},{I(z1), . . . , I(zn)},{ f (yin
1 ,yout

i), . . . , f (yin
n′ ,y

out
n′)}).

For all a ∈ X ∪ Z, I(a) is well defined. Since the edges (x,yin
I(x)) and (yout

I(z),z) carry

flow, they exist in �G, which implies that I(a) ∈ D(a) for all a ∈ X ∪ Z. In addition,
by flow conservation and by the choice of capacities for the edges (yin

i ,yout
i) we have

Li ≤ |{x ∈ X |I(x) = i}| = |{z ∈ Z|I(z) = i}| ≤ Ui for all 1 ≤ i ≤ n′, so each value is
assigned the same number of times to variables of X and Z, and this number is within
its capacity requirements. Hence, the constraint is satisfied.

On the other hand, any solution SWC({I(x1), . . . , I(xn)},{I(z1), . . . , I(zn)},{o1, . . . ,
on′}) where I(a) is the value assigned to the variable a, allows us to construct an integral
feasible flow f as follows.

– For each x ∈ X , f (x,yin
I(x)) = 1 and f (x,yin

j) = 0 for all j ∈ D(x)\ I(x).
– For each z ∈ Z, f (yout

I(z),z) = 1 and f (yout
j ,z) = 0 for all j ∈D(z)\ I(z).

6 Nicolas Beldiceanu, Irit Katriel, and Sven Thiel

– For each 1≤ i≤ n′, f (yin
i ,yout

i) = oi.
– For each x ∈ X , f (s,x) = 1.
– For each z ∈ Z, f (z, t) = 1.
– f (t,s) = n.

Since I(a) ∈ D(a) for all a, all the edges through which we wish to pass positive
flow exist in the graph. In addition, since I(a) is determined for all variables, we have
that f (t,s) is n and f (s,x) = f (z,t) = 1 for x ∈ X or z ∈ Z. Since Li ≤ |{x ∈ X |I(x) =
i}|= oi = |{z ∈ Z|I(z) = i}| ≤Ui for all 1≤ i≤ n′, we get that the total amount of flow
into yin

i is equal to the total amount of flow out of yout
i and to the amount of flow through

(yin
i ,yout

i), and that it is within the capacity range of the edge (yin
i ,yout

i). Hence the flow
is an integral feasible flow. ��

After finding an integral feasible flow f in �G, we construct the residual graph �G f =
(V,�E f). The edges in �E f are as follows. An edge between a ∈ X ∪Z and y ∈ Yin∪Yout

appears in �E f in its original orientation iff it carries flow zero and in its reverse direction
iff it carries flow 1. The edge (yin

i ,yout
i) exists iff f (yin

i ,yout
i) < Ui and the edge (yout

i ,yin
i)

exists iff f (yin
i ,yout

i) > Li. There are no edges touching s and t. Figure 4 shows the
residual graph for our example, with respect to the flow of Figure 3. The following
lemma states that we can use the residual graph to determine which edges of the graph
are consistent.

Lemma 2. Let e = (u,v) be any edge in �G f with u ∈ X ∪Z or v ∈ X ∪Z. Then f ′(e) =
f (e) for all feasible flows f ′ in �G iff u and v do not belong to the same strongly con-
nected component (SCC) of �G f .

Proof. Standard flow theory. ��
Lemma 3. An edge e = (u,v)∈ �G f with u∈ X∪Z or v∈X∪Z is consistent iff f (e) = 1
or u and v belong to the same SCC.

Proof. If f (e) = 1 then e participates in the solution that corresponds to the flow f and
is therefore consistent. Otherwise, by Lemma 2 we get that there is a flow f ′ such that
f ′(e) = 1 (and hence a solution that uses the assignment represented by e) iff u and v
belong to the same SCC. ��

Lemma 3 implies the last step of the filtering algorithm: For each variable a ∈ X ,
remove a value i from D(a) if f (a,yin

i) = 0 and a,yin
i do not belong to the same SCC

TS

i=1

x3 z1 z2 z3x2x1

i=2 i=4 i=5 i=6i=3

Fig. 4. The residual graph with respect to the flow shown in Figure 3. The dashed edges are not
consistent.

GCC-Like Restrictions on the Same Constraint 7

of the residual graph. Similarly, for each variable a ∈ Z, remove a value i from D(a) if
f (yout

i ,a) = 0 and a,yout
i do not belong to the same SCC of the residual graph.

Recall that n = |X | = |Z| and n′ = |Yin| = |Yout|. Clearly, |�E| = O(nn′). The run-
ning time of the algorithm is dominated by the time required to find a flow, which is
O(n|�E|) = O(n2n′) [4, 10]. Hence:

Theorem 1. There is an algorithm that reduces the domains of the assignment vari-
ables of the SWC constraint to arc-consistency. This algorithm runs in time O(n2n′)
where n is the number of assignment variables and n′ is the cardinality of the union of
their domains.

3 A Bound-Consistency Algorithm for SWC
with [0, 1] Cardinalities

In this section we show that bound-consistency can be computed in time O(nn′) for the
special case of SWC in which [Li,Ui] = [0,1] for all 1≤ i≤ n′. In the bound-consistency
setting, the domain of each variable is a contiguous interval of values. This implies that
we can construct a variable-value graph which is convex [3], i.e., a bipartite graph such
that the nodes on one side (the value nodes) can be arranged such that the neighborhood
of each variable node is a contiguous sequence of value nodes. As was done with regards
to other constraints [2, 5, 6], we will show that the filtering algorithm described above
can be implemented faster when the graph is convex. In particular, we will show that
an integral feasible flow can be found in time O(n′+n logn). Thus, the running time of
the algorithm is not dominated by the time required to find a flow but rather by the time
required to find SCCs in the residual graph, which is linear in the number of edges, i.e.,
O(nn′).

3.1 From Flows to Matchings

As was the case with other constraints, it is convenient in the bound-consistency con-
text to think of matchings in an undirected bipartite graph instead of flows in a directed
network. For the SWC constraint this is perhaps even more significant than for other
constraints, because as will be shown in the following, the fact that we speak of match-
ings instead of flows allows us to simplify the variable-value graph: Each value i can be
represented by just one node yi instead of the pair of nodes yin

i ,yout
i . In particular, this

means that the graph is bipartite with a node for each variable on one side and a node
for each value on the other side, unlike �G.

The bound-consistency algorithm will operate on the undirected variable-value
graph G = (V,E) where V = X ∪Y ∪ Z with Y = {y1, . . . ,yn′ } and E = {(a,yi)|a ∈
X ∪Z∧ i ∈ D(a)}. Before describing the algorithm, we need more definitions.

Definition 2. Let M ⊆ E be a set of edges of G. For any node v ∈ X ∪Y ∪Z, NM(v) is
the set of nodes which are neighbors of v in G′ = (X ∪Y ∪Z,M).

The following definition appears in [2]:

Definition 3. Let M ⊆ E be a set of edges of G. We say that M is a parity matching in
G iff ∀v∈X∪Z |NM(v)|= 1 and ∀y∈Y |NM(y)∩X |= |NM(y)∩Z|.

8 Nicolas Beldiceanu, Irit Katriel, and Sven Thiel

That is, a parity matching is a set of edges that match each node in X ∪ Z with
exactly one node from Y and each node from Y with the same number of nodes from X
and from Z. We add the following definition.

Definition 4. Let M ⊆ E be a set of edges of G. We say that M is a twins matching in
G iff M is a parity matching and ∀y∈Y |NM(y)∩X |= |NM(y)∩Z| ∈ {0,1}.

In other words, a twins matching is a parity matching such that for each y ∈ Y , y is
either matched with one node from X and one node from Z or it is not matched at all.
The following lemma shows the connection between twins matchings in G and integral
feasible flows in �G.

Lemma 4. Let G and �G be the graphs corresponding to the SWC constraint with [0,1]
cardinalities. Then there is a one-to-one correspondence between the twins matchings
in G and the integral feasible flows in �G.

Proof. Given a twins matching M in G, we can construct an integral feasible flow f in �G
as follows. For an edge (x j,yi) ∈ E with x j ∈ X and yi ∈Y , f (x j,yin

i) = 1 if (x j,yi) ∈M
and f (x j,yin

i) = 0 otherwise. Similarly, for an edge (z j,yi) ∈ E with z j ∈ Z and yi ∈ Y ,
f (yout

i ,z j) = 1 if (z j,yi) ∈M and f (yout
i ,z j) = 0 otherwise. For an edge (yin

i ,yout
i) ∈ �E ,

f (yin
i ,yout

i) = |{x j|x j ∈ X ∧ (x j,yi) ∈ M}|. Finally, f (t,s) = n and for all 1 ≤ j ≤ n,
f (s,x j) = f (z j, t) = 1.

It is clear that the capacity requirements are met for any edge which is adjacent to
at least one node from {s,t}∪X ∪Z. For an edge (yin

i ,yout
i), the amount of flow is equal

to the number of nodes from X that were matched with yi in M, that is, either 0 or 1,
which is also within the capacity requirements of the edge (yin

i ,yout
i). It remains to show

that flow conservation holds. The flow into and out of each of s and t is of value n, and
for a node in X ∪Z it is of value 1. For each 1 ≤ i ≤ n′, either no flow enters yin

i and
no flow leaves yout

i , in which case yi was not matched with any node from X and hence
also from Z, so |{x j|(x j,yi) ∈ M}| = 0 and this implies f (yin

i ,yout
i) = 0, or a flow of

value 1 goes into yin
i and a flow of the same value leaves yout

i because yi was matched
with a node from X and a node from Z. In this case, f (yin

i ,yout
i) = 1. In both cases, flow

conservation holds at yin
i and yout

i .
For the other direction, assume that we are given an integral feasible flow f in �G.

Then we can construct a twins matching M in G as follows. For (x j,yi) ∈ E such that
x j ∈ X and yi ∈ Y , (x j,yi) ∈M iff f (x j,yin

i) = 1. For (z j,yi) ∈ E such that z j ∈ Z and
yi ∈ Y , (z j,yi) ∈ M iff f (yout

i ,z j) = 1. To see that the matching we obtain is a twins
matching, note that for each a ∈ X ∪Z there is exactly one node in Yin ∪Yout which is
connected to a by an edge that carries flow 1. Hence a is matched with exactly one node
from Y . In addition, since there is a capacity requirement of [0,1] on the edge (yin

i ,yout
i)

for each 1 ≤ i ≤ n′, each yi is matched with at most one node from X and at most one
node from Z. From flow conservation we get that it is either matched with one node
from X and one node from Z or not matched with any node from X ∪Z. ��

Figure 5 shows the algorithm for finding a twins matching in G. It makes two passes
over the y nodes. The first pass is identical to the algorithm for finding a parity matching
in [2]. The proof of its correctness appears in that paper. The second pass uses the parity
matching found in the first pass to create a twins matching (if one exists).

In order to prove the correctness of this algorithm, we first show that the parity
matching generated by the first pass matches {y1, . . . ,yi} with the minimal possible

GCC-Like Restrictions on the Same Constraint 9

(* Assumption: X and Z are sorted according to D. *)
(* Pass 1: Find a parity matching in G. *)
Px ← [] (* priority queue containing x nodes sorted by D *)
Pz ← [] (* priority queue containing z nodes sorted by D *)
for i = 1 to n′ do

forall xh with D(xh) = i do Px.Insert xh
forall zh with D(zh) = i do Pz.Insert zh
(* Assume that MinPriority of an empty queue is ∞ *)
while Px.MinPriority = i or Pz.MinPriority = i do

if Px.IsEmpty or Pz.IsEmpty then report failure
x← Px.ExtractMin
z← Pz.ExtractMin
m[x]← yi
m[z]← yi

end
endfor
if Px.NotEmpty or Pz.NotEmpty then report failure
(* Pass 2: Use the parity matching to create a twins matching. *)
Px ← [] (* priority queue containing x nodes sorted by D *)
Pz ← [] (* priority queue containing z nodes sorted by D *)
for i = n′ downto 1 do

forall xh with m[xh] = i do Px.Insert xh
forall zh with m[zh] = i do Pz.Insert zh
if Px.NotEmpty and Pz.NotEmpty then

x← Px.ExtractMax
z← Pz.ExtractMax
Match yi with x and z

endif
endfor
if Px.NotEmpty or Pz.NotEmpty then report failure

Fig. 5. Algorithm to find a twins matching in a convex bipartite graph.

number of nodes, for every i. This justifies the fact that in the second pass, which tra-
verses the nodes of Y from yn′ to y1, a node a∈ X∪Z becomes a candidate for matching
starting at ym[a] and not yD(a).

Lemma 5. Let m be the parity matching generated by the first pass of the algorithm
and let M be any parity matching in G. Then for all 1 ≤ i ≤ n′, |NM(y1, . . . ,yi)| ≥
|Nm(y1, . . . ,yi)|.
Proof. By induction on i. For i = 0 the lemma trivially holds. Assume that it holds for
all 1 ≤ j < i but not for i. That is, |NM(y1, . . . ,y j)| ≥ |Nm(y1, . . . ,y j)| for all 1 ≤ j < i,
but |NM(y1, . . . ,yi)|< |Nm(y1, . . . ,yi)|.

This means that |Nm(yi)| > |NM(yi)|. Let x j ∈ X and zk ∈ Z be a pair of nodes that
are matched with yi in m but not in M. Then by construction of the algorithm, either
D(x j) = i or D(zk) = i (or both). Assume, w.l.o.g., that D(x j) = i. This implies that
D(x j′) = i for any matching mate x j′ of yi. Let � be maximal such that � < i and y� is
matched with some x�′ with D(x�′) > i. Then for any x�′′ that was matched with one of
{y�+1, . . . ,yi}, D(x�′′) > �, because otherwise by convexity, x�′′ was in Px when x�′ was

10 Nicolas Beldiceanu, Irit Katriel, and Sven Thiel

extracted so by construction of the algorithm, D(x�′′) ≥ D(x�′) > i, contradicting the
maximality of �.

We get that all the nodes that were matched by m with {y�+1, . . . ,yi} must be
matched with {y�+1, . . . ,yi}. By the induction hypothesis, we know that the nodes of
{y1, . . . ,y�} cannot be matched in M with less nodes than they were in m. The combi-
nation of these two facts implies that the lemma holds for i. ��
Lemma 6. If the algorithm in Figure 5 reports failure then there does not exist a twins
matching in G.

Proof. If the algorithm reports failure during or immediately after the first pass then
it was proved in [2] that there does not exist a parity matching in the graph, and in
particular there does not exist a twins matching.

It remains to show that if the second pass does not match all nodes of X ∪Z then
there does not exist a twins matching in the graph. To do this, we show by induction
on i that for all i from n′ downto 1, the second pass of the algorithm matches yi, . . . ,yn′
with the maximal possible number of nodes.

For i = n′, if the algorithm matches yn′ then the claim holds. Assume that the al-
gorithm does not match yn′ but there is a twins matching in which yn′ is matched with
x j ∈ X and zk ∈ Z. Then by Lemma 5, we know that m[x j] = n′ and m[zk] = n′. So x j

was in Px and zk was in Pz in iteration n′ so the algorithm should have matched yn′ , a
contradiction.

For smaller i, we can assume by the induction hypothesis that the algorithm matched
{yi+1, . . . ,yn′ } with the maximum possible number of nodes. Let ci+1 be the number
of nodes from X (and hence also from Z) that were matched by the algorithm with
yi+1, . . . ,yn′ . Assume that the claim does not hold for yi. That is, there is a twins match-
ing M that matches yi, . . . ,yn′ with more nodes than the algorithm. This means that M
matches yi+1, . . . ,yn′ with ci+1 nodes from each of X and Z, M matches yi and the al-
gorithm does not match yi. From the fact that the algorithm does not match yi, we get
that at least one of Px and Pz was empty during iteration i of the algorithm. Assume,
w.l.o.g., that Px was empty. Then there are exactly ci+1 nodes x ∈ X with m[x]≥ i, and
by Lemma 5 this implies that M cannot match {yi, . . . ,yn′ } with more than ci+1 nodes
from each of X and Z, a contradiction. ��
Lemma 7. If the algorithm in Figure 5 reports success then it constructs a twins match-
ing.

Proof. If the algorithm reports success then for each node a ∈ X ∪ Z, the first pass
assigns a value m[a] between 1 and n′. Hence, in the second pass each such a is inserted
into the relevant queue and since the queue is empty at the end, a is also extracted from
the queue. Since these node are always extracted in a pair that includes an x node and a
z node, and in each iteration at most one such pair is extracted, we get that the matching
generated is a twins matching. ��

Thus we have obtained:

Theorem 2. There is an algorithm that narrows the domains of the assignment vari-
ables of the SWC constraint to bound-consistency, if all cardinality requirements for the
count variables are [0,1]. This algorithm runs in time O(nn′) where n is the number of
assignment variables and n′ is the cardinality of the union of their domains.

GCC-Like Restrictions on the Same Constraint 11

Conclusion and Open Problems

We have extended the Same constraint with GCC-like cardinalities for the values. We
have shown an algorithm that achieves arc-consistency for the new constraint and a
faster algorithm that achieves bound-consistency for the special case in which all cardi-
nalities are [0,1].

The bottleneck of the bound-consistency algorithm is the SCC computation. For
other global constraints, it was shown that convexity can be exploited to speed up the
SCC computation and achieve even faster bound-consistency algorithms. In the SWC
case, however, we were, so far, only able to exploit convexity in the matching step of
the algorithm. It is an open problem whether the SCC computation can be performed
faster than O(|E|).

Another question is whether the twins matching algorithm can be generalized to the
case of arbitrary cardinalities. That is, is there an algorithm that runs in time O(n′+
n logn) and finds a feasible matching in a variable-value graph with arbitrary cardinali-
ties on the values?

References

1. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows: theory, algorithms and appli-
cations. Prentice Hall, Englewood Cliffs, NJ, 1993.

2. N. Beldiceanu, I. Katriel, and S. Thiel. Filtering algorithms for the Same constraint. In First
International Conference on Integration of AI and OR Techniques in Contraint Programming
for Combinatorial Optimization Problems (CPAIOR 2004), volume 3011 of Lecture Notes
in Computer Science, pages 65–79, Nice, France, 2004. Springer.

3. F. Glover. Maximum matchings in a convex bipartite graph. Naval Res. Logist. Quart.,
14:313–316, 1967.

4. L. R. Ford Jr. and D. R. Fulkerson. Flows in Networks. Princeton University Press, 1962.
5. I. Katriel and S. Thiel. Fast bound consistency for the global cardinality constraint. In

Proceedings of the 9th International Conference on Principles and Practice of Constraint
Programming (CP 2003), volume 2833 of LNCS, pages 437–451, 2003.

6. K. Mehlhorn and S. Thiel. Faster Algorithms for Bound-Consistency of the Sortedness and
the Alldifferent Constraint. In Proceedings of the 6th International Conference on Principles
and Practice of Constraint Programming (CP 2000), volume 1894 of LNCS, pages 306–319,
2000.

7. C.-G. Quimper, A. López-Ortiz, P. van Beek, and A. Golynski. Improved algorithms for the
global cardinality constraint. In M. Wallace, editor, Principles and Practice of Constraint
Programming (CP’2004), volume ? of LNCS, pages ?–? Springer-Verlag, 2004.

8. C.-G. Quimper, P. van Beek, A. Lopez-Ortiz, A. Golynski, and S. B. Sadjad. An efficient
bounds consistency algorithm for the global cardinality constraint. In Principles and Practice
of Constraint Programming, pages 600–614, 2003.

9. J.-C. Régin. A filtering algorithm for constraints of difference in CSPs. In Proceedings of
the 12th National Conference on Artificial Intelligence (AAAI-94), pages 362–367, 1994.

10. J.-C. Régin. Generalized Arc-Consistency for Global Cardinality Constraint. In Proceedings
of the 13th National Conference on Artificial Intelligence (AAAI-96), pages 209–215, 1996.

11. Médecins sans Frontières. http://www.doctorswithoutborders.org/.
12. W.J. van Hoeve. The alldifferent constraint: A survey. In Submitted manuscript. Available

from http://www.cwi.nl/wjvh/papers/alldiff.pdf, 2001.

A Note on Bilattices
and Open Constraint Programming

Arnaud Lallouet

Université d’Orléans – LIFO,
BP 6759 – F-45067 Orléans – France

Abstract. We propose to use bilattice as a constraint valuation struc-
ture in order to represent truth and belief at the same time. A bilattice
is a set which owns two lattices orderings. They have been used in Arti-
ficial Intelligence in order to model incomplete information. We present
a framework for Bilattice-valued Constraint Programming which allows
to represent incomplete or conflicting information and to combine con-
straints with a set of operators. It allows to model a variety of situation
such as open constraints and the integration of machine learning into con-
straint programming, reconciliation of divergent opinions in distributed
systems or constraint modules in a software engineering perspective.

1 Introduction

Valuation structures for constraints have become popular because they provide
control on specific features which are difficult to represent with classical con-
straints or more generally with first-order logic. For example, in fuzzy CSPs
[12], each tuple is given a preference level in the R-interval [0, 1] which repre-
sents how likely the tuple belongs to the constraint. Linguistic constructions
such as “tall man” or “powerful computer” can be easily represented in this
framework. Further, semiring-based CSP [5] provides a more abstract valuation
structure able to represent different notions of truth like the one of fuzzy and
probabilistic CSPs.

Obviously, these approaches answer the question of the degree of truth, but
for some applications, it is needed to model how much we believe in a given
assertion concerning a truth value. This situation arises in distributed reasoning
when pieces of knowledge coming from multiple sources have to be combined into
a single one. But the way of doing this combination depends on the application.
Here are a few scenarii in which this phenomenon occurs:

– Information Gathering over the Internet : imagine a situation in which web
agents are requested to organize a movie night. Some agents may return
different programs for the same movie theater due to obsolete information,
some agents may be preferred because they have provided more reliable
information in the past or because they better fullfil the preferences of the
customer.

B. Faltings et al. (Eds.): CSCLP 2004, LNAI 3419, pp. 12–25, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Note on Bilattices and Open Constraint Programming 13

– Multi-expert Reasoning: different expert may give different conclusion start-
ing from the same premisses, and their confidence on the subject may be
taken into account while merging the information.

– PDA Synchronization: nomadic applications create divergent copies of the
same original database. The reconciliation of theses copies can be made
according different policies: first or last transaction, preference given to the
PDA or to the PC.

– Open Constraints : classical constraints are defined by a set of allowed tuples,
the other tuples being implicitely considered as false. This is known as the
Closed World Assumption of database theory. By allowing another value ⊥
for tuples, we can model the absence of information about this tuple, which
is a different notion of being half way between true and false.

All these problems are gaining considerable attention in the constraint commu-
nity in order to add constraint-based decision support to web or distributed
applications. But it also raises practical and theoretical issues coming from the
field of reasoning with incomplete or inconsistent information. Philosophical and
epistemological concerns have been at the origin of proposals to give answers to
this problem, mainly by giving a representation to partial and unknown states.
A first proposal in this direction is Kleene’s three-valued logic [10] K3 in which
an additional truth value I is intended to represent the absence of information.

Belnap introduced a fourth value [3] in order to model inconsistency and
called his valuation structure Four (see figure 1). Bilattices have been introduced
by Ginsberg [9] as a elegant framework to represent incomplete and inconsistent
information in logic. This framework has been later extended by Fitting [7] to
model the semantics of logic programs with negation.

In this paper, we propose to define constraints valued in bilattice structures.
We show that this framework has nice possibilities by providing a way to express
incomplete, missing or conflicting information. Some of theses problems have
already been tackled by existing approaches but we believe that bilattices could
offer a nice unifying framework to many extensions of constraint programming
the same way it did for multi-valued logic [9].

The paper is organized as follow. We first recall some definitions and proper-
ties about bilattices in section 2. In section 3 we use this structure as valuation
domain for constraints and we give two notions of solution for a constraint prob-
lem. Then we give instances of the framework and ideas of applications area in
section 4.

2 Bilattices

We first start with an example introducing Four (displayed on figure 1), which
is the simplest bilattice. Let assume that we want to use constraint-based web
agents to inquire on a computer we want to buy. We may have two sites providing
the same constraint, like for example the list of components in the computer, but
possibly with a different meaning. Before the request, we have no information,
which corresponds to the value ⊥, which may be understood as intermediate
between true and false, since it will be determined in the future. Suppose that

14 Arnaud Lallouet

0 1

k

t

Fig. 1. Four, the bilattice of first-order logic.

we request a 120GB hard drive, it may happen that both site answer “yes, it has
one”, which can be given the value 1 without ambiguity or both say “no, it does
not”, which can be given the value 0. A problem arises if one agent says “yes”
while the other says “no”. If your nature is optimistic, you may combine both
informations with a logical ‘or’, and if you are pessimistic, you may use ‘and’. But
another sensible point of view is to be skeptical. If we consider truthness, we may
think that we are in a situation similar to the original one, intermediate between
true and false but for another reason: now we have too much information. This
situation is denoted by �.

The new elements � and ⊥ may be understood in a set-theoretic way by
considering that we collect opinions on a tuple. No opinion is represented by
∅ which corresponds to ⊥, false and true correspond to the sets {0} and {1}
respectively, and {0, 1} means that we believe that this tuple is both true and
false, which is associated to �. Also it is no surprise to consider that classical
truth values are in the middle of the knowledge ordering and that absence and
excess of information weakens the degree of truth or falsity we may have in an
object. Two orderings can be considered for the structure Four:

– the truth ordering≤t in which 0 ≤t � ≤t 1 and 0 ≤t ⊥ ≤t 1. In this ordering,
⊥ and � are incomparable.

– the knowledge or information ordering ≤k in which ⊥ ≤k 0 ≤k � and ⊥ ≤k

1 ≤k �. In this ordering, 0 and 1 are incomparable.

Both orderings are displayed on figure 1 as a double Hasse diagram in which the
vertical direction expresses the degree of knowledge and the horizontal direction
the degree of truth. The interesting feature of this structure is that both orderings
define complete lattices. Classically, we call ∧ and ∨ the operators meet (or glb)
and join (or lub) in the truth direction. They correspond to usual conjunction
and disjunction. In the knowledge ordering, meet and join are respectively called
consensus and gullability operators [8] and are denoted by × and +.

More generally, a bilattice is composed of a base set equipped with two
lattice orderings. If different (otherwise it would collapse to a lattice), these
two orderings have to be connected. In the original definition of Ginsberg [9]
this connection was made by adding a negation operator for the truth ordering.
This operator seems unecessary in the general case for describing the structure
itself (although useful for many applications) and therefore has been dropped

A Note on Bilattices and Open Constraint Programming 15

by Fitting in his definition of interlaced bilattice [7]. It follows that a precise
definition of the general concept of bilattice is somehow tricky [1]. But for our
purpose, we rather use Fitting’s notion of interlaced bilattice whose properties
are better suited for our application to constraints:

Definition 1 (Pre-bilattice).
Let A be a non-empty set containing at least two elements. A pre-bilattice is a
structure B = (A,≤t,≤k) where (A,≤t) and (A,≤k) are lattices.

We denote by ∨ and ∧ the lub and glb operations according the truth ordering
≤t and + and × the respective ones according to the knowledge ordering ≤k.

Definition 2 (Interlaced bilattice).
An interlaced bilattice is a pre-bilattice B = (A,≤t,≤k) such that each of the
operations ∨, ∧, + and × is monotonic with respect to both ≤t and ≤k.

Bilattices can be complete, in which case there exists a greatest and a smallest
element. We denote these elements 1 and 0 for the truth ordering and � and
⊥ for the knowledge ordering. They also can be distributive if each operator
distributes over the others. Moreover, they have many algebraic properties and
we refer to [7] for a more detailed description.

Since bilattice are used in this framework as a valuation structure for con-
straints, they can be equipped with a notion of negation. Negation is denoted
by ¬ and reverses the truth ordering and should be monotonic with respect to
the knowledge ordering. Hence ¬¬a = a and a ≤k b ⇒ ¬a ≤k ¬b. This makes
sense since we should not be more informed on the negation of a value than on
the value itself. Fitting also introduced a similar operation called conflation, de-
noted by − for the knowledge part. Elegant symmetry results follow for bilattices
which have both kinds of negation [7].

Lattices can be used to build bilattices as proposed by [9] and [7]. Let (C,≤1)
and (D,≤2) be two (complete) lattices. Then a bilattice C�D = (C×D,≤t,≤k)
can be constructed as follows:

– (c1, d1) ≤k (c2, d2)⇔ c1 ≤1 c2 and d1 ≤2 d2.
– (c1, d1) ≤t (c2, d2)⇔ c1 ≤1 c2 and d2 ≤2 d1.

The underlying intuition is that, in a couple (c, d) ∈ C �D c measure the belief
for the tuple and d the belief against it. Further, [9] has introduced world-based
bilattices following the same construction as the instantiation of the underly-
ing lattices by a powerset equipped with set inclusion. Ginsberg [9] and Fitting
[7] proved two fundamental representation theorems on bilattices, which were
completed by Avron [2]. The first one states that a distributive bilattice is iso-
morphic to L� L where L is a distributive lattice [9, 7], and that an interlaced
lattice is isomorphic to L � L where L is a bounded lattice [7, 2]. Fitting has
further proved that under certain conditions (distributivity of the operators and
commutativity of negation and conflation), the consistent members of a bilattice
(i.e. {e ∈ A | e ≤k −e}) can be represented as intervals of elements of the base
set. As an example, consider that ⊥ in Four can be represented by [0, 1] since
both values are still possible.

16 Arnaud Lallouet

k

t

df dt

0 1

*

Fig. 2. A bilattice for default reasoning.

It is easy to see that bilattices as valuation domains extend semiring for which
only one ordering is required. Moreover, semirings form a lattice structure [5] and
can therefore be used to construct bilattices with the above method. However,
the extension they provide do not tackle the same knowledge representation
problem. Semirings aim at extending the notion of truth we have about an item
while bilattices are able to represent truth and confidence at the same time. This
makes a fundamental difference for example with what is called Egalitarianism
and Utilitarianism in [5]. In this approach, a new semiring is built from two
others by constructing a specific notion of truth from the two original ones. In
particular, there is still an unique ordering in the resulting structure. Moreover,
bilattices offer more freedom since they are not always constructed as products of
two lattices, like the bilattice for simple default reasoning presented in figure 2,
where df and dt are respectively default true and false.

3 Bilattice-Based CSPs

Like semiring-based CSPs, bilattice-based CSPs (or BCSPs) are obtained by
replacing the boolean valuation structure of classical CSPs by an arbitrary bi-
lattice. However, since bilattice extend semirings, much of the definitions used
in this context are still valid when changing the valuation structure.

Let V be a set of variables and D = (DX)X∈V their (finite) domains. For
W ⊆ V , we denote by DW the set of tuples on W , namely ΠX∈W DX . Projection
of a tuple or a set of tuples on a variable or a set of variables is denoted by |. If A
is a set, then P(A) denotes its powerset. For A ⊆ DW , A denotes its complement
in DW .

Definition 3 (Constraint).
Let B = (A,≤t,≤k) be a bilattice and W ⊆ V . A constraint is a mapping
c : DW → A.

In the following, we denote by var(c) the set of variables W of the constraint
c. Constraints are composed in order to form CSPs. The most usual composition
used in classical CSPs is conjunction but in the context of BCSPs, each operator
∨, ∧, + and × of the bilattice can be given a counterpart at the constraint level.
Operators at the constraint level are surrounded by a circle.

A Note on Bilattices and Open Constraint Programming 17

Definition 4 (Constraint composition).
Let ∗ be an operator on A and c1 and c2 two constraints. The composition of c1

and c2 according to ∗, denoted by c1 � c2, is a constraint c = c1 � c2 such that:

– var(c) = var(c1) ∪ var(c2)
– c : Dvar(c) → A is defined by t �→ c1(t|var(c1)) ∗ c2(t|var(c2)).

All operators are defined for arbitrary composition of constraints of different
arities. While it is fairly straightforward for conjunction, the meaning is not
obvious for the other ones and we shall consider composition of constraints over
the same arities. Let us examine the different operators in turn:

– � is the classical conjunction operator. Most CSPs including the original
definition of SCSPs only use this operator.

– � defines a disjunction between constraints. Disjunctive combination of con-
straints have received little attention so far. In [4], it is used for proving the
correctness and completeness of a labeling procedure. More recently, it has
been used in [6] to describe gathering of new information for open constraints
in a distributed setting. Besides that, there is an objective reason why dis-
junctive combination had not became popular in the CSP community. This
is due to its non-monotonic nature with respect to consistencies. A particular
case of disjunctive composition is constraint removal which has been exten-
sively studied under the name of dynamic CSPs [13]. Different methods have
been proposed to restore a consistent state after a composition.

– ⊕ is a new interesting combinator which allows to register different opinions
in a truth-objective manner. In the disjunctive composition, a tuple which
was believed as false can become true, but the opposite is not possible. It
means that recording one opinion for a tuple will prevail upon 100 opinions
against it ! A great reward to optimists ! This composition allows to model a
finer shade of reconciliation, to an extent which depends on the underlying
bilattice.

– ⊗ combines truth values in the direction of maximum consensus, which may
yield to consider that having two divergent opinion is the same as not know-
ing anything.

Of course, no particular composition is better than the others and a suitable use
of the operators is application-dependent. Semantics can be given to an arbi-
trary formula made from these connectives by straightforward induction using
definition 4. Here comes the definition of BCSPs:

Definition 5 (BCSP).
A Bilattice-based Constraint Satisfaction Problem (or BCSP) is a tree whose
nodes are constraint operators and whose leaves are constraints.

Here follows the definition of solution of such a CSP:

Definition 6 (Solution of a BCSP).
Let C be a BCSP. The solution of C is the constraint defined by the root of the
tree.

18 Arnaud Lallouet

Classical CSPs only use �. Note that if a BCSP only uses � operators, then the
solution is monotonic with respect to the truth ordering when performing con-
straint addition. This somehow makes BCSPs an extension of classical CSPs. Of
course, anti-monotonicity apply for disjuctive combination in the same context.

As for SCSPs, the notion of solution as a function may be inadequate as
it needs to represent large cartesian products and give a value to every tuple.
This is why abstract solutions are proposed in [5], which are maximally true
solutions. If the lattice is a total order, then the common truth value of all
abstract solutions is called the best level of consistency. If not, this best level
is an upper bound of the incomparable values of the set of abstract solutions.
In BCSPs, we may be interested by maximality according both ordering. For
example, assume that we measure independently truth and confidence by a real
number in [0, 1], is it more interesting to have a solution with a degree of truth
of 1 and a confidence of 0.1 or another one with a truth value of 0.8 but with a
confidence of 0.9 ? Actually both are interesting and should be provided to the
user.

This can be done by defining a dominance relation between tuples. The most
usual dominance relation is due to Pareto and is the basis of multi-objective
optimization.

Definition 7 (Pareto dominance).
Let c be a constraint of arity W . The Pareto dominance relation between tuples
of DW is defined by t � t′ ⇔ t ≤t t′ and t ≤k t′.

Abstract solutions are non-dominated tuples:

Definition 8 (Abstract solutions).
Let C be a BCSP over the set of variables W . The set AS of abstract solutions of
C is the set of non-dominated solutions, i.e. AS = {t ∈ DW | � ∃t′ ∈ DW , t � t′}.

An implementation of this framework will require the same techniques as for
SCSPs, and deserves further investigations. In particular, existing problems to
represent approximations and to compute consistencies will be the same. But
since the composition of constraints is not only conjunction, it is the notion of
consistency itself which causes problems. The classical notion of consistency is
that a superset of solutions is maintained and contracted as new information
is deduced. But this contraction is monotonic only with respect to further con-
juctive composition. Hence the way approximations may compose according to
various operators is an interesting open question. The implementation of Four
is in progress as Open CSPs [11].

4 Instances of the Framework and Applications

In this section, we present some useful bilattices which can be used in presence
of incomplete information and some examples of situation in which BCSPs may
be useful.

A Note on Bilattices and Open Constraint Programming 19

4.1 Open Constraints

The simplest non-trivial bilattice is Four depicted in figure 1. While SCSPs are
able to model classical CSPs, the simplest bilattice yet provides an extension
by allowing to handle incomplete or contradictory information. The new truth
values ⊥ and � can be used to introduce a new type of constraints with partial
definition we call open constraints:

Definition 9 (Open constraint, def 1).
An open constraint c is a constraint on the bilattice Four = ({⊥, 0, 1,�},∨,∧,
+,×, 0, 1,⊥,�).

As noticed earlier, the base set {⊥, 0, 1,�} of Four is isomorphic to P({0, 1})
and thus we can give another more intuitive definition of open constraints:

Definition 10 (Open constraint, def 2).
An open constraint c of arity W is a couple (c+, c−) of subsets of DW .

The positive and negative part correspond to the tuples whose truth value
is known to be true or false (or both for c+ ∩ c−), and the other ones (which
belong to c+ ∪ c−) are unknown. Constraints which have no tuple valued to �
are consistent, the others are paraconsistent:

Definition 11 (Paraconsistent constraint).
An open constraint (c+, c−) is paraconsistent if c+ ∩ c− �= ∅.

Paraconsistent constraints can deal with local inconsistencies which may ap-
pear in distributed reasoning with the following advantages:

– Dealing explicitely with paraconsistency allows to circumsize the potential
problems of inconsistency. A computation which does not use paraconsistent
tuples may be developped to its end without compromising the correctness
of the solution. As an example, having a web site which saying that Elvis is
alive and another saying he is dead would probably not bother a deduction
on Coltrane’s music.

– Even if we want to use a �-valued tuple for a deduction, we can treat it as
true or false (according to our level of optimism).

Let c1 = (c+
1 , c−1) and c2 = (c+

2 , c−2). Both orderings can be written in a
set-theoretic form:

– truth ordering: c1 ≤t c2 ⇔ c+
1 ⊆ c+

2 and c−1 ⊇ c−2 . In this ordering, c1 ≤t c2

if the truth value of every tuple is less in c1 than in c2.
– knowledge ordering: c1 ≤k c2 ⇔ c+

1 ⊆ c+
2 and c−1 ⊆ c−2 . In this ordering,

c1 ≤k c2 if c1 gives a truth value to less tuples than c2.

Consistent Open Constraints
Let us first consider only consistent values. Open constraints represent what we
know about a relation: the positive part contains tuple which are known as true,
the negative part the ones which are known as false. But some other tuples are

20 Arnaud Lallouet

simply unknown. Usually in Constraint Programming, a (closed) constraint is
defined by giving the set of its allowed tuples1 (in extension or intentionnaly
by some expression in a constraint language whose semantics is well defined).
The other tuples are simply completed by the so-called Closed World Assump-
tion familiar in database theory: what is not explicitely true is considered as
false. Although fine in many contexts, this certainly does not model our actual
knowledge which is partial and sometimes contradictory.

An open constraint represents the known part of an hidden real-world re-
lation. It can be viewed as the set of closed constraints which are compatible
with its positive and negative parts. But when we want to draw conclusions from
our knowledge, we have to choose one of these compatible constraints and bet
it actually represent the world. We call such a compatible closed constraint an
extension of the open constraint. Let us define a classical constraint c by a couple
(W, T) where W = var(c) ⊆ V is its arity and T = sol(c) ⊆ DW is its solution.

Definition 12 (Extension of a consistent constraint).
Let c = (c+, c−) be a consistent open constraint. A classical constraint c′ =
(W, T) is an extension of c if c+ ⊆ T and c− ⊆ T .

In general, many extension can be considered, and let us introduce three of
them. Among all possible extensions lies the real constraint which is associated
to the real world problem. In most cases, its knowledge is impossible and all can
be done is computing an approximation of it. But we recall that computing this
approximation is crucial if we want to use this constraint in a classical CSP, and
therefore be able to build a solver for it. Let c = (c+, c−) be an open constraint.
We denote an extension of c by [c]:

– Cautious extension: [c]cautious = (W, c−). All unknown tuples are assumed to
be true (figure 3b). A solver generated according to this extension is cautious
in the sense that it will not prune the search space for any unknown tuple.

– Brave extension: [c]brave = (W, c+). All unknown tuples are assumed to be
false (figure 3c). A solver generated according to this extension will prune

C+ C− C− C−

C+ A+

(a) an open constraint (b) cautious extension

(d) algorithmic extension(c) brave extension

C+ A−

Fig. 3. An open constraint and some of its extension.

1 Or conversely by giving forbidden tuples.

A Note on Bilattices and Open Constraint Programming 21

the search space as soon as possible. Actually, it behaves exactly as for a
closed constraint for which all non-allowed tuples are disallowed.

– Algorithmic extension [c]A: let A : DW → {0, 1} be a tuple classification
algorithm such that t ∈ c+ ⇒ A(t) = 1 and t ∈ c− ⇒ A(t) = 0. Then [c]A =
(W, {t ∈ DW | A(t) = 1}) (figure 3d). This last kind of extension will be the
ideal host for a learning algorithm. Tuples from c+ and c− are respectively
positive and negative examples which are used to feed the learning algorithm.
Note that the two preceding extensions are particular cases of this one for
constant functions. The main challenge is to be able to generate the best
possible solver: the one which has a strong pruning power and is not subject
to too many incorrectness errors. As a learning task, there is no universal
solution for every problem and the user has to carefully choose and tune
his/her learning algorithm in order to obtain good results. It may happen
that the algorithm does not classify correctly some tuples defined by c, for
noise tolerance for example. In this case, we say that [c]A defines an incorrect
extension of c.

In such a way, open constraints can wrap learning algorithms in the same
spirit global constraint do for specialized Operation Research algorithms. This
framework is developed in [11].

General Open Constraints
If we allow paraconsistent constraints, we have to find a similar way of construct-
ing solvers and integrating them in a CSP. We can give a modified definition of
extension which classifies both unknown and paraconsistent tuples:

Definition 13 (Extension). [generalization of def 12]
Let c = (c+, c−) be an open constraint. A classical constraint c′ = (W, T) is an
extension of c if c+\c− ⊆ T and c−\c+ ⊆ T .

Interactions with the external world are modeled by the composition of open
constraints. In order to do this, we propose to reformulate the generic compo-
sition framework given in definition 4 for our set-theoretic definition of open
constraint. Note that these operators have not been designed in a software engi-
neering perspective but rather as building blocks on top of which more evolved
operators can be built. They may be user-unfriendly, in particular when dealing
with paraconsistency. These operators are defined for constraints on the same
set of variables. An extension to any set of variable is easy to imagine.
Operators Associated to ≤t:

– disjunction: c1 � c2 = (c+
1 ∪ c+

2 , c−1 ∩ c−2).
– conjuction: c1 � c2 = (c+

1 ∩ c+
2 , c−1 ∪ c−2).

– negation: ¬c = (c−, c+) (Ginsberg’s negation).
Operators Associated to ≤k:

– gullability: c1 ⊕ c2 = (c+
1 ∪ c+

2 , c−1 ∪ c−2).
– consensus: c1 ⊗ c2 = (c+

1 ∩ c+
2 , c−1 ∩ c−2).

– conflation: −c = (c−, c+).

22 Arnaud Lallouet

These operators can be used to build CSPs from basic open constraints as in
the modularity paragraph below or as revision operators in dynamic CSPs (see
[13] for description and pointers). In the latter case, it is not difficult to see
that, except �, they are all non-monotonic with respect to the classical arc-
consistency approximation. Thus dedicated techniques of dynamic CSPs have to
be extended for the new operators.

4.2 An Import Operator

In a software engineering perspective, the composition operators provide many
ways to combine constraints in order to model a problem. Hence it could be useful
to provide an import operator for open constraints (we restrict here to consistent
open constraints). We introduce the operator c1 �c2 with the following meaning:
tuples are imported by c1 from c2 and their truth value in c2 is prioritary. In
other words, the information of c1 is extended by tuples of a more trusted source
c2 and the value a tuple has in c1 is kept only if the tuple is unspecified in c2.
Note that ⊥ is not considered when another value is present since it models the
absence of information. The truth value of a tuple in c1 � c2 is summarized in
the following table:

c1 c2 c1 � c2

0 0 0
0 ⊥ 0
0 1 1
⊥ 0 0
⊥ ⊥ ⊥
⊥ 1 1
1 0 0
1 ⊥ 1
1 1 1

To this end, we propose to define the import operator as follows:

Proposition 14.
Let c1 and c2 be two consistent open constraints. Then

c1 � c2 = (c1 ⊗−c2)⊕ c2

The proof is done by checking all cases in the truth table of each operator.

Proposition 15.
If c1 and c2 are consistent, then so is c1 � c2.

Of course, an operator in which c1 has precedence over c2 can be easily
defined. Since truth values can be combined by the elementary operators of
the lattice, many more operators can be defined. Such operators could bring
modularity in constraint programming and reasoning.

A Note on Bilattices and Open Constraint Programming 23

k

t

1

0

0 0

1

0 1 1 1

0

Fig. 4. A bilattice for 2-sources non-ordered reconciliation.

4.3 Reconciliation of Multiple Agents Opinions

When dealing with multiple agents, each one could propose its own opinion
about a tuple. This problem is of particular interest in the context of web services
which are currently normalized (http://www.w3.org/2002/ws/). Reconciliation
of the two points of view requires to define which operator will be used and the
underlying bilattice. In this example, we propose to use the ⊕ operator which
adds information coming from the two sources (but any other could be used
according to the application).

In figure 4, the two sources are considered as unordered and any source which
contributes with a 1 raises the degree of truth and one which contributes with
a 0 lowers this level. The upper part of the bilattice corresponds to the case of
one or both sources answer 0 and 1 at the same time.

In figure 5, the same situation is depicted except that the two sources are
now ordered. It is supposed that the opinion of the first source is more reliable
than the one of the second source. More reliable means here that if the first
source says 1, this opinion has greater credit than the same opinion coming from
the second source. This can be particularly noticed on states where the sources
have divergent opinions.

Example 16.
A company wants to hire a collaborator. The candidate should know either C++
or Java and should have good skills in networks. The project manager wants to

k

t

1

 0

0 0 0 1 1 1

0

0 1 1

1 0

 1 0

Fig. 5. A bilattice for 2-sources ordered reconciliation.

24 Arnaud Lallouet

Table 1. Data retrieved from two job-finding services.

C++ Java Network

Mr. Green 1⊥ Mr. Green 01 Mr. Green 0⊥
Mrs. White 11 Mrs. White 11 Mrs. White 1⊥
Mr. Blue 0⊥ Mr. Blue ⊥0 Mr. Blue ⊥1

Mr. Red ⊥0 Mr. Red ⊥1 Mr. Red 11

Mrs. Pink ⊥⊥ Mrs. Pink ⊥⊥ Mrs. Pink ⊥⊥

Table 2. Solution of the BCSP.

Name A = C++ � Java A � Network

Mr Green 11 0⊥
Mrs. White 11 1⊥
Mr. Blue ⊥⊥ ⊥⊥
Mr. Red ⊥1 ⊥1

Mrs. Pink ⊥⊥ ⊥⊥

use two web-based compagnies: Job-Online.com and FunnyJobs.com. He thinks
that the first company is more serious and therefore uses the 2-sources ordered
reconciliation bilattice depicted in figure 5. The web services return data given
in table 1 for the three constraints C++, Java and Network. The BCSP can be
represented as the following tree:

C++ Java

� Network

�

BCSPs, as SCSPs give a truth value to every possible tuple. The results are
given in table 2.

5 Conclusion

In this paper, we have proposed bilattices as a new kind of valuation domain for
CSP. Besides a classical truth ordering, bilattices propose to add a knowledge
ordering able to represent the belief in a particular truth value. We present a
framework for Bilattice-valued Constraint Programming which allows to repre-
sent incomplete or conflicting information and to combine constraints with a set
of operators. It allows to model a variety of situation such as open constraints
and the integration of machine learning into constraint programming, reconcil-
iation of divergent opinions in distributed systems or constraint modules in a
software engineering perspective.

Acknowledgements

The author is supported by CNRS grant 2JE095.

A Note on Bilattices and Open Constraint Programming 25

References

1. Arnon Avron. A note on the structure of bilattices. Mathematical Structures in
Computer Science, 5(3):431–438, 1995.

2. Arnon Avron. The structure of interlaced bilattices. Mathematical Structures in
Computer Science, 6(3):287–299, 1996.

3. Nuel D. Belnap. A useful four-valued logic. In J. M. Dunn and G. Epstein, editors,
Modern uses of multiple-valued logic, pages 8–37. Reidel Publishing, 1975.

4. Stefano Bistarelli, Philippe Codognet, Yan Georget, and Francesca Rossi. Labeling
and partial local consistency for soft constraint programming. In Enrico Pontelli
and Vı́tor Santos Costa, editors, Practical Aspects of Declarative Languages, vol-
ume 1753 of LNCS, pages 230–248, Boston, MA, USA, 2000. Springer.

5. Stephano Bistarelli, Ugo Montanari, and Francesca Rossi. Semiring-based con-
straint satisfaction and optimization. Journal of the ACM, 44(2):201–236, March
1997.

6. Boi Faltings and Santiago Macho-Gonzalez. Open constraint satisfaction. In Pascal
van Hentenryck, editor, International Conference on Principles and Practice of
Constraint Programming, volume 2470 of LNCS, pages 356–370, Ithaca, NY, USA,
Sept. 7 - 13 2002. Springer.

7. Melvin Fitting. Bilattices and the semantics of logic programming. Journal of
Logic Programming, 11:91–116, 1991.

8. Melvin Fitting. The family of stable models. Journal of Logic Programming,
17:197–225, 1993.

9. Matthew L. Ginsberg. Multivalued logics: a uniform approach to reasoning in
artificial intelligence. Computational Intelligence, 4:265–316, 1988.

10. Stephen C. Kleene. Introduction to Metamathematics. Van Nostrand, 1952.
11. Arnaud Lallouet, Andrëı Legtchenko, Eric Monfroy, and AbdelAli Ed-Dbali. Solver

learning for predicting changes in dynamic constraint satisfaction problems. In
Ken Brown Chris Beck and Gérard Verfaillie, editors, Changes’04, International
Workshop on Constraint Solving under Change and Uncertainty, Toronto, CA,
2004.

12. Thomas Schiex. Possibilistic constraint satisfaction problems or “How to handle
soft constraints?”. In Didier Dubois and Michael P. Wellman, editors, Confer-
ence on Uncertainty in Artificial Intelligence, pages 268–275, Stanford University,
Stanford, CA, 1992. Morgan Kaufmann.

13. Gérard Verfaillie and Narendra Jussien. Dynamic constraint solving, 2003. CP’2003
Tutorial.

Pruning by Equally Constrained Variables

Igor Razgon and Amnon Meisels�

Department of Computer Science,
Ben-Gurion University of the Negev,

Beer-Sheva, 84-105, Israel
{irazgon,am}@cs.bgu.ac.il

Abstract. We introduce a notion of equally constrained variables of a
constraint network. We propose a method of pruning that uses the no-
tion. We combine the proposed method of pruning with FC-CBJ and call
the resulting algorithm FC-CBJ-EQ. Our experimental results show that
FC-CBJ-EQ outperforms FC-CBJ on constraint networks that encode
randomly generated instances of graph k-coloring and of the subgraph
isomorphism problems.

1 Introduction

When a problem is modeled as a constraint satisfaction problem (CSP), the ob-
tained model not always expresses specific features of the problem. Recognizing
these “implicit” features could significantly reduce the search space. Examples
to the fact that recognizing problem-specific features increases efficiency of con-
straint processing include: symmetry breaking methods (for example, [4, 5, 11]),
recognizing tractable classes of CSPs (for example, [1, 3, 14]), methods that de-
tect interchangeability (for example, [6, 15, 2]).

The present paper introduces a method of pruning for complete constraint
solvers. The method is based on the discovery of equally constrained variables.
Informally speaking, two variables v1 and v2 of a CSP are equally constrained
with a variable v3 if they are connected to v3 by the same constraint.

Equally constrained variables occur in CSP-encodings of graph-theoretic
problems. Consider, for example, the graph k-coloring problem. Let G be a graph
which we would like to color by at most k colors. The problem can be modeled
as a CSP in which variables correspond to the vertices of G, all domains are
{1, . . . , k}, and variables that correspond to adjacent vertices are “connected”
by the inequality constraint. Variables v1 and v2 are equally constrained with a
variable v3 if the vertices that correspond to v1 and v2 are both adjacent to the
vertex corresponding to v3 or both non-adjacent to it.

We propose a modification of FC-CBJ [9] called FC-CBJ-EQ that utilizes
information about equally constrained variables. The proposed algorithm differs
from FC-CBJ in the following two aspects.

� The authors would like to acknowledge the Lynn and William Frankel Center for
Computer Sciences for financial support.

B. Faltings et al. (Eds.): CSCLP 2004, LNAI 3419, pp. 26–40, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Pruning by Equally Constrained Variables 27

1. At the preprocessing stage FC-CBJ-EQ finds all triples of variables v1, v2, v3

of the processed constraint network such that v1 and v2 are equally con-
strained with v3.

2. During the run of the search algorithm, whenever FC-CBJ-EQ deletes a
value val from the current domain of a variable v, it associates with the
value a so-called r-set, which is a set of unassigned variables responsible for
discarding val. To compute r-sets, we adopt the technique described in [12,
13]. After computation of the r-set of val, FC-CBJ-EQ scans all unassigned
variables. If it detects that v and some unassigned variable u are equally
constrained with all variables of the r-set associated with val, the value val
is removed from the current domain of u.

The proposed method of pruning is closely related to the notion of Neigh-
borhood Partial Interchangeability (NPI) [2] and to the method of Symmetry
Breaking via Dominance Detection (SBDD) [4, 5].

As described above, after discarding the value val of a variable v, FC-CBJ-
EQ removes val from the domain of every unassigned variable u that is equally
constrained with v with respect to every variable of the r-set R of val. In other
words, the values val of variables v and u are interchangeable with respect to R.
Although the formulation of NPI requires the interchangeable values to belong
to the domain of the same variable, it is easy to generalize this notion. The
proposed method of pruning can be considered as an application of the method
of NPI.

Two properties make FC-CBJ-EQ similar to SBDD. First, both algorithms
utilize the same pruning approach according to which a node of the search tree
can be removed if some “similar” node has already been removed. Second, they
check similarity by comparison of the domains of variables. The major difference
between FC-CBJ-EQ and SBDD is the detection of r-sets by FC-CBJ-EQ. In
contrast, SBDD performs comparison for all the variables. In addition, SBDD
uses symmetry, while FC-CBJ-EQ does not.

FC-CBJ-EQ and FC-CBJ are compared on CSPs that encode randomly gen-
erated instances of the graph k-coloring and a restricted version of the subgraph
isomorphism problems. Our experiments demonstrate that FC-CBJ-EQ outper-
forms FC-CBJ on these problems.

The rest of the paper is organized as follows. Section 2 provides the necessary
background. Section 3 introduces the notion of equally constrained variables and
proves the properties that are used to develop the proposed pruning method.
Section 4 describes the algorithm FC-CBJ-EQ in detail. Experimental evaluation
of the proposed algorithm is presented in Section 5. Finally, Section 6 discusses
further development of the proposed approach.

2 Preliminaries

A binary constraint network (CN) Z = 〈V, D, C〉 is a triple consisting of a
set of variables V , a set of domains D and a set of constraints C. Let V =
{v1, . . . , vn}. Then D = {Dv1 , . . . , Dvn}, where Dvi is the domain of values of
vi, C = {Cvi,vj |i �= j, 1 ≤ i, j ≤ n}, where cvi,vj ⊆ Dvi × Dvj is the set of all

28 Igor Razgon and Amnon Meisels

compatible pairs of values of vi and vj . We refer to the parts of Z as V (Z), D(Z),
and C(Z). To emphasize that a value val belongs to the domain of a variable v,
we refer to this value as valv.

Throughout in the paper we illustrate CNs as they are shown on Figure 1
(see, for example CN Z), where the ellipses represent the domains of values of
variables and incompatible values of pairs of variables are connected by arcs.

An assignment of a CN Z is a pair 〈vi, val〉 such that vi ∈ V (Z), val ∈ Dvi .
A consistent set of assignments is a partial solution of Z. A partial solution that
assigns all the variables of Z is a solution of Z. A CN that has no solution is
insoluble. A subnetwork of a CN Z is a CN obtained by removing variables or
values from Z. We define two types of subnetworks.

Definition 1. A projection of a CN Z to a set of variables V ′ ⊆ V (Z) denoted
by Z(V ′) is a subnetwork of Z obtained by removing from Z all variables of
V (Z) \ V ′.

Definition 2. A subnetwork of a CN Z induced by a partial solution P denoted
by Z|P is obtained by removing from Z all the variables assigned in P and
removing from the domains of the remaining variables all values inconsistent
with P .

The notions of projection and induced CSP are illustrated on Figure 1.

Definition 3. A nogood of a CN Z is a partial solution of Z that cannot be
extended to a full solution. In other words, P is a nogood of Z if and only if Z|P
is insoluble.

3 Equally Constrained Variables and Responsibility Sets

Definition 4. Let Z be a CN and v1, v2, v3 ∈ V (Z). v1 and v2 are equally
constrained with v3 if for every val′ ∈ Dv1 ∩ Dv2 and for every val′′ ∈ Dv3 ,
〈v1, val′〉 and 〈v3, val′′〉 are compatible if and only if 〈v2, val′〉 and 〈v3, val′′〉 are
compatible1.

Fig. 1. Illustration of the projection and
induced CSP notions.

Fig. 2. Illustration of the notion of
equally constrained variables.

1 Note that if Dv1 ∩ Dv2 = ∅ then v1 and v2 are equally constrained with any other
variable, though this case is useless for the proposed method of pruning.

Pruning by Equally Constrained Variables 29

Consider the CN on Figure 2. Variables V1 and V3 are equally constrained
with V2. This is easy to verify by following the arcs from values 2, 3 of V3 and
V1 to the values of V2.

Definition 5. Let Z be an insoluble CN. A set V ′ is called a responsibility set
of Z if Z(V ′ ∩ V (Z)) is insoluble.

Let Z be a CN and v ∈ V (Z). Assume that {〈v, val〉} is a nogood and let
V ′ ⊆ V (Z) be a responsibility set of Z|{〈v,val〉}. We formulate for this situation
two properties that we use in the next section to construct our pruning procedure.

Proposition 1. Let u ∈ V (Z) \ V ′ such that v and u are equally constrained
with every variable of V ′. If val ∈ Du then {〈u, val〉} is a nogood and V ′ is a
responsibility set of Z|{〈u,val〉}.

To illustrate Proposition 1, consider the CN in Figure 3. We can see that
{〈V1, 1〉} is a nogood and {V2, V3} is a responsibility set of Z|{〈V1,1〉}. Observe
also that V1 and V4 are equally constrained with V2 and V3. Therefore, {〈V4, 1〉}is
also a nogood with a responsibility set {V2, V3}.

Proof of Proposition 1. Consider two CNs: Z(V ′ ∪ {v})|{〈v,val〉} and Z(V ′ ∪
{u})|{〈u,val〉}. Since u and v are equally constrained with all variables of V ′, these
two CNs are equal. The former is insoluble, therefore the latter is also insoluble.
The insolubility of Z|{〈u,val〉} follows from the insolubility of Z(V ′∪{u})|{〈u,val〉}.

Note that V ′ is a responsibility set of Z(V ′ ∪ {u})|{〈u,val〉} because V ′ is the
set of variables of the latter, therefore V ′ is a responsibility set of Z|{〈u,val〉}. �

Proposition 2. Let u ∈ V ′ such that u and v are equally constrained with every
variable of V ′ \ {u}. Assume that val ∈ Du and that for every value val′(v), if
〈u, val〉 is compatible with 〈v, val′〉, then val′ ∈ Du and 〈v, val〉 is compatible
with 〈u, val′〉. Then {〈u, val〉} is a nogood and V ′ \ {u} ∪ {v} is a responsibility
set of Z|{〈u,val〉}.

Figure 4 illustrates Proposition 2. {〈V1, 1〉} is a nogood in the CN shown in
the figure. A responsibility set of Z|{〈V1,1〉} is {V2, V3, V4}. The variables V1 and
V2 are equally constrained with V3 and V4. Also 〈V2, 1〉 is compatible with 〈V1, 2〉
as well as 〈V1, 1〉 is compatible with 〈V2, 2〉. Therefore {〈V2, 1〉} is a nogood with
the responsibility set {V2, V3, V4}.

Fig. 3. Illustration of Proposition 1. Fig. 4. Illustration of Proposition 2.

30 Igor Razgon and Amnon Meisels

Proof of Proposition 2. Assume that the statement of the lemma is not true.
Then there is a partial solution P if Z assigning the variables of V ′ ∪ {u, v}
and such that 〈u, val〉 ∈ P . Let val′ be the assignment of v in P . Let P ′ =
P \ {〈u, val〉 〈v, val′〉}.

According to the statement of the lemma, val′ ∈ Du, 〈v, val〉 is compatible
with 〈u, val′〉 and {〈v, val〉 〈u, val′〉} is consistent with P ′.

Therefore, P ′∪{〈v, val〉 〈u, val′〉} is a partial solution contradicting the state-
ment that V ′ is a responsibility set of Z|{〈v,val〉}. �

4 A Pruning Procedure for FC-CBJ

In this section we propose a pruning procedure based on the discovery of equally
constrained variables. The procedure can be combined with a complete con-
straint solver. We show its combination with FC-CBJ [9]. We call the obtained
solver FC-CBJ-EQ.

The description of the FC-CBJ-EQ solver is divided into three parts. In the
first part the maintenance of responsibility sets for insoluble CNs visited by a
constraint solver is described. In the second part the algorithm FC-CBJ-EQ is
presented. In the last part the correctness of the backtrack procedure of FC-
CBJ-EQ is proved.

4.1 Maintaining Responsibility Sets

In this section we describe a method that associates with every value removed
from the current domain of a variable a set which we call the r-set of this value.
The method is described for FC-CBJ.

FC-CBJ has two reasons to remove values. The first one is that a value of
an unassigned variable is incompatible with the last assignment of the current
partial solution. Such a value is eliminated by the lookahead procedure of FC-
CBJ. Such a value is associated with the empty r-set.

The second reason for removing a value in FC-CBJ is that the domain of
some unassigned variable becomes empty. In this case the backtrack procedure
discards an assignment of the current partial solution and removes the value
of the assignment from the current domain of its variable. The r-set associated
with such a value is computed as follows. Let 〈v, val〉 be the assignment being
discarded. Let w be the unassigned variable whose empty current domain causes
execution of the backtrack procedure. We associate with val, which is removed
from the current domain of v, the set (S ∪ {w}) \ {v}, where S is the union of
the r-sets of all the values of w.

To demonstrate the method consider the following example.

Example 1. Let Z be the CN shown on Figure 5. Assume that FC-CBJ is pro-
cessing the CN. Let {〈V1, 1〉, 〈V2, 1〉} be the current partial solution. After appli-
cation of the lookahead procedure, the domain of variable V100 becomes empty.
All the removed values are associated with empty sets. Next, FC-CBJ back-
tracks. It removes value 1 from the current domain of V2 and, according to the
method described above, associates this eliminated value with the r-set {V100}.

Pruning by Equally Constrained Variables 31

Fig. 5. Illustration of responsibility sets.

The next partial solution tried by FC-CBJ is {〈V1, 1〉, 〈V2, 2〉}. This partial so-
lution empties the domain of variable V200. Every value of V200 is associated
with the empty r-set, therefore the r-set associated with 〈V2, 2〉 is {V200}. When
FC-CBJ proceeds, it finds that the current domain of V2 is empty. It discards
the assignment 〈V1, 1〉, removes 1 from the current domain of V1, and associates
with this value the set {V100, V200, V2}.

It is possible to see from the example that the r-set of a value is a responsibil-
ity set of the CN induced by a nogood that was discarded by removing the value.
For example, {V100} is a responsibility set of Z|{〈V1,1〉,〈V2,1〉}, {V2, V100, V200} is
a responsibility set of Z{〈V1,1〉}. We prove a more general claim in Section 4.3.

4.2 Pruning Procedure of Algorithm FC-CBJ-EQ

In this section we describe the algorithm FC-CBJ-EQ. It differs from FC-CBJ
in the following three aspects.

1. FC-CBJ-EQ has a preprocessing procedure which computes whether v1 and
v2 are equally constrained with v3 for every triple of different variables
(v1, v2, v3) of the processed CN. The computation directly follows Defini-
tion 4. That is, for every value a ∈ Dv1 ∩Dv2 and for every value b ∈ Dv3 ,
FC-CBJ-EQ checks whether a(v1) and a(v2) have the same compatibility
with a(v3).

2. The lookahead procedure of FC-CBJ-EQ associates with the empty r-set
every value incompatible with the current assignment.

3. FC-CBJ-EQ has a modified backtrack procedure.

The rest of the section describes the backtrack procedure of FC-CBJ-EQ.
Similarly to FC-CBJ, FC-CBJ-EQ applies the backtrack procedure when the
current domain of some unassigned variable becomes empty.

An important notion used in the algorithm is a conflict set [9]. The conflict
set of a variable x denoted by Conf(x) is a set of variables assigned by the
current partial solution such that if P ′ is the subset of the current partial solution
assigning Conf(x) then for any val′(x) removed from the current domain of x,
either P ′ is incompatible with 〈x, val′〉 or P ′ ∪ {〈x, val′〉} is a nogood.

32 Igor Razgon and Amnon Meisels

Algorithm 1 The Backtrack Procedure of FC-CBJ-EQ.

1: Conf ← Conf(w)
2: Run the backtrack procedure of FC-CBJ (see [9], Section 3.9, the procedure fc-cbj-

unlabel)
3: Let the r-set of valv be equal to (S ∪{w}) \ {v}, where S is the union of the r-sets

of all the values of w
4: Discard the r-sets of all values that were restored in their current domain executing

line 2
5: Let V ∗ be the r-set of valv

6: Let V ′ be the set of all unassigned variables contained in V ∗

7: Let A be the subset of assigned variables of V ∗ \ V ′

8: for every unassigned variable u do
9: if u and v are equally constrained with all variables of V ′ and val belongs to the

current domain of u then
10: if u /∈ V ′ then
11: Remove val from the current domain of u
12: Conf(u) ← Conf(u) ∪ Conf ∪ A \ {v}
13: Let the r-set of val(u) be equal to V ′

14: else
15: if for every val′ of the current domain of v compatibility of 〈u, val〉 with

〈v, val′〉 implies that val′ belongs to the current domain of u and 〈v, val〉 is
compatible with 〈u, val′〉 then

16: Remove val from the current domain of u
17: Conf(u) ← Conf(u) ∪ Conf(v) ∪ A \ {v}
18: Set the r-set of u(val) equal V ′ \ {u} ∪ {v}
19: end if
20: end if
21: end if
22: end for

Let w be the variable with empty current domain that caused FC-CBJ-EQ
to apply the backtrack procedure. Let v be the last (chronologically) assigned
variable of Conf(w). Let val be the assignment of v in the current partial so-
lution. Given the data, the backtrack procedure of FC-CBJ-EQ is described in
Algorithm 1.

The pseudocode can be divided into three parts. In the first part (lines 1–7),
the algorithm keeps the conflict set of w (line 1), deletes val from the current
domain of v (line 2), and prepares for further pruning (lines 3–7). In the second
part (lines 8–22), the algorithm checks every unassigned variable u and if the
current domain of u contains val, the algorithm tries to remove val from the
domain. The attempt of removing is described in lines 9–21.

The pseudocode in line 9–21 can again be divided into two parts (lines 9–13
and 15–19, respectively). The first part tries to prune 〈u, val〉 checking the con-
dition stated in Proposition 1. The second part does the same regarding Propo-
sition 2. If 〈u, val〉 is pruned in one of these parts, it is associated with a r-set
and the conflict set of u is updated. Consistency of updating of these structures
is proved in Section 4.3.

Pruning by Equally Constrained Variables 33

Fig. 6. Illustration of pruning that uses equally constrained variables.

Let us see an example that illustrates a possible scenario of execution of FC-
CBJ-EQ when it exhibits more powerful pruning ability than that of FC-CBJ.

Example 2. Let Z be the CN illustrated on Figure 6. Assume that FC-CBJ-EQ
is processing Z, its current partial solution is {〈V0, 1〉, 〈V1, 1〉, 〈V2, 1〉}, and the
current domains of variables V0, V1, V2 equal their initial domains. After a num-
ber of backtracks, FC-CBJ-EQ discards all values of V2 and also 1(V1). As in
the previous example, the r-set associated with 1(V1) is {V100, V200}. Then the
backtrack procedure of FC-CBJ-EQ detects that V1 and V300 are equally con-
strained on both V100 and V200 and that 1 belongs to the current domain of V300.
Therefore V300 satisfies the conditions stated in line 9 of Algorithm 1. Further,
it satisfies the condition stated in line 10. Therefore, 1(V300) is deleted from the
current domain of V300 and associated with the responsibility set {V2, V100, V200}.

When FC-CBJ-EQ proceeds to execute it tries to assign V1 with 2. The
lookahead procedure applied after the assignment removes 2 from the current
domain of V300. Thus, the current domain of V300 becomes empty and FC-CBJ-
EQ backtracks. Note that FC-CBJ would not backtrack in this case, because
it would not remove 1(V300) together with removing 1(V1). Next, FC-CBJ tries
to reassign V0, but 1 is the only value in the current domain of V0, therefore
FC-CBJ-EQ reports that the CN is insoluble.

4.3 Correctness

To prove correctness of the backtrack procedure of FC-CBJ-EQ (Algorithm 1),
we define a notion of a consistent state of FC-CBJ-EQ. Then we show that
application of Algorithm 1 to a consistent state of FC-CBJ-EQ produces another
consistent state.

Consider FC-CBJ-EQ that is processing a CN Z. A state of FC-CBJ-EQ
contains the following data:

– the current partial solution;
– the current domains of variables;

34 Igor Razgon and Amnon Meisels

– the conflict sets of variables;
– values removed from the current domains of variables and the r-sets associ-

ated with them.

Let valv be a value removed from the current domain of a variable v. Let P ′

be a subset of the current partial solution assigning the variables of Conf(v), the
conflict set of v. We say that Conf(v) is consistent with v(val) if either 〈v, val〉
is incompatible with P ′ or P ′ ∪ {〈v, val〉} is a nogood.

We say that Conf(v) is consistent if it is consistent with every value removed
from the current domain of v.

The r-set of valv is consistent if either it is empty or it is a responsibility set
of Z|P ′∪{〈v,val〉}.

A state of FC-CBJ-EQ is consistent if all conflict sets and all r-sets are
consistent.

Now we are ready to formulate the theorem that claims the correctness of
Algorithm 1.

Theorem 1. Application of Algorithm 1 to a consistent state I of FC-CBJ-EQ
produces another consistent state R of FC-CBJ-EQ.

Proof. We assume that FC-CBJ is correct. Thus, we prove correctness only
for those parts of the resulting state R that have been obtained by additional
operations performed by FC-CBJ-EQ. In particular, we prove that:

1. the r-set associated with valv (line 3 of Algorithm 1) is consistent;
2. the conflict sets of all variables whose domains have been pruned in lines 8–22

of Algorithm 1 are consistent;
3. the r-sets of all values removed in lines 8–22 of Algorithm 1 are consistent.

Assume by contradiction that the first claim does not hold. Let V ∗ be an
r-set of valv computed by Algorithm 1. Inconsistency of V ∗ means the following.

– V ∗ is not empty.
– Let P be the subset of the current partial solution that assigns Conf(v) and

let P ′ = P ∪ {〈v, val〉}. Then V ∗ is not a responsibility set of Z|P ′ .

Note that P ′ is a subset of the current partial solution at the input state I.
Furthermore, P ′ assigns all the variables of Conf , the conflict set of the variable
w in state I whose empty current domain causes FC-CBJ-EQ to backtrack. Let
P ′′ be the subset of P ′ assigning the variables of Conf(w) only.

Considering that the current domain of w is empty in state I, we conclude
that P ′′ is a nogood in Z. Taking into account that P ′′ ⊆ P ′ and that V ∗ is not
a responsibility set of Z|P ′ , we get that V ∗ is not a responsibility set of Z|P ′′ .
Therefore Z(Conf ∪ V ∗) has a solution P ∗ such that P ′′ ⊆ P ∗.

Now, recall that V ∗ consists of w and the union of all r-sets associated with
the values of w (Section 3.1) and excludes v. Let 〈w, val′′〉 ∈ P ∗. Let V ′′ be
the r-set of (val′′)w in the state I. Let P restr be the subset of P ∗ that assigns
Conf ∪ {w} ∪ V ′′ \ {v}. Note that P ′′ ⊂ P restr .

Pruning by Equally Constrained Variables 35

According to our assumption, the state I is consistent, therefore the r-set V ′′

of val′′(w) is consistent. This means that either it is empty or it is a responsibility
set of Z|P ′′∪{〈w,val′′〉}. In the first case, 〈w, val′′〉 is incompatible with some
assignment of P ′′. In the second case, P ′′ ∪{〈w, val′′〉} is a nogood in Z(Conf ∪
{w}∪V ′′). In both cases we get a contradiction to the statement that P restr is a
partial solution of Z(Conf ∪{w}∪V ′′). That is, P ∗ cannot be a partial solution
of Z(Conf ∪ V ∗).

Let us prove consistency of conflict and r-sets produced in lines 9–13. Prov-
ing the first part, we got that V ∗ is not only a responsibility set of Z|P ′ but
also a responsibility set of Z|P ′′ . Let A be a subset of V ∗ that contains variables
assigned in the current partial solution but unassigned in P ′′ (line 7 of Algo-
rithm 1). Let PA be the subset of the current partial solution of the state R
that assigns the variables of A. The set V ′ obtained in line 6 of Algorithm 1 is
a responsibility set of Z|P ′′∪P A .

Considering that 〈v, val〉 ∈ P ′′ ∪ PA, we can rewrite Z|P ′′∪P A as follows:
(Z|(P ′′∪P A)\{〈v,val〉})|{〈v,val〉}. To make the notation shorter, denote the CN in
the brackets by Z ′.

Observe that {〈v, val〉} is a nogood in Z ′ and that V ′ is a responsibility set
of Z ′|{〈v,val〉}. Therefore if u and v are equally constrained on all variables of
V ′ (line 9) and u /∈ V ′ (line 10) then {〈u, val〉} is a nogood in Z ′ and V ′ is a
responsibility set of Z ′|{〈u,val〉}.

Recall that Z ′ is a subnetwork of Z induced by (P ′′∪PA)\{〈v, val〉}. There-
fore (P ′′ ∪ PA) \ {〈v, val〉} ∪ {〈u, val〉} is a nogood in Z. Taking into account
that (P ′′ ∪ PA) \ {〈v, val〉} is a subset of the current partial solution, we get
that {〈u, val〉} is inconsistent with the current partial solution. Moreover, when
we remove valu from the current domain of u, we can preserve consistency of
Conf(u) by adding the set of variables assigned in (P ′′ ∪ PA) \ {〈v, val〉}. But
the set of variables equals Conf ∪ A \ {v}, exactly what is added in line 12.
Therefore, the conflict set of u obtained as result of pruning in lines 9–13 is
consistent.

The consistency of conflict and r-sets created in lines 15–19 can be proved
in a similar way. �

5 Experimental Evaluation

The goal of our experiments is to evaluate FC-CBJ-EQ on CSPs with a poten-
tially large number of occurrences of equally constrained variables. Such CSPs
either contain a small number of different constraints or have some tight con-
straint that occurs frequently. We selected two types of CSPs that satisfy this
property: CSPs that encode the graph k-coloring problem and CSPs that encode
a restricted version of the subgraph isomorphism problem where two graphs have
the same number of vertices (we refer to the problem as “restricted subgraph
isomorphism”).

The proposed algorithm could be tested also on randomly generated CSPs,
but such testing requires a special generator of random problems that takes into

36 Igor Razgon and Amnon Meisels

account the properties of the proposed method of pruning. The construction of
such a generator is discussed in the last section of the present paper.

The computational effort of CSP search is measured by the number of nodes
visited, the number of consistency checks, and the CPU time. Both FC-CBJ and
FC-CBJ-EQ were implemented in Microsoft Visual C++ 6.0. The experiments
were performed on a computer with Windows 98 Operating System, 300 MHz
AMD processor, and 128MB RAM.

The reported measures are the average of 50 runs. In all the experiments
both FC-CBJ and FC-CBJ-EQ use the fail first variable ordering heuristic [8]
which selects the variable with the smallest domain size and the min-conflict
value ordering heuristic [7].

5.1 Graph k-Coloring Problems

Given a graph G and a natural number k. The task is to color G in at most k
colors. A CSP Z suitable to this problem is constructed as follows:

– V (Z) corresponds to the set of vertices of G;
– the domain of every variable is {1, . . . , k};
– for any two nonadjacent vertices of G, the corresponding variables are not

constrained;
– for any two adjacent vertices, the corresponding variables are connected by

the inequality constraint.

FC-CBJ and FC-CBJ-EQ were tested on randomly generated instances of
k-coloring with a given number of vertices, colors, and the density of the graphs.
The density of a graph is the probability that a pair of vertices of the graph are
adjacent.

The results of the experiments are given in Figure 7. The three diagrams from
top to bottom present respectively the number of consistency checks performed
by FC-CBJ and FC-CBJ-EQ, the number of partial solutions (nodes) visited and
the CPU time (in seconds) spent by the algorithms. The parameters of the tested
problems are presented along the horizontal axes. Every parameter is represented
by a triplet (a, b, c), where a means the number of vertices, b denotes the number
of colors, and c is the density. Values of computational effort are represented by
columns, black for FC-CBJ and grey for FC-CBJ-EQ. Note that the vertical
axes have a logarithmic scale.

The set of parameters for the experiments was selected to cover a wide range
of graph densities (10%–80%) and for each density several values of k (the num-
ber of colors) were selected. For each pair (colors, density), the size of the graph
was selected large enough to take a sizeable computational effort, but still return
in a reasonable time.

It is clear that FC-CBJ-EQ outperforms FC-CBJ in the number of nodes
visited and the number of consistency checks. With respect to time of run, FC-
CBJ-EQ is better for all densities except 30% and 40%.

Pruning by Equally Constrained Variables 37

Fig. 7. Evaluation results for the graph
k-coloring problem.

Fig. 8. Evaluation results for the sub-
graph isomorphism problem.

5.2 Restricted Subgraph Isomorphism Problem

The restricted subgraph isomorphism problem consists of two graphs G1 and
G2 with the same number of vertices. The task is to determine whether G2 is a
subgraph of G1.

The restricted subgraph isomorphism problem is represented as a CSP Z as
follows. The variables of Z are denoted by V1, . . . , Vn. The values of every domain
of Z are denoted by {1, . . . , n}. The constraints are defined by the following two
rules:

38 Igor Razgon and Amnon Meisels

– for every pair of nonadjacent vertices i and j of G2, the variables Vi and Vj

are connected by the inequality constraint;
– for every pair i and j of adjacent vertices of G2, 〈Vi, k〉 and 〈Vj , l〉 are com-

patible if and only if the vertices k �= l and k is adjacent to l in G1.

It is easy to verify that the CSP Z has a solution if and only if G2 is a
subgraph of G1. Any solution of Z is a mapping from vertices of G2 to the
vertices of G1. A vertex i of G2 is mapped to a vertex k of G1 if Vi is assigned
with k in the solution.

FC-CBJ and FC-CBJ-EQ were tested on randomly generated instances of
the subgraph isomorphism problem using as parameters the number of vertices,
d1, and d2. The other two parameters are the densities of G1 and G2, respectively
(in percents). The results are presented in Figure 8. The meaning of the diagrams
is the same as in Figure 7 except the parameters of the problem.

Graphs with different number of vertices were generated to arrive at the same
features as that of the graph k-coloring problem.

FC-CBJ-EQ behaves on the subgraph isomorphism problem worse than on
graph k-coloring problem. It performs better than FC-CBJ only for dense graphs
G1 with d1 ≥ 0.6. For larger densities it can be much better (see the instances
with d1 = 0.8 and 0.9). The conclusion is that FC-CBJ-EQ is suitable for the
problem only when the underlying graphs are dense.

6 Conclusion

A modification of FC-CBJ called FC-CBJ-EQ that collects additional informa-
tion during search and uses the information for pruning was presented. FC-CBJ-
EQ is shown to outperform FC-CBJ on graph k-coloring and on the restricted
subgraph isomorphism problems. These families of problems were selected for
testing, in order to evaluate the proposed algorithm on the problems with po-
tentially many occurrences of equally constrained variables.

Another goal of testing the proposed algorithm is to characterize a “thresh-
old” such that “above” it there are problems for which the proposed method
of pruning saves computational effort. Such a threshold can be obtained using
parameters that determine “uniformity” of the generated CSPs. The expected
behavior of FC-CBJ-EQ is that on the most “uniform” CSPs, it would save
much computational effort. Then it would be less and less useful as the CSPs
being processed become more and more “chaotic”. At some moment it must be
the case that the additional pruning does not decrease even the number of nodes
visited. The parameters of the generator at that moment would constitute the
required “threshold”. Note that the random CSPs generated given the number of
variables, the domain size, density and tightness [10] would probably be “on the
wrong side” of the threshold as all the generated constraints would be mutually
distinct, therefore no pair of equally constrained variables could be detected.

We pointed out in the introduction that the proposed method of inference
closely relates to the notion of NPI and to the method of SBDD. Combination
with the approaches is possible further development of the proposed method.

Pruning by Equally Constrained Variables 39

For example, it is not hard to generalize the proposed method of pruning by
defining pairs of values (not variables) equally constrained regarding sets of
variables. Then after the value val of v is pruned, it is possible to remove all the
values equally constrained with val of v on all the variables of R.

It would be interesting to combine SBDD with detection of r-sets. For ex-
ample, instead of removing values that are interchangeable with val of v with
respect to a particular set R, one can remove values that are interchangeable with
val of v with respect to any set that can be mapped to R by some predefined
symmetry. Such a strategy being applied to CSPs with many automorphisms
could cause huge savings of computational effort.

Another possible way of further development is making FC-CBJ-EQ appli-
cable to nonbinary constraints. We believe that FC-CBJ-EQ can be modified
to be applicable to cumulative constraints. The intuition is that any additional
nogood pruned by FC-CBJ-EQ differs from an already discovered nogood only
in the last assignment. Moreover, the last assignment of the additional nogood
has the same value as the last assignment of the known nogood but assigned to
another variable. Therefore, every value in the new nogood is assigned to the
same number of variables as in the existing nogood. Thus they relate to the
cumulative constraint in the same way.

References

1. A. Bulatov and P. Jeavons. An algebraic approach to multi-sorted constraints.
In Principles and Practice of Constraint Programming-CP2003, pages 183–187,
Kinsale, Ireland, oct 2003. Springer.

2. B. Choueiry and G. Noubir. On the computation of local interchangeability in
discrete constraint satisfaction problems. In AAAI/IAAI, pages 326–333, 1998.

3. M. Cooper, D. Cohen, and P. Jeavons. Characterising tractable constraints. Arti-
ficial Intelligence, 65:347–361, 1994.

4. T. Fahle, S. Schamberger, and M. Sellmann. Symmetry breaking. In CP2001, pages
93–108. Springer, November 2001.

5. F. Focacci and M. Milano. Global cut framework for removing symmetries. In
CP2001, pages 93–108. Springer, November 2001.

6. E.C. Freuder. Eliminating interchangeable values in constraint satisfaction prob-
lems. In AAAI 91, pages 227–233, 1991.

7. D. Frost and R. Dechter. Look-ahead value ordering for constraint satisfaction
problems. In Proceedings of the International Joint Conference on Artificial Intel-
ligence, IJCAI’95, pages 572–578, Montreal, Canada, 1995.

8. R. M. Haralick and G.L. Elliott. Increasing tree search efficiency for constraint
satisfaction problems. Artificial Intelligence, 14:263–313, 1980.

9. P. Prosser. Hybrid algorithms for the constraint satisfaction problem. Computa-
tional Intelligence, 9:268–299, 1993.

10. P. Prosser. Binary constraint satisfaction problems: some are harder than others.
In ECAI-94, pages 95–99, Amsterdam, 1994.

11. J.-F. Puget. Symmetry breaking revisited. In CP2002, pages 446–462. Springer,
September 2002.

40 Igor Razgon and Amnon Meisels

12. T. Schiex and G. Verfaillie. Two approaches to the solution maintenance problem
in dynamic constraint satisfaction problems. In Proc. of the IJCAI-93/SIGMAN
Workshop on Knowledge-based Production Planning, Scheduling and Control,
Chambery, France, (August 1993)., 1993.

13. T. Schiex and G. Verfaillie. Nogood Recording for Static and Dynamic Con-
straint Satisfaction Problem. International Journal of Artificial Intelligence Tools,
3(2):187-207, 1994.

14. P. van Beek. Constraint tightness and looseness versus local and global consistency.
Journal of the ACM, 44(4):549–566, 1997.

15. R. Weigel and B. Faltings. Structuring techniques for constraint satisfaction prob-
lems. In Proceedings of the 15th International Joint Conference on Artificial Intel-
ligence, pages 418–423, Nagoya, Japan, aug 1997. Morgan-Kaufmann.

Trying Again to Fail-First

J. Christopher Beck1, Patrick Prosser2, and Richard J. Wallace3

1 Department of Mechanical & Industrial Engineering, University of Toronto, Canada
jcb@mie.utoronto.ca

2 Department of Computer Science, University of Glasgow, Scotland
pat@dcs.gla.ac.uk

3 Cork Constraint Computation Center and Department of Computer Science,
University College Cork, Ireland
r.wallace@4c.ucc.ie

Abstract. For constraint satisfaction problems (CSPs), Haralick & Elliott [1] in-
troduced the Fail-First Principle and defined in it terms of minimizing branch
depth. By devising a range of variable ordering heuristics, each in turn trying
harder to fail first, Smith & Grant [2] showed that adherence to this strategy does
not guarantee reduction in search effort. The present work builds on Smith &
Grant. It benefits from the development of a new framework for characterizing
heuristic performance that defines two policies, one concerned with enhancing
the likelihood of correctly extending a partial solution, the other with minimizing
the effort to prove insolubility. The Fail-First Principle can be restated as calling
for adherence to the second, fail-first policy, while discounting the other, promise
policy. Our work corrects some deficiencies in the work of Smith & Grant, and
goes on to confirm their finding that the Fail-First Principle, as originally defined,
is insufficient. We then show that adherence to the fail-first policy must be mea-
sured in terms of size of insoluble subtrees, not branch depth. We also show that
for soluble problems, both policies must be considered in evaluating heuristic per-
formance. Hence, even in its proper form the Fail-First Principle is insufficient.
We also show that the “FF” series of heuristics devised by Smith & Grant is a
powerful tool for evaluating heuristic performance, including the subtle relations
between heuristic features and adherence to a policy.

1 Introduction

Search is at the heart of many AI approaches to problem solving. Despite this impor-
tance, there is no understanding at a foundational level of the behavior of heuristic
decision making. The answer to the basic question “Why do some heuristics perform
better than others?” remains elusive. One long-standing intuition for heuristic perfor-
mance in Constraint Programming is the Fail-First Principle due to Haralick & Elliott
[1] which states: “To succeed, try first where you are most likely to fail.” Though ini-
tially counter-intuitive, the Fail-First Principle is widely seen as a useful insight into
heuristic decision making. Given a set of inter-related decisions, the Fail-First Principle
suggests that the one that is most difficult should be made first. This is akin to cautious
intelligent behavior, focusing effort on critical choices before allowing ourselves the
luxury of solving the easy parts of the problem.

B. Faltings et al. (Eds.): CSCLP 2004, LNAI 3419, pp. 41–55, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

42 J. Christopher Beck, Patrick Prosser, and Richard J. Wallace

In applying this principle to constraint satisfaction search, Haralick & Elliott made
a further critical inference: that minimizing average branch length during search should
also minimize search effort. Because of this, their subsequent formal analysis of ‘fail-
firstness’ did not pertain directly to discovering and solving difficult subproblems, but
simply to finding the quickest way to fail during search. We will refer to this as the
“radical Fail-First Principle” to distinguish it from the original idea. In this analysis,
they showed that the “smallest domain first” (SDF) variable ordering heuristic (choose
next to assign a value to the variable with the smallest number of possible values) is a
level-one estimate of minimizing branch length.

To test this principle, Smith & Grant [2] created a set of new heuristics designed to
aggressively fail early in the search. The hypothesis was that if failing quickly was the
explanation for search efficiency, then heuristics that failed earlier should demonstrate
lower search effort. Smith & Grant found that, contrary to expectations, increasing the
ability to fail early in the search did not always lead to increased search efficiency. They
concluded that the (radical) Fail-First Principle cannot be the only thing that explains
differences in search cost among heuristics.

Our interest in this problem was sparked by the recent development of a new frame-
work for analyzing heuristic performance [3, 4]. This framework incorporates fail-
firstness as one of its performance principles. Another, called promise, concerns the
selection of alternatives most likely to succeed. (This principle should be distinguished
from the heuristics of the same name [5]; obviously, however, promise heuristics are
designed to conform to the promise policy if and when the latter applies.) In this frame-
work, if search deviates from a correct path, then and only then, does fail-firstness come
into play.

In this paper, we review the work of Smith & Grant and then provide an overview
of our policy-based framework for understanding search heuristics. We discuss work
which corrects the experiments performed by Smith & Grant; although our results dif-
fer in some respects, like the earlier authors we find discrepancies between expectations
based on the radical Fail-First Principle and relative performance of their heuristics.
We also find that when forward checking is replaced with maintaining arc-consistency
(MAC), the radical Fail-First Principle is supported. We then show that if fail-firstness
is measured using the mean size of insoluble subtrees, adherence to promise and fail-
firstness together can account for the behavior of heuristics when either forward check-
ing or MAC is used.

2 Trying Harder to Fail First (1998)

The basic hypothesis of Smith & Grant was that if failing first is such a good thing
then more of it must be better. Therefore, creating heuristics with a stronger ability
to fail early should increase search efficiency. Efficiency was defined as the number
of constraint checks required to find a solution to a problem or to prove that no solu-
tion exists. Because the focus of the study was on the relation between fail-firstness
and search efficiency, the computational effort to make those heuristic decisions was
(correctly) factored out of the experiments. The goal was to understand the relation-
ship between the radical Fail-First Principle and search efficiency so the computational
effort to increase the fail-firstness of a heuristic was irrelevant.

Trying Again to Fail-First 43

Experiments were performed over randomly generated binary constraint satisfaction
problems. Each set of problems was defined by a 4-tuple 〈n, m, p1, p2〉, where n is the
number of variables, m is the uniform domain size, p1 is the proportion of edges in the
constraint graph, and p2 is the uniform constraint tightness. All experiments were over
problems with n = 20 and m = 10.

Using the forward checking algorithm [1] and standard chronological backtracking
Smith & Grant tested four heuristics engineered for increasing levels of fail-firstness.

• FF: FF is the same as SDF (Smallest Domain First): choose the variable with the
smallest remaining domain.

• FF2: The variable, vi, chosen is the one that maximizes (1 − (1 − pm
2)di)mi ,

where mi is the current domain size of vi, and di is the future degree of vi. The FF2
heuristic takes into account an estimate (based on the initial parameters of problem
generation) of the extent to which each value of vi is likely to be consistent with the
future variables of vi. The FF2 heuristic has the flavor of the Brelaz heuristic [6], in
that it trades off domain size and forward degree and favors differences in the former
over the latter.

• FF3: FF3 builds on FF2 by using the current domain size of future variables rather
than m. The variable, vi, chosen is the one that maximizes the expression (1) be-
low, where C is the set of all constraints in the problem, F is the set of unassigned
variables, and P = p2.

• FF4: Finally, FF4 modifies FF3 by using the current tightness, P = pij , of the future
constraints (the fraction of tuples from the cross-product of the current domains that
fail to satisfy the constraint) instead of p2.

(1 −
∏

(vi,vj)∈C,vj∈F

(1− Pmj))mi (1)

The progression from FF through to FF4 uses more and more information in de-
termining which variable is most likely to fail at any given stage of search. Smith &
Grant tested this by measuring the distribution of the depth of backtracks for problem
instances at 〈20, 10, 0.5, 0.37〉. Their measurements showed that heuristics performed
as expected: FF4 has a distribution skewed to backtracks at a shallower depth in search
while the distribution gradually moved to deeper backtracks for FF3, FF2, and FF.

With respect to total search effort, Smith & Grant expected that the heuristics would
be ranked as follows: FF > FF2 > FF3 > FF4, where > means “results in greater
search effort than”. Their results were not as expected. Through a number of exper-
iments Smith & Grant showed that except on easy problems, FF2 incurred the least
search effort, followed by FF3, FF and finally FF4. That is, they observed the following
order: FF4 > FF > FF3 > FF2. This ordering is clearly at odds with the hypothesis of a
simple mapping between the ability to fail-first and search effort. They concluded that
there must be some other factor at work, perhaps in concert with the Fail-First Principle,
in determining search efficiency for variable ordering heuristics.

44 J. Christopher Beck, Patrick Prosser, and Richard J. Wallace

3 A Framework for Understanding Search

3.1 Policies and Heuristics

The present work is informed by a recently developed framework for characterizing the
performance of search heuristics. This framework has two primary elements. A policy
identifies goals or end-results that are desirable. A heuristic is a rule that is followed to
make a decision.

For search problems, there is an overall policy of minimizing search effort. This is
normally measured by counting nodes or constraint checks in the search tree. Of greater
interest is that two subordinate policies can be distinguished in the search domain. When
search is in a state that has solutions in its subtree, search effort will be minimized by
making decisions to remain on a path to a solution. As this suggests making decisions
to move to the most promising subtree, we call this the promise policy. However, for
hard problems the best choice will not be made in all cases and search may enter a state
where the subtree below it does not contain any solutions. In this case, to minimize
effort search should fail as quickly as possible so it can return to a path that leads to a
solution. We call this the fail-first policy.

Heuristics are based on features of the situation that serve to distinguish choices,
so that a selection in these terms increases the likelihood of achieving a goal. In CSP
search, these are the variable and value ordering “rules” that exist in the constraint liter-
ature (e.g.smallest domain first, brelaz [6], domdeg [7]). The intuition behind variable
ordering heuristics is the Fail-First Principle mentioned above, while that for value or-
dering is related to promise. However, recent work, which has shown how to evaluate
variable ordering heuristics in terms of promise, indicates that this policy must also be
taken into account in any full evaluation of these heuristics [3, 4].

The contribution of heuristic decisions to performance should depend on how well
the heuristic conforms to either subordinate policy. We would expect that adherence to
the promise policy will make a difference to search for problems with many solutions.
As problems become more difficult, the proportion of time exploring bad subtrees be-
comes greater, so that the fail-first policy is more often in force and fidelity to that policy
should be more important. If problems have no solutions, then the only policy relevant
to search effort is fail-first.

3.2 The Fail-First Principle

Within the policy framework the Fail-First Principle states that when we are uncertain
as to which policy to adhere to (i.e. we do not know if the current search node is good or
bad), we should try to adhere to the fail-first policy. Stated in these terms, the Fail-First
Principle is a kind of high-level heuristic for selecting a policy to adhere to under con-
ditions of ignorance, where one does not know what the appropriate policy actually is.
As such, it is a conservative mini-max principle that tries to minimize worst case effort
by aggressively seeking to fail. Adherence to this principle also implies that heuristics
should be evaluated in terms of how well they conform to the fail-first policy alone.

With this restatement of the principle, we can see more clearly that there may be
important limits to its range of application, and that for certain problems or conditions

Trying Again to Fail-First 45

of search it may lead us badly astray. Moreover, there is the assumption in all of this
that the promise policy is irrelevant to variable selection. As we have shown, this is not
so: an adequate evaluation of ordering heuristics must give some consideration to both
policies rather than the fail-first policy alone. We have also shown, perhaps surprisingly,
that heuristics such as SDF which were designed to have a high degree of fail-firstness
[1] also show a high degree of promise. This means that for problems with solutions, a
correlation between fail-firstness and decreased search effort is not sufficient evidence
that this factor is critical for differences in performance, since the impact of this factor
has not been disentangled from that of promise.

3.3 Measuring the Ability to Fail-First as Branch Depth Minimization

Within this framework we can also restate the Smith & Grant strategy: by devising
heuristics to conform in increasing degree to the fail-first policy, we can evaluate the
sufficiency of the Fail-First Principle. However, to evaluate sufficiency we must be able
to measure fail-firstness, i.e. the degree of adherence to the policy. For now we will
continue with the assumption made by Haralick & Elliott and by Smith & Grant that
fail-firstness is adequately characterized by branch depth.

For their evaluation, Smith & Grant measured the mean backtrack depth to find
a solution to a problem or to prove that no solution exists. We believe there are two
weaknesses in this methodology. First, a backtrack is counted whenever a domain is
emptied and search returns to the previous variable. If that variable has no more values
to try, its domain has also been emptied and another backtrack is counted in moving
back once again. That is, Smith & Grant measured the average depth of failed leaf
nodes and failed interior nodes of the search tree explored. The original formulation
of the radical Fail-First Principle assumed that minimizing mean branch depth would
minimize search effort. Therefore, it should be the mean branch depth that is used as a
measure of the ability of a heuristic to fail-first. The backtrack depth measure does not
do this. A more appropriate measure of the mean branch depth is as follows: whenever
a variable is assigned a value and that assignment immediately leads to a domain wipe-
out, we count a failure. That is, we measure the average depth of failed leaf nodes in the
search tree.

There is an alternative way of measuring branch depth: calculate the difference be-
tween the depth of a failed leaf and the depth of the initial mistake that led to the failure.
Although this seems like an even more precise measure, it suffers from the effect of a
varying ceiling: the largest possible difference is greater when mistakes occur higher in
the search tree. So this measure was not used for the initial experiments, although data
will be presented in Section 5.

The second weakness with the earlier measurement of a heuristic’s ability to fail-
first is that by searching only for the first solution to soluble problems the measure
of the ability to escape a mistake is contaminated by the heuristic’s ability to find a
solution (its promise, in the newer formulation). It is at least theoretically possible that
a heuristic that is very poor at failing first could be very good at finding a solution when
one exists. Therefore, searching for the first solution combines the abilities of a heuristic
to escape dead-ends and its ability to find solutions. We are interested in isolating the
former ability. For our experiments, we assess the ability of a heuristic to fail-first by

46 J. Christopher Beck, Patrick Prosser, and Richard J. Wallace

 100

 1000

 10000

 100000

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

M
ed

ia
n

ch
ec

ks

Kappa

FF
FF2
FF3
FF4

Fig. 1. The median number of checks for the 〈20, 10, 0.5〉 problem set. The heuristics are ranked
as follows: FF > FF3 > FF4 ≈ FF2.

measuring the branch depth in searching for all solutions or showing that no solution
exists. (Of course, performance assessment is still based on the work required to find
the first solution.)

4 Empirical Investigations

In this section, we report the results of three experiments. The first two explore the rela-
tionship between fail-firstness and heuristic quality. They were reported in part by Beck
et al. [8], and are included here (with further data) for completeness. The conclusion of
the first experiment is that, as Smith & Grant originally found, fail-firstness as measured
by branch depth is not equivalent to heuristic quality. The third experiment, therefore,
investigates whether promise is the missing factor.

4.1 Fail-First with Forward Checking

As reported earlier [8], we repeated the experiments of Smith & Grant. Our results were
produced by using two solvers coded independently, and we also confirmed these results
using the C++ solver of Smith & Grant with an error in FF4 corrected4. In our imple-
mentation of the heuristics, ties (when more than one variable is judged heuristically
best) are broken lexicographically. The problems we investigated were generated at the
beginning of our study and stored. They were then used by all our solvers, allowing us
to reproduce results across two sites.

Problems were generated using a “probability-of-inclusion” model, in which each
possible constraint element (domain value, constraint or constraint tuple) is included
with a specified probability. The generator allows parameters to be fixed at the expected

4 The value of pij was computed incorrectly for the FF4 heuristic in [2].

Trying Again to Fail-First 47

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 5 10 15 20

N
or

m
al

iz
ed

 M
ea

n
F

ai
le

d
Le

av
es

Depth

FF
FF2
FF3
FF4

Fig. 2. The fraction of failed leaves at each depth in the tree when searching for all solutions for
1000 problems in the 〈20, 10, 0.5, 0.37〉 set, i.e. the problems at the 〈20, 10, 0.5〉 phase transition.

values given these probability values; in this case a set of elements is generated re-
peatedly until the cardinality matches the expected value. This allows it to generate
problems in accordance with model B [9]. By specifying a probability of 1 for domain
element inclusion, all domains have a size specified by a maximum domain-size param-
eter. Sets of soluble or insoluble problems were sometimes used; these problems were
generated in an identical fashion and filtered on the basis of solution testing.

Figure 1 presents the median number of constraint checks to find a solution or to
prove that no solution exists for problems from the set 〈20, 10, 0.5〉. The constraint
tightness was varied from 0.01 to 0.99 in steps of 0.01. For each combination of pa-
rameters 1000 problem instances were generated. Median checks (the same measure
used by Smith & Grant) are plotted against κ (kappa), the measure of constrainedness
proposed by [10]. Similar results were found for other problem series [8].

In these experiments, FF clearly incurs the highest number of constraint checks,
followed by FF3. In Figure 1, there is no discernible difference between FF2 and FF4.
Aside from the FF4 results, these graphs agree with the original experiments of Smith
& Grant.

In Figure 2 we plot the fraction of failed leaves at each depth when searching for
all solutions. Qualitatively, these results match what Smith & Grant found with their
measure of the ability to fail-first: FF4 does indeed fail higher in the tree (as judged
by mean branch depth), followed by FF3, FF2 and FF. Therefore, we can confirm that
Smith & Grant did indeed propose new heuristics that progressively increase in their
ability to minimize branch depth.

The crux of these experiments is the fact that the ability to fail earlier in the tree does
not necessarily translate into better search effort; FF3 incurs a higher search cost than
both FF2 and FF4, yet Figure 2 shows that FF3 is between FF2 and FF4 in its ability
to fail early in the tree. These results have been extended to larger problems, where the
ordering with respect to search effort is clearly FF > FF3 > FF2 > FF4 [8].

48 J. Christopher Beck, Patrick Prosser, and Richard J. Wallace

 10000

 100000

 1e+06

 1e+07

 1e+08

 20 30 40 50 60 70

M
ed

ia
n

ch
ec

ks

Problem Size

FF-mac
FF2-mac
FF3-mac
FF4-mac

Fig. 3. Median consistency checks for problems with 20 to 70 variables using MAC. All prob-
lems have 10 values per variable, a density that results in 10 constraints on each variable, and a
tightness set to give κ ≈ 0.9. All problems are soluble and each problem size has 50 instances.

Thus, even after fixing the errors and improving the measurement of fail-firstness in
terms of branch depth, the results do not entirely conform to expectations based on the
Fail-First Principle as it was originally formulated. This confirms the main conclusion
of Smith & Grant: the radical Fail-First Principle (i.e., branch depth minimization) is
not sufficient to account for all variations in search efficiency among variable ordering
heuristics.

4.2 Tests with MAC

In the course of this work we also wanted to determine whether the consistency enforce-
ment algorithm might have an effect on the heuristics’ adherence to the fail-first policy,
and hence the viability of the Fail-First Principle under different degrees of consistency
maintenance. To test this we repeated the above experiments, varying problem size, but
this time using the maintaining-arc consistency algorithm (MAC) [11]. As the name im-
plies, whenever a variable is instantiated the future sub-problem is made arc-consistent.
If this results in a domain wipe-out, a new value is tried, and failing that, backtracking
takes place.

For 20-variable problems, there is little variation in fail-depth among heuristics,
although the differences that appear at different depths are consistent with the pattern
found for forward checking. For this reason we present data on larger problems where
a clear pattern of differences emerges.

The results for search efficiency are presented in Figure 3. Interestingly, the ranking
of heuristics is different than for FC. We now have the order FF > FF2 > FF3 >
FF4. The results in Figure 3 are for soluble problems, and though not shown, the same
ranking was found for insoluble problems. Figure 4 shows the failure depths of the

Trying Again to Fail-First 49

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 5 10 15 20 25 30

N
or

m
al

iz
ed

 M
ea

n
F

ai
le

d
Le

av
es

Depth

FF-mac
FF2-mac
FF3-mac
FF4-mac

Fig. 4. Distribution of branch depth for soluble problems with 60 variables (parameters 〈60, 10,
0.153, 0.369〉). Qualitatively similar results are seen for insoluble problems.

heuristics when allied with the MAC algorithm, for one set of large problems (n = 60).
The results are in agreement with those in Figure 2 with FF4 failing earliest, then FF3,
FF2, and FF.

Thus, we find that for MAC, differences among heuristics are entirely in line with
expectations based on the radical Fail-First Principle. Adherence to the principle ap-
pears to be algorithm dependent.

4.3 The Impact of Promise

We have already noted that the efficiency of variable ordering heuristics can be related to
promise as well as fail-firstness. It was therefore of interest to see whether FF heuristics
could be distinguished on this basis. Figure 5 shows the results of “probe” tests, which
can be used to provide unbiased estimates of promise [3]. We find that with forward
checking FF3 and FF4 are distinctly inferior to FF and FF2 on this basis.

However, before we conclude that differences in promise are the whole explana-
tion for the order of search effort, we must consider insoluble problems. As noted ear-
lier, promise is only well-defined on problem instances with solutions. If the results on
search effort are due to a combination of promise and fail-firstness, then the relative
ranking of heuristics should differ for soluble and insoluble problems. We therefore re-
fine Smith & Grant’s hypothesis and instead hypothesize that on insoluble problems as
we try harder to minimize branch depth we will reduce search effort.

Figure 6 demonstrates that this hypothesis is false. The relative ordering of the
heuristics on insoluble problems for the 〈20, 10.0.5〉 problem set is identical to the or-
dering on mixed problems. Though not shown, this ordering is the same for the soluble
problems as well. Furthermore, the branch depth on insoluble (as well as soluble) prob-
lems follows the pattern of Figure 2: FF4 fails highest followed by FF3, FF2, and FF.

50 J. Christopher Beck, Patrick Prosser, and Richard J. Wallace

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0.3 0.32 0.34 0.36 0.38 0.4

M
ea

n
pr

om
is

e

Tightness

dom
ff2
ff3
ff4

Fig. 5. Promise measurements for the FF heuristics with forward checking, obtained for soluble
<20,10,0.5> problems.

Therefore promise cannot be the entire explanation for the discrepancies in search ef-
fort. (As we will see shortly, it would be premature to conclude that it does not play a
role in the case of soluble problems.)

4.4 Conclusions

Three conclusions are drawn from the experiments above:

1. For forward checking, minimizing mean branch depth does not wholly account for
heuristic efficiency.

2. For forward checking, minimizing mean branch depth combined with adherence to
the promise policy does not wholly account for heuristic efficiency.

3. For MAC, minimizing mean branch depth does appear to account for heuristic ef-
ficiency.

A model of heuristic performance needs to explain each of these results. From the
perspective of our policy framework, there appear to be two logical options. Either there
is an additional policy that accounts for the discrepancies or the measurements that we
have proposed for promise and fail-firstness are deficient. For the balance of this paper,
we examine the second option, concentrating on the fail-firstness measurement.

5 The Proper Measure of Fail-Firstness

The fail-first policy is to minimize the effort required to determine that an insoluble
subtree is indeed insoluble. This suggests that the average size of insoluble trees would
give a more accurate measure of fail-firstness than measures of branch depth. Something
like this was suggested by Nudel [12], who argued that the minimum domain size (FF)

Trying Again to Fail-First 51

 1000

 10000

 100000

 1e+06

 0.8 1 1.2 1.4 1.6 1.8

M
ed

ia
n

ch
ec

ks

Kappa

FF
FF2
FF3
FF4

Fig. 6. The median number of constraint checks for the insoluble problem instances in the
〈20, 10, 0.5〉 problem set. The problem sets plotted are those for which at least one instance
is insoluble, therefore each κ value may have a different number of instances up to 1000. In
particular, the low values of κ are based on few instances.

heuristic worked by minimizing the size of failed subtrees. Failed subtree size takes into
account the branching factor in the search tree. As Smith & Grant point out, Russell &
Norvig [13] suggested that successful heuristics such as Brelaz and FF can be justified
by the minimization of the branching factor. However, the fail-first policy suggests that
a combination of this and branch depth may be critical, and this is more likely if there
is a tradeoff between the two.

To examine failed subtree size, a more detailed assessment of search characteristics
was performed using the 50-variable problems from the series tested earlier ([8] and
Section 4.2; their parameters were 〈50, 10, 0.184, 0.369〉). (Similar results were also
obtained in tests on 20-variable problems of varying tightness.) In addition to mean
fail-depth, we calculated the following measures:

1. Mean fail-length: the difference in search depth between the initial invalid assign-
ment, or “mistake” and the detection of failure

2. Mean “mistake-tree size” (mistksz): the number of nodes in an insoluble subtree,
rooted at the initial invalid assignment

3. Number of failures
4. Number of mistake-trees
5. Mean selected domain size (| d |): the domain size of the variable which is selected

for assignment. This is a direct measure of the branching factor.

The basic summary results are shown in Table 1 for each heuristic for forward
checking and MAC. These results must be considered in tandem with similar measures
that take the depth of the initial mistake into account. This is because of the problem
mentioned earlier, that intensity measures like fail-length and mistake-tree size involve

52 J. Christopher Beck, Patrick Prosser, and Richard J. Wallace

ceiling effects related to the location of a mistake in the search tree. For example, if
a mistake is made at level n-1, then the maximum size of the mistake-tree is 1; this
means that if, for a given heuristic a large proportion of the mistakes occur at this level
the average mistake-tree size will be small because of the low ceiling in these cases.
Table 2 displays the fail-length and mistake-tree size at different mistake depths.

In both tables and for each subcolumn the statistical significance of differences be-
tween entries was assessed by ANOVAs and post-hoc comparisons between pairs of
means that were closest in value [14]. Analyses for Table 2 were based on problems
for which there were no zero frequencies for any heuristic. (Because of the number of
zero frequencies, analyses were not carried out beyond level 20 for FC and level 10
for MAC.) For all ANOVAs, the F statistic was statistically significant at p < .05 or
better (typically ≤ 10−8). The few comparisons between adjacent means that were not
statistically significant are indicated in the tables.

There are a number of important results in these tables.

• The ordering of fail-lengths matches that of fail-depths (Table 1), and the same order-
ing of fail-lengths is found at every mistake depth (Table 2). Since neither measure of
branch depth corresponds to the order of search effort, this supports the conclusion
that measures of branch depth are inadequate measures of fail-firstness.

• Further evidence on this point comes from a comparison of fail-length and mistake-
tree size at mistake depth 1. These results are directly comparable to those with insol-
uble problems, since in the latter case all mistakes occur at this level. (This has been
verified directly on insoluble problems.) In these cases fail-first is the only relevant
policy. Here we see that the order of mistake-tree size matches the order of search ef-
fort (cf. Figure 6), while the fail-length order does not. This implies that any measure
of fail-firstness must be based on the size of insoluble subtrees.

• For these soluble problems, FF3 with forward checking produces more mistake-trees
(and consequent failures) than any other heuristic (Table 1). This reflects a relative
failure to adhere to the promise policy, so poor performance of FF3 in this case must
be partly due to this factor.

• With forward checking, differences in mistake-tree size vary as a function of mistake
depth (Table 2); as depth increases, FF3 becomes better than FF2. This shows that
relative adherence to a policy by different heuristics can vary at different levels of
search.

We conclude that the difference from expectation found for FF3 in the first three ex-
periments is related to deficiencies with respect to both policies. For soluble problems,
the fail-first deficiency occurs at the top of the search tree, but there is also a deficiency
in promise, reflected in the number of mistakes made by this heuristic. For insoluble
problems, since fail-first is the only relevant policy, the deficiency is restricted to this
factor. A more general conclusion is that when fail-firstness is properly measured, the
order of search effort obtained by these heuristics can be characterized by degree of
adherence to one or both policies. Finally, we have shown that valid comparisons of
fail-firstness must be made at the same mistake depth. In fact, there are important dif-
ferences among heuristics with respect to fail-firstness that are a function of mistake
depth (as well as algorithm type).

Trying Again to Fail-First 53

Table 1. Failure measures and branching factor for fail-first heuristics.

faildepth fail-length #fails mistksz #mstktrs | d |
forward checking

FF 19.9 17.5 600,303 6679 1662 1.35

FF2 18.3 15.9 103,365 1799 539 1.36

FF3 16.6 13.8 1,030,002 644 10,914 2.25

FF4 13.7 10.9 289,466 339 4885 2.18

MAC

FF 12.3 10.0 59,410 786 324 2.09

FF2 11.3 8.9 13,662 247 175 1.64

FF3 10.1 7.8 14,056 203 235 1.37

FF4 7.6 5.4 9,401 119 193 1.25

Note. Values are means per problem. 50-variable problems with solutions. “#fails” is number
of times an assignment led to a domain wipeout. “mistksz” is mistake-tree size; this and other
measures are defined in text.“| d |” is mean domain size of variables selected for instantiation. In
this and Table 2 nonsignificant comparisons are flagged by underlining the smaller value.

Table 1 suggests that the branching factor plays a significant role in the relative
efficiency of these heuristics. With forward checking, FF3 and FF4 each had a higher
branching factor than the other heuristics, and it was here that inversions in the expected
ordering occurred. (In addition to the means shown in the table, the range of domain
sizes of the variables selected was much greater with FF3 and FF4, so that sizes up to
10 were chosen even at moderate depths of the search tree.) With MAC, in contrast,
the branching factor diminished from FF through FF4, and in this case search effort
followed the original expectations. We hypothesize that, with forward checking, the
greater branching of FF3 overwhelms the modest improvement in branch depth, which
leads to inferior search performance in comparison with FF2.

That it is a tradeoff between branch depth and the branching factor can be seen
by comparing the FF and FF4 results for forward checking. If degree of branching
were the only factor, FF should incur less search effort than FF4. As shown by all our
experiments, this is not the case.

6 Conclusions

This work serves both to clarify the Fail-First Principle and to indicate its limitations.
This has been done by using a new framework in which heuristics are evaluated in terms
of how well they adhere to either of two basic policies, called promise and fail-first, one
of which is in force at any point in search.

In order to evaluate variable ordering heuristics in these terms we have developed
measures of adherence to a given policy. For promise, this was done in earlier work
[3, 4]. In the present paper, we have done this for fail-firstness. An important contribu-
tion of this work is to demonstrate that fail-firstness cannot be adequately assessed by
measures of branch depth; instead the size of the insoluble subtree rooted at the initial
mistake must be calculated.

54 J. Christopher Beck, Patrick Prosser, and Richard J. Wallace

Table 2. Failure measures for fail-first heuristics at different depths of search tree.

mistake depth (nodes)

1 5 10 15 20 30

FC

fail-length

FF 18.2 15.5 11.8 9.6 7.7 4.0

FF2 16.4 14.2 11.2 8.3 5.9 2.1

FF3 14.4 11.8 9.3 6.2 4.5 0.8

FF4 11.6 8.8 5.8 2.7 1.2 0.0

mistake-tree size

FF 145,015 4666 219 52 21 10

FF2 24,808 1549 150 27 12 3

FF3 80,484 3154 188 22 8 2

FF4 21,813 678 35 5 2 1

MAC

fail-length

FF 10.6 7.9 3.9 1.7 0.5 0.0

FF2 9.6 6.6 3.3 1.7 0.9 0.0

FF3 8.3 5.5 2.2 0.7 0.2 0.0

FF4 6.0 3.2 0.4 0.1 0.0 –

mistake-tree size

FF 7080 219 12 3 1 1

FF2 1903 94 10 3 2 1

FF3 1489 63 6 2 1 1

FF4 865 25 2 1 1 –

Note. Values are means per problem for each mistake depth. “Mistake depth” is depth at which
an initial assignment was made to produce an insoluble subtree.

Within this framework, we can restate the Fail-First Principle as a metaheuristic
proposal to act as if adherence to the fail-first policy is the only important considera-
tion. Having cleared up the question of how to measure such adherence, the original
conclusion of Smith & Grant, that the radical Fail-First Principle that was proposed by
Haralick & Elliott is inadequate, is of course confirmed, since this form of the principle
is based on an incorrect measure of fail-firstness. At the same time, we have shown that
Smith & Grant’s assumption that their fail-first series of heuristics shows increasing
adherence to this policy is not entirely correct, since with forward checking average
mistake-tree size is sometimes greater for FF3 than for FF2, and is always greater for
insoluble problems. Finally, we have shown that even when put in its proper form, the
Fail-First Principle is not an entirely reliable guide (cf. results in Table 1, showing that
average mistake-tree size for FF3 is less than FF2); this is because variation in adher-
ence to the promise policy can be more important than variation in adherence to the
fail-first policy.

Trying Again to Fail-First 55

Clearly, features such as the branching factor determine whether a heuristic adheres
to either policy or to both. What does the policy framework give us in addition? We think
the answer is that it gives us a way of characterizing the effects of heuristic features on
performance in terms of basic features of search itself. In addition, the present work
shows that we can evaluate performance in these terms without knowing the features of
the heuristic that affect its adherence to a policy. Finally, we know from the present work
as well as the original study of Smith & Grant that there is no simple relation between
heuristic features and adherence to a policy, and there is no guarantee that improved
adherence to one policy will result in improved adherence to the other. These seem to
be sufficient reasons for making the distinctions that the new framework requires.

Acknowledgment

This work was supported by Science Foundation Ireland under Grant 00/PI.1/C075 and
ILOG S.A. We thank Diego Moya for some of the coding and especially Barbara Smith
for giving us access to source code and supporting our study.

References

1. Haralick, R.M., Elliott, G.L.: Increasing tree search efficiency for constraint satisfaction
problems. Artificial Intelligence 14 (1980) 263–314

2. Smith, B.M., Grant, S.A.: Trying harder to fail first. In: Proc. Thirteenth European Confer-
ence on Artificial Intelligence-ECAI’98, John Wiley & Sons (1998) 249–253

3. Beck, J.C., Prosser, P., Wallace, R.J.: Toward understanding variable ordering heuristics for
constraint satisfaction problems. In: Proc. Fourteenth Irish Artificial Intelligence and Cogni-
tive Science Conference-AICS’03. (2003) 11–16

4. Beck, J.C., Prosser, P., Wallace, R.J.: Variable ordering heuristics show promise. In: Princi-
ples and Practice of Constraint Programming-CP’04. LNCS No. 3258. (2004) 711–715

5. Geelen, P.A.: Dual viewpoint heuristics for binary constraint satisfaction problems. In: Proc.
Tenth European Conference on Artificial Intelligence-ECAI’92. (1992) 31–35

6. Brelaz, D.: New Methods to Color the Vertices of a Graph. Communications of the ACM 22
(1979) 251–256

7. Gent, I., MacIntyre, E., Prosser, P., Smith, B., Walsh, T.: An empirical study of dynamic
variable ordering heuristics for the constraint satisfaction problem. In: Principles and Practice
of Constraint Programming-CP’96. LNCS No. 1118. (1996) 179–193

8. Beck, J.C., Prosser, P., Wallace, R.J.: Failing first: An update. In: Proc. Sixteenth European
Conference on Artificial Intelligence-ECAI’04. (2004) 959–960

9. Gent, I.P., MacIntyre, E., Prosser, P., Smith, B.M., Walsh, T.: Random constraint satisfaction:
Flaws and structure. Constraints 6 (2001) 345–372

10. Gent, I.P., MacIntyre, E., Prosser, P., Walsh, T.: The constrainedness of search. In: Proc.
Thirteenth National Conference on Artificial Intelligence-AAAI’96. (1996) 246–252

11. Sabin, D., Freuder, E.: Contradicting Conventional Wisdom in Constraint Satisfaction. In:
Proc. Eleventh European Conference on Artificial Intelligence-ECAI’94, John Wiley & Sons
(1994) 125–129

12. Nudel, B.: Consistent-labeling problems and their algorithms: Expected-complexities and
theory-based heuristics. Artificial Intelligence 21 (1983) 263–313

13. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall (1995)
14. Hays, W.L.: Statistics for the Social Sciences. 2 edn. Holt, Rinehart, Winston (1973)

Characterization of a New Restart Strategy
for Randomized Backtrack Search

Venkata Praveen Guddeti and Berthe Y. Choueiry

Constraint Systems Laboratory,
Computer Science & Engineering,

University of Nebraska-Lincoln
{vguddeti,choueiry}@cse.unl.edu

Abstract. We propose an improved restart strategy for randomized backtrack
search, and evaluate its performance by comparing to other heuristic and stochas-
tic search techniques for solving random problems and a tight real-world resource
allocation problem. The restart strategy proposed by Gomes et al. [1] requires the
specification of a cutoff value determined from an overall profile of the cost of
search for solving the problem. When no such profile is known, the cutoff value
is chosen by trial-and-error. The Randomization and Geometric Restart (RGR)
proposed by Walsh does not rely on a cost profile but determines the cutoff value
as a function of a constant parameter and the number of variables in the problem
[2]. Unlike these strategies, which have fixed restart schedules, our technique
(RDGR) dynamically adapts the value of the cutoff parameter to the results of the
search process. Our experiments investigate the behavior of these techniques us-
ing the cumulative distribution of the solutions, over different run-time durations,
values of the cutoff, and problem types. We show that distinguishing between
solvable and over-constrained problem instances yields new insights on the rela-
tive performance of the search techniques tested. We propose to use this charac-
terization as a basis for building new strategies of cooperative, hybrid search.

1 Introduction

We have developed a system for modeling and solving a resource allocation problem,
which is the assignment of Graduate Teaching Assistants (GTA) to courses in our de-
partment [3]. We exploit this system as a platform for developing and characterizing
new problem-solving strategies. The research we describe in this paper was motivated
and enabled by this project. However, our results are here extended beyond this partic-
ular application.

The Graduate Teaching Assistants Assignment Problem (GTAAP) is a critical and
arduous task that the department’s administration has to drudge through every semester.
By focusing our investigations on this particular real-world application, we have been
able to identify and compare the advantages and shortcomings of the various search
strategies we have implemented to solve this problem. Such an insight is unlikely to be
gained from testing toy problems, and surely difficult from testing random problems.
We show that the identified behaviors apply beyond our application. The contributions
of this paper are as follows: (1) The development of a new dynamic restart strategy for

B. Faltings et al. (Eds.): CSCLP 2004, LNAI 3419, pp. 56–70, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Characterization of a New Restart Strategy for Randomized Backtrack Search 57

randomized backtrack search, and (2) an empirical evaluation of the performance of this
new strategy and a comparison with other heuristic and stochastic search techniques on
a real-world problem and on randomly generated binary CSPs.

This paper is structured as follows. Section 2 describes the GTA assignment prob-
lem (GTAAP) and our implementations of a backtrack search, a local search, and a
multi-agent search technique for solving it. Section 3 introduces our new proposed
dynamic restart strategy for randomized backtrack search and our implementation of
Walsh’s restart strategy [2]. Section 4 presents our experiments and our observations.
Finally, Section 5 concludes the paper and provides directions for future research.

2 GTA Assignment Problem

Given a set of Graduate Teaching Assistants (GTAs), a set of courses, and a set of
constraints that specify allowable assignments of GTAs to courses, the goal is to find
a consistent and satisfactory assignment [4–6]. Hard constraints (e.g., a GTA’s com-
petence, availability, and employment capacity) must be met, and GTA’s preferences
for courses (expressed on a scale from 0 to 5) must be maximized. Typically, every
semester, the department has about 70 different academic tasks and can hire between
25 and 40 GTAs. Instances of this problem, collected since Spring 2001, are consis-
tently tight and often over-constrained. The objective is to ensure GTA support to as
many courses as possible by finding a maximal consistent partial-assignment. Because
the hard constraints cannot be violated, the problem cannot be modeled as a MAX-CSP
[7]. Our constraint-model represents the courses as variables, the GTAs as domain val-
ues, and the assignment rules as a number of unary, binary, and non-binary constraints.
We define the problem as the task of finding the longest assignment, as a primary crite-
rion, and maximizing GTAs’ preferences, as a secondary criterion. (We model the latter
as the value of the geometric mean of GTAs’ preferences in an assignment.) We imple-
mented a number of search strategies for solving this problem (summarized below). We
tested these search techniques on the real-world data-sets shown in Table 1. Each course
has a load that indicates the weight of the course. For example, a value of 0.5 means this
course needs one-half of a GTA. The total load of a semester is the cumulative load of
the individual courses. Each GTA has a capacity factor which indicates the maximum
course weight he/she can be assigned during the semester. The sum of the capacities of
all GTAs represents the total capacity.

Table 1. Characteristics of the data sets.

Data set Spring2001b Fall2001b Fall2002 Fall2002-NP Spring2003 Spring2003-NP
Reference 1 2 3 4 5 6

Solvable? × √ × × √ √

#Variables 69 65 31 59 54 64
Max domain size 26 34 28 28 34 34
Total capacity 26 30 11.5 27 27.5 31
Total load 29.6 29.3 13 29.5 27.4 30.2
Ratio = Total Capacity

Total Load 0.88 1.02 0.88 0.91 1.00 1.02

58 Venkata Praveen Guddeti and Berthe Y. Choueiry

We compare our new dynamic restart strategy (RDGR) with a heuristic backtrack
search (BT) with various ordering heuristics, a greedy local search (LS), a multi-agent-
based search (ERA), and a randomized backtrack search with restart (RGR). All strate-
gies implement the above two optimization criteria, except ERA, which models the
GTAAP as a satisfaction problem. These search techniques were separately imple-
mented on the same model and data structures by students competing to produce the
best results. Below, we summarize the design of BT, LS, and ERA.

2.1 Heuristic Backtrack Search

Our heuristic backtrack (BT) search is a depth-first search with forward checking [8].
Because the problem may be over-constrained, we modified the backtrack mechanism
to allow null assignments and proceed toward the longest solution in a branch-and-
bound manner (i.e., backtracking is not performed when a domain is wiped-out as long
as there are future variables with no empty domains). This solution is equivalent to
adding a dummy value in the variables’ domains. Our implementation is described in
detail in [5]. We have implemented several ordering heuristics to improve the perfor-
mance of search (see [9]). Our experiments showed that dynamic variable ordering is
consistently superior to static ordering, but that the influence of the other factors is not
significant in the context of our application.

All these strategies exhibited a serious vulnerability to thrashing (i.e., searching
unpromising parts of the search space), which seriously undermined their ability to
explore wider areas of the search space. Indeed, although BT is theoretically sound and
complete, the size of the search space makes such guarantees meaningless in practice.
Figure 1 illustrates the gravity of thrashing for a problem with 69 variables and 26
values. We define the ‘shallowest level’ as the shallowest level in a search tree attained
by the backtracking mechanism along any given path. The percentage denotes the ratio
number of variables− shallowest level

number of variables . Indeed, the shallowest level of backtrack achieved
after 24 hours (26%) is not significantly better than that reached after 1 minute (20%)
of search, never revising the initial assignment of 74% of the variables. Figure 2 shows,
for each data set, the number of variables, the longest solution (max depth), and the
shallowest BT levels in terms of the level and the percentage of backtracking in the
search tree attained after 5 minutes and 6 hours.

Number of

reached by BT after..
Shallowest level

variables: 69

24 hr: 51 (26%)
1 min: 55 (20%)
Max depth: 57

Fig. 1. BT thrashing in large search spaces.

Data # BT running for..
set Vars 5 min 6 hours

Max Shallowest Max Shallowest
depth level % depth level %

1 69 57 53 23% 57 51 26 %
2 65 63 55 15% 63 54 16 %
3 31 28 13 58% 28 3 90 %
4 59 49 48 18% 50 45 23 %
5 54 52 44 18% 54 41 24 %
6 64 62 54 15% 62 47 26 %

Fig. 2. BT search thrashing.

Characterization of a New Restart Strategy for Randomized Backtrack Search 59

Table 2. Performance of BT for various running times.

Data set 1 (69 variables, over-constrained)
Running time 30 sec 5 min 30 min 1 hour 6 hours 24 hours

Shallowest BT level 54 53 52 52 51 51
Longest solution 57 57 57 57 57 57
Geometric mean of 2.15 2.17 2.17 2.21 2.27 2.27
preference values
Backtracks 1835 47951 261536 532787 3274767 13070031
Nodes visited 3526 89788 486462 989136 6059638 24146133
Constraint checks 8.50E+07 3.17E+08 1.81E+09 3.58E+09 2.16E+10 8.70E+10

As the problem size increases, the effects of thrashing become more important. Ta-
ble 2 shows the performance of BT on data set 1 for various run times. Even after letting
our best heuristic backtrack search run for over 24 hours, the quality of the solution, in
terms of solution length, is not improved. The improvement of the assignment quality,
in terms of the geometric mean of the preference values, is insignificant. Finally, we
notice that the assignment of the first 51 variables in the ordering was never undone.
Consequently, in practice, completeness is a purely theoretical feature.

2.2 Local Search

Zou and Choueiry designed and implemented a greedy, local search (LS) technique for
the GTAAP system [10–12]. It is a hill-climbing search using the min-conflict heuristic
for value selection [13]. It begins with a complete, random assignment (not necessar-
ily consistent), and tries to improve it by changing inconsistent assignments in order
to reduce the number of constraint violations. In order to deal effectively with global
constraints (e.g., capacity constraints), we identify, one at a time and in random order, a
variable that satisfies all remaining constraints as consistent, and propagate the effects
of this consistent assignment by filtering the domains of the remaining variables. This
design decision effectively handles non-binary constraints. Our local search is greedy in
the sense that consistent assignments are not undone. Moreover, a random-walk strat-
egy is applied to escape from local optima [14]. With a probability (1− p), the value of
a variable is chosen using the min-conflict heuristic, and with probability p this value is
chosen randomly. Following the indications of [14] and after testing, p = 0.02 is used.
Finally, random restarts are used to break out of local optima.

2.3 Multi-agent Search

Liu et al. proposed the ERA algorithm (Environment, Reactive rules, and Agents) as a
multi-agent-based search for solving CSPs [15]. Zou and Choueiry implemented and
tested ERA for solving GTAAP [10–12]. In ERA, each agent represents a variable. The
positions of an agent in the environment correspond to the values in the domain of the
variable. Starting from a random positioning of the agents in the environment, each
agent evaluates the quality of its positions given the positions of the remaining agents

60 Venkata Praveen Guddeti and Berthe Y. Choueiry

and decides to move to what seems to be the best position, the choice being determined
stochastically by the reactive rules. The agents keep moving until they all reach a satis-
fying position (i.e., a full, consistent solution) or a certain time period has elapsed. This
algorithm acts as an ‘extremely’ decentralized local search, where any agent can move
to any position, likely forcing other agents to seek other positions. Zou and Choueiry
showed that the extreme mobility of agents in the environment is the reason behind
ERA’s amazing immunity to local optima [10–12]. They found that ERA is indeed the
only search technique to solve GTAAP instances that remain unsolved by all other tech-
niques tested. They uncovered the weakness of ERA on over-constrained problems and
characterized it as a livelock phenomenon (where some agents keep forcing each oth-
ers out of chosen positions thus causing cycles and undermining the stability of search).
Finally, they showed how this phenomenon can be advantageously used to isolate, iden-
tify, and represent conflicts in a compact manner.

3 Randomized BT Search with Restarts

Unlike ERA and local search, general backtrack (BT) search is, in principle, com-
plete and sound. However, the performance of heuristic BT is seriously undermined
by thrashing. Thrashing can be explained by incorrect heuristic choices made early in
the search process. We explore randomization in BT as a way to overcome this short-
coming of systematic search. First we review the main concepts, then we describe the
two strategies that we tested.

Gomes et al. demonstrated that randomization of heuristic choices combined with
restart mechanisms is effective in overcoming the effects of thrashing and in reducing
the total execution time of systematic BT search [1]. Thrashing in BT search indicates
that search is stuck exploring an unpromising part of the search space, and thus inca-
pable of improving the quality of the current solution. It becomes apparent that there is
a need to interrupt search and to explore other areas of the search space. It is important
to restart search from a different portion of the search space; otherwise it will end up
traversing the same paths. Randomization of branching during search is used to this end.
Randomness can be introduced in the variable and/or value ordering heuristics, either
for tie-breaking or for variable and/or value selection. After choosing a randomization
method, the algorithm designer must decide on the type of restart mechanism. This
restart mechanism determines when to abandon a particular run and restart the search.
Here the tradeoff is that reducing the cutoff time reduces the probability of reaching a
solution at a particular run. Several restart strategies have been proposed with different
cutoff schedules. Some of the better known ones are the fixed-cutoff strategy and Luby
et al.’s universal strategy [16], the randomization and rapid restart (RRR) of Gomes
et al. [1], and the randomization and geometric restarts (RGR) of Walsh [2]. Among
the above listed restart strategies, RRR and RGR have been studied and empirically
tested in the context of CSPs. All of these restart strategies are static in nature, i.e. the
cutoff value for each restart is independent of the progress made during search. Some
restart strategies (e.g., fixed-cutoff strategy of [16] and RRR [1]) employ an optimal
cutoff value that is fixed for all the restarts of a particular problem instance. The esti-
mation of the optimal cutoff value requires a priori knowledge of the cost distribution of
that problem instance, which is not known in most settings and must be determined by

Characterization of a New Restart Strategy for Randomized Backtrack Search 61

trial-and-error. This is clearly not practical for real-world applications. There are other
restart strategies that do not need any a priori knowledge (e.g., Luby et al.’s universal
strategy [16] and Walsh’s RGR [2]). They utilize the idea of an increasing cutoff value
in order to ensure the completeness of search. However, if these restart strategies do
not find a solution after the initial few restarts, then the increasing cutoff value leads to
fewer restarts, which may yield thrashing and diminishes the benefits of restart. We pro-
pose a restart strategy that dynamically adapts the cutoff value for each restart based on
the performance of previous restarts. Our strategy loses the guarantee of completeness,
which, anyway, is not achievable on large problems.

3.1 Randomization and Geometric Restarts

Walsh proposed the Randomization and Geometric Restarts (RGR) strategy to automate
the choice of the cutoff value [2]. According to RGR, search proceeds until it reaches
a cutoff value for the number of nodes visited. The cutoff value for each restart is a
constant factor, r, larger than the previous run. The initial cutoff is equal to the number
of variables n. This fixes the cutoff value of the ith restart at n.ri nodes. The geometri-
cally increasing cutoff value ensures completeness with the hope of solving the problem
before the cutoff value increases to a large value. We studied various values of r and
report them in Section 4.2. We combined this restart strategy with the backtrack search
of Section 2.1, randomizing the selection of variable-value pairs.

3.2 Randomization and Dynamic Geometric Restarts

We now introduce a simple but effective improvement to RGR. All static restart strate-
gies suffer from the problem of increasing cutoff values after each restart. While this
ensures completeness of the search, it results in fewer restarts, thus increasing the like-
lihood of thrashing and diminishing the probability of finding a solution. Our proposed
strategy, Randomization and Dynamic Geometric Restarts (RDGR), aims to attenuate
this effect. It operates by not increasing the cutoff value for the following restart when-
ever the quality of the current best solution is not improved upon. When the current
restart improves on the current best solution, then the cutoff value is increased geomet-
rically, similar to RGR. Because the cutoff value does not necessarily increase, com-
pleteness is no longer guaranteed. This situation is acceptable in application domains
(like ours) with large problem size where completeness is, anyway, infeasible in prac-
tice. Smaller cutoff values result in a larger number of restarts taking place in RDGR
than RGR, which increases the probability of finding a solution. All other implementa-
tion details are similar to RGR.

Let Ci be cutoff value for the ith restart and r be the ratio used to increase the cutoff
value. In RGR the cutoff value is updated according to the equation: Ci+1 = r.Ci. We
use the following equation in RDGR:

Ci+1 =
{

r.Ci when the solution has improved at the ith restart
Ci otherwise

(1)

In RGR, the cutoff value for each restart is determined independently of how search per-
formed at the previous step. However, this is not the case for RDGR. Each time search

62 Venkata Praveen Guddeti and Berthe Y. Choueiry

Random binary CSP

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80 90 100

Number of restarts

C
u

to
ff

 v
a

lu
e

RGR, r = 2

RGR, r = 1.1

RDGR, r = 2

RDGR, r = 1.1

Fig. 3. Increase of the cutoff value (3 minutes).

begins with a different random seed, it traverses different search paths. Some paths may
be more fruitful than others. RGR and RDGR increase the cutoff values in the same
way on search paths that improve solutions. When the solution is not being improved,
RGR keeps increasing the cutoff values, thus making RGR more of a randomized BT
search than a randomized BT search with restarts. In contrast, RDGR maintains the
cutoff value. Figure 3 shows that RGR increases the cutoff values across iterations sig-
nificantly more rapidly than RDGR does, for r=1.1 and 2 on random binary CSPs. This
explains the dynamic nature of RDGR. For problems that are not tight, solutions are
found within a few restarts, and RGR and RDGR exhibit similar behaviors. For tight
and over-constrained problems, RDGR seems to dominate RGR as we show in our
experiments (Section 4).

4 Experiments and Results

We tested and compared the above listed 5 search strategies, namely: BT (Section 2.1),
LS (Section 2.2), ERA (Section 2.3), RGR (Section 3.1), and RDGR (Section 3.2). BT
is deterministic and the other 4 search techniques (i.e., LS, ERA, RGR, and RDGR)
are stochastic. In the terminology introduced by Hoos and Stützle in [17], these are
optimization Las Vegas algorithms, RGR is probabilistically approximately complete
(PAC), and LS, ERA, and RDGR are essentially incomplete. We conducted the follow-
ing three sets of experiments:

1. Effect of running time on RGR and RDGR.
2. The influence of the choice of the ratio r used in RGR and RDGR.
3. Relative performance of BT, LS, ERA, RGR, and RDGR.

We compare the performance of the algorithms using the following criteria:

1. Solution quality distributions (SQD) taking as reference the longest known solution
for each data set, as recommended by Hoos and Stützle in [17]. SQD’s are cumu-
lative distributions of the solution quality, similar to the cumulative distributions

Characterization of a New Restart Strategy for Randomized Backtrack Search 63

Table 3. Improvements of RDGR with 95% confidence level.

Data set Improvements over RGR Improvements over ERA
Lower limit Upper limit Lower limit Upper limit

1 1.16 1.61 45.16 46.77
2 1.53 1.61 -6.15 -6.15
3 3.44 3.44 27.58 31.03
4 1.85 1.85 24.07 27.77
5 0 1.85 -3.7 -3.7
6 1.56 1.56 -6.25 -6.25

of run-time in run-time distributions. The horizontal axis represents in percent the
relative deviation of the solution size s from the longest known solution sopt, com-

puted as (sopt−s)100
sopt

. Thus, the point 0% on the x-axis denotes the longest solution
and, the point 20% denotes a solution that is 20% shorter that the longest solution.
The vertical axis represents the percentage of test runs.

2. Descriptive statistics of all the solutions found, for all search techniques. This in-
cludes the measures: mean, median, mode, standard deviation, minimum, and max-
imum of the solution.

3. 95% confidence interval of the mean improvement. The confidence interval was
computed using the Mann-Whitney test. Table 3 reports the improvements of
RDGR over RGR and ERA.

We tested these search techniques on the 6 real-world data-sets of the GTAAP of Table 1
and 4 sets of randomly generated problems. For the GTAAP data sets, we repeated our
experiments 500 times for all stochastic search techniques. Naturally, a single run is
sufficient for BT because it is deterministic. We found that the average run-time for all
stochastic algorithms stabilizes after 300 runs on all the GTAAP data sets, as shown
in Figure 4 for data set 1, which justifies our decision. We report the results for the
following data sets (the same qualitative observations hold across all data sets):

– Data set 1 as a representative of an over-constrained problem.
– Data set 5 as a representative of a tight but solvable problem.

For randomly generated problems, we used the model-B-type generator of Hemert [18].
We generated three types of randomly generated problems, each containing 100 in-
stances and each instance run for 3 minutes:

– Under-constrained instances. The first type of randomly generated problems are
under-constrained binary CSPs with 40 variables, uniform domain size of 20 val-
ues, 0.5 proportion of constraints, and 0.2 constraint tightness.

– Over-constrained instances. The second type of randomly generated problems are
over-constrained binary CSPs with 40 variables, uniform domain size of 20 values,
0.5 proportion of constraints, and 0.5 constraint tightness.

– Instances at the phase transition. The third type of randomly generated problems
are from the phase transition area. These are binary CSPs with 25 variables, uni-
form domain size of 15 values, 0.5 proportion of constraints, and 0.36 constraint
tightness. We split these instance into two sets, each of 100 instances, separating
solvable instances and unsolvable instances.

64 Venkata Praveen Guddeti and Berthe Y. Choueiry

Data set1: Moving averages for CPU Time

75

95

115

135

155

175

195

0 50 100 150 200 250 300 350 400 450 500

Number of samples

C
u

m
u

la
ti

v
e
 A

v
e
ra

g
e
s
 [

s
e
c
]

RGR

RDGR

Fig. 4. Moving average for CPU run-times for data set 1.

4.1 Effect of the Running Time on RGR and RDGR

To compare the performance of RGR and RDGR, we tested them on various running
times for the GTAAP data sets. The results are shown in Figures 5 and 6. In both
these figures, RDGR consistently outperforms RGR over different run-times. Further,
increasing the running time has no affect on the relative dominance of algorithms.

4.2 Influence of the Ratio r

We tested RGR and RDGR with different ratios, with 5 minutes running time. For the
GTAAP problem we tested the values: 1, 1.1, 2

1
4 , 2

1
2 , 2, and 4. For the random CSPs we

tested the values: 1, 1.1, 2
1
4 , 2

1
2 , 2, 3, and 4. Figures 7, 8, 9, and 10 show the influence of

the ratio r used to increase the cutoff value in RGR and RDGR. In accordance with [2],
Figures 7 and 9 show that a value of r=1.1 is the best among the values tested for RGR.

Data set 1

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

RDGR-20min

RDGR-10min

RDGR-5min

RGR-20min

RGR-10min

RGR-5min

Fig. 5. Varying run time: GTAAP, over-
constrained.

Data set 5

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

RDGR-20min

RGR-20min

RDGR-10min

RGR-10min

RDGR-5min

RGR-5min

Fig. 6. Varying run time: GTAAP, solvable.

Characterization of a New Restart Strategy for Randomized Backtrack Search 65

RGR on data sets 1 & 5

0

10

20

30

40

50

60

70

80

90

100

1 1.5 2 2.5 3 3.5 4
Ratio

P
e

rc
e

n
ta

g
e

 o
f

te
s

t
ru

n
s

Data set 1 at 6%

Data set 5 at 6%

Fig. 7. Effect of r: RGR on GTAAP.

RDGR on data sets 1 & 5

0

10

20

30

40

50

60

70

80

90

100

1 1.5 2 2.5 3 3.5 4
Ratio

P
e

rc
e

n
ta

g
e

 o
f

te
s

t
ru

n
s

Data set 1 at 6%

Data set 5 at 6%

Fig. 8. Effect of r: RDGR on GTAAP.

RGR on Random CSPs

0

10

20

30

40

50

60

70

80

90

100

1 1.5 2 2.5 3 3.5 4

Ratio

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

Under-constrained

Over-constrained

Phase transition, solvable

Phase transition, unsolvable

Fig. 9. Effect of r: RGR on random CSPs.

RDGR on Random CSPs

0

10

20

30

40

50

60

70

80

90

100

1 1.5 2 2.5 3 3.5 4

Ratio

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

Under-constrained

Over-constrained

Phase transition, solvable

Phase transition, unsolvable

Fig. 10. Effect of r: RDGR on random CSPs.

This While, for RGR, this optimal ratio does not change with the problem type (i.e.,
GTAAP vs. random problem), it does for RDGR. For the GTAAP, it is r=1.1 (Figure 8).
For randomly generated problems, it is r=2 (Figure 10). Our experiments indicate that
the curves remains flat around these ‘optima.’

4.3 Relative Performance of BT, LS, ERA, RGR, and RDGR

In this section we compare the relative performance of all the search techniques devel-
oped for the GTAAP system. Each stochastic algorithm was run 500 times of 10 min
each on the GTAAP data-set, and on 100 instances of random CSPs of 3 min each. Fig-
ures 11 and 12 show the relative performance of the search techniques on GTAAP data.
Figures 13, 14, 15, and 16 show the relative performance for the random problems. We
do not show LS and ERA in Figure 14 because they go off the scale.

Improvement of RDGR over BT: Table 4 shows that the maximum value of the solution
sizes produced by RDGR is clearly greater than that of the solution sizes produced by
BT. However, due to its stochastic nature, RDGR suffers from high instability in its
solution quality.

Superiority of RDGR over LS: The performance of RDGR is clearly superior to that of
LS (see Table 4 and Figures 11, 12, 13, 15, and 16). Although the solution quality is

66 Venkata Praveen Guddeti and Berthe Y. Choueiry

Table 4. Statistics of solution size (500 runs, 10 min each).

Data set 1 (69 variables, over-constrained) Data set 5 (54 variables, tight but solvable)

Search Mean Median Mode Standard Min. Max. Mean Median Mode Standard Min. Max.
deviat. deviat.

BT 57 57 57 0 57 57 52 52 52 0 52 52
LS 47.12 48 49 4.44 30 55 42.88 44 46 3.94 29 50
ERA 30.99 31 32 4.37 18 45 53.99 54 54 0.04 53 54
RDGR 59.66 60 60 0.77 58 62 52.17 52 52 0.78 50 54
RGR 58.27 58 58 2.83 23 62 51.70 52 52 1.04 49 54

Data set 1

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

RDGR

RGR

LS

ERA

Fig. 11. SQDs: GTAAP, over-constrained.

Data set 5

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

ERA

RDGR

RGR

LS

Fig. 12. SQDs: GTAAP, solvable.

Under-constrained

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

ERA

RDGR

RGR

BT

LS

Fig. 13. SQDs: under-constrained, random
CSPs.

Over-constrained

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

RDGR

RGR

BT

Fig. 14. SQDs: over-constrained, random
CSPs.

highly variable for both RDGR and LS, the low mean value of the solution quality of
LS ensures that RDGR remains superior to LS.

Superiority of RDGR over ERA on Over-Constrained Problems: On over-constrained
problems (Figure 11 and Table 3), the deadlock phenomenon prevents ERA from find-
ing solutions of quality comparable to those found by the other techniques [10–12].
BT, LS, RDGR, and RGR do not exhibit such a dichotomy of behavior between over-
constrained cases and solvable instances.

Characterization of a New Restart Strategy for Randomized Backtrack Search 67

Phase transition, solvable

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

RDGR

RGR

BT

ERA

LS

Fig. 15. SQDs: solvable random CSPs, at
phase transition.

Phase transition, unsolvable

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

RDGR

RGR

BT

ERA

LS

Fig. 16. SQDs: unsolvable random CSPs, at
phase transition.

Performance of ERA: On solvable problem instances (Figures 12 and 13), ERA dom-
inates all techniques. It is the only algorithm that finds complete solutions for nearly
all the runs. ERA completely dominates LS. However, on over-constrained problem in-
stances (Figure 11), RDGR, RGR, BT and LS are superior to ERA due to the deadlock
phenomenon. At the phase transition (Figures 15 and 16), the behavior of ERA is in-
dependent of the solvability of the problem. ERA performs only better than LS, while
RDGR, RGR and BT perform better than ERA. This difference in performance of ERA
may have to do with the structure of the randomly generated problems and the GTA
problem. More tests are needed to understand this phenomenon.

RDGR is More Stable than RGR: Table 5 shows the standard deviation of RGR and
RDGR on the GTAAP data sets. Due to their stochastic nature, RDGR and RGR tech-
niques show variation in their solution quality. However, the smaller standard deviations
of RDGR compared to RGR in Table 5 show that RDGR is relatively more stable than
RGR.

Sensitivity of LS to Local Optima: LS sensitivity to local optima makes it particularly
unattractive in our context. Even BT outperforms LS.

Table 5. Standard deviation in solution quality on GTAAP data.

Data set 1 2 3 4 5 6 7 8

RGR 2.8 1.1 0.7 1.0 1.0 1.2 0.59 0.73
RDGR 0.7 0.8 0.6 0.9 0.7 1.1 0.43 0.47

Table 6. Average number of restarts on GTAAP data.

Data set 1 2 3 4 5 6 7 8

RGR 16.7 17.4 22.5 14.7 22.4 19.5 27.8 30.4
RDGR 74.5 59.9 167.4 39.1 39.1 46.2 826.2 272.0

68 Venkata Praveen Guddeti and Berthe Y. Choueiry

Table 7. Comparing the behaviors of search strategies.

Characteristics

General: Stochastic and incomplete
ERA Tight but solvable problems: Immune to local optima

Over-constrained problems: Deadlock causes instability and yields shorter solutions

General: Stochastic, incomplete, and quickly stabilizes
LS Tight but solvable problems: Liable to local optima, and fails to solve tight

CSPs even with random-walk and restart strategies
Over-constrained problems: Finds longer solutions than ERA

General: Stochastic, incomplete, immune to thrashing,
produces longer solutions than BT, immune to deadlock,

RDGR reliable on unknown instances, and
immune to local optima, but less than ERA

General: Stochastic, Approximately complete,
RGR less immune to thrashing than RDGR, and

yields shorter solutions than RDGR in general.

General: Systematic, complete (theoretically, rarely in practice),
BT liable to thrashing, yields shorter solutions than RDGR and RGR,

stable behavior, and more stable solutions than stochastic methods in general

Larger Number of Restarts in RDGR: Table 6 shows the average number of restarts
occurring in RGR and RDGR. This confirms our expectations stated in Section 3.2 that
RDGR performs more restarts than RGR.

Summary: The following five statements, where! denotes dominance of an algorithm
over another, summarize the behavior of the 5 search strategies, also shown in Table 7:

– On unsolvable instances:
• Beyond the phase transition: RDGR ! RGR ! BT ! LS ! ERA.
• Around the phase transition: RDGR ! RGR ! BT ! ERA ! LS.

– On solvable instances:
• Beyond the phase transition: ERA ! RDGR ! RGR ! BT ! LS.
• Around the phase transition: two cases must be distinguished (see Figure 15).

If we focus on the percentage of problems solved (i.e., lower values of SQDs),
ERA remains the dominant technique: ERA ! RDGR ! RGR ! BT ! LS.
However, if we accept larger values of the deviation from the best solution,
then RDGR statistically dominates: RDGR ! RGR ! BT ! ERA ! LS.

5 Conclusions and Future Work

By addressing a real-world application, we are able to identify, characterize, and com-
pare the behavior of various search techniques. BT is stable but suffers from thrashing.
LS is vulnerable to local optima. ERA shows difference in performance with different
problem types: while it has an amazing ability to solve under-constrained problems, its
performance degrades on over-constrained problems due to the livelock phenomenon.

Characterization of a New Restart Strategy for Randomized Backtrack Search 69

Restart strategies effectively prevent thrashing, but their solution quality is highly vari-
able. RGR operates by increasing cutoff values at every restart, which increases its
vulnerability to thrashing. RDGR attenuates this effect by making the cutoff value de-
pend upon the result obtained at the previous restart, which increases the number of
restarts in comparison to RGR. Consequently, RDGR exhibits a more stable behavior
than RGR while yielding at least as good solutions. In the future, we plan to study the
following directions:

1. Validate our findings on other real-world case-studies.
2. Design ‘progress-aware’ restart strategies, that is, strategies that can decide, during

a given restart, whether to continue or abandon this particular execution.
3. Use our current application as a ‘platform’ to study and characterize the perfor-

mance of other deterministic and stochastic search techniques.
4. Design new search hybrids where a solution from a given technique such as ERA

is fed as a seed to another one such as heuristic backtrack search.

Acknowledgments

This work is supported by NSF grants #EPS-0091900 and CAREER #0133568. The ex-
periments were conducted utilizing the Research Computing Facility of the University
of Nebraska-Lincoln.

References

1. Gomes, C.P., Selman, B., Kautz, H.: Boosting Combinatorial Search Through Random-
ization. In: Proceedings of the Fifteenth National Conference on Artificial Intelligence
(AAAI’98). (1998) 431–437

2. Walsh, T.: Search in a Small World. In: Proc. of the 16th IJCAI. (1999) 1172–1177
3. Lim, R., Guddeti, V.P., Choueiry, B.Y.: An Interactive System for Hiring and Managing

Graduate Teaching Assistants. In: Conference on Prestigious Applications of Intelligent
Systems (ECAI 04), Valencia, Spain (2004) 730–734

4. Glaubius, R.: A Constraint Processing Approach to Assigning Graduate Teaching Assistants
to Courses. Undergraduate Honors Thesis. Department of Computer Science & Engineering,
University of Nebraska-Lincoln (2001)

5. Glaubius, R., Choueiry, B.Y.: Constraint Constraint Modeling and Reformulation in the
Context of Academic Task Assignment. In: Working Notes of the Workshop Modelling and
Solving Problems with Constraints, ECAI 2002, Lyon, France (2002)

6. Glaubius, R., Choueiry, B.Y.: Constraint Modeling in the Context of Academic Task As-
signment. In Hentenryck, P.V., ed.: 8th International Conference on Principle and Practice
of Constraint Programming (CP’02). Volume 2470 of LNCS., Springer (2002) 789

7. Freuder, E.C., Wallace, R.J.: Partial Constraint Satisfaction. Artificial Intelligence 58 (1992)
21–70

8. Prosser, P.: Hybrid Algorithms for the Constraint Satisfaction Problem. Computational
Intelligence 9 (3) (1993) 268–299

9. Guddeti, V.P.: Empirical Evaluation of Heuristic and Randomized Backtrack Search. Mas-
ter’s thesis, Computer Science & Engineering, University of Nebraska-Lincoln (2004)

70 Venkata Praveen Guddeti and Berthe Y. Choueiry

10. Zou, H., Choueiry, B.Y.: Characterizing the Behavior of a Multi-Agent Search by Using it
to Solve a Tight, Real-World Resource Allocation Problem. In: Workshop on Applications
of Constraint Programming, Kinsale, County Cork, Ireland (2003) 81–101

11. Zou, H.: Iterative Improvement Techniques for Solving Tight Constraint Satisfaction Prob-
lems. Master’s thesis, Computer Science & Engineering, University of Nebraska-Lincoln
(2003)

12. Zou, H., Choueiry, B.Y.: Multi-agent Based Search versus Local Search and Backtrack
Search for Solving Tight CSPs: A Practical Case Study. In: Working Notes of the Workshop
on Stochastic Search Algorithms (IJCAI 03), Acapulco, Mexico (2003) 17–24

13. Minton, S., Johnston, M.D., Philips, A.B., Laird, P.: Minimizing Conflicts: A Heuristic
Repair Method for Constraint Satisfaction and Scheduling Problems. Artificial Intelligence
58 (1992) 161–205

14. Barták, R.: On-Line Guide to Constraint Programming.
kti.ms.mff.cuni.cz/˜bartak/constraints (1998)

15. Liu, J., Jing, H., Tang, Y.: Multi-Agent Oriented Constraint Satisfaction. Artificial Intelli-
gence 136 (2002) 101–144

16. Luby, M., Sinclair, A., Zuckerman, D.: Optimal Speedup of Las Vegas Algorithms. In: Israel
Symposium on Theory of Computing Systems. (1993) 128–133

17. Hoos, H., Stützle, T.: Stochastic Local Search Foundations and Applications. Morgan Kauf-
mann (2004)

18. van Hemert, J.I.: RandomCSP: generating constraint satisfaction problems randomly. home-
pages.cwi.nl/˜jvhemert/randomcsp.html (2004)

Dynamic Distributed BackJumping

Viet Nguyen1, Djamila Sam-Haroud2, and Boi Faltings2

1 Laboratory of Autonomous Systems,
Ecole Polytechnique Federale de Lausanne (EPFL),

CH-1015 Lausanne, Switzerland
2 Laboratory of Artificial Intelligence,

Ecole Polytechnique Federale de Lausanne (EPFL),
CH-1015 Lausanne, Switzerland

{viet.nguyen,jamila.sam,boi.faltings}@epfl.ch

Abstract. We consider Distributed Constraint Satisfaction Problems (DisCSP)
when control of variables and constraints is distributed among a set of agents.
This paper presents a distributed version of the centralized BackJumping algo-
rithm, called the Dynamic Distributed BackJumping – DDBJ algorithm. The ad-
vantage is twofold: DDBJ inherits the strength of synchronous algorithms that
enables it to easily combine with a powerful dynamic ordering of variables and
values, and still it maintains some level of autonomy for the agents. Experimental
results show that DDBJ outperforms the DiDB and AFC algorithms by a fac-
tor of one to two orders of magnitude on hard instances of randomly generated
DisCSPs.

Keywords: Search, Constraint Satisfaction, Distributed Systems, Multi-Agent
Systems.

1 Introduction

Constraint Satisfaction has been used as a powerful paradigm for general problem solv-
ing. It consists of finding values for problem variables in some particular domains sub-
ject to constraints that specify possible consistent combinations. Solving a CSP is to
find a set of variable assignments that satisfies all the constraints.

A distributed CSP (DisCSP) is a CSP where variables and constraints are distrib-
uted among a network of automated agents. Each agent may hold one or more variables
which are connected by local constraints, and also connected by inter-constraints to
variables of other agents. Many application problems in Multi-Agent Systems (MAS)
can be formulated and solved using a DisCSP framework ([1]), such as distributed re-
source allocation problems, distributed scheduling problems or multi-agent truth main-
tenance tasks.

In solving DisCSPs, agents exchange messages about the variable assignments and
conflicts of constraints. Several distributed search algorithms have been proposed for
solving DisCSPs. They can be divided into two main groups: asynchronous and syn-
chronous algorithms. The former are algorithms in which the process of assigning vari-
able values and exchanging messages is performed asynchronously between the agents,
whereas in the latter group, agents assign values to variables in a synchronous, sequen-
tial way. Each group has different strengths and drawbacks.

B. Faltings et al. (Eds.): CSCLP 2004, LNAI 3419, pp. 71–85, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

72 Viet Nguyen, Djamila Sam-Haroud, and Boi Faltings

The main contribution of this paper is to introduce the first distributed version of
the centralized algorithm BackJumping ([2]), called Dynamic Distributed BackJumping.
The advantage is twofold: DDBJ inherits the strength of synchronous algorithms that
enables it to easily combine with a powerful dynamic ordering of variables and values,
and still it maintains some level of autonomy for the agents. Experimental results show
that DDBJ outperforms some existing algorithms.

2 Related Work

One of the pioneer algorithms is the Asynchronous BackTracking – ABT algorithm
([3, 4]). It is a distributed, asynchronous version of a generic backtracking algorithm.
Agents communicate by two types of messages: OK? messages to distribute the current
value, and Nogood messages to declare new constraints. The simplicity and computa-
tional concurrency are its strengths. ABT needs polynomial space for storing nogoods
to be complete ([3]). The algorithm requires the assumption that messages are received
in the order in which they were sent for completeness, otherwise all nogoods have to
be stored and it would suffer from exponential space complexity. One way to work
around is to attach a sequence number for each message, so the order of messages can
be determined at the receiving end.

A later version of ABT which makes use of dynamic ordering of agents, called
the Asynchronous Weak-Commitment Search – AWC, is given in [4]. This algorithm is
shown to be faster than ABT, but the main drawback is that it requires exponential space
for completeness.

The Distributed Dynamic Backtracking – DiDB algorithm is another distributed,
asynchronous algorithm which is inspired by its centralized version Dynamic Back-
tracking ([5]), presented in [6, 7]. The algorithm transforms the constraint network into
a directed acyclic graph and performs dynamic jumps over the set of conflicting agents.
This algorithm requires the assumption that messages are received in the order in which
they were sent and polynomial space for nogood stores. However, the main weakness
is the problem of message duplication. Due to asynchrony, an agent may keep asking
values of its parents, and the parents keep sending reply messages. This process prop-
agates down the whole graph, creates many duplicated messages. Experimental results
show that the number of messages increases dramatically.

Another distributed asynchronous algorithm is given lately in [8], the Asynchronous
Aggregation Search – AAS. This algorithm works in a similar way as ABT, except that
consistent values of the partial solution are also included in OK messages. This mech-
anism helps in reducing number of backtracks. For problems with large variable do-
mains, including consistent values produces long messages. Thus, AAS is more practical
for problems with small variable domains.

A recently proposed algorithm, called the Asynchronous Forward Checking – AFC
([9]), belongs to the group of distributed synchronous algorithms. It is a generic back-
tracking algorithm combined with a look ahead heuristic by means of asynchronous
forward checking messages. Agents assign their values for variables sequentially by
having one current partial assignment shared among all agents. When a dead end is de-
tected, the algorithm backtracks sequentially following the reverse ordering. A strength
of this algorithm is in its algorithmic simplicity and good computational efficiency,

Dynamic Distributed BackJumping 73

inherited from centralized algorithms. It has been shown to provide better performance,
in terms of number of messages and constraint checks, than asynchronous algorithms
ABT and DiDB ([9]). The main drawback of AFC is that it does not exploit concurrency:
at any time, there is only either one AFC or one BT message that is exchanged between
the agents, results in long running time compared to asynchronous algorithms.

3 Preliminaries

Classically, Constraint Satisfaction Problems (CSP) have been defined for problems in
centralized architectures. A finite CSP is defined by a triple (X ,D, C), where

– X = {x1, ..., xn} is the set of n variables.
– D = {D1, ..., Dn} is the set of n finite, discrete domains of variables x1, ..., xn,

respectively.
– C = {C1, ..., Ck} is the set of k constraints on the variables. These constraints give

the allowed values that the variables can simultaneously take. var(Ci) is the set of
variables that are constrained by Ci.

A solution to a CSP is an assignment of values taken from the domains to all vari-
ables such that all the constraints are satisfied. Constraint satisfaction is NP-complete
in general, and it is typically solved by a tree-search procedure with backtracking.

A distributed CSP (DisCSP) is a CSP in which the variables and constraints are
distributed among a network of automated agents. Formally, a finite DisCSP is defined
by a 5-tuple (X ,D, C,A, φ), where X , D and C are the same as in centralized CSP, and

– A = {A1, ..., Ap} is the set of p agents
– φ : X → A is a function that maps variables to agents

Solving a DisCSP is to find an assignment of values to variables by the collective and
coordinated action of automated agents. A solution to a DisCSP is a compound assign-
ment of values to all variables such that all constraints are satisfied.

In DisCSP, agents communicate with each other by sending messages. We make the
following assumptions for the communication model similar to those proposed in [4]:
1. An agent can send messages to other agents iff the agent knows the addresses of

the agents.
2. The delay in delivering a message is finite but random; there is no message lost.

The second assumption has been partially relaxed from the original one in [4] that also
assumes that messages are received in the order in which they were sent. Some algo-
rithms (ABT, DiDB) require this assumption to be complete. Furthermore, for simplicity
and without loss of generality, we assume that:
1. φ is a one-to-one function; it means that each agent holds only one variable; and

there are no intra-agent constraints. (In DisCSP, it is assumed that intra-agent vari-
ables/constraints can be solved efficiently by some centralized algorithm. Distrib-
uted algorithms are to focus on the cooperative solving techniques between distrib-
uted solvers (e.g. agents).)

2. C are binary constraints so that var(Ci) = 2, and every constraint is known by both
agents involved in the constraint.

By these assumptions, the constraint network is simplified to a constraint graph where
agents represent graph nodes and constraints represent graph edges.

74 Viet Nguyen, Djamila Sam-Haroud, and Boi Faltings

asynchronous
execution
threadsA5

A7 A11

A1

A2

A3

A4

A6

FC msg

BT msg

OK msg

time t1

time t2

Fig. 1. An example of the DDBJ algorithm execution.

4 The Algorithm DDBJ

The Dynamic Distributed BackJumping – DDBJ, is a complete, distributed, semi-asyn-
chronous version of a graph-based backjumping algorithm which was previously intro-
duced in centralized CSP ([2]). The algorithm combines the concurrency of an asyn-
chronous dynamic backjumping algorithm and the computational efficiency of the syn-
chronous AFC algorithm ([9]), coupled with the heuristics of dynamic value and vari-
able ordering.

The Distributed BackJumping Procedure

Agents perform value assignments in two phases:

– Advancing forward phase: which occurs when a new assignment tuple is added to
the current partial solution.

– Backjumping (backward) phase: which occurs when an agent encounters a conflict.
The process is “jumped back” to the culprit agent.

An agent is either in a forward phase or a backward phase. Algorithmically, the forward
phase is performed sequentially: the assigning agent sends an OK to the next agent
and FC messages to unassigned connected agents (similarly to AFC algorithm). If an
agent detects a conflict when receiving some OK/FC message, it performs the backward
phase asynchronously to backjump to the culprit agent, and also sends NG messages
to unassigned agents. At any time, there can be several culprit agents detected and
thus several backjumps are performed simultaneously. The culprit agents will change
their values, hence the current partial solution (CPS), and perform the forward phase,
without synchronizing with other agents nor waiting for other agents to switch phases.
Consequently, at any time, agents are performing the forward and backward phases
simultaneously in parallel without any synchronous control.

An example of algorithm execution is illustrated in Fig.1. At time t1, agent A3
sends one OK message to A4 (solid lines) and FC messages to connected agents (dotted
lines). At a later time t2, A11 finds a conflict and backjumps to A3 by a BT message

Dynamic Distributed BackJumping 75

(dashed lines) and sends NG messages to others (not shown). At the same time, A3’s
assignment has already propagated down to A6 and A7, and get backjumped at A6 to
A4 and backtracked at A7 to A5. However, the asynchronous executions at A6 and A7
and the consequent ones will soon be overwritten by the new assignment at A3. These
execution flows are carried out simultaneously.

In AFC, backtracking is performed sequentially (or synchronously) from the detect-
ing agent to the culprit. At any time, there is only either one OK or one BTmessage being
sent. In DDBJ, any agent who receives an OK or FC message can initiate a backjump.
Thus, there can be several OK and BT messages exchanged simultaneously, generating
multiple asynchronous execution threads. However, there is only one OKmessage which
may potentially lead to a solution (the most updated one or equivalently the one on the
highest level of the search tree). The other OK messages will continue to propagate and
create the assignment chains down the search tree, until only when theNG or newer mes-
sages arrive. Usually, it takes some cycles to stop these obsolete processes, depending
on the size of the network, the connectivity density, the message delivering delay, etc.

The DDBJ algorithm is executed on every agent. Each maintains current value as-
signments of other agents in an AgentV iew ([3]). We also adopt the AgentV iew-
.consistent from [6] to represent whether the CPS it holds is consistent. To deter-
mine which OK message is the most updated one and to discard obsolete messages,
we introduce for each agent a time flag called T imeStamp which is incremented
by 1 when the agent changes its value. When sending OK/FC messages, an agent in-
cludes its T imeStamp with its assignment. The receiving agent checks the attached
T imeStamps and updates its context only if the message is valid. In the example above,
by the T imeStamps, A4’s new assignment (due to A6’s backjump) will overwrite ex-
ecutions from A5 (due to A7’s backtrack); however the new A3’s assignment (due to
A11’s backjump) will eventually overwrite all executions below it.

The Dynamic Value and Variable Ordering Heuristics

The DDBJ algorithm uses dynamic value and variable ordering heuristics. Each agent
keeps a potential conflict counter list of its domain values, and a potential conflict
counter list of other agents (variables). An agent chooses the value which has the low-
est counter value to assigns its variable, and sends the OK message (which contains the
partial solution) to the agent (variable) which has the highest counter value (and FC
messages to other linked agents). If there is a tie, the agent can use the chronological
order. At start, all the counter values are equally zeros.

When a dead end is detected by an agent, the dead end discovering (DED) agent
performs updating its priority lists in two steps. In the first step, it decreases the counter
of the culprit agent (the agent whose value causes the dead end), then it sends the
BT message to the culprit agent. The culprit agent, upon receiving the BT message,
increases the counter of the sender (the DED agent) and increases the counter of its
value that causes the backtrack, then it follows the backjumping procedure. In second
step, the DED agent determines its “potential conflicting agents” (PC agents). A PC
agent is the first agent whose value conflicts with a value in the domain of the
DED agent. The DED agent increases the counters of the PC agents, sends a “potential
conflict” – PCmessage to the PC agents. The PC agents, after receiving the PCmessage,

76 Viet Nguyen, Djamila Sam-Haroud, and Boi Faltings

1 52 43 6 7

A1 A1
A2 A2

A1
A2

A1
A2

A5 domain (7)

A3 A3

A4 A4 A4

A1 conflicts
A2 conflicts
A3 conflicts

A4 conflicts

PC
PC

BT

A3

Fig. 2. An example of the heuristics: Agent A5 comes to a dead end, sends a BT message to
culprit agent A4, sends “potential conflict” – PC messages to A1, A2.

increase the counters of their values (that cause the dead end), increase the counter of
the DED agent. The idea here is to give more priority to the agents at higher top level of
the search tree to change their values. The heuristics of dynamic ordering of value and
variable would intuitively help to avoid thrashing on values selected by the very first
agents and improve the ordering of agents.

An example is shown in Fig.2 to illustrate how the heuristics work. Agent A5 has 7
values in its domain. The value of agent A1 conflicts with the values (value id) 1, 2, 4, 5
of agent A5, thus these values are removed from the available values of agent A5. The
value of agent A2 conflicts with the values 2, 3, 4, 6. The value of agent A3 conflicts
with the values 1, 3, 4. The value of agent A4 conflicts with the values 4, 6, 7 where
the value 7 is the last available value in the domain of agent A5. Thus A4 is the culprit
agent with respect to agent A5. Following the first step, agent A5 increases the counter
of agent A4, sends a BT to agent A4. Agent A4, upon receiving the BT, increases the
counter of agent A5 and increases the counter of its corresponding value.

In the second step, agent A5 determines that A1 and A2 are the PC agents, as they
are first agents who remove the values 1, 2, 3, 4, 5, 6 from its domain. Agent A3 is not a
PC agent, since its value conflicts with the values 1, 3, 4 of A5 that have been removed
previously by A1, A2. Thus, agent A5 increases the counters of A1 and A2, sends PC
messages to A1 and A2. A1 and A2, when receive the PC message, increase the counter
of A5 and also the counter of their corresponding value.

Detailed Algorithm Description

The DDBJ algorithm uses 8 types of messages as follows:

1. SUCCESS: a termination message which is broadcasted to all agents, by the last
assigned agent, when a solution has been found.

2. FAILURE: a termination message which is broadcasted to all agents, by the first
agent, when it has determined the problem has no solution.

3. ERROR: a termination message which is broadcasted to all agents when the algo-
rithm encounters error (e.g. exceeded limit of time/resources).

4. OK: a message which contains the current partial solution (CPS) composed of a
list of (variable, value) tuples and their associate T imeStamp’s. This message is
sent to the next agent according to the sending agent’s decision of ordering.

Dynamic Distributed BackJumping 77

5. FC: a message which contains a copy of OK message. This message is sent by the
assigning agent to the linked agents that have not been assigned, according to its
AgentV iew.

6. NG: a message which contains a nogood partial solution. It is sent to the linked
agents that have not been assigned, according to its AgentV iew.

7. BT: a message which contains a nogood partial solution. It is sent back to the culprit
agent (the last agent in the nogood partial solution).

8. PC: a message which contains a nogood partial solution. It is sent to potential con-
flicting agents determined by the agent when a conflict occurs.

The DDBJ algorithm is executed simultaneously on all agents in parallel. An ap-
propriate function is called depending on the type of the received message. At start, an
empty OK message is sent to the first agent for initialization.

Upon receiving an OK message, function receiveOK() is executed. It first checks
if the message is valid (line 1); otherwise, it is older than, or equally timely to, the
stored T imeStamps1 and discarded. Next, T imeStamps get updated (line 2). It then
checks whether the message’s partial solution (MPS) contains the previously deter-
mined nogood (meaning current AgentV iew.consistent = false and the MPS con-
tains AgentV iew). If it is the case, the agent simply does nothing and returns (line 3,4).
Otherwise, it updates its context by the MPS (line 6). If the update succeeds, meaning
its consistent domain of values is not empty, the agent assigns the value (line 8). Other-
wise, it backtracks to the last assigned agent (line 10).

Function receiveFC() is called when an FC message is received. The agent checks
and discards obsolete message (line 1), otherwise updates its T imeStamps (line 2). It
then checks whether the message does not contain the previously determined nogood.
If it is the case, it resets the consistency state to true (line 3,4). Whenever the consis-
tency state is true (line 5), the agent updates its context (line 6). If the update does
not succeed, it does the following: sending NG messages to linked agents that are not
assigned, sending PC messages to the determined PCAs, updating its memory of PCAs
and backjumping to the culprit agent.

When receiving an NG message, the function receiveNG() checks to see if Agent-
V iew contains the MPS. If it is the case, it removes last one or more tuples in its
AgentV iew to be the same as the received nogood, restores the values accordingly
(which are associate with those tuples) (line 2) and resets the consistency state (line 3).
Otherwise, if the message is newer than its AgentV iew, the agent updates its con-
text (line 5,6,7). If the update does not succeed, it functions similarly to function re-
ceiveFC(). In both cases, if the agent is an assigned agent, it has to reset itself unassigned
(line 11,12).

Function receivePC() simply updates the agent’s memory of PCAs and value pri-
ority. Function receiveBT(), when a BT message is received, first updates the memory
of PCAs and value priority (line 1,2). It then finds the next available value, by calling
function assignVal(). Note that it has to check if the message is still valid (meaning that
its variable is assigned and the message is not too old), (line 3,4,5), since several BT
messages can be sent simultaneously to the agent, and some have already arrived and
been processed.

1 The latter happens when the agent has already received an NG message which contains the
same time flag.

78 Viet Nguyen, Djamila Sam-Haroud, and Boi Faltings

procedure receiveOK()
1: if Msg is newer than AgentV iew then
2: update T imeStamps
3: if previously determined nogood then
4: return
5: set AgentV iew.consistent = true
6: updateDomain(MPS)
7: if success then
8: assignVal()
9: else

10: backJump(previous)
end
procedure receiveFC()
1: if Msg is newer than AgentV iew then
2: update T imeStamps
3: if not previously determined nogood then
4: set AgentV iew.consistent = true
5: if AgentV iew.consistent then
6: updateDomain(MPS)
7: if not success then
8: update PCA
9: send NG to unassigned agents; PC to agents in PCA

10: backJump(culprit)
end
procedure receiveNG()
1: if AgentV iew orderly contains Msg then
2: restoreDom()
3: set AgentV iew.consistent = false
4: else if Msg is newer than AgentV iew then
5: set AgentV iew.consistent = false
6: update T imeStamps
7: updateDomain(MPS-last)
8: if not success then
9: update PCA

10: send NG to unassigned agents; PC to agents in PCA
11: backJump(culprit)
12: if self is assigned then
13: reset to unassigned

end

Function assignVal() tries to find a next consistent value (line 1), forwards the CPS
to the next agent (line 7), otherwise it backtracks (line 9). Function backJump(Agent-
Index) performs the backjumping by resetting the agent context and sending BT mes-
sage to agent AgentIndex. Function updateDomain(MPS) simply updates its value
domain, AgentV iew with the input MPS. As soon as it finds the domain empty, the
function returns the detected nogood.

Dynamic Distributed BackJumping 79

procedure receivePC()
1: update value priority / PCA

end
procedure receiveBT()
1: update value priority / PCA
2: if self is assigned then
3: if my AgentV iew is NOT newer Msg then
4: assignVal()

end
procedure assignVal()
1: findNextVal()
2: if found a consistent value then
3: Increase T imeStamp
4: if self is last agent then
5: broadcast SUCCESS to all agents
6: else
7: send OK to next agent; FC to connected agents
8: else
9: backJump(previous)

end
procedure backJump(AgentIndex)
1: if self is first agent then
2: broadcast FAILURE to all agents
3: else
4: set AgentV iew.consistent = false
5: reset to unassigned
6: send BT to agent AgentIndex
7: update PCA

end

5 Soundness, Completeness and Termination

The argument for soundness is close to the one given in [9]. The fact that agents only
forward consistent assignments in OK messages at only one place in function assign-
Val(), line 7, implies that the receiving agents receive only consistent assignments. A
solution is reported by the last agent only in function assignVal() at line 5. At this point,
all the agents have assigned their variables, and the assignments are consistent. Thus
the algorithm is sound.

For completeness, we need to show that DDBJ is able to produce all solutions and
terminate. The algorithm only backtracks, by sending BT messages, in function back-
Jump(), which implements the graph-based backjumping. It has been shown in [10] that
graph-based backjumping only makes safe jumps. In other words, the algorithm back-
jumps to the culprit variable, and this jump does not lead to missing any solution. Sim-
ilarly in DDBJ, multiple safe jumps may be performed at the same time simultaneously
which are caused by different culprits detected by different agents. The re-assignments
of the culprit agents then happen simultaneously. However, the one with the highest

80 Viet Nguyen, Djamila Sam-Haroud, and Boi Faltings

level in the search hierarchy tree will eventually replace all others. Thus the algorithm
performs an exhaustive search and is able to produce all solutions. Hence, it is complete.

In each backtrack step, there is at least one value of a variable that is removed (line 5
in backJump()). The fact that the domains of variables are finite implies finite number
of backtracks, or BT messages, until FAILURE messages are broadcasted (line 2 in
backJump()). Similarly, each OK message (only sent in assignVal(), line 7) increases the
number of assigned variables by 1, until the last variable where SUCCESS messages
are broadcasted. Therefore, the algorithm terminates.

In DDBJ, agents do not have to store nogoods. An agent has to keep only the cur-
rent AgentV iew and the associated T imeStamp’s, which have at most n elements. In
addition, an agent also needs to maintain two priority lists of its value domain and other
agents. Thus, the algorithm’s spatial complexity is linear.

6 Experimental Results

This section gives an experimental evaluation of our algorithm DDBJ in comparison
with two other well known algorithms, the distributed asynchronous algorithm – DiDB
([7]) and the distributed synchronous algorithm – AFC ([9]). DDBJ is tested in 2 ver-
sions: one version is without the dynamic ordering heuristics, called DBJ, to measure
the performance of the semi-asynchronous backjumping procedure itself, and the other
version is the full DDBJ algorithm.

The algorithms are tested on distributed binary CSPs which are randomly generated
using the problem generator JavaCSP ([11]). The problems are generated based on 4
setting parameters:

– v – The number of variables (or number of agents),
– d – The number of values in the domain of each variable (domain size),
– c – The constraint density (which reflects the number of constraints), and
– t – The constraint tightness (which refers to the number of value pairs which are

disallowed by the constraint).

These settings are commonly used in experimental evaluation of CSP algorithms ([12,
13, 9]). The problem generator has the ability to generate only feasible problem in-
stances (having solutions). Thus, it is advantage to generate only feasible problem in-
stances for problems in transition phase which are most hardest to solve and so it is
easy to highlight differences in algorithm performance ([4]). Note that the problem in-
stances are generated with the setting parameters applied globally, not by interleaving
of independent subproblems.

We recall the distinction between Distributed Systems and Distributed Computing
([4]). The latter is belong to the research field of High Performance Computing, where
the problem is to divide/distribute, in a efficient way, some computation load onto sev-
eral connected (or distributed) computing machines. The efficiency is then defined as
speedup/N where N is the number of distributed machines ([14]).

In this work, we are concerning the former case, Distributed Systems, where the
problems in question have their distributed characteristics in nature: they are spread
over a number of distributed agents. As in [4, 7, 9, 6], we use the following measures as
the criteria for evaluation:

Dynamic Distributed BackJumping 81

– Number of cycles (or running time): to estimate the algorithm concurrency / asyn-
chrony, as used in [3].

– Number of messages: to estimate the overhead of the algorithm affecting on the
distributed environment, where the cost of sending messages is usually considered
being more expensive than local computation of agents ([9]).

– Number of constraint checks: to evaluate computational efforts done locally.
– Number of value assignments: to represent the cost of value changes committed

that may be high in some applications.

The first two measures are the most important factors in measuring the efficiency
of distributed algorithms. The number of cycles indicates the running time of an algo-
rithm. More importantly, it shows how much parallelism is exploited in asynchronous
algorithms compared to synchronous ones. The notion of “concurrent checks” is dis-
cussed in [15]. In this work, we make an assumption that the constraints are simple
so that an agent is able to process incoming messages, perform necessary constraint
checks and send out messages in one clock cycle ([3]). Thus, the ratio “N.Constraint
checks/N.Cycles” gives a good estimate of the average number of concurrent constraint
checks. As argued in [16], synchronous distributed algorithms usually have better ef-
ficiency than asynchronous ones (in terms of overheads, redundant efforts, etc.), but
asynchronous algorithms can exploit concurrency, thus resulting in better running time
(or less number of running cycles).

The messages are set up to be delivered to destination not necessarily in the order in
which they were sent, except for the algorithm DiDB where it requires the messages are
delivered in order. The number of messages is an important measure for DisCSP algo-
rithms, since in distributed environment, sending messages to other distributed agents
is considered expensive ([4]).

To simulate a distributed environment and asynchronous execution, we use a dis-
crete event simulator. We have a global discrete clock counting in cycles to simulate a
real time clock. At each cycle, all agents read the incoming messages, process the com-
putation and send out messages to other agents. If there is no incoming message, an
agent simply sits idle. We recall the assumption that an agent is able to process incom-
ing messages, perform necessary constraint checks and send out messages in one clock
cycle. The algorithm is executed simultaneously in parallel on all agents. All agents
terminate when an termination message is broadcasted and the algorithm finishes. The
algorithm’s running time is counted as the number of global clock cycles. Furthermore,
to simulate the real distributed environment as close as possible, we set up the link
channels between agents such that the delivery time is randomly generated between 1
and the total number of agents, which best reflects the effect of the size of the con-
straint network. Because the concurrency of computation of asynchronous algorithms
is difficult to see from other measurements (number of constraint checks, number of
messages), this setting helps to differentiate asynchronous and synchronous (or sequen-
tial) execution schema. The same argument for comparing algorithms is also pointed
out in [15].

Because of limited space, the results of 2 test sets are presented. The first test set
includes problems with the number of variables n = 15, the variable domain d = 15,
the constraint density probability c = 0.5 and the constraint tightness varying from 0.1

82 Viet Nguyen, Djamila Sam-Haroud, and Boi Faltings

0 0.2 0.4 0.6 0.8 1
10

1

10
2

10
3

10
4

10
5

10
6

N. Cycles

tightness

AFC
DiDB
DBJ
DDBJ

0 0.2 0.4 0.6 0.8 1
10

2

10
3

10
4

10
5

10
6

10
7

N. Cons Checks

tightness

AFC
DiDB
DBJ
DDBJ

0 0.2 0.4 0.6 0.8 1
10

1

10
2

10
3

10
4

10
5

10
6

10
7

N. Messages

tightness

AFC
DiDB
DBJ
DDBJ

0 0.2 0.4 0.6 0.8 1
10

1

10
2

10
3

10
4

10
5

10
6

10
7

N. Assignments

tightness

AFC
DiDB
DBJ
DDBJ

Fig. 3. Results (in log10 scale) for N.vars v=15, domain d=15, density c=0.5. At transition phase
when tightness t = 0.5 − 0.7, DiDB solved 50% − 80%, AFC, DBJ and DDBJ solved 100% of
100 generated instances.

to 0.9 in 0.1 steps. The results in log10 scale are shown in Figure 3. Each plot point
is the average of results taken from 100 randomly generated instances. An algorithm is
stopped when the number of running cycle reaches a limit of 10, 000, 000 cycles or the
number of messages sent in one cycle exceeds 100, 000.

In term of running time, DBJ is about 2-4 times faster than AFC at transition phase.
The difference indicates the concurrency effect of the asynchronous backward phase
of DBJ. DiDB, because of its fully asynchronous nature, is better than DBJ and AFC.
However, when combined with the dynamic ordering heuristics, DDBJ is the best algo-
rithm among the four for most cases.

On number of messages, DDBJ is better than the other three algorithms by a factor
of one order approximately. The only drawback is that the message OK of DDBJ (and
AFC, DBJ) is longer than that of DiDB. However, since the number of elements in
a message is at most equal to the number of variables n and each element contains
agent id, value id and its associate T imestamp, that all can be represented by 3 integer
numbers, the size of a message is not more than 3n integer numbers.

In term of computational performance, DDBJ outperforms both algorithms DiDB
and AFC by a factor of 5 to 100 on hard instances, where DBJ comes next. This can be
explained by the fact that by combining good value/variable ordering heuristics and

Dynamic Distributed BackJumping 83

DDBJ DBJ AFC
10^4

10^5

10^6

10^7

10^8
v20 − d15 − c0.5 − t0.45

100%

100%
98%

DDBJ DBJ AFC
10^4

10^5

10^6

10^7

10^8
v30 − d10 − c0.2 − t0.55

100%

90%
84%

DDBJ DBJ AFC
10^4

10^5

10^6

10^7

10^8

10^9
v30 − d10 − c0.3 − t0.4

100%

78%
54%

DDBJ DBJ AFC
10^4

10^5

10^6

10^7

10^8

10^9
v40 − d15 − c0.3 − t0.3

100%

52%
40%

Cycles
C.Checks
Mesg
V.Asgn

Cycles
C.Checks
Mesg
V.Asgn

Cycles
C.Checks
Mesg
V.Asgn

Cycles
C.Checks
Mesg
V.Asgn

Fig. 4. Results (in log10 scale) of feasible, high dimension problems. The percentages represent
the number of problems solved within a time limit.
a) N.vars v=20, domain d=15, density c=0.5, tightness t=0.45
b) N.vars v=30, domain d=10, density c=0.2, tightness t=0.55
c) N.vars v=30, domain d=10, density c=0.3, tightness t=0.4
d) N.vars v=40, domain d=15, density c=0.2, tightness t=0.4.

exploiting concurrency, it also helps to increase the algorithm’s computational effi-
ciency and reduces the number of messages. Note that the synchronous algorithm AFC
always performs better than the fully asynchronous algorithm DiDB, that it agrees with
the result obtained in [9].

In more details, at transition phase where problems are hardest to solve (constraint
tightness is between 0.5 and 0.7), DiDB is only able to solve 50% − 80% of the gen-
erated problem instances: we stop the algorithm when the number of messages sent in
one cycle exceeds the limit of 100, 000 messages, since most of the time and memory
resources are consumed by processing duplicated messages. This message duplication
problem arises significantly when the messages are delivered with some random delay.
The other three algorithms are able to solve all the problems within the limits of running
cycles and messages.

In the second test set, we evaluate the algorithms by 4 feasible, high dimension
problems, with the number of variables equals 20, 30, 30 and 40, respectively. The
constraint tightness is set to a value close to 0.5 so that the problems are in the transi-

84 Viet Nguyen, Djamila Sam-Haroud, and Boi Faltings

tion phase. The limit of number of cycles is now set to 100, 000, 000. We exclude DiDB
because of its limited capacity of solving high dimension problems: the number of mes-
sages explodes exponentially so that after a few hundred running cycles, the number of
messages soon exceeds the limit of available resource. The results in log10 scale are
shown in Figure 4. The percentages show the numbers of problems solved by the algo-
rithms. Each subgraph shows the median value of the results of 50 generated instances.
The reason of taking the median value instead of the mean value is that in the transition
phase, the variance of the results is too high, thus the median value indicates better the
result average.

It is clear that the semi-asynchronous algorithm DBJ always performs better than
AFC by a factor of 2 or more. It shows the effect of the asynchronous backjumping
phase on the algorithm efficiency. DDBJ outperforms both the others by a factor of
one to two orders for all measures. On the number of problems solved, DDBJ is able to
solve all the problem instances for the 4 cases within the time limit, where the other two
algorithms can not. This measure again confirms the high efficiency of the heuristics
used in DDBJ. For the last two problems where the numbers of variables are 30 and 40,
AFC is able to solve only 54% and 40% of the instances. The performance measures
of AFC are at least one order behind those of DDBJ. These factors will be larger if we
increase the running time limit for AFC to solve more instances.

One can also notice that as the number of variables increases, the performance dif-
ference between DDBJ and the other algorithms increases. When v=15, DDBJ is faster
by about one order of magnitude, when v=30,40, DDBJ outperforms the others by about
two orders of magnitude on number of running cycles and number of messages.

7 Conclusion

A new complete, distributed, semi-asynchronous algorithm, DDBJ, is presented. The
algorithm adopts a sequentially assigning procedure, an asynchronous forward check-
ing scheme in its advancing phase and an asynchronous graph-based safe-backjumping
scheme in its backjumping phase. The sequentiality of variable assignment enables
DDBJ to integrate the powerful heuristics of dynamic value and variable ordering and
still easily to control the algorithm completeness. Experimental results show that the
DDBJ algorithm outperforms the DiDB and the AFC algorithms by a factor of one to
two orders of magnitude on hard instances of randomly generated DisCSPs, both on
concurrent running time, number of messages and on other measures of number of con-
straint checks, number of variable assignments.

Acknowledgments

We would like to thank Prof. Amnon Meisels for his visiting presentation on the AFC
algorithm. We also thank Arnold Maestre, Dr. Christian Bessière for their helpful ex-
plication of the DiDB algorithm. Many thanks to Dr. Bart Craenen for his problem
generator JavaCSP. This work was performed at the Artificial Intelligence Laboratory,
Ecole Polytechnique Fédérale de Lausanne and was sponsored by project COCONUT
under contract number IST-2000-26063.

Dynamic Distributed BackJumping 85

References

1. Yokoo, M., Hirayama, K.: Algorithms for Distributed Constraint Satisfaction: A Review. In:
Proceedings of Autonomous Agents and Multi-Agent Systems. (2000)

2. Dechter, R.: Enhancement schemes for constraint processing: Backjumping, learning and
cutset decomposition. Artificial Intelligence 41(3) (1990) 273–312

3. Yokoo, M., Durfee, E., Ishida, T.: Distributed constraint satisfaction for formalizing distrib-
uted problem solving. In: Proceedings DCS. (1992)

4. Yokoo, M.: Distributed Constraint Satisfaction. Springer-Verlag (2001)
5. Ginsberg, M.: Dynamic Backtracking. Journal of Artificial Intelligence Research 1 (1993)

25–46
6. Hamadi, Y.: Interleaved backtracking in distributed constraint networks. International Jour-

nal on Artificial Intelligence Tools 11 (2002) 167–188
7. Bessière, C., Maestre, A., Meseguer, P.: Distributed Dynamic Backtracking. In: Proceedings

of the IJCAI’01 workshop on Distributed Constraint Reasoning. (2001)
8. Silaghi, M., Sam-Haroud, D., Faltings, B.: Asynchronous Search with Aggregations. In:

Proceedings AAAI’00. (2000)
9. Meisels, A., Zivan, R.: Asynchronous Forward-checking on DisCSPs. In: Proceedings of

the Workshop on Distributed Constraints (DCR-03), Acapulco, August 2003. (2003)
10. Dechter, R., Frost, D.: Backtracking algorithms for constraint satisfaction problems – a

tutorial survey. Technical report, University of California, Irvine (1998)
11. Craenen, B.: JavaCsp package. http://www.xs4all.nl/˜bcraenen/JavaCsp/ (2003)
12. Prosser, P.: Binary constraint satisfaction problems: some are harder than others. In: Pro-

ceedings of the 11th European Conference on Artificial Intelligence – ECAI’94. (1994)
13. Bessiere, C.: Random Uniform CSP Generators.

http://www.xs4all.nl/˜bessiere/generator.html (1996)
14. Dowd, K., Severance, C.: High Performance Computing. Second edn. O’Reilly & Associates

(1998)
15. Meisels, A., Kaplansky, E., Razgon, I., Zivan, R.: Comparing performance of distributed

constraints processing algorithms. In: Proceedings of the Workshop on Distributed Con-
straint Reasoning, in AAMAS-2002. (2002)

16. Barbosa, V.C.: An Introduction to Distributed Algorithms. The MIT Press (1996)

A Value Ordering Heuristic for Local Search
in Distributed Resource Allocation

Adrian Petcu and Boi Faltings

Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
{adrian.petcu,boi.faltings}@epfl.ch

http://liawww.epfl.ch/

Abstract. In this paper we develop a localized value-ordering heuristic for dis-
tributed resource allocation problems. We show how this value ordering heuristics
can be used to achieve desirable properties (increased effectiveness, or better al-
locations). The specific distributed resource allocation problem that we consider
is sensor allocation in sensor networks, and the algorithmic skeleton that we use
to experiment this heuristic is the distributed breakout algorithm.
We compare this technique with the standard DBA and with another value-or-
dering heuristic [10] and see from the experimental results that it significantly
outperforms both of them in terms of the number of cycles required to solve
the problem (and therefore improvements in terms of communication and time
requirements), especially when the problems are difficult. The resulting algorithm
is also able to solve a higher percentage of the test problems.
We show that a simple variation of this technique exhibits an interesting com-
petition behavior that could be used to achieve higher quality allocations of the
resource pool. Moreover, combinations of the two methods are possible, leading
to interesting results.
Finally, we note that this heuristic is domain, but not algorithm specific (mean-
ing that it could most likely give good results in conjunction with other DisCSP
algorithms as well).

Content Areas: constraint satisfaction, distributed AI, problem solving

1 Introduction

Distributed Constraint Satisfaction Problems (DisCSP from now on) are a very pow-
erful paradigm applicable for a wide range of coordination and problem solving tasks
in distributed artificial intelligence. An important subclass of these problems is the re-
source allocation problems, which we consider in this paper.

There is a number of distributed algorithms that were developed for this kind of
problems [13] and [12] for instance. One of these, the Distributed Breakout Algorithm
received quite some interest (for example [14]) because of a number of interesting prop-
erties that this algorithm exhibits (relatively simple, efficient, low overhead, linear mem-
ory requirements, good anytime characteristics).

We chose this algorithm as a basis for our work, and as a testbed we considered the
sensor allocation problem described in [5, 1]. With this setup as a starting point, we then
studied the effects of different search strategies on the performance of the algorithm.

B. Faltings et al. (Eds.): CSCLP 2004, LNAI 3419, pp. 86–97, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Value Ordering Heuristic for Local Search in Distributed Resource Allocation 87

It has been shown [10] that the order in which the agents evaluate the values from
their local domains plays an important role in the evolution of the algorithm towards a
solution.

Our results show that by using the domain information available from their neigh-
bors, the agents can develop search strategies that avoid resource conflicts with high
probability, therefore reaching consistent assignments faster.

We see from the experimental results how one such local value-ordering technique
can bring about significant improvements in terms of the number of cycles required to
solve the problem (and therefore improvements in terms of communication and time
requirements), especially when the problems are very difficult. The resulting algorithm
is also able to solve a higher percentage of the test problems.

Moreover, a simple variation of this technique exhibits an interesting behavior that
could be used to achieve higher quality allocations of the resource pool.

2 Problem Description

The distributed sensor network problem formalized in [5, 1] consists of:

– a sensor field composed of n sensors: S = {s1, s2, ..., sn}
– m targets that need to be tracked: T = {t1, t2, ..., tm}

Each sensor has a “range” parameter that expresses the maximum distance that it can
cover; in order to successfully track a target, 3 sensors have to be assigned to that
target (this is a requirement of the real sensor allocation problem: 3 sensors have to be
allocated to each target in order to be able to do triangulation based on the telemetry
data coming from those 3 sensors)

However, some restrictions apply:

– the sensors in the field can communicate among themselves, but not necessarily
every sensor with every other sensor (the sensor connectivity graph is not fully
connected). The 3 sensors tracking a given target must be able to communicate
among themselves;

– any one-sensor can only track one target at a time;

2.1 Formalization

We can formalize the problem as a DisCSP assigning one agent for each target: the
variables are the required sensors (three variables per agent), and the values of each
variable are the sensors that can track that target (are within range).

This is a fairly general model, with multiple variables per agent and both inter and
intra agent constraints, and has low inter-agent communication requirements (minimiz-
ing communication is in fact one of the goals in many real world applications). We will
therefore use the terms “agent” and “target” interchangeably for the rest of the paper.

So, let’s assume that we have one agent Ai for each target Ti to be tracked. This
agent would then have 3 variables to control: Ai(x1), Ai(x2), Ai(x3); each of them is
one sensor that has to be assigned to track this target. The domain of all the variables
for one agent is identical (this is because sensors can be assigned to a target from the

88 Adrian Petcu and Boi Faltings

same sensor set, namely the set of sensors that can actually ”see” the respective target).
However, this is a very particular characteristic of the sensor network problem, and we
did not make this assumption in our implementation in order to maintain generality.

In this representation of the problem, we have two types of constraints: inter-agent
constraints, and intra-agent constraints.

Intra-agent constraints – the constraints within one agent:

– no two variables can be assigned the same value (one agent must have three different
sensors tracking it)

– there must be a communication link between every two sensors that are assigned to
each agent

Inter-agent constraints – the constraints between agents:

– no two variables from any two agents can be assigned the same value (one sensor
can track a single target at a given time)

It is interesting to note that all constraints in this problem (except for the “visibility”
ones) are constraints of mutual exclusion (typical in resource allocation problems).

3 Related Work

The idea of trying out values for the variables of a CSP in different orders, established
based on various criteria, has been present in the AI literature for quite a while – e.g.
[7, 8, 4, 11, 10, 6].

It has been shown that choosing the values of the variables of a CSP in an informed
manner can produce significant improvements in the evolution of the search towards a
solution, compared to choosing them in an arbitrary order.

Most of the existing techniques in this area are geared towards centralized mech-
anisms (e.g. [4]), where it is possible to achieve a global view of the current state of
the problem, and establish the value-ordering based on this information. However, in a
distributed setting where we perform local search, it is impossible to work under these
assumptions; whatever decisions the agents may take as to the order in which they will
try out their values, they must only be based on local information.

A further classification of these methods can be made into static and dynamic w.r.t.
to when the ordering of the values is done (only in the beginning, or throughout the
whole execution of the algorithm).

Dynamic ordering could in principle be expected to perform better than the static
one, since it allows for more informed decisions; however, it also entails a greater run-
time overhead. For example, in [10] two value-ordering heuristics are presented: a static
one (NI-DBA), and a dynamic one (NPI-DBA). The authors observe that NI-DBA does
not bring significant performance improvements in dense problems, however, NPI-DBA
does. Therefore, we chose to compare our algorithm with NPI-DBA. It should be noted
that NPI-DBA is a general-purpose heuristic (works for all types of DisCSP, not only
for resource allocation).

A Value Ordering Heuristic for Local Search in Distributed Resource Allocation 89

4 Algorithms

4.1 Distributed Breakout Algorithm

The Distributed Breakout Algorithm is in fact an extension of the original Breakout
Algorithm for solving CSPs in a centralized fashion [9]. This algorithm is a local search
method, with an innovative technique for escaping from local minima: the constraints
have weights, and the weights are dynamically increased in order to force the agents to
adjust their values while in a condition of local minima.

In the distributed version, agents use ok? and improve messages for exchanging their
local information: an ok? message is used to send the current variable value, and an im-
prove message is used to send possible improvement in the evaluation of variable value.
When receiving ok? messages from all neighbors, an agent calculates the evaluation
of the current variable value and its possible maximal improvement and sends them to
neighbors via improve messages. When receiving improve messages from all neighbors,
an agent compares them with its own improvement. If there is a greater improvement
than its own, the agent will not do anything. If there is no possible improvement (all
are 0), the agent will increase the weights of the violated constraints. If its improve-
ment is the greatest, the agent will change its variable to the value giving the maximal
improvement.

Note that ties in improvement comparison are broken deterministically by compar-
ing agent identifiers. After this step, the agents send ok? messages to their neighbors.

When no more constraints are violated, the problem is solved.

4.2 Preamble

We assume that the agents representing the targets all know the details of the sensor
field: number of sensors, their positions and ranges.

We call two agents “neighbors” if they share a constraint. In all distributed algo-
rithms it’s necessary for each node to be able to identify its neighbors. In some cases
this information is considered to be given at startup (for instance from a configuration
file), and in others it is learnt at runtime (either in a “pre-processing” step, or progres-
sively, as the algorithm runs)

In our case, we have an initial “pre-processing/discovery” phase (before we actually
start DB):

– each agent determines the set of sensors that can track it (based on its coordinates,
and on sensor ranges); this set will be the domain of the three local variables

– each agent sends to all his neighbors the coordinates of its target (this information
is sufficient to determine the neighboring)

– upon receiving a target information from another agent, each agent determines if it
has any common sensors with the respective target:
• if so, then the agent that sent this information will be kept as a neighbor, and

there will be 9 constraints of mutual exclusion between the two agents (there
are 9 possible combinations of variables, and all of them have to be assigned
different values)

• if not, then the agent that sent this information will be removed from the neigh-
bors list, and there will be no other interaction with that agent during the exe-
cution of the algorithm

90 Adrian Petcu and Boi Faltings

– each agent sends its domain to its neighbors
– alternatively, the first step (target broadcast) could be omitted, and the second (do-

main broadcast) extended to all the agents: based on the domain information it is
also possible to determine the neighboring

4.3 Standard Distributed Breakout Applied

Here we will present the standard DBA applied to our problem, which will be then used
as a skeleton on which we build our improvements. Each agent follows Algorithm 1.1.

The differences between this version of DBA and the standard one are in the initial-
ization phase(presented in Algorithm 1.1). There are also some changes in the send*
and received* procedures made to accommodate multiple local variables, as the stan-
dard DBA allows only one variable per agent. These changes basically amount to send-
ing and receiving the neighbors’ assignments as tuples (like Xi =< sj , sk, sl >), but
they are pretty straightforward, and we don’t list them here because of lack of space.

Algorithm 1.1. Standard DBA applied to sensor networks.

procedure initialize;
begin

load the sensor field ;
determine sensors “within range” → local domains;
broadcast domain to all agents ;
establish neighborhood based on incoming domains;
initialize local values;
go to standard send values from DBA;

end
Following are the rest of the standard DBA procedures:
procedure send values;
begin

if my improvement is best then switch value ;
if local minima then increase weights ;
send local values to neighbors

end
procedure send improvements;
begin

compute maximal improvement;
send max improve, curr eval and curr val to neighbors

end
procedure received values;
begin

add received values to agent view;
if last message received then send improvements ;

end
procedure received improvements;
begin

record improvement;
if last improvement then go to send values ;

end

A Value Ordering Heuristic for Local Search in Distributed Resource Allocation 91

4.4 DBA-VO

In the standard version of the DBA, in the initialization phase, each agent randomly
assigns values to its variables, and subsequently tries to assign to its variables the first
values that produce a conflict reduction. The problem with this approach is that it does
not take into account the fact that the initial values that the variables take can actually
be very likely to cause a large number of conflicts, and that later on, a large number of
cycles would be required to repair those conflicts.

The idea of DBA-VO is that if we take into account the number of times each
resource (variable value, in our case) appears in the domain of the neighbors, and then
try to assign each variable a value that is the least likely to cause a conflict, then it is
possible that we start with an already very good assignment, that would later on require
much less effort to fix. Subsequently, while trying to repair the possible conflicts, the
agents would pick for their variables the values that appear least in the domains of the
neighboring variables, thus reducing the likelihood that a conflict would occur in the
future.

Example: let’s consider the situation from Figure 1.
We see that there is a sensor Sx which is common among all the 4 targets. An

uninformed assignment might look like the one in the figure, thus creating 5 conflicts
(between all the agents over Sx, and another one between T1 and T3). Resolving these
conflicts would then require 4 synchronized steps for T1, T2, T3 and again T3.

However, if the agents would have observed the fact that Sx is a highly demanded
resource and therefore avoided trying to acquire it, they would not have gotten in this
situation in the first place. Specifically, T1 could have used St, T2 − Sz, T3 − Su, and
T4 − Sy .

The information required to make these decisions is available immediately after the
initialization phase, and remains valid throughout the whole execution of the algorithm.

Fig. 1. Problem example.

92 Adrian Petcu and Boi Faltings

The process is as follows:

– during the preprocessing phase, every time a new domain comes in, each agent
checks to see which values from the local domain are also in the domain of the
sending agent. For all such values, increase a counter.

– After the last domain comes in, sort the values from the local domain in the in-
creasing order of the counters. Initialize the local variables with first values from
the local domains.

– Afterwards, during the execution of the algorithm, every time we have a constraint
violation and we have to try to find another value for the respective variable, we
search for the best improving value, in the (now sorted) local domain, and pick
that value, knowing that it will be likely to interfere as little as possible with the
neighbors.

Intuitively, the heuristic is similar to a “non-competing contract” – agents avoid de-
manding a resource that they know it’s likely to be busy anyway. Formally, the changes
to the standard algorithm are described in Algorithm 1.2. We can easily see that all the
overhead that DBA-VO has in addition to Std-DBA is basically the sorting of the do-
main after all the neighboring has been established (which is a one-time process, and
not really expensive: O(d × log d))

4.5 DBA-VOi

In this section we present a small variation of the previous algorithm. Namely, the
heuristic works the same in as far as the domain counters are concerned; however, based
on these counters, the domains of the local variables are sorted in the inverse order: the
most requested ones first.

The modifications made to Algorithm 1.2 are presented in Algorithm 1.3.
The interesting effect that can be noticed after introducing this modification, is that

all agents try to acquire the most “popular” resources (the ones that have the highest
“demand” counters associated with them). This tendency is two-fold: first, as a result
of the initialization (all agents try in the first step to acquire those resources), and sec-
ond, during the subsequent conflict-repairing rounds, the agents would try to propose
improvement values but again, giving preference to the most “popular” resources.

Normally, one cannot expect a gain in the running time of the algorithm when using
this heuristic, exactly because of the “competition effect” described above. However,
this heuristic is interesting nevertheless because it almost guarantees that a “special”
subset of the available resources will be part of the final assignment. This might be
important in a setting where we have for instance resources of varying quality, and we
would always like to obtain as a final solution an assignment where all the best resources
are in use. By simply constraining the best resources by as many consumers as possible
and using this heuristic, we are then sure to obtain a final solution that respects this
criteria.

4.6 Discussion

It is possible to combine the two heuristics in many ways, depending on the require-
ments of the domain.

A Value Ordering Heuristic for Local Search in Distributed Resource Allocation 93

Algorithm 1.2. DBA-VO.

procedure initialize
begin

foreach local variable xi do
initialize the vector dom cnt(xi) with 0;

endforeach
end
procedure received domain(dom)
begin

foreach value vi in received domain do
foreach local variable xi do

if vi ∈ domain(xi) then dom cnt(xi, vi) ++ ;

endforeach
endforeach
if dom is last domain to receive then go to initialize local values ;

end
procedure initialize local values
begin

sort values in dom(xi) in the ascending order of dom cnt(xi);
initialize local variables with the first values in their domains;
go to standard send values from DBA;

end
procedure send improvements
in standard DBA there is a step “find improvement”. we redefine this step as follows:
procedure compute improvements
begin

find local value giving best improvement; the search is done in the ascending order of
dom cnt(xi);

end

Algorithm 1.3. DBA-VOi.

procedure initialize local values
begin

sort values in dom(xi) in the descending order of dom cnt(xi);
initialize local variables with the first values in their domains;
go to standard send values from DBA;

end
procedure send improvements
in standard DBA there is a step “find improvement”. we redefine this step as follows:
procedure compute improvements
begin

find local value giving best improvement; the search is done in the descending order of
dom cnt(xi);

end

94 Adrian Petcu and Boi Faltings

If, for instance, the final assignment is important, but we would like to avoid the
extra overhead generated by the continuous “fight” of the agents over the same set of
“popular” resources, then we could do the initialization according to the DBA-VOi (do-
mains sorted in the descending order of the domain counters), and continue the search in
the subsequent improvement steps according to the DBA-VO heuristic (domains sorted
in the ascending order of the domain counters).

Another possibility is if the time-to-solution is important, and good anytime charac-
teristics are required. In that case, we could do the inverse: the initialization according
to the DBA-VO, to start with an assignment that is as close to a solution as possible,
and continue the search with DBA-VOi to go towards a solution that uses as many
qualitative resources as possible.

We could even imagine a probabilistic combination of the two heuristics: for in-
stance, while doing the initial assignments, choose for each variable a value which
corresponds with high probability to the DBA-VO order, but with a small probability,
choose a value corresponding to the DBA-VOi order. In this way, we would end up with
a balanced initial assignment that would also have a high overall probability of making
use of the qualitative resources.

5 Evaluation

A requirement of the real sensor allocation problem is that 3 sensors have to be allocated
to each target in order to be able to do triangulation based on the telemetry data coming
from those 3 sensors. We made our evaluations with the same settings as in [10]: the
sensor field was a network of 400 sensors, and we experimented with 110 to 130 agents.
This means that in total, our experiments ran with 330 to 390 variables respectively.
Obviously, the problems were increasingly difficult, not only because the number of
agents increased, but also because the number of required sensors (3 times the number
of targets) approached the number of available sensors (total number of sensors in the
grid). This made the allocation increasingly difficult, and for the 130-targets problem
(which is very close to the maximum size possible), almost impossible.

This is well in line with [10], where the area around 130 targets was also shown to
contain the most difficult problems of this type.

For small numbers of targets, all tested algorithms performed well; the differences
start to appear only when the problems become difficult. Therefore, on the curves that
we present, we show the results only from the most interesting tests, with 110 targets
and more.

The problems were randomly generated, in such a way that they were solvable.
However, DBA being incomplete, not all of them were actually solved. We set the
maximum number of iterations that DB goes through to 50000, after which the problem
was declared unsolvable.

We logged the time spent to solve each problem, the number of cycles required, and
whether the problem was solved or not. We developed a visual interface that allows us
to monitor the solving process.

We can see what percent of the problem instances were solved by different search
strategies in Figure 2. The average number of rounds is shown in Figure 3. The average
time spent for each problem size by each method is shown in Figure 4.

A Value Ordering Heuristic for Local Search in Distributed Resource Allocation 95

Fig. 2. Percent of problems actually solved.

Fig. 3. Average number of rounds.

We define an empirical parameter “problem density” ρ as follows

ρ =
number of targets× 3

number of sensors
.

This parameter will vary with the number of targets from 0 (for 0 targets) to almost 1
(for the maximum number of targets that in this case is 133).

We can clearly see in all the curves that the methods are quite similar in performance
for smaller values of ρ, up to a point where ρ approaches 1. Figure 2 shows that there is
a steep decrease in the percentage of the problems solved by all algorithms, but DBA-
VO performs best in that area (manages to solve most of the problems), followed by
NPI-DBA (about 70%) , and standard DBA (less than half of the problems solved).

In figure 3 we see that on average, DBA-VO does less than half of the rounds of
Std-DBA, and about 25% less rounds than NPI-DBA.

96 Adrian Petcu and Boi Faltings

Fig. 4. Time spent for each problem size.

Based on these results, we can conclude that both the “informed” initialization of
the variables and the subsequent search strategy plays a role in the performance of the
algorithm.

We also recorded the time required to solve each problem by the different methods,
having in mind the fact that as little as may be, there is an overhead in DBA-VO that
standard DBA does not have. However, similar to the number of rounds, we can see in
figure 4 that this overhead pays off eventually, and we achieve better results.

Overall, we see that DBA-VO outperforms its counterparts in all the three consid-
ered measures.

6 Conclusions and Future Work

We presented a value-ordering heuristic for improving the performance of the Dis-
tributed Breakout Algorithm applied on distributed resource allocation problems.

We compared this technique with the standard DBA and with another value-ordering
heuristic [10] and saw from the experimental results that it outperforms both of them
in terms of the number of cycles required to solve the problem (and therefore improve-
ments in terms of communication and time requirements), especially for difficult prob-
lems. The resulting algorithm is also able to solve a higher percentage of the test prob-
lems.

Moreover, a simple variation of this technique exhibits an interesting behavior that
could be used to achieve higher quality allocations of the resource pool (ensuring that
a certain subset of the resources is allocated in a final assignment). Interesting combi-
nations of the two techniques are possible, giving desirable properties of the allocation
algorithm.

Further improvements could be obtained by allowing multiple simultaneous changes
of the local variables at each step, or by trying a hierarchical approach to the problem,
where certain agents are delegated as a “local authority” for solving a particularly diffi-
cult local problem.

It would be interesting to study in more detail the performance gains brought by
combinations of these techniques when the problem size increases, in terms of two

A Value Ordering Heuristic for Local Search in Distributed Resource Allocation 97

dimensions: the size of the sensor field (thus also the maximum number of targets), and
the sensor ranges (thus the size of the domains).

As future work we also plan to compare our algorithms with other distributed meth-
ods for constraint satisfaction as the focal point techniques from [2], or the distributed
stochastic search from [3].

References

1. R. Bejar, B. Krishnamachari, C. Gomes, and B. Selman. Distributed constraint satisfaction
in a wireless sensor tracking system, 2001.

2. M. Fenster, S. Kraus, and J. Rosenschein. Coordination without communication: Experimen-
tal validation of focal point techniques. In ICMAS 95, 1995.

3. S. Fitzpatrick and L. Meertens. An experimental assesment of a stochastic, anytime, decen-
tralized, soft colourer for sparse graphs. In 1st symposium on stochastic algorithms: founda-
tions and applications, pages 49–64, 2001.

4. D. Frost and R. Dechter. Look-ahead value ordering for constraint satisfaction problems. In
Proceedings of the International Joint Conference on Artificial Intelligence, IJCAI’95, pages
572–578, Montreal, Canada, 1995.

5. C. Gomes, C. Fernandez, R. Bejar, and B. Krishnamachari. Communication and computation
in discsp algorithms. In Proceedings of the Ninth International Conference on Principles and
Practice of Constraint Programming (CP’02), pages 40–45, Ithaca, NY, USA, 2002.

6. K. Kask, R. Dechter, and V. Gogate. New look-ahead schemes for constraint satisfaction. In
In The Eighth International Symposium on Artificial Intelligence and Mathematics, pages
998–1003, Detroit, MI, 2004.

7. N. Keng and D. Yun. A planning/scheduling methodology for the constrained resource prob-
lem. In Proceedings of the 11th International Joint Conference on Artificial Intelligence,
IJCAI-89, pages 998–1003, Detroit, MI, 1989.

8. S. Minton, M. D. Johnston, A. B. Philips, and P. Laird. Minimizing conflicts: A heuristic
repair method for constraint satisfaction and scheduling problems. Artificial Intelligence,
58(1-3):161–205, 1992.

9. P. Morris. The breakout method for escaping from local minima. In Proceedings of the Na-
tional Conference on Artificial Intelligence, AAAI-93, pages 40–45, Washington, DC, 1993.
AAAI Press.

10. A. Petcu and B. Faltings. Applying interchangeability techniques to the distributed breakout
algorithm. In Proceedings of the 19th International Joint Conference on Artificial Intelli-
gence, IJCAI-03, Acapulco, Mexico, 2003.

11. N. M. Sadeh and M. S. Fox. Variable and value ordering heuristics for the job shop schedul-
ing constraint satisfaction problem. Artificial Intelligence, 86(1):1–41, 1996.

12. M. Yokoo and K. Hirayama. Distributed breakout algorithm for solving distributed constraint
satisfaction problems. In V. Lesser, editor, Proceedings of the First International Conference
on Multi–Agent Systems. MIT Press, 1995.

13. M. Yokoo and K. Hirayama. Algorithms for distributed constraint satisfaction: A review.
Autonomous Agents and Multi-Agent Systems, 3(2):185–207, 2000.

14. W. Zhang and L. Wittenburg. Distributed breakout revisited. In Proceedings of the Na-
tional Conference on Artificial Intelligence, AAAI-2002, pages 352–357, Edmonton, Alberta,
Canada, 2002.

Automatically Exploiting Symmetries
in Constraint Programming

Arathi Ramani and Igor L. Markov

Department of EECS, University of Michigan,
1301 Beal Avenue, Ann Arbor, MI 48109, USA

{ramania,imarkov}@eecs.umich.edu

Abstract. We introduce a framework for studying and solving a class of CSP
formulations. The framework allows constraints to be expressed as linear and
non-linear equations, then compiles them into SAT instances via Boolean logic
circuits. While in general reduction to SAT may lead to the loss of structure, we
specifically detect several types of structure in high-level input and use them in
compilation. Linearity is preserved by the use of pseudo-Boolean (PB) constraints
in conjunction with a 0-1 ILP solver that extends common SAT-solving tech-
niques. Symmetries are detected in high-level constraints by solving the graph
automorphism problem on parse trees. Symmetry-breaking predicates are added
during compilation. Our system generalizes earlier work on symmetries in SAT
and 0-1 ILP problems. Empirical evaluation is performed on instances of the
social golfers and Hamming code generation problems. We show substantial
speedups with symmetry-breaking, especially on unsatisfiable instances. In gen-
eral, our runtimes with the specialized 0-1 ILP solver Pueblo are competitive with
results recently reported for ILOG Solver.

1 Introduction

Traditional constraint programming (CP) techniques such as generalized arc consis-
tency (GAC) are frequently the methods of choice for hard problems arising in real-
world applications. Well-known packages such as ECLiPSe [22] and ILOG Solver [27]
offer powerful environments for constraint specification and solver deployment. These
systems provide for the development of problem-specific solvers using the best avail-
able techniques for a given problem. Another option is reduction – a problem for which
no solver is available can be reduced to one for which a solver does exist.

Boolean satisfiability (SAT) is commonly used in problem reductions, since it is
well-known and many SAT solvers are available in the public domain. Unfortunately,
in most cases reduction-based methods are not competitive with CP approaches devel-
oped for a problem. While CP-based techniques can take advantage of problem-specific
bounds to retain tighter control of the search, SAT solvers cannot. This disadvantage
is mitigated to some extent by recent breakthroughs in SAT-solving. With new exact
SAT solvers such as ZChaff [19], the size and scope of application-derived instances
that can be solved has widened [20]. However, many applications do not benefit from
breakthroughs in SAT solving due to inefficiencies introduced while producing SAT en-
codings. The CNF format used for SAT instances is very restrictive, and even encoding

B. Faltings et al. (Eds.): CSCLP 2004, LNAI 3419, pp. 98–112, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Automatically Exploiting Symmetries in Constraint Programming 99

simple linear constraints can result in a blowup in size. Another cause of inefficiency
is the loss of structure during problem reductions. Examples of structure in constraints
include linearity and symmetry.

The presence of symmetries slows down search due to the existence of redundant
search paths. The work in [9] describes how symmetries are detected in a SAT in-
stance by reduction to graph automorphism and broken by adding lexicographic order-
ing constraints, called MinLex symmetry-breaking predicates (SBPs). The addition of
these SBPs accelerates SAT solvers. In [14], symmetry-breaking ordering constraints
are proposed for CSPs with matrix models. Linear “counting” constraints popular in
applications are studied in [2]. These constraints can be efficiently expressed using ILP,
where linear equations are allowed, but expressing them in CNF may be expensive. On
the other hand, generic ILP solvers such as CPLEX are sometimes not competitive with
leading-edge SAT solvers for Boolean constraints. Linearity can be preserved using 0-1
ILP, a problem closely related to SAT but with an ILP-like input format. Specialized
techniques developed for SAT can be adapted to 0-1 ILP without paying any penalty
for generality. Recently, several specialized 0-1 ILP solvers such as PBS [2], Galena [7]
and Pueblo [25] have been introduced. Symmetry-breaking techniques from [9, 1] were
extended to 0-1 ILP in [4].

This work contributes a framework for structure-aware compilation of a class of
constraint programming problems by reduction to SAT and 0-1 ILP. We generalize tech-
niques proposed in [9, 4] to detect symmetries in high-level constraints via reduction to
graph automorphism. Our system facilitates comparison of different encoding strate-
gies and SAT reductions. This is useful since recent work [28, 5, 6] has shown that the
encoding used can dramatically affect search speed. Our goals here are (1) to generalize
earlier work on the detection of structure in SAT instances so that it is applicable to a
larger class of high-level CSPs (2) to automate the task of structure-aware reduction to
SAT/0-1 ILP (3) to use this framework to study the performance of structure-aware re-
duction techniques. Unlike earlier work [9, 2], our framework detects structure in high-
level input before reduction and uses it to produce more effective encodings. Our em-
pirical results for the social golfer and Hamming code generation problems show that
breaking symmetries during reduction considerably improves the performance of both
SAT and 0-1 ILP solvers. On many instances, our runtimes are competitive with results
reported using ILOG Solver [27] in [14]. Symmetries detected by our method can be
used by any constraints solver, not just one that assumes reduction to SAT, since we
detect symmetries in high-level input. While we add SBPs during preprocessing, there
are several methods that focus on breaking declared symmetries during search [24, 12]
that can make use of the symmetries we detect.

The rest of the paper is organized as follows. Section 2 discusses background and
previous work. Section 3 explains how symmetries are detected and broken in high-
level constraints. Section 4 discusses more comprehensive symmetry-breaking, with
empirical results in Section 5. Section 6 concludes the paper. The details of compilation
to SAT and 0-1 ILP and the encodings we use are discussed in the Appendix.

100 Arathi Ramani and Igor L. Markov

2 Background and Previous Work

Boolean Satisfiability (SAT). A SAT instance consists of a set of 0-1 variables V , and
a set of clauses C, where each clause is a disjunction of literals. A literal is a variable or
its complement. The SAT problem asks to find an assignment to the variables in V that
satisfies all clauses in C, or prove that no such assignment exists.

0-1 ILP. 0-1 ILP allows a CNF formula to be augmented with Pseudo-Boolean (PB)
constraints, or linear inequalities with integer coefficients of the form: (a1x1 + a2x2 +
. . . + anxn ≤ b) where ai,b ∈ Z; ai,b �= 0; xi are Boolean literals.

CNF vs. 0-1 ILP. Recent work has shown that formulating problem instances as 0-1
ILP instead of SAT can result in faster search. Specialized 0-1 ILP solvers have been
developed in [2, 7, 25], and have been shown to perform better than both leading-edge
SAT solvers [19] and generic ILP solvers such as CPLEX on some 0-1 ILP formulas.
However, this is not always the case. For an application, there can be several reductions
to SAT, and some encodings are more difficult to solve than others. CNF encodings
for circuit layout applications in [2] contain large numbers of symmetries, increasing
their difficulty. In [28], Warners proposes an efficient encoding where a PB constraint
is replaced by a linear number of CNF clauses. In [5], a tree-based linear conversion is
proposed to translate 0-1 ILP constraints to CNF. More recently, [6] discusses a GAC-
preserving encoding, with a solver modification that results in SAT instances that are
solved faster than their 0-1 ILP counterparts. Our approach constructs a parse tree and
instantiates Boolean circuits for addition, multiplication and subtraction. Most previous
work performs reduction to SAT on a per-problem basis, but we provide a high-level
specification language in which constraints can be easily expressed and conversion to
SAT/0-1 ILP is automated for all problems. Given the impact that efficient encodings
have on search speed, our framework is designed so that different encodings can be
easily plugged in and used with our symmetry-breaking infrastructure.

Symmetry Detection and Breaking. A symmetry of a discrete object is a reversible
transformation of its components that leaves the object unchanged, e.g., permutations of
graph vertices that map edges into edges. Symmetries occurring in a SAT instance indi-
cate the presence of redundant search paths, and breaking symmetries can reduce search
time. Detection of symmetries in CNF formulas by reduction to graph automorphism
is proposed in [9]. A graph is built from a CNF formula such that there is a one-one
correspondence between symmetries of the formula and the graph. The graph automor-
phism software Nauty [16] is used to detect graph symmetries. The symmetry group
induces an equivalence relation on the set of variable assignments for a CNF formula.
Lex-leader symmetry-breaking predicates (MinLex SBPs) that allow only the lexico-
graphically smallest assignment in an equivalence class are defined in [9] . A more effi-
cient SBP construction is proposed in [3]. Symmetry detection via graph automorphism
is extended to 0-1 ILP in [4]. Our work generalizes these methods to a broader class of
problems that use integer coefficients, non-binary variables and non-linear operations.
Symmetries are detected at a higher level, eliminating the risk that some symmetries
may be obscured during reduction. In [14], the author defines high-level lexicographic
(MinLex), anti-lexicographic (anti-Lex) and multiset ordering constraints for CSPs with

Automatically Exploiting Symmetries in Constraint Programming 101

matrix models that exhibit symmetry. However, row and column symmetries must first
be identified in matrix models for individual problems and constraints designed ac-
cordingly. Our system allows symmetries to be automatically detected in any problem
instance, not just a matrix model, and used by any solver. This functionality may be
useful to methods that focus on declared symmetries during search. A modified search
procedure that performs partial symmetry-breaking for matrix models is proposed in
[24], where SBPs are specified for a stabilizer set that is a subgroup of the symmetry
group. We find generators of the symmetry group using the graph automorphism pro-
gram Saucy [10], and these generators can be used by the algorithms in [24] to compute
SBPs. Another related work is [12], which takes as input some generators of the sym-
metry group and uses them to check for dominating elements in the search tree. Since
our system automatically detects generators it may be applicable to such algorithms.
At present, we use only MinLex SBPs from [9]. We have not yet studied other types
of SBPs such as those in [14]. Symmetries in linear programming problems have also
been discussed in [17].

3 Symmetry Detection

Earlier work [9, 4] detects symmetries in SAT/0-1 ILP instances after reduction. Our
approach is to detect symmetries in the high-level specification of constraints, where
they correspond directly to symmetries of the formula and can be used by multiple
solvers. Symmetries detected in a SAT instance can only be used by SAT solvers, or
must be traced back to the original instance to understand their significance. Also, some
symmetries may be obscured during reduction. For example, counting constraints are
symmetric, but the most compact encodings for these constraints [28] use comparator
circuits which are not symmetric.

Detecting symmetries in CNF and 0-1 ILP via graph automorphism was first pro-
posed in [9]. We follow a similar approach for high-level symmetry detection. A parse
graph is built from the constraints such that there is a one-to-one correspondence be-
tween the symmetries of the constraints and the graph symmetries. We describe the
graph construction only for the arithmetic operators ‘+’, ‘-’, and ‘*’, but it can be ex-
tended to include more arithmetic or logical operators by adding more colors. An ex-
ample formula in our specification language and the corresponding graph construction
are shown in Figure 1. The formula declares two 3-bit integers x1 and x2, and the con-
straint x1

2 +x2
2 == 25. The specification language we use is described in the Appendix.

Vertex shapes in the figure indicate different colors. The figure shows the symmetry be-
tween vertices for x1 and x2.

The graph construction is outlined as follows.

Step 1. Each binary variable xi in a formula is represented by two positive and negative
literal vertices, vi and vi

′, which are given the same color. vi and vi
′ are connected by

an edge to ensure Boolean consistency. Each multi-bit variable x j is represented by a
single variable vertex v j. A unique color is associated with each bit size.

Step 2. For each constraint Ci, two vertices Ti and Ri represent the constraint type
(≤,≥,==, ! =) and RHS value respectively. A unique color is associated with each
constraint type and RHS value. The vertices Ti and Ri for a constraint Ci are connected
by an edge. Additionally, for each Ci:

102 Arathi Ramani and Igor L. Markov

Formula
Symmetry:
x1 x2

* *

+

==

>= >=

1 1

x1 x2

25
int3 x1, x2;
x1*x1 + x2*x2 == 25;
x1 >= 1;
x2 >= 1;

Fig. 1. Constraints declaration in our specification language and the corresponding parse graph.
Vertices are shaped differently to indicate different colors.

Step 2a. Variables/literals are grouped by the priority of operations in which they oc-
cur. Multiplication between variables or by coefficients has the highest priority. ‘+’, ‘-’
and ‘*’ operators have distinct colors. Each distinct coefficient value in the formula is
also given a unique color. Variables connected by a ‘*’ operator are grouped under a
single coefficient vertex that represents the product of their coefficients (if the product
is unity, this vertex is omitted). This coefficient vertex is in turn attached to a multiplica-
tion vertex. Variables/literals not involved in multiplication operations are grouped by
coefficient, with all variables having the same coefficient value connected to a common
coefficient vertex.

Step 2b. After grouping multiplicative terms, we have single variables/literals or mul-
tiplicative groups connected by ‘+’ or ‘-’ operations. Variables/groups associated with
a ‘+’ sign are connected directly to the constraint type vertex Ti (‘+’ is the default op-
eration, so there are no special vertices for it). Variables/groups associated with a ‘-’
operation are connected to a negation vertex to indicate subtraction. The negation ver-
tex is connected to the type vertex Ti.

Theorem 3.1. Assume that a colored parse graph is constructed from a given formula
of constraints as outlined above. Then, the symmetries of the constraints correspond
one-to-one to the symmetries of the graph.

Proof. We first prove that a symmetry in the constraints is a symmetry in the parse
graph. Consider a formula with a set V of formula variables and a set C of constraints.
Consider two variables, v1,v2 ∈ V , and let C1,C2 ⊂C be the sets of constraints that v1

and v2 occur in respectively. Let v1 and v2 be symmetric. Then, for every constraint c in
C1 there is a corresponding constraint in C2 that is its symmetric image.

We construct a colored parse graph G(X ,E) for the formula where X is the set
of vertices in the graph and E the set of edges. Let x1 and x2 be the vertices created
for v1 and v2 respectively, and E1 and E2 be the edges incident on x1 and x2. Assume
that x1 and x2 are not symmetric in the graph construction. For this to be true, it must
be true that the edge sets E1 and E2 are not symmetric. Without loss of generality,
assume there exists some edge e∈ E1 that does not have an image in E2. From the graph
construction rules, an edge can connect a variable vertex to one of the following: (i) a
complementary literal (ii) a constraint type vertex (for addition with unit coefficient)
(iii) a negation vertex (for subtraction with unit coefficient) (iv) a multiplication vertex
(for multiplication with unit coefficients) and (v) a coefficient vertex that is connected to

Automatically Exploiting Symmetries in Constraint Programming 103

a multiplication/negation/constraint type vertex. In the first case, assume that e connects
x1 to a complementary literal vertex, and x2 does not possess such an edge. Then, v2 is
not a binary variable, and it cannot be symmetric to v1. In the second case, e indicates the
presence of a constraint c∈C1 where v1 is added with a coefficient of 1. Since v1 and v2

are symmetric in the formula, there must be a constraint in C2 that matches c. However,
if such a constraint existed, there would be an edge representing it in E2, symmetric to
e. The same argument applies to cases (iii) and (iv). The only special case occurs in (v),
when variables are multiplied together with different coefficients. We use the product of
all coefficient values as the resulting coefficient. This reflects the fact that multiplication
is commutative, i.e. (av1)(bv2) = (ab)(v1)(v2) and (cv3)(dv2) = (cd)(v1)(v2), so if
ab = cd then the expressions are symmetric.

For the other direction, we note that symmetries in the parse graph can only exist be-
tween vertices of the same color. Additional vertices are created to represent operations,
but they can never be mapped to variable vertices. Thus, the only spurious symmetries
we need to consider are between variable vertices of the same bit size. It is clear that
the proof for the forward direction can be reversed for this case, i.e. edge sets incident
on both vertices must be symmetric and represent symmetric constraints in the formula.

�

Avoiding Abstraction Overhead. Our graph construction generalizes earlier work in
[9, 4] for CNF and 0-1 ILP formulas. Often, generalization involves paying a perfor-
mance penalty – in this case, dealing with a more expressive input format that includes
non-linear constraints can introduce additional vertices. This penalty can be avoided
by modifying the graph when special cases are detected. Consider the case where an
instance contains only 0-1 ILP constraints with no non-linear operations and only 1-
bit variables. IN this case, our construction is designed to mimic the construction in
[4], and produce exactly the same graphs. For pure CNF formulas, some modification
is required to produce graphs as compact as the specialized constructions from [9, 1].
Since there are no coefficients or RHS values, constructions in [9] and [1] use only two
types (colors) of vertices: literal and clausal. A clause with > 2 literals is represented
by a clausal vertex, connected to its literal vertices. Binary clauses are represented by
an edge between both literals. Graphs created by our system require constraint type and
RHS value vertices for each constraint. However, CNF formulas are easy to detect. A
CNF formula involves only binary variables. All coefficients are unity. Clauses can be
expressed in two ways: as the logical-or (“‖”) of literals, or as the additive constraint
that the sum of literals must be ≥ 1. These characteristics can be tested for, and graph
construction altered accordingly.

Symmetry-Breaking Predicates (SBPs). The parse graph is analyzed for symmetries
using the efficient automorphism program Saucy [10], which returns generators of the
symmetry group. We generate high-level lex-leader SBPs from the generators, and add
them as constraints to the original instance. These SBPs are also compiled into SAT. For
multi-bit variables, SBPs may be large and complex if a generator has several cycles (for
a detailed description of cycles in a generator, and the resulting predicates, see [9]). We
break only the first few (1 or 2) cycles in multiple-cycle generators for simplicity. For
binary variables, we implement the efficient linear-sized SBP construction in [3] and

104 Arathi Ramani and Igor L. Markov

add these SBPs to the CNF formula. The problems we test here all use matrix models
with binary variables. The design of efficient SBPs for multi-bit variables is a direction
for future research.

4 More Comprehensive Symmetry Breaking

This section discusses extensions to increase the system’s coverage of symmetries.

Symmetries in Associative Expressions. Many of the operators that we support, such
as ‘+’ and ‘*’ are associative, i.e. x1 + x2 + x3 = x2 + x3 + x1 and (x1 + x2) + x3 =
x1 + (x2 + x3). However, parse trees built from constraints often do not reflect this
symmetry. In parsing, language rules are recursively matched. This imposes a non-
symmetric structure on the parse tree. We avoid this non-symmetric structure by group-
ing all variables connected by an associative operation together. Symmetry in asso-
ciative operations can also be missed when nested parentheses are used. Our system
currently does not support the nesting of expressions through the ‘(’ and ‘)’ operators,
but can be easily extended to do so. Detecting symmetries in associative operations has
been addressed in the CGRASS system [11]. However, CGRASS detects symmetries
in an ad-hoc way, by keeping track of the number and type of constraints a variable
occurs in and matching these for different variables. Detection via graph automorphism
is more comprehensive, and given efficient software such as Saucy, incurs hardly any
overhead. Our method, like CGRASS, is not complete – it uses only the generators of
the symmetry group found by Saucy. For complete symmetry-breaking, the full group
would have to be reconstructed from the generators. This has been found to be very
time-consuming [9], whereas using only generators is more efficient and often just as
effective. CGRASS also undertakes simplification of constraints in other ways, which
our system does not cover.

Consider the expressions x1 + (x2 + x3) + x4 and x1 + (x2 + (x3 + x4)), which are
the same, but are evaluated differently due to parentheses. The order of evaluation im-
posed by parentheses hides the symmetry between variables, since expressions enclosed
within ‘()’ symbols are treated as separate sub-expressions. However, it is possible to
simplify high-level input so that such symmetry is preserved. We list simplification
rules for the operators ‘+’, ‘-’ and ‘*’.

Rule 1. Nested () symbols must be simplified before the outermost () operation. can
be simplified.

Rule 2. If an expression within () symbols is flanked by ‘+’ and ‘-’ operations on
the left and right sides, parentheses are unnecessary, e.g., in . . .+(x1 + x2)+ . . . the ()
operators can be ignored.

Rule 3. If an expression within () symbols is multiplied by a single term, the resulting
expression can be evaluated, e.g., x2 ∗ (x1 + x4) is written as x2 ∗ x1 + x2 ∗ x4. It is pos-
sible to simplify the parenthesized products, e.g.(x1 + x2) ∗ (x3 + x4) by implementing
multiplication rules, but this may cause a size blowup in graphs for large expressions.

Automatically Exploiting Symmetries in Constraint Programming 105

Hidden
symmetry

x + (x + x) <= 21 2 3

+

x3x2x1

Explicit
Symmetry

+

x1 +

x3x2

Fig. 2. Associative symmetry with parenthesized sub-expressions: x1 and x3 are symmetric but
the original parse tree is asymmetric.

The above list of rules can be extended further, but it already facilitates the detection
of symmetries in simple associative expressions. This is illustrated in Figure 2, where
x1 and x3 are symmetric, but the symmetry is not visible in the parse graph. With the
proposed modifications the associative symmetry is preserved. Our system already im-
plements this feature for ‘+’ and ‘-’ operations without parentheses, where we ignore
the order in which the operations occur.

Value Symmetry. We detect formula symmetries, that are determined by the occur-
rence of variables in constraints. However, value symmetries that occur between the
actual domains of variables can also be significant. Ordering constraints for declared
value symmetries are discussed in [14], and [15] describes an algorithm to detect and
break value symmetries during search. We discuss how our system may be extended to
detect value symmetry.

Value symmetry can arise from operators that control the value of a variable, e.g. the
complement operation on binary variables: a′ = 1−a. The mapping a↔ a′ is known as
a phase shift symmetry. In [1], the construction from [9] is modified to detect phase-shift
symmetries in almost all cases. For the non-binary case, such symmetries may arise in
problems with a cyclic nature, e.g., scheduling problems. Any scheduling solution for
{Monday, Tuesday, Wednesday} can often be shifted to {Tuesday, Wednesday, Thurs-
day}. Such shifts can also be described by an operator – if a variable’s domain is a cyclic
group modulo 4, we can say a′′ = (a+1)%4. Intuitively, the graph construction to rep-
resent a cyclic group of values is a cycle of vertices. However, if the domain size is > 2,
this will result in spurious symmetries if all vertices are given the same color. Each ver-
tex in the cycle must be given a different color for this construction to work. However,
this prevents the detection of symmetries between values in the domain of the same
variable. A set of constraints satisfied when a = 0 may also be satisfied when a = 2.
This type of symmetry-detection is addressed in [15]. Adapting our techniques to de-
tect such symmetries is more difficult, since it may require the enumeration of variable
and constraint values in the graph, resulting in very large and complex graphs. Another
focus of our current work is developing efficient graph constructions for this case.

5 Empirical Results

We test our system on constraint programming problems with matrix models with row
and/or column symmetries from [14]. Each problem is modeled using the constraints
described in [14] and specified in our system’s input language, followed by symmetry

106 Arathi Ramani and Igor L. Markov

detection and compilation to SAT and 0-1 ILP. SBPs are added to the CNF or ILP
instances. We use Saucy [10] to detect symmetries, ZChaff to solve SAT instances,
and the new 0-1 ILP solver Pueblo [25] to solve 0-1 ILP instances. We show results
for the balanced incomplete block design problem (BIBD), social golfer problem (SG)
and Hamming code generation (HC) problems. Results here are obtained using a Intel
Pentium processor processor at 1GHz for the SG and HC problems, and an Intel Xeon
dual processor at 2 GHz. Both systems have 1GB of RAM and run RedHat Linux 9.0.
ZChaff and Pueblo runtimes are the average of 3 starts. Timeout is set at 600 seconds.
For BIBD instances, we use the Xeon processor at 2GHz to compare our encodings
with those in [23]. For SG and HC instances, we use the 1GHz Pentium processor to
allow runtime comparisons with [14]. Symmetry-breaking ordering constraints in [14]
are implemented using ILOG Solver and tested on a 1 GHz Pentium processor running
Windows XP. We note that [14] also reports a “number of failures” metric, which is the
number of incorrect decisions made by Solver at nodes in the search tree. We do not
have access to Solver and the SAT/0-1 ILP solvers we use do not report such a statistic.
However, we use exactly the same hardware as [14] so that runtime comparisons are
fair. Since it is not possible for us to use Solver, we use results directly from [14].

Balanced Incomplete Block Design Problem (BIBD). This problem asks to find b > 0
subsets of a set V of v ≥ 2 elements such that each subset contains exactly k elements
(v > k > 0), each element appears in exactly r > 0 subsets, and each pair of elements
appears together in exactly λ > 0 subsets. An instance is expressed as (v,b,r,k,λ), and
named bibd(v,b,r,k,λ) in the results table. We use the matrix model described in
[14] (originally from [18]). We initially tested encodings with and without SBPs using
ZChaff and Pueblo on the large instances used in [14] (originally from [8]). However,
our observation on these instances was that adding MinLex SBPs actually affects per-
formance negatively for the Pueblo solver (ZChaff is unable to solve most instances
within the time limit, with or without SBPs). For satisfiable instances, this is not un-
usual and has been noted earlier in [9]. When there are several solutions, adding SBPs
may prevent some solutions from being found earlier in the search. However, this does
not explain the poor performance on unsatisfiable instances of this problem, which may
be because MinLex SBPs are not useful in this case. In [14], several types of SBPs are
tested, with anti-Lex constraints being most effective for BIBD. The anti-Lex SBPs are
the reverse of MinLex orderings, and permit different assignments than MinLex. We
can, however, use this problem to illustrate the importance of efficient encodings. SAT
encodings for the BIBD problem have been developed in [23], where the instances used

Table 1. ZChaff results and Saucy statistics for BIBD instances using our encodings and those in
[23], with and without SBPs. T/O indicates timeout at 600s. Pueblo is not tested on encodings in
[23], since they are not available as 0-1 ILP.

Symmetry Statistics Our Encoding Encoding in [23]
Instance Symm. Gen. Saucy W. SBPs W/o. SBPs W. SBPs W/o. SBPs
Name Time ZChaff Pueblo ZChaff Pueblo ZChaff ZChaff
bibd(7,7,3,3,1) 2.54e7 12 0 0.08 0 0.01 0 0.29 T/O
bibd(6,10,5,3,2) 2.61e9 14 0 0.54 0 0.03 0 54.24 T/O
bibd(7,14,6,3,2) 4.39e14 19 0.01 0.38 0.01 1.25 0.01 T/O T/O
bibd(9,12,4,3,1) 1.73e14 19 0.02 0.64 0.01 1.89 0.013 T/O T/O
bibd(8,14,7,4,3) 3.51e15 20 0.02 0.72 0.01 1.57 0 T/O T/O

Automatically Exploiting Symmetries in Constraint Programming 107

are difficult for many SAT solvers, but are solved by CP solvers in a few minutes. These
encodings are available at [13], with and without symmetry-breaking clauses from [23].
Table 1 shows a comparison of both encodings. The table shows instance parameters,
followed by Saucy statistics, ZChaff and Pueblo runtimes for our encoding, and ZChaff
runtimes for encodings from [23] with and without SBPs. Pueblo does not accept in-
stances without 0-1 ILP constraints. Both Pueblo and ZChaff solve all instances with
our encoding in a few seconds, but ZChaff times out on several instances from [23]. All
instances possess symmetries, but Saucy runtimes are negligible.

Social Golfers (SG). This problem seeks to divide g× s golfers into g groups of size
s for each of w weeks. Each golfer must play once a week. Any two golfers play in the
same group at most once. An instance is described by its parameters (g,s,w) and named
sg(g,s,w) in the results tables. We use the 3-D matrix model and instances from [14].
Instances are tested on ZChaff and Pueblo with and without SBPs.

Saucy runtimes and CNF and 0-1 ILP instances sizes with and without SBPs are
shown in Table 2. Runtimes for ZChaff, Pueblo, and Solver (from [14]1) are shown
in Table 3, with best runtimes for an instance in boldface. For this problem, adding
SBPs speeds up Pueblo considerably on unsatisfiable benchmarks. For all cases where
Pueblo is slower with SBPs, the instance is satisfiable. ZChaff is faster with SBPs for
both SAT and UNSAT cases, but is not competitive with Pueblo. All instances possess
large numbers of symmetries. Pueblo is usually competitive with Solver results from
[14] on SAT instances without the addition of SBPs. However, on UNSAT instances,
SBPs are needed to make it competitive, and are effective in doing so. For the larger
instances, Saucy runtimes are significant. This increases the overall time for our flow.
However, [14] requires SBPs to be designed and implemented separately for individual
problems. Our system is automated and generalized. Moreover, [14] reports results for
four models of SBPs: two basic models that assign values to a subset of the variables
in an instance (thus forcing assignments that satisfy constraints on the remaining vari-
ables), and MinLex and anti-Lex constraints. Here, we report the best results among all
models. Given an instance it may not be clear which model to use for best results until
several have been tried. There is no model in [14] which consistently performs well for
this problem. Our system uses only MinLex SBPs.

Hamming Code Generation (HC). This problem seeks to find b−bit code words
to code n symbols, where the Hamming distance between two symbols is at least d.
An instance is specified by the parameters (n,b,d). We use the matrix model from
[14], and report results with and without symmetry-breaking in the last four rows of
Tables 2 and 3. The instances hc(10,15,9) and hc(12, 20, 12) are unsatisfiable,
and the other two are satisfiable. Results for the first two instances are available in
[14], the last two are listed as N/A. We observe that symmetry-breaking is useful for
both SAT and UNSAT instances, with greater benefit for UNSAT instances. Adding
SBPs speeds up ZChaff in all cases, but it is not competitive with Pueblo and Solver.
Results reported from [14] are the best out of several combinations of lexicographic and
multiset-ordering SBPs. However, several of these combinations are not competitive
with our results using Pueblo with SBPs.

1 Results in [14] are on a logarithmic scale, so our numbers are not exact, but all runtimes are
rounded down for fairness.

108 Arathi Ramani and Igor L. Markov

Table 2. Saucy symmetry detection statistics and instance sizes for the social golfers and ham-
ming code generation problems, with and without SBPs. For 0-1 ILP instances, number of PB
constraints is given in addition to number of CNF clauses and variables. ‘K’ and ‘M’ in instance
sizes indicate multiples of one thousand and one million.

Saucy Stats Size with SBPs Size w/o SBPs
Instance Gen. Time CNF 0-1 ILP CNF 0-1 ILP
Params Var. Cl. Var. Cl. PB Var. Cl. Var. Cl. PB
sg(2,5,4) 16 0.02 6311 33K 1694 1361 141 6139 32K 1522 721 141
sg(2,6,4) 18 0.02 9076 48K 2418 1835 178 8868 46K 2210 1057 178
sg(2,7,4) 20 0.03 12K 65K 3270 2373 219 12041 63894 3026 1457 219
sg(2,8,5) 24 0.07 22K 125K 5320 3761 300 22K 123K 4962 2401 300
sg(3,5,4) 25 0.09 26K 155K 5645 4138 249 26K 152K 5222 2521 249
sg(3,6,4) 28 0.14 37K 221K 8072 5629 321 37K 219K 7562 3673 321
sg(3,7,4) 31 0.21 51K 299K 10K 7336 402 50K 296K 10K 5041 402
sg(4,5,4) 34 0.30 70K 430K 13K 9115 382 69K 426K 12K 6081 382
sg(4,6,5) 42 0.75 134K 837K 23K 15K 556 132K 831K 22K 11K 556
sg(4,7,4) 42 0.79 135K 829K 25K 16K 634 134K 824K 24K 12K 634
sg(4,9,4) 50 1.75 221K 1.35M 42K 25K 950 220K 1.34M 40K 20K 950
sg(5,4,3) 33 0.26 64K 394K 12K 8502 340 64K 391K 11K 5701 340
sg(5,5,4) 43 0.89 145K 911K 25K 16K 540 144K 906K 24K 12K 540
sg(5,7,4) 53 2.79 281K 1.76M 50K 30K 915 279K 1.75M 48K 23K 915
sg(5,8,3) 53 2.3 250K 1.51M 48K 29K 1050 248K 1.51M 47K 23K 1050
sg(6,4,3) 40 0.61 118K 733K 21K 14K 456 117K 729K 20K 9937 456
sg(6,5,3) 46 1.25 182K 1.13M 33K 20K 651 181K 1.12M 31K 15K 651
sg(6,6,3) 52 2.51 260K 1.61M 47K 28K 882 259K 1.60M 46K 22K 882
sg(7,5,3) 54 3.06 301K 1.89M 52K 32K 847 299K 1.88M 50K 24K 847
sg(7,5,5) 68 11.4 551K 3.55M 87K 54K 1015 547K 3.53M 84K 41K 1015
hc(10,15,9) 38 0.07 32K 206K 5842 3762 45 32K 205K 5552 2701 45
hc(10,10,5) 28 0.04 19K 122K 3892 2487 45 19K 121K 3702 1801 45
hc(10,15,8) 38 0.07 32K 206K 5842 3762 45 32K 205K 5552 2701 45
hc(12,20,12) 50 0.19 66K 426K 11K 7023 66 65K 10K 424K 10K 66

Overall, the use of linearity through 0-1 ILP and symmetries by the addition of
SBPs – improves performance considerably. For most unsatisfiable instances, the best
results are obtained using Pueblo with SBPs added. For satisfiable instances, Pueblo is
not improved by SBPs, and in some cases is actually slower. However, ZChaff benefits
from SBPs for both SAT and UNSAT instances. This may be because SBPs have greater
impact on variable orderings for Pueblo. In most cases Pueblo’s results are competitive
with results reported for Solver in [14] over a variety of symmetry-breaking ordering
constraints. For the cases where Pueblo is faster with SBPs, the average speedup over its
performance without SBPs is 83.2, not including timeouts for the no-SBP version. On
satisfiable instances, the average slowdown with SBPs is 5.6, but it is much less than that
in most cases and there are no timeouts with SBPs. Our system uses academic solvers
whose source code and/or binaries are publicly available, but runtimes are comparable
with those of Solver, a highly optimized commercial tool.

All results here use problems with matrix models, which frequently possess large
numbers of symmetries by construction. While row and column symmetries can be
detected manually in a matrix model, our system provides a way to detect and break
these symmetries automatically without having to give it any knowledge of the problem
semantics. Moreover, it is not restricted to matrix models, and may be used for problems
that are likely to have symmetry, but for which matrix models do not exist. It is also
applicable in cases where added constraints may disrupt the symmetry in matrix models,
e.g. for instances with “customized” requirements. For example, in the social golfer
problem, we can add the constraint that certain pairs of golfers must never be in the same

Automatically Exploiting Symmetries in Constraint Programming 109

group. The present matrix model has symmetry along all three dimensions – groups,
weeks and golfers. Adding pairwise constraints for specific golfers would leave only
partial symmetry between golfers, which poses more effort for manual identification of
symmetries. However, with our method added constraints can be analyzed and surviving
symmetries detected without any modification. Even if row/column symmetry between
certain rows and columns is destroyed, we can still detect symmetries that exist between
specific variables in these rows and/or columns automatically. We also hope to identify
problems that can be analyzed using our system, but for which matrix models are not
applicable.

6 Conclusion

We present an integrated framework for studying and solving a class of CSPs by reduc-
tion to SAT and 0-1 ILP. The framework provides for the specification of constraints
in a high-level language and automatic compilation into SAT. Specialized methods for
SAT have improved considerably over the last 10 years, but these improvements do
not necessarily apply to more sophisticated domains because SAT encodings are not
always possible and may introduce inefficiencies due to the loss of structure in problem
reductions. Our system automatically detects certain types of structure (linearity and
symmetries) during compilation and uses them to produce more efficient encodings.

Linearity is preserved through the use of 0-1 ILP, a comparatively more sophisti-
cated problem with specialized solvers that can use leading-edge techniques for SAT
solving. We extend earlier work on symmetry-detection in SAT and 0-1 ILP [9, 4] to
a more general class of CSPs that use non-binary variables and non-linear operations.
Symmetries are detected in high-level input by solving the graph automorphism prob-
lem on parse trees. MinLex symmetry-breaking predicates (SBPs) from [3] are added
to the resulting SAT/0-1 ILP encodings. Other work [14] has focused on symmetry-
breaking ordering constraints for known or declared symmetries in generalized CSPs,
but we detect and break symmetries automatically. Empirically, we evaluate our sys-
tem on the balanced incomplete block design (BIBD), social golfers (SG) and Ham-
ming code generation (HC) problems. We detect large numbers of symmetries in all
instances, and show that breaking symmetries produces substantial speedups for the
0-1 ILP solver Pueblo [25] on unsatisfiable instances of the SG and HC problems.
For CNF reductions, the SAT solver ZChaff [19] exhibits speedups for both satisfi-
able and unsatisfiable instances when symmetries are broken. Overall, CNF reductions
are not competitive with 0-1 ILP reductions. A somewhat surprising observation is that
on many satisfiable instances, Pueblo is slowed down by the addition of symmetry-
breaking predicates (SBPs). This may be because adding SBPs to satisfiable instances
prevents some solutions from being found by Pueblo. More effective SBPs need to be
developed for this case. Runtimes for Pueblo with SBPs added are competitive with
Solver runtimes reported in [14] on unsatisfiable instances of the SG and HC problems.
We also show that our circuit-based CNF encodings for the BIBD problem are more
efficient than those proposed in [23]. In general, our system facilitates the comparison
of different SAT encodings, since any encoding can be plugged into our framework and
automatically tested on several instances. Also, symmetries detected in high-level in-
put can be used by any constraints solver, and by methods that add SBPs for declared

110 Arathi Ramani and Igor L. Markov

symmetries [24, 12]. Our framework can be easily extended to include other types of
constraints, and to detect additional symmetry such as value symmetry discussed in
Section 4. We plan to release code in the public domain to facilitate experimentation
with different problems and encodings. At present, information on how to obtain source
code, binaries and sample input files for this project is available at [26].

Our current and future work is focused on extending our system to allow more
comprehensive coverage of symmetries. We plan to extend our compiler to allow more
operations and different types of constraints, and to support more OPL-like [21] syntax.
Another direction is the development of efficient SBPs for non-binary variables and of
symmetry-breaking constraints that are more effective on satisfiable instances.

References

1. F. A. Aloul, A. Ramani, I. L. Markov, K. A. Sakallah, “Solving Difficult SAT Instances In
The Presence of Symmetry”, IEEE Transactions on CAD, vol. 22(9), pp. 1117-1137, 2003.

2. F. A. Aloul, A. Ramani, I. L. Markov, K. A. Sakallah, “Generic ILP versus Specialized
0-1 ILP: An Update”, in Proceedings of the International Conference on Computer-Aided
Design, pp. 450-457, 2002.

3. F. A. Aloul, I. L. Markov, K. A. Sakallah, “Shatter: Efficient Symmetry-Breaking for Boolean
Satisfiability”, in Proc. Intl. Joint Conf. on AI, pp. 271-282, 2003.

4. F. A. Aloul, A. Ramani, I. L. Markov, K. A. Sakallah, “Symmetry-Breaking for Pseudo-
Boolean Formulas”, in Proceedings of the Asia-South Pacific Design Automation Confer-
ence, pp. 884-887, 2004.

5. O. Bailleux, Y. Boufkhad, “Efficient CNF Encoding of Boolean Cardinality Constraints”,
Proc. Principles and Practice of Constr. Prog., pp. 109-122, 2003.

6. O. Bailleux, Y. Boufkhad, “Full CNF Encoding: The Counting Constraints Case”, in 7th Intl.
Conf. on Theory and Applications of SAT Testing, 2004.

7. D. Chai, A. Kuehlmann, “A fast pseudo-boolean constraint solver”, in Proceedings of the
Design Automation Conference, pp.830-835, 2003.

8. C. H Colbourn, J. H. Dinitz, “The CRC Handbook of Combinatorial Designs”, CRC Press,
1996.

9. J. Crawford, M. Ginsburg, E. M. Luks, A. Roy, “Symmetry-breaking predicates for search
problems”, in Proc. of the Intl. Conf. on Principles of Knowledge Representation and Rea-
soning, pp. 148-159, 1996.

10. P. Darga, “SAUCY Man Page”, http://vlsicad.eecs.umich.edu/BK/SAUCY/
11. A.M. Frisch, I. Miguel, T. Walsh, “Cgrass: A System for Transforming Constraint Satisfac-

tion Problems”, Jt. Workshop of ERCIM/CologNet area on Constr. Solving and Constr. Logic
Prog., pp. 23-26, 2002.

12. I. P. Gent, W. Harvey, T. Kelsey, S. Linton, “Generic SBDD using Computational Group
Theory”, in Principles and Practice of Constr. Prog., pp. 333-347, 2003.

13. I. P. Gent, T. Walsh, B. Selman, CSPLib Problem Library for Constraints;
http://www.csplib.org

14. Z. Kiziltan, “Symmetry Breaking Ordering Constraints”, Doctoral Thesis, Uppsala Univer-
sity, 2004.

15. A.Lal, B. Choueiry, “Dynamic Detection and Exploitation of Value Symmetries for Non-
Binary Finite CSPs”, Workshop on Symmetry in CSPs, 2003.

16. B. McKay, “Practical Graph Isomorphism”, Congressus Numerantium, vol. 30, pp. 45-87,
1981.

Automatically Exploiting Symmetries in Constraint Programming 111

17. F. Margot, “Exploiting Orbits in Symmetric ILP”, Mathematical Programming Ser. B 98, pp.
3-21, 2003.

18. P. Meseguer and C. Torras, “Solving strategies for highly symmetric CSPs”, in Proceedings
IJCAI, pp. 400-405, 1999.

19. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik, “Chaff: Engineering an Efficient
SAT Solver”, in Proc. Design Automation Conf., pp. 530-535, 2001.

20. G. Nam, F. Aloul, K. Sakallah, R. Rutenbar, “A Comparative Study of Two Boolean Formu-
lations of FPGA Detailed Routing Constraints”, in Proc. of the Intl. Symposium on Physical
Design, pp. 222-227, 2001.

21. P. van Hentenryck, “The OPL Optimization Programming Language”, the MIT Press, 1999.
22. The ECLiPSe Team, “The ECLiPSe Constraint Logic Programming System”:

http://www.icparc.ic.ac.uk/eclipse/
23. S. D. Prestwich, “Balanced Incomplete Block Design as Satisfiability”, in 12th Irish Confer-

ence on Artificial Intelligence and Cognitive Science, 2001.
24. J. F. Puget, “Symmetry Breaking Using Stabilizers”, Principles and Practice of Constraints

Prog., pp. 585-599, 2003.
25. H. Sheini, The Pueblo solver; http://www.eecs.umich.edu/~hsheini/pueblo
26. A. Ramani and I.L. Markov, “GSymEx”: Generic Symmetry Extraction for Constraint Pro-

gramming Problems; http://vlsicad.eecs.umich.edu/BK/GSymEx/
27. ILOG Solver, http://www.ilog.com/products/solver/
28. J. P. Warners, “A Linear-Time Transformation of Linear Inequalities into Conjunctive Nor-

mal Form”, in Information Proc. Letters, vol. 68(2), pp. 63-69, 1998.

Appendix: Compilation into SAT/0-1 ILP

Below, we describe how constraints are translated into CNF and 0-1 ILP. We use a C-
like language for high-level constraint specification, and a customized parser that builds
a parse tree for the system of constraints. Compilers for SAT and 0-1 ILP walk the
parse tree and translate the constraints into CNF/0-1 ILP formulas, which are handed
to SAT/0-1 ILP solvers. Solutions are translated back into a form that is meaningful
to the original problem. The input language uses C-like syntax to declare variables and
specify constraints. Variables are specified as unsigned integers of varying bit sizes, e.g.
int1 represents a 1-bit (binary) variable, etc. The mathematical operators allowed are
addition (+), subtraction (-) and multiplication (*). Relational operators may be <=,
>=, ==, and ! = (not-equal constraint). Complement notation is allowed to express
the negative literal for a binary variable (x1′ for x1). Numeric constants are allowed as
coefficients or as the right-hand-side (RHS) value of equations. Division is not presently
supported. The compiler also does not support the use of nested parentheses or unary
negation but can be easily extended to do so. Support for more sophisticated language
constructs, e.g., those used by OPL [21], may be added in the future. An example of
constraint declaration in the input language is shown in Figure 1 in Section 3.

To compile into SAT, Boolean “circuits” are instantiated to carry out mathematical
operations. An n−bit variable is represented by n binary variables in the CNF instance
plus a sign bit (to enable subtraction with 2’s complement notation). The size of the
CNF circuits depends on the operation to be performed. Ripple-carry adders are in-
stantiated for addition operations, and subtraction is performed using 2’s complement
representation. Both adder and subtractor circuits are linear in the input size. Multipli-
cation is implemented using circuits for Booth’s algorithm which are quadratic in the

112 Arathi Ramani and Igor L. Markov

Table 3. Results for social golfers and Hamming code generation problems. Best results for a
given instance are boldfaced. T/O indicates timeout at 600s. The last column shows results from
[14]. For UNSAT instances, using Pueblo with SBPs generally performs best. For SAT instances
Pueblo is slowed down by SBPs, however ZChaff benefits from SBPs even on SAT instances. All
runtimes are in seconds. Results for the last two instances are not shown in [14], so they are listed
as N/A.

Runtime with SBPs Runtime w/o SBPs [14]
Instance ZChaff Pueblo ZChaff Pueblo Solver
Params Time Time Time Time Time
sg(2,5,4) 0.06 .003 0.12 0.01 .01
sg(2,6,4) 0.14 .006 0.15 0.01 0.1
sg(2,7,4) 0.31 0.01 0.14 0.02 5
sg(2,8,5) 1.25 0.02 0.89 0.02 30
sg(3,5,4) 2.27 0.05 T/O 7.54 0.5
sg(3,6,4) 1.63 0.09 T/O 25.7 0.4
sg(3,7,4) 7.7 0.17 120 24.8 0.5
sg(4,5,4) 11.5 0.25 T/O T/O 0.2
sg(4,6,5) T/O 0.5 T/O T/O 2
sg(4,7,4) T/O 0.62 T/O T/O 5
sg(4,9,4) T/O 1.41 T/O T/O 2.5
sg(5,4,3) 17.1 0.37 315 0.07 0.1
sg(5,5,4) 300 1.3 T/O 1.17 0.9
sg(5,7,4) T/O 1.8 T/O T/O 7
sg(5,8,3) 107 1.76 T/O T/O 0.6
sg(6,4,3) 496 0.86 T/O 0.47 0.5
sg(6,5,3) T/O 1.9 T/O 1.02 0.6
sg(6,6,3) T/O 2.57 T/O 0.1 50
sg(7,5,3) T/O 3.85 T/O 1.9 1K
sg(7,5,5) T/O 59.2 T/O 37 20
hc(10,15,9) 93.4 0.59 T/O T/O 7.2
hc(10,10,5) T/O 22.2 T/O T/O 0.4
hc(10,15,8) T/O 275 T/O 286 N/A
hc(12,20,12) T/O 2.77 T/O T/O N/A

input size. Comparison against RHS values uses a linear comparator circuit. There are
some built-in optimizations, e.g. smaller circuits for 1-bit addition and subtraction. 1-bit
multiplication uses an AND gate. Circuits with a constant as input are partially evalu-
ated. For compilation into 0-1 ILP, linearity is preserved by stating ‘+’ and ‘-’ operations
directly as 0-1 ILP constraints. Inequalities (≤,≥, ==) are also directly expressed in 0-
1 ILP, with no need for comparator circuits. Coefficients can be directly written and not
multiplied. Multiplication between variables uses CNF clauses, but multiplier outputs
can be added/subtracted as part of a linear constraint.

New Structural Decomposition Techniques
for Constraint Satisfaction Problems

Yaling Zheng and Berthe Y. Choueiry

Constraint Systems Laboratory,
University of Nebraska-Lincoln

{yzheng,choueiry}@cse.unl.edu

Abstract. We propose four new structural decomposition techniques
for Constraint Satisfaction Problems. We compare these four techniques
both theoretically and experimentally with hinge decomposition and hy-
pertree decomposition. Our experiments show that one of our techniques
offers the best trade-off between the computational cost of the decom-
position and the width of the resulting decomposition tree.

1 Introduction

Many important practical problems such as scheduling, resource allocation, and
product configuration can be modeled as a Constraint Satisfaction Problem
(CSP), which consists of a set of variables, the domains of these variables, and
a set of constraints over these variables restricting allowed combinations of val-
ues for variables. Although CSPs are in NP-complete in general, decomposition
techniques borrowed from the area of databases have been used to characterize
tractable classes of CSPs [1–4]. The basic principle is to decompose the CSP
into sub-problems that are organized in a tree structure. The subproblems are
then solved independently, and the solutions are propagated in a backtrack-free
manner along the tree [5] to yield a solution to the initial CSP, as described
by Dechter and Pearl [1]. We propose new decomposition techniques and posi-
tion them in the context of the hierarchy specified by Gottlob et al. [4], which
unifies main decomposition strategies and compares them in terms of general-
ity. The main techniques are biconnected decomposition (BICOMP) [6], hinge
decomposition (HINGE) [2, 3], tree clustering (TCLUSTER) [1], hinge decom-
position combined with tree clustering (HINGETCLUSTER) [2], and hypertree
decomposition (HYPERTREE) [7]. These techniques can be further character-
ized by their computational complexity and the width of the tree they generate
(which is the size of the largest sub-problem in the tree). Among the above
methods, HYPERTREE is the most general and yields trees with the smallest
possible width. However, it remains costly in practice even though its complexity
is polynomial [8] (see experiments in Section 8). HINGE is a more efficient but
less general strategy than HYPERTREE. In this paper, we generalize HINGE
into HINGE+, and introduce CUT as a variation of HINGE. Further, we pro-
pose a new technique, TRAVERSE, which we combine with CUT to yield a

B. Faltings et al. (Eds.): CSCLP 2004, LNAI 3419, pp. 113–127, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

114 Yaling Zheng and Berthe Y. Choueiry

new technique CaT. In summary, HINGE+ generalizes HINGE, and CaT gen-
eralizes CUT. We evaluate our new techniques theoretically and empirically on
randomly generated hypergraphs. Our experiments show that CaT provides the
best trade-off between the width of the generated tree and the computational
cost of the decomposition.

This paper is organized as follows. Section 2 reviews the preliminaries of
CSPs. Section 3 introduces HINGE+. Section 4 describes CUT, which is a vari-
ation of HINGE+. Section 5 introduces a new technique called TRAVERSE.
Section 6 combines CUT and TRAVERSE into CaT. Section 7 establishes the
formal relationships among these techniques, and also with respect to HINGE
and HYPERTREE. Section 8 demonstrates the effectiveness of CaT on randomly
generated problems. Finally, Section 9 concludes the paper.

2 Background

A CSP is defined as a tuple P = (V ,D, C), where V is a set of variables, D is a
set of value domains for the variables, and C is a set of constraints that restrict
the acceptable combination of values to variables. Every constraint Ci ∈ C is a
relation over a set Si ⊆ V of variables, and specifies the set of allowed tuples
as a subset of the Cartesian product of the domains of Si. We denote the set of
variables involved in constraint Ci by Scope(Ci), and the union of the scopes of
a set of constraints {Ci} by Var({Ci}). A solution to the CSP is an assignment
of values to all variables such that all the constraints are simultaneously satis-
fied. The CSP can be represented by its associated constraint hypergraph. The
constraint hypergraph of a CSP P = (V ,D, C) is given by H = (V ,S), where
S is a set of hyperedges corresponding to the scopes of the constraints in the
CSP. Figure 1 shows the hypergraph Hcg of a CSP with 22 variables and 16
constraints. The primal graph of a constraint hypergraph H = (V ,S) is a graph
G = (V , E), where E is a set of edges relating any 2 variables that appear in
the scope of a constraint in the CSP. Figure 2 shows the primal graph of Hcg.
Further, we say that a hypergraph is connected when its corresponding primal
graph is connected. Each connected component of the primal graph defines a
connected component of the hypergraph.

Acyclic CSPs are those CSPs whose associated constraint hypergraph is
acyclic. A constraint hypergraph H is acyclic iff its primal graph G is chordal
(i.e., every cycle of length at least 4 has an edge connecting 2 non-adjacent ver-

s5

s4

s6 s7
s8 s10

s11
s12 s13 s14

s16

s15

s3

s17
s1

s2 s9

2

1 5 6

12 13

7 8 9

14 1516

19

20

10

18

17 21

22
3 11

4

0

Fig. 1. A constraint hypergraph Hcg .

2

1 5 6

12 13

7 8 9

14 15

19

20

10

18

17 21

22
3 11

4

0

16

Fig. 2. The primal graph of Hcg.

New Structural Decomposition Techniques for Constraint Satisfaction 115

s8 s9

s10

s15

s16

s13

s7
s6
s12s11

s5
s4

s3s2
s1

s17

s14

Fig. 3. A join tree of Hcg.

tices) and conformal (i.e., there is a one-to-one mapping between each maximal
clique of the primal graph and the scope of the constraints) [9]. The constraint
hypergraph Hcg shown in Figure 1 is not acyclic.

Following [10], a join tree JT (H) for a constraint hypergraph H is a tree
whose nodes are the edges of H such that whenever the same vertex X ∈ V
appears in 2 hyperedges s1 and s2 ∈ S, then s1 and s2 are connected, and X
appears in each node on the unique path linking s1 and s2 in JT (H). In other
words, the set of nodes in which X appears includes a (connected) subtree of
JT (H). The width d of a join tree is the maximum number of hyperedges in all
the nodes of the join tree. Figure 3 shows a join tree of Hcg of width d=2. The
principle of structural decomposition techniques is to compute an equivalent join
tree for a given constraint hypergraph. Each node in this tree is a sub-problem
for which we find all solutions, then, while applying directional arc-consistency
to the join tree, we can solve the CSP in a backtrack-free manner [1, 2]. The
complexity of solving the sub-problems is O(|S|ldd log l), where l is the maximum
size of a constraint in S and d the width of the join tree [2]. Gottlob et al. [4]
defined a set of criteria for comparing decomposition methods, where C(Di, k)
is a class of CSPs for which there exists a decomposition of width ≤ k by the
decomposition method Di that can be solved in polynomial time. These criteria
are as follows (taken verbatim from [4]):

1. Generalization. D2 generalizes D1 if there exists a constant δ ≥ 0 such that,
for each level k, C(D1, k) ⊆ C(D2, k+δ) holds. In practical terms, this means
that whenever a class C of constraints is tractable according to method D1,
it is also tractable according to D2.

2. Beating. D2 beats D1 if there exists an integer k such that C(D2, k) �⊆
C(D1, m) for any m. Intuitively, this means that some classes of problems
are tractable according to D2 but not according to D1.

3. Strong Generalization. D2 strongly generalizes D1 if D2 generalizes D1 and
D2 beats D1. This means that D2 is really the more powerful method given
that, whenever D1 guarantees polynomial runtime for constraint solving,
then D2 also guarantees tractable constraint solving. However, there are
classes of constraints that can be solved in polynomial time by using D2 but
are not tractable according to D1.

4. Strongly Incomparable. D1 and D2 are strongly incomparable if both D1

beats D2 and D2 beats D1.

Figure 4 shows the hierarchy developed by Gottlob et al. [4] based on the above
comparision criteria. Whenever two decomposition methods are not related by
a directed path, they are strongly incomparable.

116 Yaling Zheng and Berthe Y. Choueiry

HYPERTREE
[Gottlob et al., 2002]

TCLUSTERHINGE
[Gyssens et al., 1994]

HYPERCUTSET
[Gottlob et al., 2000]

HINGE
[Gyssens et al., 1994]

BICOMP
[Freuder, 1985]

CUTSET
[Dechter, 1987]

*wTCLUSTER

TREEWIDTH
[Dechter & Pearl, 1989]

[Robertson & Seymour, 1986]

D1 D2 indicates that D2 is strongly more general than D 1

Fig. 4. The hierarchy of constraint tractability of [4].

3 Hinge+ Decomposition (HINGE+)

In this section, we introduce HINGE+ as an improvement of HINGE. As speci-
fied by Gyssens et al. [2], HINGE decomposes the constraint hypergraph into a
join tree where each node (called 1-hinge) is a set of hyperedges and 2 nodes that
are adjacent in the tree share exactly one hyperedge. Figure 5 shows a decompo-
sition of Hcg of Figure 1 by HINGE where d = 12. The resulting decomposition
guarantees a set of properties (i.e., inheritance, decomposition, and insepara-
bility) that they define. They also attempted to generalize their approach to
k-hinges, where a k-hinge is a node in the join tree connected to other nodes
with at most k hyperedges. However, they showed that their algorithm for 1-
hinge cannot be generalized to achieve a correct result. The width of the join
tree of Figure 5 is particularly high. We noticed that by allowing the nodes of
the tree to connect through more than 1 hyperedge (as suggested by k-hinge of
Jeavons et al. [3]), we can obtain a finer decomposition such as the one shown
in Figure 6. We introduce 3 important definitions, which we will use to define
HINGE+, our improvment on HINGE:

Definition 1. Remain-hg(F,S). Given a connected constraint hypergraph H =
(V ,S) and a set of hyperedges F ⊆ S, we define Hr = (Vr,Sr), denoted Remain-
hg(F,S), as the remaining constraint hypergraph obtained after removing F
from S. More formally: Vr = V \Var(F) and Sr =

⋃
h∈S h \Var(F).

s2
s4

s3
s5 s6

s7 s8 s9s11 s12s13 s14

s2s1
s2

s9

s9

s9

s11 s17

s9 s10

s9 s15

s9 16s

s11

Fig. 5. Applying HINGE to Hcg.

14s
s2

s1 s2 s5
s4

s2

s6

s3

s11
s13

s12

s6
s13

11s 17s
11s

s13

s8

s6
s9

s7
s9
s10

s9

s9

s15

s9

s9 s16

s9

Fig. 6. A finer decomposition than that of Figure 5.

New Structural Decomposition Techniques for Constraint Satisfaction 117

Definition 2. i-cut. Given a connected constraint hypergraph H = (V ,S) where
|S| ≥ i + 1, an i-cut of H is a set of hyperedges F such that:

1. F ⊂ S and |F | = i; and
2. Remain-hg(F , S) has at least 2 components.

Definition 3. Max-Size(F , H). Given an i-cut F of a constraint hypergraph
H = (V ,S), Max-Size(F , H) is the largest number of hyperedges in a connected
component in Remain-hg(F,H).

Given a constraint hypergraph H, HINGE continuously finds 1-cuts (connecting
1-hinges). We improve HINGE by finding 1-cuts through k-cuts, where k is a
specified maximum cut-size. The difficulty here is to choose among the i-cuts for
a given i (1< i ≤ k), as there may be more than one possible choice. We solve
this problem by choosing the i-cut that yields the minimum value of Max-Size.
Now we define the join tree resulting from HINGE+:

Definition 4. k-hinge+-tree. Given a constraint hypergraph H = (V ,S), a k-
hinge+-tree of H is a tree, T = (N, A), with nodes N and labeled arcs A, such
that:

1. For each tree node, p ⊆ S;
2. For each hyperedge h ∈ S, there exists a tree node p such that h ∈ p;
3. For 2 adjacent tree nodes p1 and p2, there exists an i-cut C (1≤ i ≤ k) such

that Var(p1) ∩ Var(p2) = Var(C); and
4. For each variable Y ∈ V, the set {p ∈ N | Y ∈ Var(p)} induces a connected

subtree of T .

Given a constraint hypergraph H and a constant number k, which is the max-
imum cut size, HINGE+ (see Algorithm 1) returns a k-hinge+-tree by finding
1-cuts through k-cuts. The worst case of the algorithm occurs when there are no
i-cuts 1≤ i ≤ (k−1). In this case, line 11 loops at most |S|k times, and each loop
can be performed in O(|V||S|) time. Therefore, the worst-case time complexity
of HINGE+ is O(|V||S|k+1). Since k is used to limit the cut size, Algorithm 1
remains polynomial. Figure 7 shows a 2-hinge+-tree for Hcg.

s1
s2

s2
s2
s3
s4

11s

11s 17s

s5

s4
s5 s12

s6
s5

s4

s11
s6
s12

s12

s6

7s

s13

s7
s13

14s
s13

s7
s8

s8
s14

s8
s9s14 s9

s9

s9 s9 s10

s9
s15

s9 s16

Fig. 7. Applying HINGE+ to Hcg with k = 2.

118 Yaling Zheng and Berthe Y. Choueiry

Input: A hypergraph H = (V,S) and a maximum cut-size k.

Output: An k-hinge+-tree T for (V,S).

1 i ← 1;
2 Scuts ← ∅;
3 Ni ← {S};
4 Mark every hyperedge in S as ‘unchosen’;
5 foreach j from 1 to k step by 1 do
6 Mark the nodes in Ni as j-non-minimal;
7 while not all nodes of Ni are marked j-minimal do
8 Choose a j-non-minimal node F in Ni;
9 j-combinations ← all combinations of j ‘unchosen’ hyperedges in F ;

10 j-cuts ← ∅;
11 foreach j-combination X ∈ j-combinations do
12 Γ ← {G ∪ X | G is a connected component in Remain-hg(X,F)};
13 if (|Γ | > 1) and (∀Cq ∈ {Scut | (Scut ∈ Scuts) and (Scut ⊆ F)},

∃Γp ∈ Γ such that Cq ⊆ Γp) then
14 j-cuts ← j-cuts ∪ {X};

end
end

15 if j-cuts �= ∅ then
16 choose a j-cut C with smallest Max-Size(j-cut, F);
17 Mark the hyperedges in C as ‘chosen’;
18 Scuts ← Scuts ∪ {C};
19 Γ ← {G ∪ C | G is a connected component in Remain-hg(C,F)};
20 Ni+1 ← (Ni \ {F}) ∪ Γ ;
21 Mark C as a j-cut of every element in Γ ;
22 Let γ: {FN1, . . . , FNq} → Γ such that ∀FNi ∩ γ(FNi) �= ∅;
23 Ai+1 ← (Ai \ {({F, F ′}, C) | ({F, F ′}, C) ∈ Ai})

∪{({γ(FN), FN}, C) | ({F, FN}, C) ∈ Ai}
∪{({Γ0, Γy}, C) | Γ0 is an arbitrary chosen element from Γ ,

Γy ∈ Γ and Γy �= Γ0};
24 Mark all the new nodes added to Ni+1 as j-non-minimal;

else
25 Mark F as j-minimal;

end
26 i ← i + 1;

end
end

27 T ← (Ni, Ai);
Algorithm 1: HINGE+.

4 Cut Decomposition (CUT)

In this section, we introduce CUT as a variation of HINGE+. The arcs incident
to every node in the equivalent join tree of a constraint hypergraph obtained by
CUT are labeled by at most 2 distinct cuts. For HINGE+, the arcs incident to
a given node in an equivalent join tree of a constraint hypergraph obtained by
HINGE+ can be labeled by more than 2 distinct cuts. For example, in the join

New Structural Decomposition Techniques for Constraint Satisfaction 119

tree of Figure 7, the arcs incident to the node {s4, s5, s6, s11, s12} are labeled
with three different cuts, namely {s4, s5}, {s6, s12}, and {s11}. The algorithm of
CUT is obtained by replacing the conditions in line 13 with the following ones:

1. |Γ | > 1;
2. For ∀Cq ∈ {Scut | (Scut ∈ Scuts) and (Scut ⊆ F)}, there exists Γp ∈ Γ such

that Cq ⊆ Γp; and
3. For every 2 sets of hyperedges Ci and Cj ∈ Scuts, if Ci �= Cj , and Ci ⊆

Γi, Cj ⊆ Γj , then Γi �= Γj .

The above conditions guarantee that no more than 2 cuts label the arcs incident
to a node in the join tree obtained by CUT. (This feature allows us to further
traverse each tree node from one cut to another cut and is exploited in Section 5.)
The complexity of CUT is the same as that of HINGE+. Figure 8 shows the result
of applying CUT (the maximum cut size k is 2) to the constraint hypergraph
Hcg shown in Figure 1.

s2

s1
s3

s2

s4

s2
s3
s4

s3
s4
s5
s11

s5
s11

s5
s6
s11
s12

s7
s12

s6

s13

s6
s12

s12 s17

s6 s12
s6

s7
s13

s7
s8
s13
s14

s8
s14 s14

s9

s8
s9

s9
s10

s15s9
s9
s9

s9 s16

Fig. 8. Applying CUT to Hcg.

5 Traverse Decomposition (TRAVERSE)

In this section, we introduce a simple sweep-like decomposition technique called
TRAVERSE. We describe two variations of TRAVERSE: TRAVERSE-I and
TRAVERSE-II. TRAVERSE-I takes a constraint hypergraph and one set of hy-
peredges in it, and ‘sweeps’ through the hypergraph from the set of hyperedges
to generate an equivalent join tree of the constraint hypergraph. TRAVERSE-II
takes a constraint hypergraph and 2 sets of hyperedges from the hypergraph and
‘sweeps’ through the constraint hypergraph from the first set of hyperedges to the
second set of hyperedges to generate an equivalent join tree of the constraint hy-
pergraph. For convenience, we first introduce the definition of Neighbors(F,S)
that will be used in Algorithm 2 and Algorithm 3.

Definition 5. Neighboring hyperedges. The neighboring hyperedges of a set of
hyperedges F in a constraint hypergraph H = (V ,S) with F ⊆ S, denoted
Neighbors(F,S), is a set given by:

{e | e ∈ F, e �⊆ F, and Var({e}) ∩Var(F) �= ∅}. (1)

Given a constraint hypergraph H = (V ,S) and a set of hyperedges F ⊆ S,
TRAVERSE-I returns a unique join tree obtained by Algorithm 2 via ‘sweep-
ing’ through the constraint hypergraph starting from the hyperedges in F . We

120 Yaling Zheng and Berthe Y. Choueiry

Input: a constraint hypergraph H = (V,S) and a set of hyperedges F ⊆ S .

Output: an equivalent join tree T for H.

1 N ← ∅; A ← ∅;
2 Mark any hyperedge e ∈ S as ‘unvisited’;
3 Fv ← {e | Var({e}) ⊆ Var(F)};
4 N ← N ∪ {Fv};
5 Fjv ← Fv;
6 Mark any hyperedge in Fjv as ‘visited’;
7 while not all hyperedges in S are ‘visited’ do
8 F ′ ← Neighbors(Fjv, the set of all ‘unvisited’ hyperedges);
9 Fv ← {e | Var(e) ⊆ Var(F ′) };

10 N ← N ∪ {Fv};
11 A ← A ∪ {(Fjv , Fv)};
12 Fjv ← Fv ;
13 Mark every hyperedge in Fjv as ‘visited’;

end
T ← (N, A); Algorithm 2: TRAVERSE-I.

denote Traverse-I(H, F) the result obtained by applying Algorithm 2 with F
on H. The loop in line 7 of Algorithm 2 executes at most |S| times, and each
execution can be performed in O(|V||S|) time. Therefore, the worst-case time
complexity of TRAVERSE-I is O(|V||S|2). Figure 9 shows the join tree com-
puted by TRAVERSE-I starting from {s1} in Hcg. Because it ‘sweeps’ through
the constraint hypergraph, TRAVERSE always computes a join tree that is a
connected chain, provided the constraint hypergraph is connected. The result of
the decomposition depends on F , the starting set of hyperedges. If we traverse
Hcg of Figure 1 starting from {s6, s9, s12}, Algorithm 2 would yield a join tree
of width d = 10. Starting from {s1}, the width is d = 3 (see Figure 9).

Our goal is to combine CUT with TRAVERSE to improve the k-hinge+-
tree computed by CUT (Section 6). To this end, we introduce TRAVERSE-II
(Algorithm 3), which allows us to sweep the constraint hypergraph between 2
cuts. TRAVERSE-II takes a constraint hypergraph and 2 sets of hyperedges,
and then sweeps through the constraint hypergraph from the first set of hyper-
edges to the second set of hyperedges to generate an equivalent join tree of this
constraint hypergraph. We denote Traverse-II(H, C1, C2) the result of apply-
ing TRAVERSE-II to H from C1 to C2. Figure 10 shows the join tree obtained
by applying TRAVERSE-II to Hcg from {s1} to {s9, s16}. The loop in line 7 of
Algorithm 3 executes at most |S| times, and each iteration can be performed in
O(|V||S|) time. Therefore, the complexity of TRAVERSE-II is O(|V||S|2).

s5 s6
s11 s12 s13

s7
s8
s14s17

s9
s10
s15

s16
s4

s3

s2
s1

Fig. 9. Applying TRAVERSE-I to Hcg

from {s1}.

s5 s6
s11 s12 s13

s7
s8
s14

s9
s10
s15

s16

s9s3
s4

s2

s17

s1

Fig. 10. Applying TRAVERSE-II to Hcg

from {s1} to {s9, s16}.

New Structural Decomposition Techniques for Constraint Satisfaction 121

Input: a constraint hypergraph H = (V,S), a set of hyperedges C1 and another
set of hyperedges C2.

Output: an equivalent join tree T for H.

1 N ← ∅; A ← ∅;
2 Mark any hyperedge e ∈ S as ‘unvisited’;
3 Fd ← {e | Var(e) ⊆ Var(C2)};
4 Fv ← {e | Var(e) ⊆ Var(C1)};
5 N ← N ∪ {Fv};
6 Mark any hyperedge in Fjv as ‘visited’;
7 while (Fv �= Fd) and (not all hyperedges in S are ‘visited’) do
8 F ′ ← Neighbors(Fjv \ Fd, the set of all ‘unvisited’ hyperedges ∪Fd);
9 Fv ← {e | Var(e) ⊆ Var(F ′)};

10 N ← N ∪ {Fv};
11 A ← A ∪ {(Fjv , Fv)};
12 Fjv ← Fv ;
13 Mark every hyperedge in Fjv as ‘visited’;

end
T ← (N, A);

Algorithm 3: TRAVERSE-II.

6 Cut-and-Traverse Decomposition (CaT)

In this section, we introduce CaT, which combines CUT with TRAVERSE.
The algorithm of CaT is given in Algorithm 4. Given a constraint hypergraph
H = (V ,S) and a maximum cut size k, Algorithm 4 first applies CUT to H
and generates a k-hinge+-tree in which the arcs incident to any tree node are
labeled with at most 2 cuts. This step can be implemented in O(|V||S|k+1)
time. Then, Algorithm 4 applies either TRAVERSE-I or TRAVERSE-II to ev-
ery tree node in the k-hinge+-tree and generates a set of sub-join trees. Finally,
the algorithm combines these sub-join trees into 1 join tree. The traverse pro-
cess can be performed in O(|V ||S|2) time. Therefore, the complexity of CaT is
O(|V||S|k+1 + |V ||S|2). Since k ≥ 1, the complexity of CaT is O(|V||S|k+1).

Note that the HYPERTREE algorithm computes an optimal hypertree of H
that has a width within a given bound d; the algorithm returns failure if no such
decomposition exists [10]. In CaT, the constant k restricts the maximum cut size
but does not restrict the width of the generated join tree. Figure 11 and Figure 12
show the equivalent join trees of Hcg computed by CaT and HYPERTREE. In
this case, the widths of the join trees obtained by CaT and HYPERTREE are
both equal to 2.

7 Characterization

In this section, we compare our 4 techniques with HINGE and HYPERTREE in
terms of the criteria proposed by Gottlob et al. [4]. Then, we integrate our results
into their hierarchy shown in Figure 4. Finally, we summarize the complexity of
all six techniques.

122 Yaling Zheng and Berthe Y. Choueiry

Input: A hypergraph H = (V,S) and a maximum cut-size k.

Output: An equivalent join tree T for H.

Cut H into a tree with tree nodes P1, . . ., Pm by CUT;
N ← ∅; A ← ∅;
foreach i from 1 to m do

switch the number of cuts labeling the arcs incident to Pi;
do

case 0
(Ni, Ai) ← Traverse-I(Pi, any hyperedge in Pi)

case 1
/* C is the only cut labeling the arc incident to Pi */
(Ni, Ai) ← Traverse-I(Pi, C)

case 2
/* C1 and C2 are the cuts labeling the arcs incident to Pi */
if the width of Traverse-II(Pi, C1, C2) ≤ the width of
Traverse-II(Pi, C2, C1) then

(Ni, Ai) ← Traverse-II(Pi, C1, C2)

else
(Ni, Ai) ← Traverse-II(Pi, C2, C1)

end

end
N ← N ∪ {Ni};
A ← A ∪ {Ai};

end
T ← (N, A);

Algorithm 4: CaT.

First, we introduce two special classes of constraint hypergraphs borrowed
from [4]: Circle(n) (see Figure 13) and book(n) (see Figure 14). These graphs are
defined as follows. For any n ≥ 3, Circle(n) is a constraint hypergraph having
n hyperedges {h1, . . . , hn} such that: hi = {Xi, Xi+1} for ∀1 ≤ i ≤ n − 1 and
hn = {Xn, X1}. For any n > 0, book(n) is a constraint hypergraph with 2n + 2
vertices and 3n + 1 hyperedges that form n squares (pages of the book) with
exactly one common edge {X, Y }. The hyperedges are defined as follows:

– b0 = {X, Y };
– b3i+1 = {X, Xi} for ∀1 ≤ i ≤ n;
– b3i+2 = {Xi, Yi} for ∀1 ≤ i ≤ n; and
– b3i+3 = {Yi, Y } for ∀1 ≤ i ≤ n.

Theorem 1. HINGE+ strongly generalizes HINGE.

Proof. (HINGE+ beats HINGE.) Consider the graph Circle(n) for some n ≥ 3.
It is easy to see that the HINGE width of Circle(n) is n, while its HINGE+ width
(with a maximum cut size of 2) is no greater than 4. Hence,

⋃
n≥3{Circle(n)}

⊆ C(HINGE+, 4), while
⋃

n≥3{Circle(n)} �⊆ C(HINGE, k) holds for every k > 0.

New Structural Decomposition Techniques for Constraint Satisfaction 123

s8 s9

s10

s15

s16

s13

s7
s6
s12s11

s5
s4

s3s2
s1

s17

s14

Fig. 11. Applying CaT to Hcg.

s3s1{0, 1, 2, 3} { , }
s3 s4{1, 4, 3, 11} { , }

s11s5{4, 5, 6, 11, 12, 13} { , }

12ss17{13, 14, 22} { , } s22s6{6, 7, 13, 14} { , }

s7 s13{7, 8, 9, 14, 15, 16}{ , }

s8 s14{9 10, 16, 17} { , }

s9 s16{10, 17, 18, 21} { , }

s9 s15{10, 17, 18, 20}{ , }

s9 s10{10, 17, 18, 19} { , }

Fig. 12. Applying HYPERTREE to Hcg.

xn

x2x1. .
. .

..
. .

.

.
...

...

Fig. 13. Circle(n).

Y1
Y2

Y4

X2

Y3

X1
X3

X4

Y

X

Fig. 14. Book(4).

Therefore, HINGE+ beats HINGE. (HINGE+ generalizes HINGE.) It is easy to
see that HINGE is a special case of HINGE+ when the maximum cut size is 1.
Thus, for ∀I ⊆ C(HINGE, k), I ⊆ C(HINGE+, k) holds. �

Theorem 2. HYPERTREE generalizes HINGE+.

Proof. It is obvious that ∀I ⊆ C(HINGE+, k), I ⊆ C(HYPERTREE, k) holds.
�

Theorem 3. CaT generalizes CUT.

Proof. The first phase of CaT is CUT. The second phase of CaT further decom-
poses each tree node of the join tree obtained by CUT. It is easy to see that
∀I ⊆ C(CUT, k), I ⊆ C(CaT, k) holds. �

Theorem 4. HYPERTREE generalizes CaT.

Proof. It is obvious that ∀I ⊆ C(CaT, k), I ⊆ C(HYPERTREE, k) holds. �

Theorem 5. HYPERTREE strongly generalizes TRAVERSE.

Proof. (HYPERTREE generalizes TRAVERSE.) It is obvious that ∀I ⊆
C(TRAVERSE, k), I ⊆ C(HYPERTREE, k) holds. (HYPERTREE beats TRA-
VERSE.) Consider the graph book(n) for some n ≥ 1, it is easy to see that
the TRAVERSE width of book(n) is greater than $n

2 %, while its HYPERTREE
width is 2. Hence,

⋃
n≥1{book(n)} ⊆ C(HYPERTREE, 2), while

⋃
n≥1{book(n)}

�⊆ C(TRAVERSE, k) for every k > 0. �

Theorem 6. HINGE and TRAVERSE are strongly incomparable.

124 Yaling Zheng and Berthe Y. Choueiry

Proof. (HINGE beats TRAVERSE.) Consider the graph book(n) for some n ≥
1, it is easy to see that the TRAVERSE width of book(n) is greater than
$n

2 %, while its HINGE width is 4. Hence,
⋃

n≥1{book(n)} ⊆ C(HINGE+, 4),
while

⋃
n≥1{book(n)} �⊆ C(HINGE, k) for every k > 0. (TRAVERSE beats

HINGE.) Consider the graph Circle(n) for some n ≥ 3. It is easy to see that
the HINGE width of Circle(n) is n while its TRAVERSE width (from an ar-
bitrary chosen hyperedge) is 2. Hence,

⋃
n≥3{Circle(n)} ⊆ C(TRAVERSE, 2),

while
⋃

n≥3{Circle(n)} �⊆ C(HINGE, k) holds for every k > 0. Therefore, TRA-
VERSE beats HINGE. �

Theorem 7. CUT beats TRAVERSE.

Proof. Consider the graph book(n) for some n ≥ 1, it is easy to see that the TRA-
VERSE width of book(n) is greater than $n

2 %, while its CUT width is 4. Hence,⋃
n≥1{book(n)} ⊆ C(CUT, 4), while

⋃
n≥1{book(n)} �⊆ C(TRAVERSE, k) for

every k > 0. �

Theorem 8. CaT beats TRAVERSE.

Proof. Consider the graph book(n) for some n ≥ 1, It is easy to see that the
TRAVERSE width of book(n) is greater than $n

2 % while its CaT width (with
the maximum cut size being 2) is 2. Hence,

⋃
n≥1{book(n)} ⊆ C(CaT, 2), while⋃

n≥1{book(n)} �⊆ C(TRAVERSE, k) for every k > 0. �

Theorem 9. HINGE+ beats TRAVERSE.

Proof. Consider the graph book(n) for some n ≥ 1, it is easy to see that
the TRAVERSE width of book(n) is greater than $n

2 %, while its HINGE+ width
is 4. Hence,

⋃
n≥1{book(n)} ⊆ C(HINGE+, 4), while

⋃
n≥1{book(n)} �⊆

C(TRAVERSE, k) for every k > 0. �

Table 1. Complexity of decomposition methods.

Technique Complexity

HYPERTREE

Normal form: opt-d-decomp [7] O(|S|2d|V|2)
Reduced normal form [8] Best case: O(|S|d|V| + |S|2|V|)

HINGE O(|V||S|2)
HINGE+ O(|V||S|k+1)

CUT O(|V||S|k+1)

TRAVERSE O(|V||S|2)
CaT O(|V||S|k+1)

Solving the CSP after decomposition O(|S|ldd log l)

|V|: number of variables (i.e., vertices).

|S|: number of constraints (i.e., hyperedges).

d: width of the join tree resulting from a decomposition.

k: maximum cut-size.

l: maximum size of a constraint in S .

New Structural Decomposition Techniques for Constraint Satisfaction 125

HYPERTREE
[Gottlob et al., 2002]

+HINGE

HINGE
[Gyssens et al., 1994]

CaT

CUT

TRAVERSE
D2 indicates thatD1

D2 is more general than D

D2 is strongly more general than D 1

D2 indicates thatD1

1

Fig. 15. Illustrating the relationships between the various studied techniques.

Theorem 10. CUT beats HINGE.

Proof. Consider the graph Circle(n) for some n ≥ 3. It is easy to see that the
HINGE width of Circle(n) is n, while its CUT width (with maximum cut size
being 2) is 2. Hence,

⋃
n≥3{Circle(n)} ⊆ C(CUT, 2), while

⋃
n≥3{Circle(n)}

�⊆ C(HINGE, k) holds for every k > 0. Therefore, CUT beats HINGE. �

The above theorems implied that CaT beats HINGE and HYPERTREE general-
izes CUT. The relationships between HINGE+ and CUT and between HINGE+

and CaT are still need to be investigated. Figure 15 summarizes the main rela-
tionships studied above. The solid directed edge from D1 to D2 indicates that
D2 strongly generalizes D1. The dotted directed edge from D1 to D2 indicates
D2 generalizes D1. Note that the picture is incomplete. Table 1 summarizes the
complexity of the techniques shown in Figure 15.

8 Preliminary Experiments

In order to assess empirically the above techniques, we compared their perfor-
mance on randomly generated hypergraphs in terms of two criteria: the CPU
time for computing the decompositions and the width of the resulting join tree.
For HYPERTREE, we used the algorithm of Harvey and Ghose [8], which im-
proves on the opt-k-decomp algorithm of Gottlob et al. [10]. By starting with
k=1 and incrementing its value by 1 until it finds decomposition, the algorithm
we used guarantees an optimal decomposition. We generated random hyper-
graphs setting the number of constraints to 10, 11, 12, and 13. In each instance,
we chose the arity of the constraints randomly in {2, 3, 4}. Table 2 summarizes
the constraint hypergraphs used in the experiments. We set the maximum cut
size k=2 for HINGE+, CUT, and CaT. Figure 16 and Figure 17 show, for a
fixed number of constraints, the average CPU times and average widths of the
generated join trees. Figure 16 and Figure 17 show the average CPU times and
average widths of different decomposition techniques. Table 3 averages these
results over all 4000 instances generated.

From these experiments, we have the following observations:

For CPU time,
TRAVERSE < HINGE < CUT ≈ CaT ≈ HINGE+ ' HYPERTREE.

126 Yaling Zheng and Berthe Y. Choueiry

Table 2. Constraint hypergraphs used in the experiments.

constraints # variables # instances

10 {16, 17, . . ., 25} 1000 (100 instances for each fixed number of variables)

11 {18, 19, . . ., 27} 1000 (100 instances for each fixed number of variables)

12 {20, 21, . . ., 29} 1000 (100 instances for each fixed number of variables)

13 {22, 23, . . ., 31} 1000 (100 instances for each fixed number of variables)

0

0.5

1

1.5

2

2.5

3

3.5

4

10 11 12 13# Constraints

C
P

U
 t

im
e
 (

m
se

c
)

HINGE+

CaT

CUT

HINGE

TRAVERSE

50

150

250

350

450

550

650

750

850

10 11 12 13
Constraints

C
P

U
 t

im
e
 (

m
se

c
)

HYPERTREE

Fig. 16. Average CPU times.

1

1.5

2

2.5

3

3.5

4

4.5

5

10 11 12 13
Constraints

 W
id

th

TRAVERSE

HINGE

CUT

HINGE+

CaT

HYPERTREE

Fig. 17. Average widths.

Table 3. Average results over all 4000 instances.

Comparison criteria HINGE HINGE+ CUT TRAVERSE CaT HYPERTREE

Average

CPU time [msec] 0.400 2.786 2.428 0.130 2.640 400.900

Width 2.425 2.332 2.367 4.547 1.273 1.225

TRAVERSE is the quickest technique followed by HINGE then CaT,
HINGE+, and CUT, which have comparable values for the CPU time. All
techniques are significantly quicker than HYPERTREE. Indeed, the compu-
tationally cost of HYPERTREE is prohibitively high although its worst-case
time complexity is polynomial.

For width,
HYPERTREE ≈ CaT < HINGE+ ≈ CUT ≈ HINGE < TRAVERSE.
The join tree obtained with TRAVERSE has the largest width. The average
widths of the join tree generated by HINGE+ and CUT are smaller than
that of the join tree generated by HINGE. However, the differences of these
values are within 4%. The widths of the join trees generated by CaT and HY-
PERTREE differ by only 4%, which is negligible. Also, they are significantly
smaller than those generated by the remaining techniques.

In summary, CaT offers the best trade-off between the CPU time and the width
of the computed join tree among the decomposition methods tested.

New Structural Decomposition Techniques for Constraint Satisfaction 127

9 Conclusion

In this paper, we proposed two main new structural decompositions: HINGE+

and CaT. HINGE+ strongly generalizes HINGE of Gyssens et al. [2]. CaT is built
by combining CUT (a variation of HINGE+) and TRAVERSE (a sweep-like
decomposition techniques). We compared these techniques among themselves
and with HINGE and HYPERTREE both theoretically and experimentally. Our
experiments showed that the CaT offers the best trade-off between cost and
quality of the resulting decomposition.

In the future, we plan to address the following issues: (1) Compare our tech-
niques with the remaining techniques shown in Figure 4; and (2) Perform exper-
iments on special types of graphs (e.g., small-world graphs and clustered graphs)
and real-world problems (e.g., the ones used in [11]).

Acknowledgments

This work is supported by CAREER Award #0133568 from the National Science
Foundation. The experiments were conducted utilizing the Research Computing
Facility of the University of Nebraska-Lincoln. Deb Derrick provided invaluable
editorial help.

References

1. Dechter, R., Pearl, J.: Tree Clustering for Constraint Networks. Artificial Intelli-
gence 38 (1989) 353–366

2. Gyssens, M., Jeavons, P.G., Cohen, D.A.: Decomposing Constraint Satisfaction
Problems Using Database Techniques. Artificial Intelligence 66 (1994) 57–89

3. Jeavons, P.G., Cohen, D.A., Gyssens, M.: A Structural Decomposition for Hyper-
graphs. Contemporary Mathematics 178 (1994) 161–177

4. Gottlob, G., Leone, N., Scarcello, F.: A Comparison of Structural CSP Decompo-
sition Methods. Artificial Intelligence 124 (2000) 243–282

5. Freuder, E.C.: A Sufficient Condition for Backtrack-Free Search. JACM 29 (1)
(1982) 24–32

6. Freuder, E.C.: A Sufficient Condition for Backtrack-Bounded Search. JACM
32 (4) (1985) 755–761

7. Gottlob, G., Leone, N., Scarcello, F.: Hypertree Decompositions and Tractable
Queries. Journal of Computer and System Sciences 64 (2002) 579–627

8. Harvey, P., Ghose, A.: Reducing Redundancy in the Hypertree Decomposition
Scheme. In: The 15th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI 03). (2003) 474–481

9. Dechter, R.: Constraint Processing. Morgan Kaufmann (2003)
10. Gottlob, G., Leone, N., Scarcello, F.: On Tractable Queries and Constraints. In:

10th International Conference and Workshop on Database and Expert System Ap-
plications (DEXA 1999). (1999) 1–15

11. Gottlob, G., Hutle, M., Wotawa, F.: Combining Hypertree, Bicomp, And Hinge
Decomposition. In: Proc. of the 15 th ECAI, Lyon, France (2002) 161–165

Algorithms for the Maximum
Hamming Distance Problem

Ola Angelsmark1,� and Johan Thapper2,��

1 Department of Computer and Information Science,
Linköpings Universitet,

S-581 83 Linköping, Sweden
olaan@ida.liu.se

2 Department of Mathematics,
Linköpings Universitet,

S-581 83 Linköping, Sweden
jotha@mai.liu.se

Abstract. We study the problem of finding two solutions to a con-
straint satisfaction problem which differ on the assignment of as many
variables as possible – the Max Hamming Distance problem for CSPs –
a problem which can, among other things, be seen as a domain indepen-
dent way of quantifying “ignorance.” The first algorithm we present is
an O(1.7338n) microstructure based algorithm for Max Hamming Dis-
tance 2-SAT, improving the previously best known algorithm for this
problem, which has a running time of O (1.8409n). We also give algo-
rithms based on enumeration techniques for solving both Max Hamming
Distance l-SAT, and the general Max Hamming Distance (d, l)-CSP,
the first non-trivial algorithms for these problems. The main results here
are that if we can solve l-SAT in O(an) and (d, l)-CSP in O(bn), then
the corresponding Max Hamming problems can be solved in O((2a)n)
and O(bn(1 + b)n), respectively.

1 Introduction

In its most basic form, a constraint satisfaction problem (CSP) consists of a
collection of variables taking values from some domain, and a collection of con-
straints restricting the values different variables can simultaneously assume. The
question here is: Can we find an assignment of values to the variables which does
not violate any of the constraints? While this is certainly the most thoroughly
studied problem for CSPs, there are a number of alternative, equally interesting,
questions one can ask about a CSP. The question we will study in this paper
asks us to find two solutions that are as far away from each other as possible;
i.e. we want to find two satisfying assignments that disagree on the values for
as many variables as possible. This is known as the Max Hamming Distance

� Supported in part by the National Graduate School in Computer Science, Sweden,
and in part by the Swedish Research Council (VR), grant 621-2002-4126.

�� Supported by the Programme for Interdisciplinary Mathematics, Department of
Mathematics, Linköpings Universitet.

B. Faltings et al. (Eds.): CSCLP 2004, LNAI 3419, pp. 128–141, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Algorithms for the Maximum Hamming Distance Problem 129

problem, and was first introduced in Crescenzi & Rossi [3], where it was sug-
gested as a domain independent measure of ignorance, quantifying how much we
do not know of the world.

We present three different algorithms. The first one is a microstructure based
algorithm for the special case when the domains have size two and we have binary
constraints, denoted Max Hamming Distance (2, 2)-CSP. (We will exclusively
consider CSPs over finite domains, denoted (d, l)-CSP, where d is the domain
size and l the arity of the constraints.) Even in this restricted form, the problem
is NP-complete. In the microstructure graph of a CSP [9], a vertex corresponds
to an assignment of a value to a variable in the original problem (see Section 2 for
definitions.) The algorithm exploits this by searching for a set of vertices where
each vertex either does not have an edge to any other vertex – and thus can be
interpreted as an assignment – or is part of a connected component with 2 or
4 vertices. Each vertex (i.e. assignment) in this set is then given a weight, and
the original instance together with these weights is given to a weighted 2-SAT
solver. This algorithm returns a solution with maximum weight W , and we can
then construct a solution which differs on W variables.

By using the weighted 2-SAT algorithm from [4], we arrive at a running
time of O (1.7338n), where n is the number of variables in the problem. This
is an improvement over the Max Hamming Distance (2, 2)-CSP algorithm
presented in [1], which runs in O (1.8409n).

When we allow domains with more than 2 elements, or constraints with
arity higher than 2, it turns out that microstructures are not as successful,
and, consequently, the algorithms we present for these cases are quite different.
Intuitively, the algorithm for Max Hamming Distance (d, l)-CSP works as
follows:

1. Pick a subset of the variables which should assume different values in the
two solutions, duplicate and rename them and the constraints they are in-
volved in.

2. Add a constraint for each of these new variables, preventing it from assuming
the same value as the one it is a copy of.

3. Solve this new, larger, instance.

Starting with assuming all variables are different in the two solutions, and then
working downwards, the algorithm will, by trying out the different possible sub-
sets of variables, arrive at a pair of solutions with maximum hamming distance.
Given that we can solve the (d, l)-CSP in the last step in time O (an), the entire
algorithm will have a running time of O (an(1 + a)n).

The final algorithm is for the case when the domain has two elements and
the constraints have arity l, Max Hamming Distance (2, l)-CSP. Here, we
note that since there are only two possible choices of values for a variable, it
is unnecessary to duplicate the variables that should take different values –
instead, only the constraints they are involved in are duplicated, and then any
occurrence of a variable which should assume different values in the two solutions
is replaced by its negation in these constraints. The resulting algorithm will have
a running time of O ((2a)n), where O (an) is the time needed to solve the (2, l)-
CSP problem in each step.

130 Ola Angelsmark and Johan Thapper

Overview of the Paper: Section 2 contains most of the definitions we will need
in the discussion. For convenience, it has been split into three parts, where
Section 2.1 contains the definitions related to CSPs, Section 2.2 the graph and
microstructure definitions, while Section 2.3 formally defines the problem we
will be studying, Max Hamming Distance. The algorithm for Max Hamming
Distance (2, 2)-CSP, together with its analysis, is presented in Section 3, while
Section 4 contains the algorithms for Max Hamming Distance (d, l)-CSP and
Max Hamming Distance (2, l)-CSP.

2 Preliminaries

This section is divided into three parts in order simplify the search for a partic-
ular definition. In Section 2.1 we have the definitions related to constraint satis-
faction problems, while Section 2.2 is devoted to graphs and the microstructure
of CSPs. Finally, in Section 2.3, we define the problem we will be discussing in
this paper; Max Hamming Distance (d, l)-CSP. Note that Section 3 contains
additional definitions specific to that part of the paper.

2.1 Constraint Satisfaction Problems

A (d, l)-constraint satisfaction problem ((d, l)-CSP) is a triple (X, D, C) where

– X is a finite set of variables,
– D a finite set of domain values, with |D| = d, and
– C is a set of constraints {c1, c2, . . . , ck}.

Each constraint ci ∈ C is a structure R(xi1 , . . . , xij) where j ≤ l, xi1 , . . . , xij ∈ X
and R ⊆ Dj . A solution to a CSP instances is a function f : X → D s.t. for each
constraint R(xi1 , . . . , xij) ∈ C, (f(xi1 , . . . , f(xij))) ∈ R. Given a (d, l)-CSP, the
basic computational problem is to decide whether it has a solution or not – to
determine if it is satisfiable.

The special case when d = 2 and we have binary constraints, i.e. (2, 2)-CSP,
will often be viewed as 2-SAT formulae. A 2-SAT formula is a conjunction of a
number of clauses, where each clause is on one of the forms (p ∨ q), (¬p ∨ q),
(¬p∨¬q), (p), (¬p). The set of variables of a formula F is denoted Var(F), and
an occurrence of a variable or its complement in a formula is termed a literal.
Determining whether a 2-SAT formula is satisfiable can be done in polynomial
time [2], while, in contrast, the more general l-SAT (i.e, the clauses consist of at
most l literals) is known to be NP-complete for l ≥ 3 [7].

Definition 1 ([4]). Let F be a 2-SAT formula, and let L be the set of all literals
for all variables occurring in F . Given a vector w of weights and a model M for
F , we define the weight W (M) of M as

W (M) =
∑

{l∈L | l is true in M}
w(l)

The problem of finding a maximum weighted model for F is denoted 2-SATw.

Algorithms for the Maximum Hamming Distance Problem 131

In [4], an algorithm for counting the number of maximum weighted solutions
to 2-SAT instances is presented which has a running time of O (1.2561n), and it
can easily be modified to return one of the solutions.

2.2 Graphs and Microstructures

A graph G consists of a set V (G) of vertices and a set E(G) of edges, where
each element of E(G) is an unordered pair of vertices. The neighbourhood of a
vertex v ∈ V (G) is the set of all vertices adjacent to v, excluding v itself, and is
denoted NG(v), NG(v) := {u ∈ V (G) | (v, w) ∈ E(G)}. If, by following the edges
of the graph, we can get from a vertex v to v′, then v′ is reachable from v. The
connected components of a graph are the equivalence classes of vertices under
the “is reachable from” relation.

Definition 2 ([9]). Given a binary CSP Θ = (X, D, C), the microstructure
of Θ is an undirected graph G, defined as follows:

1. For each variable x ∈ X, and domain value d ∈ D, there is a vertex x[d]
in G.

2. There is an edge (x[d], y[e]) ∈ E(G) iff (d, e) satisfies the constraint between
x and y.

We assume that there is exactly one constraint between any pair of variables, and
variables with no explicit constraint between them is assumed to be constrained
by the universal constraint which allows all values.

For convenience, we will work exclusively with the complement of the graph
in Definition 2. The complement of a (microstructure) graph G is a graph con-
taining exactly those edges which are not present in G (excluding loops), i.e. a
graph with edge set {(v, u) | v �= u ∧ (v, u) �∈ E(G)}.

A variable with domain size d will in the microstructure graph be a clique of
size d. When the domain has two elements and we have a clique of size 2, we let
x[i] denote an arbitrary value for x, and use x[1− i] to denote the other possible
value. For example, if we look at the 2-SAT formula (x ∨ y) ∧ (¬x ∨ z), with
domain values 0 and 1, it has the microstructure graph shown in Fig. 1. One
independent set the graph is {x[0], y[1], z[0]} which corresponds to the satisfying
assignment {x �→ 0, y �→ 1, z �→ 0}.

2.3 Hamming Distance of CSPs

The algorithms we present in this paper are all designed to solve different vari-
ants of the Max Hamming Distance problem for constraint satisfaction prob-
lems [3]. Since our algorithms are not limited to problems with two valued do-
mains, the following definition differs somewhat from the one given in [3]:

Definition 3. Given a set of variables X over finite domains, the Hamming
distance between a pair f1 and f2 of assignments of values to the variables in
X, denoted dH(f1, f2), is the number of variables on which f1 and f2 disagree.

132 Ola Angelsmark and Johan Thapper

x[0]

x[1]

y[0] z [0]

z [1]y[1]

Fig. 1. The microstructure graph of (x ∨ y) ∧ (¬x ∨ z).

algorithm MH1(α, G, Θ)

1. if δ(x) ∈ {(3, 1), (2, 2), (2, 1), (1, 1)} for all variables x in G then
2. return MH2 (α, G, Θ)
3. end if
4. Choose a variable x in G with δ(x) ∈ {(≥ 3,≥ 2), (≥ 4, 1)}
5. (α0, β0) = MH1 (α ∪ {x[0]}, G − NG(x[0]) − {x[0]}, Θ)
6. (α1, β1) = MH1 (α ∪ {x[1]}, G − NG(x[1]) − {x[1]}, Θ)
7. return (αi, βi), i ∈ {0, 1} maximising dH(αi, βi)

Fig. 2. The main algorithm for Max Hamming Distance (2, 2)-CSP.

For example, consider the 2-SAT formula (x ∨ y) ∧ (¬x ∨ z), and the two
assignments f1 = {x �→ 0, y �→ 1, z �→ 0}, f2 = {x �→ 1, y �→ 1, z �→ 1}. Clearly,
both f1 and f2 satisfy the formula, and their Hamming distance is 2, since they
disagree on the values for x and z.

The following formalises the problem:

Definition 4 (Maximum Hamming Distance of (d, l)-CSPs). Let Θ =
(X, D, C) be an instance of (d, l)-CSP. The Max Hamming Distance (d, l)-
CSP problem is to find two satisfying assignments f and g to Θ which maximises
dH(f, g).

A näıve enumeration algorithm for this problem would have a time complexity
of O (

d2n
)
. In the following sections we will present ways to significantly improve

this running time.

3 Algorithm for Max Hamming Distance (2, 2)-CSP

In this section we will discuss and analyse our algorithm for Max Hamming
Distance (2, 2)-CSP. Since the formulae for the time complexity of the al-
gorithm can be rather lengthy, the final step, that of calling a weighted 2-SAT
solver for every leaf in the search tree, has been left out (unless otherwise noted.)
Furthermore, we will omit polynomial factors in the time complexities.

Before we start the discussion of the algorithms, we will need some additional
definitions: The degree of a vertex v in a graph, usually denoted deg(v), is the
size of its neighbourhood, i.e. |NG(v)|. However, we are not really interested in
the degree of a single vertex, but rather in the degrees of the two vertices that

Algorithms for the Maximum Hamming Distance Problem 133

algorithm MH2(α, G, Θ)

1. if δ(x) ∈ {(2, 1), (1, 1)} for all variables x in G then
2. return MH3 (α, G, Θ)
3. end if
4. if G contains a cycle then
5. if all variables x has δ(x) = (2, 2) in a cycle then
6. Choose x in this cycle
7. else if there is a variable z with δ(z) = (2, 2) in a cycle then
8. Choose x in a cycle s.t δ(x) = (3, 1) and x[i] has a

neighbour y with δ(y) = (2, 2)
9. else

10. Choose x with δ(x) = (3, 1) in a cycle
11. end if
12. else % G is cycle-free
13. Choose x which is two variables from the end of a chain, if possible,

otherwise, choose x one variable from the end of a chain
14. end if
15. (α0, β0) = MH2 (α ∪ {x[0]}, G − NG(x[0]) − {x[0]}, Θ)
16. (α1, β1) = MH2 (α ∪ {x[1]}, G − NG(x[1]) − {x[1]}, Θ)
17. return (αi, βi), i ∈ {0, 1} maximising dH(αi, βi)

Fig. 3. The helper function MH2.

make up a variable. Thus let Θ = (X, D, C) be a (2, 2)-CSP and, for x ∈ X ,
define the variable degree δ(x) as a tuple (deg(x[i]), deg(x[1 − i])), where x[i]
is the vertex with highest degree. If we are interested in variables with degrees
higher than a certain number, we write δ(x) = (≥ i,≥ j).

In the analysis of the algorithm in this section, we will often encounter re-
cursions on the form T (n) =

∑k
i=0 T (n − ri) + p(n), where p(n) is a polyno-

mial in n and ri ∈ Z
+. These equations satisfy T (n) ∈ O (τ(r1, r2, . . . , rk)n),

where τ(r1, r2, . . . , rk) is the largest real-valued solution to the equation 1 −∑k
i=1 x−ri = 0 (see Kullman [10].) Note that this bound depends on neither

p(n) nor the boundary conditions T (1) = b1, . . . , T (k) = bk. We will sometimes
refer to τ as the work factor (in the sense of [5].)

With that in mind, we are now ready to discuss the algorithm, which consists
of three functions: MH1, the main algorithm, which calls MH2 once no variable
is involved in more than three constraints, which, in turn, calls MH3 when every
variable is involved in at most one constraint.

MH1: The main algorithm, MH1, given in Fig. 2, takes as input a partial
assignment α, a microstructure graph G, and the original problem instance Θ.
If every variable in the microstructure is involved in less than 3 constraints, the
helper function MH2 is called. In the graph, this translates to every variable x
having δ(x) in the set {(3, 1), (2, 2), (2, 1), (1, 1)}. Otherwise, a variable involved
in more than 3 constraints is chosen, and the algorithm branches on the two
possible values. We note that for δ(x) = (3, 2), there will be at least 3 variables
less in one branch and 2 variables less in the second branch, and for δ(x) = (4, 1),
there are at least 4 and 1 variables less, respectively. Consequently, we get work
factors of τ(3, 2) and τ(4, 1) for these cases, where τ(4, 1) clearly dominates.

134 Ola Angelsmark and Johan Thapper

x[i]

x[i]

a)

b)

Fig. 4. Branching on x[i] will remove the shaded values and force the black values.

Example 1. Consider the 2-SAT formula Θ = (x ∨ y) ∧ (¬x ∨ y), which has
the microstructure shown in Fig. 1. The variables in Θ have degrees δ(x) =
(2, 2), δ(y) = (2, 1) and δ(z) = (2, 1), thus we immediately jump to algorithm
MH2. Had this not been the case, a variable with a degree of (≥ 3,≥ 2) or
(≥ 4, 1) would have been chosen, and the algorithm would have branched on
either of the possible values for it.

MH2: The first helper function, MH2, shown in Fig. 3, takes over when every
variable is involved in zero, one or two constraints. Unless there are no variables
involved in two constraints (in which case we jump straight to algorithm MH3),
we start with checking for cycles. Any cycles we encounter need to be broken,
which is done on lines 4 to 11.

First of all, if there is a cycle where every variable has a degree of (2, 2), then
selecting one value for a variable in this cycle will propagate through the entire
cycle, as is shown in the top part of Fig. 4. On line 8, by choosing a variable x
with δ(x) = (3, 1) with a neighbour y with δ(y) = (2, 2), one of the values for x
will propagate through y. (See Fig. 4b.) Consequently, 4 variables are removed
in one branch, and one in the other, giving a work factor of τ(4, 1) for this case.
The obvious exception is when the cycle contains only 3 variables, as is shown
in Fig. 7a. Note that the coloured vertex x[i] is the only possible choice – the
other assignment would lead to an inconsistency.

Now if every variable x in the cycle has δ(x) = (3, 1), we get a number of
different possibilities, but before we discuss them, we need to make some obser-
vations. Once a variable has no neighbours (Fig. 6a), or is part of a component
consisting of only two variables and one edge between them, a ‘hurdle,’ (Fig. 6b),
we need no longer consider it. The first case is obvious, since if a variable has
no neighbours, it is not involved in any constraints, and we can choose its value
freely, while the second case is somewhat harder; We will get back to it when we
discuss algorithm MH3. Consequently, when a component of (3, 1) variables has

Algorithms for the Maximum Hamming Distance Problem 135

algorithm MH3(α, G, Θ)

1. Let w be a vector of weights, initially all set to 0
2. for each x[i] ∈ α do
3. add weight w(x[1 − i]) := 1
4. for each connected component of G do
5. Add weights to w, as shown in Fig. 6.
6. (β, W) := 2-SATw(Θ, w)
7. for each variable x in G do
8. if x[i] in β then
9. If possible, add x[1 − i] to α, otherwise, add x[i].

10. end if
11. end for
12. return (α, β)

Fig. 5. The helper function MH3.

1

1 1/2 1/2

3/2 3/2
a) b)

Fig. 6. Variables with no or exactly one neighbour, and the weights they are given by
algorithm MH3.

at most 3 variables, as in Fig. 7b, when choosing such a variable, in effect, the
entire component is removed from the problem and need no longer be considered
– in one case we get a unique assignment for the remaining (black) vertices, and
in the other case we get a hurdle. If there are no cycles in the component, e.g we
have a ‘comb-like’ structure, as in Fig. 8, then choosing any of the three variables
to branch on will, again, remove the entire component, giving a work factor of
τ(3, 3). This also holds for cycle-free components of size 4 and 5. When there
are more than 5 variables in the component, by choosing a variable which is two
variables removed from the end of the comb (the marked variable in Fig. 8), the
chain is broken and we remove 3 variables in one branch and 4 in the other. As
was seen in the case for cycles where all variables have degree (2, 2), the number
of removed variables increases if a neighbour of the branching variable has this
property. Consequently, we will focus on the combs and merely note that the
time complexity will not be worse if we have more variables with degree (2, 2).

Getting back to discussing cycles; When we reach line 10 of algorithm MH2,
every cycle consists exclusively of variables with degree (3, 1), and since no vertex
in the graph has degree higher than 3, there can be at most one cycle in a
component. The case with cycles containing 3 variables was discussed earlier,
and for the case with 4 variables we get one branch where the entire component
is removed, and one where we get a comb with 3 variables, which can be removed
in its entirety when we branch. There can be no more than n/4 cycles with 4
variables in the graph at this point. For each of these cycles, we choose one

136 Ola Angelsmark and Johan Thapper

x[i]

x[i]

a) b)

Fig. 7. The case when a component is a cycle with 3 variables.

variable to branch on, and in one branch the entire component is removed,
while in the other, we get a component with 3 variables. Since we want to look
at all of these cycles, and both branches, this is equivalent to selecting k cycles
where we remove the entire component, and then examine the remaining n/4−k
components. In other words, it will require

n/4∑
k=0

(
n/4
k

) (
1k · τ(3, 3)3(n/4−k)

)

steps to examine all the cycles. Using the binomial theorem, this can be simplified
to (1 + τ(3, 3)3)n/4.

For cycles with 5 variables, the situation is similar, but for 6 we no longer
remove the entire component in one of the branches. Instead, we get one branch
with 5 variables, and one with 3, which, using the same reasoning as above, gives

n/6∑
k=0

(
n/4
k

) (
τ(3, 3)3k · τ(5, 5)5(n/6−k)

)
= (τ(3, 3)3 + τ(5, 5)5)n/6.

Similarly, for cycles of length 7, we get (τ(4, 4)4 + τ(3, 4)6)n/7. In general, if we
have cycles of length c, one branch will have one variable less, and the other
three variables less, giving the following general running time:

n/c∑
k=0

(
n/c

k

) (
τ(3, 4)(c−3)k · τ(3, 4)(c−1)(n/c−k

)
=

=
(
τ(3, 4)c−1 + τ(3, 4)c−3

)n/c
< (2τ(3, 4)c)n/c = (21/cτ(3, 4))n

Example 2 (cont’d). When we reach algorithm MH2 with our (still unchanged)
microstructure graph, we note that for x, δ(x) = (2, 2), thus we will continue
past the test on line 1. Since the graph is cycle-free, we will choose a variable
which is not on the end of a chain – in our case the only choice is x, and branch
on the two possible values for x.

Algorithms for the Maximum Hamming Distance Problem 137

Fig. 8. Choosing a variable in a comb with more than 4 variables.

1. The branch with x[0] removes y[0] and x[1] from the graph, forcing y[1] and
leaving z unconstrained.

2. For x[1], x[0] and z[0] are removed, forcing z[1] and leaving y unconstrained.

Consequently, both of these branches will result in MH3 being called in the next
recursive call (since we have a variable degree of (1, 1) for the unconstrained
variables left in the graph), with α = {x[0], y[1]} in the first case, and {x[1], z[1]}
in the second.

MH3: Finally, when algorithm MH3 (see Fig. 5) is called, the graph G only
contains variables involved in zero or one constraint, i.e. every variable will be of
one of the forms found in Fig. 6. The weights shown in the figure is now added
to the corresponding assignments in Θ, the original problem, and the resulting
weighted 2-SAT problem is given to a 2-SATw solver. If the solution β returned
by the solver has weight W , this means that we can add assignments (i.e. vertices)
to α and create a solution which differs from β on W assignments in the following
way: First of all, since all assignments in α are given weight 0, if any of these are
chosen, they will not add anything to the distance, while the other possible value
for all these variables will add one to the distance (and are consequently given
a weight of 1 on line 3.) For the unconstrained variables in G, i.e. all vertices
x with δ(x) = (1, 1), we can choose freely which value they should assume, and
thus we can always find an assignment which adds one to the distance from β
by choosing the other value for α. The remaining components then consist of
pairs of variables with one edge between them, i.e. hurdles. If β contains both
assignments with weight 1/2, then obviously, we have to add one of them to α,
since not both assignments with weight 3/2 are allowed simultaneously – and
thus we get a distance of 1, which is the sum of the weights in β. On the other
hand, if β contains one 3/2 and one 1/2 assignments, then we can choose the
opposing value for both of these and get a distance of 2. Consequently, the pair
returned on line 12 will have a Hamming distance equal to the weight of β, and
with α and G given, no pair with greater Hamming distance can exist.

Except for the call to 2-SATw on line 6, every step of algorithm MH3 can be
carried out in polynomial time, thus the time complexity is fully determined by
that of the 2-SATw algorithm.

Example 3 (cont’d). Assuming we reach algorithm MH3 with α = {x[0], y[1]},
i.e. from branch 1 in Example 2 earlier, the algorithm will now assign weights to
the assignments in the original problem. Each assignment in α is given weight 0,
while its negation is given weight 1. In our case, we get w(x[0]) = w(y[1]) = 0,
and w(x[1]) = w(y[0]) = 1. We have no “hurdles” in our graph (see Fig. 6b),
but we have one free variable, z, which we assign weights w(z[0]) = w(z[1]) = 1.

138 Ola Angelsmark and Johan Thapper

Next, we call the weighted 2-SAT solver with the original instance together
with the weight vector. It is easy to see that in our case, the maximum weight of a
model will be 3; β = {x[1], y[0], z[1]} has this weight, for instance. Consequently,
since z is unconstrained in our graph, we can simply add z[0] to α and we have
two satisfying assignment α, β with a hamming distance of 3.

Theorem 1. Algorithm MH1 correctly solves Max Hamming Distance (2, 2)-
CSP and has a running time of O ((a · 1.3803)n), where n is the number of
variables in the problem, and O (an) is the time complexity of solving a weighted
2-SAT problem.

Proof. The highest work factor in algorithms MH1, MH2, MH3 is τ(4, 1), giving
a running time of O (1.3803n). The call to the weighted 2-SAT algorithm is done
for every leaf in the search tree, and thus we get a total time complexity of
O ((a · 1.3803)) if we assume we can solve weighted 2-SAT in O (an).

In every case, the algorithm branches on both values for a variable, thus
from the correctness of the 2-SATw algorithm we know that the two solutions
returned will be at a maximum hamming distance from each other. ��
Corollary 1. Max Hamming Distance (2, 2)-CSP can be solved in
O (1.7338n).

Proof. Dahllöf et al. [4] presents an algorithm for solving weighted 2-SAT in
O (1.2561n), and this together with Theorem 1 gives the result. ��

4 Algorithm for Max Hamming Distance (d, l)-CSP

For problems where the arity of the relations is greater than 2, microstructures
are not as convenient and we have to find a different approach.

Let us first consider the following problem: Given a CSP instance Θ =
(X, D, C), can we find a pair of solutions with Hamming distance equal to k?
One obvious way of doing this is the following:

1. Pick a subset Y of X with |Y | = k
2. Create a copy Θ′ = (X ′, D, C′) of Θ over variables X ′
3. For each x ∈ Y , add the constraint x �= x′ to C′, and
4. for each x �∈ Y , add the constraint x = x′ to C′.
5. If Θ′ is satisfiable with solution s

– Solve the instance (X ∪X ′, D, C′), giving a satisfying assignment s.
– For each x ∈ X , add s(x) to α
– For each x′ ∈ X ′, add s(x′) to β
– Return (α, β)

There are 2n ways to choose Y on the first line, so if we can solve the satisfia-
bility problem for Θ in time O (h(n)), then, since the number of variables in Θ′

is twice that of Θ, we can find a pair of solutions with maximum Hamming dis-
tance in O (2nh(2n)). For example, since 2-SAT can be solved in linear time, we
would, using this approach, get a running time of O (2n) for the Max Hamming
Distance (2, 2)-CSP. This does give a slower running time than the algorithm
we presented in the previous section, but it can be applied to CSP instances
with domain size and constraint arity greater than 2.

Algorithms for the Maximum Hamming Distance Problem 139

algorithm Max Hamming Distance (d, l)-CSP (Θ = (X, D, C))

1. for k := |X| down to 0 do
2. for each χ ⊆ X, |χ| = k do
3. Let Θ′ = (X ′, D, C′) be a copy of Θ
4. Let γ ⊆ C be all constraints involving variables from χ
5. Create γ′ by exchanging all variables not in χ with

their counterparts from X ′

6. C′ := C′ ∪ γ′

7. for each x ∈ χ do
8. C′ := C′ ∪ {x �= x′}
9. if (X ∪ X ′, D, C′) is satisfiable then

10. Let α, β be the two assignments found in a solution to Θ′

11. return (α, β)
12. end if
13. end for
14. end for

Fig. 9. Algorithm for Max Hamming Distance (d, l)-CSP.

Example 4. Again, consider the instance (x ∨ y) ∧ (¬x ∨ z). Following the algo-
rithm in Fig. 9, we begin with trying to determine if there are two solutions with
a distance of 3. We get a new, larger instance, which looks as follows:

(x ∨ y) ∧ (¬x ∨ z) ∧ (x′ ∨ y′) ∧ (¬x′ ∨ z′)∧
(x �= x′) ∧ (y �= y′) ∧ (z �= z′)

This instance has solution {x �→ 1, y �→ 0, z �→ 1, x′ �→ 0, y′ �→ 1, z′ �→ 0} and
consequently, there are two solutions with a hamming distance of 3 – we get one
from reading the values of x, y, z and the other from the values of x′, y′, z′. Had
this instance been unsatisfiable, we would have had to move on to try hamming
distance 2, etc.

Actually, it is unnecessary to make a copy of all the variables. Having selected
k variables that should be different in the two solutions, we only need to make
copies of those, leaving the remaining n− k variables unchanged. Thus, we get
the algorithm for Max Hamming Distance (d, l)-CSP given in Fig. 9.

Theorem 2. If we can solve (d, l)-CSP in O (an), then there exists an algorithm
for Max Hamming Distance (d, l)-CSP which runs in O ((a(1 + a))n).

Proof. In the algorithm presented in Fig. 9, the instance Θ′ will contain 2n− k
variables, and there are

(
n
k

)
ways of choosing χ. Consequently, given that we can

solve (d, l)-CSP in O (an), the algorithm has a total running time of

O
(

n∑
k=0

(
n

k

)
a2n−k

)
= O

(
an

n∑
k=0

(
n

k

)
an−k

)
= O (an(1 + a)n)

and the result follows. ��
In Example 4 we saw how the algorithm for Max Hamming Distance (d, l)-

CSP worked. On instances of l-SAT we can actually do better than this. Since

140 Ola Angelsmark and Johan Thapper

algorithm Max Hamming Distance (2, l)-CSP (F)

1. for k := |Var(F)| down to 0 do
2. for each χ ⊆ Var(F) with |χ| = k do
3. Let γ be all the clauses of F containing variables from χ
4. Create γ by negating all occurrences of a variable x ∈ χ in γ
5. Let F+ := F ∪ {γ}
6. if F+ is satisfiable then
7. Let α, β be the two found in a solution to F+.
8. return (α, β)
9. end if

10. end for
11. end for

Fig. 10. The Max Hamming Distance (2, l)-CSP algorithm.

there are only two possible domain values, and we force x′ to always assume the
opposite of x, there is no reason to create new variables. Instead, we duplicate
the clauses containing variables on which the two solutions should differ, and
among these clauses, we replace every literal containing one of these variables
with its negation. In the example, we would get:

(x ∨ y) ∧ (¬x ∨ z) ∧ (¬x ∨ ¬y) ∧ (x ∨ ¬z)

This formula has a solution {x �→ 0, y �→ 1, z �→ 0}, and we can easily derive
a solution to the original formula which differ on the assignment of all three
variables.

As can be seen in Fig. 10, the algorithm for Max Hamming Distance (2, l)-
CSP is similar to the one for the general case, but it does not add any variables
to the problem.
Theorem 3. If we can solve (2, l)-CSP in O (an), then there exists an algorithm
for solving Max Hamming Distance (2, l)-CSP which runs in O ((2a)n).

Proof. The algorithm in Fig. 10 considers all subsets of variables of the problem,
as discussed in this section. Consequently, it will deliver a solution in O ((2a)n)
time. ��

There exist a number of algorithms for special cases of (d, l)-CSPs, and we
can use them in conjunction with Theorems 2 and 3 to get the following corollary:

Corollary 2. There exist algorithms for solving Max Hamming Distance
(d, l)-CSP with running times

1. O (3.2264n) for d = 3, l = 2,
2. O ((d(0.4518 + 0.2042d))n) for 4 ≤ d ≤ 10, l = 2,
3. O (

(d!1/d(1 + d!1/d))n
)

for d ≥ 11, l = 2,
4. O (2.6604n) for d = 2, l = 3,
5. O ((4− 4/l + ε)n), for d = 2, l ≥ 4,
6. O (

((d− d/l)2 + d− d/l + ε)n
)

for d ≥ 3, l ≥ 5.

where ε > 0 is an arbitrarily small constant.

Algorithms for the Maximum Hamming Distance Problem 141

Proof. Combine either of Theorems 2 and 3 with

1. the (3, 2)-CSP algorithm by Eppstein [5],
2. the (d, 2)-CSP algorithm by Eppstein [5],
3. the (d, 2)-CSP algorithm by Feder & Motwani [6],
4. the 3-SAT algorithm by Hofmeister et al. [8],
5. the l-SAT algorithm by Schöning [11],
6. the (d, l)-CSP algorithm by Schöning [11].

and the result follows.

Acknowledgments

The authors would like to thank Peter Jonsson for useful comments during the
writing of this paper.

References

1. O. Angelsmark and J. Thapper. Microstructure based algorithms for three con-
straint satisfaction optimisation problems, 2004. Unpublished manuscript. Avail-
able for download at http://www.ida.liu.se/˜olaan/papers/three algorithms.ps.

2. B. Aspvall, M. F. Plass, and R. E. Tarjan. A linear time algorithm for testing
the truth of certain quantified Boolean formulas. Information Processing Letters,
8(3):121–123, Mar. 1979.

3. P. Crescenzi and G. Rossi. On the Hamming distance of constraint satisfaction
problems. Theoretical Computer Science, 288(1):85–100, October 2002.

4. V. Dahllöf, P. Jonsson, and M. Wahlström. On counting models for 2sat
and 3sat formulae, 2003. Unpublished manuscript. Available for download at
http://www.ida.liu.se/˜magwa/research/merge23sat.ps.

5. D. Eppstein. Improved algorithms for 3-coloring, 3-edge-coloring, and constraint
satisfaction. In Proceedings of the 12th Annual Symposium on Discrete Algorithms
(SODA-2001), pages 329–337, 2001.

6. T. Feder and R. Motwani. Worst-case time bounds for coloring and satisfiability
problems. Journal of Algorithms, 45(2):192–201, Nov. 2002.

7. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.

8. T. Hofmeister, U. Schöning, R. Schuler, and O. Watanabe. A probabilistic 3-
SAT algorithm further improved. In H. Alt and A. Ferriera, editors, Proceedings
of the 19th International Symposium on Theoretical Aspects of Computer Sci-
ence (STACS-2002), pages 192–202, Antibes Juan-les-Pins, France, 2002. Springer-
Verlag, Berlin, Heidelberg.

9. P. Jégou. Decomposition of domains based on the micro-structure of finite
constraint-satisfaction problems. In Proceedings of the 11th (US) National Confer-
ence on Artificial Intelligence (AAAI-93), pages 731–736, Washington DC, USA,
July 1993. AAAI.

10. O. Kullman. New methods for 3-SAT decision and worst-case analysis. Theoretical
Computer Science, 223(1–2):1–72, 1999.

11. U. Schöning. A probabilistic algorithm for k-SAT and constraint satisfaction prob-
lems. In 40th Annual Symposium on Foundations of Computer Science (FOCS-
1999), pages 410–414. IEEE Computer Society, 1999.

A System Prototype for Solving
Multi-granularity Temporal CSP�

Claudio Bettini, Sergio Mascetti, and Vincenzo Pupillo

DICo – Università di Milano, Italy

Abstract. Time granularity constraint reasoning is likely to have a rel-
evant role in emerging applications like GIS, time management in the
Web and Personal Information Management applications for mobile sys-
tems. This paper reports recent advances in the development of a system
for solving temporal constraint satisfaction problems where distance con-
straints are specified in terms of arbitrary time granularities.

1 Introduction

When variables in a constraint satisfaction problem (CSP) are used to represent
event occurrences and constraints to represent their temporal relations, a CSP
is called temporal CSP or TCSP. Scheduling, planning, diagnosis, natural lan-
guage understanding, and even temporal databases are examples of areas where
temporal CSP’s have been applied.

In some cases, a temporal CSP can be formulated in terms of qualitative tem-
poral relations between events, like “event1 must occur before event2” or “event1
must occur immediately after event2”, while in other cases quantitative temporal
relations are necessary, like “event2 must occur at least 1 time unit and at most
5 time units after event1”. The many formalisms and algorithms proposed in the
literature for TCSP have essentially ignored the subtleties involved in the pres-
ence of multiple time units (granularities) in the temporal constraints. Examples
of simple constraints specified in terms of a time granularity are the following:
“package shipment must occur the next business day after check clearance” and
“package delivery should occur during working hours”. There are several emerg-
ing applications like GIS, time management in the Web, and Personal Informa-
tion Management for mobile systems that could greatly benefit of algorithms
and systems for time granularity constraint reasoning.

In the last years we have been investigating the concept of time granularity
and multi-granularity TCSP, focusing on GSTP, the extension of STP [7] to
multiple and arbitrary granularities. Technically, in a GSTP, binary constraints
have the form Y −X ∈ [m, n] G, where m and n are the minimum and maximum
values of the distance between X and Y in terms of time granularity G. Variables
take values in the positive integers, and unary constraints can be applied on their
domains.
� This work has been partially supported by Italian MIUR (FIRB “Web-Minds”

project N. RBNE01WEJT 005).

B. Faltings et al. (Eds.): CSCLP 2004, LNAI 3419, pp. 142–156, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A System Prototype for Solving Multi-granularity Temporal CSP 143

A first issue in the representation and processing of these constraints is the
need for a clear semantics for time granularities. Business days, for example,
may really have different meanings in different countries or even in different
companies. In this respect GSTP adopts a formalism, first introduced in [3],
which can model arbitrary user-defined time granularities and has a clear set-
theoretic semantics. In order to guarantee a finite representation, granularities in
GSTP are limited to those that can be defined in terms of periodic sets. Hours,
days, weeks, business days, business weeks, fiscal years, and academic semesters
are common examples.

A second issue is related to the difficulty to reduce a network of constraints
given in terms of different granularities into an equivalent one with all constraints
in terms of the same granularity, so that some of the standard algorithms for
CSP could be successfully applied. Indeed, any conversion necessarily introduces
an approximation; For example, a constraint imposing delivery to start the next
business day may be translated in terms of hours with a minimum of 1 hour
and a maximum of 95 hours1. However, if the check is cleared on Monday,
the constraint in hours would allow a shipment on Thursday which is clearly
a violation of the original constraint. Approximate conversion algorithms are
extensively discussed in [3, 4]. We have shown that any consistency algorithm
adopting these conversions as the only tool to reduce the problem to a standard
CSP is inevitably incomplete, and have proposed a different algorithm, called
AC-G, which has been proved to be complete [5].

A prototype system, named GSTP, has been developed at the University of
Milan with the objective of providing universal access to the implementation of
a set of algorithms for multi-granularity temporal constraint satisfaction. GSTP,
in addition to implementing the reasoning algorithms, assists the user in the def-
inition of constraint networks, in their submission to a remote processing service
and in the analysis of the output. A rich pre-defined set of time granularities is
available, but new user-defined granularities can be added, and they will be han-
dled by the constraint solving algorithms. The GSTP system has been publicly
shown at the Intelligent Systems Demonstration venue at IJCAI 2003 [2]. While
the prototype is mainly based on algorithms presented in [5], several enhance-
ments, both theoretical and at the implementation level have been studied and
applied. This paper illustrates the overall architecture and essential features of
the system, reports recent enhancements and preliminary experimental results.

An extensive literature exists on CSP and TCSP problems. The most popu-
lar techniques to deal with CSP are arc- and path-consistency. Several versions
of these algorithms have been proposed [8, 1]. These algorithms are not specific
for temporal constraints and usually assume a finite domain; extensions to deal
with infinite domains and TCSP have also been studied [7], but they do not deal
with periodic sets. Recent work has been done on identifying tractable classes
of periodic CSP [6], but we do not see any immediate applicability of those re-
sults to the problems addressed by GSTP. We are also not aware of any CSP

1 The number 95 takes into account a check clearance at the beginning of a Friday
and a shipment at the end of next Monday according to the constraint.

144 Claudio Bettini, Sergio Mascetti, and Vincenzo Pupillo

system that can directly handle a GSTP problem. Related ideas can be found in
[9], where authors note that AC-3 can be generalized to deal with intensionally
described domains and constraints, provided that the domain restriction opera-
tion, usually contained in the revise procedure of AC-3, can be performed on
the intensional descriptions. Indeed, the AC-G algorithm proposed in our paper
can be considered an extension of the AC-3 algorithm to deal with possibly in-
finite (but periodic) domains and with binary temporal constraints in terms of
multiple periodic granularities.

The rest of the paper is organized as follows: In the next section we briefly
present the architecture of the GSTP system, and describe two of the three com-
ponents, the Web Service and a client graphical interface. In Section 3 we present
the third component, the constraint solver, illustrating the main algorithm and
some recent enhancements. In Section 4 we briefly discuss implementation issues
and experimental results, and in Section 5 we conclude the paper.

2 The GSTP Architecture

Figure 1 shows the general architecture of the GSTP system. There are three
main modules: the constraint solver, the web service, which enables external ac-
cess to the solver, and a web service client user interface that can be used locally
or remotely to design and analyze constraint networks. All data, including time
granularity definitions, constraint network specification, algorithm parameters
and processing requests are encoded in XML following specific XML schemas.

The GSTP Constraint Solver is clearly the most complex and innovative
component, and the one which required the most implementation efforts; It is
described separately in Section 3. Here we give a brief introduction to the main
functionalities of the Web Service and of the Client Interface.

XML

Web Service
GSTP constraint solverXML

SOAP / HTTP

Fig. 1. The GSTP Architecture.

A System Prototype for Solving Multi-granularity Temporal CSP 145

2.1 The GSTP Web Service

The Web Service defines, through a WSDL specification, the parameters that can
be passed to the constraint solver, including the XML schema for the constraint
network specification. The service is exposed to the public web, and despite we
provide a specific client application, it can be invoked by different clients or web
applications. Therefore, in principle, our service can be easily integrated in any
third party software which requires GSTP processing.

The web service application performs three tasks: first of all it validates the
parameters by checking if the XML is valid with respect to the XML schema
and if the names of the granularities used are already defined. Then it invokes
the solver and finally it passes back the results in XML format.

A single service is currently supported even if a number of parameters can
be used to specify different versions of the constraint solver algorithms. It is
possible, for example, to give up completeness by selecting a variant of the main
algorithm in order to have much lower response time, or to use the complete
version and possibly set time-out values different from the default ones.

2.2 The GSTP Client

The main goal of the client interface, in addition to remotely interact with the
constraint solver through the web service, is to facilitate two tasks: i) the specifi-
cation and editing of input networks, and ii) the analysis of processed networks.

For the former task, the GSTP Client supports the user by providing standard
functionalities like adding, editing and removing nodes or edges. Networks can
also be saved and browsed in XML format.

For the latter, more specialized tools have been developed. In fact the result
of the GSTP Constraint Solver is a fully connected network having each arc
possibly labeled by one constraint for each of the granularities appearing in the
input network. It is clear that is practically infeasible to graphically show all
this information in a single screen-shot in a way that is still useful to the user.
Therefore some functionalities have been introduced: first of all zooming and
scrolling features allow to examine large networks, while nodes can be automati-
cally disposed in order not to overlap with each other or to preserve the position
they had in the input network. Moreover it is possible to selectively hide and
show information from the network: in particular it is possible to have views of
the network in terms of specific single or set of time granularities.

Figure 2 shows the GSTP Client interface showing the result of a GSTP
constraint solver computation. The nodes are disposed as they were in the input
network, and the only edges that are shown are the ones that were explicit in
the input network. All the constraints are hidden except those in terms of the
granularity bhday (the business hour day, i.e., the working hours during the
business days).

A specific functionality has been introduced in order to show a network so-
lution if the network is found to be consistent (see Figure 3).

146 Claudio Bettini, Sergio Mascetti, and Vincenzo Pupillo

Fig. 2. The view of a processed network in terms of a specific time granularity.

Fig. 3. The minimum solution found by the solver is displayed by the GSTP client
interface.

3 The Constraint Solver

The algorithmic task of the constraint solver is to decide the consistency of a
set of granularity constraints, to find a solution if one exists, and to restrict
the constraints as much as possible while preserving the same set of solutions.
Standard algorithms to solve TCSP cannot be easily adapted to GSTP. In order
to understand the exact semantics of these networks we first report a few basic
notions and then describe our strategy for constraint solving.

3.1 Basic Notions

For lack of space we define informally time granularities referring the interested
reader to [3] for formal definitions. A granularity is intuitively seen as a particular
grouping of instants from a time domain. Each group is called a granule. In most

A System Prototype for Solving Multi-granularity Temporal CSP 147

application domains we can find a bottom granularity, with the property of being
sufficiently fine grained so that no further refinement is needed to represent data
in the application domain, and that all other granularities can be represented as
groupings of granules of this one. For example, if day is the bottom granularity,
week can be defined by grouping 7 days. More complex groupings are needed to
represent month, academic-semester, or business-week, but they can all be
represented by a periodic expression whose primitive elements are the granules
of the bottom granularity. For practical reasons, we index granules with posi-
tive integers, so that periodic expressions are in terms of positive integers and
algebraic operations can be quite easily defined on granularities. As we will seen
in the following, the domains of variables in our constraint networks are indeed
indexes of granules of the bottom granularity, and hence, a network solution is
the assignment of a specific granule to each variable.

In the following, the function $t1%G denotes the index of the granule of gran-
ularity G containing the granule of the bottom granularity indexed by t1. For
example, $32%month = 2, i.e., the day indexed by 32 falls in the month indexed
by 2, if we assume that the bottom granularity is day, the first day is January
1st and the 1st month is January. Similarly, the function (j)G denotes the set
of indexes of granules of the bottom granularity forming the j-th granule of G.

Definition 1. Let m, n ∈ Z∪{−∞, +∞} with m ≤ n and G a granularity. Then
[m, n] G, called a temporal constraint with granularity (TCG), is the binary
relation on positive integers defined as follows: For positive integers t1 and t2,
(t1, t2) |= [m, n] G ((t1, t2) satisfies [m, n] G) if and only if (1) $t1%G and $t2%G
are both defined, and (2) m ≤ ($t2%G − $t1%G) ≤ n.

Intuitively, for instants t1 and t2 of granules of the bottom granularity, if t′1
and t′2 are the indexes of the granules of G containing t1 and t2, respectively
(i.e., t′1 = $t1%G and t′2 = $t2%G), t1 and t2 satisfy [m, n] G if the difference of
t′2 and t′1 is between m and n (inclusively). That is, the instants t1 and t2 are
first translated in terms of G, and then the difference is taken. If the difference
is at least m and at most n, then the pair of instants is said to satisfy the
constraint. For example, if day is the bottom granularity and t1 and t2 denote
two specific days, the pair (t1, t2) satisfies [0, 0] week if the days denoted by t1
and t2 are within the same week. Similarly, (t1, t2) satisfies [−1, 1] month if those
two days are at most one month apart (and the order of them is immaterial).
Finally, (t1, t2) satisfies [1, 1] year if the day denoted by t2 is in the next year
with respect to the one denoted by t1.

Definition 2. A constraint network (with granularities) is a directed graph
(W, A, Γ, Dom), where W is a finite set of variables, A ⊆ W × W a set of
arcs, Γ is a mapping from A to the finite sets of temporal constraints with gran-
ularities, and Dom is a mapping from W to possibly bounded periodical subsets
of the positive integers (indexes of the bottom granularity).

Note that in these networks multiple constraints (in terms of different time
granularities) can be associated with the same arc. From the results in [3], where
temporal constraints with granularities were first defined, it follows that, even

148 Claudio Bettini, Sergio Mascetti, and Vincenzo Pupillo

if constraints on the domains are excluded, and a single TCG is associated with
each arc, the consistency problem is NP-hard when arbitrary periodic granular-
ities are allowed, while the single-granularity problem is in PTIME [7].

3.2 A Strategy to Solve GSTP

Constraint satisfaction in GSTP is based on the implementation and optimiza-
tion of algorithms presented in recent papers. An extension to standard path-
consistency based on approximate conversions among constraints with granulari-
ties has been proposed in [3]. However, the algorithm was shown to be incomplete
with respect to consistency. A sound and complete consistency algorithm, called
AC-G (Arc-Consistency with Granularities), has been recently proposed in [5].
On the other side, this algorithm does not directly help in the refinement of
constraints and it can greatly benefit from using the previous algorithm as a
preprocessing step.

Hence, the solution adopted for the GSTP constraint solver is shown in Fig. 4.
In step 1, the original network is decomposed in as many networks as are the
granularities appearing in the constraints; each network has the explicit con-
straints given in terms of one granularity as well as constraints in the same
granularity obtained by conversion from others on the same arc, but in terms of
different granularities. Then, standard path consistency is applied to each net-
work; networks are re-merged in a single one and if any refinement occurred a
new conversion step followed by path consistency is performed, until a fix-point
is reached. The resulting network most likely has refined constraints with respect
to the original one. Any inconsistency captured by this processing has the effect
of terminating the constraint solver reporting the inconsistency status. However,
if this is not the case, the network may still be inconsistent and it will go through
AC-G (step 2) which is guaranteed to detect an inconsistency if one exists and
was not detected by the previous step. From the node domains returned by AC-
G, it is possible to further refine some of the constraints (the function doing this
job in step 3 is called RefineArcsFromNodes()). The steps are repeated, since
path consistency applied to the refined constraints may lead to some changes.
Correctness and termination have been proved.

Conversion is not a trivial task. A simple example has been given in the
introduction considering the conversion of the constraint [1, 1]b-day in terms of
hours. Since, in general, it is not possible to replace a TCG with an equivalent
one in terms of a different granularity, our goal is to find a TCG which is the

Repeat
1. Repeat Conversion+PC Until no change is observed
2. AC-G
3. RefineArcsFromNodes()

Until no change is observed
Return Inconsistent or NewNetwork+solution

Fig. 4. The main loop of the constraint solver.

A System Prototype for Solving Multi-granularity Temporal CSP 149

INPUT: a network N = 〈W,A, Γ, Dom〉.
OUTPUT: a network N ′ = 〈W,A, Γ, Dom′〉 equivalent to N and
having one of the domains empty if inconsistent.

METHOD:
Q := {(Xi, Xj) | (Xi, Xj) ∈ A}
while Q �= ∅ do
1. select and delete an arc (Xl, Xk) from Q
2. if Dom(Xl) �=MAX Dom(Xl) ∩ (Dom(Xk) � Γ (Xk, Xl)) then

2.1. Q := Q ∪ {(Xi, Xl) | (Xi, Xl) ∈ A, i �= k}
2.2. Dom(Xl) := Dom(Xl) ∩ (Dom(Xk) � Γ (Xk, Xl))

3. if Dom(Xl) =MAX ∅ then Q := ∅ ; Dom(Xl) := ∅
end while

Fig. 5. The AC-G algorithm.

tightest among those in terms of the new granularity that are implied by the
network for the same arc2. With respect to previously published algorithms for
granularity constraint conversion [3], in the current implementation of GSTP, we
use a new algorithm described in [4] that has been proved to derive the tightest
converted constraints, and indeed leads to a more effective preprocessing for the
constraint solver.

3.3 The AC-G Algorithm

The most challenging part of the system is perhaps the implementation of is
algorithm, called AC-G. It is based on arc-consistency, and it is essentially an
extension of the AC-3 algorithm [8] to deal with possibly infinite (but periodic)
domains and with constraints in terms of multiple periodic granularities. This
extension is not trivial since it involves the algebraic manipulation of the mathe-
matical characterization of granularities. AC-G also derives the minimal solution
for the constraint network.

AC-G is in general exponential in the number of granularities involved in
the network, but can be considered to take polynomial time when the time
granularities in the constraints are known by the system on which the algorithm
is run (i.e., the description of granularities is not given as part of the CSP). Note
that most practical applications can satisfy this condition.

A sketch of the AC-G algorithm is reported in Figure 5. Without loss of
generality, we assume that for each TCG [m, n] G on arc (Xl, Xk), the TCG
[−n,−m] G exists on arc (Xk, Xl). Basically, the algorithm non-deterministically
selects and deletes an arc (Xl, Xk) from a queue (Q) that initially consists of
all the arcs, and uses the domain for Xk and the constraints between Xk and
Xl to restrict the domain of Xl. If it is restricted, the queue is updated so that
any arcs that could lead to further restrictions are re-inserted. Eventually, a fix-
point will be reached and the queue will become empty. Except for the presence
2 By logically implied we intuitively mean that when the TCG is associated with the

same arc as the source TCG, the solutions for the original network are still solutions.

150 Claudio Bettini, Sergio Mascetti, and Vincenzo Pupillo

of granularity constraints, this is a classical arc-consistency algorithm, in the
version known as AC-3 [8]. The central issue in the algorithm is how domains
can be restricted considering the granularity constraints associated with the
arcs. This is achieved by the operation Dom(Xk)+ Γ (Xk, Xl) that is defined as
returning the set {tl | ∃tk ∈ Dom(Xk) ∧ (tk, tl) |= Γ (Xk, Xl)}. This ensures that
for each value tl in the domain of Xl, there is a value tk in the domain of Xk such
that (tk, tl) satisfies all the constraints on arc (Xk, Xl). The current domain of Xl

is then intersected with the set derived by the + operation, since any other values
for Xl cannot be part of a network solution. A second issue which distinguishes
this algorithm from known arc-consistency algorithms is that we are dealing with
possibly infinite periodical domains. This not only requires the implementation
of algebraic operations over these sets, but may also pose questions about the
termination of the algorithm. Essentially, termination is guaranteed by the fact
that the equality and inequality tests in the algorithms are limited by the finite
constant MAX .3 The proper identification of this constant has been a relevant
technical issue, since it greatly affects the complexity of the algorithm and it is
also essential to guarantee its completeness.

While the AC-G algorithm is exactly the one presented in [5], in Figure 6
we present a variant of the procedure to compute + that has lead to significant
performance improvements in the implementation of the constraint solver4.

Very briefly, in Step 1 the indexes of the starting node which denote granules
not included in granules of the constraint granularity are excluded (they could
not contribute to the result). In Step 2 we determine for each interval of indexes
of the starting node the corresponding interval in the ending node by shifting
the interval extremes of the minimum and maximum distances specified in the
constraint. The optimization we introduce with respect to [5] is that as soon as
one of these resulting intervals covers a span of granules greater than the period
we stop the procedure (except for computing global bounds in Step 4). Indeed,
since we know that the result is periodic with period P , an interval greater than
P implies that the result is G itself, possibly limited by new bounds. Step 3 is
executed only when none of the intervals resulting from Step 2 is larger than
P . In this case the period characterization of the resulting set is obtained by
dropping some granules of G accordingly to the intervals derived in Step 2.

The correctness proof can be trivially reduced to the one provided in [5].

4 Implementation and Experimental Results

In this section we provide some information about the technologies used to im-
plement the GSTP service and report some experimental results.

3 S1 �=MAX S2 (S1 =MAX S2, resp.) means that S1 and S2 are different (equal, resp.)
if only numbers no greater than MAX are considered.

4 The version of � reported here assumes a single TCG is associated with each arc.
The same procedure can be used in the general case by first transforming the input
network into an equivalent one that meets this requirement. Alternatively, a slightly
different procedure can be used to operate directly on multi-TCG arcs.

A System Prototype for Solving Multi-granularity Temporal CSP 151

INPUT: a finite or periodical set S and a TCG [m, n] G.

OUTPUT: the finite or periodical set S � {[m, n] G}
METHOD:

Step 1: Replace S with its intersection with G. If empty, return the empty set.
Step 2: (Any bound on S and G is ignored here and in Step 3)

For each interval [ai, bi] in the resulting representation of S
Do:
– compute [Loi, Upi] with Loi = min��ai�G + m�G, and Upi = max��bi�G +
n�G.
– If |Upi − Loi| ≥ P − 1 then Goto Step 4 (G is the output set, with bounds
as computed in Step 4). Endif.
– If Loi−1 ≤ Loi and �Loi�G ≤ �Upi−1�G + 1 Do

– substitute interval [Loi−1, Upi−1] in the list with [Loi−1, Upi].
– If |Upi − Loi−1| ≥ P − 1 then Goto Step 4 (G is the output set,
with bounds as computed in Step 4). EndDo

Otherwise insert [Loi, Upi] in the list. Endif.
EndDo

Step 3: The period representation of the output set is derived from the one of G
by excluding each granule G(j) such that there is no K ∈ Z and no i for which
we have j = j′ +K ∗R, �Lo1�G ≤ j′ < �Lo1 +P �G, and �Loi�G ≤ j′ ≤ �Upi�G

where R is the number of granules of G in each period, Lo1 is the first value
derived in Step 2 and [Loi, Upi] is the i-th pair of bounds in the list computed
in Step 2.

Step 4: The global bounds of the output set are:
Lo = max(min��tfirst�G + m�G, min�l�G), and
Up = min(max��tlast�G + n�G, max�u�G), where tfirst, tlast are the first and
last values in the set S from Step 1, and l, u are the indexes of the first and
last granule of G.

Fig. 6. The optimized procedure for �.

4.1 Technologies and Optimizations

The Web Service has been implemented in Java using the “Apache Axis” devel-
opment framework, and Tomcat as the application server. SOAP over HTTP is
used to transmit and receive requests. The service is currently active on a pub-
licly accessible server. Java is also the choice for the web service client interface,
mostly because of platform independence. It has been tested on recent versions
of the Linux and Windows operating systems. On the contrary, the constraint
solver has been entirely implemented in ANSI C 99 using the GCC compiler and
the libxml2 libraries for parsing XML input. The choice was clearly dictated by
the efficiency of the resulting code with respect to other choices.

Regarding optimizations, we worked in particular on the efficient use of mem-
ory, devising appropriate data structures and a cache mechanism for granularity
internal representation. The cache is initialized after parsing the input constraint
network. It is implemented through a hash table having as key the granularity
name. Another optimization worth mentioning is a particular ordering of the list

152 Claudio Bettini, Sergio Mascetti, and Vincenzo Pupillo

Q of arcs to be considered by the AC-G algorithm. The ordering is based on the
computation of the least common multiple among the period of the granularity
in the constraint and the periods of the periodical sets for the domains of start-
ing and ending nodes. Arcs with lower values are processed first. This strategy
has significantly reduced the processing time.

4.2 Experimental Results

The constraint solver code has been totally rewritten from its first implementa-
tion and extensive testing has been performed. In the following we first illustrate
how we generated our benchmarks, and then report experimental results both
regarding performance and observed upper bounds on the number of executions
of the main loops of the algorithm.

Generating Benchmarks. A nontrivial problem is the generation of a sig-
nificant set of consistent constraint networks. Indeed, the intuitive approach of
generating a network by connecting nodes with randomly created constraints
leads to a very high rate of inconsistent networks. We addressed this problem by
building networks iteratively, ensuring the consistency of the networks obtained
at each iteration. The generation process starts from a small consistent network
and a node is added at each iteration. This node is connected to a randomly
chosen node by labeling the arc with a single-granularity randomly generated
constraint C. The GSTP solver is then executed to verify the consistency of the
resulting network. If it is not consistent, C is replaced with a new randomly cho-
sen constraint, and this process is repeated until a consistent network is found
Then, additional arcs are added between the new node and other randomly cho-
sen nodes, using as labels a relaxed version of the constraints obtained by the
GSTP solver that was executed for consistency check5. Since the constraints re-
turned by GSTP preserve consistency, their relaxation preserve it as well. Note
that, if no relaxation was performed, the generated network would contain a
large number of constraints which would not be restricted by path consistency,
and this is not realistic for real networks.

Several parameters affect the generation illustrated above, the most relevant
being the set of possible granularities and the range of values for the minimum
and maximum distance for the randomly generated constraints, and the range
of values for the number of arcs added at each iteration. In particular, the last
parameter determines the density of arcs in the generated network: we say that
a network has a density of d% if each node connects with about d% of the other
nodes in the network.

The benchmark tests we performed have been obtained generating a great
number of networks (tens of thousands). The specific benchmark test considered
in this paper includes networks with up to 50 nodes, a density of arcs of 5%,
and the granularity of each constraint randomly selected among a set of 10
5 Note that path-consistency is a step of the algorithm, and returns a set of constraints

(each one in a different granularity) for each pair of nodes in the network. We
currently take one randomly chosen constraint from each set.

A System Prototype for Solving Multi-granularity Temporal CSP 153

different granularities. Granularities in this set include standard ones with their
exceptions (e.g., years modeling leap years), granularities with non-contiguous
granules (like business days), and granularities whose granules have internal gaps
(e.g., business months).

A different range of values for minimum and maximum distances for each
randomly generated constraint is specified depending on the granularity of the
constraint. Ranges are chosen trying to simulate realistic problem specifications,
and taking into account that small distance values in terms of granularities with
large granules are converted during constraint processing into large distance
values in terms of granularities with small granules. For example, a maximum
distance of +100 in terms of years becomes +885383 in terms of hours. In order
to understand the impact of this parameter, we performed a specific test with
two sets of networks with the second one generated using ranges which are larger
by a order of magnitude with respect to the ones used for the first set.

Performance Results. All the performance experimental results reported here
are obtained by averaging the processing time over several networks generated
using the same parameters. As expected, the processing time is significantly af-
fected by the number of nodes in the network. However, experimental results
have shown that a very relevant parameter is the subset of granularities appear-
ing in the constraints. When the least common multiple of their periods is large,
the processing time sharply increases, and the size of the network in terms of
number of nodes becomes less relevant.

Figure 7 shows the difference in performance between networks involving a
set of granularities having a high common period, with respect to networks with
a low common period.

The chart presents the processing time for four classes of networks differing
in the granularities used in their constraints. The first class has all constraints
in terms of the granularity hour and the common period is clearly 1. The second
class has constraints in terms of granularities hour and day, with their common

Fig. 7. Computation time for multi-granularity networks.

154 Claudio Bettini, Sergio Mascetti, and Vincenzo Pupillo

period being 24. The granularities appearing in the third class of networks are
bhday and week, and their common period is 168. Finally, the fourth class of
networks involve day, month, and year with a common period6 of 35064. The
chart shows that the processing time grows significantly with the value of the
period. In particular, for the fourth class of networks, the processing time with
25 nodes is greater than the processing time of a 50 nodes network of the third
class.

Figure 8 shows how the constraints distance range affects processing time.
The two classes of networks considered in Figure 8 have constraints in terms of
the same set of granularities (bhday and week), but the second class has been
generated using distance ranges that are larger than the ones used for the first
class by one order of magnitude. It is clearly visible how this parameter affects
processing time. Accordingly to our experiments, the processing time growth is
similar for classes of networks with a single granularity and in classes of networks
using multiple granularities.

Fig. 8. Impact of the distance range on processing time.

We should also mention that first evaluations on the impact of arc den-
sity show very moderate variations of the processing time with changes to this
parameter. While we are working on several optimizations that will definitely
reduce the execution times measured for this benchmark, the optimizations will
not affect the qualitative observations reported above on the main parameters
affecting GSTP performance.

Experimental Results on the Upper Bound for Loop Cycles. The exten-
sive testing performed with our benchmarking suite has shown that the number
of iterations of Conversion and Path Consistency, i.e., the loop at Step 1 of the
algorithm in Figure 4, is very low. Indeed, this number has never been more
than 5 in our experiments.
6 We consider leap years, but ignoring exceptions to the 4 years periodicity.

A System Prototype for Solving Multi-granularity Temporal CSP 155

We have also observed that the number of iterations of the external loop of
the algorithm, i.e., the three main steps in Figure 4, is very low. Actually, it has
never been more than 2 in our experiments. Note that any network inconsistency
is always detected at the first iteration, either by Conversion+PC or by the first
run of AC-G.

These results are very significant to us since the current theoretical bounds
on the number of iterations depend on the range of values in the constraints.
They indicate that, despite our efforts in this direction, a much better theoretical
characterization of the bounds on iterations can probably be obtained.

5 Conclusions

In this paper we presented the GSTP system, a web service to solve TCSP
expressed in terms of multiple time granularities. It is to our knowledge the
only implementation of a complete algorithm for consistency checking of these
networks. We are currently working in two directions. On one side we are still
working at the optimization of reasoning algorithms, while on the other side we
are enhancing the web service XML-based architecture to provide easy access
to the algorithms by external applications, and to facilitate the specification of
user-defined time granularities to be used in GSTP.

Acknowledgments

Many people contributed to the implementation of the GSTP system. In par-
ticular we would like to thank Carlo Cestana for his work on the GSTP web
service, Simone Ruffini for his work on granularity constraint conversions, and
Sean Wang for his valuable suggestions on implementation issues. This work
has been partially supported by Italian MIUR (FIRB “Web-Minds” project
N.RBNE01WEJT 005).

References

1. C. Bessière. Arc-Consistency and Arc-Consistency Again. Artificial Intelligence
65(1):179–190, 1994.

2. C. Bettini, S. Mascetti, V. Pupillo. GSTP: A Temporal Reasoning System Support-
ing Multi-Granularity Temporal Constraints, in Proc. of Int. Joint Conference on
Artificial Intelligence (IJCAI), (Intelligent Systems Demonstrations), pp. 1633-1634,
Morgan Kaufmann, 2003.

3. C. Bettini, X. Wang, S. Jajodia. A General Framework for Time Granularity and
its Application to Temporal Reasoning. Annals of Mathematics and Artificial Intel-
ligence 22(1,2):29–58, 1998.

4. C. Bettini, S. Ruffini, Granularity Conversion of quantitative temporal constraints
DICo – Università di Milano, Technical Report N. 276-02,
http://homes.dico.unimi.it/∼bettini/papers/tr276-02.pdf.

5. C. Bettini, X. Wang, S. Jajodia, Solving Multi-Granularity constraint networks,
Artificial Intelligence, 140(1-2):107–152, 2002.

156 Claudio Bettini, Sergio Mascetti, and Vincenzo Pupillo

6. Hubie Chen, Periodic Constraint Satisfaction Problems: Polynomial-Time Algo-
rithms. In Proc. of Int. Conf. on Principles and Practice of Constraint Programming,
LNCS 2833, pp. 199–213, Springer, 2003.

7. R. Dechter, I. Meiri, J. Pearl. Temporal constraint networks. Artificial Intelligence
49:61–95, 1991.

8. A. Mackworth, E. Freuder. The complexity of some polynomial network consis-
tency algorithms for constraint satisfaction problems. Artificial Intelligence 25:65–
74, 1985.

9. A.K. Mackworth, J. A. Mulder, W. S. Havens. Hierarchical Arc Consistency: Ex-
ploiting Structured Domains in Constraint Satisfaction Problems. Computational
Intelligence, 1:118–126, 1985.

Computing Equilibria Using Interval Constraints

Lucas Bordeaux1,� and Brice Pajot2

1 DIS, Univ. di Roma “La Sapienza”, Italy
bordeaux@dis.uniroma1.it

2 LINA-CNRS FRE 2729, Univ. de Nantes, France
pajot@lina.univ-nantes.fr

Abstract. Finding Nash equilibria is a hard computational problem
which is central to game theory and whose applications range from
decision-making to the analysis of multi-agent systems. Despite consid-
erable recent interest and significant recent improvements, the problem
remains essentially open in the case of n-person games. We investigate the
use of interval-based constraint solving techniques to compute equilibria.
We report on experiments made using several encodings of randomly-
generated games into continuous CSP, and draw conclusions regarding
both the scalability of interval methods for game-theoretic applications
and the impact of the symbolic representation of polynomials and of the
choice of the propagation technique on the speed of resolution.

1 Introduction and Motivation

Game theory [14] studies situations in which two or more agents with conflict-
ing interests are interacting. It provides mathematical arguments to determine
which strategy an agent should choose to maximise its profit, and to predict
which global scenarios are most likely to arise if all agents behave rationally.
As a tool for decision-making, game-theory is complementary to traditional con-
straint solving and optimisation frameworks in that it can take into account the
behaviour of competitors or opponents.

Emerging from research in economics, game theory also found considerable
applications to other scientific areas and to computer science in particular. For
instance, it is used in the analysis of multi-agent systems [5] and it is a key
ingredient in the emerging theory of the Internet [16]. We focus here on the
computational problems raised by game-theory, of which the most prominent is
undoubtedly the computation of Nash equilibria. An equilibrium is a situation
in which no agent can increase its benefits by changing his strategy unilaterally.
It is therefore natural in many cases to expect that rational behaviour will lead
to equilibria. The computation of equilibria is a challenging problem which has
recently received interest from the artificial intelligence community (see, e.g.,
[7, 11, 8, 20, 4, 3, 2, 10, 17]) but, surprisingly, we are not aware of any work on
equilibria based on constraint programming.
� Work partially supported by project ASTRO funded by the Italian Ministry for

Research under the FIRB framework (funds for basic research).

B. Faltings et al. (Eds.): CSCLP 2004, LNAI 3419, pp. 157–171, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

158 Lucas Bordeaux and Brice Pajot

Interval constraint solving [1] is an approach to the resolution of real-valued
nonlinear systems based on interval propagation. Among other advantages, it
shows in some cases superior efficiency to classical mathematical programming
methods, it can deal with a large class of constraints (possibly non polynomial
ones) and, thanks to a clever use of outward-rounding, it gives correct results
(no solution is lost) despite of the finiteness of number representation in floating-
point arithmetics. A good example of freely available interval constraint-solving
software tool is realpaver1, developed by Laurent Granvilliers [6].

Although a very promising technology for solving a wide range of important
non-linear problems, interval constraint solving has so far not found as many
industrial-size applications as discrete constraint solving. Recent successes in
such application areas as computer-aided design are starting to change this sit-
uation, and new application areas would contribute to the dissemination of this
technology. We claim that the application of interval constraint solving to the
large avenue of game-theoretic problems is promising, and our purpose here is
to initiate its investigation.

Our approach is, more specifically, to focus on the problem of computing Nash
equilibria in n-person games using interval constraints. Since the problem has
not been addressed yet in the constraint programming literature, we give a self-
contained and CP-oriented presentation of the needed game-theoretic material
(Section 2), putting emphasis on the encoding of games into CSP (Section 3).
Based on specificities of interval-based methods which we introduce in Section 4,
we then propose a number of improved variants of this encoding. We describe
an implementation based on realpaver and report on our experimentations (Sec-
tion 5). Our conclusions and perspectives are summarised in Section 6.

2 Games and Equilibria

The simplest model in game theory assumes that each player has a finite num-
ber of possible strategies, and that the reward of each player can be evaluated
by a numerical value (say a real number) called payoff which depends on the
combination of the strategies chosen by all players.

2.1 An Introductory Example

Basic game-theoretic notions are best understood using examples. Consider for
instance a situation in which two agents have to choose between 3 strategies.
The strategies of player 1 are called a, b and c and those of player 2 are called
α, β and γ. The payoff expected by both players is represented by the following
tables (left-hand-side for player 1, right-hand-side for player 2). For instance, if
1 and 2 respectively choose strategies b and γ, their respective payoffs will be
55 and 45. The goal of each player is to maximise its outcome, and decision is
taken secretly, so each player has to anticipate what the other can do.
1 http://www.sciences.univ-nantes.fr/info/perso/permanents/granvil

Computing Equilibria Using Interval Constraints 159

α β γ α β γ

1 :
a 35 60 15
b 45 50 55
c 40 70 10

2 :
a 65 40 85
b 55 50 45
c 60 30 90

(1)

Classical interpretations are, for instance, that strategies correspond to prop-
ositions in an electoral programme (and payoffs to expected voting scores), to
investment policies (and payoff reflect market share), or that they represent
military options (and payoffs estimate the probability of victory).

Pure Equilibria. Although no strategy is clearly preferable to all the others in
all cases (for neither player 1 nor player 2), it is clear that player 2 should not
choose strategy β, because α is a better choice in any case (strategy β is said
to be dominated by α, domination makes decisions easier but it arises only in
very particular cases). Now in the simplified game where strategy β is ignored,
player 1 knows what to do, because b is the best choice in both of the remaining
cases. But the best player 2 can do then is choose strategy α, and the players
should therefore choose the combination 〈b, α〉. What characterises this rational
choice is that each of the strategies b and α is the best response to the other: if
player 1 chooses strategy b, the best player 2 can do is choose α; if 2 chooses α, the
best player 1 can do is choose b. Such a situation is called a (Nash) equilibrium,
a most important game-theoretic notion acknowledged as a key-concept in the
modelling of rational behaviour.

Mixed Equilibria. In our case, the equilibrium was pure in the sense that
each player could choose one unique strategy, on which all of his effort would
concentrate. This corresponds to situations where resources are indivisible. If one
can split his investment between several strategies, or makes a choice randomly
according to some probability distribution it fixes in advance, the situation gets
a bit more complicated. For the sake of readability, consider the simpler game:

α β α β

1 : a 2 0
b 0 1 2 : a 1 0

b 0 2
(2)

Two pure equilibria in this game are obviously 〈a, α〉 and 〈b, β〉. Now, what if
each player decides to toss a coin to determine its strategy (i.e., each strategy
has probability 1

2)? Clearly, knowing that player 2 will toss a coin, the payoff for
player 1 is defined as:

σ1(a).
(

1
2
.2 +

1
2
.0

)
+ σ1(b).

(
1
2
.0 +

1
2
.1

)
= σ1(a) +

1
2
.σ1(b)

where σ1(x) represents the probabilities given to each strategy x ∈ {a, b} by
player 1. Choosing σ1(a) = 1

2 and σ1(b) = 1
2 leads to a payoff of 3

4 for player 1,
whereas the strategy (σ1(a) = 1, σ1(b) = 0) would be more appealing (payoff
of 1). Therefore we have an unstable situation, where the two strategies are not

160 Lucas Bordeaux and Brice Pajot

best responses to each other. On the contrary, if player 1 chooses the distri-
bution (σ1(a) = 2

3 , σ1(b) = 1
3) and player 2 chooses (σ2(α) = 1

3 , σ2(β) = 2
3),

the expected payoff of player 1 becomes σ1(a).(1
3 .2 + 2

3 .0) + σ1(b).(1
3 .0 + 2

3 .1) =
2
3 (σ1(a)+σ1(b)) (and symmetrically for player b). Since σ1(a) and σ1(b) sum up
to 1, player 1 has no reason to deviate from its strategy which is as maximal
as any other strategy would be. Each choice is therefore a best response to the
other: by choosing the combination (2

3 , 1
3), each player fixes the payoff of its

opponent to 2
3 in any case. This is but a particular situation leading to an equi-

librium on distributions, which is called a mixed equilibrium. Note that we have
presented examples of games with 2 players, obviously the concept generalises
to n-players.

2.2 Definitions of Games and Equilibria

Games. As illustrated in the previous subsection, the games considered in clas-
sical computational game theory are composed of players, each having a set of
(pure) strategies, and of a means to evaluate the payoff of each combination.
The general formulation of games is the following:

Definition 1. [game] A game is a triple 〈N ,S,P〉 where:

• N = {1, . . . , n} is a finite set of players, each of which is identified by (and
with) its number;

• S = {S1, . . . , Sn} defines a set Si, called strategy set, for each player i. Each
Si is a finite set of names called (pure) strategies;

• P = {p1, . . . , pn} is a set of payoff functions (again, one for each player),
each pi is a function of signature S1 × . . .× Sn → R.

Structured Games. An important question is how the payoff functions are
defined. In the case of two-person games, the payoff functions can be defined by
a pair of matrices (a.k.a. bimatrix). In the general case, n-dimensional arrays
would be of size

∏
i=1..n |Si|, which is exponential in n. It has been noticed by

several authors that realistic representations should reflect the locality of the
decisions taken by each player: in a system involving a large number of agents,
each of them typically takes its decisions according to a restricted subset of
the others. In other words, each pi function is indeed a function of signature
Sd1 × . . . × Sdp → R for a selected subset of indices {d1, . . . , dp} ⊆ {1, . . . , n}.
This type of games is equivalent to the graphical games studied in [7, 11].

Definition 2. [structured game] A structured game is a triple 〈N ,S,D,P〉
where N = {1, . . . , n} is a finite set of players, S defines the strategy sets and:

• D = {D1, . . . , Dn} is the set of dependencies, each Di ⊆ {1, . . . , n} repre-
sents the subset of players whose decision impacts player i’s payoff;

• P = {p1, . . . , pn} is a set of payoff functions, each pi is a function of signa-
ture Sd1 × . . .× Sdp → R where Di = {d1, . . . , dp}.
In all practically relevant cases, we have i ∈ Di (the payoff of a player de-

pends, in particular, on its own choices).

Computing Equilibria Using Interval Constraints 161

Equilibria. We shall call (pure) situation a vector s = 〈s1, . . . sn〉, where
si ∈ Si, which gives the pure strategy chosen by every player. Payoff functions
therefore assign a (positive real) number to each situation.

Slightly abusing notation for the sake of readability, we note pi(s) the payoff
of player i even though not all the values si are actually taken into consideration.

Definition 3. [pure equilibrium] A (pure) situation s = 〈s1, . . . , sn〉 is a (pure)
equilibrium if the choice si made by each player i maximises pi(s) i.e., ∀i ∈ 1..n:

pi〈s1, . . . , sn〉 = max{pi〈s1, . . . , s
′
i, . . . , sn〉 | s′i ∈ Si}

Defining mixed equilibria just complicates the notation a little more, and
requires defining mixed strategies based on probability distributions. We denote
probability distributions over a (typically finite) set A by Dist(A), i.e., Dist(A)
denotes the set of mappings f from A into [0, 1] s.t.

∑
v∈A f(v) = 1.

Definition 4. [mixed strategy, mixed situation] A mixed strategy for player i
is a probability distribution over the set of pure strategies of i, i.e., a function
σi ∈ Dist(Si). A mixed situation is a vector σ = 〈σ1, . . . , σn〉, which gives the
mixed strategy chosen by every player.

The payoff of a mixed situation is determined by the payoff of each pure
situation as follows (abusing notation again, we also note mixed payoffs as pi):

Definition 5. [mixed payoff] The payoff of a mixed situation σ = 〈σ1, . . . , σn〉
for player i is defined by:

pi(σ) =
∑

s∈S1×...×Sn

(
pi(s).π(s)

)

where π(s) =
∏

j∈1..n σj(sj) denotes the probability of situation s.

Definition 6. [mixed equilibrium] A mixed situation σ = 〈σ1, . . . , σn〉 is a
mixed equilibrium if the choice σi made by each player i maximises pi(σ) i.e.,
for each i ∈ N :

pi〈σ1, . . . , σn〉 = max{pi〈σ1, . . . , σ
′
i, . . . , σn〉 | σ′

i ∈ Dist(Si)}
In the case of structured games, each player only imposes maximality w.r.t. the
set Di = {d1, . . . , dp} of players it depends on, which just complicates a bit the
notation (we assume i = da):

pi〈σd1 , . . . , σdp〉 = max{pi〈σd1 , . . . , σ
′
da

, . . . , σdp〉 | σ′
da
∈ Dist(Si)}

2.3 State of the Art on Computing Equilibria

Pure equilibria are not guaranteed to exist, and they do not raise interesting
computational issues (they can be computed by simply enumerating the pure
strategies, i.e., the cells of the tables). On the contrary, mixed equilibria prov-
ably exist for every game, and there may even exist many of them, possibly

162 Lucas Bordeaux and Brice Pajot

with different payoffs, as proved by Nash [15]. But their computation is difficult
and no polynomial-time algorithm is known which solves the problem in general.
Two cases are more favourable: 2-person games which are 0-sum (i.e., in which
the sum of the payoffs of the two opponents is constant) can be solved by linear
programming and are therefore tractable. For 2-player games in general, an algo-
rithm due to Howson and Lemke works well in practice [21]. Like the simplex,
to which it is similar, its worst-case runtime is however provably exponential2.

The problem of efficiently computing equilibria for n-person games is essen-
tially open, and it is clear that our effort should focus on this problem. Several
algorithms have been proposed in the literature [13] but their scalability is so far
acknowledged to be insufficient. Datta [4] reports on her experiments with the
prominent game-theoretic software package gambit [12] as follows: the only games
which it was able to solve with any consistency were [. . .] 3 players, each with
two pure strategies. Very recent work from the AI community [7, 11, 8, 17] have
lead to improvements and shown, in particular, that continuation methods are
promising [4, 2]. It is clear that other types of methods can potentially contribute
to more robust and scalable algorithms and should therefore be investigated.

We additionally note that equilibria in n-person games can be irrational
numbers. It is therefore not even possible to exactly compute them in general
(a recent result [9] states that every game has at least one equilibrium where
all values are algebraic, but its representation can nonetheless be exponentially
large.). The only safe way we know to circumvent the incorrectness of finite
machine representations like floating-point numbers is to use interval arithmetics.

3 Encoding Games as Continuous CSP

In this section we describe a translation of games into continuous CSP. This
encoding, which is based on a classical theorem by Nash, was therefore implicit
in the game theory literature and is also used in recent theoretical work [9], yet
it does not seem to have been considered in recent AI works. Its main advantage
is its simplicity.

3.1 Ingredients of the Encoding

We recall that a (continuous) CSP as defined in e.g., [1] is a triple 〈V , I, C〉, where
V is a set of variables, I = {Ix | x ∈ V} is a set of domains (each Ix represents
the interval of values that variable x can take) and C is a set of constraints (here
polynomial), each of which relates some of the variables of V .

Variables and Constraints on Distributions. We want to find mixed strate-
gies which respect some constraints. The variables of the problem should there-
fore represent the probability distributions:

σ1 ∈ S1 → [0, 1] . . . σn ∈ Sn → [0, 1]
2 An algorithm whose complexity is sub-exponential has recently been proposed for

computing approximate equilibria (a.k.a. ε-equilibria) in 2-person games, thanks to
a proof of existence of supports of logarithmic size [10].

Computing Equilibria Using Interval Constraints 163

Of course, since each Si is a small finite set, we use an array of variables valued
in [0, 1] for each σi, i.e., for each i we define a set of variables σi[v], for v ∈ Si. A
first set of constraints is needed (together with the domain declarations bounding
the variables to [0, 1]) to state that each σi is a probability distribution:

∧
i∈1..n

(∑
v∈Si

σi[v] = 1
)

Maximality Constraints. The main ingredient we have to define left is the
set of constraints expressed by each player to impose that its strategy be a best
response to the others. Informally, these constraints have the following form:

∧
i∈1..n

(
pi〈σ1, . . . , σn〉 =

max{pi〈σ1, . . . , σ
′
i, . . . , σn〉 | σ′

i ∈ Dist(Si)}
)

where each pi is translated into a polynomial expression over the variables rep-
resenting the probability distributions of each player. This is clearly an unusual
type of constraint, which captures the essence of the computational task at hand.
Note that, although the problem has a clear optimisation flavour, it cannot di-
rectly be mapped into an optimisation problem (i.e., maximising one function
under a set of constraints); what we have instead is a set of maximality con-
straints : each player imposes that its probability distribution maximise its pay-
off. How these unusual constraints are translated into conventional CSP is what
we discuss next.

3.2 Encoding the Maximality Constraints

A simple but completely developed example helps visualising. Let’s go back to
our game with 2 players and 2 strategies (Sec. 2.1, equation 2). Each player
wants to maximise its own payoff function which depends on variables σ1[a],
σ1[b], σ2[α], σ2[β], but player 1 can choose optimal values for array σ1, while
player 2 sets the values for σ2. For instance, player 1’s constraints have to express
the following condition:

(
2 σ1[a] σ2[α]

+ 1 σ1[b] σ2[β]

)
= max

{(
2 σ1[a] σ2[α]

+ 1 σ1[b] σ2[β]

) ∣∣∣∣ σ1[a] ∈ [0, 1], σ1[b] ∈ [0, 1]∧
σ1[a] + σ1[b] = 1

}

The meaning of maximality constraints can be expressed using universal quan-
tified constraints similar to those studied, for instance, in the work of Stefan
Ratschan [18]. More precisely, we need quantifiers on probability distributions,
so the first constraint could be expressed as:

∀σ′
1[a] ∈ [0, 1] ∀σ′

1[b] ∈ [0, 1]

⎛
⎝ (σ′

1[a] + σ′
1[b] = 1) →(

2σ1[a]σ2[α] + 1σ1[b]σ2[β]
≥ 2σ′

1[a]σ2[α] + 1σ′
1[b]σ2[β]

)⎞
⎠

164 Lucas Bordeaux and Brice Pajot

and symmetrically for the second player. This kind of constraints would be ex-
tremely hard to solve in this form, not only because of quantifiers, but also
because of the implication connectors which can typically be handled on dis-
crete domains by reification, but are much trickier when the left-hand part is a
continuous equality.

Fortunately, a finite number of points suffices to guarantee the universally
quantified statement. In our case, it is sufficient to take values (1, 0) and (0, 1)
for (σ′

1[a], σ′
1[b]) because all other values summing to 1 (e.g., 0.5, 0.5) will result

in a lower payoff. We obtain the following constraints for player 1:(
2σ1[a]σ2[α] + 1σ1[b]σ2[β]

≥ 2σ2[α] + 0σ2[β]

)
∧

(
2σ1[a]σ2[α] + 1σ1[b]σ2[β]

≥ 0σ2[α] + 1σ2[β]

)

A general statement of what was exemplified here is the following proposition:

Proposition 1. [alternative characterisation of mixed equilibria] A mixed sit-
uation σ = 〈σ1, . . . , σn〉 is a mixed equilibrium iff, for each player i ∈ 1..m, we
have:

∧
j∈Si

(
pi〈σ1, . . . , σn〉 ≥ pi〈σ1, . . . , σi−1, pureij , σi+1, . . . , σn〉

)

where pureij denotes the distribution which assigns probability 1 to strategy j of
player i and 0 to its other strategies.

Proof. (sketched) When the strategies of the other players are fixed, the payoff
for i is a weighted average of the payoffs obtained for each of its pure strategies.
If the chosen distribution gives a superior payoff to those obtained for every pure
strategy, it is therefore also superior to any weighted average of them.

This alternative characterisation was first used by Nash [15] on the way to
his proof of the existence of equilibria. The characterisation can indeed be used
to construct a continuous function whose fixpoints are the Nash equilibria (such
fixpoints provably exist since the distribution space is a convex body). From this
characterisation we can derive the encoding formalised in Fig. 1 for unstructured
games (in the case of structured games, the notation is just a bit more trickier
because we have to define A = Sd1 × . . .× Sdp .).

3.3 Other Encodings

Several approaches to find equilibria in the recent literature were based on an
encoding into another formalism. Datta [4] uses an encoding which characterises
a particular type of equilibria, called totally mixed, in which the payoffs for all
pure strategies are equal. Vickrey & Koller [20] use a discretisation of the
problem from which they derive an encoding as a discrete CSP. Blum et al. use a
more complex encoding suitable to the continuation methods they consider, and
which is based on both a function similar to that of Nash’s theorem and an other
function called retraction operator. Surprisingly, we are not aware of attempts to

Computing Equilibria Using Interval Constraints 165

variables
⋃

i∈1..n σi where each σi = {σi[v] | v ∈ Si}

domains
∧

i∈1..n

(∧
v∈Si

σi[v] ∈ [0, 1]
)

constraints constraints on probability distributions:∧
i∈1..n

(∑
v∈Si

σi[v] = 1)
)

maximality constraints:

∧
i∈1..n

∧
j∈Si

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
s∈A

pi(s).π(s) ≥
∑

s∈Aj

pi(s).π
j(s)

with :

• A = S1 × . . . × Sn

• π(s) =
∏

k∈1..n σk[sk]

• Aj = S1 . . . Si−1 × {j} × Si+1 . . . Sn

• πj(s) =
∏

k∈1..n coef(k)

where coef(k) := (if k = j then 1 else σk[sk])

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 1. Encoding games into CSP using maximality constraints.

directly use the encoding of maximality constraints to compute Nash equilibria.
Its main benefits are that it is the simplest and most natural encoding we have
encountered so far and that it is therefore a good basis from which we can derive
slightly improved encodings, see next section.

4 Improving the Encoding
with Symbolic Transformations

Since we have translated games into continuous CSP, we can now use interval
constraint solving algorithms to solve the resulting CSP. The efficiency of these
methods is syntax-dependent, and rewriting the constraints in an equivalent, but
more propagation-friendly form typically speeds up the resolution.

4.1 Interval Propagation Techniques

The paper being intended for an audience with a CP background, we insisted on
game-related definitions but will only give a high-level and intuitive description
of the algorithms we have used; we refer the reader to e.g., [1, 6] for a more
detailed presentation of interval constraint programming. Interval CP techniques
solve constraints where each variable xj ranges over an interval Ij (which, for
the variables of our encoding, is initially set to [0, 1]). These intervals define a
“box” B = I1 × .. × Iq in which solutions are searched. If Ij = [l, r], the two

166 Lucas Bordeaux and Brice Pajot

boxes I1..Ij−1 × [l, l]× Ij+1..Iq and I1..Ij−1 × [r, r]× Ij+1..Iq obtained by fixing
xj to, respectively, its lower bound and its upper bound, are called facets of the
box B on variable xj .

Interval CP uses a branch & prune approach to find solutions inside the box:
the initial box is recursively split into several pieces until boxes which enclose
the solutions with satisfactory precision are obtained. To avoid exploring an
exponential number of boxes, each constraint of the problem is used to perform
a filtering of the box, i.e., to bring its facets closer, eliminating regions which do
not contain solutions. The two filtering techniques we have experimented are:

Basic interval propagation (a.k.a. hull consistency, or 2B-consistency). It
uses simple, multidirectional rules which, for each operator , ∈ {+,−, �, . . .},
specify how to recompute the interval associated to one of the subterms l,
r and up of an expression l , r = up from the two others subterms. For
instance, a constraint x + y = z with Iy = [ly, ry] and Iz = [lz, rz] can be
used to suppress from Ix all values not in [lz − ry, rz − ly].

Box consistency, a technique which achieves a tighter filtering at the price of
requiring more computations. It is based on the fact that interval evaluation
can be used as a criterion to reject a box: if the evaluation of both sides of an
(in)equation are inconsistent, the box has no solution. The filtering therefore
reduces the facets of the box until each facet is evaluation-consistent.

4.2 Reducing Variable Redundancy

Interval propagation is safe in that the reduced box contains all the solutions
to the initial one, but not tight in general: the obtained box over-approximates
the set of solutions. This over-approximation is especially loose when variables
have multiple occurrences in the constraints, due to a well-know phenomenon
of variable decorrelation (interval propagation and interval evaluation behave
as if every occurrence of the same variable denoted a different object). For in-
stance, the natural interval evaluation of function x− x with Ix = [0, 100] gives
[−100, 100], which is rough estimation of its actual range, i.e., [0, 0].

The constraints which describe equilibria have a high number of variable
redundancies. A natural way to improve the encoding is therefore to reduce
this redundancy by expressing them in a syntactically improved way. We have
investigated the two following improvements:

One-Sided Encoding. One source of redundancy in the previous formula-
tion of maximality constraints was that very similar sums of monomials were
repeated on both sides of the inequalities. This can easily be fixed by the fol-
lowing reformulation, which simply reported a −1 adjustment to every variable
corresponding to the considered pure strategy:

Computing Equilibria Using Interval Constraints 167

∧
i∈1..n

∧
j∈Si

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
s∈S1×...×Sn

pi(s).πij(s) ≥ 0

with :

• πij(s) =
∏

k∈1..n coef(k)

where coef(k) :=
{

σk[sk]− 1 if k = i and sk = j

σk[sk] otherwise

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Once again, an example gives a better understanding of the trick (same
example of eq. 2, we leave the 0 values explicit for better clarity); the constraint
imposing that the payoff at the equilibrium be larger than on pure strategy a is:(

2 σ1[a] σ2[α] + 0 σ1[a] σ2[β]
+ 0 σ1[b] σ2[α] + 1 σ1[b] σ2[β]

)
−

(
2 1 σ2[α] + 0 1 σ2[β]

+ 0 + 0

)
≥ 0

This encoding can be rewritten into the following one, which avoids having to
repeat twice similar sums of monomials:(

2 (σ1[a]− 1) σ2[α] + 0 (σ1[a]− 1) σ2[β]
+ 0 σ1[b] σ2[α] + 1 σ1[b] σ2[β]

)
≥ 0

Factorised Encodings. — The second technique, which is a classical trick to
reduce redundancy, is to factorise the polynomials. We use the observation that
a polynomial of the form:∑

〈s1,..,sn〉∈S1×...×Sn

p〈s1, .., sn〉.
(
σ1[s1] ∗ . . . ∗ σn[sn]

)
can be rewritten as

∑
s1∈S1

σ1[s1].

⎛
⎝ ∑

〈s2,..,sn〉∈S2×...×Sn

p〈s1, s2, . . . , sn〉.(σ2[s2] ∗ . . . ∗ σn[sn])

⎞
⎠

The transformation is recursively applicable, which directly gives a factorisation
algorithm. As an example taken from one of our real (shortened) benchmarks, a
polynomial whose syntax in the one-sided encoding is:

5.(x11−1).x21.x41 + 7.(x11−1).x21.x43 +
1.(x11−1).x22.x41 + 9.(x11−1).x22.x42 +
5.(x11−1).x23.x42 + 4.(x11−1).x23.x43 + x12(. . .) . . .

can be encoded in a factorised form as follows:

(x11 − 1).

⎛
⎝x21 . (5.x41 + 7.x43) +

x22 . (1.x41 + 9.x42) +
x23 . (5.x42 + 4.x43)

⎞
⎠ + x12.

⎛
⎝ . . .

⎞
⎠ . . .

Another factoring form has been experimented, where the factorisation is stopped
at recursion depth one; in other words, when encoding the maximality constraints
of a player, factorisation applies only to the variables belonging to this player.

168 Lucas Bordeaux and Brice Pajot

5 Implementation

5.1 Description of the Implementation

Our approach was to use realpaver as a target language and to develop tools to
translate games into its input format3. Three different encodings have been im-
plemented: the one-sided one and its partially and completely factorised variants.
The games are described using a simple syntax (.nash files in our experiment
directories) which is exemplified hereafter.

(************* player 1 **************)
strategies 2 dependencies 1 2 :

(* input file for the *)
1 1 : 2, (* ‘bach-stravinsky’ *)
1 2 : 0, (* game *)
2 1 : 0,
2 2 : 1

(************* player 2 **************)
strategies 2 dependencies 1 2 :
...
end

This set of tools readily enables a user to define and solve structured games
by specifying the dependencies of each player and its payoff functions. To test
the practical applicability of our approach, we have used a random generator of
structured games, which is parametrised by the number of players, the maximal
number of strategies for each of them, and coefficients for the sparsity (percent-
age of non-zero values of the payoff function) and the connectivity (percentage
of other players which every player takes into account in its decisions) of the
game4.

5.2 Experimental Conclusions

Our experiments have dealt with more than 1000 instances of various sizes,
each of which was translated using the 3 encodings. realpaver was run on all
these games with different parameters, each time with a time limit of 60s.
Our complete data sets, as well as the translation scripts, can be found on
www.dis.uniroma1.it/∼bordeaux/GAMES. Here is a summary of these results:
3 In all our benchmarks, precision was set to 0.01, which corresponds to rough pseudo-

solutions, but seems acceptable in comparison to other experiments found in the
literature [20]. realpaver was used to find a unique solution; note that other choices
are possible, and that it can also be used, for instance, to represent an enclosure of
the solution set by a paving of arbitrary precision.

4 We keep only the generated games whose dependency graph is connected and we
allow a limited number of retries if it is not the case, hence the generation failures
reported in some cases in our data.

Computing Equilibria Using Interval Constraints 169

Scalability: instances with around 10 variables can routinely be solved within
the 60s limit. As soon as we go beyond this limit (e.g., 5 players, each with
3 strategies each), the number of instances solved within the minute falls
around the 50% (unsolved instances start to appear with 4 players and 3
strategies for some well-chosen sparsity/connectivity coefficients). Although
some instances with 20 variables (and up to 5 players with 5 strategies) could
be solved, they represent an almost negligible 5% of this size of instances.
This shows that non-trivial instances can be solved, which validates the
applicability of a first interval-based approach, but a direct use of general-
purpose interval methods does not compete with state-of-the-art methods
based, for instance, on continuation [2]. Problem-specific interval propaga-
tion and search algorithms obviously have to be investigated in a near future.
Indeed, if we consider the restrictions we have imposed to the tests (sparse,
structured games, low precision), these results clearly indicate that games
provide a source of challenging benchmarks for interval-based techniques,
probably because of the fact that each constraint has multiple occurrences
of almost all variables.

Choice of the Filtering Algorithm: a surprising pattern which clearly
emerges is that basic interval propagation (hull consistency, HC in short)
significantly outperforms box-consistency (or the mixed consistency tech-
nique used by default by realpaver), which contradicts conventional wisdom.
A slowdown of 3 to 8 when using box instead of HC is typical; slowdowns
of up to 100 are observed, and the number of instances where box behaves
better than HC are scarce.
So far we cannot find an explanation to this phenomenon. HC is supposed
to be especially inappropriate when the constraints have a high number of
redundancies, which is the case here, but box does not seem to achieve a
significantly better pruning, and is more time-consuming.

Impact of the Symbolic Representation: without any surprise, gains are
obtained thanks to the factorised forms, with a typical speed-up of 2 (and
up to 4 in rare cases) in comparison to the naive encoding. Nevertheless, this
clearly does not allow to solve instances of a significantly larger size.

The best tuning we have found is the combination of hull consistency with a
largest first strategy (realpaver -hc4 -lf), applied on the factorised encoding.

6 Conclusion and Perspectives

The amount of computer science and AI research related to game theory recently
reported [7, 11, 8, 20, 4, 3, 2, 10, 9] shows that there is a high demand for tools for
computing equilibria on n-person games. The starting point of our work was our
conviction that the problem, which is tightly related to continuous constraint
satisfaction, should receive more attention from the CP community. One goal
of the paper was to give a CP-oriented and, we hope, accessible overview of the
problem, and to provide readily available benchmarks and converters from games
to CSP which can help other teams performing experimentations.

170 Lucas Bordeaux and Brice Pajot

As a byproduct, we obtain generators of satisfiable yet hard polynomial in-
stances for continuous solvers, which is of independent interest since the problem
of generating continuous CSP has not been much addressed. Our experiments
seem to reveal unusual results on the comparison of consistency techniques on
randomly-generated data, and some work remains to be done to explain why they
contradict conventional wisdom, with a box consistency typically less effective
than basic interval propagation.

To the best of our knowledge, the application of interval constraint propa-
gation for game-theoretic problems had not been considered prior to the inves-
tigation reported therein. On the one hand, the use of interval-based constraint
solving techniques seems natural: since Nash equilibria are in general irrational
numbers, approximating them with a certain precision might be the only viable
approach in practice, and intervals seem the natural tool in this case. On the
other hand, the high number of variable redundancies in the encodings of the
problem makes it seemingly challenging for interval methods, and it is not clear
so far whether interval methods can compete with continuation on this class of
problems. Our approach was nevertheless naive since we directly used a general-
purpose solver, and we hope that tailored propagation and search algorithms
will lead to improvements.

Many techniques have been developed in the game-theory community to find
equilibria [12], and yet tools which can consistently solve n-person games with
satisfactory robustness and scalability are just starting to appear [11, 2, 17]. It is
therefore clear that a long-term, collective effort is needed to obtain the gradual
improvements which will eventually lead to efficient tools with validated numer-
ical results, which only interval methods can obtain in general. Our hope is that
this paper will motivate further research to explore, among other possible direc-
tions, cooperative algorithms. Since an essential subtask in computing equilibria
is to determine the set of supports of the game, i.e., the set of strategies which are
given a non-zero probability, the problem also has a mixed combinatorial/real-
valued flavour which makes it interesting from the viewpoint of both discrete and
continuous CP, and mixed encodings might be another interesting direction.

Going one step further, it is clear that many exciting applications of CP to
complex decision-making can emerge from the problems and tools proposed in
the context of game theory, and that the particular normal-form games are far
from the only case where CP and game theory can cross-fertilise. More general
games (with incomplete information, in extensive-form), and other problems
(mechanisms design, [19], etc.) will undoubtedly be investigated in a near future.

References

1. F. Benhamou and W. J. Older. Applying interval arithmetic to real, integer, and
boolean constraints. J. of Logic Programming (JLP), 32(1):1–24, 1997.

2. B. Blum, C. Shelton, and D. Koller. A continuation method for Nash equilibria
in graphical games. In Int. Joint. Conf. on Artificial Intelligence (IJCAI), pages
757–764. Morgan Kaufmann, 2003.

3. V. Conitzer and T. Sandholm. Complexity results on Nash equilibria. In Int. Joint.
Conf. on Artificial Intelligence (IJCAI), pages 765–771. Morgan Kaufmann, 2003.

Computing Equilibria Using Interval Constraints 171

4. R. S. Datta. Using computer algebra to find Nash equilibria. In Int. Symp. on
Symbolic and Algebraic Computation (ISSAC), pages 74–79. ACM, 2003.

5. Y. Gal and A. Pfeffer. A language for modeling agent’s decision making processes
in games. In Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS),
pages 265–272. ACM, 2003.

6. L. Granvilliers. An interval component for continuous constraints. J. of Computa-
tional and Applied Mathematics, 162(1):79–92, 2004.

7. M. J. Kearns, M. L. Littman, and S. P. Singh. Graphical models for game theory. In
Int. Conf. on Uncertainty in Artificial Intelligence (UAI), pages 253–260. Morgan
Kaufmann, 2001.

8. D. Koller and B. Milch. Multi-agent influence diagrams for representing and solving
games. In Int. Joint. Conf. on Artificial Intelligence (IJCAI), pages 1027–1034.
Morgan Kaufmann, 2001.

9. R. J. Lipton and E. Markakis. Nash equilibria via polynomial equations. In South
Amer. Symp. on Theor. Comp. Science (LATIN), pages 413–422. Springer, 2004.

10. R. J. Lipton, E. Markakis, and A. Mehta. Playing large games using simple strate-
gies. In ACM Conf. on Electronic Commerce (EC), pages 36–41. ACM, 2003.

11. M. L. Littman, M. J. Kearns, and S. P. Singh. An efficient, exact algorithm for
solving tree-structured graphical games. In Int. Conf. on Neural Information Pro-
cessing Systems (NIPS), pages 817–823. The MIT Press, 2001.

12. R. McKelvey, A. McLennan, and T. Turocy. Gambit user manual, version 0.97.0.3.
Technical report, The gambit project, 2003.

13. R. D. McKelvey and A. McLennan. Computation of equilibria in finite games. In
Handbook of Computational Economics, chapter 2. North-Holland, 1994.

14. R. B. Myerson. Game theory: analysis of conflict. Harvard University Press, 1997.
15. J. F. Nash. Equilibrium points in n-person games. Proc. of Nat. Academy of Science

of the United States of America, 36:48–49, 1950.
16. C. Papadimitriou. Algorithms, games, and the internet. In ACM Symp. on Theory

of Computing (STOC), pages 749–753. ACM, 2001.
17. R. Porter, E. Nudelman, and Y. Shoham. Simple search methods for finding a Nash

equilibrium. In US Conf. on Artificial Intelligence (AAAI), pages 664–669. AAAI
Press, 2004.

18. S. Ratschan. Continuous first-order constraint satisfaction. In Int. Conf. on AI and
Symbolic Computation (AISC), pages 181–195. Springer, 2002.

19. T. Sandholm. Automated mechanism design: a new application area for search
algorithms. In Int. Conf. on Principles and Practice of Constraint Programming
(CP), pages 19–36. Springer, 2003.

20. D. Vickrey and D. Koller. Multi-agent algorithms for solving graphical games. In
US Conf. on Artificial Intelligence (AAAI), pages 345–351. AAAI Press, 2002.

21. B. Von Stengel. Computing equilibria for two-person games. In Handbook of Game
Theory, chapter 45. North Holland, 2002.

Constraint-Based Approaches
to the Covering Test Problem�

Brahim Hnich, Steven Prestwich, and Evgeny Selensky

Cork Constraint Computation Center,
University College, Cork, Ireland

{brahim,s.prestwich,e.selensky}@4c.ucc.ie

Abstract. Covering arrays have been studied for their applications to
drug screening and software and hardware testing. In this paper, we
model the problem as a constraint program. Our proposed models ex-
ploit non-binary (global) constraints, redundant modelling, channelling
constraints, and symmetry breaking constraints. Our initial experiments
show that with our best integrated model, we are able to either prove
optimality of existing bounds or find new optimal values for arrays of
moderate size. Local search on a SAT-encoding of the model is able to
find improved bounds on larger problems.

1 Introduction

Software and hardware testing play an important role in the process of prod-
uct development. For instance, software testing may consume up to half of the
overall software development cost [15]. Furthermore, even for simple software or
hardware products, exhaustive testing is infeasible because the number of pos-
sible test cases is typically prohibitively large. For example, suppose we have a
machine with 10 switches that have to be set, each with two positions. We wish
to test the machine before shipping. Since there are 210 possible combinations, it
becomes impractical to test them all. Nevertheless, we might want only a small
number of test settings such that every subset of, say three switches, gets exer-
cised in all 23 possible ways. In such a case, the question becomes: How many
test vectors do we need? This problem is an instance of the t-covering array
problem.

A covering array CA(t, k, g) of size b is an k× b array consisting of k vectors
of length b with entries from {0, 1, . . . , g − 1} (g is the size of the alphabet)
such that the projection of any t coordinates contains all gt possibilities. The
objective consists in finding the minimum b for which a CA(t, k, g) of size b exists.
Covering arrays have been studied for their applications to drug screening and
software and hardware testing. Over the past decade, there has been a body of
work done in this field (See [1, 3–5, 11, 24, 25] for examples).
� The first author is supported by Science Foundation Ireland and an Ilog license grant.

The third author is supported by Bausch&Lomb Ireland and Enterprise Ireland.
This work has also received support from Science Foundation Ireland under Grant
00/PI.1/C075.

B. Faltings et al. (Eds.): CSCLP 2004, LNAI 3419, pp. 172–186, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Constraint-Based Approaches to the Covering Test Problem 173

Constructions for optimal covering arrays CA(2, k, g) are known when the
vectors are binary [17]. In [17], an exhaustive backtrack search is presented that is
used to find new lower bounds on the sizes of optimal covering arrays CA(2, k, g)
where the alphabet Zg is non-binary. However, in the general case the problem
is NP-complete [11]. Most of the approaches use approximation methods where
only upper and lower bounds of b are determined in polynomial time.

In this paper we propose modelling this problem, in its most general form, as a
constraint program. We explore different models, and show that with a constraint
programming approach we are able either to prove optimality of existing bounds,
or to find new optimal values for problems of relatively moderate size. When the
size of the problem increases our models’ performance degrades, but we are able
to find improved (though not necessarily optimal) bounds for larger problems
by applying a local search algorithm to a SAT-encoding of the constraint model.

The rest of the paper is organised as follows. In section 2, we describe the
covering test problem and give an overview of related work. Section 3 we detail
the proposed constraint models. We then show how we extend our models to
handle more general cases in Section 4. Section 5 presents our initial experimental
results and a discussion. Finally, we conclude in Section 6 and outline our future
directions.

2 The Covering Test Problem

The covering test problem1 is a direct application of the problem of covering
arrays arising in hardware and software testing[11].

Definition 1. Hartman and Raskin [11] A covering array CA(t, k, g) of size
b and strength t, is a k × b array A = (aij) over Zg = {0, 1, 2, ..., g−1} with the
property that for any t distinct rows 1 ≤ r1 ≤ r2 ≤ ... ≤ rt ≤ k, and any member
(x1, x2, ..., xt) of Zt

g there exists at least one column c such that xi = aric for all
1 ≤ i ≤ t.

Definition 2. Hartman and Raskin [11] The covering array number
CAN (t, k, g) is the smallest b for which a CA(t, k, g) of size b exists.

The covering test problem is: for a given tuple 〈t, k, g, b〉 find a CA(t, k, g)
such that CAN (t, k, g) = b or show that none exists. Informally, we wish to
find a minimum number of test vectors, of k parameters each, over the alphabet
Zg such that the vectors contain all possible t-strings for every t-tuple of k
parameters. Clearly, if t = k and g is fixed then the number of test vectors is
gk and it is optimal. However, if t < k then gk is only an upper bound on the
number of tests.

The problem of finding the minimum b can be solved iteratively by a series of
constraint satisfaction problems with decreasing values of b. The solution with
the smallest b is then guaranteed to be optimal.
1 A description of this problem is also available as problem 45 in CSPLib,

www.csplib.org

174 Brahim Hnich, Steven Prestwich, and Evgeny Selensky

An approach to making software testing more efficient was presented by
Cohen et al. [4], using test suites generated from combinatorial designs. The
idea was firstly to identify parameters that induce the space of possible test
scenarios; and secondly to select test scenarios so as to cover all the pairwise
(or t-wise with t > 2 if necessary) interactions between the values of these
parameters2 This is analogous to earlier approaches [1, 24, 25]. A theoretical
study [11] establishes properties of covering test suites, in particular the lower
bounds on their size, and presents several ways to construct test suites to achieve
the bounds asymptotically. The problem of minimising the number of test cases
in a t-wise covering test suite for k domains of size n was, according to [11], first
studied in [20].

Some papers consider the equivalent problem of maximising the number k of
domains of size n in a t-wise covering test suite with a fixed number N of test
cases [11]. This problem is referred to as finding the size of the largest family of
t-independent n-partitions of an N-set . To determine the minimum number of
test vectors for a t-wise covering of parameters with Boolean values is known to
be NP-complete [23]. Related problems are finding a test suite with minimum
deficiency given a fixed budget for executing a maximum of N tests, and a
minimum test suite with a fixed relative deficiency (deficiency over the total
number of t-subsets).

[16] discusses a practical issue of extending a given test suite to account for
an additional parameter. The authors present an optimal algorithm for adding
new rows to the test suite, once a new column has been inserted. However,
their algorithms for adding a new column are either exponential or suboptimal.
[3] presents a technique for reducing the covering test suite problem to graph-
coloring. Even though this approach is more general, it is advantageous only for
non-uniform coverage.

In [9, 12, 13] applications of covering suite generation are dealt with rang-
ing from testing a satellite system to diagnosis in digital logic devices. This is
known as the diagnosis problem and is generally solved via Built-In-Self-Testing
(BIST). BIST is a relatively new area and is the leading approach in indus-
trial testing. It offers low hardware overheads and quick testing capabilities [13].
The authors of [13] establish a link between BIST techniques and combinato-
rial group testing (CGT) [6]. They formulate the diagnosis problem, discuss the
shortcomings of some contemporary BIST approaches, and overview standard
CGT diagnosis algorithms such as digging, multi-stage batching, doubling and
jumping. With these algorithms they achieve improvements over the BIST tech-
niques, and present new hybrid diagnosis algorithms called batched digging and
batched binary search.

To the best of our knowledge, no-one to date has looked at this area from a
constraint perspective. Given the success of constraint technology in industrial
combinatorial optimization, this paper is our first attempt to bridge this gap,
and to see if constraint-based approaches can compete with existing methods.

2 As [4] points out, the experience of Telcordia Technologies – formerly Bell Commu-
nications Research – is that pairwise coverage is sufficient for good code coverage
and checking the interactions of system functions.

Constraint-Based Approaches to the Covering Test Problem 175

3 Constraint-Based Approaches

In this section we explore some models that exploit non-binary (global) con-
straints, redundant modelling, channelling constraints, and other features of
Constraint Programming (CP). Many scheduling, assignment, routing and other
decision problems can be efficiently and effectively solved by CP models consist-
ing of matrices of decision variables (so-called “matrix models” [8]). We can
model the problem of generating test vectors using multiple matrix models.
Without loss of generality, in what follows we assume for clarity that we have a
Boolean alphabet Z2 = {0, 1}.

3.1 A Naive Matrix Model

As an example consider generating test vectors for all triples of 5 Boolean pa-
rameters (t = 3, k = 5, g = 2). The matrix in Figure 1 is a solution to this
Boolean covering test problem, in which b = 10. Note that we highlight all pos-
sible combinations of 0 and 1 in the first three columns; this property holds for
any triple of columns.

1 2 3 4 5

0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

Fig. 1. A solution to the example.

A natural way to model the problem would be to introduce a k× b matrix of
Boolean variables. However, we find it hard to express the coverage constraints,
that is every t-parameters get combined in all possible 2t ways. For every t-
parameters in each row we introduce a Boolean variable for each combination
that is set to true whenever these t-parameters cover that particular combination,
by means of reification constraints . We then impose the constraint that each
combination should occur at least once, using a sum constraint over the auxiliary
Boolean variables.

Unfortunately, posing the coverage constraints on this matrix of decision
variables introduces too many auxiliary variables and reification constraints.
Furthermore, such a way of enforcing the coverage constraints makes constraint
propagation inefficient and ineffective. We therefore need a different model where
such coverage constraints can easily be expressed and propagated efficiently.

176 Brahim Hnich, Steven Prestwich, and Evgeny Selensky

3.2 An Alternative Matrix Model

In our previous example, there are
(
5
3

)
= 10 triples of the original parameters:

T = {〈1, 2, 3〉, 〈1, 2, 4〉, 〈1, 2, 5〉, 〈1, 3, 4〉, 〈1, 3, 5〉, 〈1, 4, 5〉,
〈2, 3, 4〉, 〈2, 3, 5〉, 〈2, 4, 5〉,

〈3, 4, 5〉}
We can exploit an alternative viewpoint of the problem to concisely express the
covering constraints. We again introduce a matrix of decision variables. The b
rows in this matrix represent a possible setting of the parameters. Each column
however, represents one of the possible t−combinations (in T in our example).
The domain of each variable is {0, ..., 2t − 1}, or {0, ..., 7} in this example.

In this new matrix, every entry is a problem variable that column-wise rep-
resents the above parameter triples T starting from left to right. The value 0 in
this matrix stands for value combination 〈0, 0, 0〉, 1 for 〈0, 0, 1〉, and so on.

Coverage Constraints. Using the alternative matrix model, we can easily
express the coverage constraints with the help of global cardinality constraints
[19]. For each column we must guarantee that each value occurs at least once
and at most b − 2t + 1 times. This ensures that we cover all possible values of
any t parameters.

Intersection Constraints. Because the variables in the first and the second
column share digit positions 1 and 2 in the test vectors, the parameter values
(0 or 1) in these positions should be the same. With the alternative model, we
introduce the burden of expressing such intersection constraints. So for every
row r and every two columns c1 and c2, if the two columns share some positions
then we state a binary constraint between the variables (r, c1) and (r, c2) in the
alternative matrix. For instance, for each row r the constraint between every two
variables M [r, 〈1, 2, 3〉] and M [r, 〈1, 2, 4〉] in columns 1 and 2 can be expressed
extensionally as follows:

{〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉, 〈2, 2〉, 〈2, 3〉, 〈3, 2〉, 〈3, 3〉, 〈4, 4〉,
〈4, 5〉, 〈5, 4〉, 〈5, 5〉, 〈6, 6〉, 〈6, 7〉, 〈7, 6〉, 〈7, 7〉}

〈1, 2, 3〉 〈1, 2, 4〉 〈1, 2, 5〉 〈1, 3, 4〉 〈1, 3, 5〉 〈1, 4, 5〉 〈2, 3, 4〉 〈2, 3, 5〉 〈2, 4, 5〉 〈3, 4, 5〉
0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 3 1 1 3 3
1 0 1 2 3 1 2 3 1 5
2 2 3 0 1 1 4 5 5 1
3 3 2 3 2 2 7 6 6 6
4 4 5 4 5 5 0 1 1 1
5 5 4 7 6 6 3 2 2 6
6 7 6 5 4 6 5 4 6 2
7 6 6 6 6 4 6 6 4 4
7 7 7 7 7 7 7 7 7 7

Fig. 2. The same solution as in Figure 1 but presented as an alternative matrix.

Constraint-Based Approaches to the Covering Test Problem 177

Note that the set of allowed tuples for such binary constraints differs depend-
ing on the type of the intersection. The tightness of such constraints [26] also
varies. For example the tightness of the previous constraint is 0.25. Clearly, the
tightness of the intersection constraints increases as the number of digit inter-
sections decreases. There are situations when we have only one digit in common
between a pair of variables (for instance, variables in the first column and vari-
ables in the 10th column). In that case, the constraint tightness is 0.5. Note also
that we have b such constraints for every pair of tuples that intersect in at least
one digit position.

3.3 An Integrated Model

In the naive matrix model we find it difficult to express the coverage constraints
in such a way that we can reason efficiently and effectively about them. This
is not the case with the alternative matrix model, where we can use global
cardinality constraints for which efficient propagation algorithms exist [19]. The
downside is that we have to explicitly express the intersection constraints.

In order to benefit from the effectiveness of each model, we propose integrat-
ing them by channelling the variables of the participating models. The disad-
vantages of this integration are the increased number of variables and additional
channelling constraints to be processed. The advantage is, however, that we can
easily state all problem constraints. We enforce the intersection constraints on
the alternative matrix by simply channelling into the first matrix, benefiting at
the same time from the efficient global cardinality constraints in the alternative
model.

The channelling constraints associate each variable in the alternative matrix
with t corresponding variables in the first matrix. The idea is to associate each
possible way of combining the t parameters with a different value. For instance
if t = 3 and the alphabet is binary then we constrain each variable ABC in the
alternative matrix with its t corresponding parameters A, B, C as follows:

〈ABC, A, B, C〉 ∈ {〈0, 0, 0, 0〉, 〈1, 0, 0, 1〉, 〈2, 0, 1, 0〉, 〈3, 0, 1, 1〉
〈4, 1, 0, 0〉, 〈5, 1, 0, 1〉, 〈6, 1, 1, 0〉, 〈7, 1, 1, 1〉}

So for any t-covering we have
(
k
t

) × b constraints of this type, and the arity of
each constraint is t + 1.

3.4 Symmetry

A common pattern in matrix models is row and column symmetry [7]. A matrix
has row symmetry and/or column symmetry when in any (partial) assignment to
the variables, the rows and/or columns can be swapped without affecting whether
or not the (partial) assignment satisfies the constraints. Clearly, any permutation
of test vectors in a (non-)solution gives a symmetric (non-)solution. This means
that the rows of our matrix models are indistinguishable and hence symmetric
[7]. However, it is not trivial to see if the naive or the alternative matrix has

178 Brahim Hnich, Steven Prestwich, and Evgeny Selensky

column symmetry. The alternative matrix has no column symmetry while the
naive (original) matrix does. Indeed, in the alternative matrix we associate each
element with a particular combination of t parameters whereas in the naive
matrix we do not distinguish where we project columns from as long as we make
sure all parameter combinations are covered.

In Figure 3 the naive matrix (b) is the result of swapping columns 1 and 2
of the naive matrix (a). Both matrices represent symmetric solutions that cor-
respond to CAN (2, 3, 2). It is easy to see that because of the properties of the
covering constraints that enforce every combination to occur at least once, such
column swaps do not affect whether or not the (partial) assignment satisfies the
constraints. Thus the naive matrix also has column symmetry.

The counterpart of such column symmetry in the alternative matrix is a
complex combination of partial column symmetry and value symmetry among
some variables. Note that the result of swapping the columns 1 and 2 in the
naive model matrix (Figure 3) corresponds to the swap of columns 2 and 3 in
the alternative matrix (c) and the application of the value symmetry that maps
0 to 0, 1 to 2, 2 to 1, and 3 to 3 to the variables of column 1 in (c), which results
in matrix (d).

Thus, the naive matrix exhibits row and column symmetry, while the alterna-
tive matrix exhibits row symmetry and a complex form of symmetry (equivalent
to the column symmetry in the naive matrix), but not column symmetry.

To break row and column symmetry in the naive matrix, we can order the
rows and the columns lexicographically [7] using lexicographic ordering con-
straints [10]. Lexicographic ordering is a total order. Thus, by posing such an
ordering constraint between every consecutive rows (columns), we break all row
(column) symmetry [7]. Whilst it is easy to break all symmetry in one dimension
of the matrix, breaking symmetry in both dimensions is harder, as the rows and
columns intersect. After constraining the rows to be lexicographically ordered
we distinguish the columns, thus the columns are no longer symmetric. Never-
theless, given a matrix with row and column symmetry, each symmetry class
has at least one element where both the rows and columns are lexicographi-
cally ordered. Unfortunately, more than one element where both the rows and
columns are lexicographically ordered may exist [7], so we cannot break all row
and column symmetry. The lexicographic ordering constraint is linear in the size
of the vector and it maintains generalized arc consistency.

(a) (b) (c) (d)
1 2 3 2 1 3 〈1, 2〉 〈1, 3〉 〈2, 3〉 〈2, 1〉 〈2, 3〉 〈1, 3〉
0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 1 0 2 2 2 0
1 0 1 0 1 1 2 3 1 1 1 3
1 1 1 1 1 1 3 3 3 3 3 3
0 1 1 1 0 1 1 1 3 2 3 1
1 1 0 1 1 0 3 2 2 3 2 2

Fig. 3. Symmetric solutions corresponding to CAN (2, 3, 2) represented as naive ma-
trices (a,b) and as alternative matrices (c,d).

Constraint-Based Approaches to the Covering Test Problem 179

3.5 A Model for Local Search

Constraint solvers typically alternate variable assignment with constraint prop-
agation; when propagation leads to an empty variable domain, backtracking
occurs. An alternative way of finding solutions to constraint problems is local
search. Usually starting from a randomly chosen assignment of all variables,
single variables (or sometimes more than one) are selected and reassigned to a
different value, each reassignment being a local move. The choice of variable and
value is made heuristically, with no attempt to maintain completeness of search.
This is in contrast to backtrack search, which is complete and can therefore find
all solutions, or prove that no solutions exist.

The advantage of local search is that it can sometimes solve much larger prob-
lems than backtrack search. We decided to evaluate local search on our problem.
We chose the Walksat algorithm, which has been successful on many problems
and is publicly available. Walksat has several variants, and after some experi-
mentation we selected the G variant [21], modified to break ties by preferring
the variable that was flipped least recently (a well-known heuristic for improving
search diversification). Walksat operates on Boolean satisfiability (SAT) mod-
els so we must first SAT-encode our problem. However, the best model for local
search is not necessarily the best model for backtrack search [18]. Our SAT model
is therefore not identical to the integrated matrix model.

As before we define a k × b matrix M of integers in Zg. For each row i,
column j and value s define a Boolean variable mijs which is true if s occurs in
position (i, j) and false otherwise. We also define the alternative

(
k
t

)× b matrix
A of integers in Zgt . For each row i′, column j′ and value s′ define a Boolean
variable ai′j′s′ . In the following constraints 1 ≤ i ≤ k, 1 ≤ i′ ≤ (

k
t

)
, 1 ≤ j, j′ ≤ b

and 1 ≤ s, s′ ≤ g. Each M and A position must take exactly one symbol:∨
s

mijs (1)

m̄ijs ∨ m̄ijs′ (2)∨
s

ai′j′s′ (3)

āi′j′s ∨ āi′j′s′ (4)

where s < s′ in (2,4). The coverage constraints are:∨
i′

ai′j′s′ (5)

To channel between the two matrices we infer the values of the t entries in M
for the corresponding A entries:

āi′js′ ∨mijs (6)

for all i, i′, j, s, s′ such that Mij = s and Ai′j = s′ do not conflict. We refer to our
SAT model as the weakened matrix model because it omits several constraints, as
follows. Firstly the upper bound on the coverage constraints is hard to express

180 Brahim Hnich, Steven Prestwich, and Evgeny Selensky

in SAT. This is an implied constraint, and though implied clauses sometimes
aid local search [2, 14] they are not a necessary part of the model. Secondly,
symmetry breaking constraints can have a negative effect on local search perfor-
mance [18]. Omitting them aids local search by increasing the number of SAT
solutions, and also by reducing the size of the model and thus improving the flip
rate (number of local moves per second). We therefore omitted upper bound and
symmetry breaking constraints from our encoding.

The third difference is perhaps less obvious. When applying local search to a
SAT-encoded CSP it is common to omit clauses ensuring that each CSP variable
is assigned no more than one domain value [22], again improving performance. A
CSP solution can still be extracted from a SAT solution by taking any one of the
assigned domain values for each CSP variable. Here we may omit clauses (1,3,4).
Note that we can still extract a CSP solution from any SAT solution: by clauses
(5) in any SAT solution each combination of symbols occurs in at least one row
of A for each combination of t columns; by clauses (6) each such occurrence
induces the corresponding entries in M ; and by clauses (2) no more than one
value is possible in each M position. In fact the omitted clauses (1,3,4) are
implied by clauses (2,5,6), and experiments suggest that omitting them makes
little difference to the search effort. It reduces the size of the encoding but not
its space complexity, which is dominated by the channelling constraints and is
O(

(
k
t

)
btgt) literals.

3.6 Summary of the Models

We consider four matrix models for the covering test problem:
– The Naive Matrix Model. This model compactly represents the problem.

However, it is difficult to express the coverage constraints in such a way that
we can efficiently reason about them. This matrix has both row and column
symmetry that we can efficiently and effectively reduce using lexicographic
ordering constraints.

– The Alternative Matrix Model. This model overcomes the disadvantages
of the previous model by the use of powerful global cardinality constraints.
However, this comes at the cost of introducing the burden of expressing
intersection constraints. This matrix has row symmetry that we can reduce
using lexicographic ordering constraints. It has another complex form of
symmetry that we do not know how to break efficiently and effectively.

– The Integrated Matrix Model. This model is an attempt to combine the
complimentary strengths of both models. The coverage constraints are stated
using the global cardinality constraints while the intersection constraints
become redundant with the channelling constraints. We use the symmetry
breaking constraints of the naive model as they are very efficient and ef-
fective. The overhead of this integrated model is the increased number of
variables and the additional channelling constraints.

– The Weakened Matrix Model. This is a modification of the integrated
matrix model, and designed for use with a SAT local search algorithm. It
omits several constraints with the aim of increasing the number of SAT
solutions and reducing runtime overheads.

Constraint-Based Approaches to the Covering Test Problem 181

4 Extensions

For reasons of clarity, we presented our models assuming a fixed binary alphabet
and uniform coverage. However, our models can easily be extended to model
different practical extensions:

– Larger Alphabet. To allow for larger alphabet, we need only to change
the domain of the variables in both matrices. We also need to modify the
channelling constraints. For instance suppose t = 2 and the alphabet is Zg =
{0, 1, 2}. The domain of the variable in the matrix in the naive model is Zg

while the domain of the variables in the alternative matrix is {0, . . . , 32−1},
that is {0, . . . , 8}. The channelling constraints between AB in the alternative
matrix and its 2 corresponding parameters A and B in the first matrix
become as follows:

〈AB, A, B〉 ∈ {〈0, 0, 0〉, 〈1, 0, 1〉, 〈2, 0, 2〉, 〈3, 1, 0〉, 〈4, 1, 1〉, 〈5, 1, 2〉, 〈6, 2, 0〉,
〈7, 2, 1〉, 〈8, 2, 2〉}

– Heterogeneous Alphabets. The model can easily be extended to allow
heterogeneous alphabets. The domains of the variables as well as the chan-
nelling constraints need to be slightly changed to reflect this extension, but
the essence of the models remains the same.

– Partial Coverage. To allow for partial coverage, we simply exclude those
values that represent the combinations that need not appear in a solution
from the global cardinality constraints.

– Side Constraints. Covering array problems can come with side constraints
such as fixed columns or forbidden configurations [11]. CP is convenient for
solving problems with such constraints, which can simply be added to the
model.

5 Experiments

To evaluate the different models we ran a small set of experiments for a given
alphabet, coverage strengths, and various parameter numbers k. First we re-
port on backtracking experiments using a Pentium IV 1800 MHz 512 MB RAM
machine running Ilog Solver 6.0.

In our experiments we used instances of the covering test problem with cov-
erage strengths t of 3 and 4 over a Boolean alphabet Z2 = {0, 1}. In each exper-
iment we vary the size k of parameter vectors. Our initial experiments with the
naive model showed that it was very inefficient and always outperformed by the
other models. For this reason, we decided to exclude it from further analysis.

When using the alternative model we can only break row symmetry. How-
ever, with the integrated model we can break both row and column symmetry.
Furthermore, we can break row symmetry either on the original or on the al-
ternative matrix (not both), whereas column symmetry can be eliminated only
on the original matrix. Our experiments demonstrated that the best strategy in
terms of the amount of search and runtime, when using the integrated model, is
to break row symmetry using the alternative matrix.

182 Brahim Hnich, Steven Prestwich, and Evgeny Selensky

In the experiments we applied four different labeling strategies:

– sdf-row : Group the variables by rows from top to bottom, and for each row
label the variable that has the smallest domain first. Assign the values in
the lexicographic order;

– sdf-col : Group the variables by columns from left to right, and for each
column label the variable that has the smallest domain first. Assign the
values in the lexicographic order;

– lex-row : Group the variables by rows from top to bottom, and label each
row lexicographically. Assign the values in the lexicographic order;

– lex-col : Group the variables by columns from left to right, and label each
column lexicographically. Assign the values in the lexicographic order.

Experiments that we ran to determine CAN (3, k, 2) for varying k showed that
the best labeling heuristics were lex-col and sdf-col and that lex-col outperformed
sdf-col and the other labeling heuristics on bigger instances. For example, using
the alternative model with a time limit of 5 minutes, only lex-col could determine
CAN (3, 8, 2). Using the integrated model lex-col finds CAN (3, 11, 2) in about
141 seconds, sdf-col in 281 seconds, whereas lex-row and sdf-row cannot find a
solution.

Tables 1 and 2 display the results of the experiments in more detail. In the
tables we use bold face to highlight the best result so far, whereas a star symbol
means that the respective value is provably optimal. Our results also show that
the integration of the different models is beneficial despite the increase in the
number of variables. For instance, the best integrated model found the optimal
value for CAN (3, 8, 2) in around 22 seconds while the best alternative model
in around 265 seconds. Note also that our results use the symmetry breaking
constraints in all tested models. In fact, the symmetry breaking constraints play
a vital part in the alternative and in the integrated models. For example, with
the integrated model when we are solving the problem for k = 5 and b = 10 using
lex-col labeling strategy together with row and column symmetry breaking we

Table 1. Alternative Model: Finding bmin = CAN (3, k, 2) for different number of
parameters k using the alternative model. Upper bounds UB on CAN (3, k, 2) are taken
from [11] for comparison. The runtime limit is 5 minutes, using lex-col (or sdf-col) as
labeling heuristics.

k b Upper bound in [11] runtime (sec) soluble no. of fails no. of choice points

4 8* 8 0.01 + 28 29

5 8 12 0.03 – 32 31

5 9 12 0.19 – 161 160

5 10* 12 0.35 + 276 283

6 10 12 4.39 – 965 964

6 11 12 – (32.11) – – (6197) – (6196)

6 12* 12 25.20 + 5003 5013

7 12* 13 128.34 + 9575 9591

8 12* 13 264.77 + 9575 9592

Constraint-Based Approaches to the Covering Test Problem 183

Table 2. Integrated Model: Finding bmin = CAN (3, k, 2) for different number of pa-
rameters k using the integrated model. Upper bounds UB on CAN (3, k, 2) are taken
from [11] for comparison. The runtime limit is 5 minutes, using using lex-col as a
labeling heuristic.

k b Upper bound in [11] runtime (sec) soluble no. of fails no. of choice points

4 8* 8 0.01 + 28 29

5 8 12 0.02 – 31 30

5 9 12 0.05 – 130 129

5 10* 12 0.10 + 186 191

6 10 12 0.67 – 625 624

6 11 12 4.67 – 3461 3460

6 12* 12 3.92 + 2642 2648

7 12* 13 13.11 + 4711 4721

8 12* 13 21.86 + 4714 4730

9 12* 18 75.47 + 10181 10205

10 12* 18 108.63 + 10185 10209

11 12* 18 140.90 + 10203 10230

Table 3. Values of CAN (3, k, 2) and CAN (4, k, 2) (in bold marked with a ∗) compared
against the upper bounds from [11] (in parentheses); A time limit of 1 hour using the
integrated model.

k
t 4 5 6 7 8 9 10 11

3 8* (8) 10* (12) 12* (12) 12* (13) 12* (13) 12* (18) 12* (18) 12* (18)
4 16* (16) 16* (24) 21* (28) – (38) – (42) – (50) – (50) – (–)

obtain a solution in 0.10 CPU seconds with only 186 failures in contrast to over
5 CPU minutes and more than 640,000 failures when we break no symmetry.
Finally, our approach proved optimality for t = 3 and k ≤ 11 as well as helped
improve the respective results in [11].

Encouraged by these initial results, we ran a further set of experiments to
attempt solving CAN (4, k, 2) for varying k. We observe in Table 3 that the best
integrated model could find CAN (4, k, 2) for k ≤ 6 in 1 hour, and the improve-
ments of the bounds that we obtained are significantly larger than the improve-
ments we got on CAN (3, k, 2). Overall, with the presented approach we can find
provably optimal covering test suites for those instances which induce a moder-
ate number of variables in our models. This translates to getting CAN (3, k, 2)
for up to k = 11 parameters (around 2000 variables) within a CPU time limit
of 5 minutes. However, as problem size becomes larger the required amount of
search proves computationally prohibitive.

With the aim of improving scalability we next applied the Walksat local
search algorithm to the weakened matrix model, with infinite restart interval
and noise parameter p set to values 0.2, 0.3 or 0.4. We ran Walksat on a 733
MHz Pentium III, using decreasing values of b until no solution was found after
several minutes. The results for various values of t, k, g are shown in Table 4.

184 Brahim Hnich, Steven Prestwich, and Evgeny Selensky

Table 4. Results for Walksat (W) and Hartman & Raskin [11].

t 3 3 3 3 3 3 3 3 3 3 4 4 4 4 3 3 3 3 3 4
k 9 10 11 12 13 14 15 16 17 18 7 8 9 10 5 6 7 8 9 5
g 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3

b (W) 12 12 12 15 16 17 18 18 18 20 24 24 24 24 33 33 40 46 51 81
b [11] 18 18 18 18 19 19 19 19 24 24 38 42 50 50 45 45 45 45 75 135

Walksat was able to reproduce the improved bounds found by Solver, to
further improve some bounds, and to solve several larger problems with better
results than those of [11] (though they also give results for many larger instances).
If proof of optimality is not required and we are not constrained to obtain a
solution in a fixed time then local search is clearly a useful option. We do not
expect the SAT approach to scale to much larger problems because of increasing
SAT model sizes, but a local search algorithm using a higher-level constraint
model could avoid this problem.

6 Conclusion

We presented constraint models of a core problem in combinatorial software
testing: the covering test problem. We show that for moderate problem sizes
with a CP approach one can find provably optimal solutions, which improves
on the published results. We further showed that a local search algorithm on a
SAT-encoding of the problem can find improved solutions for somewhat larger
instances. These results show the applicability of constraint-based techniques to
the problem, at least for instances up to a certain size. This approach may find
application to less pure versions of the problem with side constraints, such as
those found in some industrial applications. The easy handling of side constraints
(simply by adding them to the model) is one of the advantages of CP.

In future work we will aim to further improve the presented results. One
possible direction for improvement could be exploring the effects of different
value ordering heuristics on backtrack search. Another direction is to design
a dedicated local search algorithm for the problem; this would greatly reduce
model sizes, which currently forms a bottleneck on the size of problems that we
are able to solve.

References

1. S. Y. Boroday and I. S. Grunskii. Recursive Generation of Locally Complete Tests.
Cybernetics and Systems Analysis 28:20–25, 1992.

2. B. Cha and K. Iwama. Adding New Clauses for Faster Local Search. Proceedings
of the Fourteenth National Conference on Artificial Intelligence, American Asso-
ciation for Artificial Intelligence 1996, pp. 332–337.

3. C. Cheng, A. Dimitresku, and P. Schroeder. Generating Small Combinatorial Test
Suites to Cover Input-Output Relationships. Third International Conference On
Quality Software (QSIC), USA, 2003, pp. 76–83.

Constraint-Based Approaches to the Covering Test Problem 185

4. D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The AETG System:
An Approach to Testing Based on Combinatorial Design. IEEE Transactions on
Software Engineering 23:437–444, 1997.

5. D. M. Cohen, S. R. Dalal, J. Parelius, and G. C. Patton. The Combinatorial Design
Approach to Automatic Test Generation. IEEE Software, 1996, pp. 83–86.

6. D. Z. Du and F. K. Wang. Combinatorial Group Testing and Its Applications.
World Scientific, 1991.

7. P. Flener, A. M. Frisch, B. Hnich, Z. Kızıltan, I. Miguel, J. Pearson, and T. Walsh.
Breaking Row and Column Symmetries in Matrix Models. P. van Hentenryck, edi-
tor, Proceedings of the Eighth International Conference on Principles and Practice
of Constraint Programming, 2002, pp. 462–476.

8. P. Flener, A. M. Frisch, B. Hnich, Z. Kızıltan, I. Miguel, and T. Walsh. Matrix
Modelling: Exploiting Common Patterns in Constraint Programming. A. M. Frisch,
editor, Proceedings of the International Workshop on Reformulating Constraint
Satisfaction Problems, 2002, pp. 27–41.

9. G. Friedman, A. Hartman, K. Nagin, T. Shiran. Projected State Machine Cover-
age for Software Testing. ACM SIGSOFT International Symposium on Software
Testing and Analysis, Roma, Italy, ACM Press, 2002, pp. 134–143.

10. A. M. Frisch, B. Hnich, Z. Kızıltan, I. Miguel, and T. Walsh. Global Constraints
for Lexicographic Orderings. P. van Hentenryck, editor, Proceedings of the Eighth
International Conference on Principles and Practice of Constraint Programming,
2002, pp. 93–108.

11. A. Hartman and L. Raskin. Problems and Algorithms for Covering Arrays. Discrete
Mathematics 284:149–156, 2004.

12. J. Huller. Reducing Time to Market With Combinatorial Design Method Testing.
Proceedings of the 2000 International Council on Systems Engineering (INCOSE)
Conference, 2000.

13. A. B. Kahng and S. Reda. Combinatorial Group Testing Methods for the BIST
Diagnosis Problem.Proceedings of Asia and South Pacific Design Automation Con-
ference, 2004.

14. K. Kask and R. Dechter. GSAT and Local Consistency. Proceedings of the Four-
teenth International Joint Conference on Artificial Intelligence, Morgan Kaufmann
1995, pp. 616–622.

15. N. Kobayashi. Design and Evaluation of Automatic Test Generation Strategies for
Functional Testing of Software. PhD Thesis, Osaka University, 2002.

16. Y. Lei and K. C. Tai. In-Parameter Order: a Test Generation Strategy for Pairwise
Testing. Third IEEE High Assurance Systems Engineering Symposium, 1998, pp.
254–161.

17. K. J. Nurmela. Lower Bounds on 2-Covering Arrays by Exhaustive Search. Twenty-
Fifth Australasian Conference on Combinatorial Mathematics and Combinatorial
Computing , 2000.

18. S. D. Prestwich. Negative Effects of Modeling Techniques on Search Performance.
Annals of Operations Research 118:137–150, Kluwer Academic Publishers, 2003.

19. J.-C. Régin. Generalized Arc Consistency for Global Cardinality Constraints. Pro-
ceedings of the Eighth National Conference on Artificial Intelligence, 1996, pp.
25–32.

20. A. Renyi. Foundations of Probability. Wiley, New York, 1971.
21. B. Selman, H. Kautz, and B. Cohen. Noise Strategies for Improving Local Search.

Twelfth National Conference on Artificial Intelligence, AAAI Press, 1994, pp. 337–
343.

186 Brahim Hnich, Steven Prestwich, and Evgeny Selensky

22. B. Selman, H. Levesque, and D. Mitchell. A New Method for Solving Hard Satisfi-
ability Problems. Tenth National Conference on Artificial Intelligence, MIT Press,
1992, pp. 440–446.

23. G. Seroussi and N. H. Bshouty. Vector Sets for Exhaustive Testing of Logic Circuits.
IEEE Transactions Information Theory 34:513–522, 1988.

24. D. T. Tang and C. L. Chen. Iterative Exhaustive Pattern Generation for Logic
Testing. IBM Journal of Research and Development 28:212–219, 1984.

25. D. T. Tang and L. S. Woo. Exhaustive Test Pattern Generation With Constant
Weight Vectors. IEEE Transactions Computers 32:1145–1150, 1983.

26. E. P. K. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.

Super Solutions for Combinatorial Auctions�

Alan Holland and Barry O’Sullivan

Cork Constraint Computation Centre,
Department of Computer Science, University College Cork, Ireland

{a.holland,b.osullivan}@cs.ucc.ie

Abstract. Super solutions provide a framework for finding robust solutions to
Constraint Satisfaction Problems [5, 3]. We present a novel application of super
solutions to combinatorial auctions in which a bid may be disqualified or with-
drawn after the winners are announced. We examine the effectiveness of super
solutions in different auction scenarios that simulate economically motivated bid-
ding patterns. We also analyze the drawbacks of this approach and motivate an
extension to the framework that permits a more flexible and realistic approach for
determining robust solutions.

1 Introduction

Many auctions involve the sale of various distinct items in which bidders perceive com-
plementarity or substitutability between them. When auctioning such items, the auc-
tioneer typically packages them in such a way as to maximize the complementarities
amongst them and then puts these packages up for auction. When selling a farm, for
example, it may be sold as a single item or divided into separate packages such as the
farmhouse, outhouses, sites overlooking the beach, arable and non-arable land. When
deciding on how to package the sale, it is impossible to know for sure what packages
would maximize revenue. Bidders may view the complementarities between items dif-
ferently and as the size of the auction grows it quickly becomes impossible for the
auctioneer to know how the items should be packaged.

It is more economically efficient for the bidders to bid on combinations of items.
Unfortunately the number of possible combinations of items of interest to each bidder
grows exponentially as the number of items increases. The bids also need to be com-
municated to the auctioneer in a concise manner, which becomes increasingly difficult
in large auctions.

The objective is typically to maximize revenue when selling items in a forward auc-
tion and to minimize cost when procuring items in a reverse auction. We consider the
scenario where optimum revenue is non-essential but a good robust solution is essen-
tial. A good solution is one whose revenue is within a percentage of the optimum. A
good robust solution is a good solution for which we know that even if winning bids
are withdrawn another good solution can be found. Robust solutions are desirable in
scenarios where suppliers or customers are unreliable and a good solution needs to be
found with minimal upset to other bidders.

� This work has received funding from Science Foundation Ireland (Grant Number
00/Pl.1/C075) and from Enterprise Ireland, Research Innovation Fund (Grant Number RIF-
2001-317).

B. Faltings et al. (Eds.): CSCLP 2004, LNAI 3419, pp. 187–200, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

188 Alan Holland and Barry O’Sullivan

This paper is organized as follows. Section 2 introduces combinatorial auctions and
describes the Winner Determination Problem. Section 3 presents super solutions and
briefly discusses how they can be applied to combinatorial auctions. Section 4 outlines
the experimental results achieved when finding super solutions with respect to various
objectives one may wish to consider. It also tackles the optimization problems of finding
a super solution with maximal robustness and revenue. Section 5 describes some of the
limitations of super solutions and proposes an extension to the framework to overcome
these difficulties. Some concluding remarks are made in Section 6.

2 Combinatorial Auctions

Combinatorial auctions fall into two categories, forward and reverse. In a reverse auc-
tion the auctioneer is seeking to procure goods and therefore minimize cost. If it is
possible to purchase more items than are strictly necessary, the problem is known as a
Set Covering Problem. The buyer may choose to stipulate in the auction rules that no
surplus items are to be purchased. With the introduction of this constraint this problem
becomes a Set Partition Problem.

In the remainder of this paper we focus our attention on forward auctions, where
items are being sold and the objective is to maximize revenue. However, we will present
our motivation for our interest in combinatorial auctions briefly below before consider-
ing forward auctions in more detail.

2.1 Motivation

The popularity of online auctions has increased in recent years because the internet
promises to promote competition, thereby increasing revenue for the auctioneer. In an
auction, where items exhibit complementarities or substitutabilities there exists a phe-
nomenon known as the exposure problem [8]. This occurs when bidders seek a certain
set of items but do not want to end up with a subset of the items that they may find
valueless. This encourages cautionary bidding tactics that result in depressed bidding.
Combinatorial auctions may alleviate the exposure problem by permitting bids on an
arbitrary combination of items that suits the bidders needs. In this manner such auc-
tions improve efficiency where items exhibit complimentarities/substitutabilties for the
bidders.

Such auctions have been used in many real-world scenarios such as procurement
for the Mars Corporation [6] and the sale of spectrum licences in America’s Federal
Communications Commission (FCC) auctions. The London Transport Authority also
operated a combinatorial auction in their procurement of bus services from private op-
erators [9, 8]. The Chilean government have also adopted combinatorial auctions for the
supply of school meals to children. In the latter case, the quality of suppliers was con-
sidered as well as the bid amount in deciding the winner and the system also ensured
there was no monopoly in any individual region. The reported supply costs have fallen
by 22% since the adoption of the program [2].

In auctions where complementarities or substitutabilities are exhibited between
items, there is a compelling argument for the introduction of combinatorial bidding to
improve overall efficiency. Their application is spreading to other areas such as Supply
Chain Management [12] that also demand robust solutions.

Super Solutions for Combinatorial Auctions 189

2.2 Forward Auctions: The Set Packing Problem

The auctioneer must determine the winner from all bids received. This is known as
the Winner Determination Problem (WDP) and can be represented as a Set Packing
Problem (SPP). In this case it is not necessary to sell all items in order to maximize
revenue.

The SPP can be formulated as follows. Let I be the set of items to be auctioned and
V is a collection of subsets of I . Let xj = 1 if the jth set in V is a winning bid and cj

signifies the amount of that bid. Also, let aij = 1 if the jth set in V contains i ∈ I . The
problem can then be stated as follows:

max
∑
j∈V

cjxj

s.t.
∑
j∈V

aijxj ≤ 1 ∀i ∈ I

We have encoded the SPP as a CSP where variables represent bids and the domains
have only two values, 0 and 1, representing failure and success respectively. We have as-
sumed the notion of free disposal1. Constraints between variables preclude the success
of two bids containing the same item. The objective function is to maximize revenue
and bid values are determined using a lookup table whose indices are variable-value
pairs. An alternative formulation may include variables representing items whose do-
main consists of values representing the bids that include that item. Although when free
disposal is assumed, not all items need to be assigned to bids so a null value is also
included in the domain to indicate the item was unsold.

Example 1. Consider a simple example where an auctioneer is selling two items and
there are four interested parties, bidders x1, x2, x3 and x4 (Table 1). Bidders x1 and
x2 are interested in the first and second items respectively, bidding $0.60million for
the relevant item. Bidders x3 and x4 seek both items only and bid $1.15million and
$1.10million for the pair but $0 for each item individually2. The revenue maximizing
solution for the auctioneer is to sell the items separately to x1 and x2 thus securing
$1.2million. It is impossible for the auctioneer to know in advance whether combining
the items in a single sale would be profitable or not. Combining both items in this case
would have resulted in $0.05million of lost revenue, since the winning bid would have
been for $1.15million rather than $1.2million. Instead combinatorial auctions allow
the bidders decide on parcels of items that suit their needs thereby improving overall
efficiency.

Example 1 may be encoded as a CSP by taking the four bids as variables with
domains containing 0 and 1. Bids x1 and x3 cannot both succeed, since they both require
item A, so a constraint is added precluding the assignment in which both variables
take the value 1. Similarly, bid combinations x2 and x3, x2 and x4, and x3 and x4

cannot win simultaneously. Therefore, in this example the set of CSP variables, V ,

1 If the notion of free disposal is assumed, not all items need to be covered. In other words, there
is no penalty for not selling some items.

2 Such arbitrary complementarities amongst different bidders are often seen in property sales.

190 Alan Holland and Barry O’Sullivan

Table 1. Bids in Example 1.

Items

Bidders A B AB

x1 0.60 0.00 0.00
x2 0.00 0.60 0.00
x3 0.00 0.00 1.15
x4 0.00 0.00 1.10

would be as follows: x1, x2, x3 and x4 whose domains are all {0, 1}. The constraints
are x1 + x3 ≤ 1, x1 + x4 ≤ 1, x2 + x3 ≤ 1, x2 + x4 ≤ 1 and x3 + x4 ≤ 1. A lookup
table, a[i][j], is used to determine the amounts corresponding to variable values and the
objective function, if we wish to optimize, is to maximize the sum of these amounts,
max

∑
xi∈V a[i][xi].

3 Super Solutions and Combinatorial Auctions

The purpose of finding super solutions is that if the solution is perturbed slightly, an-
other good solution may be found by changing a limited number of other variables. An
(a,b)-super solution is one in which at most a variables may lose their values and a re-
pair solution may be found by changing at most b variables [5]. Only a particular set of
variables in the solution may be subject to change and these are said to be members of
the break-set. For each variable in the break-set, a repair-set is required that comprises
the set of variables whose values may change to provide another solution.

In an auction, for example, bids may be retracted so are included in the break set.
However, if we also used variables to represent the items, these may not break if items
may not be withdrawn from an auction after the winners are announced. Robust so-
lutions are particularly desirable for combinatorial auctions, as opposed to single-unit
auctions, because bid withdrawals/disqualifications can leave the auctioneer facing the
exposure problem that is faced by bidders in single unit auctions. The exposure problem
refers to the situation where bidders are left holding a set of items that are essentially
valueless. Ideally this set of items would complement items associated with some of
the successful bids so the solution may be repaired easily or the items are valued highly
by another bidder. In the case of a single-unit auction the solution is inherently robust
because if a bid is withdrawn then the second highest bid for that item is chosen as a
repair.

Example 2. Let us consider a simple example with two variables X and Y ∈ {0, 1}.
There are three possible solutions 〈1, 1〉, 〈0, 1〉 and 〈1, 0〉. 〈1, 1〉 could be considered
a (1,0)-super solution because if either of the variables breaks we are still left with a
solution after making 0 changes. However, solutions 〈1, 0〉 and 〈0, 1〉 may be regarded
as (1,1)-super solutions because we can always repair one variable if necessary to form
another solution.

Similarly, some variables in the break set may not break depending on their value in
the solution. Winning bids may be retracted, whilst retraction of losing bids is meaning-
less and has no effect on the solution. Super solutions need only be recorded for winning
bids, hence assignments representing losing bids are said to have robust values.

Super Solutions for Combinatorial Auctions 191

Robust values aid the search for super solutions because we do not have to worry
about finding repair solutions for the possible failure of those variables. In an auction
scenario, solution failure is only likely to occur when one or more successful bids are
withdrawn or disqualified. Consider Example 1, the optimal solution is x1 = 1, x2 = 1,
x3 = 0 and x4 = 0. There are two winning bids involved in this solution so we only
need to worry about repair solutions for variables x1 and x2. If x3, for example, was
withdrawn from the auction after the announcement of the winners, it would have no
material effect on the solution. The WDP is an optimization problem that seeks to max-
imize revenue. Therefore, as well as being concerned with finding robust solutions, we
also wish to find robust solutions with maximal revenue. The following example high-
lights this point.

Example 3. Consider the auction given in Example 1, with the additional constraint
that we require a robust solution and we are willing to compromise on revenue but only
by 20%. To be more precise, a (1,1)-super solution that matches the revenue constraint
is required. This means that if any winning bid in the solution is withdrawn, a repair
solution with revenue within 20% of optimum is necessary. In this case, if we were to
choose the optimum solution 〈1, 1, 0, 0〉we would be in trouble if either of the bids were
withdrawn. Say x1 was withdrawn or disqualified for some reason, the next best solution
in terms of revenue is 〈0, 0, 1, 0〉. However, two variables would need to be changed
in order to find a repair, therefore the optimum solution is not a (1,1)-super solution.
However, 〈0, 0, 1, 0〉 is a (1,1)-super solution because a repair 〈0, 0, 0, 1〉 exists. This
repair is in itself a super solution, but is dominated in terms of revenue by the previous
solution therefore not chosen. Therefore, the best outcome in this situation is to select
the (1,1)-super solution 〈0, 0, 1, 0〉, if we wish to find the maximal revenue for a robust
solution within 20% of the optimum.

It is possible to reformulate the model so that the only solutions are super solu-
tions [5, 3]. However, we use search because [5] provides evidence of its superior per-
formance over reformulation. Finding super solutions can be computationally expen-
sive [4] so a pure CP approach to the WDP that has an exponential search space does
not scale very well. A hybrid approach incorporating OR techniques is required for
larger auctions. Section 4 concentrates upon a fixed size of problem (20 items and 100
bids) and shows how (1,b)-super solutions are achievable for tighter revenue constraints
in auctions with shorter bids3. We refer the reader to [4] for a discussion on the dif-
ficulty of computing super solutions compared to straightforward CSPs. Some hybrid
techniques that could aid the scalability of solving combinatorial auctions are briefly
outlined also.

4 Experimental Results

In this section we consider the effect of considering robustness in combinatorial auc-
tions. We consider a number of aspects: finding (1,b)-super solutions, optimizing robust-
ness and optimizing revenue. We used the Combinatorial Auction Test Suite (CATS) [7]
to generate sample auction data. We generated sample auction problems in which there
are 20 items for sale and 100 non-dominated bids4 that produce 100 CSP variables. We

3 Few items in each bid.
4 The CATS flags included int prices with the bid alpha parameter set to 1000.

192 Alan Holland and Barry O’Sullivan

have examined smaller combinatorial auctions because a pure CP approach needs to be
augmented with global constraints that incorporate OR techniques to increase pruning
sufficiently so that thousands of bids may be examined. There are a number of ways to
accelerate the search for super solutions in combinatorial auctions although this is not
the focus of our work. Polynomial matching algorithms may be used in auctions whose
bid length is very small, such as those for airport landing/take-off slots. Another tech-
nique may be to use an LP relaxation of the SPP to form an upper bound on potential
revenue in sub-branches of the search tree. This is soluble in polynomial time and can
therefore greatly improve performance. Such additional techniques, that are outlined in
[10], can aid the scalability of a CP approach but our aim in these experiments is to
focus upon the robustness of various auction distributions and consider the tradeoff be-
tween robustness and revenue. Our experiments use the EFC constraint solver [1] with
additional super solution extensions developed by Hebrard et al [4, 5].

Twenty instances of each problem were used to generate average results. We used
various distribution types that simulate different economically motivated auction sce-
narios. The regions-npv distribution is modelled on a scenario in which items are
location dependent and complementarity is a function of the proximity of these items in
2-dimensional space, such as in a spectrum or real estate auction and valuations are dis-
tributed normally. In the arbitrary-npv distribution, complementarities may not be
as universal as geographical adjacency with valuations being normally distributed again.
Bidders view the complementarity of items slightly differently. The scheduling dis-
tribution simulates an auction for time slices on a resource in a distributed job-shop
scheduling problem. The bids for this distribution type tend to be shorter, therefore
there are a more combinations of possibly successful bids. This increases the difficulty
of finding the optimal winner in the WDP but also increases the likelihood of being able
to find a robust solution because of the increased availability of repair solutions.

4.1 Constraint Satisfaction

In this experiment we first solve the auction optimally. This can be done using an ef-
ficient IP solver such as ILOG’s CPLEX package or CABOB[11]. We then stipulate a
minimum percentage of optimum revenue that is acceptable and the maximum num-
ber of variables that can change, b, when forming a super solution. We then use the
constraint-based solver to search for a satisfactory super solution. An IP approach to
establishing such robust solutions would be extremely difficult to implement. The re-
sults are presented in Figures 1, 2 and 3.

The contours on the horizontal plane of the graphs indicate the gradient of the sur-
face in the graph. This helps illustrate the rates of fall-off in the running time and
success rate for the different distributions. It is evident from these contours that the
scheduling distribution reaches a very high success rate with b = 1 and acceptable
revenue of at least 90%, for example (Figure 3). The contours also help show where the
peak running times are encountered for the various distributions.

These figures indicate the increasing levels of complexity for the various distribu-
tions: the arbitrary-npv being the easiest and scheduling distribution being
the hardest. We can surmise from these graphs that when the constraints are tight, (b is
low and minimal revenue is high), that it is easy to find that there is no super solutions

Super Solutions for Combinatorial Auctions 193

Arbitrary-npv Distribution
 25
 20
 15
 10
 5

0
1

2
3

4
5

b 80
82

84
86

88
90

92
94

96
98

Min % Revenue

0
5

10
15
20
25
30

Time (secs)

(a) Running Time

Arbitrary-npv Distribution
 1
 0.8
 0.6
 0.4
 0.2

0
1

2
3

4
5

b 80
82

84
86

88
90

92
94

96
98

Min % Revenue

0

0.2

0.4

0.6

0.8

1

Success Rate

(b) Success Rate

Fig. 1. arbitrary-npv distribution – finding a (1,b)-super solution.

Regions-npv Distribution
 20
 15
 10
 5

0
1

2
3

4
5

b 80
82

84
86

88
90

92
94

96
98

Min % Revenue

0

5

10

15

20

25

Time (secs)

(a) Running Time

Regions-npv Distribution
 1

 0.8
 0.6
 0.4
 0.2

0
1

2
3

4
5

b 80
82

84
86

88
90

92
94

96
98

Min % Revenue

0

0.2

0.4

0.6

0.8

1

Success Rate

(b) Success Rate

Fig. 2. regions-npv distribution – finding a (1,b)-super solution.

Scheduling Distribution
 150
 100
 50

0
1

2
3

4
5

b 80
82

84
86

88
90

92
94

96
98

Min % Revenue

20
40
60
80

100
120
140
160

Time (secs)

(a) Running Time

Scheduling Distribution
 1
 0.8
 0.6
 0.4
 0.2

0
1

2
3

4
5

b 80
82

84
86

88
90

92
94

96
98

Min % Revenue

0

0.2

0.4

0.6

0.8

1

Success Rate

(b) Success Rate

Fig. 3. scheduling distribution – finding a (1,b)-super solution.

so running times are short. When constraints are very relaxed it is then easy to find a
super solution. However, there is a phase transition area where the existence of a su-
per solution is unpredictable and the running times are high. This peak in complexity
is most clearly visible in Figure 3(a). The arbitrary-npv and regions-npv are
evidently easier problems to solve. It is to be expected that running times increase with
b because the search for a repair solution is longer. It can decrease in some instances
when an increase in b results in many more solutions.

194 Alan Holland and Barry O’Sullivan

We can estimate from Figures 1, 2 and 3 that the hardest satisfaction problems for
the various distributions occur when the success rate is approximately 75%.

It is more difficult to solve auctions in which there are many short bids (involving a
small number of items) optimally because there are fewer constraints between the bid
variables and deeper traversal of the search tree is required. We are seeking a robust
solution within a given percentage of optimal revenue such that if any successful bid is
withdrawn, a repair solution that is also within the same percentage of the optimum can
be found by changing at most b other variables. In Figures 1, 2 and 3 we varied b from 0
to 5 and accepted the first super solution found. We did not consider values of b greater
than 5 because most of the auction solutions contain 5 or less winning bids.

The arbitrary-npv distribution has long bids therefore few combinations of
bids form valid solutions. This leads to fewer solutions and reduced time to solve. The
regions-npv distribution has slightly shorter bids, therefore it is more difficult to
solve than arbitrary-npv but easier than the scheduling distribution that has
many short bids. The problem difficulty increases but the availability of robust solu-
tions also increases because there are more possible repair solutions above the mini-
mum threshold revenue. Figure 3(b) shows how the success rate for the scheduling
distribution is better than for the arbitrary-npv and regions-npv distributions
(see Figures 1(b) and 2(b) respectively). The increased availability of repair solutions
accounts for the steeper contours towards 100% satisfiability in Figure 3(b).

4.2 Constraint Optimization

In a real-life scenario an auctioneer may seek a robust solution but would like the best
robust solution in terms of either robustness or revenue. We may then employ an any-
time algorithm that searches for the optimal super solution with maximum revenue
being the objective function. We use a branch and bound algorithm that finds super so-
lutions and optimizes on either reparability in the case of an over-constrained problem
or revenue when there are many super solutions that satisfy the given constraints. This
can be regarded as an anytime algorithm that finds the best possible robust solution in a
given time-frame. Our analysis focuses on two forms of optimization:

1. Optimizing Robustness: Intended for use in an over-constrained scenario in which
there are no super-solutions. We seek a solution that contains a minimal number of
irreparable variables.

2. Optimizing Revenue: Intended for use in an under-constrained scenario in which
there are many super solutions. We seek the super-solution with maximal revenue.

Optimizing Robustness. A scenario may occur where there exists no (1,b)-super so-
lution that satisfies the minimal revenue criterion. We may seek a solution that mini-
mizes the number of irreparable variables in a super solution thus compromising b but
maintaining the revenue constraint. Hebrard et al. [4] have developed a (1,b)-super
Branch&Bound algorithm that will find a super solution with a minimal number of
irreparable variables if no super solution satisfies the given value of b.

Figure 4 shows how many variables in the super-solution will not provide a repair
solution with at most b variable values being changed to form a new solution that sup-
ports the revenue constraint. These results show that easier distributions to solve are

Super Solutions for Combinatorial Auctions 195

Arbitrary-npv Distribution
 3
 2
 1

1
2

3
4

5
b 80

82
84

86
88

90
92

94
96

98

Min % Revenue

0
0.5

1
1.5

2
2.5

3
3.5

Average number of
 irreparable variables

(a) arbitrary-npv distribution

Regions-npv Distribution
 3
 2
 1

1
2

3
4

5
b 80

82
84

86
88

90
92

94
96

98

Min % Revenue

0
0.5

1
1.5

2
2.5

3
3.5

Average number of
 irreparable variables

(b) regions-npv distribution

Scheduling Distribution
 2.5
 2
 1.5
 1
 0.5

1
2

3
4

5
b 80

82
84

86
88

90
92

94
96

98

Min % Revenue

0
0.5

1
1.5

2
2.5

3

Average number of
 irreparable variables

(c) scheduling distribution

Fig. 4. Optimizing robustness.

less supportive of robust solutions5. When the revenue constraint on an auction with an
arbitrary-npv distribution type is tight (95%) and few changes can be made to the
solution (b ≤ 2) then there are typically 2–3 bids in the auction that will not provide
a repair solution given those constraints on revenue and b. The regions-npv and
scheduling auctions have shorter bids and denser solution spaces so it is possible to
find super-solutions that support such tight constraints.

Figure 5 compares the number of irreparable variables in the case of b = 0. Re-
call that a (1,0)-super solution is a solution in which if any winning bid is withdrawn,
then the remaining winning bids still form a valid solution. This is only possible when
there are many small winning bids whose value is less than that of the tolerable loss
in potential revenue. This is a very tight constraint that is in fact unsatisfied by any
of the sample auctions in our test-set. However, we can attempt to find a solution that
minimizes the number of winning bids that do not satisfy this constraint, or irreparable
variables. Figure 5 shows the increase in the minimum number of such variables as the
constraint on minimum revenue is tightened. As this constraint is tightened, there is a
trade-off against robustness.

There are two principle factors governing the reparability of a solution, the number
of winning bids and the number of possible repair solutions. The arbitrary-npv
distribution has fewer winning bids and fewer solutions so its reparability degrades

5 Recall that auctions with long bids have fewer combinations of possible solutions so are easier
to solve.

196 Alan Holland and Barry O’Sullivan

1

2

3

4

80 82 84 86 88 90 92 94 96 98

Ir
re

pa
ra

bl
e

va
ria

bl
es

Min percentage revenue super solution

Arbitrary-npv Distribution
Regions-npv Distribution

Scheduling Distribution

Fig. 5. Average number of irreparable variables in most robust solution (with b=0).

rapidly. The regions-npv and scheduling auctions tend to have more available
repair solutions therefore degrade more slowly as the revenue increases. The latter dis-
tribution has more winning bids participating in the solutions. This accounts for why
more of those bids do not have repair solutions. Also, there are more solutions in this
distribution hence the increase in minimal revenue leads to a lower slope in the number
of irreparable variables.

Optimizing Revenue. If there are many (1,b)-super solutions satisfying the revenue con-
straints then it is desirable to find the revenue-maximizing super solution. This a much
more difficult problem than finding any super solution given a constraint on revenue.

We have developed a branch and bound algorithm that returns the optimal super-
solution in terms of an objective function. In our case we search for a super solution
whose revenue is maximal whilst the constraints on the revenue for repair solutions
remain the same6.

Figures 6(a), 6(b) and 6(c) show clearly that when we permit more variable changes,
the expected increase in revenue of the optimal super solution increases significantly.
Notice how optimization is far more difficult than satisfaction. This can clearly be seen
by comparing the running times in Figure 7 with those in Figures 1, 2 and 3. We have
restricted our analysis of the scheduling distribution to revenue greater than 90%
because there are so many super solutions for revenue lower than this that optimization
becomes extremely difficult. However, it is more difficult to see that as the constraint
on acceptable revenue for repair solutions is tightened (minimum revenue for repair so-
lutions increases) that in some cases this leads to a super solution of reduced optimal
revenue. Note, however, that these graphs are averaged over those instances that proved
satisfiable so as minimum revenue increases some problems became unsatisfiable there-
fore negating the decrease in revenue from satisfiable instances.

6 An alternative approach may be to maximize the minimal revenue on the super solution and
all repair solutions.

Super Solutions for Combinatorial Auctions 197

Arbitrary-npv Distribution
 100
 99
 98
 97
 96
 95
 94

1
2

3
4

5
b 80

82
84

86
88

90
92

94
96

98

Min % Revenue

93
94
95
96
97
98
99

100

Average Revenue
(% of optimal)

(a) arbitrary-npv distribution

Regions-npv Distribution
 100
 99.5
 99

 98.5
 98

1
2

3
4

5
b 80

82
84

86
88

90
92

94
96

98

Min % Revenue

97.5

98

98.5

99

99.5

100

Average Revenue
(% of optimal)

(b) regions-npv distribution

Scheduling Distribution
 100
 99
 98
 97
 96
 95

1
2

3
4

5
b 90

92

94

96

98

Min % Revenue

94
95
96
97
98
99

100

Average Revenue
(% of optimal)

(c) scheduling distribution

Fig. 6. Average optimal revenue of satisfiable instances.

5 Extensions to Super Solutions

Whilst the super solution framework provides an excellent framework for finding ro-
bust solutions, it is somewhat inflexible in some respects that are important to real-life
applications. We have discovered some limitations in the approach when applied to
combinatorial auctions. Firstly there is an underlying assumption that when a repair
solution is created, the incurred cost of changing each variable’s value in the repair set
is the same and the total cost of repair is the cardinality of the repair set. In a real-
world scenario, informing a losing bidder that they have now won because of the with-
drawal/disqualification of a winning bid would typically incur less cost than informing
a winning bidder that they have now lost. The auctioneer may have to break a contract
or pay a penalty for such an action. This can be seen as a disadvantage of the super
solution framework and militates against its deployment in real-life scenarios. Calcu-
lation of the cost associated with changing the losing/winning status of any bid is in
reality a more complex issue that may depend on several other factors. Determining the
legality of a repair solution by measuring the cardinality of the repair set may be overly
restrictive in many application domains.

In other application domains such as scheduling, the cost associated with changing
the value of a variable in a solution may depend on its destination value. Consider a
factory scheduling problem where variables represent machines and values correspond
to states. The cost of changing the state of any machine depends on both the source and
destination states.

198 Alan Holland and Barry O’Sullivan

Arbitrary-npv Distribution
 100
 50

1
2

3
4

5
b 80

82
84

86
88

90
92

94
96

98

Min % Revenue

0
20
40
60
80

100
120
140

Time(secs)

(a) arbitrary-npv distribution

Regions-npv Distribution
 150
 100
 50

1
2

3
4

5
b 80

82
84

86
88

90
92

94
96

98

Min % Revenue

0
20
40
60
80

100
120
140
160

Time(secs)

(b) regions-npv distribution

Scheduling Distribution
1.5e+003
 1e+003

 500

1
2

3
4

5
b 90

92

94

96

98

Min % Revenue

0
200
400
600
800

1000
1200
1400
1600
1800
2000

Time(secs)

(c) scheduling distribution

Fig. 7. Average time to find the super solution of maximal revenue.

The cost of changing a variable may also depend on the variable(s) that caused the
break. For example, if a particular agent withdraws a bid from an auction, the auction-
eer may favor rejection of the agents’ other successful bids rather than disturbing an
innocent party. The cost of a repair solution should therefore depend on the destination
value and the breakage variable(s).

One possible approach is to extend the super solution framework to take account of
the cost of repair. For example, we can use the concept of inertia as a metric for the
cost of repair required to form an alternative solution. Previously the cardinality of the
repair set was used to measure the cost of repair. We argue that changing some variables
in a repair solution incurs less cost than others thereby motivating the introduction of a
different metric for determining the legality of repair sets. The inertia of each value may
be viewed as a measure of its aversion to change, therefore can be used to determine the
cost of repair in the repair solution. We motivate this approach by using robust solutions
to combinatorial auctions as an example application domain.

Hebrard et al [4] also described how some variables may fail (such as machines in
a job-shop problem) and others may not. If we generalize this approach so that there is
a probability of failure associated with each variable value, we can then alter the crite-
ria for repair solutions according to each individual potential break. This probabilistic
approach may be further enhanced by incorporating probabilistic failure distributions
over time. Such distributions are common in reliability engineering and are often used

Super Solutions for Combinatorial Auctions 199

to determine the mean time to failure. We may use them to maximize the mean time to
irreparable failure, thus forming a robust solution for as long as possible when eventual
failure is inevitable.

This extended feature of super solutions is motivated by the maintenance of robust
solutions in combinatorial auctions. Agents’ bids may be regarded as variables and
Hebrard et al’s (a,b)-super solution guarantees that an alternative solution may be found
if a bids are retracted by changing at most b other variables. Maintaining a record of
the reliability of assignments in the break set can help find repair solutions of lower
inertia for values that are more likely to fail. All bids may not be viewed equally by the
auctioneer and preferences may be shown for some agents. Eliminating a certain bid
from the solution because of the retraction of another bid may incur varying costs for
each bid, therefore the inertia associated with a value representing a winning bid reflects
the unwillingness of the auctioneer to let that bid lose due to the actions of another. We
also need to improve the model to include a constraint on the revenue in sub-branches
of the search tree so that there is a tighter upper bound on revenue by using the LP
relaxation of the problem. This would improve the scalability of the model.

Losing bidders typically would not mind being told that their bid was now accepted
due to a winning bid’s retraction so the inertia associated with such bids may be lower.
This may be seen as a generalization of super solutions whose values of inertia are all
0 or 1. Furthermore, the break-set is regarded as the set of variables that may break,
therefore the inertia of these variables values are all 1. Those variables not in the break-
set have coefficients of inertia of 0 for all their values.

The overall cost of repair required to move from one solution to another is a func-
tion of the inertia on all values that need to be changed. An example of such a function
could be the sum of the inertial values although not exclusively so. Taking this approach
further, repairs may be made that restrict the impact on particular variables. In an auc-
tion scenario, we may wish that a repair solution does not impact too unfairly on any
particular agent when another agent retracts a bid. The development of this extension
to super solutions is our current topic of research.

6 Conclusion

Combinatorial auctions are becoming and increasingly popular means of selling/pro-
curing items because they provide enhanced economic efficiency over traditional single
unit auctions. Super solutions offer a promising platform for developing robust solu-
tions for such auctions that may leave the auctioneer with an exposure problem if bids
are withdrawn or disqualified. We have demonstrated the computational feasibility of
finding super solutions for economically-motivated auction problems and shown how an
anytime algorithm may find the best possible super solution given a limited time frame.

We also presented some limitations of the approach and suggested an extension to
the framework. This extension incorporates a more flexible metric, termed inertia, for
determining the legality of repair solutions and associating probabilities of failure to
different variables. The introduction of weighted robustness of values complements this
approach by allowing the construction of repair solutions of lower inertia for unreliable
values. The development of this extension to super solutions is our current topic of
research.

200 Alan Holland and Barry O’Sullivan

Acknowledgements

We are very grateful to Emmanuel Hebrard and Brahim Hnich for their assistance.

References

1. Fahiem Bacchus and George Katsirelos. EFC constraint solver.
http://www.cs.toronto.edu/˜gkatsi/efc/efc.html.

2. Rafael Epstein, Lysette Henrı́quez, Jaime Catalán, Gabriel Y. Weintraub, and Cristián
Martı́nez. A combinational auction improves school meals in Chile. Interfaces, 32(6):1–14,
2002.

3. Matthew L. Ginsberg, Andrew J. Parkes, and Amitabha Roy. Supermodels and robustness.
In AAAI/IAAI, pages 334–339, 1998.

4. Emmanuel Hebrand, Brahim Hnich, and Toby Walsh. Robust solutions for constraint satis-
faction and optimization. In Proceedings of ECAI 2004, 2004.

5. Emmanuel Hebrard, Brahim Hnich, and Toby Walsh. Super solutions in constraint program-
ming. In Proceedings of CP-AI-OR 2004, 2004.

6. Gail Hohner, John Rich, Ed Ng, Grant Reid, Andrew J. Davenport, Jayant R. Kalagnanam,
Ho Soo Lee, and Chae An. Combinatorial and quantity-discount procurement auctions ben-
efit mars, incorporated and its suppliers. Interfaces, 33(1):23–35, 2003.

7. Kevin Leyton-Brown, Mark Pearson, and Yoav Shoham. Towards a universal test suite for
combinatorial auction algorithms. In ACM Conference on Electronic Commerce, pages 66–
76, 2000.

8. Paul Milgrom. Putting Auction Theory to Work. Cambridge, March 2004.
9. Martin Pesendorfer and Estelle Cantillon. Combination bidding in multi-unit auctions. Har-

vard Business School Working Draft, 2003.
10. Tuomas Sandholm. Algorithm for optimal winner determination in combinatorial auctions.

Artificial Intelligence, 135(1-2):1–54, 2002.
11. Tuomas Sandholm, Subhash Suri, Andrew Gilpin, and David Levine. CABOB: A fast opti-

mal algorithm for combinatorial auctions. In IJCAI, pages 1102–1108, 2001.
12. W.E. Walsh, M.P. Wellman, and F. Ygge. Combinatorial auctions for supply chain formation.

In ACM Conference on Electronic Commerce, pages 260–269, 2000.

Better Propagation for Non-preemptive
Single-Resource Constraint Problems

Armin Wolf

Fraunhofer FIRST, Kekuléstr. 7, D-12489 Berlin, Germany
Armin.Wolf@first.fraunhofer.de

Abstract. Overload checking, forbidden regions, edge finding, and not-
first/not-last detection are well-known propagation rules to prune the
start times of activities which have to be processed without any interrup-
tion and overlapping on an exclusively available resource, i.e. machine.
These rules are extendible by two other rules which take the number
of activities into account which are at most executable after or before
another activity. To our knowledge, these rules are based on approxima-
tions of the (minimal) earliest completion times and the (maximal) latest
start times of sets of activities. In this paper, the precise definitions of
these time values as well as an efficient procedure for their calculations
are given. Based on the resulting time values the rules are re-formulated
and applied to a well-known job shop scheduling benchmark.

1 Introduction

Job shop scheduling is one important representative of non-preemptive single-
resource constraint problems which are in general NP-complete. However, recent
publications present new efficient algorithms [3, 4, 12] for some known propaga-
tion rules. The application of these rules prune the potential start times of the
activities to be processed and thus the search space for the solutions, i.e. the
schedules.

In addition to other propagation rules like “edge finding” and others in [2, 10]
a supplementary propagation rule is presented further restricting the earliest
start times and latest end times of non-preemptive and time restricted activities
requiring a single, exclusively available resource. This supplementary propaga-
tion rule follows the obvious observation that if there is an activity t and n other
activities such that any k of them are not executable before (after) t then at
most k − 1 are executable before (after) t and thus at least n− k + 1 activities
have to be processed after (before) t. Any application of this rule requires the
earliest completion times and latest start times of any sets of activities of known
cardinality. In [2, 10] approximations of these values are used instead of the real
values.

In this paper, we give a precise and efficiently computable definition of the
earliest completion times and latest start times of sets of activities. Based on
these definitions the minimal earliest completion times and the maximal latest
start times of all subsets with cardinality k of any given set of activities is
defined. In general, the use of resulting values yields better propagations than

B. Faltings et al. (Eds.): CSCLP 2004, LNAI 3419, pp. 201–215, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

202 Armin Wolf

by the use of some approximated values. However, there are cases where the
approximations for all subsets of activities perform better than the exact values
only computed for the total set of all activities (cf. Example 2).

2 Non-preemptive Single-Resource Constraint Problems

Non-preemptive single-resource constraint problems are problems of finding a
sequence for some non-interruptible time-restricted activities to be processed by
the use of an exclusively available without overlapping in time. More formally,
the problem is defined as follows:

Definition 1 (cf. [2]). An activity t is non-interruptible and has a non-empty
set of potential start times St, i.e. a finite integer set which is the domain of its
variable start time s(t). Furthermore, it has a fixed duration d(t), i.e. a positive
integer value1.

Given a finite set of activities T = {t1, . . . , tn} with at least two elements
(n ≥ 2), the problem is to find a solution, i.e. some start times s(t1) ∈ St1 , . . . ,
s(tn) ∈ Stn such that either s(ti) + d(ti) ≤ s(tj) or s(tj) + d(tj) ≤ s(ti) holds
for 1 ≤ i < j ≤ n. Thus, a non-preemptive single-resource constraint problem
is determined by a set of activities T which is either solvable if there is such a
solution or unsolvable, otherwise.

In the following, we only consider non-preemptive single-resource constraint
problems. Thus, it is always implicitly assumed that a set of activities T with
at least two elements is given such that each activity t ∈ T has a well-defined
set of start times St and a well-defined duration d(t). For each activity t ∈ T a
feasible start time s(t) ∈ St, i.e. a solution, has to be determined.

Furthermore, we identify for each activity t ∈ T its earliest start and comple-
tion times est(t) resp. ect(t) as well as its latest start and completion times
lst(t) resp. lct(t). Given the actual set of start times St of an activity t ∈
T it holds est(t) ≤ min(St), lst(t) ≥ max(St), ect(t) := est(t) + d(t), and
lct(t) := lst(t)+ d(t). Especially before any application of a propagation rule let
est(t) := min(St), lst(t) := max(St). Then, after any propagation the inequali-
ties will hold.

It is easy to define the durations as well as the earliest start and completion
times of sets of activities as canonical extension, i.e. given a non-empty subset
of activities M ⊆ T we define (cf. [2]):

d(M) :=
∑
t∈M

d(t) est(M) := mint∈M (est(t)) lct(M) := max
t∈M

(lct(t)) .

We might further define the earliest completion time (ect) and the latest start
time (lst) of a non-empty subset of activities M as in [2, 10]:

ect(M) := est(M) + d(M) and lst(M) := lct(M)− d(M) .

However, these are only approximations of the real values as the following ex-
ample shows:
1 A generalisation with sets of potential durations that may be zero is possible, too.

Better Propagation for Non-preemptive Single-Resource Constraint Problems 203

Example 1. Considering the set of activities {a, b, u, v} with Sa := [0, 5], Sb :=
[4, 5], Su := [7, 9] Sv := [11, 15], d(a) := 3, d(b) := 2. d(u) := 4, d(v) := 3.

The earliest completion time of the activities {a, b} is 6 which is greater than
est({a, b}) + d({a, b}) which is 5.

The latest start time of the activities {u, v} is 9 which is less than lct({u, v})−
d({u, v}) which is 11.

Thus any propagation based on the approximations might be improved by
the use of the real values.

3 Earliest Completion Times of Sets of Activities

In the following, we define the earliest completion times of sets of activities and
give some evidence that this declaration is sound.

Definition 2. Given a non-empty set of activities T := {t1, . . . , tn} with n ≥ 2
such that est(t1) ≤ · · · ≤ est(tn) holds. Now, let P := {ti1 , . . . tik

} be a non-
empty subset of T . We define Pij := {tij , . . . , tik

} for j = 1, . . . , k. This means
that P = Pi1 ⊇ · · · ⊇ Pik

�= ∅ holds. Furthermore, we define

ect(P) := max
j=1,...,k

est(Pij) + d(Pij) = max
j=1,...,k

⎛
⎝est(tij) +

k∑
l=j

d(til
)

⎞
⎠

to be the earliest completion time of all activities in P .

The declaration “earliest completion time” is justifiable: We assume that
there is a solution such that all activities in P are completed before ect(P).
Then, it holds s(tij) + d(tij) < ect(P) for each j = 1, . . . , k. Thus, by definition
of ect(P), there are indices m, p ∈ {1, . . . , k} such that ect(P) = est(tim) +∑k

l=m d(til
) and s(tip) +

∑k
l=m d(til

) < ect(P) because tip is scheduled first in
the set Pim . It follows that s(tip) < est(tim) must hold and thus that est(tip) <
est(tim) holds, which contradicts the given order, i.e. est(tip) ≥ est(tim).

Obviously, ect is monotonic, i.e. if N ⊆M ⊆ T holds for two sets of activities
N and M , then ect(N) ≤ ect(M) holds, too. Furthermore, est(p) < ect(P) holds
obviously for each activity p ∈ P .

Now, if we want to apply the propagation rule described in the introduction
we are especially interested in the minimal earliest completion time of all sets of
activities with cardinality k:

Definition 3. Given a non-empty set of activities T := {t1, . . . , tn} with n ≥ 2
such that est(t1) ≤ · · · ≤ est(tn) holds. We define:

minSet(T, 1) := {t(1)i }

where t
(1)
i ∈ T , such that ect(minSet(T, 1)) is minimal. If there is more than one

such t
(1)
i , we choose the one with the smallest index i.

204 Armin Wolf

For k = 1, . . . , n− 1 we define recursively2:

minSet(T, k + 1) := minSet(T, k) + {t(k+1)
i }

where t
(k+1)
i ∈ T \ minSet(T, k), such that ect(minSet(T, k + 1)) is minimal. If

there is more than one such t
(k+1)
i , we choose the one with the smallest index i.

Obviously, for k = 1, . . . , n the cardinality of the set minSet(T, k) is k. In the
following we prove that minSet(T, k) has the minimal earliest completion time
of all subsets of T with cardinality k. However, therefore it is necessary to prove
for a subset N ⊆ T of cardinality k + 1 (k ∈ {1, . . . , |T | − 1}) containing the
activity t that ect(N) ≥ ect(minSet(T, k)∪{t}) holds. This requires the following
lemma:

Lemma 1. Let two sets of activities N ⊂ T and M ⊂ T be given such that
there is an activity t ∈ T \ (N ∪M). Further, let it holds

ect(N) ≥ ect(M) ,

est(t) ≥ est(n) for each activity n ∈ N ,
est(t) ≥ est(m) for each activity m ∈ M .

Then, it holds ect(N + {t}) ≥ ect(M + {t}).
Proof. By definition of ect it holds

ect(N + {t}) = max(ect(N) + d(t), est(t) + d(t))
ect(M + {t}) = max(ect(M) + d(t), est(t) + d(t)) .

Thus, the statement to be proved follows immediately. ��
Theorem 1. Given a non-empty set of activities T = {t1, . . . , tn} with n ≥ 2
such that est(t1) ≤ · · · ≤ est(tn) holds. Then, it holds

ect(minSet(T, k)) = min
N⊆T,|N |=k

ect(N) for k = 1, . . . , |T |.

Proof. By Induction over k, we prove ect(minSet(T, k)) ≤ minN⊆T,|N |=k ect(N).
Then, the equality to be proven follows immediately, because minSet(T, k) is a
subset of T with cardinality k.

Obviously, for k = 1 the statement holds by definition of minSet(T, 1).
Now, let N be an arbitrary subset of T with cardinality k + 1. Then, there

is an activity tj ∈ N not contained in minSet(T, k). We choose tj such that
its index j is maximal, i.e. all other activities in N with greater index are also
in minSet(T, k). In the following let N ′ := N \ {tj} and for i = 1, . . . , n let
Ni := N ∩ {ti, . . . , tn} and N ′

i := N ′ ∩ {ti, . . . , tn}.
By definition of ect(N) it holds ect(N) ≥ est(tj)+d(tj). If we further assume

that est(tj) ≥ ect(minSet(T, k)) holds, it follows immediately that ect(N) ≥
ect(minSet(T, k)+ {tj}) ≥ ect(minSet(T, k + 1)) holds. Consequently, we assume
for the rest of the proof that est(tj) < ect(minSet(T, k)) holds.
2 We use the operator ‘�’ for set union to emphasise the union of disjoint sets.

Better Propagation for Non-preemptive Single-Resource Constraint Problems 205

If it holds ect(N) = est(Ni) + d(Ni) for an activity ti ∈ N ′ with i < j, then
it follows immediately

ect(N) = est(N ′
i) + d(N ′

i) + d(tj) ≥ ect(minSet(T, k)) + d(tj)
≥ ect(minSet(T, k) + {tj})
≥ ect(minSet(T, k + 1))

by induction hypothesis and by definitions and thus the statement to be proved.
Thus, we assume in the following that ect(N) = est(Ni) + d(Ni) holds for

an activity ti ∈ N ′ with i > j. Further, we choose ti such that its index i
is maximal and the assumption holds, i.e. ect(N) = ect(Ni). According to the
choice of ti it holds ect(N\{ti}) < ect(N), otherwise there would be an l > i such
that ect(N \ {ti}) = est(Nl) + d(Nl) = ect(N) holds. According to our choices
of ti and tj it holds Ni ⊆ minSet(T, k) and thus ect(Ni) ≤ ect(minSet(T, k)).
Consequently, it follows ect(N \ {ti}) < ect(N) = ect(Ni) ≤ ect(minSet(T, k))
contradicting the induction hypothesis, because |N \ {ti}| = k. Consequently,
this case cannot happen for any activity ti with i > j.

Finally, if ect(N) = est(tj) + d(j) + d(N ′
i) holds for an activity ti ∈ N ′, then

by definition of ect(N) its index i is the smallest index of the activity in N ′ (or N)
which is greater than j. Furthermore, it holds est(tj) ≤ est(ti) ≤ est(tj)+ d(tj).
Otherwise, if we assume that est(ti) > est(tj) + d(tj) holds, then it follows
est(ti)+d(N ′

i) = est(Ni)+d(Ni) > est(tj)+d(j)+d(N ′
i) = ect(N) contradicting

the definition of ect(N).
For all activities th ∈ N with h < j it holds est(th) + d(Nh \Nj) ≤ est(tj).

Otherwise, if we assume that there is an activity tl ∈ N with l < j such that
est(tl) + d(Nl \ Nj) > est(tj) holds, then it follows est(tl) + d(Nl) > est(tj) +
d(Nj) = est(tj) + d(tj) + d(N ′

i) = ect(N) contradicting the definition of ect(N).
Let Nj+1 := {tu1 , . . . , tuv} which is a subset of minSet(T, k) according to the

choice of tj . Now, we consider N \Nj = N ∩ {t1, . . . , tj−1}. Obviously, it holds
|N \ Nj| ≤ k, thus by induction hypothesis and definition it holds est(tj) ≥
ect(N \Nj) ≥ ect(minSet(T, |N \Nj |)) and minSet(T, |N \Nj|) ⊆ minSet(T, k).
Furthermore, by definitions and Lemma 1 it holds

ect(minSet(T, |N \Nj|) + {tj}) ≤ ect((N \Nj) + {tj})
ect(minSet(T, |N \Nj |) + {tj , tu1}) ≤ ect((N \Nj) + {tj, tu1})

...
ect(minSet(T, |N \Nj|) + {tj, tu1 , . . . , tuv}) ≤ ect((N \Nj) + {tj, tu1 , . . . , tuv}) .

Consequently, ect(N) ≥ ect(minSet(T, k + 1)), because N = (N \ Nj) + {tj} +
Nj+1 and minSet(T, k) + {tj} = minSet(T, |N \ Nj|) + {tj} + Nj+1 and further
ect(minSet(T, k) + {tj}) ≥ ect(minSet(T, k + 1)). ��

Theorem 1 shows that the declaration minSet is adequately chosen, because
it defines a set of activities such that its earliest completion time is minimal with
respect to all other sets of activities with the same cardinality.

206 Armin Wolf

4 Latest Start Times of Sets of Activities

The definitions of the latest start times of sets of activities as well as the defini-
tions of the maximal latest start times of all sets of activities with cardinality k
are symmetrical to the definitions in the previous section. Therefore, we have
to consider the non-empty set of activities T := {t1, . . . , tn} with n ≥ 2 in
such a way that lct(t1) ≥ · · · ≥ lct(tn) holds. Then, for any non-empty subsets
Q := {ti1 , . . . tik

} ⊆ T and Qij := {tij , . . . , tik
} for j = 1, . . . , k let

lst(Q) := min
j=1,...,k

lct(Qij)− d(Qij) = min
j=1,...,k

⎛
⎝lct(tij)−

k∑
l=j

d(til
)

⎞
⎠

be the latest start time of all activities in Q.
Symmetrically, the declaration “latest start time” is justifiable and all the

properties holding for the earliest completion times of sets of activities hold
analogously for the latest start times, too.

According to minSet(T, k) there are maxSet(T, k) having maximal latest start
time of all sets of activities with cardinality k:

Corollary 1. Given a non-empty set of activities T . Then, it holds

lst(maxSet(T, k)) = max
N⊆T,|N |=k

lst(N) for k = 1, . . . , |T |.

Proof. The proof is analogous to the proof of Theorem 1. ��
With these definitions and properties of minimal earliest completion times

and maximal latest start times of sets of activities of fixed size we are able to
re-formulate the propagation rules presented in [2, 10].

5 Propagation Rules

Considering a non-preemptive single-resource constraint problem determined by
a set of activities T . The following two rules check whether for an activity t
any other k activities in T \ {t} are not executable before (after) t. If so, at
least |T | − k activities in T \ {t} have to be processed after (before) t:3

∀t ∈ T ∀k ∈ {1, . . . , |T | − 1} : ect(minSet(T \ {t}, k)) > lst(t)
⇒ S′

t := St ∩ (−∞, lst(maxSet(T \ {t}, |T | − k))− d(t)] (1)

∀t ∈ T ∀k ∈ {1, . . . , |T | − 1} : lst(maxSet(T \ {t}, k) < lct(t))
⇒ S′

t := St ∩ [ect(minSet(T \ {t}, |T | − k)), +∞) (2)

In applications the precondition of rule (1) might be extended by lct(t) >
lst(maxSet(T \{t}, |T |−k)) and of rule (2) by est(t) < ect(minSet(T \{t}, |T |−k))
to avoid redundant rule activations.
3 For any activity t the primed set of potential start times S′

t identifies an update of
this set, i.e. the effect of any pruning operation resulting in a subset of St.

Better Propagation for Non-preemptive Single-Resource Constraint Problems 207

In contrast to the rules presented in [2, 10] these rules only consider the
whole set of activities T and not all the subsets of T . We assumed that the
restricted consideration of T results in the same propagation quality, i.e. each
propagation performed by the consideration of all subsets of T is performed by
the consideration of the set T itself. However this is not valid, as the following
example shows:

Example 2. We consider the set of activities T = {t1, t2, t3, t4} with est(t1) =
· · · = est(t4) = 0, lct(t1) = · · · = lct(t3) = 10, lct(t4) = 8, d(t1) = 1, d(t2) =
d(t3) = d(t4) = 3. An application of the rule with t := t4 and the subset M :=
{t2, t3} of T prunes t’s set of potential start times St4 which is initially [0, 5]:

minSet(M, 1) = {t2} with ect(minSet(M, 1)) = 3
minSet(M, 2) = {t2, t3} with ect(minSet(M, 2)) = 6 .

Thus, ect(minSet(M, 2)) > lst(t4) = 5 triggers Rule 1 where

maxSet(M, 1) = {t2} with lst(maxSet(M, 1)) = 7

which results in S′
t4 := [0, 7 − d(t4)] = [0, 4]. Now, if we consider the set I :=

T \ {t} = {t1, t2, t3} it holds

minSet(I, 1) = {t1} with ect(minSet(I, 1)) = 1
minSet(I, 2) = {t1, t2} with ect(minSet(I, 2)) = 4

minSet(I, 3) = {t1, t2, t3} with ect(minSet(I, 2)) = 6 .

Thus, only ect(minSet(I, 3)) > lst(t4) = 5 triggers Rule 1 where

maxSet(I, 1) = {t1} with lst(maxSet(I, 1)) = 9

which results in no pruning.

However, these rules are further improvable: therefore we take any given
(partial) order of the activities into account. Obviously, an activity s is before
another activity t if the latest start time of s is less than the earliest completion
time of t, because s cannot be started after the completion of t. Consequently,
we define the relation

before(s, t) ↔ lst(s) < ect(t)

for any two different activities s, t ∈ T , s �= t.4

Thus, for any activity t ∈ T we are able to determine the set of activities to
be processed before respective after t:

At := {s ∈ T \ {t} | before(s, t)} and Ωt := {s ∈ T \ {t} | before(t, s)} .

4 This before relation is called detectable precedence relation in [11].

208 Armin Wolf

Given these two sets, we know that all feasible start times of t must be in the
interval [ect(At), lst(Ωt)− d(t)], i.e.

∀t ∈ T : S′
t := St ∩ [ect(At), lst(Ωt)− d(t)] (3)

and that the activities in At are eventually processed before t and the activities
in Ωt after t. Efficient propagation based on rule (3) is recently published in [11].
Furthermore, more propagation is possible: We know that at least |At| activities
and at most |T |− |Ωt|−1 activities are executable before t and that at least |Ωt|
activities and at most |T | − |At| − 1 activities are executable after t. This allows
a refinement of the sets of activities with minimal earliest completion time and
maximal latest start time with respect to its cardinality. – For any subset M ⊆ T
we define extended minSets and maxSets:

minSetExt(M, T, |M |+ 1) := M ∪ {t(1)i }

where t
(1)
i ∈ T \M , such that ect(minSetExt(M, T, |M |+1)) is minimal. If there is

more than one such t
(1)
i , we choose the one with the smallest index i considering

the ascending order with respect to the est’s.

minSetExt(M, T, |M |+ k + 1) := minSetExt(M, T, |M |+ k) + {t(k+1)
i }

where t
(k+1)
i ∈ T \ minSetExt(M, T, k), such that ect(minSetExt(M, T, k + 1))

is minimal. If there is more than one such t
(k+1)
i , we choose the one with the

smallest index i considering the ascending order with respect to the est’s.

maxSetExt(M, T, |M |+ 1) := M ∪ {t(1)i }

where t
(1)
i ∈ T \ M , such that lst(maxSetExt(M, T, |M | + 1)) is maximal. If

there is more than one such t
(1)
i , we choose the one with the smallest index i

considering the descending order with respect to the lct’s.

maxSetExt(M, T, |M |+ k + 1) := maxSetExt(M, T, |M |+ k) + {t(k+1)
i }

where t
(k+1)
i ∈ T \ maxSetExt(M, T, k), such that ect(maxSetExt(M, T, k + 1))

is maximal. If there is more than one such t
(k+1)
i , we choose the one with the

smallest index i considering the descending order with respect to the lct’s.
Analogous to Theorem 1 and Corollary 1 the following proposition holds:

Proposition 1. Given a non-empty set of activities T . Then, for any subset
M ⊆ T it holds

ect(minSetExt(M, T, k)) = min
M⊆N⊆T,|N |=k

ect(N) and

lst(maxSetExt(M, T, k)) = max
M⊆N⊆T,|N |=k

lst(N)

for k = |M |+ 1, . . . , |T |. ��

Better Propagation for Non-preemptive Single-Resource Constraint Problems 209

Based on these equalities, we are able to further refine the propagation rules
w.r.t to the (partial) order of the activities:

∀t ∈ T ∀k ∈ {|At|+ 1, . . . , |T | − |Ωt| − 1} :
ect(minSetExt(At, T \ (Ωt ∪ {t}), k)) > lst(t)

⇒ S′
t := St ∩ (−∞, lst(maxSetExt(Ωt, T \ (At ∪ {t}), |T | − k))− d(t)] (4)

∀t ∈ T ∀k ∈ {|Ωt|+ 1, . . . , |T | − |At| − 1} :
lst(maxSetExt(Ωt, T \ (At ∪ {t}), k) < lct(t))

⇒ S′
t := St ∩ [ect(minSetExt(At, T \ (Ωt ∪ {t}), |T | − k)), +∞) (5)

Again, in applications the precondition of rule (4) might be extended by
lct(t) > lst(maxSetExt(Ωt, T \ (At ∪ {t}), |T | − k)) and of rule (5) by est(t) <
ect(minSetExt(At, T \ (Ωt ∪ {t}), |T | − k)) to avoid redundant rule activations.

The correctness of these rules is obvious. However, a formal proof is post-
poned.

For any efficient pruning based on all these propagation rules we are inter-
ested in fast algorithms calculating for any activity t ∈ T and any necessary k
the (extended) minSets and maxSets as well as their ects and lsts respectively.

6 Implementation and Complexity

For the implementation of the presented propagation rules we use several linked
lists which are represented by some integer arrays. We only illustrate their usage
for the computation of the minSets, the computation of the other sets is quite
similar.

Given a set of activities T = {t1, . . . , tn} such that est(t1) ≤ · · · ≤ est(tn)
and an activity tj ∈ T , we initialise the following integer arrays running from 0
to n + 1 to compute the minSets of cardinality k which are subsets of T \ {tj}:

index: 0 1 . . . j − 1 j j + 1 . . . n n+1
ect: −∞ ect(t1) . . . ect(tj−1) ect(tj) ect(tj+1) . . . ect(tn) +∞
est: −∞ est(t1) . . . est(tj−1) est(tj) est(tj+1) . . . est(tn) +∞

d: 0 d(t1) . . . d(tj−1) d(tj) d(tj+1) . . . d(tn) 0
next candidate: 1 2 . . . j + 1 — j + 2 . . . n+1 —

successor: n + 1 n + 1 . . . n + 1 n + 1 n + 1 . . . n + 1 n + 1
predecessor: 0 0 . . . 0 0 0 . . . 0 0

block occupation: 0 0 . . . 0 0 0 . . . 0 0
gap sum: 0 0 . . . 0 0 0 . . . 0 0

The values “−∞” respective “+∞” represent the smallest respective largest
integers. Furthermore, the line “—” stands for any negative integer, representing
the “nil” or “null” value in lists.

More illustrative, the activities in T are organised in linked lists as shown
in Figure 1 (there exemplary for a minSet): In the upper list the candidates
(“dashed” and “bricked” boxes) are organised while in the lower double-linked

210 Armin Wolf

ect(t)

ect(M)

est(t)

Fig. 1. The situation before the insertion of an activity.

ect(M+{t})

Fig. 2. The situation after the insertion of an activity.

list the activities of the optimal set of size k−1 are connected (“trellised” boxes).
Initially, if k = 1 holds, this list is empty. In general, if k > 1, the earliest “blocks”
occupied by these activities (“trellised” boxes) on the time line are connected.
These blocks are the overlapping durations of the activities in the optimal sets.
Each candidate is connected with a “successor” block for which the sums of all
gaps between it and all its successors is known (initially, these sums are 0). With
this information we are able to determine immediately how each candidate will
change the ect when added to the optimal set of activities as shown in Figure 2
(“connecting bricks”).

Thus, the computation of the minSets works as follows: Given the minSet with
cardinality k− 1 we iterate over the current candidates for the extension of this
set to an optimal set of size k, i.e. we compute how the addition of a candidate
to the optimal set might increase its ect. For this purpose, we use the gap sums.
After the iteration, we choose the candidate which increases the ect minimally.
Then, this candidate is disconnected from the list of candidates and the list of
occupied blocks is updated (cf. Figures 1 and 2). After the computations of all
(extended) minSets and maxSets the rules presented in the previous section are
applied straight forward.

For a better understanding of the core of the algorithm we show the compu-
tation of a minSet by an example:

Example 3. The following table shows a snapshot of a processing of the Fisher’s
& Thompson’s job shop scheduling benchmark ft6 [5] during the consideration of
the task with index 1 (its “next candidate” is valued “—”). The table shows that
the linkage of the tasks is realised by using their indices. We use two “dummy”
tasks (task #0 and task #7) representing the begin and the end of the linked
lists. The list of candidates is linked via “next candidate”. The list of “occupied
blocks” is represented as a double-linked list and linked via “successor” and
“predecessor”. The line “—” represents the “nil” or “null” value in lists.

Better Propagation for Non-preemptive Single-Resource Constraint Problems 211

The following table contains the minSet with cardinality 2 consisting of the
tasks #2 and #4 (the successor of #0 is #2, of #2 is #4, and of #4 is #7). The
following figure shows that the ect of this minSet is 29, i.e. the minimal ect of all
task sets with cardinality 2 not containing task #1. Further, the table and the
figure shows that there is only one gap between task #2 and #4 with duration 2.
Thus the gap sum for task #2 is 2 time units for all others it is zero.

index: 0 1 2 3 4 5 6 7

ect: −∞ 17 23 31 29 33 34 +∞
est: −∞ 12 13 23 25 27 27 +∞

d: 0 5 10 8 4 6 7 0

next candidate: 3 — — 5 — 6 7 —
successor: 2 7 4 2 7 4 4 7

predecessor: 0 0 0 0 2 0 0 4

block occupation: 0 0 10 0 4 0 0 0
gap sum: 0 0 2 0 0 0 0 0

31

13 23 25 29

23

#3

#2 #4

Further, we recognise that task #3 with successor #2 partially fits in this
gap which will increase the ect to 35 as well as an extension of the minSet with
task #5. Task #6 will increase the ect to 36, thus by convention the minSet is
extended by task #3 resulting in a minSet of cardinality 3 with the minimal ect
of all task sets with cardinality 3 not containing task #1.

The following table and figure shows the situation after an update of the
data structures: the gap is filled and the durations of the tasks #2, #3 and #4
form a single block, also numbered #2, which occupies 22 time units.

index: 0 1 2 3 4 5 6 7

ect: −∞ 17 23 31 29 33 34 +∞
est: −∞ 12 13 23 25 27 27 +∞

d: 0 5 10 8 4 6 7 0

next candidate: 5 — — — — 6 7 —
successor: 2 7 7 7 7 2 2 7

predecessor: 0 0 0 0 0 0 0 2

block occupation: 0 0 22 0 4 0 0 0
gap sum: 0 0 0 0 0 0 0 0

13 35

27 33

#5

#2

212 Armin Wolf

It should be noted that the data structures presented in the previous example
are strongly motivated by the implementation of the propagation algorithm for
the alldifferent constraint presented in [9].

In the remaining of this section, we show that the time complexity of the
algorithm is cubic, i.e. O(|T |3):

Given a set of activities M with cardinality k the calculation of its ect or lst
requires O(k) computation steps, if we assume that an order of the activities with
respect to their ests and lcts respectively is given. The sorting affords O(k log k)
computation steps.

Given a (extended) minSet or maxSet with cardinality k − 1 we have to
consider at most |T |− k candidates for the extension of these sets to an optimal
set of size k. Naively, this requires O(k) calculations of ects and lsts and thus in
total O((|T | − k)k) computation steps. However, this is reduced to O(|T | − k)
computations steps due to the fact that the activities are organised in linked lists
as shown in Figure 1 where each candidate is connected with a “successor” block
for which the extension of all gaps between it and all its successors is known.
With this information we are able to determine in O(1) computation steps how
each candidate will change the ect respective the lct when added to the optimal
set of activities as shown in Figure 2.

Thus, for each t ∈ T we have to compute O(|T |) (extended) minSets and
maxSets which require O(|T |2) computation steps: O(|T |) computation steps for
the appropriate candidate and O(|T |) computation steps for an update of the
linked lists of “occupied” blocks and its ect respective lst. Thus, the total time
complexity is O(|T |3), i.e. the same as for the original rules [2, 10]. This also holds
if the (partial) orders of the activities are taken into account: the calculation of
the before relation affords naively O(|T |2) computation steps or O(|T | log |T |)
computation steps in a more advanced setting (cf. [11]).

7 First Experiments

For first experiments with the propagation rules presented in the previous sec-
tion, we implemented the necessary data structures and algorithms in our Java-
based constraint solver firstcs [6]. In detail, we supplemented the implementa-
tions of the sweeping algorithms for forbidden regions (fr), edge finding with over-
load checking (efoc) and not-first/not-last detection (nfnl) presented in [12] with
an implementation of the propagation rules (3), (4), and (5) (cf. Section 6). For
a fix-point computation of the propagators we used the nested iteration shown
in Figure 3: The optional propagation of these rules with cubic time complexity
is performed after the more efficient sweeping algorithms having quadratic or
even better complexity, i.e. O(n log n) [11]).

We applied these pruning algorithms to some well-known job shop schedul-
ing benchmark optimisation problems: abz5, abz6 [7], ft10 [5], la16, la18, la20,
la36 [8], and orb01-orb05 [1]. For all these problems it is sufficient to order
the tasks on the machines totally to obtain a schedule for the given minimal
makespan because forward scheduling will determine the activities’ start times.

Better Propagation for Non-preemptive Single-Resource Constraint Problems 213

boolean hasChanged = true;

while (hasChanged) {

while (hasChanged) {

hasChanged = false;

performEdgeFindingWhileSweeping();

performNotFirstNotLastDetectionWhileSweepint();

sweepOverForbiddenRegions();

}

if (BETTER_PROPAGATION) {

performBetterPropagationWithBefore();

}

}

Fig. 3. Combination and iteration over the pruning algorithms implemented in the
constraint solver firstcs.

For that purpose a branching procedure with constraint propagation at each
node of a search tree is used. The basic structure of the branching schema dur-
ing this search process is as follows:

– select a machine with the highest relative demand. The relative demand is
the ratio of the sum of all durations of the tasks on this machine and the
difference between the latest completion and earliest start times of the task
on this machine.

– select a task s on this machine with a smallest relative slack which is not
ordered with respect to all other tasks. The relative slack is the ratio of the
difference between the task’s latest and earliest start time and its duration.

– select another task t on this machine a the smallest relative slack which is
not ordered with respect to the task s.

– choose s before t. If this results in an inconsistency, choose t before s.
– repeat until all tasks on all machines are ordered totally or the search process

fails finally.

We applied this search schema statically: the relative demands and slacks of
the machines and their tasks are computed once at the beginning of the search
process. Within the search, different kinds of constraint propagation are applied:
forbidden regions, edge finding with overload checking, and not-first/not-last
detection (fr+efoc+nfnl). Additionally, the propagation rules (3), (4), and (5)
are applied, too (fr+efoc+nfnl+better-order). In the following table the different
search steps are listed for different given makespans:

Table 1 shows that the additional pruning rules seem to result in better
propagation of the single-resource constraints: the number of backtracks reduces
significantly; in some case more than one order magnitude. However, the search
is in none of the test cases faster. One reason is the prototypical implementation
of the pruning rules presented in Section 6. Another, and more crucial reason is
certainly the cubic time complexity of this implementation. Thus, we hope that
further research will breed more efficient algorithms implementing the presented
propagation rules.

214 Armin Wolf

Table 1. Experimental results showing the influence of the additional pruning rules.

problem size makespan fr+efoc+nfnl fr+efoc+nfnl+better-order
backtracks runtime [msec.] backtracks runtime [msec.]

abz5 10 × 10 1,234 52,534 31,100 2,313 40,350
abz6 10 × 10 943 23,916 14,800 1,861 31,700
ft10 10 × 10 930 10,550 8,600 1,518 31,350
la16 10 × 10 945 702 937 53 1,850
la18 10 × 10 848 7,400 6,050 1,368 23,900
la20 10 × 10 902 5,863 3,850 1,421 17,750
la36 15 × 15 1,268 6,642 17,100 3,084 216,350
orb01 10 × 10 1,059 50,641 51,400 10,393 198,900
orb05 10 × 10 887 2,320 2,250 610 11,750

8 Conclusion and Future Work

In this paper the earliest completion and latest start times of sets of activities are
precisely defined. Further, the sets of activities of fixed size with minimal earliest
completion and latest start times with respect to their sizes are defined, too.
Based on these definitions some well-known propagation rules are re-formulated:
approximations of these values are replaced by their exact values. These rules are
re-formulated twice: in the second step the tasks before and after a given task
are also taken into account. Then, we explained how the necessary computations
for an application of these rules are performed efficiently and showed by an
example the used data structures. Finally, we applied these rules to a well-known
benchmark problem affirming that the re-formulated rules reduces the number
of search steps that are required to find a solution.

Future theoretical work will focus on more efficient algorithms reducing the
current cubic time complexity. Practical work will focus on the improvement of
the prototypical implementation and the execution of more experiments.

References

1. David Applegate and William Cook. A computational study of the job-shop
scheduling problem. ORSA Journal on Computing, 27(3):149–156, 1991.

2. Philippe Baptiste, Claude le Pape, and Wim Nuijten. Constraint-Based Scheduling.
Number 39 in International Series in Operations Research & Management Science.
Kluwer Academic Publishers, 2001.

3. Nicolas Beldiceanu and Mats Carlsson. Sweep as a generic pruning technique ap-
plied to the non-overlapping rectangles constraint. In Toby Walsh, editor, Proceed-
ings of the 7th International Conference on Principles and Practice of Constraint
Programming – CP2001, number 2239 in Lecture Notes in Computer Science, pages
377–391. Springer Verlag, 2001.

4. Nicolas Beldiceanu and Mats Carlsson. A new multi-resource cumulatives con-
straint with negative heights. In Pascal van Hentenryck, editor, Proceedings of the
8th International Conference on Principles and Practice of Constraint Program-
ming – CP2002, number 2470 in Lecture Notes in Computer Science, pages 63–79.
Springer Verlag, 2002.

Better Propagation for Non-preemptive Single-Resource Constraint Problems 215

5. G. L. Thompson H. Fisher. Probabilistic learning combinations of local job-shop
scheduling rules. In G. L. Thompson J. F. Muth, editor, Industrial Scheduling,
pages 225–251. Prentice Hall, Englewood Cliffs, New Jersey, 1963.

6. Matthias Hoche, Henry Müller, Hans Schlenker, and Armin Wolf. firstcs – A Pure
Java Constraint Programming Engine. In Michael Hanus, Petra Hofstedt, and
Armin Wolf, editors, 2nd International Workshop on Multiparadigm Constraint
Programming Languages – MultiCPL’03, 29th September 2003. Online available
at uebb.cs.tu-berlin.de/MultiCPL03/Proceedings.MultiCPL03.RCoRP03.pdf.

7. E. Balas J. Adams and D. Zawack. The shifting bottleneck procedure for job shop
scheduling. Management Science, 34:391–401, 1988.

8. S. Lawrence. Resource constrained project scheduling: an experimental investi-
gation of heuristic scheduling techniques (supplement). Technical report, Gradu-
ate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh,
Pennsylvania, 1984.

9. Alejandro Lopez-Ortiz, Claude-Guy Quimper, John Tromp, and Peter van Beek.
A fast and simple algorithm for bounds consistency of the alldifferent constraint.
In Proceedings of the 18th International Joint Conference on Artificial Intelligence,
pages 245–250, Acapulco, Mexico, August 2003.

10. Wim P. M. Nuijten and Claude Le Pape. Constraint-based job shop scheduling
with ILOG Scheduler. Journal of Heuristics, 3, 1998.

11. Petr Viĺım. o(n log n) filtering algorithms for unary resource constraint. In Pro-
ceedings of the International Conference on Integration of AI and OR Techniques
in Constraint Programming for Combinatorical Optimisation Problems – CP-AI-
OR’04, number 3011 in Lecture Notes in Computer Science, pages 335–347, Nice,
France, April 20–22, 2004. Springer Verlag, Heidelberg.

12. Armin Wolf. Pruning while sweeping over task intervals. In Francesca Rossi, ed-
itor, Proceedings of the 9th International Conference on Principles and Practice
of Constraint Programming – CP 2003, number 2833 in Lecture Notes in Com-
puter Science, pages 739–753, Kinsale, County Cork, Ireland, 30th September –
3rd October 2003. Springer Verlag.

Author Index

Angelsmark, Ola 128

Beck, J. Christopher 41
Beldiceanu, Nicolas 1
Bettini, Claudio 142
Bordeaux, Lucas 157

Choueiry, Berthe Y. 56, 113

Faltings, Boi 71, 86

Guddeti, Venkata Praveen 56

Hnich, Brahim 172
Holland, Alan 187

Katriel, Irit 1

Lallouet, Arnaud 12

Markov, Igor L. 98
Mascetti, Sergio 142
Meisels, Amnon 26

Nguyen, Viet 71

O’Sullivan, Barry 187

Pajot, Brice 157
Petcu, Adrian 86
Prestwich, Steven 172
Prosser, Patrick 41
Pupillo, Vincenzo 142

Ramani, Arathi 98
Razgon, Igor 26

Sam-Haroud, Djamila 71
Selensky, Evgeny 172

Thapper, Johan 128
Thiel, Sven 1

Wallace, Richard J. 41
Wolf, Armin 201

Zheng, Yaling 113

	Frontmatter
	Constraint Propagation
	GCC-Like Restrictions on the {\itshape Same} Constraint
	A Note on Bilattices and Open Constraint Programming
	Pruning by Equally Constrained Variables

	Search
	Trying Again to Fail-First
	Characterization of a New Restart Strategy for Randomized Backtrack Search
	Dynamic Distributed BackJumping
	A Value Ordering Heuristic for Local Search in Distributed Resource Allocation
	Automatically Exploiting Symmetries in Constraint Programming
	New Structural Decomposition Techniques for Constraint Satisfaction Problems

	Applications
	Algorithms for the Maximum Hamming Distance Problem
	A System Prototype for Solving Multi-granularity Temporal CSP
	Computing Equilibria Using Interval Constraints
	Constraint-Based Approaches to the Covering Test Problem
	Super Solutions for Combinatorial Auctions
	Better Propagation for Non-preemptive Single-Resource Constraint Problems

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

