


Lecture Notes in Computer Science 3449
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Franz Rothlauf et al. (Eds.)

Applications
of Evolutionary
Computing

EvoWorkshops 2005: EvoBIO, EvoCOMNET, EvoHOT,
EvoIASP, EvoMUSART, and EvoSTOC
Lausanne, Switzerland, March 30 – April 1, 2005
Proceedings

13



Volume Editor
see next page

Cover illustration: Triangular Urchin, by Chaps (www.cetoine.com).
Chaps has obtained an MSc in Physics at the Swiss Federal Institute of Technology. He
is the developer of theArtiE-Fract software that was used to create Triangular Urchin.
Triangular Urchin (an Iterated Functions System of 2 polar functions) emerged from
an urchin structure after a few generations usingArtiE-Fract. The evolutionary process
was only based on soft mutations, some of them directly induced by the author.

Library of Congress Control Number: 2005922824

CR Subject Classification (1998): F.1, D.1, B, C.2, J.3, I.4, J.5

ISSN 0302-9743
ISBN-10 3-540-25396-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-25396-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11402169 06/3142 5 4 3 2 1 0



Volume Editors

Franz Rothlauf
Dept. of Business Administration and
Information Systems
University of Mannheim
Schloss, 68131 Mannheim, Germany
rothlauf@uni-mannheim.de

Jürgen Branke
Institute AIFB
University of Karlsruhe
76128 Karlsruhe, Germany
branke@aifb.uni-karlsruhe.de

Stefano Cagnoni
Dept. of Computer Engineering
University of Parma
Parco Area delle Scienze 181/a
43100 Parma, Italy
cagnoni@ce.unipr.it

David W. Corne
Department of Computer Science
University of Exeter
North Park Road
Exeter EX4 4QF, UK
d.w.corne@ex.ac.uk

Rolf Drechsler
Institute of Computer Science
University of Bremen
28359 Bremen, Germany
drechsle@informatik.uni-bremen.de

Yaochu Jin
Honda Research Institute Europe
Carl-Legien-Str.30
63073 Offenbach/Main, Germany
yaochu.jin@honda-ri.de

Penousal Machado
Dep. de Engenharia Informática
University of Coimbra
Polo II, 3030 Coimbra, Portugal
machado@dei.uc.pt

Elena Marchiori
Dept. of Mathematics and
Computer Science
Free University of Amsterdam
de Boelelaan 1081a
1081 HV, Amsterdam,
The Netherlands
elena@cs.vu.nl

Juan Romero
Facultad de Informatica
University of A Coruña
A Coruña, CP 15071, Spain
jj@udc.es

George D. Smith
School of Computing Sciences
University of East Anglia
UEA Norwich
Norwich NR4 7TJ, UK
gds@sys.uea.ac.uk

Giovanni Squillero
Dip. di Automatica e Informatica
Politecnico di Torino
Corso Duca degli Abruzzi 24
10129 Torino, Italy
squillero@polito.it



Preface

Evolutionary computation (EC) techniques are efficient nature-inspired plan-
ning and optimization methods based on the principles of natural evolution
and genetics. Due to their efficiency and the simple underlying principles, these
methods can be used for a large number of problems in the context of problem
solving, optimization, and machine learning. A large and continuously increasing
number of researchers and practitioners make use of EC techniques in many ap-
plication domains. The book at hand presents a careful selection of relevant EC
applications combined with thorough examinations of techniques for a successful
application of EC. The presented papers illustrate the current state of the art in
the application of EC and should help and inspire researchers and practitioners
to develop efficient EC methods for design and problem solving.

All papers in this book were presented during EvoWorkshops 2005, which
was a varying collection of workshops on application-oriented aspects of EC.
Since 1999, the format of the EvoWorkshops has proved to be very successful
and well representative of the advances in the application of EC. Consequently,
over the last few years, EvoWorkshops has become one of the major events
addressing the application of EC. In contrast to other large conferences in the
EC field, the EvoWorkshops focus solely on application aspects of EC and are an
important link between EC research and the application of EC in a large variety
of different domains. The EvoWorkshops are combined with EuroGP, the main
European event dedicated to genetic programming, and EvoCOP, which has
become the main European conference on EC in combinatorial optimization.
The proceedings for both events, EuroGP and EvoCOP, are also available in the
LNCS series (numbers 3447 and 3448).

EvoWorkshops 2005, of which this volume contains the proceedings, was held
in beautiful Lausanne, Switzerland, on March 30–April 1, 2005, jointly with
EuroGP 2005 and EvoCOP 2005. EvoWorkshops 2005 consisted of the following
individual workshops:

– EvoBIO, the Third European Workshop on Evolutionary Bioinformatics,

– EvoCOMNET, the Second European Workshop on Evolutionary Computa-
tion in Communications, Networks, and Connected Systems,

– EvoHOT, the Second European Workshop on Hardware Optimization,

– EvoIASP, the Eighth European Workshop on Evolutionary Computation in
Image Analysis and Signal Processing,

– EvoMUSART, the Third European Workshop on Evolutionary Music and
Art, and

– EvoSTOC, the Second European Workshop on Evolutionary Algorithms in
Stochastic and Dynamic Environments.



VIII Preface

EvoBIO was concerned with the exploitation of EC and related techniques
in bioinformatics and computational biology. For analyzing and understanding
biological data, EC plays an increasingly important role in pharmaceuticals,
biotechnology, and associated industries, as well as in scientific discovery.

EvoCOMNET addressed the application of EC techniques to problems in
communications, networks, and connected systems. New communication tech-
nologies, the creation of interconnected communication and information net-
works such as the Internet, new types of interpersonal and interorganizational
communication, and the integration and interconnection of production centers
and industries are the driving forces on the road towards a connected, networked
society. EC techniques are important tools for facing these challenges.

EvoHOT highlighted the latest developments in the field of EC applications to
hardware and design optimization. This includes various aspects like the design
of electrical and digital circuits, the solving of classical hardware optimization
problems like VLSI floorplanning, the application of EC to antenna array synthe-
sis, or the use of ant colony optimization as a hardware-oriented metaheuristic.

EvoIASP, which was the first international event solely dedicated to the ap-
plications of EC to image analysis and signal processing, has been a traditional
meeting since 1999. This year it addressed topics ranging from solutions for
problems in the context of image and signal processing to the adaptive learning
of human vocalization in robotics, and the design of multidimensional filters.

EvoMUSART focused on the use of EC techniques for the development of cre-
ative systems. There is a growing interest in the application of these techniques
in fields such as art, music, architecture and design. The goal of EvoMUSART
was to bring together researchers who use EC in this context, providing an op-
portunity to promote, present and discuss the latest work in the area, fostering
its further developments and collaboration among researchers.

EvoSTOC addressed the application of EC in stochastic environments. This
includes optimization problems with noisy and approximated fitness functions
that are changing over time, the treatment of noise, and the search for robust
solutions. These topics recently gained increasing attention in the EC commu-
nity, and EvoSTOC was the first workshop that provided a platform to present
and discuss the latest research in this field.

EvoWorkshops 2005 continued the tradition of providing researchers in these
fields, as well as people from industry, students, and interested newcomers, with
an opportunity to present new results, discuss current developments and appli-
cations, or just become acquainted with the world of EC, besides fostering closer
future interaction between members of all scientific communities that may ben-
efit from EC techniques.

This year, EvoWorkshops had the highest number of submissions ever. The
number of submissions increased from 123 in 2004 to 143 in 2005. Therefore,
EvoWorkshops introduced a new presentation format and accepted a limited
number of posters with a reduced number of pages (six pages). In contrast to
regular papers, which were presented orally, the posters were presented and
discussed in a special poster session during the workshops. The acceptance rate



Preface IX

of 39.1% for EvoWorkshops is an indicator of the high quality of the papers
presented at the workshops and included in these proceedings. The following
table gives some numbers for the different workshops (accepted posters are in
parentheses). Of further importance for the statistics is the acceptance rate of
the EvoWorkshops 2004, which was 44.7%.

Workshop submitted accepted acceptance ratio
EvoBIO 2005 32 13 40.6%
EvoCOMNET 2005 22 5 22.7%
EvoHOT 2005 11 7 63.6%
EvoIASP 2005 37 17 45.9%
EvoMUSART 2005 29 10(6) 34.5%
EvoSTOC 2005 12 4(4) 33.3%
Total 143 56(10) 39.1%

We would like to thank all members of the program committees for their quick
and thorough work. Furthermore, we would like to acknowledge the support from
the University of Lausanne, which provided a great place to run a conference, and
from EvoNet, the European Network of Excellence in Evolutionary Computing.
The success of EvoWorkshops 2005 shows that the EvoWorkshops, as well as
EuroGP and EvoCOP, have reached a degree of maturity and scientific prestige
that will allow them to continue their success even without the active support
from EvoNet. Over the years, the EvoWorkshops have become major EC events
that have been important not only for Europeans but have also attracted large
numbers of international EC researchers.

Finally, we want to say a special thanks to everybody who was involved in the
preparation of the event. Special thanks are due to Jennifer Willies, whose work
and support is a great and invaluable help for scientists who are planning to or-
ganize an international conference, and to the local organizers Marco Tomassini,
Mario Giacobini, Leonardo Vanneschi, Leslie Luth and Denis Rochat. Without
their hard work and continuous support, it would not have been possible to be
in such a nice place and to have such a great conference.

April 2005 Franz Rothlauf Jürgen Branke Stefano Cagnoni
David W. Corne Rolf Drechsler Yaochu Jin

Penousal Machado Elena Marchior Juan Romero
George D. Smith Giovanni Squillero
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John Gero, University of Sydney, Australia
Andrew Gartland-Jones, University of Sussex, UK
Carlos Grilo, School of Technology and Management of Leiria, Portugal
Matthew Lewis, Ohio State University, USA
Bill Manaris, College of Charleston, USA
Eduardo R. Miranda, University of Plymouth, UK
Ken Musgrave, Pandromeda Inc., USA
Francisco C. Pereira, University of Coimbra, Portugal



XIV Organization

Luigi Pagliarini, Academy of Fine Arts of Rome, Italy and
University of Southern Denmark, Denmark

Juan Romero, Universidade da Coruña, Spain
Celestino Soddu, Politecnico de Milano, Italy
Tim Taylor, University of Edinburgh, UK
Jorge Tavares, CISUC, Centre for Informatics and Systems, Portugal
Stephen Todd, IBM, UK
Tatsuo Unemi, University of Zurich, Switzerland
Geraint Wiggins, City University, London, UK

EvoSTOC Program Committee

Dirk Arnold, Dalhousie University, Canada
Hans-Georg Beyer, Vorarlberg University of Applied Sciences, Austria
Tim Blackwell, Goldsmiths College, UK
Ernesto Costa, University of Coimbra, Portugal
Kalyan Deb, IIT Kanpur, India
Martin Middendorf, University of Leipzig, Germany
Ferrante Neri, Bari Polytechnic, Italy
Markus Olhofer, Honda Research Institute, Germany
Yew Soon Ong, Nanyang Technical University, Singapore
Khaled Rasheed, University of Georgia, USA
Christian Schmidt, University of Karlsruhe, Germany
Holger Ulmer, Robert Bosch GmbH, Germany
Sima Uyar, Istanbul Technical University, Turkey
Karsten Weicker, Leipzig University of Applied Sciences, Germany
Lars Willmes, NuTech GmbH, Germany
Shengxiang Yang, University of Leicester, UK

Sponsoring Institutions

EvoNet, the European Network of Excellence in Evolutionary Computing
University of Lausanne, Lausanne, Switzerland



Table of Contents

EvoBIO Contributions

Evolutionary Biclustering of Microarray Data
Jesus S. Aguilar-Ruiz, Federico Divina . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

A Fuzzy Viterbi Algorithm for Improved Sequence Alignment and
Searching of Proteins

Niranjan P. Bidargaddi, Madhu Chetty, Joarder Kamruzzaman . . . . . . 11

Tabu Search Method for Determining Sequences of Amino Acids in
Long Polypeptides
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Abstract. In this work, we address the biclustering of gene expression
data with evolutionary computation, which has been proven to have
excellent performance on complex problems. In expression data analysis,
the most important goal may not be finding the maximum bicluster,
as it might be more interesting to find a set of genes showing similar
behavior under a set of conditions. Our approach is based on evolutionary
algorithms and searches for biclusters following a sequential covering
strategy. In addition, we pay special attention to the fact of looking
for high quality biclusters with large variation. The quality of biclusters
found by our approach is discussed by means of the analysis of yeast and
colon cancer datasets.

1 Introduction

Microarray data are widely used in genomic research due to the enormous poten-
tial in gene expression profiling, facilitating the prognosis and the discovering of
subtypes of diseases. The gene expression data are organized in matrices, where
rows represent genes and columns represent experimental conditions. Each ele-
ment in the matrix refers to the expression level of a particular gen under specific
conditions. A basic approach to the study of expression data consists of applying
traditional statistical techniques. In many problems these methods have shown
to be unable to extract relevant knowledge from data.

Clustering has been applied to gene expression data [1], which usually refers
to conditions or patients, although genes can also be grouped in order to search
for functional similarities. However, relevant genes are not necessarily related to
every condition, or in other words, there are genes that can be relevant for a sub-
set of conditions [11]. On the contrary, it is also possible to discriminate groups
of conditions by using different groups of genes. From this point of view, cluster-
ing can not only be addressed horizontally (conditions) or vertically (genes), but
also in the two dimensions simultaneously. This approach, named biclustering,
identify groups of genes that show “similar” level expression under a specific
subset of experimental conditions.

Biclustering [4] was first introduced by [9], as a way to cluster simultaneously
rows and columns of a matrix, and it was named “direct clustering”. The goal
was to find biclusters with minimum variance, what ideally provided biclusters
of size 1, since they looked for constant biclusters (constant values within the
submatrix). Hartigan tried to avoid this problem by searching for k biclusters

F. Rothlauf et al. (Eds.): EvoWorkshops 2005, LNCS 3449, pp. 1–10, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Example of bicluster obtained by our approach from the colon cancer dataset

at a time. Later in 2000, Cheng and Church [6] proposed the biclustering of
gene expression, introducing the residue of an element in the bicluster and the
mean squared residue of a submatrix. In addition, they adjusted that measure
to reject trivial biclusters by means of the row variance. Getz et al. [8] presented
the coupled two–way clustering. It uses hierarchical clustering applied separately
to each dimension and then they defined the process to combine both results.
Obviously, the quality of biclusters depends on the clusters generated at each di-
mension, which in turn, allow us to experiment with different types of clustering
algorithms. Lazzeroni and Owen [10] used “plaid models“ in the same context,
where the concept of “layers” (bicluster) is used to compute the values in the
data matrix, which is described as a linear function of layers. Basically, each
element is seen as a superposition of layers. Yang et al. [12] presented δ–clusters,
and a year later, the same authors improved the Cheng and Church’s approach
in FLOC [13], paying attention to missing values. FLOC follows the same tech-
nique as Cheng and Church’s algorithm, by adding/removing each row/column
to a set of initial biclusters, improving its quality iteratively. Also in 2002, Tanay
et al. [2] identified biclusters by means of a bipartite graph–based model and us-
ing a greedy approach to add/remove vertices in order to find maximum weight
subgraphs, which is related to its statistical significance. Recently, Bleuler et al.
[5] proposed a EA framework for biclustering gene expression data. An exam-
ple of bicluster is shown in Figure 1, where gene expression values (y–axis) are
plotted for three genes through seventy conditions (x–axis).

In this work, we address the biclustering problem with evolutionary com-
putation (EC), which has been proven to have an excellent performance on
highly complex optimization problems. Our approach, named SEBI is based on
evolutionary algorithms (EA) and search for biclusters following a sequential
covering strategy. As the algorithm partially uses the squared mean residue, the
results have been compared to those of Cheng and Church. In expression data
analysis, the most important goal may not be finding the maximum bicluster or
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even finding a bicluster cover for the data matrix. It is more interesting to find a
set of genes showing strikingly similar up–regulation and down–regulation under
a set of conditions. A low mean squared residue score plus a large variation from
the constant may be a good criterion for identifying these genes and conditions.
Therefore, our goal is to find biclusters of maximum size, with mean squared
residue lower than a given δ, with a relatively high row variance, and with a low
level of overlapping among biclusters.

The paper is organized as follows: in Section 2 the definitions related to bi-
clustering are presented; the description of the algorithm is illustrated in Section
3, together with all the evolutionary features and the evaluation of the quality
of a bicluster; experimental results are discussed in Section 4, comparing the
quality to those generated by Cheng and Church’s algorithm; finally, the most
interesting conclusions are summarized in Section 5.

2 The Model of Biclusters

We follow the biclustering model proposed in [6]. A bicluster is defined on a gene–
expression matrix. Let G = {g1, . . . , gN} be a set of genes and C = {c1, . . . , cM}
a set of conditions. The data can be viewed as an N ×M expression matrix EM .
EM is a matrix of real numbers, with possible null values, where each entry elij
corresponds to the logarithm of the relative abundance of the mRNA of a gene
gi under a specific condition cj .

A bicluster essentially corresponds to a sub–matrix that exhibits some co-
herent tendency. Each bicluster can be identified by a unique set of genes and
conditions, that determine the sub–matrix. Thus a bicluster is a matrix I×J , de-
noted as (I, J), where I and J are set of genes (rows) and conditions (columns),
respectively, and |I| ≤ |N | and |J | ≤ |M |. We define the volume of a bicluster
(I, J) as the number of elements elij such that i ∈ I and j ∈ J .

In the following, we give some definitions that are used in a measure for
assessing the quality of a bicluster, most of which are taken from [13].

Definition 1. Let (I, J) be a bicluster, then we define the base of a gene gi

as eiJ =
∑

j∈J
eij

|J| . In the same way we define the base of a condition cj as

eIj =
∑

i∈I
eij

|I| . The base of a bicluster is the mean of all the entries contained

in (I, J), eIJ =
∑

i∈I,j∈J
eij

|I|·|J| .

Definition 2. The residue of an entry eij of a bicluster (I, J) is

rij = eij − eiJ − eIj + eIJ

The residue is an indicator of the degree of coherence of an element with
respect to the remaining ones in the bicluster, given the tendency of the rele-
vant gene and the relevant condition. The lower the residue, the stronger the
coherence.



4 J.S. Aguilar–Ruiz and F. Divina

Definition 3. The mean squared residue of a bicluster (I, J) is rIJ =∑
i∈I,j∈J

r2
ij

|I|·|J| .

The mean squared residue is the variance of the set of all elements in the
bicluster, plus the mean row variance and the mean column variance. The lower
the mean squared residue, the stronger the coherence exhibited by the bicluster,
and the better the quality of the bicluster. If a bicluster has a mean squared
residue lower than a given value δ, then we call the bicluster a δ-bicluster. The
problem of finding the largest square δ–bicluster is NP–hard [6]. In addition to
the mean squared residue, we may prefer the row variance to be relatively large
to reject trivial bicluster.

Our goal is to find biclusters of maximum size, with mean squared residue
lower than a given δ, with a relatively high row variance, and with a low level
of overlapping among biclusters.

3 Description of the Algorithm

The algorithm adopts a sequential covering strategy: a EA, called EBI (for Evo-
lutionary BIclustering), is called several times, until an end condition is met.
EBI takes as input the expression matrix and the δ value and returns either a
bicluster with mean squared residue lower than δ or nothing. In the former case,
the returned bicluster is stored in a list called Results, and EBI is called again.
The end condition is also met when EBI is called a maximum number of times.
When the end condition is met, the list Results is returned.

After a bicluster is returned, weights associated with the expression matrix
are adjusted. This operation is performed in order to to bias the search towards
biclusters that do not overlap with already found biclusters. In order to do so, we
associate a weight to each element of the expression matrix. The weight of an ele-
ment depends on the number of biclusters in Results containing the element. The
more biclusters cover an element, the higher the weight of the element will be.

The aim of EBI is to find δ–biclusters with maximum volume, with a relatively
high row variance, and minimizing the effect of overlapping among biclusters.

The initial population consists of biclusters containing only one element of
the expression matrix. These biclusters have the property of having a mean
squared residue equal to 0. Tournament selection is used for selecting parents.
Selected pairs of parents are recombined with a crossover operator with a given
probability pc (default value 0.9), and the resulting offspring is mutated with a
probability pm (default value 0.1). Three crossover operators can be applied with
equal probability: one-point, two-point and uniform crossover. Three mutation
operators are used, a standard mutation operator, a mutation operator that adds
a row and a mutation operator that adds a column to the bicluster. Elitism is
applied with a probability pe (default value 0.75). At the end of the evolutionary
process, if the best individual, according to the fitness, encodes a δ–bicluster,
then it is returned, otherwise EBI does not return anything.
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Each individual of the population encodes one bicluster. Biclusters are en-
coded by means of binary strings of length N + M , where N and M are the
number of rows (genes) and of columns (conditions) of the expression matrix,
respectively. Each of the first N bits of the binary string is related to the rows,
in the order in which the bits appear in the string. In the same way, the remain-
ing M bits are related to the columns. If a bit is set to 1, it means that the
relative row or column belongs to the encoded bicluster; otherwise it does not.
It is worth to note that given the large value of M , the search space size for the
evolutionary algorithm is huge, and therefore more emphasis has to be placed
on the performance of genetic operators.

The fitness function rewards individuals encoding biclusters with low mean
squared residue, with high volume and row variance and covering elements of the
expression matrix that are not covered by biclusters found by previous executions
of EBI. The final objective of the EBI is to minimize the fitness.

4 Experimental Results

In order to asses the goodness of the proposed method for finding biclusters in
expression data, we conducted experiments on two well known datasets: Saccha-
romyces Cerevisiae cell cycle expression dataset and the Colon Cancer dataset.
The first dataset, here referred as yeast dataset, originated from [7], while the
colon cancer from [3]. The expression matrix contained in the yeast dataset con-
sists of 2884 genes and 17 conditions. For this dataset the δ was set to 300. The
dataset is taken from [6], where the original data is preprocessed regarding miss-
ing values. The expression matrix contained in the colon cancer dataset consists
of 2000 genes and 62 conditions. This dataset was preprocessed as in [6], where
each entry x of the original dataset was substituted by the value 100 · log(105 ·x).
For this dataset the value of δ was set to 500, because the expression matrix con-
tained in the dataset has a size that is about the double of that contained in the
yeast dataset. A similar reasoning was adopted in [6] for determining values of
δ for some datasets.

In Figure 2, nine out of one hundred biclusters found by EBI on the yeast
dataset are shown. Information about these biclusters is given in Table 1. These
biclusters were found with the following parameters for EBI: generation 100, pop-
ulation size 200, crossover probability 0.85, mutation probability 0.20, elitism
probability 0.90, weight for column 10, weights for rows 1.0, weight for volume
1.0. From a visual inspection of the biclusters proposed in Figure 2, one can
notice that the genes present a similar behavior under a set of conditions. This
is especially evident for biclusters labeled 371 and 521. Many biclusters found on
the yeast dataset contain all the seventeen conditions, indicating that these con-
ditions form a good cluster, with respect to the genes included in the biclusters.
A similar result was also obtained in [6]. Bicluster 371 and 521 are specially in-
teresting because of their high row variance, which shows the good performance
of the evolutionary algorithm.
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Fig. 2. Nine biclusters found for the yeast dataset. All the mean squared residues of
the biclusters are lower than 220

Table 1. Information about biclusters of Figure 2. In the first column the identifier of
each bicluster is reported. The second and third columns report the number of rows and
of columns of the bicluster, respectively, the fourth column reports the mean squared
residues, and the last column report the row variance of the biclusters

Bicluster Genes Conditions Residue Row Variance
1011 8 16 203.98 910.09
371 10 17 206.80 1656.38
521 7 17 209.83 1730.06
541 11 15 205.55 1158.58
651 4 15 203.65 1009.16
671 5 15 208.56 1013.62
781 6 16 200.06 945.05
841 11 13 205.24 1099.91
971 9 15 199.28 1469.4

The one hundred biclusters found on the yeast dataset cover 42.16% of
the elements of the expression matrix, 46.22% of the genes and 100% of the
conditions. These results confirm the effectiveness of the adopted method for
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Fig. 3. Nine biclusters found for the colon cancer dataset. All the mean squared residues
of the biclusters are lower than 500

avoiding overlapping. Each call to EBI on the yeast dataset requires about 72
seconds on a Pentium IV 3.06 Ghz

In Figure 3 nine out of one hundred biclusters found by EBI on the colon can-
cer dataset are shown. Table 2 reports information about the biclusters shown.
These biclusters were found with the same parameters setting as for the yeast
dataset. It can be noticed that these biclusters contain genes that present a sim-
ilar behavior under some conditions. For example, the bicluster labeled 361 con-
tains ten genes that show strikingly similar up–regulations and down–regulations
under the same forty-nine conditions.

Figure 4 shows three graphs relative to a typical run of EBI on the colon
cancer dataset. The graphs are relative to a first call of EBI. In 4(a), the average
fitness and the best fitness present in the population at each generation are
shown. It can be noticed that also in this case, the fitness decreases rapidly in the
first generations, until about the 22nd generation, and then it keeps decreasing
even if more slowly. In Figure 4(b), the average volume and the best volume of the
biclusters encoded in the population are given at each generation. Also this graph
confirms the successfulness of the fitness function in promoting biclusters with
greater volume. Finally, Figure 4(c) reports the average mean squared residue
and the lowest residue are given at each generation. A similar behavior of the
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Table 2. Information about biclusters of Figure 3. In the first column the identifier of
each bicluster is reported. The second and third columns report the number of rows and
of columns of the bicluster, respectively, the fourth column reports the mean squared
residues, and the last column report the row variance of the biclusters

Bicluster Genes Conditions Residue Row Variance
351 9 47 496.26 4298.55
441 8 43 498.10 4279.42
531 10 30 498.63 4691.73
551 5 49 494.30 5057.84
731 10 30 492.63 4011.11
361 10 49 495.02 4538.34
891 4 35 492.06 4524.06
921 4 53 491.69 4752.67
981 5 46 493.06 4949.33
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Fig. 4. Graphs relative to a typical run of EBI on the colon cancer dataset. In 4(a)
the average and best fitness at each generation are shown. In 4(b) the average and
best volumes are shown for each generation. In 4(c) the average residue and the lowest
residue at each generation are plotted

one observed for the yeast dataset can be noticed from this graph: the residue
increases in the first generations for then assessing to a almost stable value.

The one hundred biclusters found on the yeast dataset cover 41.60% of the
elements of the expression matrix, 49.22% of the genes and 100% of the condi-
tions. These results confirm again the effectiveness of the adopted method for
avoiding overlapping. Each call of the procedure EBI takes about 86 seconds on
a Pentium IV 3.06 Ghz.

In Table 3, we compare the performance of SEBI with that of Cheng and
Church’s algorithm (here named CC), for what concerns the average residue
and the average dimension of the biclusters found on the yeast dataset. We also
report the average information obtained by SEBI on the colon dataset. We can
see that CC is capable of finding biclusters characterized by a higher volume than
the ones found by SEBI. This is probably due to the overlapping policy adopted
by SEBI. In fact, the first biclusters found by SEBI have volumes comparable
with those of the biclusters found by CC. After some runs, when the most trivial
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Table 3. Performance comparison between SEBI and CC

Algorithm Dataset Avg. residue Avg. Volume Avg. gene num. Avg. cond. num

SEBI
Yeast 202.68 (8.81) 204.67 (172.03) 13.20 (10.52) 15.44 (1.33)
Colon 492.46 (6.23) 403.48 (215.70) 9.86 (4.51) 40.91 (8.00)

CC
Yeast 204.29 (42.78) 1576.98 (2178.46) 166.71 (226.37) 12.09 (4.39)
Colon – – – –

biclusters have been found, SEBI focuses on elements of the expression matrix
that are not contained in already found biclusters. However, after CC has found
a bicluster, the covered elements of the expression matrix are substituted by
randomly generated values, in the range of the original data. This may cause the
biclusters to overlap much more than what happens in SEBI where overlapping
is avoided as much as possible. As far as the residue is concerned, the results
obtained by the two systems are comparable on the yeast dataset.

5 Conclusions

In this paper we have introduced an algorithm based on evolutionary compu-
tation, called SEBI, for finding biclusters on expression data. The proposed al-
gorithm adopts a sequential covering strategy, and an evolutionary algorithm
in order to find biclusters. The experimental results show that CC is capable
of finding bigger clusters. This could be due to the overlapping policy adopted
by CC. In SEBI overlapping is avoided by means of the weights assigned to the
elements of the expression matrix, while CC replaces covered entries of the ex-
pression matrix by random values. This strategy could not prevent overlapping
as efficiently as the one adopted in SEBI allowing the system to find biclusters
with higher volume.

We can conclude that SEBI is successful in finding set of genes that show
strikingly similar up–regulations and down–regulations under a set of conditions,
as shown from the presented results. Thus, evolutionary computation represents
a useful framework for addressing the challenges of gene expression analysis.
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Abstract. Profile HMMs based on classical hidden Markov models have been 
widely studied for identification of members belonging to protein sequence 
families. Classical Viterbi search algorithm which has been used traditionally to 
calculate log-odd scores of the alignment of a new sequence to a profile model 
is based on the probability theory. To overcome the limitations of the classical 
HMM and for achieving an improved alignment and better log-odd scores for 
the sequences belonging to a given family, we propose a fuzzy Viterbi search 
algorithm which is based on Choquet integrals and Sugeno fuzzy measures. The 
proposed search algorithm incorporates ascending values of the scores of the 
neighboring states while calculating the scores for a given state, hence provid-
ing better alignment and improved log-odd scores. The proposed fuzzy Viterbi 
algorithm for profiles along with classical Viterbi search algorithm has been 
tested on globin and kinase families. The results obtained in terms of log-odd 
scores, Z-scores and other statistical analysis establish the superiority of fuzzy 
Viterbi search algorithm.  

Keywords: protein sequence alignment, profiles, HMM, fuzzy HMM. 

1   Introduction 

Proteins can be classified into families based on related sequences and structures 
wherein different residues are subjected to different selective pressures. Multiple 
alignment of protein sequences reveal the pattern of conservation. Some regions of 
multiple alignment tolerate more insertions and deletions compared to other regions 
[1]. Since the conservation across positions is not uniform it is desirable to use posi-
tion specific information from multiple alignments when searching databases for 
homologous sequences. Taylor et al. [2] used ‘profile’ methods to build position-
specific scoring methods for multiple alignments. Krogh [3] used hidden Markov 
models (HMMs) for multiple sequence alignment since they provide a coherent the-
ory for profile methods. HMMs are a class of probabilistic models used in time series 
applications such as speech recognition, image processing and handwritten word 
recognition [4-7]. HMMs were initially introduced to computational biology by Chur-
chill [8] and since then have been widely used in various ways. Large libraries of 

.

. . .



 N.P. Bidargaddi, M. Chetty  and J. Kamruzzaman 12 

profile based HMM and multiple alignments are available in many database servers 
[9]. Recently profile HMM methods have also been used in the area of protein struc-
ture prediction by fold recognition [10]. 

Traditionally Viterbi algorithm is used in HMM to find the most likely sequence of 
hidden states that result in a sequence of observed amino-acid symbols. The algorithm 
makes a number of assumptions. First, both the observed events and hidden events 
must be in a sequence. This sequence often corresponds to time. Second, these two 
sequences need to be aligned, and an observed event needs to correspond to exactly 
one hidden event. Third, computing the most likely hidden sequence up to a certain 
point t must only depend on the observed event at point t, and the most likely se-
quence at point t-1.

Due to these assumptions, Viterbi algorithm has inherent limitations which are ob-
served in HMMs. An HMM assumes that the identity of an amino acid at a particular 
position is independent of the identity of all other positions [11]. HMM models are 
also constrained by the statistical independence assumptions in the formulation of the 
forward and backward variables which are used to compute the matching scores of an 
unknown sequence to a known family. Due to the statistical independence assump-
tions, the joint measure variables (forward and backward) are decomposed as a com-
bination of two measures defined on amino acid emission probabilities and state 
probabilities. To relax the statistical independence assumptions and achieve improved 
performance and flexibility Magdi et al. [12] defined a fuzzy hidden Markov model 
based on fuzzy forward and backward variables. This model does not require the 
assumption of decomposing the measures. The fuzzy model offers more flexibility 
and robustness in the sense that it does not require fixing the lengths of the sequences 
and the need for large training data sets in order to learn the transition parameters as 
required by classical hidden Markov models. Fuzzy hidden Markov models have been 
successfully investigated on various domains such as speech and image processing [4-
7]. The authors have investigated its potential in forward-backward algorithm for 
decoding protein sequence in [13]. This paper investigates the feasibility of fuzzifying 
the Viterbi algorithm based on the above ideas. 

2   Profile Hidden Markov Models 

Profiles introduced by Gribskov et al. [14] are statistical descriptions of the consensus 
of multiple sequence alignment. They use position-specific scores for amino acids and 
position specific penalties for opening and extending an insertion or deletion. Due to 
the use of position-specific scores for amino acids, profiles capture important infor-
mation about the degree of conservation at various positions in the multiple align-
ments, and the varying degree to which gaps and insertions are permitted. Due to its 
probabilistic nature, a profile HMM can be trained from unaligned sequences, if a 
trusted alignment is not yet known. Another benefit of using probability theory is that 
HMMs have a consistent theory behind gap and insertion scores. Profile HMM archi-
tecture is characterized by Mx (Match state x, with k emission probabilities), Dx (De-
lete state x, non-emitter) and Ix (Insert state x, with k emission probabilities). 

,
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2.1   Classical Viterbi Algorithm for Profile Alignment 

Let M I D
j j j(i), (i)and (i)V V V be the log-odds score of the best paths matching subse-

quence x1,…, i to state j of the submodel ending with xi being emitted by state Mj , Ij and 
Dj respectively which are calculated by the following equations in profile HMM. 

j 1 j
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ixq is the emission probability of the ith amino acid with respect to a standard model, a

represents the transition probabilities (e.g., I Mi ja  represents the transition probability 

from ith I state to jth M state) and e represents the amino acid emission probabilities. 

3   Fuzzy HMM 

Fuzzy measures introduced by Sugeno [15] provide a more flexible way to overcome 
the drawbacks of the additive hypothesis of the probability model which is not well 
suited for modeling systems that manifest a high degree of interdependencies among 
sources of information. Let X be an arbitrary set and  be power set of X. A set func-
tion f: [0,1] defined on  satisfying the property of boundary conditions and 
monotonicity is called a fuzzy measure. Magdi et al. fuzzified the hidden Markov 
model through fuzzy measures and fuzzy integrals. The fuzzy hidden Markov 
model ˆ ˆ ˆ ˆ( , , )A Bλ = Π is characterized by the following parameters [12]. 

O                                  Observation sequence 
T                                  Length of the observation sequence 
N                                  Number of states in the model 
S                                   (S1, S2,..., SN) states 
Ω                                Observation sequence space                                          
X ={x1, x2,…, xN}        States at time t 
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Y = {y1, y2,…yN}         States at time t+1 

( .)Π̂
s                         Initial state fuzzy measure 

ˆ ˆˆ ({ })
i

isi s S=Π = ΠΠ         Initial state fuzzy density 

ˆ[ ]Π = Π
i i

                      Vector of initial state fuzzy densities     

( )ˆ
j t

Ob                       Fuzzy densities of symbols                                              

ˆˆ [ ( )]=
j t

B b O           Symbol density matrix 

( . | )ˆ y Xa           Transition fuzzy measure 

({ | })ˆ ˆ=
ij y j i

y xa a             Transition fuzzy density 

i j
ˆ ˆA [ a ]=              Matrix of transition fuzzy densities 

Fuzzy HMM incorporates the joint fuzzy measures 

1( { , . . . , } { } )α̂ Ω
×

y
t jO O y which can be written as a combination of two measures 

defined on O1, O2..., Ot and on the states respectively without any assumptions about 
the decomposition [11-12].  

In classical HMM’s, the joint probability measure is a product of independent 

probability measures, P(O1,O2,...,Ot, qt+1= Sj) = P(O1,O2,...,Ot) . P(qt+1= Sj) necessitat-
ing the assumption of statistical independence.

4   Proposed Fuzzy Viterbi Algorithm for Profile HMM 

The Viterbi algorithm computes the negative logarithm of the probability of the single 

most likely path, δ̂ for the sequence  s which can be written as 

δ̂   =  -log 
ˆ

ˆˆP(s, | )max                                                        (4) 

where ˆ  represents the combination of states emitting the symbols in sequence s. 
Magdi et al. proposed a fuzzy Viterbi algorithm by modifying the classical Viterbi 

algorithm using fuzzy measures to estimate the quantity t
ˆ (i)δ  which is given by  

            
1 2 t 1

t 1 2 t i 1 2 t
q ,q ,...,q

ˆ (i) max P(q ,q ,...,q S ,O O ,...,O | )δ
−

= = (5)

where O1, O2,... Ot are the constituent symbols of sequence s, qt represents the state at 
time t, Si is the ith state. The classical Viterbi algorithm is modified to perform the 

maximization of t
ˆ (i)δ  as shown below 

            
1 1 1,

1 2 t 1

t

t q q 1 q q 1 q
q ,q ,...,q 2

ˆ ˆˆ ˆˆ(i) max b (O ) [a (q ,q )]b (O )
τ τ ττ τ τ τ

τ
δ

−
−

−
=

⎧ ⎫= ⎨ ⎬
⎩ ⎭

∏  (6) 

iq
ˆ  is the initial state fuzzy density for state qi, qb̂ (O )

τ τ  is the emission density of 

symbol Oτ for state q  and 
1,q qâ

τ τ−
 represents the transition probability from state q -1
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to q .  is the fuzzy measure difference and is explained further later in this section, 

t 1
ˆ (i)δ +  is computed recursively using the fuzzy Viterbi algorithm as shown below. 

 (i) Initialization (for 1  i  N) 

1 i i 1 1
ˆˆ ˆˆ(i) b (O ) (i) 0 (7)δ ϕ= =

 (ii) Recursion (for 2  t  T and 1  j  N) 

t t 1 ij t j t t t 1 ij t
1 i N 1 i N

ˆˆ ˆ ˆˆ ˆ ˆ( j) max [ (i)a (i, j)]b (O ) ( j) arg max [ (i)a (i, j)] (8)δ δ ϕ δ− −≤ ≤ ≤ ≤
= =

(iii) Termination 

* *
T T T

1 i N 1 i N
(9)ˆ ˆˆ ˆP max[ (i)] q arg max[ (i)]δ δ

≤ ≤ ≤ ≤
= =

The optimal path can be obtained by backtracking for all 1  t  T-1 

* *
t t 1 t 1 (10)ˆ ˆ ˆq (q )ϕ + +=

The above equations for the fuzzy Viterbi algorithm are very similar to the classi-
cal ones except for the introduction of a new term . The new term  in the above 
equations represents the fuzzy measure difference which is calculated using the Cho-
quet integral. According to the definition of fuzzy measures and fuzzy integrals on a 
discrete set X, with a function h:X [0,1]; g:2X [0,1], Choquet-integral (echoquet) is 
given by Eq. (13) after satisfying the constraints in Eq. (11-12) [12].  

                                               

1 2

1

( ) ( ) ... ( ) ... ( ) (11)

{ , , ..., } (12)+

≤ ≤ ≤ ≤ ≤

=

i N

Ki i i N

h x h x h x h x

x x x

( )[ ( ) ( )] ( )11 1
∑ ∑= − =+= =

N N
e h x g K g K h x di ichoquet i i ii i                          (13)

where di represents the difference between successive fuzzy measures and g(Ki) repre-
sents the fuzzy measure. For the fuzzy profile HMMs, the matrix A containing all the 
transition parameters (Insert, Match and Delete) represents the function h which is 
sorted at jth row to obtain Ki (j) as  

      Ki (j) = {Si, Si+1,..., SN }      (14)

where Si is the state number at ith position according to constraints in Eq. (11)-(12) 
based on transition to jth state from all other states. The two most suitable fuzzy meas-
ures for profile HMMs are -fuzzy measures and possibility measures. After obtaining 
Ki (j) for the fuzzy profile HMM, fuzzy measure g (Ki (j)) is calculated using Eq. (15) 
for - fuzzy measures and Eq. (16) for possibility measures. The calculation of fuzzy 
integral with respect to either of the above fuzzy measure only requires the knowledge 
of the fuzzy densities, g({Si}) which are calculated as shown in Eq. (17). 

g (Ki (j)) = g ( { Si, Si+1,..., SN })     

g (Ki (j)) =g ({Si}) + g(Ki+1(j)) + g ({Si}) g(Ki+1 (j)) (15)

g (Ki (j))  = max(g ({Si}) , g(Ki+1(j)) )   (16)
g ({Si}) = t(i) (17)
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To avoid data overflows and to speed up the computing process, we use possibility 
measure with max operator for computing the fuzzy measures. After obtaining the 
fuzzy measures the difference between successive fuzzy measures dt(i, j) is calcu-
lated as 

     dt(i, j) = g (Ki (j)) - g(Ki+1(j))                                                                   (18)

dt(i, j) is normalized with respect to fuzzy densities and stored in t(i, j) as shown in 
equation (19).  

t(i, j) = dt(i, j)/ t(i)                                                                                                   (19)
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We incorporate the fuzzy Viterbi algorithm described above in profile HMM with 
an aim to achieve improved protein alignment and more accurate classification. Ac-
cordingly we reformulate the Viterbi variables used to calculate log-odd scores defined 
in Eq. (1)-(3) for classical Viterbi algorithm as follows to construct fuzzy Viterbi algo-
rithm for profile HMMs. It can be observed from Eq. (20)-(22) that the fuzzy measure 
for each state is calculated using all the states which have greater forward variable. As 
a result fuzzy measure term introduced in the above equations takes into account the 
local interaction among neighboring states while calculating the Viterbi variables for 
each state. Since jth M state has transitions from j-1th I, D and M states the fuzzy meas-
ure calculation for jth state will take into account of all the three states.  

5   Evaluation Methods 

One commonly used technique for scoring a match of the sequence x to hidden 
Markov model is to calculate the log-odd scores by using Viterbi equations.  Log-odd 
score gives the most probable alignment * of the sequence x for a given model  and 
is given by 

                        Log-odd   Score = P(x *,| )          (23) 

N.P. Bidargaddi, M. Chetty  and J. Kamruzzaman ,
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Equations (20)-(22) are used to calculate the log-odd scores for the fuzzy profile 
Markov model. Since the profile HMM model is concentrated on a subset of the pro-
tein family, we also calculate Z-scores for each sequence to have a clear view of 
match scores. The Z-score is a measure of how far an observation is from the mean, 
as measured in units of standard deviation. For a given data set X with mean μ and 
standard deviation , Z-score is given by 

Z-score = (X – μ) /   (24) 

To calculate Z-score, a smooth curve is fitted for the log-odd score plot using the 
local window technique [11]. A standard deviation is estimated for each length and Z-
score is calculated for each score by estimating its distance from the curve in terms of 
standard deviation.  

6   Results 

To evalulate the performance of fuzzy Viterbi algorithm on profile HMM, we per-
formed the experiment on two different families namely globins and kinases. Profile 
HMM of the globin and kinase families from pfam built using HMMER is used as the 
start point. The estimation of this profile model was done several times and the model 
with the highest overall log-likelihood (LL) score was chosen according to the default 
settings of SAM package [16]. Log-odd scores and Z-scores are calculated for the 
sequences using both the classical and fuzzy Viterbi algorithms. All the simulations 
were carried out using the Bioinformatics toolbox in Matlab environment. The Viterbi 
algorithm is suitably modified to incorporate the fuzzy measures. 

6.1   Globin 

The modeling was first tested on the widely studied  globins, a large family of heme 
containing proteins involved in the storage and transport of oxygen that have different 
oligomeric states and overall architecture.Globin sequences were extracted from the 
Pfam database by searching for the keyword “globin”. The globin data set used in the 
experiment consists of 126 different globin sequences. The sequences in the family 
vary in length from 109 to 428 amino acids. We divided the data set into training set 
of 76 sequences which were used in building the profile model, and the remaining 50 
sequences along with 1953 non-globin sequences as the test data set (1969 sequences 
in total). We align the sequences in the training and test set against the existing globin 
model from the profile library of pfam database [accession id: PF00042] using classi-
cal and fuzzy Viterbi algorithm. Figures 1(a) and (b) respectively show the normal-
ized log-odd scores for the sequences using classical and fuzzy Viterbi algorithms. 
The Z-scores for classical and fuzzy Viterbi are shown in Fig. 2(a) and Fig. 2(b) re-
spectively. As seen from the plots fuzzy Viterbi performs better than classical Viterbi 
algorithm in distinguishing the proteins. Choosing a Z-score cut off = 2.0 distin-
guishes all the globins from non globins with fuzzy Viterbi, whereas the classical 
Viterbi produces 10 false positive globins and 2 globins (protozoan/cyanobacterial 
globin and Hypothetical protein R13A1.8) are missed out. Table 1 shows the classifi-
cation counts of globins (positives) and non-globins (negatives) for classical and 
fuzzy Viterbi for different values of Z-score cut offs. 
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It can be observed from Table 1 that fuzzy Viterbi has produced no false positives 
and false negatives for Z-score cut off ranging from 0.5 to 2.0. It can also be observed 
that there are no false positives for the fuzzy Viterbi in entire range of Z-score cut off 
from 0.0 to 3.0. The ‘close to best’ performance for classical Viterbi is observed with 
the Z-score cut off = 2.5 producing 2 false-positives and 5 false-negatives. Choosing a 
Z-score cut off anywhere in the range of 0.5 to 2.0 distinguishes all the globins from 
non globins with fuzzy Viterbi, whereas the classical Viterbi yields no clear classifi-
cation in this range. With a Z-score cut-off = 3.0, classical Viterbi search yields 17 
false-negatives and hence correctly identifies 109 globin sequences. With the same 
cut-off, fuzzy Viterbi yields 12 false negatives which is 5 less than the classical 
Viterbi search. With 0 chosen as the Z-score cut off, classical Viterbi performance 
drops down drastically since it wrongly identifies 1004 non-globin sequences as glo-
bin sequences, whereas fuzzy Viterbi produces only 4 false negatives. Figures 3(a)-(b) 
show a section of the first 8 of the 625 globin sequences aligned using classical and 
fuzzy Viterbi algorithms respectively. 

Table 1. Performance of classical and fuzzy Viterbi with Z-score cut/off 

Classical-Viterbi search Fuzzy-Viterbi search 

Z-Score cut-off value 

FP FN TP TN FP FN TP TN 

0.0 1004 0 126 949 0 4 126 1949 

0.5 950 0 126 1003 0 0 126 1953 

1.0 473 0 126 1480 0 0 126 1953 

1.5 62 0 126 1891 0 0 126 1953 

2.0 10 2 124 1943 0 0 126 1953 

2.5 2 5 119 1951 0 3 123 1953 

3.0 0 17 109 1953 0 12 114 1953 
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 (a) Classical HMM                            (b) Fuzzy HMM 

Fig. 1. Normalized Log-odd scores 
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Fig. 2. Z-Score calculated from Log-odd scores 

HBB1_VAREX  Vh........WTAEEKQLICSLW....GKIDV..GLIG.........GET 
HBB2_TRICR  Vh........LTAEDRKEIAAIL....GKVNV..DSLG.........GQC 
HBB2_XENTR  Vh........WTAEEKATIASVW....GKVDI..EQDG.........HDA 
HBBL_RANCA  Vh........WTAEEKAVINSVW....QKVDV..EQDG.........HEA 
HBB_CALAR   Vh........LTGEEKSAVTALW....GKVNV..DEVG.........GEA 
HBB_COLLI   Vh........WSAEEKQLITSIW....GKVNV..ADCG.........AEA 
HBB_EQUHE   Vq........LSGEEKAAVLALW....DKVNE..EEVG.........GEA 
HBB_LARRI   Vh........WSAEEKQLITGLW....GKVNV..ADCG.........AEA 

(a) Classical Viterbi 

HBB1_VAREX  V.HWtAEEKQLICSLWGKI..DVGLIGGETLAGLLVIYPWTQRQFSHF.. 
HBB2_TRICR  V.HLtAEDRKEIAAILGKV..NVDSLGGQCLARLIVVNPWSRRYFHDF.. 
HBB2_XENTR  V.HWtAEEKATIASVWGKV..DIEQDGHDALSRLLVVYPWTQRYFSSF.. 
HBBL_RANCA  V.HWtAEEKAVINSVWQKV..DVEQDGHEALTRLFIVYPWTQRYFSTF.. 
HBB_CALAR   V.HLtGEEKSAVTALWGKV..NVDEVGGEALGRLLVVYPWTQRFFESF.. 
HBB_COLLI   V.HWsAEEKQLITSIWGKV..NVADCGAEALARLLIVYPWTQRFFSSF.. 
HBB_EQUHE   VqLS.GEEKAAVLALWDKV..NEEEVGGEALGRLLVVYPWTQRFFDSF.. 
HBB_LARRI   V.HWsAEEKQLITGLWGKV..NVADCGAEALARLLIVYPWTQRFFASF.. 

(b) Fuzzy Viterbi 

Fig. 3. Alignment of the first 8 of the 650 globin sequences 
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Fig.  4.  Z-Score calculated from Log-odd scores  
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6.2   Protein Kinase  

Protein kinases have been extensively studied in [1-3]. Complete protein kinase cata-
lytic domains range from 250 to 300 residues. The training set is made up of 54 
kinase representative sequences and the test set consists of 72 different kinase se-
quences obtained by searching for the keyword ‘kinase’ in NCBI database along with 
1141 random non-kinase sequences. The kinase sequences in the test set range in 
length from 100 to 800 amino acids. Due to space limitations we have shown only the 
Z- score plots for kinase family using classical and fuzzy Viterbi in Fig. 4(a) and Fig. 
4(b) respectively. 

7   Conclusion 

Classical Viterbi search algorithm which has been used to calculate log-odd scores of 
the alignment of a new sequence to a profile model is based on the probability theory. 
To achieve an improved alignment and better log-odd scores for the sequences be-
longing to a given family we propose a fuzzy Viterbi search algorithm which is based 
on Choquet integrals and Sugeno fuzzy measures. The proposed search algorithm 
takes into account ascending values of the scores of the neighboring states while cal-
culating the scores for a given state, hence providing better alignment, improved log-
odd scores and Z-scores. The proposed fuzzy Viterbi algorithm for profiles along with 
classical Viterbi search algorithm has been tested both on globin and kinase families. 
The results obtained in terms of log-odd scores and other statistical analyses establish 
the superiority of fuzzy Viterbi search algorithm in both cases. Future work will con-
centrate on further improvement of the model by using fuzzy expectation-
maximisation (EM) algorithm to estimate the parameters of the profiles instead of 
classical Baum-Welch algorithm and an intensive analysis of the effect of different 
fuzzy measures.
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Abstract. The amino acid sequences of proteins determine their struc-
ture and functionality, hence methods for reading such sequences are
crucial for many areas of biological sciences. Since direct methods for
reading amino acid sequences allow for determining only very short frag-
ments, some methods for assembly of these fragments are required. In this
paper, tabu search algorithm solving this problem is proposed. Compu-
tational tests show its usefulness in the process of determining sequences
of amino acids in long polypeptides.

1 Introduction

Problems of reading nucleotide sequences are crucial for molecular and com-
putational biology since the whole genetic information is encoded in nucleotide
sequences. Hence, reading of DNA or RNA sequences is the first stage in possible
broader research projects.

The nucleotide sequences may play three main roles in living organisms:
they encode proteins, they encode RNAs which are not translated into proteins
like tRNA or rRNA and they also perform some regulatory roles, respectively.
Most of the DNA sequences whose roles have been identified are genes encoding
proteins. Since the genetic code is known, it is easy to determine amino acid
sequences of proteins whose genes are known. However, it is also the case that
not always the information about the nucleotide sequence is sufficient. Indeed,
proteins are often subjected to some post-translational modifications which are
not explicitly encoded in the nucleotide sequence of the protein’s gene. It means
that these modifications are caused by some other molecules encoded by their
own genes. The relationships among products of groups of genes are usually
very hard to determine, so the prediction of the exact amino acid sequence of
the protein being post-translational modified is also extremely difficult. So, in
this case some direct method for amino acid sequence determining would be
useful.

Fortunately, such methods exists. One approach requires an application of
mass spectrometry. This approach usually allows for a determination of some
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c© Springer-Verlag Berlin Heidelberg 2005



Tabu Search Method for Determining Sequences of Amino Acids 23

short fragments of peptides which are compared with databases of known pro-
teins in the next step. Of course, such approaches do not allow for a discovery of
unknown proteins but in spite of that in many cases they are useful. Recently,
there are also developed some methods based on mass spectrometry which allow
for sequencing unknown polypeptides.

The other group of methods is based on Edman’s degradation. This degrada-
tion is a biochemical procedure which allows for a direct determination of short
peptide sequences.

Both types of peptide sequencing methods allow for determining rather short
amino acid sequences. So, if the whole protein is to be sequenced, then it must
be cleaved into smaller pieces at the beginning of the reading process. Such a
cleavage can be done by enzymes called proteases which cut the amino acid
chain in some specific places. Next, each of the pieces is sequenced by one of the
methods mentioned above. Obviously, the task which remains to be done is to
assemble short amino acid chains of known sequence into one polypeptide. This
can be done by some algorithmic methods. In the paper, we propose tabu search
algorithm for one of the variants of the peptide sequencing problem belonging
to the class of strongly NP-hard search problems [3]. Computational tests show
its usefulness in the process of determining sequences of amino acids in long
polypeptides.

The organization of the paper is as follows. In the next Section a biochemical
stage of the peptide sequencing procedure will be briefly described. In Section
3 the combinatorial problem which must be solved in the second stage of the
procedure is formulated while in Section 4 the tabu search algorithm solving this
problem is described. Section 5 contains results of the computational experiment.
The paper ends with conclusions in Section 6.

2 The Biochemical Stage of the Peptide Sequencing
Process

The biochemical stage of the method may be based on Edman’s degradation [10]
which allows for detaching of consecutive amino acid residues from an amino end
of the analyzed polypeptide. The most important property of the method is the
fact that only the residue which is at the amino end of the peptide is detached
while the rest of the peptide remains unchanged. The amino acid composition
(but not the sequence, of course) of the shortened peptide can be compared with
the composition of the analyzed peptide. As a result of this comparison one gets
information what residue has been detached.

The same Edman’s procedure can be applied again to the shortened peptide
which will lead to identification of the second amino acid residue at the amino
end of the target polypeptide. Repeating this procedure many times allows for
determining the amino acid sequence of the whole polypeptide.

Nevertheless, the described above procedure has a serious limitation, i.e. it
can be applied to polypeptides composed of not more than 50 amino acid residues
[10]. The cause of this limitation is the efficiency of the reaction of detaching
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single residues. In practice, not from every peptide in the solution the residue is
detached at each stage of the method.

This shortage of the method can be overcome by dividing the analysed
polypeptide into shorter peptides of lengths not exceeding 50 amino acids. Spe-
cific cleavage of a polypeptide chain can be obtained by enzymatic or chemical
methods [10]. Some proteases cut polypeptide chains after some specific amino
acid residues. As a result one obtains a collection of short polypeptides which can
be fully analyzed by Edman’s degradation. However, the sequence information
discovered in this way do not suffice for determining the amino acid sequence of
the whole polypeptide since the order of the short peptides remains unknown.
To determine this order it is necessary to use more than one protease cutting
the polypeptide in different places. If two such proteases are used then the ob-
tained short peptides will overlap which allows for determining their order in
the analysed polypeptide.

As mentioned in the previous Section sequences of short peptides can be
also determined using a mass spectrometer [9, 2]. Roughly speaking in a mass
spectrometer short peptide is broken into shorter fragments and masses of these
fragments are measured. In an ideal case the examined peptide is broken be-
tween any two consecutive amino acid residues. As a result masses of these
fragments are obtained. The problem of determining the sequence is relatively
simple in the case of an ideal fragmentation, but in practice there may occur
many errors and the output from the spectrometer may be far from being an
ideal one, what makes the sequencing problem difficult. However, the problem of
determining peptide sequences using mass spectrometers is recently intensively
investigated which may lead to a development of some effective algorithms for
the real world problems.

It must be also noted that due to the current technology constraints, the
amino acid sequences which can be determined using mass spectrometers are
rather short and their lengths usually falls into the range between 10 and 20
amino acid residues. It follows that when a whole protein is to be sequenced, it
must be first cleaved into short pieces, analogously like in the case where Edman’s
degradation is used. Obviously, it leads to the same assembling problem.

3 Formulation of the Peptide Assembly Problem

Let us assume that the analysed polypeptide is cut by two proteases each of them
cleaving the peptide after a given amino acid which will be denoted, respectively,
by α and β. So, when the solution of many copies of the examined polypeptide
is subjected to the two proteases, a collection of short peptides is obtained. In
the last position of every such a peptide, i.e. in the amino end, there is amino
acid α or β, which follows from the way the target polypeptide is cleaved by
the proteases. It may also happen that some of the peptides will be substrings
of some other peptides. These short peptides completely included in some other
ones can be excluded from the collection and further consideration. As a result
two sets of amino acid sequences can be created – Sα containing peptides being
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cut out from the target sequence by the protease recognizing amino acid α, and
Sβ which contains all the other peptides, i.e. those being cut out by the protease
recognizing amino acid β. Determining the sequence of the target polypeptide is
equivalent to determining some permutation of the elements of the sets Sα and
Sβ which should satisfy the following conditions:

1) in the permutation any two consecutive elements should not belong to the
same set,
2) every two consequtive elements (i.e. sequences) of the permutation should
maximally overlap, so the polypeptide sequence corresponding to this permuta-
tion should be as short as possible.

It is possible to formulate the problem as a graph theoretical one in the
following way [1]. Let G = (V, A) be a directed graph, where the set of vertices
V = V1 ∪ V2, |V | = n, V1 ∩ V2 = ∅ and the set of directed arcs is defined as
(vi, vj) ∈ A ⇐⇒ (vi ∈ V1 ∧ vj ∈ V2) ∨ (vi ∈ V2 ∧ vj ∈ V1). With every
vertex vi ∈ V there is associated label si over alphabet Σa, where |Σa| = 20.
Moreover, function w called the weight of the arc is defined as w : A → N,
w(vi, vj) = maxk∈{1,2,...,|si|}{p : ∀q∈{1,2,...,p}si(k − 1 + q) = sj(q)} if there exist
k and p such that ∀q∈{1,2,...,p}si(k − 1 + q) = sj(q). Otherwise, w(vi, vj) = 0.

One can notice that sets V1 and V2 correspond to sets Sα and Sβ contain-
ing sequences of peptides obtained using proteases cleaving the target sequence
after amino acids α and β, respectively. We are looking for a permutation of
elements of set S = Sα ∪Sβ such that elements from Sα and Sβ alternate in this
permutation. It is easy to see that it is equivalent to looking for a path in graph
G since it is a bipartite graph which does not contain arcs between any pair of
vertices corresponding to elements of only one of the sets Sα and Sβ . Moreover,
function w is defined in such a way that its value determines the biggest pos-
sible overlapping of any pair of vertices’ labels (corresponding to peptides). So,
looking for a Hamiltonian path in graph G minimizing the total sum of w values
is equivalent to looking for the peptide permutation satisfying the conditions
previously formulated.

Let us also observe that the graph model can be extended such that it will
cover situations where more than two proteases are used [1]. Let Gp = (Vp, Ap)
be a directed graph, where Vp = V1∪V2∪· · ·∪VN , |V | = n, ∀x,y∈{1,2,...,N},x �=yVx∩
Vy = ∅ and (vi, vj) ∈ A ⇐⇒ [(vi ∈ Vx ∧ vj ∈ Vy) ∨ (vi ∈ Vy ∧ vj ∈ Vx)] ∧ x = y.
Function w is defined as in the case of graph G (obviously G is a special case of
Gp, where N = 2). In both cases, i.e. in graphs G and Gp we are looking for a
directed path P = vi1vi2vi3 · · · vin−1vin such that

∑n−1
r=1 f(vir , vir+1) is maximal,

and ∀r∈{1,2,...,n−1}(vir
∈ Vx ∧ vir+1 ∈ Vy).

Note, that the described peptide assembly problem differs considerably from
the DNA assembly one [7]. The most important difference follows from the
method used for obtaining the fragments to be sequenced and then assembled.
As described above, in the case of peptides the long polypeptide is cut by pro-
teases, which makes the obtained short peptides to be ended by some specific
amino acid. This property of the short molecules is crucial for the mathemati-
cal models of the assembly process and also for the possible algorithms. On the
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other hand, in the case of DNA the short fragments are usually obtained by
random breaking the long molecule, so there is no specific form of the obtained
short fragments.

Let us also observe, that in the problem described here, there is assumed,
that the input data contain no errors. This assumption is justified by the fact,
that the results presented here establish a starting point for a possible further
research, where more realistic data would be assumed. In general, the input
data may contain errors following from imperfection of the sequencing process,
similarly like in the case of DNA assembly.

The variant of the peptide assembly problem for which the tabu search algo-
rithm will be proposed, can be formulated in the following way [3].

Let C be a subset of alphabet Σ, containing symbols called cutters. Let us
consider a particular cutter c ∈ C and string s. Then a fragment obtainable from
the c-cutter is a substring x of s having two properties. First, c is the last symbol
of x. Second, if x is found at position i in s, for i > 1, then at position i − 1 in
s there is symbol c. If c occurs exactly once in s then it is said that x results
from a full digest of s, i.e. the one in which all cuts after c are made; otherwise,
s results from a partial digest. Further, it is said that a string is obtainable from
set C if there is some element of C from which it is obtainable.

Now, the peptide assembly problem can be formulated in the following way.
Peptide assembly problem – search version:

Instance: Multiset S of strings over alphabet Σ, a distribution D of letters from
alphabet Σ, i.e. a set of pairs (x, i) for all symbols x ∈ Σ, where i is a positive
integer.
Answer: Superstring for S satisfying D such that all elements of S are obtain-
able from C ⊆ Σ.

We see that the above formulated problem differs from the one previously
described by the requirement concerning the amino acid composition of the re-
constructed sequence. This requirement is justified by the information which can
be obtained in the biochemical stage of the process. Since the peptide assembly
problem is strongly NP-hard [3], in order to solve it in a resonable time, one
needs an efficient on average exact algorithm (like branch and bound) or a good
polynomial time heuristic. In the next section, a method belonging to the latter
class of algorithms will be proposed.

4 Tabu Search Algorithm

The algorithm proposed to solve instances of this problem is based on tabu
search heuristic method being one of the most frequently used in combinatorial
optimization. The tabu search method is a kind of a local search procedure
[4, 5]. The general step of an iterative procedure consists in constructing next
solution j from the current solution i and checking whether one should stop
there or perform another step. In the tabu search method neighbourhood N(i)
is defined for each feasible solution i, and the next solution j is searched among
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the solutions in N(i). In order to improve the efficiency of the search process, one
needs to keep track not only of local information (like the current value of the
objective function) but also of some information related to the search process.
Like other methods, the tabu search method also keeps in memory value f(i∗)
of the best solution visited. However, there are some mechanisms to prevent the
method being stuck in a local optimum. One of them is using tabu list which
can contain moves already performed by the algorithm. None of the moves can
be performed if it is on the tabu list unless it leads to the solution better than
the best already found. The next mechanism preventing the method being stuck
in a local optimum is a mechanism of random moves, which results in moving
the search process to another area of the search space.

The method described above is a general framework of the tabu search ap-
proach. In order to solve a particular problem, it must be adopted by using
problem-specific definition of moves and possibly by adding to the method some
other components not mentioned above.

Let us observe that in the case of the peptide assembly problem, we are look-
ing for a kind of a Hamiltonian path in a directed graph, so we deal with a
permutation problem. However, not all permutations of the vertices are feasible
solutions. From this follows that any solution can be viewed as a sequence of
elements composed of N permutations of elements of sets Vx, x = 1, 2, . . . , N ,
where the permutations are interlaced. More formally, the elements of sets Vx,
x = 1, 2, . . . , N can be permuted, so N permutations π1, π2, . . . , πN can be cre-
ated corresponding to the sets. On the basis of these permutations, permutation
Π consisting of all elements of V =

⋃N
x=1 Vx can be created in such a way that for

the i-th element of permutation πx position αx,i in permutation Π is assigned.
If we denote the set of positions in Π assigned to elements of permutation πx

by Zx, then the assignment has to satisfy two conditions:

∀x,y∈{1,2,...,N},x �=yZx ∩ Zy = ∅ (1)

and ∀x∈{1,2,...,N}∀i,j∈{1,2,,...,|Vx|},i �=jαx,i = αx,j (2)

The algorithm starts with some randomly generated initial solution. The
solution is created in such a way that for each element of V =

⋃N
x=1 Vx a position

in permutation Π is randomly generated. Obviously, the complete set of these
positions has to satisfy conditions (1) and (2).

The algorithm tends to maximize objective function w - a sum of overlaps
of peptides from multiset S according to a permutation of integers representing
these peptides. On the other hand, a distribution of amino acids in the con-
structed sequence tends to take value of the assumed distribution D.

The neighbourhood solutions are all permutations which can be attained from
the permutation of the current solution by exchanging only one pair of integers
representing strings from multiset S and satisfying conditions (1) and (2).

While selecting the best candidate solution from the generated neighbour-
hood solutions, the algorithm checks if a move leading to it is not on TabuList.
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In case the TabuList contains this move, the algorithm can select the solution
if its criterion value is better (greater) than the best solution found so far (A).

After performing a number of moves not leading to an improvement of the
solution quality a series of random moves is executed. Moreover, after a given
number of such series the method is restarted, i.e. some randomly generated
feasible solution becomes an initial solution. If a specified number of restarts is
performed the algorithm stops.

Below the Tabu Search algorithm is presented in a pseudo-code form.

Tabu Search
var : A, // best solution

a, // current solution
tmp : object; // temporary solution
restarts, // number of restarts of algorithm
moves1, // number of moves without improvement of solutions
moves2, // number of random moves at one series
series, // number of series of random moves
i, j, k, l : integer;

begin
w(A) := 0;
d(A) := 1000;//integer much greater than amino acid sequence length
for k := 1 to restarts
begin

initialize TabuList; // clearing Tabu List
a :=create start solution; // a permutation of integers representing

// strings from multiset S
j := 0;
while j is not greater than or equal to series do
begin

w(a) :=value of solution a; // w(a):= sum of max overlaps of
// peptides from multiset S

d(a) :=value of a distribution of amino acids in solution a;
if w(A) < w(a) then
begin

A := a; w(A) := w(a); d(A) := d(a);
end
if w(A) = w(a) and d(a) < d(A) then
begin

A := a; w(A) := w(a); d(A) := d(a);
end
i := 0;
do
begin

generate neighbourhood solutions of solution a;
evaluate solutions from the neighbourhood;
tmp =select the best solution from the neighbourhood;
// m(a, tmp) - move from solution a to tmp
// (a pair of exchanged integers in the permutation)
while m(a, tmp) is on TabuList or w(tmp) <= w(a) do
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begin
i := i + 1;
tmp =next best solution from the neigbourhood;

end
add m(a, tmp) on TabuList;
a := tmp; w(a) := w(tmp); d(a) := d(tmp);

end
while i is not greater than or equal to moves1

// random moves
for l := 1 to moves2

begin
tmp =a random feasible solution;
if w(a) < w(tmp) then
begin

a = tmp; w(a) := w(tmp); d(a) := d(tmp);
end
if w(a) = w(tmp) and d(tmp) < d(a) then
begin

a = tmp; w(a) := w(tmp); d(a) := d(tmp);
end

end
j := j + 1;

end
end

end.

The algorithm was implemented in C++ language with a standard library.
It has been tested on a number of test instances. The computational experiment
is described in the next section.

5 Computational Experiment

The computational experiment has been performed on a PC computer with
Pentium 4, 2.4 GHz processor and 512 MB of RAM. The experiment has been
divided into three stages. The results are shown in Tables 1 - 3. Each entry in the
tables corresponds to computations performed on three amino acid sequences.
The time and similarity values are the averages of these three sequences.

In the first stage of the experiment 150 amino acid sequences have been
randomly generated. Among these sequences 30 have length of 100 amino acids,
30 of 150, 30 of 200, 30 of 250, and 30 of 300 amino acids. Based on these
groups of sequences, three sets of test instances have been created (15 sets have
been obtained) by substituting the previously generated amino acid by the one
recognized by one of the proteases in randomly chosen 10, 15 and 20 positions,
respectively. The proteases have been randomly chosen as well from the set of
the two proteases used. In this way the size of the instance, i.e. the number of
short peptides to be assembled, has been controlled.

The instances for the second stage have been generated in a similar way, ex-
cept for there were no substitutions made in the generated sequences. It means
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that the number of short sequences resulting from the cleavage has been deter-
mined by the random process of sequence generation. So, here this number has
not been controlled. In addition, it has been assumed that 2, 3 and 4 proteases,
respectively, have been used.

In the last stage of the experiment 10 sequences of length of 120 – 220 amino
acids have been taken from GenBank. The test instances have been obtained by
cutting them by 2, 3 and 4 proteases, respectively.

A similarity to the original sequence is calculated using Needleman-Wunsch
algorithm [8] (see also [6]). The algorithm compares two sequences: the one gener-
ated by the tabu search algorithm st and the original sequence so. The similarity
of the sequences is determined according to the following formula: σ = 100 δ−ψ

χ−ψ ,
where δ is a scoring for the two sequences, being a sum of scores for all columns
in an optimal alignment (1 point for a match, -1 for mismatch or gap), and

ψ =
{

l(so)d + (l(st) − l(so))g if l(st) > l(so)
l(st)d + (l(so) − l(st))g otherwise

χ =
{

l(st)m if l(st) > l(so)
l(so)m otherwise

where l(st) and l(so) are lengths of sequence st and so, respectively, and m = 1,
d = −1, g = −1.

In the experiment the following values of the algorithm parameters have been
used: tabu list length – 10, number of moves without improvement of solution
quality – 10, number of random moves – 5, number of random move series – 3,
number of restarts – 10.

Analysing the results of the computational experiment we see that the pro-
posed algorithm assembled amino acid sequences with a high accuracy for a

Table 1. Results of stage I

Sequence length Number of cuts Similarity [%] Time [s]
100 10 95.0 3.5
100 15 93.0 7.5
100 20 94.0 10.8
150 10 93.0 4.2
150 15 92.0 9.8
150 20 95.0 12.9
200 10 93.0 6.3
200 15 94.0 11.3
200 20 96.0 16.7
250 10 94.0 8.2
250 15 91.0 13.9
250 20 92.0 19.1
300 10 91.0 10.1
300 15 93.0 15.4
300 20 92.0 21.7
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Table 2. Results of stage II

Sequence length Number of proteases Similarity [%] Time [s]
100 2 92.0 2.2
100 3 94.0 4.1
100 4 95.0 6.5
150 2 91.0 3.5
150 3 93.0 7.2
150 4 94.0 9.1
200 2 96.0 5.6
200 3 92.0 8.7
200 4 93.0 11.9
250 2 94.0 6.2
250 3 91.0 9.4
250 4 93.0 12.1
300 2 91.0 8.2
300 3 93.0 11.3
300 4 92.0 13.5

Table 3. Results of stage III

Number of proteases Similarity [%] Time [s]
2 95.0 3.4
3 94.0 7.4
4 92.0 11.4

broad range of parameters assumed. Computational times were small, thus, al-
lowing for a practical use of the algorithm.

6 Conclusions

In this paper, an application of the tabu search method to the problem of assem-
bling long polypeptide sequences, has been described. This new approach can
be used to reconstruct long amino acid chains regardless of the method used for
identifying short peptide fragments obtained after digestion by proteases. The
computational tests confirmed high efficiency of the algorithm proposed and its
usefulness in the protein identification process.
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{bleuler, zitzler}@tik.ee.ethz.ch

Abstract. Clustering still represents the most commonly used tech-
nique to analyze gene expression data—be it classical clustering ap-
proaches that aim at finding biologically relevant gene groups or biclus-
tering methods that focus on identifying subset of genes that behave
similarly over a subset of conditions. Usually, the measurements of dif-
ferent experiments are mixed together in a single gene expression matrix,
where the information about which experiments belong together, e.g., in
the context of a time course, is lost. This paper investigates the ques-
tion of how to exploit the information about related experiments and
to effectively use it in the clustering process. To this end, the idea of
order preserving clusters that has been presented in [2] is extended and
integrated in an evolutionary algorithm framework that allows simulta-
neous clustering over multiple time course experiments while keeping the
distinct time series data separate.

1 Motivation

A central goal in the analysis of genome wide gene expression measurements is
to identify groups of genes with shared functions or shared regulatory mecha-
nisms. To this end different clustering concepts have been developed. Standard
clustering methods such as k-means, hierarchical clustering [6], self organizing
maps [11], partition the set of genes into disjoint groups according to the sim-
ilarity of their expression patterns over all conditions. Thereby, they may fail
to uncover processes that are active only over some but not all conditions. In
contrast, biclustering aims at finding subsets of genes which are similarly ex-
pressed over a subset of conditions, which often better reflects biological reality.
The usefulness of this concept in the context of microarray measurements has
been demonstrated in different studies [5, 12, 10].

A promising biclustering approach, which is especially useful in the context
of time course experiments, is the order preserving submatrix (OPSM) method
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by Ben-Dor et al. [2]. This method concerns the discovery of one or several
submatrices in a gene expression matrix in the which the expression levels of
the selected genes induce the same linear ordering of the selected experiments.
However, there are several potential drawbacks of this approach: the algorithm
(i) does not allow to relax the clustering criterion, i.e., deviations from the perfect
linear ordering will be not considered as clusters, (ii) needs excessive computing
resources if applied to large gene expression matrices, and (iii) does not provide
means to keep different types of experiments separate from each other. The
first issue has been addressed in [7] by assigning similar expression levels equal
ranks but still searching for perfect linear orderings. The third issue, which
applies to most of the existing clustering approaches, is important insofar as
the mixture of different types of experiments on the one hand side may blur the
clustering outcome and on the other hand does not allow to study similarities and
differences between the distinct experiment groups. Therefore in this paper, we

– propose a cluster scoring scheme that represents a relaxation of the strict
order preserving criterion introduced in [2],

– present an evolutionary algorithm for clustering that uses the above scor-
ing scheme, allows to treat strongly related experiments such as time series
separately, and can be applied to arbitrarily large data sets, and

– demonstrate the usefulness of the suggested approach on various data sets
for Arabidopsis thaliana.

The proposed method can generally be applied to combine data sets from
different experiment groups which cannot be compared directly. It even is possi-
ble to use separate scores for measuring similarity in the different groups. In this
paper, though, we focus on the analysis of time courses as an example for such
data sets. This approach is conceptually different from other methods for the
analysis of time course data as it focuses on the relation between different time
courses while most other methods focus on the relation between the different
time points within a single experiment, cf. [1].

In the following, we will first discuss the underlying clustering concept, before
a corresponding implementation of an evolutionary algorithm is presented. Later,
the proposed method is compared with the OPSM approach on various time
series data, and especially the issue of mixed and separated time courses is
investigated. The last section summarizes the main results of the study.

2 Order Preserving Clustering

In the remainder of this paper, we will assume that the measurements of several
experiments are given in terms of an m×n-matrix, E, where m is the number of
considered genes and n the number of experiments. A cell eij of E contains a real
value that reflects the abundance of mRNA for gene i under condition j relative
to a control experiment (absolute mRNA concentrations are seldom used). A
time course stands for a sequence of measurements that have been performed at
different points in time under the same condition for the same organism. Such
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Fig. 1. (a) On the left hand side, a gene expression matrix is shown, on the right
hand side, the corresponding expression levels are replaced by their ranks within each
row; the shaded area marks the largest order preserving submatrix. (b) The same gene
expression matrix as in a) is now divided into two time courses, each consisting of
two experiments; the resulting ranking induces a larger order preserving submatrix
compared to a), as each time course is treated separately

a time course measurement is represented by a gene expression matrix E where
each column stands for one point in time and where the order of the columns
reflects the order of the experiments in time.

2.1 The Order Preserving Submatrix Problem

Given the above notation, the order preserving submatrix problem, which has
been introduced by Ben-Dor et al. [2], can be described as follows: find a subset
G of genes (|G| ≤ m) and a subset C of experiments (|C| ≤ n) such that the
submatrix D of E defined by G and C maximizes a given score f(G, C) and
is an order preserving submatrix (OPSM), see below. The score f reflects the
probability of observing an OPSM of size |G| · |C| in a randomly chosen matrix
of the same dimensions as E. A submatrix D is order preserving if there is a
permutation of its columns (experiments) such that the sequence of (gene expres-
sion) values for each row (gene) is strictly increasing; this concept is illustrated
in Fig. 1a.

A potential problem with the approach presented in [2] is that the running
time of the proposed algorithm can increase considerably with the size of E.
Another drawback with the OPSM concept is that the homogeneity criterion
(perfect order) is a hard constraint. However, if slight deviations from a perfect
ordering would be allowed, this often may better reflect biological reality.

2.2 A Score for the Degree of Order Preservation

The first question we address is how to relax the condition of order preservation
such that slight disagreements between the genes are still acceptable. If the
allowed error is adjustable by the user, it is possible to account for errors in
the measurements and to adapt the cluster criterion to the current biological
data set.
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Several measures to quantify the unsortedness of a sequence of integers have
been suggested in the literature, see, e.g., [9]. One potential measure is to com-
pare all possible pairs of the sequence elements and count the number of pairs
that appear in the wrong order. When we extend this concept to a submatrix, one
could consider the total number of mismatches over all genes. However, the cor-
responding number strongly depends on the actual order of the selected columns
and finding the order that minimizes this scores is itself an NP-hard problem [8].
Therefore, we propose a scoring scheme that is independent of the actual order
of the columns; it is based on another biclustering approach proposed by Cheng
and Church [5] that uses the mean squared residue score.

The optimization task in [5] is to find the largest bicluster that does not
exceed a certain homogeneity constraint. The size f(G, C) is simply defined as
the number of cells in E covered by a bicluster (G, C), while the homogeneity
g(G, C) is given by the mean squared residue score. Formally, the problem is to
maximize f(G, C) = |G| · |C| subject to g(G, C) ≤ δ with (G, C) ∈ X, and where

g(G, C) =
1

|G||C|
∑

i∈G,j∈C

(eij − eiC − eGj + eGC)2

is called the mean squared residue score and

eiC =
1

|C|
∑
j∈C

eij , eGj =
1

|G|
∑
i∈G

eij , eGC =
1

|G||C|
∑

i∈G,j∈C

eij

denote the mean column and row expression values for (G, C) and the mean over
all cells, respectively. The threshold δ needs to be set by the user and defines
the maximum allowable dissimilarity within the cells of a bicluster. Roughly
speaking, the residue expresses how well the value of an element in the bicluster
is determined by the column and row it lies in. A set of genes whose expression
levels change in accordance to each other over a set of conditions can thus form
a perfect bicluster even if the actual values lie far apart.

In our scenario, we use a scoring function h which combines the mean squared
residue score with the OPSM concept. Given a submatrix D, we first rank the
values in D per row and then replace the expression values with their ranks;
afterwards, we apply the mean squared residue score to the transformed subma-
trix D′ in order to assign a score to D. Since the ranks in each row of D′ sum
up to the same value, the row mean eiC and the total mean eGC cancel each
other out and the scoring scheme is reduced to measure the unsortedness of the
column means of the ranks. It can be easily shown that a score of 0 using this
modified scheme h is equivalent to D being an OPSM. Additional tests with
small random matrices showed that h correlates well with the abovementioned
count of unordered pairs.

2.3 Clustering Scores for Time Course Data

This paper focuses on time series data, although the presented concepts can
be used for other types of experiments as well. As time series often consist of
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a few experiments only (usually 6 to 10), in the following we will consider the
optimization task to find the largest subset G of genes that has a score h(G) ≤ δ,
where δ is a constraint set by the user and all experiments in E are considered,
i.e., the submatrix D extends over the rows of E specified by G and all columns
of E. As we will show later in Section 4.2, this restriction is reasonable if n
is small.

The situation changes, though, if multiple time series data are taken into
account. The common way is to combine several time courses into a single matrix;
however, thereby information is lost and the resulting OPSM can be small. Here,
we propose to treat each of the time courses separately as depicted in Fig. 1b.
We still aim at maximizing the number of genes in the cluster, but the constraint
on h is now computed for each time series separately. That is, given G, for each
time course the resulting submatrix D is computed and it is checked whether
the corresponding h score is lower than or equal to the constraint δ; only if the
score constraint is fulfilled for all time series, the cluster G is considered a feasible
solution. In the next section, we present an EA implementation for this problem.

3 Evolutionary Algorithm

The main idea is to use an evolutionary algorithm to explore the search space of
possible gene sets systematically. As we will see, the representation and most of
the operators are generic while the local search procedure and the environmental
selection are more specific to the proposed optimization problem.

Each individual encodes one cluster. For reasons of simplicity we have chosen
to use a binary representation with a bit string of length m where a bit is set to 1
if the corresponding gene is included in the cluster. We apply uniform crossover
and independent bit mutation. As to environmental selection, a special diversity
maintenance mechanism was used which is described later in this section. For
mating selection, a tournament selection is used.

Since the objective is to find large clusters the fitness of an individual is
calculated as the inverse of the number of genes included in the cluster which
leads to a minimization problem. The threshold on h is used as constraint and
a local search is performed before the fitness assignment which produces only
feasible solutions.

Local Search. In order to increase the efficiency of the EA a local search pro-
cedure is applied to each individual before evaluation. This procedure is based
on a greedy heuristic which tries to reduce h while keeping a maximum number
genes in the cluster. The algorithm is similar to the one proposed in [5] and
consists of two main steps: First genes are removed from the cluster until the
homogeneity constraints h(G) < δ for all time courses are met and in a sec-
ond step all genes which can be added without increasing h(G) are included in
the cluster. This procedure guarantees to produce a feasible solution because in
the extreme case a cluster is reduced to a single gene which always has perfect
homogeneity (h = 0).
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while number of genes > threshold do
calculate eGj for all columns j for all time
courses
calculate h for all time courses
for all genes in the cluster do

calculate d for all time courses separately:
d = 1

m

∑
j=1..m(eij − eGj)2

if d > αh for any time course then
remove the gene

end if
end for
if nothing was removed then

switch to Single Gene Deletion
end if

end while

while constraint violated for any time course
do

calculate eGj for all columns j for all time
courses
for all genes in the cluster do

calculate d for all time courses separately:
d = 1

m

∑
j=1..m(eij − eGj)2

sum up the d for all time courses into s
end for
remove gene with maximal s

end while
continue with Gene Addition

Fig. 2. Algorithm for Multiple Gene Dele-
tion

Fig. 3. Algorithm for Single Gene Deletion

The removal and addition of the genes is generally done one by one in a greedy
fashion which requires to update the homogeneity score h after the addition or
removal of each gene. If many genes need to be removed this recalculation can
increase the running time heavily. To prevent this multiple genes are removed
in each iteration while the number of genes in the cluster is above a certain
threshold (default = 100). The complete local search thus consists of the three
steps described in Figures 2, 3 and 5.

Additionally, it is necessary to specify what happens with the result of the
local search. In this study, we use Lamarckian evolution which means that the
solution found by the local search is kept and replaces the individual the lo-
cal search started from as opposed to Baldwinian evolution where the locally
optimized solution is just used to calculate the fitness of the individual.

Diversity Maintenance. As a whole population of clusters is evolved simul-
taneously it is possible not only to optimize one cluster but also to find a set of
clusters which fulfill a desired property like total coverage or minimum overlap.
To this end a special diversity maintenance mechanism is used. The general idea
is to select the biggest cluster first and in each following step the cluster which
adds most to the coverage of the set of all genes. The algorithm is described in
detail in [3].

4 Results

In the simulation runs mainly two questions were investigated: (i) How does
the EA compare to the OPSM algorithm proposed in [2] when applied to find
perfectly ordered clusters, and (ii) what is the effect of separating the different
time series?

4.1 Data Preparation and Experimental Setup

All simulations were performed on gene expression data generated with
Affymetrix GeneChips from Arabidosis thaliana, a small plant. The data set
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Table 1. Default parameter settings for this study

α 1.2
probability of 1 in initalization 0.001
mutation rate 0.001
crossover rate 0.1
tournament size 3
population size 100
number of generations 100

used in this study was provided by the ATGenExpress consortium 1 and used to
investigate the response of Arabidopsis to different kinds of stresses. It consists of
8 time series with 6 time points each. The total expression matrix thus contains
22746 genes and 48 chips. All expression values were preprocessed using RMA
[4] and the logratios with the measurement from an untreated control plant were
calculated.

The EA parameter settings used in the following simulations are described
in Table 1. The crossover rate refers to the percentage of parents involved in
crossover. The mutation rate is the probability for bit flips in the independent
bit mutation.

The EA was programmed in C++ while the OPSM algorithm was imple-
mented in Java. The implementation closely follows the description in [2]. The
OPSM algorithm takes a parameter l describing how many candidate solutions
should be further investigated during the greedy search for OPSMs, see [2] for
the details. Consistent with the value used in [2] we set l to 100.

All simulation runs were performed on a 3 GHz Intel Xeon machine. For each
run, 30 replicates with different random number generator seeds were performed.

4.2 Single Time Series

As mentioned above, searching for perfect OPSMs which extend over all chips
in the data set corresponds to setting the constraint on the inhomogeneity h to
zero. It is thus interesting to compare the clusters found by the EA to the ones
found by the OPSM algorithm. To this end we ran both algorithms on six time
course data sets. The largest cluster found by the EA equaled the one found by
the OPSM algorithm in all cases with sizes ranging from 290 to 662 genes. Often
this cluster was found after only a few generations.

While the OPSM algorithm is tailored to find one maximal OPSM for each
number of chips the EA can find several clusters in one run. Without the di-
versity mechanism described in Section 3 the population quickly converges to a
set of clusters with large overlap with the best cluster. The diversity mechanism
prevents this: for one data set, as an example, all 100 clusters in the final popula-
tion were non overlapping and consisted of an average of 90 genes. These groups
have different orderings of the expression levels. It makes sense to investigate
these clusters as well and not just concentrate on finding the biggest OPSM.

1 See http://web.uni-frankfurt.de/fb15/botanik/mcb/AFGN/atgenex.htm
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while a gene was added in the last iteration
do

calculate eGj for all columns j for all time
courses
calculate h for all time courses
for all genes not in the cluster do

calculate d = 1
m

∑
j=1..m(eij − eGj)2

if d < h for all time courses then
add gene
recalculate all eGj and h

end if
end for

end while

Fig. 4. Size of the largest cluster found by
the EA on the two “cold” data sets. Mean,
max and min over 30 runs

Fig. 5. Algorithm for Gene Addition

The high number of large clusters found by the EA makes it unnecessary to
relax the constraint in the case of such small data sets. The effect of relaxing the
constraint will be discussed in the following section where several time courses
are combined into one data set.

4.3 Multiple Time Series

In a second set of experiments we investigated the effect of keeping the time
courses separated during the search for order preserving clusters. To this end we
first combined two data sets and then tested the algorithms on the combination
of all eight data sets.

Two Time Series. When comparing the performance of the OPSM algorithm
to the EA on the combination of both data sets in same sense as in the previous
section, both algorithms found OPSMs consisting of two genes and all twelve
chips. When relaxing the constraint for the EA, larger clusters can be found;
for instance, if the constraint on h is set to 0.5 which means that the average
difference between the actual rank and the column mean of the ranks must be
smaller than 0.5 the largest cluster found by the EA contained 6 genes (mean
over 30 runs).

We then used the EA to search for groups of genes which fulfill the homo-
geneity constraint of h = 0 on both data sets separately. As shown in Figure 4
the largest cluster found by the EA contained 31 genes. Additionally the final
population contained 100 clusters with an average size of 7 genes and no overlap
between them. It is obvious that many significant clusters are missed if the data
sets are mixed and the proposed EA is able to retrieve many of them.

Eight Time Series. When applying the algorithms to the total of 48 chips
another drawback of the OPSM algorithm becomes apparent: the running time
increases rapidly with the number of chips in the data set. While the OPSM
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Fig. 6. Identifying differences: Expression
values for the well ordered time course
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Fig. 7. Identifying differences: Expression
values for one of the unordered time
courses

algorithm takes 30 seconds to run on a data set of six chips is takes more than
two hours to finish on the full data set. The EA run time lies between 10 and 20
mins. For the EA, however, the running time can be adjusted by changing the
number of generations and the population size. The EA is thus still applicable
for large data sets which cannot be analyzed using the OPSM algorithm.

As expected neither OPSM nor EA found perfect cluster over all 48 chips.
Also for the separated data sets no cluster was found which had a perfect ordering
for all time series. Relaxing the constraint to 1 for each time course allowed the
EA to find clusters of a maximal size of 9 genes. Higher constraints could be
used to find larger but less coherent clusters. Also for the combined data set
large clusters can be found but the constraint must be relaxed to about 25
which does not provide a good ordering anymore.

4.4 Identifying Differences in Multiple Time Series

Another problem which is of high biological relevance is to identify groups of
genes that behave similarly in some of the time courses and exhibit inhomoge-
neous expression patterns in other time courses. There are different possibilities
to include these objectives into the EA depending on the biological scenario. We
chose the following: the expression values for at least one time course must be
ordered, i. e., h must be zero. Under this constraint the maximum h over all
time series is maximized. The local search procedure was changed accordingly
so that only the constraint of the best ordered time course must be fulfilled.

We tested this method on the combination of all eight data sets. In the
resulting clusters in general only the expression levels of one time course are
well ordered. Figures 6 and 7 show one example where time course on the left
hand side is well ordered and the one on the right hand side stands as example
for all the others which are not well ordered.

This shows that the problem of finding differences in multiple time series can
be address using the proposed approach, however, further investigations and
biological analysis of the results are necessary.
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5 Conclusions

The order preserving submatrix problem as defined in [2] consists of finding large
submatrices in a gene expression matrix such that for each submatrix there is
a permutation of the columns under which the sequence of expression values
is for each row strictly increasing. We have extended this approach in three
aspects:

– A more flexible scoring scheme was proposed that allows to arbitrarily scale
the degree of orderedness required for a cluster.

– Based on this scoring scheme, a methodology to handle different set of ex-
periments such as distinct time series in a systematic way was introduced.

– An evolutionary algorithm for this order preserving problem was presented
that is capable of finding multiple non-overlapping clusters in a single opti-
mization run.

The effectiveness of the suggested approach was demonstrated on eight time
series experiments covering overall 48 measurements for about 20000 genes of
Arabidopsis thaliana. Especially, the separation of different time series experi-
ments has proven to be a valuable concept: the cluster sizes could be improved
substantially in comparison to the common approach where all time series ex-
periments are combined in a single gene expression matrix.
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Abstract. A major goal of human genetics is the identification of susceptibility 
genes associated with common, complex diseases.  Identifying gene-gene and 
gene-environment interactions which comprise the genetic architecture for a 
majority of common diseases is a difficult challenge.  To this end, novel 
computational approaches have been applied to studies of human disease. 
Previously, a GP neural network (GPNN) approach was employed. Although 
the GPNN method has been quite successful, a clear comparison of GPNN and 
GP alone to detect genetic effects has not been made.  In this paper, we 
demonstrate that using NN evolved by GP can be more powerful than GP alone. 
This is most likely due to the confined search space of the GPNN approach, in 
comparison to a free form GP.  This study demonstrates the utility of using GP 
to evolve NN in studies of the genetics of common, complex human disease.   

1   Introduction 

In the search for disease susceptibility genes in common diseases, human geneticists 
are faced with numerous challenges.  For rare, Mendelian diseases like cystic fibrosis 
or Huntington disease, a single mutation in a single gene results in disease.  
Unfortunately, the genetic architecture of common disease is not that simple.  
Common diseases, such as diabetes, cancer, and hypertension are complex with a 
variety of genetic and environmental factors leading to disease risk [1, 2].  The 
potential for many genes with independent effects in addition to interaction effects 
makes the detection of disease susceptibility genes far more difficult.  Traditional 
analysis approaches were designed for the situation of single gene, single mutation 
disorders.  Therefore, they are not sufficient for the detection of multiple genetic and 
environmental factors or gene-gene and gene-environment interactions associated 
with human disease.  Thus, novel statistical and computational approaches are needed 
for the study of common, complex human disease. 

A variety of methods are being explored for the detection of gene-gene and gene-
environment interactions associated with complex disease These include logic 
regression [3], penalized logistic regression [4], automated detection of informative 
combined effects (DICE) [5], combinatorial partitioning method (CPM) [6] which has 
recently been extended by Culverhouse et al. in a method called RPM [7] and 
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multifactor dimensionality reduction (MDR) [8-10] to name a few. Neural networks 
are an additional class of computational approaches that have been utilized in human 
genetics.  Several researchers have applied NN to studies of human disease [11-12].  
While the applications of NN have met with some success, limitations were present in 
most of the previous studies.  One of the most prominent challenges with NN analysis 
is the design of the NN architecture.  NN architecture must be pre-specified before 
NN analysis can commence. Machine learning methods such as genetic programming 
[13] and genetic algorithms [14] have been explored to optimize the selection of NN 
architecture.  To circumvent this trial and error process, Ritchie et al. developed a 
genetic programming optimized NN (GPNN) [15]. GPNN was developed in an 
attempt to improve upon the trial-and-error process of choosing an optimal 
architecture for a pure feed-forward back propagation neural network.  The GPNN 
optimizes the inputs from a larger pool of variables, the weights, and the connectivity 
of the network including the number of hidden layers and the number of nodes in the 
hidden layer.  Thus, the algorithm attempts to generate optimal neural network 
architecture for a given data set and has an advantage over the traditional back 
propagation NN in which the inputs and architecture are pre-specified and only the 
weights are optimized. 

Although previous empirical studies suggest GPNN has excellent power for 
identifying gene-gene interactions, one must question whether constraining GP to 
build NN is an improvement over using GP alone.  GP can be used to build 
discriminant functions, as a combination of symbolic regression and linear 
discriminant analysis.  Using GP to build discriminant functions has been performed 
and applied to studies of human genetics [16, 17]. This method, called SDA 
(symbolic discriminant analysis), has been used in microarray studies [16, 17].  Since 
GP can be used to build discriminant functions, is there an advantage to defining a set 
of rules to constrain GP trees to conform to the structure of a NN?  While prior 
studies demonstrate the power of GPNN, a comparison of GPNN with unconstrained 
GP has not yet been performed.  The goal of the present study was to compare the 
power of GPNN and an unconstrained GP for identifying gene-gene interactions using 
data simulated from a variety of gene-gene interaction models.  This study is 
motivated by the previous applications of GPNN and the question of the benefits of 
constraining the tree structure.  We find that GPNN has higher power and lower false 
positive rates to detect gene-gene interactions than an unconstrained GP alone in the 
data simulated.  These results demonstrate that GPNN may be an important pattern 
recognition tool for studies in genetic epidemiology.  

2   Methods 

2.1   Genetic Programming Neural Network (GPNN) 

GPNN was developed to improve upon the trial-and-error process of choosing an 
optimal architecture for a pure feed-forward back propagation neural network (NN) 
[15]. Optimization of NN architecture using genetic programming (GP) was first 
proposed by Koza and Rice [13].  The goal of this approach is to use the evolutionary 
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features of GP to evolve the architecture of a NN.  The use of binary expression trees 
allows the GP to evolve a tree-like structure that adheres to the components of a NN. 
Figure 1 shows an example of a binary expression tree representation of a NN 
generated by GPNN. The GP is constrained such that it uses standard GP operators 
but retains the typical structure of a feed-forward NN. While GP could be 
implemented without constraints, the goal was to evolve NN since they were being 
explored as a tool for genetic epidemiology.  Therefore, we wanted to improve a 
method already being used.  Rules are defined prior to network evolution to ensure 
that the GP tree is constrained in such a way that it functionally represents a NN.  
These rules are consistent with those described by Koza and Rice [13]. The flexibility 
of the GPNN allows optimal network architectures to be generated that consist of the 
appropriate inputs, connections, and weights for a given data set.   

 

Fig. 1. An example of a NN evolved by GPNN. The Y is the output node, S indicates the 
activation function, W indicates a weight, and X1-X4 are the NN inputs 

The GPNN method has been described in detail [15, 18].  The steps of the GPNN 
method are described in brief as follows.  First, GPNN has a set of parameters that 
must be initialized before beginning the evolution of NN models. These include an 
independent variable input set, a list of mathematical functions, a fitness function, and 
finally the operating parameters of the GP.  These operating parameters include 
number of demes (or populations), population size, number of generations, 
reproduction rate, crossover rate, mutation rate, and migration [15].  Second, the data 
are divided into 10 equal parts for 10-fold cross-validation.  Here, we will train the 
GPNN on 9/10 of the data to develop a NN model.  Later, we will test this model on 
the 1/10 of the data left out to evaluate the predictive ability of the model.   

Third, training of the GPNN begins by generating an initial population of random 
solutions.  Each solution is a binary expression tree representation of a NN, similar to 
that shown in Figure 1.  Fourth, each GPNN is evaluated on the training set and its 
fitness recorded.  Fifth, the best solutions are selected for crossover and reproduction 
using a fitness-proportionate selection technique, called roulette wheel selection, 
based on the classification error of the training data [19]. Classification error is 
defined as the proportion of individuals where the disease status was incorrectly 
specified.  A predefined proportion of the best solutions will be directly copied 
(reproduced) into the new generation.  Another proportion of the solutions will be 
used for crossover with other best solutions. The new generation, which is equal in 
size to the original population, begins the cycle again. This continues until some 
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criterion is met at which point the GPNN stops. This criterion is either a classification 
error of zero or a limit on the number of generations. An optimal solution is identified 
after each generation.  At the end of the GPNN evolution, the overall best solution is 
selected as the optimal NN.    Sixth, this best GPNN model is tested on the 1/10 of the 
data left out to estimate the prediction error of the model.  Prediction error is a 
measure of the ability to predict disease status in the 1/10 of the data.  Steps two 
through six are performed ten times with the same parameters settings, each time 
using a different 9/10 of the data for training and 1/10 of the data for testing.   

The results of a GPNN analysis include 10 GPNN models, one for each split of the 
data.  In addition, a classification error and prediction error are recorded for each of 
the models.  A cross-validation consistency can be measured to determine those 
variables which have a strong signal in the gene-gene interaction model [20, 21]. 
Cross-validation consistency is the number of times a particular combination of 
variables are present in the GPNN model out of the ten cross-validation data splits.  
Thus a high cross-validation consistency, ~10, would indicate a strong signal, whereas 
a low cross-validation consistency, ~1, would indicate a weak signal and a potential 
false positive result.  An open source version of the GPNN software will be available 
at http://chgr.mc.vanderbilt.edu/ritchielab/gpnn. 

2.2   Unconstrained Genetic Programming (GP) 

Using GP to build binary classifiers is not a new technique.  It has been used for many 
years and suggested as an extension to symbolic regression.  Here, binary expression 
trees will be evolved that will classify samples into two groups.  This implementation 
is much like the work on symbolic discriminant analysis [16, 17] that has been 
applied to microarray data.  Similarly, we will use binary expression trees to build 
classifiers.  Koza [22, 23] and Koza et al. [24] give a detailed description of GP.  
Evolutionary computation strategies such as GP have been shown to be effective for 
both variable and feature selection with methods such as symbolic discriminant 
analysis for microarray studies [16, 17].   

The implementation of GP in this study is simply the GPNN methodology with the 
rules governing tree construction removed.  Thus, the algorithm is identical in every 
other way. This was done to ensure that the only comparison here was whether 
constraining GP trees to build NN was more powerful than GP alone.  

2.3   Data Simulation 

The utility of data simulation is the ability to know the solution to the problem, and 
determine if the method can identify the solution.  This allows one to investigate the 
comparison of methods and decide which method is preferred.  This process is not 
possible when real data is analyzed where the correct solution is unknown.  Here, if 
the two methods differ in their solutions, one cannot determine which method, if any, 
is correct. The goal of the simulation in this study was to generate data sets that 
exhibit gene-gene interactions for the purpose of evaluating the power of GPNN in 
comparison to the power of GP.  We simulated a collection of models varying several 
conditions including number of interacting genes, allele frequency, and heritability.  
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Heritability is defined in the broad sense as the proportion of phenotypic variation that 
is attributed to genetic factors.   Loosely, this means the strength of the genetic effect.  
Thus a higher heritability will be a larger effect and easier to detect.  Heritability is 
calculated using equations described in [25]. Additionally, we used a constant sample 
size for all simulations.  We selected the sample size of 400 cases (individuals with 
disease) and 400 controls (individuals without disease) because this is a typical 
sample that is used in many genetic epidemiology studies.   

To evaluate the power of GPNN and GP for detecting gene-gene interactions, we 
simulated case-control data using a variety of epistasis models in which the functional 
genes are single-nucleotide polymorphisms (SNPs).  We selected models that exhibit 
interaction effects in the absence of any main effects. Interactions without main 
effects are desirable because they provide a high degree of complexity to challenge 
the ability of a method to identify gene-gene interactions.  If main effects are present, 
it could be difficult to evaluate whether particular genes were detected due to the 
main effects or the interactions or both. In addition, it is likely that a method that can 
detect interacting genes in the absence of main effects will be able to detect main 
effect genes as well.  

To generate a variety of epistasis models for this study, we selected three criteria 
for variation.  First, we selected epistasis models with a varying number of interacting 
genes: either two or three.  We speculate that common diseases will be comprised of 
complex interactions among many genes.  The number of interacting genes simulated 
here may still be too few to be biologically relevant.  Next, we selected two different 
allele frequencies to represent both a common and a rare minor allele frequency 
which are both possible for disease susceptibility genes.  Finally, we selected a range 
of heritability values including 3%, 2%, 1.5%, 1%, and 0.5%.  These heritability 
values fall into the realm of very small genetic effects. We chose to simulate data 
using epistasis models with such small heritability values to test the lower limits of 
GPNN.  Based on previous studies, GPNN has over 80% power when the heritability 
is between 2%-5% [15].  For this particular study, we wanted to explore even smaller 
genetic effects to identify the point at which GPNN loses power.   

We generated models using software described by Moore et al. [26].  We selected 
models from all possible combinations of number of interacting genes, allele 
frequency, and heritability, resulting in twenty total models. These twenty models 
have been reported previously in a study comparing GPNN to stepwise logistic 
regression [18], thus we will not show the models in this paper.  The models are 
available at http://chgr.mc.vanderbilt.edu/ritchielab/gpnn. 

Each data set consisted of 400 cases and 400 controls. We simulated 100 data sets 
of each model consisting of the functional SNPs and either seven or eight non-
functional SNPs for a total of ten SNPs. This resulted in 2000 total datasets. We used 
a dummy variable encoding for the genotypes where n-1 dummy variables are used 
for n levels (or genotypes) [27].  Based on the dummy coding, these datasets had 20 
input variables. All datasets are available for download at http:// 
chgr.mc.vanderbilt.edu/ritchielab/gpnn. 
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2.4   Data Analysis 

Next, we used GPNN and GP to analyze 100 data sets for each of the epistasis 
models.  The GP parameter settings for GPNN and GP included 10 demes, population 
size of 200 per deme, 50 generations, reproduction rate of 0.10, crossover rate of 0.90, 
mutation rate of 0.0, and migration every 25 generations.  Neither GP nor GPNN are 
required to use all the variables as inputs.  Here, random variable selection is 
performed in the initial population of solutions. Through evolution, the methods select 
the most relevant variables. We calculated a cross-validation consistency for each 
model.  This measure is defined as the number of times each set of genes is in the best 
model produced across the ten cross validation intervals.  Thus, one would expect a 
strong signal to be consistent across all ten or most of the data splits, where a false 
positive signal may be present in only one or a few of the cross validation intervals.  
We selected the best model for each dataset based on the combination of genes with 
the highest cross-validation consistency.  We then estimated the power of GPNN or 
GP as the number of times the correct functional genes were selected as the best 
model in the datasets, divided by the total number of datasets for each epistasis 
model. Either one or both of the dummy variables could be selected to consider a 
gene present in the model.  

Table 1. Power and False Positive Rates of GPNN and Unconstrained GP 

Model Power False Positives 
Number 
genes 

Allele 
freq 

Heritability GPNN Unconstrained 
GP 

GPNN Unconstrained 
GP 

2 .2/.8 3.0% 100 84 0 16 
2 .2/.8 2.0% 99 64 1 36 
2 .2/.8 1.5% 100 80 0 20 
2 .2/.8 1.0% 94 61 6 39 
2 .2/.8 0.5% 66 30 34 70 
2 .4/.6 3.0% 100 76 0 24 
2 .4/.6 2.0% 99 96 1 4 
2 .4/.6 1.5% 100 96 0 4 
2 .4/.6 1.0% 97 78 3 22 
2 .4/.6 0.5% 66 42 34 58 
3 .2/.8 3.0% 89 63 11 37 
3 .2/.8 2.0% 89 68 11 32 
3 .2/.8 1.5% 1 1 99 99 
3 .2/.8 1.0% 0 2 100 98 
3 .2/.8 0.5% 9 3 91 97 
3 .4/.6 3.0% 65 54 35 46 
3 .4/.6 2.0% 14 11 86 89 
3 .4/.6 1.5% 8 4 92 96 
3 .4/.6 1.0% 2 5 98 95 
3 .4/.6 0.5% 0 3 100 97 
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3   Results 

In this study, we compared GPNN to an unconstrained GP using simulated data.  
Table 1 and Figure 2 show the power comparison of each method. Here, power refers 
to the method correctly identifying the functional genes.  For the two-gene models, 
the power of GPNN was consistently higher than the unconstrained GP.  For the 
three-gene models, GPNN had higher power than GP in seven out of ten models, 
although many of those models had very low power with both methods.   Table 1 and 
Figure 3 show the false positive results using each method.  Here false positives 
include all models identified as the best model that included genes other than the 
functional genes.  For the two-gene models, GPNN consistently had fewer false 
positive genes identified than the unconstrained GP.  For the three-gene models, 
GPNN had fewer or equal numbers of false positive genes identified in seven out of 
ten models.   In contrast to the power results, the false positive results for the three-
gene models are quite high.  This is the reciprocal of power so when the method fails 
to identify the correct genes, it must have identified false positive genes. 

4   Discussion 

In this study, we have compared a GP approach constrained to build NN to an 
unconstrained GP approach in an application to data in human genetics.  Studies of 
common, complex disease are complicated by the likelihood of gene-gene and gene-
environment interactions associated with disease risk.  Identifying these complex 
interactions poses a difficult challenge and creates the need for novel computational 
techniques. This led to the development of GPNN.  While GPNN has shown to be 
powerful in the detection of gene-gene interactions [15, 18], the question remained as 
to whether GPNN was more powerful than an unconstrained GP alone.  This was the 
goal of the present study. 

Here we tested the power of GPNN and GP on simulated datasets generated under 
twenty different epistasis models.  Based on these results, it is evident that under the 
set of parameters chosen, GPNN is more powerful than GP alone, and results in fewer 
false positive findings.  Unfortunately, both methods suffered lower power and high 
false positive rates in the three-gene epistasis models.  This can be anticipated, 
however due to the small genetic effect and only moderate sample size. In addition, 
the size of the GP population and number of generations in both the GP and GPNN 
analyses could have been expanded to maximize the search of the space. 

While these results are not striking, it is important to consider the source of the 
differential power results achieved by the two methods.  Both methods are using a 
stochastic GP and identical genetic operators.  The only difference in the techniques is 
the set of rules governing the constraints on GPNN to ensure that each binary 
expression tree represents a NN.  Thus, these constraints are limiting the search space 
for GPNN and this could lead to the improved power of the GPNN approach.  Given 
the same number of model evaluations, GP has a much larger number of possible 
solutions to test.  As such, GPNN may be more powerful only because of  the  limited  
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Fig. 2. Power of GPNN (black) and GP (grey) for each epistasis model 

 

Fig. 3. False positive rates for GPNN (black) and GP (grey) for each epistasis model 

search space.  If both methods were able to run through subsequent generations, they 
may ultimately conclude with the same optimal model.  This was not performed in 
these studies, however, because the goal was to compare the approaches with the 
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same parameter set.  In addition, these results were produced in one set of 
experiments.  It would be optimal to generate standard errors on the power and false 
positive estimates based on multiple runs of these experiments so that one can 
determine if there is a statistically significant difference in the power or false positive 
rate.  This is an area of future investigation. 

The results of this study demonstrate that GP approaches for studies of human 
genetics are worthwhile.  GPNN is a powerful method for the detection of gene-gene 
and gene-environment interactions.  The beauty of this technique is the ability to 
explain the solutions in terms of NN which are familiar to many scientists.  GP, in 
methods such as SDA, is not inferior however.  The possible solution space is much 
greater for these methods, and therefore care must be taken to set the appropriate 
population size and number of generations so that the optimal solutions can be 
identified. 

Novel techniques such as GPNN and SDA will be vital for the detection of gene-
gene and gene environment interactions in studies of common, complex disease.  The 
power of GP to analyze both genetic and microarray data will provide the field of 
human genetics with the ability to explore datasets that have previously been 
incomprehensible. 
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Abstract. In this work we investigate the applicability of a multiobjec-
tive formulation of the Ab-Initio Protein Structure Prediction (PSP) to
medium size protein sequences (46-70 residues). In particular, we intro-
duce a modified version of Pareto Archived Evolution Strategy (PAES)
which makes use of immune inspired computing principles and which we
will denote by “I-PAES”. Experimental results on the test bed of five
proteins from PDB show that PAES, (1+1)-PAES and its modified ver-
sion I-PAES, are optimal multiobjective optimization algorithms and the
introduced mutation operators, mut1 and mut2, are effective for the PSP
problem. The proposed I-PAES is comparable with other evolutionary
algorithms proposed in literature, both in terms of best solution found
and computational cost.

Keywords: Protein structure, tertiary fold prediction, multi-objective
evolutionary algorithms, genetic algorithms, clonal selection principle,
hypermutation operators.

1 Introduction

Proteins are long sequences of 20 different amino acids. The amino acids compo-
sition of a protein will usually uniquely determine its 3D structure [1], to which
the protein’s functionality is directly related.

The Protein Structure Prediction problem (PSP) is simply defined as the
problem of predicting the native conformation of a protein given the amino acid
sequence. Common methods for finding protein 3D structures (such as x-ray
crystallographic and NMR - Nuclear Magnetic Resonance) are slow and costly,
and may take up to several months of lab work. As a consequence, there has been
a continuously growing interest in the design of ad hoc algorithms for the PSP
problem. The main computational strategies employed today are of two type:
knowledge-based and Ab-Initio. The hypothesis of knowledge-based methods
(homology modelling, threading) is that similar sequences will fold similarly.
Ab-initio strategies are required when no homology is available so that one is
forced to fold the proteins from scratch.

F. Rothlauf et al. (Eds.): EvoWorkshops 2005, LNCS 3449, pp. 54–63, 2005.
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Successful structure prediction requires a free energy function sufficiently
close to the true potential for the native state, as well as a method for exploring
conformational space. Protein structure prediction is a challenging problem be-
cause current potential functions have limited accuracy and the conformational
space is vast. Several algorithmic approaches have been applied to the PSP prob-
lem in the last 50 years [2, 3, 4, 5, 6]. In spite of all these efforts, PSP remains a
challenging and computationally open problem.

2 PSP as a Multi-objective Optimization Problem

Historically, the Protein Folding problem (PF) and the Protein Structure Pre-
diction problem (PSP), central problems in molecular biology, have been faced
as a large single-objective optimization problem: given the primary sequence
find the 3D native conformation with minimum energy (PSP), and the path-
way(s) to reach the native conformation (PF), using a single-objective potential
Energy Function. Molecular dynamics, monte carlo methods and evolutionary
algorithms are today’s state of the art methodologies to tackle the protein folding
problem as single-objective optimization problem.

We conjecture and partially verify by computational experiments that, in-
stead, it could be more suitable and less time consuming to model the PSP
problem as a Multi-Objective Optimization problem (MOOP).

When an optimization problem involves more than one objective function,
the task of finding one (or more) optimum solution, is known as multi-objective
optimization. The Protein folding problem naturally involves multiple objectives.
Different solutions (the 3D conformations) may involve a trade-off (the conflict-
ing scenario in the funnel landscape) among different objectives. An optimum
solution with respect to one objective may not be optimum with respect to an-
other objective. As a consequence, one cannot choose a solution which is optimal
with respect to only one objective. In general, in problems with more than one
conflicting objective, there is no single optimum solution. There exist, instead,
a number of solutions which are all optimal (the Optimal Pareto front). This is
the fundamental difference between a single-objective and multi-objective opti-
mization task. Hence, for a multi-objective optimization problem we can define
the following procedure:

1. find the Optimal Pareto Front with a wide range of values for objectives;
2. choose one of the obtained solutions using some “higher-level information”.

Lamont et al. [5] reformulated PSP as a MOOP and used a multi-objective
evolutionary algorithm (MO fmGA) for the structure prediction of two small
protein sequences: [Met]-Enkephelin (5 residues), Polyalanine (14 residues). In
this work we investigate for the first time the applicability of such a multi-
objective approach to medium size protein sequences (46-70 residues).

The most difficult task when using evolutionary algorithms, or any other type
of stochastic search, for the PSP problem, is to come up with “good”
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– representation of the conformations,
– operators for creating new conformations, and
– a cost function for evaluating conformations.

Representation of the Polypeptide Chain. Few conformation-representations are
commonly used: all-atom 3D coordinates, all-heavy-atom coordinates, backbone
atom coordinates + sidechain centroids, Cα coordinates, backbone and sidechain
torsion angles. Some algorithms use multiple representations and move between
them for different purpose.

In this work, we use an internal coordinates representation (torsion angles):
each residue type requires a fixed number of torsion angles to fix the 3D coor-
dinates of all atoms. Bond lengths and angles are fixed at their ideal values. All
the ω torsion angles are fixed at their ideal value 180◦. The degrees of freedom in
this representation are the backbone and sidechain torsion angles (φ, ψ and χi).
The number of χ angles depends on the residue type1. Angles are represented
by real numbers approximated to the third decimal digit.

Potential Energy Function. The literature on cost functions (often called energy
functions) is enormous.

In this work, in order to evaluate the conformation of a protein, we use the
CHARMM (version 27) energy function. CHARMM (Chemistry at HARvard
Macromolecular Mechanics) is a popular all-atom force field used mainly for the
study of macromolecules. It is a composite sum of several molecular mechanics
equations grouped into two major types: bonded (stretching, bending, torsion,
Urey-Bradley, impropers) and non-bonded (van-der-Walls, electrostatics). The
various tools (CHARMM, TINKER, ECEPP, etc) for the evaluation of the con-
formations can produce different energy values. The energy of the predicted and
native structures are calculated using TINKER2 Molecular Modeling Package
[7]. For the mathematical definition of the CHARMM energy function see refer-
ence [8].

Constraints. In order to reduce the size of the conformational space, backbone
torsion angles are bounded in regions derived from secondary and supersecondary
structure prediction (table 1).

Sidechain torsion angles are constrained in regions derived from the backbone-
independent rotamer library of Roland L. Dunbrack3[9]. Supersecondary struc-
ture is defined as the combination of two secondary structural elements with a
short connecting peptide between one to five residues in length. A short connect-
ing peptide can have a large number of conformations. They play an important
role in defining protein structures. The conformations of the residues in the short
connecting peptides are classified into five major types, namely, a, b, e, l, or t
[10] each represented by a region on the φ-ψ map. Sun et al. [11] developed

1 Introduction to mathematical biophysics, J. R. Quine (2004).
2 http://dasher.wustl.edu/tinker
3 www.fccc.edu/research/labs/dunbrack
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Table 1. Corresponding regions of the Secondary and Supersecondary Structure Con-
straints

Supersecondary Structures φ ψ

H (α-helix) [−75◦, −55◦] [−50◦, −30◦]
E (β-strand) [−130◦, −110◦] [110◦, 130◦]
a [−150◦, −30◦] [−100◦, 50◦]
b [−230◦, −30◦] [100◦, 200◦]
e [30◦, 130◦] [130◦, 260◦]
l [30◦, 150◦] [−60◦, 90◦]
t [−160◦, −50◦] [50◦, 100◦]
undefined [−180◦, 0◦] [−180◦, 180◦]

an artificial neural network method to predict the 11 frequently occurring su-
persecondary structure: H-b-H, H-t-H, H-bb-H, H-ll-E, E-aa-E, E-ea-E, H-lbb-H,
H-lba-E, E-aal-E, E-aaal-E, and H-l-E, where H and E represent α-helix and β-
strand, respectively. Sidechain constraint regions are of the form: [m−σ, m+σ];
where m and σ are the mean and the standard deviation for each sidechain
torsion angle computed from the rotamer library. Under these constraints the
conformation is still highly flexible and the structure can take on various shapes
that are vastly different from the native shape.

Multi-objective Formulation. The energy function CHARMM is decomposed in
two partial sums: bonded and non-bonded atom energies: f1 = Ebond, f2 =
Enon−bond. These two functions represent our minimization objectives, the tor-
sion angles of the protein are the decision variables of the multi-objective prob-
lem, and the constraint regions are the variable bounds.

The Metrics: DME and RMSD. To evaluate how similar is the predicted con-
formation to the native one, we employ two frequently used metrics: Root Mean
Square Deviation (RMSD) and Distance Matrix Error (DME).

For a particular pair of structures, the RMSD, which measures the similarity
of atomic positions, is usually larger than DME, which measures the similarity
of interatomic distances.

3 The Pareto Archived Evolutionary Strategy
Algorithms

The algorithm PAES (Pareto Archived Evolutionary Strategy) was proposed for
the first time by Knowles and Corne in 1999 [12]. PAES is a multi-objective opti-
mizer which uses a simple (1+1) local search evolution strategy. Nonetheless, it is
capable of finding diverse solutions in the Pareto optimal set because it maintains
an archive of nondominated solutions which it exploits to accurately estimate
the quality of new candidate solutions. At any iteration t, there are a candidate
solution ct and a mutated solution mt which must be compared for dominance.
Acceptance is simple if one solution dominates the other. In case neither solution
dominates the other, the new candidate solution is compared with the reference
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population of previously archived nondominated solutions. If comparison to the
population in the archive fails to favour one solution over the other, the tie
is split to favour the solution which resides in the least crowded region of the
space. A maximum size of the archive is always maintained. The crowding pro-
cedure is based on recursively dividing up the M -dimensional objective space
in 2d equal-sized hypercube, where d is a user defined depth parameter. The
algorithm proceeds until an input given, fixed number of iterations is reached.

3.1 I-PAES

I-PAES is a modified version of (1+1)-PAES[12, 13] with a different solution
representation (polypeptide chain) and immune inspired operators: cloning and
hypermutation [14]. Hypermutation can be seen as a search procedure that leads
to a fast maturation during the affinity maturation phase. The clonal expansion
phase triggers the growth of a new population of high-value solutions centered
on a higher affinity value. The algorithm starts by initializing a random confor-
mation. The torsion angles (φ, ψ, χi) are generated randomly from the constraint
regions. After that, the energy of the conformation (a point in the landscape) is
evaluated using routines from TINKER. First, the protein structure in internal
coordinates (torsion angles) is transformed in cartesian coordinates using the
PROTEIN routine. Then the conformation is evaluated using the ANALYZE
routine, that gives back the CHARMM energy potential of the structure.

At this point, we have the main loop of the algorithm. From the current solu-
tion, a number δ of clones will be generated, producing the population (Popclo)
which will be mutated into (Pophyp) and then evaluated reselecting the best one.
From this moment on, the algorithm proceeds following the standard structure
of (1 + 1)-PAES. Figure 1 shows the pseudo-code of the algorithm.

I-PAES(δ, depth, archive size, objectives)
1. t := 0;
2. Initialize(c); /*Generate initial random solution*/
3. Evaluate(c); /*Evaluation of initial solution*/
4. AddToArchive(c); /*Add c to archive*/
5. while(not(Termination()))

/*Start Immune phase*/
6. Popclo := Cloning(c, δ); /*Clonal expansion phase*/
7. Pophyp := Hypermutation(Popclo); /*Affinity maturation phase*/
8. Evaluate(Pophyp); /*Evaluation phase*/
9. m := SelectBest(Pophyp); /*Selection phase*/

/*End Immune phase*/
/*Start (1+1)-PAES*/

10. if(c dominates m) discard m;
11. else if(m dominates c)
12. AddToArchive(m);
13. c := m;
14. else if(m is dominated by any member of the archive) discard m;
15. else test(c, m, archive size, depth);
16. t := t + 1;
17. endwhile

Fig. 1. Pseudo-code of I-PAES
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Hypermutation Operators. Two kinds of mutation operators were used together
in the affinity maturation phase (line 6 of I-PAES). The first mutation operator,
mut1, may change the conformation dramatically. When this operator acts on
a peptide chain, all the values of the backbone and sidechain torsion angles of
a randomly chosen residue are reselected from their corresponding constrained
regions. The second mutation operator, mut2, performs a local search of the
conformational space. It will perturb all torsion angles (φ, ψ, χi) of a randomly
chosen residue with the law: θ′ = θ+N(0, 3), where θ is the generic torsion angle,
and N(0, 3) is a real number generated by a gaussian distribution of mean μ = 0
and standard deviation σ = 3. The first half of Popclo is mutated using mut1
and the second half using mut2.

Two mutation rates are studied. The first one is a static scheme where each
clone is mutated only once using one of the two possible mutation operators.
We call I-PAES(1-mut) the algorithm version that uses this mutation rate. The
second mutation rate instead is similar to the scheme presented in [6]. The
number of mutations decreases as the search method proceeds following the law:
M = 1 + (L/k) × e(

−t
γ ) where L is the number of residues, γ is a constant set

to 3 × 104, and k is set to 6 for mut1 and 4 for mut2. We call I-PAES(M) the
algorithm version that uses this second mutation rate.

4 Results and Comparisons with Other Approaches

Tables 2 and 3 show results applying I-PAES(M), I-PAES(1-mut) and (1+1)-
PAES to the five PDB proteins on ten independent runs. We set the maximum
number of fitness function evaluations (Tmax) to 2.255×105 (so to compare it to
[6]), a minimal duplication value (δ=2), archive size of 300 and depth = 4. Two
possible versions of (1+1)-PAES were implemented. The first one perturbs the
angles following the mut1 operator scheme, the second one perturbs the angles
by applying both mut1 and mut2 schemes. In both cases the residue for mutation
is chosen using the standard PAES operator with probability of 1/� (� protein
length). From table 2 is clear that both versions of I-PAES perform better than
(1+1)-PAES versions. Minima energy values obtained by I-PAES are closer to
those of the native structure. Moreover, the high value of the standard deviation
for (1+1)-PAES shows worse convergence than I-PAES. The best energy values
found for 1CTF are below the native conformation value. Probably for the lim-
ited accuracy of CHARMM energy function: near native conformations can have
smaller energy values than that of the native one. In table 3 the best DME and
RMSD values are always obtained with I-PAES(M), although I-PAES(1-mut)
reaches better energy values. The examples in figures 2 and 3 show the predicted
structures and the Pareto fronts calculated using I-PAES algorithms versus the
native structure for two of the five proteins examined.

We compared our Immune Algorithms I-PAES and their results to other
works in literature and others MOEA’s, in particular NSGA2 [15], that we im-
plemented and tested on PSP. Table 3 shows the best DME values obtained by
the genetic algorithm proposed in [6] (no RMS values were presented by the au-
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Table 2. Results obtained by I-PAES (both versions) and (1+1)-PAES (both versions)
applied to the test bed of five proteins used in [6]. For each algorithm, the minimum,
the mean and the standard deviation on ten independent runs of best energy values
are reported. For each protein were reported, the Protein Data Bank (PDB) identifier,
the length, the approximate class (α-helix, β-sheet) and the energy value calculated
with TINKER

Protein Algorithm min(kcal/mol) mean(kcal/mol) σ(kcal/mol)

1ROP(56 aa) I-PAES(M) -526.9542 -417.4685 98.2774
class: α I-PAES(1-mut) -661.4819 -554.9819 82.9940
energy: -667.0515 kcal/mol (1+1)-PAES 2640.7719 833976.1875 1497156.7511

(1+1)-PAES(mut1 + mut2) -409.9522 534.6435 192.4232
1UTG(70 aa) I-PAES(M) 357.9829 619.8551 174.8500
class: α I-PAES(1-mut) 282.2497 511.4623 142.1591
energy: 202.7321 kcal/mol (1+1)-PAES 7563.0714 53937.0271 55304.4139

(1+1)-PAES(mut1 + mut2) 397.1290 1231.2125 432.7464
1CRN(46 aa) I-PAES(M) 410.0382 464.2972 42.4524
class: α + β I-PAES(1-mut) 232.2967 357.2083 75.9134
energy: -142.4612 kcal/mol (1+1)-PAES 1653.9359 27995.0374 43275.1845

(1+1)-PAES(mut1 + mut2) 509.5245 1221.9564 687.9383
1R69(63 aa) I-PAES(M) 264.5602 397.6853 74.9013
class: α I-PAES(1-mut) 211.2640 290.0966 46.3440
energy: -676.5322 kcal/mol (1+1)-PAES 9037.8915 2636441.5872 4462510.0991

(1+1)-PAES(mut1 + mut2) 659.4954 8733.4471 782.6253
1CTF(68 aa) I-PAES(M) 218.9968 281.27994 64.3010
class: α + β I-PAES(1-mut) 71.5572 161.4119 48.8140
energy: 230.0890 kcal/mol (1+1)-PAES 1424.3397 52109.3556 44669.0231

(1+1)-PAES(mut1 + mut2) 617.6945 5632.4211 923.2351

Table 3. Results obtained by I-PAES (both versions) and (1+1)-PAES (both versions)
applied to the test bed of five proteins used in [6]. For each algorithm, the minimum, the
mean and the standard deviation on ten independent runs for DME and RMSD values
are reported. For each protein we report, the Protein Data Bank (PDB) identifier,
the length and the approximate class (α-helix, β-sheet). Also shown is the best DME
value obtained for each protein respect the GA proposed in [6] (no RMSD values were
presented by the authors)

Protein Algorithm min mean σ

DME(Å) RMSD(Å) DME(Å) RMSD(Å) DME(Å) RMSD(Å)

1ROP(56 aa) I-PAES(M) 1.684 3.740 4.444 6.462 2.639 2.661
class: α I-PAES(1-mut) 2.016 4.110 3.405 5.592 1.036 1.128

(1+1)-PAES 4.919 6.312 9.465 10.111 3.866 3.468
(1+1)-PAES(mut1 + mut2) 5.997 8.665 6.954 9.422 4.871 3.620
GA[6] 1.48 - - - - -

1UTG(70 aa) I-PAES(M) 3.474 4.272 5.417 7.404 1.484 2.330
class: α I-PAES(1-mut) 4.498 5.117 5.221 6.351 0.817 1.066

(1+1)-PAES 4.708 6.047 6.637 8.936 1.242 1.647
(1+1)-PAES(mut1 + mut2) 4.826 5.566 7.848 8.788 1.331 1.432
GA[6] 3.47 - - - - -

1CRN(46 aa) I-PAES(M) 3.436 4.316 5.057 5.874 1.278 0.960
class: α + β I-PAES(1-mut) 4.137 4.731 5.156 5.817 0.758 0.726

(1+1)-PAES 4.676 6.181 6.700 7.778 2.164 1.404
(1+1)-PAES(mut1 + mut2) 6.055 7.895 7.837 8.547 3.744 2.564
GA[6] 2.73 - - - - -

1R69(63 aa) I-PAES(M) 4.091 5.057 7.867 9.630 0.815 0.911
class: α I-PAES(1-mut) 5.932 8.425 7.218 9.557 0.669 0.551

(1+1)-PAES 5.167 7.599 7.589 9.607 2.544 1.809
(1+1)-PAES(mut1 + mut2) 6.886 8.521 7.681 9.912 1.232 1.998
GA[6] 4.48 - - - - -

1CTF(68 aa) I-PAES(M) 6.822 10.121 10.773 13.559 1.351 0.727
class: α + β I-PAES(1-mut) 8.081 10.691 9.192 11.303 0.988 0.468

(1+1)-PAES 9.609 12.092 10.534 12.957 0.936 0.832
(1+1)-PAES(mut1 + mut2) 8.845 10.214 10.662 11.948 1.131 1.227
GA[6] 4.00 - - - - -

thors) on the same protein test bed. Results obtained by GA [6] are comparable
to those obtained I-PAES. I-PAES did not perform well for 1CTF where GA[6]
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Fig. 2. 1CRN: predicted structure (left image) with DME = 3.436Å and RMSD =
4.375Å, pareto front (center plot), native structure (right image)
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Fig. 3. 1R69: predicted structure (left image) with DME = 4.091Å and RMSD =
5.057Å, pareto front (center plot), native structure (right image)

Table 4. Best results between (1+1)-PAES, I-PAES, NSGA2, Hill-climbing GA [16]
and Dandekar and Argos’ GA [17] on 1CRN

Algorithm RMSD AES

I-PAES(M) 4.316Å 2.255 × 105

I-PAES(1-mut) 4.731Å 2.255 × 105

Dandekar and Argos’ GA[17] 5.4Å 4 × 105

Hill-climbing GA [16] (with hydrophobic term) 5.6Å 5 × 106

(1+1)-PAES(mut1 + mut2) 6.055Å 2.255 × 105

(1+1)-PAES 6.181Å 2.255 × 105

NSGA2 (with high-level operators) 6.447Å 2.5 × 105

Hill-climbing GA [16] (without hydrophobic term) 6.8Å 106

NSGA2 (with low-level operators) 10.34Å 2.5 × 105

reached a better DME value. However, for the other proteins, I-PAES obtained
results of the same quality, and sometimes better, as in the case of 1R69 (DME
of 4.091Å). For 1CRN instead the quality of the result is a bit inferior than
GA[6], probably for the presence of both α and β classes, similarly to 1CTF.
In [16] the best RMSD found for 1CRN, using a Hill-climbing genetic algorithm,
is 5.6 and with average number of evaluation to solution (AES) equal to 5×106

fitness function evaluations. In this case, our method performed better both in
terms of best solution found and time efficiency. Inspecting the results reported
in table 4, both versions of I-PAES outperform the good RMSD value obtained
by GA designed by Dandekar and Argos [17] which uses 4 × 105 fitness func-
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tion evaluations. Two possible versions of NSGA2 were implemented. The first
one uses standard low-level operators (SBX crossover and polynomial mutation),
and the protein is considered as a long sequence of torsion angles (real numbers).
The second one uses high-level operators (naive crossover and the scheme of mu-
tation used by I-PAES). In this case, the protein is manipulated at the amino
acid level. The dimension of the population is 300. The better performance of
the high-level version is very clear. Table 4 shows the comparison between I-
PAES, (1+1)-PAES, NSGA2, Hill-climbing GA [16] and Dandekar et al.’s GA
[17] on 1CRN.

5 Conclusions and Future Works

We proposed a modified version of the algorithm PAES that uses immune in-
spired principles (Clonal Expansion and Hypermutation operators) as a new
search method for PSP. The obtained class of Pareto Archived Evolution Strat-
egy Algorithms, denoted by I-PAES, has better performance than the standard
(1+1)-PAES for PSP both in terms of best energy and metrics (DME, RMSD)
solutions. Moreover, I-PAES has better convergence than PAES as shown by the
smaller values of the standard deviation in ten independent runs. For the first
time, a multi-objective approach was used to fold medium size proteins (46-70
residues), and the results are comparable to other approaches in literature. La-
mont et al. were the first to study PSP as multi-objective problem, but their
work [5] was related only to two short protein sequences (5 and 14 residues).
Experimental results on 1CRN protein show also a better performance of the
PAES algorithms (I-PAES and (1+1)-PAES) with respect to NSGA2.

As reported in [18] ”the folded state is a small ensemble of conformational
structures compared to the conformational entropy present in the unfolded en-
semble”. The multiobjective approach used in this work, allows us to obtain
good Pareto fronts of non-dominated compact solutions near the folded state.

We mention in conclusion some possible future lines of investigation: 1)adding
a third objective that includes hydrophobic interactions, one of the most impor-
tant driving force in the protein folding; 2)studying the relationship between high
and low level representations and mutation operators for PSP; 3)using dynamic
representation/operators during the folding process of the protein.

Acknowledgements. we are grateful to the anonymous referees for their valu-
able comments.
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Abstract. Temporal gene expression data is of particular interest to systems 
biology researchers. Such data can be used to create gene networks, where 
such networks represent the regulatory interactions between genes over time. 
Reverse engineering gene networks from temporal gene expression data is one 
of the most important steps in the study of complex biological systems. This 
paper introduces sensitivity analysis of systematically-perturbed trained neural 
networks to both select a smaller and more influential subset of genes from a 
temporal gene expression dataset as well as  reverse engineer a gene network 
from the reduced temporal gene expression data. The methodology was ap-
plied to the rat cervical spinal cord development time-course data, and it is 
demonstrated that the method not only identifies important genes involved in 
regulatory relationships but also generates candidate gene networks for further 
experimental study. 

1   Introduction 

Temporal gene expression analysis is an active area of research and is undergoing a 
transition in response to a shift from traditional biology to systems biology due to 
advances in high throughput technologies. Current approaches to the problem of tem-
poral gene expression analysis include cluster analysis (e.g. [1]), principal component 
analysis (PCA) and singular value decomposition (SVD) [2]. A general intro-duction 
to the reverse engineering problem can be found in [3]. Current methods struggle to 
extract regulatory relationships between genes because of the large num-ber of genes 
typically measured as well as low number of samples.  Much prior knowledge con-
cerning known regulatory relationships has to be included in many current reverse 
engineering algorithms to ensure that the final ‘gene circuit diagrams’ make sense 
biologically. On the other hand, artificial neural networks (ANNs) have been shown 
to be effective in extracting biologically-plausible classificatory knowledge from non-
temporal gene expression data [4], and an ANN-Genetic Algorithm hybrid [5] has 
also been applied to temporal data. One of the problems in the application of artificial 
neural networks to temporal gene analysis concerns the difficulty in creating complex 
regulatory networks from an analysis of high-dimensional weight matrices that repre-
sent the individual connections between pairs of genes over time. Also, a problem 
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with genetic algorithms in this domain is that they can find spurious relationships 
between genes due to the relatively low numbers of samples (time-points) in compari-
son to the number of genes measured (minimally hundreds, typically thousands). 

Narayanan et al. [4] demonstrated the applicability of single-layer ANNs (percep-
trons) for non-temporal gene expression data for classification purposes, where 
weight values were used to identify the biological importance of genes for classifica-
tion. According to that approach, there are as many input nodes in the neural network 
as genes, and only one output node if binary classification (e.g. cancer/normal) is 
required.  This paper extends this approach in two ways. First, in addition to the input 
layer containing as many input nodes as genes, the output layer also contains as many 
output nodes as genes, with full connection between every input node and every out-
put node. That is, if 100 genes are measured over time, the neural network will con-
tain 100 input nodes and 100 output nodes, where input node 1 and output node 1 
stand for gene 1, input node 2 and output node 2 stands for gene 2, etc. The input 
layer represents one time-point and the output layer the immediately following time 
point. This architecture requires the temporal data to be presented for training and 
testing in an appropriate way, to be described below. Secondly, once the neural net-
works has been successfully trained, the novel technique of sensitivity analysis is 
introduced to systematically perturb the expression values of genes to check for the 
effect of ‘gene silencing’ or ‘gene activation’ on genes at the output layer, with the 
weights between input and output genes clamped. Sensitivity analysis consists of 
experimenting with the expression values and letting the weights connecting every 
input gene to every output gene determine how varying the expression of an input 
gene affects the expression value of an output gene. It has been previously shown [4] 
that large weight values (both positive and negative) of individual input genes repre-
sent greater contribution to classification when only one output (class) node is used at 
the output layer. The hypothesis adopted in this paper is that, with full connection 
between n input nodes and n output nodes, it is not the weight values that need further 
analysis but the expression values of genes. If a gene passes the sensitivity analysis as 
either an input (affecting gene) or as an output (affected gene), it is kept for subse-
quent participation in a gene network. 

2   The Methodology 

The methodology, represented as a flowchart in Figure 1, provides an iterative 
method for reverse engineering the regulatory relationships from temporal gene ex-
pression data. The data must first be transformed into a format appropriate for the 
architecture (Figure 2).  At the heart of the methodology lies sensitivity analysis of the 
trained neural network. Sensitivity analysis measures the effect of small changes 
(perturbations) in the input channel (gene expression at time t) on the output (gene 
expression at time t+1). Sensitivity analysis is performed to determine the effect that 
each of the network inputs (gene expression values at one time step) has on the net-
work output (gene expression at subsequent time step). This provides feedback as to 
which input and output channels are the most significant. If perturbing a gene’s  
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Fig. 1. The iterative methodology for reverse engineering using neural networks. After explor-
ing and preprocessing the data, a single layer neural network (one input node per gene, one 
output node per gene) is constructed, trained and tested. A sensitivity analysis is then carried 
out on how every input gene affects every output gene to identify insignificant genes 

expression value has little effect on genes at the output layer, this is considered an 
‘insignificant’ channel that can be removed (pruned) from the input space. The gene’s 
expression value in these experiments is varied between its mean and ± 1 standard 
deviation while all other inputs are fixed at their respective means. This range of sen-
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sitivity can be varied if desired. The network output is computed for a number of 
steps above and below the mean. This process is repeated for each input gene to de-
termine which genes have most effect on which output genes.  

 

Fig. 2. Data transformation. Imagine that we measure 9 genes (G1-G9) over four time steps 
(T1-T4, top table). The data is transformed into three data-pairs for ANN training, where the 
first row of each pair represents the values of the 9 genes at one time step and the second row of 
each pair represents the values of these 9 genes at the next time step. The first row of each pair 
is used for input to the input layer of a single layer ANN, and the second row is used for super-
vised training at the output layer 

The variation of each output with respect to the variation in each input is analyzed 
and insignificant gene inputs can be ‘silenced’, or pruned, resulting in regulatory 
relationships being reverse engineered. Genes that are not affected at the output layer 
by any input gene can also be removed.  

Sensitivity analysis has an analogy with the systems biology approach described by 
Ideker et al. [6], in which they observe the effect of genetic and environmental per-
turbations in a system and then analyse the effect on other system components, 
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thereby producing predictions and hypotheses about the system. In our case, a particu-
lar temporal gene expression experiment is regarded as a system, and the components 
affected are genes. A single layer neural network is first trained to produce the appro-
priate output values for each set of input values, with the delta rule identifying differ-
ences between desired target values for each gene and actual output values. An error 
is calculated with each presentation and a small difference to the weights made con-
necting each input node to each output node so that, the next time the same data is 
input, the output values are closer to the target. Network training consists of repeated 
presentation of all input-output pairs until no further improvement in the error is iden-
tified (typically, when the sum of squared error on the output nodes is below a certain 
threshold, such as 0.01 ideally). Sensitivity analysis is then executed on the trained 
ANN.  The algorithm perturbs the gene expression value of a gene at a previous time 
step to see the effect on the gene expression value of other genes at subsequent time 
steps, thereby revealing the inherent regulatory rules in the temporal data. We per-
form sensitivity analysis by training the network as we normally do and then fixing 
the weights. The next step is to randomly perturb, one at a time, each channel of the 
input vector around its mean value, while keeping the other inputs at their mean val-
ues, and then measure the change in the output. The change in the input is normally 
done by adding a random value of known variance to each sample and computing the 
output. The sensitivity for a particular input gene can be expressed as: 
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for the pth pattern, ipY  is the mean value for the ith output on pattern p, P is the total 

number of patterns, n is the number of network outputs, and 2
geneInput−σ  is the variance 

of input perturbation. In the following experiments, the methodology was applied on 
RT-PCR temporal data of rat spinal cord development [7]. The Rat (Sprague-Dawley 
albino rat) data is an RT-PCR1 study of 112 genes each measured on cervical spinal 
cord tissue at nine different time points during the development of the rat central 
nervous system. This gene expression data is accepted to be non-noisy, small and 
accurate (each gene was measured in triplicate), and is ideal for testing a new strategy 
because of previous work in literature.  

3   Experimentation 

There are nine different time points in the spinal cord study namely E11, E13, E15, 
E18, E21, P0, P7, P14, A. The only pre-processing required for the data is preparing 
the data for submitting to the neural network simulator. The input-output mappings 

                                                           
1  Reverse transcriptase - polymerase chain reaction, A technique commonly employed in mo-

lecular genetics through which it is possible to produce copies of DNA sequences rapidly. It 
is an extraordinarily sensitive method for analysis of gene expression in cells available in 
only limited quantities. This technique is often employed to validate microarray experiments. 
See http://www.bio.davidson.edu/courses/Immunology/Flash/RT_PCR.html 
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(data pairs) are E11 input-E13 output, E13 Input-E15 output, E15 input-E18 output, 
E18 input-E21 output, E21 input-P0 output, P0 input-P7output, P7 input-P14 output, 
P14 input-A output. There are therefore eight temporal transition ‘exemplars’ for the 
network to learn.  Each exemplar has 112 input gene expression values of the prior 
time step and 112 desired gene expression output values of the subsequent time step. 
The data was formatted according to the exemplar format in Figure 2. Since the data 
consists of temporal measurements on one ‘sample’ rat, there is no need for complex 
data-splitting schemes in this domain, except to check on whether order of presenta-
tion of the temporal data matters.  

 

Fig. 3. Mean squared error behaviour. The left chart shows the MSE (calculated from the 
error of each output node) for the full 112-gene ANN, with reduction after the first 500 or so 
epochs tailing off and remaining around 0.15 on average for each output node/gene. The 112 
genes were reduced to 24 after sensitivity analysis and a new ANN initialized for just these 24 
genes. The right chart shows major improvement in the MSE for the second network, with 
output nodes now producing values much closer to the target values (on average 0.01 error for 
each output gene) 

The first stage was to identify the optimal neural network in terms of learning pa-
rameters. A number of single layer perceptrons (that is, full connectivity between the 
112 input and 112 output nodes, with no hidden layers) were tried, adopting different 
learning rule parameters and transfer functions. Sequential and random order of data-
pair presentation were tried for 1000 epochs and no difference found (that is, the neu-
ral network was not concerned that the data-pairs were presented in shuffled order). 
Training was carried out on 6 exemplars (E11 to P7), cross-validation on one exem-
plar (P7-P14), and testing on one exemplar (P14-A). This method was adopted to 
identify the best learning parameters. Once these were identified, the second stage 
was to re-initialise the single-layer neural network with the chosen learning parame-
ters and train it on all 8 exemplars for 3000 epochs so that the neural network was 
given all the temporal information.  The best network at the first stage with minimum 
MSE for training as well as cross validation set was a perceptron with the activa-
tion/transfer function as the hyperbolic Tanh function. This will squash the range of 
each neuron in the layer to between -1 and 1.The activation function was f(xi ,wi) = 
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tanh[xi
lin ], where xi

lin =  xi  is the scaled and offset activity inherited from the Linear 
Axon, xi is gene i’s expression value and wi is the weight for gene i.  
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Fig. 4. Sensitivity analysis for 24 genes in Rat spinal cord development. Sensitivity analysis 
consists of each input being varied between its mean and ±1 standard deviation. The network 
output was computed for 50 steps below and above the mean and the sensitivity was calculated. 
The x- axis denotes gene expression at time t, y-axis depicts the gene expression at time t+1 
and z-axis the sensitivities between genes in time: the higher the sensitivity value, the more 
important the gene. These genes survived the pruning 

Sensitivity analysis was then performed on the 112x112 node perceptron success-
fully trained on all eight exemplar pairs (9 time steps, 3000 epochs) after the second 
stage. The MSE for this network during training is in Figure 3 (left chart). The non-
influential input gene channels were pruned from the input space as were all the genes 
at the output layer that were not also affected. The 112 gene input space was thereby 
reduced to the 24 most influential genes (either input or output), with a gene channel 
pruned if the sensitivity is less than an arbitrarily chosen value of 5.  This threshold 
can be varied if desired. The 24 genes and their input and output values were ex-
tracted from the full dataset and entered into a reconfigured ANN (all 8 exemplars, 24 
input nodes, and 24 output nodes, with full connection and the same learning parame-
ters and transfer function). The MSE showed great improvement for the reduced gene 
set, providing some evidence that many non-influential genes had been pruned (Fig-
ure 3, right chart).  Sensitivity analysis was also applied to this reduced ANN. The 
results of the sensitivity analysis for just these 24 genes are provided in Figure 4. A 
gene network was then extracted from the top 50 connections that accounted for 80% 
of the total sensitivity of the network, as calculated for this second round of sensitivity 
analysis, in the 24x24 gene network (576 connections altogether). The specific up- 
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and down-regulations can be identified by referring back to the original dataset and 
comparing the original gene values. Figure 5 shows only those genes that, according 
to the sensitivity analysis, have a strong regulatory relationship (either up or down) 
between them. 

 

Fig. 5. Gene relationships for the top 50 connections (out of 576) for the reduced set of 24 
genes, as ranked by the sensitivity analysis. As is typical of gene networks in the literature, only 
an affecting relationship is shown here (that is, up-regulation and down-regulation are not 
specifically distinguished) and specific up- and down-regulatory links can be extracted from the 
original dataset. The top 14 connections account for just over 50% of the total sensitivity, 
whereas the top 150 connections account for about 95% of the total sensitivity. The top 50 
connections here account for 80% of total sensitivity. Different networks will result depending 
on how much sensitivity the user wishes to account for 

4   Results 

Analysis of the results is within the context of the 112 genes measured by Wen et al. 
[7] already being considered important by biologists for rat spinal cord development. 
Hence, a second round of gene selection was not considered important in this domain. 
Nevertheless, some specific and novel regulatory relationships between small subsets 
of genes within the reduced 24-gene set can be identified.  The most strongly affect-
ing gene according to the sensitivity analysis is Ins1_RN1NS1 (insulin 1 gene), which 
affects: Cellubrevin (a vesicle-associated protein present in nerve terminals); 
Grg1_RNGABA (Groucho-related gene 1 that is closely associated with epidermal 
growth factor receptors and neurogenesis), the strongest signal in Figure 5; and 
Grg2_#  (another Groucho-related gene). Thus, Ins1_RN1NS1 appears to be involved 
in several pathways. The gene expression of this gene is prominent only in the initial 
time points of E11-E13. It may be the case that this gene being subsequently switched 
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off (perhaps reflecting nutrition) starts the process of cervical spinal cord develop-
ment. The other prominent relationships as evident from the sensitivity analysis and 
represented in Figure 5 corroborate previous suggestions that cholinergic transmission 
forms the leading edge in neurotransmitter signalling in cervical spinal cord [7]. The 
most strongly affected gene in the gene expression system is Grg1_RNGABA, which 
seems to be biologically plausible owing to the importance of Gamma amino butyric 
acid (GABA) in neuro-signalling. Overall the sensitivity analysis extracts the regula-
tory importance of many of the genes described as activators of the development of 
the rat spinal cord [8]. 

5   Conclusions 

The reverse engineering of gene networks and extraction of regulatory relationships 
between genes in temporal gene expression data is a major obstacle in systems biol-
ogy. Our experiments have demonstrated that a neural network approach, combined 
with sensitivity analysis, can reverse engineer biologically plausible relationships 
from real-world data. While more work is required to determine the effect of altering 
the threshold, strength and scale of perturbations on sensitivity analysis, the results 
presented here provide evidence of a novel, alternative approach to reverse engineer-
ing and pruning (gene silencing) that can lead to the automatic extraction of regula-
tory knowledge from temporal gene expression data.  

More importantly, a single-layer neural network with full connectivity between in-
put and output genes can be considered a ‘universal’ model of all possible gene inter-
actions in the data. After successful training, gene expression values can then be per-
turbed through sensitivity analysis to remove redundant links (i.e. genes that have 
little or no effect on other genes and genes that are barely affected by other genes) to 
produce a ‘leaner’ and ‘fitter’ ANN for further, more detailed analysis with regard to 
specific potential regulatory relationships between small numbers of genes. Also, 
sensitivity thresholds can be varied to produce networks with high or low connec-
tivity. As with all gene reduction methods, great care must be taken to ensure that 
important genes are not discarded because they fail to reach arbitrarily defined thresh-
olds. Our method allows a number of parameters to be adjusted (selecting genes with 
sensitivity greater than 5; choosing the number of connections depending on the 
amount of sensitivity to be accounted for) and further work is required to identify 
appropriate and optimal parameter values, especially when dealing with much larger 
gene sets where it can be expected that a significant proportion of genes are irrelevant 
to the phenotype measured. Finally, all in silico predictions must be tested in vitro 
with genuine gene models on isolated cells or tissues to provide empirical support for 
the accuracy and reliability of proposed gene networks.  
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CNRS-INRIA, Université Paris-Sud Orsay, France
sebag@lri.fr

Abstract. This paper describes a novel method for improving classifi-
cation of support vector machines (SVM) with recursive feature selection
(SVM-RFE) when applied to cancer classification with gene expression
data. The method employs pairs of support vectors of a linear SVM-
RFE classifier for generating a sequence of new SVM classifiers, called
local support classifiers. This sequence is used in two Bayesian learning
techniques: as ensemble of classifiers in Optimal Bayes, and as attributes
in Naive Bayes. The resulting classifiers are applied to four publically
available gene expression datasets from leukemia, ovarian, lymphoma,
and colon cancer data, respectively. The results indicate that the pro-
posed approach improves significantly the predictive performance of the
baseline SVM classifier, its stability and robustness, with satisfactory re-
sults on all datasets. In particular, perfect classification is achieved on
the leukemia and ovarian cancer datasets.

1 Introduction

This paper deals with tumor classification with gene expression data. Microarray
technology provides a tool for estimating expression of thousands of genes simul-
taneously. To this end, DNA arrays are used, consisting of a large number of DNA
molecules spotted in a systematic order on a solid substrate. Depending on the
size of each DNA spot on the array, DNA arrays are called microarrays when the
diameter of DNA spot is less than 250 microns, and macroarrays when the diame-
ter is bigger than 300 microns. DNA microarrays contain thousands of individual
DNA sequences printed in a high density array on a glass microscope slide using
a robotic instrument. The relative abundance of these spotted DNA sequences in
the two DNA and RNA samples may be assessed by monitoring the differential
hybridization of the two samples to the sequences on the array. For mRNA sam-
ples, the two samples are reverse-transcribed into cDNA, labeled using different
fluorescent dyes mixed (red-fluorescent dye Cy5 and green-fluorescent dye Cy3).

F. Rothlauf et al. (Eds.): EvoWorkshops 2005, LNCS 3449, pp. 74–83, 2005.
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After these samples are hybridized with the arrayed DNA probes, the slides are
imaged using scanner that makes fluorescence measurements for each dye. The
log ratio between the two intensities of each dye is used as the gene expression
data (cf. [11]) expression(gene) = log2(int(Cy5)/int(Cy3)), were int(Cy5) and
int(Cy3) are the intensities of the two fluorescent dyes.

Four main machine learning tasks are used to analyze DNA microarray data:
clustering, e.g. for identifying tumor subtypes, classification, e.g. for tumor diag-
nostic, feature selection for potential tumor biomarker identification, and gene
regulatory network modeling. This paper deals with classification.

Many machine learning techniques have been applied to classify gene ex-
pression data, including Fisher linear discriminat analysis [10], k-nearest neigh-
bour [18], decision tree, multi-layer perceptron [17, 25], support vector machine
(SVM) [6, 13, 15, 21], boosting and ensemble methods [14, 7, 23, 3, 9]. A recent
comparison of classification and feature selection algorithms applied to tumor
classification can be found in [7, 23].

This paper introduces a method that improves the predictive performance of
a linear SVM with Recursive Feature Elimination (SVM-RFE) [15] on four gene
expression datasets. The method is motivated by previous work on aggregration
of classifiers [4, 5], where it is shown that gains in accuracy can be obtained by
aggregrating classifiers built from perturbed versions of the train set, for instance
using bootstrapping. Application of aggregration of classifiers to microarray data
is described e.g. in [10, 7, 3, 9].

In this paper a novel approach is proposed, for generating a sequence of
classifiers from the support vectors of a baseline linear SVM-RFE classifier.
Each pair of support vectors of the same class are used to generate an element
of the sequence, called local support classifier (lsc). Such classifier is obtained by
training SVM-RFE on data consisting of the two selected support vectors and
all the support vectors of the other class.

The sequence of lsc’s provides an approximate description of the data dis-
tribution by means of a set of linear decision functions, one for each region of
the input space in a small neighbourhoods of two support vectors having equal
class label.

We propose to use this sequence of classifiers in Bayesian learning (cf. [20]).
The first technique applies Naive Bayes to the transformed data, where an ex-
ample is mapped into the binary vector of its classification values. The resulting
classifier is called Naive Bayes Local Support Classifier (NB-LSC). The second
technique applies Optimal Bayes to the sequence of lsc’s classifiers. The resulting
classifier is called Optimal Bayes Local Support Classifier (OB-LSC).

The two classifiers are applied to four publically available datasets for cancer
classification with gene expression. The results show a significant improvement
in predictive performance of OB-LSC over the baseline linear SVM-RFE classi-
fier, and a gain in stability. In particular, on the leukemia and ovarian cancer
datasets perfect classification is obtained, and on the other datasets performance
comparable to the best published results we are aware of.
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The rest of the paper is organized as follows. The next two sections describe
the baseline and new methods. Sections 4 contains a short description of the
data. Section 5 reports results of experiments and discuss them. Finally, the
paper ends with conclusive considerations on research issues to be tackled in
future work.

2 Support Vector Machines

This section describes in brief SVM-RFE, the local support classifier construction
procedure, and the integration of the resulting classifier sequence in Naive Bayes
and Optimal Bayes classification.

2.1 SVM

In linear SVM binary classification [24, 8] patterns of two classes are linearly
separated by means of a maximum margin hyperplane, that is, the hyperplane
that maximizes the sum of the distances between the hyperplane and its closest
points of each of the two classes (the margin). When the classes are not linearly
separable, a variant of SVM, called soft-margin SVM, is used. This SVM vari-
ant penalizes misclassification errors and employs a parameter (the soft-margin
constant C) to control the cost of misclassification.

Training a linear SVM classifier amounts to solving the following constrained
optimization problem:

minw,b,ξk

1
2
||w||2 + C

m∑
i=1

ξi s.t. w · xi + b ≥ 1 − ξi

with one constraint for each training example xi. Usually the dual form of
the optimization problem is solved:

minαi

1
2

m∑
i=1

m∑
j=1

αiαjyiyjxi · xj −
m∑

i=1

αi

such that 0 ≤ αi ≤ C,
∑m

i=1 αiyi = 0. SVM requires O(m2) storage and O(m3)
to solve.

The resulting decision function f(x) = w · x + b has weight vector w =∑m
k=1 αkykxk. Examples xi for which αi > 0 are called support vectors, since

they define uniquely the maximum margin hyperplane.
Maximizing the margin allows one to minimize bounds on generalization

error. Because the size of the margin does not depend on the data dimension,
SVM are robust with respect to data with high input dimension. However, SVM
are sensitive to the presence of (potential) outliers, (cf. [15] for an illustrative
example) due to the regularization term for penalizing misclassification (which
depends on the choice of C).
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2.2 SVM-RFE

The weights wi provide information about feature relevance, where bigger weight
size implies higher feature relevance. In this paper feature xi is scored by means
of the absolute value of wi. Other scoring functions based on weight features are
possible, like, e.g., w2

i , which is used in the original SVM-RFE algorithm [15].
SVM-RFE is an iterative algorithm. Each iteration consists of the following

two steps. First feature weights, obtained by training a linear SVM on the train-
ing set, are used in a scoring function for ranking features as described above.
Next, the feature with minimum rank is removed from the data. In this way, a
chain of feature subsets of decreasing size is obtained.

In the original SVM-RFE algorithm one feature is discarded at each iteration.
Other choices are suggested in [15], where at each iteration features with rank
lower than a user-given theshold are removed. In general, the threshold influences
the results of SVM-RFE [15]. In this paper we use a simple instance of SVM-RFE
where the user specifies the number of features to be selected, 70% of the actual
number of features are initially removed, and then 50% at each further iteration.
These values are chosen after cross-validation applied to the training set.

3 Local Support Classifiers

We propose to describe the distribution of the two classes by means of a sequence
of classifiers, generated from pairs of support vectors ofSVM-RFE. Each of these
classifiers, called local support classifier (lsc), is obtained using data generated
from two support vectors of the same class, and all support vectors of the other
class. In this way, each classifier uses only a local region near the two selected
support vectors when separating the two classes. Each classifier generated from
two (distinct) support vectors of the same class provides an approximate de-
scription of the distribution of the other class given the two selected support
vectors.

Before describing the procedure for constructing lsc’s, some notation used
throughout the paper is introduced.

– D denotes the training set,
– c denotes the classifier obtained by training a linear SVM on D,
– Sp and Sn denote the set of positive and negative support vectors of c,

respectively,
– Pairp and Pairn denote the set of pairs of distinct elements of Sp and Sn,

respectively.

The following procedure, called LSC, takes as input one (s, s′) in Pairp and
outputs a linear SVM classifier Cs,s′ by means of the following two steps.

1. Let Xp = {s, s′}. Assign positive class label to these examples.
2. Let Cs,s′ be the classifier obtained by training a linear SVM on data Xp∪Sn.

An analogous procedure is applied to generate Cs,s′ from pairs (s, s′) in
Pairn.
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When applied to all pairs of support vectors in Pairp, Pairn, LSC produces
a sequence of lsc’s. Such sequence of classifiers induces a data transformation,
called seqD, which maps example x in the sequence seqD(x) of class values
Cs,s′(x), with (s, s′) in Pairp ∪ Pairn.

The construction of the sequence oflsc’s requires computation that grows
quadratically with the number of support vectors. However, this is not a severe
problem, since the number of examples, hence of support vectors, is small for
this type of data. Furthermore, LSC is applied to each pair of support vectors
independently, hence can be executed in parallel.

3.1 Naive Bayes and Optimal Bayes Classification

Naive Bayes (NB) is based on the principle of assigning to a new example the
most probable target value, given the attribute values of the example. In order
to apply directly NB to the original gene expression data, gene values need to be
discretized, since NB assumes discrete-valued attributes. Examples transformed
using seqD contain binary attributes, hence discretization is not necessary.

Let x be a new example. Suppose seqD(x) = (x1, . . . , xN ).
First, the prior probabilities py of the two target values are estimated by

means of the frequency of positive and negative examples occurring in the train
set D, respectively. Next, for each attribute value xi, the probability P (xi | y)
of xi given target value y is estimated as the frequency with which xi occurs as
value of i-th attribute among the examples of D with class value y. Finally, the
classification of x is computed as the y that maximizes the product

py

N∏
i=1

P (xi | y).

The resulting classifier is denoted by NB-LSC.
Optimal Bayes (OB) classifier is based on the principle of maximizing the

probability that a new example is classified correctly, given the available data,
classifiers, and prior probabilities over the classifiers.

OB maps example x to the class that maximizes the weighted sum∑
Cs,s′

ws,s′I(Cs,s′(x) = y),

where ws,s′ is the accuracy of Cs,s′ over D, and I is the indicator function, which
returns 1 if the test contained in its argument is satisfied and 0 otherwise. The
resulting classifier is denoted by OB-LSC.

4 Datasets

There are several microarray datasets from published cancer gene expression
studies, including leukemia cancer dataset, colon cancer dataset, lymphoma
dataset, breast cancer dataset, NCI60 dataset, ovarian cancer, and prostate
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Table 1. Datasets description

Name Tot Positive Negative Genes
Colon 62 22 40 2000

Leukemia 72 25 47 7129
Lymphoma 58 26 32 7129

Ovarian 54 30 24 1536

dataset. Among them four datasets are used in this paper, available e.g. at
http://sdmc.lit.org.sg/GEDatasets/Datasets.html. The first and third
dataset contain samples from two variants of the same disease, the second and
last dataset consist of tumor and normal samples of the same tissue. Table 1
shows input dimension and class sizes of the datasets. The following short de-
scription of the datasets is partly based on [7].

4.1 Leukemia

The Leukemia dataset consists of 72 samples: 25 samples of acute myeloid
leukemia (AML) and 47 samples of acute lymphoblastic leukemia (ALL). The
source of the gene expression measurements is taken from 63 bone marrow sam-
ples and 9 peripheral blood samples. Gene expression levels in these 72 samples
are measured using high density oligonucleotide microarrays [2]. Each sample
contains 7129 gene expression levels.

4.2 Colon

The Colon dataset consists of 62 samples of colon epithelial cells taken from
colon-cancer patients. Each sample contains 2000 gene expression levels. Al-
though the original data consists of 6000 gene expression levels, 4000 out of
6000 were removed based on the confidence in the measured expression levels.
40 of 62 samples are colon cancer samples and the remaining are normal samples.
Each sample is taken from tumors and normal healthy parts of the colons of the
same patients and measured using high density oligonucleotide arrays [1].

4.3 Lymphoma

B cell diffuse large cell lymphoma (B-DLCL) is a heterogeneous group of tumors,
based on significant variations in morphology, clinical presentation, and response
to treatment. Gene expression profiling has revealed two distinct tumor subtypes
of B-DLCL: germinal center B cell-like DLCL and activated B cell-like DLCL
[19]. Lymphoma dataset consists of 24 samples of germinal center B-like and 23
samples of activated B-like.

4.4 Ovarian

Ovarian tissue from 30 patients with cancer and 23 without cancer were analyzed
for mRNA expression using glass arrays spotted for 1536 gene clones. Attribute
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i of patient j is the measure of the mRNA expression of the i-th gene in that
tissue sample, relative to control tissue, with a common control employed for all
experiments [22].

5 Numerical Experiments

The two classifiers NB-LSC and OB-LSC, described in Section 3.1, are applied
to the four gene expression datasets the baseline SVM-RFE algorithm. In all
experiments the same value of the SVM parameter C = 10 is used, while the
number of selected genes was set to 30 for the lymphoma dataset and 50 for all
other datasets. These values are chosen by means of cross-validation applied to
the training set.

Because of the small size of the datasets, Leave One Out Cross Validation
(LOOCV) is used to estimate the predictive performance of the algorithms [12].

Table 2 reports results of LOOCV. They indicate a statistically significant
improvement of OB-LSC over the baseline SVM-RFE classifier, and a gain in sta-
bility, indicated by lower standard deviation values. In particular, on the ovarian
and leukemia datasets both NB-LSC and OB-LSC achieve perfect classification.

Moreover, while the performance of SVM on the Lymphoma dataset is rather
scare (possibly due to the fact that we did not scale the data), OB-LSC obtains
results competitive to the best results known (see Table 3).

Table 3 reports results of OB-LSC and the best result among those contained
nine papers on tumor classification and feature selection using different machine
learning methods [7]. Note that results reported in this table have been obtained
using different cross-validation methods, mainly by repeated random partitioning
the data into train and test set using 70 and 30 % of the data, respectively.

Table 2. Results of LOOCV: average sensitivity, specificity and accuracy (with stan-
dard deviation between brackets)

Method Dataset Sensitivity Specificity Accuracy

SVM-RFE Colon 0.90 (0.3038) 1.00 (0.00) 0.9355 (0.2477)
NB-LSC 0.75 (0.4385) 1.00 (0.00) 0.8387 (0.3708)
OB-LSC 0.90 (0.3038) 1.00 (0.00) 0.9355 (0.2477)
SVM-RFE Leukemia 0.96 (0.20) 1.00 (0.00) 0.9861 (0.1179)
NB-LSC 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
OB-LSC 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
SVM-RFE Ovarian 0.7000 (0.4661) 0.9583 (0.2041) 0.8148 (0.3921)
NB-LSC 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
OB-LSC 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
SVM-RFE Lymphoma 0.6923 (0.4707) 0.6562 (0.4826) 0.6724 ( 0.4734)
NB-LSC 1.00 (0.00) 0.6562 (0.4826) 0.8103 (0.3955)
OB-LSC 1.00 (0.00) 0.8750 (0.3360) 0.9310 (0.2556)
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Table 3. Comparison of results with best average accuracy reported in previous papers
on tumor classification. The type of classifiers considered in the paper are given between
brackets. An entry ’-’ means that the corresponding dataset has not been considered

Colon Leukemia Lymphoma Ovarian

Furey et al (SVM) 0.90 0.94 - -
Li et al 00 (Logistic regression) - 0. 94 - -
Li et al 01 (KNN) 0.94 - 0.94 -
Ben-Dor et al (Quadratic SVM, 1NN, AdaBoost) 0.81 0.96 - -
Dudoit et al (1NN, LDA, BoostCART) - 0.95 0.95 -
Nguyen et al (Logistic discriminant, QDA) 0.94 0.96 0.98 -
Cho et al ( Ensemble SVM, KNN) 0.94 0.97 0.96 -
Liu et al 04 (Ensemble NN) 0.91 - - -
Dettling et al 03 (Boosting) 0.85 - - -
OB-LSC 0.94 1.00 0.93 1.00

Because the resulting estimate of predictive performance may be more biased
than the one of LOOCV [12], those results give only an indication for comparing
the methods. Only the results on the colon dataset from Liu et al 04 and Dettling
et al 03 [9, 3] are obtained using LOOCV. The methods proposed in these latter
papers use boosting and bagging, respectively. The results they obtain seem
comparable to OB-LSC.

The results indicate that OB-LSC is competitive with most recent classifica-
tion techniques for this task, including non-linear methods.

6 Conclusion

This paper introduced an approach that improves predictive performance and
stability of linear SVM for tumor classification with gene expression data on four
gene expression datasets.

We conclude with two considerations on research issues still to be addressed.
Our approach is at this stage still an heuristic, and needs further experimental
and theoretical analysis. In particular, we intend to analyze how performance is
related to the number of support vectors chosen to generate lsc’s. Moreover, we
intend to investigate the use of this approach for feature selection, for instance
whether the generated lsc’s can be used for ensemble feature ranking [16].
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Abstract. Three different methodologies have been applied to microar-
ray data from brains of Alzheimer diagnosed patients and healthy pa-
tients taken as control. A clear pattern of differential gene expression
results which can be regarded as a molecular signature of the disease.
The results show the complementarity of the different methodologies,
suggesting that a unified approach may help to uncover complex genetic
risk factors not currently discovered with a single method. We also com-
pare the set of genes in these differential patterns with those already
reported in the literature.

1 Introduction

Alzheimer’s disease affects ten percent of the population aged over 65 and nearly
half of all individuals aged above 85 will experience its effects. Since the first
clear onset of the symptoms, a sufferer of Alzheimer’s would have an average life
span of eight years and occasionally up to two decades. Since this disease is a
progressive brain disorder that affects the patient’s ability to learn new things, to
make judgements, and to accomplish simple daily activities, Alzheimer also has
an emotional impact on families. This is aggravated by the fact that the sufferers
may have an increasingly complex pattern of changes in personality and behavior
as well as increasing anxiety, suspiciousness, agitation and forms of delusions or
hallucinations. Memory loss is generally the first and worst symptom, but others
include difficulty performing familiar tasks, communication, temporal/spatial
disorientation, poor or decreased judgment, difficulty with tasks that require
abstract thinking, misplacing objects, and passivity and loss of initiative1.

After a certain point, people with Alzheimer’s generally require 24-hour care.
Estimations of total cost abound but differ very little, with the average lifetime

1 http://www.alz.org/Resources/FactSheets.asp

F. Rothlauf et al. (Eds.): EvoWorkshops 2005, LNCS 3449, pp. 84–94, 2005.
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cost of care per patient around US$ 200,000. Alzheimer’s is the third most ex-
pensive disease in the United States, only second to heart disease and cancer,
with the latter being a generic name for many different disease forms. Accord-
ing to figures provided by the Alzheimer’s Association, the cost of 24-hour care
plus diagnosis, treatment, and paid care costs, is estimated to be US$100 billion
annually. In the US, only a small percentage is covered, in almost equal parts
by the federal government and the states (US$8.5 billion total), the rest is paid
by both patients and their families, putting a severe stress, which apart from
the emotional cost, may also compromise their finances. With an increasingly
aging population in the developed world, there is a need for more research on
the causes of Alzheimer’s disease. While a skilled physician would be able to
diagnose it with 90 percent accuracy, an early genetic diagnosis of risks would
help enormously. Quoting Zaven Khachaturian, “If we can push back the onset of
Alzheimer’s for just five years, we can reduce by 50 percent the number of people
who get the disease, add years of independent functioning to people’s lives, reduce
the amount of care they need, and save this country billions of dollars in health-
care costs.” 2 Accordingly, more research on the genetic basis of this disease is
needed as demographically the picture is not good for developed countries, with
a large number of their aging individuals getting the disease thus impacting on
society as a whole.

We have conducted an extensive search in the scientific literature to try to
identify which genes have already been reported as linked to Alzheimer’s disease,
resulting in a set of 95 genes. These genes have been identified using public
available web search engines as well as PubMed, Web of Science and other
bibliographic databases. This process did not employ a single software tool,
but a thorough investigation and critical reading of articles on the genetics of
Alzheimer. For 29 of the 95 genes identified, we have found that there is a
microarray data study in the public domain that contains their gene expression
in control and Alzheimer’s affected brains 3. A visual inspection of the relative
gene expression of this dataset (containing approximately 2,000 genes), clustered
with our memetic algorithm [1], clearly shows a pattern of differentiated gene
expression in healthy and Alzheimer’s affected brains (see Fig. 1). From the
set of 29 genes (out of those 95 identified as somewhat related), eight have
already been reported in [2] (COX7B, IDI1, MAPK10, PRKCB1, RARS, SMS,
WASF1 and YWHAH). The others are: ABCB1 [3], ADAM10 [4], ATOX1 [5],
BCL2L2 [6], BRD2 [7], CRH [8], CTCF [9], GSK3B [10], HFE and TF [11],
HTR2A [12], LAMC1 [13], NCSTN [14], NRG1 [15], NUMB [16], PRDX2 [17],
PRDX5 [18], PRKR [19], PSEN1 [20], MAPK14 [21], and VSNL1 [22]. The
two in boldface have been found by the methods we will present in this paper
and were not reported in [2]. It is clear that a differential pattern of expression
exists for these genes between Normal and AD brains, as shown in Fig. 1(b). In

2 http://www.fda.gov/fdac/features/1998/398 alz.html
3 http://labs.pharmacology.ucla.edu/smithlab/genome research data/
index.html
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Fig. 1. (a) Gene expression of 2,100 genes in both Alzheimer (AD) and normal (N)
brains (dataset from [2]). The columns correspond to different voxels (as described in
[2]). It is clear that there exist a relatively large number of genes which are differentially
expressed within different regions in AD and N brains. (b) Gene expression of the
29 genes found in our literature search (from a total of 95 we identified as possibly
related) which are also present in the dataset. (c) The 34 genes highlighted in Table
3 of Ref [2]. These 34 genes are those of the union of the four subsets (I, II, III, and
V) from Fig. 2 and have been obtained using a singular-value decomposition approach
[2]. In all figures, we provide a high-quality clustering of the gene expression patterns
using the memetic algorithm described in [1]

this paper we present a set of 70 genes which also show correlated patterns that
may be useful to understand the genetic risk factors of the disease.

2 Modeling the Gene Subset Selection Problem

In order to model the problem of finding gene subsets of interest, we will proceed
in two steps. Firstly, we will introduce the (α, β) − k−Feature Set Problem,
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so as to provide a combinatorial setting for the target problem. Then we will
address how to discretize microarray measurements to obtain a problem instance
of the (α, β) − k−Feature Set Problem.

2.1 The (α, β) − k−Feature Set Problem

The (α, β) − k−Feature Set Problem is a generalization of k−Feature Set
and it has been introduced with the aim of obtaining subsets of features of
robust discriminatory power [23]. Its use coupled with standard data mining
algorithms has led us to successfully predict the outcome of the 2004 US Pres-
idential election, two months in advance of the actual voting, only based on
historical information from previous elections [24]. The problem can be formally
defined as follows:

– Instance: A set of m examples X = {x(1), . . . , x(m)}, such that for all i,
x(i) = {x

(i)
1 , x

(i)
2 , . . . , x

(i)
n , t(i)} ∈ {0, 1}n+1, and three integers k > 0, and

α, β � 0.
– Question: Does there exist an (α, β)−k-feature set S, S ⊆ {1, · · · , n}, with

|S| � k and such that:
• for all pairs of examples i = j, if t(i) = t(j) there exists S′ ⊆ S such that

|S′| � α and for all l ∈ S′ x
(i)
l = x

(j)
l ?

• for all pairs of examples i = j, if t(i) = t(j) there exists S′ ⊆ S such that
|S′| � β and for all l ∈ S′ x

(i)
l = x

(j)
l ?

We remark that the set S′ is not fixed for all pairs of examples, but it is a
function of the pair of examples chosen, so in the definition we mean S′ = S′(i, j).
Obviously, the problem is NP−hard as it contains the k−Feature Set Problem
as special case [25]. Furthermore, the (α, β) − k−Feature Set problem is not
likely to be fixed-parameter tractable for parameter k as Cotta and Moscato
have recently proved that the k−Feature Set problem is W [2]-complete [26].

We mentioned before that robustness is the goal. Indeed, robust feature iden-
tification methods are essential since microarray data measurements are noto-
riously prone to errors. This robustness comes at a price though. When this
problem is used as a modelling tool for pattern recognition, robustness comes
with redundancy in the number of features required for discrimination of a pair
of examples. This may appear as counter-intuitive at first sight. A large number
of approaches in data mining, and particularly in Bioinformatics, are concerned
with finding “minimal” cardinality solutions. In the area of microarray data anal-
ysis, however, the true requirement is different. A small number of examples, as
compared with the number of features, means that by just random chance a
certain feature could dichotomize a set of examples. This said, the problem is
how to preserve in our solutions a potentially useful set of features that could
explain the examples, since they could be left aside due to the requirements of
finding a minimal cardinality solution. Given a set of measurements obtained
by means of a microarray experiment on m samples/conditions, the 0-1 values
for each one of the features would correspond to under- or over-expressed genes
respectively after a threshold value is determined.
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2.2 Threshold Selection Issues

An instance of the (α, β) − k−Feature Set problem can be obtained once
thresholds for discretizing gene-expression values have been set. The associated
problem (finding appropriate thresholds given the particular values of α, β and
k in the instance sought) can be formalized as follows:

(α, β)−Threshold Selection

– Input: A m × n IR−matrix X̃, class identifiers t(i) ∈ IN for every row i,
1 � i � m, and two integers α, β � 0.

– Question: Does there exist an array of m thresholds θ1, · · · , θm (i.e., one for
each of the rows in X̃) such that each entry in the ith row of X̃ greater than
the θi is given the value 1, and 0 otherwise, and such that

1. ∀i, j, t(i) = t(j), the number of columns where X̃
(i)
l = X̃

(j)
l (disagree) is

at least α, and
2. ∀i, j, t(i) = t(j), the number of columns where X̃

(i)
l = X̃

(j)
l (agree) is at

least β ?

We note that this is a necessary but not a sufficient condition to create a
yes-instance of the (α, β) − k−Feature Selection problem. Unfortunately, it
is unlikely that an efficient algorithm for (α, β)−Threshold Selection would
be found as it is NP−complete [23]. However, Cotta, Sloper and Moscato have
shown that evolutionary search strategies may help in practice to find thresholds
allowing (α, β) − k−feature sets to be found in microarray data in lymphomas,
opening the possibility of using the methodology in other domains as well.

3 Complementary Methodologies for Gene Subset
Selection

3.1 The Statistical Approach and the Microarray Dataset

The gene expression dataset is obtained from samples of normal and Alzheimer-
affected diseased humans (for the complete description see [2]). Samples are
obtained from spatially registered voxels (cubes) which produce multiple volu-
metric maps of gene expression. The technique is analogous to the reconstructed
images obtained in biomedical imaging systems. A total of 24 voxel images of
coronal hemisections at the level of the hippocampus of both the normal hu-
man brain and Alzheimer’s disease affected brain were acquired for 2,100 genes.
The statistical methods involve the use of a standard singular value decomposi-
tion (SVD) analysis. They show the most strongly differentially expressed genes
between Alzheimer’s affected and normal brains (having p-values � 0.05). No-
tably, the SVD results allow to produce images which correlate well with the
neuroanatomy, including cortex, caudate, and hippocampus. This suggests that
this technique will be a useful approach for understanding how the genome, and
gene expression, constructs and regulates the brain.
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3.2 The Evolutionary Search Approach

The evolutionary method used is similar to the one described in [23]. Therein,
the authors present results of an evolution strategy that allowed to find, on
a microarray dataset of two different types of diffuse large B-cell lymphoma
(each one containing 4 samples, and gene-expression profiles for 2,984 genes), an
α = β = k = 100 feature set. For α = β = 200 and α = β = 300, the ES found
gene subsets of 227.3 and 360.5 genes on average respectively, 25% smaller gene
subsets that those provided by a greedy heuristic.

In this case, we have utilized a (1,10)-ES with binary tournament selection,
gaussian mutation with independent self-adaptive stepsizes for each variable,
and no recombination. The algorithm evolves adequate thresholds for each gene;
for each of these candidate solutions, the ES algorithm generates an (α, β) −
k−Feature Selection problem instance, and uses a combination of kerneliza-
tion techniques and greedy heuristics to solve it. The particular dataset we have
considered seems to be difficult in practice for this algorithm, due to the fact
that the size of this underlying (α, β)−k−Feature Selection problem that is
being continuously generated and solved scales quadratically with the number of
columns. Nevertheless, we have been able to identify several (10, 10)−k−feature
sets with 17 � k � 19 (see Fig. 3(c)).

3.3 The Integer Programming Approach

For the initial exploratory tests, we have used an standard integer program-
ming (IP) formulation of the (α, β) − k−Feature Set problem as described
in [27]. For some values of α and β we have been able to solve the instances
to optimality using the CPLEX 9.0 mathematical software package. Treating
all voxels’ samples in the Alzheimer and control brains as 48 examples of two
different classes (24 from each), allows us to find groups of genes differen-
tially expressed in all regions of the brain (and expressed consistently within
a class due to the large values of β > 0 obtained). However, we expect a de-
gree of gene expression variation within different parts of a brain (both AD and
control) to be present (due to normal functional differentiation). As a conse-
quence, we adapted the IP formulation to look at the problem from a different
perspective.

The aim of our new IP approach is now to find genes that are diffentially
expressed in the same voxel in both the AD and control brains. This said, the
number of pairs of examples corresponding to different classes drops from 242 to
just 24 and the number of pairs of examples that belong to the same class drops
to zero. This said, the IP model reflects our aim to find (α) − k−feature sets
with large values of α and small values of k (the parameter β makes no sense
here as we are treating any individual example as a member of a different class).
This allows us as to find minimal sets of genes that are differentially expressed
in both the AD and control brains in the same voxel.
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Fig. 2. A Venn diagram helps us to present the results of our comparison. We have
uncovered a total of 70 genes not reported in [2] obtained from the solution of two dif-
ferent methodolgies, one is a variant of the evolutionary search methodology presented
in [23] and the other is a truncated complete anytime algorithm based on the integer
programming model discussed in Sect. 3.3 (with α = 40 and 52 genes) based on the
method presented in [27] (union of the subsets IV, VI, and VII in the diagram). Our
solutions also contained 14 genes already reported in [2] (subsets I, II and III). Ten
genes from these sets, marked in boldface, have been also linked to Alzheimer’s and
neurodegenerative diseases (references are provided in Sect. 1)

In addition, in [27] good results were obtained by using an IP model in which
we fix the number of features required to be in the solution with the objective
of finding those features that maximize the “coverage”. The coverage represents
the sum of the cardinalities of all the sets S′(i, j) as defined in Sect. 2.1. Due
to our good experience with this model, we fixed k = 52 and we have been able
to find a feature set with α = 40 and maximum coverage (998). The thresholds
were fixed in this case, unlike the ES methodology, at the median value of the
expression of each individual gene on the 48 samples.

4 Results

The main results are described with the aid of Fig. 2 and Fig. 3 and their
accompanying captions. Another result worth mentioning is that the combined
use of these three methodologies has uncovered that, in the union of all the
genes (see Fig. 3) that provide a clear pattern of differential gene expression,
there exists a peculiarity in the gene expression of area D2 of the normal brain
(following the grid labeling used of [2]) 4. The gene expression pattern (for this
subset of the genes) for region D2 in normals seems to be highly similar to the
pattern of activities for other regions of the Alzheimer’s brain. Puzzled by this

4 http://labs.pharmacology.ucla.edu/smithlab/genome research data/voxelgrid2.htm
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Fig. 3. (a) A clustering using the memetic algorithm of [1] of the union of all the genes
reported in Fig. 2. (b) Clustering of the 52 genes found with the truncated exact search
method based on the integer programming model (subsets I, III, IV, and VI of Fig. 2).
(c) Clustering of the 48 genes found with the evolutionary search strategy proposed in
this paper (subsets I, II, IV, and VII of Fig. 2). The ES finds appropriate thresholds
that will allow an α = β = 10-feature set to exist

fact, we conducted an experiment where we performed a hierarchical clustering
of the columns as well as genes and indeed the pattern of activities for region D2
in normals was clustered together to those of Alzheimer’s, though it appeared
as an outgroup. This is intriguing, as this differential pattern of activity for this
voxel is also clear in Fig. 1(b) and Fig. 1(c) (an arrow indicates the voxel D2 in
these figures) where a distinctive dark column clearly stands out within a pattern
of under expressed genes in the normal brain. All the methods revealed a similar
characteristic and it could be visually appreciated even with our clustering of the
entire set of 2,100 genes (Fig. 1(a)). While more research is needed, we believe
that new analysis on this area, as differential to other areas in the normal and AD
brains, may help to provide a bridge between genomics, functional differentiation
and disease.
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5 Conclusions

The combination of results obtained in separately from evolutionary search, sta-
tistical and integer programming methods, allows the identification of a large
number of genes differentially expressed in normal and Alzheimer’s affected
brain. Our analysis show that there are at least one hundred candidates for
further exploration which have strong correlations with those found with our
methods. This issue should be further tested in additional, specifically designed,
microarray experiments. Also, the combined methodology would encompass the
three methods so far applied to this dataset, plus a user-defined bias based on
annotated information from biologists (and the biomedical literature) will be the
subject of further studies.
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Abstract. This paper exploits “biological grammar” of transmembrane
proteins to predict their membrane spanning regions using hidden Markov
models and elaborates a set of syntactic rules to model the distinct fea-
tures of transmembrane proteins. This paves the way to identify the
characteristics of membrane proteins analogous to the way that iden-
tifies language contents of speech utterances by using hidden Markov
models. The proposed method correctly predicts 95.24% of the mem-
brane spanning regions of the known transmembrane proteins and cor-
rectly predicts 79.87% of the membrane spanning regions of the unknown
transmembrane proteins on a benchmark dataset.

1 Prediction of Membrane Spanning Regions of the
Transmembrane Proteins

Transmembrane Proteins (TMPs), which traverse the phospholipid bi-layer of
the membrane one to many times, as illustrated in Fig. 1 and Fig. 2, are integral
membrane proteins, i.e., proteins which are attached to the cell membrane to
keep their hydrophobic regions intact with aqueous cytosol. Thus, they make a
channel between cytosome and extracellular environment, which transports var-
ious ions and proteins to and from cytosol. In addition, TMPs take part in vital
cell functions such as cleavage of substances for metabolic functions, functioning
as receptors, recognition and mediation in specific cell signaling, and participa-
tion in intercellular communication. Therefore, they are good therapeutic targets
and the knowledge of the topography of the TMPs is of paramount importance
to the design new drugs.

TMPs with experimentally verified structures are limited to about 1% of the
total entries in most of the protein databanks though they amount to 20-30%
of all open reading frames of the genomic sequences of several organisms [1][2].
Verifying TMP structures using experimental methods, such as X-ray crystallog-
raphy and nuclear magnetic resonance spectroscopy, is not only expensive but
also requires a lot of efforts due to the difficulties in protein expression, purifi-
cation, and crystallization. Especially, TMPs have hydrophobic regions, which
are buried inside the membrane, i.e., membrane spanning regions (MSRs), to
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Fig. 1. Typical structure of a transmembrane protein: Potassium channel protein
(KCSA) from Streptomyces lividans

keep the hydrophobic residues intact with aqueous cytosol and extracellular en-
vironment, and do not dissolve properly in aqueous solvents in the process of
purification. Consequently, the prediction of MSRs of the TMPs became a classi-
cal problem in bioinformatics. Experimentally verified TMPs have two different
motifs: membrane spanning α-helix bundles and β-barrels. Usually the α-helix
bundles (Fig. 1) are predominant [3]. This paper focuses its attention on pre-
dicting the α-helix bundles of the TMPs.

Early MSR prediction methods of the TMPs were based on the hydropho-
bicity analysis of the constituent amino acids [4][5][6]. Because, hydrophobicity
values of the amino acids in MSRs are relatively high compared to the other re-
gions. As illustrated in Fig. 2, high presence of Isoleucine, Valine, and Leucine,

MLYGF SGVIL QGAIV TLELA LSSVV LAVLI GLVGA GAKLS 
ooooo ooooo ooMMM MMMMM MMMMM MMMMM MMMii iiiii

QNRVT GLIFE GYTTL IRGVP DLVLM LLIFY GLQIA LNVVT
iiiii iiiii iiiii iiiMM MMMMM MMMMM MMMMM MMMMo

DSLGI DQIDI DPMVA GIITL GFIYG AYFTE TFRGA FMAVP 
ooooo ooMMM MMMMM MMMMM MMMMM MMMii iiiii iiiii

KGHIE AATAF GFTHG QTFRR IMFPA MMRYA LPGIG NNWQV 
iiiii iiiii iiiii iiiii iiiii iiiii iiMMM MMMMM 

ILKAT ALVSL LGLED VVKAT QLAGK STWEP FYFAV VCGLI 
MMMMM MMMMM MMMoo ooooo ooooo ooooo ooooM MMMMM 

YLVFT TVSNG VLLLL ERRYS VGVKR ADL
MMMMM MMMMM MMMMM iiiii iiiii iii

Fig. 2. Amino acid sequence and topography information of Histidine transport system
permease protein (hisQ) of Salmonella typhimurium: o, M, i indicate outer (extracel-
lular), membrane, and inner (cytoplasmic) residues respectively
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which are relatively high hydrophobic amino acids according to Kyte-Doolittle
hydrophobicity indices [4], can be observed in MSRs (denoted by M’s). Ac-
cordingly, frequent occurrences of highly hydrophobic amino acids is a good
guess for detecting MSRs. This technique is employed in hydropathy plots, an
early technique that is still popular in recognizing the MSRs in TMPs [4][7].
Among more recent methods, which predict the topography of transmembrane
proteins, hidden Markov model (HMM) based methods claims the highest accu-
racy [8]. Among them, TMHMM [2][9], HMMTOP [10], and MEMSAT [11] can
predict the membrane bounded region of the transmembrane proteins upto 65%
to 80% accuracy [8]. The above methods are different due to the structure of
the HMMs, i.e., the domains and segments that the HMM represents, and the
training method used.

Among the non-HMM methods, PHDhtm predicts MSRs of TMPs by us-
ing an artificial neural network (ANN) [12]. A special feature of the PHDhtm
is that the ANN learns the patterns of the evolutionary information (homol-
ogy). In Toppred, the approach combines hydrophobicity analysis and positive
inside rule to predict the putative transmembrane helices [6]. A general dynamic
programming-like algorithm, MaxSubSeq (stands for Maximal Sub-Sequence),
optimizes the MSRs predicted by other methods [13]. An evaluation of meth-
ods for the prediction of MSRs can be found in [8]. Protein sequences of the
TMPs verified by the imperial methods can be found in several databases such
as MPtopo database [14], TMPDB [15], and TMHMM site [2]. In TMHMM, a
state was designed to absorb the properties of one residue except in self-looping
globular state. All other states are designed without self-transition probabilities.
Contrary to that, in HMMTOP, each characteristic region is represented by a
self-looping single state. Approach taken in the proposed method used moderate
number of states to represent various characteristic regions. This approach is
motivated by the fact that each turn of the helix in MSR consist of 3-4 residues.
Accordingly, a state is designed to represent one turn of a α-helix rather than a
one residue, as in TMHMM, or one characteristic segment, as in HMMTOP, of
the TMPs. Length of an MSR is ranging from 15 residues to 30 residues.

The our approach to MSR predication of TMP is also based on HMMs.
Unlike previous approaches, in our HMM model (see Fig. 4), self transitions
and transition between every other states can align different length MSRs in
the training process as well as in the recognition process. The proposed method
correctly predicts 95.24% of the MSRs of the known TMPs and correctly predicts
79.87% of the MSRs of the unknown TMPs on a bench mark dataset.

The organization of this paper is as follows. In Section 2, the syntactic rules
derived by observing the various segments of the TMPs are described as a syn-
tactic network where each HMM model is aimed at recognizing an allowable
segment combinations of the TMPs. In Section 3, we described the HMMs and
training algorithm based on Viterbi segmentation. Section 4 describes the data
used in training and testing the proposed method along with results obtained.
Finally, a brief discussion about the proposed method and the future directions
are given in Section 5.
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2 Syntactic Rules of the “Biological Grammar” of TMPs

The presence of alternate sequences of inner (i.e., inside or cytoplasmic), mem-
brane spanning, and outer (outside or extra-cytoplasmic) regions of the trans-
membrane proteins follows a simple rule of grammar [16]. These regions have
unique features inherent to them and do not occur randomly. The syntactical
rules of these occurrences of different regions are derived and given below in
Fig. 3. The establishment of these rules has great importance to our study,
which follows a similar approach that used to identify the language contents of
the unknown speech utterances. TMPs with unknown regional boundaries are
analogous to unknown speech utterances.

The following symbols lay down the syntactic rules in the biological grammar:

| denotes alternatives
[ ] encloses options
{ } denotes zero or more repetitions
〈 〉 denotes one or more repetitions

$var denotes a variable word.

The two different orientations, outer-membrane-inner (i.e., omi) and inner-
membrane-outer (i.e., imo), with respect to the cell membrane can be observed
in the helix core of the MSRs and are defined them as separate literals. In-
ner and outer residue sequences can be observed in different lengths. They are
categorized into three groups, each according to their length. As an example,
in inner loops, the literal “i” represents a protein sequence with 1-6 residues.
The literal “ii” represents protein sequences with 7-20 residues, while the lit-
eral “iii” represent the very long protein sequences with more than 20 residues.
Same procedure is applied in defining literals “o”, “oo”, and “ooo”. Accordingly
syntactical rules governing on possible TMP configuration can be symbollically
described as follows:

Fig. 3. A graphical illustration of characteristic regions of transmembrane proteins
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$i’s = i | ii | iii ;
$o’s = o | oo | ooo ;
$word1 = $i’s imo $o’s ;
$word2 = $o’s omi $i’s ;
$word3 = $i’s imo $o’s omi ;
$word4 = $o’s omi $i’s imo ;

A pictorial view of these syntactic rules is shown in Fig. 3(a). As illustrated
in the Fig. 3(b), any continuous path from start node to end node, along the
direction of arrows, generate a possible segment sequence of any TMP. According
to our symbolic notations, syntax of any TMP can be given by:

( 〈 $word3 〉 $i’s | 〈$word4 〉 $o’s | {$word3} $word1 | {$word4} $word2 )

These grammatical rules can generate numerous syntactically correct TMPS,
as illustrated below. To derive the following sequences, the word network shown
in Fig. 3(b) can be used. According to our interpretation, these are possible
topological structures of the TMPs, where each literal represents a characteristic
feature of a TMP segment:

- i imo o omi i imo oo omi ii
- ooo omi iii
- ii imo ooo omi i imo oo omi iii imo oo omi i
- oo omi i imo o omi ii imo ooo
- i imo o omi i imo o

A set of HMMs to represent these literals are described in the Section 3.

3 Methodology

Several HMMs are defined, in which each HMM represent a literal, e.g., imo,
described in the previous section. A special kind of HMM called left-to-right
HMM is defined as shown in the Fig. 4 with the intention that all HMMs can be
tied parallelly by using first state and last state, to make a single large HMM.
The motive behind is that the combination of a giant HMM and syntactical
networks described above can be used to recognize unknown segments of a TMP
by training and using testing algorithm as described in [18].

3.1 Definition of HMMs

In our design, each literal is designed by a separate HMM; all HMMs share the
same configuration as illustrated in Fig. 4. In this type of HMMs, no transitions
are allowed to the states whose indices are lower than the current state. In what
follows, we give a definition for the HMM to be used, by using the same notation
used in Rabinar’s seminal paper [19].

1) N : the number of states in the model. We denote the set of individual
states as S = {S1, S2, . . . , SN}, and the state at site t (or tth observation or tth
residue) as qt.
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Observation
probabilities

State transition
probabilities

Fig. 4. A left-to-right hidden Markov model

2) M : the number of distinct observation symbols per state, i.e., the number
of amino acids (#20) in our study. Though we are not interested about the
physical output of the system, to model the system, this must be taken into
consideration. We denote the set of individual residues as R = {r1, r2, . . . , rM}.

3) State transition probability distribution A = {aij}N×N where,

aij = P
[
qt+1 = Sj | qt = Si

]
, 1 ≤ i, j ≤ N. (1)

In left-to-right HMM model, the state transition coefficients have the property

aij = 0, j < i (2)

That is, no transitions are allowed to states whose indices are lower than the
current state. It should be also noted that, for the last state in a left-to-right
model, the state transition coefficients are specified as

aNN = 1 (3)
aNi = 0, i < N. (4)

4) The observation symbol probability distribution in state j, B = {bj(k)},
where

bj(k) = P
[
rk | qt = Sj

]
, 1 < j < N (5)

1 ≤ k ≤ M

5) The initial state distribution π = {πi} where

πi =
{

0, i = 1
1, i = 1 (6)

Once parameters are estimated using a proper algorithm, this HMM can
generate observation sequence O = (O1O2 . . . OT ), where each observation Ot is
the residue at site t, and T is the number of observations in the sequence.

3.2 HMM Parameter Estimation

Parameter estimation of the HMMs is done by Viterbi alignments [20].To initial-
ize the model parameters Viterbi training is replaced by a uniform segmentation,
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i.e., each training observation is divided into N equal segments. In Viterbi train-
ing, each training sequence is segmented using a state alignment procedure which
results from maximizing

φN (T ) = max
i

{φi(T )aiN} (7)

for 1 < i < N where

φj(t) = max
i

{φi(t − 1)aij}bj(rt) (8)

with initial conditions given by

φ1(1) = 1 (9)
φj(1) = a1jbj(r1). (10)

for 1 < j < N .
If Aij represents the total number of transitions from state i to state j and

bi(k) represents the observation probabilities of emitting symbol k in state i, by
performing the above maximization, the transition probabilities can be estimated
from the relative frequencies:

âij =
Aij∑N

k=2 Aik

(11)

b̂i(k) =

∑N
k=2

s.t.Ot=rk

Aik∑N
k=2 Aik

(12)

As a by-product of above calculation the maximum likelihood P̂ (O|M) is given
by Eq. (7). The above process can be iteratively carried out until the change
of the maximum likelihood between two consecutive iteration reached to an
acceptable level.

4 Experiments

In this section, we demonstrate the accuracy and efficacy of the proposed ap-
proach, using the dataset that used in training TMHMM [2]. And for the testing,
73 TMPs unknown to the system is extracted from dataset C, which contribute
maximum number of unknown proteins to the comparison of different methods
including TMHMM 2.0, TMHMM 1.0, HMMTOP, and MEMSAT 1.5 [21]. The
labeled data was used to estimate the parameters of each HMM separately. The
number of states in each literal, which denotes an HMM, is given in the Table 1.

After training separately, all HMMs are tied parallelly by using first state
and the last state to make a single large HMM. The combination of this giant
HMM and a syntactical network described in Section 2 above is used to recognize
unknown segments of TMPs by using a token passing algorithm described in [18].
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Table 1. The number of states in each literal in the training dataset

Literal Number of States
imo 7
omi 7

i and o 2
ii and oo 6

iii and ooo 9

Table 2. The performance of the present method in the prediction of topology of both
training and testing dataset

Training Set Testing Set
Number Percentage Number Percentage

Number of Proteins 159 73
MSRs found 132 83% 46 63%
Additionally correct sidedness 110 85% 34 74%

Total number of helices 694 328
Predicted helices 661 95.24% 262 79.87%
Over-predicted helices 20 2.88% 21 6.40%
Under-predicted helices 20 2.88% 53 16.15%
Shifted helix prediction 13 1.87% 14 4.27%
Falsely merged helices 24 3.46% 21 6.40%

Tools provided with HTK toolkit, a toolkit primarily designed for modeling and
manipulating HMMs in speech processing, was used in training process as well
as in testing process [20].

Results of the prediction can be found in the Table 2, which shows the per-
formance of the proposed method for the training dataset as well as for the test
dataset. Performance of the method is evaluated on two different bases, firstly
as a complete topography predictor and secondly as an MSR predictor. The
present method predicts all the MSRs of 46 TMPs out of 73 unknown TMPs.
In addition, it predicts correct positioning of start region in 34 TMPs out of
46 TMPs. As an MSR predictor, it predicts the 95.24% of MSRs (true positive
predictions) from the total number of 694 MSRs in training data set, 79.87% of
MSRs from the total number of 328 MSRs in test data set. It reported about
3% of over-predicted helices (false positives) and under-predicted helices (false
negatives) in training data set, while those values were 6.4% and 16.15% in the
test data set respectively. Shift helix prediction represents the regions, which
share less than 9 residues with the reference annotation’s MSRs. Falsely merged
helices shows the regions, where adjacent helices are predicted as a single helix.
Here, an MSR to be evaluated as predicted, it must share at least nine residues
with the reference annotation’s MSR. The other methods compared in Table 3
was evaluated on this basis in [8]. A test data set consists of 73 TMPs retrieved
from the same data set that is used to evaluate the other methods. Table 3
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Table 3. Comparison of performance of the present method compared to the previous
approaches

Method No. of All MSRs Additionally
proteins found correct sidedness

Prposed Method 73 46 (63%) 34 (74% of 44)
TMHMM 2.0 108 64 (59%) 40 (63% of 64)
TMHMM 1.0 108 57 (53%) 21 (37% of 57)
HMMTOP 106 54 (51%) 42 (78% of 54)
MEMSAT 1.5 159 80 (50%) 58 (73% of 80)

compares the proposed method with previous approaches to TMP topology pre-
diction. The performance figures of the TMHMM 2.0, TMHMM 1.0, HMMTOP,
and MEMSAT 1.5 were obtained from [8]. The present method showed the best
performance on the tested dataset.

5 Discussion and Future Directions

We have trained and have tested a new algorithm to predict the membrane
spanning regions (α-helices) of the transmembrane proteins by looking at the
protein in a syntactic point of view. The proposed model is a dynamic one
which adjusts to the protein structure according to the characteristics of its
segments. The hidden Markov models of the proposed method contain states
which represent properties of small segments rather than a single residue and
automatically adjust to the segment lengths.

On the tested dataset, the present method showed better performance over
the reported accuracy measures of previous methods in both identification of
MSR and description of their sidedness. The methods predicting protein topology
with high accuracy has high pharmaceutical applications as membrane proteins
are good therapeutic targets.

The syntactic rule set is flexible to absorb new characteristics such as se-
quences belong to the signal peptides which hamper the prediction accuracy,
when they are inserted in the transmembrane proteins. The performance of the
present method can be improved either by removing the signal peptides before
the prediction process or by introducing new HMM model trained with signal
peptide data.
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Abstract. Proteins can be grouped into families according to their bio-
logical functions. This paper presents a system, named GAMBIT, which
discovers motifs (particular sequences of amino acids) that occur very
often in proteins of a given family but rarely occur in proteins of other
families. These motifs are used to classify unknown proteins, that is, to
predict their function by analyzing the primary structure. To search for
motifs in proteins, we developed a GA with specially tailored operators
for the problem. GAMBIT was compared with MEME, a web tool for
finding motifs in the TransMembrane Protein DataBase. Motifs found
by both methods were used to build a decision tree and classification
rules, using, respectively, C4.5 and Prism algorithms. Motifs found by
GAMBIT led to significantly better results, when compared with those
found by MEME, using both classification algorithms.

1 Introduction

After unveiling the DNA sequence of an organism, researchers turn to the la-
borious task of annotation. Afterwards, the proteome of the organism is seen
as one of the main products of genome sequencing projects. In recent years re-
searchers have witnessed an exponential growth of biological databases, thanks
to the many genome sequencing projects in the world.

Proteins are essential for life since they are responsible for most functions in
an organism, such as: transport of small molecules (e.g., hemoglobin), regula-
tion (e.g., insulin), sustentation (e.g., collagen), increase of reaction speed (e.g.,
enzymes) and others. Biological organisms have thousands of different types of
proteins, which are constituted basically of amino acids linked in linear chains
through peptide connections. Active intra-molecular forces cause the proteins
to assume specific three-dimensional shapes that are directly related to their
biological functions [8]. Proteins are grouped into super families, families and
subfamilies according to their biological function. The classification of proteins
is an important task for the molecular biologist, and, ultimately, it is aimed to
identify the function of the protein.

There are several protein databases available, for instance, Swiss-Prot and
Protein Data Bank (PDB) [1]. In this work we used the TMPDB (TransMem-
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brane Protein DataBase) [13],[7],[6], a transmembrane subset extracted from
some public databases that contains information about the primary structure
of 302 transmembrane proteins. The choice for this subset was due to the ex-
tremely important functions that these proteins plays in life as pumps, channels,
receptors, catalyzers, energy transducers, etc., and have been reported recently
to share approximately 20-30% of genes in a whole genome. The transmembrane
protein molecules are difficult to crystallize due to their amphiphilic charac-
teristics – they present hydrophobic transmembrane segments (TMSs) but also
hydrophilic loops.

The protein-classification problem (PCP) is a very important research area
in bioinformatics. As mentioned before, the many genome sequencing projects
have been unveiling a growing number of gene products whose function is un-
known or barely estimated by homology techniques. The prediction of protein
function has been done basically in two ways: prediction of the protein structure
and then prediction of function from the structure, or else, classifying proteins
into functional families and supposing that similar sequences will have similar
functions. Notwithstanding, most proteins share similar structures (in particular,
considering the primary structure), since many of them have a common evolu-
tionary origin [11]. Common structures may be characteristic of a given family
of proteins but, on the other hand, unrelated families can also share common
structures. This two-fold characteristic makes the PCP a challenging problem, for
which many methods have been suggested; see, for instance [5],[9],[10],[14],[15].

This paper reports the development and application of a computational tool,
named GAMBIT (Genetic Algorithm-based Motif Browsing and Identification
Tool), specially devised for the automatic discovery of motifs (short sequences
of amino acids). This tool is based on genetic algorithms and uses as input
only the information about the primary structure of proteins. The system finds
variable-length motifs that occur very often in proteins of a given class (family)
but rarely occur in proteins of other classes. Those discovered motifs can be
further used to discriminate families of (known) proteins and for the automatic
classification of unknown proteins. That is, using the motifs discovered by the
proposed system, one can estimate function of an unknown protein by analysing
only its primary structure.

2 Methodology

2.1 Data Preprocessing

The version of the TMPDB used in this work was #6.3, from November 2003.
A TMPDB file uses the same format as Swiss-Prot and it has information about
the primary sequence of a protein. For the purposes of this work we used only
the following fields: ID (identification code in other databases), ME (membrane
in which the protein exists) and SQ (Sequence header and its length, followed
by the amino acids sequence).

The TMPDB contributors [6] have collected 1,074 articles reporting TM
topology, by using MEDLINE search using keywords “transmembrane” and
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“topology” and they found 895 articles. By searching the web directly with-
out using MEDLINE they found 46 articles, and by searching for Swiss-Prot
and TrEMBL entries whose RP line contains the annotations of “X-ray crys-
tallography”, “structure by neutron diffraction”, “structure by electron cryomi-
croscopy”’, “structure by NMR” or “topology”, they found 133 articles. After the
validation of each article, they extracted the 302 experimentally-characterized
transmembrane proteins. To obtain the complete sequence, they made a cross-
reference to public databases (using the protein name or the partial sequences).
Finally, by combining the information contained in the articles and other infor-
mation of the public databases, they constructed TMPDB.

The transmembrane proteins are distributed across 25 classes. In this work,
aiming to have statistically meaningful results, we used only 6 classes, those with
10 or more proteins. The number of proteins in each class was: 144 proteins in
class Inner Membrane (IM), 64 in class Plasma Membrane (PM), 22 in class
Mitochondrial Inner Membrane (MM), 10 in class Chloroplast Thylakoid Mem-
brane (CM), 25 in class Endoplasmic Reticulum Membrane (EM) and 16 in class
Outer Membrane (OM). Therefore, we used 281 out of 302 proteins of TMPDB,
and this data set is available at http://bioinfo.cpgei.cefetpr.br/en/softwares.htm.

2.2 Encoding and Fitness Function

Genetic Algorithms (GA) were used in this work due to its ability to perform
adaptive, powerful and robust searches. Besides, their intrinsic parallelism allows
the simultaneous exploration of different regions of the search space. The use of
GA for real-world problems encompasses two important definitions: the encoding
scheme of an individual and the fitness function. In the implemented system,
individuals represent a single motif, that is, a variable-length string of characters,
over the alphabet used for encoding the 20 standard amino acids [8].

Recall that our goal is to find a sequence of amino acids (motif) with a high
discriminatory power – i.e., a pattern that occurs in most proteins of a given
class and occurs in few or no proteins of all other classes. Therefore, this pattern
can be characteristic of a given family, allowing it to be discriminated from all
others – the essence of classification.

In order to discriminate an individual, we developed a special fitness function
that is computed as follows. Given a motif found by the GA, for each class
i, i=1,. . . ,6 (for the transmembrane dataset used in this work), the relative
frequency of occurrence of the motif in that class is computed. This is simply
the number of proteins of the i-th class where the motif occurs anywhere in the
protein´s sequence divided by the number of proteins in the i-th class. Next, for
each class i, a measure of the ability of the motif to discriminate between class
i and the other classes is given by the equation (1):

Disci = Fi.

(
1 −

∑n
j=1,j �=i Fj

k − 1

)
(1)

where Fi is the relative frequency of the motif in the i-th class, n is the number
of classes (n = 6 in this work), and k is the number of classes that contain at least
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one protein whose primary sequence contains the given motif. The rightmost
term of the formula simply computes the average relative frequency of the motif
in all classes j = i containing at least one occurence of the motif. This term
is subtracted from 1, so that the term between brackets is to be maximized.
Similarly, the value of Fi is also to be maximized. Therefore, a high value of
Disci means that the motif occurs very often in class i but rarely in the remaining
classes. If k = 1, in order to avoid division by zero in equation (1), the fraction in
the formula is considered to collapse to zero, so that the term between brackets
collapses to 1 and Disci collapses to Fi. This reflects the desirable case where
the motif occours only in class i (and in no class j, j = i), so that the motif
quality depends only on Fi.

Once the value of Disci has been computed for all n classes (i = 1, ..., n), the
individual is associated with the class having the largest value of Disci. In other
words, the motif represented by the individual is considered as a characteristic
pattern for proteins of the class with the largest value of Disci. The proposed
fitness function is normalized in the range [0..1], making the interpretation of
results somewhat easier, since 1 is the best possible value, meaning maximum
discrimination.

2.3 Selection Method and Genetic Operators

In this work, the selection method used was the well-known stochastic tourna-
ment (with tournament size k ≥ 2). The usual one-point crossover operator is
stochastically applied with a predefined probability, using two individuals of the
selected pool. Since the length of the chromosome is variable, the traditional
concept of crossover point was slightly modified and adapted to our individual
representation. The crossover point is a percentage (of the length of the individ-
ual) that defines the starting point from where the crossover breaks the string.
The same percentage is used for both parents. For instance, if the percentage is
80%, the rightmost 20% of the amino acids contained in the parents are crossed-
over.

As usual, the mutation operator is used to further explore the search space
and to avoid unrecoverable loss of genetic material that leads to premature
convergence to some local minima. Due to the specific purpose of our system,
we devised four different types of mutation (herein, sub-operations), as follows:

1. Left-adding: one randomly generated character (corresponding to an amino
acid) is added to the left of the motif.

2. Right-adding: one randomly generated character (corresponding to an amino
acid) is added to the right of the motif.

3. Random-changing: all the amino acids from a randomly selected starting
point up to the end of the motif are changed, except the first and the last
position.

4. Cutting-out: it removes a single character from the amino acid sequence.
The removal position is randomly generated.
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The mutation probability is a user-defined parameter, as usual in GA. Once
the system has decided to do a mutation, all sub-operations have the same
probability of being chosen, in a random fashion.

Both crossover and mutation operators are also “hill-climbing-based oper-
ators” because they are implemented in such a way that a new individual is
immediately evaluated after it has been created and, if its fitness is lower than
the parent’s fitness, the parent (rather than the child) is copied to the next gen-
eration. This procedure does not increase significantly the computational cost
and makes the evolutionary process faster in terms of number of generations
necessary for convergence, since the generated offspring will be always better
than their parents (or will not be generated otherwise). Hence, after a genetic
operator is selected according to a given probability, it can be applied in the
usual way (inserting the children in the new population regardless of their fit-
ness) or as a hill-climbing-based operator. This choice is done probabilistically
according to another user-defined parameter – hill climbing-based operator rate.

The expansion operator is a new operator specifically designed for the motif
discovery and protein classification problem. This operator starts by accessing
the first protein of the class associated with the individual (this class was de-
termined during the computation of the fitness) and locating the position, in
that protein, where the individual’s amino acid sequence occurs. Then, it ten-
tatively adds the immediately preceding amino acid (in the protein) to the in-
dividual’s amino acid sequence (candidate motif). The relative frequency of the
individual’s amino acid sequence in that class is recomputed. If the new relative
frequency is equal to or higher than the previous relative frequency, the just-
added amino acid is effectively added to the motif. This operation corresponds
to expansion of the individual’s genotype. This process is iteratively repeated
until the relative frequency becomes lower than the previous one. At this point
the above-described expansion process is applied to the amino acid immediately
subsequent in the protein. Finally, the whole process (expansion to the left and
expansion to the right) is repeated for all the other proteins of the class associ-
ated with the individual. Note that this is a computationally expensive operator,
but our preliminary experiments have shown that it effectively leads to motifs
with a higher predictive power for protein classification.

2.4 Running Parameters

The implemented GA has several parameters and many preliminary runs were
done to adjust these parameters. This task was done using an enzyme dataset
with 6 classes and 100 enzimes per class. These results will be published in [14].
In these runs the expansion operator was always turned on, and those tests
produced the following optimal values of parameters: number of generations =
300, population size = 200, hill-climbing-based operator rate = 10%, tournament
size = 1%; crossover probability = 20%; mutation probability = 70%. The hill
climbing-based operator rate is low to avoid losing population diversity and to
prevent a premature convergence.
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A conventional GA returns, as its result, the best individual (the one with
highest fitness) found during the run. However, in our system the desired result
is not a single individual, but rather, a set of individuals. That is, each individual
represents a single amino acid sequence (motif), associated with a single class,
and this kind of pattern will be used further to classify proteins. Therefore, it is
necessary to discover many patterns, associated with as many different classes
as possible during the GA search. In each generation, after the fitnesses of all
individuals have been computed, some high-quality motifs for each class are
saved in a separated file, called the set of discovered patterns - SDP. In fact,
the individuals representing those patterns still remain in the population; only a
copy of them is saved into SDP. The criterion to select these individuals is their
fitness – only those with fitness greater than a user-defined minimum quality
threshold will be saved. This procedure results in the discovery of many motifs,
associated with different classes, as desired. However, special care is taken to
prevent adding motifs that are substrings of other motifs already in the SDP.

3 Computational Experiments and Results

Using the data described in Section 2.1, motifs were discovered using two differ-
ent tools: GAMBIT and MEME (Multiple EM for Motif Elicitation) [2]. MEME
is a well-known freely-available web tool supported by the San Diego Super-
computer Center (http://meme.sdsc.edu/meme/website/intro.html). MEME es-
sentially uses statistical modeling techniques to automatically choose the best
width and description for each motif. In our experiments, we used all default
parameters of MEME, except the number of motifs, set to 15.

After running GAMBIT and MEME, the top fifteen motifs discovered by
each of those tools were set aside as designated results for each of those tools.
The goodness of a motif was measured by its class-discrimination ability, as
defined in equation 1. Recall that both GAMBIT and MEME are intended
to discover motifs in sets of sequences and are not designed as classification
tools. Hence, in order to evaluate the effectiveness of the discovered motifs in
predicting the functional class of proteins, we have used the discovered mo-
tifs as predictor attributes in two classification algorithms available in WEKA
(Waikato Environment for Knowledge Analysis) [16] , version 3.4.3. WEKA is
a well-known Java-based data mining toolkit freely-available on the internet
(http://www.cs.waikato.ac.nz/ml/weka).

The two classification algorithms used in the experiments were J4.8 (the
WEKA implementation of the very well-known C4.5 decision tree induction al-
gorithm [12]) and Prism [4], a rule induction algorithm that discovers classifi-
cation rules directly from the data, without producing a decision tree. In our
experiments, we used the default parameters of both J4.8 and Prism.

The predictive accuracies obtained by J4.8 and Prism were measured using
a well-known 3-fold cross validation procedure [16], as follows. The data set
was partitioned into 3 mutually-exclusive and exhaustive partitions. In the i-th
iteration of the cross-validation procedure, i=1,2,3, the i-th partition was used
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as the test set and the other two partitions were grouped and used as the training
set. In each of the 3 iterations, first GAMBIT and MEME were used to discover
motifs from the training set. Then, as mentioned earlier, those motifs were used
as predictor attributes in J4.8 and Prism, which were also run on the training
set. Each motif was used as a binary attribute, indicating whether or not the
motif occurred in a given protein (training example).

Note that each of the two classification algorithms, J4.8 and Prism, was run
twice: one run used motifs discovered by GAMBIT, and the other run used motifs
discovered by MEME. This produced four classification models – two decision
trees produced by J4.8 and two rule sets produced by Prism. Finally, the four
classification models were evaluated on the test set – which was never accessed
during training – in order to measure the predictive accuracy (generalization
ability) of the discovered classification models. This procedure was carried out 3
times (corresponding to the 3 iterations of the cross-validation procedure), and
the reported results are the average of the accuracy rate on the test set across
the 3 iterations.

Figure 1 shows the decision tree generated by J4.8 and Table 1 shows the
rules generated by Prism. Due to space limitations, both Figure 1 and Table 1
show only the classification models built from the motifs discovered by GAMBIT.
In Figure 1, each internal node tests for the presence (1) or absence (0) of an
attribute (a motif). Similarly, in Table 1 the conditions in the rule antecedents
refer to the presence or absence (indicated by a “not” operator) of motifs. The
predicted classes – represented in the leaf nodes of the decision tree and in the
consequents of the rules – are the membrane classes defined in Section 2.1. For
instance, the top-right part of the decision tree in Figure 1 corresponds to the
rule: IF motif GHL is absent (0) AND motif AQS is present (1) THEN class =
PM (Plasma Membrane).

Although there are many ways to measure classification accuracy (see, for
instance, [3],[16]), in this work, the final performance was measured using the
accuracy rate. The average accuracy rates (on the test set) computed by the
cross-validation procedure were: 73.4% using J4.8 with motifs found by GAM-
BIT, 58.0% using J4.8 with motifs found by MEME, 99% using Prism with motifs
found by GAMBIT, and 65.4% using Prism with motifs found by MEME.

Therefore, the motifs found by GAMBIT were clearly much more effective in
predicting protein class than the motifs found by MEME, in both the classifica-
tion algorithms used in the experiment (J4.8 and Prism).

Note that Prism obtained considerably better results than J4.8. A likely
explanation for this result is that Prism is more flexible, in the sense that it can
select only one relevant value of an attribute (motif) – either its presence or its
absence. By contrast, J4.8 has to select both values of an attribute (motif) –
both “1” (presence) and “0” (absence) – to be included in the tree (in different
branches coming out from the same parent). In this kind of data set, intuitively
the presence of a motif is a more relevant attribute value than its absence, which
gives an advantage to the more flexible rule representation of Prism. Indeed, out
of the 20 rule conditions in Table 1, only 4 refer to the absence of a motif (using
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Fig. 1. Decision tree constructed by J48 using motifs found by GAMBIT

Table 1. Subset of the best rules found by PRISM using motifs found by GAMBIT

If (SRR) then IM
If (SNN) then IM
If (APML) then IM
If (MNNM) then IM
If (EWR) then PM
If (LIG and VLG and SLK) then PM
If (LWK and not(MKK)) then MM
If (RGYWQE) then CM
If (VTV and GFV and not(TN)and not(LWA)) then EM
If (VDY and DGD) then OM
If (DPT and LID and not(GDI)) then OM

the operator “not”). The other 16 conditions refer to the presence of a motif. In
addition, note that the class OM does not appear in the decision tree of Figure
1, which is a clear disadvantage of that classification model. Finally, note also
that the decision tree of Figure 1 uses only short motifs (with 3 amino acids),
whereas the rules in Table 1 have a somewhat wider diversity of motif size: two
rules use motifs with four amino acids, and one rule uses a motif with six amino
acids (a motif produced by the expansion operator).
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4 Conclusions and Future Work

We described a system based on a Genetic Algorithm specifically designed for
motif discovery, aiming to classify unknown-class proteins. The system was eval-
uated using a transmembrane protein dataset.

The genetic operators of GAMBIT, specifically designed for the PCP, have
played an important role in the positive results achieved, since they allowed the
GA to obtain motifs with high discriminatory power.

Comparing results obtained by GAMBIT with MEME, it can be seen that
the latter did not find good motifs to discriminate one class from the others.
On the other hand, this is a remarkable characteristic of GAMBIT, an innate
ability accomplished by its fitness function. It is a matter of fact that MEME
was not projected for the same purpose as GAMBIT but, to the best of our
knowledge, it is the tool that most closely can be compared with our system. In
short, MEME discovers motifs in a group of proteins, while GAMBIT discovers
motifs that discriminate a group of proteins from another.

Using the discovered motifs found by both systems, the J48 and Prism al-
gorithms generated comprehensive classifiers, useful to biologists. It is possible
that those discovered motifs are related to known specific secondary or tertiary
structures (this investigation was left to future work).

Finding groups of amino acids that uniquely characterize protein families
is a very important issue in molecular biology. Results for the transmembrane
dataset using GAMBIT and WEKA strongly suggest the efficiency of the method
to find motifs capable of discriminating between groups or proteins, offering a
feasible solution to the PCP.

Future work includes more exhaustive tests of the GA control parameters
for fine-tuning and development of biologically-inspired genetic operators. We
intend to improve GAMBIT so as to find motifs based on regular expressions.
Also, it is intended to apply this system to find motifs for classification of other
protein families of biological interest.
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Abstract. Metabolic flux analysis with measurement data from 13C
tracer experiments has been an important approach for exploring
metabolic networks. Though various methods were developed for 13C po-
sitional enrichment or isotopomer modelling, few researchers have inves-
tigated flux estimation problem in detail. In this paper, flux estimation is
formulated as a global optimization problem by carbon enrichment bal-
ances. Differential evolution, which is a simple and robust evolutionary
algorithm, is applied to flux estimation. The algorithm performances are
illustrated and compared with ordinary least squares estimation through
simulation of the cyclic pentose phosphate metabolic network in a noisy
environment. It is shown that differential evolution is an efficient ap-
proach for flux quantification.

1 Introduction

The action and regulation of metabolic networks are complicated due to large
number of enzymes and various control mechanisms involved in the networks.
Significant contributions have been made in this area in recent years[1][2][3][4].
Metabolic flux analysis, i.e., the quantification of all intracellular metabolic fluxes
in a given model of the cellular metabolism, has long been noted as an important
computational tool in metabolic engineering [5]. Despite their importance, the
intracellular metabolic fluxes are per se nonmeasurable quantities [6], which
require additional computation effort for their quantification.

A systematic method for determining metabolic fluxes is carried out by a
stoichiometric model. By combining data on substrate uptake rates from the
medium, secretion rates of products from the cells and quasi-steady-state mass
balances on metabolic intermediates, the intracellular fluxes can be calculated
[7]. A limited number of measurable extracellular fluxes and a number of linear
constraints from stoichiometric matrix often lead to an underdetermined sys-
tem. Additional assumptions about enzyme activities in vivo or certain objec-
tive functions are often introduced in order to derive quantities for intracellular
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metabolic fluxes, which is called metabolic flux balancing [8]. The correctness of
the computed fluxes largely depend on the validity of these assumptions and the
appropriate choices of objective functions [6].

The potential drawbacks of metabolic flux balancing method based on stoi-
chiometry can be overcome by using 13C labelling experiments, whose labelling
states are able to be measured by nuclear magnetic resonance (NMR) and/or
gas chromatography mass spectrometry (GC-MS). The measurement quanti-
ties from such experiments provide isotopomer or positional enrichment data of
intracellular metabolites when carbon isotopic balance is reached, which offer
constraints for intracellular fluxes. More measurement data than the required
constraints are often available in such experiments, which lead to an overdeter-
mined system. The accurate calculation of fluxes from such a system, therefore,
will greatly benefit metabolic system analysis.

Despite the importance of deriving fluxes quantities from the overdetermined
system acquired through 13C labelling experiments, most authors simply apply
least squares estimation to solve the problem [5][9], whose results may be quite
unsatisfactory. In [6], the problem was solved using evolutionary algorithms,
however, no details about the algorithm was given. In this paper, differential
evolution (DE), is applied for fluxes quantification from 13C labelling experiment
and its performance is shown to be superior to the least squares estimation
method.

2 Metabolic System Description

2.1 Metabolic System Modelling

Here the metabolic system and principles of formulating labeling balance equa-
tions are described through a simple metabolic network shown in Fig. 1, in which
the left part of the figure shows metabolic reactions for metabolites A, B, C, D
and the right part shows the carbon atom transitions for the above reactions.
Metabolites A and D are substrate and product of the example system respec-
tively. B and C are intracellular metabolites. A and B each has three carbon
atoms. C and D both have two carbon atoms. v1 – v4 are fluxes associated with
the reactions. Fluxes v1 and v4 represent substrate consumption and product
formation rates, which are always unidirectional. The intracellular flux v3 is as-
sumed to be unidirectional. The flux v2 is set to be bidirectional. In practice,
extracellular fluxes are often measurable. Consequently, v1 and v4 are assumed
to be known quantities, whereas v2 and v3 are unknown intracellular fluxes.

In the paper we assume that the carbon enrichment data available are the
positional enrichments for metabolites PM=(PM(1),PM(2),· · · , PM(N)), giving
information about the concentration of labelled carbon in each position of the
atom carbon backbone, where PM(i) is the positional enrichment data for the
ith carbon atom of metabolite M with N carbon atoms.

When the steady-state is reached, the rate of consumption must equal the
rate of production for each metabolite. Hence, the stoichiometric matrix can be
formulated as follows:
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D
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v3

a1 a2 a3

b3b2b1

c1 c2

d1 d2

v1 v1

v2v3

v4

v1

v2

v4

co2

Fig. 1. A metabolic network (left) and the carbon atoms fate in the network(right)

−→v 1 + ←−v 2 = −→v 2 + −→v 3−→v 2 = ←−v 2 + −→v 4
(1)

where −→v and ←−v represent the forward and backward fluxes respectively. When
considering the carbon isotopic balances for B and C, the balances equations
are:

b1 : −→v 1PA(1) = −→v 3PB(1)
b2 : −→v 1PA(2) + ←−v 2PC(1) = −→v 2PB(2)
b3 : −→v 1PA(3) + ←−v 2PC(2) = −→v 2PB(3)
c1 : −→v 2PB(2) = (←−v 2 + −→v 4)PC(1)
c2 : −→v 2PB(3) = (←−v 2 + −→v 4)PC(2)

(2)

Assume that x are the intracellular positional enrichments, x̃ are the extracel-
lular positional enrichments, v are intracellular fluxes and ṽ are extracellular
fluxes respectively:

x =
(

PB
PC

)
x̃ =

(
PA
PD

)
v =

⎛⎝−→v 2←−v 2−→v 3

⎞⎠ ṽ =
(−→v 1−→v 4

)
Equation (2) can be rewritten concisely as:

A(x)v = b(x̃, ṽ) (3)

or
Ā(v)x = b̄(x̃, ṽ) (4)

and (1) as:
Bv = d(ṽ) (5)

2.2 Nonlinear System Model and Cost Function

In subsequent flux estimation problem, extracellular quantities are treated as
inputs to metabolic system, therefore, they are not considered as part of the
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measurement equations. In terms of the noise involved in 13C enrichment exper-
iments, as not all of the intracellular carbon enrichments, i.e. x, can be measured,
we can formulate following equation of the measured intracellular carbon enrich-
ments, i.e. y, as follows:

y = Cx + n (6)

where n denotes the noise associated with measurements. In the case where there
is no influence between measurements of different intracellular metabolites, the
matrix C will be such that only one element in each row will be non-zero, with
a value of 1 associated with the measured metabolites.

Considering the linear matrix equation with respect to intracellular fluxes
A(x)v = b(x̃, ṽ), its counterpart Ā(v)x = b̄(x̃, ṽ) and system stoichiometric
equation Bv = d(ṽ), above estimation problem can be posed as a constrained
minimization problem given below:

(x̂, v̂) = arg min
x,v

(‖A(x)v − b(x̃, ṽ)‖2
2 + λ‖y − Cx‖2

2)

subject to Bv = d(ṽ) (7)

where x̂ and v̂ are estimates to positional enrichment data and fluxes respec-
tively and λ is a positive weight parameter. This can be transformed to an
unconstrained optimization problem via the penalty function approach:

(x̂, v̂) = arg min
x,v

J(x,v)

in which
J(x,v) = ‖A(x)v − b(x̃, ṽ)‖2

2 + ‖Bv − d(ṽ)‖2
2 + λ‖y − Cx‖2

2 (8)

where we give the same weight priority to both equations on v, as is typically
done in least squares estimation approach [9].

3 Differential Evolution

3.1 Introduction

Evolutionary algorithms (EAs) have long been recognized for their ability to
solve global optimization problem within various situations. For a long time, the
application of EAs in high dimensional spaces have been restricted due to a lack
of efficient strategies to mutate evolutionary populations smoothly. In addition
to self-adaptive evolutionary algorithm which we have adopted in [10], differen-
tial evolution is another efficient EA method to handle optimization problems
in high-dimensional spaces [11], which is notable for its simplicity and good
convergence properties.

3.2 Basic Procedures of Differential Evolution

Contrary to most EAs that deal with selection, combination and mutation indi-
vidually, DE combines the three steps together in a compact way.
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Assume that XK
1 ,XK

2 , . . . ,XK
N are N populations in the Kth generation and

each XK
i is a vector with M dimensions. The new ith population in the (K+1)th

generation XK+1
i is created according to following strategies:

1. Three different parents r1, r2 and r3 are randomly chosen from all the N
populations, who are also different from the running index i;

2. A perturbed vector Y is created according to following equation;

Y = XK
r1 + F · (XK

r2 − XK
r3)

where F ∈ [0, 2] is a constant weight parameter [11].
3. Combination is introduced into DE by comparison between an uniform ran-

dom number indicator R and the predefined combination probability Pc for
each dimension of the perturbed population. To make sure that at least one
parameter is from perturbed vector Y, an integer index number index lying
between [1,M] is randomly selected and the combination works according to
following strategy:

Z(j) =
{

Y(j) if (R ≤ Pc) or j = index
XK

i (j) otherwise

4. To decide if the generated population Z is accepted, its fitness value is com-
pared with that of XK

i . If Z yields a better fitness value than Xk
i , then

XK+1
i = Z; otherwise, XK+1

i = XK
i .

4 Different Methods for Metabolic Flux Quantification

In what follows, we describe a least squares method (LS), a DE-based method
and two hybrid-DE methods referred to as DE-LS. We assume that the positional
enrichment data for all intracellular metabolites, in the metabolic system we are
investigating, are measurable.

1. Method I: LS estimation method. Equations (3) and (5) can be written in
the form: (

A(x)
B

)
v =

(
b(x̃, ṽ)
d(ṽ)

)
(9)

In the case where there are no additional constraints on system measurement,
so that C in (6) is in the format of identity matrix, we can substitute x with

its measurement y. Therefore, with G =
(

A(y)
B

)
and f =

(
b(x̃, ṽ)
d(ṽ)

)
defined, the least squares estimate of fluxes v is given by

v̂ = (GT G)−1GT f . (10)
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2. Method II: DE on fluxes and LS on metabolites method. In case that the
estimation to fluxes v̂ is available, the estimation of positional enrichment
data x̂ can be calculated from (4) by least squares estimation:

x̂ = (Ā(v̂)T Ā(v̂))−1Ā(v̂)T b̄(x̃, ṽ) (11)

If we revise the cost function into fitness function:

fitness(x,v) = exp(−ηJ(x,v)) (12)

where η is a weight parameter, v̂ and x̂ can be substituted into the fitness
function for fitness evaluation. Therefore, we can apply DE for fluxes esti-
mation and LS for positional enrichment estimation. Populations of fluxes
are iteratively generated by DE and their adaptability to the system are
evaluated by the fitness calculated from fluxes themselves and positional
enrichment data estimated by the least squares method.

3. Method III: DE on metabolites and LS on fluxes method. Alternatively, if
considering (3) and (5), we can apply DE on positional enrichments, while
utilizing least squares estimation on fluxes:

v̂ =

((
A(x̂)
B

)T(A(x̂)
B

))−1(
A(x̂)
B

)T(b(x̃, ṽ)
d(ṽ)

)
(13)

4. Method IV: DE on both fluxes and metabolites: However, when introduc-
ing least squares estimation into fitness evaluation, fitness calculation will
inevitably be influenced or even biased by the misleading least squares esti-
mation. A solution to the problem is to apply DE on both quantities, that
is fluxes and positional enrichment data are both evolved by DE and their
outcomes are evaluated by the combined fitness function.

5 Simulation Results

The example metabolic system cyclic pentose phosphate pathway shown in Fig.
2, which was utilized in [12], was used to test the proposed four algorithms:
LS-based method (method I) , DE on fluxes and LS on positional enrichments
method (method II), DE on positional enrichments and LS on fluxes method
(method III) and DE on both positional enrichments and fluxes method (method
IV). Please refer to [12] for chemical reactions of the example network. The
example system is composed of seven intracellular metabolites, two extracellular
metabolites and sixteen fluxes. The fluxes v1,v3,v4 and v5 are assumed to be
unidirectional.

The system intracellular and extracellular positional enrichments and fluxes
are give by,

x = (Pg6p, Pf6p, Pgap, Pp5p, Ps7p, Pe4p, Pco2)T

v = (−→v 2,
−→v 3,

−→v 4,
−→v 5,

−→v 6,
−→v 7,

−→v 8,
←−v 2,

←−v 3,
←−v 4,

←−v 5,
←−v 6,

←−v 7,
←−v 8)T

x̃ = (Pxyl)T ṽ = (−→v 1,
←−v 1)T
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Fig. 2. Cyclic pentose phosphate pathway. Abbreviations: xyl, xylose; g6p, glucose-
6-phosphate; f6p, fructose-6-phosphate; gap, glyceraldehyde phosphate; p5p; pentose
phosphate; s7p, sedoheptulose-7-phosphate; e4p, erythrose-4-phosphate; co2, CO2; pyr,
pyruvate

In the simulation, we assumed that the data available were positional 13C en-
richments synthesized from a metabolic model with input 13C enrichment x̃ =
(1 0 0 0 0)T , the fluxes ṽ=(1, 0)T and v=(1.6667, 0.3333, 1.3333, 1.0000, 1.3333,
1.3333, 1.3333, 0.6667, 0, 0, 0, 0.6667, 0.6667, 0.6667)T .

The system identifiability can be determined by the auxiliary matrix
(

A(x)
B

)
.

In case that the auxiliary matrix is full rank, unknown variables involved in the
system can be uniquely identified. In the example system, we found that rank
of the system auxiliary matrix was 15, implying that one flux was unidentifiable
in the system. It was shown in [12] that the flux v2 was not identifiable from
labeling data and extracellular fluxes. In the following analysis, we apply the
four methods to both identifiable and unidentifiable systems.

5.1 Differential Evolution Parameters

The population number was chosen to be ten times more than dimensions of
individual population vector [13]. The dimensions for fluxes and metabolites in
the simulation were 16 and 32 respectively, therefore, by trial and error, the
population numbers for DE on fluxes and metabolites were set to 150 and 300.
In method IV, we set population number to 200 in order to compromise between
both fluxes and metabolites parts of DE. The weight parameters F for DE on
fluxes and metabolites were set to 0.1 and 0.2. The maximum iteration number
was 500. The combination probability Pc was 0.3. The weight parameters for λ
and η were set to 0.4 and 5.0.
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5.2 Simulation Results for Identifiable and Unidentifiable Systems

In order to identify the adaptability of the methods proposed, we revised the
system to be identifiable by fixing −→v2 at its original value, i.e. 1.6667. We ran 50
simulations for each noise level from 2%–10%. The mean square error (MSE) and
variance of the MSE are displayed in Table 1 and Table 2. Due to small variances
involved in the results, we illustrate the simulation results in two separate figures
shown in Fig. 3 instead of using error bars. It is illustrated that all the three
DE-based methods produce lower MSE compared to that of LS when the noise
level becomes higher. Method II and IV provide nearly the same MSE in all noise

Table 1. MSE performances in identifiable system

Noise Level 2% 4% 6% 8% 10%

Method I 0.0010 0.0088 0.0309 0.0599 0.0997
Method II 0.0080 0.0046 0.0047 0.0057 0.0056
Method III 0.0002 0.0010 0.0066 0.0065 0.0133
Method IV 0.0032 0.0043 0.0040 0.0056 0.0077

Table 2. Variance of MSE performances in identifiable system

Noise Level 2% 4% 6% 8% 10%

Method I 0.0001 0.0006 0.0020 0.0040 0.0027
Method II 0.0004 0.0004 0.0005 0.0008 0.0009
Method III 0.0001 0.0003 0.0021 0.0087 0.0076
Method IV 0.0006 0.0007 0.0013 0.0021 0.0027
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Fig. 3. Simulation performances of LS and DEs in identifiable system
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Table 3. MSE performances in unidentifiable system

Noise Level 2% 4% 6% 8% 10%

Method I 0.3180 0.3606 0.4106 0.3917 0.3972
Method II 0.0055 0.0095 0.0078 0.0065 0.0070
Method III 0.3030 0.2874 0.4362 0.3332 0.3250
Method IV 0.0079 0.0091 0.0144 0.0105 0.0190

Table 4. Variance of MSE performances in unidentifiable system

Noise Level 2% 4% 6% 8% 10%

Method I 0.0248 0.0078 0.0142 0.0040 0.0163
Method II 0.0008 0.0009 0.0013 0.0014 0.0015
Method III 0.0034 0.0447 0.0139 0.0576 0.0481
Method IV 0.0018 0.0016 0.0017 0.0026 0.0019

levels above 2%, nevertheless, method IV involves higher variance compared to
that of method II. On the other hand, the performance of method III is greatly
affected by increased noise levels.

When no additional constraints are applied, the example system is uniden-
tifiable. We again ran 50 simulations for every noise level of 2%–10%. The sim-
ulation data are displayed in Table 3 and Table 4. This time, method III and I
give nearly the same MSE. Method II and IV show good performances in the
unidentifiable system, where method II is slightly better in terms of MSE and
variance of the MSE. If we consider the computation efforts involved with the
four methods, method II will be the best choice for flux quantification. It pro-
vides good accuracy and manageable computational complexity. The reason for
the poorer performance of method III is due to a lack of efficient constraint han-
dling techniques in the algorithm. It is found that random positional enrichment
data are prone to producing negative fluxes in the unidentifiable system, so that
constraints are needed in method III in order to restrict DE search space.

6 Conclusions

Metabolic flux analysis is carried out by formulating the problem as a nonlin-
ear estimation problem. Four methods combining least squares estimation with
differential evolution are developed and applied to flux quantification of a sim-
ulated metabolic network in both identifiable and unidentifiable systems. It is
found that the method that applies differential evolution on fluxes and least
squares estimation on positional enrichment data gives the best results among
the four methods when noise level becomes high. In practice, it is often the case
that not all positional enrichment measurements can be obtained. Further work
will be focused on this issue.
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Abstract. We have proposed a new method for quantitative structure-activity re-
lationship (QSAR) analysis. This tool, termed GEMPLS, combines a genetic 
evolutionary method with partial least squares (PLS). We designed a new genetic 
operator and used Mahalanobis distance to improve predicted accuracy and 
speed up a solution for QSAR. The number of latent variables (lv) was encoded 
into the chromosome of GA, instead of scanning the best lv for PLS. We applied 
GEMPLS on a comparative binding energy (COMBINE) analysis system of 48 
inhibitors of the HIV-1 protease. Using GEMPLS, the cross-validated correlation 
coefficient (q2) is 0.9053 and external SDEP (SDEPex) is 0.61. The results indi-
cate that GEMPLS is very comparative to GAPLS and GEMPLS is faster than 
GAPLS for this data set. GEMPLS yielded the QSAR models, in which selected 
residues are consistent with some experimental evidences. 

1   Introduction 

QSAR techniques are commonly regarded as a key role to computational molecular 
design. The major goal of QSAR is to formulate mathematical relationships between 
physicochemical properties of compounds and their experimentally determined in vi-
tro biological activities. Thus the derived QSAR model can be subsequently used to 
predict the biological activities of new derivatives. A good QSAR model both en-
hances our understanding of the specifics of drug action and provides a theoretical 
foundation for lead optimization 1. 

Many QSAR methodologies have been studied, such as comparative molecular 
field analysis (CoMFA) 2, the partial least square (PLS) 3, comparative molecular 
binding energy analysis (COMBINE) 4,5. Among those methodologies, the PLS analy-
sis is able to deal with strongly collinear input data and make no restriction on the 
number of variables used. Unfortunately, the predictive performance of PLS model 
drops and the PLS model becomes complicated when the number of features in-
creases.  Several feature selection methods for PLS have been proposed, in which ge-
netic algorithm (GA) combined with PLS approach (GAPLS) has demonstrated the 
improvement on the prediction and interpretation of model 6. The essence of GA is to 
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mimics the metaphor of natural biological evolution. GA operates on a population of 
potential solutions applying the principle of survival of the fittest to produce succes-
sively better approximations to optimum solution. Hasegawa et al. 7 examined a set of 
48 human immunodeficiency virus type I (HIV-1) protease inhibitors by applying 
GAPLS to the variables derived from COMBINE. Several improved GAPLS models 
with significantly better predictability than the original study were formulated 5,7,8. 

However, the accuracy of GAPLS was still blemished by many features especially 
deriving from CoMFA or COMBINE. The numerous noise features, which GAPLS 
did not eliminated completely, were interfered with the significant features strongly 
correlating with biological activity. Besides, with regard to each possibly select fea-
ture set GAPLS needed to spend additional time to decide the optimum number of la-
tent variables (lv) through PLS.   

Here, we have developed an efficient method for evolving QSAR models by intro-
ducing a number of successive refinements which can be summarized as follows: 1) 
An extra bit lv, representing the number of latent variables, was appended to the 
chromosome of GA and expected to efficiently solve the problem of the optimum 
number of latent variables though evolutionary process; 2) Mahalanobis distance was 
adopted to select significant features from numerous features from COMBINE; 3) A 
new genetic operator, called biased mutation, was designed to lead the evolution of 
GA toward significant feature set and to reduce the interference of noise features. In 
this paper, we proposed a new QSAR method by integrating a generic evolutionary 
method, modified and enhanced from our previous works 9,10 and above issues, and 
PLS (GEMPLS). GEMPLS is general able to evolve the relationship between biologi-
cal activities and compound features generated by other methods, such as CoMFA 
and COMBINE. Here we applied GEMPLS to evolve the QSAR models according to 
the interaction energy features generated by the COMBINE method on 48 HIV-1 pro-
tease inhibitors. Experiments show that GEMPLS is able to improve the predictability 
and efficiency, at the same time, the selected residues in the yielded QSAR model are 
consistent with some experimental evidences. 

2   Material and Methods 

Fig. 1 shows the main steps of applying GEMPLS in the COMBINE analysis: 1) pre-
pare the inhibitor set and model protein-inhibitor complexes; 2) refine protein-
inhibitor complexes and calculate features (i.e., energy interactions); 3) select impor-
tant features by Mahalanobis distance; 4) select features and evolve QSAR models. 
Each step is described in the following subsections. 

2.1   COMBINE: Feature Extraction 

The COMBINE analysis is the use of structural information about ligand-receptor 
complexes 4,5. When the three-dimensional structure of macromolecule is available, 
ligand-receptor interaction energies could be calculated as features, which are sub-
jected to statistical analysis in COMBINE. A subset of these features will be account 
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for the ligand affinity. The critical interaction patterns between ligands and the recep-
tor could be identified and be used to derive the correlation of binding affinities. 

Step 1: Prepare data set and model 
protein-inhibitor complex

Step 2: Refine docked conformation 
and calculate features (interactions)

Step 3: GEM selects a feature set (X) Step 4: PLS builds the relationship 
between feature set (X) and activity

C
O

M
B

IN
E

G
E

M
P

L
S

Feature extraction

QSAR model evolution

 

Fig. 1. The framework and steps of GEMPLS applied in the COMBINE analysis 

2.1.1   Prepare Data Sets and Model Protein-Inhibitor Complexes 
Here, we have chosen 48 inhibitors of human immunodeficiency virus type I (HIV-1) 
protease studied in previous works 5,7,8. The chemical structures of HIV-1 protease in-
hibitors and the 48 complexes were modeled on the crystallographic structure of the 
complex of HIV-1 protease with L-689,502 solved at 2.25A resolution 11 using the in-
teractive graphics program Insight II. All crystallographic waters were removed with 
the exception, which is involved in hydrogen bonding with the NH's of the flap resi-
dues IleA50 and IleB50 and the oxygen of the inhibitors 12. All inhibitors were built 
using L-689, 502 as a template except for the more differential inhibitors 39-45, 
which employed the inhibitor saquinavir from the HIV-1 protease complex (protein 
data bank is 1c6z) as a template.  

2.1.2   Refine Protein-Inhibitor Complexes and Calculate Features (Interactions) 
Each complex model was performed a mild and progressive refinement. The flexibil-
ity of each inhibitor was manually explored as necessary to obtain a satisfactory con-
formation in the enzyme active site, which also corresponded to a low energy con-
former. The docked conformation of an inhibitor was energy minimized in the three 
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stages using the consistent valence force field, CVFF 13. In the first stage, the hydro-
gen atoms of each complex were allowed reorient. Then the geometry of the inhibitor 
was optimized while the atoms of both the protein and the water were held fixed. Fi-
nally, the whole complex was energy minimized but the protein atoms were restrained 
to their crystallographic positions. Atom-centered charges for all the inhibitors were 
derived by fitting the molecular electrostatic potential calculated with the AM1 Ham-
iltonian 14 to a monopole-monopole expression 15. 

The calculated ligand-receptor interaction energies in the refined complexes were 
partitioned on a per residue basis. Since HIV-1 protease has two protein subunits 
(subunit A and subunit B) of 99 amino acids, and two energy contributions (van der 
Waals and electrostatic) are considered for each residue. There are 396 features were 
yielded to characterize each protein-inhibitor complex. A data matrix was built with 
396 columns representing each of the interaction energy features and with 48 rows 
representing each inhibitor in the data set. 

2.2   GEMPLS: QSAR Model Evolution  

PLS has played a critical role in the derivation of QSAR in CoMFA or COMBINE 
studies. Recently, more and more people recognize the benefits of feature selection 
before PLS regression. GAPLS has been shown as a practical solution. But when the 
number of features becomes large, GAPLS still has difficulty in driving out noises. 
And scanning for best lv is too inefficient and time consuming. Here, we introduce a 
number of successive enhancements, which are described in the following paragraphs, 
to construct our model GEMPLS to overcome the drawbacks of GAPLS.  

The general idea of PLS is to try to extract these latent variables, accounting for as 
much of the manifest feature variation as possible while modeling the inhibitory ac-
tivities well. To decide both the optimum number of latent variables and prediction 
error of a QSAR model, we defined the weighted standard deviation error of the pre-
dictions (WSDEP) as the scoring function of our GEMPLS: 

( )2

, 100

1 95

lv

i pred i
y y

WSDEP
N lv

−
=

− −
⎛ ⎞⎜ ⎟⎝ ⎠

∑  , (1) 

where yi and ypred,i are the observed and predicted inhibitory activities belong to in-
hibitor i, N is the total number of samples, and lv is the number of latent variables in 
the current model. In order to improve on the efficiency, we append an extra bit lv, 
representing the number of latent variables, to the original chromosome and expect 
GEMPLS model to efficiently solve the problem of the optimum number of latent 
variables though evolutionary process. 

2.2.1   Select Features by Mahalanobis Distance  
Mahalanobis distance is able be used to measure the deviation of a sample from the 
mean of the distribution in multivariable calculus. Therefore, the Mahalanobis dis-
tance is adopted to identify significant features from all of those. 

( ) ( )2 1M v vμ μ−′= − ∑ −  . (2) 
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M is the Mahalanobis distance from the feature vector v (column vector of data matrix 
here) to the mean vector μ , where  is the covariance matrix of the features. 

2.2.2   Feature Selections and QSAR Models Evolution 
The inhibitory activity usually correlates with few important interaction energy fea-
tures, that is, most of interaction energy features are meaningless or not apparently 
distinct from each other. GEM was applied to find out the significant interaction en-
ergy features and PLS was used to build the QSAR models based on these selected 
features. WSDEP was used as the objective function to provide a measure of how the 
internal predictability with respect to the selected features. The fittest individual will 
have the lowest WSDEP. 

GEM, modified and enhanced from our previous works 9,10, consists of five steps 
briefly described in the following:  

(1) Initiation and evaluation of the initial population (Gt=0). Each chromosome 
is composed by an array of feature set and an lv value. For example, a chromosome 
has n+3 bits if the number of candidate feature is n and three bits for lv value. The ini-
tial population (Gt=1) of population size (Np) is created by setting feature bits (0 de-
note the absence of corresponding feature, and 1 denote its presence) and an lv value 
(denote the number of latent variables and range in [1~5]) of each chromosome to 
random values and one, respectively. Then PLS is used to build a quasi-QSAR model, 
and evaluated by the scoring function (WSDEP), for each chromosome.  

(2) Selection of the reproductive population. The chromosomes of reproductive 
population (PsGt) are selected from the population (Gt) with a fixed proportion (Ps) 
according to the stochastic universal sampling 16.  

(3) Crossover and mutate the reproductive population (PsGt). The offspring 
population (Goff) is generated by uniform crossover with a probability (crossover rate: 
Pc) and mutation operators, including uniform and biased mutation operators, with a 
probability (mutation rate: Pm).  

(4) Evaluation of the offspring population (Goff). PLS is then used to build a 
quasi-QSAR model, evaluated by WSDEP, for each chromosome in the offspring 
population.  

(5) Reinsertion of the child population. To form the population of the next gen-
eration (Gnext), the chromosomes of the current population (Gt) with lower objectives 
in the preceding (1- Ps) proportion are protected to the next generation, while the oth-
ers are replaced with better ones from the offspring population (Goff).  Let t = t+1 and 
Gt = Gnext. 

(6) The cycle of above four steps (from step 2 to 5) is repeated until the number of 
generation reaches to the maximum number of generations (Nmax). The values of em-
pirical parameters are defined as follows: Np = 100, Nmax = 200, Ps = 0.9, Pc = 0.6, and 
Pm = 0.05. 

Biased Mutation. The uniform mutation may incur a risk of local convergence and 
slow evolution because plenty of features will raise the combinatorial complexity of 
feature space. To reduce the phenomena, the uniform mutation was cooperated with 
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biased mutation to lead the evolution of GA toward significant feature set and to re-
duce the interference of noise features. 

( ) ( )
1

f i

i

f

N x
F x MIN MAX MIN

N

−
= + − ×

−

⎛ ⎞
⎜ ⎟
⎝ ⎠

 , (3) 

where F(xi) is the probability of selection of feature i; xi is the rank of feature i in the 
descending order of Mahalanobis distance of all features, MIN and MAX are the lower 
and upper bounds, respectively, of probability of biased mutation; Nf is the number of 
significant features. The value of F(xi) is derived from xi only when xi is ahead of Nf, 
otherwise F(xi) is set to MIN. The meaning of F(xi) is that the more significant fea-
ture, the more higher probability of selection. In this study, MAX=0.8, MIN=0.2 and 
Nf =39. 

2.3   Performance Evaluation 

The predictability of QSAR model was assessed by the conventional correlation coef-
ficient (r2), the cross-validated correlation coefficient (q2), the cross-validated SDEP 
(SDEPcv), and external SDEP (SDEPex): 

( )
( )

2
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2
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y y
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−
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−
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 , (4) 

( )2
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N

−
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∑
 , (5) 

where yi and ypred,i are the observed and predicted activity of inhibitor i, ypred,i, respec-
tively, y  is the average activity value of the inhibitor set, and N is the total number of 
inhibitors. The model with more remarkable predictability can provide the higher cor-
relation coefficient (r2, q2) and the lower SDEP between the observed and predicted 
inhibitory activities. 

3   Results and Discussion 

To evaluate the performance of PLS, GAPLS, and GEMPLS, 48 compounds shown in 
Table A (see appendix) were randomly divided into 6 subsets, and a six-fold cross 
validation was performed. For each round, one subset (8 compounds) was used as 
evaluation set, and other subsets (40 compounds) were used to train a QSAR model 
by Leave-One-Out method to optimize WSDEP. Table 1 shows the results, which 
were the average values of the six-fold cross validation. Five filter conditions (M>0, 
M>1, M>5, M>10, and M>15) of Mahalanobis distance of features were used to pre-
screen candidate features before GA feature selection steps. That is, there were five 
kinds of data matrices (48-by-396 (M>0), 48-by-188 (M>1), 48-by-85 (M>5), 48-by-
59 (M>10), and 48-by-39 (M>15)) to be examined on those QSAR models according 
to these five conditions.  
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Table 1 shows the execution times, the numbers of selected features, and the values 
of lv of PLS, GAPLS and GEMPLS with five different Mahalanobis distance criteria. 
Several widely used performance measures, correlation coefficient (r2), cross-
validated correlation coefficient (q2), cross-validated SDEP (SDEPcv), external corre-
lation coefficient (r2

ex), and external SDEP (SDEPex), were also summarized in Table 
1. With the increasing of the degree of filter criteria, the better results were obtained 
for GEMPLS when the Mahalanobis distance threshold is less than 10. The highest 
SDEPex (0.6080) was obtained by GEMPLS with Mahalanobis distance threshold 10. 
These results reveal that the usage of Mahalanobis distance could successfully dis-
criminate significant features and reduce the ill effect of numerous features generated 
by the COMBINE method. But when the Mahalanobis distance threshold get higher, 
the performance degraded due to some important features were filtered out. The ad-
justment of proper amount of significant features would further improve the predict-
ability and interpretation of QSAR models.  

Table 1. The average predictive accuracies of PLS as well as GAPLS and GEMPLS with five 
different Mahalanobis distances for the HIV-1 protease by six-fold cross validation 

 a  GEMPLS-M0, M1, M5, M10, M15 mean that GEMPLS analysis performed with feature sets 
filtered by different Mahalanobis distance thresholds (i.e., 0, 1, 5, 10, and 15). 

 b  The executing time is measured on a single-processor of 1.4GHz/PentiumIV PC in seconds. 
 c  The number of candidate features is selected by the Mahalanobis distance. 
 d  The number of selected features is finally selected by GEMPLS and Mahalanobis distance. 

The COMBINE method essentially generates numerous interaction energy features 
and the usage of Mahalanobis distance is able to reduce the number of these features. 
One of the evolutionary forces of GEMPLS is come from Mahalanobis distance be-
tween a wide distribution of features. At the same time, GEMPLS could decide the 
optimum number of latent variables for each chromosome though evolutionary proc-
ess since the lv bit was encoded in the chromosome. Table 1 shows that GEMPLS is 
much faster than GAPLS and slightly better than GAPLS on this data set. Both 
GEMPLS and GAPLS outperform PLS.  

Modela Time(s)b M-Featuresc Featuresd lv r2 q2 SDEPcv r2
ex SDEPex 

PLS 0.047 396 396 3 0.9177 0.8576 0.6031 0.7433 0.7454 

GAPLS 11233.5 396 117.8 1 0.9107 0.9045 0.4718 0.6958 0.6582 

GEMPLS-M0 1471.1 396 98.8 1 0.9091 0.9029 0.4754 0.7944 0.6464 

GEMPLS-M1 766.7 188 42.3 1 0.9101 0.9040 0.4722 0.8030 0.6231 

GEMPLS-M5 649.1 85 21.5 1 0.9110 0.9053 0.4691 0.8107 0.6115 

GEMPLS-M10 485.3 59 19 1 0.9109 0.9046 0.4708 0.8126 0.6080 

GEMPLS-M15 427.7 39 16.7 1 0.9084 0.9027 0.4757 0.7994 0.6284 
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Figure 2 shows a typical QSAR model yielded by GEMPLS. This model reveals 
some experimental evidences. Figure 2(b) shows the features selected by GEMPLS 
and Figure 2(a) indicates the pseudo coefficients of the QSAR model evolved by PLS 
according to these selected features. This evolved QSAR model reflects some 
important residues of HIV-1 protease shown in Figure 2(c).  Residues Asp25, Thr26, 
and Gly27 are highly conserved catalytic triad and Asp25 is essential to both catalyti-
cally and structurally. Residues Ala28 and Asp30 located at subsite S2. The mobile 
flap, residues 46-54, contains three characteristic regions: side chains that extend out-
ward (Met46, Phe53), hydrophobic chains extending inward (Ile47, Ile54), and a gly-
cine rich region. Residues Pro81, Val82, and Ile84 form the binding pocket. Residues 
Arg8 and Asp29 at the subsite S3, potentially bind polar residues. These results show 
that our QSAR model is able to yield many biological meanings. 
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Fig. 2. GEMPLS evolves a typical QSAR model of the HIV-1 protease. a) The pseudo coeffi-
cients of QSAR model, b) features selected by GEMPLS, and c) the important residues of the 
QSAR model are consistent with some experimental evidences 

4   Conclusions 

In summary, we have developed an evolutionary method with a novel scoring func-
tion for evolving QSAR models. By integrating a number of genetic operators, each 
having a unique search mechanism, GEMPLS blends the local and global searches so 
that they work cooperatively. Our scoring function is indeed able to enhance the pre-
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diction accuracy. GEMPLS not only increases the predictability and interpretation of 
a QSAR model, but also improves the performance and efficiency for feature selec-
tion. Our results demonstrate the applicability and adaptability of GEMPLS for 
QSAR models. 
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Appendix: 

Table A. HIV-1 protease inhibitors used in training set (1-32) and test set (33-48), and their 
corresponding observed inhibitory activities (pIC50) 

No. Chemical Structure pIC50 No. Chemical Structure pIC50 No. Chemical Structure pIC50 
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No. Chemical Structure pIC50 No. Chemical Structure pIC50 No. Chemical Structure pIC50 
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Abstract. Performance evaluation of routing protocols is an important
area of research that deals with the analysis and investigation of such
protocols. A performance evaluation framework unveils different facets
of a protocol and explores its behavior under diversified network oper-
ations. The nature inspired routing community, at the moment, lacks
such a framework. Therefore, in this paper we propose a comprehen-
sive performance evaluation framework that will empower the routing
protocol designers to design state-of-the-art algorithms and extensively
evaluate their performance. Using our framework, we exhaustively eval-
uated three state-of-the-art nature inspired routing algorithms. The re-
sults show some undiscovered aspects of the algorithms and provide valu-
able understanding about their merits and demerits. We believe that this
will be the first major step in designing, standardizing and developing
a performance evaluation library that will facilitate an extensive and
unbiased evaluation of nature inspired routing algorithms.

1 Introduction

Performance evaluation of communication networks is an important area of re-
search that provides a framework for analysis and investigation of the perfor-
mance of the network by changing different parameters of the network [1]. One
such important parameter is the routing protocol used for transporting packets
from their sources to destinations. The network engineer who studies the subject
in depth gets two benefits, one he is able to make reasoned and educated deci-
sions during the design phase of a routing protocol, and two he is able to design
a performance evaluation framework that unveils different facets of the protocol
and explore its behavior under diversified network operations. The latter benefit
provides a valuable feedback that helps in the re-engineering of the protocol; as
a result, the algorithm becomes more robust, dynamic and adaptive.

Over the past decade, researchers in the field of natural computing have de-
veloped an interest in designing nature inspired routing algorithms. However, to
our knowledge, little effort has been made to come up with a standard perfor-
mance evaluation framework that provides an unbiased platform for an extensive
evaluation of the performance parameters of the algorithms. In the absence of
such a framework, researchers focus on optimizing the basic performance param-
eters, as a result, the readers of the papers never get a complete picture about

F. Rothlauf et al. (Eds.): EvoWorkshops 2005, LNCS 3449, pp. 136–146, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A Performance Evaluation Framework 137

the behavior of the algorithms. This observation provided us with the motiva-
tion to design a comprehensive performance evaluation framework which assists
the researchers in extensive and unbiased evaluations of the routing algorithms.
The main contributions of the work are implementation of three state-of-the-art
nature inspired routing algorithms and then extensively evaluating them with
the help of the performance framework. Our results from the experiments show
some undiscovered aspects of the algorithms and provide valuable understanding
about their merits and demerits. We hope that the framework will act as a guide-
line for the nature inspired routing algorithm developers and they will report all
the parameters suggested in the paper. This will help other researchers in under-
standing the complete behavior of the algorithms. We believe that this will be
the first major step in designing, standardizing and developing a performance
evaluation library that will facilitate an extensive and unbiased evaluation of
nature inspired routing algorithms.

Organization of the Paper. In the next section we provide a brief overview
of three state-of-the-art nature inspired routing algorithms. In Section 3 we will
introduce our performance evaluation framework and in doing so we will empha-
size the motivation for different parameters in the framework. We will discuss
the experimental and simulation set up in Section 4 and then discuss the results
obtained from the experiments. Finally we conclude the paper and provide an
outlook for our future research.

2 A Review of Nature Inspired Routing Algorithms

In this section we will provide a brief overview of three state-of-the-art nature
inspired routing algorithms, namely AntNet, DGA and BeeHive.

AntNet. AntNet was proposed by Di Caro and Dorigo in [2]. In AntNet the
network state is monitored through two ant agents: Forward Ant and Back-
ward Ant. A Forward Ant agent is launched at regular intervals from a source
to a certain destination. It uses the same queues as data packets to monitor the
real traffic situation. Forward Ant agent is equipped with a stack memory on
which the address and entrance time of each node on its path are pushed. Once
the Forward Ant agent reaches its destination it creates a Backward Ant agent
and transfers all information to it. Backward Ant visits the same nodes as For-
ward Ant in reverse order and modifies the entries in the routing tables based
on the trip time from the nodes to the destination. At each node the average trip
time, the best trip time and the variance of the trip times for each destination
are maintained. The trip time values are calculated by taking the difference of
entrance times of two subsequent nodes pushed onto the stack. Backward Ant
agent uses the system priority queues so that it disseminates the information
to the nodes as soon as possible. The interested reader may find more details
in [2]. Later on the authors of [3] made significant improvements in the routing
table initialization algorithm of AntNet, bounded the number of Forward Ant
agents during congestion, and proposed a mechanism to handle routing table
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entries at the neighbors of crashed routers. We made yet another improvement
that significantly reduced the number of data packets following cyclic paths: we
do not send a data packet to a neighbor from where it has been received.

Distributed Genetic Algorithm-DGA. The authors of [4] showed that the
information needed by AntNet for each destination is difficult to obtain in real
networks. Their idea of global information is that there is an entry in the routing
table for each destination.This shortcoming motivated the authors to propose in
[5] a Distributed Genetic Algorithm (DGA ) that eliminates the need for having
an entry for each destination node in the routing table. In this algorithm ants are
asked to traverse a set of n nodes in a particular order, known as a chromosome.
Once an agent visits the nth node then it is converted into a backward agent that
returns to its source node. The authors believe that a value of 6 is good enough
for n (chromosome length). In contrast to AntNet the backward agents only
modify the routing tables at the source node. The source node also measures
the fitness of this agent based on the trip time value, and then it generates
a new population using single point crossover. New agents enter the network
and evaluate the assigned paths. The routing table stores the agents’ IDs, their
fitness values and trip times to the visited nodes. Routing of a data packet is done
through the path that has the shortest trip time to the destination. If no entry
for a particular destination is found then a data packet is routed with the help
of an agent that has the maximum fitness value. DGA was designed assuming
that the routers could crash during network operations. We have made a small
change in the algorithm: at initialization we launch only four agents rather than
half of the population as suggested by the authors. Through this improvement,
we have been able to reduce the number of agents on the network without a
significant degradation of the performance. Please refer to [5] for details.

BeeHive. This algorithm has been proposed by Wedde, Farooq and Zhang in
[6]. The algorithm has been inspired by the communication language of honey
bees. Each node periodically sends a bee agent by broadcasting the replicas of
it to each neighbor site. The replicas explore the network using priority queues
and they use an estimation model to estimate the propagation and queuing
delay from a node, where they are received, to their launching node. Once the
replicas of the same agent arrive at a node via different neighbor sites of the
node, they exchange routing information to model the network state at this
node. Through this exchange of information by the replicas at a node, the node
is able to maintain a quality metric for reaching destinations via its neighbor
sites. The algorithm utilizes just forward moving agents and, as opposed to
AntNet, no statistical parameters are stored in the routing tables. In BeeHive a
network is divided into Foraging Regions and Foraging Zones. Each node belongs
to only one Foraging Region. Each Foraging Region has a representative node.
A Foraging Zone of a node consists of all the nodes from whom a replica of an
agent could reach this node in 6 hops. This approach significantly reduces the
size of the routing table as compared to AntNet because each node maintains
detailed routing information only about reaching the nodes within its Foraging
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Zone and for reaching the representative nodes of the Foraging Regions. In this
way, a data packet, whose destination is beyond the Foraging Zone of a node,
is forwarded in the direction of the representative node of the Foraging Region
containing the destination node. The next hop for a data packet at a node is
selected in a probabilistic fashion depending upon the goodness of each neighbor
for reaching the destination. BeeHive is also fault-tolerant to crashing of routers.
The interested reader will find more details in [6].

3 A Performance Evaluation Framework for Nature
Inspired Routing Algorithms

We now define our performance evaluation framework that we used for an unbi-
ased evaluation of the algorithms presented in Section 2. We used the guidelines
suggested by Higginbottom in [1] and our discussions with the Cisco network en-
gineers in our system management group for defining the important performance
parameters of our framework. The parameters and their symbolic representation
are shown in Table 1. The first two parameters (MSIA and MPIA) are given as
an input to the framework while others are calculated by the framework.

Offered Load. We present two types of traffic to the algorithms, one is session-
oriented and another is session-less. In session-oriented traffic, all packets of a
session have the same destination. This type of traffic is realistic and tests the
congestion control behavior of a routing algorithm. In session-less traffic, the
destination of each packet is selected from a uniform distribution. This traffic
pattern simulates static network conditions. Generally the researchers use one
of the two, though we believe that a good routing algorithm should be able to
do congestion control and be competitive under static network loads as well.

Table 1. Symbols used in the paper

MSIA Mean of sessions inter-arrival times (sec)
MPIA Mean of packets inter-arrival times (sec)
Tav Average throughput (Mbits/sec)
Pd Percentage of packets delivered

Pdrop Percentage of packets dropped
Ploop Percentage of packets that followed a cyclic path
Sc Percentage of sessions completed
Td Average packet delay (msec)

T90d 90th percentile of packet delays (msec)
Sd Average session delay (msec)

S90d 90th percentile of session delays (msec)
Ro Routing overhead
So Suboptimal overhead
hsd

i hops packet i took to reach from node s to node d
hsd

o minimum hops needed to reach from node s to node d
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Average Throughput. Throughput is a measure of how much traffic is suc-
cessfully received at the intended destination in a unit interval of time [1]. A
routing protocol should try to maximize this value.

Packet Delay. We report for all the algorithms the average packet delay and
90th percentile of the packet delays. A good algorithm should be able to deliver
packets with minimum delay and with minimum standard deviation of delays.

Session Delay. Our Cisco engineers suggested that in case of session-oriented
traffic, the most important parameter is time needed to complete a session.
An application layer at the destination node only gets the packets after all the
packets are received in the correct order. Packet delay factors out this waiting
time and hence favors multi-path algorithms which deliver packets in an out of
order manner but with smaller delays.

Sessions Completed. The percentage of sessions that are able to complete
without any support from transport layer protocols. For example if only one
packet in a session is dropped due to congestion or TTL expiration, we report
the session as an incomplete one. We believe that this parameter reports the way
packets were deleted on the face of congestion. Our results substantiate that it
is more difficult to maximize this parameter than throughput.

Packet Delivery Ratio. This measure tells us how much of the data pack-
ets are successfully delivered at their destinations. Under saturated loads a 1%
improvement in packet delivery ratio at times means about few 100,000 more
data packets delivered at their destinations, however, one can not observe this
improvement via throughput values only (see Table 2).

Packet Drop Ratio. The percentage of data packets that are dropped because
their time to live timer (TTL) value expired or the queue buffers were full.

Packet Loop Ratio. The percentage of data packets that followed a cyclic
path. A cyclic path is an error in an algorithm and should be reported but we
do not kill these packets the way the authors of [5] did.

Routing Overhead. The ratio of the bandwidth occupied by the routing/control
packets and the total available bandwidth in the network [2]. Generally, the au-
thors of the papers report this parameter to show the control overhead of their
routing algorithm.

Suboptimal Overhead. This metric was introduced by [7] in the context of
MANETS but we believe that it is equally relevant in fixed networks as well. It
is defined as ”The difference between the bandwidth consumed when transmitting
data packets from all the sources to destinations and the bandwidth that would
have been consumed should the data packets have followed the shortest hop count
path”. Formally we could define the parameter as

So =
∑n

d=1
∑n

s=1
∑k

i=1(h
sd
i − hsd

o ) × Lsd
i

Bt
, s = d (1)



A Performance Evaluation Framework 141

where n is total number of nodes in the network, k is total number of packets
generated, Lsd

i is length of packet i from source s to destination d, and Bt is the
total bandwidth of the network. We report this parameter because it implicitly
includes the overhead of loops.

4 Simulation Environment and Experimental Findings

In order to evaluate the algorithms AntNet, DGA, BeeHive, and OSPF, we im-
plemented all of them in the OMNeT++ simulator [8]. The object oriented
design of the simulator allows to prototype algorithms quite easily. For OSFP
we implemented a static link state routing that implements the deterministic
Dijkstra Algorithm [9] which selects the next hop according to the shortest path
from a source to a destination. For AntNet, DGA and BeeHive we used the same
parameters that were reported by the authors in [2] ,[5] and [6] respectively. The
network instance that we used in our simulation framework is the Japanese In-
ternet Backbone (NTTNet). It is a 57 node, 162 bidirectional links network. The
link bandwidth is 6 Mbits/sec and propagation delay is from 2 to 5 milliseconds.

As suggested in the Section 3 we have used two types of traffic generators:
session-oriented and session-less. Session-oriented traffic is defined in terms of
open sessions between two different nodes. Each session is characterized com-
pletely by sessionSize (2 Mbits), MSIA , source, destination, and MPIA. The size
of data packet is 512 bytes. To inject dynamically changing traffic patterns, we
have defined two states: uniform and weighted. Each state lasts 10 seconds and
then a state transition to another state occurs. In Uniform state (U) a destination
is selected from a uniform distribution. While in Weighted state (W), a destina-
tion selected in Uniform state is favored over other destinations. In session-less
traffic, the destination of each packet is chosen from a uniform distribution. Such
a traffic pattern with low MPIA models static network conditions. Please recall
that OSPF is a state-of-the-art algorithm for such a scenario and we compare it
with three other algorithms for this scenario.
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Table 2. Performance Parameters under Saturated Loads

MSIA Algorithm Tav Pd Sc Td T90d Sd S90d

6.8 DGA 13.6 86.0 38.0 577 2147 2842 3748
OSPF 15.5 99.9 98.1 44 188 2643 2845
AntNet 15.7 99.8 99.7 30 82 2629 2785
BeeHive 15.8 99.9 99.6 25 68 2620 2771

4.8 DGA 20.8 81.2 43.0 693 2404 2834 3558
OSPF 24.8 97.9 82.5 262 838 2748 3135
AntNet 24.9 99.8 97.1 75 327 2674 2938
BeeHive 25.3 99.9 99.4 28 86 2627 2783

2.8 DGA 32.0 73.6 30.0 1449 3259 2891 3623
OSPF 36.1 83.2 49.9 706 1930 2680 2987
AntNet 43.5 99.2 90.1 210 699 2797 3256
BeeHive 43.3 99.8 95.4 110 391 2746 3110

1.8 DGA 40.7 60.1 21.7 1268 3324 2857 3419
OSPF 47.6 70.6 41.6 849 2473 2692 2984
AntNet 63.2 93.8 49.0 721 1762 2992 3653
BeeHive 62.8 92.9 45.0 602 1595 2887 3479

Saturated Loads. The purpose of the experiments was to study the behavior
of the algorithms by gradually increasing the traffic load, through decreasing
MSIA from 4.8 to 1.8 seconds. We summarize the results in Table 2 due to
page limitations. One could easily conclude that BeeHive and AntNet are able
to maintain higher throughput because they deliver more packets to their des-
tinations. However, the packet delay and session delay, both average and 90th
percentile, of BeeHive are the best. The difference in session delays, however, is
less significant as compared to other parameters. The most striking difference is
in the average packet delay, 90th percentile of packet delays and percentage of
sessions completed, especially at MSIA=2.8. One could conclude from Table 2
that BeeHive and AntNet scale better to the increased network load.

Control/Suboptimal Overhead. Figure 2 shows the control overhead and
suboptimal overhead of the algorithms. It is quite interesting to note that the
suboptimal overhead is much higher than the control overhead (please note that
axis have different scales on the two figures). OSPF has the smallest suboptimal
overhead though it is able to deliver less packets and complete less sessions (see
Table 2). The routing overhead of DGA decreases with an increase in the load
and vice versa. This happens due to the genetic algorithm. Recall that the next
generation of agents are launched once four agents are received. Under low load,
the return times for the agents are smaller, as a result, the agents are launched
at a higher rate and vice versa. Since in AntNet, Forward Ant agents use the
same queues that data packets also use, therefore more ants were dropped un-
der increased network load and this explains the decrease in routing overhead
behavior of the algorithm. Figure 2 justifies the motivation to find a route with
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Fig. 2. Saturated Loads

less hops from source to destination, a parameter that generally received little
attention by the nature inspired routing community.

Queue Control Behavior. The purpose of the experiments is to investigate
the behavior of performance parameters by varying the size of the queue buffers.
Researchers typically show the results with large queue buffers only. Figure 3
shows the effect of varying the size of the queue buffer from 50 packets to 4000
packets. Please remember that MSIA=2.8 and MPIA=0.005 were kept constant
during all the experiments. BeeHive maintains its superiority over other algo-
rithms when the queue sizes are small, however, AntNet achieves a similar per-
formance at queue size of 1000. The figures clearly indicate the shortcoming
of OSFP under saturated loads. The increase in the size of queue buffer only
results in rise of the packet delay without any significant improvement in the
packet delivery ratio. DGA is able to improve its performance with an increase
in the size of the queue buffer. These figures indirectly also provide an insight
into the queue control behavior of the algorithms. Please remember that at this
load 1% increase in packet delivery ratio at times might result in an increase of
about 15% completed sessions (see Figure 3).

Size of Routing Table. AntNet on the average has 162 entries in the routing
table of the nodes in NTTNet as compared to 78 and 57 for BeeHive and OSPF
respectively. However, such a parameter for DGA is not available because it
routes data packets with agents and the memory needed to store them depends
on a number of different parameters [5].

Session-less Low Traffic. The purpose of these experiments were twofold,
first to test the algorithms in an operation domain where the performance of
OSPF is the best and two to be confident that our implementation of DGA
is functionally correct. The authors of DGA only published their results under
this traffic load. Table 3 shows that our changes in the DGA algorithm rather
improved the packet delay and still delivered the same number of packets as that
of original DGA. Please closely monitor the performance parameters of OSPF.
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Table 3. Performance Parameters under session-less low traffic

MPIA Algorithm Pd Pdrop Ploop Td T90d Ro So

0.035 DGA a 99.99 0 20 742 - - -
AntNet(Local) b 99.99 0 51 398 - - -

DGA(Our) 99.92 0.08 35 137 735 8 27
AntNet(Global) 99.7 0.3 9 30 65 2.8 5.2

BeeHive 99.99 0 2.7 23 42 0.37 2.7
OSPF 99.99 0 0 20 36 0.1 1.02

a These results were published in [5]
b These results were published in [5]

Only BeeHive comes somewhat nearer to it. AntNet even drops about 0.3%
packets. We investigated the problem and found out that it happened because
of loops. We drop a packet once it has taken about 100 hops and is still not
at the destination. If we put the same restriction on DGA then it also drops
about 6% packets. The results in table 3 clearly demonstrate the superiority of
OSPF over all other algorithms, a fact seldom reported by the nature inspired
routing community. This also shows that the stochastic distribution of packets
under low loads is not a promising approach. BeeHive finds a good compromise
between static algorithms like OSFP and dynamic algorithms like AntNet.
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5 Conclusion and Future Research

We have proposed a comprehensive performance evaluation framework that
would help the nature inspired routing community to characterize the behav-
ior of a routing algorithm. The power of the framework is that it provides an
unbiased testbed over a divergent operations landscape where one could see
the benefits/shortcoming of a routing protocol. We have been able to report,
through this framework, that all nature inspired routing algorithms perform in-
ferior to OSPF under static network conditions. Another important conclusion
is that suboptimal overhead of nature inspired routing protocols is much higher
than the routing overhead. But this parameter, to our knowledge, has received
no/little attention by the algorithm developers. On the basis of our experience,
we believe that the real challenges of designing any new routing protocol are

– to match the performance of OSPF under low loads
– to achieve the performance of a daemon algorithm (see [2] for the algorithm)

under saturated loads
– to have suboptimal routing overhead as close to OSPF as possible.
– to design a routing table whose size is of the order of OSPF’s routing table.
– to have minimum overhead of processing agents and data packets

In the near future we would like to extend our performance framework for quality
of service (QoS) parameters and then evaluate the algorithms with this perspec-
tive. Moreover, we would also like to design a profiler to find out the complexity
of processing agents and data packets. The processing complexity, measured in
number of processor cycles, of an algorithm helps in defining the hardware re-
quirements for the router that will run the algorithm. We also plan to evaluate
the algorithms on large topologies up to 1000 nodes to investigate the scalabil-
ity issues.
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Abstract. This paper describes the application of Hybrid Intelligent Systems 
(HIS) in a new domain: the reliability of complex networks. The reliability of a 
network is assessed by employing two algorithms, TREPAN and Adaptive 
Neuro-Fuzzy Inference Systems ANFIS belonging to the HIS paradigm. 
TREPAN is a technique to extract linguistic rules from a trained Neural Net-
work, and ANFIS is a method that combines fuzzy inference systems and neural 
networks. A numerical example, related to a complex network, illustrates the 
application of the approach and shows that HIS is a promising approach for re-
liability assessment. The structure function of the complex network analyzed is 
properly emulated by training both algorithms on a subset of possible system 
configurations, generated by a Monte Carlo simulation and an appropriate 
Evaluation Function. Both algorithms successfully describe the network status 
through a set of rules, which allows the reliability assessment. 

1   Introduction 

In communication networks, in addition to satisfying constraints that specify links and 
performance, an important consideration is reliability. 

A convenient way of modeling any system is to adopt an undirected or a directed 
connected graph, called Reliability Block Diagram (RBD) [1], in which every block 
or link is associated with a system component. A typical RBD can be viewed as a 
network of components that interact to comply with the system purpose. Each block 
in an RBD assumes one of two possible states, operating or failed; therefore, a binary 
variable can be associated with each connection in the system, assuming value 1 if the 
corresponding connection behaves correctly or value 0 otherwise. In this way, the 
whole system can be described by a Boolean vector x, having as many components as 
the number of edges in the RBD. Typical RBDs include series and parallel compo-
nents. If a network has components neither in series nor in parallel, it is considered as 
a complex network [2]. Many communication networks are modeled as an RBD with 
a source and a terminal node (s-t network). 

The state of the whole system, uniquely determined by the Boolean vector x, can be 
operating or failed, and is therefore described by a binary variable y [2]. The Boolean 
mapping that associates every input vector x to its corresponding output y is called the 
Structure Function (SF) [3]. The procedure employed to retrieve the value of y that 
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corresponds to a given x is usually referred to as an Evaluation Function (EF) [4]. The 
most widely studied reliability measure (s-t reliability) assumes that the system is op-
erating if there exists at least one working path from the source node s to the terminal 
node t. In this case a depth-first procedure [5,6] can be employed as an EF. 

There are also situations where the reliability assessment is more complicated (e.g. 
electric power system), since the success of a given state requires the evaluation of a 
more complex EF (e.g. load-flow evaluations) [7]. 

An important issue is that the SF determination and therefore the reliability as-
sessment, requires the solution of an NP-hard problem [8]. A possible way to reduce 
the computational burden is to employ Monte Carlo techniques, which attempt to 
produce an estimate of the network reliability by analyzing a subset of possible sys-
tem states x.  

Generally, Monte Carlo techniques require a large number of EF evaluations to es-
tablish the reliability of a system; therefore, it seems to be convenient to employ a 
machine learning method for approximating the reliability expression through a re-
duced collection of EF values. To this aim several different approaches have been 
considered in the literature: Neural Networks [9], Decision Trees [10], Support Vector 
Machines [9,11] and Hamming Clustering [12]. However, in search of possible more 
comprehensible models, novel investigation areas are developed, by integrating sev-
eral intelligent systems. This operative synergy, called Hybrid Intelligent Systems 
(HIS) [13], seeks to improve the efficiency, reasoning power and comprehensibility of 
the integrand systems.  

The combination of different intelligent techniques such as neural networks, ge-
netic algorithms, decision trees, systems based on fuzzy rules, reasoning based on 
cases, among others, represents an important area of investigation that has been used 
in diverse application domains [14]. This paper presents, under the integrative per-
spective of HIS, an approach for the reliability assessment of complex networks.  To 
this aim empirical models induced by two techniques (TREPAN [15] and ANFIS 
[16]) are compared, when applied to the samples generated by a Monte Carlo simula-
tion for a given EF. To our best knowledge, this approach, based on HIS paradigm, 
has not hitherto been used to assess the reliability of complex systems. The paper is 
organized as follows: Section 2 presents some definitions.  Section 3 introduces the 
machine learning methods considered for approximating the reliability of a network, 
while Section 4 presents the proposed approach to assess the system reliability.  Sec-
tion 5 compares the results obtained through TREPAN and ANFIS, on an example 
related to a complex network with 21 links.  

2   Definitions 

It is assumed that the system components have two states (operating and failed) and 
that component failures are independent events. The state xi of the ith component is 
defined by Billinton and Allan [2] as: 
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where Pi is the probability of success of component i. 
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The state of a system containing d components is expressed by a vector 
x=(x1,x2,…, xd). To establish if x is an operating or a failed state for the network, a 
proper Evaluation Function (EF) is defined: 

⎩
⎨
⎧==

      state  thisin failed is system  theif   0

state  thisin operating is system  theif   1
)( xEFy

 
(2) 

A depth-first procedure [5,6] can be employed as an EF, if the criterion to be used 
for establishing reliability is simple connectivity. In the case of capacity requirements, 
the EF could be given by the max-flow-min-cut algorithm [5,6]. For other metrics, 
special EFs may be used.  

3   Hybrid Intelligent Systems Models 

Hybrid intelligent systems are computational systems, which are based mainly on the 
integration of soft-computing techniques (especially artificial neural networks and 
fuzzy systems). This integration allows exploring their advantages in order to increase 
the overall system performance for a given task [17]. In this paper we study two of 
such integration examples. 

3.1   Extraction of Knowledge from Trained Neural Networks 

The Extraction of Knowledge from Neural Networks consists of the development of 
techniques that allow the comprehensible representation of the knowledge acquired 
by a trained network. This can be expressed in diverse ways, through symbolic rules, 
fuzzy rules or decision trees. 

  The Extraction of Knowledge allows the validation and refinement of the neural 
networks, as well as the integration of connectionist and symbolic systems. TREPAN 
[15] is a technique to extract decision trees from a trained neural network.  

TREPAN differs from other algorithms that extract information from neural net-
works in several ways [15]:  

1. The Oracle. It is used to determine the class of each instance that is presented as a 
query. The Oracle is used for three different purposes: to determine the class labels 
for the network's training examples; to determine the class labels for the tree's 
leaves; and to select the splits that create each of the tree's internal nodes. 

2. Split Types. That is, the way the input space is partitioned. TREPAN forms trees 
that use M-of-N expressions for its splits, that is a Boolean expression specified by 
an integer threshold, m, and a set of n Boolean conditions. An M-of-N expression 
is satisfied when at least m of its n conditions are satisfied. 

3. Split Selection. Split selection involves deciding how to partition the input space 
at a given internal node in the tree. TREPAN uses a special heuristic search proc-
ess to build its splitting test. 

4. Tree expansion. TREPAN grows trees using a best-first expansion that chooses 
the node where there is the greatest potential to increase the fidelity of the ex-
tracted tree to the network.  
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5. Stopping Criteria. TREPAN uses local and global stopping criteria. A local crite-
rion considers the state of only a single node to decide whether or not it should be 
made a leaf, and a global criterion considers the state of the entire tree to decide if 
the tree-growing process should stop.  

TREPAN requires as input the weights and biases of the trained neural network 
(NN) and a training data set. As output it produces a decision tree that provides an 
approximation to the function represented by the network.  

Figure 1b presents a decision tree extracted by TREPAN, from the system network 
in Figure 1a. Note that from the extracted tree, it is easy to obtain rules. It is interest-
ing to note that in general the first node in the tree refers to the most important com-
ponent of the network. 

B
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E

B= True

C= TrueD= True

A= TrueC= Trueoperating failed

failedoperating operatingfailed

T F

 

Fig. 1.a:  A Complex  Reliability Network;                 1.b: Tree  extracted  by  TREPAN 

3.2   Fuzzy Model Identification 

Fuzzy system identification is the process of identifying the structure and the parame-
ters of a fuzzy model. The construction of the fuzzy model requires two phases. 

The first phase is model structure identification, that is the identification of the in-
put variables and rules. The rules identification sub phase consists of the identification 
of the rule and structure type to be used by the fuzzy model to represent a given input-
output data relation. As a result, the first phase produces a set of IF/THEN rules [18]. 
The second phase corresponds to the adaptation of the parameters (membership func-
tions and coefficients).  

In the example presented in section 5, the first phase was performed through the 
construction of knowledge-based neural networks (KBNN) [19], using the procedure 
Neural Fuzzy Networks (FuNN) [20]. This procedure combines elements of fuzzy 
modeling and neural network computations into single connectionist architecture. 

The FuNN procedure [21,22] consists of five layers: input variable layer, condition 
elements (input fuzzy membership function) layer, rule layer, action elements (output 
fuzzy member function) layer, and output layer. 

The rules obtained by FuNN are of the linguistic type. For example, referred to the 
system shown in Figure 1, the rules developed by FuNN are: 

 IF (B is Failed) and (C is Failed) and (E is Failed) THEN (System is Failed) 
 IF (B is Operating) and (D is Operating) and (E is Operating) THEN (System 

is Operating) 
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 IF (A is Operating) and (C is Operating) THEN (System is Operating) 
 IF (A is Failed) and (B is Failed) and (C is Failed) and (D is Failed) THEN 

(System is Failed) 

3.3   Parameter Optimization 

The fuzzy inference system described in Section 3.2 presents knowledge in the form 
of IF/THEN rules. These rules represent the structure and a first approach to the SF to 
be estimated. An additional phase is required for tuning the parameters of a prelimi-
nary fuzzy system and then to carry out the evaluation of the final system. 

The Adaptive Neuro-Fuzzy Inference Systems (ANFIS) [16,18] uses a hybrid 
learning algorithm to identify parameters of Sugeno-type fuzzy inference systems 

[23]. The ANFIS procedure can construct an input-output  mapping 
based on both human knowledge (in the form of fuzzy if-then rules) and input-output 
data pairs. The parameters that define membership functions are adjusted through the 
learning process by a back-propagation algorithm.  

4   The Proposed Approach 

To evaluate the performance of the methods presented in the previous section, the 
network shown in Figure 2 has been considered [24]. It is assumed that each link 
has reliability Pi and the goal is to obtain models that approximate the s-t reliability 
metrics. 

In order to apply the HIS paradigm, such as TREPAN or ANFIS, it is first neces-
sary to collect a set of examples (x,y), where y = EF(x), to be used in the training 
phase and in the subsequent performance evaluation of the resulting models. To this 
aim, NT system states have been randomly selected without replacement and for each 
of them the evaluation of the corresponding value of the EF has been performed. In 
the case to be analyzed, only connectivity is checked to assess if a selected state x 
corresponds to an operating or to a failed state; thus, the EF is given by a depth-first 
procedure [5-6]. 

To select the appropriate models a 10-fold cross-validation (CV) was performed. 
The NT system states have been divided into 10 subsets of equal size. Every method 
was trained 10 times, each time leaving out one of the subsets from training and using 
only this omitted subset to evaluate the obtained model.  The performance of each 
method is measured using sensitivity, specificity and accuracy indexes [25]: 
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(A type of fuzzy inference in which the consequence of each rule is a linear combination
of the inputs) 
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Fig. 2. Complex Network to be evaluated [24] 

where: 

TP = Number of True Positive classified cases (the method correctly classifies) 
TN = Number of True Negative classified cases (the method correctly classifies) 
FP = Number of False Positive classified cases (the method labels a case as positive 

while it is a negative) 
FN = Number of False Negative classified cases (the method labels a case as negative 

while it is a positive) 

For system reliability assessment, sensitivity index gives the percentage of cor-
rectly classified operating states and the specificity index the percentage of correctly 
classified failed states. 

The average accuracy across the CV is computed, whereas the model with the 
highest value of accuracy and with the lower complexity is selected for evaluating the 
system reliability. To this aim, a system state x*

i is generated at random and it is de-
cided if it is a failed state or not using the induced models. The process is repeated by 
analyzing NM system states, which yields the following estimate for the system:  

MN

States Operating ofnumber  Total
  y  Reliabilit =  (4) 

5   Models Determination 

The state space associated to the system shown in Figure 2 (221 possible states) is 
randomly sampled and a data set with 2000 different (x,y) pairs is generated.  

The neural network (NN) used was an MLP network composed of one input layer, 
one hidden layer and one output layer. The architecture of the network is denoted by 
‘i:h:o’   indicating  i neurons in input layer, h neurons in hidden layer and o neurons 
in output layer. The activation function used was a sigmoid function. Different num-
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bers of neurons in the hidden layer were evaluated, using a constructive process, add-
ing neurons to the hidden layer one at time until there is no further improvement in 
network performance. The network was trained using the Levenberg-Marquardt opti-
mization method combined with Bayesian optimization of the regularization parame-
ters. The aim of regularization is to avoid over-fitting of the model by minimizing the 
sum of squares of errors and the sum of squares of model parameters [26]. The aver-
age accuracy during testing (92.25 %) was obtained with 14 hidden units. The average 
accuracy during training was 99.99 %. The Matlab Neural Network Toolbox was used 
to train the network [27]. 

The trained neural network (21:14:1) is then integrated to the TREPAN model, 
previously described. The fidelity, that is the percentage of predictions made by the 
extracted tree that agrees with the predictions made by the network, was 96.39% dur-
ing the training and 92.75% during the testing. In order to obtain the ANFIS model, a 
preliminary fuzzy system was induced, using the FuNN model [20]. Some rules ex-
tracted by FuNN are: 

• If x16 is Operating and x17 is Failed and x21 is Operating then System is Operating  
• If x8 is Failed and x17 is Failed and x18 is Failed then System is Failed  
• If x15 is Operating and x17 is Operating and x21 is Operating then System is Operating  
• If x5 is Operating and x7 is Failed and x8 is Failed and x10 is Operating and x12 is Failed and 

x16 is Failed and x18 is  Failed and x19 is Failed and x20 is Operating and x21 is Failed then 
System is Failed  

Some of the rules generated have a physical meaning, related to the minimal path 
sets (e.g. rule c) and cut sets (e.g. rule b) of the network [2]. 

Finally, the optimization of the previous fuzzy model was performed by ANFIS. 
The Matlab Fuzzy Logic Toolbox [27] was used for training. 

Table 1 shows the average number of rules along with the average performance 
results obtained using the 10-fold cross-validation for the algorithms compared, for 
the training and testing phases. It is interesting to note that although the NN model 
presents the highest performance indexes during the training, the performance in-
dexes of the TREPAN model during the testing, are superior to the NN and ANFIS 
models, even if the complexity of the induced ANFIS model (rules generated) is 
lower. Table 1 also shows that, during the testing phase, TREPAN performs better 
that the ANFIS model.  

Table 1. Average performance results for NN, TREPAN and ANFIS models 

Sensitivity  % Specificity  % Accuracy % Model Rules 

Train Test Train Test Train Test 

NN 141 100 91.67 99.99 92.78 99.99 92.25 

TREPAN 108.4 95.61 93.31 97.12 96.21 96.40 94.80 

ANFIS 58.3 93.52 91.93 94.36 93.50 93.96 92.75 
1 number of  neurons     
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Once TREPAN and ANFIS are trained, their models are used to estimate the net-
work reliability. A random data set with NM = 10000 data pairs (xi,yi) was generated 
using Pi=0.90. Each system state is evaluated using the EF previously selected (that 
is, a depth-first procedure) and both trained models. The average system reliability 
based on EF was 0.9940. TREPAN and ANFIS models produced the same average 
system reliability. 

Rocco and Moreno [11] and Rocco and Muselli [12] analyze the same network us-
ing two machine learning techniques: Support Vector Machines (SVM) and Hamming 
Clustering (HC). The SVM approach does not produce intelligible rules, so a fair com-
parison with TREPAN or ANFIS is not possible. HC is a logical synthesis method able 
to obtain excellent approximations of a Boolean function through the use of IF/THEN 
rules. Average performance results obtained by HC are better that those obtained in 
these preliminary results. Future researches, such as parameterizations, different NN 
training methods, different numbers of layers and nodes among others, are required to 
obtain more concrete conclusions about the performance of TREPAN and ANFIS.  

6   Conclusions 

This paper has presented the reliability assessment of a complex system based on two 
methodological approaches (TREPAN and ANFIS) that uses the hybridization of 
different soft computing techniques. For the case analyzed, both models, built from a 
small sample of the state space, produce approximations with a satisfactory accuracy 
but, in average, the TREPAN model outperforms the best ANFIS model. Neverthe-
less, from a complexity point of view, the ANFIS model is better since it produces a 
smaller number of rules.  

The use of hybrid intelligent systems seems to be a promising approach for assess-
ing the reliability of complex networks. It not only improves the efficiency of the inte-
grand systems, but also increases the capacity of understanding, since it produces use-
ful topological information about the network, such as minimal path and/or cut sets.  
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Abstract. The reliability of network topologies is an important key
issue for business success. This paper investigates the reliable commu-
nication network design problem using an iterated local search (ILS)
method. This paper demonstrates how the concepts of local search (LS)
and iterated local search can be applied to this design problem. A new
neighborhood move that finds cheaper networks without violating the
reliability constraint is proposed. Empirical results show that the ILS
method is more efficient than a genetic algorithm.

1 Introduction

For many network and internet based IT-applications the error-free operation
of the underlying network topology is a key issue for business success. Also,
the ongoing integration of IT-systems along the value chain requires high-speed
communication networks with low failure probability. Therefore, the availability
of communication network topologies is an important factor of design. During
the designing process, the designer tries to balance the investments made in
the network with the services and benefits provided to its users. One important
service measurement of network topology is its all-terminal reliability. This is
defined as the probability that all nodes in the network will remain connected,
given the probability of success/failure for each node and link in the network [1].
The network design problem dealt with in this paper focuses on choosing those
links from a given set of communication links, which minimize the network costs
under a given network reliability constraint. The design problem itself, and the
calculation of network reliability have been proven as a NP-hard problem[2, 3]. In
the past, metaheuristics were successfully applied to the network design process
[4, 5, 6, 7, 8].

It is known that the calculation of the all-terminal reliability is the most time-
sensitive part of the evaluation of the problems solution. Most of the existing
heuristics for this problem require a considerable computational effort in order
to evaluate several solutions. For example, population based metaheuristics such

F. Rothlauf et al. (Eds.): EvoWorkshops 2005, LNCS 3449, pp. 156–165, 2005.
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as genetic algorithms (GA) proposed in [4, 9, 10, 8] perform a high number of re-
liability evaluations in each generation. In this paper, we investigate a random
restart local search (RRLS) and an iterated local search (ILS). Both methods
need significantly fewer fitness/reliability evaluations during the optimization
process. For the neighborhood search we define a new 1-by-2-move which min-
imizes the total network costs with respect to the reliability constraint in each
step. With the application of this local search strategy in an ILS, we are able
to overcome local optima found by a local search and converge into global op-
timal solutions. In the empirical results presented, the RRLS and the ILS are
compared to a GA using a repair heuristic. We show that an ILS finds optimal
solutions with less computational effort when compared to the GA approach.

2 Problem Definition

The work presented here investigates the reliable communication network design
(RCND) problem. The challenge is to generate network topologies that satisfy a
given reliability measurement while minimizing network costs. The design prob-
lem has been proven as NP-hard [2]. Several papers have already been published
about this problem and others like it. Dengiz et al. [9] propose a GA using a
penalty function to incorporate the reliability constraint into the fitness func-
tion. Baran and Laufer [11] build upon the work of Dengiz et al. in order to treat
bigger problem situations by using a parallel GA. In [6], Dengiz and Alabap in-
troduce a simulated annealing algorithm. In [8], Reichelt et al. propose a genetic
algorithm using a repair heuristic. Baran et al. [12] investigate topology design
by a GA with multiple objectives.

In this paper the communication network N is modeled as an undirected
simple graph G(E, V ), where E is the set of edges and V the set of vertices. Each
element of the graph (edge or vertex) represents a link or node in the network.
It is assumed that the location of each node is given, setup costs for network
nodes are not considered and that, for each possible network link lij between
node i and j, cost cij and reliability r(l) are known. We do not consider repair
of failed edges. It is proposed that nodes are perfectly reliable, and edges are
either in an operational or failed state. The failures of the edges are statistically
independent with known failure probabilities. The reliability of edge eij in G is
r(eij). A network N as a solution for the problem is represented by subgraph
GN (EN , V ) with EN ⊂ E. The objective function may be stated as:

C(N) =
|V |∑
i=1

|V |−1∑
j=i+1

cijxij → min

subject to: RAll(G) ≥ R0

(1)

where C(N) is the total cost for the network topology and cij is the cost for
a network link between node i and node j. The variable xij ∈ {0, 1} indicates
whether edge eij from G representing the network link lij exists in GN .
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For the reliability measurement we use the all-terminal reliability RAll. To
determine the all-terminal reliability RAll(GN ) we consider a set of states St =
(St1, . . . ,Stn) of the graph GN . Each state Sti represents a subgraph GNi

of
GN when z edges in GN fail. A state Sti ∈ St is operational if GNi is connected.
We define Φ(Sti)=1 if Sti is operational, otherwise Φ(Sti)=0. Pr(Sti) is the
probability for state Sti. The all-terminal reliability is:

RAll(G) =
∑

Sti∈St

Φ(Sti) · Pr(Sti) (2)

The constraint for RAll(G) determines the minimum reliability requirement R0
for GN . The calculation of the all-terminal reliability has been proven as NP-hard
[3]. For calculation of network reliability the literature proposes exact algorithms
[1, 13] for networks with few edges, and Monte Carlo based estimation [14] for
large network topologies. In this paper we use a decomposition approach from
[1], and an upper bound method from [15] to calculate and estimate the all-
terminal reliability.

3 Applying an Iterated Local Search for the
Communication Network Design Problem

The concept of iterated local search is a well-known metaheuristic for combina-
torial optimization problems. A complete introduction to iterated local search
is given in [16]. This section first introduces a new neighborhood move for the
RCND problem. Afterwards an iterated local search procedure with the new
move is presented.

3.1 A 1-by-2-Neighborhood Operator

To apply a local search to a problem, one has to define a move that generates
a solution in the neighborhood N(s). In this paper we propose the 1-by-2-move
for the RCND problem. This move decreases the total cost of the network with
respect to a given reliability constraint R0. In order to generate the neighbor-
hood N(s) the move tries to delete the most costly links from the network. The
complete 1-by-2-move procedure for a given configuration s represented by GN

and an edge eij ∈ GN is shown in Figure 1.
The procedure first tries to delete the edge eij from GN . If the resulting graph

is a valid solution, the move is accepted. If the 1-by-2-move cannot construct a
valid neighbor by deleting the edge eij from GN the procedure searches for a
pair of edges that connects the vertices i and j over a vertex l using an overall
cheaper pair of edges. A reliability check ensures that the replacement of the
most cost-intensive edge by two overall cheaper edges represents a valid solution
under the given constraint. To generate the neighborhood for a solution the 1-
by-2-move is applied to all cost-intensive edges until an edge cannot be deleted
or replaced. Figure 2(a) shows a sample graph. Each edge is ranked by the edge
costs cij . The solid lines denote a subgraph GN representing a solution (network)
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procedure 1-by-2-move
input: eij , GN , G , R0

if (RAll(GN ) ≥ R0 with : EN \ {eij})
EN ← EN \ {eij}
return GN

candEdgesPair = ∅
for all ({(eik, ejl)|(eik, ejl ∈ E) ∧ (eik, ejl /∈ EN )})

if (k = l) ∧ (cij > (cik + cjl))
add {eik, ejl} to candEdgesPair

sort candEdgesPair by (cik + cjl) ascending
for {e1, e2} ∈ candEdgesPair do

if (RAll(GN ) ≥ R0 with: EN \ {eij} ∧ EN ∪ {e1, e2})
EN ← EN \ {eij} ∧ EN ∪ {e1, e2}
return GN

Fig. 1. 1-by-2-neighbor move
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Fig. 2. Example 1-by-2-neighborhood

ssample for the problem. The dashed lines in G indicate those edges currently
not used in the network. For this example we use a 1-by-2-neighborhood solution
for the edge e15. We assume that RAll(GN ) < R0 after the removal of e15. The
1-by-2-heuristic searches two edges with total costs less than c15. Candidate
edges for the replacement are the edges {{e12, e25}, {e14, e45}} (assuming that
RAll(GN ) > R0 for the candidate edges). Since the total costs of {e12, e25} is
195 and the total cost of {e14, e45} is 140 the 1-by-2-heuristic replaces the edge
between vertex 1 and 5 with the edges {e14, e45}. The resulting neighbor for
ssample is shown in figure 2(b).

3.2 An Iterated Local Search with the 1-by-2-Move for the RCND
Problem

The concept of ILS is simple and easy to implement. In order to apply ILS to
a problem, one has to define an initialization method, a local search operator,
a mutation operator, an acceptance criteria and a termination condition. ILS
could also be used very easily for problems with a previously defined local search
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procedure Iterated Local Search
input: GN , G, R0

s0 = RandInitNetwork()
s∗ = 1-by-2-LocalSearch(s0)
do

s′ = mutate(s∗)
s′′= 1-by-2-LocalSearch(s′)
if (C(Ns′′) < C(Ns∗))

set s∗ = s′′

while (s∗ improved in last 10 iterations)

Fig. 3. ILS procedure

operator. The steps performed using the ILS for the RNCD problem are shown
in Figure 3. The ILS starts from an arbitrarily randomly-generated solution
s0. For each randomly-generated solution a reliability check to ensure that the
solution is valid under the given reliability constraint. Using the 1-by-2-move
the local search procedure tries to find a solution s in the neighborhood of s0
with C(Ns) < C(Ns0) and R(Ns) > R0. The solution with the smallest C(Ns)
is saved as s∗. Clearly, a solution s∗ is a local optimal for a RCND problem.

Afterwards, the ILS procedure enters an inner loop, which iteratively starts a
mutation followed by a local search using the best found solution s∗. In order to
bypass the local optima and to arrive at the global optimal solution, a mutation
operator generates s′ by perturbing the current best solution s∗. The ILS mutation
operator used here randomly adds currently unused edges from G to GN . The new
solution s′ generated by the mutation operator is used as a starting solution for
the local search procedure. With the 1-by-2-move the local search performs a local
search in the neighborhood of s′. The best result found by the local search is saved
in s′′. A new solution s′′ is accepted as a starting solution for the next ILS inner loop
iterationwhen the total cost of the new solutionC(Ns′′) is less than the current best
network cost C(Ns∗) and the solution does not violate the reliability constraint.
Otherwise the inner loop iterates with the best solution previously found. An ILS-
run stops if there is no improvement for C(Ns∗) in the ten previous iterations.

4 Experiments

4.1 Experimental Design

For our experiments we used a random restart local search (RRLS), an ILS and
a Steady State GA (with overlapping populations). All experiments are done
on a PIV- 2Ghz Linux PC. For each heuristic an initial solution is randomly
generated. We use the decomposition approach from [1] and an upper bound
method from [15] to calculate the all-terminal reliability. To accelerate the algo-
rithms, the reliability calculation procedure first estimates the reliability upper
bound by [15]. Only for networks with a reliability upper bound greater than R0
the exact reliability is calculated using the method from [1]. We perform 1000
independent runs for each problem with the RRLS, and 10 independent runs for
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each problem with the ILS and GA. The RRLS and LS used the 1-by-2-move
from Section 3.1 to generate the neighborhood for a solution. The RRLS and
ILS are implemented in C++. The GA uses the repair heuristic from [8] and
is implemented in C++ using the GALib[17]. For the GA, we use a population
size of 100, 50% replacement, a uniform crossover with a crossover probability
of pcross=0.9 and a mutation probability of pmut=0.01.

4.2 Results

Table 1 summarizes the results obtained by the RRLS, the ILS and the GA. The
table shows the number of nodes |V | and the number of edges |E|, the edge reli-
abilities r(l) and the reliability constraint R0. The test problems are taken from
[9]. Networks with the same number of nodes and same number of edges differ
in the node positions and edge costs. Cbest for the 11-nodes-problem with r(l) =
0.9, R0 = 0.95 and r(l) = 0.95, R0 = 0.95 are the best costs ever found. The op-
timal solutions Cbest for all other test problems are published in [9]. We call the
best fitness at the end of a run Cbestrun. We define DAV G as the average differ-
ence (in %) for all runs between the best fitness at the end of one run and Cbest :

DAV G =

|runs|∑
i=1

(Cbestruni
∗100

Cbest
− 100)

|runs| (3)

where |runs| is the number of runs. A high value for DAV G means that there
are many runs with a high difference between Cbestrun and CBest. A small value
for DAV G shows that an algorithm finds solutions close to CBest in all runs .

DBest (in %) is the difference between the best fitness of all runs and Cbest

for a test problem. Defined as:

DBest =
min{Cbestrun1 . . . Cbestrun|runs|} ∗ 100

Cbest
− 100 (4)

Dbest shows the ability of an algorithm to find Cbest in at least one run. DBest = 0
means that the algorithm finds a solution with C(N) = Cbest in at least one run.
The average number of fitness evaluations over all runs is shown by #Eval.

For each problem the size of the search space is 2|E|. While a 6-nodes-test
problem has only 32768 solutions the search space for a 10 nodes problem with
45 edges is already 245 ≈ 3.5 · 1013. The results show that the RRLS is able to
find optimal solutions for small problem instances (up to 7 nodes). An increase of
DBest for larger problems indicates that the RRLS remained in a local optimum.
This can be explained by the fact that a local search method is unable to leave
a local optima during a search. The higher value DBest for larger problems
shows that the best solutions found by the RRLS have a higher fitness difference
Cbestrun − CBest. This means that the RRLS often converges in a local optima.
For the RRLS, the high value of DAV G for all test problems shows that the
RRLS only finds global optima in few of the runs, while most runs end up with
a local optimal solution.
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Table 1. Comparison of RRLS, ILS and GA

RRLS ILS GA
|V | |E| r(l) R0 Cbest DAV G DBest #Evals DAV G DBest #EvalsDAV G DBest #Evals
6 15 0,9 0,9 231 23,33% 0,00% 10 9,52% 0,00% 49 0,00% 0,00% 288
6 15 0,9 0,9 239 41,63% 6,28% 10 6,02% 0,00% 62 0,00% 0,00% 184
6 15 0,9 0,9 227 41,35% 0,00% 10 6,17% 0,00% 55 0,00% 0,00% 171
6 15 0,9 0,9 212 50,35% 0,00% 10 2,40% 0,00% 48 0,00% 0,00% 278
6 15 0,9 0,9 184 42,13% 0,00% 10 5,00% 0,00% 44 0,00% 0,00% 193
6 15 0,950,95 227 20,40% 0,44% 10 13,00%0,00% 36 1,10% 0,00% 758
6 15 0,950,95 213 46,63% 0,00% 10 1,31% 0,00% 46 0,00% 0,00% 284
6 15 0,950,95 190 60,53% 0,00% 10 13,58%0,00% 64 0,00% 0,00% 201
6 15 0,950,95 200 52,29% 0,00% 10 9,50% 0,00% 33 0,50% 0,00% 436
6 15 0,950,95 179 41,03% 0,00% 10 6,70% 0,00% 77 0,00% 0,00% 762
7 21 0,9 0,9 189 31,72% 0,00% 14 7,67% 0,00% 124 0,00% 0,00% 598
7 21 0,9 0,9 184 57,85% 0,00% 14 1,25% 0,00% 92 0,00% 0,00% 403
7 21 0,9 0,9 243 38,03% 3,29% 14 6,42% 0,00% 94 2,18% 0,00% 418
7 21 0,9 0,9 129 53,36% 2,33% 15 4,14% 0,00% 99 0,85% 0,00% 657
7 21 0,9 0,9 124 112,22%11,29% 15 17,10%0,00% 90 0,00% 0,00% 319
7 21 0,950,95 185 30,60% 0,00% 14 7,73% 0,00% 67 0,00% 0,00% 977
7 21 0,950,95 182 54,57% 0,00% 14 4,51% 0,00% 75 0,00% 0,00% 782
7 21 0,950,95 230 40,67% 2,17% 14 4,65% 0,00% 72 1,04% 0,00% 416
7 21 0,950,95 122 52,44% 5,74% 14 4,84% 0,00% 79 0,57% 0,00% 846
7 21 0,950,95 124 104,97% 5,65% 14 13,55%0,00% 70 0,00% 0,00% 291
8 28 0,9 0,9 208 48,49% 4,81% 17 4,71% 0,00% 149 0,00% 0,00% 401
8 28 0,9 0,9 203 55,27% 4,93% 18 0,00% 0,00% 137 0,00% 0,00% 507
8 28 0,9 0,9 211 58,97% 18,96% 14 6,93% 0,00% 84 0,00% 0,00% 685
8 28 0,9 0,9 291 42,97% 0,00% 16 2,75% 0,00% 159 0,10% 0,00% 710
8 28 0,9 0,9 178 54,02% 0,00% 19 1,01% 0,00% 143 0,84% 0,00% 887
8 28 0,950,95 179 59,26% 0,00% 17 3,02% 0,00% 149 0,28% 0,00% 522
8 28 0,950,95 194 52,40% 4,12% 18 4,28% 0,00% 128 0,31% 0,00% 836
8 28 0,950,95 197 46,25% 0,00% 19 5,69% 0,00% 88 0,46% 0,00% 1070
8 28 0,950,95 276 42,97% 0,36% 16 4,78% 0,00% 108 2,17% 0,00% 805
8 28 0,950,95 173 51,65% 2,31% 19 8,79% 0,00% 89 1,62% 0,00% 1133
9 36 0,9 0,9 239 57,93% 2,93% 21 6,78% 0,00% 136 0,00% 0,00% 790
9 36 0,9 0,9 191 64,26% 1,57% 23 5,85% 0,00% 134 1,57% 0,00% 979
9 36 0,9 0,9 257 42,59% 8,95% 23 6,85% 0,00% 129 2,18% 0,00% 1051
9 36 0,9 0,9 171 73,73% 4,09% 21 5,15% 0,00% 153 0,00% 0,00% 714
9 36 0,9 0,9 198 58,57% 0,51% 22 0,05% 0,00% 148 0,00% 0,00% 809
9 36 0,950,95 209 65,01% 0,00% 21 1,96% 0,00% 151 0,00% 0,00% 683
9 36 0,950,95 171 70,97% 0,00% 23 11,29%0,00% 165 0,70% 0,00% 1261
9 36 0,950,95 233 48,61% 6,87% 22 8,28% 0,00% 137 0,69% 0,00% 1103
9 36 0,950,95 151 80,00% 0,00% 21 12,38%0,00% 137 1,79% 0,00% 757
9 36 0,950,95 185 55,62% 0,00% 22 6,92% 0,00% 111 0,16% 0,00% 1062
10 45 0,9 0,9 131 42,97% 1,53% 30 4,05% 0,00% 222 0,53% 0,00% 1282
10 45 0,9 0,9 154 84,15% 10,39% 27 11,30%0,00% 224 0,00% 0,00% 940
10 45 0,9 0,9 267 52,02% 1,87% 28 0,75% 0,00% 215 0,22% 0,00% 1207
10 45 0,9 0,9 263 45,37% 0,00% 29 2,55% 0,00% 158 0,00% 0,00% 791
10 45 0,9 0,9 293 48,08% 14,33% 26 8,58% 0,00% 194 2,87% 0,00% 1208
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Table 1. (Continued)
RRLS ILS GA

|V | |E| r(l) R0 Cbest DAV G DBest #Evals DAV G DBest #EvalsDAV G DBest #Evals
10 45 0,950,95 121 42,42% 3,31% 28 5,04% 0,00% 184 2,64% 0,00% 1614
10 45 0,950,95 136 88,20% 5,88% 26 15,59%0,00% 245 0,00% 0,00% 891
10 45 0,950,95 236 57,28% 5,93% 27 5,44% 0,00% 198 2,29% 0,00% 1096
10 45 0,950,95 245 45,58% 0,00% 29 0,57% 0,00% 228 0,12% 0,00% 1037
10 45 0,950,95 268 49,03%12,60% 30 10,90%0,00% 164 0,90% 0,00% 1352
11 55 0,9 0,9 246 48,08% 9,35% 31 3,46% 0,00% 217 0,00% 0,00% 1200
11 55 0,9 0,95 277 61,35%12,64% 34 8,45% 0,00% 230 0,00% 0,00% 1049
11 55 0,950,95 210 52,91% 0,48% 31 10,14%0,00% 195 1,33% 0,00% 1543

For all problem instances the average number of fitness/reliability evaluations
done by RRLS is less than that of the results obtained from the ILS and the
GA. The average number of fitness evaluations for all test problems done by the
RRLS is less than 35 runs. This shows the ability of the 1-by-2-move to rapidly
guide the search to a local optimal solution. The results show that the extension
of the LS by an additional mutation operator in an ILS method bypasses the
local optima, and finally ends up with global optimal solutions. An analysis of
DBest for the ILS points out that the heuristic found optimal solutions for all test
problems. When comparing the number of fitness/reliability evaluations (#eval),
one finds that the ILS requires more evaluations than the RRLS, but significantly
less computational effort than the GA. An analysis of the results obtained by
the ILS and the GA shows that DBest for the GA is equal to the DBest for the
ILS. But the GA performed more fitness evaluations than the ILS. The DAV G

measure shows that the GA, compared to the ILS, has a low diversification of
the best solution in all ten runs. Compared to the DAV G results for the ILS, the
GA converges more often than the ILS does with the global optimal solution in
all ten runs. This result can be explained by the nature of the GA heuristic. Over
a GA run, solutions in the population with a low fitness quality are replaced by
better solutions. At the end of a GA run only the best of the 100 solutions in
the population is used for the DAV G measure. In the ILS, the search process
is driven by only one solution, which is not always the optimal solution of the
problem in all runs.

Figure 4 shows a comparison of the running time for the ILS and GA heuris-
tics. Each plot shows the average running time (in seconds) for all runs for the
same problem class (same number of nodes) and the same configuration (link
reliability and R0). The plots in Figure 4(a) point out that the ILS is faster than
the GA for all test problems. One can see that the difference between the ILS
and GA running times increase as the problem size (number of nodes) grows.
Figure 4(b) shows a similar result with only one exception (10 nodes). Although
the GA performed more fitness evaluations than the ILS for the 10-nodes-test
problems (with r(l) = 0.95 and R0 = 0.95) the GA is faster than the ILS. This
can be explained by the implemented all-terminal reliability calculation proce-
dure which is based on a decomposition approach (see [1]). For highly reliable
networks the procedure stops after a few decomposition steps and requires low
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Fig. 4. Comparison of running time for ILS and GA

computational effort. For networks with RAll ≈ R0 the procedure must perform
more decomposition steps which require a higher computational effort. This fact
speeds up the GA, when compared to the ILS, as it generates many high re-
liable networks. The all-terminal reliability evaluation for these highly reliable
networks can be done very quickly. The all-terminal reliability calculation pro-
cedure used here also explains an other interesting fact. A comparison of the
running times for different configurations (link reliability and R0) and the same
problem class (same number of nodes) shows, that both heuristics run faster for
r(l) = 0.95 and R0 = 0.95 than for r(l) = 0.9 and R0 = 0.9 although the heuris-
tics performed more or approximately the same number of fitness evaluations. As
mentioned before, this is caused by the reliability calculation procedure. If the
all-terminal reliability evaluation procedure is replaced by a Monte Carlo simula-
tion, always drawing the same number of samples for each reliability evaluation,
the procedure has a constant computational effort. In this case the running time
of a heuristic is proportional to the number of fitness evaluations.

5 Conclusions

This paper investigated a local search and iterated local search approach for
the reliable communication network design problem. Existing approaches are
capable of finding good solutions, but call for high computational effort levels.
Due to the application of local search methods, the number of fitness evaluations
was decreased while maintaining the same quality of solutions. We presented
a new 1-by-2-move to generate the neighborhood for a solution. By dropping
and replacing the most cost-intensive network links by two overall cheaper links
under the given reliability constraint, the move found fitter neighbor solutions.
The move connected two nodes that were previously connected directly via a
third node because the indirect connection was cheaper and did not violate the
reliability constraint. The empirical results showed that a local search with the
1-by-2-move often converges in a local optimum. We proposed an iterated local
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search that is more efficient than existing approaches. This iterated local search
with the 1-by-2-move finds global optimal solutions and outperforms a GA using
a repair heuristic for a set of test problems.
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Abstract. To solve the problem of unsupervised anomaly detection, an unsu-
pervised anomaly-detecting algorithm based on an evolutionary artificial im-
mune network is proposed in this paper. An evolutionary artificial immune 
network is “evolved” by using unlabeled training sample data to represent the 
distribution of the original input data set. Then a traditional hierarchical ag-
glomerative clustering method is employed to perform clustering analysis 
within the algorithm. It is shown that the algorithm is feasible and effective 
with simulations over the 1999 KDD CUP dataset. 

1   Introduction 

Anomaly detection has been an active field of intrusion detection research since it was 
originally proposed by Denning [1]. Anomaly detection is one of the two major para-
digms for training data mining-based intrusion detection systems. Anomaly detection 
approaches build models of normal data and attempt to detect deviations from the 
normal models in data, while the other paradigm, misuse detection, detects activities 
that match attack signatures. Anomaly detection has the advantage over misuse detec-
tion in that it can detect new types of intrusions. 

Most anomaly detection algorithms available require a training data set in which 
data points are either purely normal or attacks with correct labels. If some data in the 
training data set is not labelled correctly, the algorithm may not work effectively. 
However, we do not normally have either correctly labelled or purely normal data 
readily available. And it is impractical to manually classify and label the enormous 
amount of audit data available. One could obtain labelled data by simulating intru-
sions, but then could only detect attacks that were able to be simulated.  

Researchers have addressed this in a variety of ways. In [2], it was proposed to de-
tect intrusions over noisy data. In [3], unsupervised anomaly detection was presented 
to address this problem. An unsupervised anomaly detection algorithm takes a set of 
unlabelled data as inputs and attempts to find intrusions buried within the data. It can 

1  Supported by the National Natural Science Foundation of China under Grant Nos. 60372045, 
60133010; National High Technology Development 863 Program of China under Grant No. 
2002AA135080. 
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either provide labelled data for those algorithms that require labelled data or train an 
intrusion detection classifier. 

Clustering is a typical unsupervised learning method. Traditional clustering algo-
rithms have been applied to unsupervised anomaly detection [4, 5, 6]. In [4] an algo-
rithm with low time complexity is presented .The algorithm scans the training data set 
only once. Initially, a cluster is created and the first training datum is its representa-
tive sample. And then for each datum, the distances between it and the representative 
samples of the existing clusters are calculated respectively. If all these distances are 
larger than a pre-defined cluster’s width threshold, a new cluster is created and the 
datum is the cluster’s representative sample, otherwise we find an existing cluster 
whose representative sample is closer to this datum than representatives of any other 
existing clusters. In [5], the steps are similar to those in [4], except that the representa-
tive sample of each cluster is the average of the data existing in the cluster. 

De Castro et al. [7, 8] proposed an evolutionary artificial immune network (aiNet) 
with the main goals of clustering and filtering an unlabelled numerical data set. The 
algorithm is based on a combination of the graph clustering method, immune network 
theory and the idea of clonal selection. It has the advantages of graph clustering 
methods of being able to handle data independent of distribution, automatically com-
pressing large-scale data, and not requiring a predetermined number of clusters. 
Furthermore,  it possesses the learning and memorizing ability by using the concepts 
and mechanisms of vertebrate immune systems. An evolutionary artificial immune 
network is “evolved” by using the training sample data. The construction of the 
evolutionary artificial immune network represents the distribution of the input data 
set, and then the clusters are generated by the minimal spanning tree (MST). 

Motivated by aiNet, an unsupervised anomaly detection algorithm based on an 
evolutionary artificial immune network is proposed in this paper. We evaluate our 
method over the 1999 KDD CUP IDS data [9]. The main idea of our method is to 
compress the training data with an evolutionary artificial immune network, and then 
to employ a traditional hierarchical agglomerative clustering algorithm to perform 
clustering analysis. 

2   Evolutionary Artificial Immune System

2.1   Clonal Selection Principle and Immune Network Theory [10]

It was Burnet [11] who originally proposed the famous clonal selection principle in 
1959. The principle describes the basic features of an immune response to an anti-
genic stimulus. The main properties of clonal selection are:  

1. Elimination of self antigens;  
2. Proliferation and differentiation on stimulation of cells with antigen;  
3. Restriction of one pattern to one differentiated cell and retention of that pattern by 

clonal descendants;  
4. Generation of new random genetic changes subsequently expressed as diverse 

antibody patterns by a form of accelerated somatic mutation. 
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The immune network theory was originally proposed by Jerne [12] in 1974, which 
suggests that the immune system maintains a network of interconnected B-cells for 
antigen recognition. These cells both stimulate and suppress each other in certain 
ways that lead to the dynamic stabilization of the network. Two B cells are connected 
if the affinities they share exceed a certain threshold, and the strength of connection is 
directly proportional to the affinity they share. 

Clonal selection is a dynamic process in which the immune system adaptively re-
sponds to an antigenic stimulus. The diversity of antibody, the abilities of learning 
and memorizing, network tolerance and suppression in this process are used for refer-
ence in an artificial immune system.  

2.2   Evolutionary Artificial Immune Network

De Castro proposed an evolutionary artificial immune network algorithm aiNet [7], 
which simulates the process of the immune network response to an antigenic stimulus. 
The stimulated mechanisms include antibody-antigen recognition, clonal prolifera-
tion, affinity maturation, and network suppression. An immune network is an edge-
weighted graph. It is formally defined as: 

Definition 1. An immune network is defined as an edge-weighted graph, not neces-
sarily fully connected, composed of a set of nodes called cells, and one node is con-
nected with another node by an edge. Each connected edge has a number assigned, 
called weight or connection strength. 

The network serves as an internal image of the original training data set. The num-
ber of network cells is much smaller than that of training data, so the network performs 
data compression. The KDD CUP 1999 data is a typical kind of intrusion audit data 
with large scale, high dimensions, and heterogeneous attributes. The aiNet compresses 
data and requires little expert knowledge, which motivates us to propose an unsuper-
vised anomaly detection algorithm based on an evolutionary immune network. 

3   Unsupervised Anomaly Detection Algorithm Based on an 
Evolutionary Immune Network 

Definition 2.  Matrix A ( mN A × ) is used to represent a network. Each row of A is a 

network cell. The affinity between two cells iA  and jA is the distance between them, 

i.e. ),( jiij AAds = . The smaller ijs  is, the less difference between iA and jA .

Definition 3. ),( ji Axf  is the affinity of a sample ix  in the training data set with a 

network cell jA :

)),(1/(1),( jiji AxdAxf += .,,2,1;,,2,1 ANjNi == (1)
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Algorithm 1.  Learning algorithm based on an evolutionary immune network. 

1. Initialise the parameters. Randomly generate the network cells. 1=i .

2. For antigen ix determine its affinities to all the network cells, and do: 

2.1 Select n  network cells of higher affinity to clone. The higher the affinity, the 
more cloned cells are generated; 

 2.2 Mutate the cloned cells to improve the affinity of ix and network cells. 

2.3 Re-select several of the highest affinity network cells and create a memory cell 

matrix pM

2.4 Eliminate cells in pM whose affinities are inferior to threshold dσ . Eliminate 

some cells to make the affinities among cells in pM  larger than sσ .

2.5 Concatenate A and pM , ];[ pMAA ← .

2.6 If i  is divided exactly by 2000 or Ni = , go to Step 3; otherwise, 1+= ii , go 
to Step2.

3. Calculate the affinities among the network cells and eliminate some cells to make 

all the affinities among cells larger than sσ .

4. If Ni = , stop and output A; otherwise 1+= ii , go to Step2. 

end{Algorithm1} 

In Step 2.2, let the selected cells be },,,{
21 nrrr AAA , the clone size jq  for 

jrA is given by 

)
),(

),(
int(

1=

×=
n

k
ri

ri

cj

k

i

Axf

Axf
Nq nj ,,2,1= ,

(2)

where cN is a predetermined clone size, and )int(a is a function that returns the 

minimum integer larger than a . The real total clone size is 
=

=
n

j
jc qN

1

'
. Let the 

cloned cell be a matrix CA ( mNc ×'
).

In Step 2.3, apply a mutation operation to CA as follows, 

)( iiiii xCACACA −∗−← α ′= cNi ,,2,1 .
(3)

Round the discrete attributes of iCA : )( ijij CAroundCA = , Cj ∈ , )(around is a 

function that rounds a  into an integer, ''∗ is an operator that computes the product of 

the corresponding attributes of two vectors and iα is the mutation rate of iCA . The 
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value of iα is set according to the antigen-antibody affinity, the higher the affinity the 

smaller the iα .  This step improves the affinities of ix and network cells.

Step 3 is a suppression step to reduce the number of cells. In the experiments the 
network is suppressed once after 2000 samples is learned. In practice, it can be per-
formed once the system is idle or the network is too large.  

After Algorithm 1, we get the internal image of the data set. Now we analyse the 
obtained network. The main goals are to determine the number of clusters and the 
network cells belonging to each of the identified clusters. A traditional hierarchical 

agglomerative clustering method is employed to analyse the network A ( mN A × ).

A cluster is represented by a set iω , which contains the cells belonging to it. 

Definition 4.  ),( jid ωω is the distance between clusters iω and jω , and it is equal 

to the minimum distance of the cells belonging to them respectively: 

),(min),( qpji xxdd =ωω jqip xx ωω ∈∈ , . (4)

Definition 5. ),( iyd ω is the distance between vector y and cluster iω , and it is 

decided by the minimum distance of y  and cells of jω ,

),(min),( ji xydyd =ω               ijx ω∈ . (5)

Algorithm 2.  Label clusters.  

1. Treat each cell iA  as a cluster. The number of clusters L  = AN .

2. Calculate all the distances among clusters.  

3. If all the distances are larger than the threshold wσ , go to Step5;  

4. otherwise  

4.1 merge iω and jω , which satisfy ),(min),( qpji dd ωωωω =
for Lqp ,,2,1, = ,

 4.2 1−← LL ,
 4.3  go to Step2. 
5. Label the clusters. The k -th cluster ( Lk ,,2,1= ) is labelled k .

end{Algorithm2} 

When the network is used to classify the data set },,{ 21 yyY = , iy is la-

belled j , if Llydyd liji ,,2,1),,(min),( == ωω , and njiyd σω <),( . If 

njiyd σω ≥),( , iy is considered an attack of unknown type. nσ  is a pre-defined 

threshold.  



 Unsupervised Anomaly Detection 171 

Classify the training data set with the network. If the number of data in some clus-
ters is larger than 10 percent of the number of the whole training data, this cluster is 
considered a normal cluster. The normal network cells are considered the representa-
tives of normal data, and they are the models of normal behaviours. The models can 
perform anomaly detection. Supposed the data set of the normal network cells 

is { }1 2, ,S s s= . Anomaly detection is performed on data set },,{ 21 yyY = . If 

there is some ks S∈ , which makes ( , )i k nd y s σ≤ , iy is considered a normal data 

point, otherwise an anomalous one. 

4   Simulations and Results 

4.1   Data Description and Pre-processing 

The dataset used is the KDDCUP1999 data, which consists of about 4,900,000 data 
instances. Each instance is a 42-dimensional vector (label included). Each dimension 
represents an extracted feature value from a connection record obtained from the raw 
network data. Some features are nominal-valued, some are continuous-valued, and 
some are discrete-valued.  

Process a data set of size N. The nominal attributes are converted into linear dis-
crete values (integers). For example, ‘http’ protocol is represented by 1 and ‘ftp’ by 2. 
Then, the attributes fall into two types: discrete-valued and continuous-valued. After 
eliminating labels, the data set is described as a matrix X , which has N  rows (data 

samples) and m =41 columns (attributes). There are dm =8 discrete-value attributes 

and cm =33 continuous-value attributes. Supposed 1 2{ , , , }NX x x x ′= ,

),,,( 21 imiii xxxx = , Ni ,,2,1= . Define the set C= {k | the k-th attribute of 

X is continuous-valued attribute}, and set D= {k | the k-th attribute of X is discrete-
valued attribute}.  

Now normalization is performed, since, if one of the input attributes has a rela-
tively large range, it can overpower the other attributes. The method is distance-based. 
The data set is converted, but for simplicity the data set is still represented by X . The 
vectors below are normalized vectors. 

The distance between two vectors is given by 

==

+−=
dmcm d

dl
jlil

c

ck
jkikji xxxxxxd

11

),()(),( 2 δλ . (6)

where )(⋅δ is a function as 
≠

=
=

yx

yx
yx

1

0
),(δ .

Unsupervised anomaly detection algorithms make two assumptions about the data. 
The first is normal instances vastly outnumber intrusions. The second is intrusions are 
qualitatively different from normal instances.
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4.2   The Results and Analysis 

Six data sets are selected for the experiments. Each data set contains 12,000-15,000 
data and 6-8 types of attacks. The number of intrusions in each set meets the first 
assumption requirement. The data sets are divided into two groups. Each group has 
one training set and two test sets. Attacks in one of the test set are the same types as in 
the training set, whilst the other test set contains attack types that do not appear in the 
training set and is used to test the capability of detecting unknown attacks. 

The performance of an intrusion detection algorithm is usually measured by the de-
tection rate (DR, the number of intrusion instances detected divided by the total num-
ber of intrusion instances) and the false positive rate (FR, the number of normal in-
stances misclassified as intrusions divided by the total number of normal instances). 
The trade-off between them is inherently present in many methods, including ours. 

Now the parameters need to be fixed. The key parameter in Algorithm 2 is 

wσ which decides the number of output classes. As for Algorithm 1, there are quite a 

few parameters, and it is difficult to give a theoretical guide on how to decide them. 

Here we discuss two of them, 
d

σ and
s

σ , which have a great effect on the size of the 

output network, i.e. the number of output cells. A network with large size represents 
the data set better, but needs more resources for computation and storage, while a 
small-size network saves resources with more loss of precision of representing a data 

set. When 
d

σ is between[0.1,0.5] , the results are acceptable.  

An experiment is made to decide the choice of parameters. It is made over training 
set 1 and one of its test sets, which has the same attack types as training set 1. The 
training set has 6 types of attacks. With the normal class, there are 7 classes. In Ta-

ble~1 the influence of 
s

σ  on the network size is presented. For a fixed wσ (10), the 

larger the output network is, the higher the detection rate. Considering the trade-off 
between detection rate and resources, we find 150 a good selection for network size. 

Accordingly 1.25 is used for 
s

σ  to keep the size around 150.  

Table 1. Influence of network size 

Example Training set 1 Test set Network 
size

Class  
Number DR (%) FR (%) DR (%) FR (%) 

106 10 66.3 2.3 63.3 2.8 
135 11 75.5 4.6 72.1 4.9 
151 12 90.5 11.8 85.6 12.2 
180 12 90.8 12.2 86.1 12.5 

Table 2 presents the comparison of our method with the method in [3]. Comparing 
the results of the two methods, we see that our method achieves a higher detection 
rate when the false positive rates of the two methods are similar. And our method has 
a lower false positive rate while both the detection rates are similar. Besides, our 
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method performs better in the detection of unknown attacks. Now we can state that 
our method performs better than the method in [4] and compares well with other ap-
proaches [13].  

Both methods are able to learn incrementally. In our method the obtained network 
cells can be used as the initial cells of Algorithm 1. Our method is more complicated 
in computation than the method in [4], but simpler than the direct use of Algorithm 2. 
The complexity of Algorithm 2 is 2 2( )O cN m , in which c is the number of clusters.  

We can always get NN A <<  ( AN is less than 0.5% of N ). If Algorithm 2 were 

used directly in training data set, the complexity would be unacceptable. 
Comparing the two methods, one point is saved for one cluster in the method of 

[4], while several points are saved for each individual cluster in our method. That is 
one of the reasons why our method approximates the data of irregular shape distribu-
tion better and hence performs better. 

Table 2. The comparison of the method in this paper and in reference [4] 

 The performance in test sets 
Method in the paper Method in [4] 

Known  
attacks 

Unknown 
attacks 

Known  
attacks 

Unknown 
attacks 

Training  
set wσ

DR FR DR FR 
w

DR FR DR FR 
10 90.6 13.2 86.1 13.9 15 90.5 15.1 85.8 15.4 

12 85.3 4.6 83.2 5.6 20 82.1 4.5 82.1 5.5 
15 72.1 2.2 69.5 3.1 22 75.2 3.2 72.5 5.9 

Training 
 set 1 

18 57.5 0.9 55.8 1.5 25 56.3 1.5 53.5 2.3 
10 92.5 12.5 87.5 12.9 15 91.8 15.4 87.5 13 
12 86.7 4.2 83.3 5.3 20 87.6 5.5 82.8 5.5 
15 73.8 1.5 73.1 2.1 22 74.5 2.4 73.1 2.9 

Training  
set 2 

18 45.5 0.8 42.5 1.2 25 45.8 1.2 42.2 1.5 

Just like other distance-based unsupervised anomaly detection algorithms [4,5,6], 
our method cannot detect some kinds of attacks (e.g. some DOS and R2U attacks) for 
they are not qualitatively different from the normal instances. Another disadvantage 
of our method is that a lot of parameters and thresholds have to be pre-defined, and 
the algorithm is sensitive to the parameters and the thresholds. 

5   Conclusion

This paper addresses the problem of unsupervised anomaly detection, which has the 
advantage of processing unlabeled raw data directly.  An evolutionary artificial im-
mune network is first “evolved” by using the unlabelled training sample data, and then 
a traditional cluster method is used. The algorithm performs well over the KDD CUP 
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1999 data sets, which are typical of the kind of large-scale, high dimensional, hetero-
geneous-attributes data in IDS. The method will help detect new unknown type attacks. 

Our further work includes defining a better distance metric, automatically deter-
mining parameters and increasing the computing speed. 
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1 Department of Computer Engineering,
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Abstract. Location area (LA) management is a very important prob-
lem in mobile networks. In general, registration and paging costs are
associated with tracking the current location of a mobile user. Consid-
ering minimizing the total of paging and registration costs as the main
objective, the aim is to provide corresponding cell-to-switch and cell-
to-LA assignments. This paper compares three well-known evolutionary
algorithms to measure their suitability for solving location area manage-
ment problems; these are genetic algorithms, multi-population genetic
algorithms and memetic algorithms. To handle multiple objectives of
paging and registration, a two-stage multi-population GA is developed.
A memetic algorithm is introduced in order to improve the performance
of a GA with the local search techniques. The effectiveness of these meth-
ods is shown for a number of test problems with different network size
and characteristics.

1 Introduction

Mobile communication becomes more prominent every day as the globalization
and the speed of daily life increases. One of the challenges in mobile networks
is Location Management, which is to be able to track the current locations of
the users. In a typical cellular mobile network, the area of coverage is divided
into cells and in general, the shapes of these cells are modeled pictorially as
hexagons. Each cell is associated with a base station, which is responsible for
communicating with the users in its coverage area, i.e. the associated cell. In
order to route incoming calls to appropriate base stations, the network should
be aware of which cell the user is currently located in.

The two main operations of location management are registration and paging.
When an incoming call arrives to a mobile station, the network searches the
mobile station in all possible cells to find out the cell on which the mobile
station is located, so the call can be routed to the corresponding base station.
This search operation is called paging. The set of base stations in which a mobile
is paged is called the location area (LA). The registration operation is performed

F. Rothlauf et al. (Eds.): EvoWorkshops 2005, LNCS 3449, pp. 175–184, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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by the mobile station. When a mobile station changes its location, it updates its
location information on the system. The number of all possible cells to be paged
depends on the performance of the registration of mobile stations.

Location area management techniques are classified according to their use of
zone, time, movement, distance or profile information [1]. In zone-based schemes,
the cellular network is divided into location areas; if the mobile station changes
its location area, the registration operation is applied. Whenever an incoming
call arrives, the mobile user is paged in its current location area.

Optimal location area planning in zone-based schemes is not widely studied
in the literature. Saraydar et al. [2] proposed a one-dimensional location area
design. In their work, they consider a linear service area like a highway, which
connects cities or railway lines. They aim to divide the highway into location ar-
eas along its length so that paging and registration cost is minimized. Demirkol et
al. [3, 1, 4] developed a simulated annealing (SA)-based solution for the cellular
network structuring problem. Subrata and Zomaya [5, 6] proposed three differ-
ent techniques (genetic algorithm, tabu search and ant colony optimization) for
determining the optimal reporting cell locations efficiently. Reporting cells are
used to keep track of the location of mobile users in the network. Quintero and
Pierre [7, 8] proposed a multi-population memetic algorithm for assigning cells to
switches in a mobile network. When compared with our method, there are differ-
ences in these methods with respect to the network structure, set of constraints
and/or the objective function.

In this paper, we study the zone-based scheme due to its wide usage in
GSM systems. Evolutionary algorithms have been applied successfully in var-
ious domains of search and optimization. This paper presents a comparison of
three evolutionary algorithms applied in location area management problem,
namely genetic algorithm (GA), multi-population genetic algorithm (MPGA),
and memetic algorithm (MA).

The rest of the paper is organized as follows. Problem definition, constraints
and objective function are given in Section 2. Section 3 presents the details of
evolutionary algorithms applied in location area management problems. Section
4 provides a set of computational experiments for comparing the performance of
the proposed methods, and Section 5 concludes the paper.

2 Problem Definition

In this study, a model that is consistent with the GSM hierarchy is presented,
based on the model given in [3, 1, 4]. It consists of base stations (BSs), base
station controllers (BSCs) and mobile switching centers (MSCs). The base sta-
tions (BSs) are grouped in a number of location areas (LAs). The objective is to
provide cell-to-switch and cell-to-LA assignments so that the total cost is mini-
mized. Figure 1 gives a 3x3 network and a sample solution for cell-to-switch and
cell-to-LA assignments.

The total cost (CT ) is formally represented as

CT = P · CP + R · CR (1)
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Fig. 1. A 3x3 network with cell-to-switch and cell-to-LA assignments

where CP is the paging cost and CR is the registration cost; These costs do not
have comparable units. Although in reality the cost of paging and registration to
the network varies from cell to cell, previous researchers use some assumptions
for the relative values of these costs such as assuming one unit cost for each
paging-event is equal to 10 units cost for each registration-event [1].

The paging cost is a result of incoming calls to mobiles. The paging cost on
a cell is the total of paging rates of the cells that belong to the same location
area with that cell, which is calculated by,

CP = P ·
∑

i

λi(1 − dis) (2)

where λi is the paging rate per unit time for each base station in the network.
The term dis is a function that returns 1 if the ith base station and sth base
station reside in the same location area; and it is equal to 0, otherwise.

Each time a user leaves a location area and enters a new one, it sends a
registration message on the uplink control channel. Therefore the rate at which
mobile users cross a boundary determines the cost of registration signalling. This
cost is calculated by:

CR = R ·
∑

i

qi (3)

where qi is the rate at which users pass by location i (i.e., handover rate). It
should be noted that only the active-state handovers between cells at LA bound-
aries are considered, since it is difficult for a cellular network to collect idle-state
cell boundary crossings. The unified objective given in equation 1 is subject to
the constraints given below:

– Paging Capacity of BS: Maximum number of paging for one base station
in one time slot.

λi < PiBS ,∀i (4)

PBS
i : The paging capacity of each base station.
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– Paging Capacity of BSC: Maximum number of paging for one base station
controller in one time slot. ∑

i

xijλi < PBSC
j ,∀j (5)

xij :xij returns 1 if ith cell is a member of jth BSC, otherwise 0.
PBSC

i : The paging capacity of each base station controller.
– Call Traffic Capacity of BSC: Maximum number of calls for one base

station controller in one time slot.∑
i

xijci < CBSC
j ,∀j (6)

ci : call traffic rate for cell i.
CBSC

j : Maximum call traffic capacity of BSC j .
– Call Traffic Capacity of MSC: Maximum number of calls for one mobile

services switching center in one time slot.∑
j

∑
i

xijyjkci < CMSC
k ,∀k (7)

yjk : returns 1 if jth BSC is a member of kth MSC, otherwise 0.
CMSC

k : Maximum call traffic capacity of each MSC.
– BHCA Capacity of BSC:BHCA stands for busy hour call attempt rate.

This call arrival rate includes not only established connections but also the
failed attempts. ∑

i

xijdi < DBSC
j ,∀j (8)

di: peak call attempt rate of cell i per unit time.
DBSC

j : Busy hour call attempt capacity of each BSC.
– BHCA Capacity of MSC: In order to have a feasible cellular network,

the limited call processing capability mobile services switching centers may
create a limit on the peak call arrival rate.∑

j

∑
i

xijyjkdi < DBSC
k ,∀k (9)

– TRX Capacity of BSC: TRX stands for transmitters. Each base station
controller has a finite number of transmitters.∑

i

xijri < RBSC
j ,∀j (10)

ri: number of TRXs in each cell i. RBSC
j : number of TRXs in each BSC j.

– TRX Capacity of MSC: Each mobile service switching center has a finite
number of transmitters, which defines the number of channels used in that
cell. ∑

j

∑
i

xijyjkri < RMSC
k ,∀k (11)

RMSC
k : Maximum number of TRXs for each MSC.
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Additionally, each BS should be assigned to exactly one BSC; each BSC
should be assigned to exactly one MSC; and each BS should be assigned to
exactly one LA. There are also proximity constraints. All base stations in a
location area must be adjacent to each other. Also the location areas in base
station controllers must be adjacent to each other.

On the other hand, the maximum number of location areas that can exist
in a given network is equal to the number of cells in that network. The same
constraints are applied to base station controllers. Additionally, maximum num-
ber of mobile services switching centers that can exist in a network is equal to
the number of base station controllers in a network. The minimum number of
mobile services switching center is equal to 1.

3 Evolutionary Algorithms for Location Area
Management

This paper presents a comparison of three evolutionary algorithms applied to
the location area management problem, namely genetic algorithm (GA), multi-
population genetic algorithm (MPGA) and memetic algorithm (MA). In this sec-
tion we first present the common parts in these three methods, including string
representation, initial population generation and variation operators, which is
followed by extensions in MPGA and MA.

3.1 String Representation

The string representation of a given network structure is represented by pointer
arrays in an hierarchical way. Each individual is represented with an array that
holds all mobile switching centers within the given network. Each mobile switch-
ing center points to a base station controller array, which includes all base station
controllers associated with the given mobile switching center. Similarly, each base
station controller is linked to the corresponding location areas, where each lo-
cation area points to all base stations within the given location area. Figure 2
gives the string representation of the solution given in Figure 1.

3.2 Initial Population Generation

First, the number of location areas in a solution is determined randomly, and base
stations in the network are placed in these location areas. The location areas are
placed into the base station controllers and the base station controllers are placed
into mobile services switching centers, randomly. Then, the validation phase is
performed in order to satisfy the constraints presented in Section 2. An important
condition for validation of BS-to-LA, BS-to-BSC and BSC-to-MSC mappings is
the consideration of proximity constraints. The base stations mapped to a given
location area must be neighbors. After the validation phase is performed, all
BSCs, MSCs and LAs in the network will have at least one mapping.
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Fig. 2. String representation of the solution given in Figure 1

3.3 Fitness Function and Parameters of GA

The fitness value of any individual is equal to (1/CT ) where CT is the total cost
of an individual. Roulette wheel selection is performed after the fitness values
are normalized to the [0..1] range. Since an elitist strategy is considered in our
solutions, the best 10% solutions of a given population are passed to the next
generation. The population size and number of generations are set according
to the size of the network from the set {50, 100, 250, 500}. After a number of
experiments with various network sizes are performed in order to determine the
best crossover and mutation rates, the minimum total costs are observed for the
cases when crossover rate is set to 0.70 and mutation rate is set to 0.15.

3.4 Variation Operators

The crossover operator is performed on location area assignments of the given
solutions. The crossover point is randomly selected, which should be in the range
between 1 and min(LAP1 ,LAP2) -1, where LAP1 and LAP2 are the number of
location areas in parent solutions P1 and P2, respectively. Then, parent solutions
change their location areas according to the crossover point. The number of
location areas in each solution does not change after the crossover, instead base
stations in location areas will change. A validation phase is required after the
crossover operator, due to the following conditions:

– A base station may disappear in the offspring after crossover is performed.
– A base station may occur twice in the offspring.
– The location areas in base station controllers may not preserve proximity

constraints.

In our mutation operator, first, a location area is selected randomly. Then,
a randomly selected base station in this location area is swapped with a base
station from another location area. After the mutation operation is performed, a
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location area may include a new base station which does not preserve the prox-
imity constraints of the location area. A similar validation phase is performed
to adjust both proximity and capacity constraints.

3.5 Extensions for Multi-population Genetic Algorithm

We consider a two-stage multi-population genetic algorithm (MPGA) in this
study. In the first stage, a population is divided into two sub-populations, and
each sub-population is evolved separately using a genetic algorithm by con-
sidering its own objective, which is either minimization of the paging cost or
minimization of the registration cost.

After the completion of the first phase, an elitist strategy is used to generate
a population from the two sub-populations, which becomes the initial population
of the second stage. In the second stage, the objectives are combined by weighting
to form a single objective function for optimization. We consider the total cost
function given in the Equation 1, as the objective of the second phase.

According to this representation, our approach can be considered as a method
of using a modified version of VEGA (vector evaluated genetic algorithm) in the
first stage and a modified version of MOGA (multiple-objective genetic algo-
rithm) in the second stage.

3.6 Extensions for Memetic Algorithm

Memetic Algorithms, also known as hybrid genetic algorithms, are population-
based heuristic search approaches for combinatorial optimization problems based
on cultural evolution [9, 10, 11]. Local search plays a significant role in memetic
algorithms. We consider local search in our method for generating the initial
population and applying the mutation operator. It is considered to improve
randomly generated initial populations with a predefined number of neighbor-
hood solutions.

Similarly, a predefined number of exchanges (i.e., switching the LA-assignments
of two base stations) are performed as part of the mutation operator. The one
with the minimum total cost is the output of the mutation operator. As in the
GA-based version, the output of the mutation should be validated according to
the given constraints.

4 Experimental Study

The tests presented in this section are performed on a Pentium IV 2GHz PC
with 2.6GB RAM. A scenario generator is implemented in order to generate data
sets with different characteristics. It assigns paging rate, handover rate and busy
hour call attempt rates for each base station in the network, according to the
inputs that specify the ranges of each parameter. The number of base stations
in a given network defines the size of the problem.

In order to determine the values of GA parameters in our comparison study, a
set of experiments is performed using different parameter values on different data
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Fig. 3. Performance comparison of three algorithms for average and best costs

sets. Experiments are repeated 5 times for each data and parameter set. Based
on these tests, the crossover rate is set to 0.7 and mutation rate is set to 0.15.

4.1 Varying the Number of Generations

The first group of experiments measure the performance of algorithms by varying
the number of generations for a network with 256 base stations. Figure 2 and
Figure 3 present the average total costs and minimum total costs of solutions
generated by the three algorithms for the given network size, respectively. As
can be seen from the figures, memetic algorithm outperforms the other methods.

When the running time of the algorithms is considered for the given network,
the MA takes 69.99 seconds to provide the solution, MPGA takes 11.21 seconds,
and the GA takes 5.72 seconds. The running time of MA is significantly higher
than the others, which is due to the local search phase added for generating the
initial population and applying the mutation operator.

4.2 Varying the Network Sizes

The performance of algorithms are compared with respect to different network
sizes and input parameters. We consider two different network sizes: a network
with 256 base stations and a network with 576 base stations. The number of lo-
cation areas, base station controllers and mobile services switching numbers are
determined within the program. Average total costs of solutions that are gener-
ated from the evolutionary algorithms are presented in Table 1, which includes
results of eight random data sets (four with the 256 base stations and four with the
576 base stations). According to the results, a memetic algorithm outperforms the
other algorithms for all given data sets (i.e. both small size and large size networks).

Additionally, the algorithms are compared with different number of base sta-
tions, base station controllers and mobile services switching centers. A total of
9 experiments are done. Six of them are for 256 BSs, 8 BSCs and 8 MSCs;
and three of them are for 576 BSs, 16 BSCs and 16 MSCs. As in the previous
experiments, the best results are obtained from the memetic algorithm [12].



Evolutionary Algorithms for Location Area Management 183

Table 1. Average total costs of solutions for different data sets

Data GA MPGA MA
Random Set 1 (256 BS) 7077 6738 6190
Random Set 2 (256 BS) 7090 6761 6164
Random Set 3 (256 BS) 7059 6730 6171
Random Set 4 (256 BS) 7129 6696 6146
Large Random Set 1 (576 BS) 13214 12552 11388
Large Random Set 2 (576 BS) 13100 12513 11350
Large Random Set 3 (576 BS) 13055 12418 11404
Large Random Set 4 (576 BS) 13068 12496 11340

Finally, a set of experiments are done for observing the effects of network
characteristics. Handover rate, paging rate and call traffic rates are varied from a
given range for the given data sets. For each network parameter, experiments are
performed by setting the value of the parameter with a predefined low and high
values. It was observed that memetic algorithm outperforms other algorithms
for both high and low values of all three network parameters [12].

5 Conclusions

In this paper we present a formulation for cell-to-switch and cell-to-LA assign-
ments for a given network structure. Considering the minimization of the total
paging and registration costs is the main objective, the aim is to provide feasible
BS-to-LA, BS-to-BSc and BSC-to-MSC assignments. We compare three well-
known evolutionary algorithms to measure their suitability for solving location
area management problem. When the algorithms are compared with respect to
the unified cost value, memetic algorithm always gives the best results. When the
running times of the algorithms are considered, the memetic alorithm requires
more computation due to the local search phase.

Acknowledgments: The authors would like to thank to Prof. Cem Ersoy and
Ilker Demirkol for their support on the model and the input data sets.
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Abstract. A method for the evolutionary design of polymorphic digital
combinational circuits is proposed. These circuits are able to perform dif-
ferent functions (e.g. to switch between the adder and multiplier) only as
a consequence of the change of a sensitive variable, which can be a power
supply voltage, temperature etc. However, multiplexing of standard so-
lutions is not utilized. The evolved circuits exhibit a unique structure
composed of multifunctional polymorphic gates considered as building
blocks instead. In many cases the area-efficient solutions were discovered
for typical tasks of the digital design. We demonstrated that it is useful
to combine polymorphic gates and conventional gates in order to obtain
the required functionality.

1 Introduction

Evolutionary algorithms have been utilized to design analog as well digital cir-
cuits in the recent years [1, 2, 4]. In many cases the evolutionary approach dis-
covered new and creative solutions to hard problems. New solutions, methods
and techniques have been developed that designers did not know before. For
example, the intrinsic evolution allowed engineers to exploit physical features of
reconfigurable devices in order to utilize hardware effectively in a given particular
situation [8]. One of these achievements is called polymorphic electronics.

The papers [5, 6, 7] show that it is possible to design and effectively imple-
ment multifunctional digital gates whose functionally can be controlled in a
non-traditional way: by temperature, power supply voltage (Vdd), some exter-
nal signals etc. As an example, we can mention a novel topology created for
the multifunctional NAND/NOR gate which operates as NOR in the case that
Vdd=1.8V and as NAND in the case that Vdd=3.3V. No conventional design is
available with this logic function controlled by Vdd [5]. There is a great poten-
tial for various applications of polymorphic electronics in many areas because
the devices composed of these gates are inherently adaptable to the changes of
a particular environment and this feature is practically for free; with no recon-
figuration overhead.

The available literature describes only the implementations of polymorphic
gates. According to the knowledge of the author of this paper no concrete cir-
cuits composed of these gates have been reported so far. The design using these
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unconventional gates seems to be a difficult task because no conventional design
technique is available. We believe that compact circuits can be created by using
the multifunctional gates as building blocks rather than by trivial multiplexing
the outputs of several conventional modules using a polymorphic multiplexer.
Hence the use of evolutionary algorithms could be a promising approach for the
design of compact and useful adaptive circuits.

The objective of this research is to evolve multifunctional digital combina-
tional circuits using the multifunctional gates as building blocks. It is assumed
that suitable multifunctional gates exist. Only the bi-functional gates are consid-
ered in this paper; however, the proposed concept is general. The evolved circuits
will perform the first required function in the first environment and the second
required function in the second environment. The change of their functionality
will be determined by the change of a control variable. For example, a circuit
should operate as the adder for the temperature 30C and as the multiplier for
200C, i.e. the temperature is the sensitive variable in that case. The problem will
be approached using cartesian genetic programming (CGP) which has already
demonstrated its success for designing digital electronic circuits [4].

The rest of the paper is organized as follows. Section 2 introduces the area of
polymorphic electronics. In Section 3 the polymorphic circuit design problem is
formulated formally and a design approach is specified in detail. While Section 4
summarizes the obtained results, Section 5 discusses them. Conclusions are given
in Section 6.

2 Polymorphic Electronics

In polymorphic electronics a function change does not require reconfiguration
as in traditional approaches in which n different modules and a switch are
needed to perform n different functions. Instead the change comes from modi-
fications in the characteristics of components (e.g. in the transistor’s operation
point) involved in the circuit in response to controls such as temperature, power
supply voltage, light, etc. [6]. Polymorphic circuits are able to work in several
modes of operation. In the most straightforward approach, there are only two
modes (it will also be our case). The existence of digital polymorphic circuits is
based on polymorphic gates. Table 1 gives examples of the polymorphic gates re-
ported in literature. Most of them have been designed by means of evolutionary
techniques.

The NAND/NOR gate is the most famous example [5]. The evolution ob-
tained a creative novel topology more compact than by multiplexing
NAND/NOR gate which is a conventional solution using a standard digital li-
brary with external voltage control. No conventional design is available with
the logic function controlled by Vdd for this task. The design of a 6-transistor
NAND/NOR gate controlled by Vdd is a complex task for a human designer.
The circuit was fabricated in a 0.5-micron CMOS technology and silicon tests
showed a good correspondence with the simulations. The circuit is stable for
±10% variations of Vdd and for temperatures in the range 20C – 200C.
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Table 1. Examples of existing polymorphic gates

Gate control values control method ref.
AND/OR 27/125C temperature [7]

AND/OR/XOR 3.3/0.0/1.5V external voltage [7]
AND/OR 1.2/3.3V Vdd [6]

NAND/NOR 3.3/1.8V Vdd [5]

There are also conventionally designed multifunctional gates (e.g. a four tran-
sistor XOR/OR/AND gate described in the US patent 042335245); however
these are not usually considered as polymorphic (see discussion in [6]).

Potential applications involve special circuits that are able to decrease res-
olution of digital/analog converters or speed/resolution of a data transmission
when a battery voltage decreases, circuits with a hidden/secret function that
can be used to ensure security, intelligent sensors, novel solutions for reconfig-
urable cells and function generators in reconfigurable devices (such as FPGA
and CPLD), circuits of random number generators changing distributions of the
probability according to the external environment and some others circuits as
discussed in [6].

The design of complex polymorphic circuits is a difficult task for engineers
since these circuits typically utilize normally unused characteristics of electronic
devices and working environment. A. Thompson has shown that unconstrained
evolutionary design is able to produce innovative designs that effectively utilize
these characteristics [8]. However, only relatively small circuits have been evolved
successfully in the field of evolvable hardware so far. Hence the evolution of useful
polymorphic circuits (i.e. the circuits larger than a simple gate) is also difficult
directly at the transistor level. So we will use the polymorphic gates as building
blocks to evolve larger polymorphic circuits.

3 Problem Formulation and Design Approach

In this work we assume that suitable polymorphic gates exist and can be used
as standard building blocks. We propose an EA-based approach to design non-
trivial combinational modules. An alternative approach could be to design a
complete complex module as a polymorphic circuit with an undistinguishable
internal structure at the gate level. This is a more challenging task since very
compact solutions could be obtained. However, it is difficult to manually control
the design process and, furthermore, the evolutionary design is not scalable.

3.1 Problem Formulation

Let P be a set of polymorphic gates. Each of them is able to implement up
to K functions (K is specified beforehand) according to a control signal which
holds up to K different values. A gate is in mode j (and so performing the j-
th function) in the case that j-th value of the control signal is activated. For
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purposes of this paper we will denote a polymorphic gate as X1/X2/ . . . /XK ,
where Xi is its i-th logic function. For example, NAND/NOR denotes the gate
operating as NAND in mode 1 and as NOR in mode 2. Note that some gates can
perform less than K different functions; however, their function must be fully
defined for each mode. For example, the conventional NAND gate considered for
polymorphic circuits will perform the same function in all modes (denoted as
NAND/NAND in Section 4).

A polymorphic circuit can formally be represented by the graph G = (V, E, ϕ),
where V is a set of vertices, and E is a set of edges between the vertices
E = {(a, b)|a, b ∈ V } and ϕ is a mapping assigning a function (polymorphic
gate) to each vertex, ϕ : V → P . As usually, V models the gates and E models
the connections of the gates. A circuit (and also its graph) is in the mode j in
the case that all gates are in the mode j.

Given P and logic functions f1 . . . fK required in different modes, the problem
of the polymorphic circuit design at the gate level is formulated as follows: Find
a graph G representing the digital circuit which performs functions f1 . . . fK in
its modes 1 . . . K. Additional requirements can be specified, e.g. to minimize
delay, area, power consumption etc.

3.2 Cartesian Genetic Programming

In other words, we are looking for a single circuit topology which will work
for all functions of the circuit. The topology will be sought by CGP which
is defined over graphs while the standard genetic programming operates with
trees [3].

CGP models a reconfigurable circuit, in which digital circuits are evolved,
as an array of u (columns) × v (rows) of programmable elements (gates). The
number of the circuit inputs and outputs is fixed. Feedback is not allowed. Each
gate input can be connected to the output of some gate placed in the previous
columns or to some of the circuit inputs. L-back parameter defines the level of
connectivity and thus reduces/extends the search space. For example, if L=1 only
neighboring columns may be connected; if L=u, the full connectivity is enabled.
We have to define for a given application the following: the number of inputs and
outputs, L, u, v and the set of functions performed by programmable elements.
Figure 1 shows an example and the corresponding chromosome. Similarly to this
example, we will use v = 1 and u = L in the proposed experiments.

Miller and Thomson originally used a very simple variant of evolutionary
algorithm to produce configurations for the programmable circuit [3]. Our algo-
rithm is based on their evolutionary technique. It operates with the population
of 128 individuals; every new population consists of mutants of the best four
individuals. Only the mutation operator has been utilized that modifies one ran-
domly selected gene of an individual. In case that evolution has found a solution
which produces the correct outputs for all possible input combinations, the num-
ber of gates is getting to minimize. Delay is not optimized. The computation is
terminated in case that no improvement of the best fitness value has been re-
ported in a given number of last generations (typically in 50000 generations).
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Fig. 1. An example of a 3-input circuit. CGP parameters are as follows: L = 6, u = 6,
v = 1, functions AND (0) and OR (1). Gates 4 and 8 are not utilized. Chromosome:
1,2,1, 2,2,0, 1,2,0, 0,5,1 3,6,0, 0,7,1, 7. The last integer indicates the output of the
circuit

As this paper deals with bi-functional gates, i.e. with bi-functional polymorphic
circuits, the fitness value is obtained as follows:

1. Set all gates of a candidate circuit into mode 1.
2. Apply all possible input combinations at the circuit inputs and calculate the

number of correct output bits B1 obtained as response for these input values
for the required function f1.

3. Set all gates into mode 2.
4. Apply all possible input combinations at the circuit inputs and calculate the

number of correct output bits B2 obtained as response for these input values
for the required function f2.

5. Calculate F1 = B1 + B2.

After achieving the required behavior for f1 and f2, the number of gates is
being minimized and the fitness value is defined as:

F2 = F1 + u − g (1)

where g denotes the number of gates utilized in a particular candidate circuit
and u is the total number of gates available.

4 Experimental Results

This section presents some interesting examples of polymorphic combinational
modules that we evolved. We dealt with small combinational circuits (up to 5
inputs and 4 outputs) with various types of bi-functional polymorphic gates. In
particular the following circuits will be presented:

– 5-bit parity circuit vs 5-bit median circuit (denoted as 5b-parity-median)
– 2-bit multiplier vs 4-input sorting network (mult2b-sn4b)
– 2-bit multiplier vs 2-bit adder (2b-mult-add)

The following list shows the target circuits (considered as single circuits) and
their conventional implementation costs measured in the number of two-input
combinational gates.
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Table 2. Evolved polymorphic combinational circuits

Circuit u run corr. opt. gates gate1 gate2
5b-parity-median 24 200 16 14 NAND/NOR XOR/XOR
5b-parity-median 20 900 48 13 NAND/XOR XOR/NOR

Mult2b-sn4b 40 1000 8 25 NAND/NOR AND/AND
Mult2b-sn4b 40 50 1 27 (a ∨ b)/XOR XOR/(a ∧ b)
2b-mult-add 40 200 11 20 NAND/NOR OR/XOR
2b-mult-add 40 200 5 23 NAND/NOR AND/AND

– 4-bit sorting network (sorts a 4-bit input vector) – 18 gates (9 AND, 9 OR)
– 2-bit adder (adds two 2-bit operands, 3-bit output) – 10 gates (a 1b full

adder requires 2 XOR, 2 AND, 1 OR)
– 2-bit multiplier (multiplies two 2-bit operands, 4-bit output) – 7 gates (5

AND, 2 XOR)
– 5-bit parity (calculates even parity) – 5 gates (4 XOR, 1 NOT)
– 5-bit median circuit (returns the middle bit of a sorted 5-bit input vector) –

10 gates (5 AND, 5 OR)

Table 2 summarizes the circuits obtained using the algorithm described in
Section 3.2. The symbol u denotes the number of gates used in CGP. The col-
umn corr. gives the number of correct circuits (i.e. perfectly working ones in
both modes) out of run runs. The minimal number of gates we obtained for a
particular circuit is given in the column denoted as opt. gates. Gate1 and gate2
are the polymorphic gates utilized in the design process. On average, tens of
thousands of generations are needed to find a solution. We learned that the cor-
rect circuits represent only a fraction of all circuits generated by evolution. In
the following figures Fig. 2, 3, 4 and 5, the label 0 denotes the first polymorphic
gate and label 1 is the second gate of the two used. The bit 0 is LSB. These
figures are taken from our design tool that we have developed.

Fig. 2. Polymorphic median – parity circuit (the inputs: 0–4; gates: 0 – NAND/XOR,
1 – XOR/NOR)
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Fig. 3. Polymorphic multiplier – adder circuit (the inputs: A (0–1), B(2–3); the out-
puts: 0–3 (0–2 in case of adder); gates: 0 – NAND/NOR, 1 – OR/XOR)

Fig. 4. Polymorphic multiplier – sorting network circuit (the inputs: A (0–1), B(2–3)
in case of multiplier; the outputs: 0–3; gates: 0 – NAND/NOR, 1 – AND/AND)

5 Discussion

No useful circuits utilizing only a single type of a polymorphic gate were ob-
tained. For instance, in case of circuits composed only of JPL’s NAND/NOR
gate, the same functionality of the circuit is obtained by exchanging NAND with
NOR or vice versa; however, the circuit operates in the negative logic and with
reordered signals. Therefore, no useful additional functionality can be achieved
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Fig. 5. Analysis of the polymorphic median – parity circuit (gates: 0 – NAND/NOR,
1 – XOR/XOR)

and so more than one type of (polymorphic) gate is needed. As Table 2 indicates,
it seems useful to combine polymorphic gates with conventional gates.

The selection of suitable gates is also important for a particular polymorphic
circuit. After our experimental work we have identified suitable polymorphic
gates for the presented circuits (see Table 2 for concrete circuits). We performed
the selection manually; next research will be conducted to use the evolution to
accomplish this task. We recognized that only a few combinations of gates are
suitable for a given problem; most combinations do not lead to a solution. As
an example, we can mention the Mult2b-sn4b problem. We run 100 experiments
for each combination of polymorphic gates taken from the following list:
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– 1: NAND/NOR and XOR/XOR
– 2: NAND/NOR and OR/OR
– 3: NAND/NOR and (a ∨ b)/(a ∨ b)
– 4: NAND/NOR and AND/AND
– 5: NAND/NOR and (a ∧ b)/(a ∧ b)
– 6: NAND/NOR and OR/XOR
– 7: NAND/NOR and XOR/AND
– 8: (a ∨ b)/XOR and XOR/(a ∧ b)
– 9: (a ∨ b)/OR and XOR/(a ∧ b)
– 10: (a ∨ b)/XOR and NXOR/(a ∧ b)

and obtained the perfect solution only for combinations (4) and (8). An open
theoretical issue remains which combinations of polymorphic gates are sufficient
to implement the required multifunctional behavior.

In some cases the evolved circuits have shown the lower number of gates when
compared to a naive implementation multiplexing of two conventional modules.
Note that the conventional two-input multiplexer requires 2 AND, OR and NOT
gates. Hence the evolutionary approach seems to be a promising method for the
design of polymorphic digital circuits. It is important to mention again that a
typical polymorphic electronic device does not have a classical digital control
signal. Hence the performed comparison is illustrative only.

In most cases we are not able to understand the topology of the evolved
circuits since implementations of required behaviors are entangled. Fig 5 shows
the analysis performed on the first circuit listed in Table 2. In the mode 1
(Fig. 5A) the realization is based on a classical implementation of parity circuits.
In mode 2 (Fig. 5B) an inefficient implementation of the 5-input median circuit
was evolved. For comparison, the implementation of the same behavior depicted
in Fig. 2 is much more compact and difficult to decode.

The CGP is not scalable in its basic form, which means that neither our
approach can be scaled. In order to illustrate the computational effort of the
proposed method, we measured the average time of evolution for 500 runs of
the multiplier – sorting network problem. In average 118,985 generations were
produced in a single run, which corresponds to 143 seconds of the computational
time at Pentium IV (2.6 GHz, 512MB RAM).

6 Conclusions

An evolutionary approach to the design of polymorphic combinational modules
has been introduced. Area-efficient implementations have been discovered for
various polymorphic gate-level circuits. We learned that it is useful to combine
polymorphic gates and conventional gates in order to obtain the required func-
tionality. The results of experiments allow us to predict that the approach could
be useful for the design of real-world applications of polymorphic electronics.
However, we have utilized hypothetic polymorphic gates. Hence a new develop-
ment is needed in the basic polymorphic gate design.
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Abstract. A biologically inspired developmental model targeted at hardware 
implementation (off-shelf FPGA) is proposed which exhibits extremely robust 
transient fault-tolerant capability. All cells in this model have identical geno-
type (physical structures), and only differ in internal states. In a 3x3 cell digital 
organism, some individuals which implement a 2-bit multiplier were discovered 
using evolution that have the ability to “recover” themselves from almost any 
kinds of transient faults. An intrinsic evolvable hardware platform based on 
FPGA was realized to speed up the evolution process. 

1   Introduction 

Living multi-cellular biological organisms exhibit several intrinsic characteristics 
electronic engineers earnestly long for, such as growth and fault-tolerance. Multicel-
lular living organisms achieved these traits through millions of years of evolution by 
means of cells which have identical genotypes. All of them come from a single spe-
cial cell (zygote): this process is called development. The entire process of develop-
ment is controlled by the interaction of cells rather than by a centralized process. 

The development of an embryo is determined by genes, which control where, when 
and how many proteins are synthesized [1]. Complex interactions between various 
proteins and between proteins and genes within cells and hence interactions between 
cells are set up by activities of genes. It is these interactions that control how the em-
bryo develops. 

Development involves cell division, the emergence of pattern, change in form, cell 
differentiation and growth. The model proposed in this paper contains only two of 
these aspects, cell division and differentiation. Since in hardware, no new resources 
can be created as cells are pre-formatted and their number can not be increased, 
“growth” is used in this report to refer to “cell division”. 

Cell differentiation emerges as a result of differences in gene activities which lead 
to the synthesis of different proteins. As development is progressive, the fate of cells 
becomes determined at different times. Inductive interactions by means of chemicals 
or proteins between cells can make cells different from each other and the response to 
these inductive signals depends on the state of this cell.  

Built-in redundancies and error handling capabilities are the most widely used 
conventional fault-tolerant technologies. Redundancies can be employed either  
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spatially or temporally. Spatial (area) redundancy can be applied using Dual Modular 
Redundancy or Triple Modular Redundancy, both of which are based on the majority 
vote of individual modules. In temporal (time) redundancy techniques, after an error 
output is detected, it is recomputed in an attempt to recover from the transient fault. 
Although time redundancy in general requires fewer resources than area redundancy, 
it demands error handling capability which will incontrovertibly increase the com-
plexity of the system and its design cost. What’s more, it is difficult to design such an 
error handling circuit which stores adequate information for recovery so that it can 
discover most transient faults. 

Transient faults account most system failures [11], so at this stage we only concen-
trate on this kind of faults. 

Development has been used as a bio-inspired technique in the past [6, 7, 8]. How-
ever, this paper considers a new development-inspired technique that makes use of a 
chemical signal which gives the system high tolerance to transient faults. 

2   Development Cellular Model for Digital System 

One of the most fundamental features of the development principle is the universal 
cell structure: each of the cells in a multi-cellular organism contains the entire genetic 
material, the genome. 

Every cell only has direct access to the information of its four adjacent cells: No 
direct long term interaction between non-adjoining cells is permitted in this model. 

In the digital hardware model proposed here (as shown in Fig. 1), the internal 
structure of digital cells is shown in Fig. 2. A digital cell is composed of three main 
components: Control Unit (CU), Execution Unit (EU) and Chemical Diffusion mod-
ule (CD).  

The Control Unit (CU) has a States Register, which stores the internal states of the 
cell, including the cell state (type) and chemicals. Each CU connects to its 4 immedi-
ate neighbors (shown in Fig. 1) and a Next States & Chemical Generator determines 
its own next state/chemicals according to the current states and chemicals of the 
neighbors, its own state and its own chemical (illustrated in Fig. 2). The NSCG con-
tains two components: Next States Generator (NSG) and Next Chemical Generator 
(NCG), both of which are built from combinational circuits. 

The EU Function Selection signal (the state of a cell) is 2-bit wide: 0 means this is 
a dead cell, and the EU will simply propagate its west (left) inputs to its south and 
east neighbors, otherwise this is a living cell (it can be in any type among 1, 2 or 3), 
and the EU will execute and propagate its calculated output to the south and east. 

The Execution Unit (EU) is the circuit incorporated to do the real calculation of the 
target application. The inputs to each EU come from its immediate west and north 
neighbors, and the state of this cell (refer to Fig. 2). Every EU also propagates its 
output (Executing Signals) to its immediate north and east neighbors. The Execution 
Unit Core (EUC) is the evolvable core logic circuit, which determines how to process 
the input signals in the EU.  
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At present only combinational applications are considered, hence the EUs are 
purely combinational circuits. The state and chemical signals are 2-bit and 4-bit wide 
respectively, while the width of Executing Signal is 3-bit. Both the internal core logi-
cal structures of EU (EUC) and CU (NSG and NCG) are determined through evolu-
tion. As a result, the genotype encodes the EU and CU internal structures. The repre-
sentation of the internal structure of EU and CU are based upon Cartesian Genetic 
Programming [4] (CGP): a program is expressed as an indexed graph which is en-
coded in a linear string of integers. So the genotype just contains a list of node con-
nections and functions. 

 

LEGENDS: 

 

Fig. 1. Inter-connection of Cells 

The Chemical Diffusion module (CD) mimics aspects of the real environment 
where biological cells live. In principle, CD should not be a component of a digital 
cell. However, this design decision makes it more convenient practically, so it is 
merged into the cell internal structure.  
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The chemical signal is introduced to transmit information between cells. Another 
function of the chemical is to serve as a resource which is required for a dead cell to 
transform to a living one. 

Previous experiments [3, 5] suggest that chemicals are indispensable in order to 
achieve a robust solution: without chemicals, evolved individuals have poor stability 
and much lower fitness. The chemical diffusion regulation is the key mechanism 
which makes it such a significant aspect of this model: cells have a means to send 
long-distance messages. 

CU

EU

CD
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Fig. 2. Digital Cell Structure 

The chemical diffusion rule employed in this work is similar to that in [3], except 
that there are only 4 immediate neighbors in this case. So the rule is: 
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Let N denote all the 4 immediate neighbors of a cell at (i, j) with neighboring posi-
tion (k, l), the chemical at this position at the new time step is given by (1). The mean-
ing of this equation is that each cell retains half of its previous chemical and distrib-
utes the other half equally to its four adjacent cells and receives the diffused chemical 
from them. It is evident the rule makes sure that chemicals are conserved (apart from 
the unavoidable loss when the level falls below one) in the diffusion procedure. 

Calculating the diffused chemical in each grow step based on the chemicals from 
the four immediate neighbors and the cell’s own chemical value is the main task of 
the Chemical Diffusion module (CD) (in Fig. 2). The CD also propagates the calcu-
lated value to the four adjacent cells. 
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Given a genotype, the inner-structure of the cells is determined and a zygote which 
is located at the centre of an ‘artificial environment’ with x rows and y columns of 
cells can be initiated and ‘duplicate’ itself. The position of the zygote was selected to 
speed up the growth: it takes least time for the digital organism to “cover” the entire 
area if the zygote is arranged in the centre. The inputs to the cells on the border of this 
environment are fixed to 0. Without chemicals no cells can live. This means that ini-
tially some chemicals must be injected at the position of the zygote. 

Given a genotype, the growth procedure is described as follows: 

1. Initialize chemical and the zygote; 
2. Chemical diffusion; 
3. All cells update their state simultaneously: 
4. If no chemical at a position or all the cell’s four neighbors and itself are dead, then 

this cell’s internal program will not be executed; 
5. Otherwise, it executes the program that is encoded by the genotype, to generate its 

next time chemical and state based on current states and chemicals; 
6. If next state generated is alive, then overwrite chemical at this position with its 

own generated chemical; 
7. Otherwise, do not touch the chemical at this position; 
8. Unless stopping criterion reached go to 2. 

3   2-Bit Multiplier: The First Real-World Application 

A 2-bit multiplier was selected as an ideal test-case for this model to verify the feasi-
bility and applicability of this model. 

The digital organism employed in this application is made up of 3x3 identical digi-
tal cells.  The maturity of the digital organism means that all the cells are grown to the 
pattern which implements a 2-bit multiplier. 

 

Fig. 3. Digital Organism External Interface 

The external interface of the digital organism is shown in Fig. 3: Pin A, B and Re-
sult are the inputs and output of the 2-bit multiplier. Clk is the global clock signal; if 
the Reset pin is high, all the internal registers will be set to their initial values. All the 
remaining pins are dedicated to injecting transient fault(s) into the digital organism: 
when InjectFault pin is high, Value will be written into the chemical of cell at coordi-
nate (X, Y) if VTYPE is low, otherwise the lowest 2-bit of Value is written into the 
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state of the cell. Meanwhile the whole organism stops its growth process. Pin A and B 
are connected to the cells (1, 1) and (2, 1) in the digital organism, while the Result is 
driven by the cells (2, 3) and (3, 3). 

Every cell has an identical structure: Pin InjectFault, VTYPE and Value are con-
nected to their global counterparts. If this cell is at the coordinate (X, Y) and Inject-
Fault is active (high), the CS pin of this cell will be driven to high and the cell will 
overwrite its own chemical or state with Value. 

 

Fig. 4. Developmental Growth Procedure (the white rectangle circle the mature pattern) 

A “growth step” lasts two clock cycles: at the falling edge of the first clock cycle a 
live cell (its state is not 0) will overwrite the existing chemical with its generated one; 
at the rising edge of the second clock, the chemicals diffuse according to the diffusion 
rule. At the rising edge of the first clock cycle in the next “growth step”, the state will 
be updated. 

The structures of the evolvable sub-circuits were evolved in software and a robust 
solution found was transformed into VHDL. The FPGA implementation was synthe-
sized by ISE 6.1i from Xilinx, downloaded into the hardware. The detail of the wave-
form is demonstrated in Fig. 4. It can be seen that the organism matures at 1ns, when 
the state pattern is identical to that obtained in the software simulation. The following 
experiment was carried out: enough time was allocated to let the organism grow and 
mature (see Fig. 4). Subsequently, two sets of transient faults were injected: the first 
set composed of 4 transient errors in the chemicals of cell (2, 1), (2, 2), (2, 3) and (3, 
3); the other set of faults were injected into the states of cell (2, 1), (2, 3) and (3, 1). 
Every fault was chosen to make the corresponding value 0. The time between the 
injections of the two sets of transient faults was more than enough for the organism to 
recover completely and stabilize itself again in terms of chemicals and states of the 
cells (see Fig. 5 and Fig. 6). 

The recovery from of the first set of transient chemical faults is illustrated in Fig. 5. 
At the beginning, the chemical of some of the cells are modified, and then the organ-
ism resumes growing. It recovers flawlessly at 2.4ns and the result output regains the 
correct value. 
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Fig. 5. Injection of the first set of faults and the recovery procedure 

Fig. 6 demonstrates the recovery procedure from the second set of transient state 
faults. The states of the 3 selected “victim” cells are killed (state 0) at the beginning of 
this period. The organism again recovers completely to the correct pattern at 4ns. 

The FPGA on the RC1000 board [9] connects to host PC with very limited data 
width: only 8-bit read and 8-bit write. So a further FPGA module “IOControler” was 
implemented to latch all the required inputs and feed them to the digital organism. 
Another function of IOControler is to cache the result output of the digital organism. 

 

Fig. 6. Injection of the second set of faults and the recovery procedure 

4   Intrinsic Evolvable Hardware (IEHW) Employing FPGA 

An intrinsic evolvable hardware (IEHW) platform to accelerate the evolution progress 
was constructed. 
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The molecules (nodes in the CGP) are the most fundamental elements of the ev-
olvable components of the model. Each evolvable sub-circuit is composed of several 
molecules. 

The top level modules are illustrated in Fig. 7. There are 5 functional independent 
top-level modules which implement the IEHW as a whole. 

 

Fig. 7. Top-level Overview of the Intrinsic Evolvable Hardware Platform 

The IEHW platform implementation includes 3 main outputs: MAX_Fitness, Gen-
erationCount and Genotype. The first and the second will be updated every generation 
to reflect latest values, while the last output always propagates the best individual that 
is evolved so far. Only two inputs are required for this IEHW to function as expected: 
the global clock signal and reset signal. Other inputs are optional parameters, such as 
the seed for RNG and stop fitness. 

All the genotypes of each individual are stored in the Population module. This is 
implemented in the FPGA as distributed RAM, for only one individual is manipulated 
at any given time.  

The Controller of EA (CEA) supervises the entire evolution process and all the 
other modules. The fitness for all the individuals in the population is also stored in 
this module. The EA employed is an extended version of D. Levi’s HereBoy Algo-
rithm [10]: several parallel HereBoy are executed simultaneously. The CEA module 
is realized as a finite state machine (FSM). 

RNG is a 64 bits Linear Feed-back Shift Register (LFSR), which is employed as a 
pseudo-Random Number Generator. If supplied, the seed of RNG will also be saved 
in this module. 

The main function of Mutation Module (MUT) is to mutate a given genotype and 
latch the mutated genotype to be used by the EVAL. This module reads in the muta-
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tion rate and mutates molecules one by one until the specified mutation number is 
met.  This module is also implemented as an FSM. 

The core component of this IEHW is the Evaluation Module (EVAL), where the 
Digital Organism resides. Its main function is to evaluate the fitness of every individ-
ual. This module feeds every possible input to the 2-bit multiplier implemented by the 
evolved digital organism and sums up the total correct bits. Finally, the result of the 
subtraction of the total correct bits from the maximum possible correct bits (which is 
64 in this case) is the fitness of this individual. The EVAL module is made up from 2 
FSM: one is used to manage the digital organism and the other is in charge of feeding 
inputs, calculating correct output bits, the summary and the final subtraction to gener-
ate the fitness output of this module. 

After reset signal is pulsed (low) for one clock cycle, all the modules, including all 
FSM and internal registers, are all cleared to their initial states. In this state, the 
IEHW will receive and latch any input parameters if provided, otherwise the default 
parameters are used. When the start signal is activated by the host PC, the CEA mod-
ule will take all the responsibilities of the IEHW.  

First, the population are initiated one by one, evaluated and saved into Population: 
CEA signals the MUT to mutate at the highest possible rate so all the molecules in the 
genotype are randomly generated, then EVAL evaluates it and propagates the fitness 
to CEA, finally the CEA saves the fitness and signal the Population module to store 
the new generated individual. These individuals make up the 0 generation. 

Table 1. Synthesis Report 

 Mole. NCG NSG EUC EVAL RNG CEA MUT All 
LUTs 14 320 196 84 5507 64 164 106 7833 
FFs     360 3 115 86 926 

Second, after the initial population is ready, the main loop of evolution process be-
gins: in each generation, the CEA selects each of the individuals in the Population and 
feeds it to the MUT. The mutated genotype is then evaluated by the EVAl module, and 
the fitness is again propagated back to CEA. If the mutated one (offspring) is better 
than the original one (parent), or with a probability pr it substitutes the parent, which 
means the CEA asks the Population to store the mutated genotype; otherwise the 
content of Population module is untouched. After all the individuals have undertaken 
this procedure, a new generation is created. The evolution will continue to process the 
next generation unless the stop criterion, the specified fitness has been reached, is 
fulfilled. So no elitism is deployed in the IEHW. 

When the main loop of the evolution process terminates, the best individual evolved 
is presented through the Genotype pin, while its fitness and the generation where this 
evolution stops are propagated out via MAX_Fitness and GenerationCount respectively. 

Table 1 demonstrates how much hardware resources the various modules consume 
after the synthesis.  The entire design occupies 31.9% LUTs, 3.77% Flip Flops and 
58.6% IOBs totally. 
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5   Conclusion and Future Work 

It was demonstrated that the biological development model proposed in this work can 
be applied to real world application and the solution discovered through evolution 
exhibits the intrinsic highly fault-tolerance feature similar to its living organism coun-
terpart: the best solution found can virtually tolerate any transient damages.  

Although this model may consume more resources for the 2-bit multiplier if com-
pared with conventional majority voting systems, it does not require any voter sys-
tems and is not dependent on any single resource, so no single point fault. In the 
meantime, as this is a development model, we can apply it to more complex systems 
without fundamental modification. 

In future, the module will be extended to explore more possibilities, such as making 
full use of chemical signals when dealing with state signals and unconstrained growth 
world. In addition, the hardware implementation will receive more improvement, in-
cluding incorporating adaptive mutation. With the IEHW, we can also carry out more 
researches about the impacts of different parameters to the evolution outcome. 
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Abstract. In the design cycle of a microprocessor core, the unit is usually re-
fined through a series of subsequent steps. To deliver a flaw free unit at the end 
of the process, in each stage a verification step is required. While it would be 
useful to automatically develop the set of test programs for verification concur-
rently to the design, in most of the existing approach verification is performed 
manually and starting from scratch. This paper presented a methodology for the 
automatic completion and refinement of existing verification programs. It 
shows a new technique for allowing a Genetic Programming-based framework 
to import an existing test-program set and assimilate it for further test genera-
tion. A case study is considered, in which a sample pipelined processor is used, 
and new test programs are generated starting from existing functional ones. Dif-
ferent metrics are targeted, and preliminary results are reported, showing the ef-
fectiveness of the method with respect to a pure random approach. 

1   Introduction 

Nowadays, the market is demanding more and more improved technological products 
in incredibly reduced times; this fact is leading manufactures to an ever shrinking 
time-to-market to be able to conquer their specific sell sector. It is true that the current 
VLSI densities offer a huge quantity of resources to design engineers for implement-
ing new ideas; synthesis technologies, such as 90 nm, allow logic transistors densities 
of 90 millions of transistors per square centimeter, and additionally, the high clock 
rates and the low power consumption reachable by today’s VLSI circuits permit high 
performance design levels. However, the verification and test methodologies for digi-
tal circuits are not progressing at the same pace. In fact, the roadmaps in the semicon-
ductor association  indicate the test and verification process as the main cost factor on 
a new design, reaching levels up to the 70% of the total cost [1]. 

In this scenario, the System-on-a-Chip (SoC) paradigm has a high acceptance be-
cause it is focused on reuse concepts looking for time-to-market reductions. The use 
of SoCs allows building more complex and complete systems in less time. A SoC 
complexity may greatly differ depending on the system goal, but typically SoCs con-
tain at least one custom microprocessor core. 

Designing a microprocessor core for a SoC is still a challenging task. Despite its 
limited size and reduced complexity, releasing an operational unit at the end of the 



206 E. Sánchez, M.S. Reorda, and G. Squillero 

 

design cycle is made more difficult by time and resource constrains. To avoid imple-
mentation flaws, it is common practice to perform audits among different stages of 
the design cycle to guarantee the final system correctness [2] (Figure 1 shows a typi-
cal design cycle of n stages).  

FLAW-FREE UNIT

DESIGN 
STAGE 1

VERIFICATION
DESIGN 
STAGE 1

VERIFICATION

DESIGN 
STAGE 2

VERIFICATION

DESIGN 
STAGE N VERIFICATION

CORE 
SPECIFICATION

  

Fig. 1. Design Cycle 

Design verification is usually performed by means of simulation tools able to simu-
late different design description levels and carry out a comparison to assert that the 
new stage implementation fits all device specifications. Unfortunately, verification 
technologies are not mature enough to fully automate the generation of verification 
patterns through all design stages. 

Several authors propose automatic methodologies to generate a set of test programs 
for verifying a core. As shown in [3], the program VERTIS is able to generate verifi-
cation programs based only on the processor instruction set architecture (ISA). In [4] 
the branch prediction mechanism of the PowerPC604 was considered. Even though 
the method is effective, profound processor knowledge is necessary to implement it, 
making the method extremely difficult to generalize. On the other hand, evolutionary 
computation techniques had been also used to automatically generate test programs, 
an almost completely automatic approach is described in [5]. Here the authors tackled 
a pipelined microprocessor attaining a successfully set of program maximizing the 
RTL (Register Transfer Level) statement coverage. 

As shown in the figure 1, the microprocessor design cycle is constituted by sev-
eral stages that represent different abstraction levels of the microprocessor model. In 
each stage verification teams may exploit the set of functional programs, often 
manually developed by designers. Since depending on the design phase different 
reference models are available for design verification, like an instruction set simula-
tor (ISS) or RTL descriptions, the reuse of previously generated programs may not 
be straightforward. However, a set of test programs developed for a specific stage 
should be considered a good starting point for developing the new set. Additionally, 
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the above methodologies for test program generation do not take advantage of pre-
made test programs. 

This paper presents a new methodology for the automatic completion and refine-
ment of verification programs for microprocessor cores based on an evolutionary 
algorithm, which has been improved by an assimilation tool. The mechanism is able 
to enhance initial sets of functional programs. Previous sets are not merely included 
in the new set of programs for the verification, but assimilated and used as a starting 
point for the new test-program generation task. This approach allows to improve the 
quality of the initially generated test program set, and to significantly reduce the com-
putational effort to generate the new test programs. Preliminary experimental results 
are reported on a simple pipelined processor, showing the results achievable in this 
way by resorting to different validation metrics. Currently, experiments are still run-
ning looking for additional improvements on the set of verification programs. 

This paper is organized as follows: section 2 describes the proposed methodology. 
In section 3, a case study is shown. The experimental results are presented in section 
4, and finally section 5 concludes the paper. 

2   Proposed Approach 

Each time that a new step into the design cycle is reached, the new design must be 
verified. Comparing the behavior of the new model with the previous one is a re-
quired step, but the new features should also be all checked. 

To unveil design errors, the verification process should use a set of test programs 
able to excite all possible functionalities. Generally, at the earlier design stages, the set 
of test programs is composed of hand-written programs. These programs are usually 
targeted at specific corner cases and test specific functionalities, but they are not suffi-
cient to reveal all possible design flaws. Then, verification engineers devise additional 
content to the test set to evaluate based on their experience, for example, targeting 
specific functional blocks, a complete set of instructions or a special operation mode. 

As literature reveals, several and quite different approaches have been developed 
targeting automatic test program generation, but no one use previous test programs 
(some examples in section 1). If we consider a test program as an information block, 
containing data structures able to give us information about the processor testing. It 
must be useful to pick up this information to improve new test program generation 
processes. This kind of recovering information process has been called Data Reverse 
Engineering [6]. In this paper, a program “assimilator” able to take useful information 
in previously written test-programs will be presented. 

The complete approach is composed of two blocks: the test-program generator and 
the test-program assimilator. The former is based on the μGP, an evolutionary algo-
rithm described in [5]; the latter is a new module able to translate existing programs 
and fragments of code to graphs, usable by the μGP. The test-program assimilator 
reads the description of a specific assembly language and translates each line of an 
existing program to the appropriate reference in the library. Next sections better detail 
the two blocks. 
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Finally, The proposed methodology automatically refines and completes verification 
sets of test programs, maximizing several metrics. As supported by many authors, e.g. 
[8], it is not possible to accept a single coverage metric as the most reliable and com-
plete one, thus 100% coverage on any particular metric cannot guarantee a 100% flaw 
free design. Therefore, the verification trend is to combine multiple coverage metrics 
together to obtain better results. However, not all metrics could be sensibly exploited in 
the earlier stage of the design flows. Therefore, it is extremely useful to automatically 
complete a verification set to reach complete coverage on different metrics. 

2.1   Program Generator 

An evolutionary tool called μGP has been used as program generator. Mainly, the 
μGP loop requires an Instruction Library (IL) and an external simulator that simulates 
the program execution on the processor under verification. The IL is composed of a 
set of macros that represent possible instructions and their operands. The evolutionary 
core evolves programs using the genetic programming paradigm and exploits the 
simulator as external evaluator.  

Being a flexible tool, one can ask μGP to maximize or minimize diverse func-
tions. Conceptually, the core evolves a population of verification programs (μGP 
Individuals) performing genetic operators such as mutation and crossover over some 
of them. Once generated, the new programs are evaluated based on a predefined 
fitness function and finally the complete set of individuals is sorted, discarding the 
worst. The process cycles until an optimal solution is found or a steady state is 
reached. Further information on the μGP can be found in [7]; however, since the 
assimilation process refers directly to the IL, a short description of the IL is also 
presented in the following. 

2.2   The μGP Instruction Library 

The instruction library defines the assembly language syntax. It enumerates all dif-
ferent sections and defines a set of macros. Macros are fragments of code of arbitrary 
length, with an arbitrary number of parameters. A very simple macro is shown in 
Figure 2. It encodes a single instruction, an “add” instruction, between a register and 
an 8-bit constant. The register is the first parameter ($1) and may be either R1 or R2. 
The 8-bit constant is the second parameter ($2) and takes values between -128 and 
127. The instruction library is designed to be easily set up and understood by a hu-
man operator. 

.macro 
 add $1, $2 
.parameter constant R1 R2 
.parameter integer -128 127 
.endmacro 

Fig. 2. A Simple Macro 
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The instruction library supports different types of parameters, among them for in-
stance, integer intervals, constants and program labels can be defined. The instruction 
library also allows specifying all syntactic details of the assembly language, like the 
format of label and subroutines, the format of comments, etc… 

2.3   Assimilation Process 

To assimilate information from the existing programs, a specific application was 
developed. The tool receives the original IL and the initial set of programs, then ana-
lyzes each program building an initial population for μGP containing these programs 
and possibly modifies the IL.  
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Fig. 3. Assimilation process 

The general extraction process is shown in figure 3. An initial program analysis is 
performed to identify all program labels, and then the assimilation approach tries to 
map each instruction with a corresponding IL macro. Occasionally the macros be-
longing the IL cannot map a particular instruction because it is not implemented or 
the specific operators do not fit the established ranges, then a new macro is built con-
taining the instruction using the appropriate operators. At this point the new macro is 
added to the IL and the mapping process can continue.  

The assimilation process is performed by analyzing one code line each time; for 
each analyzed line, the tool recognizes three components: label, instruction and com-
ments. The label importance leads on the loop and jump management of the assem-
bler program. The instruction is split in operators and operands. Essentially, each 
operator could correspond a macro, however the initial instruction library may not be 
complete. Thus, the new instruction library will be improved by adding a new macro. 
On the other hand, the operands range is also analyzed to guarantee that, each one 
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corresponds to a predefined type, on the contrary the new macro is build using as 
operators fix values. Even though the character played by the comments is not indis-
pensable by the program execution, these are important to reach programs readability. 

The assimilation process guarantees the acquisition of singular values implemented 
by design engineers at previous stages aimed to cover corner cases. Also, if the tool is 
specially configured to assimilate more complex structures, complete instruction 
sequences can be acquired. 

Once all instructions have been mapped, the application generates a μGP initial 
population containing the initial programs and the IL is improved with the new macros. 

2.4   Validation Metrics 

Coverage analysis provides an easy, fast and objective way of measuring simulation 
effectiveness, and coverage metrics are the required starting point for every verifica-
tion process.  

As stated before, it is not possible to accept a single coverage metric as the most 
reliable and complete one. One of the main limitations of the previous usage of the 
μGP was the exploitation of the statement coverage verification metric alone. The 
work presented here overcomes this limitation: beside the statement coverage, the 
verification metrics supported in the proposed approach are: branch, condition and 
expression coverage. Moreover, the toggle coverage is also used. 

The approach we propose can support different validation metrics. In the experi-
mental evaluation, the design under verification was described at the RT level and the 
metrics that have been exploited are summarized in the following. 

• Statement coverage is the most basic form of code coverage: statement coverage 
is a measure of the number of executable statements within the model that have 
been exercised during the simulation run. Executable statements are those that 
have a definite action during runtime and do not include comments, compile 
directives or declarations. Statement coverage counts the execution of each 
statement on a line individually, even if there are multiple statements on that line. 

• Branch coverage reports whether Boolean expressions tested in control 
structures (such as the if-statement and while-statement) evaluated to both 
true and false. The entire Boolean expression is considered one true-or-false 
predicate regardless of whether it contains logical-and or logical-or operators. 
Branch coverage is sometimes called decision coverage. 

• Condition coverage can be considered as an extension of branch coverage: it 
reports the true or false outcome of each Boolean sub-expression, separated by 
logical-and and logical-or if they occur. Condition coverage measures the sub-
expressions independently of each other. 

• Expression coverage is the same as condition coverage, but instead of covering 
branch decisions it covers concurrent signal assignments. It builds a focused truth 
table based on the inputs to a signal assignment using the same technique as 
condition coverage.  
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• Toggle coverage reports the number of bits that toggle at least once from 0 to 1 
and at least once from 1 to 0 during the execution of a program. At the RT level 
registers are targeted and, since RT-level registers correspond to memory 
elements with an acceptable degree of approximation, the toggle coverage is an 
objective measure of the activity of the design. Indeed, this is a very peculiar 
metric and can be sensibly used in all late stages of the design cycle. 

3   Case Study 

The proposed methodology was implemented. The test-program assimilator consists 
of about 6,000 lines in ANSI C. To analyze the programs it exploits a publicly avail-
able library that implements regular expression pattern matching. The μGP consists in 
about 10,000 lines of ANSI C, but it did not require any modification for this work. 
To simulate the microprocessor, Modelsim v5.8b by (Model Technology) Mentor 
Graphics was used. A few scripts for accessing the different metrics were required. 
All experiments were run on a Sun Enterprise 250 with two UltraSPARC-II CPU at 
400MHz and 2Gb of RAM. 

As a case study the DLX/pII processor [9] was tackled. The DLX/pII is a small mi-
croprocessor with a 5-stage pipeline that implements the instruction set described in 
[10]. The core under verification is described in VHDL at RT-level with 4,558 state-
ments. The description contains 3,695 branches that can be activated, 193 conditional 
statements based on 1,764 different expressions. A total of 8,283 logic bits could be 
toggled during the simulation. Due to its size and complexity, the DLX/pII can be 
considered a typical example of a small microprocessor core designed for a SoC. 

The initial instruction library for the DLX consists of 98 macros, containing the in-
formation to map a large amount of the possible microprocessor instructions and 
operands. The ranges of most of the operands are integer intervals from 0 to 216 – 1.  

A reference set of programs was chosen from the set of functional and application 
test programs performed by designer engineers. The set contains programs that stimu-
late mainly the LOAD/STORE instructions and the multiplication unit. 

4   Experimental Results 

As a starting set for the completion and enhancement process a set composed of 12 
functional programs was considered. The functional programs were devised by the 
designer to validate the main functionalities of the core. 

After assimilating the initial set, the μGP was asked to complete it by maximizing 
the 5 coverage metrics described above. The final verification set was composed of 31 
programs, including the 5 initial programs and all the programs generated by the μGP. 
In more details: 

• Targeting the statement coverage, the μGP selected 3 programs of cumulatively 
297 instructions, able to obtain the 99.65% of coverage. The generation required 
2 days.  
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• Targeting the branch coverage, the μGP selected 4 programs of cumulatively 170 
instructions, able to obtain the 98.59% of coverage. The generation required 4 
days.  

• Targeting conditional coverage metric, the μGP devised 7 programs of cumula-
tively 135 instructions, reaching the 79.90% of coverage. The generation required 
about 2 days  

• Targeting the expression coverage, the μGP selected 6 programs of cumulatively 
315 instructions, reaching 48.71% of coverage. The generation required about 3 
days. 

• Targeting toggle coverage metric, the μGP devised 6 programs of cumulatively 
327 instructions, reaching 78.28% of coverage. The generation required about 3 
days. 

Table 1. Experimental Results 

Set Statement Branch Condition Expression Toggle 

Initial 68.91% 52.40% 43.01% 26.93% 30.34% 

Statement 99.65% 98.43% 77.20% 36.96% 43.28% 

Branch 99.23% 98.59% 76.17% 33.50% 39.39% 

Condition 77.29% 68.69% 79.90% 25.11% 26.33% 

Expression 93.07% 88.09% 55.44% 48.71% 44.02% 

Toggle 96.31% 92.29% 62.18% 38.72% 78.28% 

Total  99.65% 98.81% 79.79% 46.32% 80.31% 

Results are summarized in Table 1. The different rows contain the results for the 
different set of test programs: the initial one and the 5 generated maximizing specific 
metrics. The values attained by each set on all possible metrics are also reported. The 
grayed cells represent the value on the metric that the set was intended to maximize. 
The last row contains the cumulative results of the complete set. 

Significantly, the μGP was always able to maximize the coverage it targeted (the 
grayed cells), but it is interesting to notice the relationship between the different veri-
fication metrics. For instance, maximizing the condition coverage does not yield im-
pressive results compared with the branch coverage, while, in theory, the former met-
ric is an extension of the latter. On the other hand, toggle coverage is a very peculiar 
metric, while all sets attain very low results on this one, only the experiment targeting 
this metric was able to reach acceptable results. 

It should be remarked than, while the first four metrics are similarly fast to be cal-
culated, the toggle coverage requires a considerable overhead. However, the toggle 
coverage is an interesting metric in subsequent stage in the design cycle, when the 
design is eventually synthesized to logic gates. 
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For the sake of completeness, a verification set was devised using a pure random 
approach. The random instruction generator exploits the μGP instruction library to 
devise syntactically correct fragments of code and the μGP external evaluator to 
simulate them.  

Differently from the evolutionary experiments, however, the approach is merely 
cumulative: coverage figures are not used as a feedback to optimize candidate pro-
grams, but a program is added to the test set if it increases at least one coverage figure.  

About 20,000 random programs were generated and evaluated in about two weeks. 
The final test set contains about 230K lines of code in 2,000 random programs. 

The table 2 shows the cumulative results obtained by the random experiment re-
lated to each code coverage metric. The row size reports the total instruction lines that 
compose the set of random programs. 

Table 2. Pure Random Approach verification set 

 Random 
Statement coverage [%] 99.30 
Branch coverage [%] 98.59 
Condition coverage [%] 79.79 
Expression coverage [%] 48.75 
Toggle coverage [%] 56.84 
Size [lines] 230K 

As already remarked, the statement, branch and condition coverage metrics can be 
saturated easily, although the μGP shows slightly higher performances. Reaching high 
toggle coverage is more difficult and the random approach is significantly worse than 
μGP. Additionally, μGP speeds up by two the  

5   Conclusions 

This paper presented a methodology for the automatic completion and refinement of 
verification programs based on an evolutionary algorithm. A new technique is de-
scribed, allowing an existing Genetic Programming-based framework for test-
program generation to import an existing test-program set and assimilate it for further 
test-program generation. 

Since in the design cycle of a microprocessor core the unit is usually refined 
through subsequent steps, it would be reasonable to develop the set of test programs 
used for verification in a similar way.  

In each step, after modifying the design, the existing set of test programs and the 
test programs developed by designers can be automatically enhanced and completed 
to build a set able to maximize a given verification metric. The proposed process 
requires both less human intervention and less computational resources than starting 
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from scratch.  Moreover, it allows completing the work of verification engineers, 
modifying a set of test programs targeting new verification metrics. 

A case study is considered, in which a sample pipelined processor is used, and new 
test programs are generated starting from existing functional ones. Different metrics 
are targeted, and preliminary results are reported, showing the effectiveness of the 
method with respect to a pure random approach. Additional experiments are still run-
ning, looking for further improvements on the set of verification programs. 
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Abstract. Floorplanning is one of the most important problems in VLSI
physical design automation. A fundamental research problem in the VLSI
floorplanning is representation because it determines the size of search
space and the complexity of the transformation between a represen-
tation and its corresponding floorplan. O-tree representation is one of
the most efficient floorplan representations as it has the smallest search
space among all the admissible floorplan representations and the com-
putational complexity of transformation between a representation and
its corresponding floorplan is only O(n). The efficiency of O-tree repre-
sentation was demonstrated by a deterministic algorithm proposed by
Guo et al.. The deterministic algorithm can quickly find a reasonably
good floorplan. However, the deterministic floorplanning algorithm, by
its nature, is a local search algorithm, and thereby may not be able to
find an optimal or near-optimal solution sometimes. This paper presents
a genetic algorithm for the VLSI floorplanning problem using O-tree
representation. Experimental results show that the GA can consistently
produce better results than the deterministic algorithm.

1 Introduction

Floorplanning is one of the most important problems in VLSI physical design
automation. It determines the extent to which the performance of a VLSI chip
will be. Given a set of rectangular modules of arbitrary sizes, floorplanning finds
a placement of the modules such that no module overlaps and a predefined cost
function is minimized.

A fundamental research problem in floorplanning is representation because
it determines the size of search space and the complexity of the transformation
between a representation and its corresponding floorplan. The representation
of floorplans has been intensively studied for decades. For a floorplan with a
slicing structure, the most popular floorplan representation is slicing tree [1]
(or equivalent Polish expression). For a non-slicing floorplan, there are several
efficient representations. One of the most efficient representations is the ordered
tree (O-tree) representation proposed by Guo et al. [2]. The O-tree representation
not only covers all optimal floorplans, but also has a small search space. For
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a floorplanning problem of n modules, the search space is n!cn, where cn =
1

2n+1

(
2n + 1

n

)
. In addition, it only takes O(n) time to transform between an

O-tree representation and its corresponding floorplan.
In order to demonstrate the efficiency of the O-tree representation, Guo et

al. further proposed a deterministic floorplanning algorithm based on the O-
tree representation. Their experimental results showed that the algorithm could
quickly produce reasonably good results. However, the deterministic floorplan-
ning algorithm, by its nature, is a local search algorithm, and thereby it may
not be able to find an optimal or near-optimal solution sometimes.

Genetic algorithm (GA) is a global search technique inspired by evolution [3].
The crux of GA lies in the “survival of the fittest” strategy. It takes an initial
set of random individuals, termed as the initial population. Each individual in
the population is a chromosome that represents a solution to the given prob-
lem in an encoded form. Using well-defined genetic operators, GA evolves the
individuals in the population generation by generation until an optimal or near-
optimal solution is found. The fitness of the individuals is evaluated in a fitness
function. GAs have been successfully applied on VLSI floorplanning problems
[4, 5, 6, 7, 8, 9]. However, all the existing GAs were proposed for solving slicing
floorplan problems. This paper presents a GA for non-slicing floorplan problems
using O-tree representation. Each individual in the population of the GA is an
O-tree. The crossover operator generates a good floorplan structure by extract-
ing meaningful structural components from two parents. The mutation operator
keeps the population diverse by re-permutating the modules without changing
the topology of the ordered tree. To make the search more efficient, the GA uses
the basic idea behind the deterministic algorithm to generate the initial popula-
tion and uses the deterministic algorithm to optimize the individuals during the
evolution of the population. Preliminary experimental results show that this GA
can consistently produce near-optimal solutions for all the benchmark problems.

The remaining paper is organized as follows. Section 2 gives a formal defini-
tion of the floorplanning problem. Section 3 briefly reviews the O-tree represen-
tation and the deterministic algorithm. Section 4 details the design of the GA.
The experimental results are presented in Section 5. Finally, this research work
is concluded in Section 6.

2 Problem Statement

A module mi is a rectangular block with fixed height hi and width wi, and
M = {m1, m2, · · · , mn} is a set of modules that need to be placed on a floorplan.

A placement P = {(xi, yi) : 1 ≤ i ≤ n} is an assignment of the coordinates of
the bottom-left corners of the modules such that no two modules overlap. In a
placement, a module has only two optional orientations, portrait or landscape. A
placement is evaluated in a cost function consisting of two parts: one is the area
of the smallest rectangle that encloses the modules and the other is the intercon-
nection cost between the modules. The cost function is defined in Equation 1.
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Cost(P ) = w1 × Area(P ) + w2 × Wirelength(P ) (1)

In Equation 1, P is the corresponding placement of (T, π), Area(P ) represents
the normalized area of the minimal bounding rectangle of P , Wirelength(P ) is
the normalized total wire length of P . The wire length of a net is the sum of half
the perimeter of the bounding rectangle of all the net terminals in the circuit.

Given a set of modules M , the floorplanning problem is to find a placement
for the modules such that the cost is minimized.

3 Related Work

This section briefly reviews the O-tree representation and the deterministic al-
gorithm for the floorplanning problem, both of which were proposed by Guo
et al. [2].

3.1 O-Tree Representation and Encoding

In the O-tree representation [2], a floorplan of n modules is represented in a
horizontal (vertical) ordered tree of (n + 1) nodes, of which n nodes correspond
to n modules m1, m2, · · ·, mn, and one node corresponds to the left (bottom)
boundary of the floorplan. The left (bottom) boundary is a dummy module with
zero width (height) placed at x = 0 (y = 0). In a horizontal ordered tree, there
exists a directed edge from module mi to module mj if and only if xj = xi +wi,
where xi is the x coordinate of the left-bottom position of mi, xj is the x
coordinate of the left-bottom position of mj , and wi is the width of mi. In a
vertical ordered tree, there exists a directed edge from module mi to module
mj if and only if yj = yi + hi, where yi is the y coordinate of the left-bottom
position of mi, yj is the y coordinate of the left-bottom position of mj , and hi

is the height of mi. Figure 1 shows a floorplan and its horizontal ordered tree
representation.

An ordered tree of n nodes can be encoded in a tuple (T, π), where T is
a 2(n − 1) bit string identifying the structure of the ordered tree and π is a
permutation of the (n − 1) non-root nodes. For a horizontal O-tree, the tuple is
obtained by DFS (Depth-First Search) traversing the non-root nodes and edges
of the O-tree. When visiting a non-root node, we append it to π. When visiting
an edge in descending direction we append an 0 to T and when visiting an edge
in ascending direction we append a 1 to T . The horizontal ordered tree shown in
Figure 1 is encoded into (00110100011011, adbcegf). We can use the same idea
to encode a vertical O-tree.

An O-tree is admissible if no module can be shifted left or bottom without
moving other modules in its corresponding placement. Given any O-tree, we
can construct an admissible O-tree using a so-called AOT (Admissible O-Tree)
algorithm. Details about the AOT algorithm can be found in [2].

3.2 The Deterministic Algorithm

Given an initial placement encoded in an O-tree (T, π), the deterministic algo-
rithm finds a local optimal solution through systematically permutating those
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Fig. 1. A horizontal O-tree representation and its encoding. In this figure (a) shows a
horizontal O-tree and (b) illustrates how to encode the O-tree

O-trees which can be obtained by changing a module’s position in the given
O-tree. Below is the algorithm description:

1. for each node in (T, π):
(a) remove node mi from (T, π);
(b) insert node mi in the position where we can get the best value of a

predefined cost function among all possible inserting positions in (T, π)
as an external node;

(c) perform (a)-(b) on its orthogonal O-tree.
2. output (T, π).

4 The Genetic Algorithm

This GA is a steady-state GA. The crossover, which will be introduced later,
produces only one child. This GA runs a fixed number of generations, MaxGen,
and the size of population is PopSize. Below is the outline of the GA.

1. t := 0;
2. generate an initial population P (t) of size PopSize;
3. evaluate the initial population P (t) and find the best individual best;
4. while t < MaxGen

(a) t := t + 1;
(b) for each individual in P (t)

i. this individual becomes the first parent p1;
ii. select a second parent using roulette wheel selection p2;
iii. probabilistically apply crossover and mutation to produce a child c1;
iv. use the deterministic floorplanning algorithm to optimize c1;
v. evaluate c1;
vi. if c1 is better than p1 then use c1to replace p1 in P (t);
vii. if c1 is better than best then best := c1;

5. output best.

In the following we elaborate the genetic representation, the initial population
generation, the fitness function, as well as the genetic operators.
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4.1 Genetic Representation

Different from most GAs that use a binary string to present an individual, this
GA uses a tuple (T, π) to present an individual. Each tuple is an encoded O-tree
representing an admissible placement. In a tuple (T, π), T is a binary string of
2n bits and π is a sequence of n modules.

4.2 Fitness Function

The fitness of an individual (T, π) in the population is defined in Equation 2.

f((T, π)) = −Cost(P ) (2)

where P is the corresponding placement of (T, π), and Cost(P ) is the cost of
P given by Equation 1.

4.3 Initial Generation

Instead of randomly generating the initial generation, the GA uses the idea
that the deterministic algorithm [2] generates its initial O-tree to generate the
initial population. The benefit of doing so is to make the search of the GA more
efficiently. Below is the algorithm used to generate the initial population by the
GA:

1. for i := 1 to PopSize
(a) randomly generate a sequence of the modules π;
(b) T := φ;
(c) min fitness = infinite;
(d) for each module m

i. insert m to T in an external node position;
ii. min T := T ;
iii. min fitness := fitness (min T );
iv. for each of the other possible external node positions, p, in T

A. T1 := T ;
B. insert m to T1 in position p;
C. get admissible T1 using AOT;
D. fitness := fitness(T1);
E. if fitness < min fitness then

min fitness := fitness;
min T := T1;

v. T := min T ;
(e) P [i] := (T, π);

2. output P .

4.4 Crossover

Given two parents, both of which are O-trees, the crossover generates one child
by recombining meaningful structural components from the two parents.
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Fig. 2. Crossover. In this figure (a) is a parent p1, which has four branches {b, d, e},
{a}, {f} and {c}; (b) is another parent p2, and (c) is the only generated child c1. In
this crossover, the branch {b, d, e} of p1 is randomly selected and duplicated to c1. This
part of c1 is marked as “p1 component” in (c). The other part of c1 comes from p2,
and is obtained by removing nodes b, d and e, which are already present in c1, from
p2. This part is marked as “p2 component” in (c)

It is observed that branches of an O-tree are meaningful structural com-
ponents because a branch represents a potential compact placement for those
modules in the branch. Hence, the crossover uses branches of an O-tree as basic
building blocks to generate an offspring.

When generating an offspring c1 from two parents p1 and p2, the crossover
randomly selects some branches from p1, duplicates them and puts them in c1.
Then, the crossover operator takes a copy of p2 and removes those modules
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Fig. 3. Mutation. In this figure (a) shows the individual selected for mutation and (b)
displays the mutated individual

that have been already present in c1 from it and then adds it to c1. Figure 2
illustrates the basic idea behind the crossover operator. In the figure, (a) and
(b) are two O-trees, p1 and p2 respectively, and (c) is the offspring generated
by the crossover operator. The corresponding placements are shown on the left
hand side of the figure.

It takes O(n) time to identify all branches of p1, O(1) time to randomly
select some branches, and O(n1) time to duplicate and put them in c1, where n
is the number of modules and n1 is the number of nodes in the selected branches
of p1. Since it takes O(n) time to remove a node from an O-tree containing n
nodes, it takes O((n−n1)∗n) time to remove n1 nodes from the copy of p2. The
time needed to combine the selected branches from p1 and the branches after
removing n1 nodes from the copy of p2 is O(n − n1). Hence, the computational
complexity of this crossover is O(n2).

4.5 Mutation

Given an individual, or an O-tree encoded in a tuple (T, π), the mutation ran-
domly re-permutates the sequence of the modules. The mutation does not change
the topology of the O-tree, but generates a different placement.

Suppose that (0011010001101, adbcegf) is an initial individual, and that
abcdefg is the randomly generated sequence of the module labels. The mutated
individual is (0011010001101, abcdefg). The mutation is illustrated in Figure 3
in which (a) shows the initial O-tree and (b) shows the mutated O-tree.

The computational complexity of this mutation is O(n), where n is the num-
ber of modules.

5 Experimental Results

Since all the existing GAs are designed for slicing floorplanning problems, while
our GA is designed for more challenging non-slicing problems, we could not
compare our GA with the existing GAs. Hence, the experiment was to compare
our GA with the deterministic algorithm [2]. In order to make them comparable,
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we implemented our GA and re-implemented the deterministic algorithm using
the same programming language and in the same development environment. The
programming language was C# and the development environment was Microsoft
Visual Studio .NET 2003.

The experiments were carried out for five most popular MCNC benchmarks:
apte, xerox, hp, ami33 and ami49. The number of modules in these benchmarks
ranges between nine and 49.

We compared our GA with the deterministic algorithm in terms of area and
wire length. In our GA, the population size PopSize was set to 20 ∗ n, where n
is the number of modules in the corresponding benchmark problem. The prob-
abilities of crossover and mutation were 0.95 and 0.05 respectively. The number
of generations MaxGen was set to 100. We ran our GA and the deterministic
algorithm 10 times for each of the benchmark problems. When we ran the de-
terministic algorithm [2] we randomly generated the sequence of modules and
their rotations.

For both the algorithms, we used the same cost function w1×Area(P )+w2×
Wirelength(P ), where P is a placement, Area(P ) is normalized area of P , and
Wirelength(P ) is normalized total wire length of P . Three sets of weights for
w1 and w2 were used in the experiment: {w1 = 0, w2 = 1}, {w1 = 0.5, w2 = 0.5},
and {w1 = 1, w2 = 0}.

When using the first set of weights to test the two algorithms, we recorded
the best and average results in terms of wire length only as the weight for area
is 0. When using the second set of weights, we recorded the best and average
results for both area and wire length. When using the third set of weights, we
recorded the best and average results regarding area only as the weight for wire
length is 0. The computation time for each set of weights and for each benchmark
was also recorded. The experimental results for the deterministic algorithm and
our GA are presented in Table 1 and Table 2 respectively. It should be pointed
out that the experimental results for the deterministic algorithm are from our
re-implemented program, rather than the original program, in order to make the
experimental results are comparable with our GA experiential results.

For the first set of weights, our GA had 2.21% to 16.96% improvement in the
best wire length and 8.97% to 26.62% improvement in the average wire length.
On average, our GA had 8.88% improvement in the best wire length and 16.57%
improvement in the average wire length. For the second set of weights, our GA

Table 1. Best and average results of the deterministic floorplanning algorithm with
different weights for area and wire length

MCNC w1 = 0, w2 = 1 w1 = 0.5, w2 = 0.5 w1 = 1, w2 = 0
benchmarks wire time area wire time area time

apte 214/234 1.1 49.7/51.3 228/253 1.1 48.6/49.2 1.1
xerox 535/559 2.6 20.8/21.8 565/636 2.4 20.4/21.3 2.7
hp 78.6/87.7 2.0 9.35/9.96 83.3/95.2 2.1 9.33/9.89 2.0

ami33 43.0/50.0 58.0 1.31/1.39 47.1/59.8 55.8 1.30/1.32 57.3
ami49 833/956 236.3 38.7/41.7 1003/1260 232.8 38.6/39.6 234.3
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Table 2. Best and average results of our GA with different weights for area and wire
length

MCNC w1 = 0, w2 = 1 w1 = 0.5, w2 = 0.5 w1 = 1, w2 = 0
benchmarks wire time area wire time area time

apte 197/206 9.1 46.9/48.5 191/212 9.0 46.9/46.9 8.8
xerox 499/513 21.4 20.2/21.2 500/529 21.1 20.0/20.1 20.8
hp 67.2/69.2 16.4 9.85/9.91 68.3/69.8 16.8 9.03/9.13 16.8

ami33 39.3/41.8 1017.3 1.29/1.35 46.2/48.2 1009.2 1.22/1.23 1001.1
ami49 815/839 6277.3 39.5/40.7 912/976 6215.3 37.5/37.7 6222.2

Fig. 4. A solution to the ami49 benchmark

had −5.08% to 5.97% improvement in the best wire length and 1.95% to 19.37%
in the best area respectively. For all the five benchmarks, on average our GA
improved the best and the average wire length by 0.74% and 7.46% respectively,
and improved the best and average area by 13.25% and 25.83% respectively. It
is pointed out that the area of the best floorplan for hp and ami49 obtained by
our GA was not as small as that of the deterministic algorithm. However, the
wire length of the results was significantly shorter than that of the deterministic
algorithm. Hence, the results for the two benchmark problems were still better
than those obtained by the deterministic algorithm overall. For the third set of
weights, our GA had 2.00% to 6.56% improvement in the best area, and 4.90% to
8.32% improvement in the average area. On average, our GA improved the best
area and the average area by 3.67% and 6.31% respectively. Our GA, however,
used significantly longer computation time than the deterministic algorithm for
the experiments. Figure 4 is the screen shot for the best solution to ami49 found
by our GA.

6 Conclusion

This paper has presented a GA for non-slicing floorplanning problem using the
O-tree representation. The crossover operator generates good floorplan structure
by extracting meaningful structural components from two parents and combining
the components to produce a highly fit child. The mutation operator keeps the
population diverse. In order to increase the efficiency of this GA, the basic ideas
behind the deterministic algorithm is used to generate the initial population. We
also use the deterministic algorithm as a local optimizer in the GA to further
improve the efficiency of the GA.
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Preliminary experimental results showed that our GA can consistently pro-
duce better results than the deterministic algorithm although our GA had signif-
icantly longer computation time than the deterministic algorithm. We are going
to use parallel implementation to the GA to speed up the computation.
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Abstract. Reversible computing basically means computation with less
or not at all electrical power. Since the standard binary gates are not
usually reversible we use the Fredkin gate in order to achieve reversibil-
ity. An algorithm for designing reversible digital circuits is described in
this paper. The algorithm is based on Multi Expression Programming
(MEP), a Genetic Programming variant with a linear representation of
individuals. The case of digital circuits for the even-parity problem is in-
vestigated. Numerical experiments show that the MEP-based algorithm
is able to easily design reversible digital circuits for up to the even-8-
parity problem.

1 Introduction

The ultimate purpose of reversible computing is to perform computations less
or not at all electrical power. Logically reversible operations occupy a central
role in considerations of the fundamental physical limits of information handling
[7]. The early work of Landauer showed that energy dissipation occurs during
the destruction of information of the previous state of the system rather than
the acquisition of information during the computational process. Subsequently,
Bennett showed that computation could be carried out completely with opera-
tions that are logically reversible, i.e., operations in which the output uniquely
defines the input [2].

One such reversible logic element is the Fredkin gate (FG) [3, 8] which con-
tains 3 inputs and 3 outputs. Fredkin gate constitute a complete set of operators
in that any logic operation (e.g., AND, OR, NOT) can be constructed from a
combination of FGs.

In this paper, we propose a variant of the Multi Expression Programming
(MEP) [11, 12] for designing reversible digital circuits for the even-parity prob-
lem. We choose to apply the MEP-based technique to the even-parity problems
because according to Koza [6] these problems appear to be the most difficult
Boolean functions to be detected via a blind random search.

Standard GP was able to solve up to even-5 parity when the set of gates
F={AND, OR, NAND, NOR} is used [5]. Improvements, such as Automatically
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Defined Functions [6] and Sub-symbolic node representation [14], allows GP
programs to solve larger instances of the even-parity problem. Using MEP and
reversible gates we are able to evolve a solution up to even-8-parity function
using a reasonable population size.

The paper is organized as follows. MEP technique is briefly described in sec-
tion 2. The way in which MEP can be applied for reversible circuits is introduced
in section 3.1. Several numerical experiments for designing reversible digital cir-
cuits are performed in section 4. A comparison with standard digital circuits is
described in section 4.3. Further research directions are indicated in section 5.

2 Basic on MEP

The Multi Expression Programming (MEP) [10, 11, 12] technique is briefly de-
scribed in this section.

2.1 Individual Representation

MEP genes are represented by substrings of a variable length. The number of
genes per chromosome is constant and it defines the length of the chromosome.
Each gene encodes a terminal or a function symbol. A gene encoding a function
includes references towards the function arguments. Function arguments always
have indices of lower values than the position of that function in the chromosome.

This representation is similar to the way in which C and Pascal compilers
translate mathematical expressions into machine code.

MEP representation ensures that no cycle arises while the chromosome is
decoded (phenotypically transcripted). According to the representation scheme
the first symbol of the chromosome must be a terminal symbol. In this way only
syntactically correct programs (MEP individuals) are obtained.

Example

We employ a representation where the numbers on the left positions stand
for gene labels (or memory addresses). Labels do not belong to the chromosome,
they are provided here only for explanation purposes.

For this example, we use the set of functions F = {+, *} and the set of
terminals T = {a, b, c, d}. An example of chromosome using the sets F and T
is given below:

1: a
2: b
3: + 1, 2
4: c
5: d
6: + 4, 5
7: * 3, 6
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2.2 Decoding MEP Chromosome and Fitness Assignment Process

In this section we described the way in which MEP individuals are translated
into computer programs and the way in which the fitness of these programs is
computed.

This translation is achieved by reading the chromosome top-down. A termi-
nal symbol specifies a simple expression. A function symbol specifies a complex
expression obtained by connecting the operands specified by the argument po-
sitions with the current function symbol.

For instance, genes 1, 2, 4 and 5 in the previous example encode simple ex-
pressions formed by a single terminal symbol. These expressions are:

E1 = a,
E2 = b,
E4 = c,
E5 = d,

Gene 3 indicates the operation + on the operands located at positions 1 and
2 of the chromosome. Therefore gene 3 encodes the expression:

E3 = a + b.

Gene 6 indicates the operation + on the operands located at positions 4 and
5. Therefore gene 6 encodes the expression:

E6 = c + d.

Gene 7 indicates the operation * on the operands located at position 3 and
6. Therefore gene 7 encodes the expression:

E7 = (a + b) ∗ (c + d).

E7 is the expression encoded by the whole chromosome.
There is neither practical nor theoretical evidence that one of these expres-

sions is better than the others. Moreover Wolpert and McReady [17] proved that
we cannot use the search algorithm’s behavior so far for a particular test function
to predict its future behavior on that function. Thus we cannot choose one of the
expressions (let us say expression E7) to store the output of the chromosome.
Even this expression proves to be useful for the first 10 generations we cannot
guarantee that it will be the best option for all generations.

This is why each MEP chromosome is allowed to encode a number of expres-
sions equal to the chromosome length. Each of these expressions is considered
as being a potential solution of the problem.

This is very important because we can get many solutions within the same
running time as in the case of one solution/chromosome.

The value of these expressions may be computed by reading the chromosome
top down. Partial results are computed by Dynamic Programming [1] and are
stored in a conventional manner.

As MEP chromosome encodes more than one problem solution, it is interest-
ing to see how the fitness is assigned. Usually the chromosome fitness is defined
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as the fitness of the best expression encoded by that chromosome. For instance, if
we want to solve symbolic regression problems the fitness of each sub-expression
Ei may be computed using the formula:

f(Ei) =
n∑

k=1

|ok,i − wk|,

where ok,i is the obtained result by the expression Ei for the fitness case k and
wk is the targeted result for the fitness case k. In this case the fitness needs to
be minimized.

The fitness of an individual is set to be equal to the lowest fitness of the
expressions encoded in chromosome:

f(C) = min
i

f(Ei).

When we have to deal with other problems we compute the fitness of each
sub-expression encoded in the MEP chromosome and the fitness of the entire
individual is given by the fitness of the best expression encoded in that chromo-
some.

2.3 Genetic Operators

Search operators used within MEP algorithm are crossover and mutation. These
operators preserve the chromosome structure. All offspring are syntactically cor-
rect expressions.

Crossover. By crossover two parents are selected and recombined. For instance,
within the uniform recombination the offspring genes are taken randomly from
one parent or another.

Example

Let us consider the two parents Parent1 and Parent2 given in Table 1. The
two offspring Offspring1 and Offspring2 are obtained by uniform recombina-
tion as shown in Table 1.

Table 1. MEP uniform recombination

Parents Offspring
Parent1 Parent2 Offspring1 Offspring2

1: b
2: * 1, 1
3: + 2, 1
4: a
5: * 3, 2
6: a
7: - 1, 4

1: a
2: b
3: + 1, 2
4: c
5: d
6: + 4, 5
7: * 3, 6

1: a
2: * 1, 1
3: + 2, 1
4: c
5: * 3, 2
6: + 4, 5
7: - 1, 4

1: b
2: b
3: + 1, 2
4: a
5: d
6: a
7: * 3, 6
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2.4 Mutation

Each symbol (terminal, function or function pointer) in the chromosome may be
the target of mutation operator. By mutation some symbols in the chromosome
are changed with a fixed mutation probability pm. To preserve the consistency
of the chromosome its first gene must encode a terminal symbol.

2.5 MEP Algorithm

Standard MEP algorithm uses steady state [15] as its underlying mechanism.
MEP algorithm starts by creating a random population of individuals. The fol-
lowing steps are repeated until a given number of generations 1 is reached. Two
parents are selected using a selection procedure. The parents are recombined in
order to obtain two offspring. The offspring are considered for mutation. The best
offspring replaces the worst individual in the current population if the offspring
is better than the worst individual.

The algorithm returns as its answer the best expression evolved along a fixed
number of generations.

3 Reversible Computing

The ultimate purpose of reversible computing is to perform computations less
or not at all electrical power. Logically reversible operations occupy a central
role in considerations of the fundamental physical limits of information handling
[7]. The early work of Landauer showed that energy dissipation occurs during
the destruction of information of the previous state of the system rather than
the acquisition of information during the computational process. Subsequently,
Bennett showed that computation could be carried out completely with opera-
tions that are logically reversible, i.e., operations in which the output uniquely
defines the input [2].

One such reversible logic element is the Fredkin gate (FG) [3] which contains
an input control channel A, and two additional input channels, B and C, which
exchange values if A is set at 1 or will go through the gate unchanged if A is
set at 0. Fredkin gates constitute a complete set of operators in that any logic
operation (e.g., AND, OR, NOT) can be constructed from a combination of
FGs [3].

The Fredkin gate is depicted in Figure 1.

3.1 MEP for Reversible Circuits

The interpretation for a MEP chromosome needs to be modified because re-
versible gates have more than one output. Thus an MEP chromosome contain-
ing N Fredkin gates actually provides 3 ∗ N outputs (plus the outputs provided

1 In a steady-state algorithm, a generation is considered when the number of newly
created individuals is equal to the population size.
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Fig. 1. Fredkin gate has 3 inputs and 3 outputs. If A = 0 the outputs are identical
with the inputs. If A = 1 the inputs B and C are swapped. We can easily reconstruct
the input from the output

directly from the inputs). MEP representation will be unchanged, but during
the fitness evaluation we will have to handle more circuits than the case of stan-
dard gates.

Another modification is related to the number of inputs. Two constant inputs
0 (always-OFF) and 1 (always-ON) have been added. These 2 inputs are very
important in simulating the standard gates (such as NOT, AND) [3]. Moreover,
without these 2 inputs we are not able to build a circuit for the even-parity
problems. For instance, in the case of even-3-parity problem our circuits must
signal 0 when all inputs are 1. But, the Fredkin gate can never generate a 0 value
when all inputs are 1 (see Figure 1).

4 Numerical Experiments

Several numerical experiments for evolving reversible digital circuits are per-
formed in this section.

4.1 Test Problem

Our aim is to find a Boolean function that satisfies a set of fitness cases. The
particular function that we want to find is the Boolean even-parity function. This
function has k Boolean arguments and it returns T (True) if an even number
of its arguments are T. Otherwise the even-parity function returns F (False)
[6]. According to [6] the Boolean even-parity functions appear to be the most
difficult Boolean functions to detect via a blind random search.

The terminal set T consists of the k + 2 Boolean arguments d0, d1, d2, ...
dk−1, 0, 1.

The function set F consists of one three-argument gate: the Fredkin gate.
The set of fitness cases for this problem consists of the 2k combinations of the

k Boolean arguments. We have also added two constants inputs which are always
signals 0 (respectively 1). These 2 fixed inputs are very important in simulating
standard gates (such as NOT, AND, see [3] for more details). Thus each fitness
case will have k + 2 inputs and one output.
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Table 2. General parameters of the MEP algorithm for designing reversible circuits
for the even-parity problem

Parameter Value
Mutation probability 0.2
Crossover type Uniform
Crossover probability 0.9
Selection q-tournament (q = 1% of the population size)
Function set F = {Fredkin gate}

Table 3. Success rate of the MEP-based algorithm for evolving reversible digital cir-
cuits. Success rate is computed over 100 independent runs. Circuit size is the minimum
number of gates obtained in one of the successfull runs

Problem Pop size Number of
generations

Chromosome
length

Success
rate %

Circuit
size

even-3-parity 1000 50 10 95 3
even-4-parity 1000 50 15 35 4
even-5-parity 1000 100 20 15 5
even-6-parity 2000 200 30 18 6
even-7-parity 3000 500 30 29 8
even-8-parity 5000 500 30 11 12

4.2 Results

In this section we perform several experiments with MEP for solving several
instances of the even-parity problem. General parameter settings for MEP are
given in Table 2.

For reducing the chromosome length we keep all the terminals on the first
positions of the MEP chromosomes.

The results along with the particular parameters used for obtaining them are
given in Table 3. Success rate is computed as the number of successful runs over
the total number of runs.

Table 3 shows that MEP algorithm is able to evolve reversible circuits for
the even-parity problem. The shortest (regarding the number of gates) evolved
reversible circuits for the even-3-parity and even-4-parity problem are depicted
in Figures 2 and 3.

4.3 Comparison with Standard Approaches

Multi Expression Programming has been used [12] for designing standard digital
circuits for the even-parity problem. Using the gates AND, OR, NAND, NOR
we have been able to evolve up to even-5-parity problem using a population of
4000 individuals with 600 genes each evolved for 50 generations. The shortest
evolved standard digital circuit has 6 gates for the even-3-parity problem, and
9 gates for the even-4-parity problem, whereas the reversible ones requires 4
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Fig. 2. The shortest evolved reversible digital circuit for the even-3-parity problem.
Input 3 always signals 0 and input 4 always signals 1. Output 1 provides the result for
the even-parity problem. The other outputs are used only for achieving the reversibility.
FG stands for the Fredkin gate

Fig. 3. The shortest evolved evolved reversible digital circuit for the even-4-parity
problem. Output 3 provides the result for the even-parity problem. The other outputs
are used only for achieving the reversibility. FG stands for the Fredkin gate

(even-3-parity) and 5 (even-4-parity) gates. The first remark is that reversible
circuits might require less gates than the standard circuits.

However, when the entire set of 16 binary gates (including EQ, NOT, etc) was
employed [12] the length of the evolved standard circuit is considerable shorter.
Only 4 gates are required for a circuit implementing the even-5-parity problem
and 5 standard gates are required for the even-6-parity problem [12]. The results
obtained by using the Fredkin gate are similar (regarding the number of gates)
to those obtained using the entire set of 16 gates with 2 binary inputs.
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5 Conclusions and Further Work

An algorithm based on Multi Expression Programming has been used for de-
signing reversible digital circuits. Numerical experiments have shown the ability
of this algorithm to design reversible digital circuits. When compare to the stan-
dard circuits, we can see that the number of outputs of the reversible ones is
larger than the case of the standard circuits. This is in full concordance with
other studies [3] which have shown that reversible computing requires addition
storage space. Further experiments will try to minimize the number of outputs
required by the reversible digital circuit. However, this number cannot be less
than 3 (the number of outputs of the Fredkin gate).

We will also be interested in extracting general principles from the evolved
circuits in order to quickly build larger size reversible circuits. For instance,
Cartesian Genetic Programming was used [13] for discovering of ripple-carry
adder which is widely used for building large scale multipliers and adders. The
evolution of Automatically Defined Functions [6] will also be an interesting as-
pect for reversible digital circuits.

The method will be used for designing other interesting digital circuits such
as reversible adders and multipliers. Other reversible gates, such as CCNOT,
will be considered in further experiments [8].
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Abstract. In this paper, we present the Counter-based Ant Colony Op-
timization (C-ACO) algorithm as a meta-heuristic, which allows for a
resource-efficient implementation on Field Programmable Gate Arrays.
In comparison to the standard ACO approach in software on a sequential
machine, the implementation of C-ACO in hardware leads to significant
asymptotic speed-ups. In experimental studies, we investigate the per-
formance of the proposed C-ACO algorithm. Furthermore, we introduce
and examine alternative means of integrating heuristic information into
the optimization process, thereby considering the requirements of the
hardware architecture.

1 Introduction

Ant Colony Optimization (ACO) is a meta-heuristic which has been applied to
a wide range of hard optimization problems [3]. Inspired by the foraging behav-
ior of real ants, ACO uses a population of computational ants that iteratively
construct solutions to a given combinatorial optimization problem (e.g., in each
step they select the next city to be visited when constructing the solution for
a TSP problem). Ants are thereby guided by so called pheromone information
that previous ants which have found good solutions have disposed to mark their
decisions in the solution construction process.

Usually, ACO algorithms are implemented in software on sequential ma-
chines. However, if short computation times become essential, there exist mainly
two options to speed-up the execution. One option is to develop parallel vari-
ants of the algorithm to be executed on multi-processors machines (see [8] for
an overview of such ACO algorithms). The other very promising approach is to
directly map the ACO algorithm in hardware, thereby exploiting the parallelism
and pipelining capabilities of the target architecture. Furthermore, ACO algo-
rithms possess a core of iteratively repeated instructions and are therefore very
attractive for an implementation in hardware.

As implementation platform we consider Field Programmable Gate Arrays
(FPGAs). Since FPGAs can be re-configured by the user, different hardware

F. Rothlauf et al. (Eds.): EvoWorkshops 2005, LNCS 3449, pp. 235–244, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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variants of ACO can be tested on the same chip. However, during hardware de-
sign one has to consider the constraints imposed by the available resources on
chip. Various operations (e.g. multiplications, exponentiations) and data types
(like floating point numbers) that are required by the standard ACO algorithm
would demand a very large amount of chip resources. Therefore, we are inter-
ested in exploring alternative variants of ACO, which better fit the architectural
constraints of FPGAs. In [10], we have presented an FPGA implementation of
the Population-based ACO (P-ACO), which can be executed efficiently on an
FPGA and leads to a significant speed-up compared to a software version on
a PC. Using a different abstract computing model, we proposed an efficient
implementation of a variant of the standard ACO on reconfigurable processor
arrays ([7]).

Since P-ACO is not equally well suited for every combinatorial optimization
problem, in this paper, we present the Counter-based ACO algorithm (C-ACO)
as a variant of standard ACO which is suitable for FPGAs. In contrast to P-
ACO, the counter-based variant allows to systolically pipe a sequence of artificial
ants through a grid of processing cells, which promises a very efficient hardware
realization. Furthermore, we present two different approaches to complement C-
ACO with heuristic knowledge. Experiments are conducted on various instances
of the Traveling Salesperson Problem (TSP). Note that the proposed algorithm
does not aim to compete with other fast TSP solvers (e.g. Lin-Kernighan [6]).
TSP is chosen as a test problem due to its close relation to the natural paradigm
of real ants, which are capable of finding shortest paths between their nest and
food sources. Furthermore, TSP can be considered as the standard test bed for
ACO. New algorithmic ideas, which have shown a good performance on TSP,
could often successfully be adapted to other optimization problems, for which
ACO algorithms belong to the best known approaches. The proposed C-ACO
algorithm was created with an FPGA implementation in mind, though it may
also be interesting as alternative ACO implementation in software.

2 Standard Ant Colony Optimization for TSP

In this section, we briefly introduce the standard ACO approach for the TSP and
describe the problems when mapping it to FPGAs. For a detailed introduction
to ACO see for example [3].

2.1 Algorithm

We apply ACO to search for short tours that connect all n given cities of an
instance of TSP such that each city is visited exactly once. The pheromone
information is encoded in an n×n pheromone matrix [τij ]. Pheromone value τij

expresses how beneficial it was for preceding ants to visit city j directly after city
i. Typically, when constructing a solution, ants do not solely rely on pheromone
information, but also use heuristic information ηij . A possible heuristic for the
TSP is to set ηij = 1/dij where dij is the distance between city i and city j.
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An ant builds a tour by making a sequence of local decisions, i.e. successive
selections of cities. Every decision is made randomly according to a probability
distribution over the so far unchosen cities in selection set S:

∀j ∈ S : pij =
τα
ijη

β
ij∑

h∈S τα
ihηβ

ih

(1)

where parameters α and β determine the relative influence of pheromone values
and heuristic values. Initially, the selection set S contains all cities and after each
decision, the selected city is removed from S. At the end of an iteration, when
m tours have been generated (m being the number of ants per iteration), the
shortest tour π∗ of the current iteration is determined. The pheromone matrix
is then updated in two steps:

1. Evaporation: All pheromone values in the matrix are reduced by a certain
percentage ρ: ∀ i, j ∈ [1 : n] : τij := (1 − ρ)τij .

2. Intensification: The pheromone values along the best solution π∗ are in-
creased by a fixed amount Δ: ∀ i ∈ [1 : n] : τiπ∗(i) := τiπ∗(i) + Δ.

The ACO algorithm executes a number of iterations until a specified stopping
criterion has been met, e.g. a predefined maximum number of iterations has
been executed.

2.2 Problems Mapping Standard ACO onto FPGA

When designing ACO for FPGAs, the typical characteristics of the algorithm
make a hardware realization difficult: (i) pheromones, heuristic values and ran-
dom numbers require a floating point representation, (ii) evaporation and the
integration of heuristic information requires a large number of multiplication
operations, (iii) the integration of weights α and β into the probabilities pij in
Eq. 1 demands exponentiation operations. The realization of the required float-
ing point numbers, multiplication operations, and exponentiation operations in
hardware is possible, but would afford a high amount of chip resources on fine-
grained programmable logic devices like FPGAs. Thus, we suggest an alternative
approach that is described in the following section.

3 Counter-Based Ant Colony Optimization for TSP

In this section we describe the C-ACO algorithm for the TSP and sketch how it
can be implemented on an FPGA.

3.1 Algorithm

In the following, we explain the characteristics of C-ACO for asymmetric TSP
(see Algorithm 1).

Pheromone Representation: In contrast to standard ACO, pheromone values
τij ≥ τmin > 0 are represented by integer numbers, which demand less chip



238 B. Scheuermann and M. Middendorf

Algorithm 1. C-ACO for Asymmetric TSP
1: for i := 1 to n do
2: for j := 1 to n do
3: if i = j then /* initialize pheromone matrix */
4: τij := 0 /* exception: diagonal elements */
5: else
6: τij := τmin + τinit /* regular initialization */
7: end if
8: end for
9: Ui := 0 /* initialize update counters */

10: end for
11: while stopping condition not met do /* begin iterations */
12: for a = 1 to m do /* construct m solution */
13: S := [1 : n] /* initialize selection set */
14: select start city c ∈ S
15: S := S \ {c}; i := c
16: for h := 1 to n do /* n ant decisions per tour */
17: if h < n then
18: randomly select item j ∈ S according to Eq. 1
19: S := S \ {j}
20: else
21: j := c /* finally return to start city */
22: end if
23: πa(i) := j /* insert selected city into tour */
24: Δρ := min{τij − τmin, 1}
25: τij := τij − Δρ /* evaporation */
26: Ui := Ui + Δρ /* increment update counter */
27: i := j /* move to selected city */
28: end for
29: end for
30: a∗ := arg mina∈{1,...,m} F (πa); π∗ := πa∗

/* determine best solution */
31: for i = 1 to n do
32: τiπ∗(i) := τiπ∗(i) + Ui /* pheromone update */
33: Ui := 0 /* reset update counters */
34: end for
35: end while /* end iterations */

resources than floating point numbers. During initialization all pheromone values
τij with i = j receive the same start value τmin + τinit (line 6).

Selection: Instead of evaporation by multiplying with 1 − ρ, the pheromones
evaporate during the selection process: When a city j is selected, the respective
pheromone value is decremented by Δρ = min{τij − τmin, 1}, i.e. pheromones
behave like decremental counters (lines 24 and 25). Each time a city is selected,
the pheromone value is decreased, thereby reducing the attractiveness of the
respective arc for following ants. Consequently, the exploration of not yet visited
arcs is supported and ants are less likely to converge to a common path. Dorigo
and Gambardella [4] have also investigated a similar form of on-line evaporation
(local pheromone update) where they reduced the pheromone values by a certain
percentage and performed a partial reset to the initial value: τij := (1−ρ)τij+ρτ0.
The selection process in C-ACO, which results in a subtraction of a constant
integer value, is better suited for an FPGA implementation.

Update Counters: Per row of the pheromone matrix there exists an update
counter Ui which accumulates the total amount of pheromone evaporation in
that row during an iteration (line 26). At the end of an iteration, when m tours
have been constructed, each update counter holds a value 0 ≤ Ui ≤ m.

Pheromone Update: When the best tour π∗ of the current iteration has been
determined, the pheromone update is done according to the respective solution
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as follows: The pheromone value π∗(i) in row i is incremented by the value of
the update counter in the same row, i.e. τiπ∗(i) := τiπ∗(i) + Ui (line 32), instead
of value Δ as stated in Sec. 2.1. Thus, the total amount of pheromone in each
row remains constant.

The algorithm described before has to be modified to handle symmetric TSP
instances. If an item j is selected in row i, then pheromone values τij and τji have
to be decremented and the respective update counters Ui and Uj are incremented.
Accordingly, the update process has to be adapted. In order to maintain a sym-
metric matrix, pheromone values τij and τji are increased by the same amount.
Since in every row i, two updates are performed, the pheromone values are only
increased by at most �Ui/2�. If in a row the amount of update is smaller than
the update counter value, the remainder is transferred into the next iteration.

3.2 Mapping C-ACO onto FPGA

For an implementation of C-ACO on an FPGA the pheromone matrix is mapped
directly onto the chip area. This design comprises all processing and memory
resources for each element of the statically allocated matrix. The ants are piped
through the matrix in a systolic fashion. Thus, the index of ant a and its selection
set is propagated top-down through the cells of the matrix circuitry. Such an
individual cell is depicted in Fig. 1.

The current selection set of ant a in row i is denoted by Sai = {sai1, . . . , sain}
with saij = 1 if j has not yet been visited as the next city after city i by ant a,
else saij = 0. Pheromone value τij is stored in a loadable decremental counter
with minimum value τmin. In this design, heuristic knowledge is disregarded.
However, the integration of heuristics will be discussed in Sec. 6. We set phero-
mone weight α := 1 (common choice in standard ACO) to avoid exponentiations.
Therefore, the calculation of selection probabilities (cmp. Eq. 1) can be simplified
to pij = τij/

∑
h∈S τih. In order to select a city, it is not necessary to calculate

the denominator in this equation and to perform the division. It is sufficient to
calculate the prefix sum over the numerators of the yet unselected cities. Hence,
in every row of the pheromone matrix, the design contains a circuit to calculate
the prefix sum prij =

∑j
k=1 saikτik. Which city is visited next is decided proba-

bilistically by a random number ri (see e.g. [1] for a random number generator
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Fig. 1. Circuit of cell (i, j) of the pheromone matrix. For reasons of clarity, signals for
clock, reset and control are omitted
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on FPGA). All decisions daij in cell (i, j) are stored in a decision memory with
daij = 1 if pri,j−1 ≤ ri < prij (CMP), else daij = 0.

Every ant steps through the n rows of the cell matrix and requires Θ(log n)
time (due to the calculation of the prefix sums) in every row. So the time to
construct a solution is Θ(n log n). Since ants are piped in a systolic fashion, the
solution constructions are started with a period of Θ(log n) and the total runtime
to compute z solutions is Θ((z + n) log n) if a non-generational approach with
solution evaluation, comparison, and update processes running in parallel to the
solution construction (cmp. [7]). The standard ACO on a single sequential CPU
needs time O(zn2). Hence, we obtain a speed-up of O(zn2/((z + n) log n)).

4 Effect of Pheromone Intensification

In this section, the pheromone update rule of C-ACO motivated and its relation
to the standard pheromone update rule is discussed. In the standard ACO phe-
romone update, each pheromone value τiπ∗(i) that belongs to the best tour π∗ is
increased by a fixed value Δ > 0. In the following, we consider how much such an
individual portion of pheromone affects the decisions of ants in the succeeding
iterations and demonstrate that pheromone intensification in C-ACO and stan-
dard ACO have a similar stochastic effect. We assume that for standard ACO
the pheromone values are normalized, such that the sum over all values in a row
is T =

∑n
j=1 τij = 1. Therefore, the total amount of pheromone evaporated per

iteration is equal to ρ. In order to maintain T constant, we set Δ := ρ (if only
one ant per iteration is allowed to update). This version of pheromone update
for standard ACO has been used by several authors (e.g. [2, 5]).

Standard ACO: Consider an amount of pheromone Δ which has been added
to τij in an arbitrary iteration, and define an iteration counter starting from
this specific iteration t := 0. As an idealized situation, it is assumed that all
cities (except city i) are contained in selection set S. Then p1 := Δ/T = ρ
denotes the probability, that in the following iteration t = 1 an ant selects
city j after city i on accounts of value Δ. Since pheromone is evaporated in
every iteration, the probability that city j is selected in iteration t = 2, is
p2 = (1 − ρ)ρ = (1 − p1)p1, or more general: pt = (1 − p1)t−1p1. Let Xt be a
random variable which expresses the number of ants selecting j as the next city
(due to value Δ) in iteration t. Obviously, Xt is distributed binomially according
to B(m, pt) with expected value:

E(Xt) = mpt = m(1 − p1)t−1p1. (2)

C-ACO: In C-ACO, the intensification received by τij is Δ = Ui. Let p1 = Ui/T
(with T = (n − 1)(τmin + τinit) denote the probability, that the first ant in
iteration t = 1 selects city j after city i on accounts of value Δ. Since ants
remove pheromone when selecting a city, random variables Xt are distributed
hyper-geometrically H(T,Ui,m). Accordingly, the expected value in iteration
t = 1 is E(X1) = mUi/T , and in the succeeding iterations t > 1: E(Xt) =
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m
T (Ui −∑t−1

t′=1 E(Xt′)). Assuming that arc (i, j) received the maximum update
Ui = m, then the following equation for the expected value can be proved by
complete induction:

E(Xt) = m(1 − m

T
)t−1 Ui

T
= m(1 − p1)t−1p1, (3)

which is equal to Eq. 2. Hence, for standard ACO and C-ACO an update of
τij causes arc (i, j) to be selected in average m(1 − p1)t−1p1 times in iterations
t > 0. Let random variable YN =

∑N
t=1 Xt denote the frequency of selecting city

j as the next city in the next N iterations. Then the expected value E(YN ) =∑N
t=1 E(Xt) is determined by E(YN ) = mp1

∑N
t=1(1−p1)t−1 → m. Hence, city j

is selected approximately m times. For these similarities, we expect that C-ACO
shows a comparable optimization behavior as standard ACO.

5 Comparison Standard ACO Versus C-ACO

Experimental studies to compare standard ACO and C-ACO algorithm are de-
scribed in this Section. Since C-ACO is not yet implemented in hardware it
cannot be evaluated in terms of exact computation time. In the following we
compare its optimization behavior with standard ACO.

The first experiment was conducted on a range of symmetric TSP instances
gr48, eil101, d198 with 48, 101, 198 cities and asymmetric instances ry48p,
kro124p, ftv170 with 48, 100, 171 cities from the TSPLIB benchmark [9]. For
both algorithms, we set α = 1, and m = 8 ants per iteration (generational
approach, i.e. no systolic piping of ants). The results were computed for β = 0
(no heuristic) and β = 5 (standard heuristic ηij = 1/dij). With probability q0 an
ant deterministically selected the next city j, which had the maximum product
τα
ijη

β
ij (exploitation). With probability 1−q0 the next city was selected according

to Eq. 1 (exploration). The probabilities were chosen from q0 ∈ {0, 0.5, 0.9}.
Experiments were run with and without elitism (i.e., not only the best ant of
the current iteration, but also the best ant so far was allowed to update).

Standard ACO was implemented such that T = 1 and Δ = ρ (see Sec.
4) with ρ ∈ {0.005, 0.01, 0.02, 0.05, 0.1}. We introduced a minimum pheromone
value τmin to allow for a fair comparison with C-ACO, which was also equipped
with a lower pheromone bound. Hence, cities were selected with probability
pij = (τij + τmin)αηβ

ij/
∑

h∈S(τih + τmin)αηβ
ih. The minimum pheromone value

was determined by τmin = γsτinit = γs/(n − 1) with γs ∈ {0, 0.001, 0.01, 0.1,
0.5, 1}. For C-ACO, we chose τinit ∈ {1, 2, 3, 4, 5, 8, 10, 50, 100, 1000}. The mini-
mum pheromone value was set to τmin = �γcτinit�, γc ∈ {0.001, 0.01, 0.1, 0.5, 1}.

Each run was terminated after t = 50000+1000n iterations (when practically
all runs have converged). Solutions qualities were calculated as the average tour
lengths over 10 runs. The average tour lengths were measured in iterations ti =
� 1

7 it�, i = 1, . . . , 7. For a specific TSP instance and fixed pair (β, q0), the solution
qualities for all 122 parameter combinations (60 for standard ACO and 62 for
C-ACO after removing duplicate pairs (τmin, τinit)) were ranked. The obtained
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Table 1. Average ranks of standard ACO and C-ACO in iterations t1, . . . , t7

β = 0 β = 5q0 Algorithm
t1 t2 t3 t4 t5 t6 t7 t1 t2 t3 t4 t5 t6 t7

Standard 54.57 56.49 57.46 57.93 58.32 58.59 58.80 57.10 59.12 59.55 60.31 59.15 60.18 59.000
C-ACO 68.20 66.34 65.41 64.93 64.58 64.05 63.81 59.78 58.01 56.72 56.54 55.13 55.81 54.80
Standard 53.66 55.01 55.67 56.06 56.23 56.74 56.33 68.48 68.53 68.79 68.10 68.39 68.39 68.770.5
C-ACO 68.94 67.61 67.09 66.50 66.03 66.10 65.41 50.85 50.10 50.14 49.22 49.58 49.26 49.32
Standard 73.94 73.73 73.49 73.49 73.31 73.56 73.22 83.85 83.31 82.44 82.34 82.56 82.57 81.030.9
C-ACO 49.23 49.16 49.17 49.38 49.23 49.34 48.81 37.64 38.10 38.12 38.08 38.34 38.76 37.99

instance-independent average ranks for standard ACO and C-ACO are given in
Table 1.

For β = 0 and q0 = 0 or q0 = 0.5, standard ACO performs better than
C-ACO. For q0 = 0.9, C-ACO has significantly better ranks than the standard
ACO. Presumably, C-ACO benefits from a higher degree of exploitation. In runs
with heuristic guidance (β = 5), C-ACO performed consistently better than
standard ACO with only one exception (t1, q0 = 0). The simulation results
indicate that in average C-ACO shows a competitive optimization behavior.
Overall the average ranks were 66.16 (standard ACO) and 54.32 (C-ACO).

6 Heuristics

Optimization performance usually benefits from the integration of heuristic in-
formation. Generally, including heuristic information into the calculation of se-
lection probabilities (see Eq. 1) requires multiplication and exponentiation op-
erations with floating point numbers. To save computation time and FPGA
resources we propose the following 2 steps: 1) Weighing heuristic values by β
and scaling the resulting values is pre-computed on an exterior processor (if the
heuristic allows this), 2) applying one of the following integer-based types of
η-heuristics or τ -heuristic.

η-Heuristics. The η-heuristics represent the standard way of integrating heu-
ristic information into the ant decision process by multiplying transformed heu-
ristic values η′

ij with pheromone values τij . We consider three variants:

– REALVAL: Heuristic values are processed unchanged: η′
ij = ηβ

ij .
– INTVAL: Heuristic values are transformed into integer numbers η′

min ≤
η′

ij ≤ η′
max, where η′

ij is determined by η′
ij = �f(ηβ

ij)� ∈ IN with:

f(ηβ
ij) = η′

max−η′
min

ηβ
max−ηβ

min

(ηβ
ij − ηβ

min) + η′
min

where ηmin and ηmax denote the minimum and resp. the maximum of all
values ηkl in the heuristic matrix with k = l. Multiplications by integer
heuristic values save FPGA resources.

– POTVAL: Heuristic information is transformed to an interval of integer
numbers η′

min ≤ η′
ij ≤ η′

max, where η′
ij = 2k with k = �log2 f(ηβ

ij)� and f
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being the same scaling function as in INTVAL. Multiplications by numbers
η′

ij = 2k can be substituted by shifting the respective bit representation of
the pheromone value by k digits.

τ-Heuristic. In the τ -heuristic, ηβ
ij values are transformed (as in η-INTVAL)

into integer values η′
min ≤ η′

ij ≤ η′
max with η′

ij ∈ IN and then included into the
pheromone matrix as lower thresholds τ t

ij = τmin + η′
ij . Pheromone values are

not allowed to fall below the threshold, i.e. τij ≥ τ t
ij . Initial pheromone values

are calculated as τij := τ t
ij +τinit, where τinit = �vη̄� with v a parameter and η̄ is

the average over all values η′
kl with k = l. Different to Alg. 1, pheromone values

of selected cities are drecremented by δ = �wτinit� with w a parameter. Selection
probabilities are computed as pij = τij/

∑
h∈S τih. Thus, no multiplications with

heuristic values are required.

6.1 Experimental Results

To compare these two variants of heuristics they were tested on the kro124p
TSP instance using parameter values: q0 = 0.3, α = 1, β = 5, m = 8, τmin = 1,
η′

min = 1, and η′
max = 2k with k ∈ [0 : 25]. The η-heuristics were run with

τinit ∈ {1, 5, 10, 50, 100}, the τ -heuristic with v ∈ {0.5, 1.0, 5.0, 50.0, 100.0} and
w ∈ {0.00001, 0.001, 0.1, 0.5, 1.0}. Fig. 2 shows the average solution qualities
(10 repetitions) after 150000 iterations. For every value of k, the correspond-
ing solution quality was determined as the minimum average tour length over
the input parameter combinations. The best tour length reached by the stan-
dard heuristic (η-REALVAL) is drawn as a horizontal line in Fig. 2. With
an increasing exponent k the alternative heuristics achieve solution qualities
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comparable to the standard
heuristic. With a value of
η′

max = 28 the η-POTVAL-
heuristic can reasonably ap-
proximate the standard heu-
ristic, i.e. multiplications can
be substituted by shifts of at
most k = 8 steps. For the η-
INTVAL-heuristic, heuristic
values can be approximated
by multiplications with inte-
ger numbers with a size of at
most k = 10 bits. Both al-
ternative heuristics perform
slightly better than the τ -
heuristic, for which we would
have to provide pheromone
counters with a lower bound

of size k = 12 bits. All three alternative heuristics allow to approximate the
standard heuristic with a reasonable amount of hardware resources. The choice
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of the appropriate heuristic type depends on the resources which are available
on the target device.

7 Conclusion

We presented the C-ACO algorithm, which is suitable for a resource-efficient im-
plementation on FPGAs. Compared to the standard ACO approach in software
on a sequential machine, the implementation of C-ACO in hardware attains sig-
nificant asymptotic speed-ups. Software simulations demonstrated that C-ACO
is a competitive approach in comparison to the standard ACO approach. Fi-
nally, we proposed alternative ways of integrating heuristic information to save
further hardware resources. Our future work includes the examination of systolic
solution construction, implementing C-ACO on FPGAs and considering other
optimization problems.
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Abstract. This paper describes an evolutionary approach to the opti-
mization of element antenna arrays. Classic manual or automatic opti-
mization methods do not always yield satisfactory results, being either
too labour-intensive or unsuitable for some specific class of problems.
The advantage of using an evolutionary approach is twofold: on the one
hand it does not introduce any arbitrary assumptions about what kind
of solution shows the best promise; on the other hand, being intrinsically
non-deterministic, it allows the whole process to be repeated in search
of better solutions. A generic evolutionary tool originally developed for
a totally different application area, namely test program generation for
microprocessors, is employed for the optimization process. The results
show both the versatility of the tool (it’s able to autonomously choose
the number of array elements) and the validity of the evolutionary ap-
proach for this specific problem.

1 Introduction

Antenna arrays have long been used to achieve performance impossible to ob-
tain from a single antenna. High-directivity antennas and shaped beam arrays
are examples of products that take advantage of the array concept. Uniform
arrays, however, may be unsuitable for a given specification. This drives us to
the need for array synthesis and optimization, in order to obtain a given func-
tional specification at a reduced cost. Numerous manual or automatic methods
exist to achieve this goal: Conjugate Gradient [6], Fourier series and Woodward-
Lawson methods [7] first explored the concept of automatic array synthesis;
Monte Carlo method follow as a statistical approach [8] and finally genetic al-
gorithms are used.

Previous work in this field includes the use of GAs [4], evolutionary program-
ming [3] and hybrid methods [5].

Marcano and Duran [4] introduce the use of GAs for the optimization of linear
and planar arrays. However, the problems presented do not seem to be particu-
larly stressful to the method employed. Chellapilla and Hoorfar [3] present an EP
method for the generation of optimally thinned linear arrays, showing increased
performance with respect to GAs. Hollapilla and Zhu [5], finally, show that hy-
brid methods perform better than pure GA or EP alorithms on some problems.
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We employed a rather generic evolutionary tool to address the problem of
array synthesis and optimization. One peculiarity of our work is indeed the use
of a tool developed for a totally different application area, namely test program
generation for microprocessors. This not only allows us to critically assess the
validity of the evolutionary approach to array synthesis, but also helps the de-
velopment of the tool itself. Some of its new features, in fact, have been added
on the consideration of their usefulness for this specific application, and are also
being used in the original context.It’s interesting to note that the used tool
shows hybrid GA/EP properties since it employs both mutation and crossover.
The tool itself will be described later. The paper is organized as follows: a brief
introduction on antenna arrays is given in section 2; section 3 introduces the evo-
lutionary computation paradigm and describes in more detail the evolutionary
tool used; in section 4 we describe our workflow and the performed numerical
experiments; section 5 reports the obtained results; finally, the conclusions are
reported in section 6.

2 Antenna Arrays

To convert an electrical signal into electromagnetic waves and vice versa we need
particular actuators and sensors: the antennas. High gain applications require
high directivity antennas; this can be achieved by arranging them in an array:
more antennas are placed near each other to fuse their individual irradiation
diagrams to obtain a collective diagram more fitted to specified application. Also
it’s possible to design antenna arrays with a shaped beam; these arrays irradiate
in a particular space zone according to a pre-arranged form (for example: for a
satellite which must irradiate a country one must design an antenna that has
a shaped beam which covers only the desired territory). However the design of
this type of antennas presents, unfortunately, various problems.

The problems which one meets during the design of a shaped beam antenna
are substantially due to the fact that the design operation is of inverse type:
from the normalized array factor we must pass to the position of radiators and
to their feeding phase. To represent the array factor rigorously it’s possible to
express it as a polynomial whose roots represent the feed coefficients of the radi-
ators. Changing the modulus or the phase of a root we change the overall shape.
Another important problem is that the various radiators must furthermore be
in such positions that their mutual coupling be minimum. With all these con-
straints the problem becomes quickly intractable. Also in the past the problem
was relegated to the most expert designers; they started with different mathe-
matical methods to do the synthesis of the antenna and, with little shifting of
the various radiators, were able to obtain good approximate results; however the
cost in terms of time was huge. The development of the computer technology
gives us, today, various methods with which it is possible to automatically design
this type of antennas, and with good results.

In the past the growth of the antennas was of evolutionary type: from the first
systems we passed to the sophisticated ones, we can think about the example
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of the ground plane antenna which presents an impedance of 38 Ω, to pass
to the ground plane with the folded arms with a 50 Ω impedance, to finish
with the skirt dipole. Imitating this process, we will show it is possible to get
working and well approximated solutions, beginning from inefficient ones, with
an evolutionary method.

3 Evolutionary Method

Evolutionary computation is a computer-based problem solving paradigm based
on Darwin’s evolution theory [1]. In this paradigm possible solutions to a given
problem are seen either as individuals inside a larger population or as species
within an environment. These compete against each other and periodically un-
dergo a selection process. The best solutions, i.e. the ’fittest’ ones, survive the
selection and are allowed to reproduce, that is to produce other solutions similar,
but not completely identical, to themselves. These offspring are in turn subjected
to the same selection process as their ancestors. This process leads, in turn, to an
increment in the average fitness. The term fitness is historically used to denote a
measure of the compliance of a candidate solution with its goals. An increment
in the average fitness usually goes together with an increase in its maximum
value. Evolutionary computation itself has evolved over time, producing many
different kinds of evolutionary algorithms. The best-known ones are Genetic Al-
gorithms, Evolutionary Programming, Evolution Strategies, Classifier Systems
and Genetic Programming. None of these methods is perfect for all problems,
but they offer a large choice of approaches for the user to try. Evolutionary meth-
ods are particularly suited to solve computationally hard problems for which no
good heuristic is known.

The main goal of an evolutionary method is to make a computer obtain an
exact or, more often, approximate solution to a problem without being explicitly
told how to do so.

In our work we use a tool named μGP (MicroGP). MicroGP [2] is an evolu-
tionary approach to generic optimization problems with a focus on the generation
of test programs for microprocessors, similar to both Evolutionary Programming
and Evolution Strategies. It is not strictly a genetic algorithm since it does not
employ a fixed-size chromosome setting, but a graph structure, to describe the
individuals it cultivates. In Evolutionary Algorithms parlance, it is a steady-state
evolutionary method that implements a variation of the (μ + λ) strategy on a
single population of individuals. This means that, given an initial population of
μ individuals, λ genetic operators are applied on it to produce a variable number
of offspring; the parents and offspring are then merged into a single population,
which undergoes selection: the μ individuals with the highest fitness are selected
for survival, and the rest are discarded. Individuals with high fitness may remain
indefinitely in the population.

It is different from Evolutionary Programming mainly because it employs
crossover, currently in two forms; additionally, mutation operators are not im-
plemented in many forms for strength selection, but rather a great variety of
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operators is implemented. Additionally, population selection is always determin-
istic. In common with Evolutionary Programming there is no requirement that
a single offspring be generated from each parent. It is also different from Evo-
lution Strategies in that it (currently) only employs the (μ + λ) strategy. It is,
however, conceptually similar since its evolutionary basis is the individual, not
the species. It finally differs from both since it dynamically self-adapts many of
its parameters.

One of the main peculiarities of MicroGP is the fact that the focus during
the reproduction process is not so much on the reproducing individual as on
the genetic operator employed. In fact, the λ in the (μ + λ) expression is not
the number of generated offspring as the standard terminology dictates, but the
number of genetic operators used.

Although its original focus is the generation of test programs, MicroGP is a
very versatile tool that can be employed to successfully approach a number of
other problems, on the only condition that a solution can be expressed with the
syntactical constraints as an assembly program. So, for example, any problem
whose solution can be represented with a table, a tree or a directed graph is
eligible for approach.

The evolutionary core is continually being developed, and many features have
been added to it over time, many of which may seem somewhat odd, to improve
its performance: clone detection and optional extermination to avoid the eval-
uation of identical individuals and to improve genetic variety; a fitness hole in
tournament selection, that is a small but nonzero probability that the tourna-
ment selection criterion is not the fitness but the entropy value of the individuals,
again to improve genetic variability; parallel fitness evaluations; an initial popu-
lation size optionally greater than μ, to better exploit the initial random search
phase. In this paper the support for real numbers in the individuals and a new
form of mutation for MicroGP have been developed, and new features can be
expected to appear in the near future.

4 Numerical Experiments

The main goal of our numerical experiments was to obtain a working environ-
ment through which we could perform an automatic process of array synthesis
and optimization. One of our objectives is to reduce as much as possible the
manual effort of the human designer, while still obtaining an acceptable solu-
tion. To set up our environment we wrote a very simple instruction library for
MicroGP, specifying the allowed range for the roots of the array factor. The only
thing the designer is left to do is specifying a wanted array factor, and optionally
a desired maximum number of elements.

In our experimental setting we used MicroGP to minimize a measure of dis-
tance between an objective array factor and the synthesized antenna’s own array
factor. We used three different measures of distance, to evaluate the effect of var-
ious evaluation criteria on the quality of the result. The objective array factor
is passed directly to the fitness evaluator, in the form of a series of (ψ, F (ψ))
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values. The evaluator reads and normalizes this series, builds a second series
containing the corresponding values of the current array factor, with the same
normalization, then computes one of the three distances between the two series,
as configured in a parameter file. The distances implemented so far are the classic
sum of absolute differences, root-mean-square and maximum absolute difference
between the two series.

The obtained results are rather different from each other, as will be shown in
the next section. This shows the importance of a careful selection of the fitness
function.

As the parameter that most critically influences the quality of the solution
found by an evolutionary method is the population size we used very big popu-
lations in our numerical experiments. Also, we did not employ a hard selection
scheme, to let the evolutionary core explore a greater portion of the search space.

To test the suitability of our approach we performed two types of experiments:
in the first one we tried to approximate the array factor of an uniform array,
while the second was concerned with the synthesis of a rectangular array factor.
Approximating the uniform array is seemingly trivial, but, since the evolutionary
tool starts from random solutions, we should not take it for granted that it will
quickly converge to the exact solution. The approximation of a well-known array
type, moreover, gives us confidence in the employed methodology and lets us
assess the quality of the obtained solutions. The rectangular array factor, on
the other hand, allows us to push the method used to its limits, evidences the
differences in performance between the various measures of distance and provides
us further insight on the best ways to improve the fitness evaluator.

While performing the optimization, we noticed that the choice of the initial
number of roots has a noticeable effect on the achieved quality of the solution.
This is due to the fact that the initial phase of the evolutionary method consists
of a random search: giving the right number of roots allows the algorithm to ran-
domly hit promising regions of the search space that would remain hidden during
a normal search process that starts from a low number of roots. In this latter
case, in fact, the evolutionary algorithm may generate solutions with the right
number of roots when it is already in the exploitation phase, with a very uniform
population, and thus unable to broadly explore the resulting higher-dimensional
search space. Only the most significant results are therefore provided.

5 Results

The optimization on the uniform array approximation were conducted with a
population of 300 individuals, applying 200 genetic operators per generation
and carried on for 100 generations. The obtained results clearly show that even
the approximation of an array factor is not a trivial operation. The best fit is
obtained using the root-mean-square measure of difference between the objective
function and the approximating function. The sum of absolute values yields
a somewhat worse performance since it does not discriminate between small
and large deviations from the objective, but lumps everything together with
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Fig. 1. Approximations of the uniform array factor

the final sum. The worst result of all is obtained using the maximum absolute
difference between the two functions; this happens because the fitness landscape
has large flat regions in it. To give a hint of why it is so, consider an objective
function and a given candidate solution that has a specific value in point ψ0
(named FC), where the difference between FC and the corresponding value of
the objective function (named FO) is maximum; call M this maximum; there
obviously exists an infinite number of functions that pass the (ψ0, FC) and remain
within distance M from the objective function and therefore exhibit the same
fitness as the first one. This makes it extremely difficult to find a path even
to local maxima. Figure 1 shows the results obtained with the three fitness
measures. For the case of the rectangular objective function we used a really large
population of 3000 individuals, applying 2000 genetic operators per generation
and allowing the evolution to proceed for 1000 generations. The rectangular array
factor proves a much harder problem to solve than the uniform array factor, not
only needing more elements for an acceptable approximation, but also showing
a poorer quality of the solution (Figure 2).

For a comparison, a similar numerical experiment performed approximating
the uniform array leads to a result visually indistinguishable from the objective.
Again the performance of the three fitness measures shows the same order. The
root-mean-square difference measure leads to an imperfect approximation of the
low level of the objective function, but to the overall better approximation of
the high level; the sum of absolute differences yields the best approximation for
the low level but a slightly worse aproximation of the high level; finally, for the
same reasons outlined above, the maximum absolute difference gives us the worst
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Fig. 2. Approximation of the constant array factor with a 15 roots polynomial

performance, and the resulting evolutionary process is unable to satisfactorily
approximate the objective.

It is noteworthy that we let the evolutionary method autonomously choose
the number of roots used to approximate the objective function: while this is
meant to increase the quality of the obtained solution, it also greatly increases
the size of the search space, making it more difficult to find an exact solution.

One significant advantage of an evolutionary method over the deterministic
ones is that the latter ones generate very critical solutions, that is, solutions

Fig. 3. Comparison between different approachs
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that cannot be modified, even slightly, without degrading their quality. The
evolutionarily generated ones, instead, can undergo greater modifications before
losing as much quality as the deterministic ones. This is most probably the ef-
fect of these solutions belonging to a population of similar candidate solutions
which, during the search process, are selected and mutated: the evolutionary
core has a natural tendency to concentrate its population around local max-
ima which cover large parts of the search space, while very narrow peaks in
the fitness function are harder to be detected. The solutions generated with the
evolutionary method may undergo further manual optimization. While this is
not a desired situation, it may be necessary for some particularly critical prob-
lem, anyway comparing this evolutive approach versus classical methods we can
observe that the evolutive approach allows the designer to minimize the design
time (figure 3).

6 Conclusions

We set up a working environment to perform array antenna synthesis and opti-
mization using an evolutionary approach. We performed a series of experiments
trying to approximate two different objective array factors using different per-
formance measures. The obtained results clearly indicate the need for careful
selection of the fitness function within the evolutionary process. They also show
that acceptable solutions can be obtained rather quickly and, most importantly,
with little human intervention.

The evolutionary tool itself proved very versatile, being able to successfully
cope with a problem totally outside of its original application area. This en-
courages both further investment in the application of evolutionary methods to
antenna array syntesis and optimization and development of the tool itself.

In the near future we expect to be able to add support for mask speci-
fication as well as new fitness measures in the quest for higher-quality solu-
tions. Later on, we plan to integrate it under a graphic interface for simplified
usage.
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Alexandre Blansché, Pierre Gançarski, and Jerzy J. Korczak

LSIIT, UMR 7005 CNRS-ULP, Parc d’Innovation,
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Abstract. This paper presents a new process for modular clustering of
complex data, such as that used in remote sensing images. This method
performs feature weighting in a wrapper approach. The proposed method
combines several local specialists, each one extracting one cluster only
and using different feature weights. A new clustering quality criterion,
adapted to independant clusters, is defined. The weight learning is per-
formed through a cooperative coevolution algorithm, where each species
represents one of the clusters to be extracted.

1 Introduction

Data mining methods have been used for many years on less and less elementary
data : intervals, distributions, histograms, fuzzy data, temporal data, images, etc.
In general, when objects are described by a large set of features, many features
are correlated, some of them are noisy or irrelevent. In image analysis, there
are two main problems. In hyperspectral data, the superabondance of noisy,
correlated and irrelevent bands disturbs the classical procedures of extraction
(per pixel clustering). In object-oriented approach, regions are described by a
large set of features of heretogeneous types.

Many methods have been proposed for feature weighting or feature selection
[1, 2, 3], but almost all these methods are supervised and many of them use only
one set of feature weights for clustering the entire data set. In [3] it is shown that
a wrapper approch for feature weighting provides better results, because of the
feedback from the classification algorithm ; and in [4] it is shown that continuous
weights provide better results than binary weights (feature selection). Moreover,
in agreement with [5, 6], we believe that even if all features are relevant, their
relative importance depends on the classes to extract.

Few methods exist for unsupervised feature weighting [6, 7]. In fact, these
methods are based on weighted (dis)similarity measures and use a K-means or
prototype-based clustering paradigm.

Our approach is different. A set of extractors (of individual clusters) are
defined. Each extractor uses an algorithm to discriminate one cluster and a
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(local) feature weight vector to optimize the discrimination of this cluster. The
global result is obtained by the union of these extracted clusters.

The quality of this global clustering must be estimated with two criteria. A
first criterion tests if the clustering is a partition or if there are many unclassified
objects and many clusters overlapping. A second one depends on the quality of
its extracted cluster.

Consequently, the global clustering quality criterion value is high if, on the
one hand, each cluster has a good quality and, on the other hand, each object
belongs to one and only one cluster (i.e. each cluster is different from all the
others without overlapping).

To find the best set of feature weights according to this global clustering
quality criterion, we have defined a cooperative coevolution method.

In this paper, we first present the proposed method, that we call MACLAW
(Modular Approach for Clustering with Local Attribute Weighting). Then we
validate it on two datasets, the segment dataset from the UCI repository (regions
clustering) and a hyperspectral remote sensing image (per pixel clustering).

2 The Proposed Method: MACLAW

The proposed method consists of a cooperative coevolution algorithm in which
individuals are extractors, represented by the feature weights they use. K popu-
lations of extractors are defined where K is the number of clusters in the global
result. The final classification is obtained by the union of one cluster of each po-
pulation. Each population evolves to extract the best possible cluster according
to the global clustering quality criterion. But individuals evolve (by crossover,
mutation, ...) inside their population only. The evaluation of an extractor Xj

i

(the j-th extractor of the i-th population) is carried out by the use of a set of
representative individuals of the other populations, called reference PSC, and
updated every generation.

Each generation can be divided into 3 main steps (as shown in Fig. 1) : clusters
extraction and quality evaluation, genetic evolution (selection and reproduction)
and reference PSC update. The two last steps can be performed in parallel.

Consequently, to define our modular clustering method and in particular the
feature weighting process, four main questions have to be addressed :

– how is extracted a cluster (2.1) ?
– how is evaluated the global clustering quality criterion (2.2) ?
– how evolve extractors (2.3) ?
– how are combined extracted clusters (2.4) ?

2.1 Cluster Extraction

Formally, an extractor is a function X, such that X(S) ⊂ S where S is a set
of objects to be classified. Let an extractor be a triplet X = (M,w, r), where
M is a clustering method, w a set of weights and r a cluster quality criterion.
To extract the cluster X(S), first the dataset is classified, using method M and



256 A. Blansché, P. Gançarski, and J.J. Korczak

Fig. 1. Schematic diagram of MACLAW

weights w on the attributes of the elements of S, to obtain a set of clusters
{C1, . . . , CKw

M
} : for example, for distance-based methods, the weights are used

to compute the global distance between objects and compactness of clusters.
Then the cluster Ce such that r(Ce) = max

{
r(Ci), i = 1, . . . , Kw

M

}
is

selected.
Let D = {D1, D2, . . . , DK} be the Partial Soft Clustering (PSC) of the data

composed of K extracted clusters Di = Xi(S), where the Xi are extractors.

2.2 Classification Quality

Many criteria have been proposed to define quality of an unsupervised classifi-
cation, such as compactness or inertia [8, 9, 10, 11]. But, in our case, it is difficult
to use typical criteria because the global classification is a unification of clusters
obtained by independant extractors:

– it is not possible to use criteria based on the distance between clusters (e.g.
interclass inertia), because each extractor uses a different metric ;

– internal criteria (e.g. intraclass inertia) cannot be used because objects
may belong to zero, one or several clusters. Consequently, some clusters
may all have a good quality, but do not produce a partition of the data.
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It is necessary to define a new quality criterion which depends on the quality
of the PSC of the extracted clusters.

We first define the quality of unambiguity of an object o in a PSC D by
Qo (o,D) = 1 − ∣∣Card {Di | o ∈ Di, Di ∈ D} − 1

∣∣.
Thus, if o is extracted by one and only one extractor, Qo (o,D) = 1. If o is

unclassified or if it is extracted by two extractors, Qo (o,D) = 0, if it is extracted
by three extractors, Qo (o,D) = −1, and so on.

Then, the partition quality of a PSC D can be defined using the quality of

unambiguity by QP (D) = max

(
0, 1

N

N∑
k=1

Qo (o,D)

)
where N is the number of

objects to be classified, i.e. N = |S|.
One can notice that QP (D) = 1 if and only if D is a partition of S. Indeed, if

D is a partition, Qo (o,D) = 1 for all objects o of S, thus
∑N

k=1Qo (o,D) = N and
QP (D) = 1. If D is not a partition, there is an object o such that Qo (o,D) < 1,
so
∑N

k=1Qo (o,D) < N and QP (D) < 1.
However, if this criterion is used alone, a cluster can include almost all the

objects. The PSC may be a good partition. Nevertheless, it is probably seman-
tically incorrect.

A second criterion is added to take into account the quality of the extracted
clusters. The cluster quality of a PSC D can be defined by QC(D) =

∏
Di∈D

q(Di),

where q(Di) is a quality criterion (e.g. compactness) for one single cluster, which
takes values in [0; 1].

Finally, the quality of a PSC can be defined, using the partition quality and
the cluster quality, by Q (D) = QP (D) × QC(D).

First experiments, with this first definition of quality, have shown encouraging
results [12], but improvements can be obtained by the use of a fuzzy definition
of cluster membership.

The quality of unambiguity of an object o in a PSC D can be extended to a
fuzzy definition of cluster membership by Qo (o,D) = p (o,Dm)−

∑
Di �=Dm

p (o,Di)

where Di is the i-th extracted cluster and p (o,Dm) = max
Di∈D

p (o,Di) and p(o,Di)

is the membership degree of the object o for the cluster Di.

2.3 Evolution of Extractors

The weights are learned through an evolutive algorithm. Each individual is a
single extractor. A chromosome is the set of weights wi ∈ [0, 1] on each attribute
for the extractor that it represents. The goal is to evolve several individuals and
make them cooperate, so that the PSC built using their extracted clusters is a
good classification.

A cooperative coevolution algorithm is used. Cooperative coevolution has
been defined in [13, 14]. It is an evolutionary algorithm which uses several po-
pulations. A population evolves in an environment which depends on the other
populations and evolves with them.
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One population for each cluster to extract is used. A PSC is built using one
extracted cluster from each population. Because it is an unsupervised method,
the cluster of each population is not known at the beginning, but is to be disco-
vered during the learning.

We decide to calculate individual quality only in a single environment as de-
fined in [15]. In the case of modular clustering, we call the environment reference
PSC. At a given generation g (g = 1), the reference PSC is the best PSC found
during previous generations. It is defined by Δ (g) =

{
Δ1(g), . . . , Δi(g), . . . ,

ΔK(g)
}

where Δi(g) is a representative cluster of the i-th population.
The quality of an extractor Xj

i (j-th individual in the i-th population) is defi-
ned by the quality of the PSC obtained by replacing, in the reference PSC Δ (g),
the i-th cluster by Xj

i (S). Thus, Q
(
Xj

i

)
= Q

(
Dj

i

)
, where Dj

i =
{
Δ1(g), . . . ,

Xj
i (S), . . . , ΔK(g)

}
.

A roulette-wheel method (fitness proportionate selection) is used to select
individuals and classic genetic operators (crossovers, mutations and new indivi-
duals) are used for reproduction.

2.4 Extracted Clusters Combination

At each generation, the PSC obtained is a set of K independant clusters. Thus
there may be unclassified objects or objects classified in more than one cluster. To
obtain partitioning, a first method (rough combination) for combining clusters
simply consists of grouping objects that are not classified in one cluster, in a
new cluster of rejected objects.

A better method (conflictless combination) is to affect each unclassified object
to one single cluster :

– for each object o, for each extractor Xi = (Mi, wi, ri) relative distance to
the centre dr(o, ge) = dwi

(o,ge)
dwi

(o,g) is computed, where ge is the centre of Xi(S)
and g the nearest cluster centre (obtained by using Mi with wi on S) to o,
different to ge ;

– the object is added to the extracted cluster which provides the lowest
relative distance.

It is easy to see that if an object is extracted by one extractor X only, it will
be added to the cluster X(S).

3 Experiments

3.1 Segment Database from UCI Repository

The new method has been tested on the segment database from the UCI reposi-
tory [16]. This dataset consists of 7 classes of 330 objects each. The objects were
drawn randomly from a database of 7 outdoor images. The images were hand-
segmented to create a classification for every pixel. The objects are described by
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19 continuous features. All features are defined on different scales. As proposed
in [1], we normalized each feature so that they had an expected difference of 1.

We carried out two series of tests with 3 methods, namely K-means, Weigh-
ting K-means [7] and MACLAW. We have applied each method 100 times to
the raw data and the normalized data. Each method was configured to find 7
clusters. MACLAW was configured as follows :

– Clustering method used by the extractors : K-means ;
– Cluster quality criterion : compactness, as defined in [17] ;
– Membership degree (for quality of unambiguity definition) :

pα,ϕ (o,D) =

{
exp

(
− ln

(
1
ϕ

)
×
(

d(o,gC)
d(o,g)

)α)
, if d (o, g) = 0

0, otherwise

where gD is the centre of D and g is the nearest cluster centre from o
different from gD, and whith α > 0 et 0 < ϕ < 1 ;

– Populations sizes : 20 individuals ;
– Number of generations : 250 generations ;
– Ratios to create new populations :

– new individuals : 20 % ;
– mutated indivuduals : 20 % ;
– individuals obtained by crossover : 20 % ;
– surviving individuals : 40 %.

Table 1 shows that, for all the methods, normalized data provide better re-
sults than raw data. It also shows that with normalized data, methods with
feature weighting provides better results than simple K-means and Weighting
K-means outperforms MACLAW. With raw data Weighting K-means fails, but
MACLAW still provides better results than K-means and largely outperforms
Weighting K-means.

These results show that MACLAW seems more robust. The Weighting K-
means can provide better results, but is strongly dependent on the initial scales
of the features because the weights are computed iteratively. On the other hand,
MACLAW searches weights stochastically. The results are lower with raw data
only because the search space is not accorded to the data : when a feature has
a high expected difference, it is not necessary to test high valued weights.

Table 1. Average, minimum and maximum accuracy over 100 tests

Method Data Av. Acc. (%) Min. acc. (%) Max. acc. (%)

K-means raw 41.2 ± 3.53 39.19 47.7
norm. 44.45 ± 6.97 30.39 56.96

W. K-means raw 14.15 ± 2.89 13.25 23.33
norm. 55.01 ± 6.6 44.29 70.91

MACLAW raw 43.36 ± 7.32 30.13 65.15
norm. 47.86 ± 6.83 32.34 63.29



Fig. 2. Examples of radiometric bands

3.2 Application to Radiometric Bands Selection in Hyperspectral
Remote Sensing

We have applied our method to a part of a hyperspectral remote sensing image
(DAIS image) from the city of Strasbourg (France), with 44 channels and a
standard resolution. The image contains 152 × 156 pixels. In figure 2, one can
see 5 different bands :

– the 18th band (Fig. 2(a)) seems relevant and not noisy ;
– the 24th and 26th (Fig. 2(b) Fig. 2(c)) are correlated ;
– the 29th (Fig. 2(d)) does not seem to be relevante ;
– the 31th band (Fig. 2(e)) is strongly noisy.
It is clear that it is necessary to carry out a selection of these bands to obtain

a relevant classification.
We carried out some tests with 5 clusters expected, 150 individuals by popu-

lation and 50 generations. Figure 3 shows the evolution of the quality criterion :
– from generation 0 to 12, a strong improvement of the quality of classifica-

tion ;
– from generation 13 to 28, a very slow improvement, even a stagnation of

this quality ;
– from generation 29 to 37, a new very strong improvement of the quality ;
– from generation 38 to 50, again a very slow increase.
We explain this evolution by :
– during the first generations (from 0 to 12), the improvement comes mainly

from the specialization of each population of extractors ;
– during the second period (13 to 28), the specializations found in the prece-

ding stage did not allow any more significant evolution of quality, probably
due to the presence of a local maximum ;

– at the 31st generation, the first extractor has specialized in a radically new
cluster compared to the preceding generation, but also, and especially, com-
pared to the other extractors of generation 31. This specialization removed
a conflict between extractor 1 and extractor 4 ;

– the extractors preserved these new specializations until the end of the trai-
ning. Only small improvements have been observed. For example an ex-
tractor has grouped all pixels of water.
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Gançarski,



Fig. 4. Results on a hyperspectral image at different generations

Figure 4 shows the reference PSC (as defined in 2.3) corresponding to points
of inflections.

Overall, we observe at the 46th generation that interesting clusters seem to
have been discovered. Thus, the first extractor ”identified” the roads, the 2nd, the
shadows, the 4th the water, and the 5th, the vegetation (a stadium and parks).
The third extractor has extracted the pixels of edges, often difficult to classify.
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4 Conclusion

We have presented MACLAW, a new process of collaborative clustering which is
able to classify complex objects described by a large set of features, which might
be noisy, correlated, irrelevant and eventually of heterogeneous types. MACLAW
decomposes this problem into several simpler problems : rather than trying to
classify the set of data in a monolithic way, several extractors are used, each one
specialized in one class. The extractors learn in collaboration, through a genetic
algorithm, to improve accuracy. It has been necessary to define a new quality
criterion, because each cluster is defined independantly. We have shown that
MACLAW is efficient in image analysis, in both per pixel clustering or region
clustering cases.

We define a general method which has been tested with a distance-based
method, cluster quality criterion and membership degree definition, but can be
completely independant of the notion of distance or similarity by using some
other methods.

However, our method shows some limits. First, genetic learning methods,
and especially coevolution methods, have well-known shortcomings. Then, the
proposed method needs to know how many clusters there are. This is a common
problem for many clustering methods. In our case, we propose that, in the future,
the method will be able to add or remove populations dynamically, during the
learning, to find the correct number of clusters.

Further research will focus first on the possibility of the collaboration of va-
rious classification methods, where each one uses a different model from the
data. In the case of remote sensing images for example, we could use various
data sources on the same zone (radar, radiometry, photo. . .). Secondly, we are
interested in using domain knowledge to improve each step of the collabora-
tive mining.
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Abstract. This paper describes a new evolutionary algorithm for image
segmentation. The evolution involves the colonization of a bidimensional
world by a number of populations. The individuals, belonging to differ-
ent populations, compete to occupy all the available space and adapt
to the local environmental characteristics of the world. We present ex-
periments with synthetic images, where we show the efficiency of the
proposed method and compare it to other segmentation algorithm, and
an application to medical images. Reported results indicate that the seg-
mentation of noise images is effectively improved. Moreover, the proposed
method can be applied to a wide variety of images.

1 Introduction

Image segmentation is typically the most difficult task in image processing and
it is usually the starting point for any subsequent analysis. Image segmentation
has been the subject of intensive research, and a wide variety of techniques have
been reported in literature. A good review of these methods can be found in [1].

In many applications, clustering algorithms can be used for image segmenta-
tion [2]. Among them, the fuzzy c-means clustering algorithm (FCM) is one of the
best known and the most widely used clustering technique [3, 4]. However, FCM
exploits the homogeneity of data only in the feature space and does not adapt to
their local characteristics. This is a major drawback of the use of FCM in image
segmentation, because it does not take into account the spatial distribution of
pixels in images. Many optimization methods have been reported to improve and
further automate the fuzzy clustering. Among them, various authors proposed
the use of genetic algorithms [5] with promising results [6, 7, 8].

Alternative approaches to exploit the metaphor of natural evolution in the
context of image segmentation have been proposed. The genetic learning system
proposed by Bhanu et al. [9] allows the segmentation process to adapt to image
characteristics, which are affected by varying environmental factors such as the

F. Rothlauf et al. (Eds.): EvoWorkshops 2005, LNCS 3449, pp. 264–273, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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time of the day, condition on cloudiness, etc. Bhandarkar and Zhang [10] use
the genetic algorithm to minimize the cost function that is used to evaluate the
segmentation results. Andrey [11] describe a selectionist relaxation algorithm,
whereby the segmentation of an input image is achieved by a population of el-
ementary units iteratively evolving through a fine-grained distributed genetic
algorithm. Liu and Tang [12] present an autonomous agent-based approach,
where a digital image is viewed as a two-dimensional cellular environment in
which the agents inhabit and attempt to label homogeneous segments. Veen-
man et al. [13] use a similar image segmentation model and propose a cellular
coevolutionary algorithm to optimize the model in a distributed way. Methods
based on ant colonies and artificial life algorithms are also investigated for image
segmentation and clustering problems [14].

The application of heuristic methods on image segmentation looks very promis-
ing, since segmentation can be seen as a clustering and combinatorial problem.
Throughout this paper, we will consider the clustering problem and the segmen-
tation problem as being similar. Accordingly, we consider solution methods for
both problems interchangeably.

In this paper, a system based on an evolutionary algorithm, which is remi-
niscent of the well-know ’Life’ game, invented by John Horton Conway [15], is
presented. The evolution involves the colonization of a bidimensional world by a
number of populations, which represent the different regions which are present
in the image. The individuals, belonging to different populations, compete to oc-
cupy all the available space and adapt to the local environmental characteristics
of the world.

The paper is organized as follow: section 2 describes the standard FCM algo-
rithm we use as a reference, section 3 reports the details of the proposed method,
section 4 reports numerical results obtained on synthetic images and section 5
shows the results obtained on a set of medical images.

2 Fuzzy -Means Clustering Algorithm

We choose to use a standard FCM algorithm as a reference for the evaluation
on the proposed algorithm. The standard FCM algorithm is based on the mini-
mization of the following objective function:

Jm(U, V ) =
c∑

i=1

n∑
k=1

um
ik‖xk − vi‖2 (1)

where:
– x1,x2, ...,xn are n data sample vectors;
– V = {v1,v2, ...,vc} are cluster centers;
– U = [uik] is a c × n matrix, where uik is the ith membership value of the

kth input sample xk, such that
∑c

i=1 uik = 1
– m ∈ [1,∞) is an exponent weight factor that determines the amount of

“fuzziness” of the resulting classification.

c

c
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If we assume that the norm operator ‖ · ‖ represents the standard Euclidean
distance, the objective function is the sum of the squared Euclidean distances
between each input sample and its corresponding cluster center, with the distance
weighted by the fuzzy membership.

As pointed out by several authors [16, 17], the FCM algorithm always con-
verges to strict local minima of Jm starting from an initial guess of uik, but
different choices of initial uik might lead to different local minima.

Bezdek et al. [6, 7] introduces a general approach based on GA for optimizing
a broad class of clustering criteria. Since the cluster centers are the only variable
used by the GA, they reformulate the FCM functional as:

Rm(V ) =
n∑

k=1

(
c∑

i=1

‖xk − vi‖1/(1−m)

)(1−m)

(2)

They demonstrate [18] that this functional is fully equivalent to the original one
for each clustering criterion (hard, fuzzy and probabilistic).

3 System Architecture

The system is based on an evolutionary algorithm which simulates the coloniza-
tion of a bidimensional world by a number of populations. The world is organized
in a bidimensional array of locations, or cells, where each cell is always occupied
by an individual.

The world is represented by a matrix, associated with a vector of input images
Iz (i.e. RGB components, textural parameters, or whatever), which are stacked
one above the other. Each cell of the matrix corresponds to a pixel of the image
stack, and therefore, the cell having coordinates P = (x, y) is associated to a
vector of features e(x, y) = {Iz(x, y)}. In our simulation, this feature vector is
assumed to represent the environmental conditions at point P of our world.

During each generation, each individual has a variable probability Sr, de-
pending both on the environmental conditions and on the local neighborhood,
to survive to the next generation. When the individual fails to survive, the empty
cell is immediately occupied by a newly generated individual.

3.1 Environmental Constraints

The environmental conditions in a cell influence the probability of the individual
surviving in that location. If the population (which the individual belongs to) is
well suited to the proposed environment, the survival chances of that individual
are very high. On the other hand, if the population is suited to an environment
which is very different from the local one, the possibilities for that individual to
survive to the next generation are very low.

This requires us to define an ideal environment which maximises the chances
of survival of an individual of a given population. This ideal environment has
been obtained by averaging, in each iteration, the environment in all the cells
occupied by individual of the population.
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For instance, if the population A is composed of individuals mainly located
in dark zones of the input image, the few individuals belonging to the population
A, which are situated in bright zones of the input image have a low survival rate.
After a few iterations, the percentage of individual situated in dark areas will
be increased.

A second parameter used to increase the selective pressure over the popula-
tion is the variance of the feature vector. This is used to normalize the evaluation
of the similarity between the ideal environment and the local environmental con-
ditions.

The environmental factor described above has been modeled in our system
by means of a survival factor Se which is represented, for an individual belonging
to the population i and situated in the point (x, y), as:

Se =
1

1 + exp (ci(x, y)/c0 − ct)
+ me (3)

The expression above represents a sigmoid-like function, centered in ct. Param-
eters ct and c0 describe the position and the steepness of the sigmoid function,
while the constant me represents a minimal survival rate. The variable ci(x, y)
represents the similarity between the local environment e(x, y) and the ideal
environment ei for the population i, evaluated as:

ci(x, y) =
∣∣∣∣e(x, y) − ei

σi

∣∣∣∣ (4)

where, as described above, ei and σi are, respectively, the mean and the standard
deviation of e(x, y) over all points of the image occupied by individuals belonging
to the population i.

3.2 Neighborhood Constraints

The presence of individuals of the same population in a neighborhood is known
to increase the survival rate of them. In our simulation, this has been taken
into account by including in the model a survival factor Sn which depends on
the number of individuals ni in a 3 × 3 neighborhood which belong to the same
population of the individual located in the position (x, y).

The neighbor factor associated, named Sn, is evaluated as:

Sn =
1

1 + exp (nt − ni(x, y)/n0)
+ ms (5)

where, as above, parameters nt and n0 describe the position and the steepness of
the sigmoid function, while the constant ms represents a minimal survival rate.
It is worth noting the difference between the two survival rates is in the sign: in
this case the survival rate increases when ni increases, while Se decreases when
ci increases.
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3.3 Splitting and Merging

As presented above, the method does not prevent the situation were two popula-
tions are competing to colonize regions having similar environmental constraints.
We overcome this problem by including, once over a predefined number of it-
erations, a split and merge step. In this step, we evaluate how different the
separation are from each other by means of a statistical analysis of the popu-
lations descriptors. For each pair (i, j) of populations we evaluate a separation
coefficient sf as:

sf =
∑

z

(ei − ej)2

σiσj
(6)

when this coefficient is too small, we assume that the two population are sta-
tistically equivalent, and we merge them in a single one. At the same time, in
order to preserve the total number of populations, the population having the
highest dishomogeneity, measured as the largest value of |σi| is split in two new
populations.

3.4 Algorithm

The algorithm can be described according to the following steps:

1. On each point in the image is placed a random individual
2. For each generation:

(a) The average feature vector ei and its standard deviation σi are computed
for each population

(b) For each individual:
i. The survival probability is computed as Sr = Se ∗ Sn .
ii. If the individual does not survive, a new one replaces it. The new

individual is assigned to a population randomly selected with proba-
bilities proportional to the survival factor Se of an individual of each
population.

3. The separation sf among populations is evaluated, and split and merge
operation are performed

4 Experiments with Synthetic Images

This experiment uses synthetic images containing geometric objects (a circle,
square and a star-shaped object). The intensity image is generated by assigning
grey level value 100 to pixels belonging to the background, and 70, 130, and 160
respectively to the objects.

A zero mean, white Gaussian noise is added to this image. Three different
noise levels (corresponding to the standard deviation values: 10, 20, 30) are
considered, as shown in Figure 1. This allow to study the robustness of our seg-
mentation technique with respect to noise variance and to determine an adequate
set of parameters.
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Fig. 1. Examples of synthetic test images with different values of Gaussian noise (from
left to right: σnoise =10, 20, 30)
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Fig. 2. Plot of Se (left) and Sn (right) obtained using nt = 5, n0 = 1.25, nt = 10,
c0 = 20, min(sf ) = 0.2, me = 0.1, ms = 0.3

On these images we perform experiments using the following parameters:
populations = 4 (circle, square, star, background), nt = 5, n0 = 1.25, nt = 10,
c0 = 20, min(sf ) = 0.2, me = 0.1, ms = 0.3. Using this parameter set, we
obtain the plot reported in Figure 2 for Sn and Se. We can observe that an
individual which is located in a cell where e(x, y) differs from ei more than 8,
has practically no probability to survive. As concerns the neighborhood factor
Sn, the probability of surviving is almost proportional to the number of neighbors
belonging to the same population, when this number is larger than four.

The effect of the split and merge operations is depicted in Figure 3. The
image on the left shows an intermediate evolution step, where two different pop-
ulations are competing to colonize the round object. This situation is a sort
of local minimum which traps the evolutionary algorithm. However, when the
two competing populations are restricted to the same part of the image, their
mean and standard deviations indicate there is no significative difference be-
tween them, and in the next generation they will be merged together (center
image). At the same time, to maintain the total number of population con-
stant, one of the remaining populations is split in two parts. In this case, the
population having a larger variance between its individual is the population
which colonizes the other objects. After a few iterations (right image), the two
populations adapt to the different objects, achieving a correct discrimination
among them.

The final segmentation results, see Figure 4, show that the algorithm is able
to give a sensible segmentation also with the highest value of noise in the image.
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Population A

Population B

Population D

Population C

Fig. 3. Intermediate evolution steps. Left image: two populations which are competing
for the round object. Center image: a split and merge is occurred: the round object
is colonized by a single population, while the two populations generated by split are
adapting to the different objects
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Fig. 4. Simulation results on synthetic test images with different values Gaussian noise

The experimental results have been compared with the segmentation results
of a standard fuzzy c-means algorithm.

A quantitative evaluation of the segmentation results, reported in table 1, can
be obtained measuring the classification errors A+ and A−. The parameter A+

represents the percentage of pixel which do not belong to the object, but which
have been assigned to it. On the other hand, A− represents the percentage of
pixels which belong to the object, but which have been classified as background.

Table 1. Average classification results on synthetic images

Object circle square star
A−(%) A+(%) A− (%) A+(%) A− (%) A+ (%)

σ = 10 0.5 0.3 0.9 0.3 0.5 1.7
σ = 20 2.7 1.3 6.7 0.7 2.3 4.3
σ = 30 6.2 3.7 14.7 4.6 1.8 18.7

Table 2. Average classification results on synthetic images using the standard FCM
algorithm

Object circle square star
A−(%) A+(%) A− (%) A+(%) A− (%) A+ (%)

σ = 10 7.2 62.9 39.9 > 100 0.3 49.0
σ = 20 30.2 > 100 51.8 > 100 9.8 > 100
σ = 30 47.8 > 100 57.7 > 100 24.1 > 100
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The use of local information allows the proposed method to obtain results
significatively better than the FCM algorithm. As it can seen from table 2,
the variance of the noise is large enough to disallow the FCM algorithm to
successfully discriminate objects from background in most cases. The notation
> 100 actually means that a large part of the background has been assigned to
the same class of the examined object.

5 Application to Medical Images

The pancreas is composed of two different types of tissues: an exocrine parenchima
which produces different digestive enzymes and the islets of Langherans, which
are found scattered throughout the tissue [19]. The islets have an endocrine func-
tion and produce hormones important in metabolism like insulin and glucagon.
The islets of Langherans are attacked and destroyed by the immune system in
type I diabetes and have a decreased ability to produce insulin in type II diabetes.
By analysing the number of islets and the surface they occupy in proportion to
the total surface of the pancreatic tissue section we can define the normal values
for different mouse strains and later on we can compare these numbers with
genetically modified mice in order to identify genes that are important in the
embryonic/postnatal development of the islets of Langerhans, which might be
of importance for the development of diabetes later on in life. The picture was
taken on the pancreas of a 5 months old mouse, C57Bl/6 strain. The pancreas
was fixed in formalin, paraffin embedded and sectioned into 14 mm slices. The
sections were stained with hematoxilin and eosin. The image acquisition were
performed with a LEICA DMRB, Camera LEICA DC 200, acquisition software
LEICA QWin, using a 20 × magnification.

Two images of a pancreas, containing the islets of Langherans are shown in
Figure 5.

The proposed method has been applied for the segmentation of these im-
ages, using the following parameters: populations = 2 (islets of Langherans,
parenchima), nt = 4, n0 = 1, nt = 10, c0 = 20, min(sf ) = 0.2, me = 0.1,
ms = 0.3.

Examples of the obtained segmentation are shown in figure 6.

Fig. 5. Two sections of a pancreas, including the islets of Langherans



272 L. Bocchi, L. Ballerini, and S. Hässler

Fig. 6. Segmentation of the images in Figure 5

A quantitative evaluation of these results is currently under study. There
is not a standard segmentation technique in this context to compare with our
method, in fact medical doctors still perform it manually. We are therefore asking
to more than one clinician to segment all the islets blindly and compare their
agreement with the described approach.

6 Conclusions

In this paper, we presented an evolutionary algorithm for image segmentation.
In the experiments, we showed the effectiveness of the method and compared
it to a well-known clustering method. The proposed algorithm can be used for
the segmentation of gray-scale, color and textural images. The representation of
the environmental constraints as a feature vector allows us to easily extend the
method to any vector-valued parametric images, independently on the number
of components. Moreover, the normalization of each component of the similarity
term ci enables to use paramedic images having different ranges of values.

We are planning to extend the method in order to include local properties
on each population in the evaluation of survival rates. In this way we will en-
able the system to better adapt to slow variations present in the image (for
instance, uneven illumination) which cannot be captured by the overall mean
on the population. This extension could also allow for the introduction of a new
split procedure based on the differentiation between local properties and the
overall mean.
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Abstract. We present in this paper a multifractal bayesian denoising technique
based on an interactive EA. The multifractal denoising algorithm that serves as a
basis for this technique is adapted to complex images and signals, and depends
on a set of parameters. As the tuning of these parameters is a difficult task, highly
dependent on psychovisual and subjective factors, we propose to use an interac-
tive EA to drive this process. Comparative denoising results are presented with
automatic and interactive EA optimisation. The proposed technique yield efficient
denoising in many cases, comparable to classical denoising techniques. The ver-
satility of the interactive implementation is however a major advantage to handle
difficult images like IR or medical images.

1 Introduction

Interactive Evolutionary Algorithms (IEA) have now many applications in various do-
mains, where quantities to be optimised are related to subjective rating (visual or auditive
interpretation). Following founding works, [1, 2, 3, 4] oriented towards artistic applica-
tions, characteristic examples are [5] for Hearing Aids fitting, [6] for smooth, human-
like, control rules design for a robot arm, or [7] for the design of HTML style sheets. An
overview of this vast topic can be found in [8].

The specific context of human interaction constrains the evolutionary engine a dif-
ferent way as classical EA approaches. The “user bottleneck” [9], i.e. the human fatigue,
is a major fact. Solutions have to be found in order to efficiently drive the evolution
of the system while avoiding systematic and boring interactions [9, 8, 10]. Usually, the
IEA populations are small, and interfaces are designed in order to let the user interact
in various ways with evolution (initialisations, solutions rating, and if possible direct
modifications on genomes [11]).

The present work deals with complex image analysis techniques that depend from
a set of control parameters. These techniques are precise and efficient, but depend-
ing on applications, the aim of the end-used may be very different (medical practi-
cionner, teledetection, stereophotogrametry), and some judgment criteria are fully user
dependent.

We explore the idea of developing an interactive EA to cope with unpredictibility of
the exact aim of the user. As an example, for denoising applications, computed image
distance is not sufficient to decide which algorithm is the best. Criteria related to details
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preservation, and depending on psychovisual factors are extremely important. Moreover,
the end-user judgment depends on the way he will use the denoised image ...

The paper is organised as follows. In section 2 the principle of the multifractal
bayesian denoising technique is presented, and the free parameters are identified. These
free parameters are optimised with the help of an interactive evolutionary algorithm,
see section 3. Results of interactive and automatic optimisations are presented in sec-
tion 4, with comparisons with another efficient denoising technique based on wavelet
coefficients. Conclusions and future work are presented in section 5.

2 Multifractal Bayesian Denoising

2.1 Multifractal Analysis

The multifractal analysis of a signal consists in measuring its regularity at each sample
point, in grouping the points having the same irregularity, and then in estimating the
Hausdorff dimension (i.e. the “fractal dimension”) of each iso-regularity set. Irregularity
is measured via the local Hölder exponent [12] defined for a continuous function f at
x0 as the largest real α such that:

∃C, ρ0 > 0 : ∀ρ < ρ0 supx,y∈B(x0,ρ)
|f(x) − f(y)|

|x − y|α ≤ C

Since α is defined at each point, we may associate to f the function x → α(x) which
measures the evolution of its regularity.

A multifractal spectrum fH is a representation of the irregularity of the signal
over its definition domain. For each irregularity value, i.e. for each α, one estimates
fH(α) as the Hausdorff dimension (the “fractal dimension,” intuitively related to a
frequency/geometrical distribution) of the corresponding iso-α set. As an example,
for image data, a fH(α) � 1 corresponds to a linear and smooth structure, while
f(α) � 0 is a set of scattered points (singular points), or f(α) � 2 is a uniformly
textured area.

The multifractal spectrum is a central notion exploited in multifractal image and
signal analysis, as it provides in the same time a local (α) and a global (fH(α)) viewpoint
on data. It has been exploited with success in many applications where irregularity bears
some important informations (image segmentation [13], signal and image denoising
[12], etc ... )

Wavelet transforms are convenient tools for the estimation of the Hölder exponents.
Our method is thus based on a discrete wavelet transform, and has been compared to
another denoising technique based on wavelets (soft thresholding), know as very efficient
in many cases, see section 4.

2.2 Bayesian Denoising

The principle of the method is the following: For a noisy image I1, we search for a
denoised image I2 that satisfies two conditions:
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– I2 has a given multifractal spectrum,
– the probability that the addition of a white gaussian noise (with variance σ) to I2

produces an observed image I1, is maximal.

If the wavelet coefficient of the noisy image at scale j is y, we get the following
coefficient at the same scale for the denoised image (for details, see [14]):

x̂ = argmaxx>0

(
jg

(
log2(K̂x)

−j

)
− (|y| − x)2

2σ2

)
sgn(y) (1)

where

– K̂ is a constant (that can depend from the scale j) such that K̂|y| < 1 for every
coeficients y at scale j of the noisy image. In what follows, K̂ is taken as the inverse
of the maximal coefficient of each scale.

– g is the function that defines the a priori spectrum of the denoised image.

We have chosen to use functions that verify the following properties:

• g is defined on a interval [αmin, αmax],
• g(x) ∈ [0, 1],
• there exists an αmod ∈ [αmin, αmax] such that g(αmod) = 1,
• g is affine on [αmin; αmod] and on [αmod; αmax].

The g functions are thus fully determined by 5 values: αmin, αmod, αmax, g(αmin)
and g(αmax).

As far as the previous set of values is chosen, the computation of the optimal wavelet
coefficients of equation (1) is a simple deterministic calculation (as the a priori spectrum
g is affine by parts). The results provided by the method are fully determined.

2.3 Free Parameters

A full set of parameters needs to be tuned in order to produce an efficient denoising
with the previous method. Among them1, the most important ones are the values αmin,
αmod, αmax, g(αmin) and g(αmax), that define the profile of the a priori spectrum. For
image denoising, these values have to be defined for the horizontal/vertical coefficients
and for the diagonal ones.

Actually, we have chosen to distinguish the a priori hypotheses made on the hori-
zontal/vertical coefficients and on the diagonal ones. Usually, on “non-noisy” images,
the diagonal wavelet coefficients are significantly lower than the horizontal and vertical
ones, while if these images are perturbed by an additive gaussian noise, this discrepancy

1 The choice of the wavelet basis is of course important, and visually influences the results. For
the present work we have chosen to optimise this parameter offline, independently from the in-
teractive evolution process. Inded, experiments have been performed whith a genome including
a symbolic component identifying the wavelet basis. It has been noticed that experimentally
the wavelet coefficients that yield best results where Daubechies 8 to 12. It has however been
noticed that as far as a “correct” wavelet has been chosen, the shape of the a priori spectrum is
determining for the quality of results.
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vanishes2. Diagonal wavelet coefficients seems to be more sensitive to additive noise,
and a “stronger” denoising of them often yield better results.

We have thus chosen to use a different g function for the diagonal coefficients: gDiag

is similar to g, but translated with respect to its abcissa. This translation is an additional
parameter of the method.

3 Interactive Optimisation of Free Parameters

In [12], the multifractal denoising technique was based on another hypothesis with
respect to the multifractal spectrum. We supposed that the noise was resulting into a
translation of the multifractal spectrum of the initial image. In this paper, we relax this
hypothesis and do not suppose that the spectrum of the initial image can be deduced
from the degraded one. Moreover we do not suppose we know the variance of the noise
(that we still suppose to be a white Gaussian noise however).

The resulting method is thus more versatile, but in the same time the quality of results
is stongly dependent from the choice of the parameter set. The solution we propose is
to let a human user choose among the various parameters combinations. This problem
is of course strongly combinatorial and an interactive evolutionary algorithm has been
designed in order to focus the search.

The population is made of a small number of individuals. Each individual is a param-
eter setting. It is presented to the user as an image, result of the corresponding denoising
algorithm. The initial image (noisy) is simulatneously presented in the interface, so that
the user can easily compare the results, see figure 1.

3.1 Genome

The genome that will be evolved by the IEA is made of 7 real genes:

– 5 values to define the g function used in formula (1) for the horizontal/vertical
wavelet coefficients: ranges are chosen in order to ensure that the general shape of
the spectrum is respected, i.e. αmin ∈ [0, 0.5], g(αmin) ∈ [0, 0.1], αmod > αmin,
αmod ∈ [0, 1], αmax > αmod, αmax ∈ [0.5, 5], g(αmax) ∈ [0.9, 1]

– the shift of the g function for the diagonal coefficients (range [0, 0.5]),
– the noise variance σ (range [3.0, 40.0]).

3.2 Fitness and User Interaction

The fitness function is given by the user via a cursor attached to each denoising result of
the window. The range of values is [−10, 10]. A default value of “0” (indifferent) is set

2 Diagonal coefficients are roughly related to a second derivative of the signal while the horizon-
tal/vertical ones are related to a first derivative. Additionally, this behaviour has been verified
in a simple experiment on a set of 80 sample images: the mean values of horizontal/vertical
wavelet coefficients have been computed and compared to the mean value of the diagonal ones.
In average the quotient (mean diagonal values) over (mean vertical/horizontal values) is 0.52
(standard deviation 0.16).
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Fig. 1. Interface of the IEA

for each new genome (each image in the interface), the user can either increase, decrease
or accept this value.

A sharing function is used in the selection process, in order to maintain diversity in
the small population. The sharing is based on a weigthed L2 distance computed on the
real genes (parameters).

3.3 Genetic Engine

The replacement step of the algorithms consists in replacing the 3 worst individuals of
the population by new ones.

– Selection is performed by tournament of size 3.
– Crossover is a barycentric crossover (the new individual is a weighted combination

of his parents with a randomly chosen weight in [0, 1]).
– Mutation is an independent uniform perturbation of each gene value within a given

range.
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3.4 Interaction Interface

When a new image to be denoised is loaded in the interface, 6 images are displayed
that correspond to 6 initial random genomes with values within the range of admissible
values. The user interacts with the system either by affecting a notation to some images
of the current popUlation (cursor : 10 is good, -10 is bad), or by directly modifying the
values of the parameter via a specialised window that appear when clicking on “manual
interaction”: results are directly observable inside the window and on the associated
spectra. The result can be included in the current population and evolve the same way
as automatically generated individuals.

This direct interaction is thus to be considered as an additionnal genetic operator,
fully driven by user interaction (this is a factor that reduces the “user fatigue”, by letting
him the possibility to be more or less directive in the evolution process). The production
of a new generation is triggered by a “next generation” button. Experimentally, this
direct interaction appears as a important component for the efficiency of the evolution,
and it allows the user to gain intuition –to some extent– on the influence of some of the
genome parameters.

The whole set of EA parameters (genome values ranges, probabilities and various
parameters associated to the genetic operators) are tunable via a specialised window.
The image display can also be tuned for large images, in order to be able to have a global
view on the whole population with reduced resolution, and a precise view to look at the
details of each denoised image.

4 Results

Figure 2 shows a result of the interactive denoising on a radar image, figures 3 and 4
present comparative results with a soft thresholding technique.

Initial 256x256 SAR image Denoised image using the multifractal IEA
(the color dynamic has been adjusted).

Fig. 2. Results on a radar image in 14 generations
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Wavelet thresholding techniques consist in supressing the too small coefficients of
the wavelet transform. There exist various thresholding procedures, the two most known
ones are soft thresholding and hard thresholding. Hard thresholding consists in setting
to 0 all the coefficients whose value are under a given threshold. Soft thresholding
(also called wavelet shrinkage) lowers all the wavelet coefficient by a given quantity
(the threshold), coefficients that are then negative are set to 0. These techniques were
proposed by D.Donoho and I.Johnstone in the beginning of 1990-ies [15].

Initial noisy image

Multifractal IEA Soft thresholding

Fig. 3. Bones scintigraphy : 512x512 image

For fair comparison purpose, a non interactive version of the algorithm has been
developed in order to test the multifractal denoising method: If the original noise-free
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Original 256x256 image of Mars Noisy image (std dev 25)

Multifractal IEA. Soft thresholding.

Fig. 4. Comparative test with the interactive method

image is available, an automatic fitness can be computed as the L2 distance between
denoised and original images. Successive populations of parameter setting can thus be
evolved without user interaction. This process allows to obtain objective comparison
data, even if the L2 distance does not always reflect the visual impression of denois-
ing quality.

Figure 5 shows an automatic experiment on the Lena image with a white Gaussian
noise of variance 20. The non-interactive EA has run during 300 generation. The initial
distance between original and noisy image is 9119. The distance obtained with the off-
line evolution after 300 generation was 4809. A soft thresholding with optimal threshold
yield a distance of 4935, for a result that is visually very similar.
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Original 256x256 image Noisy image (std dev 20)

Denoised image using off-line evolution.

Fig. 5. Automatic tests on Lena

5 Conclusions and Future Work

Complex image processing techniques are often necessary for specialized purpose and/or
“difficult” images. However their usage often necessitates a parameter tuning stage, that
may be very combinatorial. The solution we propose is to assist the user in the search
of its optimal parameter setting via IEA. Experiments have been produced here for a
denoising application, that prove the versatility of the approach, and the efficiency of
results in comparison to other denoising techniques.

We intend to continue in this direction for other multifractal image analysis methods.
A version of the presented software will be soon availble in the fraclab toolbox (see
http://fractales.inria.fr).
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Abstract. This work is concerned with the development and implementation 
of an image pattern recognition approach to support computational vision  
systems when it is necessary to automatically check the presence of specific 
objects on a scene, and, besides, to describe their position, orientation and 
scale. The developed methodology involves the use of a genetic algorithm to 
find known 2D object views in the image. The proposed approach is fast and 
presented a robust performance in several test instances including multiobject 
scenes, with or without partial occlusion. 

1   Introduction 

Detecting and describing how a specific object appears in an image using traditional 
matching procedures usually involves hard computational effort, particularly when 
rotation, translation and scale factors are necessary. In addiction, the complexity of 
the object recognition problem increases when it is possible to have the target object 
partially occluded [1]. 

This work reports the development and implementation of an object detection 
technique, using a robust genetic algorithm, in order to support a computational vision 
system for object detection and recognition. The final goal is the development of an 
automatic vision system for checking the presence of specific objects in a scene, de-
scribing their position, orientation and scale. 

In the proposed approach, image processing techniques are used to extract proper-
ties from an object image in order to construct a compact object view representation. 
Then, a genetic algorithm manages the search for occurrences of the target object in 
an input image. Next, using the results found by the genetic search, the recognized 
objects are correctly extracted from the tested images. Thanks to the compact object 
representation form in our approach, few amounts of data are processed and, conse-
quently, less computational effort is spent in the search process. 

1.1   Related Work 

Detecting and describing how a target object appears on images is addressed as an 
object verification problem by [1]. Eventually, matching procedures, such as template 
matching, morphological approaches and analogical methods offer feasible solutions 
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for this problem, but only if rotation and changes in the scales, as well as others geo-
metrical transformations, are not considered. Otherwise, the matching procedure can 
easily fall into an exhaustive search [1]. 

Nevertheless, according to [2], genetic algorithms are especially appropriate for 
optimization in large search spaces, where exhaustive search procedures are not feasi-
ble. And a review in more recent works [3] [4] [5] [6] also reveals a tendency towards 
the employment of heuristic based search and optimization techniques, such as ge-
netic algorithms, in order to improve image matching procedures for shape and object 
recognition tasks, with many advantages. 

2   Methodology 

The first steps in the proposed approach are the definition of the object model represen-
tation and the search objective. Next, the genetic algorithm parameters shall be detailed, 
with special emphasis in the encoding and the computation of the fitness function. 

2.1   Object Model Representation 

Here we describe the steps of the procedure to encode the image model (object view), 
representing the pattern, in such a way that a reference matrix (Mref) and two dis-
tances, dx and dy, fully represents the object model. 

a. The image (Fig. 1a) is sliced by n horizontal lines evenly spaced by dy pixels, 
where dy = number of image lines / (n+1). 

b. Similarly as before, the image is sliced by n vertical lines evenly spaced by dx 
pixels, where dx = number of image columns / (n+1). 

c. Crossing lines define points that are named reference points, and are represented by 
Pij, where i = 0, 1, …, n –1, and j = 0, 1, …, n – 1.  

d. The point P0 at coordinates (x0 , y0), with x0= dx×(n+1)/2 and y0= dy×(n+1)/2, is 
named the central reference point. 

e. A function f(Pij) assigns to each reference point the mean value of the pixels in the 
Pij neighborhood as defined by the delimited region shown in Fig. 1b. 

 

Fig. 1. (a) The image model sliced by horizontal and vertical lines with the central reference 
point (Po); (b) Neighborhood of a generic point Pij 
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f. All the computed f(Pij) values are archived as a n × n matrix, called reference ma-
trix (Mref), given by Equation 1. 
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2.2   Genetic Algorithms 

2.2.1   Individual Encoding 
In our approach, five parameters are necessary to describe a simple individual: a 
threshold value t for the input image, a scale factor s, a rotation angle , and the pair 
of coordinates (x0’; y0’) for the central reference point (P0’) in the input image. Hence, 
the k-th individual of the population will be represented by the 5-tuple (x0’k , y0’k , sk , 

k , tk ), whose ranges are shown in the Table 1. 

Table 1. Ranges of parameters encoded in an individual k 

Parameter Range 
Po’ column 0 ≤ x0’k ≤ 2047 
Po’ lines 0 ≤ y0’k ≤ 2047 
scale factor 0.5 ≤  sk ≤ 2.0 
rotation angle 0 ≤ k ≤ 2π rad 
threshold 0 < tk < 255 

For the tests, detailed later, we shall use images with no more than 2047 lines or 
columns. Therefore, 11 bits will be enough to represent the central reference point 
coordinates. For the sake of simplicity, we used the same length for the remaining 
parameters, t, s and . Therefore, an individual will have 55 bits long, leading to a 
search space >1016. 

2.2.2   Objective and Fitness Functions 
Firstly, the input image is binarized, based on the threshold value tk. For the pixels of 
the image with value less than tk is assigned the value 0 (black) and, for the remainder 
pixels, 255 (white). 

Based on the parameters encoded in an individual, the coordinates of a generic 
point (Pij’) in the input image is given by Equations 2 and 3, considering translation 
and rotation [7], respectively: 

]sin).(cos)..[( 000 θθ yyxxsxx iii −+−+′=′  

]sin).(cos)..[( 000 θθ xxyysyy iii −+−+′=′  

(2) 

(3) 
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where: xi and yi are the coordinates of point Pij relative to point P0 (in  the  object 
model image), and the xi’ and yi’ are the coordinates of the point Pij’ (projection of 
point Pij in the input image). For the central reference point P0’, Equations 2 and 3 
give P0’ = (x0’; y0’).  

For instance, suppose that the individual represented by vector (23; 311; 6.28; 1, 
56) has been generated as a possible solution for the search of the object model in Fig. 
1. The reference points would be located as shown in Fig. 2a, for that input image. 
For better visualizing the result, Fig. 2b shows the object model projection over the 
input image matched with the proposed solution. Also, in Fig. 2a, it is shown that it is 
possible some reference points fall off the image limits. Such points are called invalid 
points, and the result of f(Pij’) is represented by an asterisk. The total of invalid points 
is denoted by n*. 

Once reference points have been located, a new reference matrix can be generated 
for the proposed solution, by following steps (e) and (f) of section 2.1. Such matrix, 
for the k-th individual (x0’k ; y0’k ; sk ; k ; tk ), is denoted by Mref’ (k).  

Equation 4 is the objective function that measures the distance between Mref’ and 
Mref. It is based on the sum of the quadratic errors and, the small the distance SSQE(k), 
the better is a given solution k. 
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By default, the fitness function of a genetic algorithm deals with a maximization 
problem. Since it is searched for a given solution k (x0’k ; y0’k ; sk ; k ; tk ) that mini-
mizes SSQE (k), the fitness function can be defined by Equation 6: 
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where: 

2* ))(99( nnnS MAXSQE −×⋅=−  (7) 

Here, n×n is the Mref dimensions and n* is the number of invalid points of refer-
ence. Since SSQE-MAX ≥  SSQE (k) for any feasible solution k, the fitness function values 
will be defined within the range [0...1].  

A restriction to the maximum number of invalid points was incorporated in the fit-
ness function definition to limit the maximum number of n* occurrences. Therefore, 
the fitness function is redefined, as follows, considering the index “WR” as the fitness 
value with restriction: 
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Fig. 2. (a) Reference points plotted in a test image, for individual (23; 311; 6.28; 1, 56);   
(b) The object model projection in the input image matched with the proposed solution 

2.2.3   The Genetic Search 
The genetic search starts with the random generation of the initial population of  z  
individuals: (x0’1 ; y0’1 ; s1 ; 1; t1), (x0’2 ; y0’2 ; s2 ; 2; t2 ), … , (x0’z ; y0’z ; sz ; z; tz). 
Each individual of the population is evaluated by the fitness function, and the prob-
ability of each individual to be selected for reproduction increases proportionally to 
its fitness value. An appropriated selection method [8] is used to select candidates for 
crossover and mutation. Such genetic operators will generate new individuals to form 
a new population. Some population generating strategies include elitism that means to 
copy some of the fittest individuals of the current population to the next one. Basi-
cally these same procedures are used to generate the following populations until some 
stop criterion is met. Usually a maximum number of generations or a satisfactory 
fitness value reached is used as stop criterion. 

3   Implementation 

The system was implemented in C++ object-oriented programming language on Mi-
crosoft Windows 2000 platform. For the GA implementation we used the GAlib ge-
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netic algorithm package [9]. Fig. 3 shows a block diagram that illustrates the informa-
tion flow through the system components, which are described as follows:  

 

Fig. 3. Block diagram of the proposed system showing its components 

a) The parameters updating block is used to modify running parameters of the GA. 
b) The model construction block applies operators to the model image in order to 

construct the object model representation (Mref, dx, dy), as explained before.  
c) The genetic search block is the main part of this system. It receives 3 kinds of input 

data: (1) the GA parameters (population size, maximum number of generation, 
crossover and mutation probabilities and the selection method); (2) the model rep-
resentation (Mref, dx, dy); and (3) the input image. As an output, the genetic search 
block gives the set of parameters (x0’ ; y0’ ; s ; ; t) found by the search process, as 
well as its fitness value (fitWR).  

d) The object image extraction block makes a decision based on the fitness value of 
the current solution. For a fitness value less than a fixed fitness threshold (tFIT), the 
solution is just discarded and the search stops. Otherwise, the object is extracted 
from the input image and saved as a new image denominated object image i (i=1… 
j). Besides, the result of the image subtraction (input image – object image i) is 
feed-backed to the genetic search block, for a new search.  

The loop between the blocks genetic search and object image extraction allows the 
system to find further copies of the same object in the input image. 



290 T.M. Centeno et al. 

 

4   Experiments and Results 

Several experiments were done using 25 images of chess pieces. An image of a model 
object, showing a single object view, was used as model. Fig. 4 shows the object 
model image used in the experiments and its reference matrix (Mref), generated by 
the model construction block (Fig. 3). In the 25 images used in the tests, the same 
object appears in different orientations, scales and positions (in the image plan), in 
multiobject scenes and partial occlusion occurrences.  

During the GA run, the number of solutions generated and evaluated is z × g = 100 × 
1000 = 105. The search space, considering a typical 512 × 512 pixels image, 3600 pos-
sible values for the rotation angle (0.0°, 0.1°, 0.2°,…, 359.9°), and 101 scale factors 
(0.500, 0.515, 0.530, …, 2.000), is larger than 9.53×1010. Consequently, the genetic 
algorithm can find an acceptable solution testing less than 0.0002 % of that huge search 
space, spending no more than 15 second by search (using a Pentium-IV 2.0 GHz). 

  

Fig. 4. (a) Object model image used in the experiments. (b) Corresponding reference matrix 

 

Fig. 5. Images used in the experiments 

Fig. 5 shows one of the 25 images used in the experiments, where the target object 
appears in three different locations and positions in the same image. Table 2 shows 
the search results for the experiments using the image of Fig. 5 as input. Each table 
column shows the object extracted from the original input image, followed by the 
parameters found in the genetic search, and the fitness value for the current solution. 
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These results show that all occurrences of the target object in Fig. 5 were found. Note 
that the partially occluded object (object image #1), in the right side of the image  
(Fig. 5), was also detected and correctly extracted from the image. 

Table 2. Results obtained using the image of the Fig. 5 as an input 

object image #1 object image #2 object image #3 
 

 

 

 

 

 
P0’ = (528 , 150) P0’ = (80, 113) P0’ = (245 , 144) 
S = 1.523926 s = 0.934570 s = 0.747803 

 = 1.386719 rad  = 6.273985 rad  = 0.033748 rad 
T = 140 t = 160 t = 118 
fitness = 0.902464 fitness = 0.894589 fitness = 0.907113 

 

Fig. 6. Multiobject image used in the experiments 

 

Fig. 7. Matching of the first solution proposed by the GA, using as input the image in Fig.6 
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Table 3. Results obtained using as input the image shown in Fig. 7 

object image #1 Discarded solution #1 discarded solution #2 
 

 

 

 

 

 
P0’ = (555 , 152) P0’ = (433 , 169) P0’ = (321 , 138) 
s = 0.983545 s = 0.983545 s = 1.222607 
 = 0.000000 rad  = 0.012272 rad  = 6.258645 rad 

t = 128 t = 125 t = 238 
fitness = 0.881313 fitness = 0.832775 fitness = 0.844708 

Fig. 6 shows another test image used, where the target object appears in a multiob-
ject scene. Fig. 7 shows the result of the object model matching with the solution 
proposed by the system.  

Table 3 shows the results for the experiments using as input the image shown in 
Fig. 6. Note that the Table 3 shows the two next solutions that would be found by the 
system if the fitness threshold value tFIT would decrease from 0.85 to 0.80. For the 
other tested images, the results presented the same accuracy without false alarms e 
no-detections. 

Conclusions 

This work proposed an object detection approach based on a genetic algorithm. The 
implemented system is the core of an upcoming computer vision system. This ap-
proach is useful in many cases where it is necessary to check the presence of specific 
2D shapes, or a specific view of a 3D object, in a scene, and, further, to describe their 
position, orientation and scale. 

During the reported experiments, the system displayed a good performance (with-
out false alarms and no-detections) for all test sets. However, it was observed that, for 
most cases, the solutions presented by the system were not the optima, but something 
very close to the optimum value (see, for instance, Fig. 7). 

The developed system is also computationally efficient, obtaining good solutions 
spending no more than 15 seconds by search (using a Pentium-IV 2.0 GHz). It is also 
important to point out that, it is possible to extend the system performance for reliably 
3D object detection, by using several object views as object models. 

Despite the good results, future work will focus accuracy, including the implemen-
tation of some local search strategy in order to fine-tune results from the genetic 
search, leading to even more accurate results. 

5
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Cynthia B. Pérez1, Gustavo Olague1,
Francisco Fernandez2, and Evelyne Lutton3

1 CICESE, Research Center, Applied Physics Division,
Centro de Investigación Cient́ıfica y de Educación Superior de Ensenada,

B.C., Km. 107 Carretera Tijuana-Ensenada, 22860, Ensenada, B.C., México
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Abstract. This work presents an evolutionary approach to improve the
infection algorithm to solve the problem of dense stereo matching. Dense
stereo matching is used for 3D reconstruction in stereo vision in order
to achieve fine texture detail about a scene. The algorithm presented in
this paper incorporates two different epidemic automata applied to the
correspondence of two images. These two epidemic automata provide two
different behaviours which construct a different matching. Our aim is to
provide with a new strategy inspired on evolutionary computation, which
combines the behaviours of both automata into a single correspondence
process. The new algorithm will decide which epidemic automata to use
based on inheritance and mutation, as well as the attributes, texture
and geometry, of the input images. Finally, we show experiments in a
real stereo pair to show how the new algorithm works.

1 Introduction

Dense stereo matching is one of the main and most interesting problems to solve
in stereo vision. It consists in determining which pair of pixels projected on at
least two images, belongs to the same physical 3D point [1]. The correspondence
problem has been one of the main subjects in computer vision and is clear that
these matching tasks are to be solved by computer algorithms. Currently, there is
no general solution to the problem and it is also clear that successful matching by
computer can have a large impact on computer vision [2]. The matching problem
has been considered the hardest and most significant problem in computational
stereo [3, 4]. The difficulty is related to the inherent ambiguities being produced
during the image acquisition concerning the stereo pair; i.e., geometry, noise,
lack of texture, occlusions, and saturation. Occlusion is the cause of complicated

F. Rothlauf et al. (Eds.): EvoWorkshops 2005, LNCS 3449, pp. 294–303, 2005.
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problems in stereo matching, especially when there are narrow objects with large
disparity and optical illusion in the scene [5, 6, 7]. Moreover, classical techniques
are limited and fail in the general case, due to the complexity and nature of the
problem. This is the main reason why we are considering a new approach based
on artificial life and evolutionary methods that we called evolutionary infection
algorithm. The infection algorithm presented in [8] uses an epidemic automaton
that propagates the pixel matches as an infection over the whole image with the
purpose of matching the contents of two images. Finally, the algorithm provides
the rendering of 3D information allowing the visualization of the same scene from
novel viewpoints. In our past work, we had four different epidemic automata in
order to observe and analyse the behaviour of the matching process. The better
results we have obtained were those related to the case of 47% and 99% of effort
savings in the correspondence process. The first case represents geometrically a
good image with a moderate percentage of computational effort saving, see Fig.
7a. The second case represents a high percentage of automatically allocated pix-
els producing an excellent percentage of computational effort saving, with an ac-
ceptable image quality, see Fig. 7c. Our current work aims to improve the results
based on a new algorithm that uses concepts from evolution; such as: inheritance
and mutation. We want to combine the best of both epidemic automata in order
to obtain a high computational effort saving with an excellent image quality.

This paper is organized as follows. The next section describes the nature
of the correspondence problem. Section 2 introduces the new algorithm giving
emphasis to the explanation on how the evolution was applied to the epidemic
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a) Left Image b) Right Image
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VIRTUAL IMAGE
(Virtual Lattice)

Fig. 1. Representation of the interactions among the five lattices used by the infec-
tion algorithm. A pixel in the left image is related to the right image, using several
lattices such as: automaton lattice, canny image and virtual image lattice during the
correspondence process
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automata. Finally, the section 3 shows the results of the algorithm illustrating
the behaviour, performance, and quality of the evolutionary infection algorithm.

1.1 Problem Statement

Computational stereo studies how to recover the three dimensional characteris-
tics of a scene from multiple images taken from different viewpoints. A major
problem in computational stereo is how to find the corresponding points between
a pair of images, which is known as the correspondence problem or stereo match-
ing. In this work the images are taken by a moving camera, with the hypothesis
that a unique three-dimensional physical point is projected into a unique pair of
image points, see Fig. 1. In order to solve the problem in a more efficient man-
ner, several constraints and assumptions regarding occlusions, lack of texture,
saturation, or field of view are exploited. The movement between the images
is a translation with a small rotation along the x, y and z axes respectively:
Tx = 4.91 mm, Ty = 114.17 mm, Tz = 69.95 mm, Rx = 0.84◦, Ry = 0.16◦,
Rz = 0.55◦. Fig. 1 shows also five lattices that we have used in the evolutionary
infection algorithm. The first two lattices correspond to the images acquired by
the stereo rig. The third lattice is used by the epidemic cellular automata in
order to process the information that is being computed. The fourth lattice cor-
responds to the reprojected image, while the fifth lattice is used as a database
in which we save information related to contours and texture.

2 The Evolutionary Infection Algorithm

The infection algorithm is based on the concept of natural virus for searching the
correspondences between real stereo images. The purpose is to find all existing
corresponding points in stereo images while saving the maximum number of
calculations and maintaining the quality of the reconstructed data.

The motivation to use what we called an infection algorithm is based on the
following: when we observe a scene, we do not observe everything in front of us.
Instead, we focus our attention in some regions which keeps our interest on the
scene. As a result, it is not necessary to analyse each part of the scene in detail.
The infection algorithm attempts to “guess” some parts of the scene through a
process of propagation based on artificial epidemics with the purpose of saving
computational time. The mathematical description of the infection algorithm is
presented in [9]. This paper introduces the idea of evolution within the infection
algorithm using the concepts of inheritance and mutation in order to achieve
a balance between exploration and exploitation. As we could see in the paper,
the idea of evolution is rather different from the traditional genetic algorithm.
Concepts like an evolving population are not considered in the evolutionary
infection algorithm. Instead, we incorporate aspects such as inheritance and
mutation to develop a dynamical matching process. In order to introduce the
new algorithm let us define some notations:
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Fig. 2. Pseudo-code for the evolutionary infection algorithm

Definition 1. Epidemic cellular automata: Our epidemic cellular automata
could be formally represented as a quadruple E = (S, d,N, f) where |S| = 5 is
a finite set composed of 4 states and the wild card (∗), d = 2 a positive integer,
N ⊂ Zd a finite set, and fi : SN → S an arbitrary set of (local) functions, where
i = {1, . . . , 14}. The global function Gf : SL → SL is defined by Gf (cv) = f(cv +
N). Also, it is useful to mention that S is defined by the following sets:

– S = {α1, ϕ2, β3, ε0, ∗} a finite alphabet,
– Sf = {α1, β3} is the set of final output states,
– S0 = {ε0} is called the initial input state.

Each epidemic cellular automaton has 4 states that are defined as follows:

– Explored, representing the cells that have been infected by the virus (it refers
to the pixels that have been computed in order to find their matches).

– Not-explored, representing the cells which have not been infected by the virus
(it refers to the pixels which remain in the initial state).

– Automatically allocated, representing the cells which cannot been infected by
the virus. This state represents the cells which are immune to the disease (it
refers to the pixels which have been confirmed by the algorithm in order to
automatically allocate a pixel match).

– Proposed, representing the cells which have acquired the virus with a proba-
bility of recovering from the disease (it refers to the pixels which have been
guessed by the algorithm in order to decide later the better match based on
local information).
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a)  Epidemic Graph used to obtain 47% of 
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b)  Epidemic Graph used to obtain 99% of 
computational savings

Fig. 3. Evolutionary epidemic graphs used in the infection algorithm

2.1 Infection Algorithm with an Evolutionary Approach

In previous work, we defined four different epidemic cellular automata from
which we detect two epidemic graphs that provide singular results in our exper-
iments, see Fig. 3. One epidemic cellular automaton produces a 47% of effort
saving while the other a 99% of effort saving. These automata use a set of
transformations expresed by a set of rules grouped within a single graph. Each
automaton transforms a pattern of discrete values over a spatial lattice. A whole
different behaviour is achieved by changing the relationships between the four
states using the same set of rules. Each rule represents a relationship which
produces a transition based on local information. These rules are used by the
epidemic graph to control the global behaviour of the algorithm. In fact, the
evolution of cellular automata is governed typically not by a function expressed
in closed-form, but by a “rule table” consisting of a list of the discrete states
that occur in an automata together with the values to which these states are to
be mapped in one iteration of the algorithm.

The goal of the search process is to achieve a good balance between two
rather different epidemic cellular automata in order to combine the benefit of
each automaton. Hence, our algorithm not only finds a match within the stereo
pair, but it provides an efficient and general process using geometric and texture
information. It is efficient because the final image combine the best of each partial
image within the same amount of time. It is also general because the algorithm
could be used with any pair of image with little additional effort to adapt it.

Our algorithm attempts to provide a remarkable balance between the explo-
ration and exploitation of the matching process. Two cellular automata were
selected because each one provides a particular characteristic from the explo-
ration and exploitation standpoint. The 47% epidemic cellular automaton, we
called A, provides a strategy which exploits the best solution. Here, best solution
refers to areas where matching is easier to find. The 99% epidemic cellular au-
tomaton, we called B, provides a strategy which explores the search space when
the matching is hard to achieve.

The pseudo-code for the evolutionary infection algorithm is depicted in figure
2. First, we calculate the projection matrices MM1 and MM2 related to the left
and right image, through a process of calibration. Then, two sets of rules are
defined A=46% and B=99%. The sets of rules contain information about the
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configuration of the pixels in the neighborhood. Next, we built a lattice with
the contour and texture information, that we called canny left image. Thus, we
iterate the algorithm while the number of pixels with immune and sick states is
different between time t and t+1. Each pixel is evaluated according to a decision
that is made based on three criteria as follows:

1. The decision of using A or B is weighted considering the current evaluated
pixels in the neighborhood. In this way inheritance is incorporated within
the algorithm.

2. The decision is also made based on the current local information (texture
and contour). Thus, enviromental adaptation is contemplated as a driving
force to the dynamical matching process.

3. A probability of mutation which could change the decision of using A or B
is computed. This provides the system with the capability of stochastically
adapting the dynamic search process.

In this way, an action is activated producing a path and sequence around the
initial cells. When the algorithm needs to execute a rule to evaluate a pixel,
it calculates the corresponding epipolar line using the fundamental matrix in-
formation. The correlation window is defined and centered with respect to the
epipolar line when the search process is started. Thus during the search process,
o sort of inheritance is used to decide which cellular automata to apply. Finally,
our algorithm produces an image that is generated combining the two epidemic
cellular automata.

2.2 Transitions of Our Epidemic Automata

The transitions of our epidemic automata are based on a set of rules. Each
relationship between the four states is represented as a transition based on a
local rule, which as a set is able to control the global behaviour of the algorithm.
Each epidemic graph has 14 transition rules that we divide in three classes:
basic rules, initial structure rules, and complex structure rules. Each rule could
be represented as a predicate that encapsulates an action allowing a change of
state on the current cell based on their neighborhood information. The basic
rules relate the obvious information between the initial and explored states. The
initial structure rules consider only the spatial set of relationships between the
close neighborhood. The complex structure rules consider not only the spatial
set of relationships between the close neighborhood, but also those within the
external neighborhood. The next section explains how each rule works according
to the above classification. The basic rules correspond to rules 1 and 2. The initial
structure is formed by the rules 3,4,5 and 6. Finally, the complex structure rules
correspond to the rest of the rules. The basic and initial structure rules until
this moment have not been changed. The rest of the rules are easily modified in
order to produce different behaviours and a certain percentage of computational
effort saving, see Fig. 3. The most important epidemic rules related to the case
of 47% are explained next.
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>=3

>=3

States:

 = 0... Healthy Individuals (Not-Explored) 

= 3... Immune Individuals (Automatically)

Variable
= 5 ... Wildcard

= 2... Infected Individuals (Proposed)

= 1... Sick Individuals (Explored)

Fig. 4. Rule 7. The epidemic transition indicates that it is necessary to have at least
three Sick (Explored) individuals on the closed neighborhood and three Immune (Au-
tomatically allocated) individuals on the external neighborhood in order to change the
central cell

>=3

States:

 = 0... Healthy Individuals (Not-Explored) 

= 3... Immune Individuals (Automatically)

Variable
= 5 ... Wildcard

= 2... Infected Individuals (Proposed)

= 1... Sick Individuals (Explored)

Fig. 5. Rule 11. This epidemic transition represents the quantity of Infected (Proposed)
individuals in order to obtain the Immune (Automatically Allocated) individuals. In
this case, if there are three Sick (Explored) individuals in the closed neighborhood,
then the central cell changes to an Infected (Proposed) state

– Rules 3,4,5 and 6. The infection algorithm begins the process with the
nucleus of infection around the whole image. The purpose of creating an
initial structure in the matching process is to explore the search space in
such way that the information is distributed in several process. Thus, the
propagation of the matching is realized in a higher number of directions from
the central cell. We use these rules at the initialisation of the process only.

– Rule 7 and 8. These rules ensure the evaluation of the pixels in a region
where exist Immune (Automatically Allocated) individuals, see Fig. 4. The
figure of the rule 8 is similar to 7. The main purpose of these rules is to
control the quantity of immune individuals within a set of regions.

– Rule 11. This rule generates the Infected (Proposed) individuals in order
to obtain later a higher number of Immune (Automatically Allocated) indi-
viduals. If the central cell is on Healthy state (Not-Explored) and there are
at least three Sick individuals (Explored) in the closed neighborhood, then,
the central cell is Infected (Proposed).

– Rules 12 and 14. The reason for these transitions is to control the In-
fected (Proposed) individuals. If we have at least three Infected (Proposed)
individuals in the closed neighborhood, the central cell is evaluated.

– Rule 13. This rule is one of the most important epidemic transition rules
because it indicates the computational effort saving without any computa-
tion of individual pixels during the matching process. This is the reason
why we called it immune or automatically allocated. Rule 13 can be summa-
rized as follows: if the central cell is Infected (Proposed) and if there are at
least three Sick (Explored) individuals in the closed neighborhood; then, we
know automatically that the corresponding pixel in the right image is made
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 = 0... Healthy Individuals (Not-Explored) 

= 3... Immune Individuals (Automatically)

Variable
= 5 ... Wildcard

= 2... Infected Individuals (Proposed)

= 1... Sick Individuals (Explored)

Fig. 6. Rule 13. This transition indicates when the Infected (Proposed) individuals will
change to Immune (Automatically Allocated) individuals

without any computation. The number of Sick (Explored) individuals can
be changed depending on the percentage of computational savings that we
need.

Obviously, if we modified some of the complex structure rules from the case
47% we could obtain up to 99% of computational effort saving. The basic and
initial structure rules do not change the coding, implying that the central cell
remains without changes. The complex structure rules, except rule 14, are mod-
ified in two ways: the central cell state is modified according to the information
within the neighborhood and the number of cells involved.

3 Experimental Results and Conclusions

We have tested the infection algorithm with an evolutionary approach on a
real stereo pair of images. The infection algorithm was implemented under the
Linux operating system on an Intel Pentium 4 at 2.0Ghz with 256Mb of RAM.
We have used libraries programmed in C++, designed specially for computer
vision, called VXL (Vision X Libraries). We have proposed to improve the
results obtained by the infection algorithm through the implementation of an
evolutionary approach using inheritance and mutation operations. The idea was
to combine the best of both epidemic automata 47% and 99%, in order to obtain
a high computational effort saving together with an excellent image quality. We
used knowledge based on geometry and texture in order to decide during the
correspondence process, which epidemic automata is better to apply during the
evolution of the algorithm.

Figure 7 shows a set of experiments where the epidemic cellular automata
was changed in order to modify the behaviour of the algorithm and to obtain
a better virtual image. Fig. 7a is the result of obtaining 47% of computational
effort savings, while Fig. 7b is the result of obtaining 70% of computational
effort savings and Fig. 7c shows the result to obtain 99% of computational ef-
fort savings. Fig. 7d presents the result that we obtain with the new algorithm.
Clearly, the final image shows how the algorithm combines both epidemic cel-
lular automata. However, the quality of the final image depends on the texture
and contours of the stereo pair. We observe that the geometry is preserved with
a nice texture reconstruction. We also observe that the new algorithm spends
about the same time employed by the 70% epidemic cellular automaton with a
slightly better texture result. Figure 8a shows the behaviour of the evolution-
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Fig. 7. Set of different experiments where epidemic cellular automata were change

Fig. 8. Evolution of the epidemic cellular automata during the dense correspondence
process

ary infection algorithm that corresponds to the final result of Fig. 7d. Figure
8b describes the behaviour of the two epidemic cellular automata during the
correspondence process. In the near future, we expect to use the Evolutionary
Infection Algorithm in the search of novel viewpoints.
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Abstract. Many conventional and well-known image enhancement methods 
suffer from a tendency to increase the visibility of noise when they enhance the 
underlying details. In this paper, a new kind of image analysis tool  ridgelet 
frame is introduced into the arena of image enhancement. We design an en-
hancement operator with the advantages that it not only enhance image details 
but also avoid the amplification of noise within source image. Different from 
those published previously, our operator has more parameters, which results in 
more flexibility for different category images. Based on an objective criterion, 
we search the optimal parameters for each special image using Immune Clone 
Algorithm (ICA). Experimental results show the superiority of our method in 
terms of both subjective and objective evaluation. 

1   Introduction 

Human visual system has certain limitations in perceiving information carried by 
images. For example, it cannot detect brightness contrasts that are lower than a certain 
contrast sensitivity threshold. Image enhancement is intended to convert images into a 
form that makes use of capabilities of human visual system to perceive information to 
their highest degree.  

The conventional image enhancement methods such as histogram equalization usu-
ally suffer from a tendency to increase the visibility of noise at the same time as they 
enhance the visibility of the underlying signal. Practically, the imaging techniques used 
in some important application areas such as medical imaging tend to result in images 
with poor contrast along with relatively high noise levels. It is in such application areas 
that there is the greatest need for improved enhancement methods, capable of enhanc-
ing often-weak signal features against a background of relatively high noise [ 1]. 

Considerable success has already been achieved in the development of transform-
domain based image enhancement methods with noise suppression [1-5]. The trans-
form-domain image enhancement methods commonly begin with taking a transform 
to the image. Then, a non-linear operator is applied to the transform domain coeffi-
cients. Finally, the enhanced image is obtained when the inverse transform is applied. 
A typical non-linear operator for image enhancement is shown in Fig.1. The trans-
form-domain coefficients of absolute magnitude below a lower threshold T1 are sup-
pressed. The coefficients whose absolute magnitude exceeds T1, but fall below a 
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second threshold T2 are subject to a uniform gain. For coefficients whose absolute 
magnitude exceeds T2 the gain diminished with increasing coefficients magnitude.  

 

Fig. 1. A typical non-linear operator for transform-domain image enhancement 

Commonly, the used transformation compresses the essential information into rela-
tively few, large coefficients that capture important features such as points and edges, 
whereas the input noise is spread out evenly over all coefficients. Practically, the 
threshold T1 corresponds to the noise level in the source image. As a result, image 
enhancement methods using the non-linear operator such as that in Fig.1 have the 
advantages that they not only enhance image details but also avoid the amplification 
of noise within source images.  

When the source images were contaminated with additive Gaussian noise, the qual-
ity of enhanced images resulting from transform-domain based enhancement methods 
is essentially determined by the nonlinear approximation ability of the used transfor-
mation. In this paper, we introduce a new kind of image analysis tool, namely, ridge-
let frame into the arena of image enhancement. Ridgelet frame can effectively repre-
sent edges in images and recover well the faint edges in the presence of noise [6]. The 
main purpose of image enhancement is to increase the visibility of faint details includ-
ing point and edges in source image. Hence, ridgelet frame is a good candidate for the 
task of image enhancement especially in the presence of noise. We design a nonlinear 
operator in the ridgelet frame domain for image enhancement. The proposed operator 
has six parameters that control the quality of the enhanced images. Compared with 
those previously published, our operator has more parameters which results in more 
flexibility, considering that the optimal parameters of any enhancement operator are 
image dependent and no one with fixed parameters is suitable for all category of im-
ages. We introduce an objective evaluation criterion to estimate the quality of en-
hanced images, and then, Immune Clone Algorithm (ICA) [7] [8], which is an optimi-
zation algorithm inspired by Artificial Immune System is used to obtain the optimal 
parameters for a special image. The whole process is completed automatically without 
the human interpreter.  

This paper is organized as follows. In section 2, the ridgelet frame is reviewed 
briefly and a nonlinear operator in ridgelet frame domain for image enhancement is 
designed, then, an objective criterion is present also. In section 3, the ICA is used to 
obtain the optimal parameters of the proposed operator. Results are shown in section 
4. Finally, concluding remarks are given in section 5. 
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2   Ridgelet Frame Based Image Enhancement  

2.1   Ridgelet Frame 

In the area of computed tomography, it is well known that there exists an isometric 
map from Radon domain ℜ  to spatial domain 2 2( )L R . Hence, one can construct a 
tight frame in Radon domain first, then, the image of the tight frame under the isomet-
ric map constitutes a tight frame also in 2 2( )L R . 

The construction of tight frame in Radon domain can start with an orthonormal ba-
sis obtained from tensor product of two 1-D wavelet orthonormal systems respec-
tively for 2 ( )L R  and 2 ([0,2 ))L π . Let wλ′′ ( λ ∈ Λ ) denote an orthonormal system of this 

kind in 2 ( [0,2 ))L R π⊗ , where Λ  is the collection of index λ . Let : 2w wλ λπ′ ′′=  and 

define orthoprojector Pℜ  from 2 ( [0,2 ))L R π⊗  to Radon domain by  

( )( , ) ( ( , ) ( , )) / 2P F t F t F tθ θ θ πℜ = + − + , (1) 

where 2 ( [0,2 ))F L R π∈ ⊗ .Then, applying Pℜ on wλ′ , we obtain 

: ( )=( ) 2 ( )
2

I T S
w P w w P wλ λ λ λπℜ ℜ

+ ⊗′ ′ ′′= = , (2) 

where operator T is defined by ( )( ) ( )Tf t f t= −  and S  is defined by ( )( ) ( )Sg gθ θ π= + . 
Then, it turned out that wλ  is a tight frame with frame bound 1 in Radon domain. As 
mentioned above, one exactly obtains a tight frame by mapping the one in Radon 
domain ℜ to spatial domain 2 2( )L R . And the resulting tight frame in 2 2( )L R  is with 
the same frame bound 1 as its counterpart in Radon domain ℜ . Tan etc. called the 
tight frame in 2 2( )L R  ridgelet frame [6]. 

Ridgelet frame can be viewed as an extension of orthonormal ridgelet [9]. It is 
worth emphasizing that one can obtain the orthonormal ridgelet when Meyer wavelet 
is used in the above construction and also the redundancy of resulting tight frame is 
removed. Elements of orthonormal ridgelet and of ridgelet frame constructed using 
Symlet-8 wavelet are displayed in Fig. 2. 

     

(a)                                                     (b) 

Fig. 2. (a) An element of orthonormal ridgelet constructed using Meyer wavelet  (b) An ele-
ment of ridgelet frame constructed using Symlet-8 wavelet 
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As its forerunner—orthonormal ridgelet, ridgelet frame inherits the key idea that 
deals with straight singularities by transferring it to point singularities. As a result, the 
ridgelet frame retains the ability of orthonormal ridgelet to effectively representing 
function smooth away from straight singularity. And it is good at recovering the line 
structures in images at the presence of noise. 

2.2   Nonlinear Mapping Function in Ridgelet Frame Domain 

Commonly, the transform-domain based image enhancement methods apply a non-
linear operator G to individual transform coefficients. The operator G maps a coeffi-
cient, x, to a new one, y, namely, y=G(x).  

The operator G we propose, which allows for enhancing image details at the same 
time suppress noise can be expressed as 

| |

| | 2 | |
( ) | |

( ; , , , , , , , )
| |

| |

| |
| |

a

b

c

x if x e

x e dM e x
x if x fe

e c e

y G x M a b c d e f dM
x if fe x dM

x

dM
x if x dM

x

σ

σ σ σ
σ σ σ

σ
σ

<⎧
⎪

− −⎛ ⎞⎪ + <⎜ ⎟⎪ ⎝ ⎠⎪⎪= = ⎛ ⎞⎨ ≤ <⎜ ⎟⎪ ⎝ ⎠⎪
⎪ ⎛ ⎞⎪ ≥⎜ ⎟⎪ ⎝ ⎠⎩

, 

(3) 

where, the σ  is the noise standard deviation, M is the maximum transform coeffi-
cient, a,b,c,d,e and f are parameters that control the quality of enhanced image. Spe-
cially, a, b determines the degree of nonlinearity and c introduces dynamic range 
compression. Using a nonzero c will diminish the large coefficients. The  coefficients  
of  absolute  magnitude  below  dM  are amplified. An e value larger than 3 guaranties 
that the noise will not be amplified. f controls the partition of coefficients where a 
different gain is applied to. Our operator is an extended version of that used in paper 
[5], where a=b, d=1 and f=2. Our operator in (1) allows for more broad range of the 
changed coefficients which accord to more flexible enhancement. An operator G 
defined in (1) is shown in Fig.3, where the parameters are M=30, d=1, a=0.5, b=0.5, 
c=0, e=3 and f=2. 

 

Fig. 3. An non-linear operator G in (1) 
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2.3   Enhancement Evaluation Criterion 

In order to apply an automatic image enhancement technique, which does not require 
human intervention, an objective criterion for quality evaluation of the enhancement 
method should be chosen. However, it is a notoriously difficult problem to define an 
objective measure for images. In the literature of image enhancement, different meas-
urements such as entropy, signal to noise ration, or average contrast are used as an 
indicator for the quality of enhanced image, but the extent to which they correlate 
with the results of human perception is open to debate. In paper [10], an evaluation 
criterion is proposed taking account several measurements simultaneously. The en-
hancement evaluation criterion is composed of three basic elements.  

The first is the entropy measure. For image I, the entropy can be defined as  

( ) lni i
i

H I p p= −∑ , (4) 

where ip  is the frequency of pixels having the ith gray-levels in the histogram of 

image I. The measure H(I) is a quantification of the number of gray-levels present in 
the image. When H(I) increases, the histogram of the image has the tendency to ap-
proach the uniform distribution. 

The second is to measure the intensity of edges in image I. It can be expressed as 

2 2( ) ( , ) ( , )I I
x y

E I h x y v x yδ δ= +∑∑ , (5) 

where  
( , ) ( 1, 1) 2 ( , 1) ( 1, 1)Ih x y I x y I x y I x yδ = − + + + + + +

( 1, 1) 2 ( , 1) ( 1, 1)I x y I x y I x y− − − − − − + −  

( , ) ( 1, 1) 2 ( 1, ) ( 1, 1)Iv x y I x y I x y I x yδ = + + + + + + −
( 1, 1) 2 ( 1, ) ( 1, 1)I x y I x y I x y− − + − − − − −  

and I(x,y) denotes the gray-level intensity of the pixel at location (x, y) in image I. In 
fact, (5) accords with the Sobel edge detector. And this measurement is introduced by 
taking an assumption that the enhanced image should have a higher intensity of the 
edges. 

The third measurement ( )Iη  takes the assumption that the enhanced image should 

have high number of edgels, namely, the pixels belonging to an edge. It is realized by 
accounting how many pixels have bigger intensity than a threshold in the output of 
Sobel detector, that is an image with pixels 2 2( , ) ( , )I Ih x y v x yδ δ+ . 

Then, an enhancement evaluation criterion Eval(I) for image I is proportional to the 
three measurem 

( )

( ) ( )

( )

H I

Eval I I

E I

η
⎧
⎪
⎨
⎪⎩

. (6) 
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A maximal Eval(I) will correspond to an image with maximal number of edgels 
( )Iη , having sharp edges (e.g. E(I) maximal), and a uniform histogram equivalent to 

a maximal entropy measurement ( )H I . 

The task for our automatic image enhancement based on ridgelet frame is to find 
the best combination of the parameters a,b,c,d,e and f according to the objective crite-
rion (6), which may be realized using Immune Clone Algorithm (ICA) presented 
below. 

3   Automatic Image Enhancement Algorithm  

3.1   Immune Clonal Algorithm 

Immune Clone Algorithm introduced in paper [7][8], is an evolutionary strategy ca-
pable of solving complex function optimization problem by imitating the main 
mechanisms of clone in biology immune system [11] [ 12] [ 13]. 

Note that each individual in ICA is called antibody, which is called gene in Genetic 
Algorithm (GA). ICA includes three operators, i.e., clone, mutation and selection that 
can be described as follows. Let the antibody population be A={a1, a2…aN}, here N is 
the population size and , 1,...,ia B i N∈ = . B is the range of variables of the objective 

function.  
Clone operator Θ : For ia∀  in A, we define the clone operator as  

( )i i ia I aΘ = × , (7) 

where [11...1]iI =  is the qi dimension vector whose each element is 1, and the qi is 

given by  

1

( )
,   

( )

i
i N

j
j

aff a
q N

aff a
=

′= ×
∑

j=1,2,…,N 
(8) 

where N N′ >  is a given integer called clone size , ( )iaff a  is the value of objective 

function for an individual ai, called affinity coming from the terminology in the biol-
ogy immune system.   

Applied the Θ  to antibody population A, we obtain a new population  

1 2 1 2{ , ( ), ( ), ... , ( )} { , , ,..., }N NA A a a a A A A A′ ′ ′ ′= Θ Θ Θ =  (9) 

Mutation Operator C
mT : Different from GA, ICA only apply mutation operator to 

the cloned individuals, namely, 1 2, ,..., NA A A′ ′ ′ . In our automatic image enhancement 

algorithm, we use the non-uniform mutation in which the Gaussian distribution starts 
wide, and narrows to a point distribution as the current generation approaches the 
maximum generation.  
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Selection Operator C
sT : For 1,2,i N∀ = , let max{ ( ) | 2,3, 1}ij ib f a j q= = − , if 

( ) ( )if a f b< , ia A∈   ,Then b replaces the antibody ai in the aboriginal population. So 

a new antibody population with the same size as the original one is realized  

3.2   Automatic Image Enhancement Driven by ICA  

A real-code ICA is used in our automatic image enhancement task, where the ICA 
find the best combination of parameters a,b,c,d,e and f, that gives the best enhance-
ment for a given image. The parameters have real values, therefore the simplest cod-
ing of the ICA individual is a direct one to one coding: the ICA individual is as a 
string of 6 real numbers denoting the 6 parameters.  

The affinity of the ICA allocated to each antibody ai is computed as follows. First, 
we enhance the given image I by  

1 ,( ,( ); )iI T G T I M aσ−′ = , (10) 

where T  and 1T −  denote the ridgelet frame transform and its reversion respectively. 
Then, according to (6), the affinity of each antibody ai is obtained by  

( )( ) ln(ln( ( ) )) ( ) H I
iaff a E I e I eη ′′ ′= + × ×  (11) 

We summarize our automatic image enhancement algorithm as follows. 

Step1: Estimate the standard variance  
The standard variance σ  of noise in the source image I can be estimated using the 

median estimator in the highest HH subband of wavelet transform of I. 
Step2: Initialize Population 

We only need to optimize five parameters: a, b, c, d and f since the e is fixed to 3. 
And we found that suitable intervals in (1) is [0.1 0.3] for a and b, [0 1] for c, [0.5 
0.8] for d, [1 3] for f. The initial population is generated randomly within these spe-
cific bounds. We have chosen a population size N=10. 
Step3: Determine the Iterative Condition 

The ICA’s termination criterion is triggered whenever the maximum number of 
generations is attained. For a large category of images, experiments performed show 
that a maximum number of generations equal to 10 suffice for the ICA to find good 
solutions.   
Step4: Evaluate Affinity 

To compute the affinity of each antibody in population using (10) and (11).  
Step5: Clone, Mutation and Selection  

Here, the clone size 40N ′ = . All three operators have been defined in the section 
3.1.  
Step6: Return to Step 3  

4   Experimental Results 

We compare our automatic image enhancement algorithm for a large category of 
images with the histogram equalization and that proposed in [10].  
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The first experiment is carried out on some test images widely used in the litera-
tures of image enhancement. And these images have low noise level, for example,  
1-3dB. Then, we contaminate these images using additive Gaussian white noise with 
standard variance 10. And we carried out the second experiment on these noisy im-
ages to test the ability of these enhancement methods to suppress noise.  

Some images used in our experiment are shown in Fig. 4.  

 

Fig. 4. Some images used in our experiment. From left to right: Image-1, Image-2, Image-3, 
Image-4, Image-5, Image-6 

Table 1. Results in terms of quality evaluation using (11) 

Image/quality Original Histogram 
Equalization 

Algorithm in [10] Our Algorithm 

Image-1 147.85 52.01 267.48 489.53 
Image-2 254.97 78.28 468.32 397.41 
Image-3 149.10 63.49 281.60 321.72 
Image-4 41.69 23.84 51.62 58.19 
Image-5 93.77 39.16 183.65 176.05 
Image-6 308.43 72.11 279.49 380.87 

 

 

Fig. 5. Enhancement results for Image-1 and Image-6. From left to right: result using histogram 
equalization, result using the method in [10], result using our method 
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The results of the first experiment are listed in Table 1 and Fig. 5. The quality 
evaluations of the original and the enhanced images using (11) are listed in Table 1. 
For the limited space of this paper, we only give two images for visual comparison in 
Fig 5. 

From Table 1, it is clear that our method scores much better than the other methods 
for most of the test images. From Fig. 5, it is observed that the histogram equalization 
and the method in [10] enhanced image details and increased the visibility of noise at 
the same time. For example, for Image-1, the results using both of the methods have 
much higher noise level in the sky than the original, though the noise standard vari-
ance in original images is little, 1.15. 

 

Fig. 6. Enhancement results for images contaminated by additive Gaussian white noise with 
standard variance 10. From left to right: original image, result using histogram equalization, 
result using the method in [10], result using our method 

One result of our second experiment is shown in Fig. 6. Obviously, only our 
method works in this case. 

5   Conclusions 

We have developed an automatic image enhancement algorithm based on ridgelet frame 
and driven by ICA. By taking into account the existence of noise in the source image, 
we introduce a non-linear operator, which make the enhancement method suppress 
noise and increase the visibility of the underlying signal at the same time. Also, through 
introducing an objective enhancement criterion, ICA can find the optimal parameters of 
the non-linear operator for a special image without the human interpreter. 
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Abstract. Genetic Programming can be used to evolve complex objects.
One field, where GP may be used is image analysis. There are several
works using evolutionary methods to process, analyze or classify images.
All these procedures need an appropriate fitness function, that is a simi-
larity measure. However, computing such measures usually needs a lot of
computational time. To solve this problem, the notion of efficiently com-
putable fitness functions was introduced, and their theory was already
examined in detail. In contrast to that work, in this paper the practical
aspects of these fitness functions are discussed.

1 Introduction

In this paper the efficiently computable fitness functions [1] are discussed in a
practical aspect. First the theoretical results are converted into algorithms, then
some practical problems are examined, and solutions for them are given.

These fitness functions have a great practical importance, since they can be
used in many applications, like hand tracking [2], edge detection [3] or road
identification in images [4]. The only assumption is that a structural description
is evolved to describe an image as closely as possible. Such structures can be for
example Lindenmayer systems [5][6], or iterated function systems [7][8].

During the following sections it is assumed that some kind of structural de-
scription is evolved. To calculate the fitness, this description has to be inter-
preted, or converted to an image, that is the set of the foreground pixels has to
be determined. Using the theoretical results a fast fitness functions calculation
algorithm can be built into the conversion algorithm. During this conversion
several points may be generated more than once, this is called overwriting. Fur-
thermore, several description forms may use sets of lines, which may be thick.
Therefore it is possible that parts of these lines are overlapping. This causes
a similar problem as overwriting. Solution for these problems are also given in
this paper.

First, however, several basic notions are explained, and the theoretical re-
sults on efficiently computable fitness functions are summarized. In Section 2
the algorithm for efficient fitness calculation is given. In Section 3 the algorithm
is extended to solve the previously mentioned problems. These problems them-
selves are also described in detail. In Section 4 several experiments are carried
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out using a simple test environment. Finally in Section 5 some conclusions are
drawn, and future plans are mentioned.

1.1 Binary Images

An image is usually a function that maps colors or gray level values to a set
of pixels. In general a two-dimensional image is a function f : R × R → R

with some restrictions. These restrictions are not of interest here, since they are
automatically satisfied in computer imaging, where only finite discrete images
are used. This means the function is defined over Z × Z and the possible values
come from Zk = {0, 1, . . . , k − 1} (k ≥ 2). Also the domain of this functions is
finite. Later it will be easier to have a definition for this domain, which will be
referred to as container.

Definition 1. (Image container)
An image container of size n × m is the set Cn,m = Zn × Zm, where n, m ∈ Z

+.
An element (x, y) of the container is called pixel.

Definition 2. (Digital image)
A digital image over a given container C is a function I : C → Zk, where k ∈ Z

+.
C is called the container of the image I. For a pixel (x, y) ∈ C I(x, y) is called
the value or the color of the pixel. Pixels with value 0 are called background
pixels. The number of pixels that are not background pixels is denoted by |I|.

Integer k is called the color depth of the image I, and usually k ≥ 2. When
k = 2 the image is called bi-level or binary image. In this case |I| denotes the
number of the foreground pixels, that is pixels with value 1.

The set of digital images with color depth of k over a given container Cn,m

is denoted by Ik
n,m Formally: Ik

n,m = Z
Cn,m

k . The set of digital images with color
depth of k is denoted by Ik. That is Ik =

⋃∞
n=1

⋃∞
m=1 Ik

n,m

1.2 Efficient Fitness Functions

In this section the most important theoretical results on efficient fitnesses are
summarized briefly. The details can be found in the previously mentioned work.

Definition 3. (Fitness function)
A fitness function for digital images is a function Φk,l : Ik × Il → R, where
k, l ∈ Z

+ are positive integers. That is Φ orders a real value to a pair of images
with color depths at most k and l respectively. One of the images is the target
image. The other image is generated by the evolutionary algorithm. Therefore
they are denoted by T and G respectively.

When the color depths are unambiguous the index is omitted, and only Φ
is used. When it is also clear from the context, fitness can have the meaning of
either fitness function (Φ) or fitness value (Φ(T,G)).

.
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Definition 4. (Efficient fitness)
A fitness function is called efficiently computable or efficient for short when for
any given destination image T , and any finite sequence of generated images
G0, G1, . . . , Gs−1 the following holds:

tΦ(T,G0, G1, . . . , Gs−1) ≤ tΦ,p(T ) + tΦ,c

s−1∑
i=0

|Gi|,

where tΦ(T,G0, G1, . . . , Gs−1) is the shortest time within Φ(T,Gi) can be com-
puted for each i ∈ {0, 1, . . . , s − 1}, tΦ,p : I → R is a function, usually the
preprocessing time, and tΦ,c is a constant, called the comparison coefficient of Φ.

In words, the computation time is less then a sum of two values, where the
first value depends only on the target image, and is independent from the number
of the generated images and from the generated images themselves. The second
value is independent form the target image and is linearly dependent on the
number of non-zero pixels in the generated images. The motivation is that the
positions of the pixels have to be computed anyway, and this needs at least
linear time.

1.3 Theoretical Results on Efficient Fitness Functions

The first result is on simple fitness functions, which are defined using a so-called
loop operator as follows.

Definition 5. (Loop operator)
Given an associative binary operator ω : M ×M → M , with an identity εω ∈ M
(εωm = mεω = m ∀m ∈ M). That is (M, ω, εω) is a monoid. A loop operator Ω
belonging to ω is defined as follows:

ΩX(f) =
{

εω , if X = ∅
ω(f(p), ΩX\{p}(f)) for an arbitrary p ∈ X , otherwise,

where X ⊆ P is a finite set and f : P → M is an arbitrary computable function.
Note that the loop operator is unambiguous only if the operator is commutative
or the set X is ordered, and p is not an arbitrary, but for example the first
element of the set.

Definition 6. (Simple fitness functions)
A fitness function is called simple, if it can be written in the following form:

Φ(T,G) = f ′(T )σΩG(x,y) �=0(f ′′(T (x, y), G(x, y), x, y)),

where σ is a binary operator, Ω is a loop operator belonging to a binary operator
ω, and the computation times of σ, ω and f ′′ are O(1).

Theorem 1. (Efficiency of simple fitnesses)
Every simple fitness function can be computed efficiently.
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An example for simple fitness is the generalized quadratic error, where the
fitness is defined as follows:

Φ(T,G) =
∑

(x,y)∈C

f(T (x, y), G(x, y)).

f(i, j) =

⎧⎪⎪⎨⎪⎪⎩
W0 if i = j = 0,
W1 if i = j = 1,
W2 if i = 0, and j = 1,
W3 if i = 1, and j = 0,

where the Wi (i = 0, 1, 2, 3) values are predefined constants. These fitness func-
tions are not powerful enough, therefore another class of fitness functions is also
defined, which is also efficient. These are the semi-local fitness functions.

Definition 7. (Semi-local fitness function)
A fitness function is called local (additive) in G, when it has the following form:

Φ(T,G) =
∑

(x,y)∈C

ϕ(T, G, x, y) =
∑

(x,y)∈C

f(T,G(x, y), x, y).

Similarly fitness functions local in T can also be defined. A fitness function is
called semi-local, when it is local in either T , or G.

Theorem 2.
Any fitness function Φk,2 that is local in G can be converted into a form

Φ(T,G) = f ′(T ) +
∑

G(x,y) �=0

T ′(x, y),

where f ′(T ) =
∑

(x,y)∈C f(T, 0, x, y) and T ′(x, y) = f(T, 1, x, y) − f(T, 0, x, y).

Corollary 1. (Efficiency of semi-local fitnesses)
Given a fitness function Φk,2. If Φ is local in G and T can be preprocessed
then Φ can be computed efficiently. By definition T can be preprocessed, and
converted to T ′ if there exists a function To, and two integers xb and yb, such
that (x ≥ xb ∧ y ≥ yb) ⇒ T ′(x, y) = To(x, y), and the calculation time of To

is O(1).

Semi-local fitnesses are for example the distance based fitness functions,
where the fitness for a misplaced pixel is a function of the distance of the given
pixel and the target image as a set of pixels.

ϕ(T, G, x, y)=

⎧⎪⎪⎨⎪⎪⎩
W0 if T (x, y)=G(x, y) = 0,
W1 if T (x, y)=G(x, y) = 1,
W (h(T, x, y)) if T (x, y) = 0, and G(x, y) = 1,
W3 if T (x, y) = 1, and G(x, y) = 0.

where h(T, x, y) is the distance of (x, y) and the set of 1 pixels in T .
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2 Fitness Calculation

Theoretical results can be useless toys, unless one can convert them into algo-
rithms. In this section the algorithms are given for the efficient fitness calculation.
There are two ways to calculate the fitness. The first method is the off-line way:
first the generated image is drawn then in the second step it is compared with
the target image. The second way is to do this on-line: draw the image and cal-
culate the fitness at the same time. Usually the on-line method is better, since
the image does not have to be stored. When the off-line method is used, the
non-zero pixels have to be stored for example in a list, to allow a fast loop over
them. Since the main part of the algorithm is almost the same in both cases,
only the on-line version is considered here.

The algorithm can be designed using Theorem 2. It gives a preprocessing algo-
rithm for calculating f ′ (fitc) and T ′ (Tpre), and the main algorithm. The pre-
processing algorithm can be seen in Algorithm 2.1 together with function Target.
The latter one is used to return the value of the preprocessed image for a given
pixel. Tpre cannot be used directly, since x and y may be outside of this image. In
this case the return value is determined by Tout, which returns the value of To.

preprocess()
1 fitc ← 0
2 for each (x, y) in image T
3 do f1 ← f(T, 1, x, y); f0 ← f(T, 0, x, y)
4 Tpre[x, y] ← f1 − f0; fitc ← fitc + f0

Target(x, y : integer)
1 if (x, y) is outside of Tpre
2 then return Tout(x, y)
3 else return Tpre[x, y]

Algorithm 2.1. Preprocessing

The main part of the algorithm is nothing else but summing the pixel fitness
values for each newly generated pixel. The pixel fitness here is the value of T ′,
but instead of using function Target, a new function is introduced, to be able
to easily extend the algorithm later.

fitness(Gdesc : image description)
1 result ← fitc
2 while the image is not completely generated
3 do calculate one or more pixels of the image
4 for each new pixel (x, y)
5 do result ← result + pixel fitness(x, y)
6 after draw commands
7 return result

pixel fitness(x, y)
1 return Target(x, y)

main()
1 preprocess
2 start EA

Algorithm 2.2. Main part of the fitness calculation
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3 Fitness Extensions

In some cases the simple fitness functions have to be extended. It is, however,
important not to loose the possibility of the fast calculation, therefore the new
functions are designed with this requirement in mind.

3.1 Overwriting Pixels

When a set of graphical primitives is used as a representation, it can happen
during the interpretation that some pixels are drawn more than once. For ex-
ample when they are covered by more than one primitive. With the previous
algorithm the more times a pixel is covered the higher the fitness increment it
causes. It is usually not what is expected. To handle this problem an additional
memorizing image M : C → {f, v} is introduced. This image is initially filled
with the value f (free). After a pixel is drawn, it is changed to v (visited). Thus
the comparator function f(i, j) must be extended to fo(i, j, k), where k ∈ {f, v}.
A straight implementation of this method can be seen in Algorithm 3.1.

pixel fitness(x, y)
1 if M [x, y] = f
2 then return Target(x, y)
3 else return penalty

after draw commands()
1 for each (x, y) in C
2 do M [x, y] ← f

Algorithm 3.1. Dummy algorithm for handling overwrites

A problem with this image M is that it has to be cleared (set to f) before
each fitness calculation. That needs time proportional to the image size, which
is usually much greater than the time needed to calculate the fitness. In an
experiment the CPU spent more than 94% of the running time with clearing
this image. Therefore a greater set is used instead of {f, v}, for example Z256,
or Z65536 and the actual value showing the visited state is increased after each
step. Image M is cleared only after the maximal value is reached. Using this
modification, the fitness calculation is presented by Algorithm 3.2.

pixel fitness((x, y))
1 if M [x, y] < overwrite
2 then result ← Target(x, y)
3 M [x, y] ← overwrite
4 else result ← penalty
5 return result

after draw commands()
1 if overwrite ≥ MAX
2 then overwrite ← 0
3 for each (x, y) in I
4 do M [x, y] ← 0
5 overwrite ← overwrite + 1

Algorithm 3.2. Calculating fitness with overwriting
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Note that this method breaks the linearity of the fitness computation. How-
ever, one can avoid the usage of the additional image by using a sorted list of
the drawn pixels. Though the time will not be constant either, but logarithmic,
for each pixel. The implementation of this method can be seen in Algorithm 3.3.

pixel fitness(x, y)
1 insert (x, y) into the list L
2 if (x, y) was NOT in the list
3 then result ← Target(x, y)
4 else result ← penalty
5 return result

after draw commands()
1 drop list L

Algorithm 3.3. Calculating fitness with overwriting with list

3.2 Handling Thick Lines

In Figure 1a a possible problem of the thick line based representations can be
seen. A different line segment is described, but because of the thickness of the
line, and the non-zero angle, some overlapping may occur. However, this should
not be considered as a normal overwriting.

To solve the problem two classes of pixels are introduced: the main line, which
is more important, and the extension. For the fitness calculation the memorizing
image has three values. These are f (free), e (exhausted) and p (prohibited).
Value f means that this pixel has not been covered yet. Value e means that this
pixel has been covered by an extension pixel, covering it again by an extension
pixel will give no penalty, but the fitness will not be increased either. If a pixel is
p, then it has been covered by the main-line, thus covering it again gives penalty.
The calculation scheme can be seen in Figure 1b.

The algorithm defined for simple overwriting can easily be modified to handle
this case. Only a new function should be introduced to draw extension pixels
and calculate fitness, and the value of overwrite has to be increased by 2. An
algorithm using lists can also be given, where the pixels of the main line and the
pixels of the extension are stored in two separate lists.

main line

overlapping area

a) Overlapping thick lines

pixel old new fitness
main line f p full gain
main line e p some error
main line p p huge error
extension f e some gain
extension e e nothing
extension p p some error

b) Fitness for thick lines with overwriting

Fig. 1. Thick lines
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4 Experimental Results

In this section some experimental results are discussed. For the tests a simple
image was used as the target image. The generated image was the displaced
version of the original. During the evolution the individuals were represented by
(dx, dy) pairs, that is by the displacement vectors, this means the optimum is
(0, 0). Note that in another experiment the rotation angle and scale factor were
used with similar results.

4.1 Computation Times

In the first experiment the computation times were compared. A simple image
description was created and interpreted for different image sizes. Then the im-
ages were compared with a simple target image. To test calculation speed the
distance based fitness was used, with different W (x) functions. Using the algo-
rithm presented in this paper, W (x) does not influence the calculation speed.
However, for testing purposes the W (x) was also computed on-line. The results
for W (x) = 10x, W (x) = x2 and W (x) =

√
x, for drawing without fitness cal-

culation and for the general method using the previously defined algorithm can
be seen in Figure 2.
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Fig. 2. Comparison of drawing and some efficient fitness calculations

4.2 Convergence Speed

In the second experiment the previously introduced simple test environment was
used. The population size was 20 and 1000 steps were made. Two graphs were
generated for the quadratic error (Figure 3), for the distance based fitness (Fig-
ure 4) and for the Hausdorff distance (Figure 5). The last one is unfortunately
not efficient, and used here only for comparison. The first graphs show the devi-
ation of the population in the solution space in the first 150 steps. The second
images show the fitness values of the individuals, plotted against the genera-
tion. The individuals were initially placed at the perimeter of the solution space,
whereas the optimum (dx = 0, dy = 0) is at the center.



322 R. Ványi
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Fig. 3. Convergences for quadratic error
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Fig. 4. Convergences for distance based fitness
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Fig. 5. Convergences for Hausdorff distance
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In Figure 6 the results are summarized, and the minimal, maximal and av-
erage fitness values are plotted averaged over the 10 independent runs, but not
for the Hausdorff distance, since the results are obvious in this case.

5 Conclusion

In this paper several algorithms were given for efficient fitness computation. With
them the theoretical results on these fitnesses can be used in practice, making
fitness calculation only a negligible additional extra work. Tests have shown that
using the algorithms given in this paper, any kind of function of the distance
can be used for fitness computation, without risking any loss of computational
speed, meanwhile the calculation of these functions would normally need a con-
siderable additional time. Some extensions were also given to solve two frequent
practical problems.

Other tests were also made showing that the quadratic error converges poorly,
but an appropriate distance based fitness may converge much better. The results
show that the distance based fitness functions can combine the good convergence
properties of the Hausdorff distance and the high calculation speed of the efficient
fitness functions.

In the future more tests are also planned with more compilcated images.
Hopefully completely new classes of fitness functions may also be found that can
be proven to be efficient as well.
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Abstract. A selective ensemble of support vector machines (SVMs) based on 
immune clonal algorithm (ICA) is proposed for the case of classification. ICA, 
a new intelligent computation method simulating the natural immune system, 
characterized by rapid convergence to global optimal solutions, is employed to 
select a suitable subset of the trained component SVMs to make up of an en-
semble with high generalization performance. The experimental results on some 
popular datasets from UCI database show that the selective SVMs ensemble 
outperforms a single SVM and traditional ensemble method that ensemble all 
the trained component SVMs. 

1   Introduction 

Two major recent advances in learning theory are SVM [ 1] and ensemble methods 
such as boosting and bagging [ 2][ 3]. SVM, proposed by Vapnik and his group, has 
been proved to be an effective learning machine by successful applications, such as 
face detection [ 4], hand-written digit recognition [ 5], as well as image retrieval [ 6]. 
In recent years, combining machines instead of using a single one for increasing 
learning accuracy is an active research area. And SVMs ensembles have been pro-
posed to further improve the generalization performance also. In [ 1], a boosting 
technique is used to train each component SVM and another SVM is used to com-
bine the SVMs trained. In [ 7] and [ 8], SVMs ensemble is realized based on bagging 
algorithm and applied to face detection and classification. These methods men-
tioned above make a collective decision of all the individual SVMs, which may restrain 
the improvement of the performance of the ensemble in the case of the existence of the 
same component SVMs. 

Researches have shown that an effective ensemble should consist of a set of models 
that are not only highly correct, but ones that make their errors on different parts of 
the input space as well. [ 9][ 10]. In other words, an ideal ensemble consists of highly 
accurate classifiers that disagree as much as possible. In [ 11], a selective neural net-
works ensemble based on genetic algorithm (GA) is proposed to improve the gener-
alization performance of the ensemble and a conclusion is drawn that ensemble many 
could be better than all. 
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Despite the good global searching capability and its wide applications in different 
areas, GA has the unavoidable disadvantages that the speed of convergence is low and 
the optimal solutions cannot be obtained in limited generations since it emphasizes 
the competition only and the communication between individuals is ignored. Immune 
clonal algorithm (ICA) overcomes the shortcoming to some degree and has been 
proved to be an effective optimization algorithm [ 12][ 13] since it imitates the artifi-
cial immune system and the competition and cooperation coexist in it. ICA demon-
strates the self-adjustability function by accelerating or restraining the generation of 
antibodies, which enhances the diversity of the population.  

In this paper, a selective SVMs ensemble is proposed and ICA is used to the selec-
tion of component SVMs. Each individual SVM is trained using a randomly chosen 
training set from the original training data via the bootstrap technique in order to 
reduce error correlation between individual SVMs and to improve the generalization 
performance of SVMs. Experimental results on some popular datasets from UCI da-
tabase show the effectiveness of the new method.  

This paper is organized as follows. In section 2, SVM for classification problem is 
reviewed briefly. Section 3 presents the principle of SVMs ensemble first, followed 
by the introduction of ICA, based on which, selective SVMs ensemble is developed. 
Section 4 gives the experimental results and discussions. Finally, conclusive remarks 
are given in section 5. 

2   Support Vector Machine 

As a member of many kernel methods, SVM is a relatively new learning algorithm, in 
which data points are non-linearly mapped to a high dimension feature space by re-
placing the dot product operation in the input space with a kernel function ( , )K ⋅ ⋅ . It is 
to find the best decision hyperplane that separates the positive examples and negative 
examples with maximum margin. By defining the hyperplane this way, SVM can be 
generalized to unknown instances effectively. 

Suppose training samples 1 1{( , ), ( , )}l lx y x y , in which Nx R∈ , { 1, 1}y ∈ − +  and 
NR denotes the input space. Then original input space is projected to high dimension 

feature space Ω  by kernel projection, which ensures that the patterns can be recog-
nized linearly in feature space. For pattern recognition problem, it turns to a pro-
gramming question as follows. 

1 , 1

1
max ( ) ( , )

2

l l

i i j i j i j
i i j

Q x y y K x xα α α
= =
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=
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3   Selective SVMs Ensemble Based on ICA 

3.1   SVMs Ensemble 

The term ensemble of classifiers is used to identify a set of classifiers whose individ-
ual decisions are combined in some way (typically by voting) to classify new exam-
ples. It is known that an ensemble often exhibits a much better performance than the 
individual classifiers that compose it [ 9]. Bagging and boosting techniques, which use 
a particular learning algorithm trained with different distributions of the training set, 
are used popularly in SVMs ensembles.  

Bagging is a particular ensemble architecture where a voting combination of learn-
ing machines is used and each component one is trained using a subset with replace-
ment of the initial training data. The size of the subsamples set is equal to that of the 
original training set, but repetitions of points occur. In this way, we can get an ensem-
ble 1 2{ , , }Nf f f  of N classifiers. If all the classifiers are identical, their results are 

matched on the same data and an ensemble will exhibit the same performance as 
individual classifiers. Then we can draw one conclusion that combining identical 
classifiers is useless. However, if all the classifiers are different and their errors are 
uncorrelated, most of the other classifiers except for ( )if x  may be correct when ( )if x  

is wrong. In this case, the result of majority voting can be correct.  
Hansen and Salamon [ 9] first introduced the hypothesis that the ensemble of mod-

els is most useful when its member models make errors independently with respect to 
one another. Tumer and Ghosh [ 14] have shown how the error rate obtained by a 
combiner is related to that of a single classifier. The equation that relates both is: 

1 ( 1)
ensemble Optimal Bayes

N
Error Error Error

N

ρ+ −= + , (3) 

where ρ  denotes the correlation among classifier errors, and Optimal BayesError  the error 

rate obtained using the Bayes rule on condition that all the conditional probabilities 
are known. If 0ρ = , the error of the ensemble decreases in proportion to the number 
of classifiers. When 1ρ = , the error of the ensemble is equal to the error of a single 
classifier.  

From the above study, two main conclusions can be got. Firstly, the performance 
of individual classifiers must be better than that of a random guess, namely, the accu-
racy of individual classifier cannot be low seriously. Secondly, the diversity of indi-
vidual classifiers consisted in ensemble is one of the requirements. In other word, we 
should combine the classifiers that make uncorrelated errors because it is evident that 
combining several identical predictors produces on gain. 

For SVMs ensemble, the first condition is satisfied obviously. To satisfy the sec-
ond condition, the idea of selection is introduced to the SVMs ensemble. Similar or 
redundant individual SVMs trained should be removed from ensemble and better 
generalization performance of the ensemble can be obtained in this way. Then the 
problem is transformed into an optimization problem that is finding the most suitable 
subset of component SVMs trained. ICA is a good choice for us since it has been 
shown to be a fast and effective global optimization technique. 
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3.2   A Brief Review of ICA 

Derived from traditional evolutionary algorithm, ICA [ 15][ 16] introduces the mecha-
nisms of avidity maturation, clone and memorization. Rapid convergence and good 
global search capability characterize the performance of the corresponding operators. 
The property of rapid convergence to global optimum of ICA is made use of to speed 
up the searching of the most suitable subset among a number of individual SVMs 
trained. 

The clonal selection theory is used by the immune system to describe the basic fea-
tures of an immune response to an antigenic stimulus; it establishes the idea that the 
cells are selected when they recognize the antigens and proliferate. When exposed to 
antigens, immune cells that may recognize and eliminate the antigens can be selected 
in the body and mount an effective response against them during the course of the 
clonal selection. The clonal operator is an antibody random map induced by the avid-
ity including three steps: clone, clonal mutation and clonal selection. The state trans-
fer of antibody population is denoted as follows: 

: ( ) ( ) ( ) ( 1)clone mutation selection
MAC A k A k A k A k′ ′′⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯→ +  (4) 

According to the avidity function f , a point 1 2{ , , , }i ma x x x= , ( ) ( )ia k A k∈  in 

the solution space will be divided into iq  same points ' ( ) '( )ia k A k∈  by using clonal 

operator. A new antibody population is produced after the clonal mutation and clonal 
selection are performed. Here, an antibody corresponds to an individual in EA. The 
term of avidity denotes the fitness of an antibody to the objective function. The fun-
damental steps of ICA are summarized in Fig. 1.  

 

1 0k = ; Initial the antibody population (0)A , set the parameters, 
calculate the avidity of the initial population; 

2 According to the avidity and the clonal size set of the antibody, 
perform operations of clone C

cT , clonal mutation C
gT and clonal 

selection C
sT , then obtain the new antibody population ( )A k ; 

3 Calculate the avidity of ( )A k ; 
4 1k k= + ; If satisfying the iterative termination condition, stop 

the iteration, otherwise, return to 2. 
 

Fig. 1. Immune Clonal Algorithm 

3.3   Selective SVMs Ensemble Based on ICA 

The leading idea of our method is to select a part of the trained component SVMs to 
construct an ensemble with the lowest generalization error. Like traditional bagging 
ensemble method, the bootstrap technique is adopted to sample training data for indi-
vidual SVMs in the procedure of training. For a binary classification, given a training 



 Selective SVMs Ensemble Driven by Immune Clonal Algorithm 329 

 

set {( , ) | 1,2, , }i iS x y i l= =  where { 1,1}iy ∈ − , suppose we want to get a ensemble 

selected from K individual SVMs, bootstrap technique is used to generate K training 
sets { | 1,2, , }B

kS k K=  with different distributions by randomly re-sampling from the 

original training set repeatedly. For a special sample, it may appear repeatedly or may 
not appear at all in a certain training set. Then, K SVMs { | 1,2, , }kC k K= are trained 

respectively on the K training set. 
For N-class problem, one-against-one scheme is applied to reduce it to ( 1) / 2N N −  

2-class problems. Like binary classification, K training sets are generated also. It is 
different that ( 1) / 2N N −  SVMs will be trained on each generated training set, and the 

( 1) / 2N N −  SVMs will be viewed as a whole in the selection and decision procedures 
since they are trained using the same training set. For convenience, by a component 
SVM of an ensemble we mean the ( 1) / 2N N −  SVMs trained on the same training set 
for a N-class problem.  

 

Fig. 2. The selective ensemble of SVMs based on ICAï

Then our focus is to create an ensemble with SVMs selected from the available in-
dividual SVMs with ICA. As mentioned in section 3.2, ICA is induced by the avid-
ities of antibodies in the evolving population. The evaluation of the performance of an 
ensemble is related to the avidity function of ICA directly. Intuitively, the lower the 
generalization error is, the better the performance of the ensemble. Therefore, the 
generalization error Ê of the ensemble on a validation data set is used for evaluating 
the performance of the ensemble, which is obtained 

     
 

 avidity 

 

 
Input: training set S, SVM C, Number of SVMs trained K, test set 
{ | 1,2, , }ix i L  
Procedure: 
Step1   for k=1 to K 

        B
kS = bootstrap samples from S 

                kC = C( B
kS ) 

end for 
Step2  Select an optimal subset from { | 1,2, , }kC k K  to make up of an ensemble 

*C  using ICA 
Step3   for i=1 to L 
                Make predictions of a test sample ix using each component SVMs 

included in the ensemble *C   
                Give the final decision *( )iC x  via the majority voting  
            end for 
Output: the final decisions of test samples  
 

 via the majority voting of the 
component SVMs of  a given ensemble considered.  For ICA, ˆ1 E is used as the 
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function. And now, the task of ICA is to find an optimal subset of individual SVMs to 
generate an ensemble with which a minimum of Ê on the validation set can be ob-
tained. The used validation set is bootstrap sampled from the original training set 
here. Certainly, it is better that a validation set is a separate one from the training set.  

When implementing the clone operator on current parent population )(kA , the 

clonal size cN  of each antibody can be determined proportionally by the avidity be-

tween antibody and antigen or be a constant integer for convenience. Then we obtain 

)}(,),(),(),({')( ''
2

'
1 kAkAkAkAkA

pN= . The clonal mutation operator is only im-

plemented on )(' kA , the cloned part of '( )A k , which changes each of the bits based on 

the probability of mutation 1/mp D= , and then )('' kA  is achieved. The clonal selec-

tion operator is carried out as follows. In subpopulation, if mutated antibody 
max{ ( ) | 2,3, , 1}ij ib f a j q= = −  exists such that ( ) ( ), ( )i if a f b a A k< ∈ , b  replaces the 

antibody ia  and is added to the new parent population, namely, the antibodies are 

selected proportionally as the new population of next generation )1( +kA  based on 

the avidity. It is a map ( )cN k n nI I+ → , which realizes population compressing through 
selecting local optimum. 

In our method, the ICA’s termination criterion is triggered whenever the maximum 
number of generations is attained. Then the optimal antibody in current population is 
the final solution.

4   Experiment Results and Discussion 

To evaluate the performance of the method proposed, seven data sets are selected for 
classification according to the data size from UCI machine learning repository [ 17]. 

After we get the ensemble of selected individual SVMs, the final decision for a test 
example is made using a majority-voting rule based on the ensemble whose output is 
the class label received the most number of votes in classification. The approach 
proposed is summarized in Fig. 2. 

 In step 2, a binary encoding scheme is used to represent the presence or absence of 
individual SVMs. An antibody is a binary string whose length D  is determined by 
the number of total individual SVMs trained. Let 

1 2
( , , , )

Dv v va a a  denote an antibody, 

where 0
iva  denotes the associated individual SVM is absent; 1

iva  the associated 
individual SVM is present in the ensemble. When evaluating the avidity of a given 
antibody, the binary string is decoded to a combination of individual SVMs through 
removing the SVMs corresponding to 0

iva . The initial antibody population is 
generated randomly, each antibody denotes a kind of combination of component 
SVMs. Evolving the population with ICA according to avidity ˆ1 E , and one will get 
the optimal antibody whose avidity is the maximum. The final solution presents the 
appropriate ensemble of component SVMs with good generalization performance.  
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Table 1 gives the characteristics of the data sets used in this paper. The missing values 
have been removed from Breast-cancer-W data set. Pen digits (Pen-based handwritten 
digits) data set has been normalized in advance.  

Table 1. Data sets used for classification 

Data set Class Attribute Train size Test size 

Sonar 2 60 208 - 
Glass 7 9 214 - 
Breast-cancer-W 2 9 683 - 
Segmentation 7 19 2310 - 
Chess (kr-vs-kp) 2 35 3196 - 
Waveform 3 22 5000 - 
Pen digits 10 16 7494 3498 

Except pen digits data, the available samples of each other dataset are randomly 
divided into two equivalent subsets, training set and test set. For each data, 20 SVMs 
are trained individually with 20 training sets that are bootstrap sampled from the 
original training set. The validation set for evaluating the generalization error of the 
ensemble in the selection is obtained from the original training set using bootstrap 
technique as well. For comparison, we use all SVMs trained (traditional bagging 
technique) and the selected SVMs using the proposed method to create an ensemble 
separately and make final prediction for test samples. For each data set, we perform 
10 runs and record the average error rate and the standard deviation of the ensembles 
on the test set. The experimental results of two ensemble methods and a single SVM 
are listed in table 2.  

In ICA, the size of the antibody population is 10 and the length of each antibody is 
the number of trained component SVMs, 20. The maximum evolutionary generation 
is 50 and the clonal size is 5. In SVMs, the RBF kernel function is used. The parame-
ters of SVMs are experimentally chosen for each dataset. 

Table 2. Comparison of the error rates and the standard deviations of single SVM, traditional 
bagging and selective SVMs ensemble 

Data set Single SVM Traditional 
bagging 

Selective 
ensemble 

Num. of SVMs 
selected 

Sonar 18.08 ± 4.02 18.08 ± 3.45 15.77 ± 2.49 8.8 
Glass 36.17 ± 5.06 37.20 ± 6.37 31.40 ± 5.25 7.6 
Breast-cancer-W 4.24 ± 0.85 4.15 ± 0.88 3.71 ± 0.85 8.4 
Segmentation 3.84 ± 0.55 3.70 ± 0.59 2.99 ± 0. 49 10.2 
Chess(kr-vs-kp) 1.80 ± 0.40 1.92 ± 0.35 1.48 ± 0.43 8.6 
Waveform 16.73 ± 0.80 16.15 ± 0.50 15.00 ± 0.50 8.2 
Pen digits  2.86 ± 0.00 2.50 ± 0.08 2.48 ± 0.11 10.5 
Average 11.96 ± 1.67 11.96 ± 1.75 10.40 ± 1.45 8.9 
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Table 2 shows that the selective SVMs ensemble driven by ICA is better than a 
single SVM and traditional bagging algorithm. It is important that the average number 
of the SVMs comprised in the selective ensemble is approximately a half of the num-
ber of all trained SVMs, consequently the test time will be remarkably shorten com-
pared to the traditional bagging algorithm. From the average result of all used data 
sets, we find that there is no significant difference between the performance of the 
traditional bagging algorithm and single SVM, which may be due to the fact that 
bagging algorithm works better when the individual classifiers are “unstable”.  

5   Con lusion 

In this paper, we have proposed an algorithm for selective ensemble of SVMs driven 
by ICA. The characteristic of rapid convergence of ICA, which putts both the global 
and local searching into consideration, ensures that the satisfied ensemble of the se-
lected SVMs trained can be achieved rapidly. Experiment results on some UCI data 
sets show that this approach outperforms single SVM and traditional bagging algo-
rithm that ensembles all of the individual SVMs.  

Further studies on the selective ensemble based on diversity measures of compo-
nent classifiers and the applications of the method proposed in this paper will be 
made. 
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Abstract. In the field of artificial intelligence, there is a considerable
interest in the notion of sensory-motor coordination as an explanation for
intelligent behaviour. However, there has been little research on sensory-
motor coordination in tasks that go beyond low-level behavioural tasks.
In this paper we show that sensory-motor coordination can also enhance
performance on a high-level task: artificial gaze control for gender recog-
nition in natural images. To investigate the advantage of sensory-motor
coordination, we compare a non-situated model of gaze control (inca-
pable of sensory-motor coordination) with a situated model of gaze con-
trol (capable of sensory-motor coordination). The non-situated model of
gaze control shifts the gaze according to a fixed set of locations, opti-
mised by an evolutionary algorithm. The situated model of gaze control
determines gaze shifts on the basis of local inputs in a visual scene. An
evolutionary algorithm optimises the model’s gaze control policy. From
the experiments performed, we may conclude that sensory-motor coor-
dination contributes to artificial gaze control for the high-level task of
gender recognition in natural images: the situated model outperforms
the non-situated model. The mechanism of sensory-motor coordination
establishes dependencies between multiple actions and observations that
are exploited to optimise categorisation performance.

1 Introduction

In the field of artificial intelligence there is a considerable interest in situated
models of intelligence that employ sensory-motor coordination to solve specific
tasks [1, 2]. A situated model of intelligence is a model in which motor actions
co-determine future sensory inputs. Together, the sensory inputs and the motor
actions form a closed loop. Sensory-motor coordination exploits this closed loop
in such a way that the performance on a particular task is optimised.

Several studies have investigated the mechanism of sensory-motor coordi-
nation [3, 4, 5, 6]. For instance, they show that sensory-motor coordination can
simplify the execution of tasks, so that the performance is enhanced. However,
until now, research on sensory-motor coordination has only examined low-level
tasks, e.g., categorising geometrical forms [3, 4, 5, 6, 7]. It is unknown to what
extent sensory-motor coordination can contribute to high-level tasks.

F. Rothlauf et al. (Eds.): EvoWorkshops 2005, LNCS 3449, pp. 334–344, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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So, the research question in this subdomain of AI research reads: Can sensory-
motor coordination contribute to performance of situated models on high-level
tasks? In this paper we restrict ourselves to the analysis of two models both per-
forming the same task, viz. gaze control for gender recognition in natural images.
The motivation for the choice of this task is two-fold: (1) it is a challenging task,
to which no situated gaze control models have been applied before; (2) it enables
the comparison of two models that are identical, except for their capability to
coordinate sensory inputs and motor actions. Thus, we will compare a situated
with a non-situated model of gaze control. If the situated model’s performance
is better, we focus on a second research question: How does the mechanism of
sensory-motor coordination enhance the performance of the situated model on
the task? We explicitly state that we are interested in the relative performance
of the models and the cause of an eventual difference in performance. It is not
our intention to build the gender-recognition system with the best categorisa-
tion performance. Our only requirement is that the models perform above chance
level (say 60% to 80%), so that a comparison is possible.

The rest of the paper is organised as follows. In Sect. 2 we describe the
non-situated and the situated model of gaze control. In Sect. 3 we outline the
experiment used to compare the two models of gaze control. In Sect. 4 we show
the experimental results and analyse the gaze control policies involved. In Sect.
5 we discuss the relevance of the results. We draw our conclusions in Sect. 6.

2 Two Models of Gaze Control

Below, we describe the non-situated model of gaze control (Sect. 2.1) and the
situated model of gaze control (Sect. 2.2). Then we discuss the adaptable pa-
rameters of both models (Sect. 2.3).

2.1 Non-situated Model of Gaze Control

The non-situated model consists of

Fig. 1. Overview of the non-situated
model of gaze control

three modules. The first module re-
ceives the sensory input and extracts
input features, given the current fixa-
tion location. The second module con-
sists of a neural network that deter-
mines a categorisation based on the
extracted input features. The third
module controls the gaze shifts. Fig-
ure 1 shows an overview of the model.
The three modules are illustrated by
the dashed boxes, labelled ‘I’, ‘II’, and
‘III’. The current fixation location is
indicated by an ‘x’ in the face.
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Module I receives the raw input from the window with centre x as sensory
input. In Fig. 1 the raw input is shown on the left in box I; it contains a part of
the face. From that window, input features are extracted (described later). These
input features serve as input to module II, a neural network. The input layer
of the neural network is illustrated by the box ‘input layer’. Subsequently, the
neural network calculates the activations of the hidden neurons in the ‘hidden
layer’ and of the output neuron in the ‘output layer’. There is one output neuron
that indicates the category of the image. The third module determines the next
fixation location, where the process is repeated. Below we describe the three
modules of the non-situated model of gaze control in more detail.

Module I: Sensory Input. Here, we focus on the extraction procedure of the
input features. For our research, we adopt the set of input features as introduced
in [8], but we apply them differently.

An input feature repre-

Fig. 2. An input feature consists of a type and a
location

sents the difference in mean
light intensity between two
areas in the raw input win-
dow. These areas are deter-
mined by the feature’s type
and location. Figure 2 shows
eight different types of input
features (top row) and nine
differently sized locations in
the raw input window from
which the input features can
be extracted (middle row,
left). The sizes vary from the
whole raw input window to a quarter of the raw input window. In total, there
are 8× 9 = 72 different input features. In the figure, two example input features
are given (middle row, right). Example feature ‘L’ is a combination of the first
type and the second location, example feature ‘R’ of the third type and the sixth
location. The bottom row of the figure illustrates how an input feature is calcu-
lated. We calculate an input feature by subtracting the mean light intensity in
the image covered by the grey surface from the mean light intensity in the image
covered by the white surface. The result is a real number in the interval [−1, 1].
In the case of example feature L, only the left half of the raw input window is
involved in the calculation. The mean light intensity in the raw input window of
area ‘A’ is subtracted from the mean light intensity of area ‘B’.

Module II: Neural Network. The second module is a neural network that
takes the extracted input features as inputs. It is a fully-connected feedforward
neural network with h hidden neurons and one output neuron. The hidden and
output neurons all have sigmoid activation functions: a(x) = tanh(x), a(x) ∈
〈−1, 1〉. The activation of the output neuron, o1, determines the categorisation
(c) as follows.
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c =
{

Male , if o1 > 0
Female , if o1 ≤ 0 (1)

Module III: Fixation Locations. The third module controls the gaze in such
a way, that for every image the same locations in the image are fixated. It
contains coordinates that represent all locations that the non-situated model
fixates. The model first shifts its gaze to location (x1, y1) and categorises the
image. Then, it fixates the next location, (x2, y2), and again categorises the
image. This process continues, so that the model fixates all locations from (x1, y1)
to (xT , yT ) in sequence, assigning a category to the image at every fixation. The
performance is based on these categorisations (see Sect. 3.2). Out of all locations
in an image, an evolutionary algorithm selects the T fixation locations. Selecting
the fixation locations also implies selecting the order in which they are fixated.

2.2 Situated Model of Gaze Control

The situated model of gaze control (inspired by the model in [7]) is almost
identical to the non-situated model of gaze control. The only difference is that
the gaze shifts of the situated model are not determined by a third module,
but by the neural network (Fig. 3). Therefore, the situated model has only two
modules. Consequently, the current neural network has three output neurons.
The first output neuron indicates the categorisation as in (1). The second and
the third output neurons determine a gaze shift (Δx, Δy) as follows.

Δx = �mo2� (2)

Δy = �mo3�, (3)

where oi, i ∈ {2, 3}, are the activations

Fig. 3. Overview of the situated
model of gaze control

of the second and third output neurons.
Moreover, m is the maximum number of
pixels that the gaze can shift in the x- or
y-direction. As a result, Δx and Δy are ex-
pressed in pixels. If a shift results in a fixa-
tion location outside of the image, the fixa-
tion location is repositioned to the nearest
possible fixation location. In Fig. 3 ‘x’ rep-
resents the current fixation location, and
‘o’ represents the new fixation location as
determined by the neural network.

2.3 Adaptable Parameters

In subsections 2.1 and 2.2 we described the non-situated and the situated model
of gaze control. Four types of parameter values define specific instantiations of
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both models. We refer to these instantiations as agents. The four types of param-
eters are: the input features, the scale of the raw input window from which fea-
tures are extracted, the neural network weights, and for the non-situated model
the coordinates of all fixation locations. An evolutionary algorithm generates and
optimises the agents (i.e., parameter values) by evaluating their performance on
the gaze-control task.

3 Experimental Setup

In this section, we describe the gender-recognition task on which we compare
the non-situated and the situated model of gaze control (Sect. 3.1). In addition,
we discuss the evolutionary algorithm that optimises the models’ adaptable pa-
rameters (Sect. 3.2). Finally, we mention the experimental settings (Sect. 3.3).

3.1 Gender-Recognition Task

Below, we motivate our choice for the task of gender recognition. Then we de-
scribe the data set used for the experiment. Finally, we outline the procedure of
training and testing the two types of gaze-control models.

We choose the task of gender recognition in images containing photos of
female or male faces, since it is a challenging and well-studied task [9]. There are
many differences between male and female faces that can be exploited by gender-
recognition algorithms [10, 11]. State-of-the-art algorithms use global features,
extracted in a non-situated manner. So far, none of the current algorithms is
based on gaze control with a local fixation window.

The data set for the experiment consists of images from J.E. Litton of the
Karolinska Institutet in Sweden. It contains 278 images with angry-looking and
happy-looking human subjects. These images are converted to gray-scale images
and resized to 600 × 800 pixels.

One half of the image set serves as a training set for both the non-situated
and the situated model of gaze control. Both models have to determine whether
an image contains a photo of a male or female, based on the input features
extracted from the gray-scale images. For the non-situated model, the sequence
of T fixation locations is optimised by an evolutionary algorithm. For the situated
model, the initial fixation location is defined to be the centre of the image and
the subsequent T − 1 fixation locations are determined by the gaze-shift output
values of the neural network (outputs o2 and o3). At every fixation, the models
have to assign a category to the image. After optimising categorisation on the
training set, the remaining half of the image set is used as a test set to determine
the performance of the optimised gaze-control models. Both training set and test
set consist of 50% males and 50% females.

3.2 Evolutionary Algorithm

As stated in subsection 2.3, an evolutionary algorithm optimises the parameter
values that define the non-situated and the situated agents, i.e., instantiations
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of the non-situated and situated model, respectively. We choose an evolutionary
algorithm as our training paradigm, since it allows self-organisation of the closed
loop of actions and inputs.

In our experiment, we perform 15 independent ‘evolutionary runs’ to obtain
a reliable estimate of the average performance. Each evolutionary run starts
by creating an initial population of M randomly initialised agents. Each agent
operates on every image in the training set, and its performance is determined
by the following fitness function:

f(a) =
tc,I

IT
, (4)

in which a represents the agent, tc,I is the number of time steps at which the agent
correctly classified images from the training set, I is the number of images in the
training set, and T is the total number of time steps (fixations) per image. We
note that the product IT is a constant that normalises the performance measure.
The M

2 agents with the highest performance are selected to form the population of
the next generation. Their adaptable parameter sets are mutated with probability
Pf for the input feature parameters and Pg for the other parameters, e.g., repre-
senting coordinates or network weights. If mutation occurs, a feature parameter
is perturbed by adding a random number drawn from the interval [−pf , pf ]. For
other types of parameters, this interval is [−pg, pg]. For every evolutionary run,
the selection and reproduction operations are performed for G generations.

3.3 Experimental Settings

In our experiment the models use ten input features. Furthermore, the neural
networks of both models have 3 hidden neurons, h = 3. All weights of the neural
networks are constrained to a fixed interval [−r, r]. Since preliminary experi-
ments showed that evolved weights were often close to 0, we have chosen the
weight range to be [−1, 1], r = 1. The scale of the window from which the input
features are extracted ranges from 50 to 150 pixels. Preliminary experiments
showed that this range of scales is large enough to allow gender recognition, and
small enough for local processing, which requires intelligent gaze control. The
situated model’s maximal gaze shift m is set to 500, so that the model can reach
almost all locations in the image in one time step.

For the evolutionary algorithm we have chosen the following parameter set-
tings: M = 30, G = 300, and T = 5. The choice of T turns out not to be critical
to the results with respect to the difference in performance of the two models
(see Sect. 1). The mutation parameters are: Pf = 0.02, Pg = 0.10, pf = 0.5, and
pg = 0.1.

4 Results

In this section, we show the performances of both models (Sect. 4.1). Then we
analyse the best situated agent to gain insight into the mechanism of sensory-
motor coordination (Sect. 4.2).



340 G. de Croon, E.O. Postma, and H.J. van den Herik

4.1 Performance

Table 1 shows the mean performances on the test

f σ
Non-situated 0.60 0.057
Situated 0.75 0.055

Table 1. Mean perf. (f)
and std. dev. (σ) of the
performance on the test
set of the best agents of
the evolutionary runs

set (and standard deviation) of the best agents of
the 15 evolutionary runs. Performance is expressed
as the proportion of correct categorisations. The ta-
ble shows that the mean performance of the best
situated agents is 0.15 higher than that of the best
non-situated agents. Figure 4 shows the histograms
of the best performances obtained in the 15 runs for
non-situated agents (white) and for situated agents
(gray). Since both distributions of the performances
are highly skewed, we applied a bootstrap method [12]
to test the statistical significance of the results. It revealed that the difference be-
tween the mean performances of the two types of agents is significant (p < 0.05).

Fig. 4. Histograms of the best fitness of each evolutionary run. White bars are for
non-situated agents, gray bars for situated agents

4.2 Analysis

In this subsection, we analyse the evolved gaze-control policy of the best sit-
uated agent of all evolutionary runs. The analysis clarifies how sensory-motor
coordination optimises performance on the gender-recognition task.

The first part of the analysis shows that for each category the situated agent
controls the gaze in a different way. This evolved behaviour aims at optimising
performance by fixating suitable categorisation locations. The second part of the
analysis shows that for individual images, too, the situated agent controls the
gaze in different ways to fixate suitable categorisation locations.

Gaze Control per Category. Depending on the category, the situated agent
fixates different locations. Below, we analyse per category the gaze path of the
situated agent when it receives inputs that are typical of that category. The
fixations take place at locations that are suitable for categorisation.
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(a) (b)

Fig. 5. Categorisation ratios of male (a) and female (b) images in the training set

To find the suitable categorisation locations per category, we look at the
situated agent’s categorisation performance on the training set at all positions of
a 100×100 grid superimposed on the image. At every position we determine the
categorisation ratio for both classes. For the category ‘male’, the categorisation
ratio is: cm(x,y)

Im
, where cm(x, y) is the number of correctly categorised male

images at (x, y), and Im is the total number of male images in the training set.
The left part of Fig. 5(a) shows a picture of the categorisation ratios represented
as intensity for all locations. The highest intensity represents a categorisation
ratio of 1. The left part of Fig. 5(b) shows the categorisation ratios for images
containing females. The figures show that dark areas in Fig. 5(a) tend to have
high intensity in Fig. 5(b) and vice versa. Hence, there is an obvious trade-off
between good categorisation of males and good categorisation of females1. The
presence of a trade-off implies that categorisation of males and females should
ideally take place at different locations.

If we zoom into the area in which the agent fixates, we can see that it always
moves its fixation location to an area in which it is better at categorising the
presumed category. The right part of Fig. 5(a) zooms in on the categorisation
ratios and shows the gaze path that results when the agent receives average
male inputs at all fixation locations. The first fixation location is indicated by
an ‘o’-sign, the last fixation location by an arrow. Intermediate fixations are
represented with the ‘x’-sign. The black lines in Fig. 5(a) connect the fixation
locations. The agent moves from a region with categorisation ratio 0.8 to a
region with categorisation ratio 0.9. The right part of Fig. 5(b) shows the same
information for images containing females, revealing a movement from a region
with a categorisation ratio of 0.76 through a region with a ratio of 0.98. Both
figures show that the situated agent takes misclassifications into account: it
avoids areas in which the categorisation ratios for the other category are too
low. For example, if we look at the right part of Fig. 5(a), we see that the
agent fixates locations to the bottom left of the starting fixation, while the

1 Note that the images are not inverted copies: in locations where male and female
inputs are very different, good categorisation for both classes can be achieved.
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categorisation ratios are even higher to the bottom right. The reason for this
behaviour is that in that area, the categorisation ratios for female images are
very low (Fig. 5(b)).

Non-situated agents cannot exploit the trade-off in categorisation ratios. They
cannot select fixation locations depending on a presumed category, since the
fixation locations are determined in advance for all images.

Gaze Control per Specific Image. The sensory-motor coordination of the
situated agents goes further than selecting sensory inputs depending on the
presumed category. The categorisation ratios do not explain the complete per-
formance of situated agents. In this section we demonstrate that in specific im-
ages, situated agents often deviate from the exemplary gaze paths shown in
Fig. 5(a) and 5(b) to search for facial properties that enhance categorisation
performance.

To see that the categorisation ratios do

Fig. 6. Actual performance (solid
lines) and predicted perf. (dotted
lines) over time, averaged over all
agents (squares) and for the best sit-
uated agent in particular (circles)

not explain the complete performance of
situated agents, we compare the actual per-
formance of situated agents over time with
a predicted performance over time that
is based on the categorisation ratios. For
the prediction we assume that the cate-
gorisation ratios are conditional categorisa-
tion probabilities. The categorisation ratio
cm(x,y)

Im
approximates Px,y(c = M | M) and

cf (x,y)
If

approximates Px,y(c = F | F ). In
addition, we assume that conditional prob-
abilities at different locations are indepen-
dent from each other. We determine the
predicted performance of a situated agent
by tracking its fixation locations over time
for all images and averaging over the condi-
tional categorisation probabilities at those
locations. Figure 6 shows both the actual

performance (solid lines) as the predicted performance (dotted lines) over time,
averaged over all situated agents (squares) and for the best situated agent in
particular (circles).

For the last three time steps the actual performances of the situated agents are
higher than the predicted performances. The cause of this discrepancy is that the
predicted performance is based on the assumption that the conditional categori-
sation probabilities at different positions are independent from each other. This
assumption can be violated, for example, in the case of two adjacent locations.

The situated agent exploits the dependencies by using input features to shift
gaze to fixation locations that are well suited for the task of gender recognition.
For example, the best situated agent bases its categorisation partly on the eye-
brows of a person. If the eye-brows of a male are lifted higher than usual, the
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agent occasionally fixates a location right and above of the starting fixation.
This area is generally not good for male categorisation ( cm(x,y)

Im
= 0.57, see Fig.

5(a)), since eye-brows in our training set are usually not lifted. However, for
some specific images it is a good area, because it contains a (part of a) lifted
eye-brow.

The gaze control policy of the situated agents results in the optimisation of
(actual) performance over time. Figure 6 shows that the actual performance aug-
ments after t = 1. The fact that performance generally increases over time reveals
that sensory-motor coordination establishes dependencies between multiple ac-
tions and observations that are exploited to optimise categorisation performance.
As mentioned in Sect. 3.3, other settings of T (T > 1) lead to similar results. Fi-
nally, we remark that for large T (T > 20), the performance of the non-situated
model deteriorates due to the increased search space of fixation locations.

5 Discussion

We expect our results to generalise to other image classification tasks. Further
analysis or empirical verification is necessary to confirm this expectation. Our
results may be relevant to two research areas. First, the results may be rele-
vant to the research area of computer vision. Most research on computer vision
focuses on improving pre-processing (i.e., finding appropriate features) and on
classification (i.e., mapping the features to an appropriate class) [13]. However, a
few studies focus on a situated model (or ‘closed-loop model’) [14, 15]. Our study
extends the application of a situated model using a local input window to the
high-level task of gender recognition. Second, the results are related to research
on human gaze control. Of course there is an enormous difference between the
sensory-motor apparatus and neural apparatus of the situated model and that
of a real human subject. Nonetheless, there might be parallels between the gaze-
control policies of the situated model and that of human subjects. There are a
few other studies that focus explicitly on the use of situated computational mod-
els in gaze control [16, 17], but they also rely on simplified visual environments.
Our model may contribute to a better understanding of gaze control in realistic
visual environments.

6 Conclusion

We may draw two conclusions as an answer to the research questions posed in
the introduction. First, we conclude that sensory-motor coordination contributes
to the performance of situated models on the high-level task of artificial gaze
control for gender recognition in natural images. Second, we conclude that the
mechanism of sensory-motor coordination optimises categorisation performance
by establishing useful dependencies between multiple actions and observations;
situated agents search adequate categorisation areas in the image by determining
fixation locations that depend on the presumed image category and on specific
image properties.
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Abstract. This paper proposes a new evolutionary region merging method to 
improve segmentation quality result on oversegmented images. The initial 
segmented image is described by a modified Region Adjacency Graph model. 
In a second phase, this graph is successively partitioned in a hierarchical 
fashion into two subgraphs, corresponding to the two most significant 
components of the actual image, until a termination condition is met. This 
graph-partitioning task is solved as a variant of the min-cut problem 
(normalized cut) using a Hierarchical Social (HS) metaheuristic. We applied the 
proposed approach on different standard test images, with high-quality visual 
and objective segmentation results. 

1   Introduction 

Image segmentation is one of the most complex stages in image analysis. It becomes 
essential for subsequent image description and recognition tasks. The problem 
consists in partitioning an image into its constituent regions or objects [1]. The level 
of division depends on the specific problem being solved. The segmentation result is 
the labelling of the image pixels that share any property (brightness, texture, 
colour…). The oversegmentation, which occurs when a single semantic object is 
divided into several regions, is a tendency of some segmentation methods like 
watersheds [2,3]. Therefore, some subsequent region merging process is needed to 
improve the segmentation results.  

The proposed segmentation method can be considered as a region-based one and 
pursuits a high-level extraction of the image structures. After a required 
oversegmentation of the initial image, our method produces a hierarchical top-down 
region-based decomposition of the scene. The way to solve the segmentation problem 
is a pixel classification task, where each pixel is assigned to a class or region by 
considering only local information [1]. We take into account this pixel classification 
approach by representing the image as a simplified weighted graph, called Modified 
Region Adjacency Graph (MRAG). The application of a Hierarchical Social (HS) 
metaheuristic [4] to efficiently solve the normalized cut (NCut) problem for the image 
MRAG is the core of the proposed method. An evident computational advantage is 
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obtained describing the image by a set of regions instead of pixels in the MRAG 
structure. It enables a faster region merging in images with higher spatial resolution. 

Today, the applications of evolutionary techniques to Image Processing and 
Computer Vision problems have increased mainly due to the robustness of these 
methods [5]. Evolutionary image segmentation [6,5,7] has reported a good 
performance in relation to more classical segmentation methods. Our approach of 
modelling and solving image segmentation as a graph-bipartitioning problem is 
related to Shi and Malik’s work [8]. They use a computational technique based on a 
generalized eigenvalue problem for computing the segmentation regions. Instead, we 
found that high quality segmentation results can be obtained when applying an HS 
metaheuristic to image segmentation through a normalized cut solution. 

2   Modified Region Adjacency Graph 

Several techniques have been proposed to decrease the effect of oversegmentation on 
watershed-based approaches [2,3]. These usually involve a preprocessing of the 
original image. Many of them are based on the Region Adjacency Graph (RAG) 
which is a usual data structure for representing region neighbourhood relations in a 
segmented image [9].  

As stated in [8,10] the image partitioning task is inherently hierarchical and it 
would be appropriate to develop a top-down segmentation strategy that returns a 
hierarchical partition of the image instead of a flat partition. Our approach shares this 
perspective and provides as segmentation result an adaptable tree-based image 
bipartition where the first levels of decomposition correspond to major areas or 
objects in the segmented image.  

The MRAG structure takes advantage of both, region-based and pixel-based 
representations [8,11]. The MRAG structure is an undirected weighted graph 
G={V,E,W}, where the set of nodes (V) represents the set of centres-of-gravity of 
each region. These regions result from the initial oversegmentated image. The set of 
edges (E) are the relationships between pairs of regions, and the edge weights (W) 
represent a similarity measure between pair of regions. In this context, the 
segmentation problem can be formulated as a graph bipartition problem, where the set 
V is partitioned into two subsets V1 and V2, with high similarity among vertices inside 
each subset and low similarity among vertices of different subsets.     

As starting hypothesis, we suppose that each initial pre-segmented region must be 
small enough in size with respect to the original image and not having much semantic 
information. Some characteristics of the MRAG representation that yield to some 
advantages respect to RAG are: 

1) It is defined once and it does not need from any dynamic updating when 
merging regions. 

2) The number of pixels associated to each MRAG node (size of initial 
oversegmented regions) must be approximately the same.  

3) MRAG-based segmentation approach is hierarchical and the number of final 
regions is controlled by the user according to the required segmentation precision. 

4) The segmentation, formulated as a graph partition problem, leads to the fact that 
extracted objects are not necessarily connected. 
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The set of edge weights reflects the similarity between each pair of related regions 
(nodes) vi and vj. These connected components may or may not be adjacent, but if 
they are not adjacent, these components are close than a determined distance 
threshold rx. The weights wij∈W are computed by the conditional function: 
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where rx, σx and σI are experimental values, Ii is the mean intensity of region i, and xi 
is the spatial centre-of-gravity of that region. Finally, the factor Cij takes into account 
the cardinality of the regions i and j. This value is given by: 
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where ||Ei||, ||Ej|| are, respectively, the number of pixels in regions vi and vj. Non-
significant weighted edges, according to the defined similarity criteria, are removed 
from the image graph.  

3   Image Partitioning via Graph Cuts 

The recent literature has witnessed two popular image graph-based segmentation 
methods: the minimum cut (and their derivates) using graph cuts analysis [8,12,13] 
and the energy minimization, using the max flow algorithm [14,15]. More recently, it 
has been proposed a third major approach based on a generalization of Swendsen-
Wang method [16]. In this paper, we focus on min-cut approach because they can be 
easily solved with an HS metaheuristic. 

The min-cut optimization problem, defined for a weighted undirected graph 
S=(V,E, W), consists in finding a bipartition G of the set of nodes of the graph: 
G=(C,C’) such that the sum of the weights of edges with endpoints in different 
subsets is minimized. Every partition of vertices V into C and C´ is usually called a 
cut or cutset and the sum of the weights of the edges is called the weight of the cut or 
similarity (s) between C and C´. For the considered min-cut optimization problem, it 
is minimized the cut or similarity s, between C and C´: 
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In [17] is demonstrated that the decision version of Max-Cut (dual version of Min-
Cut problem) is NP-Complete. This way, we need to use approximate algorithms for 
finding the solution in a reasonable time. 

The Min-Cut approach has been used by Wu and Leahy [13] as a clustering method 
and applied to image segmentation. These authors look for a partition of the graph into 
k subgraphs such that the similarity (min-cut) among subgraphs is minimized. They 
pointed out that although in some images the segmentation is acceptable; in general, 
this method produces an oversegmentation because small regions are favoured. To 
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avoid this fact, in [18] other functions that try to minimize the effect of this problem 
are proposed. The optimization function called min-max cut is: 
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where the numerators of this expression are the similarity s(C,C´) and the 
denominators are the sum of the arc weights belonging to C or C´, respectively. It is 
important to remark that in an image segmentation framework, it is necessary to 
minimize the similarity between C and C´ (numerators of eq. 2) and maximize the 
similarity inside C, and inside C´ (denominators of eq. 2). In this case, the sum of arcs 
between C and C’ is minimized, and simultaneously the sums of weights inside of 
each subset are maximized. Other authors [2] propose an alternative cut value called 
normalized cut (NCut), which, in general, gives better results in practical image 
segmentation problems. Mathematically this cut is defined as: 
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where G = C ∪ C´. 

4   Hierarchical Social (HS) Algorithms 

This section shows general features of a new evolutionary metaheuristic called 
hierarchical social (HS) algorithm. In order to get a more general description of this 
metaheuristic, the reader is pointed to references [4,19,20,21,22]. This metaheuristic 
has been successfully applied to several problems such as: critical circuit computation 
[22], scheduling [4,21], MAX-CUT problem [19] and region-based segmentation[20]. 

HS algorithms are inspired in the hierarchical social behaviour observed in a great 
diversity of human organizations. The key idea of HS algorithms consists in a 
simultaneous optimization of a set of disjoint solutions. Each group of a society 
contains a feasible solution. These groups are initially randomly distributed to 
produce a disjoint partition of the solution space. Better solutions are obtained using 
intra-group cooperation and inter-group competition as evolution strategies. Through 
this process groups with lower quality tend to disappear. As a result, the objective 
functions of winners groups are optimized. The process typically ends with only one 
group that contains the best solution. 

4.1   Metaheuristic Structure 

For the image segmentation problem, the feasible society is modelled by the specified 
undirected weighted graph, also called feasible society graph. The set of individuals 
are modelled by nodes of the graph V and the set of feasible relations are modelled by 
edges E of the specified graph. The set of similarity relations are described by the 
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weights W. Notice that when the graph also models an image, nodes represent initial 
watershed resulting regions and edges model the similarity between these regions. 

Figure 1.a shows an example of a feasible society graph, which represents a simple 
synthetic image with two major dark and white squares. This image is a noisy and 
deformed chess board. In figure 1.b is shown the watershed segmentation of the 
image presented in figure 1.a. In this image there are 36 regions, 9 regions in each 
square. Figure 1.c shows the MRAG built from the watershed image. Obviously, the 
graph has 36 nodes.  

The state of a society is modelled by a hierarchical policy graph [4,22]. This graph 
also specifies a society partition composed by a disjoint set of groups 
Π={g1,g2,…,gg}, where each individual or node is assigned to a group. Each group 
gi⊂S is composed by a set of individuals and active relations, which are constrained 
by the feasible society. The individuals of all groups cover the individuals of the 
whole society. Notice that each group exactly contains one solution. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Group 1 Core 1

Group 2Core 2  
(d) 

Fig. 1. (a) Synthetic chess board image. (b) Watershed segmentation. (c) Feasible society 
graph. (b) Society partition and groups partition 

The specification of the hierarchical policy graph is problem dependent. The initial 
society partition determines an arbitrary number of groups and assigns individuals to 
groups. Figure 1.d shows a society partition example formed by two groups. 

Each individual of a society has two objective functions: individual objective 
function f1 and group objective function f2 that is shared by all individuals in the same 
group. Furthermore each group gi is divided into two disjoint parts: core and 
periphery. The core determines the value of the corresponding group objective 
function f2 and the periphery defines the alternative search region of the group. 

In the image segmentation framework, the set of nodes of each group gi is divided 
into two disjoint parts: gi = (Ci,,C’i) where Ci is the core or group of nodes belonging 
to the considered cutset and Ci´ is the complementary group of nodes. The core edges 
are the arcs that have their endpoints in Ci and Ci´. Figure 1.d also shows an example 
of core for the previous considered partition. The core nodes of each group are 
delimited by one dotted line. For each group of nodes gi = (Ci, C’i), the group 
objective function f2(i) is given by the corresponding normalized cut Ncut(i) referred 
to the involved group gi: 
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where gi = Ci∪Ci´ and the weights wvu are supposed to be null for the edges that do 
not belong to the specified graph. 

For each individual or node v, the individual objective function f1(v,i) relative to 
each group gi is specified by a function that computes the increment in the group 
objective function when an individual makes a movement. There are two types of 
movements: intra-group movement and inter-group movement. In the intra-group 
movement there are two possibilities: the first one consists in a movement from Ci to 
Ci’, the second one is the reverse movement (C’i to Ci).  

The inter-group movement is accomplished by an individual v that belongs to a 
generic group gx (gx = Π \ gi) that wants to move from gx to gi. There are two 
possibilities: the first one consists in a movement from gx to Ci, the second one 
consists in a movement from gx to C’i.  

The next formula shows the incremental computation of the individual function f1 
for the movement Ci→C’i.(described by the function C_to_C’(v,i)). 
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(7) 

The other movements (C’i→Ci, X→Ci ,X→C’i) have similar expressions. During a 
competitive strategy, function f1 allows selecting for each individual v, the group that 
achieves the corresponding minimum value. 

The HS algorithms here considered, try to optimize one of their objective functions 
(f1 or f2) depending on the operation phase. During cooperative phase, each group gi 
aims to improve independently the group objective function f2. During a competitive 
phase, each individual tries to improve the individual objective function f1, the 
original groups cohesion disappeared and the graph partition is modified in order to 
optimize the corresponding individual objective function.  

4.2   Metaheuristic Process 

The algorithm starts from a random set of feasible solutions. Additionally for each 
group, an initial random cutset is derived. The groups are successively transformed 
through a set of social evolution strategies. For each group, there are two main 
strategies: intra-group cooperative strategy and inter-group competitive strategy. The 
first strategy can be considered as a local search procedure in which the quality of the 
solution contained in each group is autonomously improved. This process is 
maintained during a determined number of iterations (autonomous iterations).  

The intra-group competitive strategy can be considered as a constructive procedure 
and is oriented to let the interchange of individuals among groups. In this way the 
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groups with lower quality tend to disappear because their individuals move from these 
groups to another ones with higher quality. 

Cooperative and competitive strategies are the basic search tools of HS algorithms. 
These strategies produce a dynamical groups partition, where group annexations and 
extinctions are possible. A detailed description of HS algorithms, cooperative strategy 
and competitive strategy and their corresponding pseudo-codes can be found in [4]. 

5   Method Overview 

Figure 2 outlines the three major stages considered in the proposed evolutionary 
segmentation approach. First, we create an over-segmented image applying a standard 
watershed segmentation to the initial brightness image.  

In the second stage, the corresponding MRAG for the oversegmented image is 
built. This graph is defined by representing each resulting region by a unique node 
and defining the edges and corresponding edge weights as a measure of spatial 
location, grey level average difference and cardinality between the corresponding 
regions (see Eq.1 in Section 2).  

The third major stage consists in iteratively applying the considered HS 
metaheuristic in a hierarchical fashion to the corresponding subgraph, resulting from 
the previous graph bipartition, until a termination condition is met. This stage itself 
constitutes an effective region merging for oversegmented images. 

Fig. 2. Block diagram of the proposed method 

6   Experimental Results 

Table 1 shows the standard test images used, the characteristics of the corresponding 
MRAG and the value of the first NCut after the application of the HS metaheuristic. 
Considered characteristics of MRAG are: number of nodes (regions of the watershed 
oversegmented image), number of edges and parameters of the weight function (σI, 
σx, rx). The last column shows the first NCut value for the first MRAG bipartition, 
which can be considered as a quantitative measure of the segmentation quality [8].  

Figure 3.a shows the input image (Lenna), its corresponding oversegmented image. 
Figure 3.b shows the obtained oversegmentation by means of a  watershed  algorithm.  
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Table 1. Image characteristics and quantitative results 

 MRAG MRAG Parameters HSA 
Image Nodes Arcs σI σx rx NCut 

Lenna256x256 7156 1812344 200 200 40 0.0550 
Windsurf480x320 11155 1817351 200 200 35 0.0396 
Cameraman256x256 4181 460178 100 200 35 0.0497 

The resulting segmentation tree (Figure 3.c) gives a hierarchical view of the 
segmentation process. In the first phase of the algorithm, the original image is split 
into two parts (Figures 3.d and 3.h). Notice that the segmented objects are not 
connected. This property is especially interesting in images with partially occluded 
objects, noisy images, etc.  

 

The most important part (Figure 3.d) is split again, obtaining the images presented 
in Figure 3.e and 3.i. As in the previous case, the most significant region (Figure 3.e) 
is split again, obtaining the images 3.f and 3.j. This process can be repeated until a 
determined minimum NCut value is obtained or the process is stopped by the user. 
The segmented image is given by the union of the final components. The resulting 
objects correspond to the tree segmentation leafs. For Lenna image, a high 
segmentation quality is achieved. Note that the images presented in the rest of figures 
(Figures 3.g, 3.h, 3.i, 3.j and 3.k) could be also bipartitioned, in order to achieve a 
more detailed segmentation.  
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Fig. 3. Segmentation results for image Lenna: (a) Initial image. (b) Watershed segmentation (c) 
Structure of the segmentation tree. (d),...,(k) Resulting segmented regions according to the 
segmentation tree 
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Fig. 4. Segmentation results for image Cameraman: (a) Initial image. (b) Watershed 
segmentation (c) Structure of the segmentation tree. (d),…,(i) Resulting segmented regions 
according to the segmentation tree 

The segmentation process can have some peculiarities relative to the obtained 
NCut. Sometimes, the obtained segmentation contains spurious cuts that do not 
correspond to objects. An example of this phenomenon can be observed in Figure 4.h, 
where the background is segmented into two regions.  

This fact occurs because NCut favours approximately equal size cuts. Sometimes, 
these spurious cuts do not affect the segmentation results, as in this case, because in 
the next cut it is extracted the rest of the main information. If an important object has 
been split, the algorithm can not correctly extract the corresponding object. In this 
case, a different choice of the edge weights (similarity measure) or metaheuristic 
parameters should be considered to improve the segmentation results. 

7   Conclusions 

This paper has introduced an HS metaheuristic, as a region merging technique, to 
efficiently improve the image segmentation quality results. Also, a new RAG is 
proposed, called MRAG. This representation considers neighbourhood relations 
between pair of regions that are not adjacent. This new model allows the processing 
of larger spatial resolution images than other typical graph-based segmentation 
methods [10, 8]. The image problem is now equivalent to minimize the NCut value in 
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the corresponding MRAG. As we have experimentally shown, the HS algorithms 
provide an effective region merging method for achieving high quality segmentation. 
An important advantage of the approach is that MRAG structure does not need to be 
updated when merging regions. Moreover, the resulting hierarchical top-down 
segmentation is adaptable to the complexity of the considered image. 

The capability of the method can be improved by decomposing the image at each 
level of the segmentation tree in more than two regions. In this case the NCut value is 
not an adequate group objective function, because it is not defined for several cuts. 
We propose as a future work the use of other group objective functions in order to 
exploit all the potential of HS metaheuristics for segmentation applications. 

References 

1. R.C. Gonzalez and R. Woods, Digital Image Processing, 2nd Edition, Prentice Hall, 2002. 
2. K.Haris,et al, “ Hybrid Image Segmentation Using Watersheds and Fast Region Merging”, 

IEEE Trans. on Image Processing, v.7, n.12, pp. 1684-1699, 1998. 
3. S. E. Hernández and K.E. Barner, “Joint Region Merging Criteria for Watershed-Based 

Image Segmentation”, International Conference on Image Processing, v. 2, pp.108-111, 
2000. 

4. A. Duarte, “Algoritmos Sociales Jerárquicos: Una metaheurística basada en la hibridación 
entre métodos constructivos y evolutivos”, PhD Thesis, Universidad Rey Juan Carlos, 
Spain, 2004. 

5. R. Poli, “Genetic programming for image analysis”, J. Koza (ed): Genetic Progr., 1996. 
6. S.Y. Ho and K.Z. Lee, “Design and Analysis of an Efficient Evolutionary Image 

Segmentation Algorithm, J. VLSI Signal Processing, Vol 35, pp. 29-42, 2003. 
7. M. Yoshimura and S. Oe, “Evolutionary Segmentation of Texture Image using Genetic 

Algorithms”, Pattern Recognition, Vol. 32, pp. 2041-2054, 1999. 
8. J. Shi and J. Malik, “Normalized Cuts and Image Segmentation”, IEEE Trans. Pattern 

Analysis and Machine Intelligence,V. 22, no. 8, pp. 888-905, Aug. 2000. 
9. M. Sonka et al. Image Processing, Analysis and Machine Vision, 2nd Ed., PWS, 1999. 

10. P. F. Felzenszwalb and D. P. Huttenlocher, “ Efficient Graph-Based Image Segmentation“, 
International Journal of Computer Vision, Kluwer 59(2), 167–181, 2004 

11. A. Gothandaraman, “Hierarchical Image Segmentation using the Watershed Algorithm 
with a Streaming Implementation”, PhD Thesis, University fo Tennessee, USA, 2004 

12. O. Veskler “Image Segmentation by Nested Cuts”, In Proc. of IEEE CVPR Conf, June 
2000, p.339-344 

13. Z. Wu et al, “Optimal Graph Theoretic Approach to Data Clustering: Theory and its Ap-
plication to Image Segmentation”, IEEE Trans. PAMI, V. 15, n. 11, pp. 1101-1113, 1993. 

14. V. Kolmogorov and R. Zabih, “What energy functions can be minimized via graph cuts?”, 
Proc. ECCV, pp. 65-81. vol. 3, Copenhagen, Denmark, 2002. 

15. S. Roy, I. Cox, “A maximum-flow formulation of the n-camera stereo correspondence 
problem”, Proc. ICCV Conference, 1998. 

16. A.Barbu and S.Zhu, “Graph Partitioning by Swendsen-Wang Cuts”, J. of Pattern 
Recognition and Machine Intelligence. to appear in 2005. 

17. R.M. Karp, Reducibility among Combinatorial Problems, R. Miller and J. Thatcher (eds.): 
Complexity of Computer Computations, Plenum Press, pp. 85-103, 1972. 



 Region Merging for Severe Oversegmented Images Using a HS Metaheuristic 355 

 

18. C. Ding, X. He, H. Zha, M. Gu and H. Simon, “A Min-Max Cut Algorithm for Graph 
Partitioning and Data Clustering”, Proc. of ICDM Conference, 2001. 

19. A. Duarte, F. Fernández, A. Sánchez and A. Sanz, “A Hierarchical Social Metaheuristic 
for the Max-Cut Problem”, Lecture Notes in Compute Science, v. 3004, pp. 84-93, 2004. 

20. A. Duarte, F. Fernández, A. Sánchez, A. Sanz, J.J. Pantrigo, “Top-Down Evolutionary 
Image Segmentation using a Hierarchical Social Metaheuristic ”, LNCS, v. 3005, pp.301-
310, 2004. 

21. A. Duarte, F. Fernández, A. Sánchez, “Software Pipelining using Hierarchical Social 
Metaheuristic”, In Proc. of RASC’04. 

22. F. Fernández, A. Duarte and A. Sánchez, “A Software Pipelining Method based on a 
Hierarchical Social Algorithm”, Proc. 1st MISTA’03 Conference, pp. 382-385, 2003. 



Automated Photogrammetric Network Design
Using the Parisian Approach

Enrique Dunn1, Gustavo Olague1, and Evelyne Lutton2

1 Centro de Investigación Cient́ıfica y Educación Superior de Ensenada,
División de F́ısica Aplicada, EvoVisión Laboratory

{edunn, olague}@cicese.mx
2 INRIA - COMPLEX Team,

Domaine de Voluceau BP 105 78153 Le Chesnay Cedex - France
Evelyne.Lutton@inria.fr

Abstract. We present a novel camera network design methodology
based on the Parisian approach to evolutionary computation. The prob-
lem is partitioned into a set of homogeneous elements, whose individual
contribution to the problem solution can be evaluated separately. These
elements are allocated in a population with the goal of creating a single
solution by a process of aggregation. Thus, the goal of the evolution-
ary process is to generate individuals that jointly form better solutions.
Under the proposed paradigm, aspects such as problem decomposition
and representation, as well as local and global fitness integration need to
be addressed. Experimental results illustrate significant improvements,
in terms of solution quality and computational cost, when compared to
canonical evolutionary approaches.

1 Introduction

Automatic camera placement for artificial perception tasks consists on deciding
the position of a set of sensors with respect to an observed scene. Depending on
the selected task, the resulting problem offers an intricate combination of inter-
actions between the sensor physical constraints, the mathematical modeling of
the problem, as well as the numerical methods used to solve it [1], [2]. Accurate
3D reconstruction is a particularly difficult problem that needs to be automated.
The complexity is mainly due to the stochastic nature of the uncertainty assess-
ment process which requires multiple redundant image measurements [3]. Indeed,
a difficult numerical adjustment problem for 3D reconstruction arises along with
a highly discontinuous design search space for imaging geometry. The Bundle
Method for optical triangulation is a fundamental aspect involved in the at-
tainment of precise mensuration in photogrammetric projects. Indeed, the lack
of a widespread utilization outside this community can be attributed to its ex-
pensive computational requirements and inherent design complexity. However,
the development of an effective camera network configuration should also be
based on a rigorous photogrammetric approach. This work presents the ongoing
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development of the EPOCA [4],[5] sensor planning system and implements an
evolutionary computation methodology based on the Parisian approach. This is
done in order to efficiently search the space of possible camera configurations
while maintaining high qualitative solutions of the photogrammetric adjustment
process.

Photogrammetric Network Design is an active research field in photogram-
metry, see [6], where recent works have provided important insights into the
problem of determining an optimal imaging geometry. Mason [7] proposed an
expert system approach based on the theory of generic networks in order to
automate the viewpoint selection process. Thus, the decision making is carried
out by heuristic means utilizing extensive expert prior knowledge. On the other
hand, the work of Olague [8] uses an evolutionary computation approach, de-
veloping a criterion based on the error propagation phenomena. In this way,
the design search space is explored by an stochastic meta-heuristic that yields
human competitive results.

2 Problem Statement: Photogrammetric Network Design

Accuracy assessment of visual 3D reconstruction consists on attaining some char-
acterization of the uncertainty of our results. The design of a photogrammetric
network is the process of determining an imaging geometry that allows accurate
3D reconstruction. Rigorous photogrammetric approaches toward optical trian-
gulation are based on the bundle adjustment method [9], which simultaneously
refines scene structure and viewing parameters for multi-station camera net-
works. Under this nonlinear optimization procedure, the image forming process
is described by separate functional and stochastic models. The functional model
is based on the collinearity equations given by s(p−cp) = R(P−Co), where s is
a scale factor, p=(x, y,−f) is the projection of an object feature into the image,
cp = (xp, yp, 0) is the principal point of the camera , P = (X, Y, Z) represents
the position of the object feature, Co = (Xo, Y o, Zo) denotes the optical center
of the camera, while R is a rotation matrix expressing its orientation.

This formulation is readily extensible to multiple features across several im-
ages. For multiple observations a system of the form l = f(x) is obtained after
rearranging and linearizing the collinearity equations, where l = (xi, yi) are the
observations and x the viewing and scene parameters. Introducing a measure-
ment error vector e we obtain a functional model of the form l − e = Ax.

The design matrix A is of dimension n × u, where n is the number of ob-
servations and u the number of unknown parameters. Assuming the expectancy
E(e) = 0 and the dispersion operator D(e) = E(eet) = σ2

0W
−1, where W

is the “weight coefficient” matrix of observations, we obtain the corresponding
stochastic model: E(l) = AxΣll = Σee = σ2

0W
−1. Here Σ is the covariance op-

erator and σ2
0 the variance factor. The estimation of x and σ2

0 can be performed
by least squares adjustment in the following form

x = (ATWA)−1ATWl = QATWl,
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v = Ax − l σ2
0 =

vtWv
r

where r is the number of redundant observations, v is the vector of residuals
after least squares adjustment and Q is the corresponding cofactor matrix. Ad-
ditionally, the covariance of the parameters is given by Σxx = σ2

0Q. The vector
of parameters can be separated in the form x =< x1,x2 >, where x1 contains
the viewing parameters while x2 expresses the scene structure correction param-
eters. Thus, we obtain a system of the form

(
x1
x2

)
=

(
AT

1 WA1 AT
1 WA2

AT
2 WA1 AT

2 WA2

)−1 (
ATWl
ATWl

)

Accordingly, the cofactor matrix Q can be written as

Q =
(

Q1 Q1,2
Q2,1 Q2

)

The matrix Q2 describes the covariance structure of scene coordinate corrections.
Hence, an optimal form of this matrix is sought in order to obtain accurate scene
reconstruction. The criterion we selected for minimization is the average variance
along the covariance matrix, see [8],

f1(x1,x2) = σ2
x2

=
σ2

0 trace(Q2)
3n

. (1)

3 The Parisian Approach

The Parisian Approach differs from typical approaches to evolutionary computa-
tion in the sense that a single individual in the population represents only a part
of the problem solution. In this respect, it is similar to the Michigan approach
developed for Classifier Systems. Hence, an aggregation of multiple individuals
must be considered in order to obtain a solution for the problem being studied.
Thus, the evolution of the whole population is favored instead of the emergence
of only a single dominant solution. The motivation for such an approach is to
make an efficient use of the genetic search process. This can be achieved from
two different perspectives. First, the algorithm discards less computational effort
at the end of execution, while considering more than a single best individual as
output. Second, the computational expense of the fitness function evaluation is
considerably reduced for a single individual.

Successful examples of such an approach can be found in the image analysis
and signal processing literature. The Fly Algorithm developed by Louchet et
al. [10] is a real-time pattern recognition tool used in stereo vision systems. In
such a work, the population is formed by individuals representing each a single
3D point. The evolutionary algorithm favors the positioning of each so called
“fly” to a surface point in the observed scene using insightful problem modeling.
The work of Raynal et al.[11] incorporates the Parisian approach to the solution
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Fig. 1. Outline of our implementation of the Parisian Sensor Planning approach. Fit-
ness evaluation is modified in order to consider the local and global contribution of an
individual

of the inverse problem for Iterated Function Systems (IFS). In this instance a
Genetic Programming methodology was adopted and experimentation on 2D
images presented.

Many of the canonical aspects of evolutionary algorithms are retained under
the Parisian approach, see Figure 1, allowing for a great flexibility in its de-
ployment. However, the applicability of this paradigm is restricted to problems
where the solution can be decomposed into homogeneous elements or compo-
nents, whose individual contribution to the complete solution can be evaluated.
Therefore, each implementation is necessarily application dependent, where the
design of a suitable problem decomposition is determinant factor. Thus, the
following implementation issues have been identified:

– Partial Encoding. The genetic representation used for a single individual
encodes a partial solution.

– Local Fitness. A meaningful merit function must be designed for each
partial solution. In this way, the worthiness of a single individual can be
evaluated in order to estimate the potential contribution to an aggregate
solution.

– Global Fitness. A method for the aggregation of multiple partial solutions
must be determined. In turn, a problem defined fitness function can be eval-
uated from this complete solution. However, the worthiness of this composite
solution should be reflected on each partial solution.

– Evolutionary Engine. The evolution of the complete population should
promote the emergence of better aggregate solutions. The evolutionary en-
gine requires a scheme for combining local and global fitness values. Also,
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it requires a diversity preserving mechanism in order to maintain a set of
complementary partial solutions.

4 Parisian Approach to Camera Network Design

Camera placement can be viewed as a geometric design problem where the con-
trol variables are the spatial positioning and orientation of a finite set of cam-
eras. In order to state such design problem in optimization terms the criterion
expressed in section 2 is adopted. However, due to the sensor characteristics
and mathematical modeling of the problem a strongly constrained optimization
problem emerges. In this section we will discuss the different implementation
issues involved in our incorporation of the Parisian approach into the sensor
planning problem.

4.1 Problem Partitioning and Representation

A viewing sphere model for camera placement is adopted in order to reduce the
dimensionality of the search space. Therefore, each camera position is defined by
its polar coordinates [αi, βi]. A network of M cameras is represented by a real
valued vector

Ψ ∈ IR2M where αi = Ψ2i−1, βi = Ψ2i for i = 1, . . . , M. (2)

Our design problem allows the decomposition into individual elements since the
complete camera network is formed by a set of homogeneous components. Nev-
ertheless, a decision on the level of granularity of our decomposition is crucial.
Here we have the choice of an individual representing a single camera or a cam-
era subnetwork (i.e. a set of cameras). We have decided for the latter option
since such an individual can be meaningfully evaluated in terms of its imaging
geometry contribution to 3D reconstruction. Hence, each individual in the pop-
ulation represents a fixed size subnetwork of N cameras, denoted by a vector of
the form

ψj ∈ IR2N where αi = ψj
2i−1, βi = ψj

2i for i = 1, . . . , N, (3)

where j is defined as the subnetwork population index. Accordingly, a complete
camera network specification is given by the aggregation of J subnetworks

Ψ ∈ IR2M =
J⋃

j=1

ψj , where M = J × N (4)

4.2 Local Fitness Evaluation

Section 2 presented a photogrammetric approach for estimating the variance
of 3D point reconstruction using redundant measurements, see Eq. (1). Such
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methodology is generally applied to the complete measured object considering
all cameras concurrently. Since in our representation we are working with camera
subnetworks, it is unlikely that any single individual successfully captures the
complete 3D object denoted by the whole set of 3D points P. Hence, the object
is also partitioned into R disjoint regions or subsets of points, in such a way that
P =

⋃R
i=1 Pi. The visibility of a camera subnetwork ψj is limited to a subset

of the whole object, expressed by V(ψj) ⊆ P. Therefore, we define the field of
view constraint in the form

Cfov(ψj , Pi) =
{

1 if Pi ⊂ V(ψj)
0 otherwise .

Thus, the local fitness evaluation uses the idea of decomposing the problem
in subnetworks which provide greater object coverage with higher precision in
order to attain higher fitness values. The reconstruction uncertainty for each set
Pi is evaluated for a single individual accordingly to Equation (1), discarding
the portions of the object not sensed by such a subnetwork. Thus, we have

floc(ψj) =
R∑

i=1

1
f1(ψj , Pi)

∀Pi : Cfov(ψj , Pi) = 1. (5)

4.3 Global Fitness Evaluation

Once the local fitness of each individual has been evaluated, a process of aggre-
gation is needed to obtain a solution to our camera network design problem. In
order to achieve this, a selection of a group of individuals from the population
must be made. The selection should be based on the merit of each individual
fitness and can be realized by deterministic (i.e. selecting the top J individuals
in the population) or stochastic (i.e. roulette, tournament) means. In this way,
at each generation t an aggregate solution Ψ(t) has been formed for global fitness
evaluation. This global evaluation uses the same criterion as in the local fitness
evaluation. Therefore, we obtain:

fglobal(Ψ(t)) =
R∑

i=1

1
f1(Ψ(t), Pi)

∀Pi : Cfov(Ψ(t), Pi) = 1. (6)

Such value describes the aptitude of the aggregate solution obtained at gen-
eration t. Obviously, the goal of the algorithm is to foster the improvement of
this global fitness along the course of successive generations. However, another
purpose of this evaluation is to be able to reflect on the population the effect
of the evolutionary process. The individuals that form part of the aggregate so-
lution will be rewarded or punished based on its global fitness. Also, based on
the complete solution characteristics, promising individuals not selected should
be compensated so they might contribute in latter stages of the evolutionary
process.

A valid solution to the network design problem is one that reconstructs ac-
curately the complete object. This requires addressing the aspects of constraint
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satisfaction and function optimization. We shall now describe how we use global
fitness evaluation to deal concurrently with both of these issues.

Function optimization will be addressed first. In order to reflect the quality
of an aggregate solution Ψ(t) on each of the individuals ψj that compose it, we
use the ratio of improvement in global fitness among successive generations. The
magnitude of the adjustment of an individual’s local fitness is proportional to
this ratio as follows

g1(ψj) = floc(ψj)
[

fglobal(Ψ(t))
fglobal(Ψ(t − 1))

− 1
]

∀ψj ∈ Ψ(t). (7)

Now we shall consider constraint satisfaction. It is very likely that each in-
dividual subnetwork will only cover part of the object. It is also possible that
a given aggregation of individuals will not provide full object coverage. In this
respect, when a particular aggregate solution Ψ(t) does not cover some object
region Pi (e.g. Cfov(Ψ(t), Pi) = 0), it would be desirable to enhance the fitness
value of those individuals on the population that indeed cover such region. The
amount of enhancement of those individuals shall be proportional to their dif-
ference in fitness with respect to the best individual in the population. Hence,
we have

g2(ψj) = floc(ψbest) − floc(ψj) ∀ψj : V(ψj)
⋂

V(Ψ(t)) = ∅. (8)

Note that this value is only calculated for those individuals that cover an object
region not sensed by the aggregate solution formed at that generation.

In this way, the global fitness is “fedback” to the general population in the
following manner:

F (ψj) =

⎧⎨
⎩

floc(ψj) + λ1g1(ψj) if ψj ∈ Ψ(t)
floc(ψj) + λ2g2(ψj) if V(ψj)

⋂
V(Ψ(t)) = ∅

floc(ψj) otherwise .

Here, λ1 and λ2 are user defined parameters that reflect the relative importance
given to each of the aspects involved in the global fitness evaluation.

5 Experimental Results

The reconstruction of a complex 3D object is considered in our experimentation.
The goal is to determine a viewing configuration that will offer optimal results
in terms of reconstruction accuracy. Here, we shall consider the design of a fixed
size camera network of M = 9 stations. According to our approach, the level
of granularity of our problem decomposition needs to be established. For these
series of experiments we will use camera subnetworks of N = 3 cameras. In this
way, each of the individuals in the population will consist of a vector ψ ∈ IR6.
Hence, a total of J = 3 subnetworks will need to be aggregated in order to
form a complete solution to our network design problem. The convex polyhedral
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Fig. 2. The 3D object under observation. The concave object is partitioned into dif-
ferent regions in order to facilitate the fitness evaluation of sub-networks of small size.
A photogrammetric network formed by 9 cameras is illustrated on the right

object under study, depicted in Figure 2, is partitioned into R = 6 regions. Elitist
selection of individuals for solution aggregation is based on their fitness value.
Finally, the user defined valued λ1 and λ2 are set to λ1 = λ2 = 1.0.

For all our experiments, SBX-crossover is utilized with a probability Pc = 0.95
along with polynomial mutation subject to probability Pm = 0.05. We have used
tournament selection for reproduction under generational replacement. Along-
side of our methodology, the same global fitness function was optimized by a
typical genetic algorithm (e.g. each individual encodes a complete solution). This
was done in order to have some reference point in the assessment of our proposed
methodology. Both evolutionary algorithms were executed for 100 generations,
using a population of 30 individuals.
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Fig. 3. Performance Comparison. On the left, the population evolution of a typical
genetic algorithm is depicted. On the right, higher fitness values are consistently at-
tained by the aggregate solutions of our proposed methodology. Plotted values reflect
the averages over 20 executions
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Fig. 4. Dependence on parameters λ1, λ2.The plot on the left corresponds to an execu-
tion with mixing values [λ1 = 0.8, λ2 = 0.2]. Performance is slightly deteriorated.The
plot on the right represents an execution with values [λ1 = 0, λ2 = 1.5]. Note the
almost random algorithm performance

Figure 3 plots population performance measures (best, mean, worse fitness)
for a canonical GA on the left and also for our Parisian approach on the right.
While these measures are descriptive of the dynamics of our population, the
importance is on the aggregate solution fitness measure. In this respect, our
approach slightly outperforms a canonical methodology in terms of solution
quality. However, these results are made more relevant when considering the
computational cost involved in fitness evaluation. For our studied object, eval-
uation based on the bundle adjustment of a complete network of 9 cameras is
over 15 times more costly than that of a 3 camera subnetwork. Accordingly, by
virtue of our problem decomposition, the total execution time of the algo-
rithm is reduced 10 times. Clearly, a significant benefit in performance has
been achieved.

The choice of mixing values λ1, λ2 is an important aspect in the performance
of the algorithm, as they determine the magnitude of the global fitness adjust-
ment given to each individual. In order to exemplify this, we have carried out
different experiments varying the ratio and magnitude of these values. Exper-
iments show a fairly robust behavior for similarly scaled values under 1.0. In
general, performance deteriorates as the magnitude and the ratio among param-
eters increases. The right plot of Figure 4 illustrates the scenario where constraint
satisfaction is completely predominant over function optimization. As a result,
the fitness value of aggregate solutions is decreased by the inclusion of weaker
subnetworks that are unreasonably enhanced by the global fitness evaluations.

6 Conclusions and Future Research

The Parisian approach to evolutionary computation offers an efficient way to ad-
dress the design of photogrammetric networks. Experimental results illustrate its
favorable performance against canonical evolutionary algorithms applied to our
problem. In fact, solution quality is slightly improved with a 10 times reduction
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in computational effort. Aspects crucial to our methodology such as problem
decomposition and representation, as well as the integration of local and global
fitness evaluation have been discussed. However, further characterization of our
algorithm behavior still is needed. Particularly, aspects like determining a suit-
able problem decomposition granularity and population size, the assignment of
global fitness mixing values λ1, λ2 and the effect of diversity preservation tech-
niques on the evolutionary process need to be addressed.
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Abstract. A method for designing fast multidimensional filters using
genetic algorithms is described. The filter is decomposed into component
filters where coefficients can be sparsely scattered using filter networks.
Placement of coefficients in the filters is done by genetic algorithms and
the resulting filters are optimized using an alternating least squares ap-
proach. The method is tested on a 2-D quadrature filter and the method
yields a higher quality filter in terms of weighted distortion compared
to other efficient implementations that require the same ammount of
computations to apply. The resulting filter also yields lower weighted
distortion than the full implementation.

1 Introduction

A common approach to designing efficient 2-D filters is decomposition into sep-
arable 1-D components using singular value decomposition (SVD) [1], [2]. This
results in a sum of cascaded 1-D filters, requiring significantly fewer operations
than the full 2-D implementation. The resulting implementation also lends itself
to parallel implementation, further increasing the computational gain over the
full 2-D implementation. Genetic algorithms has been used to optimize filter
coefficients in SVD decompositions [3].

In this paper a different approach is investigated. The filters are divided into
simpler components using filter networks [4], but instead of restricting com-
ponent filters to 1-D components, the coefficients can be sparsely scattered in
n-D. A generalized convolver [5], whose computational complexity is only de-
pendent on the number of non-zero coefficients and not the spatio-temporal
extent of the filter, is used to take advantage of the sparse structure of the
component filters. Genetic algorithms [6]-[8] is used to optimize the spatial loca-
tions of the coefficients. Finding optimal coefficient values is a multi-linear least
squares problem and can be solved by an alternating least squares approach
[9]. The method is described for the n-D case but only examples in 2-D are
tested.
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2 Filter Networks

Filter networks provide a structure for optimization and implementation of mul-
tiple output filter banks. The layered structure makes it possible to decompose
complex filters into simple filter components and intermediary results may con-
tribute to multiple output nodes due to the interconnectivity of the network.

A general filter network is depicted in fig. 1(a). The network consists of
N layers with M output nodes. The component filters are located in the arcs
connecting two successive layers and the nodes are summation points.

c

c

c

c

c

1

2

n−1

N

n

K nodes

L nodes

M nodes

f
2

f
1

~ ~

f
3

~
f
M−1

~
f

M

~

(a)

fnkl

Gk

l

H HHl1 lm lM

+

+

k

(b)

Fig. 1. (a) A general filter network of N layers with M nodes in the final layer. The
filters are located in the arcs and the nodes are summation points. (b) Filter (arc)
between node k and l at layer n in a general network. Note that there can be any
number of connecting arcs to node k and any number of outgoing arcs from node l. Gk

is the transfer function from the root node to node k and Hlm is the transfer function
from node l to output node m

The structure of the network is the organization of nodes and arcs in the
network and can be read out from figures like fig. 1(a) and the internal properties
of the network are the number of coefficients for each filter and their spatial
positions. There is no restriction on coefficient placement, they can be sparsely
scattered or concentrated on a line. A maximum spatial size is usually set for
each filter.

At each output node we define an ideal transfer function fm in the Fourier
domain. These are our target filters for the optimization. We also define a Fourier
weighting function Wm(u), defining the importance of a close fit for different fre-
quencies for each transfer function. Ideally, coefficient values, coefficient place-
ment and even network structure should be optimized simultaneously. This prob-
lem is very complex and a general optimal solution is unlikely to be found.
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3 Filter Optimization

If the internal properties of the network are set, i.e. the coordinates for the
nonzero filter coefficients are set, it is possible to optimize all filters on the same
layer of the network. This is done with respect to the ideal filter functions and
the current state of the network. The coefficients of the other filters are kept
constant.

The task is to find the filter coefficients that minimize the weighted difference
between the resulting filters f̃m and the ideal filter functions fm

min ε2 =
M∑

m=1

∥∥Wm(u)
(
fm(u) − f̃m(u)

)∥∥2 (1)

To express this minimization problem in the filter coefficients in one layer of
the network we first consider one general filter (arc) fnkl(u) at layer n, between
node k and l in the network (fig. 1(b)). For each filter in the network we cal-
culate a Fourier transform matrix Bnkl where only the Fourier basis functions
corresponding to the nonzero coefficient locations are included. The introduction
of the Fourier transform matrices implies sampling of the Fourier domain. The
Fourier transform of each filter is now computed as

fnkl = Bnklcnkl (2)

where cnkl is a column vector containing the nonzero coefficients of the current
filter. To get an expression on how the current filter affects the resulting transfer
functions in the network we need to compute the transfer function Gk(u) from
the root node to node k in the previous layer and the transfer functions Hlm(u)
from node l to each output node. For the initial layer the transfer function
G degenerates to an identity matrix. In the same way H will be an identity
operator in the final layer. It is now possible to express the transfer functions
f̃m(u) from the root node through fnkl(u) to the output nodes as a function of
the filter coefficients.

min ε2 =
M∑

m=1

∥∥Wm

(
fm − GkHlmBnklcnkl

)∥∥2 (3)

To simplify notation, Gk(u) and Hlm(u) are reshaped as matrices with the trans-
fer functions located in the main diagonal. For the same reason, the frequency
coordinate u is dropped from now on.

The final step is to express the problem in all coefficients in one layer. This
is accomplished by combining the coefficients of one layer in one vector.

cn = (cn11, cn21, . . . , cnkl, . . . , cnKL)T (4)

We also define

Bm = (G1H1mBn11, G2H1mBn21, . . .

GkHlmBnkl, . . . , GKHLMBnKL) (5)
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In both equations 4 and 5 we have

k = [1 . . . K] l = [1 . . . L] m = [1 . . . M ]

where K is the number of nodes in layer n − 1 (the previous layer), L is the
number of nodes in layer n (the current layer) and M is the number of output
nodes. We can now express (eq. 1) in terms of all filter coefficients at layer n in
the network:

min ε2 =
M∑

m=1

∥∥Wm

(
fm − Bmcn

)∥∥2 (6)

The entire network can be optimized using an alternating least squares ap-
proach [9]. The coefficients cnkl of layer n are updated and another layer is
selected for optimization. This is repeated through all layers until a convergence
criterion is met or a maximum number of iterations is reached. The filter network
optimization procedure is summarized below.

1. Initialize coefficient values for given network structure
and internal properties

2. Select layer n to optimize
3. Calculate transfer functions Gk from the root node to all

nodes in the previous layer
4. Calculate transfer functions Hlm from all nodes in the

current layer to all output nodes
5. Optimize coefficients in the current layer
6. Repeat from step 2 until convergence criterion is met

4 Genetic Algorithm

The concept of genetic algorithms was first presented in 1975 by John Holland
[6]. It is a stochastic search method which is inspired by evolution in biological
systems where the search is conducted directly in the solution space. Each solu-
tion is encoded in a certain way and is called an individual. The search is parallel
in the sense that a population of individuals is maintained and the quality of the
individuals is calculated by a fitness function. The population is improved by
crossover, recombination of genetic material from different individuals. This is
based on a hypothesis that a good solution can be built up from shorter partial
solutions [6]-[8]. Genetic diversity is maintained by a mutation operation, mak-
ing random changes in the individuals. To summarize, genetic algorithm consists
of five components:

1. A chromosomal representation of solutions
2. a way to create an initial population of solutions
3. a fitness function
4. genetic operators (selection, crossover, mutation)
5. parameter values for the genetic algorithm (population size, probabilities for

applying genetic operators etc).
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Fig. 2. (a) Ideal transfer function of the first experiment in the Fourier domain, a
diagonal quadrature filter. (b) Ideal transfer function of the second experiment in the
Fourier domain, a Cartesian separable truncated Gaussian low-pass filter

The implementation of the genetic algorithm is inspired by the algorithm
used by Weber et al. [10] in their optimization of sparse ultrasound transceivers.
A many-valued encoding strategy is utilized where each solution is represented
by four integer strings. Each position contains an index to a coordinate, the index
running column-wise from top left to bottom right. If the encoded filter is limited
to M × M in spatial size, the indices can be in the interval [1 . . . (M2 − 1)/2].

Since the ideal functions used here are real-valued in the Fourier domain the
resulting filter function must either be real and even or have an even real part and
an odd imaginary part [11]. A consequence of this is that filter coefficients must
be quadrantly symmetrically distributed. Based on this fact, only symmetric
coefficient placement is allowed. This means we only have to encode half the
spatial domain.

The population is set up by randomly distributing coefficients in the ker-
nels. Each network is evaluated using the filter network optimization procedure
described above. A normalized distortion measure is used as fitness function.

D =
M∑

m=1

√
||Wm(fm − f̃m)||2

||Wmfm||2 (7)

It is calculated as the ratio between the RMS error and the RMS value of the
ideal functions fm. Using only the RMS error is difficult since it is an absolute
measure and not directly related to the quality of the resulting filters.

Crossover is implemented as a swapping of complete arcs (kernels) in the same
position in the network structure. This is based on the the assumption that the
shortest, low order schema relevant to the problem is a complete component
filter (an arc in the network) [8].

Mutation is implemented by moving coefficients to random positions in the
kernel. A correcting function is then applied to make sure there is only one
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Fig. 3. (a) Network structure used in quadrature filter example. (b) Best coefficient
placement in filter network designed by genetic algorithm

coefficient in each spatial position. If the new position is already occupied, a new
one is generated randomly and this is repeated until a free position is found. A
mutation operator where there is a higher probability to move coefficients to
locations closer to the original position was tried but did not perform as well as
the pure random mutation.

In the following examples, the population size is set to 40 individuals. The
8 best filters are selected as parents and survive unchanged to the next genera-
tion. From these parents, 13 children are generated using the crossover operator
described above. These children replace the 13 worst individuals in the previous
generation. The remaining 19 individuals are mutated, the mutation rate is set
to give an expected number of two mutations per individual.

5 Experiments

Two experiments are set up to test the implemented genetic algorithm. Through-
out the examples, component filters will be limited to 11×11 in spatial size. A
Fourier domain uniformly sampled in a 35×35 grid is used.

The first example is a quadrature filter along one diagonal with ideal transfer
function given in fig. 2(a). The properties of this class of filters can be found
in [12]. In this example, we use a filter network with four component filters
connected in two parallel branches (fig. 3(a)). Since the ideal function is not
symmetric or anti-symmetric, the filter is complex in the spatial domain [11].
Due to this fact, coefficients are allowed to be complex in all component filters.

A frequency weighting function favoring a close fit for low frequencies, based
on an estimate of the expected signal spectrum, is used. The same weigthing
function is used in all examples below. Note that if the component filters are
1-D in the spatial domain placed along the x and y axis respectively with two
orthogonal filters in each branch, this network describes a two term low rank
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Fig. 4. (a) Transfer functions of two term truncated low rank approximation of the
quadrature filter. (b) Transfer function of full 11×11 quadrature filter

approximation decomposition and can be solved by other methods. This filter
will be included as reference. Another design example using the same network
structure, where coefficients are placed along the diagonals in one of the branches
are also included to compare the results of the genetic algorithm to placement
of coefficients by hand.

The second example investigated is a truncated Gaussian low-pass filter (fig.
2(b)). The transfer function is constructed by convolving two orthogonal 1-D
Gaussian filters in the spatial domain and transforming the result to the Fourier
domain. Since the ideal function is symmetric, the filter will be real-valued in the
spatial domain and only real-valued coefficients are allowed in the filter network.
This filter is truly separable in the spatial domain and hence, as opposed to
the first example, there exists a known global optimal solution. The purpose of
this example is to investigate convergence properties of the genetic algorithm
experimentally.

6 Results

When evaluating the quadrature filter example, the genetic algorithm was al-
lowed to run for 1000 iterations. The diagonal and the low rank filter networks
were also evaluated. The results are presented in table 6. The solution found
by the genetic algorithm performs better than a full 11×11 filter in terms of
distortion.

Since the filter coefficients are complex, the full filter requires 242 multiply
and add operations for each element in the signal. Although the other filter
implementations contain 44 coefficients, the intermediary results are complex so
the second layer has to be applied twice, once for the real part and once for the
imaginary part. This gives 66 multiply and add operations per pixel.
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Fig. 5. (a) Transfer function of genetic algorithm optimized filter network. (b) Transfer
function of filter network with diagonal coefficient placement. Note that the behaviour
close to the corners of the Fourier domain is due to the frequency weighting function

The optimal coefficient placement found by the genetic algorithm is presented
in fig. 3(b). This filter network outperforms the networks designed with the other
two methods in terms of the weighted distortion measure used above (eq. 7), and
also the full 11×11 implementation of the filter. The results for the diagonal and
low rank approximation filter networks are presented in fig. 4(a) and 5(b) for
comparison. The transfer function of the full 11×11 filter is included in fig. 4(b).

Examining the component filters, the resulting coefficient placement in each
branch and the sum of branches (fig. 6(a)) it is hard to draw any general con-
clusions about the distribution of coefficients. Not surprisingly there is a bias
towards the corresponding main direction of the filter in this case, but no guide-
lines for placement of coefficients by hand are easily created based on the opti-
mization results.

In the truncated Gaussian example, the genetic algorithm was allowed to
run for 500 iterations or until the global optimum was found (this yields zero
distortion). The algorithm quickly converged towards a low distortion area but
convergence rate close to the optimal solution is slow. The optimal decomposition
was found in about 200 iterations in all test runs.

Table 1. Quadrature filter optimization results for different coefficient placement
strategies. Distortion is measured according to (eq. 7)

Weighted Multiply and add
distortion per pixel

Genetic algorithm 5.4 % 66
Full 11×11 6.4 % 242
Diagonal 10.9 % 66
Low rank 11.9 % 66
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Fig. 6. (a) Coefficient placement in resulting filters clockwise from top left: resulting
coefficient placements from convolution of f111 and f211, convolution of f121 and f212

and total resulting coefficient placements from fig. 3. Note that the resulting filter is
limited to 21×21 in spatial size due to convolution of two 11×11 filters. (b) Conver-
gence plot for Gaussian example. The points are the fitness of each individual at each
generation. Note that the optimal solution is found after about 200 generations

Tests were also made with slightly different implementations of the genetic
algorithm. Without the requirement of symmetric component filters, the search
converged on local optima. The optimal decomposition was not found in any of
the test runs with this implementation. Tests were also made with the alterna-
tive mutation operator described above the genetic algorithm but none of these
experiments converged to the optimal solution in less than 400 iterations.

7 A Note on Optimality

It is a known fact that genetic algorithms give no guarantee that a global op-
timum will be found. Safeguards against local optima can be implemented but
there are still no guarantees. However, as stated by Goldberg [8], the most im-
portant goal of optimization is improvement. In this application with the given
limitations in network structure, the genetic algorithm has found a better solu-
tion than any previously found.

8 Conclusion

A genetic algorithm for optimizing coefficient placement in filter networks has
been presented. The algorithm has been tested on a simple but nontrivial filter
network and the optimization shows promising results. For the diagonal quadra-
ture filter the optimized filter outperforms other decomposition methods as well
as the full implementation of the filter in terms of weighted distortion. This
is partially due to that the corresponding resulting impulse response is in fact
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limited to 21×21 in spatial size. The genetic algorithm was also tested on a trun-
cated Gaussian low-pass filter with a known global optimum. In this example,
the genetic algorithm finds the global optimum in all test runs.
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optimizer.
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Abstract. We present a computational model of human vocalization
which aims at learning the articulatory mechanisms which produce spo-
ken phonemes. It uses a set of fuzzy rules and genetic optimization. The
former represents the relationships between places of articulations and
speech acoustic parameters, while the latter computes the degrees of
membership of the places of articulation. That is, the places of articu-
lation are considered as fuzzy sets whose degrees of membership are the
articulatory features. Subjective listening tests of sentences artificially
generated from the articulatory description resulted in an average pho-
netic accuracy of about 76 %. Through the analysis of a large amount of
natural speech, the algorithm can be used to learn the places of articu-
lation of all phonemes.

1 Introduction

Human-robot interactions and dialogue modalities have been widely studied in
recent years in robotics and AI communities. As speech is the most natural
communication mean for humans, conversational interfaces are one of the most
promising methods of human-robot communication from the viewpoint of ef-
ficiency of information transfer. Basically, conversational interfaces are built
around two technologies: speech synthesis from unrestricted text and speech
recognition.

A step further in human-robot interaction is based on humanoid robotics.
Its goal is to create a robot designed to work with humans as well as for them.
Inevitably, humanoid robots tend to imitate somehow the form and the mechan-
ical functions of the human body in order to emulate some simple aspects of the
physical (i.e. movement), cognitive (i.e. understanding) and social (i.e. commu-
nication) capabilities of the human beings. Significant contributions have been
made within the field of advanced robotics and humanoids like the Cog project
at MIT [1].

Human infants learn to speak through interaction with their care-givers. The
aim of our study is to build a robot that acquires a vocalization capability in a
way similar to human development. More precisely, the speech learning mech-
anism using our algorithm works as follows: the operator, acting as care-giver,

F. Rothlauf et al. (Eds.): EvoWorkshops 2005, LNCS 3449, pp. 376–385, 2005.
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pronounces a word and the robot generates an artificial replica of the word based
on the articulatory and acoustic estimation. This process iterates until the artifi-
cial word matches the original one according to the operator judgement. At this
point the robot has learnt how to pronounce those words in terms of articulatory
movements. The operator must repeat this process for a large number of words.
After this phases, the speech learning process is completed.

Many research results in vocal tract estimation has been reported so far. For
instance, in [2] and [3], the shape of the vocal tract is estimated for driving the
shape of a mechanical vocal tract. In this way the shape of the acoustic filter
is modified and the resulting signal is modulated by the acoustic filter function
of the vocal tract. In [3] the mechanical vocal tract is excited by a mechanical
vibrator that oscillates at particular frequencies and acts as artificial larynges.
The vocal tract shape is obtained using a neural network.

In our work, we developed a model that relates formant frequencies dynamics
of vocal tract and the articulation of the phonation organs of the vocal tract us-
ing fuzzy rules that have as input the articulatory parameters and as output the
dynamics of acoustic and articulatory parameters together with the correspond-
ing artificial vocalization. The optimal articulatory parameters are estimated
using a genetic algorithm.

As compared with other works in acoustic to articulatory mapping, which
generally compute the vocal tract area functions from actual speech measure-
ments, our work present a method to estimate the place of articulation of in-
put speech through the development of a novel computational model of human
vocalization.

2 Problem Formulation

The goal of this work is to learn automatically the place of articulation of spoken
phonemes in such a way that the robot learns how to speak through articulation
movements. The block diagram of the system for adaptive learning of human
vocalization is depicted in Fig. 1.

Fig. 1. Block diagram of the genetic-fuzzy optimization algorithm
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The algorithm is based on the following assumptions: the degrees of member-
ship of a place of articulation estimated by means of the genetic optimization
process is directly related to the physical configuration of the phonatory organs.
For example, if a phoneme is characterized by a degree of opening equal to
0.6, it is assumed that the mouth is opened at a 60% degree of the maximum
opening width. Even if no direct experimental evidence of that is given in this
paper, this assumption can be indirectly verified: the overall model produces
good synthetical vocalizations.

3 The Fuzzy Articulatory Module

Usually, phonemes are classified in terms of manner and place of articulation.
The manner of articulation is concerned with the degree of constriction imposed
by the vocal tract on the airflow, while place of articulation refers to the location
of the most narrow constriction in the vocal tract. The following six categories of
the manner of articulation have been considered in this work: vowel, in which air
flows throw the vocal tract without constrictions; liquid, similar to the vowels
but that use the tongue as an obstruction; nasal, which is characterized by a
lowering of the velum, allowing airflow out of the nostril; fricative, which employ
a narrow constriction in the vocal tract which introduces turbulence in the air
flow; plosive, involving a complete closure and subsequent release of a vocal
obstruction; affricate, which is a plosive followed by a fricative.

Using manner and place of articulation, any phoneme can be fully character-
ized in binary form. However, a certain degree of imprecision, due to the lack
of knowledge, is involved in this characterization, which thus should be fuzzy
rather than strictly binary. For example, it may be that the /b/ phoneme, clas-
sically described as plosive, bilabial and voiced, involve also a certain degree of
anteriority and rounding, as well as some other features.

The possibility of facing the vagueness involved in the interpretation of pho-
netic features using methods based on fuzzy logic has been realized in the
past, when approaches to speech recognition via phonetic classification were
proposed [4, 5].

For simplicity, only a subset of the phonemes in Italian language were consid-
ered in this work. This subset is sufficient for achieving a complete intelligibility
of a general text. Their classification in terms of the manner of articulation is as
follows (using IPA symbols):

vowel : /a/, /e/, /i/, /o/, /u/, /SIL/, /$/
liquid : /l/, //, /r/
nasal : /m/, /n/, /j/
fricative : /f, /v/, /s/, /z/, / R /
plosive : /p/, /b/, /t/, /d/, /k/, /g/
affricate : /dR/, /di/, /dz/, /ts/

Clearly, all the quantities involved, namely phonemes and control parameters,
are fuzzified, as described in the following.



Genetic-Fuzzy Optimization Algorithm for Adaptive Learning 379

3.1 Phoneme and Control Parameters Fuzzification

The phonemes are classified into broad classes by means of the manner of ar-
ticulation; then, the place of articulation is assigned to them. Therefore, each
phoneme is described by an array of nineteen articulatory features, six of them
are boolean variables and represent the manner of articulation and the remaining
twelve are fuzzy and represent the place of articulation. In this way, the phonetic
description appears as an extension of the classical binary definition described
for instance by Fant in [6], and a certain vagueness in the definition of the place
of articulation of the phonemes is introduced. Representing the array of features
as (vowel, plosive, fricative, affricate, liquid, nasal, any, rounded, open, anterior,
voiced, bilabial, labiodental, alveolar, prepalatal, palatal, vibrant, dental, velar),
the /a/ phoneme, for example, can be represented by the array:

[1, 0, 0, 0, 0, 0|1, 0.32, 0.9, 0.12, 1, 0, 0, 0, 0, 0, 0, 0, 0]

indicating that /a/ is a vowel, with a degree of opening of 0.9, of rounding of
0.32, and it is anterior at a 0.12 degree.

The array reported as an example has been partitioned for indicating the
boolean and the fuzzy fields respectively. Such arrays, defined for each phoneme,
are the membership values of the fuzzy articulatory features of the phonemes.

All the fuzzy sets for the acoustic parameters have trapezoidal membership
functions and have been defined as follows:

– Duration D(p). The global range of this fuzzy variable is 0-130 ms.
– Initial Interval I(p). As D(p), this fuzzy variable is divided into a 0-130 ms

interval.
– Final Interval F(p). The numeric range is 0-130 ms.
– Locus L(p). The fuzzy values of this variable depend on the actual variable

to be controlled.

3.2 Fuzzy Rules and Defuzzification

By using linguistic expressions which combine the above linguistic variables with
fuzzy operators, it is possible to formalize the relationship between articulatory
and acoustic features. For example, for a transition towards a vowel, the opening
and the anteriority of the target phoneme determine the values of the first two
formants, and this knowledge can be formalized as follows:

IF target phoneme IS Open THEN L(F1) IS Medium;
IF target phoneme IS Anterior THEN L(F2) IS Medium High;
IF target phoneme IS Not Anterior THEN L(F2) IS Low;
IF target phoneme IS Round THEN L(F3) IS Low;
IF target phoneme IS Not Round THEN L(F3) IS Medium.

In general, however, the rules involve the actual and the future phonemes;
thus, in these last rules, each of the expressions should be read as: IF actual
phoneme IS Any AND target phoneme ... where the vocalic phonemes member-
ship to the ‘Any’ variable is equal to 1.
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Fig. 2. Outline of the bank of fuzzy rules. P0 and P1 represent the actual and target
phonetic categories

Moreover, in general the fuzzy expressions involve the fuzzy operators AND,
NOT and OR. Since the manner of articulation well partitions the phonemes in
separated regions, the rules have been organized in banks, one for each manner.
That is, calling P0 and P1 the actual and the future phonemes respectively, the
set of rules is summarized in Fig. 2. The rule decoding process is completed
by the defuzzification operation, which is performed with the fuzzy centroid
approach.

4 Speech Generation Module

The synthesis of the output speech is performed using a reduced Klatt formant
synthesizer [7].

The I(p) control feature determines the starting point of the transition, whose
slope and target values are given by the D(p) and L(p) features. The parameter
holds the value specified by their locus for an interval equal to F(p) ms; however,
if other parameters have not completed their dynamic, the final interval F(p) is
prolonged. The I(p), F(p), and D(p) parameters are expressed in milliseconds,
while the target depends on what synthesis control parameter is involved; for
example, for frequencies and bandwidths the locus is expressed in Hz, while for
amplitudes in dB.

5 Genetic Optimization of Articulatory and Acoustic
Parameters

Let us take a look at Fig. 1. Genetic optimization aims at computing the opti-
mum values of the degrees of membership for the articulatory features used to
generate an artificial replica of the input signal.
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Fig. 3. The binary chromosome obtained by coding

5.1 Genetic Optimization Module

The optimal membership degrees of the articulatory places minimize the distance
from the uttered signal; the inputs are the number of phonemes of the signal
and their classification in terms of manner of articulation.

One of the main part of the genetic algorithm is coding. The chromosome
used for genetic optimization for a sequence of three phonemes is shown in
Fig. 3. It represents the binary coding of the degrees of membership. The genetic
algorithm uses only mutations of the chromosome. This means that each bit of
the chromosome is changed at random and the mutation rate is constant to 2%.

5.2 Fitness Computation and Articulatory Constraints

An important aspect of this algorithm is the fitness computation, which is rep-
resented by the big circle symbol in Fig. 1. The fitness, which is the distance
measure between original and artificial utterances and is optimized by the ge-
netic algorithm, is an objective measure that reflects the subjective quality of
the artificially generated signal. The Modified Bark Spectral Distortion (MBSD)
measure has been used [8, 9]. Such measure is based on the computation of the
pitch loudness, which is a psycho-acoustical term defined as the magnitude of the
auditory sensation. In addition to this, a noise masking threshold estimation is
considered. This measure is used to compare the artificial signal generated by the
fuzzy module and the speech generation module against the original input signal.

The MBSD measure is frame based. That is, the original and the artificial
utterances are first aligned and then divided into frames and the average squared
Euclidean distance between spectral vectors obtained via critical band filters
is computed. The alignment between the original and artificial utterances is
performed by using dynamic programming [10], with slope weighting as described
in [11] and shown in Fig. 4.

Therefore, using the mapping curve between the two signals obtained with
DTW, the MBSD distance D between original and artificial utterances repre-
sented respectively with X and Y is computed as follows:

D(X, Y ) =
1

LΦ

T∑
k=0

⎡⎣ K∑
j=0

M(Φy(k), j) |Lx(Φx(k), j) − Ly(Φy(k), j)|m(k)

⎤⎦
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Fig. 4. Slope weighting

where T is the number of frames, K is the number of critical bands, Φ = (Φx, Φy)
is the non-linear mapping, LΦ is the length of the map, Lx(i, j) is the Bark
spectrum of the i-th frame of the original utterance, Ly(i, j) is the Bark spectrum
of the i-th frame of the artificial utterance, M(i, j) is the indicator of perceptible
distorsion at the i-th frame and j-th critical band, and m(k) are the weights as
shown in Fig. 4. The coefficient M(i, j) is a noise masking threshold estimation
which determine if the distortion is perceptible by comparing the loudness of
the original and artificial utterances. Thus, the fitness function of the Place of
Articulation (PA) is:

Fitness (PA) =
1

D(X, Y )
.

The goal of the genetic optimization is to find the membership values that lead
to a maximization of the fitness, i.e. the minimization of the distance D(X, Y ),
namely PA = argmax{Fitness(PA)}, PA =

⋃
PAi, i = 1, . . . , 12 · N , where

PAi is the degree of membership of the i-th place of articulation, N is the
number of phonemes of the input signal. However, in order to correctly solve
the inverse articulatory problem, the following constraints have been added to
the fitness:

– it is avoided that a plosive phoneme is completed dental and velar simulta-
neously;

– it is avoided that a nasal phoneme is completely voiced;
– it is avoided that all the membership degrees are simultaneously less than a

given threshold;
– it is avoided that two or more degrees of membership are simultaneously

greater than another threshold.

In conclusion, our optimization problem can be formalized as follows:

PA = argmax

⎧⎨⎩ 1
D(X, Y )

+
Nc∑
j=1

Pj

⎫⎬⎭
where Pj is the penalty function and Nc is the number of constraints.
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6 Experimental Results

In Fig. 5 a typical convergence behaviour is represented, where D(X, Y ) against
number of generation is shown.

Basing on the results shown in Fig. 5, the experimental results presented in
the following are obtained with a population size of 200 elements and a mutation
rate equal to 0.02.

Fig. 5. Convergence diagram, i.e. distance D(X, Y ) versus number of generation. In the
left panel the mutation rate μ is varied and the population size is maintained constant
to 200 elements. In the right panel the population size S is varied and the mutation
rate is maintained constant to 0.02

Fig. 6. Acoustic analysis of the Italian word ”nove” obtained with fuzzy model and
genetic optimization
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Fig. 7. Articulatory places of articulation of the Italian word ’nove’ estimated with
genetic optimization

In Fig. 6 and in Fig. 7 some experimental results related to the analysis
of the Italian word ’nove’ (’nine’) are shown. In the upper panel of Fig. 6 the
dynamic behaviour of the first three formant frequencies is reported. The vertical
lines denote the temporal instants of the stationary part of each phoneme. It is
worth noting that this segmentation is done on the synthetic signal but it can be
related to the original signal using the non–linear mapping between the original
and synthetic word obtained by dynamic programming. In the lower panel of
Fig. 6 the behaviour of low and high frequencies amplitudes are shown. In Fig. 7
the dynamic of the membership degrees of the articulatory places of articulation
is reported.

In Fig. 8, finally, some subjective evaluation results related to a phonetic
listening test are shown: the phonetic categories used in this test are quite critical
from a correct comprehension point of view. However, the subjective rate ranges
from 70% to 85% and therefore it is quite promising for future developments.

Phonetic Categories Number of signals Exact recognitions [%]
plosive 193 70
fricative 105 85
affricate 47 70
liquid 83 78
Total 428 76

Fig. 8. Subjective evaluation results
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7 Final Remarks and Conclusions

In this paper a novel approach for the estimation of articulatory features from
an input speech signal is described. The approach uses a set of fuzzy rules and
a genetic algorithm for the optimization of the degrees of membership of the
places of articulation. One interesting property of the fuzzy model is that the
fuzzy rules can be quite easily modified and tuned. The membership values of
the place of articulation of the spoken phonemes have been computed by means
of genetic optimization. Many sentences have been generated on the basis of this
articulatory estimation and their subjective evaluations show that the quality of
the artificially generated speech is quite good.

Many possible extension and applications of this work are possible, from esti-
mating acoustic parameters and signal segmentation at a low level, to studies of
inner mechanism involved in vocalization, to applications in humanoid robotics
at higher levels. Current work is directed toward the development of a vocaliza-
tion system driven by the described algorithm.
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Abstract. This paper presents an automated method based on Evolution 
Strategies (ES) for optimizing the parameters regulating video-based tracking 
systems. It does not make assumptions about the type of tracking system used. 
The paper proposes an evaluation metric to assess system performance. The 
illustration of the method is carried out using three very different video 
sequences in which the evaluation function assesses trajectories of airplanes, cars 
or baggage-trucks in an airport surveillance application. Firstly, the optimization 
is carried out by adjusting to individual trajectories. Secondly, the generalization 
problem (the search for appropriate solutions to general situations avoiding 
overfitting) is approached considering combinations of trajectories to take into 
account in the ES optimization. In both cases, the trained system is tested with 
the rest of trajectories. Our experiments show how, besides an automatic and 
reliable adjustment of parameters, the optimization strategy of combining 
trajectories improves the generalization capability of the training system. 

1   Introduction 

A minimal requirement for automatic video surveillance system is the capacity to 
track multiple objects or groups of objects in real conditions [1].  

One of the main points of this research consists in the evaluation of surveillance 
results, defining a metric to measure the quality of a proposed configuration [2]. The 
truth values from real images are extracted and stored in a file [3-4]. To do this, the 
targets are marked and positioned in each frame with different attributes. Using this 
metric in an evaluation function, we can apply different techniques to assess suitable 
parameters and, then, to optimize them. ES are selected for this problem [5-9] because 
they present high robustness and immunity to local extremes and discontinuities in 
fitness function. This paper demonstrates that ES are well chosen for this optimization 
problem as the desired results are reached once an appropriate fitness function has 
been defined: adjust automatically the tracker performance according to all 
specifications considered). Furthermore, one of the principal points of this study is the 
non assumption about the type of tracking system used.  

The ES optimized tracker must show a high degree of generalization to be used 
with sequences that differ greatly. Mitchell [10] defines generalization as a process 
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that uses a great number of specific observations, and extracts and retains the 
important features that characterize the classes of these given observations. Therefore, 
generalization can be redefined as a problem of search. The set of data (learning 
examples) that optimize the search is defined as the "ideal trainer". The ideal trainer is 
a set of trajectories that represents different movements of cars, trucks or airplanes.  

In the next section, the whole image processing system is outlined, indicating the 
effect of parameters open to the designer. The third section presents the application of 
ES to the multiple tracking in video sequences and explanation of the proposed 
evaluation metric. Finally, the fourth section presents the analysis of the fitness 
function that is used to achieve the desired property of generality. Furthermore, the 
fourth section shows the results of the optimization process with different set of 
trajectories and combination alternatives. Finally, some conclusions end the study. 

2   Surveillance Video System 

This section describes the structure of an image-based tracking system. 

Detection and Image 
segmentation:  

blobs extraction 

Detector 
Update 

Background 

Background 
Computation 

Camera i 

Images 

Track 
Update

Track Management 

Airport Map and 
Image Masks 

Blobs-to-tracks 
Asociation

Oclusion and 
Overlap Logic 

Track Extrapolation 

 
 
 
 
 

Array of local Target 
Tracks 

 

Fig. 1. Structure of video surveillance system 

The system architecture is a coupled tracking system where the detected objects are 
processed to initiate and maintain tracks. These tracks represent the real targets in the 
scenario and the system estimates their location and cinematic state. The detected 
pixels are connected to form image regions referred to as blobs. 

The association process assigns one or several blobs to each track, while not 
associated blobs are used to initiate tracks [4]. 

2.1   Detector and Blobs Extraction 

The positioning/tracking algorithm is based on the detection of targets by contrasting 
with local background, whose statistics are estimated and updated with the video 
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sequence. Then, the pixel level detector is able to extract moving features from 
background, comparing the difference with a threshold: 

Detection(x,y):=[Image(x,y) – Background(x,y)]>THRESHOLD*  (1) 

being σ the standard deviation of pixel intensity. This parameter determines the first 
filter on the data amount to be processed in following phases.  

Finally, the algorithm for blobs extraction marks with a unique label all detected 
pixels connected, by means of a clustering and growing regions algorithm [11]. Then, 
the rectangles which enclose the resulting blobs are built, and their centroids and 
areas are computed. In order to reduce the number of false detections due to noise, a 
minimum area, MIN_AREA, is required to form blobs. This parameter is a second data 
filter which avoids noisy detections from the processing chain. 

2.2   Blobs-to-Track Association 

The association problem lies in deciding the most proper grouping of blobs and 
assigning it to each track for each frame processed. Due to image irregularities, 
shadows, occlusions, etc., a first problem of imperfect image segmentation appears, 
resulting in multiple blobs generated for a single target. So, the blobs must be re-
connected before track assignment and updating. However, when multiple targets 
move closely, their image regions may overlap. As a result, some targets may appear 
occluded by other targets or obstacles, and some blobs can be shared by different 
tracks. For the sake of simplicity, first a rectangular box has been used to represent 
the target. Around the predicted position, a rectangular box with the estimated target 
dimensions is defined, (xmin, xmax, ymin, ymax). Then, an outer gate, computed 
with a parameter defined as a margin, MARGIN_GATE, is defined. It represents a 
permissible area in which to search more blobs, allowing some freedom to adapt 
target size and shape. 

The association algorithm analyses the track-to-blob correspondence. It firsts 
checks if the blob and the track rectangular gates are compatible (overlap), and marks 
as conflictive those blobs which are compatible with two or more different tracks. 
After gating, a grouping algorithm is used to obtain one “pseudoblob” for each track. 
This pseudoblob will be used to update track state.  If there is only one blob 
associated to the track and the track is not in conflict, the pseudoblob used to update 
the local track will be this blob. Otherwise, two cases may occur: 

1) A conflict situation arises when there are overlapping regions for several targets 
(conflicting tracks). In this case, the system may discard those blobs gated by several 
tracks and extrapolate the affected tracks. However, this policy may be too much 
restrictive and might degrade tracking accuracy. As a result, it has been left open to 
design by means of a Boolean parameter named CONFLICT which determines the 
extrapolation or not of the tracks. 

2) When a track is not in conflict, and it has several blobs associated to it, these 
will be merged on a pseudoblob whose bounding limits are the outer limits of all 
associated blobs. If the group of compatible blobs is too big and not dense enough, 
some blobs (those which are further away from the centroid) are removed from the 
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list until density and size constraints are held. The group density is compared with a 
threshold, MINIMUM_DENSITY, and the pseudo-blob is split back into the original 
blobs when it is below the threshold. 

2.3   Tracks Filtering, Initiation and Deletion 

A recursive filter updates centroid position, rectangle bounds and velocity for each 
track from the sequence of assigned values, by means of a decoupled Kalman filter 
for each Cartesian coordinate, with a piecewise constant white acceleration model 
[12]. The acceleration variance that will be evaluated, usually named as “plant-noise”, 
is directly related with tracking accuracy. The predicted rectangular gate, with its 
search area around, is used for gating. Thus it is important that the filter is “locked” to 
real trajectory. Otherwise tracks would lose its real blobs and finally drop. So this 
value must be high enough to allow manoeuvres and projection changes, but not too 
much, in order to avoid noise. As a result, it is left as an open parameter to be tuned, 
VARIANCE_ACCEL. 

Finally, tracking initialization and management takes blobs which are not 
associated to any previous track. It requires that non-gated blobs extracted in 
successive frames accomplish certain properties such as a maximum velocity and 
similar sizes which must be higher than a minimum value established by the 
parameter MINIMUM_ TRACK_AREA. In order to avoid multiple splits of targets, 
established tracks preclude the initialization of potential tracks in the surrounding 
areas, using a different margin than the one used in the gating search. This value 
which allows track initialization is named MARGIN_INITIALIZATION. 

3   Application of ES to Optimization of Video Tracking System 

In this section, an evaluation metric to assess the quality of a specific configuration is 
proposed. This configuration is defined by the values of the set of parameters 
described above. Firstly, the evaluation criterion is carried out for a specific trajectory 
by assessing the similarity of estimated target behaviour to the stored ground truth. 

3.1   Definition of ES to Video Tracking Optimization 

In this specific problem, one individual will represent a set of parameters of the whole 
tracking system, described in the previous section. The parameters have an influence 
on the detector and on the different stages of the tracking system, such as tracks 
updating and initialization, and on the association procedure.  

The eight parameters which are going to be adjusted are those previously indicated: 

THRESHOLD, MINIMUM_BLOB_AREA, MARGIN_GATE, MINIMUM _DEN-
SITY, CONFLICT, VARIANCE_ACEL, MINIMUM_TRACK_AREA and MAR-
GIN_INITIALIZATION. 

We have implemented ES for this problem with a size of 6+6 individuals and 
mutation factor Δσ=0.5. Regarding the operators, the type of crossover used in this 
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work is the discrete one and the replacement scheme which is used to select the 
individuals for the next generation is (μ+λ)-ES.  

The main point of this optimization is the search for the ideal combination of tracks 
to obtain the ideal trainer and the optimal combination of performance evaluation 
over each trajectory to obtain the best fitness function. 

3.2   Evaluation of Video Tracking System Using a Trajectory 

One of the most important points of our study is to calculate some figures of merit 
which allow the evaluation of the performance of the tracking system. To achieve this 
goal, the measurements given for the tracking system are compared to the ideal output 
or ground truth. The ground truth is defined as a set of rectangles that form the 
trajectory of each target.  

The evaluation system calculates a number which constitutes the measurement of 
the quality level for the tracking system using as a reference a certain trajectory. The 
output track should be as similar as possible to the ground truth trajectory. Thus, the 
next step is the comparison of the ideal trajectories with the detected ones so that a 
group of performance indicators can be obtained to analyse the results and determine 
the quality of our tracking process. The optimization of the evaluation outcome will 
be the goal for the evolutionary strategy program. We have a deterministic evaluation 
for individuals in all generations, enhancing system comparison to analyze different 
parameters within the optimization loop. 

The performance evaluation is computed by giving a specific weight to each of the 
next indicators, divided into ‘accuracy metrics’ and ‘continuity metrics’.   

Accuracy Metrics:  

1) Error in area (in percentage): The difference between the ideal area and the 
estimated area is computed. If more than one real track corresponds to an ideal 
trajectory, the best one is selected (although the multiplicity of tracks is annotated as a 
continuity fault). 
2) X-Error and Y-Error: The difference among the x and y coordinates of the 
bounding box of an estimated object and the ground truth. 
3) Overlap between the real and the detected area of the rectangles (in percentage): 
The overlap region between the ideal and detected areas is computed and then 
compared, in percentage, with the original areas. The program takes the lowest value 
to assess the match between tracking output and ground truth. 

Continuity Metrics:  

4) Commutation: The first time the track is estimated, the tracking system marks it 
with an identifier. If this identifier changes in subsequent frames, the track is 
considered a commuted track.  
5) Number of tracks: It is checked if there is not a single detected track matched with 
the ideal trajectory. Multiple tracks for the same target or lack of tracks for a target  
indicate continuity faults. There are two counters to store how many times the ground 
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truth track is matched with more than one tracked object data and how many times the 
ground truth track is not matched with any track at all. 

Finally, in order to normalize the evaluation for different tracks, all values are 
normalized by the track lifetime, measured with the difference between the last and 
first frames in which the ideal track appears. To obtain the final result, the addition of 
each indicator is calcultated. 

4   Experiments 

This section shows how the analysis of the evaluation method and the subsequent use 
of ES improve considerably the performance of our tracking system. The eight 
parameters explained above are going to be studied in order to see the effects of them 
in the optimization of the tracking system. 

The experiments have been tested over a set of three videos which represent 
common situations in the airport surveillance application domain: 

• The first video is a multiple-blob reconnection scenario. There is an aircraft 
moving with partial occlusions due to stopped vehicles and aircraft in parking 
positions in front of the moving object. There are multiple blobs representing a 
single target that must be re-connected, and at the same time there are four vehicles 
(vans) moving on parallel roads. 

• In the second scenario, there are three aircraft moving in parallel taxiways and their 
images overlap when they cross.  

• Finally the third video presents two aircraft moving on inner taxiways between 
airport parking positions. Both aircraft are turning during the conflict interval, 
changing their orientations. A third aircraft appears at the end, overlapping with 
one of the other aircraft. 

 

Fig. 2. Shot of the second video and display of the outcome of the surveillance video system 

4.1   Applying ES to Optimize Tracking System over a Trajectory 

The first experiment gives us a benchmark table with which subsequent experiments 
can be compared. Here, the optimization has been carried out for each individual 
trajectory. This means that the best parameters are obtained in order to have the best 
performance for a specific track.  
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The results obtained for each target (the configuration parameters) are represented 
in each column, and so there are 11 sets. Then, these parameters have been tested for 
the rest of tracks and videos in order to check how they solve other situations. These 
last results are called cross-fitness values. The next table shows how the cross fitness 
values do not fit as well as the ones which have been directly calculated for that case. 
The over fitted results are placed in the diagonal of the table. In some situations, the 
obtained parameters provide no track for a certain trajectory, and it cannot be 
evaluated. For instance, the parameters obtained with scenario 1, target 4 (a small 
van), do not provide any track for target 5 in that video (a big aircraft), since the 
particular density threshold obtained is adapted to very regular targets with a single 
blob. This is due to the fact that the aircraft needs systematic blob re-connection to 
have its track built and regularly updated. This case is marked as a ‘-‘in the table. 
Partial sums for each scenario and total budgets for all tests (sum of evaluations and 
faults) indicate the “global” quality for each solution achieved. 

Table 1. Cross evaluation for parameters optimized for a single target by using the evaluation 
metric explained in section 3.2 

  

designed 
scenario 

Video 1 Video 2 Video 3 

evaluation 
scenario 

Track id 
1 2 3 4 5 2 3 4 1 2 3 

1 1679,9 10493 10010   5252,1 17140 8389,9 5851,7 2309,1 3068,1 1786,7 
2 2834,9 2816,2 2838,5 2837,9 2823,7 2838,5 2837,8 2836,9 2838,0 2838,2 2837,4 
3 1574,1 7686,8 4102,2 978,3 7987,1 7802,9 7569,4 6350,4 7486,8 12602 11494 

4 3753,0 5867,0 4106,5 257,9 4947,8 7100,0 4772,6 5155,3 3596,9 3625,1 2080,2 

   
   

   
   

  
   

   
   

   
  

V
id

eo
 1

 
  

5 221,4 6581,2 5451,0 - 47,6 7250,1 5141,1 7293,3 156,4 4809,6 810,4 
  sum 10063 33444 26508 4074,2 21058,2 42131 28710 27487 16387 26943 19009 

 
2 1244,2 6879,2 493,5 2501,3 572,8 248,9 498,1 470,7 3757,2 529,7 592,4 
3 9091,7 8209,0 1343,0 6238,2 2393,5 1510,0 731,4 1521,7 6765,8 6905,9 6962,8 

V
id

eo
 2

 

4 2946,6 7946,6 759,8 768,7 1496,9 752,6 770,4 743,1 786,1 761,8 802,3 
  sum 13282 23034 2596,2 9508,1 4463,1 2511,6 1999,9 2735,4 11309 8197,5 8357,5 

 
1 2720,7 7029,5 9959,7 583,1 57546,1 6508,1 5862,6 6157,4 172,5 6756,8 8558,7 
2 7706,9 8104,1 13271 305,5 10189,5 9771,7 5080,6 12383 5079,4 91,2 - 

V
di

eo
 3

 

3 11388 9460,7 12319 - 14943,6 14421 11711 16524 9445,9 13398 459,8 
  sum 21815 24594 35550 888,6 82679,2 30701 22654 35065 14697 20246 9018,5 

 

                          

  
total 
sum 4516 81073 64655 14470 108200 75344 53365 65288 42394 55387 36385 

 faults 0 0 0 2 0 0 0 0 0 0 1 

4.2   Applying ES to Optimize Tracking System Using Sets of Targets 

The next step in our study optimizes all the targets in a video. This means that the best 
parameters are obtained in order to have the best performance for all the targets at the 
same time in a specific video. The method proposed to do this is a mini-max strategy, 
which consists of training with all the tracks of a video and taking the maximum 
fitness value from the track set for each evaluation. Subsequently, this value is used as 
the outcome for the ES process. 
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The results can be observed in the left side of table 2. Now there are only three sets 
of optimum parameters (three columns) corresponding to the training scenarios. When 
the parameters for the best performance are computed by this first method, we obtain 
a fitness number per track which is remarkably better than all the previous results, 
which were calculated by training over a single track. 

Table 2. Cross evaluation for parameters optimized for a whole scenario with a minimax 
operation (table on the left side) and cross evaluation for parameters optimized for a whole 
scenario with a sum operation (table on the right side) 

 

 
designed 
scenario Video 1 Video 2 Video 3 

evaluat. 
scenario 

 
 
 
 

1 2148,38 6467,07 7118,28 
2 2816,06 2838,03 2829,93 
3 808,49 7571,34 7722,86 
4 611,94 4296,65 2346,35 

 
V

id
eo

 1
 

 

5 219,49 6012,59 6898,39 

 sum 6604,36 27185,68 26915,81 

          

2 7761,07 501,94 498,34 
3 4774,85 735,06 1709,53 

V
id

eo
 2

 

4 5057,37 746,73 1901,62 

 sum 17593,2 1983,73 4109,49 

          

1 327,80 8511,76 1321,73 
2 352,39 6639,13 4445,21 

V
id

eo
 3

 

3 - 10007,40 2724,84 
 sum 680,19 25158,29 8491,78 

 
     

 
total 
sum 24877 54327,70 39517,08 

 faults 1 0 0 

 
 

 
designed 
scenario Video 1 Video 2 Video 3 

evaluat. 
scenario 

 
 
 
 

1 1691,76 2650,92 8046,10 
2 2843,30 2842,96 4232,38 
3 1141,46 1684,53 13112,50 
4 541,82 - 5826,94 

 
V

id
eo

 1
 

 

5 177,96 - 2024,31 

 sum 6396,30 7178,41 33242,23 

          
2 1744,78 284,92 - 
3 9155,52 501,81 - 

V
id

eo
 2

 

4 4403,98 784,92 8095,01 

 sum 15304,28 1571,64 8095,01 
          

1 7608,18 - 631,79 
2 6906,09 - 2354,02 

V
id

eo
 3

 

3 - - 6432,97 
 sum 14514,2 - 9418,78 

 
     

 
total 
sum 36214,85 8750,05 50756,02 

 faults 1 5 2  

The second method proposed consists of training with all the tracks of a video and 
taking the sum of all trajectory fitness values (right side of table 2). The remarkable 
difference between both methods is that the cross fitness values get worse in this last 
experiment, which means that the parameters are over fitted and solutions are clearly 
less generic, with plenty of bad solutions not providing tracks in some evaluations (a 
total of 6).  

In any way, the improvement in generalization capability is shown in the fact that a 
lower number of faults appear (one now vs. three in the benchmark table), and the 
total sum is also lower (notice that two solutions are only comparable with total sum 
only when their number of faults is the same). 

4.3   Applying ES to Optimize Tracking System Using Video Sets 

The final step lies in taking for every iteration the maximum or the sum of the fitness 
values which have been calculated by evaluating the three sets of videos together. 
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The results are shown in the next two tables. The best aspect of this global 
optimization lies in the validity of the parameters to all the set of videos, avoiding the 
over fitted values obtained in the previous experiments. The first table shows the 
results for the case in which the maximum fitness has been taken in each iteration 
loop (the minimax strategy). The results applied to a specific scenario are good, but 
not better than the results obtained in the previous section where each video was 
trained with itself. 

Nevertheless, the total fitness sum for all the scenarios results much better than in 
all the previous cases. This indicates that the parameters fit well in all videos. 

Table 3. Cross evaluation for parameters optimized for all scenarios with minimax (table on 
the left side) and Cross evaluation for parameters optimized for all scenarios sum (table on 
the right side) 

 
designed 
scenario All videos 

evaluation 
scenario   

1 2347,60 

2 2820,85 

3 1280,23 
4 3416,05 

    
   

   
   

   
   

   
V

id
eo

 1
 

   

5 1146,61 

 sum 11011,34 

      

2 494,70 
3 2095,89 

V
id

eo
 2

 

4 787,59 

 sum 3378,18 

      

1 5766,68 

2 5136,36 

V
id

eo
 3

 

3 3168,68 
 sum 14071,72 

 
   
 total sum 28461,24  

 
designed 
scenario All videos 

evaluation 
scenario   

1 2243,12 

2 2855,57 

3 7683,49 
4 1676,22 

 
V

id
eo

 1
 

   

5 105,63 

 sum 14564,03 

      

2 7506,24 
3 10970,60 

V
id

eo
 2

 

4 4523,21 

 sum 23000,05 

      

1 3465,03 

2 6181,07 

V
id

eo
 3

 

3 4363,25 
 sum 14009,35 

 
   
 total sum 51573,43  

The second table shows the fitness values obtained when the sum of each fitness 
number is taken every iteration loop as the argument of the ES. All the results can be 
applied to each video, but are not as good as the ones obtained in the table on the left. 

5   Conclusions 

In this work, we apply ES to optimize the performance of a video tracking system. A 
set of parameters of the tracking system should be adjusted to obtain a good 
performance in very different situations. In this case, the set of examples to apply the 
ES should produce a general solution of the tracking system. This problem is known 
as the “ideal trainer”. Our ideal trainer is composed by a set of trajectories, and the 
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evaluation of the tracking system should be a combination of the performance of the 
tracking system over the whole set of trajectories. 

We have presented a process to evaluate the performance of a tracking system 
using a trajectory based on the extraction of information from images filmed by a 
camera. The ground truth tracks, which have been previously selected and stored by a 
human operator, are compared to the estimated tracks. The comparison is carried out 
by means of a set of evaluation metrics which are used to compute a number that 
represents the quality of the system.  

Then, the proposed metric constitutes the argument to be introduced to the 
evolutionary strategy (ES) whose function is the optimization of the parameters that 
rule the tracking system. The study tests several videos and shows the improvement 
of the results for the optimization of three parameters of the tracking system.  
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Abstract. In previous work, we showed how cooperative coevolution
could be used to evolve both the feature construction stage and the clas-
sification stage of an object detection algorithm. Evolving both stages
simultaneously allows highly accurate solutions to be created while need-
ing only a fraction of the number of features extracting as in generic
approaches. Scalability issues in the previous system have motivated the
introduction of a multi-stage approach which has been shown in the liter-
ature to provide large reductions in computational requirements. In this
work we show how using the idea of coevolutionary feature extraction
in conjunction with this multi-stage approach can reduce the computa-
tional requirements by at least two orders of magnitude, allowing the
impressive performance gains of this technique to be readily applied to
many real world problems.

1 Introduction

The problem of detecting objects in an image is inherently difficult, and one
which has taken humans millions of years of evolution to perfect. The diffi-
culty of this task is largely due to the infinite combinations of scale, orientation,
viewpoint, lighting and many other factors that are present in a typical visual
scene. In spite of this, the human visual system has evolved to deal with this
problem both flexibly and robustly by evolving both the ability to construct
and extract useful features from the scene and the ability to infer meaning
from those extracted features. The simultaneous coevolution of these stages cre-
ates a synergistic system which is far more capable than either would be on
its own.

In previous work [1], we have shown an approach which seeks to exploit this
type of synergy by using cooperative coevolutionary techniques to simultane-
ously coevolve both a set of feature constructors, and a classifier that uses those
features. This approach was successful on a variety of scale and rotationally in-
variant problems. In this work we show how a multi-stage approach similar to
that proposed by Howard et. al. [2, 3] can be used alongside this framework.
The multi-stage approach is actually a remarkably simple idea (see section 3

F. Rothlauf et al. (Eds.): EvoWorkshops 2005, LNCS 3449, pp. 396–406, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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for an overview) which is based around the concept of first creating a quick
classifier to deal with a large proportion of the data, and then training sec-
ondary classifiers to deal with the errors caused by the first classifiers estimative
nature.

This work addresses the problem of object detection. This term usually refers
to problems of the type “find all of the X in this image”. Object detectors often
take the form of classifiers applied at every pixel in the image, which have the
task of deciding whether or not the pixel belongs to a target object. A popular
approach is to extract a number of features at every pixel based on the statistics
of the surrounding pixel values. These features and the pixel’s class are then
used to train a classifier. This classifier could be of any type, from decision tree
to neural network, or as in this work, produced by genetic programming.

The idea of coevolving both feature construction and the object detector is
motivated by the fact that it is impossible to tell, for a particular dataset, what
features would be useful to an object detector. A “feature” is normally a value
derived from local pixel statistics (PS) around the current pixel e.g. the mean of
the pixels in the 5x5 square surrounding the pixel, or the standard deviation of
the 3x3 square 8 pixels to the left of the current pixel etc. In general, generic sets
of features are extracted which are often quite large, with obvious consequences
for the efficiency of the complete solution. The alternative situation is that highly
domain specific features are extracted, which makes it hard to apply the system

Table 1. Pixel statistics used in previous work

Author Statistic set
Tackett
[4]

Means and standard deviations of small and large rectangular windows plus
the global mean and standard deviation. A total of 7 zones

Daida
[5]

Pixel value, 3x3 area mean, 5x5 area mean, 5x5 Laplacian response, 5x5
Laplacian response of a 3x3 mean. 5 in total.

Howard
[2]

Rotationally invariant statistics of 4 concentric rings. For each ring the statis-
tics measured mean and standard deviation, number of edges and a measure
of edge distribution. 16 in total

Howard
[3]

3x3, 5x5, 7x7 and 9x9 means, 5x5, 7x7, 9x9 perimeter means and variances,
and the differences between a 3x3 area mean and 5x5, 7x7 and 9x9 perimeter
means. 13 in total

Winkeler
[6]

Means and variances of 26 zones. Zone 1 was the entire 20x20 area, zones
2-5 were the four 10x10 quadrants, 6-10 were 5 20x4 horizontal strips, and
11-26 were 16 5x5 pixel squares. 52 in total

Ross [7] Features related to cross and plane polarized microscopy output. Angle of
max. gradient, angle of max. position, max. colour during rotation, min.
intensity, and min. colour. 9 in total.

Zhang
[8]

Means and variances of 4 large and 4 small squares, plus the means and vari-
ances of 2 long and 2 short line profiles, passing horizontally and vertically
through the origin. 20 in total

Zhang
[9]

Used 3 different terminals sets using means and variances of each zone. Set
1 used two different sized squares, set 2 had four concentric squares, and set
3 had 3 concentric circles. 4, 8, and 6 in total
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to other problems. Ideally, we want to find the smallest set of features that
enables the classifier to solve the problem. It can be seen from Table 1 that
many different sets of features have been used in previous work, illustrating the
fact that choosing sets of pixel statistic features is a difficult task which often
results in using very large sets of generic features.

Most work in this area has focused on the evolution of the detection al-
gorithms and have not studied the choice of pixel statistics (except [9] which
compared the performance of 3 different statistic sets, and [2] which compares
simple statistics with DFT based ones). In this work, we show that instead of
using these fixed statistic sets, we can use cooperative coevolution [10] to allow
the pixel statistic sets to adapt to the problem domain. We show how the pixel
statistic sets which produce the inputs to the detectors, can be simultaneously
coevolved alongside the detectors themselves, allowing the system to optimise
both the feature construction and object detection stages.

2 System Architecture

We can conceptually divide the system implementation into two areas. The first
is the basic mechanics of the coevolutionary system used and the representations
and interactions between the multiple populations. This is covered in Section 2.1.
Within that first area, there is a step - “calculate fitness”, which corresponds to
the second conceptual area. This area deals with how the multi-stage evolution is
performed and this is used to calculate the fitness value for a particular solution.
These steps are shown in Section 3.

2.1 Coevolutionary System

The system used for these experiments coevolves normal tree based object detec-
tion algorithms, alongside the pixel statistics that they use as terminals. In order
to evolve these, the system has two main components. The first is a population
of object detection algorithms (ODAs), in which each individual is a “normal”
GP tree. The terminals used in the ODAs are the results of the calculation of
various pixel statistics. These statistics are supplied by a number of pixel statis-
tic populations (PSPs) in which each individual is a single pixel statistic zone
(PSZ). One PSZ is selected from each PSP to form the entire pixel statistic set
(PSS) which the ODA is evaluated with. This basic architecture and the inter-
action between the population is inspired by the work of Ahluwalia [11, 12] on
“Coevolutionary ADFs”, as in effect, the pixel statistics are “functions” used by
the ODAs.

Pixel Statistics. Each individual in the PSP is a single pixel statistic zone
(PSZ), which is applied as a moving window over the image and calculates some
statistic about the pixels beneath it. It is represented using several values which
describe its shape and behaviour. The origin of the PSZ is located at the pixel
that the classifier is currently looking at. Its parameters are as follows -
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-1
+1

+1-1

Fig. 1. Zone types used. Two simple statistic zones returing either mean or standard
deviation, and two weighted sum zones

– The type of zone, one of the four types shown in Figure 1. The first two just
calculate the statistics of the pixels they cover, while the second two perform
a weighted sum.

– The distance from the origin in pixels, and the angle in radians. These polar
coordinates define the zone’s centre.

– The orientation of the shape
– The width and height of the zone.
– The statistic (mean or standard deviation) that the zone returns.

The system uses a set of populations to represent the pixel statistics. One zone
from each population will eventually be used to form a complete pixel statis-
tic set (PSS), used for terminal calculations. These populations are evolved in
a normal generational model, with tournament selection (of size 3), which al-
lows the PSZs to change their size, position, shape and statistic, allowing them
to adapt to the data they are being trained on. Mutation of a PSZ involves
a small random change to one of these components. The shape and statis-
tic fields are changed less often, with only 30 percent of selections resulting
in a change to one of these fields. Crossover simply interpolates the position
and size of two zones, and creates one child. Each population is evolved in-
dependently of all other populations i.e. there is no cross-breeding between
populations.

ODA Population. This is a population of object detection algorithms which
are normal tree based representations of programs using the operators add, sub-
tract, multiply, divide, power, min, max, and a conditional operator (IFLT)
which compares two branches and returns one of two other branches depending
on the result of the comparison. The terminals used in these trees (F1, F2, . . . , Fn)
refer to the outputs of each PSZ in the PSS currently being evaluated. Crossover
and mutation are applied to these trees in the normal fashion.

Evaluation. The ODAs and PSZs can only be evaluated in the context of each
other, which means we cannot evaluate any of the populations independently.
To calculate fitness values the system first creates a pixel statistic set (PSS) i.e.
one zone from each PSP, which is paired with an ODA. This pairing is then
evaluated on the training images. However, just using one of these collabora-
tions is not usually enough to assess fitness, as one of the components may drag
down the fitness of the others. In order to form a good estimate of the fitness
of each of the components, we must evaluate each individual several times using
different collaborators. Choosing collaborators and the subsequent credit assign-
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ment problem is not a well understood task, analysed in detail by Wiegand et.
al. [13].

The basic evolutionary process is as follows.

begin
foreach individual in the ODA population
repeat subset_size times
randomly select an individual from each PSP to create a PSS
foreach training image
extract features described by PSS
apply ODA to features and calculate fitness (section 3.2)

end foreach
record fitness with ODA and each PSZ

end repeat
end foreach

calculate final fitnesses for each ODA
calculate final fitnesses for each zone in each PSP
breed each population independently

repeat until termination criteria met

The parameter subset size is the collaboration pool size, i.e. the number of
pairings to try for each ODA, and should be as high as possible within the bounds
of evaluation time. At the end of each generation we use the “optimistic” credit
assignment method [13], whereby each ODA and PSZ are assigned the best
fitness value of any evaluation it has been involved in.

3 Multi-stage Approach

The multi-stage approach to object detection was introduced by Howard et. al.
[2, 14, 15, 3, 16] and is based on the idea that instead of training a classifier using
every point in an image, you can train a “quick” classifier on a random sample
of the points, apply the resulting classifier to all of the points, and then train
second stage classifiers to deal with the errors produced in the first stage. This
produces considerable savings in computational requirements.

In the first stage we take all pixels belonging to targets, and a random sample
of non-target points (see section 3.1). The size of this random sample is normally
around the square root of the number of pixels in the image. An object detector
is trained on this subset of points, after which it is applied to every point in the
images. This will of course generate a number of false positives, but in general,
this number is very small relative to the size of the image i.e. the first stage
deals with most of the pixels. In the second stage, classifiers are trained using
this set of FPs and all of the target points, and have to discriminate between
the two classes. If a target is hit at least once, all of its points are removed
so that subsequent stages can concentrate on hitting the other targets. Several
second stages successivley refine the solution. Any point that is marked in the
first stage, and in any second stage is considered as a “final guess”. The set of
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final guesses is then used to calculate fitness (see Section 3.2). The final output
of the training is therefore a complete solution which contains one first stage
classifier, which is applied to every pixel, and a set of second stage classifiers
which are applied to any pixel that the first stage marked.

3.1 First Stage Point Selection

Ideally, the sample of non-target points chosen for the first stage training will
be representative of the pixels in the image. Obviously, as Howard [3] states, it
is impossible to pick a truly representative sample of pixels. However, in some
cases choosing pixels with uniform probabilities will under-represent important
parts of the image. For example consider an image of a grassy field containing
cows and sheep, and the task of evolving a “cow detector”. If we sample 1000
non-cow points uniformly, we will probably get about 950 grass pixels, and only
50 sheep pixels. This is a problem as distinguishing cows from grass is easy so
we don’t really need a large sample of them, but distinguishing cows from sheep
is much harder so we would prefer more pixels from that class, and sampling
uniformly will probably not give us enough sheep pixels to evolve a cow/sheep
discriminator. It is also very wasteful, as grass pixels are quite uniform, and we
probably only need a small sample of them in order to distinguish them from
cows. So, overall, we have more points than we need (which results in longer
training time) and we have under-represented an important class.

Although it would be impossible to pick a truly representative sample, a sim-
ple heuristic can offer a significant improvement over the random approach. In
this work, we use a simple scheme to pick the non-target sample. For each pixel,
we calculate 8 attributes, such as the local mean, variance, maximum edge value
and direction, line and centre surround responses, etc. These attributes place
each pixel into an 8 dimensional space to which we apply k-means clustering
to divide the points into a number of classes (10 in this case). We then ran-
domly sample an equal number of points from each of these classes to form our
final sample. This scheme is very simple, but is good enough to provide a basic
division. This scheme ensures that each class is represented to approximately
the same degree. It is not a perfect representative sample, but it minimises the
situation described above, and allows us to use less points in total.

3.2 Fitness Function

The set of final guesses produced by a detector is used to calculate the fitness
value that will be assigned back to its constituent parts. The fitness function
used is defined using the following terms and is shown below.

hits The number of targets which have at least one of their pixels hit.
false negatives (FN) The number of targets that were not hit at all.
false positives (FP) the number of pixels incorrectly marked as targets.
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Nt The total number of targets present.
Nb The total number of non-targets pixels in the set.

f =
((

1 + α
FN

Nt

)(
1 + β

FP

Nb

))
− 1 (1)

The function produces a value between 0 and 1, with 0 being a perfect score,
by mutipliying a target term and non-target term. This multiplication forms a
multi-objective fitness function, where both terms must be minimised in order
to achieve a good fitness. The ratio between the parameters α and β, allow us to
tune the behaviour of the system. In the first stage α is higher than β so that we
maximise hits. In the second stage β is much higher than α in order to minimise
false positives. These parameters can be altered to reflect the relative importance
of false positives and false negatives as, for example, in some applications (such
as medical screening applications) a false negative could be critically important
but a few false positives would not be the end of the world.

We also use a figure-of-merit to sum up the overall performance of a solution,
in a more understandable way than the fitness function. This produces a figure
between 0 and 1, with a value of 1 meaning we have no misses or false positives.

FOM =
hits

Nt + FP
(2)

4 Experiments

Experiments to test the multi-stage method have been carried out on two datasets.
The first of these is an automatically generated dataset. Each image consists of a
number of random triangles and circles of different scales and orientations. The
image is heavily corrupted by noise. The task in this case is to evolve a “triangle
detector”. The second dataset consists of images of different pasta shapes on a
textured background. The task in this case is to detect only the spiral shaped
pasta. Examples of both datasets can be seen in Fig 2.

Fig. 2. An example from each dataset
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For each dataset we train the multi-stage coevolutionary system on 50 images
from the set. The ODA popualtion size is 2000 and the PSZ population sizes are
50. Two PSZ populations are used in each stage i.e. the are 2 features available
to all ODAs. The parameters α and β are set to 1.7 and 1.0 in the first stage and
1.0 and 6.0 in the second stages. All stages are run for 50 generations or until
a fitness of 0.001 is found. After training, the best combined detector is applied
to a set of 50 unseen images, and the mean FOM recorded.

5 Results

5.1 Triangle Detection

On the triangle detection task, a first stage solution was evolved after 50 gen-
erations which hit all targets and produced 14117 false positives. The second
stages were trained on these false positives and the target points, and after all
stages there were only 12 false positives but this was at the expense of missing
18 of the 360 targets. Overall this produced a FOM of 0.92. When applied to
the unseen test set, the solution performed similarly producing a FOM of 0.88.
This is very good result on such noisy unseen data. An example of the output
can be seen in Figure 4.

5.2 Pasta Detection

On the pasta detection task, a first stage solution was evolved after 24 genera-
tions which hit all targets and produced 1487 false positives. The second stages
were trained on these false positives and the target points, and after all 3 sec-
ond stages there were only 11 false positives and all of the 195 targets were hit.
Overall this produced an average FOM of 0.95. When applied to the unseen test
set of 50 images, the solution missed 15 of the 221 targets and generated 18 false
positives producing a FOM of 0.86. This means only around 6% of all targets

Stage Program
1 F0 + ( F1 < ( ( F0 * 0.638 ) - F1 ) ? F1 : 0.358)
2a 0.491 - ( F3 + 0.714 ) + (F2 < (min( 0.962, F3 ) - 0.713 ) ? 0.986 : 0.518)
2b ( -0.132 - (min( F5, 0.418 ) - 0.155 + F4) ) * ( 0.023 + F4 )
2c ( ( F6 < ( 0.799 * F7 ) ) ? max( (F6 * 0.598 ), 0.613 ) : ( F7 - F6 ) ) * 0.240

Fig. 3. The solution for the pasta detector. The programs for each stage are shown,
along with the coevolved features F0-F7 (scale is 32 pixels). Note that the programs
use a C style inline conditional operator e.g. condition ? then-clause : else-clause
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Fig. 4. Detector outputs shown on an unseen image from each dataset. The white
circles represent the detector’s “guesses”. There is one FP in each image. Note also
the very difficult triangle detection made at the top of the image. Some targets are
hit multiple times by different stages, but this is counted as only one hit in FOM and
fitness calculations

were missed, with a relatively small number of false positives. The complete
solution is shown in Figure 3 and example output can be seen in Figure 4.

6 Conclusions

The main conclusion of this work is that cooperatively coevolving feature extrac-
tors and object detectors is now a feasible method of creating domain indepen-
dent object detection algorithms. These techniques do not require any specific
knowledge about the objects they are trying to detect, and can be used by do-
main experts (rather than image processing experts) as they simply have to mark
the target points for training.

The use of the multi-stage technique shows great potential in this area. Al-
though the “full image” approach shown in [1] actually produced more accurate,
compact and efficient solutions, it used an almost unfeasibly large amount of
computational power. Due to the way the multi-stage approach works, its over-
all solutions are larger (as they are the sum of several small solutions), but the
computational load is much smaller. As an illustration of this consider the pasta
example - the full image solution shown in [1] took around 2000 CPU-hours
to evolve a good solution, whereas the solution evolved using the multistage
technique took around 5 CPU-hours. This dramatic speed increase comes at
the expense of only a small, but still acceptable, decrease in accuracy (the FOM
shown in [1] was 0.98), and a small increase in the run time of a complete solution
from 0.55 seconds to 0.6 seconds on the pasta images.
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Abstract. This paper describes the implementation of a representation for Car-
tesian Genetic Programming (CGP) in which the specific location of genes 
within the chromosome has no direct or indirect influence on the phenotype.  
The mapping between the genotype and phenotype is determined by self-
organised binding of the genes, inspired by enzyme biology. This representation 
has been applied to a version of CGP developed especially for evolution of im-
age processing filters and preliminary results show it outperforms the standard 
representation in some configurations.  

1   Introduction 

A form of genetic programming (GP) [1] termed Cartesian Genetic Programming 
(CGP) [2,3] has been successfully adapted for the evolution of simple image process-
ing filters [4,5] and subsequently implemented in hardware [6,7].  A criticism of CGP 
(and GP in general) is that the location of genes within the chromosome has a direct or 
indirect influence on the resulting phenotype [8].  In other words, the order in which 
specific information regarding the definition of the GP is stored has a direct or indirect 
effect on the operation, performance and characteristics of the resulting program. Such 
effects are considered undesirable as they may mask or modify the role of the specific 
genes in the generation of the phenotype (or resulting program). Consequently, GPs are 
often referred to as possessing a direct or indirect context representation. 

An alternative representation for GPs in which genes do not express positional de-
pendence has been proposed by Lones and Tyrrell [8-12].  Termed implicit context 
representation, the order in which genes are used to describe the phenotype (or result-
ing program) is determined after their self-organised binding, based on their own 
characteristics and not their specific location within the genotype.  The result is an 
implicit context representation version of GP termed Enzyme Genetic Programming. 

This paper describes the first application of implicit context representation to CGP, 
and more specifically, a version of CGP for implementing image processing filters.  
CGP has a number of beneficial characteristics that overcome problems often associ-
ated with conventional GP, such as restrictive programming paradigm and uncon-
trolled growth of the program (known as bloat), but still expresses the undesirable 
characteristics of an indirect context representation. 
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Section 2 of the paper gives a brief introduction to the use of CGP for evolving im-
age processing filers. Section 3 introduces implicit context representation and Section 
4 describes the implementation of implicit context representation with CGP; the re-
sults obtained for this are presented in Section 5.  Conclusions and planned further 
work are presented in Section 6. 

2   Cartesian Genetic Programming for Evolving Image Processing 
Filters  

Cartesian Genetic Programming (CGP) was first proposed by Miller [2,3] as an alter-
native representation for genetic programming which does not require the use of a 
parse tree based programming language and does not exhibit uncontrolled expansion 
commonly termed bloat [13].  As opposed to the rigid tree structure representation of 
traditional GP, CGP permits the arrangement of functions in a far more flexible, typi-
cally rectangular format, referenced by conventional Cartesian co-ordinates. 

An extension of CGP for evolving image processing filters was proposed by 
Sekanina [4,5] and subsequently implemented in hardware by Zang et al. [6,7] as 
shown in Figure 1. 

 

Fig. 1. Extended Cartesian Genetic Programming for evolution of image processing filters 

A number of processing elements (PEs) are arranged in a rectangular format, each 
connected to a data bus.  The inputs I0 to I8 are the pixel values obtained from a con-
ventional 3 x 3 neighborhood image filter; these are manipulated by the PEs and the 
output replaces the pixel of interest in the processed image.  The structure of the PE, 
shown in Figure 2, comprises two multiplexers and a functional block.  The multi-
plexers can be configured, according to the values of cfg1 and cfg2 respectively, to 
select the output of another PE or image pixel input I0 to I8, as long as it is connected 
to the same data bus.  In the specific hardware representation considered here, this 
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requires that the PE or input be located in the two columns immediately preceding the 
PE containing the multiplexer in question.  The outputs of the two multiplexers are 
then provided as inputs to the functional block; the function applied to them is deter-
mined by cfg3 and selected from the available functions listed in Table 1. 

 

Fig. 2. Architecture of the processing element 

Table 1. Functions available for configuration of the processing element’s functional block 

Code Function Code Function 
F0: 0000 X  >> 1 F8: 1000 (3) (X+Y+1) >> 1 
F1: 0001 X >> 2 F9: 1001 X & 0x0F 
F2: 0010 ~ X F10: 1010 X & 0xF0 
F3: 0011 X & Y F11: 1011 X | 0x0F 
F4: 0100 X | Y F12: 1100 X | 0x F0 
F5: 0101 (1) X ^ Y F13: 1101 (4) (X&0x0F) | (Y&0xF0) 
F6: 0110 X + Y F14: 1110 (X&0x0F) ^ (Y&0xF0) 
F7: 0111 (2) (X+Y) >> 1 F15: 1111 (X&0x0F) & (Y&0xF0) 

7 4 3    4 0 3    6 1 3    8 5 3    2 11 3    2 1 3    0 4 3    12 3 3    10 9 1    12 16 3    9 13 1    
14 11 3    17 18 3    19 20 3    20 20 3    15 20 3    17 19 4    24 19 2    19 24 4    21 22 3    
22 26 4    27 22 3    28 21 1    25 23 3    28 

Fig. 3. Example chromosome for configuration of the extended CGP 

The PEs within the architecture are configure by means of a chromosome, an ex-
ample of which is given in Figure 3. 

The chromosome consists of a string of integer values, arranged logically in groups 
of three, providing values for cfg1 (multiplex 1 input), cfg2 (multiplex 2 input) and 
cfg3 (functional block function index), respectively, for each PE in the representation. 

A number of these chromosomes form the individuals of a population which are 
initialised with random values.  Each chromosome is then used to configure the  
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hardware representation which, in turn, is used to process a test image.  The image 
resulting from this operation is compared with an ideal (uncorrupted image), and a 
fitness score derived, which is then associated with the respective individual’s chro-
mosome.  After all the individuals in the population have been evaluated in this man-
ner, the fittest is retained and used as the parent for a subsequent generation of indi-
viduals. These new individuals are generated by simply mutating the parent in a non-
deterministic manner. 

Yang et al demonstrated that the image filters evolved in this way out performed 
conventional median and Gaussian image filters [6,7]. 

3   Implict Context Representation 

The extended CGP considered in Section 2 and CGP in general can be described as an 
indirect context representation; the position a particular gene occupies in the chromo-
some has an influence on the resulting phenotype, or in this case, the configuration of 
the hardware representation.  Ideally, the evolution of a system should be independent 
of the position of genes within the chromosome, but should still be a result of the 
values of those genes.  This is termed an implicit context representation by Lones and 
Tyrrell [9], who have developed a form of GP that exploits this representation, called 
Enzyme Genetic Programming (EGP). The biological inspiration for Enzyme GP is 
the metabolic pathway, and the role of enzymes which express computational charac-
teristics. This is not dissimilar to the logic network employed in this work to evolve 
the image filters described in Section 2 [8]. 

Lones and Tyrrell have developed an enzyme model comprising a shape, activity 
and specificities (or binding sites) [11], as shown in Figure 4.   

 

Fig. 4. Enzyme model illustrating shape, activity and specificities (binding sites) [11] 

Along with inputs and outputs, the enzyme model can be considered a program 
component from which a genetic program may be constructed.  The shape describes 
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how the enzyme is seen by other program components. Similarly, the binding sites 
determine the shape (and hence type) of program component the enzyme wishes to 
bind to.  Finally, the activity determines the logical function the enzyme is to perform.  
A typical EGP will comprise a set number of inputs and outputs and a number of 
enzyme models or components.  Values for each component’s binding sites and logi-
cal function are initialized non-deterministically; the component’s shape, however, is 
derived from a combination of its binding site’s shapes and logical function as shown 
in Figure 5. 

 

Fig. 5. Calculation of a component’s shape from its binding site shapes and logical function [8] 

Once initialized, components are bound together to form a network.  The order in 
which components are bound is determined by the closeness of match between one 
component’s binding site and another component’s shape. The best matching compo-
nents are bound first and the process is repeated until a network has formed in which 
no further binding is possible, as illustrated in Figure 6. 
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Fig. 6. Binding of components in a network is on the basis of closest match [8] 

Over time, components may evolve through mutation.  Mutation is applied to the 
component’s binding sites and logical function with a pre-determined probability.  
When this occurs, a new component shape is derived accordingly and may lead to 
different binding between components occurring.  This in turn may result in a modi-
fied network. 

Lones and Tyrrell implemented EGP in a parse-tree configuration and a diffusion 
model genetic algorithm called the Network GA [8,11] and applied it to several prob-
lems involving symbolic regression achieving some promising results. 

4   Implementaion 

The aim of the work described here is to combine the benefits of an implicit context 
representation (described in Section 3) with the extended Cartesian genetic program 
for evolving image filters described in Section 2. 

The processing elements within the extended CGP are particularly suited to repre-
sentation by the enzyme model used in enzyme genetic programming.  However, in 
stead of employing a parse tree arrangement, the existing CGP Cartesian arrangement 
is maintained.  The significant difference is the manner in which components are 
selected and interconnected within the representation. 
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Formation of the CGP network begins with the assignment of an output compo-
nent; this will ultimately provide a new value for the pixel under consideration in the 
filtered image.  The binding sites of the output component are then made active and 
will bind to components according the closeness of match between their respective 
shapes.  Once bound, component’s binding sites will also become active and will bind 
to other components in the same way. Binding between components is always under-
taken on a “best-fit first” basis until no further binding is possible. 

The physical hardware places constraints in the manner with which the formation 
of the network takes place. Successful binding of a new component may only take 
place if there is sufficient space for that component in the hardware representation.  
Typically, this means that any newly bound component must be placed in one of the 
two columns to the left of the existing component.  Similarly, input components I0 to 
I8 (holding the image pixel values) may only be bound to components one or two 
columns to their right in the representation. 

Once all possible binding has completed, the resulting network is applied to a test 
image and the resulting filtered image compared with the original, uncorrupted image.  
A fitness score for the individual that network is described by equation (1) which is 
identical to that used in previous image filtering evolution by Sekanina [4,5] and 
Yang [6,7]. 
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Where: 

i,j  are the image co-ordinates 
filt(i,j) is the image resulting from the resulting filter operation 
ideal(i,j) is the ideal (original uncorrupted) image 
H, W  is the height and width of the image respectively 

A 1+λ evolvable strategy is adopted for formation of the subsequent generation. 
Once a fitness score has been calculated for all individuals within the population, the 
best individual is preserved and the next generation is formed mutated versions of this 
individual.  Two separate mutation operations are performed according to predefined 
probabilities: (i) to the binding sites of the components and, (ii) to the index that se-
lects the component’s function from those available (as defined in Table 1).  Once 
these mutations have been performed, new shapes for each component are derived as 
described in Section 3. 

5   Results 

The implicit representation Cartesian genetic program (IRCGP) was tested as closely 
as possible to the conventional extended Cartesian genetic program (ECGP) under-
taken by Yang et al [6,7]. A list of the parameters used is given in Table 2 which is 
the same for both implementations. 
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Fig. 7. Original image Fig. 8. Image corrupted with added Gaussian 
noise σ =16 

  

Fig. 9. Corrupted image after conventional 
median filtering 

Fig. 10. Corrupted image after conventional 
Gaussian filtering 

  

Fig. 11. Corrupted image after applying ex-
tended CGP evolved filter 

Fig. 12. Corrupted image after applying im-
plicit representation CGP evolved filter 
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Table 2. Common parameters for both ECGP and IRCGP experiments 

Parameter Value 
Population size 15 
Number of generations 500 
Number of available functions 4 

Available functions 

(A+B+1)>>1 
(A&0x0F)|(B&0xF0) 
(A+B)>>1 
A^B 

Results are provided for 20 runs of the algorithms on a version the ‘Lena’ image 
corrupted with Gaussian noise  = 16.  A segment of the original and corrupted images 
(Lena’s face) are shown in Figures 7 and 8 respectively.  The best resulting image from 
the IRCGP is shown in Figure 12. For the purpose of comparison, the best image re-
sulting from ECGP is also shown in Figure 11, and those resulting from conventional 
mean and Gaussian smoothing filters are shown in Figures 9 and 10 respectively. 

Values for the fitness score of the IRCGP and ECGP over the 20 runs for two 
hardware configurations are given in Table 3. Fitness scores for traditional median 
and Gaussian filters are 97.50% and 97.24%, respectively.  These results are repre-
sented as a percentage of the best possible fitness score (i.e. in comparison to the 
original image). 

Table 3. Fitness score for 20 runs of IRCGP and ECGP experiments 

Hardware Configuration  
Rows Columns  

IRCGP (%) ECGP (%) 

Overall Best 97.52 97.48 4 3 
Average Best 97.45 97.38 
Overall Best 97.30 97.53 

4 6 
Average Best 96.88 97.51 

It can be seen that the best run of the IRCGP exceeds the performance of the 
median and Gaussian filters, and for the smaller (4x3) hardware configuration, 
outperforms the ECGP. 

6   Conclusion 

This paper reports the first software implementation of an implicit context representa-
tion of extended CGP for the purpose of evolving image processing filters.  Initial 
results for the evolution of noise removal filters have shown that in some configura-
tions this approach outperforms the conventional extended CGP and that of selected 
traditional image processing filters. 



416 S.L. Smith, S. Leggett, and A.M. Tyrrell 

 

Further work is currently under way to characterize this evolutionary algorithm in 
terms of its performance and efficiency.  Implementation of the algorithm in hardware 
is also being considered. 
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Abstract. This paper describes an approach to the use of gradient de-
scent search in tree based genetic programming for object recognition
problems. A weight parameter is introduced to each link between two
nodes in a program tree. The weight is defined as a floating point num-
ber and determines the degree of contribution of the sub-program tree
under the link with the weight. Changing a weight corresponds to chang-
ing the effect of the sub-program tree. The weight changes are learnt by
gradient descent search at a particular generation. The programs are
evolved and learned by both the genetic beam search and the gradient
descent search. This approach is examined and compared with the basic
genetic programming approach without gradient descent on three object
classification problems of varying difficulty. The results suggest that the
new approach works well on these problems.

1 Introduction

Since the early 1990s, there have been a number of reports on applying genetic
programming (GP) techniques to object recognition problems [1, 2, 3, 4, 5, 6, 7].
Typically, these GP systems used either high level or low level image features
and random numbers to form the terminal set, arithmetic and conditional op-
erators to construct the function set, and classification accuracy, error rate or
similar measures as the fitness function. During the evolutionary process, selec-
tion, crossover and mutation operators were applied to the genetic beam search
to find good solutions. While some of these GP systems achieved reasonable even
good results, others did not perform well. In addition, they usually spent a long
time for learning good programs for a particular task. One reason for this is that
they did not directly use the existing heuristics in the individual programs, for
example, the gap between the actual outputs of the programs and the target
outputs.

Gradient descent is a long established search technique and is commonly
used to train multilayer feed forward neural networks [8]. A main property of
this search is that it can use gradients in a neural network or other methods
effectively. This algorithm can also guarantee to find a local minima for a partic-
ular task. While the local minima might not be the best solution, it often meets
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the requirement of the task. A main characteristic of gradient descent search is
that the solutions can be improved locally but steadily.

Gradient descent search has been applied to numeric terminals [9] or con-
stants [10] of genetic programs in GP. In these approaches, gradient descent
search is applied to individual programs locally at a particular generation and
the constants in a program are modified accordingly.

The goal of this paper is to develop a new approach to the use of gradient
descent search in genetic programming for multiclass object classification prob-
lems. Instead of searching for certain good constants or numeric terminals in a
genetic program, gradient descent in this approach will be used to learn partial
structures in genetic programs. We will investigate how to apply gradient de-
scent to genetic programs so that better sub programs can be learned, how the
gradient descent search cooperates with the genetic beam search, whether this
new approach can do a good enough job on a sequence of object classification
problems of increasing difficulty, and whether this new approach outperforms
the basic GP approach.

2 GP Applied to Object Classification

In the basic GP approach, we used the tree-structure to represent genetic pro-
grams [11]. The ramped half-and-half method was used for generating programs
in the initial population and for the mutation operator [12]. The tournament se-
lection mechanism and the reproduction, crossover and mutation operators [14]
were used in the learning and evolutionary process.

We used pixel level, domain independent statistical features (referred to as
pixel statistics) as terminals and we expect the GP evolutionary process can au-
tomatically select features that are relevant to a particular domain to construct
good genetic programs. Four pixel statistics are used in this approach: the av-
erage intensity of the whole object cutout image (see section 4), the variance of
intensity of the whole object cutout image, the average intensity of the central
local region, and the variance of intensity of the central local region. In addi-
tion, we also used some constants as terminals. These constants are randomly
generated using a uniform distribution.

In the function set, we used four arithmetic operators and a conditional op-
erator {+,−,×, pdiv, if}. The +, −, and × operators have their usual meanings
— addition, subtraction and multiplication, while pdiv represents “protected”
division which is the usual division operator except that a divide by zero gives
a result of zero. Each of these functions takes two arguments. The if function
takes three arguments. The first argument, which can be any expression, consti-
tutes the condition. If the first argument is negative, the if function returns its
second argument; otherwise, it returns its third argument.

We used classification accuracy on the training set as the fitness function. To
translate the single floating point value of the program output to a class label,
we used a variant version of the program classification map [13] to perform
object classification. This variation situates class regions sequentially on the
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floating point number line. The object image will be classified to the class of
the region that the program output with the object image input falls into. Class
region boundaries start at some negative number, and end at the same positive
number. Boundaries between the starting point and the end point are allocated
with an identical interval of 1.0. For example, a five class problem would have
the following classification map.

+0.5 1.0 1.5−0.5−1.0−1.5 0

ProgOut

Class 1 Class 2 Class 3 Class 4 Class 5 

_

3 Gradient Descent Applied to Weights in Genetic
Program Structure

Our new GP approach used similar program representation, terminals, functions,
fitness function and genetic operators to the basic GP approach as described in
section 2. However, the new approach also introduced a new parameter, weight,
to each link between two nodes in a genetic program so that the gradient de-
scent search can be applied in order to learn better programs locally. Due to
the introduction of the weight parameter, the program trees, functions and the
genetic operators need some corresponding changes. This section describes the
weight parameter, the corresponding changes, and the method of using gradient
descent search to modify the weights.

3.1 Genetic Programs with Weights

Unlike the standard genetic programs, this approach introduces a weight param-
eter between every two adjacent nodes, as shown in figure 1.

The weights operate in a way similar to the weights in neural networks. Before
being passed on to the higher part of the tree, the result of each subtree in the
evolved program is multiplied by the value of the weight associated with the link.
For example, if wij is the weight between node i (parent) and node j (child),

y

2.31

*F1

F2

Node4 Node5

Node3
Node2

Node1

W W

W

12 13

34
W35

+

Fig. 1. An example evolved program with weights
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pdiv

1 1 2 2

a1 a2 a3a a1 2 a a1 2 a a1 2 
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w a w a w a / w a 
if w a  < 0 

then  w a
1 1 12 2 2 2 2 21

3 3    else   w a 

11_w a    w a1 1 2 2w a + w a

_+

Fig. 2. Functions with the new program structure and new definitions of the functions

then the input of node i from the branch of node j will be the weight wij times
the output of node j. A value 1.0 for the weight corresponds to the standard
structure of genetic programs in the basic GP approach.

Due to the introduction of the weights, the program structures are changed.
Accordingly, the functions we used in the basic GP approach will also need
corresponding changes. For example, if a node of the addition function (+) has
two child nodes a1 and a2 and corresponding weights w1 and w2, the output of
the addition function would be w1a1+w2a2. The new definitions of the functions
are shown in figure 2.

To cope with this change, the genetic operators in this approach are also
redefined in a similar way. In the new crossover operators, the two sub-programs
including the nodes and the weights are swapped after two crossover points are
selected from the two parent programs. In mutation, after a mutation point is
chosen, the sub-program was replaced by a new sub-program with randomly
mutated nodes and corresponding weights.

Based on this structure, changing a weight in a program will change the
performance of the program. In this approach, all the weights are initialised to
1.0 as the standard GP approach, then are learned and modified through the
gradient descent algorithm described in the next sub section.

3.2 Gradient Descent Applied to Program Weights

In this approach, gradient-descent is applied to changing the values of the weights.
It is assumed that a continuous cost surface C can be found to describe the per-
formance of a program at a particular classification task for all possible values
for the weights. To improve the system performance, the gradient descent search
is applied to taking steps “downhill” on the C from the current group of weights.

The gradient of C is found as the vector of partial derivatives with respect
to the parameter values. This gradient vector points along the surface, in the
direction of maximum-slope at the point used in the derivation. Changing the
parameters proportionally to this vector (negatively, as it points to “uphill”) will
move the system down the surface C. If we use wij to represent the value of the
weight between node i and node j, then the distance that the weight moved (the
change of wij) should therefore be:
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Δwij = −α · ∂C

∂wij
(1)

where α is a search factor.

Cost Surface C. We used sum-squared error over the N training object ex-
amples as the cost surface C, as shown in equation 2.

C =

∑N

k=1 (yk − Yk)2

2
(2)

where Yk is the desired program output for training example k, yk is the actual
calculated program output for training object example k.

The desired output Yk for training object example k is calculated as follows:

Yk = classk − numclass + 1
2

(3)

where classk is the class label of the object k and numclass is the total num-
ber of classes. For example, for a five class problem as described in section 2,
the desired outputs are −2,−1, 0, 1 and 2 for object classes 1, 2, 3, 4 and 5,
respectively.

Accordingly, the partial derivative of the cost function with respect to the
weight between node i and node j in the genetic program would be:

∂C

∂wij
=

∂(
∑N

k=1
(yk − Yk)2

2 )
∂yk

· ∂yk

∂wij
=

N∑
k=1

((yk − Yk) · ∂yk

∂wij
) (4)

Partial Derivative ∂yk

∂wij
. Any genetic program will be an expression consisting

of constants and sub-expressions described in section 3.1. Since these expressions
are all differentiable with respect to the weights, we can readily construct the
partial derivatives of the output of any particular program with respect to the
weights. For example, given the program shown in figure 1, if we use Oi to
represent the output of node i, then the partial derivative of the genetic program
output y with respect to the weight w35 between node 3 and node 5 will be:

∂y

∂w35
=

∂O1

∂w35
=

∂O1

∂O3
· ∂O3

∂w35

=
∂(w12O2 + w13O3)

∂O3
· ∂(w34O4 × w35O5)

∂w35
= w13 · w34 · O4 · O5

The values of the partial derivatives can be calculated for each training exam-
ple given the current values of the weights. In this way the appropriate derivative
for any weight, in a program of any depth, can be obtained using the chain rule
and the derivatives of the functions, as shown in table 1.

Search Factor α. The search factor α in equation 1 was defined to be propor-
tional to the inverted sum of the square gradients on all weights along the cost
surface, as shown in equation 5.
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Table 1. Derivatives of the functions used in this approach

Operation ∂o
∂a1

∂o
∂a2

∂o
∂w1

∂o
∂w2

∂o
∂a3

∂o
∂w3

+ w1 w2 a1 a2

− w1 −w2 a1 −a2

× w1w2a2 w2w1a1 a1w2a2 a2w1a1

pdiv w1
w2a2

−w1a1
a2
2w2

a1
w2a2

− w1a1
w2

2a2

if 0 if (w1a1 < 0) 0 if (w1a1 < 0) if (w1a1 < 0) if(w1a1 < 0)
then w2 else 0 then a2 then 0 then 0 else w3 then 0 else a3

α =
η∑M

i=1 ( ∂C
∂wi

)2
(5)

where M is the number of weights in the program, and η is a learning rate
defined by the user. In this way, the gradients of the weights will move small
steps where the cost surface is steep and move large steps where the surface is
shallow. We expect that this measure can improve search of good weights.

Summary of the Gradient Descent Algorithm. The gradient descent al-
gorithm in this approach is summarised as follows.

– Evaluate the program, save the outputs of all nodes in the program.
– Calculate the partial derivatives of the program output with respect to each

weight ∂y
∂wij

using the chain rule and table 1.
– Calculate the partial derivative of the cost function with respect to each

weight ∂C
∂wij

using equations 4 and 3.
– Calculate the search factor α using equation 5.
– Calculate the change of each weight using equation 1.
– Update the weights using (wij)new = wij + Δwij .

Note that this algorithm is an offline scheme, that is, the weights are updated
after all the patterns in the training set are presented. Also notice that the weight
learning and updating process only happens locally for individual programs at
a generation, and the genetic beam search still controls the whole evolution-
ary process globally between different generations. We expect that this hybrid
genetic beam-gradient descent approach can improve the system performance.

4 Data Sets

We used three data sets providing object classification problems of varying dif-
ficulty in the experiments. Example images are shown in figure 3.

The first set of images (figure 3a) was generated to give well defined objects
against a relatively clean background. The pixels of the objects were produced
using a Gaussian generator with different means and variances for each class.
Three classes of 960 small objects were cut out from those images to form the
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(a) (b)

(c)

Fig. 3. Sample image data sets. (a) Shape; (b) Coin; (c) Face

classification data set. The three classes are: black circles, grey squares, and light
circles. For presentation convenience, this dataset is referred to as shape.

The second set of images (figure 3b) contains scanned 5 cent and 10 cent
New Zealand coins. The coins were located in different places with different
orientations and appeared in different sides (head and tail). In addition, the
background was cluttered. We need to distinguish different coins with different
sides from the background. Five classes of 801 object cutouts were created: 160 5-
cent heads, 160 5-cent tails, 160 10-cent heads, 160 10-cent tails, and the cluttered
background (161 cutouts). Compared with the shape data set, the classification
problem in this data set is much harder. Although these are still regular, man-
made objects, the problem is very hard due to the noisy background and the
low resolution.

The third data set consists of 40 human faces (figure 3c) taken at differ-
ent times, varying lighting slightly, with different expressions (open/closed eyes,
smiling/non-smiling) and facial details (glasses/no-glasses). These images were
collected from the first four directories of the ORL face database [15]. All the
images were taken against a dark homogeneous background with limited orien-
tations. The task here is to distinguish those faces into the four different people.

For the shape and the coin data sets, the objects were equally split into
three separate data sets: one third for the training set used directly for learning
the genetic program classifiers, one third for the validation set for controlling
overfitting, and one third for the test set for measuring the performance of the
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learned program classifiers. For the face data set, due to the small number of
images, ten-fold cross validation was applied.

5 Experimental Results and Discussion

5.1 Experiment Configuration

The parameter values used in this approach are shown in table 2. The evolution-
ary process is run for a fixed number (max-generations) of generations, unless
it finds a program that solves the classification perfectly (100% accuracy on
training set), at which point the evolution is terminated early.

Table 2. Parameters used for GP training for the three datasets

Parameter Names Shape coin face Parameter Names Shape coin face
population-size 300 500 500 reproduction-rate 10% 10% 10%
initial-max-depth 5 5 5 crossover-rate 60% 60% 60%
max-depth 6 6 6 mutation-rate 30% 30% 30%
max-generations 100 100 100 cross-term 15% 15% 15%

5.2 Results

Each experiment was repeated 50 runs and the average results on the test set
at the best results of the validation set were reported. Table 3 shows the results
of the new GP approach (GP-gradient) with different learning rates against the
basic GP approach. The results at the learning rate “off” are for the basic GP
approach, where no gradient descent search is used.

As can be seen from table 3, different learning rates in the GP-gradient
approach resulted in different performance. This is consistent with the nature
of the gradient descent search — different local minima can be reached from
different learning rates. However, for all the three data sets investigated here,
it was always possible to find certain learning rates at which the GP-gradient
approach outperformed the basic GP approach. It seemed that a learning rate
of 3.0 achieved the best classification performance, suggesting that 3.0 could be
used as a starting point.

The new GP-gradient method almost always used fewer generations to find
a good program classifier than the basic GP approach, and in some cases very
much so. This suggests that the gradient descent search locally applied to indi-
vidual programs did reduce the number of evaluations and made the evolution
converge faster.

In terms of the training time, it seems that the GP-gradient method spent
more time than the basic GP approach in the easy shape data set and the coin
data set. However, this is not the case for the relatively difficult face data set,
where the new method used less training time to find a good program classifier.
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Table 3. A comparison of the results of the GP-gradient and the basic GP approach

Dataset Method Learning rate Generations Time (s) Test Accuracy (%)
GP-basic off 15.56 0.85 99.66

0.5 10.30 2.31 99.53
Shape 1.0 6.38 1.39 99.69

GP-gradient 2.0 4.58 0.97 99.71
3.0 5.52 1.22 99.80

GP-basic off 43.46 1.68 90.89
0.5 43.56 7.12 89.15

Coin 1.0 43.34 7.48 90.22
GP-gradient 2.0 43.22 7.77 90.02

3.0 43.10 7.53 92.14
GP-basic off 8.32 0.37 85.00

0.5 8.07 0.35 86.50
Face 1.0 7.30 0.32 86.25

GP-gradient 2.0 6.23 0.27 86.30
3.0 6.72 0.31 88.15

Notice that the best test accuracies were achieved with a learning rate of 3.0.
It is not clear whether better object classification results can be achieved if a
larger learning rate is applied — further investigation needs to be carried out.

6 Conclusions

The goal of this paper was to investigate an approach to the use of gradient
descent search in tree based genetic programming for multiclass object classi-
fication problems. The goal was successfully achieved by introducing a weight
parameter to the link between every two adjacent nodes in a genetic program
tree and applying gradient descent search to the weight parameter. In this way,
changing of a weight corresponds to changing of the effect of the sub-program
tree. At a particular generation, learning the changes of a weight parameter was
done locally by gradient descent search, but the whole evolution was still car-
ried out across different generations globally by the genetic beam search. Unlike
the previous approaches which also combines genetic beam search and gradient
descent search but applies gradient descent to the numeric terminals/constants
only, this approach can learn better program structures by updating the weights
of the sub programs.

This approach was examined and compared with the basic genetic program-
ming approach without gradient descent on three object classification problems
of varying difficulty. The results suggest that the new approach outperformed
the basic approach on all of these problems under certain learning rates.

The results also showed that different learning rates resulted in different
performance. It was always possible to find certain learning rates with which
better performance could be achieved. It does not seem to have a reliable way
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to obtain a good learning rate, which usually needs an empirical search through
experiments. However, if this could improve the system performance, such a
short search is a small price to pay. According to our experiments, a learning
rate of 3.0 seems a good starting point.

This work only used the offline learning scheme when modifying the weights.
We will investigate the effectiveness of the online scheme for modifying the
weights in this approach in the future.
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Abstract. Applying evolutionary methods to the generation of music and art is 
a relatively new field of enquiry. While there have been some important devel-
opments, it might be argued that to date, successful results in this domain have 
been limited. Much of the present research can be characterized as finding ad-
hoc methods that can produce subjectively interesting results. In this paper, it is 
argued that a stronger overall research plan is needed if the field is to develop in 
the longer term and attract more researchers. Five ‘open problems’ are defined 
and explained as broad principle areas of investigation for evolutionary music 
and art. Each problem is explained and the impetus and background for it is de-
scribed in the context of creative evolutionary systems. 

1   Introduction 

Education is not the filling of a pail, but the lighting of a fire. 
— W.B. Yeats 

Music, art, and indeed creativity in general are defining traits of the human condition. 
Moreover, they are one of the primary reasons why we consider the richness of living 
experience to be more than just one of survival and reproduction, even though, ironi-
cally, they may have biological origins and purposes [1, 2, 3, 4]. In recent years, evo-
lutionary computing (EC) methods have been applied to problems in music composi-
tion and art. 

The premise in creating and researching evolutionary music and art (from here on 
EMA) is that creative problems are non-trivial. Creativity is considered a positive and 
sought-after trait in all human cultures [5]. Various hypotheses have been put forward 
for this, for example musical ability has been hypothesized as the result of sexual 
selection [6]. Moreover, creativity encompasses a broad scope of tasks in terms of 
psychology, problem solving, judgment and action [7]. 

Research in EMA has covered a variety of problems in aesthetics, creativity, com-
munication and design. Broadly speaking however, much of the research and results 
have been ad-hoc; common methodologies have included: ‘use technique X from 
complexity research to make images or music’; ‘use aesthetic selection to evolve X’; 
‘devise a suitable fitness function to automate the evolution of X’; and so on. Cer-
tainly there have been many successes using such strategies. However, even in this 
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glib set of scenarios there is a sense that these strategies are simply combinatory 
products of a set of well-explored ideas from other disciplines (admittedly in a differ-
ent context). 

The aim of this paper is to define a small set of ‘open problems’ in EMA. The goal 
is not to be critical of previous work, but to provide a well-defined set of challenges 
for the EMA research community. Such an approach has been successful in other 
disciplines [8].1 After defining an important distinction in modes of research, the 
remainder of this paper presents five open problems specific to EMA and discusses 
some current research and background for each of them. 

1.1   Evolution and Art 

Before introducing the set of open problems, a key difference in research goals needs 
to be introduced. In classifying approaches, I make a primary distinction between (i) 
research where the resultant music and artwork is intended to be recognized by hu-
mans as creative (i.e. art) and (ii) research which explores the concept of creativity in 
general.  

The first case is seemingly more straightforward so we will examine it first. In 
this case the results generated by the system and/or methodology are intended for 
human appreciation as art. That is, they exhibit properties that humans recognize as 
displaying some form of creative intention or aesthetic judgment by the creator (we 
conveniently ignore whether by person or machine). People who use such tech-
niques might call or consider themselves ‘artists’ in addition to (or as opposed to) 
‘researchers’. 

The second case is different. Here, creativity is considered in a more open context, 
that is, it is not limited to being recognized by people as creative or aesthetic. In broad 
terms, creativity is not found exclusively in human behaviour. Bowerbirds, for exam-
ple, create elaborate aesthetic constructs that serve no direct survival advantage, rather 
act as displays to attract mates. In the simulation context, a similar parallel exists in 
artificial life research. In Langton’s seminal paper [9], the concept of ‘life-as-it-could-
be’ is introduced. Life-as-it-could-be represents a broader set of living systems, be-
yond the ‘life-as-we-know-it’ life observed on Earth. This broader definition of life 
admits the possibility of other kinds of life, radically different than what we currently 
know as life. For example, in Fredrick Hoyle’s classic novel The Black Cloud the 
Earth is visited by a radically different life-form that is unaware of the destruction it is 
causing on Earth until it is contacted by astronomers. Of course, this is science fiction, 
and it has been argued that life-as-it-could-be can never be that different from life-as-
we-know-it because we could never recognize it as life [10]. Even more speculative is 
the idea that life-as-it-could-be might create its own art: art-as-it-could-be. That is, 
artistic products or systems created and analyzed by synthetic autonomous agents. 
The second case is dealt with in more detail in Section 2.4. 

                                                           
1  At least in terms of getting the authors of the paper numerous citations. By posing difficult 

problems, most have not been solved, ensuring the longevity of the paper. This strategy is 
employed in this paper as well. 
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2   The Open Problems 

This section introduces the open problems. A discussion surrounding each is also 
presented. 

2.1   Searching for Interesting Phenotypes 

A common practice in EMA is one of search for interesting phenotype. In this sce-
nario, the artist or programmer designs some form of parameterized system. The sys-
tem generates output, typically in the form of sound or image. In most cases, the num-
ber of parameters is very large, making an incremental or ordered search of the entire 
parameter space intractable. Hence the use of other search techniques such as genetic 
algorithms or aesthetic selection. 

In this mode of EMA there are two primary considerations: 

1. the design of the generative system and its parameterization; 
2. the evaluation of the fitness of phenotypes produced by the system. 

In the case of aesthetic selection, the fitness evaluation is implicit, being performed 
by the user of the system. I will return to the second consideration in a later section, 
for now let us examine the first point in more detail. 

The well-known system of Karl Sims generated images using Lisp expressions 
evolved by aesthetic selection [11]. In essence these expressions were a combination 
of basic arithmetic operations and standard mathematical functions such as trigono-
metric and fractal functions. Even with a limited number of such expressions, the 
range or gamut of possible images is extremely large. However, it turns out that all of 
the images produced by such a system are of a certain ‘class’ — that is they all look 
like images made using mathematical expressions. While there might exist a Lisp 
expression for generating the Mona Lisa for example, no such expression has been 
found by aesthetic selection..2 

Steven Rooke extended the aesthetic selection system of Karl Sims [12]. He did 
not change the basic methodology (evolving images created from expressions by 
aesthetic selection), rather he added a range of additional functions to further increase 
the gamut of possibilities. Certainly his images looked different and more complex 
than those of Karl Sims, but they were still of a certain class (images made using an 
expanded set of mathematical functions). 

Indeed, in all uses of aesthetic selection the results produced are ‘of a certain 
class’, that is they exhibit strong traits of the underlying formalized system that cre-
ated them (the parameterized system). A natural, but unsuccessful strategy has been to 
increase the scope and complexity of the parameterized system, giving an even larger 
gamut of possibilities in the phenotype. Systems of more than trivial complexity can-
not be exhaustively searched. In all systems to date, this process is limited by the 

                                                           
2  In one version of Sims’ system, scanned images could form part of an expression tree, allow-

ing ‘real’ images to be manipulated and processed by the system. This does not change the 
problem discussed here, however. 



 Open Problems in Evolutionary Music and Art 431 

 

creativity of the artist or programmer in that they must use their creativity to come up 
with representations and parameterizations they think will lead to interesting results. 
The search process has shifted up a level (from parameters to mechanisms), but it is 
still a search problem that needs to be undertaken by humans: it cannot (yet) be for-
malized, and hence, automated. 

What is needed then is a system capable of introducing novelty within itself. The 
physical entities of the Earth were capable of such a task, in that they were able to 
create an emergent physical replication system. This was achieved from the bottom 
up, in a non-teleological process of self-assembly and self-organization. It was possi-
ble because atoms, molecules, genes, cells and organisms are all physical entities and 
part of the same system. Generative systems for EMA could use such a mechanism. 
This brings us to state the first open problem: 

Open problem #1: To devise a system where the both the genotype, phenotype and 
the mechanism that produces phenotype from genotype are capable of automated and 
robust modification, selection, and hence evolution. 

That is, a system that does not produce images of mathematical functions or bio-
morphs or any particular class of phenotype, due to a fixed parameterized representa-
tion. Rather, the genotype, its interpretation mechanism and phenotype exist concep-
tually as part of a singular system, capable of automated modification. Any such sys-
tem must be ‘robust’ in the sense that it is tolerant of modification without complete 
breakdown or failure. A similar challenge has been posed in artificial life research for 
the evolution of novel behaviors [13]. 

It might be argued that the phenotypes produced by DNA are ‘of a certain class’ 
(i.e. biological organisms), however DNA is able to build organisms, which in the 
appropriate environment are capable of open-ended creative behaviour. These sys-
tems exploit dynamical hierarchies to achieve their complexity.  

2.2   The Problem of Aesthetic Selection 

Aesthetic selection of images carried the promise of being able to search for the most 
beautiful or interesting phenotypes in any parameterized system. In practical terms 
however, it can only perform a limited search within a certain class of phenotypes, not 
all possible phenotypes that can be generated by the system. Therefore, the methodol-
ogy itself tells us little about creativity in general, and does not really offer the most 
beautiful or interesting images from any system. 

This limitation of aesthetic selection leads us to ask why it is does not achieve its 
goals and what other methods might be better. Aesthetic selection has several problems: 

1. Population size is limited by the ability of people to perform subjective compari-
sons on large numbers of objects (simultaneously comparing 16 different pheno-
types is relatively easy, comparing 10,000 would be significantly more difficult). 
In the case of visual phenotypes, the available display size may also limit the num-
ber and complexity of phenotypes that can be simultaneously shown in order to 
perform subjective comparison. 
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2. The subjective comparison process, even for a small number of phenotypes, is slow 
and forms a bottleneck in the evolutionary process. Human users may take hours to 
evaluate many successive generations that in an automated system could be per-
formed in a matter of seconds. 

3. Genotype-phenotype mappings are often not uniform. That is, a minor change in 
genotype may produce a radical change in phenotype. Such non-uniformities are 
particularly common in tree or graph based genotype representations such as in 
evolutionary programming, where changes to nodes can have a radical effect on the 
resultant phenotype. This problem is not limited to EMA applications and has been 
widely studied in the EC community. 

4. The size and complexity of genotypes is limited. In general, simple expressions 
generate simple images. Complex images require more resources to compute and 
in a real-time system genotypes that consume too much time or space are usually 
removed before they can complete. In general, it is difficult to distinguish a geno-
type that takes a long time to do nothing (such as a recursive null-op) and one that 
takes a long time to do something interesting (this is analogous to the halting prob-
lem). Fractal and IFS functions are often found in aesthetic image systems, as they 
are an easy way of generating complexity in an image with minimal time and space 
complexity. The problem is that this is not a general complexity, but a fractal one, 
with characteristic shapes and patterns. 

These limitations are indicative of why we can’t find the Lisp expression that gen-
erates the Mona Lisa by aesthetic selection – the human doing the selecting is limiting 
population size and diversity to such an extent that the genetic algorithm has little 
change of finding anything more than local sub-optima. Moreover, the generation 
scheme, its mapping and complexity, is limited by representation and resources. 

Such difficulties have lead researchers to try to devise schemes that remove some 
or all of these limitations while still providing the ability to find interesting pheno-
types within the parameterized system’s gamut of possibilities. One approach has 
been to change the interface and selection relationship between user(s) and phenotype 
[14] rather than removing human subjectivity from the process completely. However, 
this technique while successful for the situation in which it was devised is not gener-
ally applicable to all aesthetic selection problems. 

Genotype-Phenotype mapping has also been researched. One interesting approach 
has been to evolve genotypes that represent some computational process, which is 
itself generative. That is, the genotype specifies the process of construction and then 
the construction process builds the phenotype. As the construction process itself is 
evolvable rather than fixed, more complex outcomes are possible [15]. 

To address the problems of subjective fitness evaluation by humans, a different ap-
proach has been to try to formalize the fitness function, so it can be performed by 
computer rather than human. This introduces the second open problem: 

Open problem #2: To devise formalized fitness functions that are capable of 
measuring human aesthetic properties of phenotypes. These functions must be 
machine representable and practically computable. 
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Aesthetics, while well studied in art theory and philosophy, has yet to be fully understood by 
science. While there have been some noble attempts to measure aesthetic properties, many con-
sider the proposition itself doomed to failure. The mathematician G. D. Birkhoff famously pro-
posed an ‘aesthetic measure’, equal to order divided by complexity. Birkhoff defined ways of 
measuring order and complexity for several different categories of object, including two-
dimensional polygons and vases. While somewhat successful for simple examples, it failed to 
capture aesthetic qualities with any generality, being described more as a measure of  
‘orderliness’ [16]. 

Neuroscientists have also studied human aesthetic response in order to gain under-
standing about what makes us consider things beautiful. Ramachandran proposes ‘ten 
laws of art which cut across cultural boundaries’. These include ‘peak shift’ where 
exaggerated features exemplify learned classifications, grouping, contrast, isolation, 
symmetry, repetition, rhythm, balance and metaphor [17].  

Birkhoff’s measure and subsequent aesthetic measures of its lineage focus on 
measurable features of aesthetic objects. These are commonly geometric properties, 
dimension, proportion, fixed feature categories, organizational structure, etc. The 
basis being that any such feature or property can be objectively measured directly. 
However, there are many things considered important to aesthetic theory that cannot 
be measured directly. Such features or properties are generally interpreted rather than 
measured, often in a context-sensitive way. For example, much has been made of 
harmonious proportions (such as the golden ratio) in nature, art and music [18]. While 
such measures are interesting and revealing properties of many different types of 
structure, they say nothing about the semantics of the structure itself. It not only mat-
ters that ancient Greek temples exhibit similar geometric golden ratios, but the context 
of their form in relation to Greek and human culture, the meaning and significance to 
the observer, and the perceptual physicality (the interpreted physical relation between 
observer and observed). It seems that such easily measurable properties are used at 
the expense of details that are more specific. That is, they are at a too high level of 
abstraction, where other important features and specific details are ignored. Scientific 
theories deliberately choose levels of abstraction applicable for physical laws to be 
‘universal’. This has been a reasonably successful strategy for the physical universe. 
For aesthetic laws, however, there are not necessarily such direct abstractions or 
physical measures. 

2.3   What Is Art? 

In answer to the question ‘what is art?’ Frieder Nake proposed that anything exhibited 
in art galleries is art [19]. That is, in general terms, people (usually experts) feel that a 
work has qualities that deem it appropriate to be exhibited in a place recognized for 
the exhibition and appreciation of art. While there have been many exhibitions of 
‘computer generated’ art and even more specifically EMA art, many of these works 
are primarily selected because they are created by computer, rather than because they 
are art. 

If EMA art is to mature, it needs to become recognized as art for what it is, in addi-
tion to how it was made. 
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Open problem #3: To create EMA systems that produce art recognized by humans 
for its artistic contribution (as opposed to any purely technical fetish or fascination). 

One might consider this a new version of the Turing test, where artistic outcomes 
of EMA systems might be compared alongside those done by humans. If the audience 
cannot tell the difference, or at least considers both worthy of the title ‘art’ then the 
test has been passed. 

The idea of this test does not discount the possibility that EMA might have its own 
new aesthetic qualities or be part of a wider ‘movement’ in machine–based or genera-
tive art.3 Indeed, Western art is characterized by continuing change and innovation, 
with movements and styles fluctuating in acceptance and popularity. However, human 
systems of art theory and appreciation do consider these factors (along with many 
others) in deciding what is art – so if EMA is really art these systems should be able 
to accommodate it. 

2.4   Artificial Creativity 

I now turn to the creative activity of artificial systems. As discussed earlier, this dif-
fers fundamentally from those systems designed to produce art that is recognized and 
appreciated by humans. Artificial creativity extends Langton’s idea of artificial life 
being ‘life-as-it-could-be’. Artificial agent and creature simulations are a common 
tool in artificial life research. More recently, some researchers have begun to look at 
creative behavior in artificial systems. 

A number of definitions exist for creativity and creative behavior. In developing 
computational models of creativity, Partridge and Rowe require that creativity involve 
production of something novel and appropriate [21]. In addition, novelty may exist 
relative to the individual (Boden’s P-creativity), and for society or the whole of hu-
man culture (H-creativity in Boden’s terminology) [22]. For their computation model 
of creativity, Partridge and Rowe see novelty involving the creation of new represen-
tations through emergent memory.  

Rob Saunders evolved artificial agents capable of ‘creative’ behavior using a co-
evolutionary strategy of creative agents and critics [23]. Agents responded in terms of 
a psychological theory of interest to novel behavior. Most systems involved in the 
generation of novelty do so by appropriate recombination of basic primitives. This is 
Cariani’s combinatoric emergence where wholes that are more complex are con-
structed by combinations of irreducible primitives; the important point is that the total 
set of primitives and their function are fixed. In the case of creative emergence fun-
damentally new primitives enter the system [24]. Cariani and others have made a case 
that creative emergence is what we observe in nature. Clearly, this distinction relates 
to open problem #1, where we want the emergence of new primitives in our system, 
not just the combination of a fixed set. 

Open problem #4: To create artificial ecosystems where agents create and recognize 
their own creativity. The goal of this open problem is to help understand creativity 
and emergence, to investigate the possibilities of ‘art-as-it-could-be’. 

                                                           
3  For an interesting survey of historical precedents to generative art see [20]. 



 Open Problems in Evolutionary Music and Art 435 

 

Computational creativity has largely relied on psychological theories of creativity. 
As neuroscience advances our understanding of creative behavior, this may lead to 
new models. The challenge for researchers in EMA is to convincingly demonstrate 
the autonomous emergence of agents capable of generating and recognizing novelty 
in their interactions. 

2.5   Theories of Evolutionary Music and Art 

Finally, any research involving music or art must be mindful of theories related to 
such practices from the disciplines themselves. Even studying these theories from an 
anthropological perspective is likely to shed light on the nature of creativity and aes-
thetics. Human culture and art is constantly changing and evolving – practices ac-
cepted today as art may not have received such acceptance in the past. Evolutionary 
and generative art is no exception. If this art is to progress, there must be critical theo-
ries to contextualize and evaluate it and its practitioners. 

Open problem #5: To develop art theories of evolutionary and generative art. 

It is important to distinguish between art theory and art criticism. Art criticism is 
based on how to evaluate art within some critical framework. Art theory is not like 
scientific theory in that it’s use for prediction or general explanation is minimal. 
There does not seem to be any laws of art that will predict artists’ behaviors, or that 
explain the ‘evolution’ of art history by detailing what ‘succeeds’ in making a work 
beautiful or significant. For the products of EMA to be accepted as art, there must be 
some artistic theory that is associated with them. Some developments have begun in 
this area [25]. 

3   Conclusion 

This paper has presented five grand challenges for evolutionary music and art re-
search. There is little doubt that these are hard problems and will probably not be 
solved in the immediate future. However, there is no theoretical reason that prohibits 
their solution eventually. What is even more profound than the solution of the prob-
lems themselves, is the impact their solution will have on society and our understand-
ing of ourselves and our creativity. This is certainly a worthy research agenda. 
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Abstract. The contribution of this paper is a novel non-photorealistic
rendering (NPR) algorithm for rendering real images in an impasto
painterly style. We argue that figurative artworks are salience maps, and
develop a novel painting algorithm that uses a genetic algorithm (GA) to
search the space of possible paintings for a given image, so approaching
an “optimal” artwork in which salient detail is conserved and non-salient
detail is attenuated. We demonstrate the results of our technique on a
wide range of images, illustrating both the improved control over level of
detail due to our salience adaptive painting approach, and the benefits
gained by subsequent relaxation of the painting using the GA.

1 Introduction

Paintings are abstractions of photorealistic scenes in which salient elements are
emphasised. In the words of art historian E.H. Gombrich, “works of art are not
mirrors” [1] — artists commonly paint to capture the structure and elements
of the scene that they consider to be important; remaining detail is abstracted
away in some differential style. This differential level of emphasis is evident in all
artwork, from the sketches of young children to works of historical importance.

Processing images into artwork remains an active area of research within the
field of non-photorealistic rendering (NPR). This paper presents a novel auto-
matic NPR technique for rendering images in an impasto painterly style. Our
approach contrasts with those before us in that we seek to emulate the afore-
mentioned differential emphasis practised by artists — automatically identifying
salient regions in the image and concentrating painting detail there.

Our algorithm makes use of a new image salience measure [2], that can be
trained to select features interesting to an individual user, and which performs
global analysis to simultaneously filter and classify low-level features to detect
artifacts such as edges and corners. This enables us both to adaptively vary level
of detail in painted regions according to their salience, and to vary brush stroke
style according to the classification of salient artifacts. Further, we use a genetic
algorithm (GA) to search the space of possible paintings for the given image,
and so approach an optimal painting. A painting is deemed “better” if its level of
detail coincides more closely with the salience magnitude of the original image,
resulting in conservation of salient detail and abstraction of non-salient detail.
Although we are not the first to propose relaxation approaches to painting [4, 5],
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our approach is novel in that we converge toward a globally defined minimum
distance between salience and corresponding detail in the painting.

1.1 Related Work and Context

The development of automated painterly renderers arguably began to gain mo-
mentum with Haeberli’s semi-automatic painting environments [6]. Fully auto-
matic data dependent approaches were later presented, driven by heuristics based
on local image processing techniques that estimated stroke attributes such as
scale or orientation. Litwinowicz [7] employed short, linear paint strokes, which
were clipped to thresholded edges. Treavett and Chen [8] proposed the use of lo-
cal statistical measures, aligning strokes to axes of minimum intensity variance.
A similar approach using chromatic variance was proposed in [9]. Hertzmann
proposed a coarse-to-fine approach to painting [10] and was the first to auto-
matically place curved (β-spline) strokes rather than dabs of paint. Our stroke
placement algorithm is based firmly upon this technique. Gooch et al. [11] also
use curved strokes fitted to skeletons extracted from locally connected regions.

A commonality exists between all of these algorithms; the attributes of each
brush stroke are determined independently, by heuristics that analyse small pixel
neighbourhoods local to that stroke’s position. Rendering is, in this sense, a spa-

Source Edge map Salience map Ground truth

Fig. 1. Left: Examples of images edge detected, salience mapped, and a hand-sketched
ground truth. We observe that the global, rarity based salience maps [2] are qualita-
tively closer to sketches, and can “pick out” the circle and face where local methods
such as edge detection fail. The salience measure estimates salience magnitude and also
classifies artifacts into trained categories (bottom row). Edges are red, ridges green,
and corners blue. Right: Sobel edges (top) and salience map (bottom), corresponding
to Fig. 6b. Salient edges are discriminated from non-salient high frequency texture
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tially local process. The heuristics typically seek to convey the impression of
an artistic style whilst preserving content such as edges, and other artifacts
contributing to the upper frequencies of the Fourier spectrum. Indeed, existing
relaxation-based painting algorithms [4, 5] actively seek to maximise conservation
of high-frequency content from the original image. Measures of variance [8, 9], or
more commonly, simple edge detectors (such as Sobel) [7, 10] drive these heuris-
tics. This results in a painting in which all fine detail is emphasised, rather than
only the salient detail. Arguably this disparity contributes to the undesirable
impression that such paintings are of machine rather than natural origin.

In Fig. 1 (left) we demonstrate that not all fine scale artifacts are salient;
indeed in these images, salient and non-salient artifacts are of similar scale.
Such examples make the case for some other measure of salience incontrovertible.
When one speaks of the salience of image regions, one implicitly speaks of the
importance of those regions relative to the image as a whole. It follows that global
image analysis is a prerequisite to salience determination, rather than restricting
attention to spatially local image properties.

Our desire to control level of detail in NPR is most strongly aligned with re-
cent techniques, which appeal to user interaction to control emphasis. De Carlo
uses a gaze-tracker [12] to guide level of detail in painting. Masks, specified manu-
ally or a priori, have also been used to interactively reduce level of detail [10, 13].
Yet the problem of automatically controlling painting emphasis remains; this pa-
per presents a solution.

2 A Salience Measure for Painting

Salience is subjective; faces photographed in a crowd will hold different levels of
salience to friends or strangers. User training is one way in which subjectivity
can be conveyed to an automated salience measure, although current Computer
Vision restricts general analysis to a lower level of abstraction than this example.

We make use of a trainable salience measure, described more fully else-
where [2], that combines three operators to estimate the salience map of an
image — a scalar field in which the value of any point is directly proportional to
the perceived salience of the corresponding image point. The first of the three
operators performs unsupervised global statistical analysis to evaluate the rel-
ative rarity of image artifacts (after Walker et al.[14] who observe that salient
features are uncommon in an image). Salient artifacts must also be visible, and a
second operator filters detected artifacts to enforce this constraint. Finally, cer-
tain classes of artifact, for example edges or corners, may be more salient than
others. This observation is accommodated by a third operator that is trained
by the user highlighting salient artifacts in photographs. Signals corresponding
to these artifacts are clustered to produce a classifier which may be applied to
to estimate salience in novel images. This definition holds further advantage in
that classes of salient features may be trained and classified independently.

This trainable salience measure is well suited to our NPR painting applica-
tion for two reasons. First, the salience maps produced have been shown to be
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measurably closer to human figurative sketches of scenes than edge maps and a
number of other prescriptive salience measures [3]. Second, the ability to estimate
both the salience and the classification of image artifacts simultaneously allows
us to vary stroke style according to the class of artifact encountered (Fig. 2).
We begin by applying the salience measure to the source image; obtaining both
a salience map and a classification probability for each pixel. An intensity gra-
dient image is also computed using Gaussian derivatives, from which a gradient
direction field is obtained. The source image, direction field, salience map and
classification map are used in subsequent stages of our painting algorithm.

3 Painting as a Search

Our observations of artists lead us to assert that the level of detail in a painting
should closely correlate with the salience map of its source image. In this sense,
the optimality criterion for our paintings is a measure of the strength of this
correlation (defined in subsection 3.2, step I). We treat the painting process as
a search for the “optimal” painting under this definition. Our search strategy is
genetic algorithm (GA) based. When one considers the abstraction of a painting
as an ordered list of strokes [6] (comprising control points, thickness, etc. with
colour as a data dependent function of these), the space of possible paintings
for a given source image is very high dimensional, and our optimality criterion
makes this space extremely turbulent. Stochastic searches that model evolution-
ary processes, such as GAs [15], are often cited among the best search strategies
in such situations; large regions of problem space can be covered quickly, and
local minima more likely to be avoided [16, 17].

Our algorithm accepts as input a source image I; paintings derived from I
are points in our search space. We begin by initialising a fixed size population
of individuals. Each individual is single point in our search space, represented
by an ordered list of strokes that, when rendered, produces a painting from I.
Having initialised the population, the iterative search process begins. We now
describe the initialisation and iteration stages of the search in detail.

3.1 Initialising the Painting Population

We initialise the search by creating an initial population of fifty paintings, each
derived from the source image via a stochastic process. We now describe this
derivation process for a single painting.

A painting is formed by compositing curved spline brush strokes on a 2D
canvas of identical size to the source image. We choose piecewise Catmull-Rom
splines for ease of control since, unlike β-splines (used in [10, 11]), control points
are interpolated. A collection of “seed points” are scattered over the canvas
stochastically, with a bias toward placement in more salient regions. Brush
strokes are then grown to extend bi-directionally from each seed; each end grows
independently until halted by one or more preset criteria. Growth proceeds in a
manner similar to [10] in that we hop between pixels in the direction tangential
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Fig. 2. Left: a still-life composition and corresponding salience map. Right: a loose
and sketchy painting, exhibiting differential stroke style determined by local feature
classification. Edges are drawn with hard, precise thick strokes; ridges with a multitude
of light, inaccurate strokes. Rendered prior to the relaxation step of subsection 3.2

to intensity gradient. The list of visited pixels forms the control points for the
stroke. However, noise forms a component of any real image, and hop directions
are better regarded as samples from a stochastic distribution. We have observed
this noise to obey the central limit theorem [18], and so model this distribution
as a zero centred Gaussian, G(0, σ); we determine σ empirically (see subsec-
tion 3.1.1). Given a locally optimal direction estimate θ we select a hop direction
by adding Gaussian noise G(0, σ). The magnitude of the hop is also Gaussian
distributed; G(μ′, σ′), both parameters being inversely proportional to the local
value of the salience map. The growth of a stroke end is halted when either the
curvature between adjacent pixels, or the difference between the colour of the
pixel to be appended and the mean colour of visited pixels exceeds a threshold.
This method initially yields a sub-optimal trajectory for the stroke with respect
to our optimality criterion. However, for a “loose and sketchy” painting this is
often desirable (see Fig. 2).

The degrees of freedom available from each of the many hops combine to
create a range of stroke loci, at least one of which will result in the maximum
conservation of salient detail. The combination of these optimally positioned
strokes comprises the optimal painting, and it is by means of breeding the fittest
paintings to create successively superior renderings, that we later search for
such a painting in our iterative process. This process can out-perform stroke
placements based purely on local estimates of direction.

3.1.1 Calibration for Image Noise
The choice of σ significantly influences stroke growth, and later the relaxation
process. A value of zero forces degeneration to a loose and sketchy painting
system; a high value will lengthen the relaxation process unnecessarily and also
may introduce unnecessary local minima. We propose a one time user calibration
process to select σ as follows.



442 J.P. Collomosse and P.M. Hall

The user is asked to draw a window around an image region where direction
of image gradient is perceived to be equal; i.e. along which they would paint
strokes of similar orientation. Gradient direction within this window is sampled,
and σ computed as twice the unbiased standard deviation of the sampled angles.
We typically obtain similar σ values for similar imaging devices, which allows us
to perform this calibration very infrequently. A typical σ ranges from around 2 to
5 degrees. This variation allows between 12 and 30 degrees of variation per hop
which, given the number of hops per stroke, yields a wide range of stroke loci.
This adds credence to our argument for a relaxation process taking into account
image noise; local variations due to uncompensated image noise will likely cause
inaccurate stroke placements in single iteration painterly systems [7, 10, 9, 11].

3.1.2 Rendering a Painting
At this stage we may render one of the paintings in our initial population to
produce a “loose and sketchy” painting (Fig. 2). Alternatively we may proceed
to the iterative search stage of subsection 3.2 to locate a more optimal painting
— each iteration also requires paintings to be rendered to evaluate fitness. We
now describe how paintings are formed from individuals in the population.

A painting is formed by scan-converting and compositing its list of curved
spline brush strokes. Stroke thickness is set inversely proportional to stroke
salience; taken as the mean salience over each control point. Stroke colour is
uniform and set according to the mean of all pixels encompassed in the footprint
of the thick paint stroke. During rendering, strokes of least salience are laid down
first, with more salient strokes being painted later. This prevents strokes from
non-salient regions encroaching upon salient areas of the painting. The ability of
our salience measure to differentiate between classes of salient feature (e.g. edge,
ridge) also enables us to paint in context dependent styles. In Fig. 2 the clas-
sification probability of a feature is used as a parameter to interpolate between
three stroke rendering styles flat, edge and ridge.

3.2 Iterative Relaxation by GA

Genetic algorithms (GAs) simulate the process of natural selection by breeding
successive generations of individuals through cross-over, fitness-proportionate re-
production and mutation [17]. In our implementation such individuals are paint-
ings; their genomes being ordered lists of strokes. We now describe a single
iteration of the GA search, which is repeated until the improvements gained
over the previous few generations are marginal (the change in both average and
maximum population fitness over a sliding time window fall below a threshold).

I. Fitness and Selection. The entire population is rendered, and edge maps
of each painting are produced using by convolution with Gaussian derivatives,
which serve as a quantitative measure of local fine detail. The generated maps
are then compared to a precomputed salience map of the source image. The
mean squared error (MSE) between maps is used as the basis for determining
the fitness of a particular painting; the lower the MSE, the better the painting. In
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this manner, individuals in the population are ranked according to fitness. The
bottom 10% are culled, and the top 10% percent pass to the next generation; this
promotes convergence. The top 90% percent are used to produce the remainder
of the next generation. Two individuals are selected stochastically with a bias
to fitness, and bred via cross-over and mutation to produce a novel offspring for
the successive generation. This process repeats until the population count of the
new generation equals that of the current generation.

II. Cross-over. Two difference images, A and B, are produced by subtracting
the edge maps of the parents from the salience map of the source image. By
computing the binary mask A > B, and likewise B > A, we are able to determine
which pixels in one parent contribute toward the fitness criterion to a greater
degree than those in the other. Since the primitives of our paintings are thick
strokes rather than pixels, we apply dilation to both masks. Strokes seeded within

1st 70th

Fig. 3. Relaxation by GA search. Detail in the salient region of the ‘dragon’ painting
sampled from the fittest individual in the 1st, and 70th generation of the relaxation
process. Strokes converge to tightly match contours in salient regions of the image thus
conserving salient detail
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Fig. 4. Left: Three runs of the relaxation process; dotted line corresponds to the model
(Fig. 6a), dashed line the dragon (Fig. 3) and solid line the truck (Fig. 6g). MSE of the
fittest individual is plotted against time. Right: MSE averaged over each generation
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the set regions in each mask are copied from the respective parent to the new
offspring. A binary AND operation between masks yields mutually preferred
regions, for which the contributing parent is decided arbitrarily.

III. Random Mutation. A “temporary” painting individual is synthesised
as described in subsection 3.1. A binary mask is produced containing several
small discs of stochastic number, location and radius. Strokes seeded within set
regions of the mask are substituted for those in the temporary painting. On
average, mutation occurs over approximately 4% of the canvas area.

Implementation Notes. The evaluation step is the most lengthly part of the
GA process, and rendering is farmed out to several machines concurrently. In
our implementation we distribute rendering over a small heterogeneous (Pentium
III/UltraSPARC) cluster. The typical time to render a 50 painting generation
at 1024 × 768 resolution is on average 15 minutes over 6 workstations. Relax-
ation of the painting can therefore take in the order of hours, but significant
improvements in stroke placement can be achieved, as can been seen in Fig. 3.

4 Results and Discussion

We present a gallery of rendered paintings in Fig. 6. The painting of the model
in Fig. 6b converged after 92 generations. Thin precise strokes have been painted
along salient edges, while ridges and flats have been painted with coarser strokes.
Observe that non-salient high-frequency texture on the rock has been attenuated,
yet tight precise strokes have been used to emphasise salient contours of the face.
In the original, the high frequency detail in both regions is of similar scale and
magnitude; existing painterly techniques would, by contrast, assign both regions
equal emphasis. With current techniques, one might globally increase the kernel
scale of a low-pass filter [10] or raise thresholds on Sobel edge magnitude [7] to
reduce emphasis on the rock. However this would cause a similar drop in the
level of detail on the face (Fig. 6a). Conversely, by admitting detail on the face

Fig. 5. Detail from Fig. 6g, region A. Using our adaptive approach, salient detail
(sign-post) is conserved, and non-salient texture (shrubbery) is abstracted away. Left:
original. Middle: existing approach [7]. Right: our proposed GA approach
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a) b) d) e)

c)

A B

f)

g)

Fig. 6. A gallery of paintings illustrating application of our algorithm. Higher resolution
electronic versions of all our paintings are included in the material accompanying this
paper
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one would unduly emphasise the rock (Fig. 6c). We automatically differentiate
between such regions using a perceptual salience map (Fig. 1) – contrast this
with the Sobel edge field where no such distinction can be made.

We present a still-life in Fig. 6e which achieved convergence after 110 genera-
tions. In Fig. 6f we present a similar painting prior to relaxation, demonstrating
differential rendering style; strokes with a high probability of being edges are
darkened to give the effect of a holding line. Further examples of level of de-
tail adaptation to salience are given in Fig. 6g. In region A, the salient sign is
emphasised whilst non-salient texture of the background shrubbery is not (see
Fig. 5). For the purposes of demonstration we have manually altered a portion
of salience map in region B, causing all detail to be regarded as non-salient.

All of our experiments have used populations of 50 paintings per generation.
We initially speculated that population level should be set in order of hundreds
to create the diversity needed to relax the painting. Whilst convergence still oc-
curs with such population limits, it requires, on average, 2 to 3 times as many
iterations to achieve. Such interactions are often observed in complex optimisa-
tion problems employing GAs [17]. We conclude that the diversity introduced
by our mutation operator is sufficient to warrant the lower population limit.

As regards rendering, we might choose to texture strokes to produce more
realistic brush patterns — however, we have concentrated on stroke placement
rather than media emulation, and leave such implementation issues open. We
believe the most productive avenues for future research will explore both new
fitness functions and alternative uses for salience measures in image-based NPR.
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Abstract. This paper explores strategies for slowing the onset of convergence in 
an evolving population of agents. The strategies include the emergent 
maintenance of separate agent sub-populations and migration between them, and 
the introduction of virtual diseases that co-evolve parasitically within their hosts. 
The method looks to Artificial Life and epidemiology for its inspiration but its 
ultimate concerns are in studying epidemics as a process suitable for application 
to generative electronic art. The simulation is used to construct a prototype art-
work for a fully interactive stereoscopic virtual-reality environment to be 
exhibited in a science museum. 

1   Motivation and Past Work 

Evolutionary, ecological simulations often converge with the population 
predominantly of similar genetic composition. For generative electronic art this may 
have undesirable aesthetic consequences, especially if the desired result is an 
exploration of diverse audio or visual solutions within the constraints of the work. For 
instance, it may be desirable that diverse visual and sonic forms be present in a 
simulated environment simultaneously and so the tendency of the population towards 
genetic impoverishment must be averted. 

This paper focuses primarily on a notable omission from many Artificial Life 
models and publications, disease1. Typical ecological simulations model creatures 
competing for food, mating, fighting, and dieing. Yaeger’s PolyWorld is a seminal 
example in which agents interact utilizing colour vision [1]. Todd has noted strategies 
for removing creatures from a population subject to a genetic algorithm but stops 
short of exploring different reasons for death in the population [2] (for example 
disease or suicide). Mascaro et al. have dealt specifically with suicide in a population 
of simple agents [3]. Ray’s Tierra simulation eliminates elderly or ineffective 
population members with a “reaper”. Also of interest is the emergence of “parasitic” 
code in his system [4]. 

The Artificial Life literature has much to say on co-evolution as a means of 
improving a genetic algorithm’s performance through increased population diversity 

                                                           
1 Little has been written in the Artificial Life literature on disease’s counterpart decay either for 

that matter — a subject for future investigation. 
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[5, 6]. This work is similarly inspired, only the simulations model agents in virtual 
worlds and do not optimize explicit fitness functions. 

This paper borrows generally from ideas presented in all of the above literature, but 
its concerns are initially aesthetic and it specifically examines the process of 
epidemics — the transmission of disease through a population of susceptible 
individuals. Hence, most of the ideas for the research did not emerge from the 
publications above, but from ideas extracted from the literature of epidemiology and 
from art history. Both of these influences are surveyed below. 

1.1   A Brief Note on the Epidemic in Art 

It may seem a little crass or at best gothic to study the aesthetics of epidemics, yet for 
centuries plagues and disease have inspired artists to depict their horrors [7] and the 
fear of the ghastly death that often ensues [8]. Literary works such as The Masque of 
the Red Death (Poe 1842), the novel The Andromeda Strain (Crichton 1969), the film 
The Crazies (Romero 1973), and countless derivatives, maintain the cultural visibility 
and gory fascination of the epidemic. Contemporary art is no less concerned with 
epidemics. In particular, HIV/AIDS has driven many to artistic expression [9]. 

In the context of generative electronic art, the spread of infection is a biological 
process that may initially be treated without consideration of its emotional 
connotations. Such studies may lend themselves to a more thorough investigation of 
the potential of disease for application to software-based art. After the mechanisms of 
epidemics are understood this knowledge may be re-coupled with the emotional 
impact of the epidemic. The value of investigating biological processes and artificial 
life in the context of art are considered elsewhere [10]. 

1.2   An Introduction to Models rom Epidemiology 

A fully-cited history of the mathematical theory of epidemics is beyond the scope of 
this paper. The history leading to the classic model discussed below is provided in 
[11, 12]. 

At least since the 1920’s, stochastic models of epidemics have been utilized. The 
standard model is based on a population of individuals who are either susceptible to a 
specific disease (susceptibles denoted S) or infected with the disease and capable of 
transmitting it to others (infectives denoted I). Population members who overcome a 
disease may become immune to further infection2 or may become susceptible once 
again depending on the particular disease. Population members who are immune to a 
disease or remain infected but through isolation cannot transmit it, are considered 
removed (denoted R). The model as described is known as an SIR model. It may be 
modified slightly to provide fresh susceptibles through birth or immigration. 

Some pertinent parameters of epidemic models are as follows. The period of time 
during which a disease exists entirely within an organism is known as the disease’s 
latent period. The organism is not infective during this period. An incubation period 

                                                           
2 Following a bout of a disease a victim may be deceased, alternatively their immune system 

may prevent repeat infiltration by the same virus. 
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often follows latency. During incubation the organism may not show outward sign of 
infection but is nevertheless infective. Usually once the incubation period is over, the 
victim of the disease is clearly marked by symptoms and can therefore be avoided by 
susceptibles. 

Probabilistic epidemiological models that operate in discrete time steps are 
particularly suited to implementation in software.3 At any time step, the probability of 
a new case of the disease appearing is proportional to the number of susceptibles 
multiplied by the number of infectives. This basic model assumes random mixing of 
individuals in the population and does not allow for the complex interactions between 
physically separated sub-populations, nor for variable incubation or latent periods of a 
disease. Various extensions to allow for these phenomena have been added over the 
last fifty years. Some mathematical models and computer simulations deal with the 
spatial distribution of susceptibles along a line, across a lattice or over a network to 
overcome the inaccuracies due to the assumption of random mixing of the population. 
Cellular-automata and other discretized versions of the SIR method have been utilized 
also [13, 14]. Some of these models have also incorporated disease carriers (e.g. 
some viruses are transferred by mosquito), and non-homogeneous populations. 

The current threats of biological warfare and terrorism have raised the stakes in 
Western society for epidemiology. The U.S. National Institute of General Medical 
Sciences has devoted $1.6 billion to a fledgling agent-based study of epidemics [15]. 

Like the U.S. project, this paper adopts agent modelling to represent the principles 
of epidemiology in an intuitive but realistic fashion. The motivation is, in this case, 
purely aesthetic. As shall be shown, the process of epidemic spread offers a means of 
varying the genetic and phenotypic diversity of a population and of capping its growth 
and density. 

1.3   Relevant Consequences of Basic Epidemic Theory 

There are two theories of epidemiology that are particularly relevant here. The first of 
these is known as the Threshold Theorem [16]: a disease cannot take hold in a 
population of susceptibles unless the population density is above a particular 
threshold. This value relates to the infectivity of a disease and the death and recovery 
rates it induces. If population density passes beyond the threshold, the disease will 
reduce the population to a level as far below the threshold as it was above it prior to 
the epidemic. 

The Threshold Theorem has many consequences, one of which has come to be 
known as Herd Immunity [11, pp. 27-31]. This theory indicates that a calculable 
number less than the full population needs to be immunized to prevent an epidemic. 
Unfortunately the theory has been shown to provide inaccurate figures in practice, due 
to its assumption of random mixing in a population. Nevertheless, it highlights an 
important aspect of epidemics, namely that the spread of a disease is not dependent on 
the percentage of a population who are immune, but on the contact between 

                                                           
3 It is interesting to note that in the 1920’s two American epidemiologists Reed and Frost 

demonstrated a discrete mechanical model in which coloured balls represented susceptibles 
and infectives. 
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susceptibles and infectives. When a population does not mix uniformly, the supply of 
susceptibles may be similarly irregular.4 

2   An Agent-Based Simulation of Infectious Disease Epidemics 

The present simulation runs in discrete time steps during which a population of agents 
(represented visually as coloured boxes of different sizes) moves freely about a 
continuous-space, toroidal world. The essential features of the model are described 
below, followed by a description of a prototype artwork that employs the new model. 

2.1   Agent Composition, Behaviour and Evolution 

Agents (coloured boxes) are able to detect the presence, colour and size of other 
boxes within their individual visual range. Boxes may move at their own speed 
towards or away from a box they see, or they may wander randomly. Their strategy 
for interacting with the world is based on a set of parameters that describe a path to 
travel based on the presence of a neighbour they “like”, “dislike”, or the absence of 
any visible neighbours. The like/dislike functions relate to each box’s preferences for 
others of particular sizes and colours. The natural speed of movement of a box is 
inversely proportional to its volume. The box may speed up or slow down with 
respect to this value depending on how attractive or repulsive its goal appears. 

Boxes meeting in space may find one another mutually attractive. If so, they may 
mate with one another and produce a single child per time step. The characteristics of 
the child are specified in terms of the genotype of each parent: an array of floating-
point values coding an agent’s dimensions and colour. The floating-point genotype 
also includes two colour templates, one that the agent seeks out in its companions 
(and potential mates) and the other from which it flees. A gene specifying a target 
partner size for the agent’s likes and dislikes has also been implemented and operates 
in a similar manner. 

The system behaves equally well with various schemes for crossover and mutation 
of the agent’s genotype. This aspect of the system is not critical to its success but the 
method used employed a single crossover point and mutation of a gene in every child 
by a random amount between +/- 5%. 

New births are subject to an overflow test of the available computer memory. If a 
birth would cause an overflow the request is refused. Following an unsuccessful 
request, a random member of the population may (or may not) be eliminated from the 
simulation to make room for future requests. 

During each time step of the simulation, agents expend an amount of energy 
proportional to their volume to move and metabolise. Agent reproduction requires 
energy from each parent. This acts as a contribution to the initial energy of the 

                                                           
4  For example, if a socio-economic group is immunized against a disease, and these people do 

not mix randomly with people from other groups, an epidemic may still occur within the 
latter groups whilst the former is immunized. I.e. sub-group mixing is important in 
considering the spread of a disease. 
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offspring. Energy is gained by an agent each time step from the environment in an 
amount proportional to its upper surface area as if each box was equipped with a 
rooftop solar cell charging a battery. Boxes exhausting their energy supply are 
removed from the simulation (they die). Hence reproduction and movement both 
shorten the lifespan of a box if it is not able to glean sufficient energy to support 
itself. 

Boxes age throughout a simulation. Those younger than a preset maturity age are 
unable to reproduce. Boxes that reach the end of their lifespan are removed from the 
simulation. These parameters are subject to evolution in the same way as the 
parameters discussed earlier. 

2.2   Disease Behaviour and Evolution 

The agents in the model are provided with features implementing infection and the 
transmission of diseases to others. Agents may visually detect the symptoms of a 
disease in others although this feature was not utilized in the current experiments. 

A simulation disease may only occur within a host agent i.e. disease does not 
persist in the simulation environment. An agent is infected by a disease when it meets 
an infective and it is determined to be susceptible. A box of a particular colour is 
susceptible to a disease according to its match with the colour-signature of the 
disease. The closer the match between the two colours, the higher the probability the 
disease will be successfully transferred from the host to a susceptible in a time step 
during which the agents are in contact. The presence of an active disease in an agent 
blocks secondary infection. 

Simulation diseases possess a devastation value. Highly devastating diseases 
remove large amounts of energy from their hosts every time step. Devastation is 
scaled by the match between a disease’s colour-signature and the colour of the host. 
The closer the match, the more the devastation of the disease is scaled upwards. In 
addition, the higher the devastation and the closer the colour match to a susceptible, 
the more likely that agent will be infected. 

A parameter determines the lifespan of a simulation disease in a particular host. 
The longer this is, the more energy a host needs to invest in total to overcome a 
disease. If a disease is overcome without the death of the host, the agent acquires 
immunity to the strain of the disease by adding it to an immunity list. Any further 
contact with this disease will result in an immune response that prevents the disease 
from infecting the agent a second time. 

A given instance of a disease is killed when its host is killed, irrespective of the 
lifespan of the disease. In addition to an individual lifespan, each disease has 
parameters indicating its dormant and incubation periods. 

Real diseases such as viruses replicate and mutate within a host much more rapidly 
than the hosts themselves reproduce, circumventing the response of a host’s auto-
immune system. Consequently, it is possible for humans to repeatedly catch viruses 
such as the common cold and flu. In order to model this aspect of biology, within a 
specific host the simulation diseases undergo reproduction during every time step of 
their lifespan. This is modelled asexually and may mutate any aspect of the disease 
including its colour-signature, devastation, lifespan, incubation and latent periods. 



 Artificial Life, Death and Epidemics in Evolutionary, Generative Electronic Art 453 

 

Mutation may also alter the parameter of each disease that determines how frequently 
it mutates during reproduction. Together all of these parameters allow the diseases to 
co-evolve with the more slowly evolving agent population. 

The parameters for the disease and agents fully specify the features of the epidemic 
models discussed above. In conjunction with the agents’ evolutionary model, a 
complex and flexible simulation has been devised that allows for studies of epidemics 
in non-homogeneous populations with non-random mixing. Fig. 1 illustrates the 
visualization scheme employed for the simulation. 

Fig. 1. The visualization scheme for agents and infection 

3   Results 

It is beyond the scope of this paper to delve into the quantitative results of the 
simulation, this would be more fitting in the epidemiology literature. Instead, in 
keeping with the present aesthetic exploration, the results shall be described 
qualitatively. 

As indicated in the motivation for this work, it had been noted that ecological 
simulations in which agents competed for resources (including mates and energy) 
often resulted in a genetically impoverished, homogeneous population. In the context 
of electronic media art, the resulting genetic drift through the phenotypic space was 
perceived by the artist to be quite beautiful, but nevertheless, perhaps a little boring. It 
was hoped that by introducing the element of disease to the population, diversity 
might be encouraged and uniformity exploited and eliminated by infection. 

Happily, the disease did indeed exploit the population’s uniformity when it arose. 
Disease also exploited populations of agents that clustered tightly together. In the 
absence of disease, boxes of particular colours and sizes often dominated a 
simulation, forming large colonies of potential mates. A typical screen shot after 
14,000 time steps of the simulation without disease is reproduced in fig. 2(a). Fig. 
2(b) illustrates a run after 14000 time steps with identical initial conditions, but in 
which the disease model was introduced. The diversity in dimensions, colour and 
spread of the population is far greater in fig. 2(b) than in fig. 2(a). In fact, after as few 
as 2500 time steps, the non-diseased model converges to homogeneity and does not 
break from this condition but drifts gently through genetic space. The population 
model incorporating disease seems to maintain its diversity indefinitely. 
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Fig. 2. Two simulation screenshots after 14,000 time steps: (a) without the epidemiological 
model; (b) with the epidemiological model 

A disease simulation run involves the spontaneous appearance of a disease on 
average once every one-hundred-thousand agent updates. This new disease is 
generated with a colour-signature that matches the colour of the randomly selected 
agent. It is then infected with the disease and left to continue its travels. Apart from 
the colour-signature, all other disease parameters for the infection are randomly 
generated. 

Depending on the parameters of the new disease, the traits of the infected agent and 
the population as a whole, the new disease may or may not cause an epidemic. The 
likelihood of an epidemic is specified by the Threshold and Herd Immunity theories 
described above. Some observed outcomes are described below along with the 
conditions giving rise to them in the present simulation environment. 

Disease elimination (immediate). If the disease is insufficiently long-lived, or the 
population is insufficiently dense, or the host does not co-habit with others of a 
similar colour to itself, then the disease may fail to contact any susceptibles before it 
dies within the host. The disease will be eliminated from the population immediately. 

Disease spread (immediate). A disease may mutate sufficiently within a host to 
infect susceptibles of a colour significantly different to the original host. If the host 
mixes amongst others of its kind they may become infected with the disease also. 
Occasionally the stochastic mechanism allows for a disease to infect a host coloured 
differently to its own signature. In this case, the devastation of the disease will be low 
in the infected host but the host nevertheless is able to infect other susceptibles. Such 
a host may be considered a “carrier” of the disease. 

Disease elimination (eventual). If the disease manages to take a hold in the 
population it may nevertheless die out eventually if the number of susceptibles is 
reduced. This may happen when a sizeable proportion of the agents encountered by 
infectives is immune to the disease (even though the population as a whole may not 
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have a significant number of immune members – see footnote 4 above). 
Circumstances like this arise when agents overcome the disease and acquire 
immunity, or when the disease is so devastating that it rapidly wipes out the supply of 
susceptibles before the agents are able to produce many offspring. 

Disease spread (continual). A disease well-suited to its environment has sufficient 
lifespan to ensure it is passed from one susceptible agent to another. Such a disease 
also needs to be sufficiently devastating that it can be transferred successfully, but not 
so devastating that it kills off its supply of susceptibles. Diseases that fit these criteria 
also have to be sufficiently stable to avoid unwanted mutations that would render 
them ineffective, but sufficiently mutable so that they can keep infecting an evolving 
population of hosts. The simulation has given rise to diseases that meet all of these 
criteria and persist in the population for long periods of time. 

Of particular interest are diseases that sustain themselves indefinitely when they 
are able to utilize susceptibles that are prolific breeders. Such diseases are able to 
spread through contact between mates who seek one another out (sexually transmitted 
diseases?) and also by contact between a parent and its newly born. Newly born 
agents may have traits slightly different to their parents so that occasionally one tends 
to wander off to seek its own preferred companions, taking the disease to infect 
others. As long as the disease remains latent for a sufficiently long interval, it will not 
kill or weaken the agent prior to its immigration to a further enclave. 

4   Artwork Prototype 

The eventual goal for this research is to establish an interactive, stereoscopic, virtual 
environment. The viewer’s position will be monitored by a camera aimed in front of 
the viewing screen and mapped into a virtual location overlaid with the physical 
space. The overlay region is a section of the virtual world extending visually beyond 
the stereoscopic screen and therefore conceptually and apparently forming the 
interface between the virtual and real environments of the visitor’s experience.5 See 
fig. 3 for a model and schematic of the system. The final work will have a more 
complex geometric model for the agents than the present wire-frame box. 

By moving within the overlay region, visitors may attract the attention of the 
agents in the neighbourhood. Depending on the visual characteristics of the visitors, 
and the likes and dislikes of the agents, the virtual creatures may flee, approach, or 
remain disinterested. It is anticipated that the traits of the audience that will be 
perceived by the agents include coarse approximations of an audience member’s size, 
position and the presence of any colour as determined by processing a live video 
image of the overlay region for each screen of the visualization system. The eight-
screen stereoscopic system for viewing the environment has been constructed and is 
currently situated in the Museum of Victoria in Melbourne, Australia. Software to 

                                                           
5 Due to the nature of stereoscopic projection, the viewer will be unable to see agents behind or 

to the side of their own position but these will be simulated all the same. Agents in front of 
the viewer and apparently on either side of the screen will be visible. 
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monitor the video image has been partially written but has not yet been configured to 
operate with the simulation. 

The prototype of the system above has been implemented employing virtual-
human agents in place of the visitors. The apparent size of the virtual humans is 
normalized to match the dimensions of the box agents. Any colouration of the virtual 
agents (corresponding to any coloured clothing of the real humans on the video 
image) is treated as the presence of an infective disease in the human agent. Human 
agents do not die although they may leave the overlay region and thus the simulation. 
Box agents may mate with human agents if the box agents find the humans attractive. 
Offspring traits are determined by combining what is known about the human agent 
(based on their appearance on the video image) with the genes of the box agent. 
If a “diseased” human agent encounters a susceptible box agent, the box may catch 
the disease and carry it into the virtual environment. Hence, the presence of human 
viewers wearing coloured clothes spreads disease that directly alters the evolution of 
the virtual population, culling populations of colour closest to the colours worn by the 
visitors. 

   

Fig. 3. Artwork prototype: (a) installation visualization (agents will not be rendered as boxes in 
the final version); (b) schematic, overhead representation of a single screen. Humans (drawn as 
filled squares) and agents interact in the grey region “outside” the screen 

5   Conclusions and Future Work 

A model of epidemics has been introduced to an evolutionary, agent-based simulation 
in order to increase the aesthetic interest of the population at any one time. The model 
improved the overall diversity of the population as desired and also encouraged its 
spread across the available virtual space. The behaviour of the epidemics modelled 
was in and of itself interesting to watch. A wide variety of disease outcomes emerged 
from the simulation, each an apparently plausible model of real-world outbreaks. 

Much remains to be done. Besides the countless experiments that might be carried 
out with the epidemiological model for its own sake, the interactive artwork is still in 
its early stages. The video-processing software needs to be altered to work with the 
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simulation (a time-consuming task) and more interesting visual forms need to be 
designed for the simulation agents. Nevertheless, even as it stands the simulation 
provides a fascinating experience for the informed viewer who understands the 
visualization system employed, and can interpret the coloured patterns appearing on 
the screen. 
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The Electric Sheep Screen-Saver: A Case Study in
Aesthetic Evolution

Scott Draves

Spotworks, San Francisco CA, USA

Abstract. Electric Sheep is a distributed screen-saver that harnesses idle com-
puters into a render farm with the purpose of animating and evolving artificial
life-forms known as sheep. The votes of the users form the basis for the fitness
function for a genetic algorithm on a space of fractal animations. Users also may
design sheep by hand for inclusion in the gene pool. This paper describes the
system and its algorithms, and reports statistics from 11 weeks of operation. The
data indicate that Electric Sheep functions more as an amplifier of its human col-
laborators’ creativity rather than as a traditional genetic algorithm that optimizes
a fitness function.

1 Introduction

Electric Sheep [5] [6] was inspired by SETI@Home [1] and has a similar design. Both
are distributed systems with client/server architecture where the client is a screen-saver
installable on an ordinary PC. Electric Sheep distributes the rendering of fractal anima-
tions. Each animation is 128 frames long and is known as a sheep.

Besides rendering frames, the client also downloads completed sheep and displays
them to the user. The user may vote for the currently displayed sheep by pressing the up
arrow key.

Each sheep is specified by a genetic code comprised of about 160 floating-point
numbers. The codes are generated by the server according to a genetic algorithm where
the fitness is determined by the collective votes of the users. This is a form of aesthetic
evolution, a concept first realized by Karl Sims [9] and analyzed by Alan Dorin [3].

This is how Electric Sheep worked until March 2004, when a new source of genomes
appeared: Apophysis [10]. Apophysis is a traditional, stand-alone Windows GUI to the
sheep genetic code primarily intended for still-image design, but useful for key-frame
animation. Besides a traditional direct manipulation interface where the user drags sliders
and types numbers into labeled fields, it includes a Sims-style mutation explorer.

In March, Townsend and Draves connected this application to the Electric Sheep
server. A simple menu command causes the current genome to be posted to the server,
rendered, and distributed to all active clients. If the resulting animation receives votes it
may reproduce and interbreed with the artificially evolved population.

Not surprisingly, these posted genomes proved much more popular than the purely
random ones. And as they are subject to mutation and crossover, the genetic algorithm
creates variants of them. One can compare the total amount of quality animation to the
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Fig. 1. Sheep 15875, on the top-left, was born on August 16 and died 24 hours later after receiving
one vote. It was one of 42 siblings. It was reincarnated on October 28 as sheep 29140, received
a peak rating of 29, lived 7 days, and had 26 children, 8 of which appear to its right. Below are
five generations of sheep in order starting on the left. Their numbers are 1751, 1903, 2313, 2772,
and 2975. The last is a result of mutation, the previous three of crossover, the first was posted by
etomchek

amount that was human designed. This ratio is the creative amplification factor of the
system, as discussed in Section 6.1.

The rest of this paper is structured as follows: Section 2 describes the architecture
and implementation of Electric Sheep. Section 3 briefly explains the concept and artistic
goals of the project. Section 4 surveys the genetic code on which all sheep rendering
and evolution is based, and Section 5 explains the genetic operators and the specifics of
the evolutionary algorithm. Section 6 reports empirical results of running this system
for over 11 weeks during which time more than 6000 sheep were born. Section 7 puts
this work in context of past research, and Section 8 concludes.

2 Architecture and Implementation

Electric Sheep has a client/server architecture. The client initiates all communication
between them, and if no client were running the server would not run at all.

The client has three main threads. One thread downloads sheep animations from the
server to a local disk cache. It downloads those with highest rating first. The default size
of the cache is 300Mbytes (enough for 65 animations) but the user may change it.Another
thread reads the sheep from the cache and displays them in a continuous sequence on
the screen. The third thread contacts the server, receives a genome specifying a frame to
render, renders the frame, then uploads the resulting JPEG file.

The server maintains several collections of sheep. Sheep are numbered as they are
created and are identified by this sequence number. Freshly conceived genomes start
out in the render queue. When all the frames of a sheep have been uploaded, they are
compressed into MPEG and deleted, and the sheep is made available for download and
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voting. Sheep average 4.6Mbytes each. Eventually the sheep dies (Section 5.2 explains
when) and the MPEG file is deleted.

All these sheep are referred to collectively as a generation. Each time the server is
reset the database is wiped, all sheep are deleted from the server and from all client
caches, the generation number is incremented, and evolution starts fresh. The sheep that
are the subject of this paper are members of generation 165.

The server is implemented with two machines in separate colocation facilities. Both
are commodity Linux x86 servers running Apache. One runs the evolutionary algorithm,
collects frames and votes, compresses frames, and sends genomes to clients for rendering.
The other only serves the completed MPEGs. The first server receives 221Kbit/s from
the clients and transmits 263Kbit/s to them (measured average of July to October 2004).
The MPEG server’s bandwidth allocation has varied from 15 to 20Mbit/s, and it uses all
of it.

The MPEG server is currently the bottleneck in the system. A future version of
Electric Sheep will use a P2P network to distribute this bandwidth load much as the
computation load already is.

The client runs on Linux, OSX, and Windows. It uses only the HTTP protocol on port
80 and it supports proxies. However, it does require a broadband, always-on connection
to the internet. When the server is not reachable the client’s sheep display still works but
no new sheep appear.

All the code is open source and is licensed under the GPL (General Public License).
The fractal flame utilities are written in C and the server is written in Perl. The clients
are written in C, C++, and Objective-C.

3 Concept and Motivation

Electric Sheep is an attention vortex. It illustrates the process by which the longer
and closer one studies something, the more detail and structure appears. Electric sheep
investigates the role of experiencers in creating the experience. If nobody ran the client,
there would be nothing to see. The sheep system exhibits increasing returns on each of
its levels:

– As more clients join, more computational muscle becomes available, and the reso-
lution of the graphics may be increased, either by making the sheep longer, larger,
or sharper. The more people who participate, the better the graphics look. These
adjustments are made manually on the server or with new client releases.

– Likewise, as developers focus more of their attention on the source code, the client
and server themselves become more efficient, grow new features, and are ported
into new habitats. The project gains momentum, and attracts more developers.

– And as more users vote for their favorite sheep, the evolutionary algorithm more
quickly distills randomness into eye candy.

The votes tell the server which sheep are receiving the most attention. Those sheep
are elaborated, expanding the variety and detail of those parts of the fractal space that
are most interesting.

There is a deeper motiviation however: I believe the free flow of code is an increas-
ingly important social and artistic force. The proliferation of powerful computers with
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high-bandwidth network connections forms the substrate of an expanding universe. The
electric sheep and we their shepherds are colonizing this new frontier.

4 The Genetic Code

Each image produced by Electric Sheep is a fractal flame [4], a generalization and
refinement of the Iterated Function System (IFS) category of fractals [2]. The genetic
code used by Electric Sheep is just the parameter set for these fractals. It consists of
about 160 floating-point numbers.

A classic IFS consists of a recursive set-equation on the plane:

S =
n−1⋃
i=0

Fi(S)

The solution S is a subset of the plane (and hence a two-tone image). The Fi are a small
collection of n affine transforms of the plane.

A fractal flame is based on the same recursive equation, but the transforms may
be non-linear and the solution algorithm produces a full-color image. The transforms
are linear blends of a set of 18 basis functions known as variations. The variations are
composed with an affine matrix, like in classic IFS. So each transform Fi is:

Fi(x,y) =
∑

j

vijVj(aix+ biy + ci,dix+eiy +fi)

where vij are the 18 blending coefficients for Fi, and ai through fi are 6 affine matrix
coefficients. The Vj are the variations, here is a partial list:

V0(x,y) = (x,y) V3(x,y) = (r cos(θ + r), r sin(θ + r))
V1(x,y) = (sinx,siny) V4(x,y) = (r cos(2θ), r sin(2θ))
V2(x,y) = (x/r2,y/r2) V5(x,y) = (θ/π,r −1)

where r and θ are the polar coordinates for the point (x,y) in rectangular coordinates.
V0 is the identity function so this space of non-linear functions is a superset of the space
of linear functions. See [4] for the complete list.

There are 3 additional parameters for density, color, and symmetry, not covered here.
Together these 27 (18 for vij plus 6 for ai to fi plus 3 is 27 total) parameters make up
one transform, and are roughly equivalent to a gene in biological genetics. The order of
the transforms in the genome does not effect the solution image. Many transforms have
visually identifiable effects on the solution, for example particular shapes, structures,
angles, or locations.

Normally there are up to 6 transforms in the function system, making for 162 (6×
27) floating-point numbers in the genome. Note however that most sheep have most
variational coeffients set to zero, which reduces the effective dimensionality of the space.
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4.1 Animation and Transitions

The previous section described how a single image rather than an animation is defined
by the genome. To create animations, Electric Sheep rotates over time the 2×2 matrix
part (ai, bi, di, and ei) of each of the transforms. After a full circle, the solution image
returns to the first frame, so sheep animations loop smoothly. Sheep are 128 frames long,
and by default are played back at 23 frames per second making them 5.5 seconds long.

The client does not just cut from one looping animation to another. It displays a
continuously morphing sequence. To do this the system renders transitions between
sheep in addition to the sheep themselves. The transitions are genetic crossfades based
on pair-wise linear interpolation, but using a spline to maintain C1 continuity with the
endpoints.

Transitions are also 128 frames long. For each sheep created, three transitions are
also created: one from another random flock member to the new sheep, one from the new
sheep to a random flock member, and another one between two other random members.
Most of the rendering effort is spent on transitions.

5 The Genetic Algorithm

There are three parts of the genetic algorithm: the rating system that collects the votes
and computes the fitness of individual sheep, the genetic operators used to create new
genomes, and the main loop that controls which live and die.

As already mentioned, users can vote for a sheep they like by pressing the up arrow
key. If the sheep is alive its rating is incremented. Pressing the down arrow key decrements
the rating. Votes for dead sheep are discarded. Users may also vote for or against a sheep
by pressing buttons on its web page.

The ratings decay over time. Each day the ratings are divided by four with integer
arithmetic rounding down.

5.1 Genetic Operators

There are four sources of genomes for new sheep: random, mutation, crossover and
posts from Apophysis. The parents for mutation and crossover operators are randomly
picked from the current population weighted by rating. The probability of being selected
is proportional to the rating. Sheep that have received no votes have rating zero and so
cannot be selected.

Random. The affine matrix coefficients are chosen with uniform distribution from [-1,
1]. The variational coefficients are set to zero except for one variation chosen at random
that is set to one.

Crossover. The crossover operation has two methods chosen equally often. One method
creates a genome by alternating transforms (genes) from the parents. The other method
does pair-wise linear interpolation between the two parent genomes where the blend
factor is chosen uniformly from [0, 1].

Mutation. The mutation operator has several different methods: randomizing just the
variational coefficients, randomizing just the matrix coefficients of one transform, adding
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noise (-10 decibels, or numbers from [-0.1, 0.1]) to all the matrix coefficients, changing
just the colors, and adding symmetry.

When applying these three automatic operators, the server renders a low-resolution
frame and tests if the image is too dark or too bright. The operator is iterated until the
resulting genome passes. For random genomes, 43% are rejected (in a test run 177 tries
were required to get 100 passing genomes).

ost Human designers may post genomes to the server with Apophysis. The designer
is required to submit a password with the genome, but its value is shared on a public email
list and is common knowledge there. The genome is checked for syntactic correctness,
but the image it creates is not tested.

The server has a queue of sheep and transitions that are currently being rendered.
Posted genomes go into this queue. When the queue is left with fewer than 12 sheep,
it is filled with genomes derived with one of the three automatic operators. 1/4 of these
genomes are random and have no ancestor. The remaining 3/4 are divided equally be-
tween mutation and crossover.

5.2 The Main Loop

The server maintains a single flock of sheep and continuously updates their ratings,
creates new sheep, and kills off old ones. The server has 510MB of disk space for
storing sheep animations, enough for 28 sheep and 83 transitions. Each time a sheep is
born, the sheep with the lowest rating is killed to make room. If several sheep are tied
for worst, then the oldest is taken (usually several sheep have received no votes and are
tied with a rating of zero).

Killing a sheep removes the animation file from the server, but not from clients who
may have allocated more disk space to their caches. The other records, including the
peak rating, parentage, genome, 16 thumbnails, and the first frame are kept. This archive
may be browsed on the server either sorted by peak rating, or as extended family trees.

This on-line or steady-state approach contrasts with the more traditional genetic
algorithm’s off-line main loop that divides the population into generations and alternates
between rating all the individuals in a generation and then deriving the next generation
from the ratings. Note that Electric Sheep does have ‘generations’, but it means something
else, see Section 2.

6 Empirical Results

Three main datasets are analyzed below. The voting and posting data are from the web
server log files from August 7th to November 4th 2004, 90 days later. Another dataset
has daily aggregate usage reports from the server June 18th to October 31st (139 days).

The primary dataset was collected from the server’s database starting May 13th
until October 13th, 153 days later. May 13th is when version 2.5 became operational.
Previous versions of the server did not keep a record of the sheep: when they died they
were completely deleted from the server. And though there are large collections of sheep
collected by clients from before May 13th, they are not complete and they lack fields
for ratings and parentage.

.P
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During this time the server was subject to performance optimization but the basic
algorithm remained fixed with one exception: until July 13th there was no limit on how
many votes a user could make. An increasing incidence of users voting many times in
rapid succession instigated a limit of 10 votes per user per day. The numbers below are
from after that change.

The data we have collected are a starting point to understanding the system and its
behavior. However, they are somewhat confounded:

– IP addresses are equated with users, but because of the prevalence of Network
Address Translation (NAT), several or many users may appear as the same IP address.
Worse, some computers are assigned an IP address dynamically, so one user may
appear under many addresses.

– The client uses the ratings to prioritize downloading. Now that the server is busy
enough that some clients cannot download all the sheep, this causes a snowball
effect where a high rating itself causes more votes.

– The audience is fickle: sheep with identical genomes regularly receive completely
different ratings (See Figure 1). Presumably the audience becomes fatigued by re-
peated exposure to variations of a successful genome, and stops voting for them.
Even once popular sheep reintroduced much later do not necessarily fare well.

– Designers may vote for their own sheep, post many similar sheep, or post alterations
of the results of automatic evolution. The administrator occasionally kills sheep,
explicitly directs mating, mutation, reincarnation, and votes without limit.

There are many ways of measuring the number of users. Figure 2 shows four of
them, and a graph of the rate of new users trying the system. The daily downloaders
linear growth rate is 9 users per day, far fewer than the hundreds of new addresses per
day. When Electric Sheep is first installed and run it takes quite some time (often about
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Fig. 2. On the left is a graph of number of users over time. Downloaders refers to clients down-
loading sheep, uploaders refers to clients uploading rendered frames. The dip from 9/2 to 9/19
coincides with server outages. On the right is a graph of the number of new client addresses over
time. The total number of unique downloaders is 62000
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Fig. 3. On the top-left is a histogram of lengths of lineages, and on the top-right is a histogram of
the ratings of the sheep. On bottom-left is a histogram of the sum of ratings of all descendents.
Children of two parents contribute half of their sum to each parent. On the bottom-right is a
histogram of number of days of activity out of 90 total possible by each IP address. 1839 clients
were active half the days or more, and 65 were active every day (the upturn on the far right)

ten minutes but according to some reports hours or even days) to download and display
the first sheep. Perhaps many people decide the software is broken and remove it. Or it
could result from miscounting dynamic IP addresses.

There were on average 166 downloads of the client installers per day from the home-
page during the first 8 days of December. But the installers are distributed on CD-ROM
and mirrored on high-volume sites such as nonags.com, debian.org, and freebsd.org
from which no statistics are available. These secondary sites also lack preview graphics
and explanation so users from them may be likely to remove it.

Figure 3 shows the distribution of how many clients had a given number of days
of activity (at least one attempted download). 1839 clients were active half the days or
more, and 65 were active every day. Using data collected from November 2 to November
7 2004, there were 626 votes made, 76% with the arrow keys on client, and 24% with
the web site.

The average number of valid votes per day is 111. During the 90 day period votes
were recieved from a total of 1682 different client IP addresses. The average number of
posts per day is 10.8 from a total of 64 different client IP addresses.
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6.1 Amplification of Creativity

In a system with human-computer collaboration, the creative amplification is the ratio of
total content divided by the human-created content. If we compare the posted genomes
with their evolved descendents we can measure how much creative amplification Electric
Sheep provides.

In the primary dataset there were 21% hand-designed, posted sheep and 79% evolved
sheep. If the sum is weighted by rating, then we get 48% to 52%, for an amplification
factor of 2.08 (1+52/48). One could say the genetic algorithm is doubling the output of
the human posters.

Of the 79% evolved sheep, 42% of them result from the totally random genetic
operator. Their fraction of total ratings is only 3.8%.

There are some caveats to this metric. For example, if the genetic algorithm just
copied the posted genomes, it might receive some votes for its ‘creativity’. Or if it
ignored the posted genomes and evolved on its own, it would receive some votes but
they would not represent ‘amplification’.

Figure 3 shows the distribution of lengths of lineages of the sheep. The lineage length
of a sheep is the maximum number of generations of children that issue from it. Sheep
with no children are assigned one, and sheep with children are assigned one plus the
maximum of the lineage lengths of those children. Instead of fitness increasing along
lineage, we find it dying out: the rating of the average parent is 6.7 but the average
maximum rating of direct siblings is only 3.8.

The decay in ratings may result from the audience losing interest in a lineage because
it fails to change fast enough, rather than a decay of absolute quality of those sheep. The
viewpoint of watching the screensaver and seeing sheep sequentially is different from
the viewpoint of browsing the archive and comparing all the sheep. Neither can be called
definitive.

Genetic algorithms normally run for many tens to hundreds or thousands of genera-
tions. In contrast, the lineages (number of generations) of the sheep are very short: the
longest is 13.

7 Related Research

There are now many distributed screen-savers. Most are scientific (SETI@Home, cli-
mateprediction.net), cryptographic (distributed.net) or mathematical (zetagrid.net),
rather than graphical or artistic. The Golem@Home project [7] has a evolutionary
algorithm for evolving locomotion in electro-mechanical assemblages.

The aesthetic selection used by Electric Sheep is inspired by Karl Sims [9]. His
supercomputer is replaced by internet-connected commodity PCs. The sheep voting
community is much larger but much less focused than his user-base. Sims used Lisp
expressions on pixel coordinates, but also included a primitive for IFS.

The International Genetic Art IV project [8] uses a web-based Java client to evolve
images following the technique of Sims. Since the images are rendered on the clients,
the computation is distributed, but users do not share votes or the gene pool. Its previous
incarnation, International GeneticArt II, ran on a single server with a web interface so the
computation was not distributed but the voting and gene pool were shared by all users.



The Electric Sheep Screen-Saver: A Case Study in Aesthetic Evolution 467

8 Summary and Conclusion

Electric Sheep is a distributed screen-saver for animating and evolving fractal flames,
a kind of iterated function system. The animations are shared among the clients and
displayed in parallel with rendering. The evolution is guided by the will of the audience.
The genetic code is made of geometric transforms, each one containing 6 coefficients for
an affine transform of the plane and 18 coefficients for blending the variational functions.

The genetic algorithm employed does not converge on an optimal solution, but fol-
lows the attention of the users. And while the genetic algorithm is not competitive with
the human designs, it does serve to effectively elaborate and amplify human designs.
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Abstract. This paper describes an exploration of visual and sonic texture. These 
textures are linked by a swarm of “tech-tiles”, where each tech-tile is a rectan-
gular element of an image or a sequence of audio samples. An entire image can 
be converted to a single tech-tile, which can be performed as a composition, or 
a swarm of small tiles can fly over the image, generating a sonic improvisation. 
In each case, spatial (visual) structure is mapped into temporal (sonic) structure. 
The construction of a tech-tile from an image file or a sound clip and the 
swarm/attractor dynamics is explained in some detail. A number of experiments 
report on the sonic textures derived from various images. 

1   Introduction 

The word texture (15th Century, from the Latin texere, to weave) most commonly 
refers to the tactile appearance of a surface, especially that of woven fabric. The  
texture of a textile arises from colored material, woven from yarn that is laid out 
lengthways (the warp) and width ways (the weft). The resulting fabric has large-scale 
structure – the design itself – as well as local structure at the scale of the yarn. Upon 
closer inspection, there is also a micro-texture evident in the twisted fibers that consti-
tute a strand of yarn. 

A concept of texture exists in numerous specialized domains. In each case, the  
concept reflects the common meaning of the term but adds (albeit loosely) domain-
specific connotations. For example, in painting, visual texture would refer to the  
representation of the nature of a surface. Visually, large scale structure can emerge 
from dense, intricate patterning of smaller elements; the works of Jackson Pollock 
present a good example.   

The warp/weft idea exists informally in the idea of musical texture. A musical 
work can be described at a music-theoretic level as the interleaving of “horizontal” 
individual parts or voices, and “vertical” strands of harmony. An introductory book 
on composition even illustrates this idea with pictures of textured fabric (silk, polyes-
ter yarns and cheesecloth) [7].  

In contrast, sonic texture refers to descriptions at the sound level [11]. The break-
down of tonality in 20th Century Western art music has led to a heightened awareness 
of texture within musical composition. This awareness reaches its zenith in the genres 
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of Sonic Art and Improvised Music [14, 2], where music theoretic descriptions  
become almost meaningless. Ascension by John Coltrane, a remarkable abstraction 
within jazz, is a good illustration of sonic and musical texture [6]. In this work, the 
improvising ensemble (comprising five saxophonists, two trumpeters, two bassists, a 
pianist and a drummer) create a highly detailed and emotional sound-world. This 
seems to be a direct analogy of the abstraction pursued by Pollock.  

Sound texture in the domain of signal-processing refers to sounds with no percepti-
ble long-term structure [1]. A short sample of a sound texture gives no indication of 
when it actually occurred within the whole sound, in contrast to musical instruments 
which produced time-dependent envelopes. Examples of sound textures are running 
water and traffic noise. 

Another meaning of texture is to be found within image processing. The segmenta-
tion of a digital image into regions of different image texture (for example the seg-
mentation of an aerial image into fields and forests) is achieved by a quantifiable 
texture measure, although there are many to choose from [8]. 

These domain specific applications of surface texture share a more general idea: 
texture is concerned with the structure and relationship of the component parts of 
something.  

In order to understand this meaning, it is suggested in this paper that large scale 
sonic structure might emerge from the interactions of sonically dense micro-textures. 
To be precise, each sonic micro-texture is a sound “grain”, where, arguing by anal-
ogy, the grain is constructed from a small element or micro-texture of the image. 
Small rectangular tiles from an image are mapped to sound grains of short, but per-
ceivable, duration. The grains are emitted asynchronously from a synthesizer in dense 
clouds in a technique known as granulation [13]. The constituency of the micro-
textures and their interactions is determined by a virtual swarm that flies over the 
textured image. Dynamic sonic macro-texture emerges from the self-organization of 
the swarm around attractors of high micro-texture. 

Three uses of Swarm Tech-tiles are demonstrated here. Firstly, a “tech-tile” of a 
whole image can be rendered into sound. This produces a short piece of sonic art. 
Secondly, a user can explore interesting regions of micro-texture by selecting tile 
locations with a mouse click. More interesting, though, is to allow a swarm/attractor 
system search for interesting micro-texture, producing an improvisation of indetermi-
nate length. Swarm techniques are pertinent in this context for a number of reasons, 
not least because different starting configurations lead to different outputs, so that 
many pieces can be generated from a single image (i.e. the output is improvisatory). 
Also, the self-organizing properties of swarms will endow the improvisation with 
temporal order, so that the piece exhibits musical structure.  

The following section describes the tech-tile. This is the image-sound map which is 
used to construct grains (for an improvisation) or a single complete texture (for a 
composition). Section 3 explains the novel particle swarm used in Swarm Tech-tile. A 
discussion of how the swarm interprets the local micro-texture of an image and of 
how particle positions are interpreted as dynamic parameters of a sound stream fol-
lows in Sect. 4. The following section continues with a description of some experi-
ments and the final section summarizes the findings of this paper.  
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2   Texture Tiles 

There is no necessary connection between images and sounds since each stimulates a 
different sense (modality). Moreover there are infinitely many possible maps from the 
two spatial dimensions of an image into the single time dimension of a sound. Some 
guiding principles, however, are at hand. At the least, a spectator should be able to 
derive correlations between visual and sonic texture. This principle, in a different 
context, is known as transparency [5].   

A computer generates sound by rendering an audio stream at the sampling rate. An 
audio stream is, in turn, a succession of samples or digitized elements of a pressure 
wave. Alternatively, a digital image is an arrangement of adjacent pixels, where each 
pixel is a digitization of color, for example the three RGB pixel-values, one for each 
primary color. The simplest map is therefore an association between a single pixel 
value (R, G or B) and an audio sample. (The map has to stipulate a scaling between 
positive pixel values and audio samples which can be positive or negative, and with a 
much larger range of values.)  

Locality would imply that closeness in image space relates to closeness in time so 
that image micro-textures are mapped to sonic micro-textures.  Smoothly varying 
patches of similar color might correspond in a local map to continuous, harmonic 
waves, perceivable as tones. Edges between colors, on the other hand, which occur at 
thread boundaries on a textile, might map to buzzy, non-harmonic waves (square, 
saw-tooth and other discontinuous wave-forms). A very speckled texture might map 
to a noise stream.  

The audio rate determines how quickly samples are rendered, and the simplest 
choice is to move between pixels at a time interval equal to the reciprocal of the audio 
rate. But there is a problem of exactly how to move (by horizontal, vertical, or diago-
nal steps in any combination), and what action to take at a tile edge. In order to solve 
this, we were guided by the manufacture of an actual textile. Textiles are made be 
weaving threads length-ways (warp) and width-ways (weft). An obvious way to pre-
serve this feature is to scan the image vertically (along the warp) and horizontally 
(along the weft). However, in order to preserve locality at the tile edges, each 
warp/weft scan is continued in the opposite direction, Fig. 1.  

The scanning time can be calculated by dividing the number of pixels in the image 
by the sampling rate. A 64 x 64 tile contains 4096 pixels/samples, and would there-
fore take 93 ms to scan at a sampling rate of 44100Hz, certainly long enough to hear 
as a micro-texture and not just as a click. A digital image of a large textile is shown in 
Figure 2, [9]. The original image, of size 2646 x 1760 = 4.7 megapixels, would pro-
duce 106s of sound if rendered as a single tile.  

In summary, a texture tile – or tech-tile – is, visually, a rectangular portion (a tile) 
of an image, or aurally, it is a local parameterization of a sonic stream. The image to 
sound map is made by simultaneously scanning at the audio rate along the warp and 
the weft. R, G and B pixel values are picked up and scaled into audio samples. In 
order to preserve locality, and to prevent anomalous discontinuities (these would be 
heard as clicks in an otherwise smooth sound), the scan doubles back at the tile edges. 
Six audio streams are produced; for convenience the warp and weft streams are sent 
to separate stereo channels.  
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3   Swarms and Stigmergy 

Swarms of interacting particles, moving in a d-dimensional real space, are a more 
abstract realization of the A-Life swarm, herd and flock animations initially studied 
by Reynolds [12]. Reynolds’ demonstrated that the collective behavior of these ani-
mal groups can be explained through local (rather than globally scripted) interactions. 
These swarms typically exhibit self-organization (SO). SO emerges from direct parti-
cle interactions and also through indirect environment-mediated interactions known as 
stigmery [3]. Particle Swarm Optimization (PSO) and Ant Colony Optimization are 
practical applications of these ideas [10, 3]. 

The creative use of particle swarms has also been investigated [4, 5]. In the 
swarm/attractor systems of these papers, particles are drawn towards special points in 
space known as attractors. These systems are interactive: attractors are positioned as a 
result of input with an external system (human, or another swarm) and the output 
from the swarm is an interpretation of particle positions as grains of sound (Swarm 
Granulator) or musical events (Swarm Music). Coherence and structuring of the re-
spective outputs, and correlations to the inputs are manifestations of SO, induced by 
the stigmergetic interaction of particles with attractors. 

However, in PSO, attractors derive not from interaction but from the evaluation of 
a fitness function at each particle location [10]. The swarm described below incorpo-
rates function evaluation with biologically plausibility particle dynamics.  

3.1   Particle Dynamics 

The particle dynamics for this swarm implementation have been modified from the 
system described in [5]. Here, particles’ perceive attractors and each other within a 
local hyper-spherical neighborhood, and not over the entire space1. This more plausi-
ble feature favors the development of subswarms – breakaway groups of particles 
                                                           
1  This modification was suggested to one of the authors by a participant of the EvoMUSART 

2004 workshop. 

 

Fig. 1.  Warp and weft scan lines Fig. 2. Uniform and Laundry by Janis Jeffer-
ies. Photo: David Ramkalawon
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searching for new attractors. Spring-like interactions have also been replaced by fixed 
magnitude accelerations which, together with velocity clamping, lead to constant 
magnitude velocity vectors. This moderates the (somewhat biologically unrealistic) 
tendency of particles to oscillate about an attractor.  

The particle positions xi ∈ [0, xmax]
2 and velocity vi are updated by determining the 

local neighborhood of other particles and attractors, where the neighborhoods are 
determined with respect to the perception radius r = 0.25xmax. The acceleration to-
wards a particle at xj and an attractor at pk is given by 
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where the first term is a collision avoiding repulsion and the second and third terms 
are attractions towards xj and pk respectively. Constants Q and C determine the 
strength of these accelerations and are set to xmax/32 and xmax/128 respectively. N and 
M are the number of particles/attractors in the neighborhood. The accelerations are 
added to the current velocity, and the velocity is clamped to vmax = xmax/32. The posi-
tion is finally updated by adding on the new velocity, and reflecting the particle from 
the sides of [0, xmax]

2  if necessary. xmax is an arbitrary scale, fixed at 128. 

3.2   Attractor Stigmergetics 

There are important differences between this swarm and PSO in the treatment of  
attractors. PSO uses a cognitive-social model for attractor placement. In PSO, each 
particle has a memory of the best position (as measured by an objective function) it 
has attained (cognitive model) and has knowledge of the best position obtained by 
other particles (social model) in a topological neighborhood. Although good for opti-
mization, the social model of PSO is not plausible from a swarm perspective (but does 
make more sense for the social networks found in human culture). 

Stigmergy is a biological term for environment-mediated interaction [3]. In Swarm 
Tech-tiles, particles make decisions based on the attractors that they can actually see 
i.e. in their immediate spatial neighborhood – this implementation of stigmergy is 
more faithful to biological swarms. Decisions to create or move attractors depend on 
the value of a micro-texture measure T at the particle position. The particle only has 
access to values of T at visible attractor positions, but retains a memory of the best 
texture that it has encountered. However, the longevity of attractors and particle 
memory is limited in a way that will now be described. 

Attractor death. The initial perception radius rinit = 0.25 xmax of an attractor shrinks by 
a decay constant λ ∈ [0, 0.1] at each particle visit, eventually leading to attractor 
annihilation when r < rcrit = 0.5rinit. The biological parallel is a food source that is 
progressively consumed on each visit. Dynamically this means that a swarm (or sub-
swarm) cannot stagnate around an old attractor. 

Attractor movement. Suppose that a particle can see one or more attractors {p}, and it 
is currently at a better position x than all these attractors. In this case the best attractor, 
pbest, will be moved to x. The particle always stores T(pbest), irrespective of movement. 
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Attractor creation: Suppose that a particle at x cannot currently see any attractors, and    
T(x) improves upon its memory, T(pbest). The particle then deposits a new attractor at x 
and remembers T(x). This rule is necessary to compensate for attractor death. This 
rule produces fascinating cooperative behavior. A breakaway particle or small sub-
swarm can generate new attractors along a fluctuation, leading to particle “streamers”. 
This is an example of positive feedback which is an important ingredients of SO [3]. 

Particle forgetfulness. A particle will forget T(pbest) if no attractor is visible for a fixed 
number of interpretation iterations, even though its current T(x) is no improvement. 
Any location will then become tempting and new attractors can be created. This rule 
counteracts this scenario: suppose the swarm finds a very good location, and each 
particle sets an attractor in the neighborhood of this location. After the attractors have 
been consumed, particles may then wander aimlessly, never depositing a new attractor 
since T(pbest) is never exceeded. 

The observational effect of these attractor stigmergetics is an alternation between 
phases of exploration (breakaway subswarms, attractor creation and particle forget-
fulness) and exploitation (attractor movement and consumption). 

4   Interpretation: Swarm/Environment Interface  

A general architecture for a swarm/attractor system has been given in [5]. Each soft-
ware module corresponds to a mathematical function. The input interpretation func-
tion P explains how the system represents the environment as a pattern of dynamic 
attractors’ p and with an objective function T. The output interpretative function Q 
explains how the system tries to modify the environment by generating external 
events q = Q(x) from particle positions x. The internal workings of the system are 
given by the particle dynamics, x(t) = f(p, x, v) where the t is real time and all the 
arguments of f are evaluated in the interval [t-δt, t] (refer to [5] for a full explanation).  

The patterning module has been specified in the previous section. This section  
continues with a description input/output modules P and Q. 

Q maps a particle position x onto a tech-tile q(ξ, w, h) of width w and height h. q is 
centered at image coordinates ξ where ξ is obtained by a simple re-scaling of [0, 
xmax]

2 into the image space [0, wmax] × [0, hmax]. If q extends beyond the image in either  
dimension, it is translated so that all scan lines fall inside the image. The warp/weft 
scans are then performed according to the description of Sect. 2. Q runs in a separate 
thread to f, pausing by Δt after each interpretation. The particle update time interval, 
δt, is chosen to give smooth animations and is typically set to 10 ms. Each 64 x 64 tile 
takes 93 ms to render, giving up to 10 overlapping grains at δt = 10 ms. Tiles up to 
dimension 20 x 20 can be rendered without overlap, but tiles this small have no  
discernible timbre. Overlapping is desirable in granulation since this gives a continu-
ous, sonically dense stream. Too many overlaps can strain the processor and lead to 
unwanted audio fragmentation. In practice, a grain rate Δt of 10-50 ms is used for a 
1.7 GHz processor with 250 MB memory.  
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P concerns attractor placement. In Swarm Tech-tiles, an objective function deter-
mines the desirability of any sampled location of the textured environment by calcu-
lating a measure of micro-texture T for the tile at ξ. T should be chosen to lead the 
swarm towards “interesting” texture. This is clearly an arbitrary and aesthetically-
driven choice. However, certain measures of image texture are commonly used for 
image segmentation [8] and a couple of these have been tested in experiments.  

The first measure is a generalization of the grayscale entropy of the co-occurrence 
matrix Pij of the image I, 

)log( ij
Ii Ij

ij PPS
∈ ∈

−= , 
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where Pij is the probability that two pixels in I, separated by a displacement vector d, 
will have grayscale pixel values i and j. The generalization is Tentropy = max{SR, SG, SB} 
where SR,G,B is the entropy of the R, G or B co-occurrence matrix over the tile at ξ. In 
effect Tmax entropy measures the randomness of the RGB distribution. In order not to 
discriminate between the two scan directions, a displacement vector that compares 
pixels at different warps and wefts, d = (1, 1), is used.  

The second measure is a simple statistical measure, Tstat = max{σ2
R, σ2

G, σ2
B} 

where σ2
R,G,B is the variance of the R, G or B values over the tile at ξ. This measure 

also favors inhomogeneity and has the advantage that it is efficiently computed. How-
ever, Tstat does not discriminate between different scales of texture. 

Figs 3-6 show two images and their max entropy maps. The images of these texture 
maps of have been equalized in order to highlight differences. Fig. 3 shows the tech-
tile for a 5 second multiphonic saxophone tone. This was produced by mapping the 
complete tone, recorded in 8 bit mono, onto a single tile so that R = G = B = sample + 
128, and preserving the warp/weft scan of Fig 1. A multiphonic is a technique whereby 
a single fingering produces multiple pitches. Since the pitches are harmonic, the sam-
ples vary smoothly in time, evident in the shallow texture of Fig. 3, and from the 
largely uniform texture map of Fig. 4. (The non-uniformities are due to edge effects.)  

Figs 5 and 6 show part of the textile of Fig. 2 and the corresponding map. The  
texture of the textile image is far coarser than the multiphonic tone, showing greater 
inhomogeneity with a noticeable change in texture between the top right and bottom 
left of the image. The max variance maps of Figs 3 and 5 are broadly similar to the 
max entropy maps. Texture maps can be used as a look-up table for T(x), hence saving 
a costly computation, but precision is lost due to the conversion of the measure into 
pixel values. 

5   Experiments 

Experiments were performed on images of a sunset, a calm seascape, a Eucalyptus 
tree, the Jefferies textile, recorded saxophone and voice, and synthetic images of pure 
tones, white noise, color rainbows and an image with an island of noise centrally 
placed on a constant color background. Some of these images and sonic tech-tiles are 
available for download at www.timblackwell.com.  
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To begin, a single tech-tile, chosen from any of the images by a mouse click, was 
rendered into sound. The size of this tile varied from 1 x 1 (which is too brief to be 
audible) up to the size of the entire image. Tiles below about 40 x 40 are heard as 
clicks with no discernable timbre. Tiles larger than 64 x 64 were used in the following 
trials since these are capable of probing both sonic and image micro-texture. 

Images with areas of blended color, such as the reddening sky around a setting sun 
produce quiet, pulsating sounds. This is because the warp/weft scan picks up 
neighboring pixel values that are only gradually changing along a color gradient. As 
the scan doubles back and retraces the color gradient in the opposite sense, the sample 
values match this oscillation and harmonic tones at frequencies around 44100/(64 x 2) 
≈ 345 Hz are audible.  

When the tile contains edges, the color discontinuity corresponds to a sample jump, 
so that the scan produces discontinuous waves. If the tile is placed over rough visual 

  

Fig. 3. Techtile of a multiphonic saxophone 
tone 

Fig. 4. Max entropy texture map of Fig. 3 

  

Fig. 5. 595 x 413 part (top left) of the textile of 
Fig. 2. The red squares show the last ten 
techtiles rendered by the granulator 

Fig. 6. What the swarm sees when flying 
above the textile of Fig. 5. Particles (red 
and blue discs) position attractors (boxes) 
on regions of high entropy 
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texture, for example when placed over the branches of the Eucalyptus image, a loud 
buzzing and a lesser noisy component is audible. When placed over the leaves on the 
same image, corresponding to finer texture, the sound contains more noise. The Jef-
feries textile produces a gentler and less buzzy sound, with more rattle and noise. 

A sonic composition of some 106 seconds results from representing the Jefferies 
textile as a single tile. Although slight, changes in noise spectrum are audible against 
a background rattle (which has a rather pleasing loom-like hum). Regions of different 
visual texture produce intervals of varying sonic texture, which confirms that a single 
large tech-tile preserves large-scale structure.  

Textural improvisations were also produced by allowing a ten particle swarm to fly 
over the image. Attractors were deposited and observed to move to regions of high 
micro-texture (statistical or entropic). Figs 5 and 6 show a typical configuration dur-
ing one such improvisation. The swarm flies over the texture map of Fig. 6, where 
white pixels correspond to tiles of high micro-texture. The red particles of this figure 
can see an attractor (green box) and the green particle is currently being interpreted. 
The blue particles are searching for an attractor. There is an old attractor (red box) 
which has not yet been consumed. Fig. 5 shows the ten tech-tiles sampled from the 
swarm.  

The influence of each attractor shrinks with each particle visit until the attractor 
evaporates completely. The perception decay rate λ was varied in a number of trials. 
Larger rates produce more diversity in the population and a more varied sonic output 
but the surrounding texture is not explored in any detail and the swarm wanders  
aimlessly above the image. Finally, it was confirmed that a swarm is able to discover 
the textured region in the island-of-noise image, developing pockets of sonic micro-
texture between short intervals of silence. 

6   Conclusions  

Domain-specific definitions of texture are hard to pin down, but they all refer to a 
literal tactile meaning of the term. Analogous meanings can be investigated with 
mappings from actual texture onto the domain-specific texture. Although such map-
pings are arbitrary since they cross three modalities – touch, vision and hearing - they 
should preserve large-scale structure and possess a degree of “transparency”. Trans-
parency means, in this context, that an intuitive link can be established between, for 
example, roughness of actual texture and roughness of sound in a sonic texture.  

The tech-tile map, inspired by the construction of textiles, establishes just such a 
map. Experiments on a number of synthetic images, images of natural texture and a 
textile image confirm that this map preserves structure and relates qualities such as 
smoothness (glowing sky during a sunset ↔ quiet, pulsating sounds), roughness 
(branches, twigs ↔ harsh buzzing sounds) and fine detail (Jefferies textile, leaves 
↔ rattles and noise). 

It is suggested that a swarm/attractor system in conjunction with a sound granulator 
can be used to develop a textural improvisation of indeterminate length. The improvi-
sation itself arises from the exploration of the image for regions of high micro-texture. 
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Mechanisms for attractor creation, movement and death, and particle forgetfulness, 
ensure that the improvisation is sonically diverse. 

Swarm Tech-tiles is still in development and future research topics includes the in-
vestigation of more sophisticated texture measures (for example using Fourier analy-
sis to quantify harmonicity and noise) and the use of cameras to extract 3D data from 
a textile. This would close the gap between our tactile experience of texture and the 
mapping onto sound. Finally, an exciting prospect is to use eye tracking equipment to 
extract information about how a user views a textured surface. Attractors can then be 
positioned accordingly and the viewers will be able to hear what they are seeing. 
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Abstract. We investigate evolutionary methods for using an ant colony
optimization model to evolve “ant paintings.” Our model is inspired by
the recent work of Monmarché et al. The two critical differences between
our model and that of Monmarché’s are: (1) we do not use an interactive
genetic algorithm, and (2) we allow the pheromone trail to serve as both a
repelling and attracting force. Our results show how different fitness mea-
sures induce different artistic “styles” in the evolved paintings. Moreover,
we explore the sensitivity of these styles to perturbations of the parame-
ters required by the genetic algorithm. We also discuss the evolution and
interaction of various castes within our artificial ant colonies.

1 Introduction

Monmarché et al [1] recently described an interactive genetic algorithm involving
ant colony optimization (ACO) methods for the purpose of evolving aesthetic
imagery. Although it was never well documented in the literature, it should also
be noted that the digital image special effects developed by Michael Tolson using
populations of neural nets in order to breed intelligent brushes may be an histor-
ical precedent for using a non-interactive approach involving ACO methods for
evolving aesthetic imagery [10]. Thanks to the early favorable publicity garnered
by Dawkin’s Biomorphs [3], Sim’s Evolving Expressions [11], and Latham’s Mu-
tator [13], interactive genetic algorithms have long played a central role in the
evolution of aesthetic imagery. The use of more traditional non-interactive ge-
netic algorithms to produce aesthetic imagery — the computational aesthetics
approach — has received much less attention, no doubt due in large measure
to the inherent difficulty in formulating fitness criteria to assess images on the
basis of their aesthetic merits. Research previously published along these lines
includes approaches involving neural nets [2], evolving expressions [6] [7] [8], and
dynamical systems [12].

It has been suggested that the evolution of images by means of organisms
that are evolved for their aesthetic potential is less about evolution and more
about the search for novelty [4]. In fact, psychologists are only just beginning to
understand the neurological underpinnings of visual aesthetics [9] [14]. Be that
as it may, the goal of this paper is to consider techniques for evolving ant colony
paintings using a non-interactive genetic algorithm. Our objective is to show how

F. Rothlauf et al. (Eds.): EvoWorkshops 2005, LNCS 3449, pp. 478–487, 2005.
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different fitness criteria used to evaluate the aesthetic contributions of the ants
determine different painting styles as well as influence ant colony formation.

2 The Basic Model

The basic framework for our ACO ant painting model follows that of Mon-
marché et al [1]. In their model individual ants possess attributes: an RGB color
(CR, CG, CB) for the ant to deposit; an RGB color (FR, FG, FB) for the ant
to follow; a vector of probabilities (Pl, Pr, Pa) satisfying Pl + Pr + Pa = 1
used to determine the probability that the ant veers left, veers right, or re-
mains on course by moving directly ahead; a movement type D which takes
the value o or d according to whether an ant veering off course veers at a
45◦ angle or a 90◦ angle; and a probability Pf for changing direction when
“scent” is present. Thus an individual ant genome is simply a vector of the form
(CR, CG, CB , FR, FG, FB , Pl, Pr, Pa, D, Pf ). Since ant behavior is determined us-
ing a simple move-deposit-sense-orient sequence, scent trails form from the colors
the ants deposit as they explore a toroidal grid. Deposited colors are allowed to
seep throughout the 3×3 neighborhood the ant is currently occupying by invok-
ing a convolution filter defined using a 4:2:1 ratio such that immediately adjacent
cells to the one occupied receive half as much color as the occupied one receives,
while diagonally adjacent cells receive one-quarter as much color as the occupied
one receives. The unusual and surprising feature of the Monmarché model is that
the metric used for detecting scent depends on a luminance calculation. Specifi-
cally, if LW is the luminance of the neighboring cell W that the ant is sensing,
and LF is the luminance of the color (FR, FG, FB) that the ant is attempting to
follow, then the scent value detected by the ant is ΔW = |LW − LF |. Of course
the smaller ΔW is the stronger the scent is.

Using the same sensing constraint as Monmarché, namely that scent following
behavior should not be invoked unless ΔW falls below the threshold value MAXS of
40, thanks to the table of genomes accompanying the four hand-crafted examples
appearing in Figure 1 of [1], when using a 200 × 200 toroidal grid where each

Fig. 1. Images reprising the three-ant, black-and-white Monmarché example that were
obtained using randomly generated initial positions and directions. The exploration
times were (left to right) 12000, 24000, and 96000 times steps respectively
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Fig. 2. The effect of replacing, as opposed to blending, using the deposited color. The
image on the left uses the five-ant, multi-color Monmarché genomes, and the one on
the right the three-ant, black-and-white genomes

ant was allowed to explore for 24000 time steps we were essentially able to
duplicate the paintings of that figure. Figure 1 shows the results from a reverse
engineering experiment using the three-ant, black-and-white example of [1] in
order to estimate an appropriate value for the exploration time parameter.

Based on the description given in [1], it was not initially clear to us whether
an ant should replace the color of the square it currently occupied with the color
it was depositing, or blend (using a 1:4 ratio) the color it was depositing. Figure 2
shows what happened when we tried using the replacement strategy for both the
three-ant, black-and-white example and the five-ant, multi-color example given
in [1]. Such tests convinced us that replacement was not the method intended
and that the following color printed as (255, 0, 0) in Table 1 of [1] for the five-ant,
multi-color example was probably meant to be (255, 153, 0). This correction is
consistent with the assertion that those examples were hand-crafted so that each
ant was seeking a color that another ant was depositing.

3 Scent Modification in the Basic Model

Recall that the luminance L of an RGB color (XR, XG, XB) is defined to be
L = 0.2426XR +0.7152XG +0.0722XB . Determining scent on the basis of lumi-
nance has two implications. First, ants become abnormally sensitive to the green
component of the color they are following. Second, colors perceived as different
RGB colors by humans may be perceived as virtually identical colors by ants.
While it is true that in nature a swarming species such as, say, bees may per-
ceive colors differently than humans, for the most part there is still a comparable
basis for color differentiation. Consider, for example, ultraviolet photographs of
flowers compared to photographs of those same flowers made using the “visible”
spectrum. Since ant paintings are not imaged solely on the basis of the luminance
channel, the ant paintings we view are not the same as the ones the ants view. For
this reason, henceforth we will measure scent using a supremum norm by defining
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Fig. 3. The effect of redefining the scent metric. On the left the four-ant, red-component
Monmarché example and on the right the three-ant, black-and-white example

δW = max(|WR − FR|, |WG − FG|, WB − FB |).
Under this metric, with the scent threshold MAXS still set to 40, Figure 3 reprises
two of the four examples of [1]. Indeed, when we ran all the examples of [1] using
this metric we discovered that most of the following behavior that ants exhibited
was due to following their own scent, and nearly half of the ants exhibited no
following behavior at all.

To further reduce the opportunity for ants to follow themselves we introduced
a repelling force, under the control of the threshold constant MINR, to inhibit ants
from following scent in a neighboring cell W whenever

ψW = max(|WR − CR|, |WG − CG|, WB − CB |)
falls below this threshold. To test the parameters MAXS and MINR using our new
metric, we generated several five-ant, multi-color examples for which depositing
and following colors were randomly and independently chosen. Figure 4 shows
representative results from these tests.

Fig. 4. Sample images from five-ant, multi-color examples testing the attracting and
repelling thresholds. Left MAXS = 40, MINR = 60. Center MAXS = 60, MINR = 120. Right
MAXS = 60, MINR = 40
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4 Adding Non-interactive Fitness to the Model

For consistency, while exploring fitness criteria to use for ants, we fixed MAXS
at 80 and MINR at 40. On a 200 × 200 grid, with ants in motion for 24000 time
steps, each ant in the population can hope to visit at most sixty percent of
the grid. Ant fitness criteria were based on two measurements recorded during
this exploration period, the number of distinct cells visited by an ant, denoted
Nv, and the number of times cells were visited by following scent, denoted Nf .
Our initial population consisted of twelve randomly generated and randomly
positioned ants. We quickly discovered we could not breed replacements for too
many ants after each generation because ants became overly sensitive to the
background color i.e. evolution quickly evolved monochrome paintings that were
dependent wholly on the settings of the scent thresholds MAXS and MINR. This
explains why after each generation we chose to replace only the four least fit
ants. The replacement scheme invoked uniform crossover coupled with a point
mutation scheme. We replaced least fit ants two at a time by randomly mating
a pair randomly chosen from the eight ant breeding pool. During some runs we
introduced “mortality” by replacing the three least fit ants plus one ant randomly
chosen from the remainder of the population. Evolution proceeded for twenty
generations. Ant paintings were preserved every other generation.

We discovered that failure to reset the grid to the background color after each
generation introduced monochromatic degeneracies. Letting ant fitness depend
solely on the number of squares visited, Nv, also caused monochromatic degen-
eracies. This occurred because ants were rewarded for being able to simulate a
random walk by ignoring an overpowering scent arising from the average blended
color — yet another instance of organisms exploiting a flaw in the “physics” used
to model the optimization task.

Figure 5 shows two ant paintings from separate runs using ant fitness func-
tion A1(a) = Nf . They reveal how rewarding ants solely on the basis of their

Fig. 5. Examples of the blotchy style using fitness function A1 where fitness was de-
termined solely by the ability to detect and follow scent. An image from generation #8
is on the left and generation #10 is on the right
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Fig. 6. Examples of a bi-level style using fitness function A2 where fitness was deter-
mined solely by the ratio of the ability to follow scent and the ability to explore. Both
images are from generation #16 of their respective runs

ability to follow scent leads to a blotchy style where paintings seem to be dom-
inated by trails of polka-dots. “Convergence” usually occurred quickly, within
ten generations.

Figure 6 shows two ant paintings from separate runs using the fitness function
A2(a) = 100Nf/Nv. The style that results is a bi-level style. Often, two castes of
ants evolved each depositing a different color, but with both seeking essentially
the same scent trail. It appears that the MINR threshold operating in tandem
with the exploration penalty in the fitness function caused ants to evolve a
plowing forward behavior so that ants in the two castes could mutually support
each other. In some runs more complex behavior emerged due to deposit color
“shades” evolving within the two different castes. Unfortunately, no examples of
paintings in this style with good color aesthetics were ever evolved.

Fig. 7. Examples of a dramatic, organic style obtained using fitness function A3, a
linear combination of terms measuring the ability to follow scent and the ability to
explore. Both images are from generation #20
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By letting the fitness function be A3(a) = Nf + Nv, we achieved our most
dramatic style. The evolved paintings had an organic form and the stark color
contrasts gave shading highlights. The key feature of the ant populations that
made these paintings is the formation of one dominant caste that made up over
half the population and provided the base color for the paintings. Interestingly
enough, even though the evolved paintings reveal that significant portions of
the background are never visited, the underlying probability vectors reveal that
the ants possess more or less random exploration tendencies. This indicates that
scent following is tightly coupled with the evolved behavior. Figure 7 gives ex-
amples of the evolved paintings we obtained.

Our most impressive ant paintings, from both a composition and color stand-
point, were obtained by letting the fitness function be A4(a) = Nf · Nv/1000.
As Figure 8 demonstrates, shading and detail received equal emphasis. Figure 8

Fig. 8. Examples of the balanced style using fitness function A4, a product of terms
measuring the ability to follow scent and the ability to explore. Left image from gen-
eration #12 and right image from generation #14 of the same run

Fig. 9. Using a neutral background color the “degenerate” fitness function A5(a) = Nv

evolved non-degenerate paintings. Both images are from generation #20
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Fig. 10. The fitness function A4 was the most robust with respect to shifts in back-
ground color. Image on the left using a black background and on the right using a
neutral gray background. Both images are from generation #20

shows an example where one of three extant castes went extinct while passing
from generation #12 to generation #14.

Attempting to change ant behavior in such a way that evolved paintings more
closely mimic the style of the images found in Monmarché by raising the value
of the repelling threshold MINR to 60, 80, 100, or even 120 did indeed reproduce
their style for the first few generations, but as evolution progressed the paintings
always degenerated to dark, monochromatic paintings.

The effect of using background colors other than white was difficult for us
to assess. We remarked earlier that the fitness function A5(a) = Nv evolved
monochrome paintings with either a black or white background. However, Fig-
ure 9 shows two examples that we obtained after 20 generations using the neutral
gray RGB background color (128, 128, 128). Figure 10 shows why we believe our
most consistent fitness function A4(a) = Nf · Nv/1000 was also the most robust
in this regard by showing examples evolved using both a black and neutral gray
background.

5 Adding Initial Conditions to the Model

All of the ant paintings described above used random positioning of ants at the
start of each generation. This meant that it was equiprobable any cell on the
grid would be visited and, given the exploration time, highly probable almost all
cells would be visited. It seemed plausible that more organized paintings would
result if ants explored the grid by always starting from fixed central locations.
Therefore we experimented with placing ants at the same fixed locations within
a central 20 × 20 “cluster” and pointing them in the same fixed directions from
those locations at the start of each generation. We also allowed longer evolution
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Fig. 11. Ant paintings evolved using fitness function A4, initial clustering of ants, and
longer evolution times. The two on the left are from generation #30 and the one on
the right is from generation #35 of their respective runs

times and preserved paintings after every five generations. Figure 11 shows paint-
ings representative of the results we obtained when using our preferred fitness
function A4(a) = Nf · Nv/1000.

6 Summary and Conclusion

We have introduced a more carefully reasoned and more sophisticated model for
evolving ant paintings while exploring the problem of automating their evolu-
tion. We have shown how different styles of ant paintings can be achieved by
using different fitness criteria, and we have investigated the effects of varying
the simulation parameters controlling evolution. While the resulting paintings
are still aesthetically primitive, there is reason to hope that ants possessing ad-
ditional sensory capabilities and given better guidance for color aesthetics could
produce more complex and interesting paintings.
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Abstract. This paper presents an Evolutionary Algorithm used to search
for similarities in a music score represented as a graph. We show how the
graph can be searched for similarities of different kinds using interchange-
able similarity measures based on viewpoints. A segmentation algorithm
using the EA for automatically finding structures in a score based on a
specific-to-general ordering of the viewpoints is proposed. As an exam-
ple a fugue by J. S. Bach is analysed, revealing its extensive use of inner
resemblance.

1 Musical Similarity

Repetition or parallelism is a fundamental feature of western tonal music. Ock-
elford cites musicologists arguing that music is a self-contained art form [1].
Music can not refer to the phenomenal world as well as other art forms are able
to, so the mind’s longing for reference can only be satisfied through repetition.

This paper addresses the search for parallelism in a symbolic representation
of music. Looking at the music as symbols or events, parallelism can appear as
repetition of phrases, but also as systematic changes in the quantitative infor-
mation of the notes/events (pitch and duration), or through elaborations and
simplifications of phrases (inserting/deleting notes). The artistic compositional
effects can be varied infinitely.

Our approach is an attempt to see how far one can go by analysing west-
ern tonal music based on musical similarities solely calculated from information
present in a score. We will demonstrate this with a fugue by J. S. Bach.

West et al. introduce the term transformation when a musical object (com-
posed of a number of events/notes) can be inferred from another musical object
in a perceptible way, and when it is possible to specify the transforming func-
tion [2]. This function determines the type of their relation and describes in what
way they can be said to be different inflections of the same musical idea. Our
strategy will be to carefully define a set of transformation functions, and then
to use them in searches.

What types of transformation functions could we expect? The problem is
often divided in two. The easiest task is describing similarities involving a one-
to-one correspondence between the notes in the respective phrases – transfor-
mations that do not change the number of notes, but only their parameters. We

F. Rothlauf et al. (Eds.): EvoWorkshops 2005, LNCS 3449, pp. 488–497, 2005.
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will call these simple transformations. This could for example be the transposi-
tion of a phrase. The real challenge is to find phrases that sound similar while
allowing elaboration/simplification (inserting/deleting notes). To detect such a
non-simple parallelism there is not a single strategy, since there are numerous
ways of embellishing the music and consequently many transformation functions.
Although the non-simple transformations are quite important in music, we will
in this paper concentrate on the simpler case of defining (and finding) similarities
between equal-numbered groups of notes. Simple transformation functions are
quite common means of creating parallelisms, and can be thought of as system-
atic changes of the notes like transpositions (of various types) and inversions.
A small set of these transformations are able to account for a great deal of
similarities in western tonal music.

Describing musical similarity and proposing similarity measures is a field
which has already been given much attention, due to its central position in au-
tomatic music analysis (see, e.g., [3, 4, 5], to name but a few). Segmentation
based on similarities has also been studied by [6]. We have built our similarity
measures upon the ideas by Conklin et al. [7, 8]. Their method of computing
similarities are defined on sequences of notes solely. We have adopted this se-
quential approach to the problem, which turns out to work fine for the fugue
analysed here.

2 Data Acquisition and Representation

To be able to analyse music in the best way, we decided to depend mainly on
a reasonably detailed music source: the MuseData format (www.musedata.org).
This source contains information about enharmonic pitch spelling. We can use
MIDI as input too, but MIDI lacks the diatonic information (relating every note
to a 7 step scale) that is crucial when searching for harmonically related phrases.

Musical events are put into a graph structure – the music graph. Each
note/rest or ‘event’ in the score is represented as a vertex containing the pitch
(spelling, octave, alterations), duration, start time in the score, key, and time
signatures etc. The temporal relations of the notes/rests are present as directed
edges of the graph. Vertices representing events following each other in time (a
note/rest that starts immediately where another ends) are connected by an edge
of type follow. Notes with the same start time are connected by simultaneous
edges. The graph representation does not bias the representation of the music
to be mainly ‘vertical’ (homophonic) or ‘horizontal’ (polyphonic), but any con-
nected subset of the notes – a subgraph – can be considered as an entity of the
music. The features of this graph representation is explained in detail in [9]. For
the experiments explained here, follow edges only exist between vertices belong-
ing to the same voice in the score. The MuseData representation and scores in
general are by nature divided into such voices or parts.

For practical reasons, subgraphs can either be sequential (graphs of vertices
connected by edges of type follow only) or non-sequential. The similarity mea-
sures presented in this paper are defined for sequences of notes and the music
analysed is mainly polyphonic, so in this paper we are searching for similar se-
quential subgraphs. [9] presents a way to extend the similarity measures to the
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more general case of comparing any (equal sized) subgraphs. We will from now
on refer to sequential subgraphs as simply subgraphs.

3 The Search Algorithm

The EA maintains a population of Similarity Statements. A similarity statement
(SS) is a guess that two subgraphs of the same size (same number of vertices)
are similar. The population is initialised with SSs each pointing at two random
subgraphs of the ‘mother’ graph. By doing crossover, mutation, and selection in
terms of altering the guesses it is possible to change the SSs to point at increas-
ingly more similar subgraphs, dynamically adjusting their size and position.

A new generation is composed of three parts. A given percentage is chosen
through tournament selection (tournament size of 2), another percentage is cre-
ated by crossover of two selected individuals, and the remaining percentage is
created through mutation of the selected or crossbred individuals. Finally, af-
ter a new population is created, the mutation rate is also used to determine a
number of random mutations that are applied to the new generation. The most
fit similarity statement in each generation always survives to the next (elitism).
(The numbers used in the presented experiment were: selection: 0.45, crossover:
0.05, and mutation 0.5).

Mutation on a similarity statement with sequential subgraphs s1 and s2 can
take several forms. The different mutation operations add and remove edges and
vertices to/from the subgraphs. It should be noted that subgraphs are imple-
mented as pointers to a subset of the vertices and edges in the ‘mother’ graph.
Mutations on subgraphs do not change the graph structure itself. Common to
all operators is that they must preserve the constraints that make s1 and s2
sequential (connected and only including edges of type ‘follow’).

– Extension Extend both s1 and s2 once, either at the ‘beginning’ of the
subgraph (against the follow edge direction) or at the ‘end’ (along the follow
edge direction), chosen at random and independently for each graph. The
size of both subgraphs is increased by 1. (Applied with probability 0.3)

– Shortening Shorten both s1 and s2. As with extension, a subgraph can be
shortened at either of the ends chosen at random and independently for each
graph. The size is decreased by 1. (Probability 0.3)

– Slide Slide both subgraphs once along or against the follow edge direction
(s1 and s2 do not need to slide the same way). The size of the subgraphs is
not altered by a slide. (Probability 0.3)

– Substitution Substitute either s1 or s2 with a new and randomly generated
subgraph of the same size. (Probability 0.1)

The crossover operation takes two SSs and combines them by picking one sub-
graph from each (chosen at random). The two parent statements most often
have different sizes, so the smallest of them is extended at random until the
sizes match. However, the chances that this will improve the fitness are low,
because often the two subgraphs that are chosen are very different. As a result,
the crossover parameter is often set low (in this experiment to 0.1).
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Viewpoint View
Absolute MIDI Pitch [48,52,50,53,52,53,55,47,48]
MIDI Pitch Interval [4,-2,3,-1,1,2,-8,1]

Pitch Class [0,4,2,5,4,5,7,11,0]
Diatonic Absolute Pitch (A) [C3,E3,D3,F3,E3,F3,G3,B2,C3]
Diatonic Pitch Interval (T ) [2,-1,2,-1,1,1,-5,1]

Diatonic Interval mod 7 (M) [2,6,2,6,1,1,2,1]
Diatonic Inversion Interval [-2,1,-2,1,-1,-1,5,-1]

Absolute Duration [ 18 , 18 , 18 , 18 , 18 , 18 , 18 , 18 ,1]

Fig. 1. Example of the viewpoints

3.1 Evaluation

The fitness function evaluates the degree of similarity of two equal sized sub-
graphs according to an interchangeable similarity measure. The fitness function
has to balance four conflicting goals:

– Optimise musical similarity
– Prefer larger matches to smaller ones
– Prefer phrases that conform to grouping structure rules
– Forbid overlap between subgraphs in any SS

The size of the graphs in a SS contribute in the fitness calculation to make
the algorithm explore larger matches even if a perfect one is already found. A
decreasing function of the size of the subgraphs is added to the fitness to make
the EA prefer longer matches.

An evaluation of both subgraphs’ agreement with grouping structure (a quick
implementation of some simple rules suggested by [10]) is also included in the
evaluation. The rules essentially propose a computable way of telling how well
the two phrases individually correspond to phrase boundaries in the music. Even
though only a few rules are implemented, the effect is noticeable. There is un-
fortunately no space here to go into details about this.

No overlap between two subgraphs in a similarity statement is permitted. We
want phrases to be non-overlapping so we later can substitute the subgraphs in
an unambiguous way. Overlap result in a bad evaluation.

We have used the notion of viewpoints presented in [7] when calculating the
musical similarities between subgraphs. A viewpoint is a function taken on a
sequence of musical objects, yielding a view of the sequence. The sequence is in
our case a sequential subgraph, and the view is a list of values. Figure 1 shows a
note sequence and examples of viewpoints and corresponding views. As shown,
values from both the pitch and time domains can be included (other information
available could also be used). Viewpoints can either be absolute – using values
from each note – or relative – calculated from the relation between notes. The
list is by no means complete.
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To compare if two subgraphs of equal length are equal under a given view-
point, we compare their views. This is simply done by counting the number
of pairwise disagreeing values in the view vectors. When this view difference
evaluates to zero, the sequences are equal under this view.

A motif and its exact repetition have the same view under the absolute
pitch viewpoint A (the identity transformation, ‘Absolute’) and the pitch interval
viewpoint T (‘Transposition’). A motif and its transposed version will however
have different views under A, but equal under T . A is said to be more specific
than T . In the segmentation of the fugue presented in Sec. 5, we chose to use
three viewpoints from the pitch domain – the ones denoted as A, T and M in
Fig. 1. They can be ordered by pitch in this way:

DiatonicAbsP itch(A) ≤ DiatonicInt(T ) ≤ DiatonicIntMod7(M) (1)

If two patterns are found similar (regarding pitch) under a viewpoint, they will
also be equal under a less specific viewpoint.

The fitness function combines evaluations of the above mentioned parameters
and selected viewpoints into a single value. The global optimal solution is thus
based on a mixture of melodic similarities and the size and boundaries of the
subgraphs. In the measures used for the fugue segmentation we have adjusted the
weighting of these parameters in such a way that pitch is the dominating factor.

4 The Segmentation Algorithm

We now perform multiple runs of the EA to discover and categorise different
kinds of similarities inside a piece. Segmenting a performance consists in itera-
tively using the EA to find similar passages in the piece. When an EA terminates,
the most fit SS is evaluated against a threshold, determining if the fitness is ‘good
enough’ for the music to be claimed similar.

The EA is also used to search for more occurrences of a pattern – the occur-
rence search. It works by keeping one subgraph fixed in each SS (the original
pattern) while doing crossover and mutations on the other, never changing the
size of the graphs. The multiple EA searches are done with different similarity
measures in a special order, controlled by the segmentation algorithm. The goal
of the segmentation algorithm is to find patterns and derivations and categorise
motifs with as specific a measure as possible.

When the segmentation algorithm finds a subgraph sufficiently similar to
another, it removes it from the original graph and replaces it with a compound
vertex (CV) now representing the pattern. This CV is labelled with the similarity
measure it was evaluated with (its relation), as well as an identifier representing
its ‘type’. The edges to and from the subgraph that was substituted now connect
the CV. A subsequent EA run on the updated graph now needs to take account
of CVs in the graph and compare these on equal terms with other vertices. CVs
can then be included in other subgraphs making further nesting possible.

A CV can only be similar to another CV if it has the same type (representing
the same motif), and CVs should only be included when they were not found
found with a more general measure than the current. This is necessary to pre-
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SimilaritySegmenter(array of similarityMeasures, MusicGraph) {
i=-1
for(SimMeasure sm_i = 1..k){

//search for new repeated patterns
while(it is possible to find similar patterns with sm_i){

let s_1 and s_2 be the most similar subgraphs of a EA run with sm_i
if( SimMeasure(s_1,s_2) is within the similarity threshold){

i++
substitute s1 and s2 in the graph with CVs of type i and measure sm_i
for(SimMeasure sm_j = i..k){

while(there are more occurrences of one of s_1 and s_2 to find with sm_j){
let s_n be the graph found in an Occurrence search for s_1 with sm_j
if( SimMeasure(s_1,s_n) within threshold)

substitute s_i in the graph with a CV of type i and measure sm_j
let s_n be the graph found in an Occurrence search for s_2 with sm_j
if( SimMeasure(s_2,s_n) within threshold)

substitute s_i in the graph with a CV of type i and measure sm_j
}

}//advance to next SimMeasure in the occurrence search
}//no more patterns to be found with this SimMeasure

}//advance to next SimMeasure
} }

Fig. 2. The segmentation algorithm

serve the relation of the measures that the CVs were labelled with. Otherwise
it would, e.g., be possible to allow transposed phrases (labelled T ) to be part
of a compound labelled with an absolute measure A, which is wrong since the
phrases are not copies of each other.

The segmentation algorithm resembles the one proposed by [11] in the way
all derivations of a recurring pattern are found before a new pattern is addressed.
The idea is to iteratively find new patterns with as general a measure as possible
(in successively weaker order) and next to find all derivations of it in successively
weaker order. A new pattern is not considered before all derivations are believed
to be found (when the search for more occurrences fails). The algorithm (shown
in Fig. 2) takes as input the graph, and a list of (ordered) similarity measures.
The algorithm iterates through a double for-loop. Both of the loops start EA
searches with the similarity measures in the order given. The outer loop searches
for new patterns and the inner searches for occurrences of these. The similarity
measure smi advances one step (becomes more general) every time the while-
condition is not fulfilled: when it is not possible to find a pattern with smi. In the
inner loop smj advances when it is not possible to find more occurrences with
smj . The segmentation terminates when the EA fails to find a ‘good’ repeated
pattern with the most general similarity measure.

An alternative to the strict segmentation order would be to calculate all
pitch related viewpoints in every evaluation and grade the fitness according to
similarity in highest pitch specificity. That evaluation approach resembles the
one presented in [12]. A more drastically but less controllable change would be
to always evaluate all implemented viewpoints and see which one that ‘clicks’ and
based on this information calculate a rating or a description of the similarities of
the subgraphs (e.g. “s1 is a rhythmically augmented diatonic inversion of s2”).
We plan to do experiments along these lines.
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5 Experiments: Segmenting a Fugue

We will present a single segmentation by the algorithm: an analysis of J.S. Bach’s
Fugue in C minor, BWV 847 from WTK Book 1. This will illustrate how well
the search algorithm does the job of selecting phrases and finding derivations.

The threshold was set so that only patterns having identical views regarding
pitch (under the given viewpoint) were considered similar. Duration and group-
ing were given less importance. The EA was generously given 800 generations
for finding new patterns and 500 generations for finding occurrences. The popu-
lation size was 120 similarity statements. The segmentation was set to terminate
when the best pattern found was of size 2 or it’s fitness above the threshold. The
segmentation algorithm found 19 patterns (some of them extending others) of
sizes 3-26 notes/rests and made a total of 72 substitutions.

A graphical representation of the segmentation is shown in Fig. 3, giving an
overview of the musical material found in the piece. The figure shows the entire
three part fugue. Each part is represented as a row of boxes. Every note in the
score is represented by a box. The width of the box shows the relative duration of
the note. Rests are not printed but present as ‘missing boxes’. Every compound
found in the segmentation is labelled with a number and a letter indicating the
measure with which it was found similar to another pattern. The beginning of a
compound is also indicated by a black triangle. Every compound type is given
a unique shade of grey (unfortunately not too clear in the figure). White boxes
are thus notes which have not been found belonging to any pattern. Subpatterns
in a nested compound are shown in the background. Bar numbers are printed
above the vertical bar lines.

Fig. 3. A segmentation of J. S. Bach, Fugue in C minor
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Fig. 6. Counterpoint, iteration 15

The pattern found in the second iteration (iteration 1) is exactly the main
theme, traditionally called dux. It has six occurrences in the fugue, and all were
found (see Fig. 4 – the numbers and letters indexing the patterns refer to voice
(1, 2 or 3) and similarity measure (A, T or M)). The only two occurrences that
are exactly the same in pitch (A) were found first (beginning in bars 1 and 20) –
the rest were found as transpositions (T ). The ending dux (bar 29) differs only
on the ending note, which has been transposed half a tone. The occurrences
starting in bar 7 and 26 are octave transposition of the theme. The dux in bar
11 is a ‘major’ version of the theme, starting on e� in stead of c.

A harmonic variant of the theme was found in iteration 13. It differs in one
note (or two jumps) from the dux, and is traditionally called comes. It was
found as an original pattern, since we did not allow a single note difference in
the search. It has two occurrences which were correctly found as transpositions
of each other – they occur in different octaves (Fig. 5).

One more important pattern in a fugue is the counterpoint. It is an accom-
panying figure to both dux and comes. It has six occurrences, but not all were
found in their entirety. The pattern found in iteration 3 is a subpart of this figure
and was found in all 6 places. In iteration 15, four counterpoints were found –
extending the 3 pattern (Fig. 6). It could be argued that the note preceding
this pattern musically belongs to the counterpoint figure. All occurrences are
transpositions of each other, starting on e�, g, b and e� again. One was found
with the measure M . This is because of the difference in jump between the 7th
and the 8th note. In three of the cases this is an octave and a third, but in bar
15 it is only a third.
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The simultaneous occurrences of dux/comes and counterpoint can be seen
from Fig. 3. Also worth noticing is bars 17-19 where the patterns 8 and 4 occur
simultaneously twice in succession in the two lowest voices – switching place.
Furthermore the pattern labelled ‘0’ occurs four times – each time accompanying
itself. This happens in bars 9-11 and 22-24 (voices 1 and 2).

The presented segmentation is quite representative for the behavior of the
algorithm. Running 10 segmentations with the given parameters, 7 of them found
all occurrences of dux in the same iteration. Every time the comes was found.
The counterpoint was in each segmentation recognised in 3-6 occurrences of
varying extension.

6 Conclusion

The best we can do so far to evaluate a segmentation is to make the similarities
visible/audible and compare to a manual analysis of the piece. The previous
section showed that the algorithm did a fairly good job in finding the common
motifs and derivations as well as categorising them correctly. It was not perfect,
but taking into account that it depends on a nondeterministic algorithm which
can been tuned, we can hope that even better results might be possible.

The overall segmentation certainly shows some structural dependencies in
the fugue. A mechanical way of discovering when patterns occur simultaneously
would be possible when allowing motifs to be non-sequential and thus spanning
over notes from more parts. The data structure and search mechanism support
this, but we will need some more effective and efficient similarity measures to be
able to do this in practice.

The strength of the EA is it’s ability to select the similar motifs in the music
of any length. The search for occurrences might however have been more efficient
with a deterministic algorithm in this simple sequential graph.

A crucial factor in the segmentation process seems to be the bounding of
patterns. It is hard to evaluate the effect of the grouping structure rules. We
did not give it much importance in this experiment. More focused experiments
will be needed to study the relationship between musical grouping structure and
meaningful musical patterns.

Also important is the choice of similarity measures. A larger set of transfor-
mation functions would be required to analyse other types of music. For example
the MIDI pitch views might be more relevant when segmenting non-diatonic mu-
sic. The rhythmical aspect should be explored. Fortunately it is easy to integrate
new similarity measures into the evaluation function.

The idea of using the MuseData scores is to take advantage of the diatonic
information. The different nature of the diatonic pitch viewpoints allows for some
variation within the same the view. In our segmentation we only allowed phrases
that had exactly equal views to be similar. A natural extension would be to allow
for example one or more notes to differ while searching for ‘new’ themes. One
could expect motifs to sound similar even when some notes are different (as for
example the dux and comes). Allowing this introduces some uncertainties. We
cannot be sure that what we find in every case also will be perceived as similar
– especially when the note sequences are short. This approach would produce
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less ‘correct’ segmentations, but is an unavoidable next step that we have to
examine.
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Abstract. In domains such as music and visual art, where the quality of an in-
dividual often depends on subjective or hard to express concepts, the automat-
ing fitness assignment becomes a difficult problem. This paper discusses the 
application of Zipf’s Law in evaluation of music pleasantness. Preliminary re-
sults indicate that a set of Zipf-based metrics can be effectively used to clas-
sify music according to pleasantness as reported by human subjects. These 
studies suggest that metrics based on Zipf’s law may capture essential aspects 
of proportion in music as it relates to music aesthetics. We discuss the signifi-
cance of these results for the automation of fitness assignment in evolutionary 
music systems. 

1   Introduction 

Interactive Evolution (IE) is one of the most popular approaches in current evolution-
ary music generation systems. In this paradigm the user assigns fitness to the gener-
ated pieces, guiding evolution according to his/hers aesthetic preferences. In the field 
of music, IE has been used for the evolution of rhythmic patterns, melodies, Jazz 
improvisations, composition systems, and many other applications (a comprehensive 
survey can be found in [1]). 

In spite of its popularity, IE has several shortcomings that become particularly  
severe in time-based domains like music. Listening to all generated pieces is a tedious 
and demanding task; it leads to user fatigue and inconsistency in evaluation, and  
imposes severe limits on population size and number of generations. To overcome 
this shortcoming, some researchers (e.g. [2, 3, 4]) resort to Artificial Neural Networks 
(ANNs). The ANNs can be trained using a set of user-evaluated pieces created by an 
IE system [3]; scores of well-known musicians [2]; rhythmic boxes [4]; etc. 
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Although appealing, this approach has several shortcomings (see e.g. [2, 3]), most 
notably the difficulty of identifying a representative training set and, consequentially, 
of avoiding shortcuts – ways of creating false maximums. 

Our research explores the connection between Zipf’s law and music in the context 
of developing fitness functions for evolutionary music systems. We begin by perform-
ing an analysis of the music by extracting several Zipf-based measurements. These 
measurements serve as input for ANNs. We have successfully performed several 
validation experiments for author and style identification. In this paper, we describe a 
similar experiment, in the context of predicting music pleasantness. 

The next sections discuss Zipf’s law and its connection to music, and present re-
sults demonstrating how Zipf’s law may be used to quantify music pleasantness. 
These results suggest that Zipf’s law is a useful tool for developing fitness functions 
for evolutionary music.  

1.1   Zipf's Law 

Zipf’s law reflects the scaling properties of many phenomena in human ecology, in-
cluding natural language and music [5, 6]. Informally, it describes phenomena where 
certain types of events are quite frequent, whereas other types of events are rare. In 
English, for instance, short words (e.g., “a”, “the”) are quite frequent, whereas long 
words (e.g., “anthropomorphologically”) are quite rare. In music, consonant harmonic 
intervals are more frequent, whereas dissonant harmonic intervals are quite rare, 
among other examples. In its most succinct form, Zipf’s law is expressed in terms of 
the frequency of occurrence (quantity) of events, as follows:  

F ~ r –a (1) 

where F is the frequency of occurrence of an event within a phenomenon, r is its 
statistical rank (position in an ordered list), and a is close to 1. 

Another formulation of Zipf’s law is 

P(f) ~ 1/f n (2) 

where P(f) denotes the probability of an event of rank f and n is close to 1. In physics, 
Zipf’s law is a special case of a power law. When n is 1 (Zipf’s ideal), the phenome-
non is called 1/f or pink noise. Interestingly, when rendered as audio, 1/f (pink) noise 
is perceived by humans as balanced, whereas 1/f 0 or white noise is perceived as too 
random, and 1/f 2 or brown noise as too correlated [6]. 

In the case of music, we may study the frequency of occurrence of pitch events, du-
ration events, melodic interval events, and so on. For instance, consider Chopin’s 
“Revolutionary Etude.” To determine if its melodic intervals follow Zipf’s law, we 
count the different melodic intervals in the piece, e.g., 89 half steps up, 88 half steps 
down, 80 unisons, 61 whole steps up, and so on. Then we plot these counts against 
their statistical rank on log-log scale. This plot is known as rank-frequency distribu-
tion (see Fig. 1). 

In general, the slope of the distribution may range from 0 to –∞, with –1 denoting 
Zipf’s ideal. This slope corresponds to the exponent n in (2). The R2 value may range 
from 0 to 1, with 1 denoting a straight line. The straighter the line, the more reliable 



500 B. Manaris et al. 

 

the measurement. For example, melodic intervals in Chopin’s “Revolutionary Etude” 
approximate a Zipfian distribution with slope of –1.1829 and R2 of 0.9156. 

2   Experimental Studies 

Earlier studies indicate that Zipfian distributions abound in socially-sanctioned music 
[7]. By socially-sanctioned we mean music that is sanctioned by a large enough musi-
cal subculture to be published/recorded, and thus survive over time; this is consistent 
with Zipf’s use of the term (see [5], p. 329)  

Currently, we have a set of 40 metrics based on Zipf’s law [8].  We have used 
these metrics to extract features from MIDI-encoded music pieces. Specifically, these 
metrics count occurrences of various types of events and calculate the slope and R2 
value of the corresponding Zipf distribution. Table 1 shows a subset of these metrics. 

The features extracted from these metrics (i.e., slope and R2 values) have been used 
to train ANNs to classify these pieces in terms of composer, style, and pleasantness. 
To perform these classification studies, we compiled several corpora, whose size 
ranged across experiments from 12 to 758 music pieces [8]. These pieces are MIDI-
encoded performances, the majority of which come from the Classical Music Ar-
chives [9]. We applied Zipf metrics to extract various features per music piece. The 
number of features per piece varied across experiments, ranging from 30 to 81.  

These feature vectors were separated into two data sets. The first set was used for 
training the ANN. The second set was used to test the ANN’s ability to classify new 
data. We experimented with various architectures and training procedures using the 
Stuttgart Neural Network Simulator [10]. 

In terms of author attribution, we conducted five experiments: Bach vs. Beethoven, 
Chopin vs. Debussy, Bach vs. four other composers, and Scarlatti vs. Purcell vs. Bach 
vs. Chopin vs. Debussy [11, 12]. The average success rate across the five author attri-
bution experiments ranged from 95% to 100%. 

y = -1.1829x + 2.6258; 

R2 = 0.9156
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Fig. 1. The rank-frequency distribution of melodic intervals for Chopin’s “Revolutionary 
Etude,” Op. 10 No. 12 in C minor 
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We conducted several experiments for style identification tasks, using different 
ANN architectures and parameters. A detailed description and analysis of these re-
sults is awaiting publication. The average success rate across experiments, which 
required discerning between seven different styles, ranged from 91% to 95%.  

These studies suggest that Zipf-based metrics may be used effectively for ANN 
classification, in terms of authorship attribution and style identification. These two 
tasks are relevant to evolutionary music composition, as it may contribute to fitness 
functions for composing music that is similar to a certain composer or music style. 
The next session presents ANN results related to music pleasantness. 

3   Pleasantness Prediction 

Much psychological evidence indicates that pleasantness and activation are the fun-
damental dimensions needed to describe human emotional responses [13]. Following 
established standards, we conducted an experiment in which we asked 21 subjects to 
classify music in terms of pleasantness and activation. The subjects were college 
students with varied musical backgrounds.  The experiment was double blind, in that 
neither the subjects nor the people administering the experiment knew which of the 
pieces presented to the subjects were presumed as pleasant or unpleasant. 

3.1   Data Collection Methodology 

The subjects were presented with 12 MIDI-encoded musical performances. Our goal 
was to provide six pieces that an average person might find pleasant, and six pieces 
that an average person might find unpleasant. A member of our team with extensive 
music theory background helped identify 12 such pieces (see Table 2). From these 
pieces, we extracted excerpts up to two minutes long, in order to lessen fatigue for the 
human subjects and thus increase the consistency of the collected data. 

Table 1. A sample of metrics based on Zipf’s law [8] 

Metric Description 
Pitch Rank-frequency distribution of the 128 MIDI pitches 
Chromatic tone Rank-frequency distribution of the 12 chromatic tones 
Duration Rank-frequency distribution of note durations 
Pitch duration Rank-frequency distribution of pitch durations 
Pitch distance Rank-frequency distribution of length of time intervals between note 

(pitch) repetitions 
Harmonic interval Rank-frequency distribution of harmonic intervals within chord 
Harmonic consonance Rank-frequency distribution of harmonic intervals within chord

based on music-theoretic consonance 
Melodic interval Rank-frequency distribution of melodic intervals within voice 
Harmonic bigrams Rank-frequency distribution of adjacent harmonic interval pairs 
Melodic bigrams Rank-frequency distribution of adjacent melodic interval pairs 
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While listening to the music, the subjects continuously repositioned the mouse in a 
2D selection space to indicate their reaction to the music. The horizontal dimension 
represented pleasantness while the vertical dimension represented activation or 
arousal. The system recorded the subject’s cursor coordinates once per second. Posi-
tions were recorded on 0 to 100 scales with the point (50,50) representing emotional 
indifference or neutral reaction.  

Similar methods for continuous recording of emotional response to music have 
been used elsewhere [14].  

3.2   ANN Training Methodology 

For the ANN experiment, we divided each music excerpt into segments. All segments 
started at 0:00 and extended in increments of four seconds. That is, the first segment 
extended from 0:00 to 0:04 seconds, the second segment from 0:00 to 0:08 seconds, 
the third segment from 0:00 to 0:012 seconds, and so on. We applied Zipf metrics to 
extract 81 features per music increment. Each feature vector was associated with a 
target output vector (x, y), where x and y ranged between 0.0 and 1.0. Target vectors 
were constructed from the exact ratings (averaged over subjects) at each point in time 
in the piece. Target vector (1.0, 0.0) corresponded to most pleasant, (0.0, 1.0) corre-
sponded to most unpleasant, and (0.5, 0.5) corresponded to neutral. This generated a 
total of 210 training vectors. 

We conducted a 12-fold, “leave-one-out,” cross-validation study. This allowed for 
12 possible combinations of 11 pieces to be “learned” and 1 piece to be tested. The 
ANN had a feed-forward architecture with 81 elements in the input layer, 18 in the 
hidden layer, and 2 in the output layer. Internally, the ANN was divided into two 
81x9x1 “Siamese-twin” pyramids both sharing the same input layer. One pyramid 
was trained to recognize pleasant music, the other unpleasant. Classification was 
based on the average of the two outputs. 

Table 2. Twelve pieces used for music pleasantness classification study.  Subjects rated the 
first six pieces as “pleasant”, and the last six pieces as “unpleasant” 

Composer Piece Duration 
Beethoven Sonata No. 20 in G. Opus 49. No. 2 (1:00) 
Debussy Arabesque No.1 in E (Deux Arabesques) (1:34) 
Mozart Clarinet Concerto in A. K.622 (1. Allegro) (1:30) 
Schubert Fantasia in C minor. Op.s 15 (1:58) 
Tchaikovsky Symphony 6 in B minor. Opus 36. Movement 2 (1:23) 
Vivaldi Double Violin Concerto in A minor.  F.1. No. 177 (1:46) 
Bartok Suite. Op. 14 (1:09) 
Berg Wozzeck (trans. for piano) (1:38) 
Messiaen Apparation de l'Eglise Eternelle (1:19) 
Schönberg Pierrot Lunaire (5. Valse de Chopin) (1:13) 
Stravinksy Rite of Spring. Movement 2 (tran. for piano) (1:09) 
Webern Five Songs (1. Dies ist ein Lied) (1:26) 
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During each training cycle the ANN was presented with every training vector once, 
in random order. Using back-propagation, the ANN weights were adjusted to reduce 
output mean standard error (train MSE). Every 200 cycles, the ANN was tested 
against the test data keeping track of the output mean standard error (test MSE). If the 
test MSE did not improve after a number of cycles, the ANN was considered stuck at 
a local minimum. Using a simulated annealing schedule, the ANN weights were 
“jogged” (adjusted by adding small amounts of random noise to the original weights). 
This forced the ANN to explore neighboring areas in the search space. The ANN 
weights were jogged with decreasing frequency as training progressed. The back-
propagation part of the training focused on minimizing the train MSE, whereas the 
simulated-annealing part focused on minimizing the test MSE. By combining back-
propagation with simulated annealing, we aimed at finding the best possible fit of the 
training data given the test data.  

3.3   Experimental Results 

The ANN performed extremely well with an average success rate of 98.41%. All 
pieces were classified with 100% accuracy, with one exception: Berg’s piece was 
classified with 80.95% accuracy (see Table 3). The ANN was considered successful if 
it rated a music excerpt within one standard deviation of the average human rating; in 
other words it came within 68% of the range of human responses (i.e., 32% of the 
humans were outside of this range). There are two possibilities for the decrease in 
accuracy of the ANN with regard to Berg: Either our metrics fail to capture some 
essential aspects of Berg’s piece, or the other 11 pieces do not contain sufficient in-
formation to enable the interpretation of Berg’s piece.  

Table 3. ANN results from all 12 experiments for the human-training, human-testing condition 

Composer Cycles Test Rate  Test MSE   Train Rate Train MSE 
Beethoven 11200 100.00% 0.002622 100.00% 0.011721 
Debussy 151000 100.00% 0.086451 100.00% 0.001807 
Mozart 104000 100.00% 0.003358 100.00% 0.005799 
Schubert 194000 100.00% 0.012216 100.00% 0.002552 
Tchaikovsky 4600 100.00% 0.002888 100.00% 0.019551 
Vivaldi 2600 100.00% 0.002026 94.05% 0.046553 
Bartók 20200 100.00% 0.006760 100.00% 0.008813 
Berg 4600 80.95% 0.100619 100.00% 0.015412 
Messiaen 35200 100.00% 0.001315 100.00% 0.008392 
Schönberg 4400 100.00% 0.013170 99.49% 0.024644 
Stravinksy 10800 100.00% 0.000610 100.00% 0.015685 
Webern 6400 100.00% 0.006402 100.00% 0.015366 
Average 45750 98.41% 0.019870 99.46% 0.014691 
Std 66150 0.0549 0.034775 0.0171 0.012118 
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Fig. 2 displays the average human ratings for the excerpt from Mozart’s “Clarinet 
Concerto in A” K.622. Fig. 3 shows the pleasantness ratings predicted by the ANN 
for the same piece. The ANN prediction approximates the average human response.  

Additionally, we performed three control experiments to validate the results pro-
duced by the ANN. In specific, all values in the Human-training, Human-testing (HH) 
data were replaced by values generated using a uniform-distribution random number 
generator. These and the original values were then combined into three data sets for 
the control experiments: Random-training and Random-testing (RR), Random-
training and Human-testing (RH), and Human-training and Random-testing (HR). 
Each of the control experiments was a complete 12-fold cross-validation study, just 
like the human data experiment. 

Fig. 4 shows the Test MSE per piece across all four conditions (HH, RR, RH, and 
HR). The reader should recall that the first six pieces were pleasant and the last six 
unpleasant. Fig. 5 shows the average Test MSE across the four experiments. 

3.4   Discussion 

The ANN was able to discover strong correlations between the human pleasantness 
data and Zipf-based metrics (HH condition). Also, as expected, the ANN did not 
discover any correlations between random data and Zipf-based metrics (HR and RR 
conditions). 

However, the ANN performed relatively well when trained against random data 
and tested against human data (RH condition). This may be surprising at first, how-
ever, it simply demonstrates the effect of peeking at the test data while training (see 
[15], p. 661) – as mentioned above, we used simulated annealing to “jog” the weights 
when the ANN appeared stuck in local minima relative to the test MSE. In other 

 

Fig. 2. The average pleasantness (o) and
activation (x) ratings from 21 human sub-
jects for the first 1:30 seconds of Mozart’s
“Clarinet Concerto in A” (K.622).  A rating
of 50 denotes neutral response 

 
Fig. 3. Pleasantness classification by ANN of 
the same piece having been trained on the 
other 11 pieces 
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words, the ANN was trained to minimize both the test and the train MSEs. This indi-
cates that the ANN is actually able to learn something about the human data, even 
though it was trained on random “noise.”. While the ANN does succeed in classifying 
the data, its error rate is more than double than when it was trained with actual human 
data.  

Reassuringly, this peeking effect produced no convergence in all 12 experiments of 
the RR condition (random training, random testing). This strongly suggests that there 
is a correlation between Zipf metrics and human pleasantness data, and no correla-
tions with random data. 

Analysis of the ANN weights associated with each metric suggests that harmonic 
consonance and chromatic tone were consistently relevant for “pleasantness” predic-
tion, across all 12 experiments. Other relevant metrics include chromatic-tone dis-
tance, pitch duration, harmonic interval, harmonic and melodic interval, harmonic 
bigrams, and melodic bigrams.    

The HH (and RH) results indicate that the ANN is able to identify patterns that are 
relevant to human reporting of pleasantness. The feature extractor and ANN evaluator 
used in this experiment can easily be incorporated into an evolutionary music system 
as part of fitness evaluation. Our results suggest that such a fitness function has strong 
potential to guide the evolutionary process towards music that sounds pleasant to 
humans. However, given the statistical nature of the metrics, we expect that additional 
structural, music-theoretic metrics may be required to discourage evolution from 
finding shortcuts – ways of creating false maxima. In other words, we suspect that 
ANN-based fitness functions, such as the one reported in the pleasantness study, at 
best, define a necessary but not sufficient (pre)condition for pleasant music. To evalu-
ate this hypothesis, we are in the process of developing an evolutionary music system, 
called NevMusE, that will be used to generate music guided by such ANN-based 
“pleasantness” fitness functions.  
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4   Conclusions 

The experimental results attained show that the considered set of metrics captures 
important music attributes, facilitating not only accurate prediction of author and 
style, but also pleasantness of musical pieces. 

We propose that this approach may be applied successfully in the scope of a fully- 
or partially-automated system to assign fitness according to: 

 compliance to a given musical style or styles; 
 similarity to the works of some composer(s); and 
 predicted pleasantness of the piece 

There are several differences, and potential advantages over previous works deal-
ing with the automation of fitness assignment. For instance, by using a set of well-
known pieces instead of ones generated through IE, we ensure that the training set is 
unbiased towards the scores typically generated by the system. Also, the tasks of 
author and style identification do not involve subjective criteria. The output vector of 
the ANN can be seen as a set of distances to particular styles and authors, which 
opens new possibilities in terms of fitness assignment. Finally, the ANNs trained for 
predicting the pleasantness of pieces appear to capture fundamental principles of 
aesthetics. This contrasts with other approaches where the ANNs, when successful, 
capture only some of the preferences of an individual user. 

Similarly to other approaches there is always the possibility of errors in classifica-
tion and prediction. As such, using a totally automated system may result in conver-
gence to false optimums. Taking into account the current state of development, we 
believe that it is probably wiser and more interesting to use a partially interactive 
system. The system would run on its own using the ANNs to assign fitness. However, 
the user can interfere at any point of the evolutionary run assigning fitness to the indi-
viduals, thus overriding the automatic evaluations.  

We have already used this scheme in a partially interactive visual art evolutionary 
system [16]. The experimental results show that user intervention was enough to 
overcome the deficiencies of the fitness assignment scheme, which, in that case, 
where quite severe. Nevertheless, due to the generic properties of the extracted fea-
tures, it is expected that, in the case of music, our approach results in more generic 
and robust fitness assignment. 
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Abstract. In this paper, we describe an approach to learning expres-
sive performance rules from monophonic Jazz standards recordings by
a skilled saxophonist. We use a melodic transcription system which ex-
tracts a set of acoustic features from the recordings producing a melodic
representation of the expressive performance played by the musician. We
apply genetic algorithms to this representation in order to induce rules of
expressive music performance. The rules collected during different runs
of our system are of musical interest and have a good prediction accuracy.

1 Introduction

Expressive performance is an important issue in music which has been studied from
different perspectives (e.g. [8]). The main approaches to empirically study expres-
sive performance have been based on statistical analysis (e.g. [26]), mathematical
modelling (e.g. [27]), and analysis-by-synthesis (e.g. [7]). In all these approaches, it
is a person who is responsible for devising a theory or mathematical model which
captures different aspects of musical expressive performance. The theory or model
is later tested on real performance data in order to determine its accuracy.

In this paper we describe an approach to investigate musical expressive perfor-
mance based on evolutionary computation. Instead of manually modelling expres-
sive performance and testing the model on real musical data, we let a computer use
a genetic algorithm [14] to automatically discover regularities and performance
principles from real performance data (i.e. Jazz standards example performances).

The rest of the paper is organized as follows: Section 2 describes how the
acoustic features are extracted from the monophonic recordings. In Section 3 our
approach for learning rules of expressive music performance is described. Section
4 reports on related work, and finally Section 5 presents some conclusions and
indicates some areas of future research.

2 Melodic Description

In this section, we summarize how the melodic description is extracted from
the monophonic recordings. This melodic description has already been used to
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characterize monophonic recordings for expressive tempo transformations using
CBR [12]. We refer to this paper for a more detailed explanation.

We compute descriptors related to two different temporal scopes: some of
them related to an analysis frame, and some other features related to a note
segment. All the descriptors are stored into a XML document. A detailed expla-
nation about the description scheme can be found in [11].

The procedure for description computation is the following one. First, the
audio signal is divided into analysis frames, and a set of low-level descriptors are
computed for each analysis frame. Then, we perform a note segmentation using
low-level descriptor values. Once the note boundaries are known, the note de-
scriptors are computed from the low-level and the fundamental frequency values.
We refer to [10, 12] for details about the algorithms.

2.1 Low-Level Descriptors Computation

The main low-level descriptors used to characterize expressive performance are
instantaneous energy and fundamental frequency. Energy is computed on the
spectral domain, using the values of the amplitude spectrum. For the estima-
tion of the instantaneous fundamental frequency we use a harmonic matching
model, the Two-Way Mismatch procedure (TWM) [18]. First of all, we perform
a spectral analysis of a portion of sound, called analysis frame. Secondly, the
prominent spectral peaks of the spectrum are detected from the spectrum mag-
nitude. These spectral peaks of the spectrum are defined as the local maxima
of the spectrum which magnitude is greater than a threshold. These spectral
peaks are compared to a harmonic series and an TWM error is computed for
each fundamental frequency candidates. The candidate with the minimum error
is chosen to be the fundamental frequency estimate. After a first test of this im-
plementation, some improvements to the original algorithm where implemented
and reported in [10].

2.2 Note Segmentation

Note segmentation is performed using a set of frame descriptors, which are energy
computation in different frequency bands and fundamental frequency. Energy
onsets are first detected following a band-wise algorithm that uses some psycho-
acoustical knowledge [17]. In a second step, fundamental frequency transitions
are also detected. Finally, both results are merged to find the note boundaries.

2.3 Note Descriptor Computation

We compute note descriptors using the note boundaries and the low-level descrip-
tors values. The low-level descriptors associated to a note segment are computed
by averaging the frame values within this note segment. Pitch histograms have
been used to compute the pitch note and the fundamental frequency that rep-
resents each note segment, as found in [19]. This is done to avoid taking into
account mistaken frames in the fundamental frequency mean computation.
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2.4 Implementation

All the algorithms for melodic description have been implemented within the
CLAM framework 1. They have been integrated within a tool for melodic de-
scription, Melodia. This tool is available under GPL license. of the melodic de-
scription tool.

3 Learning Expressive Performance Rules in Jazz

In this section, we describe our inductive approach for learning expressive per-
formance rules from Jazz standard performances by a skilled saxophone player.
Our aim is to find note-level rules which predict, for a significant number of
cases, how a particular note in a particular context should be played (e.g. longer
than its nominal duration). We are aware of the fact that not all the expressive
transformations regarding tempo (or any other aspect) performed by a musician
can be predicted at a local note level. Musicians perform music considering a
number of abstract structures (e.g. musical phrases) which makes of expressive
performance a multi-level phenomenon. In this context, our ultimate aim is to
obtain an integrated model of expressive performance which combines note-level
rules with structure-level rules. Thus, the work presented in this paper may be
seen as a starting point towards this ultimate aim.

The training data used in our experimental investigations are monophonic
recordings of four Jazz standards (Body and Soul, Once I loved, Like Someone in
Love and Up Jumped Spring) performed by a professional musician at 5 different
tempos around the nominal one (i.e. the nominal, 2 slightly faster and 2 slightly
slower).

In this paper, we are concerned with note-level expressive transformations, in
particular transformations of note duration, onset and energy. The note-level per-
formance classes which interest us are lengthen, shorten, advance, delay, louder
and softer. A note is considered to belong to class lengthen if its performed dura-
tion is 20% or more longer that its nominal duration, e.g. its duration according
to the score. Class shorten is defined analogously. A note is considered to be
in class advance if its performed onset is 5% of a bar earlier (or more) than its
nominal onset. Class delay is defined analogously. A note is considered to be in
class louder if it is played louder than its predecesor and louder then the average
level of the piece. Class softer is defined analogously.

Each note in the training data is annotated with its corresponding class
and a number of attributes representing both properties of the note itself and
some aspects of the local context in which the note appears. Information about
intrinsic properties of the note includes the note duration and the note’s metrical
position, while information about its context includes the duration of previous
and following notes, and extension and direction of the intervals between the
note and both the previous and the subsequent note.

1 http://www.iua.upf.es/mtg/clam
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Using this data, we applied a genetic algorithm to automatically discover reg-
ularities and music performance principles. A genetic algorithm can be seen as a
general optimization method that searches a large space of candidate hypothesis
seeking one that performs best according to a fitness function. The genetic algo-
rithm we used for this investigation is the standard algorithm (reported in [6])
with parameters r, m and p respectively determining the fraction of the parent
population replaced by crossover, the mutation rate, and population size. We set
these parameters as follws: r = 0.8, m = 0.05 and p = 200. During the evolution
of the population, we collected the rules with best the fitness for the classes of
interest (i.e. shorten, same and lengthen). It is worth mentioning that although
the test was running over 40 generations, the fittest rules were obtained around
the 20th generation.

Hypothesis Representation. The hypothesis space of rule preconditions con-
sists of a conjunction of a fixed set of attributes. Each rule is represented as a
bit-string as follows: the previous and next note duration are represented each by
five bits (i.e. much shorter, shorter, same, longer and much longer), previous and
next note pitch are represented each by five bits (i.e. much lower, lower, same,
higher and much higher), metrical strength by five beats (i.e. very weak, weak,
medium, strong and very strong), and tempo by three bits (i.e. slow, nominal
and fast). For example in our representation the rule

“if the previous note duration is much longer and its pitch is the same and it
is in a very strong metrical position then lengthen the duration of the current
note”

is coded as the binary string

00001 11111 00100 11111 00001 111 001

The exact meaning of the adjectives which the particular bits represent are
as follows: previous and next note durations are considered much shorter if the
duration is less than half of the current note, shorter if it is shorter than the
current note but longer than its half, and same if the duration is the same as the
current note. Much longer and longer are defined analogously. Previous and next
note pitches are considered much lower if the pitch is lower by a minor third or
more, lower if the pitch is within a minor third, and same if it has same pitch.
Higher and much higher are defined analogously. The note’s metrical position
is very strong, strong, medium, weak, and very weak if it is on the first beat
of the bar, on the third beat of the bar, on the second or fourth beat, offbeat,
and in none of the previous, respectively. The piece was played at slow, nominal,
and fast tempos if it was performed at a speed slower of more than 15% of the
nominal tempo (i.e. the tempo identified as the most natural by the performer),
within 15% of the nominal tempo, and faster than 15% of the nominal tempo,
respectively.

Genetic operators. We use the standard single-point crossover and mutation
operators with two restrictions. In order to perform a crossover operation of



512 R. Ramirez and A. Hazan

two parents the crossover points are chosen at random as long as they are on
the attributes substring boundaries. Similarly the mutation points are chosen
randomly as long as they do not generate inconsistent rule strings, e.g. only one
class can be predicted so exactly one 1 can appear in the last three bit substring.

Fitness function. The fitness of each hypothesized rule is based on its clas-
sification accurracy over the training data. In particular, the function used to
measure fitness is

tp1.15/(tp + fp)

where tp is the number of true positives and fp is the number of false positives.

Despite the relatively small amount of training data some of the rules gen-
erated by the learning algorithms have proved to be of musical interest and
correspond to intuitive musical knowledge. In order to illustrate the types of
rules found let us consider some examples of duration rules:

RULE1: 01000 11100 01111 01110 00111 111 010

“If the previous note is slightly shorter and not much lower in pitch, and the
next note is not longer and has a similar pitch (within a minor third), and the
current note is not on a weak metrical position, then the duration of the current
note remains the same (i.e. no lengthening or shortening).”

RULE2: 11111 01110 11110 00110 00011 010 001

“In nominal tempo, if the duration of the next note is similar and the note is in
a strong metrical position then lengthen the current note.”

RULE3: 00111 00111 00011 01101 10101 111 100

“If the previous and next notes durations are longer (or equal) than the duration
of the current note and the pitch of the previous note is higher then shorten the
current note.”

These simple rules turn out to be very accurate: the first rule predicts 90%,
the second rule predicts 92% and the third rule predicts 100% of the relevant
cases. The rules were collected during 10 independent runs of the genetic algo-
rithm. The mean accuracy of the 10 best rules collected (one for each run of
the algorithm) for “shorten”, “same” and “lengthen” was 81%, 99% and 64%,
respectively. We implemented our system using the evolutionary computation
framework GAlib [9].

4 Related Work

4.1 Evolutionary Computation

Evolutionary computation has been considered with growing interest in musical
applications. Since [15], it has often been used in a compositional perspective,
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either to generate melodies ([4]) or rhythms ([28]). In [22] the harmonization
subtask of composition is addressed, and a comparison between a rule-based
system and a genetic algorithm is presented.

Evolutionary computation has also been considered for improvisation appli-
cations such as [3], where a genetic algorithm-based model of a novice Jazz mu-
sician learning to improvise was developed. The system evolves a set of melodic
ideas that are mapped into notes considering the chord progression being played.
The fitness function can be altered by the feedback of the human playing with
the system.

Nevertheless, few works focusing on the use of evolutionary computation
for expressive performance analysis have been done. The issue of annotating
correctly a human Jazz performance regarding the score is addressed in [13],
where the weights of the edit distance operations are optimized with genetic
algorithm techniques.

4.2 Other Machine Learning Techniques

Previous research in learning sets of rules in a musical context has included
a broad spectrum of music domains. The most related work to the research
presented in this paper is the work by Widmer [29, 30]. Widmer has focused on
the task of discovering general rules of expressive classical piano performance
from real performance data via inductive machine learning. The performance
data used for the study are MIDI recordings of 13 piano sonatas by W.A. Mozart
performed by a skilled pianist. In addition to these data, the music score was also
coded. The resulting substantial data consists of information about the nominal
note onsets, duration, metrical information and annotations. When trained on
the data, the inductive rule learning algorithm named PLCG [31] discovered a
small set of 17 quite simple classification rules [29] that predict a large number of
the note-level choices of the pianist.In the recordings the tempo of a performed
piece is not constant (as it is in our case). In fact, of special interest to them are
the tempo transformations throughout a musical piece.

Other inductive machine learning approaches to rule learning in music and
musical analysis include [5], [2], [21] and [16]. In [5], Dovey analyzes piano perfor-
mances of Rachmaniloff pieces using inductive logic programming and extracts
rules underlying them. In [2], Van Baelen extended Dovey’s work and attempted
to discover regularities that could be used to generate MIDI information derived
from the musical analysis of the piece. In [21], Morales reports research on learn-
ing counterpoint rules. The goal of the reported system is to obtain standard
counterpoint rules from examples of counterpoint music pieces and basic musical
knowledge from traditional music. In [16], Igarashi et al. describe the analysis of
respiration during musical performance by inductive logic programming. Using a
respiration sensor, respiration during cello performance was measured and rules
were extracted from the data together with musical/performance knowledge such
as harmonic progression and bowing direction.
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5 Conclusion

This paper describes an evolutionary computation approach for learning expres-
sive performance rules from Jazz standards recordings by a skilled saxophone
player. Our objective has been to find note-level rules which predict, for a sig-
nificant number of cases, how a particular note in a particular context should
be played (e.g. longer or shorter than its nominal duration). In order to induce
expressive performance rules, we have extracted a set of acoustic features from
the recordings resulting in a symbolic representation of the performed pieces and
then applied a genetic algorithm to the symbolic data and information about
the context in which the data appear.

Future Work: This paper presents work in progress so there is future work
in different directions. We plan to increase the amount of training data as well
as experiment with different information encoded in it. Increasing the training
data, extending the information in it and combining it with background musical
knowledge will certainly generate a more complete set of rules. Another short-
term research objective is to compare expressive performance rules induced from
recordings at substantially different tempos. This would give us an indication
of how the musician note-level choices vary according to the tempo. We also
intend to incorporate structure-level information to obtain an integrated model
of expressive performance which combines note-level rules with structure-level
rules. A more ambitious goal of this research is to be able not only to obtain
interpretable rules about expressive transformations in musical performances,
but also to generate expressive performances. With this aim we intend to use
genetic programming to evolve an initial population of rule trees and interpret
these trees as regression trees.
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Abstract. Experiments are described which use genetic algorithms op-
erating on the parameter settings of an FM synthesizer, with the aim of
mimicking known synthesized sounds. The work is considered as a pre-
cursor to the development of synthesis plug-ins using evolution directed
by a user. Attention is focussed on the fitness functions used to drive the
evolution: the main result is that a composite fitness function – based on
a combination of perceptual measures, spectral analysis, and low-level
sample-by-sample comparison – drives more successful evolution than
fitness functions which use only one of these types of criterion.

1 Introduction

1.1 Motivation

A first-time user of synthesis software is typically overwhelmed with options.
Synthesizer plug-ins with 30, 40, or more parameters are not uncommon, and
the problem is often compounded by their non-linear interactions. Even an ex-
perienced user, while composing with a complex synthesizer, might sometimes
prefer to pursue a desired sound through an intuitive process with immediate
feedback rather than switching into analytical, “parameter-setting” mode. This
is partly because the acoustic and psychoacoustic effects of moving within a
synthesizer’s parameter space are not well-understood.

EAs are often thought of as good methods for searching poorly-understood
or oddly-shaped search spaces. Recalling that an EA can be driven by a user (as
in, for example, [13]), rather than by a computer-calculated fitness function, we
can say that EAs have the potential to control synthesis parameters “on behalf
of” a user.

1.2 Previous Work

Several authors (see [11] for an overview) have applied the techniques of Evolu-
tionary Algorithms (EAs) to musical problems, including composition, musicol-
ogy, and of most relevance here, synthesis.

Johnson [9] created a stand-alone graphical interface to the CSound FOF
synthesis algorithm, which allows the user to direct the evolution of a population

F. Rothlauf et al. (Eds.): EvoWorkshops 2005, LNCS 3449, pp. 517–526, 2005.
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of 9 sounds. He reports good results, including that the system allows easy and
intuitive exploration of the FOF algorithm’s possibilities.

Horner, Beauchamp and Haken [5] used Genetic Algorithms (GAs) in at-
tempting to emulate the spectra of real instruments using FM synthesis. The
GA was used to determine the best carrier-to-modulator frequency ratios and
(time-invariant) modulation indices. They achieved good results, especially when
using several carriers.

Horner, Cheung and Beauchamp [6] used GAs to find additive synthesis
envelope breakpoints, and found that a GA performed better than a greedy
algorithm, a “sensible” equal-spacing algorithm, and a simple random search
algorithm in all cases.

Takala et al. [13] used LISP-like tree expressions (“Timbre Trees”) to generate
sounds. Evolving the sounds was then an application of Genetic Programming
(GP), where evolution is directed not by an explicit fitness function but by user
choices, made with reference to accompanying animations.

Blackwell and Young [1] used a particle swarm algorithm to control granular
synthesis: their system is also capable of “interpretation”, so that live musicians
can improvise with the system.

Miranda [12] used cellular automata to control granular synthesis parameters
in the Chaosynth program.

1.3 Method

In this paper we use unconstrained synthesizer representations which are closer
to those seen by the typical end-user: filters, envelopes, amplitudes, etc, are
controlled by continuously-variable parameters, in contrast to the free-form tree
representation used by Takala et al. Thus, our approach is more general than
[5] or [6], but more applicable to real synthesizer design than [13]. [1] and [12]
are not directly comparable, since they do not use GA’s; and finally, [9] is a
user-directed system, which therefore does not use automatic fitness functions
as developed here.

We see the development of synthesis software controlled by a user-directed
EA as a three-step process. The first step, to be reported here, is simply to mimic
known sounds using EA techniques. Several fitness functions, which measure the
success of candidate sounds with respect to the target, are implemented and
compared. The functions can be considered as moving from low-level, detail-
oriented ones towards higher-level and perceptually-oriented ones, so leading
towards our second step: attempting to generate sounds with a purely human
fitness function (i.e. under user control). Here, the user will be attempting to
generate sounds “to order” - whether the target is a sound with a particular
metaphorical or verbally-described quality, or just “what sounds good”. Success
in this will be have to be measured in terms of both human satisfaction with the
results, and psychoacoustically-based measures of timbre.

Finally, we hope to use the software in the design of experiments investigating
timbral invariance: the phenomenon that psychoacoustic attributes such as cen-
troid and roughness constitute a many-to-one mapping from sounds to real values.
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2 Experimental Setup

2.1 Synthesizers

We choose to work with three different synthesizers (simple additive, granular,
and FM ), partly to ensure that any idiosyncracies of a single one don’t have too
large an effect on the results; however in this paper, for clarity, we report results
for the FM synthesizer only, partly because FM is a more familiar and intuitive
method of synthesis than granular. We use a single-carrier, single-modulator FM
synthesizer with a peaking EQ filter: including envelopes and LFOs, it has 24
continuously-variable parameters.

2.2 Target Sounds

The target sound for preliminary experiments was a 3-second sine wave at 440Hz,
with an amplitude of 0.305 (where digital full scale is 1.0). For the main body
of experiments, we used targets with 1, 4, 8, 16, and finally 50 partials (the
upper limit for a 440Hz fundamental and a sampling rate of 44.1kHz), where
the amplitude of partial n is given by 1/n. The 50-partial target is therefore a
bandlimited sawtooth wave.

We shorten the targets to 0.5 seconds for efficiency: this is justified since we
treat length as a user-specified input parameter (see section 2.4).

As a preliminary test, we confirmed by hand that the synthesizer was capable
of closely matching the simplest, 1-partial target sound.

2.3 Genotypic Representation

Individual genomes were represented in GALib [14] as arrays of floating-point
numbers, where the length and ordering of the array is fixed for the synthe-
sizer. The genotype-to-phenotype mapping is performed by the synthesizer as it
parses the genome into its own parameter format, and generates the correspond-
ing sound.

2.4 Fitness Functions

A fitness function, in this context, is a measure of similarity between the individ-
ual sound and a target. Several fitness functions were implemented and tested,
each returning results of the form 1/(1 + d) (∈ [1/2, 1]), where d (∈ [0, 1]) is
the distance between the two sounds and is calculated in a different way for
each function.

Uniform Metric. Digital audio signals can be thought of as discrete versions
of real-valued functions of time. The uniform metric on L1, the space of such
functions, is defined as

dU (x, y) =
supT

t=0 |x(t) − y(t)|
2

(1)
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for two functions or sequences x and y; the same expression can be used whether t
varies discretely or continuously. We divide by a factor of 2 since the audio signal
varies in [−1, 1]. The Uniform metric is commonly used in analytical mathematics
but is too “severe” for this application, and is not used in this study.

Pointwise Metric. The most obvious definition for d, and the simplest gener-
alisation of the Uniform metric, might be

dP (x, y) =
∑T

t=0 |x(t) − y(t)|
2T

(2)

which is of course the discrete equivalent to integrating the difference between
the two functions. We divide by a factor of 2 for the same reason as in the
Uniform metric, and by T in order to keep dP (x, y) ∈ [0, 1]. We’ll call this the
pointwise metric.

Discrete Fourier Transform Metrics. We define DFT metrics as follows:

dDL
(x, y) =

∑N
j=0

(∑L/2
i=0 |Xj(i) − Yj(i)|

)
CL

(3)

where L is the transform length, Xj and Yj are the normalised outputs from the
jth transforms of the input signals x and y, and N , the number of transforms for
each sound, is determined on the basis of 2×-overlapping Hann windows. CL, a
normalisation factor, is determined by experiment.

Initial experiments showed that the transform of length L = 256 gave the
best results.

Perceptual Metric. Research including [3], [8], and [10] shows that timbral
attributes such as centroid, harmonicity, attack time and so on can be defined,
measured, and used to measure the degree of human-perceived similarity between
pairs of sounds. We define a simple perceptual metric (named dH1 to indicate
that we intend to define further human-perception oriented measures later) as
follows:

dH1(x, y) = (1/3)(dA(x, y) + dC(x, y) + dM (x, y)) (4)

with the attack time, centroid and mean amplitude metrics defined as follows:

dA(x, y) =
|attack(x) − attack(y)|

CA
(5)

dC(x, y) =

∑N
j=0 |centroid(Xj) − centroid(Yj)|

CC
(6)

dM (x, y) = |amp(x) − amp(y)| (7)

where the normalisation constants CA and CC are determined by experiment.
Finally, we define

attack(x) = min{t : x(t) =
T

sup
s=0

|x(s)|} (8)
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centroid(X) =
∑L/2

i=0 f(i)X(i)∑L/2
i=0 X(i)

(9)

amp(x) =
∑T

t=0 |x(t)|
N

(10)

where f(i) is the centre frequency of the ith frequency bin in the DFT X.

Composite Metric. We define a composite metric by summing the weighted
results of several simpler measures:

dComp(x, y) = (1/9)dD256(x, y) + (1/9)dD1024(x, y) + (1/9)dD4096(x, y)
+ (1/3)dH1(x, y) + (1/3)dP (x, y) (11)

2.5 Pitch and Length Parameters

Early experiments showed that a fitness function based on the pointwise metric
led fairly consistently to the evolution of silence. This happens because unless
the candidate individual and the target are very close in frequency, they will
go in and out of phase over the length of the sounds. Using a target sine wave
3 seconds long with a frequency of 440Hz, we found that candidate sine waves
have fitness values as shown in fig. 1.

Fig. 1. Fitness values for silence and for sine waves, using a pointwise fitness function
and a 440Hz sine wave target

Clearly, there is only a very small area of the entire frequency axis on which
the GA can follow an upward gradient towards the target frequency. Evolution
becomes a random search, and since silence scores higher than any wave outside
this area, populations converge on silence from various directions.

We solve this problem by deeming pitch to be a fixed parameter of the syn-
thesis. That is, we fix it at a certain value (here, 440Hz) and do not place it
under the control of the GA.

A similar problem occurs in the case of the length of the sounds. It is not clear
how to compare two sounds of different lengths - the obvious approaches (zero-
padding the shorter is one; truncating the longer is another) both constitute
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“loopholes” that a GA can exploit in producing individuals which score highly
but have obvious defects, such as trivial length. So, we deem length to be a fixed
parameter also.

These decisions are justified since both pitch and note-length are typically
controlled by the player of an instrument (eg by choosing a key to strike, and
by holding it for a certain length of time), rather than by the sound designer.
Even when these two jobs are performed by the same person, they’re usually
performed at different times and in different contexts.

2.6 GA Parameters

We use a steady-state GA with 100 generations, population size 300, and re-
placement probability 0.5. The crossover probability is 0.5, while the Gaussian
mutation operator is applied with a per-gene probability of 0.1. Selection is by
a roulette wheel scheme.

2.7 Running the GA

For each target waveform, and for each of the 4 fitness functions pointwise, per-
ceptual, DFT 256, and composite, we run the evolution 30 times. Each evolution
is driven by a single fitness function: at the end of each run we have a single best
individual, and its fitness according to the fitness function driving that run. For
the purpose of comparison, we also evaluate the fitness of the best individual
under each of the other 3 fitness functions.

3 Results

3.1 Results Using 4 Fitness Functions

Figs 2–5 show the averaged best results over 30 runs using the FM synthesizer
and targets consisting of 1, 4, 8, 16, and 50 partials. Each graph shows evolution
driven by each of the four fitness functions evaluated by the function indicated
in the caption. Error bars indicate the standard deviation for each data set.

Since our purpose is to compare the fitness functions (and find “the best”),
we must be careful not to compare the fitness values they report against each
other directly. Each fitness function performs better than all others when it is
used as the evaluator.

The results are open to interpretation: there does not seem to be a single right
way to objectively interpret them to decide which fitness function is better than
the others. However, the main result is that the composite and perceptual fitness
functions score quite well overall. They also exhibit smaller standard deviations,
as indicated by the error bars, while the DFT-based fitness function gives very
high standard deviations.

In general all fitness functions are successful for the simplest targets, and
performance drops off for the complex targets composed of many partials. Also,
there is a strong anti-correlation between the perceptual and pointwise functions:
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Fig. 2. Composite evaluation Fig. 3. Pointwise evaluation

Fig. 4. DFT evaluation Fig. 5. Perceptual evaluation

the perceptual function scores well when evaluated by itself, and badly when
evaluated by the pointwise function – and vice versa. This reflects the different
kinds of information exploited by the two functions.

3.2 Scatter Plots Showing Contrasting Fitness Scores for
Individuals Under Different Measures

Each of figs 6–8 shows 600 random individuals and 600 “best” individuals (30
for each of the 5 targets and 4 methods of driving evolution), evaluated under
the two fitness measures indicated in the captions.

The fact that these plots do not exhibit a strong concentration on the bottom-
left–top-right diagonal is evidence that the fitness functions are not strongly
correlated: i.e. an individual scoring highly in one measure doesn’t necessarily
score highly in another. This is expected: if all fitness functions were highly
correlated there would be no need to use more than one.

Where random individuals clump together, we can infer that large areas of
the search space contain individuals whose scores coincide under one measure
and under another: these features warrant further investigation. Where “best”
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Fig. 6. Perceptual v. DFT Fig. 7. Perceptual v. Pointwise

Fig. 8. Pointwise v. DFT

individuals clump together, we can infer either of two things: local maxima in
the search space, or patterning according to the target being pursued.

The vertical and horizontal bands, especially in the first two plots, indicate
the non-uniqueness of the perceptual measure. (see section 1.2).

The small concentrations of best individuals in the top-right corner of each
graph are probably the collections of individuals which were very successful in
imitating the 1-partial target. For this target (only), all fitness functions do seem
to be correlated.

4 Conclusions and Further Work

We consider that evolution has been successful enough to justify further work.
Investigation is required to understand the paths which the GA follows towards
its targets, and to explain some patterns in the search space suggested by the
scatter plots.
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Informal, subjective listening tests do suggest that all measures can drive
successful evolution; and that the perceptual and combined measures might be
the best by a slight margin. However, more rigorous listening experiments will
be required to test this.

The perceptual measure performs adequately and of the three fitness mea-
sures it is the most transferable to evolving novel sounds rather than mimicking
existing sounds. The version used in our experiments is a very simple one, being
based on only 3 of the more important perceptual measures: attack time, cen-
troid, and mean amplitude. It could be extended by adding components based
on harmonicity, roughness, irregularity, the odd/even harmonic ratio, and per-
haps others. Also, the components are currently weighted equally, but listening
experiments performed with human subjects are expected to show that some
components should be given more weight than others. After making these im-
provements, we hope to show that a perceptually-motivated measure can drive
more successful evolution than any other measure.

The GA parameters mentioned in section 2.5 have fairly generic values.
Tweaking one or more of them may help evolution to proceed more efficiently.
Of particular interest will be the changes required to make evolution practical
when under user control.

Other planned work includes applying the same methods to the parameters
of a non-linear filter, instead of a synthesizer; implementing synthesizer and filter
plug-ins with GUIs; and running experiments in the area of timbral invariance
(as explained in section 1.2).
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Abstract. This paper is about collective artistic work inspired by natural phe-
nomena, namely the use of pheromone substances for mass recruitment in ants. 
We will describe two different uncoordinated groups of very simple virtual mi-
cro-painters: the Colombines and the Anti-Colombines. These painters have 
very limited perception abilities and cannot communicate directly with other 
individuals. The virtual canvas, besides being a computational space for depos-
iting paint, is also a pheromone medium (that mirrors the painting patterns) in-
fluencing the painters’ behaviour. Patterns are the emergent result of interaction 
dynamics involving the micro-painters and their pheromone medium. 

1   Introduction 

The study of biological self-organization [1] has revealed that numerous sophisticated 
pattern formation, decision-making, and collective behaviour, are the emergent result 
of the interaction of very simply behaviours performed by masses of individuals rely-
ing only on local information. In particular, successful problem solving by social 
insects made models of their collective mechanisms particularly attractive [2,3]. The 
emphasis of this paper is on the design of micro-painters swarms, which are able to 
create interesting patterns in artistic terms. There are already examples of collective 
paintings inspired by social insects: L. Moura [4] has used a small group of robot-
painters inspired by ants’ behaviour, that move randomly in a limited space. Stimu-
lated by the local perception of the painting they may leave a trace with one of their 
coloured pens. The painters rely on stigmergic interaction [6] in order to create cha-
otic patterns with some spots of the same colour. Colour has the pheromone role: a 
spot dominated by a certain colour has the capacity to stimulate the painter-robot to 
add some paint of the same colour. Monmarché et al. [5] have also designed groups of 
painters inspired by ants’ pheromone behaviour. It is based on a competition between 
ants: the virtual artists try to superimpose their colours on traces made by others, 
creating a dynamic painting which is never finished. Ants have the capability to 
“sniff” the painted colour and react appropriately. The societies are composed by a 
small number of individuals (less than 10). We will show and analyze the types of 
patterns resulting from the interaction dynamics of a pheromone environment (reflect-
ing the painted and non-painted spots) and the mass of simple micro-painters, which 
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cannot communicate directly with each other. The artists have only local perception 
(they never see the “tableau” as a whole), there isn’t any type of social coordination, 
interactions are stigmergic: the painters modify the painting area which influences 
their movement and painting behaviour. We have designed two societies of micro-
painters: the Colombines and the Anti-Colombines. The first are attracted to non-
painted spots and, in contrast, the Anti-Colombines are attracted to painted ones. In 
both, there is a chemical medium which reflects the bi-dimensional canvas state and it 
is the chemical that attracts the artists (the painters try to prefer to go to patches with 
more chemical). They were implemented in Starlogo [7]. 

One of the differences from the other ant-paintings is that the ants are not charged 
for pheromone production, (the environment is responsible for that task). More, the 
diffusion process does not occur on any of the ant paintings we have referred. We 
introduced also populations of numerous agents: we have experimented with groups 
composed of up to 2000 individuals working in the same artistic piece. 

The remainder of the paper is organized as follows: In section 2 we describe in de-
tail the Colombines and making some variations on the basic painter behaviours. In 
section 3 we focus on the Anti-Colombines. Finally we conclude, discussing the re-
sults and pointing future directions. 

2   The Colombines 

The Colombines are a swarm of small artificial micro-painters, individually very simple, 
which are able to paint a bi-dimensional virtual canvas, composed of small cells.  

The canvas is bi-dimensional space with a toroidal format, divided in small 
squared sections, called patches or cells, it is a kind of grided paper, with no  
borders, folded in every direction, in which two types of virtual materials coexist: 
paint and a chemical signal. Each patch can have a certain colour and can have a 
certain quantity of chemical. There is a fixed colour (usually grey) for the back-
ground. Any other colour corresponds to paint. As we said before, our goal is that 
the non-painted cells have more attraction power (more chemical). Therefore, every 
cell has the potential ability to release chemical, but only the non-painted cells (the 
background ones) are chemical producers. The squared canvas is a kind of chemical 
medium where every cell is permanently diffusing chemical to their immediate 
neighbours, independently of being painted or not. The chemical evaporates at a 
constant rate. Without evaporation, the attraction power decay of recently painted 
spots will last more time, disorientating the painters, attracting them to painted 
spots. Foremost, the evaporation phenomenon increases the painters’ efficiency: the 
painting will be completed sooner. 

The cells behaviour is the following: 1) if it is not painted increase its own chemical 
quantity by a certain amount, otherwise the chemical level is maintained intact; 2) 
diffuses a percentage of its chemical to their 8 immediate neighbours; 3) delete a per-
centage of its chemical (evaporation. The chemical constant produced by non-painted 
cells, the evaporation and diffusion taxes are parameters modifiable by the user. 
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Initially, we launch these painters in a non-painted background, each one occupy-
ing a particular cell, and they will move along, depositing a trace of ink, until the 
canvas is completely fulfilled. Note that each painter is constrained to paint only 
non-painted cells and when there isn’t any non-painted cell left, the artistic work 
cannot change and is considered finished. Our micro-painters have a very limited 
perception field—they have an orientation and have access just to the three cells in 
front of them. Each painter is created with a particular colour and they never change 
to another colour. It’s the empty spots that guide the painters. They prefer to move 
towards empty spots. 

If each Lilliputian painter just acted on its own, without any interactions, either 
with the world or with the others, interesting phenomena would never arise. They do 
no more than moving on the virtual canvas, visiting preferentially cells with more 
amount of chemical, (preferring to move towards non-painted spots) and painting 
cells still unpainted, leaving traces of colour behind them. In case of identical chemi-
cal values in their neighbouring cells they have a tendency to preserve its current 
direction. Each Colombine has a position (real Cartesian coordinates), an orientation 
(0..360), and can only inhabit one cell, the one that corresponds to their coordinates. 
They see just their own cell and also the three cells immediately in front of them. On 
the other hand, the painters are created with a particular colour that is never changed. 
The behaviour of each Colombine is the following: 1) he senses the three immediate 
cells in front of him and chooses the one with more chemical, changing his orientation 
towards that winning cell and moving to it; 2) if that cell is not yet painted, stamps his 
colour on it, otherwise, does not paint it. In detail, the painter senses his three forward 
neighbouring cells and if there is no better patch than the one in front he remains with 
the same orientation and go forward one step (rounding his coordinates). If the left 
path is the most attractive he rotates 45 degrees to the left and moves forward one 
unity, rounding both position coordinates; the same happens when he prefers the right 
cell: he rotates to the right 45 degrees, moving forward one unity, rounding his coor-
dinates. The round operation influences the patterns generated, as we will see later. 

The evolution of the collective artistic work happens the following way. Initially, 
the virtual canvas is grey and each patch has an identical quantity of chemical (nor-
mally 0). We create a colony of Colombines, each one with its own colour and orien-
tation, distributing them in the environment. The painting process will begin in a 
sequence of iterations until every patch is painted completing the plastic work. Each 
iteration is divided in two steps: in the first, every cell executes its behaviour (chemi-
cal production, diffusion and evaporation); in the second step, the Colombines move, 
attracted by chemical, depositing paint. 

2.1   Dynamics Responsible for Pattern Emergence 

The canvas can be seen as a dynamical chemical landscape, in permanent mutation—
there is a constant interaction between chemical distribution and the painters’ behav-
iour. The chemical world is information floating both in the painted and background 
patches. There is a strong circularity: On one hand, the chemical information guides 
the movement of the Colombines, attracting them toward non-painted spots, On the 



530 P. Urbano 

 

other hand, their painting activity change the information landscape, in an permanent 
auto-catalytic interaction. The patterns, the coloured forms, are the by-product of the 
collaboration between the Colombines and their chemical environment. Figure1 illus-
trates the pattern emergence. 

We have two painters, one white and one black. They have an initial orientation 
(black moves east and white goes south). They both tend to preserve their directions. 
The black suddenly changes direction, avoiding the trace left by the white painter. 
After a while the white painter reaches his own trace and avoids it, changing direction 
and having to avoid later the black trace and the painting history goes on. Sometimes, 
the painters have to cross already painted spots, due to the fact that the three immedi-
ate neighbours are painted. Notice that we can find spots with the same colour due to 
the fact that a painter can be on a non-painted area which is surrounded by traces, 
constraining him to be inside, painting that enclosed spot. 

In figure 2 we show four examples of finished paintings made by groups of Co-
lombines of different sizes (from left to right, 1000, 100, 50 and 2000 painters) in a 
world of 125*125 pixels. There are only black and white painters equitably distrib-
uted by each of the colours and which are randomly scattered on the “tableau”. The 
painters were created with random orientations. If we increase the number of micro-
painters, the possibility of encountering traces also increases. The resulting effect is 
that the spots with the same colour have a smaller area and we find less rectilinear 
traces. 

In reality, these paintings are only declared finished when there are no grey 
patches, but, alternatively, we could finish the collective work after a random or fixed 
number of iterations. 

 

 

Fig. 1. The interaction between two painters. Illustration of the tendency to conserve direction 
and to avoid painted patches. The coordinates rounding effect is also visible: traces suffer only 
rotations of 45 or 90 degrees 

 

 

Fig. 2. Colombine black and white paintings 
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2.2   Variation: Clustering Painters 

Now, we will make a slight variation on the Colombines initial settings. We will di-
vide them in groups (the groups number is a global parameter) and put each group in 
the same patch. The painters in the same group have the same colour but have differ-
ent directions. We introduce also a variation on the painters’ behaviour. We do not 
want that the group will remain in the same patch forever. Each painter will make a 
small random jump (for example, up to three cells) to a neighbouring patch every time 
he senses another mate in his cell. This behaviour allows a kind of dispersion inside a 
group before a group invades painted zones. Figure 3 shows the final paintings of 
other clusters of Colombines. As we can see, these initial clusters will make the paint-
ing with more spots of the same colour. 

3   The Anti-colombines 

We want to introduce an inversion on the patches behaviour. Our goal now is that, 
instead of being attracted by the empty spots, the painters shall be attracted by the 
painted ones. The new painters, the Anti-Colombines, will maintain their behaviour 
(they continue to go up-hill in the gradient field) but now the non-painted patches are 
not chemical producers—the producers are the painted ones. Since the painters are 
attracted to the painted spots it is not wise to expect that the canvas is going to be 
fulfilled with paint. Thus we are obliged to choose a random or fixed number of itera-
tions, and so after finishing them the painting is considered finished. 

 

 

Fig. 3. Three paintings, from left to right: 2000 Colombines divided in groups of 200, 300, and 
100 individuals 

 

 

Fig. 4. Evolution of a painting made by 100 b&w Anti-Colombines, not clustered, with initial 
random positions and orientations 
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In figure 4 we show three snapshots of a plastic work made by a colony of 300 
Anti-Colombines, scattered randomly on the grey “tableau” (they have initial random 
orientations and positions). The painters do not apply a round operator to their coor-
dinates after making their moves. What happens is that the painters will be trapped 
inside painted spots, circling around, and occasionally they can get out of these traps 
slowly enlarging them. When they have the three neighbouring patches (their percep-
tion field) non-painted they will choose one of them for occupation. The probability 
of getting out of the painted traps decreases with the increase of their areas. 

4   Future Work 

We have designed two types of swarm micro-painters, the Colombines and Anti-
Colombines, relying only on local perception and with no coordination, being able to 
produce interesting patterns, which can be seen as a kind of artificial art. Due to the 
regularities of the resulting patterns, we dare to say that there is what we can name, a 
Colombine or Anti-Colombine style. We have only showed black and white paintings 
for obvious reasons, but we could have made experimentations with different colours.  

We are already working with what we may call consensual painters. The painters 
are able to interact with each other and achieve a decentralized consensus about cer-
tain attributes, like the colour they are painting, the position they are occupying, the 
velocity they possess or the direction they are facing, creating different type of struc-
ture and patterns. These consensual painters are able to randomly alter their attributes, 
shifting from a unanimous situation forcing the others to converge to a new consen-
sus, in cycles consensus, cycles of order and chaos reflected on the patterns formed. 
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Abstract. This paper reports on steps that have been taken to enhance
previously presented evolutionary sound matching work. In doing so, the
convergence characteristics are shown to provide a synthesis method that
produces interesting sounds. The method implements an Evolution Strat-
egy to optimise a set of real-valued Frequency Modulation parameters.
The development of the evolution is synthesised as optimisation takes
place, and the corresponding dynamic sound can be observed developing
from initial disorder, into a stable, static tone.

1 Background

Horner et al. have presented a collection of evolutionary dynamic-tone matching
systems applied to a variety of synthesis techniques: Frequency Modulation Syn-
thesis (FM) [1], [2], Wavetable synthesis [3], and Group Synthesis [4]. Through-
out Horner’s work, a Genetic Algorithm (GA) is employed to optimise a set of
static wavetable basis-spectra1, which are, as in wavetable synthesis, combined
in time-varying quantities to match dynamic target tones.

The Evolution of modular synthesis arrangements and interconnections has
formed the subject of two independent studies. Originally, Wehn applied a GA
to ‘grow’ synthesis ‘circuits’ [5]. Later, Garcia used Genetic Programming to
evolve tree structures that represent the synthesis topology [6].

A further matching technique has been put forward by Manzolli [7]. The
Evolutionary Sound Synthesis Method (ESSynth) evolves waveforms directly
applying the principles of Evolutionary Computation to recombine and mutate
waveform segments. At each generation, ESSynth passes the ‘best’ waveform to
an output buffer for playback allowing users to experience the evolution as it
takes place. Wehn also observed this phenomenon, noting that sounds produced
throughout the search phase can be ‘quite entertaining’, and occasionally ‘rich
and strange’ [5].

The convergence synthesis technique, presented here, is built upon the work
introduced above, and is concerned with the dynamic sounds that are produced
as an Evolutionary Algorithm converges upon an optimal target match. The

1 Where basis-spectra refers to the harmonic content of a wavetable.
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synthesis model at the heart of this process is based upon Horner’s early FM
matching experiments and provides initial steps towards a real-valued extension
to his work.

2 Tone Matching with Frequency Modulation Synthesis

FM is an effective musical synthesis tool [8]. Despite the efficiency with which
complex tones can be synthesised, FM is often regarded as unintuitive and cum-
bersome. Consequently, parameter estimation, specifically for the reproduction
of acoustic musical instrument tones, has formed the subject of numerous aca-
demic studies. Recent advances in sound matching with FM have been presented
by Horner [2]. Horner’s early work utilised a unique FM arrangement referred to
as formant FM. The formant FM model is ideal for matching harmonic instru-
ment tones, as the carrier frequency can only be set to integer multiples of the
modulating frequency (which is tied to f0). Restriction of the synthesis param-
eters in this way significantly reduces the search complexity, as non-harmonic
solutions are excluded from the model space. However, with the omission of
non-integer variables, the algorithm is only able to match a discrete number of
harmonic sounds, and could not be applied directly to regular FM models, as
the majority of the sound space would be inaccessible.

Throughout Horner’s FM matching experiments, a GA was applied to op-
timise a set of FM synthesis variables. GAs’ perform their genetic operations
on bit-strings, which are naturally suited to integer based combinatorial search
problems. With the intention of expanding the search into the full parameter
space, a reduced static-tone version of Horner’s formant FM matching model
was developed without limiting the synthesis parameters to integer numbers.
Whilst GAs’ can be modified to represent real-valued numbers, with specialised
operators that permit arithmetic crossover and ordinal mutation, an Evolution
Strategy was chosen, for the work presented here, as it provides a powerful op-
timisation paradigm that is naturally real-valued [9].

Objective Function. In previous sound matching work, objective calculations
are often performed in the frequency domain using the Squared Spectral Error
(SSE) (1), or a variant thereof [1] - [7]. The target spectrum for the evolutionary
algorithm is obtained via the spectral analysis of the target waveform, prior to
the execution of the search. A complete run of the objective function can be
summarised as follows:

1. Insert candidate solution into the FM model,
2. Subject the corresponding synthesised waveform to spectrum analysis,
3. Calculate error between target and synthesised candidate spectra.

The SSE is given by the equation:

SSE =

√√√√Nbin∑
b=0

(Tb − Sb)2 . (1)
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T = The target spectrum amplitude coefficients
S = The synthesised candidate spectrum amplitude coefficients
Nbin = The number of frequency bins produced by spectrum analysis

As will be demonstrated in section 3, a modified SSE metric is sufficient for this
work.

3 Real Valued Static Formant FM Matching

An initial step towards the creation of a real-valued extension to Horner’s FM
matching algorithm has been developed for matching exclusively static tones.
The matching synthesiser employs a single carrier/modulator FM arrangement,
similar to Horner’s formant model. The synthesis parameters, Modulation Index
and Carrier Frequency Multiple, can be set to any value within the range [0, 15].
The object parameters are permitted to search regions of the sound space that
would be unavailable with an integer restricted model. An ES, with strategy pa-
rameters2 (5/5,25) is employed to optimise the synthesis parameters. To ensure
that globally-optimal matches are consistently achieved, target tones are gener-
ated by the matching synthesiser. Contrived target tones are useful for testing
purposes as they are known to exist within the matching sound space. Success-
ful matches, therefore, yield parameters identical to those with which the target
tone was produced.

Landscapes. The ES was found to become trapped at locally-optimal points of
the SSE object landscape, see figure 1(a). Very rugged, Multi-modal landscapes,
such as this, are problematic for any optimisation engine (including EC). To
overcome this problem, the spectrum of the target and synthesised tones (T and
S), are modified according to (2), to produce windowed spectra TW and SW
which then replace T and S in (1) to provide the Windowed Squared Spectral
Error (WSSE) metric.

XWb =
Nbin∑
n=0

w∑
b=0

(
w − b

w

)2

(Xn+b + Xn−b) . (2)

X = The spectrum amplitude coefficients
XW = The ‘windowed’ spectrum amplitude coefficients
w = The bandwidth of the window

Windowing, allows spectrum error to be measured across a band, which has a
smoothing effect on the object landscape. The landscapes of SSE and WSSE are
plotted in Fig. 1(a) and (b) respectively. The location of the optimum is immedi-
ately obvious in the WSSE plot as the surrounding landscape slopes downwards
isotropically. With a (5/5, 25) evolution strategy using the WSSE objective

2 In the standard ES format (μ/ρ,λ) where μ is the parent size, ρ is the mixing number
and λ is the offspring size.
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Fig. 1. Exhaustive SSE & WSSE landscape plots Carrier Frequency Multiple/c mult
= 7.00 and Modulation Index/m index = 4.00
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Fig. 2. Typical convergence plot for the evolutionary matching process

function, a globally optimal solution is located, for any target parameter set-
ting, within 20 generations. A typical convergence plot is provided in Fig. 2.

4 Convergence Synthesis

Running an FM synthesiser program in parallel with the ES allows convergence
to be monitored aurally in real time. At the turn of each generation, the strongest
offspring (or, in fact, any other) is passed to the synthesiser and a corresponding
tone can be heard. Prior to the evolutionary process, the user is required to
select a target tone by adjusting the synthesis parameters, Modulation Index and
Carrier Frequency Multiple, via their respective sliders on the program interface.
The target provides the final static tone upon which the ES will converge. The
application responds to midi messages, enabling the user to set the modulator
frequency (f0) and inspect the target tone before the evolutionary synthesis
process begins. To ensure that there are no audible clicks as the synthesiser is
played, a short fade-in (attack) function is applied to the carrier amplitude on
receipt of a MIDI note-on message, and equivalent fade-out (release) function
on corresponding note-off messages. Following the selection of a satisfactory
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target tone, the evolutionary synthesis process begins. The note-on message, in
addition to initiating the carrier fade-in function, triggers the initialisation of
the ES. Individuals are randomly seeded and optimisation begins. The synthesis
parameters are controlled by the ES as they progress towards their target values.
Random reseeding ensures that the evolutionary path to the optimum is never
the same twice.

The frequency plots, of the sound produced as a (20/20,25) evolution strategy
converges upon it’s FM target tone, are illustrated in Fig. 3. An initial stochastic
period can be observed giving rise to the smooth harmonic partials of the target
tone. After approximately 3.5 seconds the strategy has converged and the tone
is stable.

Evolutionary Synthesis Parameters. The temporal characteristics of the
sounds produced by convergence synthesis are closely coupled with the exoge-
nous strategy parameters μ, ρ and λ. The variables that control the ES are,
themselves, synthesis parameters that now control the sound directly. As μ and
λ are varied, their values and respective ratio affect the dynamic characteristics
of the synthesised tone. The former adjusts the selection pressure and, thus,
the generational rate of convergence. The latter controls the period of each gen-
eration, as the objective function is called λ times. As the ES progresses, the
offspring become increasingly similar until each λ is identical. This homogenising
of the population is apparent in the convergence plot of Fig. 2. By passing the
nth fittest λ to the synthesiser, the rate at which the tone stabilises can again
be prolonged, increasing the duration of the initial transient.

5 Results and Future Work

Matching can be carried out on any tone within the synthesis parameter space.
The matching process itself provides time-variant parameter control to produce
dynamic sounds. From one run of the ES to the next, the path to the target is
different, providing a tone evolution that is varied yet predictable. This effect
can be observed in Fig. 3, where two differing convergence sonograms can be seen
converging upon the same target. There is considerably more high frequency con-
tent visible between 0.0s and 0.1s on the Fig. 3(a), which takes slightly longer to
converge than Fig. 3(b). It would be desirable to expand the FM synthesis model

Fig. 3. Sonograms providing differing convergence paths for the same target tone
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with the use of multiple carrier/modulator, nested modulator or even feedback
arrangements. The ES would then be required to optimise a significantly more
complicated multi-dimensional landscape. Optimisation of parameter envelopes
may also enable the matching of dynamic target sounds, both harmonic and
non-harmonic.

6 Conclusions

An evolutionary synthesis method has been presented that produces interest-
ing dynamic sounds whilst approaching the match of a static target tone. The
technique has emerged from the early developmental stages of a real-valued FM
synthesis parametric optimisation process. The algorithm itself uses a basic Evo-
lution Strategy, to optimise a set of formant FM synthesis parameters that most
closely match a given static target tone. The sounds produced can be observed
evolving from a stochastic initial transient, as a result of the random seeding of
the initial population, into the static target tone that is chosen by the user at the
beginning of the process. This convergence process also provides an alternative
means by which an object landscape and convergence can be observed aurally.
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Abstract. We present a new technique for granular sampling using a pulse-
coupled network of spiking artificial neurons to generate grain events. The system 
plays randomly selected sound grains from a given sound sample when any one of 
a weakly coupled network of up to 1000 neurons fires. The network can exhibit 
loosely correlated temporal solutions and also collective synchronised behaviour. 
This leads to very interesting sonic results, particularly with regard to rhythmic 
textures which can be controlled with various parameters within the model. 

1   Brief Introduction to Granular Synthesis 

Granular synthesis works by generating a rapid succession of very short sound bursts 
called grains that together form larger sound events. The notion behind it is largely 
inspired by a sound representation method published in a paper by Dennis Gabor back 
in the 1940s [1]. Gabor’s point of departure was to acknowledge the fact that the ear 
has a time threshold for discerning sound properties. Below this threshold, different 
sounds are heard as clicks, no matter how different their spectra might be. The length 
and shape of a wavecycle define frequency and spectrum properties, but the ear needs 
several cycles to discern these properties. Gabor referred to this minimum sound 
length as an acoustic quantum and estimated that it usually falls between 10 and 30 
milliseconds, according to the nature of both the sound and the subject. 

2   Approaches to Granular Synthesis  

As far as the idea of sound grains is concerned, any synthesiser capable of producing 
rapid sequences of short sounds may be considered as a granular synthesiser. Three 
general approaches to granular synthesis can be identified as follows [2]: sequential, 
scattering and granular sampling approaches. The sequential approach works by syn-
thesising sequential grain streams. The length of the grains and the intervals between 
them are controllable, but the grains must not overlap. The scattering approach uses 
more than one generator simultaneously to scatter a fair amount of grains, not neces-
sarily in synchrony, as if they were the ‘dots’ of a ‘sonic spray’. The expression 
‘sound clouds’ is usually employed by musicians to describe the outcome of the scat-
tering approach. 

,
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Granular sampling employs a granulator mechanism that extracts small portions of 
a sampled sound and applies an envelope to them. The granulator may produce the 
grains in a number of ways. The simplest method is to extract only a single grain and 
replicate it many times. More complex methods involve the extraction of grains from 
various portions of the sample. In this case, the position of the extraction can be either 
randomly defined or controlled by an algorithm. 

Thus far, most granular synthesis systems have used stochastic methods to control 
the production of the grains; for example, a probability table holding waveform pa-
rameters can be called to provide synthesis values for each grain during the synthesis 
process. As an alternative method, we have devised Chaosynth, a granular synthesiser 
that uses cellular automata to manage the spectrum of the sound grains [3]. Chaosynth 
explored the emergent behaviour of cellular automata to produce coherent grain se-
quences with highly dynamic spectra.  

The challenge with granular sampling to find interesting and new controllable 
ways of playing back the grains, which are taken from the input sound sample. Grain 
events which are triggered independently will produce randomised signals which can 
have very interesting flow textural properties [4]. However in order to go beyond this 
one needs to look at introducing some kind of correlation in grain parameters whilst 
maintaining the inherent stochastic element which has been so effective in granular 
synthesis algorithms thus far. Chaosynth utilised the emergent behaviour of a cellular 
automata model in order to do this. Other attempts have looked at the collective prop-
erties of a large number of interacting particles, or swarms, to generate grain events 
[5]. In this work we have used the correlated firing properties of a large collection of 
pulse-coupled artificial neurons. 

Spiking neural networks have a very rich dynamics and the relevant timescales are 
of the same order as those relevant to granular synthesis. (i.e., on the level of milli-
seconds and tens of milliseconds). This makes them very suitable to use as a trigger-
ing mechanism for a granular sampler. There is great variety in the dynamics at the 
level of the single neuron and this becomes even more interesting when we look at 
networked systems. The single neurons can show regular spiking, bursting (very fast 
spiking) so-called chattering and resonant behaviour. When connected they exhibit 
collective excitations on timescales larger than the inherent responses of single neu-
rons (Fig. 1). Such collective excitations include synchronization of the firing times of 
large numbers of neurons in groups and repetition of signals over very large time 
scales (of the order of seconds) which have become known as Cortical Songs [6]. 

3   Spiking Neural Networks 

Essentially one can visualise a neuron as an object that fires a spike signal when its 
input voltage exceeds a certain threshold [7]. The amplitude of the spikes of real neu-
rons is of the order of 100mV (millivolts) and the duration of the spikes are of the 
order of 1-2ms. The spikes then travel to all the other (post-synaptic) neurons to which 
this (pre-synaptic) neuron is connected. The time taken for these spike signals to reach 
the post-synaptic neurons is also of the order of milliseconds. When one of the post-
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synaptic neurons receives a spike it will fire a spike in turn if its current voltage state 
plus the signal of the spike are above its threshold and so on. Most of this processing 
takes place in  the cortex. Each neuron in a mammalian cortex is typically connected to 
up to 10 000 other neurons so one can see quickly how complicated the resulting dy-
namics would be from simply sending out a single spike to just one neuron.  

The firing patterns of individual cortical neurons are known to be very varied. In 
Fig. 1 we can see twelve of the most common forms of mammalian cortical neuron 
firing. As far as the interaction of the neurons with other neurons is concerned, the 
class of spiking neuron models in which we are interested are called Pulse Coupled 
Neural Networks (PCCN). Essentially, this means that when a neuron receives a spike 
it updates its connection with all the neurons with which it is connected. In such mod-
els, the connections between neurons are modelled by a matrix of synaptic connec-
tions S = (sij), and these synaptic connections are used inherently in the dynamics. In 
this paper, we have used the simple condition that when the jth neuron fires, the mem-
brane potential, vi of the all the connected neurons immediately increases by sij [8]. 

 

Fig. 1. Twelve of the different types of firing patterns exhibited by single neurons in the mam-
malian cortex. (This figure is reproduced with permission from Eugene Izhikevich.) 

4   Izhikevich’s Pulse-Coupled Neural Model 

It has been recently discovered that surprisingly simple mathematical models of spik-
ing neurons with random connections can produce realistic organised collective be-
haviour. The model of Eugene Izhikevich [8] [10] contains enough detail to produce 
the rich firing patterns found in cortical neurons (Fig 1), yet is also computationally 
very efficient. 
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Fig. 2. Known types of neurons correspond to different values of the parameters a, b, c and d in 
Izhikevich’s model. Each inset shows a voltage response of the mode neuron to a step of dc-
current I=10 (bottom). (This figure is reproduced with permission from from Eugene Izhike-
vich.) 

The temporal firing patterns of the network show both stochastic and synchronised 
behaviour depending on the values of various parameters, the number of neurons, the 
matrix of synaptic connections and the history of the behaviour of the network. The 
frequencies of collective modes of the system are between 1 and 40Hz and present a 
very interesting case for controlling a granular sampler, particularly in terms of 
rhythmic structure. We therefore use Izhikevich’s model along with a granular sam-
pler such that grains of sounds (taken from a recording) are triggered when any of the 
neurons fire.  

The model contains N neurons, each of which are described by two dimensionless 
variables vi and ui where vi represents the membrane potential of the ith neuron and ui 
represents a membrane recovery variable, which provides negative feedback to vi. The 
system is then described by the following coupled ordinary (nonlinear) differential 
equations: 

dvi

dt
= 0.04vi

2 + 5vi + (140 − ui) + Ii     
(1) 

dui

dt
= a(bvi − ui)        

(2) 

with the following auxilliary after spike resetting; if vi ≥ 30 millivolts then vi→c and 
ui→( ui + d). Essentially, the first of these conditions means that when a neuron re-
ceives a spike input then its membrane potential is immediately reset.  
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The neurons are coupled to one another through a matrix of synaptic connection 
weights. These synaptic connection weights are given by the matrix S = (sij), such that 
the firing of the jth neuron instantaneously changes variable vi by sij. We have used a 
version of Izhikevich’s model where the matrix S is a random matrix. However, in 
other versions of the model, S can updated itself according to various learning algo-
rithms such as ‘Spike Timing Dependent Plasticity’ in which connections between 
neurons are reinforced according to temporal correlations. Synaptic currents or in-
jected dc-currents (currents which come from either other neurons or from sensory 
information) are encompassed within variable I (which in our version is also a random 
variable) and, a, b, c and d are parameters whose effects are summarised in Fig 2. 
Essentially, different values of these parameters produce different individual intrinsic 
neuron firing patterns such that complex spiking, bursting or chattering of cortical and 
thalamic neurons can be simulated.  

5   Controlling a Granular Sampler 

The algorithm by which the granular sampler works is straightforward: When a neu-
ron in the network fires at time t, a sound grain of random length (between 10-50ms) 
and random amplitude is taken from a random place in a recorded sample of sound 
and played back. The sound grain is convoluted within a Hanning envelope [11].  
Effectively, the neural network plays a granular sampler. Synchronized firing of neu-
rons sound like a pulse, whilst networks containing only a few neurons have a very 
interesting sparse rhythmic quality (between completely random and correlated. The 
system therefore has a very wide variety of temporal patterns and behaviours, which 
can be controlled according to the parameters in the mathematical model. One can 
control the parameters a, b, c and d, which determine the intrinsic properties of the 
neurons and one can control the number and type of neurons. In the current version, 
the connections are completely noisy in the sense that the matrix S is a random matrix 
and all current inputs are noisy. However it would be straightforward to extend the 
model by varying the connections and the input (‘thalamic’) current. Generally speak-
ing, increasing the number of neurons in the model means more firing and therefore 
more sonic texture, although when the solutions exhibit synchronous behaviour in-
creasing the number of neurons tends to lower the frequency of the collective re-
sponse. It is interesting in itself that such random (noisy) inputs can produce synchro-
nous pulses of sound. 

Generally speaking, in this version of the model (without any temporal correlation 
such as Spike Timing Dependent Plasticity [7]) one gets interesting sounds if we have 
either rather few (up to 10) or very many (over 500) neurons. The result with up to 10 
neurons sounds very sparse but one can hear rhythms, which appear and then tran-
siently die away. They do not repeat exactly; the network is effectively isolated from 
any sensory input (unlike real neurons in a mammalian cortex) and therefore not 
stimulated by correlated information. The synchronous solution appears in the dynam-
ics if all the neurons selected are the same and if there are more than 500 of them. 
This sounds like a very gritty pulse, especially if the selected grain size is short. 
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6   Concluding Remarks 

The technique we have introduced successfully fulfills the object of our enquiry in 
that its domain lies right in between the completely random and completely correlated 
in its temporal behaviour. Given a set of initial parameters, outputs are not predictable 
fully due to the large number of noisy elements in the model, but do follow discern-
able dynamical patterns especially when the system is in a dynamically synchronised 
state.  The output is also controllable to a large extent. There would seem to be much 
profitable study from looking at this method further. 
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Growing Music: Musical Interpretations of L-Systems 

Peter Worth and Susan Stepney 

Department of Computer Science, University of York, York YO10 5DD, UK 

Abstract. L-systems are parallel generative grammars, used to model plant 
development, with the results usually interpreted graphically.  Music can also be 
represented by grammars, and it is possible to interpret L-systems musically.  We 
search for simultaneous ‘pleasing’ graphical and musical renderings of L-systems. 

1   Introduction 

L-systems are parallel generative grammars  [12], originally defined to model plant 
development.  Starting from an axiom string, or ‘seed’, the grammar rules are applied 
in parallel to each element of the string, for several iterations or generations.  For 
example, consider the following L-system  [12]: 

ω: X   p1: X  F[+X][-X]FX  p2: F  FF 

Starting from the axiom ω, successive generation strings are: 

0: X 
1: F[+X][-X]FX 
2: FF[+F[+X][-X]FX][-F[+X][-X]FX]FFF[+X][-X]FX 

and so on.  The resulting string is typically rendered graphically, by interpreting the 
elements as turtle graphics commands  [10].  For example, interpreting F as ‘forward 
distance d, drawing a line’, ± as ‘turn through ± δ degrees’, [ ] as ‘start/end branch’, 
and X as null, then after 5 generations the example L-system renders as a ‘leaf’: 

 

Non-graphical renderings can be considered.  Here we consider musical 
renderings, and ask: “is it possible to have simultaneous ‘pleasing’ graphical and 
musical renderings of L-systems?” 

2   Musical Grammars 

The idea of generating music algorithmically is not new.  The earliest recorded work 
was by the Italian monk Guido D’arezzo in 1026.  Demand for his Gregorian chants 
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was so high that he devised a system to systematically create them from liturgical 
texts.  Mozart, Haydn, and C.P.E. Bach had an interest in generative music; Mozart 
invented Musikalisches Würfelspiel (musical dice game), which involved using dice 
to decide which of a set of pre-defined musical phrases came next in the piece  [9]. 

Heinrich Schenker’s (1868–1935) work on the analysis of tonal master works 
provides an insight into the formal organisation of music.  He broke pieces down into 
their background, middleground, and foreground  [4].  These are structural levels, each 
of which intuitively fits the idea of description by a formal grammar. The 
fundamental line (urlinie) gives the tonal progression of the piece which is generally 
part or all of a scale.  This low level structure can be embellished by expanding the 
components into more complicated sections until the foreground is reached. 

Music as grammar has been widely investigated, eg  [3] [6] [13].   [1] describes a 
context sensitive grammar for generating European melodies; these are structured 
around a kernel, the sequence of all the notes in a scale between arbitrarily chosen 
first and last notes, and the melody is the way the notes move around the kernel. 

 [11] maps the turtle drawing into musical score, by using a lookup table to map y 
co-ordinates to notes, and line lengths to note durations.   [15] maps branching angles 
to changes in pitch, and distance between branches to duration.   [14] maps the turtle’s 
3D movement, orientation, line length, thickness, colour, programmably into pitch, 
duration, volume, and timbre.   [7] uses L-system grammars directly to represent pitch, 
duration and timbre, without going via a graphical rendering.  This gives a better 
separation of concerns than deriving the music from the graphical rendering, and we 
follow that approach here. 

3   Plants to Music : Finding a Rendering 

First, we experiment with existing L-systems that produce pleasing-looking ‘plants’, 
and try to discover pleasing musical renderings of these.   

(All the examples below are taken from  [12], unless otherwise stated, and all the 
musical examples discussed here can be listened to at the website http://www-
users.cs.york.ac.uk/~susan/bib/ss/nonstd/eurogp05.htm). 

Music is essentially sequential in time: we do not want a temporal branching 
interpretation.  We define a sequential rendering: interpret [/] as ‘push/pop current 
state except the time’;  F as ‘play a note of duration 1’; a sequence of n Fs as ‘play a 
single note of duration n’.  So a note is broken by a change in pitch, by a new branch, 
or by the current branch ending.  The sequential rendering of the 4-generation ‘leaf’ 
L-system is rhythmically interesting, and makes sense melodically:   

 

Although the sequential rendering produces pleasant results, it can be improved to 
capture a Schenkerian background/middleground/foreground hierarchy.  Jonas  [4] 
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uses the term “the flowerings of diminution” in describing the sonata form.  This 
suggests an interpretation in which only the ends of the plant (leaves, flowers) are 
“heard”.  The middleground and background (the stem and branches) are not actually 
heard in Schenkerian analysis: they just give the structure from which the foreground 
appears. 

In our Schenkerian rendering, interpret F as ‘increase note duration by a quarter 
note’, ± as ‘move up/down one note in the chosen scale’, [ as ‘push current state and 
set note duration to 0’, ] as ‘play note according to current state, and pop’, and X as 
null.  

Under this rendering, the ‘leaf’  now plays as:  

 

Despite not appearing to fit into a 4/4 framework, this melody sounds very musical, 
with a quite distinctive tune, even with a metronome beating 4/4 time behind it.  

4   Stochastic L-Systems 

Plants are all different: stochastic L-systems are used to generate plants from the same 
“family” but with different details.  A musical rendering should similarly generate a 
variety of pieces in the same “style”.   Consider the following simple stochastic L-
system (where the subscript on the arrow gives the probability that rule is chosen). 

: F   p1: F 1/3  F[+F]F[-F]F      p2: F 1/3  F[+F]F   p3: F 1/3  F[-F]F 

The Schenkerian renderings of three different productions of this stochastic L-
system (3 iterations deep) are:  

 

These sound ‘random’ but well structured, and not overly complex (as one would 
expect from the fairly simple nature of the rules).  They do sound ‘similar’ to each 
other, but different enough to be used perhaps at different points in the same piece of 
music, or when combined.   

5   Context-Sensitive L-Systems 

Context sensitivity in L-systems gives more power as parts of the string or plant can 
grow differently depending on what is around them.  This could be useful in music 
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since a generated piece could build to a climax or break down at certain points. In a 
context-sensitive Lsystem the production rule is applied to symbol only if it appears 
in a specific context (between other symbols).  The notation A<B>C means the string 
B with A to the left, and C to the right. 

Consider the following context-sensitive L-system, from  [2].  

: F1F1F1 
p1: 0 < 0 > 0  0    p6: 1 < 0 > 1  1F1 
p2: 0 < 0 > 1  1[+F1F1]  p7: 1 < 1 > 0  0 
p3: 0 < 1 > 0  1   p8: 1 < 1 > 1  0 
p4: 0 < 1 > 1  1   p9: +  − 
p5: 1 < 0 > 0  0   p10: −  + 
 
 

This melody, and others derived similarly, sound fairly ‘random’ (despite being 
deterministic); they are reminiscent of jazz solos. They do not fit well into 4/4 score 
notation because many of the notes are offbeat, but this just adds to their “freeform” 
sound.  Yet the tunes always return to a main motif or phrase, that is sometimes 
transposed or played at a different point in the bar.  For example, in the score above, 
the series of notes in the 1st bar is repeated in the 9th bar, but very offbeat (moved 
forward a quarter of a beat) and raised by 2 semitones.  This kind of repetition mirrors 
how music is normally composed or improvised. 

6   Music to Plants 

Previously we started from existing L-system ‘plants’, and tried interpreting them as 
music.  Here we take the opposite approach, of starting from musical grammar 
notations, and trying to produce L-system versions. 

We combine the ideas of Jones  [4] and Baroni et al  [1] to write a formal grammar 
that generates music by recursively splitting up an event space (initially one long 
note) into 2 or 3 shorter, different notes.  After a number of recursions we have a 
melody that is the length of the initial event space.  Insertion rules  [1] provide tonal 
information (we add an ‘identity’ insertion that does nothing), and halving note 
duration rules provide the rhythm.  These insertion rules were initially written for 
analysis; adding probabilities as in stochastic musical grammars  [5] allows them to be 
used for production.  Variations of the rules of insertion and the rhythm grammar are 
given below.   
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We interpret d as ‘halve the duration’.  We get the following grammar: 

Identity:  F 1/2   F    
Repetition: F 1/26  [dFF]   
Appogiatura1: F 1/26  [d-F+F]  Appogiatura2: F 1/26   [+F-F] 
  
Neighbour note1: FF 1/26   [Fd+F-F] Neighbour note2:  FF 1/26   [Fd-F+F] 
Skip1:  F+F 1/26   [Fd++F-F] Skip2:  F+F 1/26   [Fd+++F--F]  

Skip3:  F+F 1/26   [Fd-F++F] Skip4:  F+F 1/26   [Fd--F+++F]  

Skip5:  F-F 1/26   [-Fd++F-F] Skip6:  F-F 1/26   [-Fd+++F--F]  
Skip7:  F-F 1/26   [-Fd-F++F] Skip8:  F-F 1/26   [-Fd--F+++F]  

Starting from the axiom F++F++F+++F---F--F--F, using the sequential rendering 
and the classical turtle graphical rendering, after 4 iterations we get 

 

The tune is pleasant.  The graphical rendering (to its left) looks somewhat 
plantlike, but is not very aesthetically appealing.  Starting from the musical grammars, 
it is unclear how to add the necessary branching instructions to get pleasing-looking 
plants. 

7   Conclusions and Further Work 

We present two musical renderings that produce pleasant sounds from classic ‘plant’ 
L-systems. The sequential rendering is relatively naïve, yet works well. The 
Schenkerian rendering is inspired by an analogy between the musical theory 
concepts of fore/middle/background and the components of a plant, and produces 
very pleasant pieces. 

These examples have been evaluated to a depth of 3 or 4 iterations only.  There 
seems to be enough information in a typical L-system to create only a short melody 
and still be interesting.  At longer derivations, the melodies begin to get dull: the same 
bit of music is repeating continually, albeit normally transposed in some way.  
Stochastic L-systems may help, by enforcing some kind of structure on the score but 
giving varied melodies.  The context-sensitive L-systems seem to offer the best 
potential for creating longer pieces of music, since identical parts of the string in 
different places can grow differently, so the piece can actually “go somewhere” rather 
than repeat the same pattern. 

Starting from musical grammars and producing L-systems from them works well 
musically.  However, the attempt to get simultaneously pleasing graphics starting 
from a musical grammar has been less successful: the branching necessary for 
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graphics is not an intrinsic part of existing musical theory, and it is not clear how to 
add it in.  More work on the Schenkerian rendering from a music theory point of view 
may be valuable here. 

More powerful L-systems, such as parametric L-systems, could be used to generate 
more complex and realistic music.  One exciting possibility is the use of L-systems 
with environmental inputs  [8].  These have been developed to model environmental 
effects on plant growth (sun, shade, etc), but might be applicable to music generation, 
to allow two L-systems growing their music together as different “instruments” to 
react to each other. 
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Exploring Rhythmic Automata 
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Abstract. The use of Cellular Automata (CA) for musical purposes has a rich 
history. In general the mapping of CA states to note-level music representations 
has focused on pitch mapping and downplayed rhythm. This paper reports 
experiments in the application of one-dimensional cellular automata to the 
generation and evolution of rhythmic patterns. A selection of CA tendencies are 
identified that can be used as compositional tools to control the rhythmic 
coherence of monophonic passages and the polyphonic texture of musical 
works in broad-brush, rather than precisely deterministic, ways. This will 
provide the composer and researcher with a clearer understanding of the useful 
application of CAs for generative music. 

1   Introduction 

Algorithms utilising discrete states and rule-based transitions are particularly suited to 
digital computers, and thus the developments of Cellular Automata (CA) have 
paralleled the history of the computer. CA are spatially specific finite state systems 
where cells represent discrete values. The cells are arranged in grids of any 
dimension, with 1 or 2 dimensions being the most common. A transition function 
determines the subsequent state of each cell depending upon its previous state and that 
of its neighbours. Each cell in has a state that is most commonly either 1 or 0. 
Transition functions are typically made up of rules such as “If the sum of my and my 
neighbours state is less than two then set my state to 0.” Normally all cell transitions 
are computed in parallel and updated synchronously. Over the years, musicians have 
utilised CA because of parallels with sound patterns and structure, and because CA 
provide a great deal of complexity and interest from quite simple initial setup. 
Composers and sound designers have mapped CA states to musical form and 
macrostructure, note-level patterns, and parameters of sonic microstructure, see for 
instance [1-9]. For a detailed overview of the musical application of CA see the 
review of CA music research Burraston and his colleagues [10]. Many previous 
studies work systematically through known CA rules and are most often concerned 
with pitch mapping. This study differs in that it is concerned with rhythmic mappings 
of the generated data and the exploration is driven more by musical or aesthetic 
necessities than by systematic or exhaustive searches. The result is that formal models 
are explored in an informal way and new system of rule description that embeds 
musical knowledge is described.  
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The software used for this exploration of rhythmic automata was specially written 
in Java using the jMusic library [11]. The study was limited to one-dimensional CA 
where two states, 1 and 0, were 1 equalled a note and 0 a rest. Notes and rests were 
all considered to be of equal duration, usually a sixteenth note. A single row of cells 
represented a step sequence of notes and rests. Each generation of the row was 
treated as a musical phrase and performed in order using unpitched percussion 
samples triggered via MIDI playback. The length of a row was kept to sixteen cells. 
The correspondence between the binary and common practice notation 
representations of the grid is shown in Figure 1, while the visual patterning of a 
sequence of row evolutions is quite apparent in Figure 2 which has a grid of rows 
ordered temporally from top to bottom. The representation of the grid evolution used 
in Figure 2 is well established; each row in the grid is a single generation with earlier 
generations at the top. 

      1 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 

 

Fig. 1. The binary and notational representations of the same CA rhythm 

1 0 1 1 0 0 1 1 0 0 0 0 1 1 1 1 
0 1 0 0 1 1 0 0 1 0 0 1 0 0 0 0 
1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 0 
1 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 
0 1 0 1 0 0 1 0 0 0 0 0 1 1 1 0 
1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 

Fig. 2. An extended sequence where the generational patterning is visually evident 

The initial explorations used Totalistic rules; where a transformation depends only 
on the sum of 1s in its neighbourhood, regardless of their position. The choice of 
Totalistic rules (a subset of all possible CA rules) was based on a compositional 
desire to work with rhythmic density where decisions were based on the more or less 
‘crowded’ or ‘busy’ a section. The range of cell totals evidently depends on how 
many neighbours are taken into account. The neighbourhood scope used in these 
explorations was either one cell to either side. A variety of transformations were 
allowed for,. Set to a rest (0) = R, Set to a note (1) = N, Flip current status = F, Leave 
unchanged = U. 

The mapping between the summed value of 1s in the cell neighbourhood and a 
transformational outcome defines a transition. The totals and outcome symbols can be 
combined to express the transition such as 3 -> U, which can be read as “if the sum of 
this and neighbouring cells equals 3 then leave the current cell state as it was.” A set 
of transition expressions is a CA rule, for example 0 -> R, 1 -> N, 2 -> R, 3->R. For 
those more familiar with established CA rule numbering, here is a simple comparison. 
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The CA rule number 22 would be described as 0 -> R, 1 -> N, 2 -> R, 3->R. The use 
of only four rules indicates that the scope of neighbours is one either side of the cell. 
It should be noted that the flip and unchanged transitions are not used in the 
established CA rule numbering system, however, rules in the notation established in 
this paper are a subset of established system and do have an equivalent CA rule 
number. 

The CA evolution is also influenced how boundaries are handled. In the 
explorations reported here boundaries wrap around, linking the first and last cell to 
effectively create a circular row. The starting condition of a CA also has a significant 
influence on its development. In the explorations reported here, understanding the 
tendencies of rule across a range of starting conditions was of interest, so randomised 
starting conditions were generally used while occasionally simple start conditions 
with a single note were used.  

2   Rules and Techniques 

Stephen Wolfram [12], classified the transition rules into four classes of behaviour 
according to their stability and complexity. Class 1 CA eventually evolve to a stable 
state, class 2 CA result in patterned output dependent upon initial conditions, class 3 
CA are aperiodic, and class 4 CA produce complex but stable evolution. These 
classifications informed the explorations of CA for musical rhythm described in this 
paper, however as with all such classifications of CA’s, there is no mathematical 
proof or law that defines rules into these categories. 

Given that much of the potential output for generative processes is quite chaotic, it 
is useful to observe that some CA rules-sets can assist in providing order, as with 
Wolfram’s class-one transition rules. Because of their repetition, stabilising rules can 
be utilised in many musical situations. For example, the following rule will produce a 
stable rhythm pattern after a few generations. 

0 -> N, 1 -> U, 2 -> R, 3 -> N 

Delayed Stability. Some rules result in a slower evolution towards stability which 
can be very useful for providing both variation and cohesion. One example is the 
following, a rule. 

0 -> N, 1 -> F, 2 -> F, 3 -> U 

Under these conditions CA tend toward interesting variations with global patterns 
emerging for some time until a stable point is reached. From randomised starting 
points, they take between 10 to 100 generations to stabilise (in general). The stable 
point can be a rhythm (notes and rests) or silence (all rests) depending upon the 
outcome specified for the zero-neighbour state. Musically this could be useful for 
sections of change and stability could be detected and responded to. 

Balancing the need for stability in musical rhythms is the desire for novelty and 
variation. This section lists some rules that provide particularly useful variability. 
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Rhythmic Inversion. In order to change all notes to rests and vice versa, all states are 
set to flip. This is the equivalent to using CA rule number 51. Over time the continual 
inversion of the pattern results in a perception of a double-length stable pattern This 
simple technique may be surprisingly musical provided that it is used in moderation. 
An inversion rule is: 

0 -> F, 1 -> F, 2 -> F, 3 -> F 

Density Thinning. A rule where most transitions result in rests will provide a 
thinning of dense or complex rhythms. An assumption, here, is that long sections with 
only notes or only rests are undesirable and that an even distribution is more 
interesting. An example is the rule: 

0 -> U, 1 -> R, 2 -> N, 3 -> R 

Most CA evolution results in changing patterns, even though stable states are not 
uncommon. This continual variety provides rich opportunities for musical rhythms. 
Rules that result in large scale repetitions are particularly interesting, even though 
they may not be considered strictly evolutionary in the sense of continually varying 
development and change. When an evolving pattern has a zero-neighbour rule 
resulting in a note or flip outcome, a perpetual cycle is almost guaranteed. 

Evolving Inversion. In a CA where most outcomes are set to flip except the zero-
neighbour rule with a note or rest outcome, the pattern largely inverts between 
generations but is irregularly mutated. This type of rule can produce some slowly 
changing double-length patterns. An example rules is: 

0 -> N, 1 -> F, 2 -> F 

Emergent Cycles. With some rules large-scale patterns emerge. For example, the rule 
0-> N, 1 -> R, 2 -> R, 3 -> U produces patterns that often fall into cycles that repeat 
over several generations. However, the establishment of cyclic patterns is quite 
sensitive to initial conditions and cyclic patterns are less likely with small row sizes. 
As a result this behaviour is insecure for real-time applications but adequate for the 
composer who can generate and select. 

While the CA process can provide tendencies toward particular density and pattern 
distribution, aperiodic tendencies and use of circular boundary conditions often result 
in a lack of pulse or metre. While this might be intellectually fascinating it is only 
occasionally successful from the perspective of a common aesthetic. The resulting 
rhythmic structures have a weak sense of pulse on several counts, 1) patterns can be 
too long for human perception to appreciate, 2) pulse is undermined by the circularity 
of the cell neighbour checking, and 3) any sense of regularity is smeared by the 
constant variation imposed by the pattern change at each generation. One solution is 
to modify the CA rules to account for cell position within the row. In this way 
musically 'stronger' and 'weaker' positions within the row are specifiable. This is a 
strong form of what is sometimes referred to as elementary rule, where a cell ignores 
its neighbourhood context. As well, a convention of applying the same rule to all cells 
is also broken in the beat prioritisation. 
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Probabilistic Transitions. To achieve beat prioritisation an elemental probabilistic 
rule is applied to regularly spaced cells, for example in positions 0, 4, 8, and 12 only, 
such that they would transition to a note with a specified probability. This can provide 
a sense of pulse or metre. The beat prioritising with a low probability can also help 
consolidate an otherwise unstable CA rhythm. 

A side effect of prioritising beats is that the increase in note activity extends evenly 
forwards and backwards through the row when it would be more musical to start or 
finish the rhythm activity on the beat, rather than around it. To counter this Totalistic 
rules were modified to take cell position into account. 

Position Sensitive Rules. A simple implementation of this position orientation is to 
only count neighbours to one side of the current cell. Only cells to either the left or 
right can be considered where calculating the neighbourhood sum. For example, three 
cells – 1 1 0 – would total two when ‘looking left’ or total one when ‘looking right’. 
The effect of adding this feature to rules with beat priority is to distort the angular 
patterns as desired, however the clustering tendency of notes and rests can persist. 
These rules are represented as in this example: 

0 -> U, 1 -> N, 2 -> N, 3 -> R: Pos. 1, 5, 9, 13 -> Prob. 0.7: Look left 

Rhythmic automata become particularly exciting when several patterns are played 
together. Subtle changes in the rules are amplified over time and so some careful hand 
tweaking of rules can pay significant dividends for the patient composer. Some 
obvious possibilities exist for polyrhythmic automata works, including where an 
evolving CA can be played against a static one, or when two different evolving 
automata can be used, or when the same rule can be used with different starting 
conditions in each part. Traditional cannonic effects can be achieved by starting CA 
patterns at different times. 

Rhythmic Phasing. Phasing effects, such as those employed by Steve Reich, use the 
same material at slightly different speeds. A variation on this that does not require 
tempi adjustment is to counterpoint rhythmic automata that have rules which vary 
only slightly. Carefully chosen, these will start together and drift into quite 
independent rhythms over several generations. An example is the rules 0 -> R, 1 -> N, 
2 -> *, 3 -> R; with the two-neighbour outcome (*) set to rest in the first example and 
to flip in the second. 

Alternate Starting Points. A cannonic effect can be mimicked without the need for 
delayed starting times, by using starting states that are equivalent but bit-shifted along 
(around) the row. The resultant synchronisation of phase offset provides an effective 
tension between musical coherence and contrast. 

3   Conclusion 

This paper has reported on an exploration of CA for the generation of rhythmic 
patterns. The approach to CA has been somewhat unorthodox in a number of ways, 
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particularly in the way rules have been described. The rule formation is more 
descriptive than the conventional numbering system and usefully limits the CA rule 
space by at times ignoring (totalistic) or generalising (look left and right) neighbour 
position when specifying rules. In addition, probabilistic elemental rules that 
emphasise beat or accent locations, have been trialed. This approach incorporates 
musical knowledge into the rule representation system and has the advantage over the 
conventional numbered CA rule system that it provides a more musically meaningful 
way of specifying and changing the rules to providing indirect control over density 
and metre, compositional outcomes. A series of rhythmic automata tendencies useful 
for musical applications have been identified and example rules described. This 
research enables a directed search of the space of CA rule possibilities for rhythmic 
material and, it is hoped, will stimulate further utilisation of rhythmic automata. 
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Abstract. This paper addresses design approaches to algorithmic com-
position and suggests that music-theoretic tenets alone are unsuitable
as prescriptive principles and could be profitably complemented by at-
tempts to represent and recreate dynamical structures of music. Exam-
ples of ongoing work using adaptive dynamical processes for generating
dynamic structures are presented.

1 Aims, Assessment and Approaches

In [16], Pearce et al bring attention to the diversity of motivations and techniques
within the field of automated composition and suggest that research aims needs
to be more explicit in order to implement suitable assessment procedures. Con-
versely, clarity in aim and assessment focuses consideration of design approaches.
This paper is concerned with designing Algorithmic Composition systems, with
the aim of producing music to “expand the compositional repertoire for human
listeners”, [16]. As suggested, the output can be usefully assessed in the same way
that all other composition is appraised: through listener’s response to publicly
disseminated material (concerts, recordings etc). This is a seemingly obvious,
but important point as it implicitly states that our primary concern is the devel-
opment of a system capable of producing music which serves the same function
as music created in more traditional ways: something that people can have some
“some degree of meaningful or gratifying perceptual engagement with” [6].

How then should we best approach the design of these systems? A common
approach is to embed music-theoretic principles, either explicitly in knowledge
based systems [9] or implicitly in evolutionary or learning algorithms [17]. This is
attractive as it ensures our system follows the ‘rules’ of music theory, but results
are often described as lacking ‘life’ or ‘musical logic’ [7]. At the other extreme
mathematical models, selected on the basis that they represent some aspect of
a musical phenomena, are used to generate data which is then mapped onto
musical parameters. These are often described as an ‘extra-musical’ and seen to
be inherently less musical because “their ‘knowledge’ about music is not derived
from human works” [15] p 2.

In this paper we briefly consider the nature of musicological thinking and
suggest that the principle focus differs from that of the average listener’s imme-
diate aural experience. An alternative understanding of music from the listener’s
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perspective is presented, highlighting the fundamental importance of motion in
music. Examples of ‘extra-musical’ algorithms designed to create dynamic struc-
tures are presented, to suggest that ‘extra-musical’ algorithms can at times cap-
ture important musical characteristics that evade purely theoretic approaches,
and are perhaps misnamed.

2 Musicological Versus Musical Perspectives

2.1 The Analyst’s Music

Music theories, represent attempts to understand music in a Musicological sense;
the analyses aim to achieve possible coherent sets of principles and ideas with
which to rationalise, investigate and analyse the structurally functional aspects
of music. This act is neither exhaustive, nor aimed primarily at describing music
in terms of the listener’s perception. “A formal analysis is a kind of mechanism
whose input is the score, and whose output is a determination of coherence...In
other words, it purports to establish or explain what is significant in music
while circumventing the human experience through which such significance is
constituted; ... it aims at ‘deleting the subject’” [6] p.241

In [6] Cook argues that there is an important and inevitable discrepancy be-
tween the experience of music aurally, and the ways in which it is thought about.
He draws a useful distinction between ‘musical listening’ which is concerned with
aesthetic gratification in a non-dualistic sense, and ‘musicological listening’ for
the purpose of establishing facts or formulating theories about music.

The discrepancy between analytic and experiential musical realities is illus-
trated by two experiments. In one, two versions of short piano pieces were played
to music students: their original form, which began and ended in the same key,
and an altered form which had been modified so as to modulate to and end
in a different and unrelated key, sometimes as distant as the minor second [4].
Theoretically, tonal closure is the very core of standard classical music forms.
However in these trials, Cook reports no significant differences in preference for
the original over the altered forms. In another set of tests [5], music students
were played the first movement of a Beethoven sonata. The performance was
broken off just before the final two chords, yet many predicted that the music
would carry on for another minute or more. Theoretically, the recapitulation and
coda are key functional structures, signifying the close of a piece: these results
suggest that they can be insignificant in an aural presentation.

More conclusive studies are needed to make strong claims, but it is com-
mon for musicologists to differentiate between the aural and analytic aspects of
a piece. Kathryn Bailey describes Webern’s symphony as “two quite different
pieces - a visual, intellectual piece and an aural, immediate piece, one for the
analyst and another for the listener.” [2] p.195. Thomas Clifton expresses this
more incisively: “For the listener, musical grammar and syntax amount to no
more than wax in his ears.” [3] p.71.

These discrepancies stem in part from the contrasting nature of time in au-
ral and written music. Schutz suggests that attempts to describe the musical
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Fig. 1. A Natural harmonisation of a simple phrase using I (tonic), V (dominant) and
IV (sub-dominant)(left) and appropriate chordal inversions (IV betc) (right)

experience in the ‘outer’ time of reflection and notation, poses a variant of the
Eleatic paradox - ie that the flight of Zeno’s arrow cannot be described because
the ongoing quality of its motion cannot be represented [18]. And indeed many
composer-theorists who are primarily concerned with the listener’s experience
focus on the fundamentally dynamic and continuous nature of music eg [20], [19].

2.2 The Listener’s Music

In [19] Toch gives an account of how all musical writing must respond to the
listener’s psychological needs. If harmonic structure is the cornerstone of tradi-
tional music theory, Toch sees the movement of melodic ‘impulses’ as the central
force of music from the listener’s perspective.

In an example that is not unlike some algorithmic composition tasks set eg for
Genetic Algorithms (GA), Toch presents a phrase from a folk tune, that invites a
simple I, IV V harmonisation (Fig.1A). Even the inversions required to produce a
smoother chordal structure (Fig.1B) could potentially be found by implementing
theoretic axioms such as minimising the number of steps that each note must
take into membership of its adjacent harmonies. The apparent simplicity and
efficacy of this kind of ‘rule’ is precisely what is attractive to the algorithmic
composer, but as Toch warns: “While this axiom seems a simple expedient for
the beginner, it implants in him a dangerous misconception, namely the view
point of rigidly preconceived harmony as a fixed unit, within the frame of which
each voice seeks to take up its appropriate place.” [19] p5.

The point is illustrated by comparing a typical Chorale harmonisation, which
concedes to all the traditional rules of harmony, with the alternative harmoni-
sations, which Toch arrives at by a more general principle that he calls ‘linear
voice leading’. In contrast to the ‘appropriate’ harmonisations, some of these
voice-led harmonies go against every rule in the book: consecutive fifths, cross
relations, arbitrary dissonances etc. And yet, he argues, “they convey a certain
organic logic and life.” He continues: “The truth is that the melodic impulse
is primary, and always preponderates over the harmonic; that the melodic, or
linear impulse is the force out of which germinates not only harmony but also
counterpoint and form. For the linear impulse is activated by motion and motion
means life, creation, propagation and formation.” ibid p.10.

Toch’s approach stands in stark contrast to the way in which the ‘harmon-
isation problem’ is sometimes addressed in algorithmic composition:“We apply
the following criteria: we avoid parallel fifths, we avoid hidden unison, we forbid
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progression from diminished 5th to perfect 5th; we forbid crossing voices...”, an
approach that does not seem to capture the organic logic of successful music:
“...from an aesthetic perspective, the results are far from ideal: the harmonisa-
tion produced by the GA has neither clear plan or intention.” [17] p.5.

This is an extreme, although not untypical application of music theory to
the design of algorithmic systems. Even if Cook’s suggestion that theoretical
structures are aurally irrelevant is not upheld, it seems likely that a theory
derived largely from a static symbolic score may not tell us everything we need
to know to design systems that can emulate the dynamic immediate nature of
music that stimulates the listener’s subjective experience. Over-reliance on such
theories may be one reason why we frequently see comments such as: “while
conforming to classical triadic harmony, the music seems lifeless.” [7] p.21.

The musical subject is making more frequent appearances in musicological
research [8], and practitioners are beginning to employ psychological measures
such as harmonic tension in developing algorithmic composition systems [14]. We
suggest that as well as consideration of emotive qualities, algorithmic composi-
tion design could benefit from considering ways of representing and generating
the dynamic structures of music.

3 Adaptive Systems Music

In an ongoing project, various dynamical system models are being explored as
possible mechanisms for creating a sense of musical motion and progression.
Models based on differential equations enable the representation of temporal
flow as the system is defined in terms of change in state over time. In a sense,
the Eleatic paradox is resolved. Both systems described below are small net-
works of interconnected nodes. In each case the state of each node is a function
(directly or indirectly) of the activity in the rest of the network. An attrac-
tive property of this class of dynamical system then, is that as well as enabling
the representation of dynamic structures, a certain logical structure is present.
One possibility being examined, is whether these structures can create musically
coherent relationships.

3.1 Neural Oscillator Networks

A small network of neural oscillators as described by [13], was built. The oscilla-
tor system consists of two simulated neurons arranged in mutual inhibition. If an
oscillatory input is applied, the pair will entrain the input frequency, although
the phase may differ. The nodes are arranged in a network such that the input
signal to one pair is the output from one or more other pairs. This creates a
collection of continuous periodic output signals, with differing phase and form
which are synchronised. The outputs are mapped onto frequency changes.

Although not restricted to any particular key or time signature, the periodic
form - similar to the wave-like form of many melodies [19]- produces a sense of
movement. Because all outputs are synchronised, but exhibit different forms and
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phases, a sense of ensemble is achieved with voices moving in unison or opposition
according to phase 1. In this current form, the outputs - being periodic - are very
repetitive. This is not presented as music in itself, but as a possible mechanism
for conveying movement, and dynamic relations between parts.

3.2 Homeostatic Harmonies

In previous work [10], the potential for generating harmonies using principles
of homeostasis has been explored. The model, based on Ashby’s homeostat [1],
can be conceived as a number of interconnected nodes, where the output of
each node is a function of the weighted sum of all connected node outputs. If
any one output exceeds a critical value, all the weights in the network are re-
randomised. This means that the system converges to a stable state, and reacts
to environmental changes, creating local directed dynamics and global contrasts
between stability and exploration. Such dynamics are comparable in abstract
form to equilibrium-disturbance-reaction schemes of narrative form, or the basic
repetitions and variations ubiquitous in musical forms.

Various live performances, compositions and installations made with versions
of this basic system have been well received. Although not pertaining to any par-
ticular musical style or genre, participants in a listening test agreed that it was
‘musical’, elaborating their choice with comments such as: ‘sense of melody’,
‘there were definite harmonies if unusual at times’ ... ‘sense of harmonic struc-
ture and melodic progression’. This reference to structure was made by several
listeners: ‘structure and development on different time scales/resolutions’. Lis-
teners’ comments also suggest that the output had emotive qualities: ‘tension
building and resolution of tension.’ [10].

4 Summary and Discussion

Contrasting Cook’s views on the nature of musicological thinking with Toch’s
ideas on compositional techniques with the listener’s experience in mind, we
propose that music-theoretic principles may be being misused as exclusive pre-
scriptive design principles for algorithmic composition systems. It seems that
as well as focusing on perspectives such as emulation of emotive qualities or
‘colours’ in music [14], research may benefit from an exploration of methods of
representing and recreating the dynamic qualities or flux in music.

Examples of attempts to capture a sense ensemble or harmonic progression
as an ‘emergent’ property of melodic movement using simple dynamical models
were given. Although the relations between the nodes do not follow any musical
model, it is an interesting possibility that the internal logical coherence creates
musical structures that listeners describe as harmonic or melodic progressions.
Whilst it is too early to make any claims in this area, investigations into the use
of sound to analyse complex dynamic systems, suggest that the dynamics (eg

1 Example output from can be found on-line at [12]
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chaotic, complex, ordered) of some systems can be appreciated when presented
aurally [11]. This suggests that attempts to create dynamical models of musical
structures may be a fruitful avenue of research which could potentially contribute
to our broader understanding of existing music as well as affording possibilities
for creating new musical styles.
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Abstract. There is a growing interest in applying evolutionary algo-
rithms to dynamic environments. Different types of changes in the envi-
ronment benefit from different types of mechanisms to handle the change.
In this study, the mechanisms used in literature are categorized into four
groups. A new EA approach (MIA) which benefits from the EDA-like ap-
proach it employs for re-initializing populations after a change as well as
using different change handling mechanisms together is proposed. Exper-
iments are conducted using the 0/1 single knapsack problem to compare
MIA with other algorithms and to explore its performance. Promising
results are obtained which promote further study. Current research is
being done to extend MIA to other problem domains.

1 Introduction

Evolutionary algorithms (EA) are heuristic search algorithms applied in both
stationary and non-stationary (dynamic) problems. For the rest of the paper,
EAs designed for dynamic problems will be called dynamic evolutionary algo-
rithms (DynEA). Very successful implementations of EAs in stationary environ-
ments exist in literature but there are additional challenges in dynamic environ-
ments, such as having to adapt to the new environmental conditions and tracking
the optima. In order to accomplish these, new algorithms have been introduced.
Detailed surveys and discussions of EAs and dynamic environments can be found
in [4, 13, 18]. DynEAs are categorized under three headings in [4] as Type-1 :
DynEAs reacting on change, Type-2 : DynEAs maintaining diversity throughout
the run and Type-3 : DynEAs based on memory. Each type of DynEA employs
a single approach or a set of approaches (models), while adapting to the new
environments. These models can be classified as operator-based, memory-based,
population-based and initialization-based. A similar but more detailed classifica-
tion can be found in [18]. Operator-based models use adaptation or modification
of some EA operators, especially those that are responsible for diversity such as
mutation and selection. The main aim is to diversify the current genetic material
by using genetic operators, when change occurs. Hyper-mutation [5], Variable
Local Search [17], Random Immigrants [7] and Thermo-Dynamical Genetic Al-
gorithms [11] are examples of such DynEAs. The first three of these approaches
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564 A. Karaman, Ş Uyar, and G. Eryiğit

work with the mutation operator, while the last one uses a different selection
scheme based on a free energy function. Memory-based models use extra memory
in order to preserve extra genetic material that may be useful in later stages of
the run. Extra memory usage can be implemented either implicitly or explicitly.
Algorithms that use redundant representations are among the well known im-
plicit memory implementations. The most common of these representations are
ones that use diploid chromosomes with a dominance scheme [10, 14, 16]. Explicit
memory is implemented by allocating extra space for preserving currently avail-
able genetic material to be used in later runs. A good example of this approach
is discussed in [2]. It can be seen that, memory based techniques perform best
when the environment oscillates between several states. Population-based models
use more than one population, each of which may be assigned different responsi-
bilities. The aim is to use the available number of individuals in a more effective
way. For example, the memory-enhanced algorithm introduced in [2] uses two
populations. One of these populations is responsible for remembering good old
solutions and the other is responsible for preserving diversity. A more recently
proposed approach [3] uses multiple sub-populations distributed throughout the
search space to watch over previously found optima (local or global), thus in-
creasing the diversity in the overall population. Initialization-based models use
problem specific knowledge in order to initialize the first population of the cur-
rent environment so that individuals are in the locality of the new optima. The
Case-Based Initialization of Genetic Algorithms introduced in [15] uses a sim-
ilar approach. In that study, a model of the environment is maintained and is
updated after environment changes. The good solutions found for previous en-
vironments are inserted into the GA population when similar environments are
encountered. All of these models have their strengths and weaknesses. Studies
show that different types of dynamic problems need different types of models. It
can be seen that it is better to have a combined model for better performance
under different types of change. In [18], the author develops a formal framework
for classifying different types of dynamic environments and tries to perform a
mapping between problem classes, DynEAs and performance criteria.

For the purposes of this paper, a DynEA will be defined as an evolution-
ary algorithm designed for working in dynamic environments, consisting of a
set of the models mentioned above. This definition implies that, it might be
advantageous to partition an evolutionary algorithm into sub-parts, each of
which is designed for different purposes. Most algorithms found in literature
have been developed to only include one or two of the models. For instance,
the hyper-mutation approach [5] uses only the operator-based model while the
memory-enhanced algorithm [2] uses the population-based model together with
the memory-based model. When thinking of designing an efficient evolutionary
algorithm in terms of these models, it can be seen that the evolutionary algorithm
should include an operator-based model in order to supply the needed diversity, a
memory-based model to benefit from the previously discovered genetic material,
a population-based model to use the limited number of individuals efficiently

.
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and an initialization-based model that uses problem specific knowledge to guide
the individuals towards the new optima.

In this paper, a new DynEA approach called Memory Indexing Algorithm
(MIA) is proposed. MIA has been designed with the above considerations in
mind. This study is a preliminary look into the design and performance of such
an algorithm and the results obtained give a preliminary overview as to the
applicability and the performance of the approach. Currently, for ease of anal-
ysis, a very simple test problem, namely the 0/1 single knapsack problem, has
been selected as the benchmark. Experiments are performed to understand the
operations of the basic mechanisms of MIA as well as to compare its perfor-
mance with similar state of the art DynEA approaches in literature. Research
continues to extend MIA to other problem domains. This paper is organized
as follows: Section 2 introduces MIA and explores its mechanisms and outline.
Section 3 gives details of the experimental setup, presents and discusses the
test results. Section 4 concludes the paper and proposes possibilities for future
work.

2 The Memory Indexing Algorithm

The Memory Indexing Algorithm (MIA) uses problem specific information for
working with the appropriate incorporated mechanisms. This information is
based on a measure that identifies environments and is used by MIA to in-
dex encountered environments. For the 0/1 single knapsack problem, the index-
ing mechanism used to differentiate environments is termed as the environment
quality (EQ) and is explored in greater detail in [8]. As can be seen in the next
subsections, MIA uses concepts originating from explicit memory based DynEAs,
the hyper-mutation mechanism and also estimation of distribution approaches
(EDAs) [9]. MIA can be put in Type-1 of algorithms because it acts on change
and initializes the next generation according to a distribution array (DA) if a
similar environment has been encountered before. If there is no previous informa-
tion regarding the new environment, the algorithm uses a standard technique. In
this study, as an example, the hyper-mutation method is applied. MIA can also
be said to be of Type-3, since it uses a DA that can be seen as a form of an exter-
nal memory. Due to this, MIA is compared with the hyper-mutation approach of
Type-1, and Memory Enhanced Algorithm (MEA) of Type-3. Experiments and
results are given in section 3.

The distribution array (DA) is a list of ratios representing the frequency of
each allele at each gene position in the population. Each value in the DA is
used by MIA as the probability of initializing the corresponding gene location
to the corresponding allele when a similar environment to the one in which
the DA was calculated is re-encountered. This idea is similar to the population
initialization technique used in the PBIL [1] approach. There is a DA for each
different environment group which has been encountered during the run of MIA.
To the authors’ best knowledge, such a memory and population re-initialization
scheme has not been applied to dynamic environments before. The DA values
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are calculated as given in Eq. 1, using the individuals in the generation when
the change occurs (assuming no changes within a generation).

DAi(j) =
Nij

PopSize
, i = 1, 2, ..., LC and j = 1, 2, ..., LA (1)

where DAi(j) is the ratio of allele-j at ith gene location, and Nij is the number
of genes having allele-j at ith gene location in the population, LC is the chro-
mosome length and LA is the number of different alleles. Grouping of environ-
ments requires problem specific criteria to differentiate between different types
of environments. For example in [15] the example task is a two-agent game of
cat-and-mouse. They use four aspects of the environment (namely distribution
of speed values and turn values of the target agent, the radius within which the
target may detect the tracker and the size of the target) to categorize the envi-
ronments. Using fitness distributions may also be a simple but effective measure
for this purpose. However, since this paper mainly focuses on the benefits of ap-
plying a DA-based re-initialization for similar environments, for simplicity, when
applying MIA to the single constraint 0/1 knapsack problem, environments are
grouped according to the EQ. Better and more practical groupings are the fo-
cus of another study. The grouping used in this study is also controlled by an
additional parameter called the tuner parameter (TP). TP can be thought of
as the number of cuts in the environment space and determines the number of
environment groups. In this study, for the chosen example problem, the propor-
tion of feasible points in the search space to the whole search space is used to
differentiate between different environments and is assigned as the EQ for each
environment. Theoretically, this EQ value and the group id which is based on
this, is calculated as in Eq. 2.

EQi =
mi

T
⇒ Gi = �TP ∗ EQi� (2)

where EQi is the environment quality of the ith environment, mi is the number
of feasible individuals in the ith environment, T is the total number of all possi-
ble individuals in the search space, Gi is the group id of the ith environment and
TP is the tuner parameter. Normally the search space of the problems encoun-
tered are large and thus a complete enumeration of all points is not possible.
An approximation measure is needed. So instead of using all the points in the
search space to calculate the EQ value, k points are sampled randomly and the
estimated EQ value denoted as EQ′ is determined using the chosen samples. As
part of MIA, a standard evolutionary algorithm runs until a change is detected.
When change occurs, the DA of the population is calculated and is recorded for
the corresponding group of the previous environment. The EQ′value for the new
environment and its group id is determined. If the DA for the new environment
was previously calculated, a percentage of the population is re-initialized using
the corresponding DA, otherwise a standard hyper-mutation method is applied.
For this current implementation of MIA, for the chosen test problem, a stan-
dard EA is run during the stationary periods and a standard hyper-mutation
technique is applied if there is no current information to apply the indexing and
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The Memory Indexing Evolutionary Algorithm for Dynamic Environments 567

re-initialization mechanism of MIA. However, other EA approaches and other
change handling techniques can be experimented with.

3 Experiments and Results

The results obtained in this section give a preliminary overview as to the ap-
plicability and the performance of the MIA approach. It is shown in [12] that
good change detection techniques are effective in the performance of EAs in
dynamic environments. In this study, to rule out any effects that may be the re-
sult of faulty change detection mechanisms, changes are explicitly made known
to all tested algorithms. Since MIA uses the hyper-mutation method (HMT)
when the new environment group has not been encountered before, it is com-
pared with HMT [5] and since MIA also employs an external memory, it is also
compared with the Memory Enhanced Algorithm (MEA) [2]. For all tested al-
gorithms: there are 50 individuals in each population; the chromosome length
is 100; uniform crossover rate is 0.8; parent selection is via binary tournaments;
generational replacement is used with elitism where the best individual of the
previous population replaces the worst individual of the new population (ex-
cept for right after a change); binary mutation rate is 0.6/ChromosomeLength;
there are 50 environments for each run and results are averaged over 50 runs. For
HMT, hyper-mutation rate is 0.1 and this higher mutation rate is applied for 2
EA generations after a change occurs. For MEA, memory size is 10 individuals
and the storing period is 10 EA generations. For MIA, TP is chosen as 10 and for
practical purposes, the estimated EQ′values are used to classify environments
rather than using the actual EQ values; k (number of sampled points) is chosen
as 100 individuals. These randomly sampled 100 points is called the test popu-
lation. The individuals of the test population are determined randomly at the
start of the EA run. The same test population is applied once to each environ-
ment that is encountered right after a change to determine the corresponding
EQ′value and its group id. Tests were performed in [8] to show that a sim-
ple random sampling technique is sufficient to provide the heuristic information
needed for MIA. Offline performance [4] measure is used to evaluate the perfor-
mance of selected algorithms. All results are reported as averaged over 50 runs
against the same problem instance. T-tests with a significance level of 0.05 were
performed on the offline performances. The results of the tests (omitted here
for lack of space) showed that all observed differences, except for the compari-
son of MIA1 and MIA2 in Test 1 of Experiment 2 and the comparison between
MIA2 and MIA3 in Test 2 of Experiment 3, are statistically significant. For each
encountered environment, MIA applies the environment to the test population
once to determine the group id. For performance comparisons, this means 5000
more fitness evaluations corresponding to 50 generations. Each run consists of
50 randomly generated environments and the change period is determined sep-
arately for each test, so the maximum number of generations for each test is
(50 ∗ changePeriod). The same single constraint 0/1 knapsack instance which is
randomly generated prior to the experimental runs, is used in all experiments.
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There are 100 items with profits between 1000 and 5000, and weights between
1 and 100. For simplicity of the analysis, changes are allowed to occur only in
the capacity constraint of the knapsack. All capacity constraints are produced
randomly if not otherwise stated. A penalty-based method is used for infeasible
individuals and the penalty function proposed for multiple knapsack problems
in [6] is adapted for a single knapsack problem as given in Eq. 3.

penalty =
pmax + 1

wmin
∗ CV , wmin > 0 (3)

where pmax is the maximum profit, wmin is the minimum resource consump-
tion (weight), and CV is the constraint violation of the individual. For testing
different properties of MIA, in some of the experiments in the next sections, a
training stage and a test stage is defined. In the training stage, controlled envi-
ronments are introduced to MIA. This stage is defined in such a way that MIA
gets a chance to calculate a DA for each of the possible environment groups.
The training stage consists of a series of stationary periods. The length of the
stationary periods determines the number of generations the EA will run for
each environment. The length of these stationary periods in the training stage
will be referred to as the training period and will be given in EA-generations
units. At the end of the training stage, a DA for all possible environment groups
is initialized. The number of these environments depends on the selected TP
parameter as explained above. In the testing stage, environments are generated
and introduced to the EA randomly. A testing period is also determined similarly
to the one explained above for the training stage.

3.1 Experiment 1

Experiment 1, composed of 3 tests, is for studying the algorithms under different
settings of the training period and test period. In the first 2 tests, first 11 envi-
ronments (TP=10) are selected such that DAs for all groups are initialized once
during the training stage. The performances of the algorithms are calculated
only for the test stage which begins right after the training stage is completed.
The last test in this experiment does not have a training stage. Environments
included in the testing stages are generated randomly in all test instances. In the
offline performance figures of Test 1 and Test 2, generations are shown to start
from zero, however this value corresponds to the beginning of the testing stage.
The aim of Tests 1 and 2 in this experiment is to observe the effect of the length
of the training period on the performance of MIA. In Test 1, training period
and test period are chosen as 100 EA generations and 20 EA generations respec-
tively. The training period is considered to be long, while the test period is not.
Under this setting, MIA is expected to perform its best compared to the other
settings in the following tests. This is because of the fact that, a long training
period means that the EA has more time to converge to a local/global optimum
and thus may be able to calculate more accurate distribution arrays. This will
allow the EA to start off from a better point in the search space in the similar
environments encountered during the test phase. HMT and MEA are expected
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Fig. 1. Offline Performances:
Exp.1 Test 1
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Exp.1 Test 2
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Fig. 3. Offline Performances: Exp.1 Test 3

not to recover as well as MIA, due to the fact that MIA is expected to start from
better points in the search space than the others due to the initialization using
a DA. In Test 2, both the training period and the test period is chosen as 20
EA generations. The purpose of Test 3 is to evaluate the performance of MIA
against the performances of HMT and MEA when there is no training stage.
There are a total of 100 environments produced at random where the period of
change is every 50 EA generations. Offline performances of algorithms for Test
1, Test 2 and Test 3 are given in Fig. 1, Fig. 2, and Fig. 3 respectively. Fig. 1,
Fig. 2, and Fig. 3 show that performance of the MIA is the best whereas the
performance of the HMT is the worst. Comparing Fig. 1 and Fig. 2, it can be
said that, although the training period is decreased from 100 to 20, this does not
much effect the relative performance of MIA. Moreover from Fig. 3, it can be
said that although there is no training stage, MIA outperforms the others after
some time. The reason for the delay of MIA to be the best performer is that
MIA is more likely to run hyper-mutation at the beginning of the evolution. As
a result, MIA is expected to perform as well as hyper-mutation in the beginning
but better in the later generations after several environments have been encoun-
tered and DAs for these environments have been recorded. All figures show that
MIA gets better as time passes.
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Fig. 5. Offline Performances:
Exp.2 Test 2

3.2 Experiment 2

Experiment 2 includes 2 tests with exactly the same parameter settings and the
problem instance, including the environments with Test 1 of Experiment 1. The
aim of Test 1 is to observe the effect of the initialization ratio on the performance
of MIA and the aim of Test 2 is to prove that initialization of the population with
a DA is a more powerful technique than a pure random initialization of the pop-
ulation when change occurs. As stated previously, if the new environment is in a
group whose DA is initialized previously, the first population in this environment
is re-initialized partly using the DA. Initialization ratio is the parameter which
determines the ratio of the new individuals to insert into the current population.
Parameter settings and the problem instances of the following tests, including
the environments, are same as Test 1 of Experiment 1. Test 1 is conducted to
test MIA with different initialization ratios. In Fig. 4, MIA1, MIA2, and MIA3
are the MIAs with initialization ratios of 1, 0.5 and 0.2 respectively. The in-
dividuals to be replaced by new individuals are determined randomly. In Test
2, performance of MIA is compared with a pure random initialization (RAI).
In Fig. 5, RAI1, RAI2, and RAI3 are the random initialization with ratios 1.0,
0.5, and 0.2 respectively. Fig. 4 depicts the MIAs with different initialization
ratios. It is seen that performance of MIA3 is the worst, while MIA1 is the best.
Moreover, performance of MIA2 is much nearer to MIA1 than MIA3. Therefore,
initialization ratio should be greater than 0.5. Fig. 5 shows the performances of
RAIs and MIA3. Although MIA3 is the worst of the MIAs compared in Test 1,
it outperforms all of the RAIs, which means that MIA’s performance is largely
due to the use of a DA to initialize the population.

3.3 Experiment 3

This experiment is conducted to observe the effect of the tuner parameter TP on
the performance of MIA. In the figures of this experiment, MIA1, MIA2, MIA3
and MIA4 are the MIAs with TP equal to 5, 10, 20 and 60 respectively. Parameter
settings and the problem instance of these tests, including the environments are
same with the Test 3 in Experiment 1. Results of Test 1 are shown in Fig. 6,
which depicts the performances of MIAs with different TPs when there are 100
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Exp.2 Test 2

environment changes. In Test 2, number of environment changes is decreased
from 100 to 20. Results are shown in Fig. 7. In both Fig. 6 and Fig. 7, it is
apparent that when TP is decreased from 10 to a lower number, performance of
MIA decreases drastically. On the other hand, if TP is increased from 10 to a
greater value, MIA’s performance may decrease or increase. This indefiniteness is
due to the fact that, if TP increases, there is a smaller number of environments in
each group and thus the groups get more homogeneous. Therefore, DAs of each
group will lead to more accurate initializations leading to a better performance.
However, since the number of groups is increased by TP, the new environment
detected after a change is less likely to fall into a group whose DA was previously
initialized. This means that the EA may end up having to use hyper-mutation
most of the time. In conclusion, these two contradictory factors determine the
performance of MIA when TP increases.

As it is mentioned before, MIA becomes more successful as generations pass
due to the initialization-based approach it uses. Each time MIA encounters an
environment similar to a previous one, the population is re-initialized using the
recorded DA. During the current stationary environment MIA gets a chance to
work on the same (or similar) environment for more generations, possibly to
find a better solution. At the end of the stationary period, the newly calculated
DA is recorded for this environment group. Thus each time MIA works on a
representative of a group, it has a chance of finding and recording a better DA
for the group.

4 Conclusions and Future Work

Studies in literature introduce many different approaches to dynamic problems.
This paper defines dynamic evolutionary algorithms as being a set of approaches
working with each other. A DynEA should benefit from operator-based ap-
proaches to obtain needed diversity, from memory-based approaches to remem-
ber useful genetic material, from population-based approaches to use limited
number of individuals effectively, and from initialization-based approaches, if
possible, to start from the locality of the optimum of the current environment.
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The Memory Indexing Algorithm (MIA) is introduced and compared with hyper-
mutation and Memory Enhanced Algorithms through a set of experiments. All
experiments show that MIA outperforms others for the tested cases on the se-
lected test problem and is more robust to environment changes. MIA can be
further improved by modification in the calculation of the distribution array.
Additionally, in this study a very simple problem was selected as the bench-
mark, however extending the applicability of MIA to other problem domains
is needed. Since, MIA uses problem specific information in order to create an
index for each possible environment, it is an interesting study to explore the
ways of defining and differentiating environments of other dynamic problems.
This study is currently being conducted. Furthermore, MIA only uses three of
the identified approaches for dealing with change. In its current implementation,
it does not use population-based techniques explicitly, though each indexed en-
vironment and its DA may be interpreted similar to the sub-populations in
the SOS [3] approach. This aspect of the approach will be explored as a fu-
ture study.
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A. Karaman, Ş Uyar, and G. Eryiğit.
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Abstract. In this paper we study a dynamic version of the Decen-
tralized Packet Clustering (DPC) Problem. For a network consisting of
routers and application servers the DPC problem is to find a good clus-
tering for packets that are sent between the servers through the network.
The clustering is done according to a data vector in the packets. In the
dynamic version of DPC the packets data vector can change. The pro-
posed algorithms to solve the dynamic DPC are inspired by the odor
recognition system of ants. We analyze the new algorithms for situations
with different strengths of dynamic change and for different number of
routers in the network.

1 Introduction

The Decentralized Packet Clustering (DPC) problem is to find a clustering for in-
formation packets that are sent between application processes running on servers
in a network ([9]). The clustering is done based on a data vector that each infor-
mation packet has. The cluster number is stored within every packet. The DPC
problem occurs in situations where the application processes handle the infor-
mation packets more appropriately when they know their type (i.e. the cluster
number) of an arriving packet. Note, that DPC is a general problem with only
few assumptions and does not depend on a specific application problem. The
aim of [9] was to find a decentralized algorithm for DPC where the clustering
is done by the routers such that each router neither needs much computational
power nor much memory for running the clustering algorithm.

In this paper we investigate a dynamic version of DPC (d-DPC) where the
data vectors of the information packets in the network can be changed (e.g. by
the application processes) over time. We aim to find decentralized algorithms for
d-DPC that are able to provide a good clustering at any time. The proposed al-
gorithms have some similarity with a nature inspired clustering algorithm named
ANTCLUST [4, 5]. ANTCLUST is inspired by the chemical recognition system
of ants. Due to the limited space we can neither give an overview over dynamic
clustering techniques nor over nature inspired and decentralized clustering tech-
niques. But it should be noted that dynamic clustering problems have been
studied for example for mobile ad-hoc networks (see, e.g., [7]) and stream data
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(see, e.g., [8]). An overview over relevant decentralized clustering techniques and
nature inspired clustering algorithms is given in [9].

In Section 2 we define the Dynamic Decentralized Packet Clustering (d-DPC)
problem. The proposed algorithms for solving d-DPC and the algorithms that are
used as comparison are presented in Section 3. The experimental setup and the
used cluster validity measures are described in Section 4. Results are presented
in Section 5 and a conclusion is given in Section 6.

2 Dynamic Decentralized Packet Clustering

The DPC problem is defined as follows. Given is a network where the nodes are
routers. The DPC is to find for a set of packets P = {P1, P2, . . . , Pn} that are
send through the network a good (with respect to some criterion) clustering,
i.e., a partitioning C = {C1, . . . , C|C|} of P. Each packet Pi ∈ P contains a
data vector vi that is used for clustering. Instances of DPC differ with respect
to network topology, number of routers, and how packets are send through the
network. In the dynamic version called d-DPC that is studies in this paper the
data vector of a packet can change at every time step, where in one time step
(iteration) |P| randomly chosen packets chose a random router to pass.

3 Algorithms

In this section we describe the four cluster algorithms that are considered in this
paper. The k-means algorithm is a classical centralized cluster algorithm, which
is used for comparison. The DPClust algorithm was proposed in [9] for the static
DPC. The new algorithms that are proposed in this paper for d-DPC are called
d-DPClustcz and d-DPClustzc.

3.1 k-Means

A standard algorithm for clustering data vectors is the k-means algorithm. This
is an iterative algorithm that starts with a set of k initial vectors, called center
points. Each data vector is assigned to its nearest (e.g., with respect to Euclidean
distance) center point. All data vectors that are assigned to the same center
point form a cluster. For each cluster its geometric centroid is computed and
these centroids form the new center points for the next iteration. The algorithm
stops when some convergence criterion has been met, e.g., the center points have
not changed or a maximal number of iterations has been done. The selection of
the initial center points has a great influence on the results of the algorithm and
different methods have been proposed for choosing these initial points (one is to
simply select the center points randomly from the given data vectors).

For d-DPC we initialize the centroid estimation of k-means with the cen-
troids that were found one time step before and then perform k-means until
it converges. Note, that k-means is a centralized algorithm with global knowl-
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edge of the data vectors and that for dynamic problems we run k-means until it
converges before the test instance might change again in the next time step.

3.2 DPClust

Each packet Pi = (vi, ci, zi), i = 1, . . . , n has in addition to its data vector
vi, a cluster number ci and a vector zi that is an estimation of the centroid
of its cluster. When a packet passes a router, a modified (how this is done is
described in the following) copy of the packet is stored in the router. This copy
of the packet P = (v, c, z) and the next packet Pi = (vi, ci, zi) passing the
router are compared. If both packets are in the same cluster (i.e. ci = c), the
estimation of the centroid for the corresponding cluster is updated according to
zi := zi · (1 − β) + βv, where β is a parameter that determines how strong the
data vector v of the packet copy stored in the router and the estimated centroid
zi influences the new value of zi. If both packets are not in the same cluster, then
the passing packet decides, if it should change its cluster. Taking the distances of
the data vector vi to the centroid estimation in the packet (zi) and the centroid
estimation stored in the router (z) into account, this is done iff vi − zi > vi − z.
For further details see [9]. Note, that some inspiration comes from real ants that
exchange chemical clues (data vector) when they meet nestmates (packets from
same cluster) resulting in a typical colony odor (centroid estimation) (cmp. [4]).
The odor is also used to detect intruders (packets from other clusters).

3.3 d-DPClustcz

For algorithm d-DPClustcz each packet Pi = (vi, ci) consists of a data vector vi

and a cluster number ci only. Each router r stores a vector of estimated centroids
Zr = (z1

r , . . . , z
|C|
r ). A packet Pi that arrives at a router r determines its cluster

number ci by using the distances of its data vector vi to the estimated centroids
zj

r , j = 1, . . . , |C| that are stored in the router. A packet belongs to the cluster for
which this distance is minimal, i.e. ci = argminj ||vi−zj

r ||. Then, in the router the
centroid estimation for cluster ci is modified according to zci

r = (1−β)·zci
r +β ·vi.

Note, that in algorithm d-DPClustcz the centroid estimations of two routers
r1 and r2 may have a different order (in the sense that zi

r1
corresponds to the

centroid estimation zj
r2

with i = j). Therefore, the routers r = 2, . . . , |R| itera-
tively reorder their centroids after every e ≥ 1 time steps, so that reordering is
done according to a permutation π for which

∑|C|
i=1 ||zπ(i)

r − zi
r−1|| gets minimal,

where e is a parameter of the algorithm.

3.4 d-DPClustzc

In algorithm d-DPClustzc the packets Pi = (vi, ci) consist of a data vector
vi and a cluster number ci only. The algorithm works similar to d-DPClustcz.
The difference is that in d-DPClustzc the router centroid estimation is modified
before a packet determines its cluster number. Hence, the modification of the
centroid estimation is applied to zj

r where j = ci. The new cluster number for
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Pi is determined similarly to d-DPClustcz (i.e., it is the cluster for which ci =
argminj ||vi −zj

r ||). In contrast to d-DPClustcz its new cluster is computed when
the packet leaves a router (after the modification of the estimated centroids). A
router exchange step as in d-DPClustcz is not applied.

4 Experiments

4.1 Test Instances

As test instances for the d-DPC we used the same type of clustering instances
for 2-dimensional data vectors that have been used in other papers on ant-
based clustering before (e.g. [1, 2]). A set of data vectors consists of vectors from
several classes. The data vectors of a class are generated by a two-dimensional
normal distribution with standard deviation 2 in both dimensions. Test instance
of type T1 has four classes with four different center points (0, 0), (0, 10), (10, 0),
and (10, 10) and 250 vectors from each class. For test instance T2 consists of two
vector classes with center points (0, 0), (10, 0) and 500 vectors in each class. After
each time step all data vectors vi of a class are moved according to vi = vi+Δvi·v
where Δvi = (Δv1

i ,Δv2
i ) ∈ [−1, 1]2 is a direction value that has been chosen for

each class and parameter v is used to adjust the strength of the dynamics (or
the speed of the moving classes). If the center point of a class leaves a predefined
cluster area A in a dimension k, then the sign of Δvk

i is changed. For test instance
T1 the initial moving directions of the four classes were defined randomly using
a uniform distribution (Δvi ∈ [−1, 1]2) and the cluster area was defined as
A = [−10, 20]2. In Figure 1 an example for the d-DPC test instance of type T1
is given for different time steps. For test instance T2 the class with center point
(0, 10) does not move, and the second class initially moves to the right along the
horizontal axis (Δvi = (1, 0)). The cluster area for instance T2 was A = [0, 20]2.

We have done experiments that are similar to experiments presented in [1, 9]
on static test instances, where the number of elements of each class is not the
same. The test instances Sizek are based on test instance T1 with 1000 data
vectors and 4 classes, but the ratio of the number of elements in one large class
and the size of three small classes (which are of equal size) is k.

4.2 Cluster Validity

To test our algorithms several well known clustering validity measures have been
used as explained in the follwoing. Let vi, i = 1, . . . , n be a data vector and
C = {C1, . . . , C|C|} be a clustering.

Silhouette coefficient: In [3] the often used silhouette coefficient is defined
as follows. Let γ1(vi, C) (resp. γ2(vi, C)) be the cluster which is the nearest
(resp. second nearest) cluster to data vector vi (with respect to the distance
d(vi, Cγ1(vi,C)) of the data vector to the geometric centroid of a cluster). The
silhouette coefficient si for data vector vi is defined as the normalized difference:

si :=
d(vi, Cγ2(vi,C)) − d(vi, Cγ1(vi,C))

max{d(vi, Cγ1(vi,C)), d(vi, Cγ2(vi,C))}
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Fig. 1. Test instance T1 dynamic case (v = 0.1); 100 time steps between both figures;
used algorithm for clustering was d-DPClustcz; arrows indicate direction and speed of
the classes

The silhouette coefficient SC is defined as the average value over all si, i =
1, . . . , n. The measure is influenced by the cohesion of the clusters and the sepa-
ration between clusters. Empirical studies as in [3] show that si > 0.7 indicates
an excellent separation between the clusters, a value between 0.5 and 0.7 indi-
cates a clear assignment of data points to cluster centers, values between 0.25
and 0.5 indicate that there are many data points that cannot be clearly assigned,
and si < 0.25 indicates that it is practically impossible to find significant clus-
ter centers. For dynamic test instances the average silhouette coefficient over
all t time steps is used, i.e. SC∅ :=

∑t
i=1 SCi/t, where SCi is the silhouette

coefficient of a clustering in time step i.

Dunn Index: The Dunn index measures the minimal ratio between cluster di-
ameter and inter-cluster distance for a given partitioning. If Ci and Cj are
the closest clusters according to the average distance, and Ch is the cluster
with the largest diameter, then the Dunn index DI can be computed as DI =
d(Ci, Cj)/diam(Ch), where d(Ci, Cj) is the average distance of all pairs of el-
ements in C1 and C2. A low Dunn index value indicates a fuzzy clustering,
whereas a value close to 1 indicates a near-crisp clustering. The Dunn index
tries to identify well separated and compact clusters. DI∅ denotes the average
DI value over all time steps.

Sum of Squares: Let v̂l be the geometric centroid of cluster Cl. The sum of
squares criterion is defined as SS = 1

C
∑

l=1...|C|(
∑

vi∈Cl
||vi − v̂l||2/|Cl|) and

measures the compactness of a clustering. The smaller value SS is, the more
compact is the clustering. For dynamic test instances, with SS∅ we denote the
average Sum of Squares value over all time steps. In contrast to SC∅ and DI∅,
which have to be maximized, the sum of squares value SS∅ has to be minimized.
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Fig. 2. Silhouette coefficient for k-means, DPClust, d-DPClustcz, and d-DPClustzc on
Sizek, k ∈ {2, 4, 6, 8, 10} with different ratios between cluster sizes; one router; vertical
bars show the standard error (50 test runs)

5 Results

In this section the experimental results for the four described clustering algo-
rithms on instances of DPC and d-DPC are presented. Algorithm k-means is
used as a reference. If not stated otherwise parameter β = 0.1 is used for all
algorithms and e = 10 for d-DPClustcz. The number of iterations is 20000 per
test run. All dynamic test runs were started with the same initial random seed
for the different algorithms, so that the situation after a fixed number iterations
is identical for all algorithms.

5.1 Static Problem Instances

To evaluate the new algorithms we first present results for static test instances
which are also the basis for the dynamic test instances. In Figure 2 the silhouette
coefficient SC of the four algorithms on test instances Sizek, k ∈ {2, 4, 6, 8, 10}
is shown for a network with a single router (results are averaged over 50 test
runs per k). Note, that d-DPClustcz outperforms k-means. For large values of
k the initial center points lay with high probability in the large class of data
vectors. Thus, k-means with high probability starts with a partition of the large
class into several smaller clusters but might combine several smaller classes into
one cluster. In contrast to k-means, algorithm d-DPClustcz has the ability to
escape from this situation.

Although d-DPClustcz leads to very good results on the given static test in-
stances, its convergence speed gets worse if the ratio between number of routers
and packets gets too large. This can be seen in Figure 3. Depicted is SC for
algorithms DPClust, d-DPClustcz, and d-DPClustzc for 1, 10, 100, and 1000
routers (results are averaged over 50 test runs). Hence, d-DPClustcz applicabil-
ity in dynamic situations may be bad for a large number of routers. It should be
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noted that the reordering of the routers may be time consuming if the number
of clusters gets too large.

5.2 Dynamic Problem Instances

In Figure 4 it can be seen that algorithm DPClust performs bad in dynamic
situations. Even for small dynamic changes (v � 0.02) it may happen that
during a test run a cluster is lost, i.e., there are no more packets which belong
to a certain cluster. In algorithm DPClust (in contrast to the other algorithms)
this is definitely irreversible. To a small extent this effect can be reduced by
adapting β. The bad behaviour of DPClust is also shown by the value of SC
that becomes smaller for larger values of v. We exclude DPClust from further
investigations on dynamic instances.

To analyze how good the algorithms can find a good clustering in a dy-
namic situation, we investigated them on instances T1 and T2 for a situation
with one router. In Figure 5 the values of the average silhouette coefficient
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SC∅, the average Dunn index DI∅, and the average sum of squares SS∅ are
depicted for algorithms d-DPClustcz, d-DPClustzc, and (as reference) for k-
means (as described in Section 3). The extent of dynamic changes varied with
v ∈ {0.01, 0.02, 0.05, 0.1, . . . , 10}. Note, that v ≈ 5 or larger is a very strong dy-
namic change in every iteration. With respect to all three validity measures both
variants of d-DPClust show a very good clustering behavior for v � 1 on both
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Fig. 8. Results for d-DPClustcz and d-DPClustzc

test instances, they perform only slightly worse than the centralized k-means
algorithm. Compared to d-DPClustzc the performance of d-DPClustcz is better
for very dynamic situations (v � 1). On test instance T2 algorithm d-DPClustcz

performs slightly worse than d-DPClustzc for v < 1. The reason for this is il-
lustrated in Figure 6. When one class crosses the other class, their centers are
nearly identical (the chance for this event in instance T1 with v > 0 is much
smaller than in instance T2). In contrast to d-DPClustzc this very small distance
between two class centers leads to a small SC value.

Now we investigate the d-DPClust variants in dynamic situations with more
than one router. In Figure 7 the measure SC∅ is given for d-DPClustcz with dif-
ferent number of routers. As suggested before the performance of d-DPClustcz

gets bad for a very large number of routers (r = 1000). For 10 and 100 routers
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better performance can be achieved with a higher frequency of router exchange
steps. The increasing values of SC∅ for 1000 routers with v � 2 can be explained
with Figure 8(a). Shown is the average movement of the estimated cluster cen-
troids of the routers, defined as 1/(t · |C| · |R|)) ·∑t−1

k=1
∑

Ri∈R,Cj∈C ||v̂k+1
ij − v̂k

ij ||,
where v̂k

ij is the estimated cluster centroid in router Ri of cluster Cj at time step
k. The nearly constant values for the centroid movement show, that the cluster
centroids remain nearly stable. Hence the algorithm does not follow the mov-
ing classes. Nevertheless, data vectors close to a non-moving geometric cluster
center are assigned to that cluster. Although there is no tracking behavior, this
leads to an increasing value for SC∅. The results for d-DPClustzc are given in
Figure 8(b). The results are very promising since in all cases, even with strong
dynamics like v = 10, it holds SC∅ > 0.55.

6 Conclusion

We have studied a dynamic version of the Decentralized Packet Clustering (DPC)
Problem. Two algorithms have been proposed for this problem that were inspired
by the chemical recognition system of ants. We analyzed the new algorithms
called d-DPClustcz and d-DPClustzc for different strengths of dynamic change
and showed that both algorithms cope in general well with dynamic situations.
While d-DPClustcz mostly has a better average performance, d-DPClustzc can
better handle situations where the number of routers is large.
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Abstract. This paper presents a modification of our multi-objective concept-based 
EC method to enhance the simultaneous development of a robust conceptual front. 
It involves a hierarchy of abstractive descriptions of the design, and a structured EC 
approach. The robustness, treated here by a novel MOEA approach, is for uncer-
tainties, which result from delaying decisions during the conceptual design stage. 
The suggested procedure involves a robust non-dominancy sorting algorithm.

1   Introduction 

Recently we have suggested a concept-based Interactive Evolutionary Computation 
(IEC) methodology, which supports multi-objective human-computer assessments of 
conceptual designs [1], [2]. The current paper extends our work to include human 
uncertainties in the conceptual design stage. Our treatment is for robustness to  
uncertainties concerning the concept abstraction level, which occur due to delayed 
decisions. The uncertainties treated here are different from those defined in [3]. 
Andersson, [4], handles concepts’ front and its robustness using a MOEA approach. 
In addition to his use of an EC approach, which is different from the one presented 
here, it is also concerned with a dissimilar robustness. The suggested EC approach, 
described below, performs a simultaneous evolution of a robust conceptual front. 

2   Methodology 

2.1   Design Space and Robustness 

We choose to consider the space of some possible conceptual designs as represented 
by an ‘and/or’ hierarchical tree, which reflects decision making during the conceptual 
design stage. The nodes involve Sub-Concepts (S-Cs). S-Cs are abstract descriptions 
of generic parts of the conceptual solutions. The ‘or’ operation designates the alterna-
tive S-Cs, which allows the extraction of different ‘and’ trees (concepts), out of the 
‘and/or’ tree. It is noted that the number of hierarchies, and the number of alternative 
nodes within a hierarchy, may change from one branch to the other. The hierarchical 
tree permits the representation of concepts at different level of abstraction, by pruning 
branches of the tree at different hierarchies. The more pruning, the less detailed is a 
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abstractive description of a concept. A concept, represented by extracting an ‘and’ 
tree from the pruned ‘and/or’ tree is hereby termed Higher-Level Concept (HL-C).  

We explore the design space by examining concepts using their associated clus-
ters of preliminary designs (e.g., [1]). Our procedure is based on the assumption that 
each concept, described by a complete extracted ‘and’ tree (un-pruned), has an associ-
ated model and thus termed Modeled-Concept (M-C). The model allows spanning the 
M-C into a set of preliminary designs, and the calculation of their design perform-
ances. A change of a S-C results in a change of the concept and its model. It should be 
noted that a S-C could be shared by more than one M-C. Therefore, replacing a S-C in 
the design space might change more than one M-C and the related models. In contrast 
to M-C, HL-C does not have a model due to its insufficient description. HL-Cs might 
be related to several M-Cs. This happens, whenever an ‘or’ operation exists in the 
‘and/or’ tree under the pruning location. In this case the concept (HL-C) is character-
ized by more than one detailed representation and therefore has more then one model 
associated with it. Such HL-Cs are termed Multi-Model Concepts (MM-Cs).  

The problem discussed here, involves the evaluation of concepts with an uncer-
tainty associated with undecided (delayed) S-Cs. During conceptual design decisions 
are occasionally postponed (e.g., [5]). These delays, lead to a more abstractive con-
cept and causes the decided concept to be an MM-C. Each MM-C is associated with 
several M-Cs, hence with several sets of preliminary designs, and an associated front 
in the objective space. This front is composed of the non-dominated set of the associ-
ated preliminary solutions. Finding the robust front of an MM-C, should be based on 
the best performances of its worst M-C. The robust conceptual front of several MM-
Cs is a combination of the best parts of the robust MM-Cs fronts. Figure 1 depicts an 
example of two MM-Cs (indexed 1 & 2), their related M-Cs, and the associated sets 
of preliminary designs (designated by different legends).  

 

Fig. 1. MM-Cs, their related M-Cs & preliminary sets 

The four M-Cs' fronts, in a bi-objective space, are depicted in figure 2a, which also 
includes the complete sets of the preliminary designs of the example. The two fronts 
of M-C11 and M-C21, which are related to MM-C1, are designated by continuous lines, 
while those related to MM-C2, are designated by broken lines. The worst fronts of 
MM-C1 and MM-C2 are depicted in figure 2b, designated by their different lines. The 
combined robust conceptual front is depicted in figure 2c.  
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Fig. 2a. M-Cs fronts     Fig. 2b. Robust MM-Cs’ fronts       Fig. 2c. Robust front 

2.2   EC Implementation 

The idea of a Compound-Individual, (C-I), has been introduced in [1]. The C-I code 
corresponds to the ‘and/or’ tree of the design space. The S-Cs located at the 'or' 
nodes are competing with each other to win. The winning S-Cs, point to decoded 
design parameters of a preliminary design. Using these parameters results in the 
performances of the chosen preliminary design, which are represented as a single 
point in the objective space. In the case of an MM-C, the competition is restricted to 
S-Cs located at nodes that are left after the pruning, whereas all possible paths 
(combinations), below the pruning, are considered. Thus, an MM-C is associated 
with more then one decoded preliminary design and its C-I may involve several 
points in the objective space. 

Commonly in design application, the performances of a preliminary design are 
used as a base for the fitness assignment. Here, the problem is that a C-I of an MM-
C may have more then one representative in the objective space. The C-I’s fitness is 
determined, according to its relative success, by robustness considerations, using its 
worst representative (or representatives). A Robust Non-dominancy Sorting (RNS) 
procedure, which assigns ranks to the C-Is and ensures that high-fitted robust C-Is 
will have more offspring in the next generation, is introduced in the following 
pseudo-algorithm. 

Pseudo Algorithm-1: The RNS procedure 

1. Calculate performances of all decoded C-Is  
2. Reverse problem's optimum demands, set k=0, and for all C-Is set 

R(C-I) = 0  
While not all C-Is' solutions sorted  
3. Find non-dominancy front of the reversed problem 
4. Set the rank of C-Is belonging to the front to be R(C-I) = k  
5. Remove all C-Is belonging to the front from unranked list of C-

Is   
Set k = k+1  

End  
qr = k 
6. Reverse the C-Is’ ranks r(C-I) = qr-R(C-I) 
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In step #1 of the suggested procedure, the performances related to all C-Is are calcu-
lated. For example, figure 3a shows the performances of 20 C-Is, with a legend as in 
figure 1. The representatives of each of the C-Is are encircled. In this example, the 
uncertainty is related to two M-Cs within each MM-C of each decoded C-I. Therefore, 
this step produces 40 representatives within the objective space. Step # 2 reverses the 
optimization. The loop of steps 3 to 5 assigns temporary ranks to each of the C-Is. In 
step #3 the non-dominancy front (in the reversed problem) is found. Due to the invers-
ing of the problem, each C-I with multi representations will have a rank according to 
its worst performance. Once the C-I is ranked, it is no longer in the ranking loop, hence 
its better representatives are not accounted. In step #4, C-Is belonging to the resulting 
front are assigned with a temporary rank R(C-I), increasing by one, for each subse-
quent front. Step #5 removes the C-Is belonging to the already assigned rank. The 
procedure continues with the remaining population until all of the C-Is are ranked.  

 
Fig. 3a. C-I's representatives                   Fig. 3b. Non-dominancy sorting  

Step #6 reverses the ranking to return to the original problem.  In figure 3b, interme-
diate results, before step #6, are depicted, with the temporary ranks from the most 
non-dominated front (R0) to the most dominated front (R4). The representatives of 
the C-Is related to MM-C1 are distinguished by stars while those related to MMC2 by 
pluses. In figure 3b only the worst representative/representatives is/are indicated 
within each of the C-I's clusters. In summary, the RNS procedure ranks the C-Is ac-
cording to their success in the objective space using their worst performances, to 
account for robustness.  

Pseudo Algorithm-2: Evolutionary Process 

 
 
 
 

 
 
 
 
 

 

Initialize population of C-Is 
While stopping criterion not reached 
 Use RNS procedure (pseudo algorithm 1) 
 Compute fitness, f (see ref. # 2) for all C-Is 
  Reproduce C-I, Recombine C-I, and Mutate C-I 
End 

Perform non-dominancy sorting for every C-I with r(C-I) = 1 
Present most dominated sets of all C-Is (just sorted) as 
                                 the robust conceptual front 
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The ranks, r, which are obtained using the procedure described above, are used to 
assign fitness to each C-I, in a procedure that is outlined in [2]. The fitness is de-
graded according to "Front-based concept sharing" and "In-concept front niching." 
The degraded fitness, f, is used for the evolutionary process as summarized in the 
pseudo algorithm #2. 

3   Case Study 

A bi-objective academic example is used. The objectives are: 

   x)1b(c)4x(f;10b5xf 2
2

2
1 −+−=++=                    (1) 

The problem domain, x, is defined within the interval [-10, +10]. The parameters b 
and c serve to define the S-Cs of the problem. The design space consists of four con-
cepts, which are composed of some predefined combinations of two out of four prede-
fined S-Cs. The predefined four S-Cs are: b=2, b=3, c=-3, c=-4.  The four concepts 
are defined by the following four combinations of the S-Cs: c=-3 and b=2; c=-4 and 
b=2; c=-4 and b=3; c=-3 and b=3.  The different values of these parameters define 
different models for the objectives of each of the concepts. Figure 4a shows the per-
formances of each concept, as well as the resulting front, which holds three out of the 
four concepts (1, 2, and 3). Concept #4, marked by a triangle, did not survive due to 
its inferior performances. Two of these concepts (1, 2), share the same section of the 
front (upper part). The mutual survival of the concepts on the front is due to front-
based concept sharing.  

 

              Fig. 4a. Conceptual front                             Fig. 4b. Robust conceptual front  

Now, suppose that the designers have uncertainty about the use of the S-Cs associated with ‘c’. 
Then two HL-Cs are involved in the design. The design space is represented by the pruned tree 
depicted in figure 3b, containing the two HL-Cs. A decision on a robust concept, having either 
b=2 or b=3, has to be made, while the decision on ‘c’ is postponed. The procedure, introduced 
in the methodology, is followed to evolve the front depicted in figure 4b. In this figure, the HL-
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C related to b=2 is designated with a star while that of b=3 with a plus. The conceptual front 
holds the combination of the worst fronts belonging to b=2 (circles and squares) and to b=3 
(rhombus and triangles). The resulting front of stars and pluses (shown in figure 4b) is not as 
good as the original one shown by a line, but it is a robust one. Once the robust front is 
achieved, a selection of an HL-C can be made. The selection ensures the robustness of the 
selected concept to the uncertainty about the ‘c’ S-Cs. The GA parameters were maintained as 
detailed in [2]. 

4   Summary 

In this paper we have introduced a new use of MOEA for robust design. The robust-
ness of a conceptual design with respect to early design stage uncertainties has been 
encountered using EC. The result of the suggested evolutionary process is a concept-
based robust front that provides clusters of robust preliminary designs (related to 
robust concepts), to the designers, to choose from. The front is the best set of solu-
tions that can be achieved taking into account the worst performances of solutions that 
might rise from the delaying of decisions in the conceptual design stage.          
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Abstract. A first investigation of the recently proposed Unified Particle
Swarm Optimization algorithm on dynamic environments is provided
and discussed on widely used test problems. Results are very promising
compared to the corresponding results of the standard Particle Swarm
Optimization algorithm, indicating the superiority of the new scheme.

1 Introduction

Particle Swarm Optimization (PSO) is a stochastic optimization algorithm that
belongs to the category of swarm intelligence methods [1,2]. PSO has attained in-
creasing popularity due to its ability to solve efficiently and effectively a plethora
of problems in diverse scientific fields [3, 4]. Most of these problems involve the
minimization of a static objective function, i.e., the main goal is the computation
of a global minimizer that does not change.

Dynamic optimization problems, where the global minimizer moves in the
search space, arise very often in engineering applications. In contrast to the static
optimization case, the main goal in dynamic problems is to track the orbit of the
minimizer [5,6,7]. Many algorithms that address efficiently static problems, fail
when applied to dynamic problems due to their inability to adapt and respond
to changes in the environment. Therefore, studies on static environments are
usually insufficient to reveal an algorithm’s performance when the problem is
dynamic. Carlisle and Dozier [8, 9, 10] conducted a thorough investigation of
PSO on a large number of dynamic test problems. Modifications of PSO that
can tackle dynamic problems efficiently have been recently proposed [3, 11,12].

A Unified PSO (UPSO) scheme has been recently introduced [13]. This
scheme harnesses the local and global variant of PSO, combining their explo-
ration and exploitation abilities without imposing additional requirements in
terms of function evaluations. Convergence in probability was proved for the
new scheme, and experimental results on widely used static benchmark func-
tions justified its superiority against the standard PSO [13].

In this paper, the performance of UPSO in dynamic environments is inves-
tigated and compared with both the local and the global variant of the stan-

F. Rothlauf et al. (Eds.): EvoWorkshops 2005, LNCS 3449, pp. 590–599, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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dard PSO algorithm. A test suite of five widely used test problems is employed.
The movement of the global minimizer is simulated by adding to its position
a random vector. Numerous experiments are performed and analyzed to justify
UPSO’s superiority and provide empirical rules regarding the most promising
parameter configuration. The paper is organized as follows: PSO and UPSO are
described in Section 2. Experimental results are reported in Section 3 and the
paper concludes in Section 4.

2 Unified Particle Swarm Optimization

PSO was introduced by Eberhart and Kennedy [1, 14]. Similarly to the evolu-
tionary algorithms, PSO exploits a population of potential solutions to probe
the search space simultaneously. However, its dynamic is based on laws that
govern socially organized colonies rather than natural selection. PSO adheres to
the five basic principles of swarm intelligence [15,16], therefore it is categorized
as a swarm intelligence algorithm.

In PSO’s context, the population is called a swarm and its individuals (search
points) are called particles. Each particle moves in the search space with an
adaptable velocity. Moreover, each particle has a memory where it retains the
best position it has ever visited in the search space, i.e., the position with the
lowest function value. Also, the particles share information among them. More
specifically, each particle has an index number, and, according to this index, it is
assigned a neighborhood of particles with (usually) neighboring index numbers.
In the global variant of PSO, the neighborhood of each particle is the whole
swarm. In the local variant, the neighborhoods are strictly smaller and they
usually consist of a few particles.

Assume an n–dimensional function, f : S ⊂ R
n → R, and a swarm, S =

{X1, X2, . . . , XN}, of N particles. The i–th particle, Xi ∈ S, its velocity, Vi, as
well as its best position, Pi ∈ S, are n–dimensional vectors. A neighborhood of
radius m of Xi consists of the particles Xi−m, . . . , Xi, . . . , Xi+m. The particles
are usually assumed to be organized in a cyclic topology with respect to their
indices. Thus, XN and X2 are the immediate neighbors of the particle X1.

Assume gi to be the index of the particle that attained the best previous
position among all the particles in the neighborhood of Xi, and t to be the
iteration counter. Then, according to the constriction factor version of PSO, the
swarm is updated using the equations [17],

Vi(t + 1) = χ
[
Vi(t) + c1r1

(
Pi(t) − Xi(t)

)
+ c2r2

(
Pgi(t) − Xi(t)

)]
, (1)

Xi(t + 1) = Xi(t) + Vi(t + 1), (2)

where i = 1, . . . , N ; χ is the constriction factor; c1 and c2 are positive constants,
referred to as cognitive and social parameters, respectively; and r1, r2 are random
vectors with components uniformly distributed in [0, 1]. All vector operations in
Eqs. (1) and (2) are performed componentwise.
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The constriction factor was introduced as means of controlling the magnitude
of the velocities, in order to avoid the “swarm explosion” effect that was detri-
mental for the convergence of early PSO versions, and it is determined through
the formula [17,18],

χ =
2κ

|2 − φ −
√

φ2 − 4φ| , (3)

for φ > 4, where φ = c1 + c2, and κ = 1. This selection is based on the stability
analysis provided in [17].

There are two main characteristics of a population–based algorithm that af-
fect its performance, namely exploration and exploitation. The first is the ability
to probe effectively the search space, while the latter is the ability to converge
to the most promising solutions with the smallest possible computational cost.
A proper trade–off between exploration and exploitation is necessary for the
efficient and effective operation of the algorithm. The global variant of PSO
promotes exploitation since all particles are attracted by the same best posi-
tion, thereby, converging faster towards the same point. On the other hand,
local variant has better exploration properties, since the information regarding
the best position of each neighborhood is communicated slower to the rest of
the swarm through neighboring particles. Therefore, the attraction to specific
points is weaker, thus, preventing the swarm from getting trapped in local min-
ima. Obviously, the proper selection of neighborhood size affects the trade–off
between exploration and exploitation. However, there are no general rules regard-
ing the selection of neighborhood size, and it is usually based on the experience
of the user.

The Unified Particle Swarm Optimization (UPSO) scheme was recently pro-
posed as an alternative that combines the exploration and exploitation proper-
ties of both the local and global PSO variants [13]. For completeness purposes, a
brief description of UPSO is provided in the following paragraphs. The presented
scheme is based on the constriction factor version of PSO, although it can be
straightforwardly defined also for the inertia weight version. Let Gi(t + 1) and
Li(t + 1) denote the velocity update of the i–th particle, Xi, for the global and
local PSO variant, respectively [13],

Gi(t + 1) = χ
[
Vi(t) + c1r1

(
Pi(t) − Xi(t)

)
+ c2r2

(
Pg(t) − Xi(t)

)]
, (4)

Li(t + 1) = χ
[
Vi(t) + c1r

′
1
(
Pi(t) − Xi(t)

)
+ c2r

′
2
(
Pgi(t) − Xi(t)

)]
, (5)

where t denotes the iteration number; g is the index of the best particle of
the whole swarm (global variant); and gi is the index of the best particle in the
neighborhood of Xi (local variant). The search directions defined by Eqs. (4) and
(5) are aggregated in a single equation, resulting in the main UPSO scheme [13],

Ui(t + 1) = (1 − u) Li(t + 1) + u Gi(t + 1), u ∈ [0, 1], (6)
Xi(t + 1) = Xi(t) + Ui(t + 1). (7)

We named the parameter u, unification factor . This factor balances the influence
of the global and local search directions in the final scheme. The standard global
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PSO variant is obtained by setting u = 1 in Eq. (6), while u = 0 corresponds
the standard local PSO variant. All values of u ∈ (0, 1), correspond to composite
variants of PSO that combine the exploration and exploitation characteristics of
its global and local variant.

Besides the aforementioned scheme, a stochastic parameter that imitates the
mutation of evolutionary algorithms can also be incorporated in Eq. (6) to fur-
ther enhance the exploration capabilities of UPSO [13]. Thus, depending on
which variant UPSO is mostly based, Eq. (6) can be written either as [13],

Ui(t + 1) = (1 − u) Li(t + 1) + r3 u Gi(t + 1), (8)

which is mostly based on the local variant, or

Ui(t + 1) = r3 (1 − u) Li(t + 1) + u Gi(t + 1), (9)

which is mostly based on the global variant, where r3 ∼ N (μ, σ2I) is a normally
distributed parameter, and I is the identity matrix. Although r3 imitates muta-
tion, its direction is consistent with the PSO dynamics. For these UPSO schemes,
convergence in probability was proved in static environments [13]. Experimental
results on widely used test problems justified the superiority of UPSO against
the standard PSO, for various configurations of the PSO parameters proposed
in the relative literature [13,18].

3 Results and Discussion

UPSO’s performance was investigated on the most common DeJong test suite,
which consists of the Sphere, Rosenbrock, Rastrigin, Griewank and Schaffer’s F6
function [9,17,18]. We will refer to these problems as Test Problem (TP) 1–5, re-
spectively. Test Problems 1–4 were considered in 30 dimensions, while Test Prob-
lem 5 was considered 2–dimensional. The initialization ranges were [−100, 100]30,
[−30, 30]30, [−5.12, 5.12]30, [−600, 600]30, and [−100, 100]2, respectively.

The aforementioned static optimization problems were transformed to dy-
namic problems by moving their global minimizer. In order to make the simu-
lation more realistic, we considered the global minimizer moving randomly and
unbounded in the search space. This was performed by adding to the global
minimizer a normally distributed random vector with mean value equal to zero
and three different values of the standard deviation (denoted as MStD), 0.01,
0.10 and 0.50. Moreover, the movement was considered to be asynchronous, i.e.,
at each iteration, the global minimizer moved with a probability equal to 0.5.

Regarding PSO, we used the constriction factor version with the standard
default parameter values, namely, χ = 0.729, c1 = c2 = 2.05. Since the global
minimizer was moving without constraints, no bounds were posed on velocities
and particles. The best positions of the particles were re–evaluated after each
movement of the global minimizer (a technique for the detection of changes in
the environment is proposed in [9]). In order to fully exploit the exploration
abilities of local PSO, a neighborhood of radius 1 was used for the computation
of the search direction L of the local PSO variant.
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The values u = 0.2 and u = 0.5 of the unification factor have been proved to
be very efficient in static optimization problems [13]. Preliminary experiments
on dynamic problems were in accordance with the results for static problems.
Thus, initially, we considered the UPSO approach defined by Eqs. (6) and (7)
for u = 0.0 (standard local PSO), u = 0.2, u = 0.5, and u = 1.0 (standard
global PSO). For each test problem, 100 experiments were conducted and the
algorithm was allowed to perform 1000 iterations per experiment. Since the
main goal in dynamic environments is to track the orbit of the global minimizer
rather than to acquire it [7], the quality assessments of static problems, such
as the position with the smallest function value, are not valid in our case [6].
Instead, at each iteration (out of 1000) of an experiment, the mean function
value of the particles’ best positions was recorded. This value provides a more
robust measure of the true quality of the particles [6]. Thus, 1000 such values
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Fig. 1. Behavior of UPSO for different values of the unification factor
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Table 1. Results for Test Problems 1–3

TP MStD u Mean StD Min Max
1 0.01 0.0 3.1655 × 103 4.8187 × 102 1.9664 × 103 4.3169 × 103

0.2 9.1959 × 102 1.2136 × 102 6.3073 × 102 1.3489 × 103

0.5 7.2230 × 102 9.7704 × 101 5.0892 × 102 1.0408 × 103

1.0 1.6995 × 103 3.0792 × 102 1.0917 × 103 2.4738 × 103

0.10 0.0 3.1021 × 103 5.3588 × 102 1.8875 × 103 4.4504 × 103

0.2 9.1283 × 102 1.2416 × 102 5.8145 × 102 1.2892 × 103

0.5 7.2875 × 102 1.0179 × 102 5.1276 × 102 9.3233 × 102

1.0 1.6461 × 103 3.1279 × 102 9.9135 × 102 2.7464 × 103

0.50 0.0 3.2536 × 103 4.7804 × 102 2.2689 × 103 4.4672 × 103

0.2 9.5902 × 102 1.2177 × 102 6.6160 × 102 1.3458 × 103

0.5 7.8051 × 102 9.9330 × 101 5.4604 × 102 1.0057 × 103

1.0 1.8109 × 103 3.2161 × 102 1.1427 × 103 2.7648 × 103

2 0.01 0.0 8.6011 × 106 2.2275 × 106 3.0879 × 106 1.3499 × 107

0.2 1.9842 × 106 3.8800 × 105 1.1650 × 106 2.9605 × 106

0.5 1.4565 × 106 2.9872 × 105 8.9335 × 105 2.4064 × 106

1.0 4.7003 × 106 1.5037 × 106 1.4236 × 106 9.8277 × 106

0.10 0.0 8.5898 × 106 2.1055 × 106 3.8289 × 106 1.3550 × 107

0.2 1.9888 × 106 3.1969 × 105 1.4178 × 106 3.0690 × 106

0.5 1.4439 × 106 3.1333 × 105 7.1354 × 105 2.5139 × 106

1.0 4.6714 × 106 1.4462 × 106 2.0045 × 106 8.4536 × 106

0.50 0.0 8.7243 × 106 2.1533 × 106 3.6296 × 106 1.4842 × 107

0.2 2.0783 × 106 4.5228 × 105 1.3253 × 106 4.2118 × 106

0.5 1.4959 × 106 3.2928 × 105 7.0034 × 105 2.5733 × 106

1.0 5.1983 × 106 2.0042 × 106 2.3351 × 106 1.1613 × 107

3 0.01 0.0 1.5523 × 102 1.9187 × 101 1.0409 × 102 2.1289 × 102

0.2 9.7620 × 101 1.4826 × 101 6.9749 × 101 1.2776 × 102

0.5 7.5825 × 101 1.2203 × 101 4.9258 × 101 1.0963 × 102

1.0 1.0740 × 102 1.7714 × 101 6.4876 × 101 1.5081 × 102

0.10 0.0 2.7790 × 102 6.1293 × 100 2.6168 × 102 2.9438 × 102

0.2 2.3185 × 102 4.1795 × 100 2.2192 × 102 2.4213 × 102

0.5 2.3210 × 102 6.5381 × 100 2.1548 × 102 2.4953 × 102

1.0 2.8625 × 102 9.3753 × 100 2.6475 × 102 3.0655 × 102

0.50 0.0 4.9098 × 102 1.8086 × 101 4.4882 × 102 5.4354 × 102

0.2 3.6957 × 102 8.9636 × 100 3.4994 × 102 3.9674 × 102

0.5 3.9097 × 102 1.5980 × 101 3.5973 × 102 4.2600 × 102

1.0 4.5141 × 102 1.8168 × 101 4.1512 × 102 5.1713 × 102

were obtained per experiment. The behavior of UPSO for each test problem and
unification factor, are illustrated in Fig. 1, for the three levels of MStD. Each
line style corresponds to a different value of MStD and it stands for the mean
value of the particles’ best position per iteration, averaged over 100 experiments.
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Table 2. Results for Test Problems 4 and 5

TP MStD u Mean StD Min Max
4 0.01 0.0 2.8443×101 4.7740×100 1.6007×101 3.9408×101

0.2 8.5797×100 1.0504×100 6.2604×100 1.1255×101

0.5 6.6704×100 9.2881×10−1 5.0150×100 9.5947×100

1.0 1.5233×101 3.1764×100 6.4421×100 2.3072×101

0.10 0.0 2.8802×101 4.3512×100 1.8535×101 3.9056×101

0.2 8.6834×100 1.1195×100 6.5475×100 1.2439×101

0.5 6.8352×100 8.0967×10−1 4.9374×100 8.6670×100

1.0 1.5398×101 2.7152×100 8.5176×100 2.2396×101

0.50 0.0 2.9844×101 4.6330×100 1.6961×101 3.9251×101

0.2 9.2982×100 1.0643×100 7.4027×100 1.1693×101

0.5 7.6360×100 1.0219×100 5.4295×100 1.0125×101

1.0 1.6169×101 3.2054×100 9.3358×100 2.6588×101

5 0.01 0.0 8.0300×10−3 3.3491×10−3 1.6961×10−3 1.3762×10−2

0.2 6.2539×10−3 3.2677×10−3 6.4010×10−4 1.2861×10−2

0.5 3.3174×10−3 1.6358×10−3 9.0027×10−4 1.2290×10−2

1.0 3.4830×10−3 1.6805×10−3 1.0990×10−3 1.0637×10−2

0.10 0.0 1.2160×10−2 1.0920×10−3 1.0468×10−2 1.6584×10−2

0.2 1.1681×10−2 7.3334×10−4 1.0157×10−2 1.3808×10−2

0.5 1.1334×10−2 6.7662×10−4 9.9373×10−3 1.3156×10−2

1.0 1.1156×10−2 5.1947×10−4 1.0125×10−2 1.2706×10−2

0.50 0.0 2.1850×10−2 2.0692×10−3 1.5954×10−2 2.8011×10−2

0.2 1.4647×10−2 9.3145×10−4 1.2654×10−2 1.6941×10−2

0.5 1.3380×10−2 9.3176×10−4 1.1682×10−2 1.8421×10−2

1.0 1.3399×10−2 7.7779×10−4 1.1639×10−2 1.6081×10−2

For statistical comparison purposes, the mean function values obtained per
experiment, were averaged over the 1000 iterations. Thus, a single averaged
mean function value was obtained for each experiment. Therefore, for each test
problem, we obtained a total of 100 such averaged means. The mean, standard
deviation (StD), minimum (Min) and maximum (Max) of the sample of these
100 averaged means are reported for all test problems and unification factor
values in Tables 1 and 2. We observe that UPSO always outperformed both the
local and global variant of PSO, which correspond to the values u = 0.0 and
u = 1.0, respectively. The unification factor with the most promising behavior,
with respect to the reported mean, is u = 0.5, which exhibits the smallest means
in most cases, and the best overall behavior for both small and large values of
MStD, which is an indication of its robustness.

The good performance of u = 0.5 triggered our interest on its behavior using
the UPSO schemes of Eqs. (8) and (9). These schemes enhanced significantly
UPSO’s performance in static optimization problems [13]. For each test problem,
100 experiments were conducted using the UPSO schemes that incorporate r3 ∼
N (μ, σ2I) either on the term of G (cf. Eq. (8)) or on the term of L (cf. Eq. (9)), in
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the update of UPSO’s search direction, U . Two different vectors, μ = (0, . . . , 0)	

and μ = (1, . . . , 1)	, were investigated (for simplicity purposes we use the notion
μ = 0 and μ = 1, respectively), while a small standard deviation, σ = 0.01,
was selected to alleviate deterioration of UPSO’s dynamics [13]. The results are
reported in Tables 3 and 4. The addition of r3 improved further the performance

Table 3. Results for u = 0.5 using r3 ∼ N (μ, σ2I) for Test Problems 1–3

TP MStD μ Position Mean StD Min Max
1 0.01 0.0 on G 3.1805×102 1.2188×102 1.8903×102 7.1865×102

on L 5.0574×103 1.2547×103 2.3535×103 8.7807×103

1.0 on G 7.2196×102 9.3121×101 4.1754×102 9.3062×102

on L 7.3134×102 9.8959×101 4.9692×102 9.5854×102

0.10 0.0 on G 3.3886×102 1.1305×102 2.2138×102 9.6920×102

on L 5.1672×103 1.2852×103 2.5525×103 7.8607×103

1.0 on G 7.3028×102 1.0014×102 5.2279×102 9.9433×102

on L 7.2599×102 9.0081×101 5.3669×102 1.0628×103

0.50 0.0 on G 1.4828×103 2.7719×102 9.0263×102 2.2291×103

on L 6.8694×103 1.5433×103 3.7164×103 1.0982×104

1.0 on G 7.7892×102 1.0623×102 5.5643×102 1.0218×103

on L 7.8379×102 9.5146×101 5.7097×102 1.1437×103

2 0.01 0.0 on G 7.2742×105 2.0365×105 4.2395×105 1.3934×106

on L 3.0387×106 1.2173×106 7.5792×105 6.5612×106

1.0 on G 1.4257×106 3.3186×105 8.3978×105 2.5889×106

on L 1.4241×106 2.9498×105 8.4386×105 2.5711×106

0.10 0.0 on G 7.2379×105 1.7563×105 3.6936×105 1.2948×106

on L 3.3831×106 1.3056×106 1.0576×106 7.5686×106

1.0 on G 1.4670×106 3.0998×105 8.2882×105 2.5353×106

on L 1.4631×106 2.9592×105 8.4093×105 2.2752×106

0.50 0.0 on G 2.0289×107 1.1652×107 6.5949×106 6.8726×107

on L 5.7990×107 2.7477×107 1.6168×107 1.4867×108

1.0 on G 1.5569×106 3.4020×105 9.4104×105 2.5788×106

on L 1.4809×106 3.0238×105 8.8182×105 2.6824×106

3 0.01 0.0 on G 8.7090×101 2.0353×101 5.2522×101 1.6865×102

on L 1.7782×102 2.5795×101 1.3637×102 2.6563×102

1.0 on G 7.4911×101 1.3349×101 4.8584×101 1.1738×102

on L 7.3238×101 1.2202×101 5.0768×101 1.0567×102

0.10 0.0 on G 3.2810×102 1.7360×101 2.9064×102 3.7078×102

on L 4.2494×102 2.8040×101 3.6882×102 5.0882×102

1.0 on G 2.3175×102 7.3102×100 2.1569×102 2.5508×102

on L 2.3111×102 7.1345×100 2.1828×102 2.5152×102

0.50 0.0 on G 1.9161×103 3.8433×102 1.3110×103 3.0697×103

on L 2.1162×103 3.9866×102 1.3790×103 3.5007×103

1.0 on G 3.9092×102 2.4602×101 3.4996×102 5.1264×102

on L 3.8603×102 1.8018×101 3.4986×102 4.2635×102
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Table 4. Results for u = 0.5 using r3 ∼ N (μ, σ2I) for Test Problems 4 and 5

TP MStD μ Position Mean StD Min Max
4 0.01 0.0 on G 2.8650×100 1.1803×100 1.7891×100 9.3589×100

on L 4.5350×101 1.2000×101 1.8176×101 8.4527×101

1.0 on G 6.7278×100 1.0156×100 4.7195×100 1.0510×101

on L 6.6302×100 8.5156×10−1 4.8633×100 9.1128×100

0.10 0.0 on G 3.5698×100 1.0864×100 2.4488×100 7.1177×100

on L 4.5699×101 1.1305×101 2.3487×101 7.9473×101

1.0 on G 6.9523×100 8.7108×10−1 5.5159×100 9.5926×100

on L 6.7420×100 8.7237×10−1 4.5845×100 9.8724×100

0.50 0.0 on G 4.0269×100 9.8038×10−1 3.0680×100 7.9478×100

on L 4.7370×101 1.0754×101 2.7856×101 7.0848×101

1.0 on G 7.5279×100 8.9793×10−1 5.4762×100 1.0165×101

on L 7.6153×100 9.1264×10−1 5.7358×100 9.8793×100

5 0.01 0.0 on G 8.6723×10−3 3.1477×10−3 3.1126×10−3 1.9211×10−2

on L 7.6079×10−3 5.4494×10−3 1.4328×10−3 3.8073×10−2

1.0 on G 3.2053×10−3 1.1405×10−3 8.4245×10−4 6.2444×10−3

on L 2.9865×10−3 1.3656×10−3 9.8465×10−4 1.0661×10−2

0.10 0.0 on G 1.7457×10−2 8.4832×10−3 1.1007×10−2 5.7459×10−2

on L 2.0828×10−1 1.1152×10−1 5.0655×10−2 4.8215×10−1

1.0 on G 1.1240×10−2 6.5926×10−4 1.0022×10−2 1.3759×10−2

on L 1.1246×10−2 6.7370×10−4 9.4405×10−3 1.3298×10−2

0.50 0.0 on G 1.9668×10−1 6.3972×10−2 6.6878×10−2 3.3205×10−1

on L 4.6819×10−1 2.8537×10−2 4.0353×10−1 5.2920×10−1

1.0 on G 1.3523×10−2 1.1829×10−3 1.1475×10−2 2.1030×10−2

on L 1.3627×10−2 1.3526×10−3 1.1788×10−2 2.1753×10−2

of UPSO. For a given level of MStD, the best mean and minimum value both
correspond to the same value of μ in all cases, with μ = 1 being marginally better
than μ = 0, overall. The best behavior was obtained when r3 was incorporated
in the term of G. Finally, we must notice that for large values of MStD (i.e., 0.5)
μ = 1 proved to be the best choice in all test problems with the exception of
Test Problem 4.

Summarizing the results, the UPSO scheme of Eq. (8) can be considered
a good default choice in unknown dynamic environments when no additional
information is available.

4 Conclusions

We investigated the performance of the new, Unified Particle Swarm Optimiza-
tion (UPSO) scheme in dynamic environments. Experiments on widely used
benchmark problems were conducted with very promising results. UPSO out-
performed both the local and global PSO variant. Guidelines regarding the most
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promising UPSO scheme are derived by analyzing the results, and support the
claim that, besides static optimization problems, UPSO is a promising scheme
also in dynamic environments.
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Abstract. Though recently there has been interest in examining genetic
algorithms (GAs) in dynamic environments, work still needs to be done
in investigating the fundamental behavior of these algorithms in chang-
ing environments. When researching the GA in static environments, it
has been useful to use test suites of functions that are designed for the
GA so that the performance can be observed under systematic controlled
conditions. One example of these suites is the hyperplane-defined func-
tions (hdfs) designed by Holland [1]. We have created an extension of
these functions, specifically designed for dynamic environments, which
we call the shaky ladder functions. In this paper, we examine the quali-
ties of this suite that facilitate its use in examining the GA in dynamic
environments, describe the construction of these functions and present
some preliminary results of a GA operating on these functions.

1 Introduction

Previous work has shown the GA to be useful in dynamic environments but more
needs to be done to fully understand the underlying process [2] [3] [4]. It is often
not obvious whether applications based results are particular to that application
or if they reflect a more fundamental quality of the GA. There also has been
work in examining theoretical questions regarding dynamic optimization [5] [6]
[7], but the GA has so many components that to understand it on a theoretical
level requires many assumptions, which makes it difficult to apply the results
to “real” GAs. However, the middle ground of systematic, controlled observa-
tion allows the researcher the ability to contribute to both theory and practice.
Methodically accumulating observations that support conjectures provides guid-
ance for theoretical exploration. Also, these same observations can be used to
make recommendations to GA applications practitioners. Thus, our goal is to
use systematic observations to better understand the dynamics of populations
being modified by a GA in a non-static environment.

In order to examine the efficacy of the GA this paper develops a test suite of
functions to use as a benchmark. Other test suites for EAs in dynamic environ-
ments exist, such as the dynamic knapsack problem, the moving peaks problem

F. Rothlauf et al. (Eds.): EvoWorkshops 2005, LNCS 3449, pp. 600–609, 2005.
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and more [3]. The test suite presented here is similiar to the dynamic bit match-
ing functions utilized by Stanhope and Daida [8] among others. However the
difference is that the underlying representation of this test suite is schemata,
which are also the basis of the GA. By utilizing a test suite that is specific to
the GA and that reflects the way the GA searches, the performance of the GA
can be easily observed. Hence, we propose a suite that is a subset of the test
functions created by John Holland, the hyperplane-defined functions (hdfs) [1],
which we have extended to allow for dynamic fitness functions.

2 Shaky Ladder Functions

The test functions that we will be utilizing to explore the GA in dynamic en-
vironments is a subset of the hdfs as described by Holland [1]. Holland created
these functions in part to meet criteria developed by Whitley [9]. The hdfs are
designed to represent the way the GA searches by combining building blocks,
hence they are appropriate for understanding the operation of the GA. We begin
by describing these functions, then we describe a subset called the building block
hdfs. We then examine the strengths and weaknesses of the hdfs and go on to
describe the shaky ladder hdfs.

2.1 The Hyperplane-Defined Functions

Holland’s hdfs are defined over the set of all strings (usually binary) of a given
length n. The fitness of each string is determined by the schemata present in the
string. A schema is a string defined over the alphabet of the original string plus
one more character, ∗, and is of length n. The ∗ character represents a wildcard
that will match against either a 1 or a 0. Any position in the string which is not
a wildcard is a defining locus or defining bit. The length of a schema l(b) is the
distance between the first and last defining loci in the schema, and the order
o(b) is the number of defining loci in the schema. An argument string x matches
(or contains) a schema if for every position i from 0 to n, the character at that
position in the schema is the wildcard or matches the character at that same
position in string x. Each schema s is assigned a fitness contribution, or utility,
u(s) that can be any real number. Thus we can now define the hdf fitness, f(x),
as the sum of the fitness contributions of all of the schemata x matches [1].

2.2 Building Block hdfs

Holland states that the most interesting hdfs are those built from ground level
schemata. We select a group of elementary (also called base or first-level)
schemata which have a short length relative to n and a low order. We then
combine pairs of these schemata to create second-level schemata. We then com-
bine these second-level schemata and so on, to create the intermediate schemata,
repeating this process until we generate a schema with length close to n. We place
all of these schemata within a set B and associate a positive fitness contribution
with each of them. These are sometimes called the building block schemata, since
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they are combined to make progress toward the maximal fitness for the function.
We also generate a set P of schemata with negative fitness contributions called
potholes, since they are local depressions in the landscape. The potholes are cre-
ated by using one elementary schema as a basis and adding defining bits from
a supplementary schema. We will refer to the set of hdfs that are constructed
from the sets B and P as the building block hdfs or bb-hdfs.

2.3 Qualities of the hdfs

Holland originally introduced the hdfs as a set of test functions that met Whit-
ley’s guidelines [9] as well as a few of his own. In Holland’s words [1] Whitley
says that the test functions need to be: “(i) generated from elementary build-
ing blocks, (ii) nonlinear, nonseperable, and nonsymmetric (and, so, resistant to
hillclimbing), (iii) scalable in difficulty, and (iv) in a canonical form.”

Holland [1] goes on to state three additional criteria: “(v) can be gener-
ated at random and are difficult to reverse engineer... (vi) exhibit an array of
landscape-like features... (vii) include all finite functions in the limit...” All of
these guidelines seem to be met by Holland’s bb-hdfs.

However there are two difficulties with Holland’s bb-hdfs that must be ad-
dressed when trying to use them to analyze the performance of GAs in dynamic
environments. First, though we can easily generate a random hdf, we have no
canonical way of generating another one that is “similar” to it. As a result it
is difficult to construct a controllably dynamic (but not chaotic) landscape in
which the GA can be tested. The second difficulty with Holland’s bb-hdfs is that
they are intractably difficult to analyze in the general case, i.e. there is no way
to know a priori the maximum fitness of a given hdf. This is a problem because
it is then hard to know exactly how well the GA is performing.

2.4 Shaky Ladder hdfs

In this section we describe three conditions that restrict the set of all bb-hdfs to
a set that does not have the two difficulties described in the previous section.

The first condition we call the Unique Position Condition. It requires that
all elementary schemata contain no conflicting bits. For instance if both schema
s1 and s2 have a defining bit at position n, they must specify the same value.

The second condition we call the Unified Solution Condition. This condition
guarantees that all of the specified bits in the elementary level schemata must
be present in the highest level schema. This condition also guarantees that all
intermediate schemata are a composition of lower level schemata. A composition
of two schemata is simply a new schema which contains all of the defining loci of
both schemata1. The Unified Solution Condition means (a) if bit n is specified
by s1 then it also must be specified in the highest level schema sh, and (b) there
can be only one unique highest level schema.

1 Given the Unique Position Condition we do not have to worry about conflicting loci.
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The third condition is the Limited Pothole Cost Condition, which states that
the fitness contribution of any pothole plus the sum of the fitness contributions
of all the building blocks in conflict with that pothole must be greater than zero.
A pothole, p, is in conflict with a building block, b, if both p and b specify a
defining locus with the same value. The idea is that potholes are supposed to
be temporary barriers to the search, but that a string should be rewarded if it
matches all of the building blocks in conflict with that pothole.

These three conditions guarantee that any string which matches the highest
level schema must be a string with optimal fitness2. By knowing the optimal set
of strings we solve one of the problems with Holland’s original hdfs.

2.5 Shaky Ladder hdf Generation

We now describe how to create a set of hdfs with similar structure and result-
ing fitness landscapes. First generate a set of elementary level schemata in a
way similar to that used for the bb-hdfs, while satisfying the Unique Position
Condition. Then combine these first level schemata in pairs to create second
level schemata, combine those to create third level, and so on, until we create
a highest-level schema which contains all of the elementary level schemata and
meets the Unified Solution Condition. Then generate potholes in a way similar
to the bb-hdfs. However when assigning their cost make sure that they satisfy
the Limited Pothole Cost Condition.

This technique makes it possible to generate hdfs that are similar to each
other. Once a set of elementary schemata have been established we already
know the highest level schema and thus we have created a space of hdfs that
have the same elementary level schemata and the same highest level schema.
We then can generate new hdfs by generating new intermediate level schemata.
In this form the sl-hdf’s are meant to represent a class of problems in which
problem instances may change, but there exists a universal way to solve the
problem, similiar to Hillis’ sorting problems [2]. Of course it would be easy to
allow the optimal value to change as well, and the new value could still be easily
calculated, but that would be a different class of problems.

We call the set of hdfs generated in this way the shaky ladder hdfs or sl-
hdfs. For clarity we call a particular hdf of this set an sl-hdf, and we call a
set of hdfs with the same elementary schemata and highest-level schema an sl-
hdf equivalence set. The inspiration for the name comes from an old carnival
game where the contestant must climb a rope ladder that is almost parallel
to but suspended above the ground, which can twist and turn underneath the
contestant. If the contestant makes it to the top without falling off, he or she
rings a bell and gets a prize. The starting point is always the bottom of the
ladder, in the same way the starting point for an sl-hdf equivalence set is always
the same elementary schemata. The ending point of the game is always the top of
the ladder. Similarly, the highest point in the search space of these hdf functions
is always the same highest level schema. However along the way the ladder can

2 The proof, which is fairly simple, will appear in a future publication.
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shake such that the best place for the contestants to position their feet and
hands can change. In the same way it is possible to switch an sl-hdf during GA
runs to another sl-hdf from the same equivalence set, changing the intermediate
building blocks. Strings will still be rewarded for any of the basic building blocks
they contain, but some of the intermediate schemata may no longer be rewarded,
while other ones that were not rewarded before will be rewarded now.

The sl-hdfs fulfill the conditions that Holland [1] and Whitley [9] set out, but
also have the benefit of an easily identifiable optimal fitness. Moreover, since all
of the intermediate schemata are composed of unchanging elementary schemata,
it is plausible that the difficulty level should be relatively similar between hdfs
of the same equivalence set. The only thing that is changing is the particular
combination of elementary schemata that are being rewarded, and since each
elementary schemata has a pothole associated with it, no elementary schemata
are any better than any other. Of course if the GA is already committed to
exploiting one particular combination of schemata it will be difficult to switch
to another set, but that is the problem we are interested in. We will further
address the similarity of different individuals drawn from the same equivalence
set in a future work. In the rest of this paper, we will describe one algorithm
for constructing sl-hdfs and then briefly explore how a simple GA performs on
a series of sl-hdfs which “shake” at different rates.

3 The Algorithm

This section describes the algorithm we used to create the sl-hdfs for the exper-
iments described below. While there are many algorithms which could be used
to construct sl-hdfs, we focus here on one approach which is as simple as pos-
sible, while closely following the general guidelines outlined by Holland [1]. For
example, the fitness contributions are derived from Holland [1].

The algorithm has four major parts: elementary schemata, highest level
schema, potholes, and intermediate schemata. Of course we also need to describe
how we “shake the ladder” by changing the intermediate schemata.

The Elementary Schemata: The elementary schemata or building blocks
must be created in such a way as to fulfill the Unique Position Condition spec-
ified above. Holland also recommends that the elementary schemata have short
lengths and low orders. Thus we need to be able to create random schemata
with length l and order o that meet the Unique Position Condition. Holland
recommends a length equivalent to 1/10 the length of the string and an order
of roughly 8. Due to the Unique Position Condition it is fairly difficult to meet
both of these requirements for an arbitrary set of schemata. Thus to simplify
matters in all of the experiments in this paper we set the order of elementary
schemata to 8 and did not worry about the schema length. In future work we
will explore the effect of different schemata lengths.

To begin with we create a random schema with order o (8 in this paper). We
do this by choosing o random indices in the schema and with equal probability
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setting them to either a 1 or 0. We then create another list of indices which
acts as a cumulative record of which loci can be assigned 1’s, by examining the
previous schema and adding to the list any places that are still wildcards or that
are defined as ones. In a similar way we create a list for zeroes. We then shuffle
these lists. To create subsequent schemata we then flip a coin o times and if it
is a 1 (0) we pull an index off the list for ones (zeroes), making sure we do not
reuse any index we have already set. After we are done with this we add this
schema to the list of schemata, update the cumulative list for 1’s and 0’s, and
repeat the process for the next schema. When we are done we have a list of
what we call non-conflicting schemata since they all meet the Unique Position
Condition. We assign a fitness contribution of 2 to each of them.

Highest Level Schemata: Given the elementary schemata, it is a simple mat-
ter to create the highest level schema since according to the Unified Solution
Condition it contains all of elementary schemata. We examine each index in the
string and see if any of the elementary schemata have it defined; if so we set the
same location in the highest level schema equal to the same defining bit. If none
of the elementary schemata have the bit set we leave the location as a wildcard
in the highest level schema. We assign a fitness contribution of 3 to this schema3.

Potholes: The potholes are created in a way inspired by the bb-hdfs. We simply
go through the list of elementary schemata (ordered randomly) and use each
one as a base schema and its neighbor in the list as a supplementary schema,
which creates one pothole for every elementary schema. We build a pothole by
including all of the defined bits from the base schema in the pothole, and then
for each defining bit in the supplementary schema, we copy that bit value into
the pothole with 0.5 probability. We assign a fitness contribution of −1 to all
potholes. Note that it is possible to create a pothole that is simply the union
of two elementary schemata, or a pothole that is exactly the same as another
schema. That means that when examining the Limited Pothole Cost Condition,
we include the fitness contribution of one elementary schema and the highest
level schema when making sure the Limited Pothole Cost Condition is met.

Intermediate Schemata: To create the intermediate schemata, we first decide
how many schemata, nNextLevel, should be at the next level by taking the
number of schemata at the previous level and dividing by two. We draw two
schemata (without replacement) from a shuffled list of all schemata at the current
level, and create a composition of these schemata which we add to the next level
of schemata. We repeat this process nNextLevel times. We continue to create
new levels until nNextLevel ≤ 1

Shaking The Ladder: To “shake the ladder” we first delete all of the previous
intermediate schemata, and then we create new ones by repeating the process

3 Holland assigns a fitness contribution of 2 to everything after the second-level, but
since we do not differentiate between second and higher-levels we assign 3 to every-
thing after the elementary schemata.
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described in the previous paragraph. Since at each level we randomly select
partners to create the combinants at the next level, we should get different
intermediate schemata most of the time.

4 The Experiment

In order to gain experience with the sl-hdf test suite, we carried out experiments
in which we simply varied the length of time between “shaking” the ladder, i.e.,
we varied the frequency of change. Besides allowing us to explore the dynamics
of a GA on a sl-hdf, this experiment also allows us to test the common claim
that if the time between changes in a dynamic environment is too short, then
the best the GA can do is have a population which reflects an average of the
environments it faces. However, if the time between changes is long enough, then
the GA can track the changes in the environment, and the best individuals are
able to attain high performance after changes [7].

Thus we define a control variable, tδ which specifies the number of generations
which elapse before we change the environment. We run a simple GA using the
sl-hdf as its fitness function. This GA uses one-point crossover, per bit mutation,
full population replacement, and is similar to the one defined in Chapter 3 of
Goldberg [10]. Since the point of this paper is to introduce this test suite and
examine some preliminary results we decided to start with the simple GA and
some standard parameter settings. In the future we will investigate the effect of
the parameters on the GA’s performance on the sl-hdfs. For the GA and sl-hdf
we use the parameters in Table 1. Every tδ generations we shake the ladder
and switch to another sl-hdf in the same equivalence set. We set tδ from the set
(1, 5, 10, 25, 50, 100, 900, 1801). In the last case the time between changes exceeds
the run of the GA and thus it provides a benchmark of the performance of the
GA on a static environment.

We have done preliminary experiments varying two parameters of the sl-hdf,
the length of the string, and the number of base schemata. In short, increasing
the string length makes the problem harder for the GA, however this difficulty
eventually levels off at length 500, given the other experimental parameters used.
The effect of the number of base schemata on the difficulty of solving the problem
is more complicated and is compounded because it also increases the number of

Table 1. Parameters of the Experiment

Population Size 1000
Mutation Rate 0.001
Crossover Rate 0.7
Generations 1800
String Length 500
Selection Type Tournament, size 3
Number of Elementary Schemata 50
Number of Runs 30
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Fig. 1. Results of Experiment after 880 Generations

potholes as explained above. However, our initial investigations indicate that the
temporal progress of the GA is roughly the same regardless of the number of
base schemata, so we chose 50 to investigate here.

To examine the results, we look at the best fitness found by the GA in
each generation, and average those results over 30 runs. The best fitness of
the generation is representative of how well the system can do in the current
environment, regardless of what has happened in the past.

The results of this experiment for every fifth generation from 880 to 1800 are
presented in Figure 1, for tδ = (1, 25, 100, 900, 1801) since these capture many of
the salient points. The dynamics in the early part of the runs also are interesting,
as the populations are identifying the elementary schemata, and we will explore
this phase of the search process in future work. The highest possible fitness for
these sl-hdfs is 191. Only the runs with tδ = (25, 100) were able to attain this
result in every run.

5 Results

Figure 1 shows that the GA is able to track the dynamic behavior of the sl-hdf
when tδ is large (900, 1801). When tδ = 1801 the environment never changes
and the system is able to constantly improve its performance. When tδ = 900
the performance tracks that of tδ = 1801 until generation 900 at which point it
suffers a major set-back, but then performance quickly increases and eventually
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even surpasses that of the tδ = 1801 system. However, though performance for
both tδ = (900, 1801) continues to slowly increase, the GA finds an optimum
string in only 1 run of tδ = 900 and never when tδ = 1800.

At the other extreme, when tδ = 1 the system increases performance at a
steady pace throughout the run. And despite the noisiness introduced by shak-
ing the ladder every generation, under these conditions the GA’s performance
eventually surpasses what it achieves with tδ = 1801 and 901 around 1000 and
1500 generations, respectively. Moreover, at the end of 19 of the runs the GA
population contains an optimal string.

The GA attains its best performance at intermediate rates of change in the
environment. When tδ = 100 the system tracks and adapts to changes rapidly,
almost constantly improving performance with only small dips for the changes.
For tδ = 25 the results are much better than with tδ = 1, approaching the
performance of tδ = 100 at the end of the runs. Under both of these conditions
the GA finds the optimal strings in all runs within 1800 generations.

In summary, under these conditions the simple GA does worst when the
environment never changes, it does a bit better (after initially doing worse) with
very fast changes, and it does best for intermediate rates of change. What might
explain these results? One explanation is that shaking the ladder helps the GA
to avoid “premature convergence” as a result of hitchhiking [1]. With infrequent
shaking, the GA makes early gains by focusing on intermediate schemata that
are combinations of the base schemata it happens to find first. But it also loses
diversity due to hitchhiking of incorrect bit values in the base schemata it has
not found. Thus the greatest hits in performance suffered by any system are with
the tδ = 900 GA, in which it has a large investment in intermediate building
blocks and when they change it suffers tremendously. On the other hand, when
tδ = 1 the intermediate schemata provide little guidance toward finding the
optimal string, since they change each time step. As a result the GA performance
improves slowly at the start of the runs with tδ = 1, though it does continue to
improve over the entire run, eventually doing better than the slow/no change
cases. However, with intermediate rates of shaking, the GA is able to use the
intermediate level schemata to help guide the search for the optimal string. But
because the intermediate levels change periodically, the GA does not focus too
much on any particular intermediate schemata, and thus it is able to find a wide
range of base schemata supporting the different intermediates that are rewarded
over time. The diversity of the strings in the population acts as a kind of memory
of the intermediate schemata the GA has seen.

Thus it seems that a GA in a faster changing environment is trying to cap-
ture as many unchanging elementary building blocks as it can while a GA in a
slower changing environment gets misguided down a path that relies on “shaky”
intermediate schemata. The GA does track changes in the slower changing en-
vironments, and at intermediate rates of change, the GA does in some sense
“average” over the equivalence set of the sl-hdf it is searching, in that it is
guided by the intermediate schemata it has seen. For the fastest rates of change,
the GA simply focuses on the only constant part of the environment, the base
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schemata, and by discovering those it eventually gains enough components that
regardless of what intermediate schemata are being rewarded it is still being par-
tially rewarded. It eventually finds an optimal string in some runs by identifying
all of the base schemata.

6 Conclusion and Future Work

Though various researchers have investigated theGA in dynamic environments be-
fore, our contribution is to undertake these experiments in a systematic way on a
newly defined test suite that allows for the comparison of results both within and
between environment types. We are able to do this because of the sl-hdfs which we
created to examine the ability of the GA to work in dynamic environments. The
experiments presented here will also serve as a basis for the investigation of more
complex evolutionary processes beyond the simple GA, in which we explore other
systemcharacteristics like robustness, satisficability, andpopulationdiversity.Fur-
ther investigations into the parameter space of the GA and sl-hdf, as well as an ex-
amination of the similarity of sl-hdf’s is also warranted. Finally, we plan to further
test the explanations regarding hitchhiking that we explicate in the discussion.
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Abstract. The authors propose a hierarchical evolutionary algorithm (HEA) to 
solve structural optimization problems. The HEA is composed by a lower level 
evolutionary algorithm (LLEA) and a higher level evolutionary algorithm 
(HLEA). The HEA has been applied to the design of grounding grids for 
electrical safety. A compact representation to describe the topology of the 
grounding grid is proposed. An analysis of the decision space is carried out and 
its restriction is obtained according to some considerations on the physical 
meaning of the individuals. Due to the algorithmic structure and the specific 
class of problems under study, the fitness function of the HLEA is noisy. A 
statistical approach to analyze the behavior and the reliability of the fitness 
function is done by applying the limit theorems of the probability theory. The 
comparison with the other method of grounding grid design shows the validity 
and the efficiency of the HEA. 

1   Introduction 

The grounding grids are important countermeasures to assure the safety and the 
reliability of the power systems and apparatus. In order to guarantee the safety level 
conditions, the touch voltages generated by the grounding grid in each point of the 
soil surface must be lower than the prearranged values fixed by Standards [1]. This 
requirement causes a significant increase in the cost of both conductor material and 
ditching. It is therefore fundamental, when a grounding grid has to be designed, to 
choose a criterion which guarantees both the low cost and the respect of the safety 
conditions.  

The study of grounding grids and their design has been intensively discussed over 
the years and has been carried out according to different approaches. Empirical 
approaches have been suggested and some criteria resorting to the “compression 
ratio” have been given in [2]. Besides, some methods based on the genetic algorithms 
(GAs) have also been implemented [3], [4], [5].  
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2   Description of the Hierarchical Evolutionary Algorithm 

The problem of the design of a grounding grid can be formulated as follows: once 
leaking current, depth, volume of conductors (i.e. diameter of the cylinder conductors 
and number of the horizontal and vertical conductors) are prearranged, the topology 
of the grounding grid such that touch voltages are minimized has to be obtained.  

2.1   The Lower Level Evolutionary Algorithm to Calculate UTmax

Let us consider a fixed topology of grounding grid with a section of conductors Sc

which is buried at a depth d in a soil whose resistivity is ρ  and leaks a fault current IF.
In order to determine the touch voltage UT in a point P of the soil surface it is 
necessary to solve a system of 2nd order PDEs which in many cases cannot be solved 
theoretically. The Maxwell’s subareas method [6] has been therefore implemented.  

Fig. 1. Example of grounding grid (See 
paragraph 2.2) 

Fig. 2. Example of trend of touch voltage 
generated by a grounding grid  

The calculation of the touch voltage by the Maxwell’s method is computationally 
expensive and, in order to determine the maximum touch voltage UTmax, an 
optimization method is required. Since the trend of the touch voltage is, in general, 
multimodal (See Fig. 2), an approach which makes use of an exact method or a 
gradient-based method is not acceptable.  

The LLEA here proposed is a steady-state GA [7] which works on a population of 
Np points P of the soil surface initially sampled pseudo-randomly. Each point P(x,y)
is an individual having x and y as chromosomes. Due to the continuous trend of the 
touch voltage a real encoding has been chosen. In consideration of the rectangular 
external shape of the grounding grid and therefore of the rectangular shape of the 
decision space the arithmetic crossover technique [8] has been chosen. The 
probability of random mutation [8] has been set on 0.1. The algorithm is stopped 
when at least one of the two following conditions occurs: the difference UT k

between the maximum touch voltage and the average value among all the touch 
voltages UT k (P) obtained in the kth iteration is smaller than a pre-arranged value of 
accuracy ; the number of iterations Niter reaches a pre-arranged value Niter-max.

2.2   The Higher Level Evolutionary Algorithm to Obtain Gridopt

The authors propose the HLEA, a steady-state [7] GA, which uses the value of 
maximum touch voltage UTmax obtained by the LLEA as a fitness function to find the 
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topology of the grounding grid Gridopt which generates a minimum value of 
maximum touch voltage. Each individual of the population is a grounding grid 
Grid(Topx, Topy). This grid (individual) has a genotype composed by two vectors of 
integer non-negative numbers; each of these numbers identifies a conductor of the 
grounding grid under study and represents the distance of this conductor from the 
reference axis. The origin of the reference axis is the lower left corner of the 
grounding grid (See Fig. 1). The two-point crossover technique [8] has been chosen. 
Mutation occurs, with a probability equal to 0.04, in the following way. A position of 
the gene to undergo the mutation is set pseudo-randomly. Another positive or 
negative random integer value is added to this gene. This operation is equivalent to 
moving a conductor of the grounding grid under examination of a small 
predetermined quantity. The stop criterion follows the same logic as that occurred in 
the LLEA.  

 2.3   Computational Analysis and Restriction of the Decision Space 

The design problem consists in minimizing the function UTmax(Topx , Topy) in the set 
S = NNx·+Ny where N is the set of natural numbers. The number of vertical and 
horizontal conductors Nx, and Ny as well as the vertical and horizontal size of the 
grounding grid Ly, Lx are prefixed a priori. The decision space D ⊂ S has cardinality: 

card(D)  =  (Lx+1)Nx (Ly+1)Ny. (1) 

The position of the gene within the chromosome does not give any further 
information to the topology of the grounding grid. Consequently, the authors have 
chosen to add, at each iteration, a sorting cycle for the genes of each vector Topx and 
Topy. This choice decreases the cardinality of the decision space and, therefore, the 
computational complexity of the algorithm. 

Proposition. The cardinality of the new decision space D* is given by: 
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Proof: Let us consider the set of vertical conductors. Let cl be the number of 
occurrences of l in the chromosome. Each individual belonging to D* can be also 
expressed as a vector of occurrences [c0,..,cLx] where c0...+ cLx = Nx. Applying the 
one-to-one correspondence of this kind to all the elements of the decision space D* a 
new set M* is generated and card(D*) = card(M*). Let us consider a polynomial 
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Let us consider the Lxth order derivative of the geometric progression taken termwise, 
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horizontal conductors. The sets of vertical and horizontal conductors are independent 
of each other, therefore the cardinality of the new decision space is given by (2)1.

3   Statistical Analysis of the Noisy Fitness and Numerical Results 

As previously described the HLEA makes use of the fitness given by the LLEA. Since 
the latter is a GA, it gives a value of touch voltage that is not deterministic but it takes 
its own value according to a stochastic process. Therefore the HLEA works with a 
noisy fitness.  

Results shown in Table 1 and Table 2 refer to a grounding grid whose genotype is 
Grid ([0 , 5, 20, 25, 35, 40, 50], [0, 10, 15, 30, 36, 40, 50]) laying in a domain 50m x 
50m. The values for the parameters characterizing the problem are the following: 

d=0.5m Sc=50 mm2 ρ =100 Ωm IF=400 A Niter-max=20 Nexp =500 

For each population size Npop, a set of values of UTmax has been obtained. Among 
these values, the maximum UTmax

max , the minimum UTmax 
min and the width of the 

interval W = UTmax
max- UTmax

min have been determined. Hence, fixing a percent 
accuracy acc% and therefore the interval V=[(100-acc%)/100 UTmax

max, UTmax
max], the 

probability q* that a value given by the LLEA falls within the interval V has been 
approximated, according to the law of the big numbers, by q = NV/Nexp where NV  is 
the number of simulations so that the value falls within V and Nexp is the total number 
of simulations (experiments)-see Table 1. 

The accuracy of the approximation of q* has been verified by the central limit 
theorem (see Table 2). The probability P that the approximated probability q does not 
deviate from the real value q* more than a value  is expressed by:  

( ) 1)1(2}*{ exp −−Φ≈≤− qqNqqP δδ   where  ∫
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dyex 2
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21)( π

1  The problem studied and then the results got are similar to a classic problem of quantum 
mechanics (Bose-Einstein Statistics). 

HEA
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Table 1. Estimation of the noise and calculation time in the LLEA 

Approximated probabilities q that UTmax

determined by the LLEA falls within the 
interval V (for several values of acc%)

Npop UTmax
max

[V] 
UTmax

min

[V] 
W

 [V] 

1% 2% 3% 5% 7% 9% 

Mean 
time2 t 

[s] 

40 97.241 83.562 13.679 0.72 0.74 0.75 0.76 0.77 0.99 4.82 
70 97.241 88.874 8.387 0.83 0.84 0.85 0.86 0.88 1 11.03 

100 97.241 88.874 8.387 0.94 0.97 0.97 0.97 0.97 1 32.64 

Table 2. Confidence intervals  for approximation performed with confidence level P=0.995 

Confidence intervals  related to the probabilities q for several 
population sizes Npop  and values of accuracy acc%

Npop

1% 2% 3% 5% 7% 9% 
40 0.083 0.080 0.079 0.079 0.077 0.018 
70 0.069 0.067 0.066 0.064 0.060 0 
100 0.044 0.031 0.031 0.031 0.031 0 

Table 3. Comparison between the HEA and other designing methods 

Method Objective  Assumptions Decision Space 
 [2] None Exponential regularity Continuous  
 [4] Volume Symmetry, particular proportions Continuous  
 [3] Cost  Symmetry, conductors on the 

perimeter 
2

222
++ LyLx

 [5] Touch voltage None NyNx LyLx )1()1( ++
HEA Touch voltage None 
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As the results in Table 1 show, if the size of the population of the LLEA is small, 
the fitness of the HLEA is quickly calculable but it is noisier; on the contrary, if the 
size is large the fitness is less noisy but each single evaluation requires a longer time. 
On the other hand, we should consider that the functions whose values take a large 
variability demand a large population size in order to find the global optimum [10]. In 
other words, if the population size of the LLEA is small, the HLEA, due to the noisy 
fitness, requires a large population size; if population size of the HLEA is small, a 
low-noisy fitness is required and therefore a large population of the LLEA. According 
to the obtained results, the authors propose for 50m<Lx,Ly<1000m the population 
sizes Npop L =70 and Npop H =50 for LLEA and HLEA, respectively. 

2  The calculation times refer to a PC with a frequency of 3 GHz and 512 Mb RAM. 
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Table 3 shows the comparison between the HEA and the other designing method 
found in literature. 

Table 4. Numerical results obtained by different designing methods 

Method Topx Topy UTmax [V] Decision Space 
[2] [0,9.88,22.89,40,57.11,70.11,80] 

[0,13.05,30,46.95,60] 
905.3762 Continuous 

[3] [0,6,22,40,58,74,80][0,10,30,50,60] 818.2894 4.7224x1021

[5] [0,7,22,40,58,73,80][0,10,30,50,60] 801.5457 1.9322x1022

HEA [0,7,22,40,58,73,80][0,10,30,50,60] 801.5457 4.8265x1016

Table 4 shows the results obtained for the following set of parameters [3]: 

D=0.5m Sc=69 mm2 ρ=100 Ωm IF=5 kA Lx=80m Ly =60m 

4   Conclusions 

The HEA performed better results in terms of efficiency and computational 
complexity compared to the other methods found in literature. Besides, the HEA is a 
completely general and automatic method which does not require any assumption on 
the topology of the grid. The HEA works in a decision space much smaller than the 
other designing methods thanks to the compact representation and the sorting cycle 
implemented. Though the decision space is small it contains not only all the 
representations of grounding grids considered in [3] but also non-symmetrical 
solutions that can be optimal in the case of non-constant resistivity. The statistical 
analysis carried out proves the reliability of the algorithm notwithstanding the noisy 
fitness. Moreover, the HEA is an extremely flexible method that can be applied in 
several other structural optimization problems. 
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Abstract. Non-random mating seems to be the norm in nature among
sexual organisms. A common mating criteria among animals is assorta-
tive mating, where individuals mate according to their phenotype sim-
ilarities (or dissimilarities). This paper explores the effect of including
assortative mating in genetic algorithms for dynamic problems. A wide
range of mutation rates was explored, since comparative results were
found to change drastically for different mutation rates. The strategy
for selecting mates was found to interact with the mutation rate value:
low mutation rates were the best choice for dissortative mating, medium
mutation values for the standard GA, and higher mutation rates for as-
sortative mating. Thus, GA efficiency is related to mate selection strate-
gies in connection with mutation values. For low mutation rates typically
used in GA, dissortative mating was shown to be a robust and promising
strategy for dynamic problems.

1 Introduction

A source of inspiration toward understanding and improving the application
of GAs is still natural evolution. Biological evolution is not possible without
reproduction, and among sexual organisms, reproduction is not possible without
mating or the fusion of two gametes. Mating is very unlikely to be random in
nature, and mate selection may be as important in guiding evolution than natural
selection. Theoretical studies of mate selection using agent-based simulations
[8, 9, 6], suggest that some mating strategies confer higher fitness to individuals,
and produce higher population diversity than random mating.

Most previous work on non-random mating in GAs, refers to incest-prevention
techniques, where the idea is to prevent recombination between related individu-
als [2, 1, 3]. Other authors [5, 4] explore the inclusion of assortative mating within
GAs. Assortative mating is a form of non-random mating common in nature,
where individuals of similar phenotype mate more or less often than expected
by chance. It is positive if similar organism mate more often, and negative (or
dissortative) if dissimilar organisms mate with higher frequencies. All previous
research discussed above deal with stationary problems, and in general report
that both incest prevention techniques and negative assortative mating maintain
a higher population diversity, which in turn allows a broader exploration of the

F. Rothlauf et al. (Eds.): EvoWorkshops 2005, LNCS 3449, pp. 617–622, 2005.
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search space, and may speed up the searching process for the global optimum.
Since it is believed that population diversity is an important issue for non-
stationary problems, it seems worth exploring the effect of non-random mating
in this context. The mutation rate has also implications on population diversity,
and results can turn upside down with different mutation values. Therefore, in
this work, several mutation values were explored. Moreover, both haploid and
diploid representations were considered.

2 Methods

All experiments were run using a generational GA with tournament selection
(tournament size of 2) and a population of 100 individuals. The genetic opera-
tions were 2-point crossover with a rate of 0.8, and the standard bit mutation.
Mutation rates were expressed as mutations per genotype; several mutation val-
ues were tested (ranging from 0.0 to up to 6.0 mutations per genotype, with
a step of 0.5). Both haploid and diploid representation were considered and
the GA was run in three modes: (i) using both mutation and recombination
in the standard way (GA), (ii) implementing dissortative mating (GA-Dsrt),
and (iii)implementing assortative mating (GA-Asrt). Assortative mating was
implemented as follows: when selecting two individuals for a crossover, the first
parent was selected as usual. To chose the second parent, a set of p (pool size)
individuals were selected using the GA fitness-based selection method. There-
after, the similarity between each of these p genotypes and the first parent was
computed. For dissortative mating, the genotype with less similarity was chosen.
For assortative mating, the genotype closer to the first parent was selected as
the second parent. For the experiments reported here, Hamming distance was
used as the similarity measure, and the pool size p was set to 3.

2.1 Haploid/Diploid Encoding

We implemented both haploid and diploid genotypes. For the haploid encoding,
a single chromosome of length n directly represents the individual’s phenotype.
The diploid scheme consists of a genome made up by two chromosomes of length
n, and a phenotype which is obtained by applying a dominance map between
each genotypic allele. The dominance map used, called additive dominance was
originally proposed by Ryan [10]. Instead of binary digits, each locus in the
genotype can be assigned a numeric value in the set {2, 3, 7, 9}. If the sum of the
two alleles in a given locus is more than 10, then the phenotypic expression of
this gene is 1, otherwise it is 0. In order to obtain better results when using the
diploid encoding, we decided to extend Ryan’s additive map with the dominance
change mechanism suggested by Lewis et al. [7].

2.2 Test Problem

We used a an oscillating version of the traditional single knapsack problem. The
objective is to fill a knapsack with the greatest number of objects from a set of
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size n, such that the total weight of the included objects is as close as possible
to a target t. This implementation is based on the test problem suggested by
Lewis et al. [7]. A solution is represented by a binary string of length n. This
string represents the phenotype of an individual, were each gene xi can be 1 or
0, indicating whether the object is included in the knapsack or not. The fitness
f of a solution x is given by

f(x) =
1

1 + |target −∑n
i=1wixi| (1)

For the experiments in this article, 28 objects were used. Each object had
a weight wi = 2i where i ranged from 0 to 27. This guarantees that each tar-
get is reachable by a unique combination of objects in the knapsack. This is a
normalized function, values for f(x) lie between 0 and 1.

Target Changes. We considered both oscillating fixed targets and randomly
generated targets. When using fixed targets, every s generations the algorithm
switched between two fixed targets. These targets, t1 and t2, are initially ran-
domly selected with a Hamming distance of 5. When considering random targets,
the algorithm switches every s generations between newly created random tar-
gets with no specific Hamming distance. We tested two switching periods s: of 50
and 100 generations. For each experiment 10 cycles were considered, producing
runs of 500 and 1000 generations respectively.

2.3 Performance Measures and Plots

For estimating optimal mutation rates in GAs we need to define what an optimal
or near-optimal mutation rate is. The working definition used here is: an optimal
mutation rate is the one that produces optimal performance. But then, we need
a good way of measuring GA performance. We selected offline performance, that
is, the mean of the current best fitness values trough the whole run. Averages of
50 runs were considered. These values were plotted for several mutation rates and
each reproductive strategy. We will call these plots the offline-performance plots.

In order to have a dynamic view of the different strategies’ performance,
the best fitness (averaged over 50 runs) was plotted for each generation. In
these plots, the optimal (or near optimal) mutation rate, as observed from the
offline performance plots, was selected for each reproductive strategy. From now
onwards we will refer to these plots as: best-fitness-trace plots.

3 Results

Figure 1 shows results for the oscillating knapsack with two fixed targets, and a
switching period of 100 generations. Ten oscillating cycles, that is, 1000 genera-
tions were considered.

From the offline-performance plots (Figure 1 (a) and (c)). We can distinguish
3 different ranges of the mutation rate; for each of these ranges, one of the mating
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Fig. 1. Performance for fixed oscillating targets with a switching period of 100 gen-
erations. (a) Offline-performance for the haploid encoding, (b) Best-performance-trace
for the haploid encoding, (c) Offline-performance for the diploid encoding. (d) Best-
performance-trace for the diploid encoding. For the trace plots, the optimal mutation
rate for each strategy was selected

strategies achieves the higher performance: Low mutation rates represent an
advantage for GA-Dsrt, classical GA outperforms other methods at medium
mutation rates, while high mutation rates create better conditions for GA-Asrt.
Similar results were also found for a shorter switching period of 50 generations.

Notice from the best-fitness-trace plots (Figure 1 (b) and (d)), that the best
performance (highest peaks) are delivered by GA-Dsrt in combination with a
mutation rate of 0.5. Fitness values obtained with haploid individuals are slightly
better than those obtained with diploid individuals. Again, similar results were
found for a switching period of 50 generations.

Although the offline-performance plots show sometimes similar performance
for the GA strategy as compared to GA-Dsrt (Figure 1 (a)), this was not the case
when looking in detail at the corresponding generational best-fitness-trace plot:
the GA strategy reaches good results, but its peaks are nonetheless almost always
occluded by GA-Dsrt, which in each experiment reaches the highest peaks. This
contrast was caused by the different convergence velocities of the rapidly evolving
GA strategy vs. the somewhat slower dissortative strategy. Both strategies have
their pros and cons: the more traditional GA may have faster convergence, but
GA-Dsrt reaches higher peaks due to its inherent capacity to maintain a higher
population diversity.
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Fig. 2. Best-performance-trace for random oscillating targets with a switching period
of 100 generations. (a)haploid encoding, (b) diploid encoding. The optimal mutation
rate for each strategy was selected

Figures 2 show the best-performance-trace plots with random changing tar-
gets, for a switching period of 100 generations. Again, dissortative mating for
both haploid and diploid individuals, is the strategy that achieves the highest
fitness values (highest peaks) on each cycle. Similar results where found for the
shorter switching period of 50 generations, with the exception of diploid organ-
isms, where performance was very poor since the population had not enough
time to adapt.

4 Discussion

Results suggest that the mutation rate parameter interacts with the mating
strategy. Optimal mutation rates are different for each strategy; thus, fair com-
parisons can not be performed without selecting the optimal mutation rate for
each case. When considering offline performance, on all explored scenarios dis-
sortative mating consistently required a lower mutation rate (close to 0.5/L) to
perform better, whilst the standard GA needed a somewhat higher mutation rate
(between 0.5 to 1.0) mutations per genotype) to produce similar performance.
On the other hand, assortative mating produced the worst performance, and its
optimal mutation rate was in the range of 1.5 to 2.5 mutations per genotype.
If the optimal mutation rate was selected for each strategy, dissortative mating
was found to be a good strategy for finding the highest peaks.

Surprisingly, in our experiments the haploid scheme produced better results
than the diploid encoding. These results confirm the observations by Lewis et
al. [7] that diploid schemes do not seem to be a robust mechanism for non-
stationary problems. According to them, adding some form of dominance change
considerably improves matters, but the form of the change mechanism can have
a significant effect.

Mate selection is a force guiding natural evolution that has not been widely
explored within artificial evolution. It is clear that selecting mates have an im-
pact on both the search process and the population diversity. This work is a
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preliminary assessment of the effect of including mate selection in evolution-
ary algorithms for dynamic problems. Dissortative mating was shown to be a
promising scheme that may improve the algorithm performance. Further work
with other non-stationary problems will make it possible to assess if these results
can be generalised.
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of SFI CSSS 2002.
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Abstract. This paper proposes an approach based on the use of Cellular Evolu-
tionary Strategies (CES) and Interval Arithmetic (IA) as an alternative technique 
to obtain robust system design. CES are an approach that combines the Evolution 
Strategy techniques with concepts from Cellular Automata in order to optimise a 
given function, while IA is used as a checking technique that guarantees the 
feasibility of the design. IA is able to consider simultaneously the effects of 
uncertainty of all of the parameters on a performance function and to provide 
strict bounds (minimum and maximum values) with only one evaluation. CES 
and IA are used to obtain, by an iterative process, a robust design, that is, the 
maximum size of each variable deviation that allow to comply with a set of 
specifications. The proposed approach is an indirect method based on optimisa-
tion instead of a direct method based on mapping from the output into the input 
space. A numerical example, related to an electronic circuit system design, il-
lustrates the application of the approach.  

1   Introduction 

Sensitivity analysis, uncertainty propagation and uncertainty analysis are techniques 
that have been used for examining the effects of uncertain inputs within a model [1]. 
These techniques are usually carried out by determining which parameter or parameters 
have significant effects on the results of a study. An attempt is then made to increase the 
precision of these parameters in order to reduce the danger of serious error.  

In system design, mathematical models are used to describe the properties of the 
system to be designed. As an example, consider the temperature controller circuit [2] 
shown in figure 1. The performance function is: 

)(
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314221

RERERER

RERERR
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−+
+=− Ω (1) 

We can evaluate, for example, what are the effects on onTR − if the value of one 
(local analysis) or more (global analysis) components is changed.  

The robustness of a design is defined as the maximum size of component deviation 
from this design that can be tolerated whereby the product still meets all requirements 
[3]. For example, what are the maximum possible deviations for each component in the 
figure 1 consistent with 2.90 kΩ ≤ onTR − ≤ 3.10 kΩ?  
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Fig. 1. Temperature Controller Circuit [2] 

The problem we address is different from variability or sensitivity analysis [4,5]. In 
this paper we assess input parameter uncertainty for one or all components, which 
maintains the output performance function within specified bounds. The approach is 
based on the use of Cellular Evolutionary Strategies (CES) and Interval Arithmetic 
(IA). Section 2 contains an overview of Interval Arithmetic. The Evolutionary ap-
proach is presented in Section 3. Section 4 presents the general approach used to solve 
the robust design problem. An example is considered in Section 5, and finally Section 6 
presents the conclusions. 

2   Interval Arithmetic 

Interval "numbers" are an ordered pair of real numbers representing the lower and 
upper bound of the parameter range. If we have two interval numbers T=[a,b] and 
W=[c,d] with a ≤ b and c ≤ d then T+W=[a+c,b+d]. Similar expressions can be defined 
for the other basic operations and for trascendental functions [6-8]. 

Only some of the algebraic laws valid for real numbers remain valid for intervals. An 
important property referred to as sub-distributivity does hold. It is given mathemati-
cally by the set inclusion relationship: T(W+Z)⊆TW+TZ. The failure of the distribu-
tive law often causes overestimation. In general, when a given variable occurs more 
than once in an interval computation, it is treated as a different variable in each oc-
currence. This effect is called the "dependency problem".  

Consider a real valued function f of real variables t1,t2,..,tn and an interval function 

F of interval variables T1,T2,..,Tn. The interval function F is said to be an interval 

extension of f, if F(t1,t2,..,tn)=f(t1,t2,..., tn). The range of a function f of real variables 

over an interval can be calculated from the interval extension F, changing ti by Ti. Note 

that: f(t1,t2,.., tn) ⊆ F(T1,T2,..., Tn),  for all ti ∈Ti (i=1,.., n) [6].  

3   Evolutionary Approach 

Evolution Strategies (ES) have been applied to a wide range of problems especially in 
those cases where traditional optimisation techniques have shown poor performances 
or simply have failed [9]. Schwefel and Bäck [10] generalised these strategies to the 
multimember evolution strategy now denoted by ES(μ+λ) and ES(μ,λ). In a (μ+λ) 
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strategy, the μ best of all (μ+λ) individuals survive to become parents of the next 
generation. Using the (μ,λ) strategy, selection takes place only among λ offspring.  

Cellular Evolutionary Strategies (CES) [11] are an approach that combines the 
ES(μ,λ) techniques with concepts from Cellular Automata [12] for the parent’s selec-
tion step, using the concepts of neighbourhood. Each individual is located randomly in 
a cell of a two-dimension array. To update a specific individual, the parents’ selection is 
performed looking only at determined cells (its neighbourhood) in contrast with the 
general ES, which search parents in the whole population.  

4   Robust Design Methodology 

4.1   Problem Description [3] 

The robustness of a system design is defined as the maximum size of component de-
viations from their design values that can be tolerated such that the system still meets all 
defined specifications. The designer formulates target values on the quality of the 
product by setting lower and upper bounds on the property yi(x). The problem is to find a 
product x in the experimental region X which fulfils the requirements on the properties.  

We define the following slack function gi(x): 

gi(x)=UBi - yi(x) when there is an upper bound requirement or 
gi(x)= yi(x)-LBi when there is an lower  bound requirement 

This results in a product design problem mathematically formulated as: find an 
element of F∩X, with: F:={x ∈ℜn⏐ gi(x)≥0,i=1,....,r}. 

4.2   Problem Definition [13] 

Suppose the area shown in figure 3a is the feasible zone for a generic design with vari-
ables R and Ra. Within the feasible zone any pair (R,Ra) satisfies the specifications. An 
exact description of the Feasible Solution Set (FSS)  (figure 3a) is in general not simple, 
since it may be a very complex set. Moreover, the FSS could be limited by non-linear 
functions. For this reason, approximate descriptions are often looked for, using simply 
shaped sets like boxes or ellipsoids containing (outer bounding, figure 3b) or contained in 
(inner bounding, figure 3c and 3d) the set of interest. In particular Minimum Volume 
Outer box (MOB) (figure 3b) and Maximum volume Inner Box (MIB) (figure 3c and 3d) 
are of interest. In this paper only the MIB determination is presented.  

The maximum ranges of possible variations of the feasible values are the sizes 
(along co-ordinate axis) of the axis-aligned box of minimum volume containing FSS. 
To obtain the MIB it is required that all the points inside the generated box satisfy the 
constraints. Then, the mathematical formulation is: 

Let B the box defined by: B:= {x, C ∈ℜn⏐xi ∈[xi,lower, xi,upper], Ci =(xi,upper+xi,lower)/2} 

1. Centre Specified:     
x

max  ∏
=

n

1i

abs((xi - Ci)) 

s.t. x∈ F∩B 
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2. Centre Unspecified: 
x,C

max  ∏
=

n

1i

abs((xi - Ci)) 

s.t. x, C ∈ F∩B 

The objective functions represent a quantity that is proportional to the MIB hy-
per-volume. Note that x represents a vertex of the optimal MIB. From here, the range of 
each variable is easily determined, as described in the next section.  

4.3   General Approach 

Given r constraint functions gi(x1,x2,...,xn), lower and upper bounds (LBi, UBi), we 
generate an initial random point x={x1o,x2o,..,xn0} (initial vertex). We check if this point 
is a feasible point, evaluating all the constraints. If the point is infeasible, then we 
generate a new point and check it again for feasibility. If the generated point is feasible 
then we have two possible actions depending on the goal established: 

1) Inner box, centre specified (C) 

Given a feasible vertex, we generate a symmetrical “box” (hyper-rectangle) using the 
point C as symmetry centre and check for the feasibility of the generated box. If the box 
is feasible, we calculate the associated volume. If the box is not feasible, then we dis-
card the box, and repeat the process with a new feasible initial vertex. 

2) Inner box, centre unspecified 

In this case, the centre co-ordinates are considered as additional variables. So we gen-
erate along with the initial random vertex, the initial random centre co-ordinate 
C={C1o,C2o,..,Cn0}. As in the previous case, we generate a symmetrical “box” using C 
as symmetry centre, then check the feasibility of the generated box, and, if feasible, we 
calculate the associated volume.  

In both cases, the goal is to maximise the inner volume using CES as the optimisa-
tion technique. 

 

a)  Feasible Solution Set b)  Minimum Volume Outer Box

c)  Maximum volume Inner Box
     (fixed centre)

d) Maximum volume Inner Box
     (variable centre)

R

R a  

p 

 

Fig. 2. Feasible Solution Set and approximate descriptions 
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To check the box feasibility, we may have two problems: 1) To evaluate the function 
in 2n vertices and 2) Extreme values are not necessarily at vertices of the generated box. 
To overcome these two drawbacks, constraint functions are evaluated as interval 
functions. This means that only one “interval” evaluation is required for each constraint 
and the exact range of the constraint functions inside the generated box is obtained. 
Note that if the FSS is non-convex, feasibility check using IA will consider this. 

5   Example: A Temperature Controller [14] 

We will use the proposed robust design approach in order to define a robust design for 
the temperature controller circuit [2] shown in figure 1. The design must guarantee that 
RT-on belongs to the interval  [2.9,3.1] kΩ and that RT-on evaluated at the mid-point 
should be 3.00 kΩ. We will define the centre of each variable (midpoint of the starting 
interval) and obtain the MIB. Because of the stochastic nature of CES, 20 trials were 
performed and the best solution from among the 20 trials was used as the final solution. 
All CES runs were performed using 30 generations, 49 individuals in a 7x7 grid, Von 
Neumann neighbourhood with radius =1 and asynchronous substitution.  

Table 2 shows the result obtained using the hybrid approach CES and IA, with a 
MIB volume of 930296.40. These ranges produce an output RT-on belonging to: 
[2.90573,3.09999] kΩ. The MIB volume obtained using a non-linear optimisation 
program, was 931811.45, that is only 0.163 % greater than the obtained with the 
CES-IA approach. The average relative error obtained in 20 runs was only 0.272 %. 

6   Conclusions 

This paper proposes a promising approach based on the use of Cellular Evolutionary 
Strategies and Interval Arithmetic as an alternative technique to obtain robust system 
design. CES are used as the optimisation technique while IA is used as a checking 
technique that guarantees the feasibility of the design. 

Table 1. Robust design using CES and IA approach 

VARIABLE Starting Interval Final Interval 

R1 (kΩ) [0.5,1.5] [0.994,1.005]  
R2 (kΩ) [6,12] [8.956,9.044]   
R3 (kΩ) [2,6] [3.973,4.027]   
R4 (kΩ) [16,48] [31.428,32.572]  
E1 (V) [7.5,9.5] [8.427,8.573]  
E2 (V) [4.5,7.5] [5.946,6.0535]  

The excellent results obtained suggest that the CES-IA approach has great potential 
in dealing with difficult system design problems. It is interesting to note that even if 
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Interval Arithmetic can overestimate the size of the hyper-box, due to the dependency 
problem, we are sure that the box obtained is a valid robust solution, which satisfies all 
the defined constraints. The overestimation can be treated using special techniques. The 
added burden to the procedure CES-IA for determining the feasibility verification of 
the generated box is far outweighed by the flexibility provided by such technique (only 
one “interval” evaluation and guaranteed ranges) in contrast to multiple vertices 
evaluation. 
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Garćıa, Jesús 386
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