

Lecture Notes in Computer Science 3441
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Vladimiro Sassone (Ed.)

Foundations
of Software Science and
Computational Structures

8th International Conference, FOSSACS 2005
Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2005
Edinburgh, UK, April 4-8, 2005
Proceedings

13

Volume Editor

Vladimiro Sassone
University of Sussex
Dept. of Informatics
Brighton BN1 9QH, UK
E-mail: v.sassone@sussex.ac.uk

Library of Congress Control Number: Applied for

CR Subject Classification (1998): F.3, F.4.2, F.1.1, D.3.3-4, D.2.1

ISSN 0302-9743
ISBN 3-540-25388-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11402060 06/3142 5 4 3 2 1 0

Foreword

ETAPS 2005 was the eighth instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference that was estab-
lished in 1998 by combining a number of existing and new conferences. This year it
comprised five conferences (CC, ESOP, FASE, FOSSACS, TACAS), 17 satellite work-
shops (AVIS, BYTECODE, CEES, CLASE, CMSB, COCV, FAC, FESCA, FINCO,
GCW-DSE, GLPL, LDTA, QAPL, SC, SLAP, TGC, UITP), seven invited lectures (not
including those that were specific to the satellite events), and several tutorials. We re-
ceived over 550 submissions to the five conferences this year, giving acceptance rates
below 30% for each one. Congratulations to all the authors who made it to the final
program! I hope that most of the other authors still found a way of participating in this
exciting event and I hope you will continue submitting.

The events that comprise ETAPS address various aspects of the system develop-
ment process, including specification, design, implementation, analysis and improve-
ment. The languages, methodologies and tools which support these activities are all
well within its scope. Different blends of theory and practice are represented, with an
inclination towards theory with a practical motivation on the one hand and soundly
based practice on the other. Many of the issues involved in software design apply to
systems in general, including hardware systems, and the emphasis on software is not
intended to be exclusive.

ETAPS is a loose confederation in which each event retains its own identity, with a
separate program committee and proceedings. Its format is open-ended, allowing it to
grow and evolve as time goes by. Contributed talks and system demonstrations are in
synchronized parallel sessions, with invited lectures in plenary sessions. Two of the in-
vited lectures are reserved for “unifying” talks on topics of interest to the whole range of
ETAPS attendees. The aim of cramming all this activity into a single one-week meeting
is to create a strong magnet for academic and industrial researchers working on topics
within its scope, giving them the opportunity to learn about research in related areas,
and thereby to foster new and existing links between work in areas that were formerly
addressed in separate meetings.

ETAPS 2005 was organized by the School of Informatics of the University of Edin-
burgh, in cooperation with

– European Association for Theoretical Computer Science (EATCS);
– European Association for Programming Languages and Systems (EAPLS);
– European Association of Software Science and Technology (EASST).

The organizing team comprised:
– Chair: Don Sannella
– Publicity: David Aspinall
– Satellite Events: Massimo Felici
– Secretariat: Dyane Goodchild
– Local Arrangements: Monika-Jeannette Lekuse

VI Foreword

– Tutorials: Alberto Momigliano
– Finances: Ian Stark
– Website: Jennifer Tenzer, Daniel Winterstein
– Fundraising: Phil Wadler

ETAPS 2005 received support from the University of Edinburgh.
Overall planning for ETAPS conferences is the responsibility of its Steering Com-

mittee, whose current membership is:

Perdita Stevens (Edinburgh, Chair), Luca Aceto (Aalborg and Reykjavı́k),
Rastislav Bodik (Berkeley), Maura Cerioli (Genoa), Evelyn Duesterwald
(IBM, USA), Hartmut Ehrig (Berlin), José Fiadeiro (Leicester), Marie-Claude
Gaudel (Paris), Roberto Gorrieri (Bologna), Reiko Heckel (Paderborn), Hol-
ger Hermanns (Saarbrücken), Joost-Pieter Katoen (Aachen), Paul Klint (Am-
sterdam), Jens Knoop (Vienna), Kim Larsen (Aalborg), Tiziana Margaria
(Dortmund), Ugo Montanari (Pisa), Hanne Riis Nielson (Copenhagen), Fer-
nando Orejas (Barcelona), Mooly Sagiv (Tel Aviv), Don Sannella (Edinburgh),
Vladimiro Sassone (Sussex), Peter Sestoft (Copenhagen), Michel Wermelinger
(Lisbon), Igor Walukiewicz (Bordeaux), Andreas Zeller (Saarbrücken), Lenore
Zuck (Chicago).

I would like to express my sincere gratitude to all of these people and organizations, the
program committee chairs and PC members of the ETAPS conferences, the organizers
of the satellite events, the speakers themselves, the many reviewers, and Springer for
agreeing to publish the ETAPS proceedings. Finally, I would like to thank the organizer
of ETAPS 2005, Don Sannella. He has been instrumental in the development of ETAPS
since its beginning; it is quite beyond the limits of what might be expected that, in ad-
dition to all the work he has done as the original ETAPS Steering Committee Chairman
and current ETAPS Treasurer, he has been prepared to take on the task of organizing this
instance of ETAPS. It gives me particular pleasure to thank him for organizing ETAPS
in this wonderful city of Edinburgh in this my first year as ETAPS Steering Committee
Chair.

Edinburgh, January 2005 Perdita Stevens
ETAPS Steering Committee Chair

Preface

This volume collects the proceedings of “Foundations of Software Science and Com-
putation Structures,” FOSSACS 2005. FOSSACS is a member conference of ETAPS,
the “European Joint Conferences on Theory and Practice of Software,” dedicated to
foundational research for software science. It invites submissions on theories and meth-
ods to underpin the analysis, integration, synthesis, transformation, and verification of
programs and software systems. Topics covered usually include: algebraic models; au-
tomata and language theory; behavioral equivalences; categorical models; computa-
tion processes over discrete and continuous data; computation structures; logics of pro-
grams; modal, spatial, and temporal logics; models of concurrent, reactive, distributed,
and mobile systems; models of security and trust; language-based security; process al-
gebras and calculi; semantics of programming languages; software specification and
refinement; and type systems and type theory.

FOSSACS 2005 consisted of one invited and 30 contributed papers, selected out of
108 submissions, yielding an acceptance rate of less than 28%. The quality of the manu-
scripts was very high indeed, and the Program Committee had to reject several deserving
ones. Besides making for a strong 2005 program, this is an indication that FOSSACS is
becoming an established point of reference in the international landscape of theoretical
computer science. This is a trend that I believe will continue in its forthcoming editions.

Besides Marcelo Fiore’s invited talk, the volume includes Ugo Montanari’s in-
vited address as an ETAPS unifying speaker. Ugo’s ‘Model Checking for Nominal Cal-
culi’ reflects broadly on topics in semantics, weaving together verification via semantic
equivalences and model checking, Web services, the π-calculus, and the derivation of
bisimulation congruences over reactive systems. Marcelo’s contribution, ‘Mathematical
Models of Computational and Combinatorial Structures,’ advocates a combinatorial ap-
proach to semantic models by introducing a calculus of generalized species of structures
as a unification and generalization of models arising in several distinct areas, including
his previous work on denotational models of the π-calculus and of variable-binding op-
erators. The conference program was organized into nine sessions, each focusing on
reflecting common research topics among the accepted papers. The order of presenta-
tion of the papers in this volume maintains the structure of those sessions.

I have a debt of gratitude to the Program Committee for their scholarly effort during
the discussion phase; to the referees, for carrying out the reviewing task with compe-
tence, care, and precision; to the invited speakers for their inspired work; and ultimately
to the authors for submitting their best work to FOSSACS. Thanks to David Aspinall
and Don Sannella for the local organization, and to Martin Karusseit and Tiziana Mar-
garia for their support with the conference electronic management system.

I hope you enjoy the volume.

Sussex, January 2005 Vladimiro Sassone
Program Chair

FOSSACS 2005

Organization

Program Committee

Luca Aceto (Aalborg, Denmark) Michele Bugliesi (Venice, Italy)
Luı́s Caires (Lisbon, Portugal) Giuseppe Castagna (ENS Paris, France)
Witold Charatonik (Wroclaw, Poland) Vincent Danos (PPS Paris, France)
Robert Harper (CMU, USA) Petr Jančar (Ostrava, Czech Republic)
Naoki Kobayashi (Tokyo, Japan) Orna Kupferman (Jerusalem, Israel)
Guy McCusker (Sussex, UK) Ugo Montanari (Pisa, Italy)
Anca Muscholl (LIAFA Paris, France) Tobias Nipkow (Munich, Denmark)
Andrew Pitts (Cambridge, UK) Amir Pnueli (Weizmann, Israel and
David Sands (Chalmers, Sweden) New York, USA)
Vladimiro Sassone (Sussex, UK) Andre Scedrov (UPenn, USA)
Peter Selinger (Ottawa, Canada) Wolfgang Thomas (Aachen, Denmark)
Glynn Winskel (Cambridge, UK) Nobuko Yoshida (Imperial, UK)

Referees

Reynald Affeldt
Jonathan Aldrich
Jan Altenbernd
Torben Amtoft
Eugene Asarin
David Aspinall
Franz Baader
Christel Baier
Patrick Baillot
Sebastian Bala
Paolo Baldan
Richard Banach
Nicolas Baudru
Gerd Behrmann
Martin Berger
Ulrich Berger
Gerd Berhmann
Marco Bernardo
Alexis Bes
Stephen Bloom
Richard Blute
Viviana Bono

Ana Bove
Tomas Brázdil
Thomas Brihaye
Stephen Brookes
Franck van Breugel
Marzia Buscemi
Michael Butler
Marco Carbone
Josep Carmona
Alberto Casagrande
Ilaria Castellani
Amine Chaieb
Stefano Chessa
Corina Cirstea
Giovanni Conforti
Thierry Coquand
Silvia Crafa
Karl Crary
Federico Crazzolara
Pedro D’Argenio
Jim Davies
Josée Desharnais

Pietro Di Gianantonio
Ernst-Erich Doberkat
Marie Duflot
Martı́n Escardó
Alessandro Fantechi
Marcelo Fiore
Riccardo Focardi
Alain Frisch
Fabio Gadducci
Philippe Gaucher
Simon Gay
Blaise Genest
Neil Ghani
Rob van Glabbeek
Daniele Gorla
Eric Goubault
Jean Goubault-Larrecq
Susanne Graf
Erich Grädel
S. Gutierrez-Nolasco
Joshua Guttman
Peter Habermehl

Organization X

Masahito Hasegawa
Ichiro Hasuo
Thomas Hildebrandt
Daniel Hirschkoff
Kohei Honda
Haruo Hosoya
Jesse Hughes
Michael Huth
Atsushi Igarashi
Florent Jacquemard
Radha Jagadeesan
Alan Jeffrey
Ole Jensen
Gabriel Juhas
Tomasz Jurdzinski
Joost-Pieter Katoen
Emanuel Kieronski
Bartek Klin
Teodor Knapik
Martin Kot
Pavel Krčál
Neel Krishnaswami
Jean Krivine
Jim Laird
Martin Lange
Diego Latella
Francesca Levi
Paul Blain Levy
Christof Löding
Etienne Lozes
Christoph Lüth
Zhaohui Luo
Yoad Lustig
Bas Luttik
Damiano Macedonio
Matteo Maffei
Sergio Maffeis
Jean Mairesse
Rupak Majumdar
Jean-Yves Marion
Keye Martin
Luis Mateu

Paul-André Melliès
Robin Milner
Faron Moller
Luis Monteiro
Carroll Morgan
Rémi Morin
Madhavan Mukund
Markus Müller-Olm
Sumit Nain
Aleks Nanevski
Francesco Zappa Nardelli
Peter Niebert
Damian Niwinski
Gethin Norman
Karol Ostrovsky
Sam Owre
Prakash Panangaden
George Pappas
Matthew Parkinson
Doron Peled
Frank Pfenning
Iain Philipps
Andrew Phillips
Carla Piazza
Brigitte Pientka
Benjamin Pierce
Jean-Eric Pin
Lucia Pomello
K.V.S. Prasad
Sanjiva Prasad
Francesco Ranzato
Julian Rathke
Arend Rensink
James Riely
Philipp Rohde
Bill Roscoe
Sabina Rossi
Pawel Rychlikowski
Zdeněk Sawa
Norbert Schirmer
Alan Schmitt
Lutz Schröder

Robert Seely
Roberto Segala
Olivier Serre
Peter Sewell
Janos Simon
Alex Simpson
Christian Skalka
Paweł Sobociński
Jiřı́ Srba
Ian Stark
Colin Stirling
Mariëlle Stoelinga
Kristian Stovring Sorensen
Oldrich Stražovský
Eijiro Sumii
Vasco T. Vasconcelos
Gabriele Taentzer
Jean-Marc Talbot
Kazushige Terui
Stavros Tripakis
Tomasz Truderung
Emilio Tuosto
Irek Ulidowski
Christian Urban
Tarmo Uustalu
Franck Van Breugel
Daniele Varacca
Maria Grazia Vigliotti
David Walker
Nico Wallmeier
Igor Walukiewicz
Volker Weber
Carsten Weise
Joe Wells
Benjamin Werner
Piotr Wieczorek
Stefan Wöhrle
Burkhart Wolff
James Worrell
Kwangkeun Yi
Shoji Yuen
Marc Zeitoun

Table of Contents

Invited Talks

Model Checking for Nominal Calculi
Gian Luigi Ferrari, Ugo Montanari,
Emilio Tuosto . 1

Mathematical Models of Computational and Combinatorial
Structures

Marcelo P. Fiore . 25

Rule Formats and Bisimulation

Congruence for Structural Congruences
MohammadReza Mousavi, Michel A. Reniers . 47

Probabilistic Congruence for Semistochastic Generative
Processes

Ruggero Lanotte, Simone Tini . 63

Bisimulation on Speed: A Unified Approach
Gerald Lüttgen, Walter Vogler . 79

Probabilistic Models

Branching Cells as Local States for Event Structures and Nets: Probabilistic
Applications

Samy Abbes, Albert Benveniste . 95

Axiomatizations for Probabilistic Finite-State Behaviors
Yuxin Deng, Catuscia Palamidessi . 110

Stochastic Transition Systems for Continuous State Spaces and
Non-determinism

Stefano Cattani, Roberto Segala, Marta Kwiatkowska,
Gethin Norman . 125

Model Checking Durational Probabilistic Systems
François Laroussinie, Jeremy Sproston . 140

XII Table of Contents

Algebraic Models

Free-Algebra Models for the π-Calculus
Ian Stark . 155

A Unifying Model of Variables and Names
Marino Miculan, Kidane Yemane . 170

A Category of Higher-Dimensional Automata
Ulrich Fahrenberg . 187

Games and Automata

Third-Order Idealized Algol with Iteration Is Decidable
Andrzej S. Murawski, Igor Walukiewicz . 202

Fault Diagnosis Using Timed Automata
Patricia Bouyer, Fabrice Chevalier, Deepak D’Souza . 219

Optimal Conditional Reachability for Multi-priced Timed Automata
Kim Guldstrand Larsen, Jacob Illum Rasmussen . 234

Alternating Timed Automata
Sławomir Lasota, Igor Walukiewicz . 250

Language Analysis

Full Abstraction for Polymorphic Pi-Calculus
Alan Jeffrey, Julian Rathke . 266

Foundations of Web Transactions
Cosimo Laneve, Gianluigi Zavattaro . 282

Bridging Language-Based and Process Calculi Security
Riccardo Focardi, Sabina Rossi, Andrei Sabelfeld . 299

History-Based Access Control with Local Policies
Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari 316

Partial Order Models

Composition and Decomposition in True-Concurrency
Sibylle Fröschle . 333

Table of Contents XIII

Component Refinement and CSC Solving for STG Decomposition
Mark Schaefer, Walter Vogler . 348

The Complexity of Live Sequence Charts
Yves Bontemps, Pierre-Yves Schobbens . 364

Logics

A Simpler Proof Theory for Nominal Logic
James Cheney . 379

From Separation Logic to First-Order Logic
Cristiano Calcagno, Philippa Gardner, Matthew Hague 395

Justifying Algorithms for βη-Conversion
Healfdene Goguen . 410

On Decidability Within the Arithmetic of Addition and Divisibility
Marius Bozga, Radu Iosif . 425

Coalgebraic Modal Logics

Expressivity of Coalgebraic Modal Logic: The Limits and Beyond
Lutz Schröder . 440

Duality for Logics of Transition Systems
Marcello M. Bonsangue, Alexander Kurz . 455

Computational Models

Confluence of Right Ground Term Rewriting Systems Is Decidable
Lukasz Kaiser . 470

Safety Is Not a Restriction at Level 2 for String Languages
Klaus Aehlig, Jolie G. de Miranda, C.-H. Luke Ong . 490

A Computational Model for Multi-variable Differential Calculus
Abbas Edalat, André Lieutier, Dirk Pattinson . 505

Author Index . 521

Model Checking for Nominal Calculi�

Gian Luigi Ferrari, Ugo Montanari, and Emilio Tuosto

Dipartimento di Informatica, Largo Bruno Pontecorvo 3, 56127 Pisa – Italy

Abstract. Nominal calculi have been shown very effective to formally model a
variety of computational phenomena. The models of nominal calculi have often
infinite states, thus making model checking a difficult task. In this note we survey
some of the approaches for model checking nominal calculi. Then, we focus on
History-Dependent automata, a syntax-free automaton-based model of mobility.
History-Dependent automata have provided the formal basis to design and imple-
ment some existing verification toolkits. We then introduce a novel syntax-free
setting to model the symbolic semantics of a nominal calculus. Our approach re-
lies on the notions of reactive systems and observed borrowed contexts introduced
by Leifer and Milner, and further developed by Sassone, Lack and Sobocinski.
We argue that the symbolic semantics model based on borrowed contexts can be
conveniently applied to web service discovery and binding.

1 Summary

Model checking has been shown very effective for proving properties of system be-
haviour whenever a finite model of it can be constructed. The approach is convenient
since it does not require formal proofs and since the same automaton-like model can
accommodate system specification languages with substantially different syntax and
semantics. Among the properties which can be checked, behavioural equivalence is
especially important for matching specifications and implementations, for proving the
system resistant to certain attacks and for replacing the system with a simpler one with
the same properties.

Names have been used in process calculi for representing a variety of different in-
formations concerning addresses, mobility links, continuations, localities, causal depen-
dencies, security keys and session identifiers. When an unbound number of new names
can be generated during execution, the models tend to be infinite even in the simplest
cases, unless explicit mechanisms are introduced to allocate and garbage collect names,
allowing the same states to be reused with different name meanings.

We review some existing syntax-free models for name-passing calculi and focus
on History-Dependent automata (HD-automata), introduced by Montanari and Pistore
in 1995 [62]. HD-automata [62, 63, 71] have been shown a suitable automata-based
model for representing Petri nets, CCS with causality and localities and some versions
of π-calculus [59, 75].

� Work supported by European Union project PROFUNDIS, Contract No. IST-2001-33100.

V. Sassone (Ed.): FOSSACS 2005, LNCS 3441, pp. 1–24, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 G.L. Ferrari, U. Montanari, and E. Tuosto

Different versions of HD-automata have been defined. The simplest version can be
easily translated to ordinary automata, but possibly with a larger number of states. In a
second version, the states are equipped with name symmetries which further reduce the
size of the automata. Furthermore, a theory based on coalgebras in a category of “named
sets” can be developed for this kind of HD-automata, which extends the applicability
of the approach to other nominal calculi and guarantees the existence of the minimal
automaton within the same bisimilarity class [64, 34].

HD-automata also constitute the formal basis upon which several verification toolk-
its have been defined and implemented. The front end towards the π-calculus and the
translation algorithm for the simplest version of HD-automata have been implemented
in the HAL tool [31, 32], which relies on the JACK verification environment [7] for
handling the resulting ordinary automata. The minimisation algorithm, naturally sug-
gested by the coalgebraic framework, has been implemented in the Mihda toolkit [35,
36] within the European project PROFUNDIS. Other versions of HD-automata can
be equipped with algebraic operations, and are based on a algebraic-coalgebraic the-
ory [61].

Here we propose a further instance handling the symbolic versions of nominal cal-
culi, where inputs are represented as variables which are instantiated only when needed.
As it is the case for logic programming unification, one would like the variables to be
instantiated only the least possible, still guaranteeing that all behaviours are eventu-
ally explored. The approach we follow relies on the notion of reactive system and of
observable borrowed contexts introduced by Leifer and Milner [53, 52] and further de-
veloped by Sassone, Lack and Sobocinski [76, 78, 50] using G-categories and adhesive
categories. The reduction semantics of reactive systems is extended in order to intro-
duce as borrowed contexts both the variable instantiations needed in the transitions
and the ordinary π-calculus actions. It is argued that the symbolic semantics model
based on borrowed contexts can be conveniently applied to web service discovery and
binding.

In this paper we review the main results on HD-automata setting them in the main-
stream research on nominal calculi. The final part of the paper introduces a novel
symbolic semantics of π-calculus based on reactive systems and observed borrowed
contexts. In our approach, unification is the basic interaction mechanism. We con-
sider this as being the first step toward the definition of a formal framework (models,
proof techniques and verification toolkits) for the so-called service oriented computing
paradigm.

2 Verification via Semantics Equivalence

In the last thirty years the application of formal methods to software engineering has
generated techniques and tools to deal with the various facets of the software devel-
opment process (see e.g. [19] and the references therein). One of the main advantages
of exploiting formal techniques consists of the possibility of constructing abstractions
that approximate behaviours of the system under development. Often, these abstrac-
tions are amenable to automatic verification of properties thus providing a support to
the certification of software quality.

Model Checking for Nominal Calculi 3

Among the different proposals, verification via semantics equivalence provides a
well established framework to deal with the checking of behavioural properties. In
this approach, checking behavioural properties is reduced to the problem of contrast-
ing two system abstractions in order to determine whether their behaviours coincide
with respect to a suitable notion of semantics equivalence. For instance, it is possi-
ble to verify whether an abstraction of the implementation is consistent with its ab-
stract specification. Another example is provided by the information leak detection;
in [39] the analysis of information flow is done by verifying that the abstraction of the
system P is equivalent to another abstraction obtained by suitably restricting the be-
haviour of P. A similar idea has been exploited in [1] for the analysis of cryptographic
protocols.

Bisimilarity [69] has been proved to be an effective basis for verification based on
semantics-equivalence of system abstractions described in some process calculus, i.e.
Milner’s Calculus of Communicating Systems (CCS) [58]. Bisimilarity is a co-inductive
relation defined over a special class of automata called labelled transition systems. A
generic labelled transition system (LTS) describes the evolution of a system by its in-
teractions with the external environment. The co-inductive nature of bisimulation pro-
vides an effective proof method to establish semantics equivalence: it is sufficient to
exhibit a bisimulation relating the two abstractions. Bisimulation-based proof methods
have been exploited to establish properties of a variety of systems such as communica-
tion protocols, hardware designs and embedded controllers. Moreover, they have been
incorporated in several toolkits for the verification of properties. Indeed, finite state ver-
ification environments have enjoyed substantial and growing use over the last years.
Here, we mention the Concurrency WorkBench [21], the Meije-FC2 tools [8] and the
JACK toolkit [7] to cite a few. Several systems of considerable complexity have been
formalised and proved correct by exploiting these semantics-based verification environ-
ments.

The advent of mobile computing and wireless communication together with the de-
velopment of applications running over the Internet (Global Computing Systems) have
introduced software engineering scenarios that are much more dynamic than those han-
dled with the techniques discussed above. Indeed, finite state verification of global com-
puting systems is much more difficult: in this case, even simple systems can generate
infinite state spaces. An illustrative example is provided by the π-calculus [59, 75]. The
π-calculus primitives are simple but expressive: channel names can be created, commu-
nicated (thus giving the possibility of dynamically reconfiguring process acquaintances)
and they are subjected to sophisticated scoping rules. The π-calculus is the archetype of
name passing or nominal process calculi. Nominal calculi emphasise the principle that
name mechanisms (e.g. local name generation, name exchanges, etc.) provide a suitable
abstraction to formally explain a wide range of phenomena of global computing sys-
tems (see e.g. [80, 41]). Moreover, nominal calculi provide a basic programming model
that has been incorporated in suitable libraries or novel programming languages [22, 4].
Finally, the usefulness of names has been also emphasised in practice. For instance,
Needham [66] pointed out the role of names for the security of distributed systems. The
World Wide Web provides an excellent (perhaps the most important) example of the
power of names and name binding/resolution.

4 G.L. Ferrari, U. Montanari, and E. Tuosto

Nominal calculi have greater expressive power than ordinary process calculi, but the
possibility of dynamically generating new names leads also to a much more complicated
theory. In particular, bisimilarity is not always a congruence even for the strong bisimi-
larity. Moreover, the ordinary, underlying LTSs are infinite-state and infinite branching,
thus making verification via semantics equivalence a difficult task.

Bisimulation-based proof techniques for nominal calculi can be roughly divided
into two main families. The first consists of the syntax-based approaches while the sec-
ond refers to the syntax-free approaches. The former line of development represents
the states of the LTS with their syntactic denotation, while in the latter the states are
just items characterised by their properties and connections. We recall a few of the
approaches of both families without the ambition of being exhaustive.

Among the syntax-based, the most efficient approaches for finite-state verification
rely on symbolic semantics. Symbolic semantics [42, 6, 54], generalise standard opera-
tional semantics by keeping track of equalities among names: transitions are derived in
the context of such constraints. The main advantage of the symbolic semantics is that it
yields a smaller transition system. The idea of symbolic semantics has been exploited to
provide a convenient characterisation of open bisimilarity [74] and in the design of the
corresponding bisimulation checker, the Mobility WorkBench (MWB) [83]. The MWB
adapts to the case of the π-calculus the on-the-fly approach of [30], where the bisim-
ulation relation is constructed during the state space generation. The MWB checks
for open bisimilarity in the case of (finite-control) π-calculus processes and has also
been reworked to deal with the Fusion calculus [70]. To gain efficiency, the MWB has
been extended in [44] with modules implementing certain bisimulation-preserving pro-
gram transformations, the up-to-techniques (introduced in [73]). Symbolic semantics
has been also exploited in the design of the MCC model checker for the π-calculus [84].
The key idea of the approach is to provide an encoding of π-calculus symbolic seman-
tics as a logic programming system. It is important to emphasise that all the construc-
tions of the symbolic semantics rely on an external metalanguage and on a theory to
describe and reason about name equalities.

A different approach is the definition of semantic-based techniques where names
have a central role and are explicitly dealt with. Basically, in these frameworks it is
possible to allocate and garbage collect names, allowing the same names to be reused
with different meanings. This alternative line of research explores models of name-
passing calculi, regardless of their syntactic details and aims at providing uniform the-
ories that can be used to handle a variety of calculi and semantics. A well studied
approach is based on the so-called permutation model, whose ingredients are a set of
names and an action of its group of permutations (renaming substitutions) on an abstract
set [37, 40, 47, 64]. In this setting, transition systems for nominal calculi are constructed
via suitable functors over the underlying category of names and permutations: the in-
ternal theory of names.

It is important to notice that these approaches are syntax-free and provide the ab-
stract framework to capture the notions of name abstraction and fresh name that are
needed to describe and reason about nominal calculi. The HD-automata [34, 64, 71]
and indexed LTSs [17] are examples of syntax-free models of name process calculi
developed following the permutation approach.

Model Checking for Nominal Calculi 5

3 Model Checking

Probably, the most successful formal technique applied in practice in the verification
of systems is model checking (we refer to [18] for a detailed introduction to this field).
Roughly speaking, model checking is used to determine whether a system abstraction
(expressed as an automata or a term of a process calculus) satisfies a property (ex-
pressed as a modal or temporal logic formula). In order to model check a system with
respect to a given formula it is necessary to prove that the system is a model of the for-
mula. Tools supporting model checking techniques have matured to be used in practice
(e.g. the SPIN model checker [45, 46] and SMV [57]). Recently, these techniques have
been adopted to verify properties of programs written in high level programming lan-
guages like C++ and Java (e.g. JavaPathFinder [10], BANDERA [23], SLAM [3] and
BLAST [43]).

Model checking presents several advantages. It is completely automatic, provided
that finiteness of the system (the model) is guaranteed. Usually, it provides counterex-
amples when a system does not satisfy the property. This gives information on the design
choices that have lead to the implementation errors. Finally, it is possible to obtain very
high efficiency by exploiting refined data structures (e.g. BDDs), or symbolic techniques.

While modal and temporal logics have been proved suitable to express many prop-
erties of interest of concurrent systems, similar logics for global computing systems are
still lacking. Only recently a new class of modal logics, spatial logics [15, 16], has been
introduced to address the characterising issues of global computing. In our opinion, this
explains why traditionally model checking has been exploited on foundational models
for global computing only for limited fields and has not been fully applied to the general
setting.

Without the ambition of being exhaustive, we now review some of the approaches
to model check properties of nominal calculi. The MWB provides a model checking
functionality. This is based on the implementation of the tableau-based proof system
[25, 26] for the π-μ calculus, an extension of the propositional μ-calculus in which it is
possible to express name parameterisation and quantifications over names. The MCC
system also provides a model checking facility for the π-μ calculus.

The HD-automata Laboratory (HAL) [32] supports verification by model checking
of properties expressed as formulae of a suitable modal logic, a high level logic with
modalities indexed by π-calculus actions. This logic, although expressive enough to
describe interesting safety and liveness properties of π-calculus specifications, is less
expressive than the π-μ calculus. The construction of the HAL model checker takes di-
rect advantage of the finite representation of π-calculus specifications presented in [62].
In particular, a HAL module translates these logical formulae into classical modal logic
formulae and the translation is driven by the finite state representation of the system
(the π-calculus process) to be verified.

The most relevant examples of application of model checking techniques and nom-
inal calculi are those of the verification of security protocols [56, 20]. Several prototyp-
ical tools based on nominal calculi have been in fact designed and implemented [60,
55, 27, 38]. Indeed, nominal calculi provide a solid formal context for expressing many
facets of cryptographic protocols in natural way. For instance, many authentication pro-
tocols rely on nonce-challenges where a fresh sequence of bit must be generated; the

6 G.L. Ferrari, U. Montanari, and E. Tuosto

correctness of these protocols relies on the uniqueness of the nonces used in a given ses-
sion. This can be easily modelled in nominal calculi, e.g. the π-calculus, where freshly
generated names can be expressed and dealt with. An advantage of using model check-
ing is that, when the protocol does not satisfy the security property, then the counterex-
ample is the attack that an intruder could perform.

The main drawback of these approaches is that they require a finite state space
while, in general, the generation of fresh names easily leads to infinite state spaces,
if no countermeasure for garbage-collecting and reusing names is adopted. In practice,
this problem has been faced by imposing strong conditions that limit the generality
of the analysis. In particular, finitary systems, namely systems with infinite behaviour
which can be finitely represented, are not considered. For instance, the analysis are per-
formed on instances of protocols where only a limited number of participants is apriori
fixed and in general recursion or iteration is forbidden. Hence, model checking security
properties for nominal calculi can only deal with protocol sessions where a finite num-
ber of participants run in parallel and all the participants are non-recursive processes.
Recently, symbolic ad-hoc model checkers have been proposed to overcome these is-
sues e.g., [5, 82, 9, 2]. Despite the technical differences, all these approaches check a
given property by generating a “symbolic” state space, where states collect constraints
over the names involved in the execution. If there is a reachable state that violates the
property, but whose constraints hold, then an attack is found. The symbolic techniques
exploited in these approaches enforce efficiency both in the size of the generated state
space and in the visit of it, but they still require finite state space.

4 History-Dependent Automata

History Dependent automata (HD-automata in brief) are one of the proposal based on
the syntax-free approach. HD-automata are an operational model for history depen-
dent formalisms, namely those formalisms accounting for systems whose behaviour at
a given time might be influenced by some “historical” information which is too expen-
sive to be included explicitly in the states. HD-automata allow for a compact represen-
tation of agent behaviour by collapsing states differing only for the renaming of local
names and encompass the main characteristics of name-passing calculi, namely cre-
ation/deallocation of names. Basically, HD-automata associate a “history” to the names
of the states appearing in the computation, in the sense that it is possible to reconstruct
the associations which have led to the state containing the name. Clearly, if a state
is reached in two different computations, different histories could be assigned to its
names. Process calculi exhibiting causality, localities and mobility, and Petri nets, can
be translated (preserving bisimilarity) to HD-automata [71].

Different versions of HD-automata have been defined [71, 63, 64, 34]. When han-
dling causality, locality and the link mobility exhibited by the synchronous π-calculus
without matching, the simplest version can be easily translated to ordinary automata.
However, in general, a larger number of states is necessary for representing HD-autom-
ata with ordinary automata. The front-end towards the π-calculus and the translation
algorithm have been implemented in the HAL toolkit, which relies on the JACK verifi-
cation environment for handling the resulting ordinary automata.

Model Checking for Nominal Calculi 7

In a second version, states of HD-automata are equipped with name symmetries
which further reduce the size of the automata [64] and which guarantee the existence
of the minimal realization. The minimal automata are computed using a partition re-
finement algorithm [34]. They have a very important practical fall-out: for instance, the
problem of deciding bisimilarity is reduced to the problem of computing the minimal
transition system [67, 29, 49]. Moreover, the minimal automaton is indistinguishable
from the original one with respect to many behavioural properties (e.g., bisimilarity)
and properties expressed in most modal or temporal logics. The minimisation algo-
rithm, naturally suggested by the coalgebraic framework, has been implemented in the
Mihda toolkit [36] within the European project PROFUNDIS. Other versions of HD-
automata can be equipped with algebraic operations [61], thus relying on an algebraic-
coalgebraic, namely bialgebraic, theory.

Similarly to ordinary automata, HD-automata consist of states and labelled transi-
tions, their peculiarity being that states and transitions are equipped with names which
are no longer dealt with as syntactic components of labels, but become an explicit part of
the operational model. Noteworthy, names in states of HD-automata have local mean-
ing which requires a mechanism for describing how names correspond each other along
transitions.

Graphically, we can represent such correspondences using “wires” that connect
names of label, source and target states of transitions as in Figure 1, where a tran-

σ d

s1 d1

lab *

s

s3

s2

l1

d2

Fig. 1. A HD-automaton transition

sition from source state s to destination state d is depicted. State s has three names, s1,
s2 and s3 while d has two names d1 and d2 which correspond to name s1 of s and to
the new name �, respectively. The transition is labelled by lab and exposes two names:
name l1 and � the former corresponding to name s2 of s and the latter to a fresh name
denoted as �. Notice that name s3 is “deallocated” along such transition.

4.1 Minimising HD-Automata: An Informal Presentation

We report the formal definitions for named sets and named functions for representing
finite HD-automata. These are the basic concepts upon which the partition refinement
algorithm for HD-automata has been defined. For the sake of conciseness we give here
only an incomplete definition. The interested reader is referred to [36] for a full presen-
tation.

Definition 1 (Named Sets). Let N be a denumerable set of names. A named set is a
pair 〈Q,g〉 where Q is a totally-ordered set and g : Q → ⋃

N∈℘fin(N)
sym(N) assigns a

(finite) group of permutations over a finite set of names to elements in Q. For q ∈ Q, |q|
denotes the carrier of q defined as dom(ρ), where ρ ∈ g(q).

8 G.L. Ferrari, U. Montanari, and E. Tuosto

Definition 2 (Named Functions). Let N � be N ∪ {�} where � is an element not in
N . Given two named sets 〈Q,g〉 and 〈Q′,g′〉, a named function H : 〈Q,g〉 → 〈Q′,g′〉
consists of a pair of functions 〈h,Σ〉 where h : Q → Q′ and Σ : Q →℘fin(N → N �) such
that for all q ∈ Q and σ ∈ Σ(q)

– σ is injective, σ(|h(q)|) ⊆ |q|∪{�} and σ|N \|h(q)| is the identity;

– σ;g(q) ⊆ Σ(q);
– g(h(q));σ = Σ(q).

Named sets and functions form a category, NS, since named functions can be com-
posed and identity named functions can be easily defined (see [36] for details). Given
a set of labels L, if ℘fin() is the finite power set functor on category Set, we define
the functor ℘L on named sets as ℘L(〈Q,g〉) = 〈℘fin(L×Q),g′〉 where g′(B) contains all
those permutations ρ such that Bρ = B (Bρ is element-wise application of ρ to B).

Definition 3. A HD-automaton over L is a coalgebra for the functor ℘L.

The most important operation for minimising HD-automata is the normalisation
which removes redundant transitions. In nominal calculi, redundancy is strictly con-
nected to the concept of active names. A name n is inactive for an agent P if it is not
used in the future behaviour of P.

In π-calculus, if P is bisimilar to (νn)P we say that n is inactive in P (otherwise n is
active in P) and a transition P

xn−→ Q is redundant (in the early semantics of π-calculus)
when n is inactive in P. Deciding whether a name is active is as difficult as decid-
ing bisimilarity. The importance of redundancy emerges when we try to establish the
equivalence of states that have different numbers of free names. For instance, consider

P
def= x(u).(νv)(v̄z + ūy) and Q

def= x(u).ūy, which differ only for a deadlocked alterna-
tive. They are bisimilar only if, for any name substituted for u, their continuations re-
main bisimilar. However, the input transition P

xz−→ cannot be matched by Q when con-
sidering only the necessary input transitions of agents, namely those where the acquired
name is either a fresh name or one of the free names of the agent (as required for a fi-
nite representation of the transition system). Thus, unless the above transition of P is
recognised as redundant and removed, the automata for P and Q would not be bisimilar.
Redundant transitions occur when LTSs of π-calculus processes are compiled to HD-
automata and are removed during the minimisation algorithm, since it is not possible to
leave them out at compiling time1.

The minimisation algorithm relies on functor T consisting of the composition of the
normalisation functor and ℘L. Consider a T -coalgebra 〈D,K : D → T (D)〉, the minimi-
sation algorithm is defined by the two equations below.

1 In general, deciding whether a free input transition is redundant or not is equivalent to decide
whether a name is active or not; therefore, it is as difficult as deciding bisimilarity.

Model Checking for Nominal Calculi 9

H(0)
def= 〈q
→ ⊥,q
→ /0〉, where dom(H(0)) = D (1)

H(i+1)
def= K;T (Hi). (2)

In words, all the states of automaton K are initially considered equivalent, indeed, the
kernel of H0 gives rise to a single equivalence class containing the whole dom(K). At
the generic (i + 1)-th iteration, the image through T of the i-th iteration is composed
with K as prescribed in (2). The algorithm stops when the fixpoint H̄ of (2) is reached.
Then H̄ is the unique final coalgebra morphism and states mapped together by it are
bisimilar.

Theorem 1 (Convergence [36]). The iterative algorithm described by (1) and (2) is
convergent on finite state automata.

4.2 The PROFUNDIS Web

In the last years distributed applications over the World-Wide Web, have attained wide
interest. Recently, the Web is exploited as a service distributor and applications are
no longer monolithic but rather made of components (i.e., services). Applications over
the Web are developed by combining and integrating Web services. The Web service
framework has emerged as the standard and natural architecture to realize the so called
Service Oriented Computing (SOC) [24, 68]. In [33] a Web-service infrastructure was
developed integrating verification toolkits for checking properties of mobile systems
and related higher-level toolkits for verifying security protocols. The development of
the verification infrastructure has been performed inside the PROFUNDIS project (see
URL http://www.it.uu.se/profundis) within the Global Computing Initiative of
the European Union. For this reason we called it the PROFUNDIS WEB, PWeb for
short. The current prototype implementation of the PWeb infrastructure can be exer-
cised on-line at the URL http://jordie.di.unipi.it:8080/pweb.

Beyond the current prototype implementation, we envisage the important role that
will be played by PWeb service coordination. Indeed, service coordination provides
several benefits:

– Model-based verification. The coordination rules impose constraints on the exe-
cution flow of the verification session thus enabling a model-based verification
methodology where several descriptions are manipulated together.

– Modularity. The verification of the properties of a large software system can be re-
duced to the verification of properties over subsystems of manageable complexity:
the coordination rules reflect the semantic modularity of system specifications.

– Flexibility. The choice of the verification toolkits involved in the verification ses-
sion may depend on the specific verification requirements.

The PWeb implementation has been conceived to support reasoning about the be-
haviour of systems specified in some dialect of the π-calculus. It supports the dy-
namic integration of different verification techniques (e.g. standard bisimulation check-
ing and symbolic techniques for cryptographic protocols). The PWeb integrates several
independently-developed toolkits, e.g., Mihda [35, 36] and several tools for verifying

10 G.L. Ferrari, U. Montanari, and E. Tuosto

cryptographic protocols, like TRUST [82] and STA [5]. The PWeb has been designed
by targeting also the goal of extending available verification environments (Mobility
Workbench [83], HAL [31, 32]) with new facilities provided as Web services.

The core of the PWeb is a directory service. A PWeb directory service is a com-
ponent that maps the description of the Web services into the corresponding network
addresses and has two main facilities: the publish facility, invoked to make a toolkit
available as Web service, and the query facility, used to discover available services. For
instance, Mihda publishes the reduce service which accepts a (XML description of)
HD-automaton describing the behaviour of a π-calculus agent. Once invoked, reduce
performs the minimisation of the HD-automaton.

The service discovery mechanisms are exploited by the trader engine which ma-
nipulates pools of services distributed over several PWeb directory services. It can be
used to obtain a Web service of a certain type and to bind it inside the application. The
trader engine gives to the PWeb directory service the ability of finding and binding
web services at run-time without “hard-coding” the name of the web service inside the
application code. The following code describes the use of a simple trader for the PWeb
directory.

import Trader
offers = Trader.query("reducer")
mihda = offers[0]

The code asks the trader for a reduce service and selects the first of them. The
trader engine allows one to hide network details in the service coordination code. A
further benefit is given by the possibility of replicating the services and maintaining a
standard access modality to the Web services under coordination.

The fundamental technique enabling the dynamic integration of services is the sep-
aration between the service facilities (what the service provides) and the mechanisms
that coordinate the way services interact (service coordination). An example of service
coordination for checking whether a process A is a model for a formula F is as follows

hd = mihda.compile(A)
reduced_hd = mihda.reduce(hd)
reduced_hd_fc2 = mihda.Tofc2(reduced_hd)
aut = hal.unfold(reduced_hd_fc2)
if hal.check(aut, F):

print ’ok’
else:

print ’ko’

Variables mihda and hal have been linked by the trader engine to the required ser-
vices (acquired as illustrated before). Now, the compile service of mihda is invoked
yielding an HD-automaton (stored in hd). Next, hd is minimised by invoking the ser-
vice reduce of Mihda; and afterward it is transformed into the FC2 format by a HAL
service. Finally, the HAL service unfold generates an ordinary automaton from the
FC2 representation of the automaton and prints a message which depends on whether
the system satisfies the formula F or not. This is obtained by invoking the HAL model
checking facility check.

Model Checking for Nominal Calculi 11

5 A Borrowed Context Semantics for the Open π-Calculus

The version of the π-calculus implemented in the Mihda toolkit does not rely on a sym-
bolic semantics. This fact makes unnecessarily large the number of states, due to the
existence of different input transitions for different instantiations of the input variable.
While a symbolic semantics for a syntax-based version of HD-automata for the open
π-calculus has been defined in [72], it might be convenient to define a symbolic se-
mantics for the ordinary syntax-free HD-automata. More generally, in Service Oriented
Computing (SOC) [24, 68] one would like to have more sophisticated mechanisms than
service call and parameter passing for modelling the phase of service discovery and
binding. The SOC paradigm is the emerging technology to design and develop global
computing systems: several research activities have addressed the theoretical founda-
tions of the SOC paradigm by exploiting formal frameworks based on process cal-
culi [12, 51, 14, 11] (see also [81] for an informal presentation on the usefulness of
nominal calculi to design workflow business processes).

When looking for a generalisation of parameter passing, logic programming unifi-
cation comes to mind, or rather constraint programming, when service level agreements
involve nonfunctional issues. When the binding occurs, not only the callee is instanti-
ated, but also the caller. The instantiation that must be applied to the caller is formally
analogous to a missing context that must be borrowed by a process in order to undergo
a reduction. In this line of thought, some recent works about systematic methods for
deriving LTSs from reduction rules look relevant. In particular, the approach we follow
relies on the notion of reactive system, introduced by Leifer and Milner [53, 52], used
by Jensen and Milner in [48] for deriving a LTS for bigraphs and further developed by
Sassone, Lack and Sobocinski [76, 78, 50] using G-categories and adhesive categories.

In this section we will consider a simplified version of open π-calculus and we
will develop a semantics for it using the notion of reactive systems. While the corre-
sponding bisimilarity semantics turns out to be finer, we think that this exercise shows
the feasibility of employing context borrowing for modelling symbolic semantics. The
generality of the reactive system approach gives some hope that interesting abstractions
of the SOC paradigm could also be modelled that way. Note however that the transi-
tion system which can be derived from reactive rules in our development is not really
suitable for a HD-automata implementation, since new names are never forgotten, thus
making the transition systems infinite in all but the most trivial cases. We comment in
Section 6 about possible solutions of this problem.

5.1 Open π-Calculus

One of main peculiarities of the π-calculus is the richness of its observational seman-
tics. Initially, it came equipped with the early and the late observational semantics [59]
which differ each other in the way they deal with name instantiation. Symbolic se-
mantics [42] generalises standard operational semantics by keeping track of equalities
among names: transitions are derived in the context of such constraints. The main ad-
vantage of the symbolic semantics is that it yields a smaller transition system. The idea
of symbolic semantics has been exploited to provide a finitary characterisation of open

12 G.L. Ferrari, U. Montanari, and E. Tuosto

Table 1. Semantics of π−

(PRE) α.p
α−→ p (SUM) p

μ−→ p′

p+q
μ−→ p′

(PAR) p
μ−→ p′

p | q
μ−→ p′ | q

if bn(μ)∩ fn(q) = /0 (COM) p
āb−→ p′ q

a′(c)−→ q′

p | q
a=a′−→ p′ | q′{b/c}

(REP)
p | p!

μ−→ q

p!
μ−→ q

bisimilarity [74] which, differently from the early and the late semantics, is a congru-
ence with respect to the contexts of the π-calculus.

We consider a subset of the π-calculus without neither matching nor restriction op-
erators. Given a numerable infinite and totally ordered set of names N = {a1,a2, . . .},
the set P of π− processes is defined by the grammar

p,q ::= 0
∣∣ μ.p

∣∣ p | q
∣∣ p+q

∣∣ p! α ::= āb
∣∣ a(b).

As usual, name a is free in āb and a(b), while b is free just in the former case and bound
in the latter. Moreover, a is called the subject and b the object of the action. Considering
a(b).p, the occurrences of b in p are bound, free names are defined as usual and fn(p)
indicates the set of free names of process p. Differently than in the full π-calculus, only
the input prefix binds names. Processes are considered equivalent up-to α-renaming of
bound names.

The operational rules for the semantics of π− are those reported in Table 1 together
with the symmetric rules for (PAR) and (SUM). The rules specify an LTS whose labels
(denoted as μ) are either actions or fusions. The only non-standard rule is (COM) which
states that an output āb and an input a′(c) can synchronise provided that a and a′ are
fused. Notice that, if a and a′ are the same, a = a′ is the identity fusion, denoted as ε,
which corresponds to the usual silent action τ.

The transition system of π− resulting from specification rules in Table 1 is the same
as the one obtained by applying the LTS rules of [74] to π−. The only differences
between the two LTSs are in the syntax of the labels and in the rule (COM). In [74] the
labels are pairs (M,μ) or (M,τ) where M are sequences of fusions. It is easy to see that
our label μ corresponds to (μ,τ) if μ is a fusion label and to (/0,μ) if it is an action label.
The communication rule of [74] is

p
(M,āb)
−→ p′ q

(N,a′(c))
−→ q′

p | q
(L,τ)
−→ p′ | q′{b/c}

L =
{

MN[a = a′], if a = a′
MN, if a = a′

which resembles rule (COM) of Table 1. However it is considerably more complex since
it must also collect the fusions due to matchings.

Proposition 1. Under the label correspondende illustrate above, let p ∈ P be a π−
process, then p

μ−→ q if, and only if, the same transition can be derived from the transition
system in [74] (changing μ with the corresponding label of [74]).

Model Checking for Nominal Calculi 13

Proof. The (⇒) part trivially follows by induction on the length of the proof of p
μ−→ q.

The (⇐) part follows by observing that the length of the fusions in labels of [74] is one,
since π− lacks the matching operator. ��

We recast the definition of open bisimulation given in [74] for π−.

Definition 4 (Open Bisimulation). A symmetric relation S ⊆ P × P is an open bisim-
ulation if whenever pSq,

– if p
α−→ p′ then there is q′ such that q

α−→ q′ and p′Sq′;
– if p

ε−→ p′ then there is q′ such that q
ε−→ q′ and p′Sq′;

– if p
a=b−→ p′ then there is q′ such that (q a=b−→ q′ ∨q

ε−→ q′)∧σa=b(p′)Sσa=b(q′),

where σa=b is a substitution that maps a to b (or viceversa) and leaves the other names
unchanged. Two processes p and q are open bisimilar, written p ∼ q, when there is an
open bisimulation relating them.

In order to compare the ordinary bisimilarity ∼ with the one arising from the Leifer
and Milner approach, it is convenient to introduce an additional bisimilarity for π−.

Definition 5 (Syntactical Bisimilarity). The syntactical bisimilarity relation � for π−
is obtained by simplifying the last condition of Definition 4 with

if p
a=b−→ p′ then there is q′ such that q

a=b−→ q′ and σa=b(p′)Sσa=b(q′).

It is immediate to see that � is finer than or equal to ∼. In fact its conditions for match-
ing transition labels are more demanding than those for ∼.

Theorem 2 (Open Versus Syntactical Bisimilarity). We have � ⊆ ∼.

An equivalence relation relating terms of an algebra is said a congruence if it is
preserved by all the operation of the algebra, or, equivalently, if it is preserved in all
the contexts of the language. In [74], ∼ has been proven to be a congruence for the
π-calculus.

5.2 Reactive Systems

A systematic method for deriving bisimulation congruence from reduction rules has
been proposed by Leifer and Milner in [53, 52], on turn inspired by [79], where the
idea of interpreting p

c−→ q as “in the context c, p reacts and becomes q” has been
proposed. Also, the approach of observing contexts imposed on agents at each step has
been introduced in [65], yielding the notion of dynamic bisimilarity. Following [28],
we will call borrowed context the context c. The basic idea of [53, 52] is to express
“minimality” conditions for electing the context c among the (possibly infinite) ones
that allow p to react. These conditions have been distilled by [53] in the notion of
relative push-out (RPO) in categories of reactive systems. The RPO construction is
reminiscent of the unification process of logic programming, which in fact can be given
an interactive semantics in much the same style [13].

14 G.L. Ferrari, U. Montanari, and E. Tuosto

We want to apply this approach to a reduction semantics of π− that reflects its LTS
semantics, therefore, we collect here the main definitions and results of the RPO ap-
proach. We remark that Definitions 6, 7, 8 and Theorem 3 are borrowed from [53, 52]
(aside from some minor notational conventions).

Let C be an arbitrary category whose arrows are denoted by f , g, h, k and whose
objects by m, n. Hereafter, f ;g will indicate arrow composition.

m

g0

���������������

g1

���������������

f0

���������� f1

����������

(a)

m

h0

��

g0

���������������

h

��

h1

��

g1

���������������

f0

���������� f1

����������

(b)

m

h′
��

		������

h′
0
���

���
��

h′
1

����

����
��

k

h0

��

g0

���������������

h

��

h1

��

g1

���������������

f0

���������� f1

����������

(c)

Fig. 2. Diagrams for Definitions 6

Definition 6 (Relative Push-Out and Idem Push-Out). Consider the commuting di-
agram in Figure 2(a) consisting of f0;g0 = f1;g1. A triple 〈h0,h1,h〉 is an RPO if di-
agram in Figure 2(b) commutes and for any triple 〈h′

0,h
′
1,h

′〉 satisfying f0;h′
0 = f1;h′

1
and h′

i;h′ = gi, for i = 0,1 there exists a unique k such that diagram Figure 2(c) com-
mutes. Diagram (a) is an idem push-out (IPO) if 〈g0,g1, id〉 is an RPO.

Definition 7 (Reactive System). A reactive system is a category C with the following
extra components:

– a distinguished (not necessarily initial) object �;
– a set of pairs of arrows (l : � → m,r : � → m) called reaction rules;
– a subcategory D of reactive contexts with the property that if d;d′ is an arrow of

D, then both d and d′ are arrows in D.

The IPO construction yields the definition of labelled transition out of a reduction
semantics and the corresponding observational semantics.

Definition 8 (Labelled Transition and Bisimulation). We write a
f � a′ iff there

exist a reaction rule (l,r) and a reactive context d such that

f ��				
d��

�
a

���
l

�����
is an IPO and

a′ = r;d.
A symmetric binary relation S ⊆ ⋃

m C[�,m] × ⋃
m C[�,m], where C[x,y] is the set of

all the arrows from x to y of category C, is a bisimulation over
f � iff for (a,b) ∈ S,

if a
f � a′ then there is b′ such that b

f � b′ and (a′,b′) ∈ S.

Model Checking for Nominal Calculi 15

The central result of [53] can be stated as follows:

Theorem 3. The largest bisimulation over
f � is a congruence provided that C has

all redex-RPOs.

The category C has all redex-RPOs when for all reaction rules (l,r), all arrow a, f and

all contexts d such that a; f = l;d then the square

f ��				
d��

�
a

���
l

�����
has an RPO.

5.3 A Reactive System for the Open π-Calculus

We shall specify a reactive system semantics for π− taking actions and name substi-
tutions as reactive contexts and by defining rules in such a way that the LTS will be
essentially the same as the one defined in Section 5.1. However, the observational se-
mantics resulting from the RPO approach considers labels as purely syntactical items
and transitions can match only if they have identical labels. In the definition of open
bisimilarity, instead, a proper fusion can be matched by an ε label. Thus it cannot be
expected that the two bisimilarity relations coincide. In fact, we will show that the
bisimilarity arising from the RPO approach is finer than open bisimilarity.

The reduction semantics of π− is specified with rules of the form P;μ → q, where μ
is an action or a fusion, q ∈ P and P is a normalised process (formally defined below). A
rule P;μ → q corresponds to a π− transition P

μ−→ q, the only difference being that in the
reactive system approach processes must be typed by (a natural number larger or equal
than) the largest index of their free variables. Normalised processes can be thought of
as being processes where all the occurrences of free variables are replaced by differ-
ent variables {a1, . . . ,an} ordered in some standard way. Normalised processes give a
logic programming flavour to the reduction semantics. In fact, they are reminiscent of
predicate symbols, while processes correspond to goals: as goals are instantiations of
predicate symbols, any process p ∈ P can be regarded as the instantiation of a nor-
malised process P. This amounts to say that, whenever p and P;μ (i.e., the instance
and the head of the clause) unify, then a transition for p can be deduced. They unify
whenever P is the normalised process of p. Moreover, the label is the borrowed context,
which turns out either to be μ whenever μ is an action or to be a fusion not implied by
the substitution mapping P to p, or else to be ε if it is implied.

Let p ∈ P, we assume given two functions p̂ and σp such that

fn(p̂) = {a1, . . . ,an}, ˆ̂p = p̂, p = σp(p̂), p = σ(q) =⇒ p̂ = q̂ ∧ σp = σ◦σq,

where σp : fn(p̂) → fn(p) and σ : fn(q) → fn(p) are surjective name substitutions ho-
momorphically extended to π− agents (σ() stands for the extension of σ to agents). It
is easy to show that p̂ is a linear process, namely each free variable occurs exactly once.
Indeed, let x ∈ N occur twice in p ∈ P and assume by absurd that p̂ = p. Now, consider
p′ ∈ P to be the term obtained by replacing in p the first and the second occurrence
of x with y and z, respectively. Then p = σ(p′), where σ = {y
→ x,z
→ x}, thus by
definition, p̂ = p̂′. But there is no σp′ such that p′ = σp′(p̂′) = σp′(p).

Notice that ˆ and σ only involve syntactical aspects of agents, therefore they can be
easily defined on the syntax trees of π−. For instance, p̂ might be defined as the agent

16 G.L. Ferrari, U. Montanari, and E. Tuosto

having the same syntax tree of p where the i-th leaf is named by ai, assuming that leaves
are ordered according to a depth-first visit: substitution σp is defined accordingly. The
order of leaves is arbitrary and different definitions might be possible, however, all of
them differ only for a permutation of (the indexes of) fn(p̂).

Definition 9 (Normalised Processes). The processes that are fixpoints of ˆ are the nor-
malised processes and are ranged over by P.

Before defining PAC, the category we work with, we specify its (basic) arrows
where the underlying objects are elements of the set ω� = ω ∪ {�} consisting of the
natural numbers plus a distinguished element �.

Definition 10 (Basic Arrows). We define the following basic arrows.
A normalised agent arrow Pm : � → m is a pair consisting of a normalised process P
and a natural number m ∈ ω such that, for any an ∈ fn(P), n ≤ m. We write P instead
of Pm when fn(P) contains exactly m names.
A fusion arrow from m to n is a surjective substitution from {a1, . . . ,am} to {a1, . . . ,an}
written as σ : m → n.
Action arrows are π− actions parameterised on ω, more precisely

ām
i a j : m → m am

i : m → m+1 i, j ≤ m

that respectively correspond to output and input transitions with the object name in the
latter case being am+1.
A sequence arrow γ : m0 → m1 is a tuple 〈μ1, . . . ,μk,σ〉 where k ≥ 0, for each 0 < i ≤ k,
μi : mi−1 → mi is an action arrow and σ : mk → m′ is a fusion arrow. In addition,
we require that, if σ(ai) = σ(a j) with i < j, then name a j does not appear in actions
μ1, . . . ,μk. Notice that for k = 0 we obtain fusion arrows while for k = 1 and σ = idm

we obtain action arrows.
A process arrow p : � → m is a tuple 〈P,μ1, . . . ,μk,σ〉 where P : � → m0 is a normalised
agent arrow and 〈μ1, . . . ,μk,σ〉 is a sequence arrow such that dom(μ1) = m0. Notice
that for k = 0, and σ = idm0 we obtain normalised agent arrows.

Definition 11 (Process-Action-Context Category). The process-action-context cate-
gory PAC is the category having as objects elements of ω� and as morphisms:

1. the identity arrows id� : � → � and idm : m → m, the latter being the identity sub-
stitution on {a1, . . . ,am};

2. the normalised agent arrows, the fusion arrows and the action arrows as genera-
tors; and

3. the arrows freely generated by 2 under the composition operation ; subject to the
usual associativity and identity axioms and, in addition, to the following axioms:

σ : n → m am
i : m → m+1

σ;am
i = an

h;σ′ , h =min
l

{σ(al) = ai} σ′ = σ[n+1
→ m+1]

σ : n → m ām
i a j : m → m

σ; ām
i a j = ān

hak;σ
, h =min

l
{σ(al) = ai} k =min

l
{σ(al) = a j}

Model Checking for Nominal Calculi 17

(σ[n+1
→ m+1] stands for the function that behaves as σ for any a ∈ {a1, . . . ,an}
and maps an+1 to am+1).

The arrows of PAC can be given an intuitive standard representation that will be useful
later in the proofs.

Proposition 2. The arrows of PAC are exactly the process arrows, the sequence arrows
and the identity arrow id�.

Proof. First, observe that: (a) a normalised agent arrow is a process arrow with an empty
sequence of actions and an identity substitution. (b) A fusion arrow σ is a sequence
arrow with no action arrows and with σ as the fusion arrow; this also yields the identities
idm where m ∈ ω. (c) Similarly, action arrows are sequence arrows with a single action
arrow and the identity substitution. Now, we prove that the composition of a process
(resp. sequence) arrow with a sequence arrow yields a process (resp. sequence) arrow.
Consider p : � → m and γ : m → n be the process arrow 〈P,μ1, . . . ,μh,σ〉 and the sequence
arrow 〈μ′

1, . . . ,μ
′
k,σ

′〉. By definition p;γ = 〈P,μ1, . . . ,μh,σ,μ′
1, . . . ,μ

′
k,σ

′〉, and, observing
that the two last axioms in 3 of Definition 11, allows to “exchange” a fusion arrow
with an action arrow, we trivially conclude that p;γ = 〈P,μ1, . . . ,μh,μ′′

1 , . . . ,μ
′′
k ,σ

′′;σ′〉,
for suitable μ′′

1 , , . . . ,μ
′′
k and σ′′. We remark that if, at any stage, two names are fused,

say ai and a j with i < j, then a j is replaced by ai by definition and this guarantees
that 〈P,μ1, . . . ,μh,μ′′

1 , . . . ,μ
′′
k ,σ

′′;σ′〉 is a process arrow. The prove is the same when
considering composition between two sequence arrows.

The proof is concluded by showing that different arrows cannot be equated by ax-
ioms. In other words, we prove that the standard representation of an arrow is unique
(up to identities). Indeed, by inspecting the initial part of the proof we see that equality
between two arrow can be proved only by shifting back and forth fusion arrows or in-
troducing/cancelling identities. In the former case, any shift uniquely determines both
the action and the fusion arrow of the equated arrows (Definition 11). ��

As already mentioned, in the above definitions we have introduced typed versions
(the type is a natural number m) of normalised agents and actions (substitutions are
already typed), such that their names are in {a1, . . . ,am}. This is apparently required by
the “box and wires” structure of category PAC. We continue defining typed versions of
ordinary processes and of fusions.

Given a π− agent p and a natural number m such that m ≥ max{k | ak ∈ fn(p)}, we
denote as pm : � → m the arrow p̂n;σ where n = |fn(p̂)|+m−|fn(p)| and σ : n → m is
defined as:

– σ(ai) = σp(ai), if i ∈ fn(p̂),
– σ bijective and index monotone when restricted to i ∈ fn(p̂) (where σ is index

monotone if σ(ai) = σ(ah), σ(a j) = σ(ak) and i ≤ j implies h ≤ k).

Basically, pm represents the agent p in terms of a normalised process with n variables.
Given a fusion ai = a j and m ∈ ω, with i < j ≤ m, the substitution [ai = a j]m : m → m−1
is defined as follows:

[ai = a j]m(ak) =

⎧⎨
⎩

ak, k < j
ai, k = j
ak−1, j < k ≤ m

18 G.L. Ferrari, U. Montanari, and E. Tuosto

γ̂1

��

γ′
��

γ̂3

��

γ̂2

��

γ
����������

�

p

������� q

���������

(a)

γ′
1

��

γ′
��

γ′
3

��

γ′
2

��

γ
����������

�

p

������� q

���������

(b)

γ̂1

��

γ′
���������

γ̂3

��

γ̂2

��

γ
�������

γ1

������� γ2

���������

(c)

Fig. 3. Diagrams for proofs in Theorem 4

In words, [ai = a j]m maps the initial m names to the initial m − 1 by replacing a j with
ai and mapping the names greater that a j to their predecessors.

Definition 12 (PAC Reaction Rules). The reaction rules are those generated by the
following inference rules where m ≥ |fn(P)|:

P
āb−→ q

Pm; āmb =⇒ qm

P
a(am+1)−−−→ q

Pm;am =⇒ qm+1

P
ai=a j−−→ q i = j

Pm; [ai = a j]m =⇒ qm; [ai = a j]m

P
ε−→ q

Pm =⇒ qm

Definition 12 specify the reduction rules of PAC which rely on the LTS semantics of
π−. Take the first rule; it states that, if a normalised process P makes an output transition
to q, then, in PAC, the corresponding arrow composed with the (output) action arrow
(considered in at least |fn(P)| variables m) reduces to the arrow representing q in m
variables. Basically, the same can be said for the input and fusion transitions, aside that
the former introduces the new variable am+1 while the latter eliminates a variable. The
last rule is just the special case of fusing a name with itself (i.e., P; id is the lhs of the
reduction).

Theorem 4. PAC has redex relative pushouts (RPOs).

Proof. We must prove that, given a reaction rule q =⇒ r, for any process arrow p and
any sequence arrows γ, γ ′ such that p;γ ′= q;γ, there exist three sequence arrows γ̂1, γ̂2

and γ̂3 that satisfy the following conditions:

a. the diagram in Figure 3(a) commutes, and
b. for any sequence arrows γ ′

1 , γ ′
2 and γ ′

3 such that the diagram in Figure 3(b) com-

mutes, there is a unique γ̂ such that both commute.

1̂

��

′
1

���������
ˆ

��

2̂

��

′
2

��������� and

ˆ
��

3̂

���������

′
3

��

Model Checking for Nominal Calculi 19

Let us remark that the reduction contexts are all the arrows of PAC, however, for redex
RPOs, γ and γ′ can only be sequence arrows. Moreover, since p;γ′ = q;γ, for Propo-
sition 2, p and q are process arrows that are the composition of the same normalised
linear arrow, say P with two sequence arrows. Hence, without loss of generality, it suf-
fices to prove that there are arrows γ̂1, γ̂2 and γ̂3 forming an RPO for any diagram as in
Figure 3(c).

The proof continues by case analysis.

– First assume that γ2 is an identity fusion arrow and consider the commuting diagram
below.

γ′ ���������

γ
�������

γ1

������� id

���������

We prove that γ̂1 = id, γ̂2 = γ1 and γ̂3 = γ′ is an RPO. Indeed,
condition a) trivially holds because the external square commutes
by hypothesis. Consider three sequence arrows γ′

1, γ′
2 and γ′

3 such
that γ′ = γ′

1;γ′
3, γ = γ′

2;γ′
3 and γ1;γ′

1 = γ′
2. Then, assuming γ̂ = γ′

3
we obtain that the commutativity of the triangles corresponding to

condition b) holds. Finally, uniqueness of γ̂ is guaranteed by observing that γ̂1 is the
identity.

– Let γ2 is a generic fusion arrow σ. By Proposition 2, there is a sequence arrow γ′′

such that σ;γ = γ′′. Hence, we can equivalently prove that

γ′ ������
γ′′����

γ1

����
id

������

has an RPO,

which hold by the previous case.
− Finally, assume that γ2 is an action arrow μ. By hypothesis, γ1;γ′ = μ;γ, then, by

Proposition 2,
• either γ1 = μ;γ′

1
• or γ1 is the identity and γ′ = μ;γ′′.

In the former case, the proof reduces to show that

γ′ ������
γ′′����

γ′
1

����
id

������
has an RPO, which hold

by the previous case. While, in the latter case, the redex diagram is

γ′ ������
γ����

id

���� μ

������

and,

proceeding as before, it is easy to see that μ, id and γ constitute an RPO.
��

Definition 13 (Labelled Transitions). The diagram in Figure 3(a) is an IPO when

it is an RPO and γ̂1 = γ′, γ̂2 = γ and γ̂3 = id. We write p
γ′

� r;γ when there is a
reduction rule q =⇒ r and the diagram Figure 3(a) is an IPO. This defines a LTS. The
corresponding bisimilarity according to Definition 8 is denoted as �.

The results in [53] and Theorem 12 guarantee the following corollary.

Corollary 1. Bisimilarity relation � is a congruence.

20 G.L. Ferrari, U. Montanari, and E. Tuosto

The LTS of Definition 13 is essentially the same as in Section 5.1 indeed, the states
are π− processes and it is possible to show that the IPOs of PAC characterise the tran-
sitions of [74]. Thus bisimilarity relation � essentially coincides with syntactic bisimi-
larity �.

Theorem 5 (� Is �). Relation �, which is defined on process arrows pm, when re-
stricted to those pm with m = max{k | ak ∈ fn(p)}, coincides with �.

Notice that, due to the missing restriction operator, two agents with different sets of free
names cannot be bisimilar. Thus, observing actions or typed actions does not make a
difference.

From Theorem 2 we know that � is finer than or equal than ∼. It is easy to see that
it is finer from this example. Consider the following processes

p = (āb | a′(c))+(d̄e | d(f)) q = āb.a′(c)+a′(c).āb+(d̄e | d(f)),

then p ∼ q because the synchronisation between āb and a′(c) in a context that identifies
a and a′ is matched by the (unique) synchronisation of q. On the contrary, p � q because

the transition p a=a′
� cannot be matched by q. We can thus conclude the following fact.

Theorem 6. Relation � when restricted to those pm with m = max{k | ak ∈ fn(p)}, is
finer than ∼.

6 Conclusions

In the paper we surveyed some of the approaches for model checking nominal calculi,
focusing on HD-automata and on the existing toolkits for handling them. We also intro-
duced a simplified version of open π-calculus and we proposed a bisimilarity semantics
for it based on a reactive system with observed borrowed contexts. This approach has
been proposed by Leifer and Milner [53, 52] and further developed by Sassone, Lack
and Sobocinski [76, 78, 50] using G-categories and adhesive categories. The generality
of the reactive system approach gives some hope that interesting abstractions of the
SOC paradigm could also be modelled that way.

However we noticed that the transition system we obtain in this manner is not re-
ally suitable for a HD-automata implementation, since new names are never forgotten.
To avoid this problem, it might be necessary to take advantage of the extended theory
developed by Sassone, Lack and Sobocinski [76, 78, 50]. In particular, the actions of
nominal calculi which forget names could be represented as cospans of suitable ad-
hesive categories. In fact several expressive graph-like structures can be represented
by adhesive categories and the existing theory guarantees that the categories of their
cospans have the all redex-RPOs property [77].

Acknowledgements

The authors thank Vladimiro Sassone and Pawel Sobocinski for their helpful comments
on an earlier draft of this paper.

Model Checking for Nominal Calculi 21

References

1. M. Abadi and A. Gordon. A Calculus for Cryptographic Protocols: The Spi Calculus. Inf.
and Comp., 148(1):1–70, January 1999.

2. G. Baldi, A. Bracciali, G. Ferrari, and E. Tuosto. A Coordination-based Methodology for
Security Protocol Verification. In WISP, ENTCS, Bologna, Italy, June 2004. Elsevier. To
appear.

3. T. Ball and S. Rajamani. The SLAM Toolkit. In G. Berry, H. Comon, and A. Finkel, editors,
CAV, volume 2102 of LNCS, pages 260–264. Springer, 2001.

4. N. Benton, L. Cardelli, and C. Fournet. Modern Concurrency Abstractions for C#. TOPLAS,
26(5):269–304, Sept. 2004.

5. M. Boreale and M. Buscemi. A Framework for the Analysis of Security Protocols. In
L. Brim, P. Jančar, M. Křetinský, and A. Kučera, editors, CONCUR, volume 2421 of LNCS,
pages 483–498. Springer, Aug. 2002.

6. M. Boreale and R. De Nicola. A Symbolic Semantics for the π-calculus. Inf. and Comp.,
126(1):34–52, April 1996.

7. A. Bouali, S. Gnesi, and S. Larosa. The Integration Project for the JACK Environment. In
EATCS Bull., volume 54, pages 207–223. Centrum voor Wiskunde en Informatica (CWI),
1994.

8. A. Bouali, A. Ressouche, V. Roy, and R. de Simone. The FC2TOOLS Set. In R. Alur and
T. Henzinger, editors, CAV, volume 1102 of LNCS, pages 441–445, New Brunswick, NJ,
USA, 1996. Springer.

9. A. Bracciali, A. Brogi, G. Ferrari, and E. Tuosto. Security Issues in Component Based
Design. In U. Montanari and V. Sassone, editors, ConCoord: International Workshop on
Concurrency and Coordination, volume 54 of ENTCS, Lipari Island - Italy, July 2001. Else-
vier.

10. G. Brat, K. Havelund, S. Park, and W. Visser. Model Checking Programs. Automated Soft-
ware Engineering, 10(2):203–232, 2003.

11. R. Bruni, C. Laneve, and U. Montanari. Orchestrating Transactions in Join Calculus. In
L. Brim, P. Jancar, M. Kretinsky, and A. Kucera, editors, CONCUR, volume 2421 of LNCS,
pages 321–336. Springer, 2002.

12. R. Bruni, H. Melgratti, and U. Montanari. Theoretical Foundations for Compensations in
Flow Composition Languages. In POPL, 2005. To appear.

13. R. Bruni, U. Montanari, and F. Rossi. An Interactive Semantics of Logic Programming.
Theory and Practice of Logic Programming., 1(6):647–690, 2001.

14. M. Butler and C. Ferreira. An Operational Semantics for StAC, a Language for Modelling
Long-Running Business Transactions. In R. De Nicola, G. Ferrari, and G. Meredith, editors,
COORDINATION, volume 2949 of LNCS, pages 87–104. Springer, 2004.

15. L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part I). Inf. and Comp., 186,
2003.

16. L. Caires and L. Cardelli. A Spatial Logic for Concurrency II. TCS, 322(3):517–565, Sept.
2004.

17. G. Cattani and P. Sewell. Models for Name-Passing Processes: Interleaving and Causal
(Extended Abstract). Inf. and Comp., 190(2):136–178, May 2004.

18. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
19. E. Clarke and J. Wing. Formal Methods: State of the Art and Future Directions. ACM

Computing Surveys, 28(4):626–643, December 1996.
20. S. Clarke, Edmund M. Jha and W. Marrero. Using State Space Exploration and a Nautural

Deduction Style Message Derivation Engine to Verify Security Protocols. In In Proc. IFIP
Working Conference on Programming Concepts and Methods (PROCOMET), 1998.

22 G.L. Ferrari, U. Montanari, and E. Tuosto

21. R. Cleaveland, J. Parrow, and B. Steffen. The Concurrency Workbench: A Semantics-Based
Tool for the Verification of Concurrent Systems. TOPLAS, 15(1):36–72, Jan. 1993.

22. S. Conchon and F. Le Fessant. Jocaml: Mobile Agents for Objective-Caml. In International
Symposium on Agent Systems and Applications, pages 22–29, Palm Springs, California, Oct.
1999.

23. J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach, S. Corina, Robby, and H. Zheng. Bandera:
Extracting Finite-state Models from Java Source Code. In International Conference on Soft-
ware Engineering, pages 439–448, Limerick, Ireland, June 2000.

24. F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S. Weerawarana. The Next Step in Web Services.
CACM, 46(10):29–34, 2003.

25. M. Dam. Model Checking Mobile Processes. Inf. and Comp., 129(1):35–51, 1996.
26. M. Dam. Proof Systems for π-Calculus Logics. Logic for concurrency and synchronisation,

pages 145–212, 2003.
27. G. Denker and J. Millen. CAPSL Integrated Protocol Environment. Technical report, Com-

puter Science Laboratory, SRI International, Menlo Park, CA, 1999.
28. H. Ehrig and B. König. Deriving Bisimulation Congruences in the DPO Approach to Graph

Rewriting. In I. Walukiewicz, editor, FoSSaCS, volume 2987, pages 151–166. LNCS, 2004.
29. J. Fernandez. An Implementation of an Efficient Algorithm for Bisimulation Equivalence.

Science of Computer Programming, 13(2–3):219–236, May 1990.
30. J. Fernandez and L. Mounier. On-the-fly Verification of Behavioural Equivalences and Pre-

orders. In K. Larsen and A. Skou, editors, CAV, volume 575 of LNCS, pages 181–191.
Springer, July 1991.

31. G. Ferrari, G. Ferro, S. Gnesi, U. Montanari, M. Pistore, and G. Ristori. An Automata Based
Verification Environment for Mobile Processes. In E. Brinksma, editor, TACAS, volume 1217
of LNCS, pages 275–289. Springer, April 1997.

32. G. Ferrari, S. Gnesi, U. Montanari, and M. Pistore. A Model Checking Verification Environ-
ment for Mobile Processes. TOPLAS, 12(4):1–34, 2004.

33. G. Ferrari, S. Gnesi, U. Montanari, R. Raggi, G. Trentanni, and E. Tuosto. Verification on
the WEB. In J. Augusto and U. Ultes-Nitsche, editors, VVEIS, pages 72–74, Porto, Portugal,
April 2004. INSTICC Press.

34. G. Ferrari, U. Montanari, and M. Pistore. Minimizing Transition Systems for Name Passing
Calculi: A Co-algebraic Formulation. In M. Nielsen and U. Engberg, editors, FOSSACS
2002, volume 2303 of LNCS, pages 129–143. Springer, 2002.

35. G. Ferrari, U. Montanari, and E. Tuosto. From Co-algebraic Specifications to Implementa-
tion: The Mihda toolkit. In F. de Boer, M. Bonsangue, S. Graf, and W. de Roever, editors,
FMCO, volume 2852 of LNCS, pages 319 – 338. Springer, November 2002.

36. G. Ferrari, U. Montanari, and E. Tuosto. Coalgebraic Minimisation of HD-automata for the
π-Calculus in a Polymorphic λ-Calculus. TCS, 2004. To appear.

37. M. Fiore, G. Plotkin, and D. Turi. Abstract Syntax and Variable Binding (Extended Abstract).
In LICS, pages 193–202, Trento, Italy, July 1999. IEEE.

38. P. Fiore and M. Abadi. Computing Symbolic Models for Verifying Cryptographic Protocols.
In Computer Security Foundations Workshop, CSFW, pages 160–173, Cape Breton, Nova
Scotia, Canada, June 2001. IEEE.

39. R. Focardi and R. Gorrieri. A Classification of Security Properties. J. of Computer Security,
3(1), 1995.

40. M. Gabbay and A. Pitts. A New Approach to Abstract Syntax Involving Binders. In
G. Longo, editor, LICS, pages 214–224, Trento, Italy, July 1999. IEEE.

41. A. Gordon. Notes on Nominal Calculi for Security and Mobility. In R. Focardi and R. Gor-
rieri, editors, FOSAD, volume 2171 of LNCS, pages 262–330. Springer, September 2002.

42. M. Hennessy and H. Lin. Symbolic Bisimulations. TCS, 138(2):353–389, February 1995.

Model Checking for Nominal Calculi 23

43. T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy Abstraction. In POPL, pages
58–70. ACM Press, 2002.

44. D. Hirschkoff. On the Benefits of Using the up-to Techniques for Bisimulation Verification.
In W. Cleaveland, editor, TACAS, volume 1579 of LNCS, pages 285–299, Amsterdam, March
1999. Springer.

45. G. Holzmann. The Model Checker Spin. TSE, 23(5):279–295, May 1997.
46. G. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-Wesley,

Sept. 2003.
47. K. Honda. Elementary Structures in Process Theory (1): Sets with Renaming. MSCS,

10(5):617–663, 2000.
48. O. Jensen and R. Milner. Bigraphs and Transitions. In POPL, pages 38–49. ACM Press,

2003.
49. P. Kanellakis and S. Smolka. CCS Expressions, Finite State Processes and Three Problem of

Equivalence. Inf. and Comp., 86(1):272–302, 1990.
50. S. Lack and P. Sobociń ski. Adhesive Categories. In I. Walukiewicz, editor, FoSSaCS, volume

2987 of LNCS, pages 273–288, Barcelona, March 2004. Springer.
51. C. Laneve and G. Zavattaro. Foundations of Web Transactions. In FoSSaCS, LNCS, 2005.

To appear.
52. J. Leifer. Operational Congruences for Reactive Systems. PhD thesis, Computer Laboratory,

University of Cambridge, Cambridge, UK, 2001.
53. J. Leifer and R. Milner. Deriving Bisimulation Congruences for Reactive Systems. In

C. Palamidessi, editor, CONCUR, volume 1877 of LNCS, pages 243–258, University Park,
PA, USA, August 22-25 2000. Springer.

54. H. Lin. Complete Inference Systems for Weak Bisimulation Equivalences in the π-Calculus.
Inf. and Comp., 180(1):1–29, January 2003.

55. G. Lowe. Towards a Completeness Result for Model Checking of Security Protocols. In
CSFW. IEEE, 1998.

56. W. Marrero, E. Clarke, and S. Jha. Model Checking for Security Protocols. In Formal
Verification of Security Protocols, 1997.

57. K. McMillan. Symbolic Model Checking. Kluwer Academic Publisher, 1993.
58. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
59. R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, I and II. Inf. and

Comp., 100(1):1–40,41–77, September 1992.
60. J. Mitchell, M. Mitchell, and U. Ster. Automated analysis of cryptographic protocols using

murφ. In CSFW, pages 141–151. IEEE, 1997.
61. U. Montanari and M. Buscemi. A First Order Coalgebraic Model of π-Calculus Early Obser-

vational Equivalence. In L. Brim, P. Jančar, M. Křetinský, and A. Kučera, editors, CONCUR,
volume 2421 of LNCS, pages 449–465. Springer, Aug. 2002.

62. U. Montanari and M. Pistore. Checking Bisimilarity for Finitary π-Calculus. In I. Lee and
S. Smolka, editors, CONCUR, volume 962 of LNCS, pages 42–56, Philadelphia, PA, USA,
Aug. 1995. Springer.

63. U. Montanari and M. Pistore. History Dependent Automata. Technical report, Computer
Science Department, Università di Pisa, 1998. TR-11-98.

64. U. Montanari and M. Pistore. π-Calculus, Structured Coalgebras, and Minimal HD-
Automata. In M. Nielsen and B. Roman, editors, MFCS, volume 1983 of LNCS. Springer,
2000. An extended version will be published on Theoretical Computer Science.

65. U. Montanari and V. Sassone. Dynamic Congruence vs. Progressing Bisimulation for CCS.
Fundamenta Informaticae, 16:171–196, 1992.

66. R. Needham. Names. Addison-Wesley (Mullender Ed.), 1989.
67. R. Paige and R. Tarjan. Three Partition Refinement Algorithms. SIAM Journal on Comput-

ing, 16(6):973–989, December 1987.

24 G.L. Ferrari, U. Montanari, and E. Tuosto

68. M. Papazoglou. Service-Oriented Computing: Concepts, Characteristics and Directions. In
Web Information Systems Engineering (WISE’03), LNCS, pages 3–12. Springer, 2003.

69. D. Park. Concurrency and Automata on Infinite Sequences. In Theoretical Computer Sci-
ence, 5th GI-Conf., volume 104 of LNCS, pages 167–183. Springer, Karlsruhe, March 1981.

70. J. Parrow and B. Victor. The Fusion Calculus: Expressiveness and Symmetry in Mobile
Processes. In LICS. IEEE, 1998.

71. M. Pistore. History Dependent Automata. PhD thesis, Computer Science Department, Uni-
versità di Pisa, 1999.

72. M. Pistore and D. Sangiorgi. A Partition Refinement Algorithm for the π-Calculus. Inf. and
Comp., 164(2):467–509, 2001.

73. D. Sangiorgi. On the Bisimulation Proof Method (Extended Abstract). In J. Wiedermann and
P. Hájek, editors, MFCS, volume 969 of LNCS, pages 479–488, Prague, August-September
1995. Springer.

74. D. Sangiorgi. A Theory of Bisimulation for the π-Calculus. Acta Informatica, 33(1):69–97,
1996.

75. D. Sangiorgi and D. Walker. The π-Calculus: a Theory of Mobile Processes. Cambridge
University Press, 2002.

76. V. Sassone and P. Sobociński. Deriving Bisimulation Congruences using 2-categories.
Nordic J. of Computing, 10(2), 2003.

77. V. Sassone and P. Sobociński. Congruences for Contextual Graph-Rewriting. Technical
Report RS-14, BRICS, June 2004.

78. V. Sassone and P. Sobociński. Locating Reaction with 2-Categories. TCS, 2004. To appear.
79. P. Sewell. From Rewrite Rules to Bisimulation Congruences. LNCS, 1466, 1998.
80. P. Sewell. Applied π – A Brief Tutorial. Technical Report 498, Computer Laboratory,

University of Cambridge, Aug. 2000.
81. H. Smith and P. Fingar. Workflow is Just a Pi process. Available at

http://www.bpm3.com/picalculus, 2003.
82. V. Vanackére. The TRUST protocol analyser. Automatic and Efficient Verification of Cryp-

tographic Protocols. In VERIFY02, 2002.
83. B. Victor and F. Moller. The Mobility Workbench — A Tool for the π-Calculus. In D. Dill,

editor, CAV, volume 818 of LNCS, pages 428–440. Springer, 1994.
84. P. Yang, C. Ramakrishnan, and S. Smolka. A Logical Encoding of the π-Calculus: Model

Checking Mobile Processes Using Tabled Resolution. STTT, 6(1):38–66, July 2004.

Mathematical Models of Computational
and Combinatorial Structures

(Invited Address)

Marcelo P. Fiore�

Computer Laboratory,
University of Cambridge

Marcelo.Fiore@cl.cam.ac.uk

Abstract. The general aim of this talk is to advocate a combinatorial perspective,
together with its methods, in the investigation and study of models of computa-
tion structures. This, of course, should be taken in conjunction with the well-
established views and methods stemming from algebra, category theory, domain
theory, logic, type theory, etc. In support of this proposal I will show how such an
approach leads to interesting connections between various areas of computer sci-
ence and mathematics; concentrating on one such example in some detail. Specif-
ically, I will consider the line of my research involving denotational models of
the pi calculus and algebraic theories with variable-binding operators, indicating
how the abstract mathematical structure underlying these models fits with that
of Joyal’s combinatorial species of structures. This analysis suggests both the
unification and generalisation of models, and in the latter vein I will introduce
generalised species of structures and their calculus. These generalised species
encompass and generalise various of the notions of species used in combina-
torics. Furthermore, they have a rich mathematical structure (akin to models of
Girard’s linear logic) that can be described purely within Lawvere’s generalised
logic. Indeed, I will present and treat the cartesian closed structure, the linear
structure, the differential structure, etc. of generalised species axiomatically in
this mathematical framework. As an upshot, I will observe that the setting allows
for interpretations of computational calculi (like the lambda calculus, both typed
and untyped; the recently introduced differential lambda calculus of Ehrhard and
Regnier; etc.) that can be directly seen as translations into a more basic elemen-
tary calculus of interacting agents that compute by communicating and operating
upon structured data.

Prologue

The process of understanding often unveils structure; and this, in turn, entails deeper
understanding. In formal investigations, structure is articulated in mathematical terms.
Mathematical structure typically plays a clarifying organisational role providing new
insight and leading to new results. Ultimately theories are built; and then specialised,

� Research supported by an EPSRC Advanced Research Fellowship.

V. Sassone (Ed.): FOSSACS 2005, LNCS 3441, pp. 25–46, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

26 M.P. Fiore

generalised, or unified. It is to this general context that the present work belongs. From
a specific viewpoint, however, it is part of a research programme approaching computa-
tion structure from a combinatorial perspective. By this I broadly mean the transport of
ideas, methodology, techniques, questions, etc. between combinatorics and computer
science; in particular, in regarding data type structure as combinatorial structure, and
vice versa.

As an example of what such a combinatorial view intends, I will show what the
notion of bijective proof of combinatorial identities entails on data type structure. A
bijective proof of A = B consists in presenting combinatorial structures A and B that
are respectively counted by A and by B together with a bijection A ∼= B. The no-
tion of bijective proof thus is nothing but that of isomorphism of structure, which in
this view is given a fundamental role (as it is the case in many other areas of math-
ematics). In transporting this to the context of computation theory, for instance, one
may be interested in bijections that are computable, primitive recursive, feasible, etc.
In the context of type (or programming language) theory, the notion corresponds to
the equivalence of data type structure up to isomorphism as prescribed by terms of
the type theory (or programs of the programming language). Such a study has already
been considered, though for entirely different reasons, under the broad heading of type
isomorphism; see, e.g., [9]. Besides applications in computer science, one interest in
this subject lies in its connections to various areas of mathematics. Indeed, it is re-
lated to Tarski’s high school algebra problem in mathematical logic [15], to the word
problem in quotient polynomial semirings in computational algebra [16, 14], and to
Thompson’s groups in group theory [forthcoming joint work with Tom Leinster].

The rest of the paper provides another example of the fruitfulness of the approach
advocated here. Specifically, I will first briefly review three diverse mathematical mod-
els —respectively suited for modelling name generation, combinatorial structure, and
variable binding— highlighting how the various structures in each of them arise in es-
sentially the same manner (Sect. 1). With this basis, I will then present a generalisation
of the second model, putting it in the light of models of computation structures (Sect. 2).
This yields connections to other areas of computer science and mathematics, and opens
new perspectives for research (Sect. 3).

1 Some Computational and Combinatorial Structures

In this section I discuss in retrospective three mathematical models of computation
structures in the chronological order in which I got familiar with them during my re-
search. These are: denotational models of the pi calculus [17, 19] (Subsect. 1.1), Joyal’s
combinatorial species of structures [25, 26] (Subsect. 1.2), and algebraic models of
equational theories with variable-binding operators [18, 19, 13] (Subsect. 1.3).1 My in-
tention here is not to treat any of them in full detail, but rather to give an outline of the

1 Readers not familiar with the pi calculus [38] can safely skip Subsect. 1.1, or read it after Sub-
sect. 1.3. Readers only interested in the combinatorial aspects can safely restrict their attention
to Subsect. 1.2.

Mathematical Models of Computational and Combinatorial Structures 27

most relevant structures present in each model in such a way as to make explicit and
apparent the similarities that run through them all.

1.1 Denotational Models of the Pi Calculus

The main ingredient leading to the construction of denotational models of the pi cal-
culus [17, 47] was recognising that its feature allowing for the dynamic generation of
names required the traditional denotational models to be indexed (or parameterised) by
the set of the known names of a process. Naturally, and in the vein of previous models
of store [45, 42] (see also [39–§ 4.1.4]), this was formalised by considering models in
functor categories; that is, mathematical universes SV of V-variable S-objects (func-
tors V �� S) and V-variable S-maps (natural transformations) between them. In this
context, S provides a basic model of denotations; whilst V gives an appropriate model
of variation (see, e.g., [30]). In the example at hand, S is a suitable category of do-
mains (or simply the category of sets, if considering the finite pi calculus) and V is the
category I of finite sets (or finite subsets of a fixed infinite countable set of names) and
injections. Thus, a model P ∈ SI consists of a series of actions

[] : P(U) × I(U,V) �� P(V) (U,V ∈ I)

for which p[idU] = p and p[ı][j] = p[ı · j] for all p ∈ P(U) and ı : U �� �� V ,
j : V �� �� W in I. These actions allow us to regard denotations p parameterised by a
set of names U as denotations p[ı] parameterised by a set of names V with respect to
any injective renaming of names ı : U �� �� V in a consistent manner.

The question arises as to why the model of variation given by the category I in
this context is the appropriate one. It was already pointed out in [17] that what it is
important about I is its structure; namely, that it is equivalent to the free symmetric
(strict) monoidal category with an initial unit on one generator. In this light, the genera-
tor stands for a generic name, whilst the tensor product allows for the creation of a new
disjoint batch of generic names from two old ones. The role of the symmetry is roughly
to render batches of generic names into sets, and the condition on the unit being initial
allows for the ability of generating new names. This intuitive view is consistent with
that of Needham’s pure names [41] (see also [37]); viz., those that can only be tested
for equality with other ones, and indeed one can also formally recast the category I in
these terms.

The fundamental mathematical structure of SI required for modelling the pi calculus
can be now seen to arise in abstract generality. I will show this for S the category Set
of sets and functions, but similar arguments can be made for other suitable categories.

Let I[n] be the free symmetric strict monoidal category with tensor product ⊕ and
initial unit O on the (name) generator n; it can be explicitly described as the category
of finite cardinals and injections (with tensor product given by addition, initial unit by
the empty set, and generator by the singleton). Through the Yoneda embedding, the
generator provides an object of names N = y(n) in SetI[n] and, by Day’s tensor con-
struction [8, 23], the symmetric tensor product provides a (multiplication) symmetric
tensor product ⊕̂ on SetI[n] given by

P⊕̂Q =
∫U1,U2∈I[n]

P(U1) × Q(U2) × I[n] (U1 ⊕ U2,)
(
P, Q ∈ SetI[n]

)

28 M.P. Fiore

with y(O) as unit. (Note that the translation of this tensor product to SetI has the fol-
lowing simple description

(P⊕̂Q)(U) =
∑

(U1,U2)∈SD(U) P(U1) × Q(U2)
(
P, Q ∈ SetI, U ∈ I

)
where the disjoint sum is taken over the set SD(U) of sub-decompositions of U; i.e., pairs
(U1, U2) such that U1 ∪ U2 ⊆ U and U1 ∩ U2 = ∅.) More importantly for the current
discussion, we have the following situation (consult App. A)

I[n]
◦

Lan
∼=

� � y ��

⊕n
��

SetI[n]

⊕̂N
�� ��
� �

I[n]
◦ � �

y
�� SetI[n]

δn

��

which yields a name generation operator δn = (⊕ n)∗, arising as closed structure
(since (⊕ n)!

∼= ⊕̂N) and simply given by

δnP = P(⊕ n) (P ∈ SetI[n]) .

Thus, a denotation in δnP is nothing but a denotation in P parameterised by a new
generic name.

With the aid of the cartesian closed structure of SetI[n] one can then model the be-
havioural actions of pi calculus processes: input is modelled by the exponential ()N,
free output by the product N× (), and bound output by the name generator δn(). For
details on both the late and early behaviours consult [19].

1.2 Combinatorial Species of Structures

The theory of combinatorial species was introduced by Joyal in [25]. One of its impor-
tant features is to provide a mathematical framework in which arguments in enumerative
combinatorics based on generating functions acquire structural combinatorial meaning
leading to bijective proofs of combinatorial identities. For instance, in [26–Chap. 2],
Joyal presents a calculus of species in which structural operations on them (together
with their laws) exactly correspond, modulo the process of counting, to the operations
in algebras of formal power series; see also [5–Chap. 1 and 2].

The basic notion of species of structures is given by a functor B �� Set, for B the
category of finite sets and bijections. Naturally, the category of species is taken to be
the category SetB. Species P can be equivalently given by a series of symmetric-group
actions

[] : P[n] × Sn
�� P[n] (n ∈ N)

for which p[id] = p and p[σ][τ] = p[σ · τ] for all p ∈ P[n] and σ, τ ∈ Sn.
Intuitively, for a species P, the set P(U) consists of the structures of type P that

can be put on the set of tokens U; the action provides the abstract rule of transport of
structures, which serves for describing structural equivalence (i.e., when structures are
the same except for a permutation of the tokens that constitute them). For instance, the
species End with structures on a set of tokens U given by the endofunctions on U and
action by conjugation is defined as

Mathematical Models of Computational and Combinatorial Structures 29

End(U) = Set (U,U) (U ∈ B)

End(σ)(f) = σ fσ−1
(
f ∈ End(U,U), σ ∈ B(U,V)

)
.

Two endofunctions are structurally equivalent if they are conjugate to each other.
I will now present a repertoire of operations on species: addition, multiplication,

differentiation, and composition. In doing so, I will be placing emphasis in how they re-
late to the other structures of the paper; rather than following the standard combinatorial
presentation. Nonetheless this approach is certainly known to experts.

It is important first to focus on the structure of B. It was already pointed out in [25–
Subsect. 7.3] that it is equivalent to the free symmetric (strict) monoidal category on one
generator, and we will henceforth consider it in this vein. Let B[x] be the free symmetric
strict monoidal category with tensor product ⊕ and unit O on the (token) generator x;
it can be explicitly described as the category of finite cardinals and permutations (with
tensor product given by addition, unit by the empty set, and generator by the singleton).

Addition. The addition P + Q of combinatorial species P and Q is given by their cate-
gorical coproduct:

(P + Q)(U) = P(U) + Q(U) (P, Q ∈ SetB, U ∈ B) .

Thus, a structure of type P + Q is either a structure of type P or one of type Q together
with the information of which type of structure it is.

Multiplication. By Day’s tensor construction [8, 23], the symmetric tensor product on
B[x] provides a multiplication symmetric tensor product · on SetB[x] given by

P · Q =
∫U1,U2∈B[x]

P(U1) × Q(U2) × B[x] (U1 ⊕ U2,) (P, Q ∈ SetB[x])

with unit y(O). (Note that the translation of this tensor product to SetB has the following
simple description

(P · Q)(U) ∼=
∑

(U1,U2)∈D(U) P(U1) × Q(U2) (P, Q ∈ SetB, U ∈ B)

where the disjoint sum is taken over the set D(U) of decompositions of U; i.e., pairs
(U1, U2) such that U1 ∪ U2 = U and U1 ∩ U2 = ∅.)

Thus, to construct a structure of type P · Q on a set of tokens U is to decompose U

in sets of tokens U1 and U2, and put a structure of type P on U1 and a structure of type
Q on U2.

Differentiation. We have the following situation (see, e.g., [44])

B[x]
◦

Lan
∼=

� � y ��

⊕x
��

SetB[x]

·X
�� ��
� �

B[x]
◦ � �

y
�� SetB[x]

d/dx

��

which yields a differentiation operator d/dx = (⊕ x)∗, arising as closed structure(
since (⊕ x)!

∼= · X for X = y(x)
)

and simply given by

30 M.P. Fiore

(d/dx)P = P(⊕ x) (P ∈ SetB[x]) .

It follows that a structure of type (d/dx)P over a set of tokens is nothing but a structure
of type P over the set of tokens enlarged with a new generic one.

Composition. Using the universal properties of both B[x] and SetB[x], we obtain the
following situation (consult App. A)

1
∼=

x ��

P
����������������� B[x]

◦
Lan
∼=P•()

��

� � y �� SetB[x]

◦P

�����������������

�

SetB[x]

�����������������

where

P•(

n times︷ ︸︸ ︷
x ⊕ · · · ⊕ x) = P · . . . · P︸ ︷︷ ︸

n times

(P ∈ SetB[x])

and

(Q ◦ P)(U) =
∫T∈B[x]

Q(T) × P•T (U) (Q,P ∈ SetB[x]) .

This so-called composition (or substitution) operation ◦ on species yields a (highly non-
symmetric) monoidal closed structure on SetB[x] with unit X = y(x) (see also [27]).
Translating it to SetB we obtain, whenever P(∅) = ∅, that

(Q ◦ P)(U) ∼=
∑

U∈Part(U) Q(U) × ∏
u∈U P(u) (Q,P ∈ SetB, U ∈ B)

where the disjoint sum is taken over the set Part(U) of partitions of U. In words, a struc-
ture q[u1

� �� p1, . . . , un
� �� pn] in (Q◦P)(U) consists of a partition U = { u1, . . . , un }

of the set of (input) tokens U, together with a structure q of type Q over the set U of
n (place-holder) tokens for the structures pi (1 ≤ i ≤ n) in P(ui). Monoids for this
composition tensor product are known as (symmetric) operads (see, e.g., [48]).

An important part of the theory of species (on which I can only refer the reader
to [25] here) is that they can be equivalently seen as analytic endofunctors on Set (of
which species are the coefficients) that embody the structure of the formal exponential
power series induced by counting. From this point of view, the terminology of com-
position for the above operation is justified by the fact that it corresponds to the usual
composition of functors.

1.3 Algebraic Theories with Variable-Binding Operators

The key to the algebraic treatment of abstract syntax with variable binding is to shift
attention away from raw terms and focus on terms in context (or term judgements). This
requires taking contexts seriously; considering the operations allowed on them and the
structural rules that term judgements have, and building categories of contexts that re-
flect them. The categories of contexts so obtained provide then models of variation

Mathematical Models of Computational and Combinatorial Structures 31

whose structure induces, in the associated universe of variable sets, further structure
allowing for algebraic theories with variable-binding operators. These general remarks
will become clear after reading the rest of the section, where the approach is exempli-
fied.

The original approach of [18] was conceived for the framework of binding alge-
bras [1] (see also [50]), where term judgements are subject to the admissible rules of
weakening, contraction, and permutation. Thus, the natural notion of morphism be-
tween contexts is that provided by any renaming of variables. Below I will concentrate
on the multi-sorted case where, of course, variable renamings should in addition be
well-typed; see [13–Sect. II.1] for further details and a discussion of the syntax and
semantics of the simply typed lambda calculus.

Abstractly, the category of contexts is then the free cocartesian category over the
set of types. As other such free constructions, it can be explicitly described in two
stages. First one considers the category F of mono-sorted (or untyped) contexts given
by the free cocartesian category on one generator (with coproduct +, initial object 0, and
generator 1); i.e., the category of finite cardinals and functions (with coproduct given by
addition, initial object by the empty set, and generator by the singleton). Then, for a set
of types T , the category of T -sorted contexts is given by the comma construction F↓T

(whose objects are maps Γ : |Γ | �� T with |Γ | ∈ F and whose morphisms ρ : Γ �� Γ ′

are maps ρ : |Γ | �� |Γ ′ | in F such that Γ = Γ ′ρ). The initial object (0 �� T) in F↓T

is the empty context, whilst the coproduct

(|Γ |
Γ �� T) + (|Γ ′ | Γ ′

�� T) = (|Γ | + |Γ ′ |
[Γ,Γ ′] �� T)

in F↓T amounts to the operation of context extension.
It is convenient to define F[T] = (F↓T)◦ and identify τ ∈ T with its image 1 τ �� T

in F[T] under the universal embedding T �� F[T] exhibiting F[T] as the free cartesian
category on T .

The mathematical universe in which to consider algebraic theories is then the cat-

egory F̂[T]
T

. Informally, for P ∈ F̂[T]
T

, one thinks of the sets { Pτ(Γ) }τ∈T,Γ∈F[T] as
the τ-sorted P-elements in context Γ . As an example consider the object of variables
V = { Vτ }τ∈T given by Vτ = y(τ); so that

Vτ(Γ) ∼= { x ∈ |Γ | | Γ(x) = τ } (τ ∈ T, Γ ∈ F↓T) .

Crucially, noting that (×τ)!
∼= ×Vτ, the operation of context extension induces

the situation below

F[T]

Lan
∼=

� � y ��

×τ

��

F̂[T]

×Vτ

�� ��
� �

F[T]
� �

y
�� F̂[T]

��
(τ ∈ T)

from which it follows that

XVτ ∼= (× τ)∗(X) = X(+ τ) (X ∈ F̂[T], τ ∈ T) .

32 M.P. Fiore

Thus, the object of variables provides suitable arities for binding operators. Indeed, an
operator of arity(

τ
(1)
1 , . . . , τ(1)

n1

)
τ1, . . . ,

(
τ

(k)
1 , . . . , τ(k)

nk

)
τk

�� (σ1, . . . , σm)σ

that binds variables of type τ
(i)
1 , . . . , τ

(i)
ni in terms of type τi (1 ≤ i ≤ k) yielding a

term of type σ that binds variables of type σj (1 ≤ j ≤ m) corresponds to a morphism

∏
1≤i≤k Pτi

∏
1≤j≤ni

V
τ

(i)
j �� Pσ

∏
1≤�≤m Vσ�

(
P ∈ F̂[T]

T)
in F̂[T], that further corresponds to a natural family

∏
1≤i≤k Pτi

(
+ 〈τ(i)

1 , . . . , τ
(i)
ni 〉) �� Pσ(+ 〈σ1, . . . , σm〉) (

P ∈ F̂[T]
T)

associating a tuple of elements of type τi (1 ≤ i ≤ k) in a context extended by new
generic variables of type τ

(i)
j (1 ≤ j ≤ ni) with an element of type σ in a context

extended by new generic variables of type σ� (1 ≤ � ≤ m).
The framework also allows for the axiomatisation of substitution via an equational

theory whose algebras correspond to Lawvere theories (see [18]). In App. B, I briefly
discuss single-variable substitution in the context of algebraic theories for binding sig-
natures. Here, as it is of direct concern to us, I will concentrate on the notion of simul-
taneous substitution, which arises in the same manner as operads do with respect to the
composition of species. Indeed, using the universal properties of both F[T] and F̂[T],
we have the following situation

T
∼=

��

P
����������������� F[T]

Lan
∼=P×()

��

� � y �� F̂[T]
•P

�����������������

�

F̂[T]

�����������������

where

P×Δ =
∏

x∈|Δ| PΔ(x)

(
P ∈ F̂[T]

T
, Δ ∈ F[T]

)
and

(X • P)(Γ) =
∫Δ∈F[T]

X(Δ) × P×Δ(Γ)
(
X ∈ F̂[T], P ∈ F̂[T]

T
, Γ ∈ F↓T

)
.

We obtain thus a (highly non-symmetric) composition monoidal closed structure ◦ on

F̂[T]
T

given by

(Q ◦ P)τ = Qτ • P
(
Q,P ∈ F̂[T]

T
, τ ∈ T

)
with unit the object of variables V.

Monoids for this composition tensor product correspond to multi-sorted Lawvere
theories, and embody the structure of simultaneous substitution. To see this consider

Mathematical Models of Computational and Combinatorial Structures 33

the axioms for a multiplication operation P ◦ P �� P noting that, in elementary terms,
(Q ◦ P)τ(Γ) consists of equivalence classes of pairs given by q ∈ Qτ〈τ1, . . . , τn〉
together with an assignment 〈τ1

� �� p1, . . . , τn
� �� pn〉 with pi ∈ Pτi

(Γ) (1 ≤ i ≤ n)
under the identification

q[ρ]〈τ1
� �� p1, . . . , τm

� �� pm〉 = q〈σ1
� �� pρ1, . . . , σm

� �� pρm〉
for all renamings ρ : 〈σ1, . . . , σm〉 �� 〈τ1, . . . , τn〉 in F ↓ T , q ∈ Qτ〈σ1, . . . , σm〉,
and pi ∈ Pτi

(Γ) (1 ≤ i ≤ n), where q[ρ] = Qτ(ρ)(q) ∈ Qτ〈τ1, . . . , τn〉.
Finally, note that one can also consider heterogeneous notions of substitution (for

which see [19]) and variations on the theme.

2 The Calculus of Generalised Species of Structures

This is the main section of the paper. In Subsect. 2.1, the notion of generalised species
of structures is motivated and introduced. Afterwards, some of the structure of gen-
eralised species is presented: addition and multiplication in Subsect. 2.2; differential
structure in Subsect. 2.3 and 2.6; identities and composition in Subsect. 2.4; and, the
cartesian closed structure in Subsect. 2.5. Finally, Subsect. 2.7 outlines the calculus of
these operations.

Somehow following the tradition in combinatorics, my emphasis here is to present
generalised species as a calculus; including graphical representations that will hope-
fully convey the idea behind the various constructions on structures. On the other hand,
however, I depart from the traditional combinatorial treatment in that the calculus is
axiomatically built on top of the mathematical framework of Lawvere’s generalised
logic [28] (see Fig. 1 in Subsect. 2.7 for an example). This yields new algebraic proofs,
even for the restriction of generalised species to their basic form recalled in Subsect. 1.2.
In passing, I will remark on the relationship between the structures of this section and
those of the previous one.

Generalised species have other roots in ideas of Martin Hyland and Glynn Winskel;
and there is a general abstract theory, that we have developed with them and Nicola
Gambino, that accounts for their bicategorical (Subsect. 2.4) and cartesian closed (Sub-
sect. 2.5) structures. This perspective is important, for it further organises the sub-
ject (placing it, e.g., in the context of models of Girard’s linear logic) and guides its
development.

2.1 Generalised Species

Recall that the basic notion of species of structures is given by a functor B �� Set, for
B the category of finite sets and bijections [25, 26]. Recall also that B is equivalent to
the free symmetric (strict) monoidal category on one generator. Thus, writing ! for the
free symmetric (strict) monoidal completion, species can be equivalently presented as
functors !1 �� Set. In the spirit of Subsect. 1.3, it makes sense to consider T -sorted
species, for T a set of sorts, as functors !T �� Set; and, even more generally, for a small
category T of sorts and maps between them, define T-sorted species of structures (or
simply T-species) as functors !T �� Set.

34 M.P. Fiore

To be able to visualise these structures we will analyse them in some detail. First, as
I have already mentioned, the free symmetric strict monoidal category on one generator
!1 (with tensor +, unit 0, and generator 1) can be described as the category B of finite
cardinals and permutations (with tensor product given by addition, unit by the empty
set, and generator by the singleton). This category, as it happens with other such free
constructions, induces the free symmetric strict monoidal completion !T of a category
T by the comma construction B⇓T whose objects are maps T : |T | �� T with |T | ∈ B
and whose morphisms are pairs (σ,�σ) as on the left below

|T |
�σ ��

σ ��

T ���
��

��
|T ′ |

T ′����
��

��

T

(i ∈ |T |) · · · Ti

�σi��

· · · · · · Ti

�τσi�σi

��

· · · (i ∈ |T |)

(j ∈ |T ′ |) · · · T ′
σi · · · T ′

j
�τj

����
�

· · · =

· · · T ′′
τj · · · · · · T ′′

τσi · · ·

with σ : |T | �� |T ′ | in B and �σ : T �� T ′σ in T
T . Morphisms and their composition

can be drawn as on the right above. The tensor product in !T is given by T ⊕ T ′ =
[T, T ′] : |T | + |T ′ | �� T; that is, roughly as

{[· · · Ti · · · | i ∈ |T |
]}⊕{[· · · T ′

j · · · | j ∈ |T ′ |
]}

=
{[· · · Ti · · · T ′

j · · · | i ∈ |T |, j ∈ |T ′ |
]}

,

with unit O = (0 �� T). (Note as a remark that for what follows, and in keeping closer
to the combinatorial spirit, one can equivalently take !T to be B⇓T.)

Henceforth, let
{[]}

: T �� !T be the universal embedding exhibiting !T as the
free symmetric strict monoidal category on T.

It follows that a T-species P : !T �� Set describes the structures P(T) of type P that
can be put on bags T of tokens in T (given by objects in !T) together with compatible
rules of transport of structure along T-tagged permutations (given by maps in !T) in the
form of actions

[] : P(T) × !T(T, T ′) �� P(T ′) (P : !T �� Set, T, T ′ ∈ !T)

for which p[idT] = p and p[σ][τ] = p[σ · τ] for all p ∈ P(T) and σ : T �� T ′,
τ : T ′ �� T ′′ in !T.

Examples of generalised species in combinatorics abound: permutationals [25, 4]
are CP-species for CP the groupoid of finite cyclic permutations, partitionals [40] are
B∗-species for B∗ the groupoid of non-empty finite sets. Further examples are coloured
permutationals [34], and species on graphs and digraphs [33].

A fundamental property of the free symmetric (strict) monoidal completion is that
it comes equipped with canonical natural coherent equivalences as shown below.

1 O

∼=
�� !0 , !C1 × !C2

⊗

�� !(C1 + C2) : (C1, C2)
� �� !�1(C1) ⊕ !�2(C2)

Thus T -species !T �� Set are equivalent to functors BT �� Set, which is the notion of
T -sorted species originally introduced by Joyal [25].

Mathematical Models of Computational and Combinatorial Structures 35

Finally, it is important to generalise further; allowing for variable sets of structures.
For small categories A and B, an (A, B)-species of structures is defined as a functor
!A �� B̂. The notation P : A ! �� B indicates that P is an (A, B)-species. As before,
for such a species P, we have the intuitive reading that P(A) is the B

◦-variable set of
structures of type P on the bag A of tokens in A. However, the definition introduces
an asymmetry that naturally leads to think of structures in P(A)(b)
as those of type P over a bag A of input tokens (or ports) in A and
(parameterised on) an output token (or port) b in B

◦. As we will see
in Subsect. 2.4 this interpretation is technically correct, and under it
structures will be pictorially represented as on the right.

A

b
P

Remark. Below I will be exploiting the fact that species P : !A �� B̂ are in duality
with co-species P⊥ : B

◦ �� !̂A◦ defined as P⊥(b)(A) = P(A)(b) (b ∈ B
◦, A ∈ !A).

2.2 Commutative Rig Structure: Addition and Multiplication

The zero species 0 : A ! �� B and the addition P + Q : A ! �� B of the species
P, Q : A ! �� B are defined by

0(A)(b) = ∅ , (P + Q)(A)(b) = P(A)(b) + Q(A)(b) (A ∈ !A, b ∈ B
◦) .

Representations of structures of addition and multiplication type follow. Compare
them with the informal description of the addition and multiplication of structures of
species given in Subsect. 1.2.

P+Q

A

b

P
P+Q

A

b

Q

Addition

A1

P Q

A2

b

A

P · Q

Multiplication

As in the previous section, Day’s tensor construction [8, 23], provides a multiplica-
tion symmetric tensor product induced by the free symmetric strict monoidal structure.
The one species 1 : A ! �� B and the multiplication P · Q : A ! �� B of the species
P, Q : A ! �� B are defined as

1(A)(b) = !A(O,A)

(P · Q)(A)(b)

=
∫A1,A2∈!A

P(A1)(b) × Q(A2)(b) × !A(A1 ⊕ A2, A)

(A ∈ !A, b ∈ B
◦) .

Remark. More succinctly, we have that P + Q = + 〈P, Q〉 and that (P · Q)⊥ =
⊕̂ 〈

P⊥, Q⊥〉
.

36 M.P. Fiore

2.3 Differential Structure: Partial Derivatives

For a ∈ A, the partial derivative ∂
∂aP : A ! �� B of the species P : A ! �� B is defined

as (
∂

∂aP
)
(A)(b) = P(A ⊕ {[

a
]}
)(b) (A ∈ !A, b ∈ B

◦) .

Structures of partial-derivative type may be represented as on the left below.

A

P

b

a

∂
∂aP

Partial Derivative

!A◦

Lan
∼=

� � y ��

⊕{[
a

]}
��

Set!A

⊕̂y
{[

a
]}
�� ��
� �

!A◦ � �

y
�� Set!A

d/da

��

Remark. As in the previous section, the construction of partial derivatives arises from
the situation on the right above. Indeed, we have that (∂

∂aP)⊥ = (d/da)P⊥.

2.4 Bicategorical Structure: Identities and Composition

The identity species IC : C ! �� C is defined as

IC(C)(c) = !C
({[

c
]}
, C

)
(C ∈ !C, c ∈ C

◦) .

For species P : A ! �� B and Q : B ! �� C, the composition Q ◦ P : A ! �� C is defined
as

(Q ◦ P)(A)(c) =
∫B∈!B

Q(B)(c) × P#(A)(B) (A ∈ !A, c ∈ C
◦)

where

P#(A)(B)

=
∫X∈(!A)|B| (∏

k∈|B| P(Xk)(Bk)
) × !A

(⊕
k∈|B| Xk, A

) (A ∈ !A, B ∈ !B◦) .

One may visualise identities and composition as follows.

c
I

C

{[•]}

Identity

· · ·
Q

.

c

b

P

Ab

Q ◦ P

A

· · ·

Composition

Mathematical Models of Computational and Combinatorial Structures 37

Remark. Using the universal properties of both !() and (̂), we obtain the following
situation

B
◦

∼=

{[]}
��

F
����������������� !B◦

Lan
∼=F⊕()

��

� � y �� Set!B
•F

�����������������

�

Set!A

�����������������

where F⊕B = ⊕̂k∈|B|F(Bk). We have that (Q ◦ P)⊥ is obtained as (• P⊥)Q⊥.

2.5 Cartesian Closed Structure: Product and Exponentiation

The cartesian closed structure of generalised species is presented.

There is exactly one species C ! �� � for � = 0. More generally, for a family
Pi : C ! �� Ci (i ∈ I), the pairing 〈Pi〉i∈I : C ! �� �i∈ICi, where �i∈ICi =

∑
i∈I Ci,

is defined as

〈Pi〉i∈I (C)(c)

=
∑

i∈I

∫z∈Ci Pi(C)(z) × (�i∈ICi)
(
c,�i(z)

) (C ∈ !C, c ∈ �i∈ICi
◦) .

For i ∈ I, the projection πi : �i∈ICi ! �� Ci is defined as

πi(C)(c) = !(�i∈ICi)
({[�i(c)

]}
, C

)
(C ∈ !(�i∈ICi), c ∈ Ci

◦) .

From the logical point of view, and using relational notation, C
[〈Pi〉i∈I

]
c is the

extent to which there exists i ∈ I and ci ∈ Ci such that C [Pi] ci and c approximates
�i(ci); whilst C [πi] c is the extent to which

{[�i(c)
]}

approximates C.
Pairing and projection may be depicted as follows.

C

�1(•) �2(•)

c1

P1 P2
c2

〈P1, P2〉
c

Pairing

C

c

{[�i(•)
]}

πi

Projection

For P : C � A ! �� B, the abstraction

λAP : C ! �� hom(A, B) where hom(A, B) = !A◦ × B

is defined as

(λAP)(C)(A,b) = P(C ⊗ A)(b) (C ∈ !C, A ∈ !A, b ∈ B
◦) ,

38 M.P. Fiore

where recall from Subsect. 2.1 that C ⊗ A = !�1C ⊕ !�2A. The evaluation

εA,B : hom(A, B) � A ! �� B

is defined as

εA,B(M)(b) (M ∈ !(hom(A, B) � A), b ∈ B
◦)

=
∫F∈!hom(A,B), A∈!A

!hom(A, B)(
{[
(A,b)

]}
, F) × !

(
hom(A, B) � A

)
(F ⊗ A,M) .

Again from the logical point of view, and using relational notation, we have that
C [λAP] (A,b) iff (C⊗A) [P]b; whilst M [εA,B]b is the extent to which the (step) func-
tion

{[
(A,b)

]}
approximates F, where M = F ⊗ A consists of a function F and an

argument A.
Schematically, we have the following.

A

P
λP

C

b

Abstraction

b

AF

M

• ⊗ •

{[
(•, •)

]}
ε

Evaluation

2.6 Higher-Order Differential Structure: Differentiation Operator

For a thorough treatment of differentiation one needs to introduce linear homs. In the
current setting they are naturally given by

�in(A, B) = A
◦ × B .

With this in place, I can introduce an operator that internalises partial derivatives (and
differential application) and satisfies all the basic properties of differentiation.

The differentiation operator

DA,B : hom(A, B) ! �� hom(A, �in(A, B))

is given by

DA,B(F)(A,a, b) = !hom(A, B)
({[

(A ⊕ {[
a

]}
, b)

]}
, F

) (F ∈ !hom(A, B),
A ∈ !A, a ∈ A, b ∈ B

◦) .

2.7 Outline of the Calculus

Elsewhere I will give a formal presentation of the calculus of generalised species of
structures and indicate how it is justified within the mathematical framework of gener-
alised logic [28]. Here I will just offer an outline.

Mathematical Models of Computational and Combinatorial Structures 39

(
ε ◦ 〈λ(P) ◦ π1 , π2〉

)
(D)(b) (D ∈ !(C � A), b ∈ B

◦)

(1)
∼=

∫M∈!(hom(A,B)�A)
ε(M)(b) × 〈λ(P) ◦ π1 , π2〉#(D)(M)

(2)
∼=

∫M∈!(hom(A,B)�A)∫F∈!hom(A,B),A∈!A

!hom(A, B)
({[

(A, b)
]}

, F
) × !(hom(A, B) � A) (!�1F ⊕ !�2A, M)

×〈λ(P) ◦ π1 , π2〉#(D)(M)

(3)
∼=

∫A∈!A 〈λ(P) ◦ π1 , π2〉#(D)(!�1

{[
(A, b)

]} ⊕ !�2A)

(4)
∼=

∫A∈!A ∫D1,D2∈!(C�A)

〈λ(P) ◦ π1 , π2〉#(D1)(!�1

{[
(A, b)

]}
) × 〈λ(P) ◦ π1 , π2〉#(D2)(!�2A)

× !(C � A) (D1 ⊕ D2 , D)

(5)
∼=

∫A∈!A ∫D1,D2∈!(C�A)
(λ(P) ◦ π1)#(D1)

{[
(A, b)

]} × π2
#(D2)(A)

× !(C � A) (D1 ⊕ D2 , D)

(6)
∼=

∫A∈!A ∫D1,D2∈!(C�A)
(λ(P) ◦ π1)(D1)(A, b) × !(C � A) (!�2A, D2)

× !(C � A) (D1 ⊕ D2 , D)

(7)
∼=

∫A∈!A ∫D1∈!(C�A) ∫C∈!C
(λP)(C)(A, b) × π1

#(D1)(C) × !(C � A) (D1 ⊕ !�2A, D)

(8)
∼=

∫A∈!A ∫D1∈!(C�A) ∫C∈!C
P(!�1C ⊕ !�2A)(b) × !(C � A) (!�1C, D1)

× !(C � A) (D1 ⊕ !�2A, D)
(9)
∼=

∫A∈!A ∫C∈!C
P(!�1C ⊕ !�2A)(b) × !(C � A) (!�1C ⊕ !�2A, D)

(10)
∼= P(D)(b)

Fig. 1. An equational proof of the beta isomorphism ε ◦ 〈λ(P) ◦ π1 , π2〉 ∼= P : C � A ! �� B

(1) Definition of composition. (2) Definition of evaluation. (3) Density formula. (4) Law of ex-
tensions. (5) Law of extensions and definition of pairing. (6) Law of extensions and definition of
projection. (7) Density formula and definition of composition. (8) Law of extensions and defini-
tions of projection and abstraction. (9–10) Density formula and properties of the free symmetric
(strict) monoidal completion.

Identities and composition come with canonical natural coherent isomorphisms es-
tablishing the unit laws of identities and the associativity of composition. Addition and
multiplication yield a commutative rig structure, and commute with pre-composition.

The usual laws of pairing and projection, and of abstraction and evaluation are sat-
isfied up to isomorphism (see Fig. 1 for a proof outline of the beta isomorphism). Thus,
the closed structure hom comes equipped with internal identities and composition. Also
the linear homs �in come equipped with internal identities and compositions, that actu-
ally embed in the closed structure.

40 M.P. Fiore

Partial derivatives commute between themselves, addition, and multiplication by
scalars. Moreover, they satisfy both the Leibniz (or product) and chain rules. For in-
stance, the central reason for which the former holds is that the canonical map

(†)

∫A ′
1∈!A

!A
(
A1, A ′

1 ⊕ {[
a

]}) × !A(A ′
1 ⊕ A2, A)

+
∫A ′

2∈!A
!A

(
A2, A ′

2 ⊕ {[
a

]}) × !A(A1 ⊕ A ′
2, A)

∼= �� !A
(
A1 ⊕ A2, A ⊕ {[

a
]})

(A1, A2 ∈ !A◦,
A ∈ !A, a ∈ A)

(given by tensoring and composing) is a natural isomorphism. Indeed, the definitions of
multiplication and partial derivation yield(

∂
∂a (P · Q)

)
(A)(b) (a ∈ A, P,Q : A ! �� B, A ∈ !A, b ∈ B

◦)

=
∫A1,A2∈!A

P(A1)(b) × Q(A2)(b) × !A
(
A1 ⊕ A2, A ⊕ {[

a
]})

which by (†) above, using various distributivity and commutativity laws, and the density
formula, is natural isomorphic to

∫A2,A ′
1∈!A

P(A ′
1 ⊕ {[

a
]}
)(b) × Q(A2)(b) × !A(A ′

1 ⊕ A2, A)

+
∫A1,A ′

2∈!A
P(A1)(b) × Q(A ′

2 ⊕ {[
a

]}
)(b) × !A(A1 ⊕ A ′

2, A)

=
(

∂
∂a (P) · Q + P · ∂

∂a (Q)
)
(A)(b) .

Further, the differentiation operator, which internalises partial derivation, is a linear
operator that is constant on linear maps.

Interestingly, a certain commutation law between abstraction and linear applica-
tion (used on differentiation) entails the beta rule of the differential lambda calculus of
Ehrhard and Regnier [10] as an isomorphism.

3 Concluding Remarks and Research Perspectives

I have drawn a line of investigation concerning models of computational and combina-
torial structures. The general common theme of these models is that they live in math-
ematical universes of variable sets. My presentation here aimed at making explicit and
apparent the commonalities amongst the models. In particular, I have placed emphasis
in considering the various models of variation as universal constructions; showing how
their structure induces relevant further structure on the associated universe of variable
sets.

The models touched upon in Sect. 1 and their applications should not be considered
in isolation for they are closely related. In this respect, there is a submodel of SetI,
the so-called Schanuel topos (see, e.g., [32, 24]), that occupies an interesting place.
Indeed, it has been used both for giving denotational models of dynamically generated
names [46, 47] and for modelling and reasoning about abstract syntax with variable
binding [20]. Further, it is closely related to the category of species SetB [11, 35], which
in turn has also been considered as a model of abstract syntax with linear variable-
binding [49]. These models are by no means the only relevant for applications, and a

Mathematical Models of Computational and Combinatorial Structures 41

fully systematic theory providing, for instance, constructions of models of variation that
are guaranteed to properly model specific (classes of) computation structures is not yet
in place.

The analysis of Sect. 1 suggests both the unification and generalisation of mod-
els, and in the latter vein I motivated and introduced generalised species of struc-
tures; see [2, 36, 7] for relevant related work. These generalised species extend various
of the notions of species used in combinatorics and also their respective calculi. Indeed,
they come equipped with an (heterogeneous) notion of substitution (composition) struc-
turing them into a bicategory, which arises as from models of linear logic by a co-Kleisli
construction (see [7–Sect. 9]) and supports linear and cartesian closed structure allow-
ing for a full development of the differential calculus. Further, the setting also provides
graph-like models of the lambda calculus, fixed-point operators, etc.

As it is the case for the basic notion of species (see [26]), generalised species of
structures can be equivalently seen as generalised analytic functors (of which gener-
alised species are the coefficients) between categories of variable sets. From this point
of view, the identities and composition defined in Subsect. 2.4 respectively correspond
to the usual identities and composition of functors. Interestingly, restricting attention
to groupoids (which is the situation considered in combinatorics) there is an intrinsic
characterisation of generalised analytic functors that places them in the context of cat-
egorical stable domain theory.

It would be important if the aforementioned structure of generalised species gave
new applications in combinatorics, or could be used to tackle combinatorial problems.

I have emphasised that the calculus of generalised species can be axiomatically built
on top of the mathematical framework of generalised logic. This, besides yielding new
algebraic proofs, provides connections with other areas of mathematics and suggests a
calculus of enriched generalised species of structures. In particular, enriching over the
Sierpinski space places the subject in the context of domain theory.

As for other perspectives, motivated by a conversation with Prakash Panangaden,
I was lead to consider the free symmetric (strict) monoidal completion as a symmetric
Fock-space construction (see, e.g., [21–Chap. 21]); and indeed, one can introduce the
operators of creation and annihilation of particles in the quantum systems that these
spaces model and establish their commutation laws. In this line of thought and further
motivated by [6, 3], I was considering Feynman diagrams in the context of generalised
species when a computational interpretation of my previous calculations became ap-
parent. The outcome of these investigations will be reported elsewhere. Here however
I would like to conclude the paper with an informal presentation of three illustrative
examples.

1. The density formula
∫c∈C

P(c) × C (d, c) ∼= P(d) (P ∈ Ĉ, d ∈ C
◦)

amounts to the basic form of action(
c : C

)[
[P]c〉 , 〈c[C]d〉] ≈ [P]d〉

with the following data flow reading: the agent P with local port c of sort C bound
to the datum d results in the agent P with the datum d.

42 M.P. Fiore

〈D [ε ◦ 〈(λP) ◦ π1 , π2〉] b 〉 (D : !(C � A), P : C � A ! �� B, b : B
◦)

(1)≈ (
M : !(hom(A, B) � A)

)[〈D [〈(λP) ◦ π1 , π2〉#] M 〉 , 〈M [ε] b 〉]
(2)≈ (

M : !(hom(A, B) � A)
)[

〈D [〈(λP) ◦ π1 , π2〉#] M 〉 ,

(F : !hom(A, B), A : !A)[〈M [!(hom(A, B) � A)] !�1F ⊕ !�2A 〉 , 〈 F [!hom(A, B)]
{[

(A, b)
]} 〉]]

(3)≈ (A : !A)[〈D [〈(λP) ◦ π1 , π2〉#] !�1

{[
(A, b)

]} ⊕ !�2A 〉]
(4)≈ (A : !A, D1 , D2 : !(C � A))[〈D [!(C � A)] D1 ⊕ D2 〉 ,

〈D1 [〈(λP) ◦ π1 , π2〉#] !�1

{[
(A, b)

]} 〉 , 〈D2 [〈(λP) ◦ π1 , π2〉#] !�2A 〉]
(5)≈ (A : !A, D1 , D2 : !(C � A))[〈D [!(C � A)] D1 ⊕ D2 〉 , 〈D1 [((λP) ◦ π1)#]

{[
(A, b)

]} 〉 , 〈D2 [π2
#] A 〉]

(6)≈ (A : !A, D1 , D2 : !(C � A))[〈D [!(C � A)] D1 ⊕ D2 〉 , 〈D1 [(λP) ◦ π1] (A, b) 〉 , 〈D2 [!(C � A)] !�2A 〉]
(7)≈ (A : !A, D1 : !(C � A))[

〈D [!(C � A)] D1 ⊕ !�2A 〉 , (C : !C)
[〈D1 [π1

#] C 〉, 〈C [λP] (A, b) 〉]]
(8)≈ (A : !A, D1 : !(C � A), C : !C)[〈D [!(C � A)] D1 ⊕ !�2A 〉 , 〈D1 [!(C � A)] !�1C 〉 , 〈 !�1C ⊕ !�2A [P] b 〉]
(9)≈ (A : !A, C : !C)[〈D [!(C � A)] !�1C ⊕ !�2A 〉 , 〈 !�1C ⊕ !�2A [P] b 〉]
(10)≈ 〈D [P] b 〉

Fig. 2. A computational interpretation of the beta isomorphism

(1) Definition of composition. (2) Definition of evaluation. (3) Laws of data flow. (4) Law of
extensions. (5) Law of extensions and definition of pairing. (6) Law of extensions and definition
of projection. (7) Law of data flow and definition of composition. (8) Law of extensions and
definitions of projection and abstraction. (9–10) Laws of data flow.

2. The isomorphism

!(A � B)(A ′ ⊗ B ′, A ⊗ B) ∼= !A(A ′, A) × !B(B ′, B)
(A,A ′ ∈ !A,

B, B ′ ∈ !B)

amounts to having the law of data flow

〈A ⊗ B [!(A � B)]A ′ ⊗ B ′ 〉 ≈ 〈A [!A]A ′ 〉 , 〈B [!B]B ′ 〉

Mathematical Models of Computational and Combinatorial Structures 43

establishing that a link between A ⊗ B and A ′ ⊗ B ′ of type !(A � B) amounts to a
link of type !A between A and A ′ and one of type !B between B and B ′.

3. The computational interpretation of the beta isomorphism in Fig. 1, translated into
the informal syntax of agents used in the above two examples, is given in Fig. 2.

References

1. P. Aczel. Frege structures and the notions of proposition, truth and set. In The Kleene
Symposium, pages 31–60. North-Holland, 1980.

2. J. Baez and J. Dolan. Higher-dimensional algebra III: n-categories and the algebra of
opetopes. Advances in Mathematics, 135:145–206, 1998.

3. J. Baez and J. Dolan. From finite sets to Feynman diagrams. In B. Engquist and W.Schmid,
editors, Mathematics Unlimited - 2001 and Beyond, pages 29–50. Springer-Verlag, 2001.

4. F. Bergeron. Une combinatoire du pléthysme. Journal of Combinatorial Theory (Series A),
46:291–305, 1987.

5. F. Bergeron, G. Labelle, and P. Leroux. Combinatorial species and tree-like structures,
volume 67 of Encyclopedia of mathematics and its applications. Cambridge University
Press, 1998.

6. R. Blute and P. Panangaden. Proof nets and Feynman diagrams. Available from the second
author, 1998.

7. G. Cattani and G. Winskel. Profunctors, open maps and bisimulation. BRICS Report Series
RS-04-22, University of Aarhus, 2004.

8. B. Day. On closed categories of functors. In Reports of the Midwest Category Seminar IV,
volume 137 of Lecture Notes in Mathematics, pages 1–38. Springer-Verlag, 1970.

9. R. Di Cosmo. Isomorphisms of types: from λ-calculus to information retrieval and language
design. Birkhauser, 1995.

10. T. Ehrhard and L. Regnier. The differential lambda calculus. Theoretical Computer Science,
309:1–41, 2003.

11. M. Fiore. Notes on combinatorial functors. Draft available electronically, January 2001.
12. M. Fiore. Rough notes on presheaves. Manuscript available electronically, July 2001.
13. M. Fiore. Semantic analysis of normalisation by evaluation for typed lambda calculus. In

Proceedings of the 4th International Conference on Principles and Practice of Declarative
Programming (PPDP 2002), pages 26–37. ACM Press, 2002.

14. M. Fiore. Isomorphisms of generic recursive polynomial types. In Proceedings of
the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL 2004), pages 77–88. ACM Press, 2004.

15. M. Fiore, R. Di Cosmo, and V. Balat. Remarks on isomorphisms in typed lambda calculi
with empty and sum types. In Proceedings of the 17th Annual IEEE Symposium on Logic in
Computer Science (LICS’02), pages 147–156. IEEE, Computer Society Press, 2002.

16. M. Fiore and T. Leinster. An objective representation of the Gaussian integers. Journal of
Symbolic Computation, 37(6):707–716, 2004.

17. M. Fiore, E. Moggi, and D. Sangiorgi. A fully-abstract model for the pi-calculus. Information
and Computation, 178:1–42, 2002. (Extended abstract in Proceedings of the 11th Annual
IEEE Symposium on Logic in Computer Science (LICS 96), pages 43–54, IEEE, Computer
Society Press, 1996.).

18. M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable binding. In Proceedings of
the 14th Annual IEEE Symposium on Logic in Computer Science (LICS’99), pages 193–202.
IEEE, Computer Society Press, 1999.

44 M.P. Fiore

19. M. Fiore and D. Turi. Semantics of name and value passing. In Proceedings of the 16th

Annual IEEE Symposium on Logic in Computer Science (LICS’01), pages 93–104. IEEE,
Computer Society Press, 2001.

20. M. J. Gabbay and A. Pitts. A new approach to abstract syntax with variable binding. Formal
Aspects of Computing, 13:341–363, 2002. (See also A new approach to abstract syntax
involving binders in Proceedings of the 14th Annual IEEE Symposium on Logic in Computer
Science (LICS’99), pages 214–224, IEEE, Computer Society Press, 1999.).

21. R. Geroch. Mathematical Physics. Chicago Lectures in Physics. The University of Chicago
Press, 1985.

22. M. Hofmann. Semantical analysis of higher order abstract syntax. In Proceedings of the 14th

Annual IEEE Symposium on Logic in Computer Science (LICS’99), pages 204–213. IEEE,
Computer Society Press, 1999.

23. G. Im and G. M. Kelly. A universal property of the convolution monoidal structure. Journal
of Pure and Applied Algebra, 43:75–88, 1986.

24. P. Johnstone. Sketches of an Elephant: A Topos Theory Compendium, volume 43 of Oxford
Logic Guides. Oxford University Press, 2002.

25. A. Joyal. Une theorie combinatoire des séries formelles. Advances in Mathematics, 42:1–82,
1981.

26. A. Joyal. Foncteurs analytiques et especès de structures. In Combinatoire énumérative,
volume 1234 of Lecture Notes in Mathematics, pages 126–159. Springer-Verlag, 1986.

27. G. M. Kelly. Clubs and data-type constructors. In Applications of Categories in Computer
Science, volume 177 of London Mathematical Society Lecture Notes Series, pages 163–190.
Cambridge University Press, 1992.

28. F. W. Lawvere. Metric spaces, generalized logic and closed categories. Rend. del Sem.
Mat. e Fis. di Milano, 43:135–166, 1973. (Also in Reprints in Theory and Applications of
Categories, 1:1–37, 2002.).

29. F. W. Lawvere. Qualitative distinctions between some toposes of generalized graphs. In
Proceedings of the AMS 1987 Symposium on Categories in Computer Science and Logic,
volume 92 of Contemporary Mathematics, pages 261–299, 1989.

30. F. W. Lawvere and R. Rosebrugh. Sets for Mathematics. Cambridge University Press, 2001.
31. S. Mac Lane. Categories for the Working Mathematician. Springer-Verlag, 1971. (Revised

edition 1998).
32. S. Mac Lane and I. Moerdijk. Sheaves in Geometry and Logic: A First Introduction to Topos

Theory. Universitext. Springer-Verlag, 1992.
33. M. Méndez. Species on digraphs. Advances in Mathematics, 123(2):243–275, 1996.
34. M. Méndez and O. Nava. Colored species, c-monoids and plethysm, I. Journal of Combina-

torial Theory (Series A), 64:102–129, 1993.
35. M. Menni. About I-quantifiers. Applied Categorical Structures, 11(5):421–445, 2003.
36. M. Menni. Symmetric monoidal completions and the exponential principle among labeled

combinatorial structures. Theory and Applications of Categories, 11:397–419, 2003.
37. R. Milner. What’s in a name? In Computer Systems: Theory, Technology and Applications,

Monographs in Computer Science. Springer-Verlag, 2003.
38. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I and II. Information

and Computation, 100(1):1–77, 1992.
39. E. Moggi. An abstract view of programming languages. LFCS report ECS-LFCS-90-113,

University of Edinburgh, 1990.
40. O. Nava and G.-C. Rota. Plethysm, categories and combinatorics. Advances in Mathematics,

58:61–88, 1985.
41. R. Needham. Distributed Systems, chapter 12, pages 315–328. Addison-Wesley, second

edition, 1993.

Mathematical Models of Computational and Combinatorial Structures 45

42. F. Oles. Type algebras, functor categories and block structure. In Algebraic Methods in
Semantics. Cambridge University Press, 1985.

43. F. Pfenning and C. Elliot. Higher-order abstract syntax. In Proceedings of the ACM SIG-
PLAN’88 Symposium on Language Design and Implementation, 1988.

44. D. Rajan. The adjoints to the derivative functor on species. Journal of combinatorial theory
(Series A), 62:93–106, 1993.

45. J. Reynolds. The essence of Algol. In Proceedings of the International Symposium on
Algorithmic Languages, pages 345–372. North-Holland, 1981.

46. I. Stark. Names and Higher-Order Functions. Ph.D. thesis, University of Cambridge, 1994.
47. I. Stark. A fully abstract domain model for the pi-calculus. In Proceedings of the 11th Annual

IEEE Symposium on Logic in Computer Science (LICS’96), pages 36–42. IEEE, Computer
Society Press, 1996.

48. R. Street. The role of Michael Batanin’s monoidal globular categories. In Higher Category
Theory, volume 230 of Contemporary Mathematics, pages 99–116. A.M.S., 1998.

49. M. Tanaka. Abstract syntax and variable binding for linear binders. In Proceedings of the 25th

International Symposium on Mathematical Foundations of Computer Science (MFCS’00),
volume 1893 of Lecture Notes in Computer Science, pages 670–679. Springer-Verlag, 2000.

50. S. Yong. A Framework for Binding Operators. Ph.D. thesis (LFCS report ECS-LFCS-92-
207), University of Edinburgh, 1992.

A Fundamental Adjunctions Between Categories of Variable Sets

As it is customary, I write V̂ for the functor category SetV
◦

of so-called V
◦-variable

sets (or presheaves). Recall that there is a universal Yoneda embedding y : V
� � �� V̂

given by y(v) = V(, v).
For small categories V and W, we have the following important adjoint situations

(see, e.g., [29, 12])

V
Lan
∼=

F ���
��������

� � y ��
V̂

F#

�����������

�

Ŵ

F∗

�����������

V

Lan
∼=

� � y ��

f

��

V̂

f!

�� ��
� �

W
� �

y
��
Ŵ

f∗
��

obtained by left Kan extension, where

F#(P) =
∫v∈V

P(v) × Fv() , F∗(Q) = Ŵ (F ,Q) (P ∈ V̂, Q ∈ Ŵ)

and

f!(P) =
∫v∈V

P(v) × W (, fv) , f∗(Q) = Q(f) (P ∈ V̂, Q ∈ Ŵ) .

(See, e.g., [31–Chap. IX] for the above notion
∫

of coend.)

B Substitution Algebras and Algebraic Theories

A substitution algebra structure on P = {Pτ }τ∈T in F̂[T]
T

is given by operators

ητ : �� (τ)τ , στ,τ ′ : (τ)τ ′, τ �� τ ′ (τ, τ ′ ∈ T) ,

giving rise to morphisms

46 M.P. Fiore

ητ : 1 �� Pτ
Vτ , στ,τ ′ : Pτ ′Vτ × Pτ

�� Pτ ′ (τ, τ ′ ∈ T)

in F̂[T], subject to the following axioms, where we write t[xτ � �� u]τ ′ as a shorthand
for στ,τ ′(λλx : Vτ.t, u):

ητ(x)[xτ � �� u]τ = u (u : Pτ) ,

t[xτ � �� u]τ ′ = t (t : Pτ ′) ,

t(x, y)[yτ � �� ητ(x)]τ ′ = t(x, x) (t : Pτ ′Vτ×Vτ , x : Vτ) ,(
t(y, x)

[
yτ ′ � �� u(x)

]
τ ′′

)
[xτ � �� v]τ ′′

=
(
t(y, x)

[
xτ � �� v

]
τ ′′

)[
yτ ′ � �� u(x)[xτ � �� v]τ ′

]
τ ′′

(t : Pτ ′′Vτ ′×Vτ ,

u : Pτ ′Vτ , v : Pτ) .

These substitution structures can be incorporated to algebraic theories; see [18] for
details. For instance, for the simply typed lambda calculus (see also [13]), where the set
of types T is the closure under the arrow type constructor => of a set of base types, this
yields substitution algebras (P, var, sub) with binding operators

(Application) appτ,τ ′ : τ=>τ ′, τ �� τ ′

(Abstraction) absτ,τ ′ : (τ)τ ′ �� τ=>τ ′ (τ, τ ′ ∈ T)

that are required to be compatible in the sense of satisfying the following axioms(
appτ ′,τ ′′

(
t(x), u(x)

))
[xτ � �� u]τ ′

= appτ ′,τ ′′
(
t(x)[xτ � �� u]τ ′=>τ ′′ , u(x)[xτ � �� u]τ ′

) (t : Pτ ′=>τ ′′Vτ , u : Pτ)

(
absτ ′,τ ′′

(
λλy : Vτ ′ .t(y, x)

))
[xτ � �� u]τ ′=>τ ′′

= absτ ′,τ ′′
(
λλy : Vτ ′ .t(y, x)[xτ � �� u]τ ′′

) (t : Pτ ′′Vτ ′×Vτ , u : Pτ)

where t[xτ � �� u]τ ′ stands for subτ,τ ′(λλx : Vτ.t, u).
The initial algebra for this theory can be, of course, described as the simply typed

lambda terms (modulo alpha conversion) with the usual capture-avoiding single-variable
substitution operation (which in this setting can be shown to arise by structural recur-
sion; again see [18] for details).

Further, beta and eta equality can be easily incorporated as the following axioms:

(beta) appτ,τ ′
(
absτ,τ ′(t), u

)
= subτ,τ ′(t, u) (t : Pτ ′Vτ , u : Pτ)

(eta) absτ,τ ′
(
λλx : Vτ.appτ,τ ′(t, varτ(x))

)
= t (t : Pτ=>τ ′) .

(Note that the metatheory accounts for the usual side condition required in the eta equal-
ity axiom, as in higher-order abstract syntax [43] (see also [22]).)

Congruence for Structural Congruences

MohammadReza Mousavi and Michel A. Reniers

Department of Computer Science,
Eindhoven University of Technology,

NL-5600MB Eindhoven, The Netherlands

Abstract. Structural congruences have been used to define the seman-
tics and to capture inherent properties of language constructs. They have
been used as an addendum to transition system specifications in Plotkin’s
style of Structural Operational Semantics (SOS). However, there has
been little theoretical work on establishing a formal link between these
two semantic specification frameworks. In this paper, we give an inter-
pretation of structural congruences inside the transition system speci-
fication framework. This way, we extend a number of well-behavedness
meta-theorems for SOS (such as well-definedness of the semantics and
congruence of bisimilarity) to the extended setting with structural con-
gruences.

1 Introduction

Structural congruences were introduced in [12, 13] in the operational seman-
tics specification of the π-calculus. There, structural congruences are a set of
equations defining an equality and congruence relation on process terms. These
equations are used as an addendum to the transition system specification, in
the Structural Operational Semantics (SOS) style of [17]. The two specifications
(structural congruences and SOS) are linked using a deduction rule dedicated to
the behavior of congruent terms, stating that if a process term can perform a
transition, all congruent process terms can mimic the same behavior.

The combination of structural congruences and SOS rules may simplify SOS
specifications and make them look more compact. They can also capture inher-
ent (so-called spatial) properties of composition operators (e.g., commutativity,
associativity and zero element). Perhaps, the latter has been the main reason
for using them in combination with SOS. However, as we argue in this paper,
the interaction between the two specification styles is not as trivial as it seems.
Particularly, well-definedness and well-behavedness meta-theorems for SOS such
as those mentioned in [1] do not carry over trivially to this mixed setting. As
an interesting example, we show that the addition of structural congruences to
a set of safe SOS rules (e.g., tyft rules of [8]) can put the congruence property
of bisimilarity in jeopardy. This result shows that a standard congruence for-
mat cannot be used, as is, for the combination of structural congruences and
SOS rules. As another example, we show that well-definedness criteria defined

V. Sassone (Ed.): FOSSACS 2005, LNCS 3441, pp. 47–62, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

48 M.R. Mousavi and M.A. Reniers

by [5, 6] for SOS with negative premises do not necessarily hold in the setting
with structural congruences.

Three solutions can be proposed to deal with the aforementioned problems.
The first is to avoid using structural congruences and use “pure” SOS specifica-
tions for defining operational semantics. In this approach, there is a conceptual
distinction between the transition system semantics (as the model of the alge-
bra) and the equational theory (cf. [2], for example). This way, one may lose the
compactness and the intuitive presentation of the operational semantics, but in
return, one will be able to benefit from the existing theories of SOS. This so-
lution can be recommended as a homogenous way of specifying semantics. The
second solution is to use structural congruences in combination with SOS rules
and prove the well-behavedness theorems (e.g., well-definedness of the semantics
and congruence of the notion of equality) manually. By taking this solution, all
the tedious proofs of congruence, as a typical example, have to be done manu-
ally and re-done or adapted in the case of any single change in the syntax and
semantics. Although this solution is a common practice, it does not seem very
promising. The third solution is to extend meta-theorems of SOS to this mixed
setting. In this paper, we pursue the third solution.

The rest of this paper is structured as follows. By reviewing the related work
in Section 2, we position our work within the body of research in formal seman-
tics. Then, in Section 3, we present basic definitions about transition system
specifications, bisimilarity and congruence. Subsequently, Section 4 is devoted
to accommodating structural congruences in the SOS framework. In Section 5,
we study structural congruences from the congruence point of view. There, we
propose a syntactic format for structural congruences that induces congruence
for strong bisimilarity, if they are accompanied by a set of safe SOS rules. We
show, by several abstract counter-examples, that our syntactic format cannot
be relaxed in any obvious way and dropping any of the syntactic restrictions
may destroy the congruence property in general. In Section 6, we extend our
format to allow for SOS rules with negative premises and set the respective
well-definedness criteria. To illustrate our congruence format with a concrete ex-
ample, in Section 7, we apply it to a CCS-like process algebra. Finally, Section 8
concludes the paper and points out possible extensions of our work. For the sake
of brevity and due to space restrictions, we omit the proofs. A detailed version
of this paper (containing additional results) with proofs can be consulted in [15].

2 Related Work

Structural congruences find their origin in the chemical models of computation
[3]. The Chemical Abstract Machine (Cham) of [4] is among the early instances
of such models. In Cham, parallel agents are modelled by molecules floating
around in a chemical solution. The solution is constantly stirred using a magical
mechanism, in the spirit of the Brownian motion in chemistry, that allows for
possible contacts among reacting molecules.

Congruence for Structural Congruences 49

Inspired by the magical mechanism of Cham, structural congruences were
introduced in [12, 13] in the semantic specification of the π-calculus and since
then, the practice of using structural congruences for the specification of oper-
ational semantics has continued. As stated in [14], structural congruences were
also inspired by a curious difference between lambda-calculi and process calculi;
in lambda-calculi, interacting terms are always placed adjacently in the syntax,
while in process calculi, interacting agents may be dispersed around the process
term due to syntactic restrictions. Thus, part of the idea is to bring interacting
terms together by considering terms modulo structural changes. However, the
application of structural congruences is not restricted to this concept. Structural
congruence have also been used to define the semantics of new operators in terms
of previously defined ones (e.g., defining the semantics of the parallel replication
operator in terms of parallel composition in [12, 13] and Section 7 of this paper).

There have been a number of recent works devoted to the fundamental study
of formal semantics with structural congruences. Among these, we can refer
to [10, 18, 19]. Lack of a congruent notion of bisimilarity for the semantics of
the π-calculus has been known since [12] (which is not only due to structural
congruences), but most attempts (e.g., [10, 14, 18, 19]) were focused on deriving a
suitable transition system (e.g., contexts as labels approach of [10]) or a notion of
equivalence (e.g., barbed congruence of [14]) that induces congruence. The works
of [10, 18, 19] deviate from the traditional interpretation of SOS deduction rules
and establish a new semantic framework close to the reduction (reaction) rules
of lambda calculus [9]. In [19], it is emphasized that the relation between this
framework and the known congruence results for SOS remains to be established
and the present paper realizes this goal (at least partially). Our results to date do
not apply to SOS containing variable binding or name passing operators. Also,
the kind of structural congruences that can be dealt with is quite limited; it is for
example, not possible to consider structural congruences expressing properties
such as associativity and zero elements.

To conclude, compared to the above approaches, we take a different angle
to the problem, that is, to characterize the set of specifications that induce
a reasonable transition relation in its commonly accepted meaning. In other
words, we extend the notion of structured operational semantics [8, 7] to cater for
structural congruences. In particular, we extend the meta-theorems concerning
congruence of bisimilarity [1, 8] and well-definedness of the induced transition
relation [5, 6, 7] to the setting with structural congruences.

3 Preliminaries

We assume that the set of process terms, denoted by T (Σ) with typical members
t, t′, t0, . . ., is inductively defined on a set of variables V = {x, y, . . .} and a
signature Σ. The signature contains a number of function symbols (composition
operators: f, g, . . .) with fixed arities (ar(f), ar(g), . . .). Function symbols with
arity 0 are called constants and are typically denoted by a, b, Closed terms,

50 M.R. Mousavi and M.A. Reniers

denoted by C(Σ) with typical members p, q, p0, . . ., are terms that do not contain
variables. A substitution σ replaces variables in a term with other terms. The
set of variables appearing in term t is denoted by vars(t). A transition system
specification, defined below, is a logical way of defining a transition relation on
(closed) terms.

Definition 1. (Transition System Specification (TSS)) A transition system spec-
ification is a tuple (Σ,L,D) where Σ is a signature, L is a set of labels (with
typical members l, l′, l0, . . .) and D is a set of deduction rules. For all l ∈ L, and
s, s′ ∈ T (Σ) we define that (t, l, t′) ∈ → is a formula. A deduction rule dr ∈ D,
is defined as a tuple (H, c) where H is a set of formulae and c is a formula. The
formula c is called the conclusion and the formulae from H are called premises.
A rule with an empty set of premises is called an axiom.

The notion of closed and the concept of substitution are lifted to formulae
in the natural way. A formula (t, l, t′) ∈ → is denoted by the more intuitive
notation t

l→ t′, as well. We refer to t as the source and to t′ as the target of the
transition. A deduction rule (H, c) is denoted by H

c in the remainder.

In the traditional setting, the transition relation induced by a transition sys-
tem specification is the smallest set of provable closed formulae using a well-
founded proof tree based on the deduction rules. Note that for more complicated
transition systems specifications such a unique transition relation may not exist
(see [1, 6] and Section 6 of the present paper for more details). Next, we define our
notion of equality, namely, the notions of strong bisimulation and bisimilarity.

Definition 2. (Bisimulation and Bisimilarity [16]) A relation R ⊆ C(Σ) ×
C(Σ) is a simulation relation with respect to a transition relation → ⊆ C(Σ)×
L × C(Σ) if and only if ∀p,q∈C(Σ) (p, q) ∈ R ⇒ ∀l∈L ∀p′∈C(Σ) p

l→ p′ ⇒
∃q′∈C(Σ) q

l→ q′ ∧(p′, q′) ∈ R. A bisimulation relation is a symmetric simula-
tion relation. Closed terms p and q are bisimilar with respect to → if and only
if there exists a bisimulation relation R with respect to → such that (p, q) ∈ R.
Two closed terms p and q are bisimilar with respect to a transition system specifi-
cation tss, if and only if they are bisimilar with respect to the transition relation
induced by tss. Note that bisimilarity (with respect to a transition relation or
TSS) is an equivalence relation on closed terms.

Next, we define the concept of congruence which is of central importance to
our topic.

Definition 3. (Congruence) A relation R ⊆ T (Σ) × T (Σ) is a congruent re-
lation with respect to a function symbol f ∈ Σ if and only if for all terms
pi, qi ∈ T (Σ) (0 ≤ i < ar(f)), if (pi, qi) ∈ R (for all 0 ≤ i < ar(f)) then
(f(p0, . . . , par(f)−1), f(q0, . . . , qar(f)−1)) ∈ R. Furthermore, R is called a con-
gruence for a transition system specification if and only if it is a congruence
with respect to all function symbols of the signature.

Bisimilarity is not in general a congruence. However, congruence is essential
for the axiomatic treatment of bisimilarity. Furthermore, congruence of bisimi-

Congruence for Structural Congruences 51

larity is of crucial importance in compositional reasoning. Several syntactic for-
mats guaranteeing congruence for bisimilarity have been proposed (see [1] for an
overview). Here, we choose the tyft format of [8] as a sufficiently general example
of such formats for our purposes. Extensions to more general formats (such as
the PANTH format of [20]) are discussed in Section 6.

Definition 4. (Tyft Format [8]) A rule is in tyft format if and only if it has the
following shape:

{ti
li→ yi|i ∈ I}

f(x0, . . . , xar(f)−1)
l→ t

where xi and yi are all distinct variables (i.e., for all i, i′ ∈ I and 0 ≤ j, j′ <
ar(f), yi
= xj and if i
= i′ then yi
= yi′ and if j
= j′ then xj
= xj′), f is a
function symbol from the signature, I is a (possibly infinite) set of indices and t
and ti’s are arbitrary terms. A transition system specification is in tyft format
if and only if all its rules are.

Theorem 1. (Congruence for tyft [8]) For a TSS in tyft format, bisimilarity is
a congruence.

4 Structural Congruences: An SOS Reading

Structural congruences sc on a signature Σ consist of a set of equations of the
form t ≡ t′, where t, t′ ∈ T (Σ). They induce a structural congruence relation on
closed terms, as defined below.

Definition 5. (Structural Congruence Relation) A structural congruence rela-
tion induced by structural congruences sc on signature Σ, denoted by ≡sc, is the
minimal relation satisfying the following constraints:

1. ∀p∈C(Σ) p ≡sc p (reflexivity);
2. ∀p,q∈C(Σ) p ≡sc q ⇒ q ≡sc p (symmetry);
3. ∀p,q,r∈C(Σ) (p ≡sc q ∧ q ≡sc r) ⇒ p ≡sc r (transitivity);
4. ∀f∈Σ∀pi,qi∈C(Σ)(0≤i<ar(f)) (∀0≤i<ar(f) pi ≡sc qi) ⇒ f(p0, . . . , par(f)−1) ≡sc

f(q0, . . . , qar(f)−1) (congruence);
5. ∀σ:V→C(Σ)∀t,t′∈T (Σ) (t ≡ t′) ∈ sc⇒ σ(t) ≡sc σ(t′) (structural congruences).

In other words, ≡sc is the smallest congruence satisfying ≡ on closed terms.

In the remainder, we assume that the structural congruences have the same
signature as the transition system specification they are added to. To link struc-
tural congruences to a transition system specification, a special rule is used,
which we call the structural congruence rule.

Definition 6. (The Structural Congruence Rule [12]) The particular rule schema
of the following form (which is in fact a set of deduction rules for all l ∈ L) is
called the structural congruence rule:

52 M.R. Mousavi and M.A. Reniers

(struct)
x ≡ y y

l→ y′ y′ ≡ x′

x
l→x′

(l ∈ L)

Consider a transition system specification tss = (Σ,L,D) and structural con-
gruences sc on the same signature. Extension of tss with sc, denoted by tss ∪
{(struct)}, is defined by the tuple (Σ,L,D ∪ {(struct)}).

There remains a problem concerning Definition 6, namely, the structural
congruence rule does not fit within the notion of a deduction rule as defined
in Definition 1 since structural congruences (appearing in the premises) do not
fit the definition of formulae per se. In other words, x ≡ y is only a syntactic
notation and has no meaning associated to it as yet. In this paper, we exploit
the structural congruence relation to give a meaning to x ≡ y by extending
the notion of proof (see [15] for other possible interpretations). Syntactically, we

allow for deduction rules of the form
{χi|i ∈ I} {tj ≡ t′j |j ∈ J}

χ
where χ and

χi’s are formulae as defined before (in Definition 1) and tj and t′j are terms from
the signature. This rule format, easily accommodates the structural congruence
rule. Then, we extend the notion of provable transitions to the following notion.

Definition 7. (Provable Transitions: Extended) A proof of a closed formula φ
(in an extended transition system specification tss∪{(struct)}) is a well-founded
upwardly branching tree of which the nodes are labelled by closed formulae such
that

– the root node is labelled by φ, and
– if ψ is the label of a node q and {ψi | i ∈ I} is the set of labels of the nodes

directly above q, then there is a deduction rule
{χi | i ∈ I} {tj ≡ t′j |j ∈ J}

χ
(in tss ∪ {(struct)}) and a substitution σ such that σ(χ) = ψ, for all i ∈ I,
σ(χi) = ψi, and for all j ∈ J , σ(tj) ≡sc σ(t′j).

We re-use the same notations for provability of formulae in the extended setting.

We are not able to reproduce the results of Theorem 1 (concerning congru-
ence for tyft format) in the extended setting with structural congruences. In
fact, adding structural congruences to a set of tyft rules does not preserve the
congruence property of bisimilarity. The following counter-example shows this
fact.

Example 1. Consider the following structural congruence equation and transi-
tion system specification. The common signature is assumed to have a and b as
constants and f as a unary operator.

a ≡ f(b) (a)
a

l0→ a
(b)

b
l0→ a

In the above specification, both a and b can perform an l0 transition to a due
to rules (a) and (b), respectively. On one hand, using Definition 5, a is only

Congruence for Structural Congruences 53

structurally congruent (by means of ≡sc) to itself and f(b). On the other hand, b
is only congruent to itself. Since f(b) cannot perform any new transition, neither
a nor b can perform any other transition due to (struct). Thus, to this end,
we have a ↔ b. However, it does not hold that f(a) ↔ f(b) since f(a) cannot
perform any transition (it is only congruent to f(f(b)) which cannot perform
any transition either), but f(b) can perform an l0 transition to a (using (struct)
since it is congruent to a). This shows that bisimilarity is not a congruence in the
above transition system specification, despite the fact that the original transition
system specification is in tyft format.

Several other counter-examples of violating congruence property by structural
congruences are presented in the remainder of this paper.

5 Well-Behaved Structural Congruences

In this section, we start with proposing a syntactic format for structural congru-
ences and stating that structural congruences conforming to this format are safe
for the purpose of congruence when added to a set of tyft rules. Then, in Section
5.2, by several counter-examples, we show that none of the syntactic constraints
on this format can be dropped in general and thus our syntactic format cannot
be relaxed trivially.

5.1 Congruence Format for Structural Congruences (cfsc)

Our syntactic criteria on structural congruences are defined below.

Definition 8. (Cfsc format) Structural congruences sc (added to a transition
system specification tss) are in the cfsc format if and only if any equation in sc
is of one of the following two forms.

1. An fx equation is of the form f(x0, . . . , xar(f)−1) ≡ g(y0, . . . , yar(g)−1) for
function symbols f and g (which need not be different) and for variables xi

and yj. Variables xi and yj are distinct among themselves (i.e., for all i
= j,
xi
= xj and yi
= yj) but they need not form two disjoint sets (i.e., it may
be that for some i and j, xi = yj).

2. A defining equation is of the form f(x0, . . . , xar(f)−1) ≡ t (or similarly,
t ≡ f(x0, . . . , xar(f)−1)) where f is a function symbol and t is an arbitrary
term. Similar to fx equations, variables xi have to be distinct. Two more
conditions have to be satisfied for this type of equations; first, all variables
in t should be bound by variables x0, . . . , xar(f)−1, i.e., vars(t) ⊆ {xi|0 ≤
i < ar(f)} and second, f may not appear in any other structural congruence
equation and source of the conclusion of any deduction rule in tss. We have
no further assumption about t, thus, there may be a repetition of variables
in t, occurrences of f may appear in t and it may consist of any number of
constants and function symbols.

54 M.R. Mousavi and M.A. Reniers

Note that the above two categories are not disjoint; i.e., an equation may be both
fx and defining. For the remainder, it does not make any difference whether
such equations are taken as fx, defining, or both.

In the following theorem, we state that structural congruences conforming
to the cfsc format, when added to a set of tyft rules, induce a congruent bisim-
ilarity relation. The proof of the following theorem follows from Theorem 1 by
transforming the transition system specification with structural congruences to
a “pure” transitions system specification in tyft format that provably induces
the same transition relation.

Theorem 2. (Congruence Theorem for cfsc) Consider a set of deduction rules
tss in tyft format. If structural congruences sc (added to tss) are in the cfsc
format, then bisimilarity with respect to tss ∪ {(struct)} is a congruence.

5.2 Impossible Relaxations of Cfsc

Next, we show that the cfsc format cannot be relaxed in any obvious way. We take
every and each syntactic constraint on cfsc and by an abstract counter-example,
show that removing it will result in violating the congruence. We start with a
counter-example showing that variables in each side of the fx equation need
to be distinct and that the variables in the f(x0, . . . , xar(f)) side of a defining
equation need to be distinct.

Example 2. f(x, x) ≡ a (a)
a

l0→ a
(b)

b
l0→ a

Similar to Example 1, it clearly holds in the above specification that a ↔ b.
However, it does not hold that f(a, a) ↔ f(a, b) since the former can perform an
l0 transition, while the latter deadlocks. Thus, bisimilarity is not a congruence.
Note that the above structural congruence can be considered both an fx equation
and a defining equation.

The other condition on fx equations is that they may only have one function
symbol in each side of the equation. We have already shown that this constraint
cannot be relaxed in Example 1 in the previous section. There, the equation a ≡
f(b) had two function symbols, namely the constant b and unary function symbol
f and the congruence property is shown to be violated. A similar condition
forces defining equations to have only one fresh function symbol on the side to
be defined. In the following example, we show that allowing more fresh function
symbols also endangers congruence.

Example 3. f(b) ≡ a (a)
a

l0→ a

Suppose that our signature consists of three constants a, b and c and a unary
function symbol f . Then, it immediately follows that b ↔ c since none of the two
constants can perform any transition. However, it does not hold that f(b) ↔ f(c)
since the first term can perform a transition while the latter deadlocks.

Congruence for Structural Congruences 55

Another constraint on a defining equation f(x0, . . . , xar(f)−1) ≡ t is that
vars(t) ⊆ {xi|0 ≤ i < ar(f)}. The following counter-example shows that we
cannot drop this constraint.

Example 4. d ≡ f(a, x) (c)
c

l0→ c
(f)

x1
l0→ y1

f(x0, x1)
l0→ y1

Suppose that the common signature consists of a, b, c and d as constants
and f as a unary operator. Equation d ≡ f(a, x) fits all syntactic criteria of
a defining equation (for d), but the one stated above. It follows from (f) that
f(a, c) l0→ c. Since d ≡ f(a, x), then d

l0→ c and from the same equation (in the
other direction), we can deduce that f(a, b) l0→ c. However, it cannot be derived
that f(b, b) l0→ c. This witnesses that bisimilarity is not a congruence, as a ↔ b
but it does not hold that f(a, b) ↔ f(b, b).

The last constraint on defining equations is concerned with freshness of the
function symbol being defined. In the following two counter-examples, we show
that neither can the defined function symbol cannot appear neither in any other
structural congruence equation, nor in the source of the conclusion of a deduction
rule.

Example 5. c ≡ a c ≡ f(b) (a)
a

l0→ a
(b)

b
l0→ a

Again, in the above specification, we have a ↔ b but it is not true that
f(a) ↔ f(b) since from the structural congruences, we can derive that a ≡sc f(b)
and hence f(b) can perform an l0 transition to a while f(a) cannot perform any
transition.

Example 6. f(x) ≡ g(a) (a)
a

l0→ a
(b)

b
l0→ a

(f)
f(x) l0→ f(x)

It follows from the above specification that a ↔ b but it does not hold that
g(a) ↔ g(b) since the former can perform a transition due to (struct) and (f)
while the latter cannot perform any transition.

6 Structural Congruences and Negative Premises

Transition system specifications are mainly used to specify transitions of process
terms in terms of transitions of their subterms. Sometimes it comes handy to
define a transition based on the impossibility of a transition for a particular
subterm. Several instances of SOS semantics in the literature make use of this
feature (e.g., for defining priority, deadlock detection, sequencing and urgency,
cf. [1, 5]). Thus, it seems natural to extend transition system specifications in
tyft format to account for negative premises. The following definition realizes
this goal.

56 M.R. Mousavi and M.A. Reniers

Definition 9. (Ntyft Format [7]) A rule is in ntyft format if and only if it has
the following shape.

(r)
{ti

li→ yi|i ∈ I} {tj
lj
� |j ∈ J}

f(x0, . . . , xar(f)−1)
l→ t

The same conditions as of tyft format hold for the positive premises and the con-
clusion. There is no particular constraint on the terms appearing in the negative
premises. Set J is the (possibly infinite) set of indices of negative premises.

However, in the presence of negative premises, the concepts of proof and
provable transitions become more complicated. A proof, as defined before, can
provide a reason for presence of a transition but not for its absence. Thus, we have
to resort to another notion of proof that can account for absence of transitions,
as well. Here, we choose the notion of stable model of [5] as an intuitive model
of the induced transition relation. The definition is slightly adapted to cater for
structural congruences and to fit our notations and past definitions.

Definition 10. (Stable Model) A positive closed formula φ is provable from a
set of positive formula T and a transition system specification tss, denoted by
(T, tss) � φ, if and only if there is a well-founded upwardly branching tree of
which the nodes are labelled by closed formulae such that

– the root node is labelled by φ, and
– if the label of a node q, denoted by ψ, is a positive formula and {ψi | i ∈ I}

is the set of labels of the nodes directly above q, then there is a deduction rule
{χi | i ∈ I} {tj ≡ t′j |j ∈ J}

χ
in tss (N.B. χi can be a positive or a negative

formula) and a substitution σ such that σ(χ) = ψ, for all i ∈ I, σ(χi) = ψi

and for all j ∈ J , σ(tj) ≡sc σ(t′j);

– if the label of a node q, denoted by p
l

� , is a negative formula then there
exists no p′ such that p l→ p′ ∈ T .

A stable model, also called a transition relation, defined by a transition system
specification tss is a set of formulae T such that for all closed positive formulae
φ, φ ∈ T if and only if (T, tss) � φ.

However, not all transition system specifications in ntyft format have a stable
model and even if they have, it need not be unique. The following example shows
simple instances of such phenomena.

Example 7.
a

l0
�

a
l0→ a

a
l0
�

b
l0→ b

b
l0
�

a
l0→ a

Consider the above two transition system specifications, both defined on a
signature with a and b as constants. The left-hand-side TSS has no stable model
(as for any stable model a l0→ a if and only if a l0

�) and the right-hand-side one
has two stable models, namely, {a l0→ a} and {b l0→ b}.

Congruence for Structural Congruences 57

To solve this problem, in [5, 7], an extra condition is imposed on transition
system specifications in ntyft format. The following definition illustrates this
condition.

Definition 11. (Stratification) A stratification of a transition system specifica-
tion tss in the ntyft format is a function S from closed positive formulae to an
ordinal such that for all deduction rules of tss in ntyft format (in the shape
of rule (r) in Definition 9) and for all substitutions σ, ∀i∈IS(σ(ti

li→ yi)) ≤
S(σ(f(x0, . . . , xar(f)−1)

l→ t′)) and ∀j∈J,t′∈T (Σ) S(σ(tj
lj→ t′)) < S(σ(f(x0, . . . ,

xar(f)−1)
l→ t′)). A transition system specification is called stratified if and only

if there exists a stratification function for it.

The following theorem from [5] formalizes the advantages of stratified tran-
sition system specifications.

Theorem 3. Consider a transition system specification tss in the ntyft format.
If tss is stratified, then it has a unique stable model. Furthermore, bisimilarity is
a congruence for the stable model of a stratified transition system specification.

Now we have enough ingredients to study the implications of negative premises
on the structural congruences. Before doing so, we show that a naive treatment
of structural congruences, i.e., neglecting them, may ruin the well-definedness of
the induced transition relation.

Example 8.
a

l0
�

b
l0→ b

a ≡ b

First, consider the transition system specification given in the left-hand-side
(with a and b as constants). It is stratified by the function S, if we define for all
closed terms p, S(a l→ p) .= 1 and S(b l→ p) .= 2. Following Theorem 3, it defines
the unique transition relation (its stable model), which is {b l0→ b}.

Then, suppose that we add the structural congruence in the right-hand-side
(which is indeed in the cfsc format) to the specification. Suddenly, the associated
transition system specification loses its well-definedness. The combination of the
above deduction rule and a ≡ b leads to a contradiction, namely b l0→ b if and only
if a l0

� and if b l0→ b then a
l0→ b.

To solve the above mentioned problem, we extend the notion of stratification
to structural congruences as follows.

Definition 12. (Stratification: Extended) Consider a transition system specifi-
cation tss in ntyft format and structural congruence in the cfsc format. Then,
tss∪{(struct)} is stratified, if there exists a function S from closed formulae to
an ordinal such that for all closed substitutions σ:

58 M.R. Mousavi and M.A. Reniers

1. for all deduction rules in tss of the form
{ti

li→ yi|i ∈ I} {tj
lj
� |j ∈ J}

f(x0, . . . , xar(f)−1)
l→ t

, it

holds that ∀i∈IS(σ(ti
li→ yi)) ≤ S(σ(f(x0, . . . , xar(f)−1)

l→ t′)) and ∀j∈J,t′∈T (Σ)

S(σ(tj
lj→ t′)) < S(σ(f(x0, . . . , xar(f)−1)

l→ t′)),
2. for all fx equations of the form f(x0, . . . , xar(f)−1) ≡ g(x0, . . . , xar(g)−1) in

sc, it holds that ∀l∈L,t∈T (Σ) S(σ(f(x0, . . . , xar(f)−1)
l→ t)) = S(σ(g(x0, . . . ,

xar(g)−1)
l→ t)),

3. for all defining equations of the form f(x0, . . . , xar(f)−1) ≡ t in sc, it

holds that ∀l∈L,t′∈T (Σ) S(σ(t l→ t′)) ≤ S(σ(f(x0, . . . , xar(f)−1)
l→ t′)) .

Next, we extend the well-definedness theorem for the transition relation to
the setting with structural congruences. The following theorem states that if a
combination of a transition system specification and structural congruences is
stratified, then it defines a unique transition relation.

Theorem 4. If the combination of transition system tss in ntyft format and
tss ∪ {(struct)} is stratified, then tss ∪ {(struct)} has a unique stable model.
Furthermore, for this model, bisimilarity is a congruence.

Possible extensions to the ntyft format are the addition of ntyxt rules and
predicates. The ntyft-ntyxt format of [7] is a relaxation of ntyft format that allows
for variables in the source of the conclusion. In [7], it is shown how to reduce the
ntyft-ntyxt format to the ntyft format. Adding structural congruences to TSS’s in
the ntyft-ntyxt format, however, is not straightforward. The reduction of ntyft-
ntyxt to ntyft requires to copy each ntyxt rule for every function symbol in the
signature. This reduction thus disallows the presence of any defining equation, as
the new deduction rules contain defined function symbols in the source of their
conclusion. Thus, up to now, we can only guarantee congruence for a combination
of structural congruences and a transition system specification with ntyxt rules
if the structural congruences comprise of fx equations only. In [15], we give
a solution to this problem by interpreting defining equations as conservative
operational extensions to a transition system specification.

Predicates are other ingredients of transition system specifications that
are used to specify concepts such as termination and divergence on process
terms [20]. Unlike negative premises and ntyxt rules, addition of predicates
to a transition system specification has no implication on structural congru-
ences and the cfsc format. Predicates can be modelled as transitions with
a dummy right-hand side (a dummy variable in the premises and a dummy
constant in the conclusion). Thus, the results that we have proved so far
easily extend to the PANTH format of [20] which allows for both ntyft-ntyxt
rules and predicates.

Congruence for Structural Congruences 59

7 Case Study

In this section, we quote an SOS semantics of CCS from [11] (with restriction
of nondeterminism to finite sum and introduction of the parallel replication
operator) and then introduce structural congruences, à la [12], conforming to our
format. By doing this, we show how our format is able to capture a number of
non-trivial structural congruences and make the presentation look more intuitive
and compact. Moreover, from this specification one can still derive congruence
for strong bisimilarity automatically.

The syntax of our CCS-like process algebra is given below.

P ::= 0 | α.P | P + Q | P || Q | P \ L | !P | A

In this syntax, constant 0 stands for the terminating process. The action prefix
operator α.P (which is actually a class of unary operators parameterized by
labels α ∈ L) shows α as its first step and proceeds with P . The set of labels
L is partitioned into the set of names, typically denoted by l, and co-names,
denoted by l. By extending the same notation, let l be defined as l. Restriction
operator P \ L, parameterized by L ⊆ L, defines the scope of local names (and
co-names). Nondeterministic choice is denoted by +. Parallel composition is
denoted by P || Q. Parallel replication of process P is denoted by !P which
usually serves as a restricted substitute for recursion. Recursive symbols A serve
as short-hands for their defining processes, denoted by A

.= P and are used to
define processes hierarchically. We treat recursive symbols as constants in our
signature.

The transition system specification defining the semantics of our language is
given below. In this semantics, l, l ∈ L and α ∈ L∪ {τ}, where τ is the result of
a communication (τ is defined to be τ).

(Act)
α.x

α→x
(Res)

x
α→ y

x \ L α→ y \ L
(α, α /∈ L) (Con)

t
α→ y

A
α→ y

(A .= t)

(Sum0)
x0

α→ y

x0 + x1
α→ y

(Sum1)
x1

α→ y

x0 + x1
α→ y

(Rep)
x ||!x α→ y

!x α→ y

(Com0)
x0

α→ y0

x0 || x1
α→ y0 || x1

(Com1)
x1

α→ y1

x0 || x1
α→x0 || y1

(Com2)
x0

l→ y0 x1
l→ y1

x0 || x1
τ→ y0 || y1

In the above specification, rule (Act) defines that an action prefix operator can
execute its first action and continue with the rest. Each rule in this specification
should be considered as a rule schema, representing a possibly infinite number
of rules for each l ∈ L. Side conditions, in this particular case study, only govern
presence and absence of such copies. Rule (Res) allows for performing actions
beyond the restricted set L (i.e., blocks the rest). Rules (Sum0) and (Sum1)
define the non-deterministic choice operator. Rules (Com0) and (Com1) de-
fine the interleaving behavior of parallel composition and rule (Com2) defines
its communication (synchronization) behavior. Rule (Con) shows how recursive

60 M.R. Mousavi and M.A. Reniers

constants represent the behavior of their defining terms and finally, (Rep) defines
the concept of replication.

By using our format, we can copy a number of structural congruences, defined
in [12] for the π-calculus and thus, eliminate some of the deduction rules. The
result is the following semantic specification.

(Act)
α.x

α→x
(Res)

x
α→ y

x \ L α→ y \ L
(α, α /∈ L) (NSum0)

x0
α→ y

x0 + x1
α→ y

(NCom0)
x0

α→ y0

x0 || x1
α→ y0 || y1

(NCom1)
x0

l→ y0 x1
l→ y1

x0 || x1
τ→ y0 || y1

(struct)
x ≡ y y

l→ y′ y′ ≡ x′

x
l→x′

x + y ≡ y + x x || y ≡ y || x

A ≡ P (A .= P) !x ≡ x ||!x

Note that all of the SOS rules are in tyft format and the top two structural
congruence equations are fx equations while the bottom ones are defining equa-
tions. Thus, one may easily deduce from Theorem 2 that strong bisimilarity with
respect to the induced transition relation is a congruence. This can already be
considered an achievement. However, one may argue that we could not spec-
ify some, may be more interesting, structural congruences of [12] such as those
for associativity (for parallel composition and nondeterministic choice), idem-
potency (for nondeterministic choice) and zero element (again for both parallel
composition and choice). Our answer to this criticism is that in general, the
very same structural congruences (i.e, associativity, idempotency and zero ele-
ment) can be harmful for congruence. Next, we give an intuitive example of an
associativity equation that harms the congruence property.

Example 9. Take the semantics of our CCS-like language defined before. Sup-
pose that we extend our syntax and semantics with a binary operator •. The

semantic rule for this operator is given by rule (LMer)
x0

α→ y0

x0 • x1
α→ y0 || x1

.

According to the above rule, this operator forces the first action to be taken by
the left-hand-side argument and then turns into a normal parallel composition
operator. (Up to here, this operator is similar to the left-merge operator of [2]
which is usually used for finite axiomatization of parallel composition.) This
operator, as defined by rule (LMer) is not associative. But, suppose that we also
add the equation x0•(x1•x2) ≡ (x0•x1)•x2 to our set of structural congruences,
to make it associative.

Then, we can easily observe that the congruence property is ruined. For ex-
ample, it holds that 0 ↔ 0•α (where α is a shorthand for α.0), since none of the
two can perform any action. However, it does not hold that α • 0 ↔ α • (0 •α).
The left-hand term can only perform an α action and terminate (the structural
congruence rule cannot help this term perform more actions since it should con-
tain at least two left-merge operators to fit the structure of the equation). While

Congruence for Structural Congruences 61

the right-hand-term is congruent to (α • 0) • α and this term can perform two
consecutive α actions after the first of which it turns into (0 || 0) || α.

8 Conclusions

In this paper, we gave an interpretation of structural congruences inside the
transition system specification framework. Using this interpretation, we defined
a syntactic congruence format for structural congruences. This format induces
congruences for (strong) bisimilarity, once the structural congruences are used
in combination with a set of standard (e.g., tyft) SOS rules. Furthermore, the
relationship between negative premises in the deduction rules, structural con-
gruences and well-definedness of the transition relation was investigated and a
sufficient well-definedness criterium was established. To show the application of
our format to a concrete example, we applied our syntactic format to a CCS-like
process algebra.

Extending the syntactic format to other notions of equivalence and refinement
is a possible extension of our work. Another important extension of our work
concerns the notions of names and variable binding.

References

1. L. Aceto, W. J. Fokkink, and C. Verhoef. Structural operational semantics. In
Handbook of Process Algebra, Chapter 3, pages 197–292. Elsevier Science, 2001.

2. J. C. M. Baeten and W. P. Weijland. Process Algebra, volume 18 of Cambridge
Tracts in Theoretical Computer Science. Cambrdige University Press, 1990.

3. J.-P. Banâtre, P. Fradet, and D. Le Métayer. Gamma and the chemical reac-
tion model: Fifteen years after. In Multiset Processing: Mathematical, Computer
Science, and Molecular Computing Points of View, volume 2235 of LNCS, pages
17–44. Springer, 2001.

4. G. Berry and G. Boudol. The chemical abstract machine. Theoretical Computer
Science, 96:217–248, 1992.

5. R. Bol and J. F. Groote. The meaning of negative premises in transition system
specifications. Journal of the ACM, 43(5):863–914, 1996.

6. R. van Glabbeek. The meaning of negative premises in transition system specifi-
cations II. Journal of Logic and Algebraic Programming, 60:229–258, 2004.

7. J. F. Groote. Transition system specifications with negative premises. Theoretical
Computer Science, 118(2):263–299, 1993.

8. J. F. Groote and F. W. Vaandrager. Structured operational semantics and bisim-
ulation as a congruence. Information and Computation, 100(2):202–260, 1992.

9. K. Honda and N. Yoshida. On reduction-based process semantics. Theoretical
Computer Science, 152(2):437–486, 1995.

10. J. J. Leifer and R. Milner. Deriving bisimulation congruences for reactive systems.
In Proceedings of CONCUR’00, volume 1877 of LNCS, pages 259–274. Springer,
2000.

11. R. Milner. Communication and Concurrency. Prentice Hall, 1989.

62 M.R. Mousavi and M.A. Reniers

12. R. Milner. Functions as processes. Mathematical Structures in Computer Science,
2:119–141, 1992.

13. R. Milner. The polyadic π-calculus: a tutorial. In Logic and Algebra of Specification,
pages 203–246. Springer, 1993.

14. R. Milner and D. Sangiorgi. Barbed bisimulation. In Proceedings of ICALP’92,
volume 623 of LNCS, pages 85–695. Springer, 1992.

15. M.R. Mousavi and M.A. Reniers. Structural congruences and structural opera-
tional semantics. Technical report CSR-04-28, Department of Computer Science,
Eindhoven University of Technology, Eindhoven, The Netherlands, 2004.

16. D. M. Park. Concurrency and automata on infinite sequences. In Proceedings of
5th GI Conference, volume 104 of LNCS, pages 167–183. Springer, 1981.

17. G. D. Plotkin. A structural approach to operational semantics. Journal of Logic
and Algebraic Progamming, 60:17–139, 2004.

18. V. Sassone and P. Sobociński. Deriving bisimulation congruences: 2-categories
vs. precategories. In Proceedings of FOSSACS’03, volume 2620 of LNCS, pages
409–424. Springer, 2003.

19. P. Sewell. From rewrite rules to bisimulation congruences. Theoretical Computer
Science, 274(1-2):183–230, 2002.

20. C. Verhoef. A congruence theorem for structured operational semantics with pred-
icates and negative premises. Nordic Journal of Computing, 2(2):274–302, 1995.

Probabilistic Congruence for Semistochastic
Generative Processes

Ruggero Lanotte and Simone Tini

Dipartimento di Scienze della Cultura, Politiche e dell’Informazione,
Università dell’Insubria, Via Valleggio 11, I-22100, Como, Italy

Abstract. We propose an SOS transition rule format for the genera-
tive model of probabilistic processes. Transition rules are partitioned in
several strata, giving rise to an ordering relation analogous to those in-
troduced by Ulidowski and Phillips for classic process algebras. Our rule
format guarantees that probabilistic bisimulation is a congruence w.r.t.
process algebra operations. Moreover, our rule format guarantees that
process algebra operations preserve semistochasticity of processes, i.e.
the property that the sum of the probability of the moves of any process
is either 0 or 1. Finally, we show that most of operations of the prob-
abilistic process algebras studied in the literature are captured by our
format, which, therefore, has practical applications.

1 Introduction

Probabilistic process algebras have been introduced in the literature (see, among
the others, [2, 3, 8, 9, 10, 11, 13]) to develop techniques dealing with both func-
tional and non-functional aspects of system behavior, such as performance and
reliability. Probabilistic transition systems (PTSs, for short), which extend clas-
sic labeled transition systems by some mechanism to represent the probabilistic
choice, have been employed as a basic semantic model of probabilistic processes.
In order to abstract away from irrelevant information on the way that processes
compute, several notions of behavioral equivalence and preorder have been con-
sidered. Probabilistic bisimulation relates two processes iff they have the same
probabilistic branching structure. In the process algebras of [2, 3, 8, 9, 10, 11, 13]),
probabilistic bisimulation is a congruence w.r.t. all operations, which is an im-
portant property to fit it into an axiomatic framework.

Usually, PTSs are defined by means of a structural operational semantics [14,
15] (SOS, for short) consisting of a set of transition rules of the form premises

conclusion ,
which, intuitively, determine how probabilistic moves of processes can be inferred
by probabilistic moves of other processes. A set of syntactical constraints on
the transition rules is called a transition rule format [16]. In the area of classic
(i.e., non-probabilistic) process algebras, rule formats have been widely employed
to fix results holding for classes of process algebras. For instance, several rule
formats proposed in the literature ensure that a given behavioral equivalence
is a congruence (for a survey see [1]). Other rules formats ensure that a given
property of security is preserved by process algebra operations [17, 18].

V. Sassone (Ed.): FOSSACS 2005, LNCS 3441, pp. 63–78, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

64 R. Lanotte and S. Tini

An interesting issue is to develop rule formats for probabilistic process al-
gebras. To take a step in this direction, we propose a rule format for process
algebras respecting the generative model of probabilistic processes [11], which
requires that a single probability distribution is ascribed to all moves of any
process. Such a generative model differs w.r.t. the reactive model of probabilis-
tic processes, which requires that the kind of action of any process is chosen
nondeterministically, and that, for any action and any process, a probability
distribution is ascribed to the moves of that process labeled with that action.

Our format admits transition rules of the following form:

{xi
ai,pi−−−→ yi | i ∈ I} ∪ {xj

Aj ,p
′
j−−−→ | j ∈ J} ∪ {xh

Bh−−→ |h ∈ H}

f(−→x)
a,

∏
i∈I pi∏

j∈J (1−p′
j
)
·wρ

−−−−−−−−−−−→ t

Hence, our format extends the classic de Simone format [16] with probability

(i.e., a probability value p appears in transition labels), premises xj

Aj ,p
′
j−−−→ mean-

ing that the argument j of f performs actions in the set Aj with total probability

p′j , and premises xh
Bh−−→ meaning that the argument h of f performs at least

one action in the set Bh. Then, to give a semantics to a given process algebra,
we require that the transition rules are partitioned in n strata R1, . . . ,Rn, for
some n ∈ IN. The interpretation is that the moves of a given process t can be
inferred from rules in Ri only if no move of t can be inferred from rules in Rj ,
for any j < i. Hence, the partitioning gives rise to an ordering relation between
transition rules analogous to those introduced for classic process algebras in [19].

We prove that process algebra operations captured by our format preserve
semistochasticity of processes, i.e. the property that the sum of the probability
of the moves of any process is either 0 or 1. This is a central issue in the theory
of probabilistic processes, since semistochasticity is required by most of authors,
such as [3, 5, 8], which concentrate on so called semistochastic languages [11].

Then, we prove that probabilistic bisimulation is a congruence w.r.t. all op-
erations captured by our format.

To show that our format has practical applications, we prove that it captures
most of operations of the probabilistic process algebras proposed in the literature.

Finally, we prove that our format can be enriched by double testing as in
GSOS format [7], and by look ahead as in tyft/tyxt format [12]. We discuss also
the possibility to admit predicates, as in formats path [4] and panth [20].

We discuss the related work [6], where a very preliminary rule format for the
reactive model of probabilistic processes is introduced.

2 Background

Let us begin with recalling the model of probabilistic transition systems.
For any set S, let M(S) denote the collection of multisets over S.

Definition 1. A probabilistic transition system (PTS, for short) is a triple
(S, Act, T), where S is a set of states, Act is a set of actions, and T ∈M(S ×

Probabilistic Congruence for Semistochastic Generative Processes 65

Act × (0, 1] × S) is a multiset of transitions such that, for all states s ∈ S,∑
{| p | ∃a ∈ Act, s′ ∈ S : (s, a, p, s′) ∈ T |} ∈ [0, 1].

Def. 1 respects the generative (or full) model of probabilistic processes [11],
where a single probability distribution is ascribed to all moves of any process. On
the contrary, we recall that the reactive model admits that the kind of action is
chosen nondeterministically, i.e. the multiset T satisfies the following property:
for all states s ∈ S and actions a ∈ Act,

∑
{| p | ∃s′ ∈ S : (s, a, p, s′) ∈ T |} ∈ [0, 1].

Definition 2. A state s ∈ S is semistochastic iff
∑
{| p | ∃a ∈ Act, s′ ∈ S :

(s, a, p, s′) ∈ T |} ∈ {0, 1}. If this sum is 1 then s is stochastic. A PTS is semis-
tochastic iff all its states are semistochastic.

As in [3, 5, 8], we concentrate on semistochastic PTSs, which are the semantic
model of the so called semistochastic languages [11].

We write s
a,p−−→ s′ to denote that (s, a, p, s′) ∈ T , and we call s and s′ source

and target of the transition, respectively. For a set of actions A ⊆ Act, we write
s

A,p−−→ to denote that
∑
{| q | ∃a ∈ A, s′ ∈ S : s

a,q−−→ s′ |} = p. If this multiset is

empty, then we write s
A,0−−→. Finally, we write s

A−→ to denote that there is at
least one transition (s, a, p, s′) in T with a ∈ A, for some p and s′.

Before defining probabilistic bisimulation, we need some definitions.
For an equivalence relation R over S, we write S/R to denote the set of

equivalence classes induced by R.

Definition 3. μ : S × Act × 2S → [0, 1] is the function given by: ∀s ∈ S,
∀a ∈ Act, ∀S ⊆ S

μ(s, a, S) =
∑
{| p | s a,p−−→ s′ and s′ ∈ S |}

Definition 4. An equivalence relation R ⊆ S×S is a probabilistic bisimulation
if (s1, s2) ∈ R implies: ∀S ∈ S/R, ∀a ∈ Act,

μ(s1, a, S) = μ(s2, a, S)

The union of all probabilistic bisimulation is, in turn, a probabilistic bisim-
ulation. We denote it by ≈, and we write s1 ≈ s2 for (s1, s2) ∈≈.

Let us recall now the notions of signature and term over a signature.
A signature is a set Σ of operation symbols together with an arity mapping

that assigns a natural ar(f) to every f ∈ Σ. If ar(f) is 0, f is called a constant.
For a set of variables Var, ranged over by x, y, . . . , the set of (open) terms

T(Σ, Var) over Σ and Var, ranged over by s, t, . . . , is the least set such that: 1)
each variable x ∈ Var is a term; 2) f(t1, . . . , tar(f)) is a term whenever f ∈ Σ and
t1, . . . , tar(f) are terms. Closed terms are terms that do not contain variables.

A substitution is a mapping σ : Var → T(Σ, Var). With σ(t) we denote the
term obtained by replacing all occurrences of variables x in term t by σ(x).

The abstract syntax of probabilistic process description languages is usually
given by a signature Σ, whose closed terms are called probabilistic processes. The
semantics is usually given by a PTS, where states are probabilistic processes.

66 R. Lanotte and S. Tini

3 Definitions

In this section we introduce the notions of PB transition rule and PB transition
system specification (PB stays for probabilistic bisimulation).

Definition 5. For any operation f ∈ Σ and tuple −→x = x1, . . . , xar(f) of vari-
ables, a PB transition rule ρ is of the form

{xi
ai,pi−−−→ yi | i ∈ I} ∪ {xj

Aj ,p
′
j−−−→ | j ∈ J} ∪ {xh

Bh−−→ |h ∈ H}

f(−→x)
a,

∏
i∈I pi∏

j∈J (1−p′
j
)
·wρ

−−−−−−−−−−−→ t

where:

1. I, J , H are subsets of {1, . . . , ar(f)} such that J ⊆ I;
2. ai ∈ Act for i ∈ I, Aj ⊆ Act for j ∈ J , Bh ⊆ Act for h ∈ H, a ∈ Act;
3. for all i ∈ I and j ∈ J such that i = j, it holds that ai
∈ Aj;
4. pi is a variable with range (0, 1] for i ∈ I, p′j is a variable with range [0, 1)

for j ∈ J ;
5. t is a term over Σ and −→x ∪ {yi | i ∈ I};
6. wρ is the weight of ρ and satisfies 0 < wρ ≤ 1.

Transitions {xi
ai,pi−−−→ yi|i ∈ I} are the active premises; variables {xi|i ∈

I} are the active variables; transitions {xj

Aj ,p
′
j−−−→ |j ∈ J} are the unneeded

premises; transitions {xh
Bh−−→ |h ∈ H} are the unquantified premises; transition

f(−→x)
a,

∏
i∈I pi∏

j∈J (1−p′
j
)
·wρ

−−−−−−−−−−−→ t is the conclusion; f(−→x) is the source; t is the target of
ρ.

Given terms
−→
t , values {qi | i ∈ I} in (0, 1], and values {q′j | j ∈ J} in [0, 1),

Def. 5 says that term f(
−→
t) has the move f(

−→
t)

a,q−−→ t[
−→
t /−→x][−→s /−→y], with q =∏

i∈I qi∏
j∈J (1−q′j) · wρ, provided that ti has the move ti

ai,qi−−−→ si, for all i ∈ I, the sum
of the probability of the moves of tj with label in Aj is q′j , for all j ∈ J , and th
has at least one move with label in Bh, for all h ∈ H.

Notice that the conclusion is triggered by both active and unquantified
premises, and does not require unneeded premises, meaning that p′j could be
0 for some j ∈ J . Unneeded premises are used to compute the probability of the
conclusion. More precisely, they permit normalization of probability, which, as
we will see in next sections, is needed in several operations of process algebras,
such as restriction and priority. The probability of the conclusion depends on the
weight of ρ and on

∏
i∈I pi∏

j∈J (1−p′
j) , which is the conditional probability that all xi

perform ai under the assumption that all xj are not allowed to perform actions
in Aj . Unquantified premises do not contribute in computing the probability of
the conclusion. They are “necessary conditions” for the application of ρ.

Definition 6. A PB transition system specification (PB TSS, for short) is
formed by a set R of PB transition rules such that:

Probabilistic Congruence for Semistochastic Generative Processes 67

1. R is partitioned into n strata R1, . . . ,Rn, for some n ∈ IN;
2. for each stratum Ru, operation f and tuple of variables −→x = x1, . . . , xar(f)

s.t. Ru has at least one PB transition rule with source f(−→x), it holds that:
(a) All PB transition rules with source f(−→x) in stratum Ru have the same

set of unquantified premises {xh
Bh−−→ |h ∈ H};

(b) All PB transition rules with source f(−→x) in stratum Ru have the same

set of unneeded premises {xj

Aj ,p
′
j−−−→ | j ∈ J};

(c) All PB transition rules with source f(−→x) in stratum Ru have the same
set of active variables {xi | i ∈ I};

(d) Given actions {a′i | i ∈ I} such that a′i
∈ Aj for all indexes i and j

with i = j and xj

Aj ,p
′
j−−−→ an unneeded premise, then there is at least

one PB transition rule with source f(−→x) in Ru with active premises

{xi
a′

i,pi−−−→ yi | i ∈ I};
(e) Given the PB transition rules ρ1, . . . , ρm in Ru with source f(−→x) having

the same active premises, their weights satisfy wρ1 + · · ·+ wρm
= 1.

The meaning of clause 1 is that the rules in stratum Ru can be applied only
if no rule in strata R1, . . . ,Ru−1 can be applied (see Def. 7 below).

Let us take any f ∈ Σ. Clause 2a implies that unquantified premises trigger
either all rules with source f(−→x) in Ru, or none of them. In the first case, we can
prove that clauses 2b–2e ensure that, given semistochastic processes

−→
t , then the

sum of the probability of the moves of f(
−→
t) that are derivable by the rules in

Ru is either 0 or 1. Let us distinguish two cases. In the first case, some ti with
i ∈ I is not stochastic. Since it is semistochastic, ti has no move. Hence, since
clause 2c implies that a move of ti is needed to infer a move of f(

−→
t), no move

of f(
−→
t) can be derived from the rules in stratum Ru, and, therefore, the sum

of the probability of the moves of f(
−→
t) derivable from Ru is 0. In the second

case, all ti with i ∈ I are stochastic. Let us assume that, for all j ∈ J , q′j is

the probability such that tj
Aj ,q

′
j−−−→. Value

∏
j∈J(1 − q′j) is the probability that

each tj does not perform any action in Aj . All combinations of arbitrary moves
{ti

ai,qi−−−→ t′i | i ∈ I}, with ai ∈ Act for each i ∈ I, fall into two categories:

– Some ai is in Aj for the index j = i. Clause 3 of Def. 5 ensures that no move
of f(

−→
t) is inferred by rules in Ru from moves {ti

ai,qi−−−→ t′i | i ∈ I}.
– No ai is such that ai ∈ Aj for any index j = i. Since ti is semistochas-

tic, this implies q′j
= 1 for all j ∈ J . By clause 2d of Def. 6 there exist
rules ρ1, . . . , ρm with source f(−→x) in Ru, for some m ∈ IN, with active
premises {xi

ai,pi−−−→ yi | i ∈ I}. Hence, f(
−→
t) has m moves with probabilities

wρ1 ·
∏

i∈I qi∏
j∈J (1−q′j) , . . . , wρm

·
∏

i∈I qi∏
j∈J (1−q′j) . Notice that these probabilities are well

defined, since q′j
= 1 for all j ∈ J . Now, since wρ1 + · · ·+wρm
= 1 by clause

2e of Def. 6, the sum of these probabilities is
∏

i∈I qi∏
j∈J (1−q′j) .

68 R. Lanotte and S. Tini

Since we have assumed that all
−→
t are stochastic, and that for all j ∈ J , q′j is the

probability of tj
Aj ,q

′
j−−−→, the overall probabilities of the combinations of moves

{ti
ai,qi−−−→ t′i | i ∈ I} falling in the second category is

∏
j∈J(1−q′j). Hence, if q′j = 1

for some j ∈ J , f(
−→
t) has no move and the sum of the probability of the moves

of f(
−→
t) derivable from Ru is 0. Otherwise, if q′j
= 1 for all j ∈ J , the sum of

the probability of the moves of f(
−→
t) derivable from Ru is

∏
j∈J (1−q′j)∏
j∈J (1−q′j) = 1.

We can now formalize how PTSs are generated by PB TSSs.

Definition 7. Assume a PB TSS with strata R1, . . . ,Rn.

1. A transition t
a,q−−→ s is provable from stratum Ru iff there is a closed substi-

tution instance {ti
ai,qi−−−→ si | i ∈ I} ∪ {tj

Aj ,q
′
j−−−→ | j ∈ J} ∪ {th

Bh−−→ |h ∈ H}
t

a,q−−→ s
of a PB transition rule in Ru such that:
(a) for all i ∈ I, ti

ai,qi−−−→ si is a transition provable from the TSS;
(b) for all j ∈ J , q′j =

∑
{|q|∃a ∈ Aj , s

′ : tj
a,q−−→ s′is provable from the TSS|};

(c) for all h ∈ H, at least one transition th
a,qh−−−→ uh with a ∈ Bh is provable

from the TSS, for some qh and uh;
2. A transition t

a,q−−→ s is provable from the TSS if it is provable from some stra-
tum Ru and no transition with source t is provable from strata R1, . . . ,Ru−1.

Moves of terms are proved inductively w.r.t. their structure. In fact, first of
all we can prove moves of constants from strata R1, . . . ,Rn and, then, we can
prove moves of constants from the TSS. This is possible since PB transition rules
having a constant as source have no premise. Then, after moves of terms

−→
t have

been proved from the TSS, we can prove moves of f(
−→
t) from R1, . . . ,Rn and,

then, we can prove moves of f(
−→
t) from the TSS.

Let us recall that, according to the classical definition (see, e.g., [12]), a (non-
probabilistic) transition t a−→ t′ is provable from a given TSS iff there exists a well-
founded, upwardly branching tree whose nodes are labeled by closed transitions,
whose leaves have empty label, whose root is labeled by t

a−→ t′, and, whenever
K is the (possibly empty) set of labels of the nodes directly above a node labeled
by β, then K/β is a closed substitution instance of a transition rule in the TSS.

We need a more complicated definition since our rules have the unneeded
premises and the unquantified premises that are not “pure” transitions. Hence,
we cannot construct the branching tree that is considered in the classical defini-
tion. Moreover, as in [19], we have to take into account that there is an ordering
relation between the transition rules, given by the partitioning in n strata.

Definition 8. The PTS induced by a PB TSS is the PTS having as transitions
the transitions that are provable from the TSS.

Probabilistic Congruence for Semistochastic Generative Processes 69

4 Examples

In this section we show that most of operations offered by the probabilistic
process algebras proposed in the literature can be expressed by our PB TSSs.

Example 1 (Constants). Stratum R1 contains the following rule, for all a ∈ Act:

a
a,1−−→ 0

Term a performs action a, and, then, it behaves as the idle process 0.

Let us show now that we can express the probabilistic sum of [2, 3, 8, 9, 11].

Example 2 (Probabilistic sum). Let 0 < p < 1. Stratum R1 contains the follow-
ing rules, for all a1, a2 ∈ Act, where p and 1− p are their weights:

x1
a1,p1−−−→ y1 x2

a2,p2−−−→ y2

x1 +p x2
a1,p1·p2·p−−−−−−→ y1

x1
a1,p1−−−→ y1 x2

a2,p2−−−→ y2

x1 +p x2
a2,p1·p2·(1−p)−−−−−−−−−→ y2

Stratum R2 contains the following rule, for all a1 ∈ Act:

x1
a1,p1−−−→ y1

x1 +p x2
a1,p1−−−→ y1

Stratum R3 contains the following rule, for all a2 ∈ Act:

x2
a2,p2−−−→ y2

x1 +p x2
a2,p2−−−→ y2

Let us take term t1 +p t2. Index p means that, when both t1 and t2 can move, t1
moves with probability p, and t2 moves with probability 1−p. Rules in R1 (with
weights p and 1− p) are applied when both t1 and t2 are stochastic; rules in R2
(with weight 1) are applied when only t1 is stochastic; rules in R3 (with weight
1) are applied when only t2 is stochastic. In the first case, since t2 (resp. t1)
is stochastic and the sum of the probability of its moves is 1, from t1

a1,p1−−−→ t′1
(resp. t2

a2,p2−−−→ t′2) we infer moves of t1 +p t2 labeled a1 (resp. a2) with total
probability p1 · p (resp. p2 · (1 − p)). In the other two cases, from t1

a1,p1−−−→ t′1
(resp. t2

a2,p2−−−→ t′2), we infer t1 +p t2
a1,p1−−−→ t′1 (resp. t1 +p t2

a2,p2−−−→ t′2).

Let us consider now the interleaving operation of [3].

Example 3 (Interleaving). Let 0 < p < 1. Stratum R1 contains the following
rules, for all a1, a2 ∈ Act, where p and 1− p are their weights:

x1
a1,p1−−−→ y1 x2

a2,p2−−−→ y2

x1 ‖p x2
a1,p1·p2·p−−−−−−→ y1 ‖p x2

x1
a1,p1−−−→ y1 x2

a2,p2−−−→ y2

x1 ‖p x2
a2,p1·p2·(1−p)−−−−−−−−−→ x1 ‖p y2

70 R. Lanotte and S. Tini

Stratum R2 contains the following rules, for all a1 ∈ Act:

x1
a1,p1−−−→ y1

x1 ‖p x2
a1,p1−−−→ y1 ‖p x2

Stratum R3 contains the following rules, for all a2 ∈ Act:

x2
a2,p2−−−→ y2

x1 ‖p x2
a2,p2−−−→ x1 ‖p y2

As in Ex. 2, given a term t1 ‖p t2, index p means that, when both t1 and t2 can
move, t1 moves with probability p, and t2 moves with probability 1− p.

Let us consider now the synchronous product of PCCS [10, 11].

Example 4 (Synchronous product). Stratum R1 contains the following rules, for
all a1, a2 ∈ Act:

x1
a1,p1−−−→ y1 x2

a2,p2−−−→ y2

x1 ‖ x2
a1×a2,p1·p2−−−−−−−−→ y1 ‖ y2

Here, at each computation step, term t1 ‖ t2 can move only by combining an
action of t1 and an action of t2. Actions are composed by means of operator ×.

Let us consider now the probabilistic version of CCS parallel composition [3].

Example 5 (Interleaving plus synchronization). Let 0 < p, q < 1. Stratum R1
contains the following rules, for all a1, a2 ∈ Act such that a2
= a1:

x1
a1,p1−−−→ y1 x2

a2,p2−−−→ y2

x1 ‖pq x2
a1,p1·p2·p−−−−−−→ y1 ‖pq x2

x1
a1,p1−−−→ y1 x2

a2,p2−−−→ y2

x1 ‖pq x2
a2,p1·p2·(1−p)−−−−−−−−−→ x1 ‖pq y2

x1
a1,p1−−−→ y1 x2

a1,p2−−−→ y2

x1 ‖pq x2
a1,p1·p2·p·(1−q)−−−−−−−−−−→ y1 ‖pq x2

x1
a1,p1−−−→ y1 x2

a1,p2−−−→ y2

x1 ‖pq x2
a1,p1·p2·(1−p)·(1−q)−−−−−−−−−−−−−→ x1 ‖pq y2

x1
a1,p1−−−→ y1 x2

a1,p2−−−→ y2

x1 ‖pq x2
τ,p1·p2·q−−−−−→ y1 ‖pq y2

Stratum R2 contains the following rules, for all a1 ∈ Act:

x1
a1,p1−−−→ y1

x1 ‖pq x2
a1,p1−−−→ y1 ‖pq x2

Stratum R3 contains the following rules, for all a2 ∈ Act:

x2
a2,p2−−−→ y2

x1 ‖pq x2
a2,p2−−−→ x1 ‖pq y2

Probabilistic Congruence for Semistochastic Generative Processes 71

Let us take t1 ‖pq t2. When t1 and t2 intend to perform actions a1 and a2 with
a2
= a1, t1 moves with probability p and t2 moves with probability 1 − p, as
in the case of interleaving operator of Ex. 3. When t1 and t2 intend to perform
actions a1 and a1, either they synchronize with probability q, thus producing
action τ , or they do not synchronize with probability 1− q. In this second case,
t1 moves with probability p ·(1−q), and t2 moves with probability (1−p) ·(1−q).

Let us consider now the operation of sequential composition of terms of [3].

Example 6 (Sequencing). Stratum R1 contains the following rules, for a1 ∈ Act:

x1
a1,p1−−−→ y1

x1 · x2
a1,p1−−−→ y1 · x2

Stratum R2 contains the following transition rules, for all a2 ∈ Act:

x2
a2,p2−−−→ y2

x1 · x2
a2,p2−−−→ y2

Let us take t1 · t2. If t1 moves, then rules in R1 can be applied and t1 · t2 moves
as t1, else, if t2 moves, rules in R2 can be applied and t1 · t2 moves as t2.

Let us consider now the restriction operation of [2, 8, 9, 11]. This is the first
example in which we employ unneeded premises.

Example 7 (Restriction). Let A ⊆ Act. Stratum R1 contains the following rules,
for all a1 ∈ Act \A:

x1
a1,p1−−−→ y1 x1

A,p−−→

x1\A
a1,

p1
1−p−−−−→ y1\A

Term t1\A behaves as t1, but it cannot perform actions in A. Let us assume that

the sum of the probability of the moves of t1 with label in A is q, i.e. t1
A,q−−→. If

q = 1, then no move of t1\A can be inferred by the rules in R1. Hence, t1\A
has no move and it is semistochastic. If t1 has a move t1

a1,q1−−−→ t′1, with a1
∈ A,
then t1\A has the same move, but with probability q1

1−q , which is the conditional

probability that t1 has the move t1
a1,q1−−−→ t′1 under the assumption that t1 is not

allowed to perform actions in A. Hence, the sum of the probability of the moves
of t1\A is 1−q

1−q = 1, and t1\A is stochastic.
Let us consider now the operator of priority. This is the first example in which

we employ unquantified premises.

Example 8 (Priority of a over b). Let a, b ∈ Act. Stratum R1 contains the fol-
lowing rules, for all a1 ∈ Act \ {b}:

x1
a1,p1−−−→ y1 x1

{b},p−−−→ x1
{a}−−→

ϑa
b (x1)

a1,
p1

1−p−−−−→ ϑa
b (y1)

72 R. Lanotte and S. Tini

Stratum R2 contains the following rules, for all a1 ∈ Act:

x1
a1,p1−−−→ y1

ϑa
b (x1)

a1,p1−−−→ ϑa
b (y1)

Term ϑa
b (t1) behaves as t1, but it can perform action b only if it cannot perform

a. Rules in R1 are applied only if t1 can perform a. In this case, if the sum of the

probability of the moves of t1 labeled b is q (i.e. t1
{b},q−−−→), then, from any move

t1
a1,q1−−−→ t′1 with a1
= b, we infer a move of ϑa

b (t1) with label a1 and probability
q1

1−q , which is the conditional probability that t1 has the move t1
a1,q1−−−→ t′1 under

the assumption that t1 is not allowed to perform b. So, the sum of the probability
of the moves of ϑa

b (t1) is 1−q
1−q = 1, and ϑa

b (t1) is stochastic. Rules in R2 can be
applied only if t1 cannot perform a. In this case, ϑa

b (t1) behaves as t1.

5 Results

Theorem 1. The PTS induced by any PB TSS is semistochastic.

Proof. We have to prove that, given an arbitrary term t, the sum of the proba-
bility of the moves of t is either 0 or 1. This property follows by two facts: 1) The
moves of t can be derived only by the rules that are in one stratum Ru; 2) the
sum of the probability of the moves of t derivable by the rules in any stratum
Ru is either 0 or 1, as we have proved in the previous section. ��

Theorem 2. The probabilistic bisimulation induced by any PB TSS is a con-
gruence.

Proof. Let R be the least equivalence relation over PTS states such that:

1. sR t whenever s ≈ t;
2. f(−→s)Rf(

−→
t) whenever s1 R t1, . . . , sar(f) R tar(f).

Lemma 1. Given a term u over variables −→x = x1, . . . , xn and tuples of terms
−→s = s1, . . . , sn and

−→
t = t1, . . . , tn, if siR ti holds for all 1 ≤ i ≤ n, then

u[
−→
t /−→x]Ru[−→s /−→x].

To prove the thesis, it suffices to prove that, for arbitrary terms s and t, sR t
implies s ≈ t. In fact, by the two clauses of the definition of R, this property
implies that R and ≈ coincide and that ≈ is a congruence.

Let us reason by induction over the definition of R. The base case where
sR t is due to s ≈ t is immediate. Let us concentrate on the inductive step,
where s ≡ f(−→s), t ≡ f(

−→
t), and sR t is due to s1 R t1, . . . , sar(f) R tar(f). We

can assume, by the inductive hypothesis, that s1 ≈ t1, . . . , sar(f) ≈ tar(f).

Probabilistic Congruence for Semistochastic Generative Processes 73

We have to prove that, for any value 0 < q ≤ 1, action a ∈ Act and equiv-
alence class S ∈ S/R, μ(f(−→s), a, S) = q iff μ(f(

−→
t), a, S) = q. We prove that

μ(f(−→s), a, S) = q implies μ(f(
−→
t), a, S) = q; the converse is analogous.

Since μ(f(−→s), a, S) = q, it holds that in some stratum Ru of the TSS, and
for some k ∈ IN, there exist PB transition rules ρ1, . . . , ρk such that:

1. for all 1 ≤ l ≤ k, from rule ρl we infer ml transitions f(−→s)
a,ql,1−−−→ ul,1, . . . ,

f(−→s)
a,ql,ml−−−−→ ul,ml

, for some ml ∈ IN;
2.
∑

1≤l≤k

∑
1≤i≤ml

ql,i = q;
3. for all 1 ≤ l ≤ k, ul,1, . . . , ul,ml

∈ S,

and, moreover, no move of f(−→s) is derived from rules in R1, . . . ,Ru−1.
Let us consider any 1 ≤ l ≤ k. Transition rule ρl has the form

{xi
ai,pi−−−→ yi | i ∈ I} ∪ {xj

Aj ,p
′
j−−−→ | j ∈ J} ∪ {xh

Bh−−→ |h ∈ H}

f(−→x)
a,

∏
i∈I pi∏

j∈J (1−p′
j
)
·wρl

−−−−−−−−−−−→ t

Since f(−→s)
a,ql,1−−−→ ul,1, . . . , f(−→s)

a,ql,ml−−−−→ ul,ml
are derived from ρl, it holds that:

1. for all i ∈ I, there are states Si s.t. μ(si, ai, Si) = qi, for some 0 < qi ≤ 1;

2. for all j ∈ J , sj
Aj ,q

′
j−−−→, for some 0 ≤ q′j < 1;

3. for all h ∈ H, sh
Bh−−→;

4. ql,1 + · · ·+ ql,ml
= wρl

·
∏

i∈I qi∏
j∈J (1−q′j) .

By the inductive hypothesis, it follows that:

1. for all i ∈ I, there is a set of states S′
i such that μ(ti, ai, S′

i) = qi and, for all
s′ ∈ S′

i ,there is some state s ∈ Si such that sR s′;

2. for all j ∈ J , tj
Aj ,q

′
j−−−→;

3. for all h ∈ H, th
Bh−−→.

Hence, by applying ρl, we infer nl moves f(
−→
t)

a,q′l,1−−−→ v1, . . . f(
−→
t)

a,q′l,nl−−−−→ vnl
,

for some nl ∈ IN, where:

1. v1, . . . , vnl
∈ S, by Lemma 1 and the fact that for all s′ ∈ S′

i there is some
state s ∈ Si such that sR s′;

2. q′l,1 + · · ·+ q′l,nl
= ql,1 + · · ·+ ql,ml

.

Since these arguments hold for all 1 ≤ l ≤ k, it follows that by ρ1, . . . , ρk we
derive μ(f(

−→
t), a, S) = q, which implies the thesis. It remains to prove that we

can apply ρ1, . . . , ρk, i.e. no move of f(
−→
t) can be derived by any rule in any

stratum Rv with v < u. This follows by the fact that no move of f(−→s) can be
derived by any rule in these strata, and that si ≈ ti for 1 ≤ i ≤ ar(f). ��

74 R. Lanotte and S. Tini

6 Extensions

The PB transition rules of Def. 5 extend the rules matching the de Simone
format [16] with probability, unneeded premises and unquantified premises. Here
we show how we can add to our rules some features offered by other formats
proposed in the literature of non probabilistic process algebras.

The GSOS format [7] admits negative premises of the form xi

ai−→ in rules

with source f(−→x), meaning that the ith argument of f does not perform any
action labeled ai. In [19] a result is proved which assesses that negative premises
can be simulated by suitable ordering relations between rules. Since the parti-
tioning in strata of Def. 6 introduces ordering relations between PB transition
rules that are less general than those used in [19], it would be interesting to
extend Def. 6 to capture all the ordering relations of [19].

The GSOS format admits also double testing. Namely, rules with source f(−→x)
can have two (or more) premises xi

ai1−−→ yi1 and xi

ai2−−→ yi2 with the same variable
xi in the left side. Let us show how we can add double testing to our rules.

Definition 9. A PB transition rule with double testing ρ is of the form

{xi

ail
,pil−−−−→ yil

| i ∈ I, l ∈ Ii} ∪ {xj

Aj ,p
′
j−−−→ | j ∈ J} ∪ {xh

Bh−−→ |h ∈ H}

f(−→x)
a,

∏
i∈I

∑
l∈Ii

pil∏
j∈J (1−p′

j
)

·wρ

−−−−−−−−−−−−−→ t

where:

1. clauses 1-6 of Def. 5 are respected;
2. for all i ∈ I, it holds that ail

= ail′ for all l, l′ ∈ Ii such that l
= l′;
3. for all i ∈ I and l ∈ Ii, if |Ii| > 1 then there is an h = i such that ail

∈ Bh.

Definition 10. A PB TSS with double testing is defined as in Def. 6, except
that clause 2d is replaced by the following clause:

– Given actions {a′i | i ∈ I} such that a′i
∈ Aj for all indexes i and j with i = j

and xj

Aj ,p
′
j−−−→ an unneeded premise, then there at least one PB transition rule

with source f(−→x) in Ru containing the active premises {xi
a′

i,pi−−−→ yi | i ∈ I}.

To explain clause 2 in Def. 9, let us take the following rule, which violates it:

x1
a,p1−−→ y1 x1

a,p2−−→ y2

f(x1)
b,p1+p2−−−−−→ 0

Let t be the PCCS term a·0, which has the move t
a,1−−→ 0. It holds that f(t)

b,2−−→ 0,
and, therefore, f(t) is not semistochastic. The problem is that the probability
of the same move of t is summed twice when computing the probability of the

Probabilistic Congruence for Semistochastic Generative Processes 75

move of f(t). Clause 2 in Def. 9 prevents this problem, since different moves of
the same argument of f can appear as premises only if they have different labels.

To explain clause 3 in Def. 9, let us take the following rules, and note that
the first one violates it:

x1
a,p1−−→ y1 x1

b,p2−−→ y2

f(x1)
d,p1+p2−−−−−→ 0

x1
c,p1−−→ y1

f(x1)
e,p1−−→ 0

Let t be the PCCS term a · 0 +
1
2 c · 0, which has the moves t

a, 12−−→ 0 and t
c, 12−−→

0. It holds that f(t)
e, 12−−→ 0 is the only move of f(t), which, therefore, is not

semistochastic. The problem is that the probability of the move of t labeled a
does not contribute in computing the probability of any move of f(t), since t has
no move labeled b and the premise x1

a,p1−−→ y1 appears only in the rule where
there is also the premise x1

b,p2−−→ y2. Clause 3 in Def. 9 prevents this problem,
since premises x1

a,p1−−→ y1 and x1
b,p2−−→ y2 are admitted only in rules that are in

strata where all rules have an unquantified premise x1
B−→ with a, b ∈ B.

Finally, notice that the new clause of Def. 10 requires that at least one rule

in Ru contains the premises {xi
a′

i,pi−−−→ yi | i ∈ I}, whereas the corresponding
clause in Def. 6 requires that at least one rule in Ru has exactly the premises

{xi
a′

i,pi−−−→ yi | i ∈ I}. The new clause allows double testing.

Theorem 3. The PTS induced by any PB TSS with double testing is semis-
tochastic. The probabilistic bisimulation induced by any PB TSS with double
testing is a congruence.

The tyxt/tyft format [12] admits look ahead. Namely, transition rules with
source f(−→x) can have premises xi

ai−→ yi and yi
bi−→ zi, with the same variable yi

appearing in the right side of the first premise and in the left side of the second
premise. Let us show how we can add look ahead to our PB TSSs.

Definition 11. A PB transition rule with look ahead ρ is of the form

{xi
ai,pi−−−→ yi|i ∈ I} ∪ {yi

bi,ri−−−→ zi|i ∈ I ′} ∪ {xj

Aj ,p
′
j−−−→ |j ∈ J} ∪ {xh

Bh−−→|h ∈ H}

f(−→x)
a,

∏
i∈I\I′ pi·

∏
i∈I′ pi·ri∏

j∈J (1−p′
j
)

·wρ

−−−−−−−−−−−−−−−−−→ t

where:

1. clauses 1-6 of Def. 5 are respected;
2. I ′ ⊆ I.

Also variables yi with i ∈ I ′ are called active variables.

Definition 12. A PB TSS with look ahead is defined as in Def. 6, except that
clauses 2c and 2d are replaced by the following clauses:

76 R. Lanotte and S. Tini

1. All PB transition rules with source f(−→x) in stratum Ru have the same set
of active variables {xi | i ∈ I} ∪ {yi | i ∈ I ′};

2. Given actions {a′i | i ∈ I} such that a′i
∈ Aj for all indexes i and j with i = j

and xj

Aj ,p
′
j−−−→ an unneeded premise, and actions b′i for all indexes i ∈ I ′,

then there is at least one PB transition rule with source f(−→x) in Ru with

active premises {xi
a′

i,pi−−−→ yi | i ∈ I} ∪ {yi
b′i,ri−−−→ zi | i ∈ I ′}.

The new clauses in Deff. 11–12 extend clauses in Deff. 5–6 to take into account
that two consecutive moves of xi are considered for all i ∈ I ′.

Theorem 4. The PTS induced by any PB TSS with look ahead is semistochas-
tic. The probabilistic bisimulation induced by any PB TSS with look ahead is a
congruence.

Definitions of PB transition rule and PB TSS admitting both double testing
and look ahead could be given immediately. By combining results of Thm. 3
and Thm. 4 we infer that the PB TSSs so obtained would induce semistochastic
PTSs and probabilistic bisimulations being congruences.

Both path format [4] and panth format [20] admit predicates, i.e. transitions
of the form t P , meaning that term t satisfies some property expressed by P .
Since predicates have nothing to do with probability, they can be added to PB
transitions rules and PB TSSs, without affecting results in Thm. 1 and Thm. 2.

7 Related and Future Work

In this paper we have proposed a rule format for probabilistic process algebras.
We believe that our format has four main merits: 1) probabilistic bisimulation is
a congruence w.r.t. process algebra operations respecting the format; 2) semis-
tochasticity is preserved by process algebra operations respecting the format;
3) the main operations offered by the probabilistic process algebras studied in
the literature are captured by the format, which, therefore, has practical appli-
cations; 4) features offered by known rule formats proposed for classic process
algebras, such as look ahead and double testing, are offered by the format.

Now, let us recall that in [6] a rule format for probabilistic process algebras
has been already proposed. The first difference between our paper and [6] is that
we consider the generative model of probabilistic processes, whereas [6] considers
the reactive model. Then, our definition of TSS requires some conditions (i.e.
clauses 2c–2e in Def. 6) that guarantee semistochasticity. In [6] no syntactic con-
straint on transition rules guarantees semistochasticity of reactive processes, i.e.
the property that the sum of the probability of the moves of any process for the
same label is either 0 or 1. Hence, in [6] semistochasticity is not ensured by the
format. In [6] neither unquantified premises nor unneeded premises nor strati-
fication are considered. We need these features to express operations requiring
redistribution of probability, such as restriction (see Ex. 7) and priority (see Ex.

Probabilistic Congruence for Semistochastic Generative Processes 77

8). In the reactive model restriction and priority do not require redistribution of
probability, and, therefore, they can be expressed with the format in [6]. Prob-
lems in [6] arise in other operations requiring redistribution of probability, such
as the relabeling operation t[f], where f : Act −→ Act is a relabeling functions.

Our results can be extended in several directions. We aim to develop a rule
format for the reactive model of probabilistic processes that guarantees results
analogous to those obtained in the present paper, i.e. bisimulation being a con-
gruence, operations preserving semistochasticity, expressiveness. Moreover, we
aim to develop rule formats for other behavioral equivalences, such as proba-
bilistic weak bisimulation [5], and probabilistic testing equivalence [21]. Finally,
we aim to develop rule formats guaranteeing that security properties for proba-
bilistic processes, such as those defined in [2], are respected by process algebra
operations, on the same line followed in [17, 18] for classic process algebras.

References

1. L. Aceto, W. J. Fokkink, and C. Verhoef: Structural Operational Semantics. Hand-
book of Process Algebra, Elsevier, Amsterdam, 2001, 197–292.

2. A. Aldini, M. Bravetti, and R. Gorrieri: A Process-algebraic Approach for the
Analysis of Probabilistic Non-interference. J. Comput. Secur. 12, 2004, 191–245.

3. J. C. M. Baeten, J. A. Bergstra, and S. A. Smolka: Axiomatizing Probabilistic
Processes: ACP with Generative Probabilities. Inf. Comput. 121, 1995, 234–255.

4. J. C. M. Baeten and C. Verhoef: A Congruence Theorem for Structured Opera-
tional Semantics with Predicates. Proc. Concurrency Theory, LNCS 715, 1993.

5. C. Baier and H. Hermanns: Weak Bisimulation for Fully Probabilistic Processes.
Proc. Computer Aided Verification, LNCS 1254, 1997, 119-130.

6. F. Bartels: GSOS for Probabilistic Transition Systems. Proc. Coalgebraic Methods
in Computer Science, ENTCS 65, 2002.

7. B. Bloom, S. Istrail, and A. Meyer: Bisimulation Can’t Be Traced. J. Assoc. Com-
put. Mach. 42, 1995, 232–268.

8. M. Bravetti and A. Aldini: Discrete Time Generative-reactive Probabilistic Pro-
cesses with Different Advancing Speeds. Theor. Comput. Sci. 290, 2003, 355–406.

9. P. R. D’Argenio, H. Hermanns, and J. P. Katoen: On Generative Parallel Compo-
sition. Proc. Probabilistic Methods in Verification, ENTCS 22, 1999.

10. A. Giacalone, C.C. Jou, and S.A. Smolka: Algebraic Reasoning for Probabilistic
Concurrent Systems. IFIP Work. Conf. on Progr., Concepts and Methods, 1990.

11. R. J. van Glabbeek, S. A. Smolka, and B. Steffen: Reactive, Generative and Strat-
ified Models of Probabilistic Processes. Inf. Comput. 121, 1995, 59–80.

12. J. F. Groote and F. Vaandrager: Structured Operational Semantics and Bisimula-
tion as a Congruence. Inf. Comput. 100, 1992, 202–260.

13. B. Jonsson, K. L. Larsen, and W. Yi: Probabilistic Extensions of Process Algebras.
Handbook of Process Algebra, Elsevier, Amsterdam, 2001.

14. G. Plotkin: A Structural Approach to Operational Semantics. Technical report
DAIMI FN-19, University of Aarhus, 1981.

15. G. Plotkin: A Structural Approach to Operational Semantics. J. Log. Algebr. Pro-
gram. 60–61, 2004, 17–139.

16. R. de Simone: Higher-level Synchronizing Devices in Meije-SCCS. Theor. Comput.
Sci. 37, 1985, 245–267.

78 R. Lanotte and S. Tini

17. S. Tini: Rule Formats for Non-Interference. Proc. European Symp. on Program-
ming, LNCS 2618, 2003, 129–143.

18. S. Tini: Rule Formats for Compositional non Interference Properties. J. Log. Al-
gebr. Program. 60–61, 2004, 353-400.

19. I. Ulidowski and I. Phillips: Ordered SOS Process Languages for Branching and
Eager Bisimulations. Inf. Comput. 178, 2002, 180–213.

20. C. Verhoef: A Congruence Theorem for Structural Operational Semantics with
Predicates and Negative Premises. Nord. J. Comput. 2, 1995, 274–302.

21. S. H. Wu, S. A. Smolka, and E. W. Stark: Composition and Behaviors of Proba-
bilistic I/O Automata. Theor. Comput. Sci. 176, 1997, 1–38.

Bisimulation on Speed: A Unified Approach

Gerald Lüttgen1 and Walter Vogler2

1 Department of Computer Science, University of York,
York YO10 5DD, U.K.

luettgen@cs.york.ac.uk
2 Institut für Informatik, Universität Augsburg,

D–86135 Augsburg, Germany
vogler@informatik.uni-augsburg.de

Abstract. Two process–algebraic approaches have been developed for
comparing two bisimulation–equivalent processes with respect to speed:
the one of Moller/Tofts equips actions with lower time bounds, while the
one by Lüttgen/Vogler considers upper time bounds instead.

This paper sheds new light on both approaches by testifying to their
close relationship. We introduce a general, intuitive concept of “faster–
than”, which is formalised by a notion of amortised faster–than preorder.
When closing this preorder under all contexts, exactly the two faster–
than preorders investigated by Moller/Tofts and Lüttgen/Vogler arise.
For processes incorporating both lower and upper time bounds we also
show that the largest precongruence contained in the amortised faster–
than preorder is not a proper preorder but a timed bisimulation. In the
light of this result we systematically investigate under which circum-
stances the amortised faster–than preorder degrades to an equivalence.

1 Introduction

Process algebras provide a popular framework for modelling and analysing the
communication behaviour of asynchronous systems. Various extensions of classic
process algebras, e.g., Milner’s Calculus of Communicating Systems (CCS) [12],
are also well established in the literature, including timed process algebras. Timed
process algebras add constructs for modelling timeouts and delays of actions,
and thus enable one to reason not only about the communication, or functional,
behaviour of processes but also about their timing behaviour. Despite the vast
literature on timed process algebra, most of which has concentrated on capturing
behaviour in terms of process equivalence and refinement, there is relatively little
work on relating functionally equivalent processes with respect to speed. This is
surprising since designers of distributed algorithms are very interested in knowing
which one out of several possible solutions to a given problem is the most time
efficient one. Indeed, time efficiency is not something that can only be decided
once an algorithm is implemented — often lower and/or upper time bounds on
the algorithm’s actions are known at design time.

Within timed process algebra, the idea of “faster–than” was first addressed
by Moller and Tofts [14] who studied an extension of CCS, called TACSlt in this

V. Sassone (Ed.): FOSSACS 2005, LNCS 3441, pp. 79–94, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

80 G. Lüttgen and W. Vogler

paper, that allows for specifying lower time bounds of actions. They proposed the
MT–preorder which refines bisimulation [12] and has recently been put on firm
theoretical grounds via a full–abstraction result established by us in [11]. Previ-
ously, we had also investigated an analogous approach to extending CCS with
upper time bounds of actions, which resulted in the calculus TACSut and the
LV–preorder [10]; this preorder was also justified intuitively by a full–abstraction
result. That latter work complements research in various Petri–net [8, 16] and
process–algebra [4] frameworks based on a testing semantics rather than a bisim-
ulation semantics. The main shortcoming of our previous research is that the ref-
erence preorders for the two full–abstraction results — though similar in spirit —
are quite different in detail and indeed somewhat tuned towards the desired out-
comes. Also, we have not explored, and neither have others in the literature, the
consequences of combining both lower and upper time bounds in a single setting.

This paper presents a unified approach to studying faster–than preorders for
asynchronous processes. It unifies the previously known results on faster–than
preorders in two ways. Firstly, it proposes a natural reference preorder for re-
lating two processes with respect to speed: the amortised faster–than preorder.
This preorder formalises the intuition that the faster process must execute each
action no later than the slower process does, while both processes must be func-
tionally equivalent in the sense of strong bisimulation [12]; here, “no later” refers
to absolute time as measured from the system start, as opposed to relative time
which is used in our operational semantics and describes the passing of time
between actions. Although the amortised faster–than relation is more abstract
than the reference preorders of [10, 11], we show that both the MT–preorder and
the LV–preorder remain fully–abstract in TACSlt and TACSut, respectively.

Secondly, this paper characterises the largest precongruence contained in
the amortised faster–than preorder when combining the calculi TACSlt and
TACSut, so as to being able to specify both lower and upper time bounds of
actions. This is an important open problem in the literature, and it turns out
that the resulting precongruence is not a proper preorder but an equivalence
relation that is a variant of timed bisimulation [13]. The concluding part of this
paper systematically investigates under which circumstances a proper preorder
is obtained, and when exactly the amortised faster–than preorder degrades to
an equivalence. For example, we get a positive result as in [10] when we extend
TACSut by actions that may be delayed arbitrarily long; such lazy actions are
useful for modelling system errors that are not bound to occur within some fixed
time interval.

The full–abstraction results of this paper complete the picture of faster–than
preorders within bisimulation–based process algebras. On the one hand, the
various published faster–than preorders can be traced back to the same notion
of “faster–than”, which is rooted in the concept of amortisation. On the other
hand, the amortisation approach highlights the limits for defining a useful faster–
than preorder that fully supports compositionality. Due to space constraints, the
proofs of our results are omitted here but can be found in a technical report [9].

Bisimulation on Speed: A Unified Approach 81

2 Timed Asynchronous Communicating Systems

This section presents our process algebra TACS that combines the timed process
algebras TACSlt [11] and TACSut [10], both of which extend Milner’s CCS [12]
by permitting the specification of lower and respectively upper time bounds for
the execution of actions and processes. These time bounds will be used in the
next sections for comparing processes with respect to speed. Syntactically, TACS
includes two types of actions: lazy actions α and urgent actions α; the idea is
that the former can idle arbitrarily, while the latter have to be performed im-
mediately. It also includes one clock prefixing operator “σ.”, called must–clock
prefix, for specifying minimum delays and another “σ.”, called can–clock prefix,
for specifying maximum delays. Semantically and as in CCS, an action a or a
communicates with the complements a or a, irrespective of whether either action
is urgent. This communication results in an urgent internal action, if both partic-
ipating actions are urgent, and a lazy internal action otherwise. Moreover, TACS
adopts a concept of global, discrete time that behaves as follows: process σ.P
must wait for at least one time unit before it can start executing process P (lower
time bound), while process σ.P can wait for at most one time unit (upper time
bound); thus, σ can be understood as a potential time step. Upper time bounds
are technically enforced by the concept of maximal progress [7], such that time
can only pass if no urgent internal computation can be performed.

Syntax. The syntax of TACS is identical to CCS, except that we include the
two clock–prefixing operators and distinguish between lazy and urgent actions,
as discussed above. Formally, let Λ be a countably infinite set of lazy actions not
including the distinguished unobservable, internal action τ . With every a ∈ Λ
we associate a complementary action a, and define Λ =df {a | a ∈ Λ}. Each lazy
action a ∈ Λ (a ∈ Λ, τ) has an associated urgent variant, i.e., an action a (a,
τ). We define Λ =df {a | a ∈ Λ} and Λ =df {a | a ∈ Λ}, and take A (A) to denote
the set Λ ∪ Λ ∪ {τ} (Λ ∪ Λ ∪ {τ}). Complementation is lifted to Λ ∪ Λ (Λ ∪ Λ)
by defining a =df a (a =df a). We let a, b, . . . (a, b, . . .) range over Λ ∪ Λ (Λ ∪ Λ)
and α, β, . . . (α, β, . . .) over A (A). The syntax of TACS is defined as follows:

P ::= 0 | x | α.P | α.P | σ.P | σ.P | P + P | P |P | P \ L | P [f] | μx.P ,

where x is a variable taken from a countably infinite set V of variables, L ⊆
A\{τ} is a restriction set, and f : A → A is a finite relabelling. A finite relabelling
satisfies the properties f(τ) = τ , f(a) = f(a), and |{α | f(α)
= α}| < ∞. The
set of all terms is abbreviated by P̂, and we define L =df {a | a ∈ L}. We use the
standard definitions for the semantic sort sort(P) ⊆ Λ∪Λ of some term P , open
and closed terms, and contexts (terms with a “hole”). Due to our restriction
to finite relabellings, sorts of terms are guaranteed to be finite so that contexts
such as the one needed in the proof of Thm. 13 are well–defined. A variable is
called guarded in a term if each occurrence of the variable is within the scope of
an action– or σ–prefix. Moreover, we require for terms of the form μx.P that x
is guarded in P . Note that, since σ only denotes a potential time step, σ.P can
perform the actions of P immediately, whence σ does not count as a guard.

82 G. Lüttgen and W. Vogler

We refer to closed and guarded terms as processes, with the set of all processes
written as P, and let ≡ stand for syntactic equality.

Table 1. Operational semantics for TACS (action transitions)

Act
−−

α.P
α−→ P

uAct
−−

α.P
α−→ P

uPre
P

α−→ P ′

σ.P
α−→ P ′

Sum1
P

α−→ P ′

P + Q
α−→ P ′

Sum2
Q

α−→ Q′

P + Q
α−→ Q′

Rec
P

α−→ P ′

μx.P
α−→ P ′[μx.P/x]

Com1
P

α−→ P ′

P |Q α−→ P ′|Q
Com2

Q
α−→ Q′

P |Q α−→ P |Q′
Com3

P
a−→ P ′ Q

a−→ Q′

P |Q τ−→ P ′|Q′

Rel
P

α−→ P ′

P [f]
f(α)−→ P ′[f]

Res
P

α−→ P ′

P \ L
α−→ P ′ \ L

α /∈L∪L

Semantics. The operational semantics of a TACS term P ∈ P̂ is given by a
labelled transition system and an urgent action set. The labelled transition sys-
tem has the form 〈P̂,A ∪ {σ},−→, P 〉, where P̂ is the set of states, A∪{σ} the
alphabet, −→⊆ P̂ × (A∪{σ})×P̂ the transition relation, and P the start state.
Transitions labelled with an action α are called action transitions that, like in
CCS, are either internal activities or local communications in which two processes
may synchronise to take a joint state change together. Transitions labelled with
the clock symbol σ are called clock transitions representing a recurrent global
synchronisation that encodes the progress of time. Note that transitions are la-
belled by ordinary (lazy) actions only. Urgency is dealt with in an orthogonal
fashion by a notion of urgent action set. This is defined in Table 2 and contains
exactly the urgent actions in which a term can initially engage. Note: the com-
munication of two complementary actions results in an urgent silent action only
if the two participating actions are urgent.

Table 2. Urgent action sets

U(α.P) =df ∅ U(α.P) =df {α} U(0) =df ∅
U(σ.P) =df ∅ U(σ.P) =df ∅ U(x) =df ∅
U(P \ L) =df U(P) \ (L ∪ L) U(P [f]) =df {f(α) |α ∈ U(P)} U(μx.P) =df U(P)
U(P + Q) =df U(P) ∪ U(Q) U(P |Q) =df U(P) ∪ U(Q) ∪ {τ | U(P) ∩ U(Q) �= ∅}

According to our operational rules, the action–prefix terms α.P and α.P
may engage in action α and then behave like P . The processes α.P (α ∈ A) and
a.P (a ∈ Λ ∪ Λ) may also idle, i.e., engage in a clock transition to themselves,

Bisimulation on Speed: A Unified Approach 83

Table 3. Operational semantics for TACS (clock transitions)

tNil
−−

0 σ−→ 0
tAct

−−
α.P

σ−→ α.P
tuAct

−−
a.P

σ−→ a.P

tPre
−−

σ.P
σ−→ P

tuPre
−−

σ.P
σ−→ P

tRec
P

σ−→ P ′

μx.P
σ−→ P ′[μx.P/x]

tSum
P

σ−→ P ′ Q
σ−→ Q′

P + Q
σ−→ P ′ + Q′

tCom
P

σ−→ P ′ Q
σ−→ Q′

P |Q σ−→ P ′|Q′
τ /∈ U(P |Q)

tRel
P

σ−→ P ′

P [f] σ−→ P ′[f]
tRes

P
σ−→ P ′

P \ L
σ−→ P ′ \ L

as process 0 does; the rationale is that even an urgent communication action
may have to wait for a communication partner. Hence, an a–prefix expresses
potential urgency which becomes actual only in a synchronisation with an urgent
complementary action. The must–clock prefix term σ.P can only engage in a
clock transition to P ; thus, σ stands for a delay of exactly one time unit, and
it can be used to define lower time bounds, since P may perform further time
steps due to clock prefixes, lazy actions or waiting for a communication. The
can–clock prefix term σ.P can additionally perform any action transition that P
can engage in; in this sense, σ represents a delay of at most one time unit and
can be used to define arbitrary upper time bounds.

The term P |Q stands for the parallel composition of P and Q according to
an interleaving semantics with synchronised communication on complementary
actions resulting in the internal action τ . Time has to proceed equally on both
sides of the operator. The side condition of Rule (tCom) ensures that P |Q can
only progress on σ, if it cannot engage in any urgent internal computation, in
accordance with our notion of maximal progress. Thus, due to the urgency of
the actions, a.P | a.Q cannot perform a time step. On the other hand, a.P | b.Q
or a.P | a.Q can, since communication is not possible or can at least be delayed;
thus, a is urgent but also patient. Note that predicates within structural opera-
tional rules, such as τ /∈ U(P |Q) in Rule (tCom), are well understood.

The summation operator + denotes nondeterministic choice such that P +Q
may behave like P or Q. Again, P +Q can engage in a clock transition and delay
the nondeterministic choice if and only if both P and Q can. Restriction \L,
relabelling [f] and recursion μx. P have the usual meaning.

The rules for action transitions are the same as for CCS, with the exception
of the rules for the new can–clock prefix and for recursion; however, the latter
is equivalent to the standard CCS rule over guarded terms. It is important to
note that both faster–than settings previously investigated by us in [10, 11] can
be found within TACS. The sub–calculus obtained when considering only lazy
actions (urgent actions) and only must–clock prefixing (can–clock prefixing) is

84 G. Lüttgen and W. Vogler

exactly the calculus TACSlt (TACSut) studied in [11] ([10]). For improving
readability we also write P lt (Put) for the set of processes in TACSlt (TACSut).

The operational semantics for TACS possesses several important proper-
ties [7]. Firstly, it is time–deterministic, i.e., progress of time does not resolve
choices. Formally, P σ−→ P ′ and P σ−→ P ′′ implies P ′ ≡ P ′′, for all P, P ′, P ′′ ∈ P̂,
which can easily be proved by induction on the structure of P . This property
is very intuitive, as only actions can resolve choices, and also technically con-
venient. Secondly, by our variant of maximal progress, a guarded term P can
engage in a clock transition exactly if it cannot engage in an urgent internal
transition. Formally, P σ−→ if and only if τ /∈ U(P), for all guarded terms P .
In particular, processes in TACSlt satisfy laziness: they can always engage in
a clock transition. Last, but not least, we note that the sort sort(P) of any
process P is finite. This is because we only allow finite relabellings.

3 Generalised Full–Abstraction Results

This section presents our unified approach to “faster–than” by introducing a
very simple and intuitive preorder, the amortised faster–than preorder, which
captures the essence of faster–than within a bisimulation–based setting, as dis-
cussed below. Using this preorder as a reference preorder, we show that the LV–
preorder [10] and the MT–preorder [14] are fully–abstract within the TACSut

and TACSlt sub–calculi of TACS, respectively.

Definition 1 (Amortised faster–than preorder). A family (Ri)i∈N of rela-
tions over P, indexed by natural numbers (including 0), is a family of amortised
faster–than relations if, for all i ∈ N, 〈P,Q〉 ∈ Ri, and α ∈ A:

1. P α−→ P ′ implies ∃Q′, k, l. Q σ−→
k α−→ σ−→

l
Q′ and 〈P ′, Q′〉 ∈ Ri+k+l.

2. Q α−→ Q′ implies ∃P ′, k, l. k+l≤i, P σ−→
k α−→ σ−→

l
P ′, and 〈P ′, Q′〉 ∈ Ri−k−l.

3. P σ−→ P ′ implies ∃Q′, k≥1−i. Q σ−→
k
Q′ and 〈P ′, Q′〉 ∈ Ri−1+k.

4. Q σ−→ Q′ implies ∃P ′, k≤i+1. P σ−→
k
P ′ and 〈P ′, Q′〉 ∈ Ri+1−k.

We write P �∼i
Q if 〈P,Q〉 ∈ Ri for some family (Ri)i∈N of amortised faster–than

relations, and call �∼0 the amortised faster–than preorder.

Here, σ−→
k

stands for k consecutive clock transitions. It is easy to show that �∼0 is
indeed a preorder. While reflexivity is obvious, transitivity follows immediately
from the property �∼i

◦ �∼j
⊆ �∼i+j

, for any i, j ∈ N. Furthermore, (�∼i
)i∈N is the

(componentwise) largest family of amortised faster–than relations.
The above definition reflects our intuition that processes performing delays

later along execution paths are faster than functionally equivalent ones that
perform delays earlier; this is because the former processes are executing actions
at earlier absolute times (as measured from the start of the processes). Consider,
e.g., the processes P =df a.b.σ.σ.c.0 and Q =df σ.a.σ.b.c.0. Roughly speaking,

Bisimulation on Speed: A Unified Approach 85

P executes actions a, b at absolute time 0 and action c at absolute time 2.
Analogously, Q executes action a at absolute time 1 and actions b, c at absolute
time 2. Hence, every action in P is executed earlier than, or at the same absolute
time as in Q, whence P is strictly faster than Q. This idea is formalised in the
above definition as follows: Q is permitted to match an a from P by σa; the
additional time step is saved as a credit by increasing the index of R such
that P can perform this time step when needed, i.e., after its b. Thus, in Def. 1,
an action or clock transition is matched by allowing the matching process fewer
or more clock transitions as far as this is allowed by the available credit; the
difference in the number of clock transitions is added to or subtracted from the
credit. In this sense, our definition canonically captures the idea of amortisation.

The remainder of this paper is concerned with the characterisation of the
largest precongruence contained in �∼0, for various sub–calculi of TACS, in par-
ticular TACSut and TACSlt. We will also discuss below which variants of �∼0

have been used for TACSut and TACSlt in [10, 11], and we will write �∼
ut
i

and �∼
lt
i

when restricting �∼i
to processes in TACSut and TACSlt, respectively.

3.1 The LV–Preorder Is Fully Abstract in TACSut

TACSut is the sub–calculus of TACS that emerges when restricting ourselves
to urgent actions α and can–clock prefixing σ only, i.e., disregarding lazy actions
and must–clock prefixing. We start off by recalling some definitions from [10].

Definition 2 (LV–preorder [10]). A relation R over Put is an LV–relation
if, for all 〈P,Q〉 ∈ R and α ∈ A:

1. P α−→ P ′ implies ∃Q′. Q α−→ Q′ and 〈P ′, Q′〉 ∈ R.
2. Q α−→ Q′ implies ∃P ′. P α−→ P ′ and 〈P ′, Q′〉 ∈ R.
3. P σ−→ P ′ implies U(Q) ⊆ U(P) and ∃Q′. Q σ−→ Q′ and 〈P ′, Q′〉 ∈ R.

We write P �∼lv Q if 〈P,Q〉 ∈ R for some LV–relation R, and call �∼lv the LV–
preorder.

This definition is of an elegant simplicity, since an LV–relation essentially com-
bines bisimulation on actions with simulation on clock steps; the condition on the
inclusion of urgent sets is needed to get a precongruence for parallel composition.

We also introduced in [10] an amortised variant of the LV–preorder which,
in contrast to the amortised faster–than preorder of Def. 1, does not allow for
leading and trailing clock transitions when matching action transitions — just
as for the LV–preorder. Also, for matching clock transitions, the increase or
decrease of the credit is restricted.

Definition 3 (Amortised LV–preorder [10]). A family (Ri)i∈N of relations
over Put is a family of amortised LV–relations if, for all i ∈ N, 〈P,Q〉 ∈ Ri, and
α ∈ A:

86 G. Lüttgen and W. Vogler

2. Q α−→ Q′ implies ∃P ′. P α−→ P ′ and 〈P ′, Q′〉 ∈ Ri.
3. P σ−→ P ′ implies (a) ∃Q′. Q σ−→ Q′ and 〈P ′, Q′〉 ∈ Ri, or

(b) i>0 and 〈P ′, Q〉 ∈ Ri−1.
4. Q σ−→ Q′ implies (a) ∃P ′. P σ−→ P ′ and 〈P ′, Q′〉 ∈ Ri, or

(b) 〈P,Q′〉 ∈ Ri+1.

We write P �∼
lv
i
Q if 〈P,Q〉 ∈ Ri for some family (Ri)i∈N of amortised LV–

relations, and call �∼
lv
0 the amortised LV–preorder.

Theorem 4 (Full abstraction [10]). The LV–preorder �∼lv is the largest pre-
congruence contained in �∼

lv
0 .

The next theorem is the main result of this section and, because of �∼
lv
0 ⊆ �∼

ut
0 ,

generalises the above theorem.

Theorem 5 (Generalised full abstraction in TACSut). The LV–preorder
�∼lv is the largest precongruence contained in �∼

ut
0 .

3.2 The MT–Preorder Fully Abstract in TACSlt

We turn our attention to the TACS sub–calculus TACSlt in which only lazy
actions α and the must–clock prefix σ are available. Although a σ–prefix cor-
responds to exactly one time unit, these prefixes specify lower time bounds for
actions in this fragment, since actions can always be delayed arbitrarily. We first
recall the faster–than preorder introduced by Moller and Tofts in [14], to which
we refer as Moller–Tofts preorder, or MT–preorder for short.

Definition 6 (MT–preorder [14]). A relation R over P lt is an MT–relation
if, for all 〈P,Q〉 ∈ R and α ∈ A:

1. P α−→ P ′ implies ∃Q′, k, P ′′. Q σ−→
k α−→ Q′, P ′ σ−→

k
P ′′, and 〈P ′′, Q′〉 ∈ R.

2. Q α−→ Q′ implies ∃P ′. P α−→ P ′ and 〈P ′, Q′〉 ∈ R.
3. P σ−→ P ′ implies ∃Q′. Q σ−→ Q′ and 〈P ′, Q′〉 ∈ R.
4. Q σ−→ Q′ implies ∃P ′. P σ−→ P ′ and 〈P ′, Q′〉 ∈ R.

We write P �∼mtQ if 〈P,Q〉 ∈ R for some MT–relation R, and call �∼mt the
MT–preorder.

It is easy to see that �∼mt is indeed a preorder and that it is the largest MT–
relation. We have also proved in [11] that �∼mt is a precongruence for all TACSlt

operators. The only difficult and non–standard part of that proof concerned
compositionality regarding parallel composition and was based on the following
commutation lemma.

Lemma 7 (Commutation lemma [11]). Let P, P ′ ∈ P lt and w ∈ (A∪{σ})∗.
If P w−→ σ−→

k
P ′, for k∈N, then ∃P ′′. P σ−→

k w−→ P ′′ and P ′ �∼mt P
′′.

Is

1. P α−→ P ′ implies ∃Q′. Q α−→ Q′ and 〈P ′, Q′〉 ∈ Ri.

Bisimulation on Speed: A Unified Approach 87

This lemma holds as well within the slightly more general setting of Sec. 5.2, in
which also can–clock prefixes are allowed. We also introduced in [11] an amortised
variant of the MT–preorder, which is however less abstract than the amortised
faster–than preorder of Def. 1.

Definition 8 (Amortised MT–preorder [11]). A family (Ri)i∈N of relations
over P lt is a family of amortised MT–relations if, for all i ∈ N, 〈P,Q〉 ∈ Ri, and
α ∈ A:

1. P α−→ P ′ implies ∃Q′, k.Q σ−→
k α−→ Q′ and 〈P ′, Q′〉 ∈ Ri+k.

2. Q α−→ Q′ implies ∃P ′, k≤i. P σ−→
k α−→ P ′ and 〈P ′, Q′〉 ∈ Ri−k.

3. P σ−→ P ′ implies ∃Q′, k≥0. k≥1−i, Q σ−→
k
Q′, and 〈P ′, Q′〉 ∈ Ri−1+k.

4. Q σ−→ Q′ implies ∃P ′, k≥0. k≤i+1, P σ−→
k
P ′, and 〈P ′, Q′〉 ∈ Ri+1−k.

We write P �∼
mt
i

Q if 〈P,Q〉 ∈ Ri for some family (Ri)i∈N of amortised MT–
relations, and call �∼

mt
0 the amortised MT–preorder.

When comparing Defs. 8 and 1, it is obvious that �∼
mt
0 ⊆ �∼

lt
0 . While Conds. (3)

and (4) coincide in Defs. 8 and 1, Conds. (1) and (2) do not allow clock transitions
to trail the matching α–transition — just as it is the case in Cond. (1) in Def. 6.
We recall the following full–abstraction result from [11].

Theorem 9 (Full abstraction [11]). The MT–preorder �∼mt is the largest
precongruence contained in �∼

mt
0 .

We generalise this full–abstraction result here by replacing �∼
mt
0 by �∼

lt
0 .

Theorem 10 (Generalised full abstraction in TACSlt). The MT–preorder
�∼mt is the largest precongruence contained in �∼

lt
0 .

Thms. 5 and 10 testify not only to the elegance of the amortised faster–than
preorder as a very intuitive faster–than preorder, but also as a unified starting
point to approaching faster–than relations on processes.

4 Full Abstraction in TACS

Having identified the largest precongruences contained in the amortised faster–
than preorder for the sub–calculi TACSut and TACSlt of TACS, it is natural
to investigate the same issue for the full calculus.

For a calculus with must–clock prefixing and urgent actions, Moller and Tofts
informally argued in [14] that a precongruence relating bisimulation–equivalent
processes cannot satisfy a property one would, at first sight, expect from a faster–
than preorder, namely that omitting a must–clock prefix should result in a faster
process. This intuition can be backed up by a more general result within our
setting, which includes must–clock prefixing and urgent actions, too. Our result

88 G. Lüttgen and W. Vogler

is not just based on a specific property; instead, we have a semantic definition
of an intuitive faster–than as the coarsest precongruence refining the amortised
faster–than preorder, and we will show that this precongruence degrades to a
congruence, rather than a proper precongruence. This congruence turns out to
be a variant of timed bisimulation [13].

Definition 11 (Timed bisimulation). A relation R over P is a timed bisim-
ulation relation if, for all 〈P,Q〉 ∈ R and α ∈ A:

1. P α−→ P ′ implies ∃Q′. Q α−→ Q′ and 〈P ′, Q′〉 ∈ R.
2. P σ−→ P ′ implies ∃Q′. Q σ−→ Q′ and 〈P ′, Q′〉 ∈ R.
3. Q α−→ Q′ implies ∃P ′. P α−→ P ′ and 〈P ′, Q′〉 ∈ R.
4. Q σ−→ Q′ implies ∃P ′. P σ−→ P ′ and 〈P ′, Q′〉 ∈ R.

We write P ∼t Q if 〈P,Q〉 ∈ R for some timed bisimulation relation R, and
call ∼t timed bisimulation.

It is obvious that timed bisimulation ∼t is an equivalence and that it refines the
amortised faster–than preorder �∼0. However, ∼t is not a congruence for TACS
since it is not compositional for parallel composition. To see this, consider the
processes a.0+b.0 ∼t σ.a.0+b.0. When putting them in parallel with process b.0
the relation ∼t is no longer preserved since (a.0 + b.0) | b.0 can engage in an a–
transition while (σ.a.0 + b.0) | b.0 cannot, as the clock transition that would
enable action a is preempted by the urgent communication on b. We thus have
to refine timed bisimulation and take initial urgent action sets into account.

Definition 12 (Urgent timed bisimulation). A relation R over P is an
urgent timed bisimulation relation if, for all 〈P,Q〉 ∈ R and α ∈ A:

1. P α−→ P ′ implies ∃Q′. Q α−→ Q′ and 〈P ′, Q′〉 ∈ R.
2. P σ−→ P ′ implies U(Q) ⊆ U(P) and ∃Q′. Q σ−→ Q′ and 〈P ′, Q′〉 ∈ R.
3. Q α−→ Q′ implies ∃P ′. P α−→ P ′ and 〈P ′, Q′〉 ∈ R.
4. Q σ−→ Q′ implies U(P) ⊆ U(Q) and ∃P ′. P σ−→ P ′ and 〈P ′, Q′〉 ∈ R.

We write P �t Q if 〈P,Q〉 ∈ R for some urgent timed bisimulation relation R,
and call �t urgent timed bisimulation.

We have used set inclusion in Conds. (2) and (4) above in analogy to Def. 2. It
is important to note the following: if P σ−→ P ′, then Q

σ−→ Q′ by Cond. (2),
so that Cond. (4) becomes applicable. Therefore, we could just as well require
equality of urgent sets in Conds. (2) and (4). This equality is violated for the two
processes a.0 + b.0 and σ.a.0 + b.0 considered above, although both can engage
in a clock transition.

Theorem 13 (Full abstraction). Urgent timed bisimulation �t is the largest
congruence contained in ∼t.

Theorem 14 (Full abstraction in TACS). Urgent timed bisimulation �t is
the largest (pre–)congruence contained in �∼0.

Bisimulation on Speed: A Unified Approach 89

5 Discussion

This section investigates when exactly the amortised faster–than preorder, when
closed under all contexts, collapses from a proper precongruence to a congru-
ence. We have shown in the TACS sub–calculus with only must–clock prefixing
and lazy actions (cf. Sec. 3.1) and in the sub–calculus with only can–clock pre-
fixing and urgent actions (cf. Sec. 3.2) that indeed proper precongruences are
obtained: the MT–preorder and the LV–preorder, respectively. However, when
combining both clock prefixes as well as lazy and urgent actions, then the result
is a congruence: urgent timed bisimulation (cf. Sec. 4). We desire to explore
where exactly this borderline lies, by characterising the largest precongruence
contained in the amortised faster–than preorder for other combinations of can–
/must–clock prefixes as well as urgent/lazy actions. While some of the resulting
settings might not appear natural, others are clearly practically relevant, and
this will be pointed out when analysing each combination in turn.

5.1 Can–Clock Prefixing and Urgent+Lazy Actions

Here we find ourselves in the sub–calculus TACSut investigated in Sec. 3.1,
where additionally lazy actions may be present. Lazy actions might be used
for modelling the potential of errors: many errors in practice can occur at any
moment and thus cannot be associated with maximal delays.

Corollary 15 (Full–abstraction in the can/urgent+lazy setting). The
LV–preorder �∼lv is the largest precongruence contained in �∼0, when considering
TACS processes with can–clock prefixes only.

Hence, Thm. 5 of Sec. 3.1 remains valid in the presence of lazy actions; one only
needs to check the proof of Thm. 5 and all the proofs of [10] on which it depends.

5.2 Must– and Can–Clock Prefixing and Lazy Actions

The setting here is the one of TACSlt, where can–clock prefixes are added. This
does not change the result we obtained for the TACSlt setting (cf. Thm. 10 in
Sec. 3.2), when extending the definition of the MT–preorder �∼mt (cf. Def. 6)
from processes in P lt to the class of processes considered here.

Theorem 16 (Full abstraction in the must+can/lazy setting). The MT–
preorder �∼mt is the largest precongruence contained in �∼0, when considering
TACS processes with lazy actions only.

This statement can be deduced by inspecting the proofs of Sec. 3.2, i.e., the
proof of Thm. 10 and the proofs of the underlying statements adopted from [11],
in the presence of σ–prefixes. The only parts that are not straightforward con-
cern checking whether the MT–preorder �∼mt is also compositional for can–clock
prefixes and whether the commutation lemma, Lemma 7, still holds. To do so
we first need to adapt the syntactic faster–than preorder � of [11] by adding the
clause P � σ.P .

90 G. Lüttgen and W. Vogler

Definition 17 (Syntactic Faster–Than Preorder). The relation � ⊆ P̂×P̂
is defined as the smallest relation satisfying the following properties, for all
P, P ′, Q,Q′ ∈ P̂.

Always: (1) P � P (2) (a) P � σ.P and (b) P � σ.P
P ′ � P , Q′ � Q: (3) P ′|Q′ � P |Q (4) P ′ +Q′ � P +Q

(5) P ′ \ L � P \ L (6) P ′[f] � P [f]
P ′ � P , x guarded: (7) P ′[μx. P/x] � μx. P

Lemma 18. For any P, P ′, if P σ−→ P ′ then P ′ � P .

This lemma is adopted from Lemma 5(2) of the full version of [11], and its
proof is by a straightforward induction on the structure of P . Also the other
statements of the mentioned Lemma 5 hold under the modified syntactic faster–
than preorder, in particular P ′ � P implies P ′ �∼mt P for processes P ′, P in the
TACS fragment we consider in this subsection. For the proof of Lemma 5 it is
important that these processes satisfy the laziness property, i.e., each of them can
perform a time step. We can now prove that the MT–preorder is compositional
for can–clock prefixes, in the TACS sub–calculus that is restricted to lazy actions
only.

Lemma 19. Let P,Q be TACS processes with lazy actions only. Then P �∼mtQ
implies σ.P �∼mt σ.Q.

Moreover, since the correctness of the commutation lemma is only based on
Lemma 5 of the full version of [11], the laziness property as well as the time–
determinism property, the commutation lemma obviously remains valid even in
the presence of can–clock prefixing.

5.3 Can–Clock Prefixing and Lazy Actions

This combination is one that does not appear to be intuitive. If every action can
delay its execution, additional potential delays specified by can–clock prefixes
seem irrelevant and can be omitted (cf. Prop. 20). Further, if every delay specified
by a clock prefix can indeed be omitted, then it appears that delays are not
relevant at all and may thus be safely ignored (cf. Thm. 22).

Proposition 20. P ∼t σ.P for all TACS processes P with can–clock prefixes
and lazy actions only.

Because of the irrelevance of timed behaviour, timed bisimulation ∼t coincides
with standard bisimulation ∼ [12] — where clock transitions are ignored — in
the setting considered in this section.

Lemma 21. ∼ = ∼t on TACS processes P with can–clock prefixes and lazy
actions only.

As expected, the amortised faster–than preorder, when closed under all contexts,
degrades to standard bisimulation in this setting.

Bisimulation on Speed: A Unified Approach 91

Theorem 22 (Full abstraction in the can/lazy setting). Standard bisimu-
lation ∼ is the largest precongruence contained in �∼0, when considering TACS
processes with can–clock prefixes and lazy actions only.

To conclude, note that Prop. 20 does not hold in the presence of must–clock
prefixes; e.g., σ.σ.a.0 σ−→ σ.a.0 and σ.a.0 σ−→ a.0, but obviously σ.a.0
∼ a.0.

5.4 Must–Clock Prefixing and Urgent Actions, & More

For the full algebra TACS, we have shown in Sec. 4 that the largest precongru-
ence contained in the amortised faster–than preorder is urgent timed bisimula-
tion (cf. Thm. 14). Full TACS combines must– and can–clock prefixing with lazy
and urgent actions. When leaving out either lazy actions, or can–clock prefixes,
or both, the result remains valid, as can be checked by inspecting the proofs of
Sec. 4. Essentially, the reason is that the context constructed within this proof
uses neither lazy actions nor can–clock prefixes.

Most interesting is the case when we are left with must–clock prefixing and
urgent actions only. This setting coincides with the one of Hennessy and Regan’s
well–known Timed Process Language [7], TPL, in terms of both syntax and op-
erational semantics, when leaving out TPL’s timeout operator; we refer to this
calculus as TPL−. It is important to note that, for TPL−, urgent timed bisim-
ulation is the same as timed bisimulation; this is because all actions are urgent,
and the bisimulation conditions on actions imply that equivalent processes have
the same initial (urgent) actions.

However, adding either can–clock prefixing or lazy actions to TPL− leads to
a more expressive calculus than TPL−. For example, the process σ.τ .P in the
setting must+can–clock prefixing and urgent actions can engage in both a clock
transition and a τ–transition, and the same applies to process τ.P . This semantic
behaviour is incompatible with the maximal–progress property in TPL−, and
indeed in full TPL, bearing in mind that every action is urgent.

6 Related Work

Relatively little work has been published on theories that relate processes with
respect to speed. This is somewhat surprising, given the wealth of literature on
timed process algebras and the importance of time efficiency in system design.

Early research on process efficiency compares untimed CCS–like terms by
counting internal actions either within a testing–based [15] or a bisimulation–
based [2, 3] setting. Due to interleaving, e.g., (τ.a.0 | τ.a.b.0) \ {a} is considered
to be as efficient as τ.τ.τ.b.0, whereas (σ.a.0 |σ.a.b.0)\{a} ((σ.a.0 |σ.a.b.0)\{a})
is strictly faster than σ.σ.τ.b.0 (σ.σ.τ .b.0) in our setting.

The most closely related research to ours is obviously the one by Moller and
Tofts on processes equipped with lower time bounds [14] and our own on pro-
cesses equipped with upper time bounds [10]. The work of Moller and Tofts has
recently been revisited by us [11] and completed by adding an axiomatisation

92 G. Lüttgen and W. Vogler

for finite processes, a full–abstraction result, and a “weak” variant of the MT–
preorder that abstracts from the unobservable action τ . Our work on upper time
bounds [10] features similar results for the LV–preorder. In both papers [10, 11],
the chosen reference preorders for the full–abstraction results are less abstract
than the amortised faster–than preorder advocated here. Although a couple of
these reference preorders borrowed some idea of amortisation (cf. Defs. 3 and 8),
they were somewhat tweaked to fit the LV–preorder and the MT–preorder, re-
spectively. Thus, Thms. 5 and 10 are indeed significant generalisations of the
corresponding theorems in [10] and in [11] (cf. Thms. 4 and 9), respectively.

Most other published work on faster–than relations focuses on settings with
upper time bounds and on preorders based on De Nicola and Hennessy’s testing
theory. Initially, research was conducted within the setting of Petri nets [16, 17],
and later for the Theoretical–CSP–style process algebra PAFAS [4]. An attrac-
tive feature when adopting testing semantics is a fundamental result stating
that the considered faster–than testing preorder based on continuous–time se-
mantics coincides with the analogous testing preorder based on discrete–time
semantics [17]. It remains to be seen whether a similar result holds for our
bisimulation–based approach.

Last, but not least, Corradini et al. [5] introduced the ill–timed–but–well–
caused approach for relating processes with respect to speed [1, 6]. This approach
allows system components to attach local time stamps to actions. However, as
a byproduct of interleaving semantics, local time stamps may decrease within
action sequences exhibited by concurrent processes. These “ill–timed” runs make
it difficult to relate the faster–than preorder of [5] to ours.

7 Conclusions and Future Work

We proposed a general amortised faster–than preorder for unifying bisimulation–
based process theories [10, 11, 14] that relate asynchronous processes with respect
to speed. Our amortised preorder ensures that a faster process must execute each
action no later than the related slower process does, while both processes must
be functionally equivalent in the sense of strong bisimulation [12].

Since the amortised faster–than preorder is normally not closed under all
system contexts, we characterised the largest precongruences contained in it for a
range of settings. The chosen range is spanned by a two–dimensional space, with
one axis indicating whether only must–clock prefixes, only can–clock prefixes, or
both are permitted, and the other axis determining whether only lazy actions,
only urgent actions, or both kinds of actions are available. In this space, the
settings of Moller/Tofts [14], which is concerned with lower time bounds, and
of Lüttgen/Vogler [10], which is concerned with upper time bounds, can be
recognised as “must/lazy” and “can/urgent” combinations, respectively. Since
all reference preorders chosen in [10, 11] are less abstract than the amortised
faster–than preorder, the results of this paper strengthen the ones obtained for
both the Moller/Tofts and the Lüttgen/Vogler approach. The following table

Bisimulation on Speed: A Unified Approach 93

summarises our findings for each combination of clock prefix and action type,
i.e., each entry identifies the behavioural relation that characterises the largest
precongruence contained in the amortised faster–than preorder.

Lazy Urgent Lazy+Urgent
Must MT–preorder Timed bisimulation Urgent timed bisimulation
Can Bisimulation LV–preorder LV–preorder

Must+Can MT–preorder Urgent timed bisimulation Urgent timed bisimulation

The table shows that the amortised faster–than relation degrades to timed
bisimulation as soon as must–clock prefixes and urgent actions come together.
In this case, which includes the established process algebra TPL [7], one may
express time intervals by equipping actions with both lower and upper time
bounds. Moreover, when extending the Moller/Tofts approach by can–clock pre-
fixing or the Lüttgen/Vogler approach by lazy actions, the MT–preorder and the
LV–preorder, respectively, remain fully–abstract.

Future work shall investigate decision procedures for the MT– and LV–
preorders, in order for them to be implemented in automated verification tools.

Acknowledgements. We would like to thank the anonymous referees for their
valuable comments and suggestions.

References

[1] L. Aceto and D. Murphy. Timing and causality in process algebra. Acta Inform.,
33(4):317–350, 1996.

[2] S. Arun-Kumar and M.C.B. Hennessy. An efficiency preorder for processes. Acta
Inform., 29(8):737–760, 1992.

[3] S. Arun-Kumar and V. Natarajan. Conformance: A precongruence close to bisim-
ilarity. In STRICT ’95, Workshops in Comp., pp. 55–68. Springer-Verlag, 1995.

[4] F. Corradini, M. Di Berardini, and W. Vogler. PAFAS at work: Comparing the
worst-case efficiency of three buffer implementations. In APAQS 2001, pp. 231–
240. IEEE Computer Society Press, 2001.

[5] F. Corradini, R. Gorrieri, and M. Roccetti. Performance preorder and competitive
equivalence. Acta Inform., 34(11):805–835, 1997.

[6] R. Gorrieri, M. Roccetti, and E. Stancampiano. A theory of processes with dura-
tional actions. TCS, 140(1):73–94, 1995.

[7] M.C.B. Hennessy and T. Regan. A process algebra for timed systems. Inform.
and Comp., 117(2):221–239, 1995.

[8] L. Jenner and W. Vogler. Fast asynchronous systems in dense time. TCS, 254(1-
2):379–422, 2001.

[9] G. Lüttgen and W. Vogler. Bisimulation on speed: A unified approach. Techn.
Rep. 2004-15, Universität Augsburg, Germany, 2004.

[10] G. Lüttgen and W. Vogler. Bisimulation on speed: Worst–case efficiency. Inform.
and Comp., 191(2):105–144, 2004.

94 G. Lüttgen and W. Vogler

[11] G. Lüttgen and W. Vogler. Bisimulation on speed: Lower time bounds. RAIRO
Theoretical Informatics and Applications, 2005. To appear.

[12] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[13] F. Moller and C. Tofts. A temporal calculus of communicating systems. In

CONCUR ’90, vol. 458 of LNCS, pp. 401–415. Springer-Verlag, 1990.
[14] F. Moller and C. Tofts. Relating processes with respect to speed. In CONCUR ’91,

vol. 527 of LNCS, pp. 424–438. Springer-Verlag, 1991.
[15] V. Natarajan and R. Cleaveland. An algebraic theory of process efficiency. In

LICS ’96, pp. 63–72. IEEE Computer Society Press, 1996.
[16] W. Vogler. Efficiency of asynchronous systems, read arcs, and the MUTEX-

problem. TCS, 275(1–2):589–631, 2002.
[17] W. Vogler. Faster asynchronous systems. Inform. and Comp., 184(2):311–342,

2003.

Branching Cells as Local States for Event
Structures and Nets: Probabilistic Applications

Samy Abbes� and Albert Benveniste��

IRISA Campus de Beaulieu,
35042 Rennes Cedex. France

Abstract. We study the concept of choice for true concurrency models
such as prime event structures and safe Petri nets. We propose a dynamic
variation of the notion of cluster previously introduced for nets. This new
object is defined for event structures, it is called a branching cell. Our
aim is to bring an interpretation of branching cells as a right notion of
“local state”, for concurrent systems.

We illustrate the above claim through applications to probabilistic
concurrent models. In this respect, our results extends in part previous
work by Varacca-Völzer-Winskel on probabilistic confusion free event
structures. We propose a construction for probabilities over so-called lo-
cally finite event structures that makes concurrent processes probabilis-
tically independent—simply attach a dice to each branching cell; dices
attached to concurrent branching cells are thrown independently. Fur-
thermore, we provide a true concurrency generalization of Markov chains,
called Markov nets. Unlike in existing variants of stochastic Petri nets,
our approach randomizes Mazurkiewicz traces, not firing sequences. We
show in this context the Law of Large Numbers (LLN), which confirms
that branching cells deserve the status of local state.

Our study was motivated by the stochastic modeling of fault propaga-
tion and alarm correlation in telecommunications networks and services.
It provides the foundations for probabilistic diagnosis, as well as the
statistical distributed learning of such models.

1 Introduction

The study we present in this paper was motivated by algorithmic problems of
distributed nature encountered in the area of telecommunications network and
service management [4], in particular distributed alarm correlation and fault
diagnosis. This problem consists in reconstructing the hidden history of the
distributed system from partial observations (the alarms). The supervision ar-
chitecture is distributed and comprises several supervisors acting as peers and
communicating asynchronously.

� ISR, A.V. Williams Building, University of Maryland, College Park, MD 20742,
USA; work performed while this author was with IRISA/Université de Rennes 1.

�� IRISA/INRIA, benveniste@irisa.fr, http://www.irisa.fr/sigma2/benveniste/

V. Sassone (Ed.): FOSSACS 2005, LNCS 3441, pp. 95–109, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

96 S. Abbes and A. Benveniste

True concurrency is essential in these algorithms: interleaving semantics is
not adequate for such large distributed systems. States need to be local. Time
is totally ordered at each network node, but only partially ordered by causality
between nodes. Due to unavoidable ambiguity in diagnosis, nondeterminism is
solved by seeking for the “most likely” solutions of the diagnosis problem. This
requires having a probabilistic setting at hand.

While searching for existing models in the literature, we found very few
approaches meeting our requirements. Stochastic Petri nets [6] and their vari-
ants are useful for performance evaluation. This model typically randomizes the
holding time in places or the firing time at transitions. Making reference to
a global time causes some probabilistic coupling to occur between subsystems
that otherwise do not interact. Probabilistic process algebras [7] or probabilistic
automata [11] are related to so-called Markov Decision Processes from applied
probability theory, they rely on interleaving semantics and do not meet our
needs either. In those models, interactions occur via synchronized actions and
are subject to nondeterminism. In contrast, probabilistic choices are purely pri-
vate, occur between interactions and do not conflict with these. Whereas this is
perfectly adequate, e.g, for testing or security protocols [8, 9], this is not con-
venient for modeling the uncertain occurrence and propagation of faults and
alarms in telecommunications networks.

Concurrent probabilistic models is a recent area of research meeting our re-
quirements. Runs of concurrent systems are randomized without reference to
a global clock, and with a true-concurrent semantics. Fundamental difficulties
have lead to restrict to models with limited concurrency, e.g., confusion free
event structures [14, 13]. Distributed probabilistic event structures and Markov
nets are studied in [1], following an approach initiated in [3]; these approaches
address event structures with confusion.

It appears that the very key for the analysis of probabilistic choice in true-
concurrent models are the informal concepts of “concurrent local state” and
“concurrent local choices”. In this paper, we investigate these notions for safe
Petri nets and prime event structures. We show that so-called branching cells
introduced in [1] for event structures provide the answer. Informally, for an event
structure, branching cells are minimal subsets of events closed under immediate
conflict. Processes are dynamically decomposed by branching cells: in different
executions, the same event can belong to different branching cells. Branching
cells differ from clusters [5], which are statically defined on nets.

We apply the notion of branching cell to the definition and construction
of concurrent probabilistic models. The probabilities we construct in this way
satisfy the following essential requirement regarding concurrency: parallel local
processes are made independent in the probabilistic sense, conditionally on their
common past. Such probabilities deserve the name of distributed probabilities.
They generalize to event structures with confusion the notion of valuation with
independence from [13]. When applied to event structure obtained by unfolding
safe Petri nets, this yields Markov nets, a probabilistic form of Petri nets com-

Branching Cells as Local States for Event Structures and Nets 97

pliant with true concurrency. We prove a Markov property and a Law of Large
Numbers for Markov nets, in which branching cells play the role of local states.

The paper is organized as follows. Branching cells for prime event structures
are introduced in Section 2, together with their properties. Their use for the
definition and construction of concurrent probabilistic models is demonstrated
in Section 3. In Section 4, Markov nets are introduced in order to state the
Markov property and the Law of Large Numbers.

2 Branching Cells and Their Properties

A prime event structure [10] is a triple E = (E,�,#) satisfying the following
properties. (E,�) is a partial order. The elements of E are called events and E
is at most countable. # is the conflict relation on E; it is a binary relation that
is symmetric and irreflexive, and satisfies the following axiom: ∀x, y, z ∈ E, x#y
and y � z together imply x#z. A subset A ⊆ E is said to be a prefix if it is
downwards closed: ∀x ∈ E, ∀y ∈ A, x � y ⇒ x ∈ A. Finally, a prefix v is called
a configuration of E if it is conflict-free, i.e., if # ∩ (v × v) = ∅. Configurations
are partially ordered by inclusion, and we denote by VE the poset of the finite
configurations of E . We denote byΩE the set of maximal configurations of E—this
set is nonempty, due to Zorn’s Lemma. A subset F ⊆ E implicitly defines a sub-
event structure (F,�F ,#F) of E with causality and conflict relations inherited
by:

�F=� ∩(F × F), #F = # ∩ (F × F),

and we shall freely write F , VF , and ΩF to denote this event structure and its set
of finite and maximal configurations, respectively. Fore∈E,[e] Δ= {e′∈E : e′ � e}
denotes the smallest configuration containing e. For v a finite or infinite config-
uration of E , we set Ev Δ= {e ∈ E \ v : ∀e′ ∈ v, ¬(e#e′)}. We denote by Ev the
induced event structure and we call it the future of v. Throughout the paper,
we assume that E satisfies the following assumption:

Assumption 1. Configuration [e] is finite for every event e. For every v ∈ VE ,
Min�

(
Ev
)

contains finitely many events.

The first part of Assumption 1 is very standard, it says that every event has
finitely many causal predecessors. The second part of the assumption expresses
that any finite configuration enables only finitely many events. The concurrency
relation on E, denoted by ‖, is defined as the reflexive closure of (E ×E)\(#∪ �
∪ �).

A central concept in defining probabilities is the notion of choice. Choice is
therefore a key concept in this paper; it is captured by the notion of immediate
conflict we recall next. The immediate conflict relation #μ on E is defined by:

∀e, e′ ∈ E, e#μ e
′ iff ([e]× [e′]) ∩# = {(e, e′)}. (1)

Definition 1 (stopping prefix). A prefix B of E is called a stopping prefix
iff it is closed under immediate conflict.

98 S. Abbes and A. Benveniste

E is called locally finite iff for each event e of E , there exists a finite stopping
prefix B containing e. The following condition is assumed throughout this paper:

Assumption 2. E is locally finite.

Locally finite event structures have not been considered by authors so far. We
shall see at the end of this section that confusion freeness implies local finiteness.

Stopping prefixes B satisfy the following property (see [1–Ch.3,I-3.1]):

ΩB = {ω ∩B | ω ∈ ΩE} . (2)

Although the inclusion ⊆ always holds, not every prefix does satisfy the equality
of property (2). Take for instance E = {a, b} with a#b. Consider prefix P = {a}
and maximal configuration ω = {b}. Then ω ∩ P = ∅ is not maximal in P .

Clearly, the set of all stopping prefixes is a complete lattice. However, stopping
prefixes are not stable under concatenation: if B is a stopping prefix of E , v ∈ ΩB ,
and Bv is a stopping prefix of Ev, then B ∪Bv is generally not a stopping prefix
of E . As a consequence, the concatenation of v and of a configuration stopped
in Ev is not stopped in E in general. Roughly speaking, the class of stopped
configurations is not closed under concatenation, which is inconvenient. The
notions of recursively stopped configuration and branching cell we introduce
next overcome this drawback.

Definition 2 (stopped and recursively stopped configurations).

1. A configuration v of E is said to be stopped if there is a stopping prefix B
such that v ∈ ΩB.

2. Call recursively stopped a configuration v of E such that there exists a finite
nondecreasing sequence (vn)0≤n≤N of configurations, where v0 = ∅, vN = v,
and for n < N , vn+1 \ vn is a finite stopped configuration of the future Evn

of vn. The set of all finite recursively stopped configurations is denoted by
WE , or simply W if no confusion can occur.

The class of recursively stopped configurations is the smallest class of configu-
rations that contains stopped configurations and is closed under concatenation
(see the examples at the end of this section).

Definition 3 (branching cell). Stopping prefix B is called initial iff ∅ is the
only stopping prefix strictly contained in B. Call branching cell of E any initial
stopping prefix of Ev, where v ranges over W. The set of all branching cells of E
is denoted by XE (or simply X when no confusion can occur). Branching cells
are generically denoted by the symbol x.

Informally, branching cells are minimal subsets of events closed under immediate
conflict. For v ∈ W, denote by δ(v) the set of branching cells that are initial
prefixes of Ev. Clearly, branching cells of δ(v) do not overlap (in general, branch-
ing cells may overlap, see the examples at the end of this section). Consider the
following map Δ, called the covering map of E :

for v ∈ W: Δ(v) Δ= Δ(v) \ δ(v) , (3)

where Δ(v) Δ= {x ∈ δ(v′) | v′ ∈ W, v′ ⊆ v} .

Branching Cells as Local States for Event Structures and Nets 99

We list some properties of branching cells. The proof of Th. 4 is given in the
Appendix, the remaining proofs are found in the extended version [2].

Theorem 1. If B is a stopping prefix of E, then XB ⊆ XE and WB ⊆ WE .
Furthermore, the covering maps Δ and ΔB respectively defined on W and WB

coincide on WB.

Theorem 2. For every v ∈ W, XEv ⊆ XE . For v ⊆ v′ two finite recursively
stopped configurations, v′ \ v is recursively stopped in Ev. Denote by Δv the
covering map (3) defined on Ev. We have:

Δ(v′) = Δ(v) ∪Δv(v′ \ v) , and Δ(v) ∩Δv(v′ \ v) = ∅. (4)

Theorem 3. Branching cells recursively cover stopped configurations, i.e.:

∀v ∈ W, v =
⋃

x∈Δ(v)

v ∩ x , (5)

and, for each x ∈ Δ(v), v ∩ x is an element of Ωx.

Theorem 4. Let ξ be a subset of δ(∅E), where ∅E denotes the empty configura-
tion of E. The formula

Bξ
Δ=
⋃
x∈ξ

x (6)

defines a stopping prefix of E, whose set of finite configurations VBξ
and maximal

configurations ΩBξ
respectively decompose as:

VBξ
=
∏
x∈ξ

Vx and ΩBξ
=
∏
x∈ξ

Ωx . (7)

Call thin a prefix of E of the form (6), where ξ ⊆ δ(∅E). The complete lattice of
thin prefixes has finite upper bound.

Comments. Theorem 1 expresses that recursively stopped configurations and
branching cells are stable under restriction to stopping prefixes.

Theorem 2 expresses that recursively stopped configurations and branching
cells are stable under restriction to the futures Ev of elements v ∈ W. Equa-
tion (4) says that covering maps are incremental with respect to the future.

Theorem 3 is self explanatory. Remark that the property v ∩ x ∈ Ωx extends
the property ω ∩B ∈ ΩB stated by Eqn. (2).

The product forms given in Th. 4 show that branching cells are traversed by
local processes that are both concurrent and independent : in the future of v, local
decisions taken in a branching cell x ∈ δ(v) do not influence the range of possible
local decisions that can be taken in other branching cells of δ(v). In other words,
choices in different concurrent branching cells are made by independent and
non-communicating agents. Section 3 adds a probabilistic interpretation to this.

100 S. Abbes and A. Benveniste

Theorem 4 is stated only for thin prefixes that “begin” the event structure.
However, Th. 4 can be recursively applied in the futures Ev, for v ∈ W, with
δ(v) playing the role of δ(∅E).

Finally, the finiteness of the above introduced objects follows from our as-
sumptions: the finiteness of branching cells follows from Assumption 2, and the
finiteness of the upper bound

⋃
ξ Bξ of thin prefixes follows from Assumption 1

(see the proof of Th. 4 in the Appendix).

Examples. For all examples of this paper, we write (abc) to denote the config-
uration {a, b, c}.

The event structure E shown in Figure 1–left has two nonempty stopping pre-
fixes:{a, b}and{a, b, c, d, e}. Its stopped configurations are ∅,(a),(b),(a,c,e),(b,d),
and (b, c, e). Let us determine the recursively stopped configurations and the
branching cells of E . Since E has a unique initial stopping prefix δ(∅) =

{
{a, b}

}
,

it follows that (a) and (b) are recursively stopped. The future E(a) is the event
structure {c, e} with empty conflict and causality; it has two initial stopping
prefixes: δ(a) =

{
{c}, {e}

}
. Therefore (ac) and (ae) are recursively stopped,

as well as (ace). The future of (ace) is empty. The future E(b) is given by:
E(b) = c ���� d ���� e , with a unique initial stopping prefix: δ(b) =

{
{c, d, e}

}
.

Therefore (bd) and (bce) are also recursively stopped. The futures of (bd) and
of (bce) are empty, so we are done: W = {∅, (a), (b), (ac), (ae), (ace), (bd), (bce)}.
Note that (ac) and (ae) are recursively stopped but not stopped. Note also that
configurations (bc) and (be) are not recursively stopped. Finally, the set of all
branching cells is

{
{a, b}, {c}, {e}, {c, d, e}

}
.

The event structure depicted in Figure 1–middle illustrates the concurrency
of branching cells of δ(∅). Note that some minimal events belong to no initial
branching cell.

• ��������
a

•
��

b

• ��

c
• ��

d
•
e

• �� •
��

•
��

��
��		

		
•
��• •

����

conflict
��

causality

Fig. 1. Left: configuration (ac) is recursively stopped, with associated sequence(∅, (a), (ac)
)

according to Definition 2; however, (ac) is not stopped. Middle: branching
cells of δ(∅) are depicted by frames

Local Finiteness Relaxes Confusion Freeness. Recall that event structure
E is said to be confusion free if E satisfies the Q axiom of concrete domains [10].
Equivalently, E is confusion free iff [13]:

1. #μ is transitive,
2. for all e, e′ ∈ E : e#μ e

′ ⇒ [e] \ {e} = [e′] \ {e′}.

Branching Cells as Local States for Event Structures and Nets 101

Define, for every event e ∈ E:

F (e) = {f ∈ E : e#μ f}, B(e) =
⋃

f∈[e]

F (f) .

The second part of Assumption 1 together with point 2 above imply that every
set F (f) is finite. It follows that B(e) is finite, and point 1 implies that B(e) is
a stopping prefix, that contains e. This holds for every event e, so E is locally
finite. Moreover every finite configuration is stopped, and therefore recursively
stopped. The set of branching cells is equal to {F (e) : e ∈ E}, which forms a
partition of E. Such simple properties fail for event structures with confusion.
For example, in the event structure depicted in Figure 1–left, branching cells {c}
and {c, d, e} possess a nonempty intersection. For confusion free event structures,
branching cells reduce to the cells defined in [13].

To summarize, confusion free event structures are locally finite, but the con-
verse is not true. Locally finite event structures appear as event structures with
“finite confusion”.

3 Application to Probabilistic Event Structures

We recall that a probabilistic event structure is a pair (E ,P) with P a probability
measure1 on the space Ω of maximal configurations of E . We shall prove that
a probabilistic event structure can be naturally defined from the new notion of
locally randomized event structure (Th. 5). The construction performed below
adds a probabilistic interpretation to the properties of branching cells and of
recursively stopped configurations.

Definition 4 (locally randomized event structure). A locally randomized
event structure is a pair (E , (px)x∈X), where X is the set of branching cells of E,
and for each x ∈ X, px is a probability over Ωx.

Let (E , (px)x∈X) be a locally randomized event structure. For F ⊆ E a sub-
event structure of E , denote by XF the set of all branching cells of F . Call F
well formed if it is finite and such that XF ⊆ XE . Note that finite stopping
prefixes are well formed according to Th. 1. For F a well formed, set:

for ωF ∈ ΩF : PF (ωF) =
∏

x∈Δ(ωF)

px(ωF ∩ x), (8)

which is well defined since, according to Th. 3, ωF ∩ x ∈ Ωx.

Lemma 1. If B = Bξ is a thin prefix (see Th. 4), then PB is the direct product
of the px’s, for x ranging over ξ. In particular, PB is a probability.

1 The σ-algebra considered is the Borel σ-algebra generated by the Scott topology
on Ω, see [1] for details. In the remaining of the paper, we do not mention the
σ-algebras considered since they are always canonical.

102 S. Abbes and A. Benveniste

Proof. This is a direct consequence of Eqn. (8) and Th. 4. �
Lemma 2. If F ⊆ E is a well formed sub-event structure, then PF is a proba-
bility. In particular, for each stopping prefix B, PB is a probability.

Proof. We show that PF is a probability by induction on integer nF = supωF∈ΩF

CardΔ(ωF) < ∞. The result is a direct consequence of Lemma 1 for nF ≤ 1.
Assume it holds until n ≥ 1, and let F be well formed and such that nF ≤ n+1.
Consider the (finite) upper bound D of thin prefixes of F . Applying property (2)
toD yields the following decomposition forΩF : ΩF =

⋃
v∈ΩD

{v} ×ΩFv . More-
over, for each v ∈ ΩD and ω′ ∈ ΩFv , and setting ω = v∪ω′, we obtain by Th. 2:

Δ(ω) = Δ(v) ∪Δv(ω′), Δ(v) ∩Δv(ω′) = ∅ . (9)

Formulas (8) and (9) together imply:∑
ω∈ΩF

PF (ω) =
∑

v∈ΩD

PD(v)
(∑
ω′∈ΩF v

PFv (ω′)
)
. (10)

It follows from Th. 2 that for each v ∈ ΩD, the future F v of v in F satis-
fies XFv ⊆ XF ⊆ XE . Formula (9) implies that nFv ≤ n. Hence we can ap-
ply the induction hypothesis to F v and obtain

∑
ω′∈ΩF v

PFv (ω′) = 1. From
Lemma 1 we get:

∑
v∈ΩD

PD(v) = 1. This, together with Eqn. (10), implies∑
ω∈ΩF

PF (ω) = 1, which completes the induction. �
Corollary 1. Let B ⊆ B′ be two finite stopping prefixes of E. The following
formula holds:

∀ωB ∈ ΩB : PB(ωB) =
∑

ω′∈ΩB′ , ω′⊇ωB

PB′(ω′). (11)

Proof. Let ωB be an element of ΩB , and denote by B′′ Δ= B′ωB the future of
ωB in B′. Then {ω′ ∈ ΩB′ : ω′ ⊇ ωB} is one to one with ΩB′′ . Eqn. (4) gives
Δ(ω′) = Δ(ωB) ∪ΔωB (ω′ \ ωB), whence:∑

ω′∈ΩB′ , ω′⊇ωB

PB′(ω′) = PB(ωB)
∑

z∈ΩB′′

PB′′(z). (12)

From Lemma 2 applied to finite event structure B′′, the sum on the right hand
side of (12) equals 1, which implies (11). �
Theorem 5. Let (E , (px)x∈X) be a locally randomized event structure. Then
there exists a unique probabilistic event structure (E ,P) such that, for every finite
stopping prefix B:

∀v ∈ ΩB , P
(
{ω ∈ Ω : ω ⊇ v) = PB(v) , (13)

where PB is defined by Eqn. (8).

Branching Cells as Local States for Event Structures and Nets 103

Proof. Corollary 1 expresses that the family (ΩB ,PB), where B ranges over the
set of finite stopping prefixes, is a projective system of (finite) probability spaces.
It is proved in [1–Ch.2] that, under Assumption 2, this projective system defines
a unique probability P on ΩE that extends this projective system, i.e., satisfies
Eqn. (13). �
Probabilistic Future and Distributed Probabilities. So far we have shown
how to construct probabilistic event structures from locally randomized event
structures. Conversely, each probability P over E , such that P(v) > 0 for every
finite configuration v, defines a family (px)x∈X of local probabilities associated
to branching cells as follows, for x ∈ X and ωx ∈ Ωx: 2

px(ωx) Δ=
P
({
ω ∈ ΩE : x ∈ Δ(ω), ω ∩ x = ωx

})
P
({
ω ∈ ΩE : x ∈ Δ(ω)

}) . (14)

Of course, the following natural question arises: is it true that the family (px)x∈X

conversely induces P through Eqn. (8) and Th. 5? Not in general. The following
Th. 6, which proof is found in [1–Ch.4], provides the answer.

For (E ,P) a probabilistic event structure, consider the likelihood function q
defined on the set of finite configurations by:

∀v ∈ VE , q(v) Δ= P
(
{ω ∈ ΩE : ω ⊇ v}

)
. (15)

For v a finite configuration, the probabilistic future (Ev,Pv) is defined by

P
v(·) Δ=

1
q(v)

P(·).

The associated likelihood qv is given by qv(w) = 1
q(v)q(v ∪ w), for w ranging over

the set of finite configurations of Ev.

Definition 5 (distributed probability). A probability P is called distributed
iff, for each recursively stopped configuration v, and each thin prefix Bv

ξ in Ev,
the following holds:

∀ω ∈ ΩBv
ξ
, qv(ω) =

∏
x∈ξ

px(ω ∩ x) (16)

where px is defined from P by using (14).

Theorem 6. Let (E ,P) be a probabilistic event structure, and let (px)x∈X be
defined from P by using (14). The construction of Th. 5 induces again P iff P is
a distributed probability. In this case, the likelihood function is given on W by:
q(v) =

∏
x∈Δ(v) px(v ∩ x).

Remark that the likelihood given in Th. 6 extends the original formula (8). Th. 6
also shows that, for confusion-free event structures, the valuations with indepen-
dence defined in [13] are equivalently defined as likelihoods (15) associated with
distributed probabilities.

2 The condition p(v) > 0 is stated here for simplicity, it can be removed with some
more technical effort.

104 S. Abbes and A. Benveniste

Comment. Eqn. (16), which characterizes distributed probabilities, has the fol-
lowing interpretation. Because of the absence of conflicts, and conditionally on
a partial execution v ∈ W, the local choices inside the different branching cells
belonging to δ(v) are performed independently from one another. Eqn. (16) is
the probabilistic counterpart of the concurrency of branching cells, stated by
Eqn. (7) in Th. 4.

4 Markov Nets

In this section, we apply the previous results to event structures arising from the
unfolding of safe and finite Petri nets. Markov nets are introduced and briefly
studied. Proofs of the results stated in this section as well as additional results
can be found in [1], Chapters 5–7.

Event structures arising from the unfolding of safe and finite Petri nets are
equipped with a labelling of their events by transitions of the net. It is therefore
natural to consider local randomizations of these event structures that are such
that px = px′ whenever branching cells x and x′ are isomorphic as labelled event
structures. Finite safe Petri nets equipped with such local randomizations are
called Markov nets; they generalize Markov chains to concurrent systems. We
show in this section that branching cells provide the adequate concept of “local
state” for Markov nets. In particular, we show that the classical Law of Large
Numbers (LLN) for Markov chains properly generalizes to Markov nets, provided
that the set of all equivalence classes of isomorphic branching cells is taken as
state space for Markov nets. Such equivalence classes, called dynamic clusters,
are introduced next.

Throughout this section, we assume that E is a locally finite event structure
arising from the unfolding of a finite safe Petri net N . Although Assumption 1
is always satisfied by the unfolding of a safe and finite Petri net, this is not
necessarily the case for local finiteness (Assumption 2). Local finiteness is an
important restriction, although the class of safe nets with locally finite unfolding
is strictly larger than the classes of free-choice or confusion-free nets.

Let M0 denote the initial marking of N . For v a finite configuration of E , we
denote by m(v) the marking reached in N after the action of configuration v. It
is well known that, up to an isomorphism of labelled event structure, the future
Ev is the unfolding of net N from the initial marking m(v). Whence:

∀v, v′ ∈ VE , m(v) = m(v′) ⇒ Ev = Ev′
. (17)

It makes thus sense to denote by Em the event structure that unfolds N starting
from the reachable marking m. Since the reachable markings are finitely many,
the futures Ev = Em(v) are finitely many up to isomorphism of labelled event
structures. Since each set of branching cells δ(v) is finite, it follows then from
Def. 3 that branching cells of E are finitely many, up to an isomorphism of
labelled event structures.

Branching Cells as Local States for Event Structures and Nets 105

Definition 6 (dynamic cluster). An isomorphism class of branching cells is
called a dynamic cluster of N . We denote by Σ the (finite) set of dynamic
clusters. Dynamic clusters are generically denoted by the boldface symbol s. The
equivalence class of branching cell x is denoted by 〈x〉.

It is shown in the extended version [2] that, if the event structure is confusion-
free, branching cells can be interpreted as the events of a new event structure,
called choice structure. The set of dynamic clusters Σ is then a finite alphabet
that labels the choice structure. Under certain conditions, the labelled event
structure obtained is actually itself the unfolding of a safe Petri net, called the
choice net. The interested reader is referred to [2] for further details.

Definition 7 (Markov net). A Markov net is a pair
(
N , (ps)s∈Σ

)
, where N

is a finite safe Petri net with locally finite unfolding, and ps is a probability on
the finite set Ωs for every s ∈ Σ.

Markov net
(
N ,(ps)s∈Σ

)
induces a locally randomized event structure(E ,(px)x∈X)

(see Def. 4) by setting px = p〈x〉 for every branching cell x ∈ XE , whence a
unique distributed probability P on Ω (Th. 5 and Th. 6). Note that, if net N is
the product of two non interacting nets N = N1×N2, then the two components
Ni, i ∈ {1, 2} are independent in the probabilistic sense, i.e., P = P1 ⊗ P2.

Theorem 7 (Markov property). Let (N , (ps)s∈Σ) be a Markov net, and let
P be the associated distributed probability on Ω. For v a finite recursively stopped
configuration of E, let m(v) and Σv denote respectively the marking reached by v
and the classes of branching cells of Ev. Then for every v ∈ W, the probabilistic
future (Ev,Pv) is associated with Markov net (N v, (ps)s∈Σv), where N v is the
same net as N , except that N v has initial marking m(v). Moreover we have:

∀v, v′ ∈ W, m(v) = m(v′) ⇒ P
v = P

v′
. (18)

Eqn. (18) expresses the memoryless nature of Markov nets: the probabilistic
future of a v ∈ W only depends on the final marking m(v). It is the probabilistic
counterpart of Eqn. (17).

The Law of Large Numbers (LLN). Call return to the initial marking M0
any finite recursively stopped configuration v such that:

1. m(v) = M0,
2. Min�(E) ∩Min�(Ev) = ∅ .

Informally, Point 2 above says that all the tokens in the net have moved when
we apply configuration v. It prohibits recurrent behaviors that leave a part of
the initial marking unchanged. For our study of LLN, we restrict ourselves to
recurrent Markov nets, i.e., Markov nets such that, with probability 1, ω ∈ Ω
contains infinitely many returns to M0. If the considered net is indeed sequential,
then our definition reduces to the classical notion of recurrence, for Markov
chains [12].

106 S. Abbes and A. Benveniste

For finite recurrent Markov chains, the LLN states as follows. Let Σ be
the finite state space of a Markov chain (Xk)k≥1, and let f : Σ → R be a
test function. The sums Sn(f) =

∑n
k=1 f(Xk) are called ergodic sums, and the

LLN studies the limit, for n→∞, of the ergodic means: Mn(f) = 1
nSn(f). In

extending the LLN to Markov net N , we are faced with two difficulties:

1. What is the proper concept of state?
2. What replaces counter n, since time is not totally ordered?

Corresponding answers are:

1. The set Σ of dynamic clusters of N is taken as the state space.
2. For v a recursively stopped configuration, the number of branching cells

contained in Δ(v) is taken as the “duration” of v.

More precisely, call distributed function a finite family f = (fs)s∈Σ of real-valued
functions fs : Ωs → R. Distributed functions form a vector space of finite dimen-
sion over R. The concurrent ergodic sums of f are defined as the function S(f):

S(f) : W → R , ∀v ∈ W, S(f)(v) =
∑

x∈Δ(v)

f〈x〉(v ∩ x) . (19)

For example, if N = (Ns)s∈Σ is the distributed function given by Ns(w) = 1
for all s ∈ Σ and w ∈ Ωs, then S(N)(v) counts the number of branching cells
contained inΔ(v). The concurrent ergodic means M(f) : W → R associated with
a distributed function f are defined as the following ratios:

∀v ∈ W, M(f)(v) =
1

S(N)(v)
S(f)(v) . (20)

The LLN is concerned by the limit

lim
v⊆ω,v→ω

M(f)(v) , (21)

and this for each ω ∈ Ω, in a sense we shall make precise. The following notion
of stopping operator will be central in this respect—stopping operators indeed
generalize stopping times [12] for sequential stochastic processes:

Definition 8 (stopping operator). A random variable V : Ω →W, satisfy-
ing V (ω) ⊆ ω for all ω ∈ Ω, is called a stopping operator if for all ω, ω′ ∈ Ω,
we have: ω′ ⊇ V (ω) ⇒ V (ω′) = V (ω). Say that a sequence (Vn)n≥1 of stopping
operators is regular if the following properties are satisfied—such sequences exist:

1. Vn ⊆ Vn+1 for all n, and
⋃

n Vn(ω) = ω for all ω ∈ Ω;
2. there are two constants k1, k2 > 0 such that, with N the distributed function

defined above, for all ω ∈ Ω and all n ≥ 1: k1n ≤ S(N)
(
Vn(ω)

)
≤ k2n.

Using this concept, Eqn. (21) is re-expressed as follows:

Branching Cells as Local States for Event Structures and Nets 107

Definition 9 (convergence of ergodic means). For f a distributed function,
we say that the ergodic means M(f) converge to a function μ : Ω → R if for every
regular sequence (Vn)n≥1 of stopping operators,

lim
n→∞M(f)

(
Vn(ω)

)
= μ(ω) with probability 1. (22)

Concurrency prevents property (22) from holding for general recurrent Markov
nets, as the following particular case shows. Assume that net N decomposes
as N = N1 × N2 and the two components N1 and N2 do not interact at all.
In this case, regular sequences V = (Vn)n≥1 of stopping operators decompose
into pairs (V 1, V 2) of independent regular sequences, one for each component.
For f and v decomposed as f = (f1, f2) and v = (v1, v2) respectively, we have
S(f)(v) = S(f1)(v1) + S(f2)(v2) and S(N)(v) = S(N1)(v1) + S(N2)(v2). Since
V 1
n and V 2

n are free to converge at their own speed, we cannot expect that
convergence of ergodic means will hold for this case. Clearly, concurrency is the
very cause for this difficulty.

For the detailed statement of the condition needed to overcome this problem,
the reader is referred to [1–Ch.8]. We only give an informal explanation, in
terms of Petri nets and branching cells. If, in an execution ω ∈ Ω, we block a
token represented by some condition b in the unfolding, we measure the “loss of
synchronization” of the system by counting the number of branching cells that
can be traversed without moving the blocked token. This length defines a random
variable Ω → R for each condition b of the unfolding. We say that the considered
Markov net has integrable concurrency height if all these random variables are
integrable, i.e., possess finite expectation w.r.t. probability P, for b ranging over
the set of all conditions of the unfolding. Remark that, due to the memoryless
property of the system, this set of random variables is actually finite.

Theorem 8 (Law of Large Numbers). Let (N , (ps)s∈Σ) be a Markov net.
Assume that N is recurrent and has integrable concurrency height. Then:

1. For any distributed function f = (fs)s∈Σ, the ergodic means M(f) converge
in the sense of Def. 9 to a function μ(f) : Ω → R.

2. Except possibly on a set of zero probability, μ(f) is constant and given by:

μ(f) =
∑
s∈Σ

ps(fs)α(s) , with: ps(fs) =
∑

w∈Ωs

fs(w)ps(w). (23)

3. In formula (23), coefficients α(s) are equal to

α(s) = μ(N s), (24)

and satisfy α(s) ∈ [0, 1] and
∑

s α(s) = 1; α(s) is the asymptotic rate of
occurrence of local state s in a typical execution ω ∈ Ω.

Statement 3 is a direct consequence of statements 1 and 2: Fix s ∈ Σ, and
consider the distributed function N s defined by N s

s (w) = 1 for all w ∈ Ωs and
N s

s′ = 0 if s
= s′. Applying statements 1 and 2 to N s yields α(s) = μ(N s). In
particular, from N =

∑
sN

s we obtain:
∑

s α(s) = 1.

108 S. Abbes and A. Benveniste

If the net is actually sequential (i.e., reduces to a recurrent finite Markov
chain), then Σ is the state space of the chain and coefficients α(s) are equal to
the coefficients of the invariant measure of the chain. This again reveals that
dynamic clusters play the role of local states for concurrent systems.

5 Conclusion and Perspectives

We have proposed branching cells as a form of local concurrent state for prime
event structures and safe Petri nets. Our study applies to so-called locally fi-
nite event structures that significantly extend the confusion-free case. We have
applied this to probabilistic event structures: for E an event structure with set
of maximal configurations Ω, there is a one-to-one correspondence between lo-
cal randomizations of the branching cells of E on the one hand, and the class
of distributed probabilities on Ω on the other hand. Distributed probabilities
yield concurrent systems in which locally concurrent random choices are taken
independently in the probabilistic sense.

We have applied the construction of distributed probabilities to unfoldings of
safe and finite Petri nets. This leads to the model of Markov nets, a probabilistic
model of concurrent system specified by finitely many parameters. Besides the
relation between causal and probabilistic independence, Markov nets bring the
Markov property as a probabilistic counterpart to the memoryless nature of
Petri nets. The Law of Large Numbers extends to Markov nets, with dynamic
clusters taken as states. Therefore branching cells and dynamic clusters provide
the adequate notion of local state, for systems with concurrency.

Acknowledgments. We wish to thank Philippe Darondeau for fruitful discus-
sions and hints.

References

1. Abbes, S.: Probabilistic model for concurrent and distributed systems. Limit theo-
rems and applications. PhD Thesis (2004), IRISA-Université de Rennes 1.

2. Abbes, S. and Benvensite, A.: Branching cells as local states for event structures
and nets: probabilistic applications. INRIA Research Report (2004) RR-5347.
http://www.inria.fr/rrrt/rr-5347.html

3. Benveniste, A., Haar, S. and Fabre, E.: Markov nets: probabilistic models for dis-
tributed and concurrent systems. IEEE Trans. on Aut. Cont. 48:11 (2003) 1936–
1950.

4. Benveniste, A., Haar, S., Fabre, E. and Jard, C.: Distributed monitoring of concur-
rent and asynchronous systems. Proc. of CONCUR’03, LNCS 2761 (2003), 1–26.
Extended and improved version to appear in Discrete Event Dynamic Systems:
Theory and Application, Kluwer, 2005.

5. Desel, J. and Esparza, R.: Free choice Petri nets. Cambridge University Press
(1995).

Branching Cells as Local States for Event Structures and Nets 109

6. Haas, P. J.: Stochastic Petri nets. Springer-Verlag (2002).
7. Hermanns, H., Herzog, U. and Katoen, J.-P.: Process algebra for performance

evaluation. T.C.S. 274:1 (2002) 43–88.
8. Larsen, K.G. and Skou, A.: Bisimulation through probabilistic testing. Inf. and

Comp. 94:1 (1991) 1–28.
9. Mateus, P., Mitchell, J. C. and Scedrov, A.: Composition of cryptographic protocols

in a probabilistic polynomial-time process calculus. Proc. of CONCURR’03, LNCS
2761 (2003) 327–349.

10. Nielsen, M., Plotkin, G. and Winskel, G.: Petri nets, event structures and domains,
part 1. T.C.S. 13 (1981) 85–108.

11. Segala, R. and Lynch, N.: Decision algorithms for probabilistic bisimulations. Proc.
of CONCUR’02, LNCS 2421 (2002) 371–396.

12. Shiryaev, A.N.: Probability. Springer Verlag (1984).
13. Varacca, D., Völzer, H. and Winskel, G.: Probabilistic event structures and do-

mains. Proc. of CONCUR’04, LNCS 3170 (2004) 481–496.
14. Völzer, H.: Randomized non-sequential processes. Proc. of CONCUR’01, LNCS

2154 (2001) 184–201.

A Appendix: Proof of Th. 4.

This section presents the proof of Th. 4 of Section 2. For the other proofs of
results of Section 2, the reader is referred to the extended version [2]. For the
proof of the Law of large numbers, we refer to [1].

Lemma 3. If x, y are two distinct initial stopping prefixes, then e ‖ f for all
pairs (e, f) ∈ x× y.

Proof. Follows from the definitions, and from the fact that if x, y are two events
in conflict, then there are two events x′, y′ in minimal conflict and with x′ � x
and y′ � y. �

Proof of Th. 4. Remark first that δ(∅) is finite. Indeed, choose for each x ∈ δ(∅)
an event ex minimal in x. All x ∈ δ(∅) are disjoint since they are minimal, hence
all the ex are distinct, and minimal in E . Assumption 1 (applied with v = ∅)
implies that they are finitely many, and thus δ(∅) is finite. Assumption 2 implies
that each x ∈ δ(∅) is a finite prefix. It follows than thin prefixes Bξ have

⋃
x∈δ(∅) x

as finite upper bound.
Now let ξ be a subset of δ(∅), and let Bξ =

⋃
x∈ξ x. For each configuration v

of Bξ, and for each x ∈ ξ, v∩x is clearly a configuration of x, whence a mapping:
φ : VBξ

→
∏

x∈ξ Vx. For each tuple (vx)x∈ξ with vx ∈ Vx, put v =
⋃

x∈ξ vx. Then
v is clearly a prefix of Bξ, and it follows from Lemma 3 that v is also conflict-
free, thus v is a configuration of Bξ. The mapping (vx)x∈ξ → v defined by this
way is the inverse of φ, thus φ is a bijection. Clearly, φ maps the set of maximal
configurations of Bξ onto

∏
x∈ξ Ωx, which completes the proof.

Axiomatizations for Probabilistic
Finite-State Behaviors

Yuxin Deng1,� and Catuscia Palamidessi2,��

1 INRIA Sophia-Antipolis and Université Paris 7
2 INRIA Futurs and LIX, École Polytechnique

Abstract. We study a process calculus which combines both nondeter-
ministic and probabilistic behavior in the style of Segala and Lynch’s
probabilistic automata. We consider various strong and weak behavioral
equivalences, and we provide complete axiomatizations for finite-state
processes, restricted to guarded definitions in case of the weak equiva-
lences. We conjecture that in the general case of unguarded recursion the
“natural” weak equivalences are undecidable.

This is the first work, to our knowledge, that provides a complete
axiomatization for weak equivalences in the presence of recursion and
both nondeterministic and probabilistic choice.

1 Introduction

The last decade has witnessed increasing interest in the area of formal methods
for the specification and analysis of probabilistic systems [11, 3, 15, 6]. In [16]
van Glabbeek et al. classified probabilistic models into reactive, generative and
stratified. In reactive models, each labeled transition is associated with a prob-
ability, and for each state the sum of the probabilities with the same label is
1. Generative models differ from reactive ones in that for each state the sum of
the probabilities of all the outgoing transitions is 1. Stratified models have more
structure and for each state either there is exactly one outgoing labeled transition
or there are only unlabeled transitions and the sum of their probabilities is 1.

In [11] Segala pointed out that neither reactive nor generative nor stratified
models capture real nondeterminism, an essential notion for modeling scheduling
freedom, implementation freedom, the external environment and incomplete in-
formation. He then introduced a model, the probabilistic automata (PA), where
both probability and nondeterminism are taken into account. Probabilistic choice
is expressed by the notion of transition, which, in PA, leads to a probabilistic
distribution over pairs (action, state) and deadlock. Nondeterministic choice, on
the other hand, is expressed by the possibility of choosing different transitions.

� Supported by the EU project PROFUNDIS.
�� Partially supported by the Project Rossignol of the ACI Sécurité Informatique (Min-

istère de la recherche et nouvelles technologies).

V. Sassone (Ed.): FOSSACS 2005, LNCS 3441, pp. 110–124, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Axiomatizations for Probabilistic Finite-State Behaviors 111

Segala proposed also a simplified version of PA called simple probabilistic au-
tomata (SPA), which are like ordinary automata except that a labeled transition
leads to a probabilistic distribution over a set of states instead of a single state.

Figure 1 exemplifies the probabilistic models discussed above. In models
where both probability and nondeterminism are present, like those of diagrams
(4) and (5), a transition is usually represented as a bundle of arrows linked by a
small arc. [13] provides a detailed comparison between the various models, and
argues that PA subsume all other models above except for the stratified ones.

a ba b

1/2 1/2 1/3 2/3

a
a

b b

1/2 1/8 1/81/4

1/2 1/2

2/31/3

a b

a

a
a a a b

b

1/2 1/2 1/3 2/3
1/21/2 1/2 1/2 1/3 2/3 1/2 1/2

a b
a c
b c

(1) reactive (2) generative (3) stratified

(4) SPA (5) PA

Fig. 1. Probabilistic models

In this paper we are interested in investigating axiom systems for a pro-
cess calculus based on PA, in the sense that the operational semantics of each
expression of the language is a probabilistic automaton1. Axiom systems are im-
portant both at the theoretical level, as they help gaining insight of the calculus
and establishing its foundations, and at the practical level, as tools for system
specification and verification. Our calculus is basically a probabilistic version of
the calculus used by Milner to express finite-state behaviors [8, 10].

We shall consider the two strong and the weak behavioral equivalences com-
mon in literature, plus one novel notion of weak equivalence having the advantage
of being sensitive to divergency. For recursion-free expressions we provide com-
plete axiomatizations of all the four equivalences. For the strong equivalences
we also give complete axiomatizations for all expressions, while for the weak
equivalences we achieve this result only for guarded expressions.

The reason why we are interested in studying a model which expresses both
nondeterministic and probabilistic behavior, and an equivalence sensitive to di-

1 Except for the case of deadlock, which is treated slightly differently: following the
tradition of process calculi, in our case deadlock is a state, while in PA it is one of
the possible components of a transition.

112 Y. Deng and C. Palamidessi

vergency, is that one of the long-term goals of this line of research is to develop a
theory which will allow us to reason about probabilistic algorithms used in dis-
tributed computing. In that domain it is important to ensure that an algorithm
will work under any scheduler, and under other unknown or uncontrollable fac-
tors. The nondeterministic component of the calculus allows coping with these
conditions in a uniform and elegant way. Furthermore, in many distributed com-
puting applications it is important to ensure livelock-freedom (progress), and
therefore we will need a semantics which does not simply ignore divergencies.

We end this section with a discussion about some related work. In [8] and [10]
Milner gave complete axiomatizations for strong bisimulation and observational
equivalence, respectively, for a core CCS [9]. These two papers serve as our start-
ing point: in several completeness proofs that involve recursion we adopt Milner’s
equational characterization theorem and unique solution theorem. In Section 4
and Section 5.2 we extend [8] and [10] (for guarded expressions) respectively, to
the setting of probabilistic process algebra.

In [14] Stark and Smolka gave a probabilistic version of the results of [8].
So, our paper extends [14] in that we consider also nondeterminism. Note that
when nondeterministic choice is added, Stark and Smolka’s technique of proving
soundness of axioms is no longer usable. The same remark applies also to [1]
which follows the approach of [14] but uses some axioms from iteration alge-
bra to characterize recursion. In contrast, our probabilistic version of “bisim-
ulation up to” technique works well when combined with the usual transition
induction.

In [5] Bandini and Segala axiomatized both strong and weak behavioral equiv-
alences for process calculi corresponding to SPA and to an alternated-model
version of SPA. As their process calculus with non-alternating semantics corre-
sponds to SPA, our results in Section 6 can be regarded as an extension of that
work to PA.

For probabilistic process algebra of ACP-style, several complete axiom sys-
tems have appeared in the literature. However, in each of the systems either
weak bisimulation is not investigated [4, 2] or nondeterministic choice is prohib-
ited [4, 3].

2 Probabilistic Process Calculus

We begin with some preliminary notations. Let S be a set. A function η : S "→
[0, 1] is called a discrete probability distribution, or distribution for short, on
S if the support of η, defined as spt(η) = {x ∈ S | η(x) > 0}, is finite or
countably infinite and

∑
x∈S η(x) = 1. If η is a distribution with finite support

and V ⊆ spt(η) we use the set {(si : η(si))}si∈V to enumerate the probability
associated with each element of V . To manipulate the set we introduce the
operator # defined as follows.

Axiomatizations for Probabilistic Finite-State Behaviors 113

{(si : pi)}i∈I # {(s : p)} ={
{(si : pi)}i∈I\j ∪ {sj : (pj + p)} if s = sj for some j ∈ I
{(si : pi)}i∈I ∪ {(s : p)} otherwise.

{(si : pi)}i∈I # {(tj : pj)}j∈1..n =
({(si : pi)}i∈I # {(t1 : p1)}) # {(tj : pj)}j∈2..n

Given some distributions η1, ..., ηn on S and some real numbers r1, ..., rn ∈ [0, 1]
with

∑
i∈1..n ri = 1, we define the convex combination r1η1+...+rnηn of η1, ..., ηn

to be the distribution η such that η(s) =
∑

i∈1..n riηi(s), for each s ∈ S.
We use a countable set of variables, Var = {X,Y, ...}, and a countable set of

atomic actions, Act = {a, b, ...}. Given a special action τ , we let u, v, ... range
over the set Actτ = Act ∪ {τ}, and let α, β, ... range over the set Var ∪ Actτ .
The class of expressions E is defined by the following syntax:

E,F ::=
⊕

i∈1..n

piui.Ei |
∑

i∈1..m

Ei | X | μXE

Here
⊕

i∈1..n piui.Ei stands for a probabilistic choice operator, where the pi’s
represent positive probabilities, i.e., they satisfy pi ∈ (0, 1] and

∑
i∈1..n pi = 1.

When n = 0 we abbreviate the probabilistic choice as 0; when n = 1 we abbre-
viate it as u1.E1. Sometimes we are interested in certain branches of the proba-
bilistic choice; in this case we write

⊕
i∈1..n piui.Ei as p1u1.E1 ⊕ · · · ⊕ pnun.En

or (
⊕

i∈1..(n−1) piui.Ei)⊕ pnun.En where
⊕

i∈1..(n−1) piui.Ei abbreviates (with
a slight abuse of notation) p1u1.E1 ⊕ · · · ⊕ pn−1un−1.En−1. The construction∑

i∈1..mEi stands for nondeterministic choice, and occasionally we may write
it as E1 + ... + Em. The notation μX stands for a recursion which binds the
variable X. We shall use fv(E) for the set of free variables (i.e., not bound by
any μX) in E. As usual we identify expressions which differ only by a change
of bound variables. We shall write E{F/X} for the result of substituting F for
each occurrence of X in E, renaming bound variables if necessary.

Definition 1. The variable X is weakly guarded (resp. guarded) in E if every
free occurrence of X in E occurs within some subexpression u.F (resp. a.F),
otherwise X is weakly unguarded (resp. unguarded) in E.

The operational semantics of an expression E is defined as a probabilistic
automaton whose states are the expressions reachable from E and the transition
relation is defined by the axioms and inference rules in Table 1, where E → η
describes a transition that leaves from E and leads to a distribution η over
(Var ∪Actτ)× E . We shall use ϑ(X) for the special distribution {(X,0 : 1)}. It
is evident that E → ϑ(X) iff X is weakly unguarded in E.

The behavior of each expression can be visualized by a transition graph. For
instance, the expression (1

2a⊕
1
2b) + (1

3a⊕
2
3c) + (1

2b⊕
1
2c) exhibits the behavior

drawn in diagram (5) of Figure 1.
As in [5], we define the notion of combined transition as follows: E →c η if

there exists a collection {ηi, ri}i∈1..n of distributions and probabilities such that∑
i∈1..n ri = 1, η = r1η1 + ...+ rnηn and E → ηi, for each i ∈ 1..n.

114 Y. Deng and C. Palamidessi

Table 1. Strong transitions

var X → ϑ(X) psum
⊕

i∈1..n piui.Ei → ⊎
i∈1..n{(ui, Ei : pi)}

rec
E{μXE/X} → η

μXE → η
nsum

Ej → η∑
i∈1..m Ei → η

for some j ∈ 1..m

We now introduce the notion of weak transitions, which generalizes the notion
of finitary weak transitions in SPA [15] to the setting of PA. First we discuss
the intuition behind it. Given an expression E, if we unfold its transition graph,
we get a finitely branching tree. By cutting away all but one alternative in
case of several nondeterministic candidates, we are left with a subtree with only
probabilistic branches. A weak transition of E is a finite subtree of this kind,
called weak transition tree, such that in any path from the root to a leaf there is
at most one visible action. For example, let E be the expression μX(1

2a⊕
1
2τ.X).

It is represented by the transition graph displayed in Diagram (1) of Figure 2.
After one unfolding, we get Diagram (2) which represents the weak transition
E ⇒ η, where η = {(a,0 : 3

4), (τ, E : 1
4)}.

E

E

E

a τ

1/2 1/2

a τ

1/2 1/2

E

1/2 1/2

τa

0

0

(2)(1)

0

Fig. 2. A weak transition

Formally, weak transitions are defined by the rules in Table 2. Rule wea1
says that a weak transition tree starts from a bundle of labelled arrows derived
from a strong transition. The meaning of Rule wea2 is as follows. Given two
expressions E,F and their weak transition trees tr(E), tr(F), if F is a leaf of
tr(E) and there is no visible action in tr(F), then we can extend tr(E) with
tr(F) at node F . If Fj is a leaf of tr(F) then the probability of reaching Fj

from E is pqj , where p and qj are the probabilities of reaching F from E, and
Fj from F , respectively. Rule wea3 is similar to Rule wea2, with the difference
that we can have visible actions in tr(F), but not in the path from E to F . Rule
wea4 allows to construct weak transitions to unguarded variables. Note that if
E ⇒ ϑ(X) then X is unguarded in E.

Axiomatizations for Probabilistic Finite-State Behaviors 115

Table 2. Weak transitions

wea1
E → η

E ⇒ η

wea2
E ⇒ {(ui, Ei : pi)}i 	 {(u, F : p)} F ⇒ {(τ, Fj : qj)}j

E ⇒ {(ui, Ei : pi)}i 	 {(u, Fj : pqj)}j

wea3
E ⇒ {(ui, Ei : pi)}i 	 {(τ, F : p)} F ⇒ {(vj , Fj : qj)}j

E ⇒ {(ui, Ei : pi)}i 	 {(vj , Fj : pqj)}j

wea4
E ⇒ {(τ, Ei : pi)}i ∀i : Ei ⇒ ϑ(X)

E ⇒ ϑ(X)

For any expression E, we use δ(E) for the unique distribution {(τ, E : 1)},
called the virtual distribution of E. For any expression E, we introduce a special
weak transition, called virtual transition, denoted by E

ε⇒ δ(E). We also define
a weak combined transition: E ε⇒c η if there exists a collection {ηi, ri}i∈1..n of
distributions and probabilities such that

∑
i∈1..n ri = 1, η = r1η1 + ...+rnηn and

for each i ∈ 1..n, either E ⇒ ηi or E ε⇒ ηi. We write E ⇒c η if every component
is a “normal” (i.e., non-virtual) weak transition, namely, E ⇒ ηi for all i ≤ n.

3 Behavioral Equivalences

In this section we define the behavioral equivalences that we mentioned in
the introduction, namely, strong bisimulation, strong probabilistic bisimulation,
divergency-sensitive equivalence and observational equivalence. We also intro-
duce a probabilistic version of “bisimulation up to” technique to show some
interesting properties of the behavioral equivalences.

3.1 Strong and Weak Equivalences

To define behavioral equivalences in probabilistic process algebra, it is customary
to consider equivalence of distributions with respect to equivalence relations on
processes. If η is a distribution on S × T , s ∈ S and V ⊆ T , we write η(s, V)
for
∑

t∈V η(s, t). We lift an equivalence relation on E to a relation between
distributions over (Var ∪Actτ)× E in the following way.

Definition 2. Given two distributions η1 and η2 over (Var ∪Actτ)×E, we say
that they are equivalent w.r.t. an equivalence relation R on E, written η1 ≡R η2,
if

∀α ∈ Var ∪Actτ ,∀V ∈ E/R : η1(α, V) = η2(α, V).

Strong bisimulation is defined by requiring equivalence of distributions at
every step. Because of the way equivalence of distributions is defined, we need
to restrict to bisimulations which are equivalence relations.

116 Y. Deng and C. Palamidessi

Definition 3. An equivalence relation R ⊆ E × E is a strong bisimulation if
E R F implies:

– whenever E → η1, there exists η2 such that F → η2 and η1 ≡R η2.

We write E ∼ F if there exists a strong bisimulation R s.t. E R F .

If we allow a strong transition to be matched by a strong combined transition,
then we get a relation slightly weaker than strong bisimulation.

Definition 4. An equivalence relation R ⊆ E×E is a strong probabilistic bisim-
ulation if E R F implies:

– whenever E → η1, there exists η2 such that F →c η2 and η1 ≡R η2.

E ∼c F if there exists a strong probabilistic bisimulation R s.t. E R F .

We now consider the case of the weak bisimulation. The definition of weak
bisimulation for PA is not at all straightforward. In fact, the “natural” weak
version of Definition 3 would give rise to a relation which is not transitive.
Therefore we only define the weak variant of Definition 4.

Definition 5. An equivalence relation R ⊆ E ×E is a weak probabilistic bisim-
ulation if E R F implies:

– whenever E → η1, there exists η2 such that F ε⇒c η2 and η1 ≡R η2.

E ≈ F if there exists a weak probabilistic bisimulation R s.t. E R F .

As usual, observational equivalence is defined in terms of weak probabilistic
bisimulation.

Definition 6. Two expressions E and F are observationally equivalent, written
E � F , if

1. whenever E → η1, there exists η2 such that F ⇒c η2 and η1 ≡≈ η2.
2. whenever F → η2, there exists η1 such that E ⇒c η1 and η1 ≡≈ η2.

Often observational equivalence is criticised for being insensitive to diver-
gency. So we introduce a variant which has not this shortcoming.

Definition 7. An equivalence relation R ⊆ E × E is divergency-sensitive if
E R F implies:

– whenever E → η1, there exists η2 such that F ⇒c η2 and η1 ≡R η2.

E � F if there exists a divergency-sensitive equivalence R s.t. E R F .

It is easy to see that � lies between ∼c and �. For example, we have that
μX(τ.X + a) and τ.a are related by � but not by � (this shows also that � is
sensitive to divergency), while τ.a and τ.a+ a are related by � but not by ∼c.

One can check that all the relations defined above are indeed equivalence
relations and we have the inclusion ordering: ∼ � ∼c � � � � � ≈.

Axiomatizations for Probabilistic Finite-State Behaviors 117

3.2 Probabilistic “Bisimulation up to” Technique

In the classical process algebra, the conventional approach to show E ∼ F , for
some expressions E,F , is to construct a binary relation R which includes the
pair (E,F), and then to check that R is a bisimulation. This approach can
still be used in probabilistic process algebra, but things are more complicated
because of the extra requirement that R must be an equivalence relation. For
example we cannot use some standard set-theoretic operators to construct R,
because, even if R1 and R2 are equivalences, R1R2 and R1 ∪ R2 may not be
equivalences.

To avoid the restrictive condition and at the same time to reduce the size
of the relation R, we introduce the probabilistic version of “bisimulation up to”
technique.

Definition 8. A binary relation R is a strong bisimulation up to ∼ if E R F
implies:

1. whenever E → η1, there exists η2 such that F → η2 and η1 ≡R∼ η2.
2. whenever F → η2, there exists η1 such that E → η1 and η1 ≡R∼ η2.

where R∼ stands for the relation (R ∪ ∼)∗.

A strong bisimulation up to ∼ is not necessarily an equivalence relation. It
is just an ordinary binary relation included in ∼.

Proposition 1. If R is a strong bisimulation up to ∼, then R ⊆∼.

Similarly we can define strong probabilistic bisimulation up to ∼c, weak prob-
abilistic bisimulation up to ≈, etc. (some care is needed when dealing with weak
equivalences). The “bisimulation up to” technique works well with Milner’s tran-
sition induction technique [9], and by combining them we obtain the following
results.

Proposition 2 (Properties of ∼ and ∼c).

1. ∼ is a congruence relation.
2. μXE ∼ E{μXE/X}.
3. μX(E +X) ∼ μXE.
4. If E ∼ F{E/X} and X weakly guarded in F , then E ∼ μXF .

Properties 1-4 are also valid for ∼c.

Proposition 3 (Properties of � and �).

1. � is a congruence relation.
2. If τ.E � τ.E + F and τ.F � τ.F + E then τ.E � τ.F .
3. If E � F{E/X} and X is guarded in F then E � μXF .

Properties 1-3 hold for � as well.

118 Y. Deng and C. Palamidessi

4 Axiomatizations for ll Expressions

In this section we provide sound and complete axiomatizations for two strong
behavioral equivalences: ∼ and ∼c. The class of expressions to be considered is E .

First we present the axiom system Ar, which includes all axioms and rules
displayed in Table 3. We assume the usual rules for equality (reflexivity, symme-
try, transitivity and substitutivity), and the alpha-conversion of bound variables.

Table 3. The axiom system Ar

S1 E + 0 = E
S2 E + E = E
S3

∑
i∈I Ei =

∑
i∈I Eρ(i) ρ is any permutation on I

S4
⊕

i∈I piui.Ei =
⊕

i∈I pρ(i)uρ(i).Eρ(i) ρ is any permutation on I
S5 (

⊕
i piui.Ei)⊕ pu.E ⊕ qu.E = (

⊕
i piui.Ei) ⊕ (p + q)u.E

R1 μXE = E{μXE/X}
R2 If E = F{E/X}, X weakly guarded in F, then E = μXF
R3 μX(E + X) = μXE

The notation Ar � E = F means that the equation E = F is derivable by
applying the axioms and rules from Ar. The interest of Ar is that it characterizes
exactly strong bisimulation, as shown by the following theorem.

Theorem 1 (Soundness and completeness of Ar). E ∼ E′ iff Ar � E =
E′.

The soundness of Ar is easy to prove: R1-3 correspond to clauses 2-4 of Propo-
sition 2; S1-4 are obvious, and S5 is a consequence of Definition 2. For the com-
pleteness proof, the basic points are: (1) if two expressions are bisimilar then we
can construct an equation set in a certain format (standard format) that they
both satisfy; (2) if two expressions satisfy the same standard equation set, then
they can be proved equal by Ar. This schema is inspired by [8, 14], but in our
case the definition of standard format and the proof itself are more complicated
due to the presence of both probabilistic and nondeterministic dimensions.

The difference between ∼ and ∼c is characterized by the following axiom:

C
∑

i∈1..n

⊕
j

pijuij .Eij =
∑

i∈1..n

⊕
j

pijuij .Eij +
⊕

i∈1..n

⊕
j

ripijuij .Eij

where
∑

i∈1..n ri = 1. We denote Ar ∪ {C} by Arc .

Theorem 2 (Soundness and completeness of Arc). E ∼c E
′ iff Arc � E =

E′.

A

Axiomatizations for Probabilistic Finite-State Behaviors 119

5 Axiomatizations for Guarded Expressions

Now we proceed with the axiomatizations of the two weak behavioral equiva-
lences: � and �. We are not able to give a complete axiomatization for the whole
set of expressions (and we conjecture that it is not possible), so we restrict to
the subset of E consisting of guarded expressions only. An expression is guarded
if for each of its subexpression of the form μXF , the variable X is guarded in F
(cf: Definition 1).

5.1 Axiomatizing Divergency-Sensitive Equivalence

We first study the axiom system for �. As a starting point, let us consider the
system Arc . Clearly, S1-5 are still valid for �, as well as R1. R3 turns out
to be not needed in the restricted language we are considering. As for R2, we
replace it with its (strongly) guarded version, which we shall denote as R2′ (see
Table 4). As in the standard process algebra, we need some τ -laws to abstract
from invisible steps. For � we use the probabilistic τ -laws T1-3 shown in Table 4.
Note that T3 is the probabilistic extension of Milner’s third τ -law ([10] page 231),
and T1 and T2 together are equivalent, in the nonprobabilistic case, to Milner’s
second τ -law. However, Milner’s first τ -law cannot be derived from T1-3, and
it is actually unsound for �. Below we let Agd ={R2′, T1-3} ∪Arc\{R2-3}.

Table 4. Some laws for the axiom system Agd

R2′ If E = F{E/X}, X guarded in F, then E = μXF
T1

⊕
i piτ.(Ei + X) = X +

⊕
i piτ.(Ei + X)

T2 (
⊕

i piui.Ei)⊕ pτ.(F +
⊕

j qjβj .Fj) + (
⊕

i piui.Ei) ⊕ (
⊕

j pqjβj .Fj)
= (

⊕
i piui.Ei) ⊕ pτ.(F +

⊕
j qjβj .Fj)

T3 (
⊕

i piui.Ei)⊕ pu.(F +
⊕

j qjτ.Fj) + (
⊕

i piui.Ei) ⊕ (
⊕

j pqju.Fj)
= (

⊕
i piui.Ei) ⊕ pu.(F +

⊕
j qjτ.Fj)

The rule R2′ is shown to be sound in Proposition 3. The soundness of T1-3,
and therefore of Agd , is evident. For the completeness proof, it is convenient
to use the following saturation property, which relates operational semantics to
term transformation.

Lemma 1. 1. If E ⇒c η with η = {(ui, Ei : pi)}i, then Agd � E = E +⊕
i piui.Ei.

2. If E ⇒ ϑ(X) then Agd � E = E +X.

The completeness result can be proved in a similar way as Theorem 1. The
main difference is that here the key role is played by equation sets which are not
only in standard format, but also saturated. The transformation of a standard
equation set into a saturated one is obtained by using Lemma 1.

120 Y. Deng and C. Palamidessi

Theorem 3 (Soundness and completeness of Agd). Let E and E′ be two
guarded expressions. Then E � E′ iff Agd � E = E′.

5.2 Axiomatizing Observational Equivalence

In this section we focus on the axiomatization of �. In order to obtain com-
pleteness, we can follow the same schema as for Theorem 1, with the additional
machinery required for dealing with observational equivalence, like in [10]. The
crucial point of the proof is to show that, if E � F , then we can construct an
equation set in standard format which is satisfied by E and F . The construc-
tion of the equation is more complicated than in [10] because of the subtlety
introduced by the probabilistic dimension. Indeed, it turns out that the sim-
ple probabilistic extension of Milner’s three τ -laws would not be sufficient, and
we need an additional rule for the completeness proof to go through. We shall
further comment on this rule at the end of Section 6.

Table 5. Two τ -laws for the axiom system Ago

T4 u.τ.E = u.E
T5 If τ.E = τ.E + F and τ.F = τ.F + E then τ.E = τ.F .

The probabilistic extension of Milner’s τ -laws are axioms T1-4, where T1-3
are those introduced in previous section, and T4, defined in Table 5, takes the
same form as Milner’s first τ -law [10]. In the same table T5 is the additional
rule mentioned above. We let Ago = Agd∪{T4-5}.

Theorem 4 (Soundness and completeness of Ago). If E and F are guarded
expressions then E � F iff Ago � E = F .

6 Axiomatizations for Finite Expressions

In this section we consider the recursion-free fragment of E , that is the class Ef
of all expressions which do not contain constructs of the form μXF . In other
words all expressions in Ef have the form:

∑
i

⊕
j pijuij .Eij +

∑
k Xk.

We define four axiom systems for the four behavioral equivalences studied
in this paper. Basically As,Asc ,Afd ,Afo are obtained from Ar, Arc , Agd , Ago
respectively, by cutting away all those axioms and rules that involve recursions.

As
def= {S1-5} Asc

def= As∪{C}
Afd

def= Asc∪{T1-3} Afo
def= Afd∪{T4-5}

Axiomatizations for Probabilistic Finite-State Behaviors 121

Theorem 5 (Soundness and completeness). For any E,F ∈ Ef ,

1. E ∼ F iff As � E = F ;
2. E ∼c F iff Asc � E = F ;
3. E � F iff Afd � E = F ;
4. E � F iff Afo � E = F .

Roughly speaking, all the clauses are proved by induction on the depth of
the expressions. The completeness proof of Afo is a bit tricky. In the classical
process algebra the proof can be carried out directly by using Hennessy Lemma
[9], which says that if E ≈ F then either τ.E � F or E � F or E � τ.F . In the
probabilistic case, however, Hennessy’s Lemma does not hold. For example, let

E
def= a and F

def= a+ (
1
2
τ.a⊕ 1

2
a).

We can check that: (1) τ.E
� F , (2) E
� F , (3) E
� τ.F . In (1) the distri-
bution {(τ, E : 1)} cannot be simulated by any distribution from F . In (2) the
distribution {(τ, a : 1

2), (a,0 : 1
2)} cannot be simulated by any distribution from

E. In (3) the distribution {(τ, F : 1)} cannot be simulated by any distribution
from E.

Fortunately, to prove the completeness of Afo , it is sufficient to use the fol-
lowing weaker property.

Lemma 2. For any E,F ∈ Ef , if E ≈ F then Afo � τ.E = τ.F .

It is worth noticing that rule T5 is necessary to prove Lemma 2. Consider
the following two expressions: τ.a and τ.(a+ (1

2τ.a⊕
1
2a)). It is easy to see that

they are observational equivalent. However, we cannot prove their equality if
rule T5 is excluded from the system Afo . In fact, by using only the other rules
and axioms it is impossible to transform τ.(a+ (1

2τ.a⊕
1
2a)) into an expression

without a probabilistic branch pτ.a occurring in any subexpression, for some p
with 0 < p < 1. So it is not provably equal to τ.a, which has no probabilistic
choice.

7 Concluding Remarks

In this paper we have proposed a probabilistic process calculus which corre-
sponds to Segala and Lynch’s probabilistic automata. We have presented strong
bisimulation, strong probabilistic bisimulation, divergency-sensitive equivalence
and observational equivalence. Sound and complete inference systems for the
four behavioral equivalences are summarized in Table 7.

Note that we have axiomatized divergency-sensitive equivalence and obser-
vational equivalence only for guarded expressions. For unguarded expressions
whose transition graphs include τ -loops, we conjecture that the two behavioral

122 Y. Deng and C. Palamidessi

Table 6. All the axioms and rules

S1 E + 0 = E
S2 E + E = E
S3

∑
i∈I Ei =

∑
i∈I Eρ(i) ρ is any permutation on I

S4
⊕

i∈I piui.Ei =
⊕

i∈I pρ(i)uρ(i).Eρ(i) ρ is any permutation on I
S5 (

⊕
i piui.Ei) ⊕ pu.E ⊕ qu.E = (

⊕
i piui.Ei) ⊕ (p + q)u.E

C
∑

i∈1..n ⊕jpijuij .Eij =
∑

i∈1..n ⊕jpijuij .Eij + ⊕i∈1..n ⊕j ripijuij .Eij

T1
⊕

i piτ.(Ei + X) = X +
⊕

i piτ.(Ei + X)
T2 (

⊕
i piui.Ei) ⊕ pτ.(F +

⊕
j qjβj .Fj) + (

⊕
i piui.Ei)⊕ (

⊕
j pqjβj .Fj)

= (
⊕

i piui.Ei) ⊕ pτ.(F +
⊕

j qjβj .Fj)
T3 (

⊕
i piui.Ei) ⊕ pu.(F +

⊕
j qjτ.Fj) + (

⊕
i piui.Ei) ⊕ (

⊕
j pqju.Fj)

= (
⊕

i piui.Ei) ⊕ pu.(F +
⊕

j qjτ.Fj)
T4 u.τ.E = u.E
T5 If τ.E = τ.E + F and τ.F = τ.F + E then τ.E = τ.F .

R1 μXE = E{μXE/X}
R2 If E = F{E/X}, X weakly guarded in F, then E = μXF
R2′ If E = F{E/X}, X guarded in F, then E = μXF
R3 μX(E + X) = μXE

In C, there is a side condition
∑

i∈1..n ri = 1.

Table 7. All the inference systems

strong equivalences finite expressions all expressions
∼ As: S1-5 Ar: S1-5,R1-3
∼c Asc: S1-5,C Arc: S1-5,R1-3,C

weak equivalences finite expressions guarded expressions
� Afd: S1-5,C,T1-3 Agd: S1-5,C,T1-3,R1,R2′

 Afo: S1-5,C,T1-5 Ago: S1-5,C,T1-5,R1,R2′

equivalences are undecidable and therefore not finitely axiomatizable. The rea-
son is the following: in order to decide whether two expressions E and F are
observational equivalent, one can compute the two sets

SE = {η | E ⇒ η} and SF = {η | F ⇒ η}

and then compare them to see whether each element of SE is related to some
element of SF and vice versa. For guarded expressions E and F , the sets SE

and SF are always finite and thus they can be compared in finite time. For
unguarded expressions, these sets may be infinite, and so the above method
does not apply. Furthermore, these sets can be infinite even when we factorize
them with respect to an equivalence relation as required in the definition of

Axiomatizations for Probabilistic Finite-State Behaviors 123

probabilistic bisimulation. For example, consider the expression E = μX(1
2a ⊕

1
2τ.X). It can be proved that SE is an infinite set {ηi | i ≥ 1}, where

ηi = {(a,0 : (1− 1
2i

)), (τ, E :
1
2i

)}.

Furthermore, for each i, j ≥ 1 with i
= j we have ηi
≡R ηj for any equivalence
relation R which distinguishes E from 0. Hence the set SE modulo R is infinite.

It should be remarked that the presence of τ -loops in itself does not nec-
essarily cause non-decidability. For instance, the notion of weak probabilistic
bisimulation defined in [11, 6] is decidable for finite-state PA. The reason is that
in those works weak transitions are defined in terms of schedulers, and one may
get some weak transitions that are not derivable by the (finitary) inference rules
used in this paper. For instance, consider the transition graph of the above exam-
ple. The definition of [11, 6] allows the underlying probabilistic execution to be
infinite as long as that case occurs with probability 0. Hence with that definition
one has a weak transition that leads to the distribution θ = {(a,0 : 1)}. Thus
each ηi becomes a convex combination of θ and δ(E), i.e. these two distribu-
tions are enough to characterize all possible weak transitions. By exploiting this
property, Cattani and Segala gave a decision algorithm for weak probabilistic
bisimulation in [6].

In this paper we have chosen, instead, to generate weak transitions via (fini-
tary) inference rules, which means that only finite executions can be derived.
This approach, which is also known in literature ([12]), has the advantage of
being more formal, and in the case of guarded recursion it is equivalent to the
one of [11, 6]. In the case of unguarded recursion, however, we feel that it would
be more natural to consider also the “limit” weak transitions of [11, 6]. The ax-
iomatization of the corresponding notion of observational equivalence is an open
problem.

References

1. L. Aceto, Z. Ésik, and A. Ingólfsdóttir. Equational axioms for probabilistic bisim-
ilarity (preliminary report). Technical Report RS-02-6, BRICS, Feb. 2002.

2. S. Andova. Process algebra with probabilistic choice. Technical Report CSR 99-12,
Eindhoven University of Technology, 1999.

3. S. Andova and J. C. M. Baeten. Abstraction in probabilistic process algebra. In
Tools and Algorithms for the Construction and Analysis of Systems, volume 2031
of LNCS, pages 204–219. Springer, 2001.

4. J. C. M. Baeten, J. A. Bergstra, and S. A. Smolka. Axiomatizing probabilis-
tic processes: ACP with generative probabilities. Information and Computation,
121(2):234–255, 1995.

5. E. Bandini and R. Segala. Axiomatizations for probabilistic bisimulation. In
Proceedings of the 28th International Colloquium on Automata, Languages and
Programming, volume 2076 of LNCS, pages 370–381. Springer, 2001.

6. S. Cattani and R. Segala. Decision algorithms for probabilistic bisimulation. In
Proceedings of the 13th International Conference on Concurrency Theory, volume
2421 of LNCS, pages 371–385. Springer, 2002.

124 Y. Deng and C. Palamidessi

7. P. R. D’Argenio, H. Hermanns, and J.-P. Katoen. On generative parallel compo-
sition. ENTCS, 22, 1999.

8. R. Milner. A complete inference system for a class of regular behaviours. Journal
of Computer and System Science, 28:439–466, 1984.

9. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
10. R. Milner. A complete axiomatisation for observational congruence of finite-state

behaviours. Information and Computation, 81:227–247, 1989.
11. R. Segala. Modeling and verification of randomized distributed real-time systems.

Technical Report MIT/LCS/TR-676, PhD thesis, MIT, Dept. of EECS, 1995.
12. Roberto Segala and Nancy Lynch. Probabilistic simulations for probabilistic pro-

cesses. In Proceedings of the 5th International Conference on Concurrency Theory,
volume 836 of LNCS, pages 481–496. Springer-Verlag, 1994.

13. A. Sokolova and E. de Vink. Probabilistic automata: system types, parallel com-
position and comparison. In Validation of Stochastic Systems: A Guide to Current
Research, volume 2925 of LNCS, pages 1–43. Springer, 2004.

14. E. W. Stark and S. A. Smolka. A complete axiom system for finite-state proba-
bilistic processes. In Proof, language, and interaction: essays in honour of Robin
Milner, pages 571–595. MIT Press, 2000.

15. M. Stoelinga. Alea jacta est: verification of probabilistic, real-time and parametric
systems. PhD thesis, University of Nijmegen, 2002.

16. R. J. van Glabbeek, S. A. Smolka, and B. Steffen. Reactive, generative, and strati-
fied models of probabilistic processes. Information and Computation, 121(1):59–80,
1995.

Stochastic Transition Systems for Continuous
State Spaces and Non-determinism�

Stefano Cattani1, Roberto Segala2, Marta Kwiatkowska1, and Gethin Norman1

1 School of Computer Science, The University of Birmingham
Birmingham B15 2TT, United Kingdom

{stc, mzk, gxn}@cs.bham.ac.uk
2 Dipartimento di Informatica, Università di Verona

Strada Le Grazie 15, Ca’ Vignal 2 37134 Verona, Italy
roberto.segala@univr.it

Abstract. We study the interaction between non-deterministic and pro-
babilistic behaviour in systems with continuous state spaces, arbitrary
probability distributions and uncountable branching. Models of such sys-
tems have been proposed previously. Here, we introduce a model that ex-
tends probabilistic automata to the continuous setting. We identify the
class of schedulers that ensures measurability properties on executions,
and show that such measurability properties are preserved by parallel
composition. Finally, we demonstrate how these results allow us to de-
fine an alternative notion of weak bisimulation in our model.

1 Introduction

Current trends in ubiquitous computing, such as mobility, portability, sensor and
wireless ad hoc networks, place an increasing emphasis on the need to model and
analyse complex stochastic behaviours. For example, network traffic demands
continuously distributed durations, sensors may generate real-valued data, and
the geographical mobility of agents typically involves movement in space and
time with stochastic trajectories. The presence of the distributed computation
scenario creates a requirement to model non-determinism, in addition to such
stochastic features.

Several models capable of representing probabilistic behaviour have been pro-
posed in the literature, see e.g. [1, 10, 13, 16, 24]. Particular attention has been
paid to the nature of interaction between probabilistic and non-deterministic
behaviour; though these can be seen as orthogonal, the way they interact in the
model has led to fundamental distinctions. In the discrete state, discrete time
model different variants have been proposed. In some models randomisation re-
places non-determinism [10], while elsewhere [11] states are either probabilistic
or non-deterministic, such that probabilistic and deterministic choices alternate.

� Supported in part by EPSRC grants GR/N22960, GR/S46727 and GR/S11107,
MURST project CoVer and FIRB project SPY-Mod.

V. Sassone (Ed.): FOSSACS 2005, LNCS 3441, pp. 125–139, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

126 S. Cattani et al.

Furthermore, one can replace conventional transitions with probabilistic tran-
sitions (transitions whose target is a distribution over states); in the resulting
model of probabilistic automata [21, 22], both non-deterministic and probabilis-
tic choices are present at each step. Each of these variants can be endowed with
appropriate relations, e.g. bisimulation, simulation or trace equivalence relations.

More recently, the analysis of probabilistic systems has been extended to
continuous spaces. Such models can represent systems whose progress, for in-
stance, depends on continuously distributed real-time or geographical position
information. Stochastic process algebras [13] are an extension of process alge-
bras in which delays are distributed according to some probability distribution
over the reals. Initially, only exponential distributions were considered, as they
are easier to handle because of their memoryless property. The usual conven-
tion is to replace non-determinism with race condition, leading to continuous
time Markov chains, but non-determinism can be kept (e.g. interactive Markov
chains [12]). Generally distributed delays have also been introduced, both in the
case in which non-determinism is replaced with race conditions (e.g. generalised
semi-Markov processes), and in the case in which it is retained [7, 4]. Labelled
Markov processes [8] are extensions of transition systems to continuous state
spaces and general distributions, but have no non-determinism, in the sense
that the choice of action determines the next transition. Operational models
with non-determinism have already been proposed, e.g. [7, 4, 5], and the notions
of bisimulation and parallel composition have been studied for such systems; [4]
also defines weak bisimulation.

When considering continuous distributions and state spaces, the notion of
measurability of executions plays an important role, and a departure from point-
wise consideration of behaviour is needed since the probability of reaching an
individual state is often 0. This leads to the central topic of this paper: here, we
investigate the measurability issues that arise from the interaction between non-
determinism and continuous state spaces. By allowing the most general setting,
the behaviour of a system can become mathematically intractable when studying
the properties of a system over several steps of execution. We introduce a model
for continuous states spaces, called stochastic transition systems, which can be
seen as an extension of probabilistic automata to a fully continuous setting: both
the set of states and the set of action labels can be continuous. This model also
encapsulates labelled Markov processes by the addition of non-determinism, and
it can serve as an operational model for stochastic process algebras, since states
can record the passage through 3D space and/or time, and labels can include
real-valued delays, as well as discrete actions.

As in the discrete case, we use the notion of scheduler as the entity that
resolves non-determinism. The power of schedulers has to be restricted since
arbitrary schedulers could generate executions that are not tractable from a
mathematical point of view. For this reason, we define the class of measurable
schedulers and show that it identifies the set of schedulers that generate all and
only the “good” executions that are measurable. Under this restriction, we can

Stochastic Transition Systems for Continuous State Spaces 127

define a probability measure on executions, thus enabling us to reason about
global properties of a run of a system.

We also introduce the notion of parallel composition for stochastic transition
systems and show that our measurability properties are compositional: if there
exists a “good” scheduler for the composition, then there must exist two “good”
schedulers on the components that give rise to the same behaviour. This property
is important because it both allows for compositional reasoning and serves as a
sanity check on the correctness of the definition of measurable schedulers that
we have given. As a final remark, we show how we can define the notion of
weak transitions for stochastic transition systems. The measurability conditions
introduced in the paper are needed to define the target probability of several
steps of silent transitions. Based on such transitions, we also give an alternative
notion of weak bisimulation for our model.

The main contribution of this paper is the study of measurability proper-
ties of stochastic transition systems with non-determinism and continuous state
spaces. We identify the class of measurable schedulers that generate tractable
runs, confirming the choice originally made in [15]; this restriction enables the
definition of a measure on executions. We also show that such measurability
properties are preserved through parallel composition.

Structure of the Paper. In Section 2 we review the basic notions of measure
theory used in this paper. Section 3 introduces the model of stochastic transi-
tion systems, and in Section 4 we study the class of schedulers that guarantees
measurability of executions. Section 5 introduces a CSP-style parallel operator
and analyses the compositionality properties of stochastic transition systems. In
Section 6 weak transitions and weak bisimulation are defined. Finally, Section 7
discusses possible future work.

2 Preliminaries

In this section we review the basic definitions and results of measure theory that
are necessary for the remainder of the paper. A basic knowledge of topology
and metric spaces is assumed. Most results can be found in standard textbooks,
e.g. [2]; [18] serves as a good introduction to measure theory.

Basic Definitions. Given a set X, an algebra over X is a family FX of subsets
of X that includes X and is closed under complementation and finite union; FX

is a σ-algebra over X if we additionally require closure under countable union.
A measurable space is a pair (X,FX), where FX is a σ-algebra over X. The
elements of FX are called measurable sets. We abuse the notation and refer to
X as a measurable space whenever the corresponding σ-algebra is clear from the
context. The σ-algebra generated by a family G of subsets of X is the smallest
σ-algebra including G. The product space of two measurable spaces (X,FX) and
(Y,FY) is the measurable space (X × Y,FX ⊗ FY), where FX ⊗ FY is the σ-
algebra generated by the rectangles A × B = {(x, y) | x ∈ A, y ∈ B}, for all

128 S. Cattani et al.

A ∈ FX and B ∈ FY ; we alternatively denote FX ⊗ FY by FX×Y . The union
of two measurable spaces is the measurable space (X ∪ Y,FX∪Y), where FX∪Y

is the σ-algebra generated by the union of FX and FY . The Borel σ-algebra for
a topological space (X,T) is the σ-algebra generated by the open sets and is
denoted by B(X).

Given a measurable space (X,FX), a measure over (X,FX) is a function
μ : FX → R

≥0 such that μ(∅) = 0 and, for every countable family of pairwise
disjoint measurable sets {Ai}i∈I , μ(∪i∈IAi) =

∑
i∈I μ(Ai); the triple (X,FX , μ)

is called a measure space. A probability (resp., sub-probability) measure μ over
(X,FX) is a measure such that μ(X) = 1 (resp., μ(X) ≤ 1). A measurable set
whose complement has probability 0 is called a support for a measure μ. If μ is
a (sub-)probability measure, (X,FX , μ) is called a (sub-)probability space. We
denote the set of probability (resp., sub-probability) measures over (X,FX) by
D(X,FX) (resp, subD(X,FX)). The product probability space for two proba-
bility spaces (X,FX , μX) and (Y,FY , μY), is (X×Y,FX ⊗FY , μX ⊗μY), where
μX ⊗ μY is the unique probability measure such that (μX ⊗ μY)(A × B) =
μX(A) · μY (B), for all A ∈ FX and B ∈ FY .

A function f : (X,FX) → (Y,FY) is measurable if the pre-image of every
measurable set is measurable, that is, if f−1(B) = {x ∈ X | f(x) ∈ B} ∈ FX

for all B ∈ FY . Given a measurable space (X,FX), the indicator function for
a measurable set A ∈ FX is the measurable function IA(x) = 1 if x ∈ A, 0
otherwise. Let (X,FX , μ) be a probability space, (Y,FY) a measurable space
and f a measurable function from X to Y . The induced probability measure for
f over (Y,FY) is given by f(μ) defined as f(μ)(B) = μ(f−1(B)) for all B ∈ FY .

We call a family S of subsets of a set X a semi-ring if S includes ∅, is closed
under finite intersection, and if, whenever A,B ∈ S, there exists a finite family
{Ai}i∈{0...n} of pairwise disjoint elements of S such that A \B = ∪n

i=0Ai.

Theorem 1. Every sub-probability measure defined over a semi-ring S can be
uniquely extended to a sub-probability measure over the σ-algebra generated by S.

Theorem 2. Let (X,FX) and (Y,FY) be two measurable spaces and f a real-
valued nonnegative measurable function on X × Y . Assume we have a function
ν : Y × FX → R

≥0 such that ν(y, ·) is a measure on (X,FX) for all y ∈ Y and
ν(·, A) is measurable for all A ∈ FX . Then

∫
X

f(x, y)ν(y, dx) exists and is a
measurable function of Y .

Regular Conditional Probabilities. As we will demonstrate later, our con-
struction will require conditional probabilities. In the discrete case, we can define
the probability of an event A given B as P (A|B) = P (A ∩ B)/P (B), which is
defined only when P (B) > 0. Unfortunately, this cannot be done in general for
the continuous case, as it is still meaningful to condition with respect to events
of probability 0. Consider for example a measure defined on R

2; even if the prob-
ability of a given x can be zero, it can be interesting to study the probability
measure on R for such given x. It is therefore necessary to extend the concept
of conditional probabilities.

Stochastic Transition Systems for Continuous State Spaces 129

Definition 1. Let (X,FX , μ) be a probability space, (Y,FY) a measurable space
and f : X → Y a measurable function. A regular conditional probability
for μ with respect to f is a function ν : Y ×FX → [0, 1] such that:

1. ν(y, ·) is a probability measure on FX , for each y ∈ Y ;
2. ν(·, A) is a measurable function on (Y,FY), for each A ∈ FX ;
3. μ(A ∩ f−1(B)) =

∫
B
ν(y,A) f(μ)(dy).

Regular conditional probabilities do not exist for all probability spaces. It is
necessary to impose restrictions on the kind of measurable spaces we consider.
A Polish space is the topological space underlying a complete separable metric
space. Given a Polish space X, (X,FX) is a standard Borel space if FX is the
Borel σ-algebra generated by the topology. Finally, given a standard Borel space
(X,FX), Y ⊆ X is an analytic set if it is the continuous image of some Polish
space. The space (Y,FY) is an analytic space if it is measurably isomorphic to an
analytic set in a Polish space, that is, if there exists a measurable bijection whose
inverse is also measurable. Note that singleton sets are measurable in Polish and
analytic spaces. Examples of analytic sets are the discrete spaces and any open
or closed subset of the reals equipped with the Borel σ-algebra. Analytic sets are
closed under union and Cartesian product. Thus, analytic sets are quite general;
for instance, the semantic model of timed systems is given by the product of
a discrete set (the graph-theoretic representation of a system) and the possible
values of time (the real numbers).

Theorem 3. Let (Y,FY)be an analytic spac and f : (X,FX , μ) → (Y,FY) a
measurable function. Then there exists a regular conditional probability ν for f .

A σ-Algebra on Probability Measures. In the following, we define probabil-
ity distributions on sets of probabilistic transitions whose targets are probability
measures on states. We therefore need to define a σ-algebra on sets of proba-
bility measures; we use the standard construction, due to Giry [9]. Let (X,FX)
be a measurable set and D(X,FX) the set of probability measures on X. We
build a σ-algebra on the set of probability measures D(X,FX) as follows: for
each A ∈ FX , define a function pA : D(X,FX) → [0, 1] by pA(ν) = ν(A). The
σ-algebra on D(X,FX), denoted by FD(X,FX) is the least σ-algebra such that all
the pA’s are measurable. The generators of the σ-algebra are the sets of prob-
ability measures DA,I = p−1

A (I) = {μ ∈ D(X,FX) | μ(A) ∈ I}, for all A ∈ FX

and I ∈ B([0, 1]).

3 Stochastic Transition Systems

In this section we introduce our model, called stochastic transition systems, which
features both non-deterministic and probabilistic behaviour. The model can be
seen as an extension of probabilistic automata [21] to continuous state and label
spaces and to continuous probability measures. Stochastic transition systems are
fully non-deterministic, and thus also generalise labelled Markov processes [8].

130 S. Cattani et al.

In this section we introduce the fundamental concepts of our continuous
model, most of which are an adaptation of [21] to the continuous setting.

Definition 2. A stochastic transition system (STS) S is a tuple ((Q,FQ),
q, (L,FL),→), where

– (Q,FQ) is the analytic space of states;
– q ∈ Q is the initial state;
– (L,FL) is the analytic space of labels;
– →⊆ Q× L×D(Q,FQ) is the set of probabilistic transitions.

We say that a transition (q, a, μ) is labelled by a and enabled from q, and
denote it by q

a−→ μ; transitions are ranged over by t. We denote the set of
possible transitions by T = Q×L×D(Q,FQ) and define a σ-algebra on it as the
product of the σ-algebras of the components, that is, FT = FQ⊗FL⊗FD(Q,FQ).
The set of transitions enabled from a state q is denoted by T (q) = {(q′, a, μ) ∈→
| q = q′}. We denote the elements of an STS S by Q, FQ, q, L, FL and → and
we propagate indices when necessary; thus, the elements of Si are Qi, FQi

, qi,
Li, FLi

and →i .

Combined transitions. Following [21], since we resolve non-determinism in a ran-
domised way, we combine the transitions leaving a state q in order to obtain a
new transition. Similarly to the discrete case, this induces a probability measure
on the set of transitions leaving state q, that is, a measure π on T with a support
contained in T (q). Since different transitions have in general different labels, the
combination of the transitions leaving a state results in a new distribution on
both labels and target states.

Definition 3. Given a state q and a sub-probability measure π over (T ,FT)
with a support contained in T (q), the combined transition for π from q is
the pair (q, μπ) (denoted by q → μπ), where μπ is the sub-probability measure
over (L×Q,FL ⊗FQ) defined as follows:

μπ(A×X) =
∫

(q,a,μ)∈T
IA(a)μ(X)dπ

The integral above is well defined for the σ-algebra FT on transitions. It is easy
to show that μπ is a sub-probability measure. Observe that we require π to be a
sub-probability measure, therefore it is possible that no transition is scheduled
with positive probability. We let this denote the probability to stop, which is
defined as μπ(⊥) = 1− μπ(L×Q).

Executions. Given an STS S, a possibly infinite alternating sequence of states
and actions α = q0a1q1 · · · is called an execution. We denote the set of executions
by Exec, the set of finite executions ending with a state by Exec∗ and the set
of infinite executions by Execω. Given a finite execution α, α[↓] denotes its last
state. The length of an execution α, denoted by |α|, is the number of occurrences
of actions in α; if α is infinite |α| = ∞. We denote a finite execution α that has
terminated by α⊥, where an execution α terminates if ⊥ is scheduled from the
last state of α.

Stochastic Transition Systems for Continuous State Spaces 131

A σ-algebra on executions. We define the σ-algebra FExec over the set of execu-
tions. This is necessary to study the properties of system runs. In the discrete
case, FExec is the σ-algebra generated by cones, that is, the set of executions
that extend some finite prefix. This concept is generalised to the continuous case
by using sets of executions called basic sets. Formally, given a non empty finite
sequence of measurable sets Λ = X0A1X1 · · ·AnXn, Ai ∈ FL, i ∈ {1..n}, and
Xi ∈ FQ, i ∈ {0..n}, the basic set with base Λ is defined as:

CΛ = {q0a1 · · · qnα | ∀i ∈ {0..n} qi ∈ Xi and ∀i ∈ {1..n} ai ∈ Ai and α ∈ Exec}

The length of a basic set CΛ is given by the number of occurrences of elements
of FL in Λ. Observe that basic sets form a semi-ring. FExec is the σ-algebra
generated by basic sets.

We define the σ-algebra FExec∗ on finite executions in a similar way as the
σ-algebra generated by the sets of the form Q0A1 · · ·Qn = {α = q0a1 · · · qn | qi ∈
Qi for all i ∈ {0 · · ·n} and aj ∈ Aj for all j ∈ {1 · · ·n}}, where Q0 . . .Qn ∈ FQ

and A1 . . .An ∈ FL. (Exec∗,FExec∗) is the measurable set of finite executions.
Note that FExec∗ is the restriction of FExec to finite executions.

Schedulers. We use schedulers as the entities that resolve non-determinism.
Given a history in the form of a sequence of states and labels that the sys-
tem has visited, a scheduler chooses the next transition from the current state
by assigning a sub-probability measure to the enabled transitions.

Definition 4. A scheduler is a function η : Exec∗ → subD(T), such that, for
all α ∈ Exec∗, T (α[↓]) is a support for η(α).

We denote the set of schedulers by A. Since a scheduler η returns a distribu-
tion on transitions for each finite execution α, it induces a combined transition
(α[↓], μη(α)) leaving the last state of each execution. Note that we use randomised
schedulers; originally introduced for discrete systems, they have been shown to
have important properties, for example the probabilistic temporal logic PCTL is
preserved by bisimulation under randomised schedulers [22]. Randomised sched-
ulers are also necessary to obtain compositionality under parallel compositions
(see Section 5). Non-randomised (deterministic) schedulers can be seen as the
subclass of schedulers that return a Dirac distribution after each execution.

According to the above definition, a scheduler can make arbitrary choices
at each point of the computation. We define a class of schedulers whose global
behaviour respects measurability properties.

Definition 5. A scheduler η is measurable if the function fη(α) = μη(α) (called
the flattening of η) is a measurable function from (Exec∗,FExec∗) to (subD(L×
Q),FsubD(L×Q)). We denote the class of measurable schedulers by Ameas .

Probabilistic executions. The interaction of an STS S and a scheduler η results
in a system with no non-determinism, i.e. a purely probabilistic process. We call
this object a probabilistic execution following [21].

132 S. Cattani et al.

Definition 6. Given an STS S and a scheduler η, the probabilistic execution
PS,η for S and η is the tuple (Exec∗,FL×Q, μ), where μ : Exec∗×FL×Q → [0, 1]
such that for each α ∈ Exec∗ μ(α, ·) is a sub-probability measure over L × Q
defined by μη(α).

A probabilistic execution defines the transitions induced by the scheduler η:
given a finite execution it returns the combined transition scheduled by η. We
write μX , X ∈ FL×Q, whenever we fix X and μ is a function on Exec∗. Similarly,
we write μα (or μη(α)) whenever we fix α and μ is a measure on FL×Q.

Not all probabilistic executions are “good”; our objective is to define a mea-
sure on executions, essential to define weak transitions, and the measurability of
the function μ is necessary for this purpose. In the purely probabilistic case (no
non-determinism) this problem is solved by using Markov kernels (e.g. [8]). We
adapt this idea to our setting by defining measurable probabilistic executions
and by studying the conditions under which they are generated.

Definition 7. A probabilistic execution PS,η = (Exec∗,FL×Q, μ) is measurable
if μ : Exec∗ × FL×Q → [0, 1] is such that μ(·, X) is a measurable function for
each X ∈ FL×Q.

When μ has such a measurability property, we can see it as a generalisation
of Markov kernels to the history-dependent case.

Related Models. As stated above, stochastic transition systems are an exten-
sion of probabilistic automata to the continuous case; the latter correspond to
the subset of STSs with discrete σ-algebras on states. Labelled Markov processes
(LMPs) [8] correspond to the case where there is no non-determinism on actions,
that is, for every action there is exactly one distribution from each state. The
measurability problem is solved in LMPs by using, for each action, a Markov
kernel to denote the probability transition function. An extension of probabilistic
automata with continuous distributions and real-valued time labels is proposed
in [5], but measurability properties are not considered. Similar models for the
continuous setting can be found in [7], proposing an alternating model, where
states are either non-deterministic or probabilistic, and in [4], proposing a model
where each state enables one probabilistic distribution or arbitrarily many tran-
sitions labelled with actions or time. Again, neither of these papers considers the
problem of measurability of executions.

4 Measurability and Schedulers

We aim to extend the results of the discrete case to stochastic transition systems
and define the measure on executions induced by a scheduler. This requires the
corresponding probabilistic execution to be measurable. In this section we show
that the class of measurable schedulers identifies all and only the measurable
probabilistic executions. The following example shows that arbitrary schedulers

Stochastic Transition Systems for Continuous State Spaces 133

··
·μq0

[0, 1]

q1

q2

Fig. 1. A simple stochastic transition system illustrating the need for measurable sched-
ulers

could produce “bad” executions and explains why considering the point-wise
behaviour of a scheduler is not enough in the continuous setting; instead, it is
necessary to consider its global behaviour.

Example 1. Consider the system of Figure 1: the initial state q0 enables a single
transition with some measure μ on the interval [0, 1]. From each state in [0, 1]
two Dirac transitions are enabled: one to q1 and the other to q2. Labels are not
relevant. The probability of moving to q1 after two steps under a scheduler η is
given by

∫
[0,1] μη(q)({q1})μ(dq), that is, the probability of reaching any state q

multiplied by the probability of reaching q1 from each q. Let η be the scheduler
that chooses q1 from a non-measurable subset A of [0, 1], and q2 from its com-
plement. The integral above is not defined as μη(q)({q1}) is not a measurable
function, that is, the probabilistic execution is not measurable. We want to rule
out such a probabilistic execution as “pathological” and disallow the scheduler
generating it.

4.1 Measurable Schedulers and Probabilistic Executions

We restrict our analysis to measurable executions only, as they represent “well
behaved”, feasible, schedulers and allow us to define probability measure on
paths. We think this is not an unreasonable restriction since schedulers that
produce non-measurable executions represent pathological cases and thus can be
discarded. A similar approach has been adopted in [15], where only the sched-
ulers that preserve the measurability of logical formulae are considered, though
without studying the nature of such schedulers.

Proposition 1. Given an STS S, and a scheduler η, η is measurable if and only
if PS,η is measurable.

Proof outline. We prove the two directions:

– If: Let fη be the flattening of η as in Definition 5. We have to show that
f−1
η (D) ∈ FExec∗ for all D ∈ FsubD(L×Q). Firstly, we prove it for the gen-

erators DX,I of FsubD(L×Q), for all X ∈ FL×Q and I ∈ B([0, 1]). Consider
one such DX,I . Since PS,η is measurable, we get μ−1

X (I) = Y ∈ FExec∗ by
hypothesis. We show that Y = f−1

η (DX,I):
• f−1

η (DX,I) ⊇ Y : consider α ∈ Y , then μ(α,X) ∈ I; this is equivalent
to μη(α)(X) ∈ I, which implies μη(α)(X) ∈ DX,I . It follows that α ∈
f−1
η (DX,I).

134 S. Cattani et al.

• f−1
η (DX,I) ⊆ Y : consider α ∈ f−1

η (DX,I). Then μη(α)(X) ∈ I, that is,
μ(α,X) ∈ I. This, of course, means that α ∈ μ−1

X (I) = Y .
The result is extended to the σ-algebra FsubD(L×Q) by standard arguments.

– Only if: consider PS,η = (Exec∗,FL×Q, μ); we have to show that for all
X ∈ FL×Q and for all I ∈ B([0, 1]), μ−1

X (I) ∈ FExec∗ . It is easy to observe
that μ−1

X (I) corresponds to all the executions from which a distribution in
the generator DX,I of σ-algebra on distributions (see Section 2) is scheduled.
The measurability of the scheduler ensures that such set of executions is in
FExec∗ , as required. ��

The proposition above shows that measurable schedulers generate all and only
the measurable probabilistic executions, that is, the probabilistic executions that
we are interested in. We can therefore disallow non-measurable schedulers.

4.2 Measure on Executions

We can now define the measure on (Exec,FExec) induced by a scheduler and
show that it is defined only for measurable schedulers. Being able to define such
a measure is important in order to study global properties on paths, such as the
extension of trace distributions [20] to our setting, or if we want to use stochastic
transition systems as a model for a stochastic extension of temporal or modal
logic [8, 15].

We define the measure δη,q on basic sets induced by a scheduler η from a
start state q inductively on the length of the basic sets as follows:

δη,q(CX) =

{
1 if q ∈ X

0 otherwise

δη,q(CΛAX) =
∫

α∈Λ

μη(α)(A,X)δη,q(dα)

The integral above is defined when the function f(α) = μη(α)(A, X) is mea-
surable from the measure space of finite executions to [0, 1]. From Proposition 1,
this is true whenever we deal with measurable schedulers. The measure δη,q ex-
tends uniquely to FExec since basic sets form a semi-ring (Theorem 1). We get
the following Proposition.

Proposition 2. Given an STS S and a scheduler η, the measure δη,q is defined
for all basic sets if and only if η is measurable.

Proof outline. The proof is a consequence of the definition of δη,q and of Propo-
sition 1. ��

Using the measure defined above, and since schedulers use sub-probability
distributions, we can define the probability of a set of finite executions that have
terminated as the probability to stop after each execution. Formally, given a
sequence Λ = X0A1 · · ·AnXn of measurable sets of states and actions, we define

Stochastic Transition Systems for Continuous State Spaces 135

the probability to stop after Λ as δη,q(CΛ⊥) =
∫

α∈Λ
μη(α)(⊥). The cones CΛ⊥ are

in fact the generators of FExec∗ . The probability of eventually terminating is the
probability of finite executions, which can be defined as the countable union of
disjoint basic sets as follows: Exec∗ = ∪i≥0CQ(LQ)i⊥.

5 Parallel Composition and Measurability

In this section we introduce a CSP-style parallel operator [14], under which two
STSs synchronise on a common interface alphabet, and study the composition-
ality properties of schedulers and measurable executions.

Given an STS S, we partition its label space into two measurable sets Lp

and Li of private and interface labels, respectively. We say that two STS S1
and S2 are compatible if Lp

1 ∩ L2 = ∅ and Lp
2 ∩ L1 = ∅. We denote the union

of the measurable spaces of labels by (L,FL). We can now define the parallel
composition between two compatible STSs.

Definition 8. Let S1 and S2 be two compatible labelled stochastic transition
systems. The parallel composition S1 || S2 of S1 and S2 is the stochastic
transition system S = ((Q,FQ), q, (L,FL),→), where:

– (Q, FQ) = (Q1 ×Q2,FQ1 ⊗FQ2).
– q = (q1, q2).
– (L,FL) is the union of the labels of the components.
– →⊆ Q× L×D(Q) such that ((q1, q2), a, μ1 ⊗ μ2) ∈→ iff, for i ∈ {1, 2}:

• if a ∈ Li, then (qi, a, μi) ∈→i, or
• if a
∈ Li, then μi = Dirac(qi).

Observe that S1 || S2 is a well-defined STS given the closure properties of
analytic spaces. Next we define two families of functions, π1 and π2, to be the
left and right projections respectively. Given a state q of S, the projection πi

returns the i-th component of q. For an execution α of S, define the projection
πi(α) as the execution of Si obtained from α by projecting all the states and
removing all the actions not in Li together with the subsequent state. Given a
distribution μ on Q1×Q2, the projection πi(μ) is the distribution on Qi induced
by πi; πi(μ) exists since πi is a measurable function. Finally, given a transition
t = ((q1, q2), a, μ), its projection πi(t) is (qi, a, πi(μ)). If a /∈ Li the projection
πi(t) is still defined but it does not correspond to a possible transition of Si.
Note that all the variants of π1 and π2 are measurable functions. The following
two theorems are important for compositional reasoning.

Theorem 4. Let S1 and S2 be two compatible STSs and α an execution of
S1 || S2. Then πi(α) is an execution of Si, for i ∈ {1, 2}.

Theorem 5. Let S1 and S2 be two compatible STSs and η a measurable sched-
uler for S1 || S2. Then there exists a measurable scheduler η1 such that δη1,q1

=
π1(δη,q).

136 S. Cattani et al.

Proof outline. We define the scheduler η1 on the first component as follows

η1(α1)(T) =
∫

α∈π−1
1 (α1)

η(α)(π−1
1 (T)) ν(α1, dα) (1)

for all T ∈ FT , where ν(α1, dα) is the regular conditional probability for δη,q with
respect to π1, whose existence follows from Theorem 3. It is easy to show that
η1 defines a legal scheduler for S1 and its measurability follows from Theorem 2.
In order to prove that δη1,q1

= π1(δη, q), we need to show that

δη1,q1
(CΛ) = δη,q(π−1(CΛ)) (2)

for all basic sets CΛ. Equation (2) is proved by algebraic arguments and by
exploiting the properties of regular conditional probabilities. Since the two mea-
sures agree on the basic sets, which form a semi-ring, they extend to the same
measure by Theorem 1. ��

Theorem 5 shows that the action of a scheduler on S can be derived from the
action of the corresponding schedulers on each component since the properties of
an execution can be derived from the properties of its components. This allows
us to analyse systems in a compositional way. At the same time, this result also
confirms that the notion of measurable schedulers and measurable executions is
well-defined, since it respects the important requirement of compositionality.

Remark 1. Theorem 5 extends the analogous result for the discrete case [21]. In
particular, Equation (1) can be rewritten in a more familiar form as:

η1(α1)(t) =
∑

α∈π−1
1 (α1)

δ(Cα | π−1
1 (Cα1)) · η(α)(π−1

1 (t)).

In the discrete case, we can define the probability for a single transition t. The
equation above shows the intuition behind the definition of η1: each transition
is assigned the weighted probability of its inverse image under projection after
each execution in the parallel composition, conditioned on being in an execution
whose projection is α1.

6 Weak Transitions and Weak Bisimulation

In this section, we show how the results of the previous sections enable us to
define weak transitions and weak bisimulation in our model. A weak transition
[17] abstracts from internal computation and considers sequences of actions of the
form τ∗aτ∗, where τ denotes a generic internal action. In the case of probabilistic
automata, this is achieved by considering sequences of transitions that form a
probabilistic execution where only executions whose trace is of the form τ∗aτ∗

have positive probabilities [21]. We wish to extend such approach to stochastic
transition systems. Of course, in order to do this, we must be able to define

Stochastic Transition Systems for Continuous State Spaces 137

the target probability over several steps of executions and we need to restrict to
measurable schedulers. Our definition of weak transitions would not be possible
without the restrictions on schedulers and the construction of the measure on
cones described in Section 4.

We assume the existence of another partitioning of the label space L into
two measurable sets, Le and Lτ , to denote visible and invisible actions, respec-
tively. We denote generic internal actions by τ . A weak transition is defined as a
probabilistic execution which terminates with probability 1 and with a support
contained in the set of executions containing exactly one visible action. Let WA

denote the executions whose visible trace is exactly one action a ∈ A ⊆ Le and
W =WL. WA is measurable as it can be constructed from basic sets and it also
contains infinite executions.

Definition 9. The pair (q, μ), q ∈ Q and μ ∈ D(L × Q), is a weak tran-
sition (denoted by q ⇒ μ) if there exists a measurable scheduler η such that
δη,q(Exec∗) = 1, δη,q(W) = 1 and μ is defined as follows: μ(A, X) = δη,q((∪i>0
CQ((A∪{τ})Q)iX⊥) ∩WA) for all A ∈ FL, A ⊆ Le, and X ∈ FQ.

It is easy to show that, under the termination condition δη,q(Exec∗) = 1, μ is a
probability measure on L×Q. Weak transitions only consider the local behaviour
from one state, and therefore do not preserve measurability properties that are
defined on sets of states. For this reason, we use the more general notion of weak
hyper-transitions [23], defined as transitions from a distribution over states to a
distribution over states and labels.

Definition 10. Let μ be a probability measure on (Q,FQ) and for each q ∈ Q
let q ⇒ μq be a weak transition. Define μ′(A,X) =

∫
Q

μq(A, X)μ(dq) if the
integral is defined for all A ∈ FL and X ∈ FQ. Then we say that μ ⇒ μ′ is a
weak hyper-transition.

Hyper transitions are used in the discrete case to prove linear-time proper-
ties of systems, such as the fact that bisimulation preserves trace semantics [21].
Note that, in the discrete case, a meaure defined on a set of states and a set of
transitions enabled from each of such states always induce a hyper-transition,
while in the continuous case this is not always true, because of the usual prob-
lems of measurability. This is the reason why we strengthen our notion of weak
bisimulation and define it in terms of weak hyper-transitions.

Weak Bisimulation. We extend the notion of weak bisimulation to stochastic
transition systems. Bisimulation relations, first introduced in the context of CCS
[17], are fundamental relations for concurrent systems, and have been extended
to the probabilistic setting, both for discrete (strong and weak bisimulation)
[16, 11, 22, 3, 19] and continuous state spaces (strong bisimulation) [7, 8, 5]. A
notion of weak bisimulation for the continuous setting was introduced in [4],
where the problem of defining a measure on paths for weak transitions was not
considered, since a weak transition was defined as a succession of τ -labelled

138 S. Cattani et al.

non probabilistic transitions followed by a probabilistic transition. The notion
of weak transition defined in this paper is suitable for our more general case of
several probabilistic steps. Strong bisimulation could be easily defined as it does
not abstract from internal computation and therefore can be defined without
restrictions to measurable schedulers.

Given an equivalence relation R on a measurable space (Q,FQ), we say that
X ∈ FQ is R-closed if it is the union of equivalence classes. Two probability
measures μ1 and μ2 on Q are R-equivalent (μ1Rμ2) if μ1(X) = μ2(X) for all
R-closed X ∈ FQ, while two probability measures μ1 and μ2 on Q × L are R-
equivalent if μ1(A,X) = μ2(A,X) for all R-closed X ∈ FQ and for all A ∈ FL.

Definition 11. Let S1 and S2 be two STSs with the same space of labels. An
equivalence relation R on the union of their sets of states is a weak bisimula-
tion between S1 and S2 if:

1. q1Rq2 and
2. for all μ1 and μ2 R-equivalent measures on states, whenever there is a hyper-

transition μ1 → μ′
1, there exists a weak hyper-transition μ2 ⇒ μ′

2 s.t. μ′
1Rμ′

2.

7 Conclusions

We have introduced an operational model for non-deterministic systems with
continuous state spaces and continuous probability distributions, thus generalis-
ing existing models. We have studied a framework where it is possible to assign
probabilities to sets of executions, defined weak bisimulation relation and a par-
allel composition operator. The relationship between our notion of bisimulation
and trace distributions is currently being investigated. Stochastic transition sys-
tems are also used as a semantic model for a stochastic process algebra [6]. Fur-
ther work would include a logical characterisation of our equivalence relations,
approximation and metrics.

Acknowledgements. We would like to thank Prakash Panangaden for the
helpful discussions.

References

1. L. d. Alfaro. Formal Verification of Probabilistic Systems. PhD thesis, Stanford
University, 1997. Available as Technical report STAN-CS-TR-98-1601.

2. R. B. Ash. Real Analysis and Probability. Academic Press, 1972.
3. C. Baier and H. Hermanns. Weak bisimulation for fully probabilistic processes.

In Proc. 9th International Conference on Computer Aided Verification (CAV’97),
volume 1254 of Lecture Notes in Computer Science, pages 119–130, 1997.

4. M. Bravetti. Specification and Analysis of Stochastic Real-Time Systems. PhD
thesis, Università di Bologna, Padova, Venezia, 2002.

Stochastic Transition Systems for Continuous State Spaces 139

5. M. Bravetti and P. D’Argenio. Tutte le algebre insieme: Concepts, discussions and
relations of stochastic process algebras with general distributions. In C. Baier,
B. Haverkort, H. Hermanns, J.-P. Katoen, M. Siegle, and F. Vaandrager, editors,
Validation of Stochastic Systems: A Guide to Current Research, volume 2925 of
Lecture Notes in Computer Science (Tutorial Volume). Springer, 2004.

6. S. Cattani. Trace-based Process Algebras for Real-time Probabilistic Systems. PhD
thesis, School of Computer Science, The University of Birmingham, 2005. Forth-
coming.

7. P. R. D’Argenio. Algebras and Automata for Timed and Stochastic Systems. PhD
thesis, Department of Computer Science, University of Twente, Nov. 1999.

8. J. Desharnais, A. Edalat, and P. Panangaden. Bisimulation for labelled markov
processes. Information and Computation, 179(2):163–193, 2002.

9. M. Giry. A categorical approach to probability theory. In B. Banaschewski, editor,
Categorical Aspects of Topology and Analysis, number 915 in Lecture Notes in
Mathematics, pages 68–85. Springer-Verlag, 1981.

10. R. v. Glabbeek, S. Smolka, and B. Steffen. Reactive, generative, and stratified
models of probabilistic processes. Information and Computation, 121(1):59–80,
1995.

11. H. Hansson. Time and Probability in Formal Design of Distributed Systems, vol-
ume 1 of Real-Time Safety Critical Systems. Elsevier, 1994.

12. H. Hermanns. Interactive Markov Chains: The Quest for Quantified Quality, vol-
ume 2428 of Lecture Notes in Computer Science. Springer, 2002.

13. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge
University Press, 1996.

14. C. Hoare. Communicating Sequential Processes. Prentice-Hall International, En-
glewood Cliffs, 1985.

15. M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Verifying quantitative
properties of continuous probabilistic real-time graphs. In C. Palamidessi, editor,
Proceedings of CONCUR 2000, volume 1877 of Lecture Notes in Computer Science,
pages 132–137. Springer, 2000.

16. K. Larsen and A. Skou. Bisimulation through probabilistic testing. Information
and Computation, 94(1):1–28, Sept. 1991.

17. R. Milner. Communication and Concurrency. Prentice-Hall International, Engle-
wood Cliffs, 1989.

18. P. Panangaden. Measure and probability for concurrency theorists. Theoretical
Comput. Sci., 253(2):287–309, 2001.

19. A. Philippou, I. Lee, and O. Sokolsky. Weak bisimulation for probabilistic systems.
In C. Palamidessi, editor, Proceedings of CONCUR 2000, volume 1877 of Lecture
Notes in Computer Science, pages 334–349. Springer, 2000.

20. R. Segala. A compositional trace-based semantics for probabilistic automata. In
I. Lee and S. Smolka, editors, Proceedings of CONCUR 95, volume 962 of Lecture
Notes in Computer Science, pages 234–248. Springer-Verlag, 1995.

21. R. Segala. Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. PhD thesis, MIT, Dept. of Electrical Engineering and Computer Science,
1995. Also appears as technical report MIT/LCS/TR-676.

22. R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes.
Nordic Journal of Computing, 2(2):250–273, 1995.

23. M. Stoelinga. Alea jacta est: verification of probabilistic, real-time and parametric
systems. PhD thesis, University of Nijmegen, the Netherlands, Apr. 2002.

24. S. Wu, S. Smolka, and E. Stark. Composition and behaviors of probabilistic I/O
automata. Theoretical Comput. Sci., 176(1-2):1–38, 1999.

Model Checking Durational Probabilistic Systems

(Extended Abstract)�

François Laroussinie1 and Jeremy Sproston2

1Lab. Spécification & Verification, ENS Cachan – CNRS UMR 8643, France
2Dipartimento di Informatica, Università di Torino, 10149 Torino, Italy

fl@lsv.ens-cachan.fr
sproston@di.unito.it

Abstract. We consider model-checking algorithms for durational probabilistic
systems, which are systems exhibiting nondeterministic, probabilistic and
discrete-timed behaviour. We present two semantics for durational probabilis-
tic systems, and show how formulae of the probabilistic and timed temporal logic
PTCTL can be verified on such systems. We also address complexity issues, in
particular identifying the cases in which model checking durational probabilistic
systems is harder than verifying non-probabilistic durational systems.

1 Introduction

Model checking is an automatic method for guaranteeing that a mathematical model of
a system satisfies a formula representing a desired property [7]. Many real-life systems,
such as multimedia equipment, communication protocols, networks and fault-tolerant
systems, exhibit probabilistic behaviour, leading to the study of probabilistic model
checking of probabilistic and stochastic models [19, 13, 8, 5, 4, 3, 14]. Similarly, it is
common to observe complex real-time behaviour in such systems. Model checking of
discrete-time systems against properties of timed temporal logics, which can refer to
the time elapsed along system behaviours, has been studied extensively in, for example,
[11, 6, 16].

In this paper, we aim to study model-checking algorithms for discrete-time proba-
bilistic systems, which we call durational probabilistic systems. Our starting point is
the work of Hansson and Jonsson [13], which considered model checking for discrete-
time Markov chains (in which transitions always take duration 1) against properties of
a probabilistic, timed temporal logic, and that of de Alfaro [10], which extended the
approach of Hansson and Jonsson to Markov decision processes in which transitions
can be of duration 0 or of duration 1. We extend this previous work by considering
systems in which state-to-state transitions take arbitrary, natural numbered durations,
in the style of durational transition graphs [16, 17]. We present two semantics for dura-
tional probabilistic systems: the continuous semantics considers intermediate states as
time elapses, whereas the jump semantics does not consider such states. In this paper,

� Supported in part by MIUR-FIRB Perf.

V. Sassone (Ed.): FOSSACS 2005, LNCS 3441, pp. 140–154, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Model Checking Durational Probabilistic Systems 141

we restrict our attention to strongly non-Zeno durational probabilistic systems, in which
positive durations elapse in all loops of the system.

The temporal logic that we use to describe properties of durational probabilistic sys-
tems is PTCTL (Probabilistic Timed Computation Tree Logic). The logic PTCTL includes
operators that can refer to bounds on exact time, expected time, and the probability of
the occurrence of events. For example, the property “a request is followed by a response
within 5 time units with probability 0.99 or greater” can be expressed by the PTCTL

property request → P≥0.99(trueU≤5response). Similarly, the property “the expected
amount of time which elapses before reaching an alarm state is not more than 60”
can be expressed as D≤60(alarm). The logic PTCTL extends the probabilistic temporal
logic PCTL [13, 5], the real-time temporal logic TCTL [1], and the performance-oriented
logic of de Alfaro [10] (a similar logic has also been studied in the continuous-time
setting [15]).

After introducing durational probabilistic systems and PTCTL in Section 2, we
present model-checking algorithms for both of the aforementioned semantics in Sec-
tion 3. The novelty of these algorithms is that their running time is independent of the
timing constants used in the description of the durational probabilistic system, and their
program complexity is polynomial. Instead, to apply the previous methods of de Alfaro,
Hansson and Jonsson to durational probabilistic systems, we would have to model ex-
plicitly intermediate states as time passes (even for the jump semantics), hence resulting
in a blow-up of the size of the state space. The presented algorithms are restricted to tem-
poral modalities with upper or lower time bounds; we show in Section 4 that the problem
of model checking durational probabilistic systems against PTCTL formulae in which
exact time bounds are used (that is, of the form = c) is PSPACE-hard, even for “qualita-
tive” probabilistic properties in which the probability thresholds refer to 0 or 1 only. We
also show the NP-hardness and co-NP-hardness of model checking fully probabilistic
durational systems against general “quantitative” probabilistic properties including ar-
bitrary probability thresholds and upper time bounds (of the form ≤ c). On the positive
side, model checking qualitative probabilistic properties of fully probabilistic, strongly
non-Zeno durational probabilistic systems is Δp

2-complete and PSPACE-complete for
the jump and continuous semantics, respectively, and model checking qualitative proper-
ties excluding exact time bounds is in PSPACE for general strongly non-Zeno durational
probabilistic systems with the jump semantics.

2 Durational Probabilistic Systems

2.1 Syntax of Durational Probabilistic Systems

Let AP be a countable set of atomic propositions, which we assume to be fixed through-
out the remainder of the paper. Let I be the set of finite intervals over N. Given a set X ,
Dist(X) denotes the set of discrete probability distributions over X .

Definition 1. A durational probabilistic system (DPS) D = (Q, qinit , D, L) comprises
a finite set of states Q with an initial state qinit ∈ Q; a finite durational probabilistic,
nondeterministic transition relation D ⊆ Q×I ×Dist(Q) such that, for each state q ∈
Q, there exists at least one tuple (q, ,) ∈ D; and a labelling function L : Q→ 2AP .

142 F. Laroussinie and J. Sproston

Intuitively, the behaviour of a durational probabilistic system comprises of repeatedly
letting time pass then taking a state-to-state transition (which we sometimes call an
action transition). The interval ρ of some (q, ρ, μ) ∈ D specifies the duration of the
corresponding transition. On entry to a state q ∈ Q, there is a nondeterministic choice of
a triple (q, ρ, μ) ∈ D. Then the system chooses, again nondeterministically, the amount
of time that elapses, where the chosen amount must belong to ρ. Finally, the system
moves probabilistically to a next state q′ ∈ Q with probability μ(q′).

The size |D| of D is |Q|+ |D| plus the size of the encoding of the timing constants
and probabilities used inD. The timing constants (lower and upper bounds of transitions’
intervals) are written in binary, and where, for each (q, ρ, μ) ∈ D, the values μ(q′) are
written as fixed-precision binary numbers.

Durational fully probabilistic systems. A durational fully probabilistic system (DFPS)
is a DPS where there is exactly one tuple (q, ρ,) ∈ D for any state q, and where ρ is a
singleton. In such a system there is no non-deterministic choice.

Strong non-Zenoness. A DPS D = (Q, qinit , D, L) is strongly non-Zeno if, for each
state q ∈ Q, there does not exist a sequence of transitions (q0, ρ0, μ0)...(qn, ρn, μn) of
D such that q0 = q, μi(qi+1) > 0 for all 0 ≤ i < n, μn(q0) > 0, and ρi is of the form
[0;] for all 0 ≤ i ≤ n. Note that this property can easily be checked for a DPS. The
concept of strong non-Zenoness is taken from previous work for timed automata [18].
The algorithms and the complexity results we show in this paper only deal with strongly
non-Zeno DPSs.

2.2 Semantics of Durational Probabilistic Systems

We give a formal semantics to durational probabilistic system in terms of timed Markov
decision processes.

Definition 2. A timed Markov decision processes (TMDP) M = (S, sinit ,→, lab) com-
prises a finite set of states S with an initial state sinit ∈ S; a finite timed probabilistic,
nondeterministic transition relation→⊆ S×N×Dist(S) such that, for each state s ∈ S,
there exists at least one tuple (s, ,) ∈→; and a labelling function lab : S → 2AP .

A special case of a timed Markov decision process is a timed Markov chain (TMC),
in which, for each state s ∈ S, there exists exactly one tuple (s, ,) ∈→. The size
of TMDPs and the notion of strong non-Zenoness are defined as for DPSs, because a
TMDP can be regarded as a DPS for which the intervals labelling transitions are all
singletons.

The transitions from state to state of a TMDP are performed in two steps: given that
the current state is s, the first step concerns a nondeterministic selection of (s, d, ν) ∈→,
where d corresponds to the duration of the transition; the second step comprises a prob-
abilistic choice, made according to the distribution ν, as to which state to make the
transition to (that is, we make a transition to a state s′ ∈ S with probability ν(s′)). We

often denote such a transition by s
d,ν−−→ s′, and write s

d,ν−−→ to indicate that there exists

(s, d, ν) ∈→. If s
d,ν−−→ s′ is such that ν(s′) = 1, then for simplicity we write s

d−→ s′.

Model Checking Durational Probabilistic Systems 143

An infinite or finite path of the timed Markov decision process M is defined as an
infinite or finite sequence of transitions, respectively, such that the target state of one
transition is the source state of the next. We use Pathfin to denote the set of finite
paths of M, and Pathful the set of infinite paths of M. If ω is finite, we denote by
last(ω) the last state of ω. For any path ω, let ω(i) be its (i+ 1)th state. Let Path ful(s)
refer to the set of infinite paths commencing in state s ∈ S . For an infinite path

ω = s0
d0,ν0−−−→ s1

d1,ν1−−−→ · · · , the accumulated duration along ω until the ith state,
denoted Time(ω, i), is equal to

∑
0≤j<i dj .

In contrast to a path, which corresponds to a resolution of nondeterministic and prob-
abilistic choice, an adversary represents a resolution of nondeterminism only. Formally,
an adversary of a timed Markov decision process M is a functionAmapping every finite
path ω ∈ Pathfin to a transition (last(ω), d, ν) ∈→. Let Adv be the set of adversaries of
M. For any adversaryA ∈ Adv , let PathA

ful denote the set of infinite paths resulting from

the choices of distributions of A, and let PathA
ful(s) = PathA

ful ∩Path ful(s). Then, for

a state s ∈ S, we define the probability measure ProbA
s over PathA

ful(s) in the standard
way [19].

Note that, by defining adversaries as functions from finite paths, we permit adver-
saries to be dependent on the history of the system. Hence, the choice made by an
adversary at a certain point in system execution can depend on the sequence of states
visited, the nondeterministic choices taken, and the time elapsed in each state, up to that
point.

As for non-probabilistic systems [17], we can define several semantics of time for
DPSs. Consider a transition of duration d between two DPS states q and q′. The first
semantics, called the jump semantics, assumes that moving from q to q′ takes d time units
and that there are no intermediate states: if the system is in q at time t, then it is in q′ at time
t+d and there is no position for time t+1. . . t+d−1. This semantics corresponds to a
kind of cost or reward automata where every transition has a weight. We will also consider
the continuous semantics, which involves waiting in d− 1 intermediate positions, each
corresponding to the passage of one time unit, before performing the action transition
and arriving in q′. This last semantics is close to the one used for timed automata and
is generally more natural to model systems; for example, it is more convenient when
considering parallel composition because time progresses smoothly.

Jump semantics. The jump semantics of a DPS D = (Q, qinit , D, L) is defined as the
TMDP Mj(D) = (S, sinit ,→, lab), where:

– S = Q and sinit = qinit ;
– (s, d, μ) ∈→ if and only if there exists (s, ρ, μ) ∈ D and d ∈ ρ;
– lab(s) = L(s) for all s ∈ S.

Continuous semantics. Let δmax(q) be the maximal delay possible in state q of a dura-
tional probabilistic system. The continuous semantics of a DPS D = (Q, qinit , D, L) is
defined as the TMDP Mc(D) = (S, sinit ,→, lab), where:

– S = {(q, i) | 0 ≤ i < δmax(q)} and sinit = (qinit , 0);
– → is the smallest set of transitions satisfying the following rules:

144 F. Laroussinie and J. Sproston

• (q, 0)
0,ν−−→ if there exists (q, ρ, μ) ∈ D such that 0 ∈ ρ, and where ν(q′, 0) =

μ(q′) for each q′ ∈ Q;

• (q, i) 1−→ (q, i+ 1) if i+ 1 < δmax(q);
• (q, i)

1,ν−−→ if there exists (q, ρ, μ) ∈ D such that i+1 ∈ ρ, and where ν(q′, 0) =
μ(q′) for each q′ ∈ Q;

– for each (q, i) ∈ S, let lab(q, i) = L(q).

Observe that the semantics of a DFPS is a TMC, and that the semantics of a strongly
non-Zeno DPS is also strongly non-Zeno. The size of the transition relation of Mj(D)
may be exponential in |D| because it is linearly-dependent on the magnitude of the timing
constants (encoded in binary) of the DPS. However, the number of states of Mj(D) and
D is the same. This contrasts with Mc(D), where the number of states and the number
of transitions may be exponential in |D|. Another difference between the semantics is
that the TMDP Mc(D) only contains durations in {0, 1}.

2.3 Probabilistic Timed Temporal Logic

In this section, we recall how the branching-time temporal logic CTL can be extended
with constraints on time, probability and expected time. First we recall the probabilistic
temporal logic PCTL [13, 5], in which the standard universal and existential path quanti-
fiers Aϕ and Eϕ of CTL are replaced with a probabilistic quantifier of the form P��λ(ϕ),
where ϕ is a formula interpreted over paths, ��∈ {<,≤,≥, >} is a comparison operator
and λ ∈ [0; 1] is a probability. Timing constraints, expressed using subscripts on “un-
til” path formulae (with the syntax U∼c, where ∼∈ {≤,=,≥}), were introduced in the
temporal logics RTCTL [11] and TCTL [1]. Finally, an expected-time operator D��ζ(Φ),
where ��∈ {<,≤,≥, >} is a comparison operator and ζ ∈ R≥0 is a non-negative real,
was studied in the discrete-time context by de Alfaro [10] and Andova et al. [2].

We combine the above mentioned temporal logics to obtain the temporal logic PTCTL

(Probabilistic Timed Computation Tree Logic), which extends the identically-named
logic of [15] with the “next” temporal modality and the expected-time operator.

Definition 3. The formulae of PTCTL are given by the following grammar:

Φ ::= P | Φ ∧ Φ | ¬Φ | P��λ(XΦ) | P��λ(ΦU∼cΦ) | D��ζ(Φ)

where P ∈ AP is an atomic proposition, ��∈ {<,≤,≥, >}, ∼∈ {≤,=,≥} are com-
parison operators, λ ∈ [0; 1] is a probability, c ∈ N is a natural number, and ζ ∈ R≥0
is a positive real.

We define PTCTL[≤,≥] as the sub-logic of PTCTL in which subscripts of the form
= c are not allowed in “until” modalities U∼c. The size |Φ| is defined in the standard
way, with constants written in binary.

Given an infinite path ω of a TMDP and a PTCTL formula Φ, let Tω,Φ = min{i |
ω(i) |= Φ} be the index of the first state of ω which satisfies Φ, and let Tω,Φ = ∞
if ω(i)
|= Φ for all i ∈ N. Then, for a given adversary A ∈ Adv and state s ∈ S of
the TMDP, we let ExpectedTimeA

s (Φ) = EA
s {Time(ω, Tω,Φ)}, where EA

s {·} is the
expectation, defined in the standard way, with respect to the probability measure ProbA

s .

Model Checking Durational Probabilistic Systems 145

Definition 4. Given a TMDP M = (S, sinit ,→, lab) and a PTCTL formulaΦ, we define
the satisfaction relation |=M of PTCTL as follows: 1

s |=M P iff P ∈ lab(s)
s |=M Φ1 ∧ Φ2 iff s |=M Φ1 and s |=M Φ2
s |=M ¬Φ iff s
|=M Φ

s |=M D��ζ(Φ) iff ExpectedTimeA
s (Φ) �� ζ, ∀A ∈ Adv

s |=M P��λ(ϕ) iff ProbA
s {ω ∈ PathA

ful(s) | ω |=M ϕ} �� λ, ∀A ∈ Adv
ω |=M XΦ iff ω(1) |=M Φ
ω |=M Φ1U∼cΦ2 iff ∃i ∈ N s.t.Time(ω, i) ∼ c , ω(i) |=M Φ2

and ω(j) |=M Φ1 ∀0 ≤ j < i .

Model checking. The model-checking problem for a PTCTL formula Φ and a TMDP M
with initial state sinit is to decide whether sinit |=M Φ, which we abbreviate to M |= Φ.
The model-checking problem for Φ, a DPSD and a semantics sem ∈ {j, c} is to decide
whether Msem(D) |= Φ. The complexity results will be expressed in terms of the size
|D|+ |Φ|. However, we will also consider the program complexity where one fixes the
formula and measures the complexity as a function of the size |D| only. As the system is
assumed to be large whereas the formula is assumed to be small, the program complexity
is often considered to be a more significant estimate of the feasibility of verification in
practice.

3 Model Checking for Durational Probabilistic Systems

Our approach is to introduce in Section 3.1 a model-checking algorithm for strongly
non-Zeno timed Markov decision processes, which will then be used in Section 3.2 as a
basis for model-checking algorithms for durational probabilistic systems.

3.1 Model Checking Timed Markov Decision Processes

Although our model-checking algorithm for TMDPs presented below uses the analogous
algorithm of de Alfaro [9] in order to verify the expected-time operator, the methods and
complexities for the probabilistic, time-bounded operators are new, and, for strongly
non-Zeno TMDPs, improve on previous results [13, 10] as their running time is not
dependent on the magnitude of the time constants used in the transitions of the TMDP.
More precisely, the previous methods are defined for systems in which the maximal
time duration is 1, necessitating the modelling of longer time durations via intermediate
states, hence blowing-up the size of the state space.

Before presenting the algorithm, we introduce some notation. The algorithm relies
on computing a topological order on the states of the TMDP, so that reachability via 0
transitions is reflected in the order: for two states s, s′ ∈ S, let s �0 s′ if and only if

1 When clear from the context, we omit the M subscript from |=M.

146 F. Laroussinie and J. Sproston

P≤λ(Φ1U≤cΦ2) : for i := 0 to c

for j := 0 to n
if sj |= Φ2 then let f(sj , i) := 1
else

if sj �|= Φ1 ∨ Φ2 then let f(sj , i) := 0
else let f(sj , i) := max

(sj ,d,ν)∈→

∑
s′∈S

ν(s′) · f(s′, i − d)

P≤λ(Φ1U=cΦ2) : for each s |= Φ2 let f(s, 0) := 1
for i := 0 to c

for j := 0 to n
if sj �|= Φ1 ∨ Φ2 then let f(sj , i) := 0
else let f(sj , i) := max

(sj ,d,ν)∈→

∑
s′∈S

ν(s′) · f(s′, i − d)

P≤λ(Φ1U≥cΦ2) : for each s ∈ S

let f(s, 0) := sup
A∈Adv

ProbA
s {ω ∈ PathA

ful(s) | ω |= Φ1UΦ2}
for i := 0 to c

for j := 0 to n
if sj �|= Φ1 ∨ Φ2 then let f(sj , i) := 0
else let f(sj , i) := max

(sj ,d,ν)∈→

∑
s′∈S

ν(s′) · f(s′, max(0, i − d))

Fig. 1. The algorithms for computing P≤λ(Φ1U∼cΦ2)

there exists a transition s′
0,ν−−→where ν(s) > 0. Then we order the states in S according

to�0 to obtain a sequence s0s1...sn where n = |S|−1, si+j
�0 si for each 0 ≤ i < n,
1 ≤ j ≤ n − i, and each state in S appears exactly once in the sequence. The fact
that such a sequence s0s1...sn exists follows from the fact that M is strongly non-Zeno.

Computing the order can be done in timeO(|S|+| 0−→ |) where | 0−→ | = Σ(s,0,ν)∈→|ν|
and |ν| = |{s′ |ν(s′) > 0}|. In the algorithm below, we will always iterate over the states
of the TMDP in such a way as to respect the topological order, in order to propagate the
computed probabilities correctly through the states.

Proposition 1. Let M = (S, sinit ,→, lab) be a strongly non-Zeno TMDP and Φ be
a PTCTL formula in which the maximal constant in its time-bound subscripts is cmax .
Deciding whether M |= Φ can be done in timeO(|Φ| ·((|S| · | → |·cmax)+poly(|M|))).

Proof. The cases for the atomic propositions, Boolean combinations and next formulae
are standard, and therefore we concentrate on the model-checking algorithm for PTCTL

formulae of the form P��λ(Φ1U∼cΦ2) and D��ζ(Φ′). We restrict our attention to the cases
in which �� is≤. The cases for≥ are obtained directly by substituting min for max, and
inf for sup in the following procedures, and the cases for ��∈ {<,>} follow similarly.
We assume that arithmetical operations can be performed in constant time.

Until formulae. We consider three different procedures (see Figure 1) depending on
the form of∼. Recall that we use a topological order for enumerating the states s0s1...sn
in order to respect �0.

Model Checking Durational Probabilistic Systems 147

In each of the procedures, a function of the form f : S ×Z → [0; 1] is utilized, with
the intuition that, for 0 ≤ i ≤ c, the state s satisfies the path formula Φ1U∼iΦ2 with
maximum probability f(s, i). Naturally, the aim is to calculate f(s, c) for each state
s ∈ S. In each of the three cases, for each i < 0 and each s ∈ S, we assume that we have
f(s, i) = 0. One can prove by induction over i that f(s, i) = supA∈Adv ProbA

s {ω ∈
PathA

ful(s) | ω |= Φ1U∼iΦ2} for each state s ∈ S and each 0 ≤ i ≤ c. Hence, we
conclude that s |= P≤λ(Φ1U∼cΦ2) if and only if f(s, c) ≤ λ. The complexity of the
first two procedures, where ∼ is ≤ or =, is O(c · |S| · | → |).

When ∼ is ≥, our algorithm first requires that we compute, for each state s ∈
S, the probability supA∈Adv ProbA

s {ω ∈ PathA
ful(s) | ω |= Φ1UΦ2} (the maximum

probability of satisfying the un-subscripted formula Φ1UΦ2). Following Bianco and de
Alfaro [5], these probabilities can be computed in O(poly(|M|)) time. Therefore, the
complexity of the third procedure is O((c · |S| · | → |) + poly(|M|)).

Expected-time formulae. For formulae of the form D��ζ(Φ′), we can utilize the algo-
rithm of de Alfaro [9] (TMDPs are a special case of de Alfaro’s model), which reduces
to a linear programming problem, with time complexity poly(|M|).

Overall complexity. We obtain an overall time complexity of O(|Φ| · ((|S| · | → | ·
cmax) + poly(|M|))). Note that the time complexity can be expressed in terms of the
maximum branching degree of the transitions of the TMDP. More precisely, if bmax =
max(, ,ν)∈→ |{s | ν(s) > 0}| then we can write the complexity as O(|Φ| · ((bmax ·
| → | · cmax) + poly(|M|))). ��

3.2 Extension to Strongly Non- eno Durational Probabilistic Systems

We now show how the algorithms of Section 3.1 can be used to define PTCTL model-
checking algorithms for DPSs. One idea would be to apply these algorithms directly to
the semantic TMDP of a DPS; however, in both semantics, the corresponding TMDPs
are exponential in the size of original DPS . We avoid this in the case of PTCTL[≤,≥]
by utilizing specific TMDP constructions for both of the semantics.

Proposition 2 (DPS with jump semantics). Let D = (Q, qinit , D, L) be a strongly
non-Zeno durational probabilistic system and Φ be a PTCTL[≤,≥] formula in which the
maximal constant in the subscripts is cmax . Deciding whether Mj(D) |= Φ can be done
in time O(|Φ| · ((|Q| · |D| · cmax) + poly(|D|))).

Proof (sketch). We define a TMDP Mr
j(D) = (S, sinit ,→r, lab) corresponding to a

restricted version of the jump semantics ofDwhereS, sinit , and lab are defined as for the
standard jump semantics, and (s, d, μ) ∈→r if and only if there exists (s, [l;u], μ) ∈ D
and either d = l or d = u. Then, for any state s ∈ S, we can show that s |=Mj(D) Φ
if and only if s |=Mr

j (D) Φ: the minimum and maximum probabilities and expectations
depend only on the minimum and maximum durations on transitions. ��

Proposition 3 (DPS with continuous semantics). Let D = (Q, qinit , D, L) be a
strongly non-Zeno durational probabilistic system and Φ be a PTCTL[≤,≥] formula
in which the maximal constant in the subscripts is cmax . Deciding whether Mc(D) |= Φ
can be done in time O((|Φ|3 · |D|3 · cmax) + poly(|Φ| · |D| · |D|)).

Z

148 F. Laroussinie and J. Sproston

Proof (sketch). We write the continuous semantics of D as Mc(D) = (S, sinit ,→,
lab). Our aim is to label every state (q, i) of Mc(D) with the set of subformulae of Φ
which it satisfies. For each state q ∈ Q, we construct a set Sat[q, ξ] of intervals such
that α ∈ Sat[q, ξ] if and only if (q, α) |= ξ. For reasons of space, we explain only the
general ideas behind the verification of subformulae Ψ of the form P��λ(Φ1U∼cΦ2) and
D��ζ(Φ′). For this, we assume that we have already computed the sets Sat[,] for Φ1,
Φ2 and Φ′.

As in Proposition 2, we construct a restricted TMDP which represents partially the
states and transitions of Mc(D) but which will be sufficient for computing the sets
Sat[q, Ψ]. The size of the restricted TMDP will ensure a procedure running in time
polynomial in |D|.

For the interval ρ = [l;u], let ρ− 1 be the interval [max(0, l − 1); max(0, u − 1)].
For each state q ∈ Q, we build the minimal set of intervals Int(q) =

⋃
j=1..k[αj ;βj)

such that:

– for any i, we have i ∈ Int(q) if and only if i ∈ Sat[q, Φ1] ∪ Sat[q, Φ2], and every
interval of Int(q) verifies either Φ1 ∧ Φ2, Φ1 ∧ ¬Φ2 or ¬Φ1 ∧ Φ2;

– for any j, we have αj < βj , and βj ≤ αj+1 if j + 1 ≤ k;
– the intervals are homogeneous for action transitions: for any (q, ρ,) ∈ D, we have

[αj , βj) ⊆ ρ− 1 or [αj , βj) ∩ ρ− 1 = ∅;
– the interval [0; 1) is treated separately: if 0 ∈ Sat[q, Φ1] ∪ Sat[q, Φ2], then [0; 1) is

the first interval of Int(q).

Letting Dq = {(q, ,) | (q, ,) ∈ D}, we clearly have |Int(q)| ≤ 2 · (|Sat[q, Φ1]| +
|Sat[q, Φ2]| + |Dq|) + 1. Let ν be a sub-distribution on a set S if ν : S → [0; 1]
and
∑

s∈S ν(s) ≤ 1, and let SubDist(S) be the set of all sub-distributions on the set
S. Next, we build MI = (QI , ,→I , labI), which is a variant of a TMDP in which
sub-distributions may be used in addition to distributions. The set of states of MI is
QI = {(q, [α;β)) | q ∈ Q and [α;β) ∈ Int(q)}, and the set of timed probabilistic,
nondeterministic transitions →I⊆ S × N × SubDist(S) is the smallest set defined as
follows.

(Action transition) For any (q, ρ, μ) ∈ D and [α;β) ∈ Int(q), if [α;β) ⊆ ρ− 1, then:

if [α;β) = [0; 1): we have the transition (q, [α;β))
0,ν−−→I if 0 ∈ ρ, and the transition

(q, [α;β))
1,ν−−→I if 1 ∈ ρ;

if [α;β)
= [0; 1): we have the transitions (q, [α;β))
1,ν−−→I and (q, [α;β))

β−α,ν−−−−→I ;

where ν ∈ SubDist(QI) is the (sub-)distribution such that, for each (q′, [α′;β′)) ∈
QI , we have:

ν(q′, [α′;β′)) =
{
μ(q′) if [α′;β′) = [0; 1) and [0; 1) ∈ Int(q′)
0 otherwise.

(Time successor) For any [α;β) and [α′;β′) in Int(q), if β = α′ then we have

(q, [α, β))
β−α−−−→I (q, [α′;β′)).

Model Checking Durational Probabilistic Systems 149

Finally, for each (q, [α;β)) ∈ QI , we let labI(q, [α;β)) ⊆ {Φ1, Φ2} depending the
inclusion of [α;β) w.r.t. Sat[q, Φ1] and Sat[q, Φ2].

The TMDP MI has the following important property: for any state (q, [α;β)) of
MI , we have that (q, α) |=Mc(D) P��λ(Φ1U∼cΦ2) if and only if (q, [α;β)) |=MI

P��λ(Φ1U∼cΦ2). This can be shown by using the same kind of arguments we used
for proving Proposition 2.

Then using the above construction of MI , we can apply the algorithm of Section 3.1
to decide, for each (q, [α;β)) ∈ QI , whether (q, α) |=Mc(D) P��λ(Φ1U∼cΦ2) (the pres-
ence of sub-distributions does not affect the results of the algorithm). Now note that, for
each function f considered in Section 3.1, we compute a value for each state (q, [α;β))
and each 0 ≤ i ≤ c. Hence we can decide whether (q, α) |=Mc(D) P��λ(Φ1U∼iΦ2)
also for all 0 ≤ i < c. We can use these results to compute the satisfaction sets
Sat[q,P��λ(Φ1U∼cΦ2)] for each state q ∈ Q.

One approach would be, for each point α < γ < β, and for each state (q, [α;β)), to
iterate over the individual values of γ; however, the size of intervals [α;β) in Int(q) for
a given state q are dependent on the size of constants appearing in the time intervals ρ
of the transitions (q, ρ,) ∈ D. We instead iterate over the size of the subscript c used
in the temporal logic formula. More precisely, for each state (q, [α;β)) of MI , we have
two cases.

(q, [α;β)) has a time-successor state. (I.e. there exists a state (q, [β;β′)) ∈ QI .) Then
deciding whether γ ∈ Sat[q,P��λ(Φ1U∼cΦ2)] for each α < γ < β can depend
both on whether P��λ(Φ1U∼cΦ2) is satisfied in (q, α) and on the satisfaction of
P��λ(Φ1U∼iΦ2) (for some i) in (q, β). For each 1 ≤ j ≤ min(c, β − α), we let
β − j ∈ Sat[q,P��λ(Φ1U∼cΦ2)] if and only if ((q, α) |=Mc(D) P��λ(Φ1U∼cΦ2)) ∨
((q, β) |=Mc(D) P��λ(Φ1U∼c−jΦ2)). Intuitively, the second conjunct corresponds
to letting time pass and eventually moving to (q, β): if the formula with a subscript
c−j is satisfied j time units in the future, then the analogous formula with subscript
c will be satisfied now. The first conjunct corresponds to taking an action transition:
from the homogeneity of intervals with respect to action transitions, such a transition
is available throughout the interval.
If β − α > c, then for each α < j < β − c we let j ∈ Sat[q,P��λ(Φ1U∼cΦ2)] if
and only if (q, α) |=Mc(D) P��λ(Φ1U∼cΦ2).

(q, [α;β)) does not have a time-successor state. In this case, for each α < j < β, we
let j ∈ Sat[q,P��λ(Φ1U∼cΦ2)] if and only if (q, α) |=Mc(D) P��λ(Φ1U∼cΦ2).

We then merge adjacent intervals in Sat[q,P��λ(Φ1U∼cΦ2)]. Analogously to the non-
probabilistic case [17], the size of this set is bounded by |Sat[q, Φ1]|+|Sat[q, Φ2]|+|Dq|,
and one can show that |Sat[q, Ψ]| ≤ |Ψ | · |Dq| for any PTCTL[≤,≥] formula Ψ .

Observe that |QI | ≤
∑

q∈Q |Int(q)| ≤ |P��λ(Φ1U∼cΦ2)| · |D|, and | →I | ≤
|QI |·(1+|D|). Recalling that the algorithm of Section 3.1 runs in timeO(c·|QI |·| →I |)
when∼ is≤, we conclude that properties of the form P��λ(Φ1U≤cΦ2) can be verified in
timeO(c·|P��λ(Φ1U≤cΦ2)|2·|D|3). Similarly, when∼ is≥, the corresponding algorithm
of Section 3.1 runs in timeO((c·|QI |·| →I |)+poly(|MI |)). The size of the TMDP MI is
no greater than |QI | ·2 · |D|, and hence is no greater than |P≤λ(Φ1U≥cΦ2)| · |D| ·2 · |D|.
Hence, the algorithm when ∼ is ≥ runs in time O((c · |P��λ(Φ1U≥cΦ2)|2 · |D|3) +
poly(|P��λ(Φ1U≥cΦ2)| · |D| · |D|)).

150 F. Laroussinie and J. Sproston

These arguments can also be adapted for formulae D��ζ(Φ′). For a state s of a
TMDP with a set of adversaries Adv , let e+s (Φ′) = supA∈Adv ExpectedTimeA

s (Φ′) and
let e−s (Φ′) = infA∈Adv ExpectedTimeA

s (Φ′). In analogy with the case of properties
of the form P��λ(Φ1U∼cΦ2), for each state (q, [α;β)) ∈ QI , we have e+(q,[α;β))(Φ

′) =
e+(q,α)(Φ

′) and e−(q,[α;β))(Φ
′) = e−(q,α)(Φ

′). We apply the algorithm of de Alfaro [9] to

MI to compute e+(q,α)(Φ
′) in the case of D≤ζ(Φ′) and e−(q,α)(Φ

′) in the case of D≥ζ(Φ′).
To determine the values e+(q,γ)(Φ

′) and e−(q,γ)(Φ
′) for each α < γ < β, we have

two cases as above. If (q, [α;β)) has a time-successor state, then for each 1 ≤ j ≤
min(c, β − α), we let e+(q,β−j)(Φ

′) = max(e+(q,α)(Φ
′), e+(q,β)(Φ

′) + j), and similarly

e−(q,β−j)(Φ
′) = min(e−(q,α)(Φ

′), e−(q,β)(Φ
′)+j). Ifβ−α > c, then for eachα < j < β−c

we let e+(q,j)(Φ
′) = e+(q,α)(Φ

′) and e−(q,j)(Φ
′) = e−(q,α)(Φ

′).
On the other hand, if (q, [α;β)) does not have a time-successor state, then for each

α < j < β, we let e+(q,j)(Φ
′) = e+(q,α)(Φ

′) and e−(q,j)(Φ
′) = e−(q,α)(Φ

′).
Then we can compare the obtained values of e+ and e− to the threshold ζ to decide

whether j ∈ Sat[q,D��ζ(Φ′)]. We merge adjacent intervals in Sat[q,D��ζ(Φ′)] to obtain
the final satisfaction sets; as in the non-probabilistic case [17], the size of this set is
bounded by |Dq|+ |Sat[q, Φ′]|+ 1.

Verification of the D��ζ(Φ′) operator can be done in polynomial time in the size of
MI , and therefore our procedure takes time poly(|D��ζ(Φ′)| · |D| · |D|)).

Overall complexity. We obtain an overall time complexity ofO((|Φ|3 · |D|3 ·cmax)+
poly(|Φ| · |D| · |D|)). ��

These two propositions imply that the program complexity of model checking
PTCTL[≤,≥] for the jump and continuous semantics is in P. This contrasts with the
case of timed automata (with or without probability), where algorithms are based on the
region graph and are exponential in the size of the system.

4 Complexity of Model Checking Durational Probabilistic
Systems

In this section we consider upper and lower bounds on the complexity of model checking
strongly non-Zeno DPSs. In particular we aim at comparing these results with those
obtained for (non-probabilistic) durational systems, namely durational transition graphs
(DTG) [17]. A DTG consists of a state set S, initial state sinit , and a labelling function l;
in contrast to a DPS, however, the transition relation is of the form→⊆ S ×I × S. We
know that model checking TCTL over DTGs is Δp

2-complete (resp. PSPACE-complete)
with the jump semantics (resp. continuous semantics). Furthermore, model checking
TCTL[≤,≥] can be done in polynomial time for both semantics. We now identify cases
in which the addition of probability makes model checking harder than in the non-
probabilistic case, even for restricted sub-logics of PTCTL.

Complexity with probabilities 0/1. First we consider PTCTL0/1, the “qualitative” sub-
logic of PTCTL in which we allow P��λ operators with λ ∈ {0, 1} only, and in which
the D��ζ operator is excluded.

Model Checking Durational Probabilistic Systems 151

Theorem 1 (Durational fully probabilistic systems). Model checking PTCTL0/1 over
a strongly non-Zeno durational fully probabilistic system is a Δp

2-complete (resp.
PSPACE-complete) problem for the jump (resp. continuous) semantics.

Proof. This result derives mainly from the complexity of model checking over DTGs. In-
deed, the general idea is to reduce model checking of PTCTL0/1 over a strongly non-Zeno
DFPS D = (Q, qinit , D, L) to TCTL model checking over the DTG (S, sinit ,→, l) de-
fined as follows:S = Q, sinit = qinit , l = L and (s, ρ, s′) ∈→ iff we have (s, ρ, μ) ∈ D
andμ(s′) > 0. We replace PTCTL0/1 subformulae by TCTL counterparts in the following
way: P>0(ϕ) is replaced byEϕ, while P≥1(XΦ) (resp. P≥1(Φ1U≤cΦ2), P≥1(Φ1U=cΦ2))
is replaced by AXΦ (resp. A(Φ1U≤cΦ2), A(Φ1U=cΦ2)). Finally,
P≥1(Φ1U≥cΦ2) is replaced by A(Φ1U≥cPΦ1UΦ2), wherePΦ1UΦ2 is a new atomic propo-
sition that holds for states satisfying P≥1(Φ1UΦ2). The standard PCTL model-checking
algorithm [5], which runs in polynomial time, can be used to label states by PΦ1UΦ2 .
Note that these reductions are possible because the DFPS is strongly non-Zeno. For
the remaining PTCTL0/1 formulae, as we are considering fully probabilistic systems,
we have P<1(ϕ) ≡ ¬P≥1(ϕ) and P≤0(ϕ) ≡ ¬P>0(ϕ). The overall transformation
provides Δp

2-membership (resp. PSPACE-membership) for the PTCTL model checking
over DPS in the jump semantics (resp. continuous semantics).

With regard to the hardness results, we adapt the proofs used for DTGs with the same
transformation of formulae as described above. ��

Note that, following the results of [17] and using the translations of the proof of
Theorem 1, we can find a polynomial-time algorithm for model checking DFPSs against
formulae of PTCTL0/1 without subscripts =c in until modalities, both for the jump and
continuous semantics.

Next, we address model checking of general, nondeterministic DPSs.

Theorem 2 (Durational probabilistic systems). Model checking strongly non-Zeno
durational probabilistic systems with the jump semantics is (1) PSPACE-hard for
PTCTL0/1, and (2) in PSPACE for PTCTL0/1[≤,≥].

Proof. (1) We reduce a quantified version of the subset-sum problem, called Q-subset-
sum, to a PTCTL0/1 model-checking problem on strongly non-Zeno DPSs. As QBF can
be reduced to Q-subset-sum, this suffices to show PSPACE-hardness. An instance I of
Q-subset-sum contains a finite sequence X of integers x1, . . . , xn, an integer G and a
sequence of quantifiers Q1, . . . ,Qn in {∃,∀}. The instance I is positive iff there exists
a set Z of subsets of X s.t. (I) Σx∈X′x = G for any X ′ ∈ Z and (II) for any Y ∈ Z,
if Qi = ∀, then there exists Y ′ ∈ Z s.t. xj ∈ Y ⇔ xj ∈ Y ′ for any j < i and
xi ∈ Y ′ ⇔ xi
∈ Y . Assume w.l.o.g. that n is even and Q2i+1 = ∀,Q2i+2 = ∃ for
all 0 ≤ i < n

2 . Then we consider the DPS DI described in Figure 2. The dashed lines
correspond to non-deterministic choices, and the numbers in parentheses correspond to
the duration of the transitions which they label.

Now assume q0 |= ¬P<1(F=GP) (where F∼c ≡ trueU∼c , and where qn is the
only state labelled with P): that is, there exists an adversary such that the probability of
satisfying F=GP from q0 is 1. In terms of I , for any existential quantifier in I , it is possible
to make a decision leading to a subset with exactly the sum G. Then q0 |= ¬P<1(F=GP)
if and only if the instance I is positive.

152 F. Laroussinie and J. Sproston

q0 q1 q2 q3 q4 qn−1 qn

1
2

1
2

1
2

1
2

(0)

(0)

(0)

(0)

(0)

(0)

(a1) (a2) (a3) (a4) (an)

. . .(0) (0)

Fig. 2. The durational probabilistic system DI

(2) The PSPACE membership is shown as follows. For reasons of space we consider
only the case P>0(Φ1U≤cΦ2). Because the DPS is strongly non-Zeno, it suffices to verify
that for any adversary there exists a path satisfying Φ1U≤cΦ2. We use the following
algorithm which runs in polynomial space.

First note that q |= P>0(Φ1U≤dΦ2) entails q |= P>0(Φ1U≤d+1Φ2). For every state
q we will compute the minimal d s.t. P>0(Φ1U≤dΦ2) holds for q. First we define T [q]
as 0 (resp.∞) if q |= Φ2 (resp. q
|= Φ1). Then, for any j = 0, 1, . . . , c, we try to update
T [q] for q = q1, . . . , qn if T [q] has not yet been defined (where we enumerate the states
in the topological order �0). Updating T [q] to j is done if, for any (q, ρ, μ) ∈ D, there
exists at least one state q′ s.t. μ(q′) > 0 and T [q′] ≥ j − dρ where dρ is the maximal
duration in ρ. Finally it remains to label a state q by P>0(Φ1U≤cΦ2) iff T [q] ≤ c. A
similar procedure can be used to verify the other properties. ��

For the continuous semantics, it is clear that model checking PTCTL is PSPACE-
hard. These results show that strongly non-Zeno DFPSs are not harder to verify against
PTCTL0/1 than non-probabilistic durational systems against TCTL, and that combining
probabilities and non-determinism induces a complexity blow-up for the jump semantics
compared to the non-probabilistic case.

Complexity of full PTCTL. If we move from the sub-logic PTCTL0/1 to the logic in which
the operator P��λ is permitted to have rational λ ∈ [0; 1], we observe a complexity blow-
up. It is sufficient to consider the simple formula P≥λ(F≤cP) in the fully probabilistic
case with the jump semantics.

Proposition 4. Model checking P≥λ(F≤cP) over durational fully probabilistic systems
with the jump semantics is NP-hard.

Proof (sketch). The proof consists in reducing the K-th largest subset problem, which
is NP-hard [12–p. 225], to the problem of model checking a formula of the form
P≥λ(F≤cP) on a DFPS with the jump semantics. An instance I of K-th largest subset
problem is a finite set X = {x1, . . . , xn} of natural numbers and two integers K and
B. The problem consists in asking whether there are at least K distinct subsets X ′ ⊆ X
s.t.
∑

x∈X′ x ≤ B. Consider an adaptation of the DPS of Figure 2 where we replace the
non-deterministic choices in states q2i+1, for 0 ≤ i < n

2 , by distributions with proba-
bilities 1

2 , and recall that qn is the only state labelled with P . This provides a DFPS that
satisfies P≥ K

2n
(F≤BP) if and only if I is a positive instance. ��

A corollary is that model checking PTCTL[≤,≥] is NP-hard and coNP-hard over
durational fully probabilistic systems with the jump semantics. Note that this problem is

Model Checking Durational Probabilistic Systems 153

Table 1. Complexity results for model checking durational probabilistic systems

Fully prob. DPS DPS
jump sem. cont. sem. jump sem. cont. sem.

PTCTL0/1[≤,≥] P-complete P-complete P-hard P-hard
in PSPACE in EXPTIME(†)

PTCTL0/1 Δp
2-complete PSPACE-complete PSPACE-hard PSPACE-hard

in EXPTIME in EXPTIME
PTCTL[≤,≥] NP-hard and coNP-hard

in EXPTIME(†)

PTCTL Δp
2-hard PSPACE-hard PSPACE-hard PSPACE-hard

in EXPTIME in EXPTIME in EXPTIME in EXPTIME

the simplest problem within our framework referring to quantitative temporal properties.
It entails that considering simple timing constraints and quantitative probabilistic prop-
erties in the same model checking problem leads to NP-hardness, whereas considering
either simple timing constraints (as in [17]) or quantitative probabilistic properties (as
in [5]) allows for efficient model checking.

For the general case where we have non-determinism, probabilities and PTCTL for-
mulae, we conjecture that model checking is EXPTIME-complete. From the algorithms
of Section 3 and the complexity results for PTCTL0/1, we obtain the following corollary.
Note that the EXPTIME-membership comes from a direct application of the algorithm
described in Proposition 1 to Mj(D) or Mc(D).

Corollary 1. Model checking PTCTL over durational probabilistic systems in the jump
or continuous semantics is PSPACE-hard and it can be done in EXPTIME.

5 Conclusion

In this paper we introduced durational probabilistic systems, a model to describe prob-
abilistic, non-deterministic and timed systems. We showed how model checking can be
done over this model, paying attention to complexity issues. Table 1 summarizes the
results we presented in the paper. First, note that model checking can be done efficiently
for fully probabilistic systems and qualitative PTCTL0/1 properties without the exact
time-bound subscript = c. However, as in the non-probabilistic case, adding the exact
time-bound induces a complexity blow-up. This motivates the use of PTCTL[≤,≥] where
the subscripts in until formulae are restricted to ≤ c and ≥ c constraints. For this logic,
even with quantitative properties, we have model checking algorithms running in time
polynomial in |Φ| · |D| and linear in cmax, the maximal timing constant of the formula, as
described in Proposition 2 and Proposition 3, and indicated by the (†) superscripts in the
table. The precise polynomial depends on the kind of DPS and the choice of semantics.
The formula’s time constants are encoded in binary, and hence these algorithms belong
to EXPTIME; nevertheless the algorithms should be interesting in practice, because they
are polynomial in |D|. In future work, we will consider the precise complexity of the
non-complete model-checking problems listed in the table.

154 F. Laroussinie and J. Sproston

References

1. R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking in dense real-time. Information
and Computation, 104(1):2–34, 1993.

2. S. Andova, H. Hermanns, and J.-P. Katoen. Discrete-time rewards model-checked. In Proc.
1st Int. Workshop on Formal Modeling and Analysis of Timed Systems (FORMATS 2003),
volume 2791 of LNCS, pages 88–104. Springer, 2004.

3. C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model-checking algorithms for
continuous-time Markov chains. IEEE Transactions on Software Engineering, 29(6):524–
541, 2003.

4. C. Baier and M. Kwiatkowska. Model checking for a probabilistic branching time logic with
fairness. Distributed Computing, 11(3):125–155, 1998.

5. A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic systems. In
Proc. 15th Conf. on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’95), volume 1026 of LNCS, pages 499–513. Springer, 1995.

6. S. Campos, E. M. Clarke, W. R. Marrero, M. Minea, and H. Hiraishi. Computing quantitative
characteristic of finite-state real-time systems. In Proc. IEEE Real-Time Systems Symposium
(RTSS’94), pages 266–270. IEEE Computer Society Press, 1994.

7. E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press, 1999.
8. C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification. Journal

of the ACM, 42(4):857–907, 1995.
9. L. de Alfaro. Formal verification of probabilistic systems. PhD thesis, Stanford University,

Department of Computer Science, 1997.
10. L. de Alfaro. Temporal logics for the specification of performance and reliability. In Proc.

14th Annual Symp. on Theoretical Aspects of Computer Science (STACS’97), volume 1200
of LNCS, pages 165–176. Springer, 1997.

11. E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srinivasan. Quantitative temporal reasoning.
Real Time Systems, 4(4):331–352, 1992.

12. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, 1979.

13. H. A. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6(5):512–535, 1994.

14. M. Kwiatkowska. Model checking for probability and time: From theory to practice. In Proc.
18th Annual IEEE Symposium on Logic in Computer Science (LICS’03), pages 351–360.
IEEE Computer Society Press, 2003.

15. M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic verification of real-time
systems with discrete probability distributions. Theoretical Computer Science, 286:101–150,
2002.

16. F. Laroussinie, N. Markey, and P. Schnoebelen. On model checking durational Kripke struc-
tures (extended abstract). In Proc. 5th Int. Conf. Foundations of Software Science and Com-
putation Structures (FOSSACS 2002), volume 2303 of LNCS, pages 264–279. Springer, 2002.

17. F. Laroussinie, N. Markey, and P. Schnoebelen. Efficient timed model checking for discrete
time systems. Submitted, 2004.

18. S. Tripakis. Verifying progress in timed systems. In Proc. 5th AMAST Workshop on Real-
Time and Probabilistic Systems (ARTS’99), volume 1601 of LNCS, pages 299–314. Springer,
1999.

19. M. Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In Proc.
16th Annual Symp. on Foundations of Computer Science (FOCS’85), pages 327–338. IEEE
Computer Society Press, 1985.

Free-Algebra Models for the π-Calculus

Ian Stark�

Laboratory for Foundations of Computer Science
School of Informatics, The University of Edinburgh, Scotland

Ian.Stark@ed.ac.uk

Abstract. The finite π-calculus has an explicit set-theoretic functor-category
model that is known to be fully abstract for strong late bisimulation congruence.
We characterize this as the initial free algebra for an appropriate set of operations
and equations in the enriched Lawvere theories of Plotkin and Power. Thus we
obtain a novel algebraic description for models of the π-calculus, and validate an
existing construction as the universal such model.

The algebraic operations are intuitive, covering name creation, communica-
tion of names over channels, and nondeterminism; the equations then combine
these features in a modular fashion. We work in an enriched setting, over a “pos-
sible worlds” category of sets indexed by available names. This expands signifi-
cantly on the classical notion of algebraic theories, and in particular allows us to
use nonstandard arities that vary as processes evolve.

Based on our algebraic theory we describe a category of models for the
π-calculus, and show that they all preserve bisimulation congruence. We develop
a direct construction of free models in this category; and generalise previous
results to prove that all free-algebra models are fully abstract.

1 Introduction

There are by now a handful of models known to give a denotational semantics for
the π-calculus [2, 3, 6, 7, 8, 10, 36]. All are fully abstract for appropriate operational
equivalences, and all use functor categories to handle the central issue of names and
name creation. In this paper we present a method for generating such models purely
from their algebraic properties.

We address specifically the finite π-calculus model as presented by Fiore et al [8].
This uses the functor category SetI , with index I the category of finite name sets
and injections, and is fully abstract for strong late bisimulation congruence. We
exhibit this as one among a category of algebraic models for the π-calculus: all such
π-algebras respect bisimulation congruence, and we give a concrete description of the
free π-algebra Pi(X) for any object X of SetI . We show that every free algebra is a
fully-abstract model for the π-calculus, with the construction of Fiore et al. being the
initial free algebra Pi(0).

Our method builds on a recent line of research by Plotkin and Power who use alge-
braic theories in enriched categories to capture “notions of computation”, in particular

� Research supported by an EPSRC Advanced Research Fellowship.

V. Sassone (Ed.): FOSSACS 2005, LNCS 3441, pp. 155–169, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

156 I. Stark

Moggi’s computational monads [18, 26, 27, 28]. The general idea is to describe a com-
putational feature — I/O, state, nondeterminism — by stating a characteristic collection
of operations with specified equations between them. These then induce the follow-
ing suite of constructions: a notion of algebraic model for the feature; a computational
monad; effectful actions to program with; and a modal logic for specification and rea-
soning. This approach also gives a flexible way to express interactions between features,
by combining sets of operations [11, 12].

For the π-calculus, we apply and expand their technique. The enriched setting
supports not only models that are objects in SetI , but also arities from SetI ; so that
we have operations whose arity depends on the names currently available. We use
two different closed structures in SetI : the usual cartesian exponential for arities,
and a monoidal function space “�” for operations parameterised by fresh names.
Finally, the π-calculus depends on a very particular interaction between concurrency,
communication and name generation, which we can directly express in equations
relating the theories for each of these features. This precision in integrating different
aspects of computation is a significant benefit of the algebraic approach over existing
techniques for combining computational monads [13, 15, 19, 37].

The structure of the paper is as follows. In §2 we review the relevant properties
of algebraic theories and the functor category SetI . We then set out our proposed
algebraic theory of π in §3. Following this, in §4 we show how models of the theory
give a denotational semantics for the finite π-calculus (i.e., omitting recursion and
replication), and prove that these interpretations respect bisimulation congruence
(Prop. 2). Interestingly, parallel composition of processes is not in general admissible
as a basic operation in the theory, although we are able to interpret it via expansion. We
prove the existence of free algebras over SetI (Thm. 3) and show that they are all fully
abstract (Thm. 5). In particular, the free algebra over the empty set is exactly the model
of Fiore et al., and does support an internal definition of parallel composition (Prop. 4).
Finally, we identify the monad induced by the theory of π, which gives a programming
language semantics for mobile communicating concurrency. We conclude in §5 by
indicating possible extensions and further applications of this work.

2 Background

We outline relevant material on algebraic theories and the target category SetI .
For π-calculus information, see one of the books [16, 32] or Parrow’s handbook
chapter [23].

2.1 Algebras and Notions of Computation

We sketch very briefly the theoretical basis for our development: for more on enriched
algebraic theories see Robinson’s clear and detailed exposition [31]; the link to compu-
tations and generic effects is described in [27, 28].

There is a well-established connection between algebraic theories and monads on
the category Set . For example, consider the following theory, which we shall use later
for an algebra A of nondeterministic computations:

Free-Algebra Models for the π-Calculus 157

choice : A×A −→ A

nil : 1 −→ A

Operation choice for combining computa-
tions to be commutative, associative and
idempotent with unit nil .

A model of this theory is a triple 〈A, choice,nil〉 of a carrier set A with two maps
satisfying the relevant commuting diagrams; and these models form a categoryND(Set)
of “nondeterministic sets”. The forgetful functor U into Set has a left adjoint, giving
the free algebra FX over any set X .

ND(Set)

��

)free F U forgetful

Set

In fact, this functor F is the finite powerset 〈Pfin ,∪, ∅〉, and ND(Set) is monadic over
Set : it is equivalent to the category of algebras for the monad Pfin .

The situation here is quite general, with a precise correspondence between single-
sorted algebraic theories and finitary monads on Set (i.e., monads that preserve filtered
colimits). Kelly and Power [14, 29] extend this to an enriched setting: carriers for the
algebras may be from categories other than Set ; the arities of operations can be not just
natural numbers, but certain objects in a category; and equations can be replaced with
other constraint systems — for example, ordered categories support inequations.

Building on this, Plotkin and Power investigate algebraic theories that induce a
“computational” monad T [18]. They characterize when an operation f : (TX)m →
(TX)n on computations is algebraic and hence admissible as an operation of the
relevant theory. Moreover, they prove that every such algebraic operation corresponds
to a computational effect of type ef : n → Tm (note the reversal of indices m and n). In
the example above, Pfin is the standard computational monad for finite nondeterminism,
and its effects are arb : 1 −→ T2 and deadlock : 1 −→ T0. These two are enough to
code up nondeterministic programming: arb() is a nondeterministic true or false, and
deadlock() is the empty choice.

Thus not only do algebraic theories characterize computational monads as free
algebras, but they also provide the necessary terms to program with them. They also
support combining monads, a traditionally challenging area, by taking the union of
theories and possibly introducing new equations describing how they interact [11, 12].

As a final example, the theory for input/output of data values from some fixed set V
is:

in : AV −→ A out : A −→ AV with no equations.

This induces the resumptions monad for computations performing I/O:

T (−) = μX.(XV + V ×X + (−))

as well as the effects read : 1 −→ TV and write : V → T1.

2.2 The Category

We construct our models for π over the functor category SetI , where I is the category
of finite sets and injections. Typically we treat objects s, s′ ∈ I in the index category as

SetI

158 I. Stark

finite sets of names. The intuition is that an object X ∈ SetI is a varying set: if s ∈ I is
the set of names available in some context, then X(s) is the set of X-values using them.
As the set of names available changes, so does this set of values. Functor categories of
possible worlds like this are well established for modelling local state in programming
languages [20, 22, 30] and local names in particular [17, 25, 35]. Similar categories of
varying sets also appear in models for variable binding [5] and name binding (see, for
example, [33] and citations there).

Category SetI is complete and cocomplete, with limits and colimits taken pointwise.
It is cartesian closed, with a convenient way to calculate function spaces using natural
transformations between functors:

X × Y (X × Y)(s) = X(s)× Y (s)

X → Y or Y X Y X(s) = SetI [X(s +), Y (s +)]

Thus elements in the varying set of functions from X to Y over names s must take
account of values in X(s + s′), uniformly for all extended name sets s + s′.

There is also a symmetric monoidal closed structure (⊗,�) around the Day
tensor [4], induced by disjoint union (s + s′) in I.

X ⊗ Y =
∫ s,s′∈I

X(s)× Y (s′)× I[s + s′,]

All the constructions in this paper remain within the subcategory of functors in SetI
that preserve pullbacks. For such functors we can give an explicit presentation of the
monoidal structure:

(X ⊗ Y)(s) =
{

(x, y) ∈ (X × Y)(s)∣∣ ∃disjoint s1, s2 ⊆ s . x ∈ X(s1), y ∈ Y (s2)
}

(X � Y)(s) = SetI [X(), Y (s +)]

Elements of (X ⊗ Y) denote pairs of elements from X and Y that use disjoint name
sets. Elements of the monoidal function space (X�Y) are functions defined only at
X-values that use just fresh names.

The two closed structures are related:

intoX,Y : X ⊗ Y −→ X × Y

ontoX,Y : (X → Y) −→ (X � Y) .

Where functors X and Y are pullback-preserving, these are an inclusion and surjection,
respectively.

We use a variety of objects in SetI . For any fixed set S, there is a corresponding
constant functor S ∈ SetI . The object of names N ∈ SetI is the inclusion functor
mapping any s ∈ I to the same s ∈ Set . From this we build (N ×N ×· · ·×N) = Nk,
the object of k-tuples of names, and (N ⊗N ⊗ · · · ⊗N) = N⊗k of distinct k-tuples,
with an inclusion into : N⊗k ↪−→ Nk between them.

Free-Algebra Models for the π-Calculus 159

We have the shift functor δ on objects of SetI :

δ : SetI −→ SetI defined by δX() = X(+ 1) .

In fact δ(−) ∼= N�(−), and elements of δX are elements of X that may use a single
fresh name, uniformly in the choice of that name. This functor is well known, for
example as dynamic allocation in [6, 7]; it also appears as the atom abstraction operator
[N]X of FM-set theory identified by Gabbay and Pitts [9, 24]. Note that shifting the
object of names gives a coproduct: δN ∼= (N + 1).

The representable objects in SetI are 1, N, (N⊗N), (N⊗N⊗N), . . . The finitely
presentable objects are the finite colimits of these, including in particular finite constant
sets S, and all finite products of N : for example, (N ×N) ∼= N + (N ⊗N). These are
the objects available as arities for algebraic theories over SetI .

Finally, the category SetI is locally finitely presentable as a closed category, with
respect to both cartesian and monoidal structures. This is a completeness requirement
for building algebraic theories: [29–§2] and [31–§3] expand on what this involves.

3 Theory of π

The algebraic approach supports a modular presentation of theories, and we use this
to manage the combination of features that come together in the π-calculus. This
section presents in turn separate theories for nondeterminism, communication along
channels, and dynamic name creation; followed by equations specifying exactly how
these features should interact.

We assume a carrier object A ∈ SetI , and describe the operations and equations
required for A to model the π-calculus.

3.1 Nondeterministic Choice

For nondeterminism we need a binary choice operation that is commutative, associative
and idempotent with a unit nil .

choice : A2 −→ A

nil : 1 −→ A

choice(p, q) = choice(q, p)
choice(nil, p) = choice(p, p) = p

choice(p, (choice(q, r)) = choice(choice(p, q), r)

In process calculus terms, choice captures nondeterministic sum P + Q and nil the
deadlocked process 0.

3.2 Communication

Communication in the π-calculus is along named channels, sending names themselves
as data. The relevant theory is a specialised version of that for I/O given earlier.

160 I. Stark

out : A −→ AN×N

in : AN −→ AN

tau : A −→ A

(No required equations)

These three operations correspond to the three prefixing constructions of the π-calculus:
output x̄y.P , input x(y).P and silent action τ.P . Argument and result arities follow the
bound and free occurrences of names respectively:

– out is parameterized in the result AN×N by both channel and data names;
– in accepts argument AN parameterized by the data value, with result AN parame-

terized by channel name.

The appearance of AN and AN×N here give our first nonstandard arities, N and N×N ,
to describe operations whose arity varies according to the names currently available. We
follow [27] in using formal indices to write these down: with terms like outx ,y(p) and
inx (qy), where x and y are name parameters.

3.3 Dynamic Name Creation

Processes in the π-calculus can dynamically generate fresh communication channels:
term νn.P is the process that creates a new channel, binds it to the name n, and then
becomes process P which may then use the new channel.

Our theory for this is a modification of Plotkin and Power’s block operation for local
state [27–§4]. We require a single operation new with a monoidal arity.

new : δA → A new(x.p) = p for p independent of x

δA ∼= N � A new(x.new(y.p)) = new(y.new(x.p))

The argument δA means that new is an operation of arity N in the monoidal closed
structure of SetI . Recall that elements of δA are elements of A that depend on a single
fresh name, uniformly in the choice of that fresh name. In the equations for new we
write x.p for the term p indexed by fresh x, borrowing Gabbay and Pitts’s notation for
atom abstraction [9]. (Plotkin and Power write this as 〈p〉x.)

Strictly, all our equations are shorthand for certain diagrams in SetI which must
commute. These two state that the creation of unused fresh names cannot be observed,
and computation is independent of the order in which fresh names are created. In
diagram form, these are

A
up ��

��
��

��
��

��
��

��
��

δA

new
��

A

and

δ2A
δ(new) ��

twist
��

δA
new �� A

δ2A
δ(new) �� δA

new �� A

where up : 1 → δ and twist : δ2 → δ2 are the evident natural transformations on the
shift functor.

Free-Algebra Models for the π-Calculus 161

3.4 Other Operations

There are a few further constructions that might be candidates for inclusion in a theory
of π.

Name testing. Some forms of the π-calculus allow direct comparison of names,
with prefixes like match [x = y]P , mismatch [x
= y]Q, or two-branched testing
(x = y) ? P : Q. It turns out that these operations are already in the theory. The SetI
map of arities (N × N) ∼= N + (N ⊗ N) −→ 1 + 1 induces an operation test from
which others follow, using nil :

test : A2 −→ AN×N eq : A −→ AN×N neq : A −→ AN×N .

Bound output. The bound output prefix x̄(y).P for the π-calculus is equivalent to
νy(x̄y.P). There is an analogous derived operation in the theory:

bout : δA −→ AN boutx(y.p)
def
= new(y.outx,y(p))

Because this is definable in terms of the operations given earlier, it can be included
without affecting the induced theory or its algebras.

Parallel composition. The usual process calculus construction (P |Q) is not directly
admissible as an operation in our theory of π. This is because it is not algebraic in the
sense of Plotkin and Power [28]. Informally, it does not commute with composition of
computations: in a programming language, (M |M′);N is not in general equivalent to
(M;N) |(M′;N). We shall see more on this later, in §4.

3.5 Combining Equations

To complete the theory of π we give equations to specify how the component theories
interact. The algebraic approach gives us some flexibility in doing so, as investigated
in [11, 12]. For example, we can assert no additional equations, giving the sum of
theories [12–§3]; we can require that the operations from two theories commute with
each other, to give the commutative combination, or tensor, of theories [12–§4]; or we
can choose some other custom interaction. To assemble the component theories of π,
we use all three methods:

– The sum of the theories of nondeterminism and communication.
– The commuting combination of nondeterminism and name creation.
– A custom set of equations for name creation and communication; mostly commut-

ing, but some specific interaction.

These expand into three sets of equations. The first have effect by their absence:

Sum of component theories

No equations required for choice or nil with out , in or tau .

162 I. Stark

The commuting combination of theories says that operations act independently:

Commuting component theories

new(x.choice(p, q)) = choice(new(x.p),new(x.q))

new(z.outx ,y(p)) = outx ,y(new(z.p)) z /∈ {x, y}
new(z.inx (py)) = inx (new(z.py)) z /∈ {x, y}
new(z.tau(p)) = tau(new(z.p))

Recall that these equations with formal indices and side conditions are a shorthand for
four commuting diagrams in SetI .

Finally, just two equations for interaction capture the precise flavour of the
π-calculus: that the binder νx.(−) is both creation (of new channels) and restriction (of
communication on them).

Interaction between component theories

new(x.outx,y(p)) = nil
new(x.inx(py)) = nil

4 Algebraic Models for π

We now turn to look at models for the theory of π. We define what these are, and show
that every such model gives a denotational semantics for the π-calculus that respects
bisimulation congruence. We give a construction for free models in SetI , and prove
that the category of models is monadic over SetI . We show that all free models are
fully abstract for bisimulation congruence, and in particular that the initial free model
is isomorphic to the construction of Fiore et al.

4.1 Categories of Algebras

Definition 1. A π-algebra in SetI is an object A together with maps (choice,nil , out ,
in, tau,new) satisfying the equations of §§3.1–3.3 and 3.5 above. These algebras form
a category PI(SetI), with morphisms the maps f : A → B that commute with all
operations. The forgetful functor U : PI(SetI) → SetI takes a π-algebra to its carrier
object.

For any π-algebra A ∈ PI(SetI) we can build a denotational semantics of the finite
π-calculus: if P is a process with free names in set s, then there is a map

[[s � P]]A : N |s| −→ A .

Here N |s| represents an environment instantiating the free names s.
The interpretation itself is comparatively straightforward. Process sum, nil and the

π-calculus prefixes are interpreted directly by the corresponding π-algebra operations.

Free-Algebra Models for the π-Calculus 163

Binding of fresh names involves managing the monoidal structure; we use a construction
ν(−) on maps into A:

p : N |s|+1 −→ A Given a map p;

N ⊗N |s| into−→ N ×N |s| −→ A precompose inclusion;

N |s| −→ (N � A) take the monoidal transpose;

N |s| −→ δA
new−→ A and apply the new operator

νp : N |s| −→ A to get the restricted map νp.

We then define [[s � νx.P]]A = ν([[s, x � P]]A).
As noted earlier, parallel composition is not algebraic, so we have no general map

for its action on A. However, for any specific finite processes P and Q we can use
the expansion law for congruence [23–Table 9] to express (P |Q) as a sum of smaller
processes, and so obtain an interpretation in the π-algebra A, recursively:

if P |Q =
k∑

i=1

Ri (canonical choice of expansion)

then [[s � P |Q]]A = choice([[s � R1]]A, choice([[s � R2]]A, . . .)) : N |s| −→ A .

This external expansion makes the translation not wholly compositional; later we shall
improve on this, for one particular π-algebra, by expressing parallel composition within
the algebra itself.

The interpretation [[s � P]]A respects weakening of the name context s, so we usually
omit it and write [[P]]A.

Once defined, this interpretation induces a notion of equality over a model: for any
π-algebra A and finite processes P , Q we write

A |= P = Q
def⇐⇒ [[P]]A = [[Q]]A

and SetI |= P = Q
def⇐⇒ A |= P = Q for all A ∈ PI(SetI).

Proposition 2. All π-algebra models respect (strong, late) bisimulation congruence.
For any A ∈ PI(SetI) and finite processes P , Q:

P ≈ Q =⇒ A |= P = Q

and more generally:

P ≈ Q =⇒ SetI |= P = Q .

Proof. We draw on the known axiomatization of bisimulation congruence for finite
processes, as given for example in [23–§8.2]. All these axioms are provable in the theory
of π and hence hold in every algebra for the theory. ��

164 I. Stark

4.2 Free π-Algebras in

The previous section proposes a theory of algebraic models for the π-calculus; but it
does not yet give us any concrete π-algebras. For these we seek a free π-algebra functor
F : SetI → PI(SetI), left adjoint to the forgetfulU . Kelly and Power [14, 29] show the
existence in general of such algebras for enriched theories; but there are two difficulties
in our situation. First, their results are in terms of a general colimit, and for any specific
theory one would also like a direct form if possible. Second, and more serious, they treat
a single enrichment, while we have two together.

We can overcome both of these difficulties, in the specific case of SetI : we have an
explicit description of the free π-algebras, and an accompanying proof that they are so.

Before presenting the free algebras for the full theory of π, we detour briefly through
those for each of its component theories, to see how they fit together. For simplicity we
present not the free functors F , but the associated monads (U ◦ F) on SetI .

The monad for finite nondeterminism is the finite covariant powerset, extended
pointwise to SetI :

Tnondet(−) = Pfin(−) .

The monad for communication is a version of the resumptions monad, with components
for output, input and silent action:

Tcomm(−) = μX.(N ×N ×X + N ×XN + X + (−)) .

Here μX.(−) is the least fixed point, which in SetI is a straightforward pointwise
union. Informally, an element of (TcommY)(s) is a finite trace of π-calculus actions
using names from s, finishing with a value from Y ; with the refinement that at input
actions the function space XN gives a branching over possible input names, including
uniform treatment of new names.

The monad for dynamic name creation is that originating with Moggi [17–§4.1.4]
and investigated in [35].

Tnew(−) = Dyn(−) = lim−→
s∈I

(
N⊗|s| � (−)

)
.

This is a colimit over possible sets of fresh names. In particular, the object part has
Dyn(X)(s) =

∑
s′∈I X(s + s′)/ ∼, where ∼ is an equivalence relation generated by

injections between fresh name sets s′ � s′′. For full element-by-element details of the
Dyn construction, see [35–§5].

Taking the approach of combining monads through monad transformers [15], we
can try to interleave these to obtain a candidate monad for π:

Tbad(−) = μX.(Pfin(Dyn(N ×N ×X + N ×XN + X + (−)))) .

Working from the outside in, this asserts that: a π-calculus process is a recursive system
(μX); which may have several courses of action (Pfin); that each may create fresh names
(Dyn); and then perform some I/O action, to give some further process.

However, this is not yet quite right: Tbad does not validate any of the equations
of §3.5 for combining the different π-calculus effects. For example, in Tbad restriction

SetI

Free-Algebra Models for the π-Calculus 165

new does not commute with choice; nor does it in fact restrict, as there are terms in the
monad for external I/O on a new -bound channel.

To find the correct monad for π, we use an observation from existing operational
treatments: name creation is only observable through the emission of fresh names in
bound output. This leads to the following corrected definition:

Tπ(−) = μX.(Pfin(N ×N ×X + N × δX + N ×XN + X +Dyn(−))) . (1)

This still expresses a π-calculus process as a recursive system (μX) with several courses
of action (Pfin); but the general application of Dyn(−) has been replaced by a bound
output term N × δX in the I/O expression. The core of this expression matches the
functor H of Fiore et al. [8–§4.4].

The monad Tπ is now a correct representation for π-calculus behaviour, and for any
object X ∈ SetI we can equip Tπ(X) with the six required operations to make it a
π-algebra Pi(X). The most interesting case is new ; this is defined recursively by cases,
using the equations from §§3.3 and 3.5, and following essentially the pattern of [36]
and [8–Table 4].

We thus obtain the desired free functor Pi : SetI → PI(SetI), and hence a supply
of concrete π-algebras. This completes the adjunction Pi) U , with monad U ◦ Pi
being Tπ. What is more, the adjunction is monadic, so that PI(SetI) is equivalent to
the category of algebras for the monad Tπ . To summarise:

Theorem 3.

(i) The forgetful functor U : PI(SetI) → SetI has a left adjoint Pi giving a free
π-algebra Pi(X) over any X ∈ SetI .

(ii) The comparison functor fromPI(SetI) to Tπ-Alg is an equivalence of categories.

Proof (sketch).

(i) Once we have an explicit form for Pi , it only remains to check that Pi(X) is
initial among π-algebras over X . Given any π-algebra A with X → UA in SetI ,
we must extend this to an algebra map Pi(X) → A. The extension is uniquely
determined by the fact that every element of Pi(X) can be generated from X
using operations from the theory of π.

(ii) We apply Beck’s theorem to show that the adjunction is monadic. The develop-
ment closely follows Power’s in [29–§4], specialised to the case at hand. There is
some new work to take account of the two closed structures, which is done using
the properties of the function spaces N�X and XN presented in §2.2. ��

4.3 Fully-Abstract π-Algebras

The interpretation in §4.1 of π-calculus terms in an arbitrary π-algebra is not altogether
compositional, in that we expand out parallel processes. If we specialise to the initial
free π-algebra Pi(0) then we can do better.

166 I. Stark

Proposition 4. Writing P ∈ SetI for the carrier object of Pi(0), there is a map
par : P 2 → P in SetI such that for all finite π-calculus processes P , Q:

[[P |Q]]Pi(0) = par([[P]]Pi(0), [[Q]]Pi(0)) .

Using par instead of the expansion rule then gives a purely compositional presentation
of the denotational semantics in Pi(0) for finite π-calculus processes.

Proof. We decompose par as a sum of interleaving merge and synchronization, and
then define each of these recursively by cases on the expansion (1) of Pi(0) — where
the base case uses the fact that Dyn(0) is empty. This is the procedure known from
existing denotational models, such as [36–§3.2] and [8–§4.6]. Note that par is, as
expected, not a map of π-algebras. ��

This semantics in Pi(0) is in fact isomorphic to the fully-abstract model described by
Fiore et al. in [8–Thm 6.4]. We can extend their analysis to all free π-algebras.

Theorem 5. For any object X ∈ SetI , the free π-algebra Pi(X) is fully abstract for
(strong, late) bisimulation congruence. For all finite π-calculus processes P , Q:

P ≈ Q ⇐⇒ Pi(X) |= P = Q

and hence also:

P ≈ Q ⇐⇒ SetI |= P = Q .

Proof. The forward direction is Prop. 2, and the reverse direction for Pi(0) comes
from the full abstraction result of [8]. We lift this to general Pi(X) by factoring the
interpretation [[−]]Pi(X) as [[−]]Pi(0) followed by the monomorphism Pi(0) � Pi(X).

��

4.4 Monads and Effects for π

The operations and equations in the theory of π fit very well with a process-calculus view
of concurrency. However, the monad Tπ of (1) is also a “computational” monad in the
style of Moggi, and gives a programming language semantics of mobile communicating
systems. The operations of §3 then induce corresponding generic effects [28]:

choice : A2 −→ A arb : 1 −→ T2

nil : 1 −→ A deadlock : 1 −→ T0

out : A −→ AN×N send : N× N −→ T1

in : AN −→ AN receive : N −→ TN

tau : A −→ A skip : 1 −→ T1

new : δA −→ A fresh : 1 −→ TN

For example, receive(c) fetches a value from channel c, and fresh() returns a newly
allocated channel. In a suitable computational metalanguage these give a semantics
for programing languages that combine higher-order functions with communicating
concurrency. Alternatively, they can be used just as they stand in a language like Haskell
that explicitly handles computational monads: do{x ← receive(c); send(c′, x)}.

Free-Algebra Models for the π-Calculus 167

5 Extensions and Further Work

In this paper we have examined only finite π-calculus processes. We propose to give
algebras for the full π-calculus, with replication and recursion, by introducing order
structure with models in CpoI . Plotkin and Power have already investigated Cpo-
enrichment in work on effects for PCF: in particular, taking the least upper bound of
ω-chains is then an algebraic operation of (countable) arity. Our target is the existing
domain models in CpoI , noting that Fiore et al. give a method for lifting full abstraction
in SetI up to CpoI .

Order enrichment also offers the possibility of inequations in theories. For the choice
operation these can distinguish between upper, lower and convex powerdomains, and we
conjecture that such theories for π could characterize Hennessy’s fully-abstract models
for must and may-testing [10].

Alternative calculi like asynchronous π and πI can be treated by changing the
arity of the out operation; process passing and higher-order π seem much more
challenging. For different kinds of equivalence, we can follow existing models by
varying arities and translation details: this is enough to capture early bisimulation
congruence, early/late bisimilarity (not congruences), and bisimilarity up to name
constraints. More interesting, though, is the possibility to leave the operations for π
untouched and instead adjust only the equations. For example, we might add the
characteristic EARLY equation of [23–§9.1] to the π-theory, and then compare this to
the explicit model of early bisimulation congruence in [7]. The same approach applies
to open bisimilarity and weak bisimulations, known to be challenging for categorical
models: Parrow sets out equational axiomatizations for all these in [23–§9], and we now
need to explore the algebraic theories they generate.

Pitts and others have championed nominal sets and Fraenkel-Mostowski set theory
as a foundation for reasoning with names [9, 24, 34]. If we move from SetI to its full
subcategory of pullback-preserving functors then we have the Schanuel topos, which
models FM set theory. As noted earlier, all of our constructions lie within this, and we
conjecture that our π-calculus models are examples of universal algebra within FM set
theory (given first an investigation of what that is).

Prop. 4 presented an internal par for Pi(0), giving a fully compositional interpreta-
tion for the π-calculus. In fact we can define an internal parμ for any free π-algebra
Pi(X), given an associative and commutative multiplication μ : X × X → X .
These non-initial free algebras are (fully-abstract) models for implementations of the
π-calculus over a set of basic processes. For example, Pi(1) models the π-calculus with
an extra process “�” marking completion, which extends the programming language
interpretation of §4.4 with a semantics for terminating threads and thread rendezvous.

More generally, the full range of π-algebras in PI(SetI) may be useful to model
applications of the π-calculus with domain-specific terms, equations and processes.
There are many such ad-hoc extensions, notably those brought together by Abadi and
Fournet under the banner of applied π [1].

In ongoing work, Plotkin has given a construction for modal logics from algebraic
theories. Applying this to the theory of π gives a modal logic for the π-calculus up
to bisimulation congruence. This can represent Hennessy-Milner logic, and also has

168 I. Stark

modalities for choice and name creation; though no “spatial” modality for parallel
composition.

We can extend our notion of π-algebra to other categories C, enriched over SetI .
However, we do not yet have conditions for the existence of free algebras, or for full
abstraction, in general C. This would require further investigation of the properties of
algebras enriched over a doubly closed structure, as in SetI .

An alternative path, following a suggestion of Fiore, is to give a theory of name
testing that exhibits SetI as monadic over SetF , where F is the category of finite name
sets and all maps. We have a candidate theory, and conjecture that in combination with
our existing theory of π, this would allow us to generate algebraic models of π in SetF
using only cartesian closed structure.

References

[1] M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In Conf.
Rec. POPL 2001, pp. 104–115. ACM Press, 2001.

[2] G. L. Cattani and P. Sewell. Models for name-passing processes: Interleaving and causal.
Inf. Comput., 190(2):136–178, 2004.

[3] G. L. Cattani, I. Stark, and G. Winskel. Presheaf models for the π-calculus. In Proc.
CTCS ’97, LNCS 1290, pp. 106–126. Springer-Verlag, 1997.

[4] B. J. Day. On closed categories of functors. In Reports of the Midwest Category Seminar IV,
Lecture Notes in Mathematics 137, pp. 1–38. Springer-Verlag, 1970.

[5] M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable binding. In Proc. LICS ’99,
pp. 193–202. IEEE Comp. Soc. Press, 1999.

[6] M. Fiore and S. Staton. Comparing operational models of name-passing process calculi. In
Proc. CMCS 2004, ENTCS 106, pp. 91–104. Elsevier, 2004.

[7] M. Fiore and D. Turi. Semantics of name and value passing. In Proc. LICS 2001, pp. 93–
104. IEEE Comp. Soc. Press, 2001.

[8] M. P. Fiore, E. Moggi, and D. Sangiorgi. A fully-abstract model for the π-calculus. Inf.
Comput., 179(1):76–117, 2002.

[9] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable binding.
Formal Asp. Comput., 13(3–5):341–363, 2001.

[10] M. Hennessy. A fully abstract denotational semantics for the π-calculus. Theor. Comput.
Sci., 278(1–2):53–89, 2002.

[11] J. M. E. Hyland, G. Plotkin, and A. J. Power. Combining computational effects: Commuta-
tivity and sum. In Proc. TCS 2002, pp. 474–484. Kluwer, 2002.

[12] J. M. E. Hyland, G. Plotkin, and A. J. Power. Combining effects: Sum and tensor. To appear,
2004.

[13] M. P. Jones and L. Duponcheel. Composing monads. Research Report YALEU/DCS/RR-
1004, Yale University Department of Computer Science, 1993.

[14] G. M. Kelly and A. J. Power. Adjunctions whose counits are coequalizers, and presentations
of finitary enriched monads. J. Pure Appl. Algebra, 89:163–179, 1993.

[15] S. Liang, P. Hudak, and M. P. Jones. Monad transformers and modular interpreters. In Conf.
Rec. POPL ’95, pp. 333–343. ACM Press, 1995.

[16] R. Milner. Communicating and Mobile Systems: The Pi-Calculus. CUP, 1999.
[17] E. Moggi. An abstract view of programming languages. Technical Report ECS-LFCS-90-

113, Laboratory for Foundations of Computer Science, University of Edinburgh, 1990.
[18] E. Moggi. Notions of computation and monads. Inf. Comput., 93(1):55–92, 1991.

Free-Algebra Models for the π-Calculus 169

[19] J. Newburn. All about monads, v1.1.0. http://www.nomaware.com/monads.
[20] P. W. O’Hearn and R. D. Tennent. Parametricity and local variables. J. ACM, 42(3):658–

709, 1995. Reprinted in [21].
[21] P. W. O’Hearn and R. D. Tennent, editors. Algol-like Languages. Birkhauser, 1996.
[22] F. J. Oles. Functor categories and store shapes. Chapter 11 of [21].
[23] J. Parrow. An introduction to the π-calculus. In Handbook of Process Algebra, pp. 479–543.

Elsevier, 2001.
[24] A. M. Pitts. Nominal logic, a first order theory of names and binding. Inf. Comput.,

186:165–193, 2003. Errata, Sept. 2004.
[25] A. M. Pitts and I. Stark. Observable properties of higher order functions that dynamically

create local names, or: What’s new? In Proc. MFCS ’93, LNCS 711, pp. 122–141. Springer-
Verlag, 1993.

[26] G. Plotkin and A. J. Power. Computational effects and operations: An overview. Submitted
for publication, 2002.

[27] G. Plotkin and A. J. Power. Notions of computation determine monads. In Proc.
FoSSaCS 2002, LNCS 2303, pp. 342–356. Springer-Verlag, 2002. Erratum, Aug. 2002.

[28] G. Plotkin and A. J. Power. Algebraic operations and generic effects. Appl. Categ. Struct.,
11(1):69–94, 2003.

[29] A. J. Power. Enriched Lawvere theories. Theory Appl. Categ., 6(7):83–93, 1999.
[30] J. C. Reynolds. The essence of Algol. In Proc. 1981 Int. Symp. on Algorithmic Languages,

pp. 345–372. North Holland, 1981. Reprinted in [21].
[31] E. Robinson. Variations on algebra: Monadicity and generalisations of equational theories.

Formal Asp. Comput., 13(3–5):308–326, 2002.
[32] D. Sangiorgi and D. Walker. The π-Calculus: A Theory of Mobile Processes. CUP, 2001.
[33] U. Schöpp and I. Stark. A dependent type theory with names and binding. In Proc.

CSL 2004, LNCS 3210, pp. 235–249. Springer-Verlag, 2004.
[34] M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshML: Programming with binders made

simple. In Proc. ICFP 2003, pp. 263–274. ACM Press, 2003. Erratum, May 2004.
[35] I. Stark. Categorical models for local names. LISP Symb. Comput., 9(1):77–107, 1996.
[36] I. Stark. A fully abstract domain model for the π-calculus. In Proc. LICS ’96, pp. 36–42.

IEEE Comp. Soc. Press, 1996.
[37] P. Wadler and D. King. Combining monads. In Proc. 1992 Glasgow Workshop on

Functional Programming, pp. 134–143. Springer-Verlag, 1993.

A Unifying Model of Variables and Names�

Marino Miculan1 and Kidane Yemane2

1 Dept. of Mathematics and Computing Science,
University of Udine, Via delle Scienze 206, I-33100 Udine, Italy

miculan@dimi.uniud.it
2 Dept. of Information Technology, Uppsala University,

Box 337, S-751 05 Uppsala, Sweden
kidane.yemane@it.uu.se

Abstract. We investigate a category theoretic model where both “vari-
ables” and “names”, usually viewed as separate notions, are particular
cases of the more general notion of distinction. The key aspect of this
model is to consider functors over the category of irreflexive, symmet-
ric finite relations. The models previously proposed for the notions of
“variables” and “names” embed faithfully in the new one, and initial al-
gebra/final coalgebra constructions can be transferred from the formers
to the latter. Moreover, the new model admits a definition of distinction-
aware simultaneous substitutions. As a substantial application example,
we give the first semantic interpretation of Miller-Tiu’s FOλ∇ logic.

1 Introduction

In recent years, many models for dynamically allocable entities, such as (bound)
variables, (fresh) names, reference, etc., have been proposed. Most of (if not
all) these models are based on some (sub)category of (pre)sheaves, i.e., functors
from a suitable index category to Set [19, 6, 10, 8, 5, 18]. The basic idea is to
stratify datatypes according to various “stages” representing different degrees of
information, such as number of allocated variables. A simple example is that of
set-valued functors over F, which is the category of finite subsets C ⊂ A of a
given enumerable set A of abstract symbols (“variable names”) [6, 10]; here, the
datatype of untyped λ-terms is the functor Λ : F → Set , ΛC = {t | FV (t) ⊆ C}.
Morphisms between objects of the index category describe how we can move from
one stage to the others; in F, morphisms are any function σ : C → D, that is any
variable renaming possibly with unifications. Correspondingly, Λσ : ΛC → ΛD

is the usual (capture-avoiding) variable renaming −{σ} on terms.
Different index categories lead to different notions of “allocable entities”. The

notion of name, particularly important for process calculi, can be modeled using
the subcategory I of F of only injective functions. Thus, stages of I can be still
“enlarged” by morphisms (which corresponds to allocation of new names), but

� Work supported by EU projects IST-2001-33100 profundis and IST-510996 types.

V. Sassone (Ed.): FOSSACS 2005, LNCS 3441, pp. 170–186, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Unifying Model of Variables and Names 171

coalesce to the same. Categories of set- and domain-valued functors over I have
been used for modeling π-calculus, ν-calculus, etc. [19, 5].

According to this view, variables and names are quite different concepts,
and as such they are rendered by different index categories. This separation is a
drawback when we have to model calculi or logics where both aspects are present
and must be dealt with at once. Some examples are: the fusion calculus, where
names can be unified under some conditions; the open bisimulation of π-calculus,
which is defined by closure under all (also unifying) distinction-preserving name
substitutions; even, a (still unknown) algebraic model for the Mobile Ambients is
supposed to deal with both variables and names (which are declared as different
entities in capabilities); and finally, the logic FOλ∇ [15], featuring a peculiar
interplay between “global variables” and “locally scoped constants”.

Why are F and I not sufficient to model these situations? The problem is
that these models force the behaviour of atoms a priori. Atoms will always act
as variables in F, as names in I. This is to be contrasted with the situations
above, where the behaviour of an atom is not known beforehand.

A way for circumventing this problem is to distinguish allocation of atoms,
from specifications of their behaviour. Behaviour of atoms is given a symmetric,
irreflexive relation, called distinction: two atoms are related if and only if they
cannot be unified, in any reachable stage. These relations can change dynam-
ically, after that atoms are introduced. Thus a stage is a finite set of atoms,
together with a distinction over it. These stages form the objects of a new index
category D, which subsumes both the idea of variables and that of names.

The aim of this paper is to give a systematic presentation of the model of
set-valued functors over D, first introduced by Ghani, Yemane and Victor for
characterizing open bisimulation of π-calculus [9]. Following similar previous
work [6, 5], we focus on algebraic, coalgebraic and logical properties of this
category, relating these results with the corresponding ones in SetF and Set I.

In Section 2, we present the category D, its properties and relations with F

and I. In Section 3 we study the structure of SetD, and its relations with SetF,
Set I. In particular, due to their importance for modeling process calculi, we will
study initial algebras and final coalgebras of polynomial functors over SetD.

In Section 4, we give a general definition of the key notions of support and
apartness, and then apply and compare their instances in the cases of SetD,
SetF and Set I. An application of apartness is in Section 5, where we present a
monoidal definition of “apartness-preserving” simultaneous substitution.

In Section 6 we turn to the logical aspects of SetD: restricting to the subcat-
egory of pullback-preserving functors, we define a self-dual quantifier similar to
Gabbay-Pitts’ . This quantifier, and the structure of SetD, will be put at work
in Section 7 in giving the first denotational semantics of Miller-Tiu’s FOλ∇.

Final remarks and directions for future work are in Section 8.
Due to space limits, many proofs are omitted, but can be found in [14].

they cannot be “contracted”, which means that two different symbols can never

172 M. Miculan and K. Yemane

2 Distinctions

Let us fix an infinite, countable set of atoms A. Atoms are abstract elements
with no structure, intended to act both as variables and as names symbols.

We denote finite subsets of A as n,m, Functions among these finite sets
are “atom substitutions”. The category of all these finite sets, and any maps
among them is F. The subcategory of F with only injective maps is I. In fact,
we can see a name essentially as an atom which must be kept apart from the
others. We can formalize this concept as follows:

Definition 1. (The category D) The category D of distinctions relations is
the full subcategory of Rel of irreflexive, symmetric binary relations over A with a
finite carrier set. (Here Rel is the category of relations and monotone functions.)

A distinction relation (n, d) is thus a finite set n of atoms and a symmetric
relation d ⊆ n × n such that for all i ∈ n : (i, i)
∈ d. In the following we
will write (n, d) as d(n), possibly dropping the superscript when clear from the
context. A morphisms f : d(n) → e(m) is any monotone function f : n→ m, that
is a substitution of atoms for atoms which preserves the distinction relation (if
(a, b) ∈ d then (f(a), f(b)) ∈ e). In other words, substitutions cannot map two
related (i.e., definitely distinct) atoms to the same atom of a later stage, while
unrelated atoms can coalesce to a single one.

Structure of D. The category D inherits from Rel products and coproducts.
More explicitly, products and coproducts can be defined on objects as follows:

d
(m)
1 × d

(n)
2 �(m× n, {((i1, j1), (i2, j2)) | (i1, i2) ∈ d1 and (j1, j2) ∈ d2})

d
(m)
1 + d

(n)
2 �(m+ n, d1 ∪ {(l + i, l + j) | (i, j) ∈ d2}) (l � max(m) + 1)

where m+n � m∪{l+ i | i ∈ n}. Note that D has no terminal object, but it has
initial object (∅, ∅). In fact, D inherits meets, joins and partial order from ℘(A):

– d(n) ∧ e(m) = (d ∩ e)(m∩n), and d(n) ∨ e(m) = (d ∪ e)(m∪n)

– d(n) ≤ e(m) iff d ∧ e = d, that is, iff d ⊆ e.

For each n, let us denote Dn the full subcategory of D whose objects are all
relations over n. Then, Dn is a complete Boolean algebra. Let ⊥(n) � (n, ∅) and
-(n) � (n, n2 \ Δn) be the empty and complete distinction on n, respectively,
where Δ : F → Rel is the diagonal functor defined as Δn = (n, {(i, i) | i ∈ n}).

D can be given another monoidal structure. Let us define ⊕ : D× D → D as

d
(m)
1 ⊕ d

(n)
2 = (m+ n, d1 ∪ d2 ∪ {(i, j), (j, i) | i ∈ m, j ∈ n}).

Proposition 1. (D,⊕,⊥(0)) is a symmetric monoidal category.

By applying coproduct and tensor to ⊥(1) we get two distinguished dynamic
allocation functors δ−, δ+ : D → D, as δ− � ⊥(1) + and δ+ � ⊥(1) ⊕ .
More explicitly, the action of δ+ on objects is δ+(d(n)) = d

(n+1)
+1 where d+1 =

d∪{(∗, i), (i, ∗) | i ∈ n}. Thus both δ− and δ+ add an extra element to the carrier,
but, as the superscript + is intended to suggest, δ+ adds in extra distinctions.

A Unifying Model of Variables and Names 173

Embedding I and F in D. Let De denote the full subcategory of D of empty
distinctions ⊥(n) = (n, ∅), and Dc the full subcategory of complete distinctions
-(n) = (n, n2 \ Δn). Notice that all morphisms in Dc are mono morphisms of
D—that is, injective maps.

Let us consider the forgetful functor U : D → F, dropping the distinction
relation. The functor v : F → De mapping each n in F to ⊥(n), and each f : n→
m to itself, is inverse of the restriction of U to De.

On the other hand, the restriction of U to Dc is a functor U : Dc → I, because
the only morphisms in Dc are the injective ones. The functor t : I → Dc mapping
each n in I to -(n), and each f : n � m to itself, is inverse of U . Hence:

Proposition 2. De
∼= F, and Dc

∼= I.

Therefore, we can say that the category of D generalises both I and F. In fact,
it is easy to check that the forgetful functor U : D → F is the right adjoint of
the inclusion functor v : F ↪→ D.

Remark 1. While we are on this subject, we define the functor V : D → I which
singles out from each d the (atoms of the) largest complete distinction contained
in d. More precisely, V is defined on objects as V (d(n)) = max{m | -(m) ≤ d(n)}
and on morphisms as the restriction. This defines a functor: if f : d(n) → e(m) is a
morphism, then it preserves distinctions, and thus for i ∈ V (d), since i is part of
a complete subdistinction of d, it must be mapped in a complete subdistinction
of e, and hence f(i) ∈ V (e). However, V is not an adjoint of t. ��

We recall finally that F has finite products (and hence also De), while I has
binary products only. Disjoint unions are finite coproducts in F, but not in I.
Actually, disjoint union # : I× I → I is only a monoidal structure over I, which
quite clearly corresponds to the restriction of ⊕ to Dc:

Proposition 3. ⊕ ◦ 〈t, t〉 = t ◦ #, that is, for n,m ∈ I: -(n�m) = -(n) ⊕-(m).

As a consequence, for Proposition 2, we have # = U ◦ ⊕ ◦ 〈t, t〉. On the other
hand, ⊕ restricted to De is not equivalent to the coproduct + in F.

3 Presheaves over D

SetD is the category of functors from D to Set (often called presheaves (over
D

op)) and natural transformations. The structure of D lifts to SetD, which has:1

1. Products and coproducts, which are computed pointwise (as with all limits
and colimits in functor categories); e.g. (P × Q)d(n) = Pd(n) × Qd(n) . The
terminal object is the constant functor K1 = y(⊥(∅)): K1(d) = 1.

2. A presheaf of atoms Atom ∈ SetD, Atom = y(⊥(1)) = y(-(1)). The action
on objects is Atom(d(n)) = n.

1 We shall use the same symbols for the lifted structure, but ensuring the reader has
enough information to deduce which category we are working in.

174 M. Miculan and K. Yemane

3. Two dynamic allocation functors δ−, δ+ : SetD → SetD, induced by each
κ ∈ {δ+, δ−} on D as ◦ κ : SetD → SetD.

4. Let ℘f be the finite (covariant) powerset functor on Set ; then ℘f ◦ : SetD →
SetD is the finite powerset operator on D-presheaves.

5. Exponentials are defined as usual in functor categories:

(BA)d � SetD(A× D(d,), B)

(BA)f (m) � m ◦ (idA × (◦ f)) for f : d→ e in D,m : A× D(d,) −→ B

In particular, exponentials of representable functors have a nice definition:

Proposition 4. For all d ∈ D, B in SetD: By(d) ∼= Bd+ .

This allows us to point out a strict relation between Atom and δ−:

Proposition 5. ()Atom ∼= δ−, and hence ×Atom) δ−.

Proof. Since Atom = y(⊥(1)), by Proposition 4 we have that FAtom ∼= F⊥(1)+ =
Fδ−() = δ−(F). The second part is an obvious consequence. ��

The categories SetF and Set I can be embedded into SetD.

Proposition 6. The functor v : F ↪→ D induces an essential geometric mor-
phism v : SetF → SetD, that is two adjunctions v!) v∗) v∗, where v! ∼= ◦ U ,
v∗ = ◦ v, and v∗(F)(d(n)) = Fn if d(n) = ⊥(n), 1 otherwise.

Proof. The existence of the essential geometric morphism, and that the inverse
image is ◦ v, is a direct application of [12–VII.2, Theorem 2]. Let us prove that
v! ∼= ◦ U . v! can be defined as the left Kan extension along y : F

op ↪→ SetF of
the functor T : F

op → SetD, T (n) = D(⊥(n),) = y ◦ vop. Hence:

v!(F) = (Lany(T))(F) =
∫ m∈F

SetF(y(m), F) · D(⊥(m),)

=
∫ m∈F

Fm · F(m,U()) =

(∫ m∈F

Fm · F(m,)

)
◦ U = F ◦ U ��

Proposition 7. v : SetF → SetD is an embedding, that is: v∗ ◦ v∗ ∼= Id.

As a consequence, by [12–VII.4, Lemma 1] we have also v∗ ◦ v! ∼= Id, and hence
both v∗ and v! are full and faithful.

A similar result holds also for t : I ↪→ D, although the adjoints have not a
neat description as in the previous case.

Proposition 8. t induces an essential geometric morphism t : Set I → SetD,
that is two adjunctions t!) t∗) t∗, where for all G : I → Set, and d ∈ D, it is
t∗(G)(d) = Set I(D(d, t()),G) .

Proposition 9. t : Set I → SetD is an embedding, that is: t∗ ◦ t∗ ∼= Id.

This means that also t∗ ◦ t! ∼= Id, and hence both t∗ and t! are full and faithful.

A Unifying Model of Variables and Names 175

Algebras and Coalgebras of Polynomial Functors. It is well-known that
any polynomial functor over Set (i.e., defined only by constant functors, finite
products/coproducts and finite powersets) has initial algebra. This result has
been generalized to SetF [6, 10] in order to deal with signatures with variable
bindings; in this case, polynomials can contain also V ar, the functor of variables,
and a dynamic allocation functor δF : SetF → SetF. For instance, the datatype
of λ-terms up-to α-conversion can be defined as the initial algebra of the functor

ΣΛ(X) = V ar +X ×X + δF(X) (1)
A parallel generalization for dealing with name generation use the category

Set I (and its variants) [10, 8, 5], which provides the functor of names N and a
dynamic allocation functor δI : Set I → Set I. The domain for late semantics of
π-calculus [5] can be defined as the final coalgebra of the functor B : Set I → Set I

BP � ℘f (N × PN +N ×N × P +N × δIP + P) (2)

In SetD, we can generalize a step further. We say that a functor F : SetD →
SetD is polynomial if it be defined by using only Atom, constant functors, finite
products/coproducts, dynamic allocations δ+ and δ− and finite powersets.

There is a precise relation among initial algebras of polynomial functors on
SetF and SetD. Let us recall a general result (see e.g. [10]):

Proposition 10. Let C,D be two categories and f : C −→ D, T : C −→ C
and T ′ : D −→ D be three functors such that T ′ ◦ f ∼= f ◦ T for some natural
isomorphism φ : T ′ ◦ f −→ f ◦ T .
1. If f has a right adjoint f∗, and (A,α : TA → A) is an initial T -algebra in
C, then (f(A), f(α) ◦ φA : T ′(f(A)) → f(A)) is an initial T ′-algebra in D.

2. If f has a left adjoint f∗, and (A,α : A → TA) is a final T -coalgebra in C,
then (f(A), φ−1

A ◦ f(α) : f(A) → T ′(f(A))) is a final T ′-coalgebra in D.

For a polynomial functor T : SetD → SetD, let us denote T̄ : SetF → SetF the
functor obtained by replacing Atom with V ar and δ+, δ− with δF in T .

Theorem 1. The polynomial functor T : SetD → SetD has initial algebra, which
is (isomorphic to) F ◦ U , where (F, α) is the initial T̄ -algebra in SetF.

Proof. The functor T̄ has initial algebra (see e.g. [6, 10]); let us denote it by
(F, α). In order to prove the result, we apply Proposition 10(1), where f : C −→
D is the functor v! = ◦ U : SetF → SetD of Proposition 6, whose right adjoint
is v∗. Then v!(F) = F ◦ U . We have only to prove that T ◦ v! ∼= v! ◦ T̄ . It is
easy to see that this holds for products, coproducts, constant functors and finite
powersets. It is also trivial to see that Atom ∼= V ar ◦ U .

It remains to prove that κ ◦ v! ∼= v! ◦ δF, for κ = δ+, δ−. For F a functor in
SetF, we prove that there is a natural isomorphism φ : κ(v!(F)) = κ(F ◦ U) −→
v!(δF(F)) = δF(F) ◦ U . This is trivial, because for d(n) a distinction in D, it is
κ(F ◦ U)d = (F ◦ U)κd = FU(κd) = Fn+1 = δF(F)n = (δF(F) ◦ U)d. ��

Therefore, initial algebras of polynomial functors in SetD are exactly initial al-
gebras of the corresponding functors in SetF. This means that SetD can be used
in place of SetF for defining datatypes with variable binding, as in e.g. [9].

There is a similar connection between Set I and SetD, about final coalgebras.

176 M. Miculan and K. Yemane

Lemma 1. δ+ ◦ t∗ ∼= t∗ ◦ δI and δ− ◦ t∗ ∼= t∗ ◦ ()N .

Let T : Set I → Set I be a polynomial functor. Let us denote by T̃ : SetD →
SetD the functor obtained by replacing in (the polynomial of) T , every occurrence
of N with t∗(N), δ with δ+, ()N with δ−. Then, we have the following:

Theorem 2. The functor T̃ : SetD → SetD has final coalgebra, which is (iso-
morphic to) t∗(F), where (F, β) is the final T -coalgebra in Set I.

Therefore, in SetD we can define coalgebrically all the objects definable by
polynomial functors in Set I, like that for late bisimulation [5]. Moreover, SetD

provides other constructors, such as Atom, which do not have a natural coun-
terpart in Set I. An example of application of these distinctive constructors, fol-
lowing [9], is the characterization of open semantics of π-calculus as the final
coalgebra of the functor Bo : SetD → SetD:

BoP � ℘f (Atom × δ−P + Atom ×Atom × P + Atom × δ+P + P) (3)

Notice that, although similar in shape, Bo is not the lifting of the functor B of
strong late bisimulation in Set I (Equation 2), nor can be defined on Set I.

4 Support and Apartness

A key feature of categories for modeling names is to provide some notion of
support of terms/elements, and of non-interference, or “apartness” [19, 8]. In
this section, we first introduce a general definition of support and apartness, and
then we examine these notions in the case of SetD, and related categories.

Definition 2 (support). Let C be a category, F : C → Set be a functor. Let C
be an object of C, and a ∈ FC . A subobject i : D � C of C supports a (at C) if
there exists a (not necessarily unique) b ∈ FD such that a = Fi(b).

A support is called proper iff it is a proper subobject.

We denote by SuppF,C(a) the set of subobjects of C supporting a. The intuition
is that D supports a ∈ FC if D is “enough” for defining a. It is clear that
the definition does not depend on the particular subobject representative. As a
consequence, a is affected by what happens to elements in D only:

Proposition 11. For all D ∈ SuppF,C(a), and for all h, k : C → C ′: if h|D =
k|D then Fh(a) = Fk(a).

Notice that in general, the converse of Proposition 11 does not hold.

Remark 2. When C = F, I, the supports of a ∈ Fn can be seen as approximations
at stage n of the free variables/names of a—that is, the free variables/names
which are observable from n. For instance, let us consider t ∈ Λn, where Λ is
the algebraic definition of untyped λ-calculus in equation 1. It is easy to prove
by induction on t that for all m ⊆ n: m ∈ SuppΛ,n(t) ⇐⇒ FV (t) ⊆ m.

Supports are viewed as “approximations” because elements may have not
any proper support, at any stage. For example, consider the presheaf Stream :

A Unifying Model of Variables and Names 177

F → Set constantly equal to the set of all infinite lists of variables. The stream
s = (x1, x2, x3, . . .), which has infinite free variables, belongs to Streamn for all
n, but also SuppStream,n(s) = {n}. ��

SuppF,C(a) is a poset, inheriting its order from Sub(a), and C itself is always its
top, but it may be that there are no proper supports, as shown in the remark
above. Even in the case that an element has some finite (even proper) support,
still it may be that it does not have a least support. (Consider, e.g., G : F → Set
such that Gn = ∅ for |n| < 2, and = {x} otherwise; then x ∈ G{x,y,z} is supported
by {x, y} and {x, z} but not by {x} alone.) However, we can prove the following:

Proposition 12. Let C have pullbacks, F : C → Set be pullback-preserving, C
be in C, and x ∈ FC . If both C1, C2 support x at C, then C1 ∧ C2 supports x.

Remark 3. In the case that C = I, pullback-preserving functors correspond to
sheaves with respect to the atomic topology, that is the Schanuel topos [12]. This
subcategory of Set I has been extensively used in previous work for modeling
names and nominal calculi; see [10, 4] among others, and ultimately also the FM
techniques by Gabbay and Pitts [8, 17], since the category of nominal sets with
finite support is equivalent to the Schanuel topos [8–Section 7].

We will use pullback-preserving functors over D in Section 6 below. ��

In the rest of the paper, we focus on the case when C is one of F, I, D, which
do have pullbacks and initial object (∅, ∅ and ⊥(∅) respectively). As one may
expect, the support in D is a conservative generalization of those in F and I:

Proposition 13. 1. Let n,m ∈ F, and F : F → Set. For all a ∈ Fn: m ∈
SuppF,n(a) ⇐⇒ v(m) ∈ Suppv!(F),v(n)(a). 2

2. Let n,m ∈ I, and F : I → Set. For all a ∈ Fn: m ∈ SuppF,n(a) ⇐⇒ t(m) ∈
Suppt∗(F),t(n)(a).

We can now give the following general key definition, generalizing that used
sometimes in Set I (see e.g. [19]).

Definition 3 (Apartness). Let C be a category with pullbacks and initial ob-
ject. For A,B : C → Set, the functor A #C B : C → Set (“A apart from B”) is
defined on objects as follows:

(A#C B)C = {(a, b) ∈ AC ×BC | for all f : C → D :
there exist s1 ∈ SuppA,D(Af (a)), s2 ∈ SuppB,D(Bf (b)) s.t. s1 ∧ s2 = 0} (4)

For f : C → D, it is (A#C B)f � Af ×Bf .

As a syntactic shorthand, we will write pairs (a, b) ∈ (A#C B)c as a# b. In the
following, we will drop the index C when clear from the context.

Let us now apply this definition to the three categories Set I, SetF, and SetD.

2 Recall that v!(F)v(n)
∼= Fn, and hence it is consistent to consider a ∈ v!(F)v(n).

178 M. Miculan and K. Yemane

C = F In this case we have that a # b iff at least one of a, b is closed, i.e., it is
supported by the empty set: if both a and b have only non-empty supports, then
some variable can be always unified by a suitable morphism. So the definition
above simplifies as follows:

(A #F B)n = {(a, b) ∈ An × Bn | ∅ ∈ SuppA,n(a) or ∅ ∈ SuppB,n(b)} (5)

C = I In this case, names are subject only to injective renamings, and therefore
can be never unified. So it is sufficient to look at the present stage, that is, the
definition above simplifies as follows:

(A#I B)n = {(a, b) ∈ An ×Bn |
there exist n1 ∈ SuppA,n(a), n2 ∈ SuppB,n(b) s.t. n1 ∩ n2 = ∅} (6)

which corresponds to say that a# b iff a, b do not share any free name.

C = D This case subsumes both previous cases: informally, (a, b) ∈ (A # B)d
means that if i is an atom appearing free in a, then any j occurring free in b can
never be unified with i, that is (i, j) ∈ d:

(A#D B)d(n) = {(a, b) ∈ Ad ×Bd |
there exist s1 ∈ SuppA,d(a), s2 ∈ SuppB,d(b) s.t. s1 ⊕ s2 ≤ d} (7)

Actually, all these tensors arise from the monoidal structures ⊕ and # of the
categories I and D, via the following general construction due to Day [3]:

Proposition 14. Let (C, !, I) be a (symmetric) monoidal category. Then,
(SetC , !C ,y(I)) is a (symmetric) closed monoidal category, where

(A !C B)C =
∫ C1

AC1 ×
∫ C2

BC2 × C(C1 ! C2, C) (8)

Theorem 3. The monoidal structure (D,⊕,⊥(∅)) induces, via equation 8, the
monoidal structure (SetD,#D,y(⊥(0)) = K1 = 1) of equation 7.

Proof. Let A,B : D → Set , and d(n) ∈ D; by applying Proposition 14 and since
products preserves coends, we have

(A !D B)d =
∫∫ d1,d2

Ad1 ×Bd2 × D(d1 ⊕ d2, d)

=

⎛
⎝ ∐

d1,d2∈D

Ad1 ×Bd2 × D(d1 ⊕ d2, d)

⎞
⎠

/≈

(9)

where the equivalence ≈ is defined on triples as follows

(a, b, f : d1 ⊕ d2 → d) ≈ (a′, b′, g : d′1 ⊕ d′2 → d)
⇐⇒ Af◦inl(a) = Ag◦inl(a′) and Bf◦inr(b) = Bg◦inr(b′)

A Unifying Model of Variables and Names 179

For each class [(a, b, f : d1 ⊕ d2 → d)] ∈ (A !D B)d we can associate a unique
pair (Af◦inl(a), Bf◦inr(b)) ∈ (A #D B)d; the definition does not depend on the
particular representative we choose.

On the converse, let us consider a pair (a, b) ∈ (A#D B)d; this means that

– there exists f1 : s1 � d, a′ ∈ As1 such that a = Af1(a
′)

– there exists f2 : s2 � d, b′ ∈ Bs2 such that b = Bf2(b
′)

and such that [f1, f2] : s1 ⊕ s2 � d. We can associate this pair (a, b) to the
equivalence class of the triple (a′, b′, [f1, f2]) in the coend 9. The class defined in
this way does not depend on the particular a′ and b′ we choose.

It is easy to check that these two mappings are inverse of each other. ��

A similar constructions applies also to Set I, as observed e.g. in [19]:

Proposition 15. The monoidal structure (I,#, 0) induces, via equation 8, the
monoidal structure (Set I,#I,y(0) = 1) of equation 6.

Using Theorem 3, we can show that #F is a particular case of #D:

Proposition 16. #F = v∗ ◦#D ◦ 〈v∗, v∗〉.

Proof. Let us prove that for F,G : F → Set , it is (v∗(F) #D v∗(G))⊥(n) ∼=
(F #F G)n. By applying Theorem 3, we have

(v∗(F) #D v∗(G))⊥(n) =

⎛
⎜⎝ ∐

d
(n1)
1 ,d

(n2)
2 ∈D

v∗(F)d1 × v∗(G)d2 × D(d1 ⊕ d2,⊥(n))

⎞
⎟⎠

/≈

=

⎛
⎜⎝ ∐

d
(n1)
1 ,d

(n2)
2 ∈D

Fn1 ×Gn2 × D(d1 ⊕ d2,⊥(n))

⎞
⎟⎠

/≈

Let us consider the set D(d1 ⊕ d2,⊥(n)). If d1 ⊕ d2 = ⊥(m) for some m, then
D(d1 ⊕ d2,⊥(n)) = F(m,n). Otherwise, D(d1 ⊕ d2,⊥(n)) = ∅.

Now, the only way for having d1⊕d2 = ⊥(m) is that both d1 and d2 are empty
relations ⊥(n1),⊥(n2), and at least one of them has no atoms at all (otherwise
the ⊕ would add a distinction in any case). Therefore, the equivalence above can
be continued as follows:

. . . =

((∐
n1∈F

Fn1 ×G∅ × F(n1, n)

)
+

(∐
n2∈F

F∅ ×Gn2 × F(n2, n)

))
/≈

This means that the triples are either of the form (a ∈ F∅, b ∈ Gn2 , f : n2 → n),
or of the form (a ∈ Fn1 , b ∈ G∅, f : n1 → n). The first is equivalent to the pair
(F?(a),Gf (b)), the second to the pair (Ff (a),G?(b)), both in (F #F G)n. ��

The next corollary is a consequence of Theorem 3 and Proposition 14:

180 M. Miculan and K. Yemane

Corollary 1. The functor A# : SetD → SetD has a right adjoint [A] , defined
on objects by ([A]B)d = SetD(A,Bd⊕).

Remark 4. Let us consider the counit evA,B : A#[A]B −→ B of this adjunction.
For d ∈ D, the component evd : (A#[A]B)d −→ Bd maps an element a ∈ Ad and
a natural transformation φ : A → Bd⊕ , apart from each other, to an element
in Bd, which can be described as follows. Let s1, s2 ∈ Sub(d) supporting φ
and a, respectively, and such that s1 ⊕ s2 ≤ d. By the definition of support,
let φ′ : A → Bs1⊕ and a′ ∈ As2 be the witnesses of φ and a at s1 and s2,
respectively. Then, φ′s2

(a′) ∈ Bs1⊕s2 , which can be mapped to an element in Bd

by the inclusion s1 ⊕ s2 ≤ d. ��

Finally, for A = Atom we have the counterpart of Proposition 5:

Proposition 17. [Atom] ∼= δ+, and hence # Atom) δ+.

5 Substitution Monoidal Structure of SetD

Let us define a tensor product • : SetD × SetD → SetD as follows:

for A,B ∈ SetD : A •B �
∫ e∈D

Ae ·Be

that is, for d ∈ D : (A •B)d =
∫ e∈D

Ae × (Be)d

where, for e(n) in D, Be : D → Set is the functor defined by

(Be)d = {(b1, . . . , bn) ∈ (Bd)n | if (i, j) ∈ e then (bi, bj) ∈ (B #B)d}
(Be)f = (Bf)n for f : d(m) → d′(m

′)

Unfolding the coend, we obtain the following explicit description of A •B :

(A •B)d =

(∐
e∈D

Ae × (Be)d

)
/≈

where ≈ is the equivalence relation defined by

(a; bρ(1), . . . , bρ(n)) ≈ (Aρ(a); b1, . . . , bn′) for ρ : e(n) → e′(n
′).

Actually, B() can seen as a functor B() : D
op → SetD, adding the “reindex-

ing” action on morphisms: for ρ : e(n) → e′(n
′), define Bf : Be′ −→ Be as the nat-

ural transformation with components Bf
d : (Be′)d −→ (Be)d, B

f
d (b1, . . . , bn′) =

(bf(1), . . . , bf(n)). It is easy to check that Bf is well defined: if (i, j) ∈ e′(n
′), then

(f(i), f(j)) ∈ e(n) and hence (bf(i), bf(j)) ∈ (B #B)d. The functor B() is a gen-
eralization of Cartesian extension; for instance, B⊥(2)

= B×B, B�(2)
= B#B.

A Unifying Model of Variables and Names 181

We can give now a more abstract definition of • B : SetD → SetD, for all
B ∈ SetD. In fact, •B arises as the left Kan extension of the functor B():

1
⊥(1)

��

B !!�
��

��
��

� D
op

B()

��

� � y ��
Lan∼=

SetD

•B
""

SetD
〈B, 〉

##
(10)

where 〈B, 〉 is the right adjoint of •B, defined as 〈B,A〉d = SetD(Bd, A).

Proposition 18. (SetD, •,Atom) is a (non-symmetric) monoidal category.

Monoids in SetD satisfy the usual properties of clones. In particular, the mul-
tiplication σ : A • A → A of a monoid (A, σ, v) can be seen as a distinction-
preserving simultaneous substitution: for every d(n) ∈ D, σd maps (the class of)
(a; a1, . . . , am) ∈ Ae×(Ae)d to an element in Ad, making sure that distinct atoms
are “replaced by” elements which are apart (if (i, j) ∈ e, then (ai, aj) ∈ (A#A)d).

As in [6, 18], the monoidal structure of SetD can be used for characteriz-
ing presheaves coherent with apartness-preserving substitution; in particular,
presheaves generated by binding signatures with constructors for distinctions,
such as the signature of D-Fusion [2]. Details will appear elsewhere.

6 Self-Dual Quantifier

In this section we define a self-dual quantifier, in a suitable subcategory of SetD.
We begin with a standard construction of categorical logic. For A,B ∈ SetD,
let us consider the morphism θ : A # B ↪→ A × B

π→ B, given by inclusion in
the cartesian product. We can define the inverse image of θ, θ∗ : Sub(B) →
Sub(A#B): for U ∈ Sub(A), the subobject θ∗(U) ∈ Sub(A#B) is the pullback
of U � B along θ: θ∗(U)d = {(x, y) ∈ (A#B)d | y ∈ Ud}.

By general and well-known results [16, 12], θ∗ has both left and right adjoints,
denoted by ∃θ,∀θ : Sub(A#B)→ Sub(B), respectively. (If # is replaced by ×,
these are the usual existential and universal quantifiers ∃,∀ : Sub(A × B) →
Sub(B).) Our aim is to prove that, under some conditions, it is ∃θ = ∀θ.

The condition is suggested by the following result, stating that if a property
of a “well-behaved” type holds for a fresh atom, then it holds for all fresh atoms:

Proposition 19. Let B : D → Set be a pullback preserving functor, and let U
a subobject of Atom # B. Let d ∈ D, and (a, x) ∈ Ud. Then for all b ∈ Atomd

such that b# x: (b, x) ∈ Ud.

Then, we have to restrict our attention to a particular class of subobjects:

Definition 4. Let A : D → Set be an object of SetD. A subobject U ≤ A is
closed if for all d ∈ D, f : d→ e, x ∈ Ad: if Af (x) ∈ Ue then x ∈ Ud.

The lattice of closed subobjects of A is denoted by ClSub(A).

182 M. Miculan and K. Yemane

However, pullback-preserving subobjects of pullback-preserving functors are au-
tomatically closed, so this requirement is implied by the first one:

Proposition 20. Let A : D → Set be a pullback preserving functor, and U ≤ A
be a subobject of A. If also U is pullback preserving, then it is closed.

Let us denote by D the full subcategory of SetD of pullback preserving func-
tors. By above, for all A ∈ D, the lattice Sub(A) of pullback-preserving subob-
jects is ClSub(A), but we will keep writing ClSub(A) for avoiding confusions.

For “well-behaved” types, θ∗ restricts to closed subobjects:

Proposition 21. For all A,B ∈ D and U ∈ ClSub(A) : θ∗(U) ∈ ClSub(A#B).

Its left and right adjoints ∃θ,∀θ : ClSub(A # B) → ClSub(A) have the fol-
lowing explicit descriptions: for U ≤ A#B :

∃θ(U)d = {y ∈ Bd | there exist f : d→ e, x ∈ Ae,

such that x#Bf (y) and (x,Bf (y)) ∈ Ue}
∀θ(U)d = {y ∈ Bd | for all f : d→ e, x ∈ Ae, if x#Bf (y) then (x,Bf (y)) ∈ Ue}

Proposition 22. For all B in D: θ∗ ◦ ∃θ = idClSub(Atom#B)

Proof. For U ∈ ClSub(Atom # B), we have to prove that θ∗(∃θ(U)) = U . In-
clusion ⊇ is trivial. Let us prove ⊆. If (a, y) ∈ θ∗(∃θ(U))d, then a # y, and by
definition of ∃θ there exist f : d→ e, b ∈ Atome such that (b,Bf (y)) ∈ Ue (and
hence b # Bf (y)). But also f(a) # Bf (y), and therefore by Proposition 19, this
means that also (f(a), Bf (y)) ∈ Ue. By closure of U , it must be (a, y) ∈ Ud. ��

Proposition 23. Let B ∈ D, and U ∈ ClSub(B); then, for all x ∈ Ud, there
exist f : d→ e and a ∈ Atome such that a#Bf (x).

Proposition 24. For all B in D: ∃θ ◦ θ∗ = idClSub(B).

Proof. Let U ∈ ClSub(B) be a closed subobject. For any d ∈ D, we have

∃θ(θ∗(U))d = {x ∈ Bd | there exist f : d→ e, a ∈ Atome,

s.t. a#Bf (x) and (a,Bf (x)) ∈ θ∗(U)e}
= {x ∈ Bd | there exist f : d→ e, a ∈ Atome, s.t. a#Bf (x) and Bf (x) ∈ Ue}
= {x ∈ Ud | there exist f : d→ e, a ∈ Atome, s.t. a#Bf (x)}

For Proposition 23 above, this is exactly equal to Ud, hence the thesis. ��

Corollary 2. For A ∈ D, the inverse image θ∗ : ClSub(A) → ClSub(Atom#A)
is an isomorphism, and hence θ∗) ∃θ = ∀θ) θ∗

Let us denote by : ClSub(Atom # A) → ClSub(A) any of ∃θ and ∀θ.
There is a close connection between this quantifier and Gabbay-Pitts’ (hence
the notation); in fact, both quantifiers enjoy the following inclusions:

Proposition 25. Let i : A # B ↪→ A × B be the inclusion map, and i∗ :
ClSub(A × B) → ClSub(A # B) its inverse image. Then: ∀ ≤ ◦ i∗ ≤ ∃,
that is, for all U ∈ ClSub(A×B): ∀U ≤ (i∗(U)) ≤ ∃U .

A Unifying Model of Variables and Names 183

7 A Model for FOλ∇

In this section we apply the structure of D for giving a semantic interpretation
of the logic FOλ∇ [15]. FOλ∇ is a proof theory of generic judgments. Terms and
typing judgments Σ � t : τ of FOλ∇ are as usual for simply typed λ-calculus,
signatures Σ are sets x1:τ1, . . . , xm:τm. Sequents have the form

Σ : σ1 �B1, . . . , σn �Bn −→ σ0 �B0

where Σ is the global signature, and each σi is a local signature. A judgment
σi �Bi is called generic; each Bi can use variables of the global signature Σ or
in the local signature σi (formally: Σ, σi � Bi : o). See [15] for further details.

Variable symbols in FOλ∇ play two different roles. Those declared in global
signatures act as variables of λ-calculus; instead, variables of local signatures act
as “locally scoped constants”, much like restricted names of π-calculus. A model
of FOλ∇ must account for both aspects at once, and this is the reason for neither
SetF nor Set I (and their subcategories) can suffice. We can give an interpretation
of both aspects in D, taking advantage of its structure which subsumes those of
SetF and Set I: as we will see, the dynamic allocation functor δ−, the apartness
tensor (right adjoint to δ+) and the quantifier will come into play.

The interpretation of types and terms is standard: each type τ is interpreted
as a functor �τ� in D; the interpretation is extended to global signatures using
the cartesian product. A well-typed term Σ � t : γ is interpreted as a morphism
(i.e., a natural transformation) �t� : �Σ� −→ �γ� in D. Notice that here, “local”
signatures do not have any special rôle, so that terms are simply typed λ-terms
without any peculiar “freshness” or “scoping” constructor.3

On the other hand, in the interpretation of generic judgments we consider
variables in local signatures as distinguished atoms. A declaration y appearing
in a local signature σ, is intended as a “fresh, local” atom.

Remark 5. A correct model for FOλ∇ would require a distinguished functor of
atoms for each type (which can occur in local signatures) of the term language.
Although it is technically possible to develop a typed version of the theory of
SetD (along the lines of [13] for SetF), it does not add anything substantial to
our presentation; so in the following we assume variables of local signatures, or
bound by ∇, can be only of one type (denoted by α). Hence, local signatures σ
are of the form (y1:α, . . . , yn:α), or better (y1, . . . , yn) leaving α’s implicit. ��

The distinguished type of propositions, o, is interpreted as the classifier of
(closed) subobjects: �o�d = ClSub(y(d)) = ClSub(D(d,)). A generic judgment
(y1, . . . , yn) �B in Σ (i.e., Σ, y1 : α, . . . yn : α � B : o) is interpreted as a closed
subobject �(y1, . . . , yn) �B��Σ� ≤ �Σ�. More precisely, �σ �B�A ∈ ClSub(A)
is defined first by induction on the length of the local context σ, and then by
structural induction on B. Local declarations and the ∇ quantifier are rendered
by the functor : ClSub(A#Atom) → ClSub(A) above. Some interesting cases:

3 As Miller and Tiu say, this is a precise choice in the design of FOλ∇, motivated by
the fact that standard unification algorithms still work unchanged.

184 M. Miculan and K. Yemane

�(y, σ) �B�A � (�σ �B�A#Atom) ��B1 ∧B2�A � ��B1�A ∧ ��B2�A

��∇y.B�A � (��B�A#Atom) ��∀γx.B�A � ∀(��B�A×�γ�)

It is easy to prove by induction on σ that �(σ, y) �B�A = �σ �∇y.B�A.

Finally, a sequent Σ : B1, . . . ,Bn −→ B0 is valid if
∧n

i=1 �Bi��Σ� ≤ �B0��Σ�.
A rule S1...Sn

S is sound if, whenever all S1, . . . ,Sn are valid, also S is valid.
Using this interpretation, one can check that the rules of FOλ∇ are sound.

In particular, the rules ∇L and ∇R are trivial consequence of above. The veri-
fication of ∀R, and ∃L requires some work. Here, we have to give a categorical
account of a particular encoding technique, called raising, used to “gain access”
to local constants from “outside” their scope. A simpler (i.e., monadic) applica-
tion of raising occurs, in the following equivalence, which is provable in FOλ∇:

∇x∀γy.B ≡ ∀α→γh∇x.B[(h x)/y] where Σ, x : α, y : γ � B : o (11)

We show first how to represent (monadic) raising as in the equation 11; inter-
estingly, it is here where the δ− comes into play. Referring to equation 11, let us
denote A = �Σ� and C = �γ�. By the definition above, the interpretation of B
is a subobject of (A# Atom)× C, while B[(h x)/y] corresponds to a subobject
of (A× CAtom) # Atom. Now, notice that CAtom = δ−C (Proposition 5); thus,
h : α→ γ is actually a term �h� ∈ δ−C, that is a term which can make use of a
locally declared variable. We can define the raising morphism

r : (A× δ−C) # Atom → (A# Atom)× C mapping (x, h, a) "→ (x, a, h(a))

The inverse image of r is r∗ : ClSub((A # Atom)× C) → ClSub((A× δ−C) #
Atom), defined by the following pullback:

r∗(U)
��

��

�� U
��

��
(A× δ−C) # Atom r �� (A# Atom)× C

This morphism r∗ is the categorical counterpart of the syntactic raising:

Proposition 26. Let Σ, x:α, y:γ � B : o. Let us denote A = �Σ�, C = �γ�.
Then, r∗(�y �B�C) = �y �B[(h y)/x]�A×δ−C .

Then, quite obviously, the equation 11 states that ◦ ∀γ = ∀α→γ ◦ ◦ r∗, that
is, the following diagram commutes:

ClSub((A # Atom) × C) r∗ ��

∀γ

��

ClSub((A × δ−C) # Atom) �� ClSub(A × δ−C)

∀α→γ

��
ClSub(A # Atom) �� ClSub(A)

which can be checked by calculation. The raising morphism can be easily gen-
eralized to the polyadic case (recall that B�(n)

= B # · · ·#B, n times):

A Unifying Model of Variables and Names 185

r : (A× δ−nC) # Atom�(n)
→ (A# Atom�(n)

)× C

(x, h, a1, . . . , an) "→ (x, a1, . . . , an, h(a1, . . . , an))

Then, the soundness of the rule ∀R is equivalent to the following:

Proposition 27. Let A,C ∈ D be functors, and n ∈ N. Let π : A× δ−nC → A

be the projection, and r : (A × δ−nC) # Atom�(n)
−→ (A # Atom�(n)

) × C the
raising morphism. For all G ∈ ClSub(A), and U ∈ ClSub((A#Atom�(n)

)×C),
if π∗(G) ≤ n(r∗(U)) then G ≤ n(∀γ(U)).

8 Conclusions

In this paper, we have studied a new model for dynamically allocable entities,
based on the notion of distinction. Previous models for variables and for names
can be embedded faithfully in this model, and also results about initial alge-
bras/final coalgebras and simultaneous substitutions are extended to the more
general setting. In a suitable subcategory of the model, it is possible to define
also a self-dual quantifier, similar to Gabbay-Pitts’ “ ”. This rich structure has
allowed us to define the first denotational model for the logic FOλ∇.

Future work. The rich structure of SetD can be useful also for modeling process
calculi featuring both variables and names at once, like e.g. ambients. Actually,
the intuition behind distinctions is also at the base of the D-Fusion calculus [2];
in fact, we think that the two binders λ, ν of D-Fusion can be modeled precisely
by δ− and δ+ in SetD, respectively. Details will appear elsewhere.

FOλ∇ is not complete with respect to the model presented in this paper: the
quantifier enjoys properties which are not derivable in FOλ∇ (e.g., ∀x.B ⊃

∇x.B and ∇x.B ⊃ ∃x.B). One main reason is that FOλ∇ does not admit
weakening on local signature; for instance, the sequent Σ : σ �B −→ (σ, y) �B
is not derivable. This has been already noticed by Gabbay and Cheney, in their
interpretation of FOλ∇ into Fresh Logic [7], another first-order logic with a self-
dual quantifier. Actually, we think that the quantifier of D is closer to the
quantifier of Fresh Logic, than to the ∇ of FOλ∇. For this reason, it should be
possible to model Fresh Logic in D quite easily—another future work.

Acknowledgments. The authors wish to thank Dale Miller and Alwen Tiu for
useful discussions about FOλ∇, and Neil Ghani for hints about Kan extensions.

References

1. J. Adamek, editor. Coalgebraic Methods in Computer Science, ENTCS. 2004.
2. M. Boreale, M. G. Buscemi, and U. Montanari. D-fusion: A distinctive fusion

calculus. In Proc. APLAS’04, LNCS 3302, pages 296–310. Springer, 2004.

186 M. Miculan and K. Yemane

3. B. J. Day. On closed categories of functors. In Reports of the Midwest Category
Seminar, volume 137 of Lecture Notes in Mathematics, pages 1–38. Springer, 1970.

4. M. Fiore and S. Staton. Comparing operational models of name-passing process
calculi. In Adamek [1].

5. M. Fiore and D. Turi. Semantics of name and value passing. In H. Mairson, editor,
Proc. 16th LICS, pages 93–104, 2001.IEEE.

6. M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable binding. In [11].
7. M. Gabbay and J. Cheney. A sequent calculus for nominal logic. In Proc. LICS’04,

pages 139–148. IEEE Computer Society, 2004.
8. M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable

binding. Formal Aspects of Computing, 13:341–363, 2002.
9. N. Ghani, K. Yemane, and B. Victor. Relationally staged computation in calculi

of mobile processes. In Adamek [1].
10. M. Hofmann. Semantical analysis of higher-order abstract syntax. In Longo [11].
11. G. Longo, editor. Proc. 14th Symp. of Logic in Computer Science, 1999. IEEE.
12. S. Mac Lane and I. Moerdijk. Sheaves in Geometry and Logic. Springer, 1994.
13. M. Miculan and I. Scagnetto. A framework for typed HOAS and semantics. In

Proc. PPDP’03, pages 184–194. ACM Press, 2003.
14. M. Miculan and K. Yemane. A unifying model of variables and names. TR

UDMI/15/2004/RR, Dept. of Mathematics and Computing Science, Univ. of
Udine, 2004. http://www.dimi.uniud.it/miculan/Papers/UDMI152004.pdf.

15. D. Miller and A. F. Tiu. A proof theory for generic judgments: An extended
abstract. In LICS 2003, pages 118–127, 2003. IEEE.

16. A. M. Pitts. Categorical logic. In Handbook of LICS, vol. 5. OUP, 2000.
17. A. M. Pitts. Nominal logic, a first order theory of names and binding. Information

and Computation, 186:165–193, 2003.
18. J. Power and M. Tanaka. Binding signatures for generic contexts. In Proc.

TLCA’05, LNCS ?. Springer, 2005.
19. I. Stark. A fully abstract domain model for the π-calculus. In Proc. LICS’96.

A Category of Higher-Dimensional Automata

Ulrich Fahrenberg

Dept. of Mathematical Sciences, Aalborg University, Denmark
uli@math.aau.dk

Abstract. We show how parallel composition of higher-dimensional au-
tomata (HDA) can be expressed categorically in the spirit of Winskel
& Nielsen. Employing the notion of computation path introduced by
van Glabbeek, we define a new notion of bisimulation of HDA using open
maps. We derive a connection between computation paths and carrier se-
quences of dipaths and show that bisimilarity of HDA can be decided by
the use of geometric techniques.

Keywords: Higher-dimensional automata, bisimulation, open maps, di-
rected topology, fibrations.

1 Introduction

In his invited talk at the 2004 Express workshop, van Glabbeek [11] put higher-
dimensional automata (HDA) on top of a hierarchy of models for concurrency.
In this article we develop a categorical framework for expressing constructions
on HDA, building on work by Goubault in [12, 13].

Following up on a concluding remark in [13], we introduce a notion of bisim-
ulation of HDA, both as a relation and using open maps [19]. Our notion differs
from the ones introduced by van Glabbeek [10] and Cattani-Sassone [4].

Employing recent developments by Fajstrup [8], we show that bisimilarity of
HDA is equivalent to a certain dipath-lifting property, which can be attacked
using (directed) homotopy techniques. This confirms a prediction from [13].

Due to space limitations, we had to omit some of the more technical points
in this paper. An extended version is published in [6].

The author is indebted to Eric Goubault and Emmanuel Haucourt for many
valuable discussions during his visit at CEA in Paris, and to Lisbeth Fajstrup
and Martin Raussen at the Department of Mathematical Sciences in Aalborg.

2 Cubical Sets

Cubical sets were introduced by Serre in [22] and have a variety of applications
in algebraic topology, both in homology, cf. [20], and in homotopy theory, cf. [2,
5, 18]. Compared to the more well-known simplicial sets, they have the distinct
advantage that they have a natural sense of (local) direction induced by the order

V. Sassone (Ed.): FOSSACS 2005, LNCS 3441, pp. 187–201, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

188 U. Fahrenberg

on the unit interval. This makes them well-suited for applications in concurrency
theory, cf. [9].

A precubical set is a graded set X = {Xn}n∈ together with mappings δνi(n) :
Xn → Xn−1, i = 1, . . . , n, ν = 0, 1, satisfying the precubical identity

δνi δ
μ
j = δμj−1δ

ν
i (i < j) (1)

These are called face maps, and if x = δν1
i1
· · · δνn

in
y for some cubes x, y and some

(possibly empty) sequences of indices, then x is called a face of y. If all νi = 0,
x is said to be a lower face of y; if all νi = 1, x is an upper face of y.

As above, we shall omit the subscript (n) in δνi(n) whenever possible. Elements
of Xn are called n-cubes.

A cubical set is a precubical set X together with mappings εi(n) : Xn → Xn+1,
i = 1, . . . , n+ 1, such that

εiεj = εj+1εi (i ≤ j) δνi εj =

⎧⎪⎨
⎪⎩
εj−1δ

ν
i (i < j)

εjδ
ν
i−1 (i > j)

id (i = j)
(2)

These are called degeneracies, and equations (1) and (2) together form the cubical
identities.

The standard example of a cubical set is the singular cubical complex of a
topological space, cf. [20]: If X is a topological space, let SnX = Top(In, X), the
set of all continuous maps In → X, where I is the unit interval. If the maps δνi
and εi are given by

δνi f(t1, . . . , tn−1) = f(t1, . . . , ti−1, ν, ti, . . . , tn−1)

εif(t1, . . . , tn) = f(t1, . . . , t̂i, . . . , tn)

(the notation t̂i means that ti is omitted) then SX = {SnX} is a cubical set.
Morphisms of (pre)cubical sets are required to commute with the structure

maps, i.e. if X, Y are two (pre)cubical sets, then a morphism f : X → Y is
a sequence of mappings f = {fn : Xn → Yn} that fulfill the first, respectively
both, of the equations

δνi fn = fn−1δ
ν
i εifn = fn+1εi

This defines two categories, pCub and Cub, both of which are presheaf cate-
gories over certain small categories of elementary cubes, cf. [17], hence they are
Cartesian closed, complete, and cocomplete. The forgetful functor

Cub −→ pCub

has a left adjoint, providing us with a “free” functor in the opposite direction
which we shall denote F .

A (pre)cubical set X = {Xn} is said to be k-dimensional if Xn = ∅ for
n > k. The full subcategories of k-dimensional objects in our cubical categories
are denoted pCubk respectively Cubk. The free-forgetful adjunction above passes
to the k-dimensional categories.

A Category of Higher-Dimensional Automata 189

3 Product and Tensor Product

The product of two (pre)cubical sets is given by

(X × Y)n = Xn × Yn

with face maps and degeneracies defined component-wise. This is a product in
the categorical sense. A (pre)cubical relation between (pre)cubical sets X, Y is
a (pre)cubical subset of the product X × Y .

The tensor product of two precubical sets Z = X � Y is given by

Zn =
⊔

p+q=n

Xp × Yq

with face maps

δαi (x, y) =

{
(δαi x, y) (i ≤ p)
(x, δαi−py) (i ≥ p+ 1)

(x, y) ∈ Xp × Yq

The category Cub inherits this tensor product, however some identifications
have to be made to get well-defined degeneracy maps, cf. [3]. The tensor product
of two cubical sets Z = X � Y is then given by

Zn =
(⊔

p+q=n

Xp × Yq

)/
∼n

where ∼n is the equivalence relation generated by, for all (x, y) ∈ Xr × Ys,
r+s = n−1, letting (εr+1x, y) ∼n (x, ε1y). If x�y denotes the equivalence class
of (x, y) ∈ Xp × Yq under ∼n, the face maps and degeneracies of Z are given by

δαi (x� y) =

{
δαi x� y (i ≤ p)
x� δαi−py (i ≥ p+ 1)

εi(x� y) =

{
εix� y (i ≤ p+ 1)
x� εi−py (i ≥ p+ 1)

4 Transition Systems

We shall construct our category of higher-dimensional automata as a special
arrow category in Cub. To warm up, we include a section on how transition sys-
tems can be understood as an arrow category in Cub1, the category of digraphs.
Though our exposition differs considerably from the standard one, see e.g. [23],
the end result is basically the same.

A digraph is a 1-dimensional cubical set, i.e. a pair of sets (X1, X0) together
with face maps δ0, δ1 : X1 → X0 and a degeneracy mapping ε = ε1 : X0 → X1
such that δ0ε = δ1ε = id. Morphisms of digraphs (X1, X0), (Y1, Y0) are thus
mappings f = (f1, f0) commuting with the face and degeneracy mappings. A
predigraph is a 1-dimensional precubical set. Note that we allow both loops and
multiple edges in our digraphs.

190 U. Fahrenberg

The category of digraphs has a terminal object ∗ consisting of a single vertex
and the degeneracy edge on that vertex. A transition system is a digraph which is
freely generated by a predigraph together with a specified initial point, hence the
category of transition systems is 〈∗�FpCub1〉, the comma category of digraphs
freely generated by predigraphs under ∗. In the spirit of [23], passing from a
predigraph to the digraph freely generated by it means that we add idle loops
to each vertex, hence allowing for transition system morphisms which collapse
transitions.

As for labeling transition systems, we note that there is an isomorphism
between the category of finite sets and the full subcategory of pCub1 induced
by finite one-point predigraphs, given by mapping a finite set Σ to the one-
point predigraph with edge set Σ. Identifying finite sets with the digraphs freely
generated by their associated predigraphs, we define a labeled transition system
over Σ to be a digraph morphism λ : 〈∗ � FpCub1〉 → Σ which is induced by
a predigraph morphism. This last convention is to ensure that idle loops are
labeled with the idle label ε∗.

Say that a morphism λ ∈ Cub1 is non-contracting if λa = ε∗ implies a = εδ0a
for all edges a, and note that if the source and target of λ are freely generated
by precubical sets, then λ is non-contracting if and only if it is in the image of
the free functor pCub1 → Cub1.

For morphisms between labeled transition systems we need to allow functions
that map labels to “nothing,” i.e. partial alphabet functions. The category of
finite sets with partial mappings is isomorphic to the full subcategory Σ of Cub1

induced by digraphs freely generated by finite one-point predigraphs. Hence we
can define the category of labeled transition systems to be the non-contracting
comma-arrow category 〈∗ �FpCub1

��Σ〉, with objects pairs of morphisms—the
second one non-contracting

∗ −→ X −→−→ Σ

and morphisms pairs of arrows making the following square commute:

∗

��

∗

��

X1 ��

����

X2

����

Σ1 �� Σ2

We shall always visualise non-contracting morphisms by double arrows.
Note that our transition systems have the special feature that there can be

more than one transition with a given label between a pair of edges; in the
terminology of [23] they are not extensional. Except for that, our definition is in
accordance with the standards.

To express parallel composition of transition systems, we follow the approach
of [23] and use a combination of product, relabeling and restriction. In our con-
text, the product of two transition systems ∗ → X1 → Σ1, ∗ → X2 → Σ2 is the

A Category of Higher-Dimensional Automata 191

transition system ∗ −→ X1×X2
λ−→ Σ1×Σ2, where the arrow λ is given by the

universal property of the product Σ1×Σ2. We note that, indeed, the product of
two one-point digraphs with edge sets Σ1 respectively Σ2 is again a one-point
digraph, with edge set

{(a, b), (a, ε∗), (ε∗, b) | a ∈ Σ1, b ∈ Σ2}

One easily shows λ to be non-contracting, and the so-defined product is in fact
the categorical product in the category 〈∗�FpCub1

��Σ〉.
A relabeling of a transition system is a non-contracting alphabet morphism

under the identity, i.e. an arrow in 〈∗�FpCub1
��Σ〉 of the form

∗

��

∗

��

X

����

X

����

Σ1
���� Σ2

Restriction of transition systems is defined using pullbacks; given a transition
system ∗ → X2 → Σ2 and a mapping σ : Σ1 → Σ2, we define the restriction of
X2 to Σ1 by the pullback

∗

��

��

��

X1 ��

����

X2

����

Σ1 σ
�� Σ2

where the mapping ∗ → Σ1 is uniquely determined as Σ1 is a one-point digraph.
It is not difficult to show that the so-defined morphism X1 → Σ1 is in fact
non-contracting.

5 Higher-Dimensional Automata

The category Cub has a terminal object ∗ consisting of a single point and all its
higher-dimensional degeneracies. The category of higher-dimensional automata
is the comma category 〈∗�FpCub〉, with objects cubical sets freely generated by
precubical sets with a specified initial 0-cube.

For labeling HDA, we follow the approach laid out in [12, 13]. We assume
the finite set Σ of labels to be totally ordered and define a precubical set !Σ′

as follows: !Σ′
0 = {∗}, !Σ′

n is the set of (not necessarily strictly) increasing
sequences of length n of elements of Σ, and

δαi(n)(x1, . . . , xn) = (x1, . . . , x̂i, . . . , xn)

192 U. Fahrenberg

Then we let !Σ be the free cubical set on !Σ′.
Let !Σbe the full subcategory ofCub induced by the cubical sets !Σ as above.We

show in [6] that !Σ, like the category Σ in the preceding section, is isomorphic to the
category of finite sets and partial (and not necessarily order-preserving) mappings.

Define a morphism f : X → Y of cubical sets to be non-contracting if
f(x) = εiδ

0
i f(x) implies x = εiδ

0
i x for all x ∈ Xn, n ∈ , i = 1, . . . , n. Note

again that if the cubical sets X, Y are freely generated by precubical sets, then
a morphism f : X → Y is non-contracting if and only if it is the image of a
precubical morphism under the free functor.

The category of labeled higher-dimensional automata is then defined to be
〈∗ � FpCub �� !Σ〉, with objects ∗ −→ X −→−→ !Σ and morphisms commutative
diagrams

∗

��

∗

��

X1 ��

����

X2

����

!Σ1 �� !Σ2

Note that by this construction, the label of an n-cube is the ordered n-tuple of
the labels of all its 1-faces.

6 Constructions on HDA

As in [12], we replace the product of transition systems by the tensor product of
higher-dimensional automata. The tensor product of two HDA ∗ → X1

λ−→ !Σ1,
∗ → X2

μ−→ !Σ2 is defined to be

∗ −→ X1 �X2
λ�μ−→ !Σ1 � !Σ2

The following lemma, where Σ1#Σ2 denotes the disjoint union of Σ1 and Σ2
with the order induced by declaring Σ1 < Σ2, ensures that this in in fact a HDA:

Lemma 1. Given alphabets Σ1, Σ2, then !Σ1 � !Σ2 = !(Σ1 #Σ2).

For relabeling HDA we use non-contracting morphisms under the identity,
and we note that if g is defined by the diagram

∗

��

∗

��

X

��

f

��

X

g

����

!Σ1
��

λ
�� !Σ2

then non-contract ability of g follows from f and λ being non-contracting.

A Category of Higher-Dimensional Automata 193

If we want to express the tensor product of two HDA ∗ → X → !Σ1, ∗ →
Y → !Σ2 with non-disjoint alphabets Σ1, Σ2, we can do so by following the
tensor product above with a relabeling !Σ1 � !Σ2 → !(Σ1 ∪Σ2) induced by the
natural projection Σ1#Σ2 → Σ1∪Σ2 (which is not necessarily order-preserving).
This projection is a total alphabet morphism, hence the relabeling map is indeed
non-contracting.

For restrictions we again use pullbacks:

Proposition 1. Given a higher-dimensional automaton ∗ → X2 → !Σ2 and an
injective mapping !Σ1 → !Σ2, then ∗ → X1 → !Σ1 as defined by the pullback
diagram

∗

��

��

��

X1
f

��

��

λ

��

X2

μ

����

!Σ1 σ
�� !Σ2

is again a higher-dimensional automaton.

The arrow ∗ → !Σ1 is uniquely determined as !Σ1 has only one cube in
dimension zero. We will need the injectivity of σ later, to show that our to-be-
defined notion of bisimilarity is respected by restrictions.

7 Bisimulation

In this section we fix a labeling cubical set L and work in the non-contracting
double comma category 〈∗�FpCub��L〉 of HDA over L. The morphisms

∗

		��
��
��

��

��
��

X
f

����

��

��
��

λ

��
��

��
Y

μ
����
��
��

����
��
��

L

in this category respect labelings, hence they are non-contracting themselves: If
f(x) = εiδ

0
i f(x) for some x ∈ X and some i, then λ(x) = μ(f(x)) = εiδ

0
i λ(x)

and thus x = εiδ
0
i x.

A computation path, cf. [10], in a precubical set X is a finite sequence (x1, . . . ,
xn) of cubes of X such that for each k = 1, . . . , n − 1, either xk = δ0

i xk+1 or
xk+1 = δ1

i xk for some i. A computation path (x1, . . . , xn) is said to be acyclic
if there are no other relations between the xi than the ones above. A rooted
computation path in a HDA ∗ i−→ X is a computation path (i∗, . . . , xn), and a

194 U. Fahrenberg

��� ���

���

��� ���

���

i∗

xn

Fig. 1. An acyclic rooted computation path which ends in a 2-cube xn

cube x of the HDA is said to be reachable if there is a rooted computation path
(i∗, . . . , x). Figure 1 shows an example of an acyclic rooted computation path.

We say that a precubical set X is a computation path if there is a computa-
tion path (x1, . . . , xn) of cubes in X such that all other cubes in X are faces of
one of the xi, and similarly for acyclic computation paths. An elementary com-
putation step is an inclusion (x1, . . . , xn) ↪→ (x1, . . . , xn, xn+1) of computation
paths.

Let CPath be the full subcategory of the category of HDA induced by the
acyclic rooted computation paths, then it is not difficult to see that any mor-
phism in CPath is a finite composite of elementary computation steps and iso-
morphisms.

Following the terminology of [19], we say that a morphism f : X → Y is
CPath-open if it has the right-lifting property with respect to morphisms in
CPath. That is, we require that for any morphism m : P → Q ∈ CPath and any
commutative diagram as below, there exists a morphism r filling in the diagram

P ��

m

��

X

f

��

Q ��

r

��

Y

Lemma 2. A morphism f : X → Y is CPath-open if and only if it satisfies the
property that for any reachable x ∈ X and for any z′ ∈ Y such that f(x) = δ0

i z
′

for some i, there is a z ∈ X such that x = δ0
i z and z′ = f(z).

Following established terminology, this could be called a “higher-dimensional
zig-zag property.”

This suggests the following definition of bisimulation of HDA: Given two HDA
∗ i−→ X

λ−→ L, ∗ j−→ Y
μ−→ L over the same alphabet, then a bisimulation

of X and Y is a cubical relation R ⊆ X × Y which respects initial states and
labelings, i.e. (i∗, j∗) ∈ R0, and if (x, y) ∈ R then λx = μy; and for all reachable
x ∈ X, y ∈ Y such that (x, y) ∈ R,

– if x = δ0
i z for some z, then y = δ0

i z
′ for some z′ so that (z, z′) ∈ R,

– if y = δ0
i z

′ for some z′, then x = δ0
i z for some z so that (z, z′) ∈ R.

Note that bisimilarity is indeed an equivalence relation.

A Category of Higher-Dimensional Automata 195

Proposition 2. Two HDA Y , Z are bisimilar if and only if there is a span of
CPath-open maps Y ← X → Z.

Note that when restricted to labeled transition systems, bisimulation of HDA
is equivalent to strong bisimulation [21], the only difference being that strong
bisimulation requires the existence of corresponding transitions, whereas HDA-
bisimulation actually specifies a correspondence.

8 Bisimulation s a Congruence

We show that bisimulation is a congruence with respect to the constructions on
HDA introduced in Section 6. For relabelings this is clear, and for tensor product
we have the following lemma.

Lemma 3. Given CPath-open morphisms f ∈ 〈∗�FpCub��L〉, g ∈ 〈∗�FpCub�
�M〉, then f � g ∈ 〈∗�FpCub��L�M〉 is again CPath-open.

Hence if we have spans of CPath-open morphisms Y1
f1←− X1

g1−→ Z1, Y2
f2←−

X2
g2−→ Z2, then Y1 � Y2 and Z1 � Z2 are bisimilar via the span of CPath-open

morphisms Y1 � Y2
f1�f2←− X1 �X2

g1�g2−→ Z1 � Z2.
Congruency of bisimilarity with respect to restriction is implied by the next

lemma.

Lemma 4. Given a CPath-open morphism f : X → Y ∈ 〈∗ �FpCub ��L〉 and
a non-contracting injective morphism σ : L′ → L, then the unique morphism
f ′ : X ′ → Y ′ defined by the double pullback diagram

X ′ g
��

f ′

��

λ′

��

X
f

��
��

��
��

λ

��

Y ′ h ��

μ′

��

Y

μ

��

L′
σ

�� L

is again CPath-open.

Hence if Y,Z ∈ 〈∗�FpCub��L〉 are bisimilar via a span of CPath-open maps
Y ← X → Z, the above lemma yields a span of CPath-open maps Y ′ ← X ′ → Z ′

of their restrictions to L′.

9 Geometric Realisation of Precubical Sets

We want to relate CPath-openness of a morphism of higher-dimensional au-
tomata to a geometric property of the underlying precubical sets. In order to do
that, we need to recall some of the technical apparatus developed in [9, 8].

I

196 U. Fahrenberg

The geometric realisation of a precubical set X is the topological space

|X| =
⊔
n∈

Xn × [0, 1]n
/
≡

where the equivalence relation ≡ is induced by identifying

(δνi x; t1, . . . , tn−1) ≡ (x; t1, . . . , ti−1, ν, ti, . . . , tn−1)

for all x ∈ Xn, n ∈ , i = 1, . . . , n, ν = 0, 1, ti ∈ [0, 1]. Geometric realisation is
turned into a functor from pCub to Top by mapping f : X → Y ∈ pCub to the
function |f | : |X| → |Y | defined by

|f |(x; t1, . . . , tn) = (f(x); t1, . . . , tn)

This is similar to the well-known geometric realisation functor from simplicial
sets to topological spaces, cf. [1].

Given x ∈ Xn ∈ X, we denote its image in the geometric realisation by
|x| = {(x; t1, . . . , tn) | ti ∈ [0, 1]} ⊆ |X|. The carrier, carr z, of a point z ∈ |X|
is z itself if z ∈ X0, or else the unique cube x ∈ X such that z ∈ int |x|, the
interior of |x|. The star of z is the open set

St z =
{
z′ ∈ |X|

∣∣ carr z � carr z′
}

There is a natural order on the cubes [0, 1]n which is “forgotten” in the
transition pCub −→ Top. One can recover some of this structure by instead
defining functors from pCub to the d-spaces or the spaces with distinguished
cubes of M. Grandis [14, 15, 16], however here we take a different approach as
laid out in [9].

Given a precubical set X and x, y ∈ X, we write x � y if x is a face of y. This
defines a preorder � on X. If x is a lower face of y we write x �− y, if it is an
upper face we write x �+ y. The precubical set X is said to be locally finite if
the set {y ∈ X | x � y} is finite for all x ∈ X0.

Define a precubical set X to be non-selflinked if δνi x = δμj x implies i = j,
ν = μ for all x ∈ X, i, j ∈ +, ν, μ ∈ {0, 1}. Note [9–Lemma 6.16]: If x � y
in a non-selflinked precubical set, then there are unique sequences ν1, . . . , ν�,
i1 < · · · < i� such that x = δν1

i1
· · · δν�

i�
y.

The geometric realisation of a non-selflinked precubical set contains no self-
intersections; if (x, s1, . . . , sn) ≡ (x, t1, . . . , tn), then si = ti for all i = 1, . . . , n.
By [9–Thm. 6.27], the geometric realisation of a non-selflinked precubical set is a
local po-space; a Hausdorff topological space with a relation ≤ which is reflexive,
antisymmetric, and locally transitive, i.e. transitive in each Uα for some collection
U = {Uα} of open sets covering X. In our case, the relation ≤ is induced by the
natural partial orders on the unit cubes [0, 1]n, and a covering U is given by the
stars St|x| of all vertices x ∈ X0.

A dimap between local po-spaces (X,≤X), (Y,≤Y) is a continuous mapping
f : X → Y which is locally increasing : for any x ∈ X there is an open neighbour-
hood U 1 x such that for all x1 ≤X x2 ∈ U , f(x1) ≤Y f(x2). Local po-spaces

A Category of Higher-Dimensional Automata 197

and dimaps form a category lpoTop, and by [9–Prop. 6.38], geometric realisation
is a functor from non-selflinked precubical sets to local po-spaces.

Let #I denote the unit interval [0, 1] with the natural (total) order, and define
a dipath in a local po-space (S,≤) to be a dimap p : #I → S. We recall [8–
Def. 2.17]: Given a locally finite precubical set X and a dipath p : #I → |X|, then
there exists a partition of the unit interval 0 = t1 ≤ · · · ≤ tk+1 = 1 and a unique
sequence x1, . . . , xk ∈ X such that

– xi
= xi+1
– t ∈ [ti, ti+1] implies p(t) ∈ |xi|
– t ∈]ti, ti+1[implies carr p(t) = xi

– carr p(ti) ∈ {xi−1, xi}

The sequence (x1, . . . , xk) is called the carrier sequence of the dipath p, and
we shall denote it by carrs p. It can be shown, cf. [8–Lemma 3.2], that for all
i = 2, . . . , n, either xi−1 �

− xi or xi �
+ xi−1. Note that the definition in [8] makes

an extra assumption on X which, in fact, is not necessary. Figure 2 shows an
example of a carrier sequence.

Fig. 2. A dipath and its carrier sequence

In general we call a sequence of cubes (x1, . . . , xn) a carrier sequence if xi−1�
−

xi or xi �
+ xi−1 for all i = 2, . . . , n. Note that computation paths are carrier

sequences, and conversely, that carrier sequences can be turned into computation
paths by adding in some intermediate cubes. The next lemma shows that any
carrier sequence actually is the carrier sequence of a dipath.

Lemma 5. Given a carrier sequence (x1, . . . , xn) in a locally finite non-selflinked
precubical set X and z ∈ int |xn|, there exists a dipath p : #I → |X| such that
carrs p = (x1, . . . , xn) and p(1) = z.

We can similarly fix z ∈ int |x1| and get a dipath p with p(0) = z, but we
will only need the former case. We shall also need the following two technical
lemmas.

Lemma 6. Given locally finite non-selflinked precubical sets X, Y , a morphism
f : X → Y , and a dipath p : #I → |X|, then carrs(|f | ◦ p) = f(carrs p).

Note that, taking p to be a constant dipath, the lemma implies that carr |f |(z) =
f(carr z) for any z ∈ |X|.

198 U. Fahrenberg

Lemma 7. Given locally finite non-selflinked precubical sets X, Y , a morphism
f : X → Y , a dipath q : #I → |Y |, and a carrier sequence (x1, . . . , xn) in X such
that carrs q = (f(x1), . . . , f(xn)), then there exists a dipath p : #I → |X| such that
carrs p = (x1, . . . , xn) and q = |f | ◦ p.

Note again the implication of the lemma for constant dipaths: If x ∈ X
and z′ ∈ |Y | are such that carr z′ = f(x), then there exists z ∈ |X| such that
carr z = x and z′ = |f |(z).

10 Bisimulation and Dipaths

In this final section we again fix a labeling cubical set L and work in the cat-
egory of higher-dimensional automata over L. Recall that in this category, all
morphisms are non-contracting.

First we note the following stronger variant of Lemma 2, which follows by an
easy induction argument.

Lemma 8. A morphism f : X → Y is CPath-open if and only if it satisfies the
property that for any reachable x1 ∈ X and for any computation path (y1, . . . , yn)
in Y with y1 = f(x1), there is a computation path (x1, . . . , xn) in X such that
yi = f(xi) for all i = 1, . . . , n.

We call a HDA ∗ i−→ X special if the cubical set X is freely generated
by a locally finite non-selflinked precubical set, and for the rest of this section
we assume our HDA to be special. Note that this is not a severe restriction:
Local finiteness is hardly an issue, and the requirement on a precubical set to
be non-selflinked is a natural one which is quite standard in algebraic topology,
cf. [1–Def. IV.21.1].

A point z ∈ |X| in the geometric realisation of a HDA ∗ i−→ X is said to be
reachable if there exists a dipath p : #I → |X| with p(0) = |i∗ | and p(1) = z. This
notion of “geometric” reachability is closely related to the one of computation
path reachability defined in Section 7:

Proposition 3. A point z ∈ |X| in the geometric realisation of a special HDA
∗ i−→ X is reachable if and only if carr z is reachable.

We can now prove the main result of this article, linking bisimulation of HDA
with a dipath-lifting property of their geometric realisations:

Theorem 1. Given a morphism f : X → Y of two special HDA, then f
is CPath-open if and only if, for any reachable z ∈ |X| and for any dipath
q : #I → |Y | such that q(0) = |f |(z), there is a dipath p : #I → |X| filling in the
diagram

A Category of Higher-Dimensional Automata 199

(
|X|, z

)
|f |

��

(#I, 0)

p
��

q
��
(
|Y |, |f |(z)

)
In the special case that all cubes in X are reachable, we can identify z with

the mapping z : 0 "→ z ∈ |X| and draw the above diagram in a more familiar
fashion as

0
z ��� �

��

|X|

|f |
��

#I q
��

p

��

|Y |

That is, a morphism f from a reachable special HDA X to a special HDA Y
is CPath-open if and only if its realisation has the right-lifting property with
respect to the inclusion 0 ↪→ #I.

Proof. The morphism f is non-contracting, hence it is the image of a precubical
morphism, also denoted f , under the free functor. Assume first f to be CPath-
open, let z ∈ |X| be reachable and q : #I → |Y | a dipath with q(0) = |f |(z).
Turn carrs q into a computation path (y1, . . . , yn). Let x1 = carr z, then x1 is
reachable, and y1 = carr |f |(z) = f(x1).

We can invoke Lemma 8 to get a computation path (x1, . . . , xn) in X such
that (y1, . . . , yn) = f(x1, . . . , xn). Lemma 7 then provides a dipath p : #I → |X|
such that q = |f | ◦ p. The construction in the proof of Lemma 7 implies that
p(0) = z.

For the other direction, assume |f | to have the dipath lifting property of the
theorem, let x1 ∈ X be reachable, y1 = f(x1) ∈ Y , and let (y1, . . . , yn) be a
computation path in Y .

Let q : #I → |Y | be the dipath associated with (y1, . . . , yn) as given by
Lemma 5. Then carr q(0) = f(x1), thus we have z ∈ |X| such that carr z = x1
and q(0) = |f |(z). By Proposition 3 the point z is reachable, implying that we
have a dipath p : #I → X such that q = |f | ◦ p and p(0) = z.

Let (x1, . . . , xn) = carrs p, then yi = f(xi) by Lemma 6. We show that
(x1, . . . , xn) is actually a computation path; this will finish the proof. Assume
xi �

− xi+1, i.e. xi = δ0
j1
· · · δ0

j�
xi+1 for some sequence of indices. Then yi =

δ0
j1
· · · δ0

j�
yi+1, but (y1, . . . , yn) is a computation path, hence as Y is non-selflinked,

the sequence of indices contains only one element j�, and xi = δ0
j�
xi+1. Similar

arguments apply to the other case. ��

11 Conclusion and Future Work

We have in this article introduced some synchronisation operations for higher-
dimensional automata, notably tensor product, relabeling, and restriction.

200 U. Fahrenberg

Whether these operations capture the full flavour of HDA synchronisation re-
mains to be seen; some other primitives might be needed.Recent work by Wory -t
kiewicz [24] suggests some directions.

We have also defined a notion of bisimulation for HDA which is closely re-
lated to van Glabbeek’s [10] computation paths. The notion of bisimulation also
defined in [10] appears to be weaker than ours, and their relation should be
worked out in detail.

The notions of computation paths defined in Cattani-Sassone’s [4] and in
[24] differ considerably from van Glabbeek’s, and as a consequence they arrive
at different concepts of bisimulation and even simulation. These differences need
to be worked out, and also the apparent similarities between [4] and [24].

We have shown that our notion of bisimulation has an interpretation as a
dipath-lifting property of morphisms, making the problem of deciding bisimilar-
ity susceptible to some machinery from algebraic topology. In topological lan-
guage, a dipath-lifting morphism is a weak kind of fibration, hinting that fibra-
tions (well-studied in algebraic topology) could have applications, as well. This
also suggests that a general theory of directed fibrations should be developed.

We believe that our bisimulation notion should be weakened, also taking
equivalence of computation paths [10] into account. We plan to elaborate on
this in a future paper, and we conjecture that this bisimulation-up-to-equivalence
has a topological interpretation as a property of lifting dipaths up to directed
homotopy. This weaker bisimulation looks to be closely related to van Glabbeek’s,
and there appears to be a strong connection between his unfoldings of HDA and
directed coverings of local po-spaces [7].

References

1. Glen E. Bredon. Topology and Geometry. Springer-Verlag, 1993.
2. Ronald Brown and Philip J. Higgins. On the algebra of cubes. Journal of Pure

and Applied Algebra, 21:233–260, 1981.
3. Ronald Brown and Philip J. Higgins. Tensor products and homotopies for ω-

groupoids and crossed complexes. Journal of Pure and Applied Algebra, 47:1–33,
1987.

4. Gian Luca Cattani and Vladimiro Sassone. Higher dimensional transition systems.
In Proc. LICS’96, pages 55–62. IEEE Press, 1996.

5. Sjoerd Crans. On Combinatorial Models for Higher Dimensional Homotopies. PhD
thesis, Utrecht University, 1995.

6. Ulrich Fahrenberg. A category of higher-dimensional automata. Technical Re-
port R-2005-01, Department of Mathematical Sciences, Aalborg University, 2005.
http://www.math.aau.dk/research/reports/R-2005-01.ps.

7. Lisbeth Fajstrup. Dicovering spaces. Homology, Homotopy and Applications,
5(2):1–17, 2003.

8. Lisbeth Fajstrup. Dipaths and dihomotopies in a cubical complex. Report
R-2003-22, Department of Mathematical Sciences, Aalborg University, 2003.
http://www.math.aau.dk/research/reports/R-2003-22.ps. Submitted to Ad-
vances in Applied Mathematics.

A Category of Higher-Dimensional Automata 201

9. Lisbeth Fajstrup, Eric Goubault, and Martin Raussen. Algebraic topology and con-
currency. Report R-99-2008, Department of Mathematical Sciences, Aalborg Uni-
versity, 1999. http://www.math.aau.dk/research/reports/R-99-2008.ps. Con-
ditionally accepted for publication in Theoretical Computer Science.

10. Robert Jan van Glabbeek. Bisimulations for higher dimensional automata. Email
message, 1991. http://theory.stanford.edu/~rvg/hda.

11. Robert Jan van Glabbeek. On the expressiveness of higher dimensional automata.
Preprint, 2004. http://www.cse.unsw.edu.au/~rvg/hda.pdf.

12. Eric Goubault. The Geometry of Concurrency. PhD thesis, Ecole Normale
Supérieure, Paris, 1995. http://www.di.ens.fr/~goubault/papers/these.ps.gz.

13. Eric Goubault. Labelled cubical sets and asynchronous transition sys-
tems: an adjunction. In Preliminary Proceedings CMCIM’02, 2002.
http://www.di.ens.fr/~goubault/papers/cmcim02.ps.gz.

14. Marco Grandis. Directed homotopy theory I. Cahiers de Topologie et
Géométrie Différentielle Catégoriques, 44:281–316, 2003. Preprint available as
http://arxiv.org/abs/math.AT/0111048.

15. Marco Grandis. Directed homotopy theory II. Theory and Applications of Cate-
gories, 14:369–391, 2002.

16. Marco Grandis. Directed combinatorial homology and noncommutative tori.
Math. Proc. Cambridge Philos. Soc., 2004. to appear. Preprint available as
http://www.dima.unige.it/~grandis/Bsy.pdf.

17. Marco Grandis and Luca Mauri. Cubical sets and their site. Theory and Applica-
tions of Categories, 11(8):185–211, 2003.

18. J. F. Jardine. Cubical homotopy theory: a beginning. Preprint, 2002.
19. André Joyal, Mogens Nielsen, and Glynn Winskel. Bisimulation from open maps.

Information and Computation, 127(2):164–185, 1996.
20. William S. Massey. A Basic Course in Algebraic Topology, volume 127 of Graduate

Texts in Mathematics. Springer-Verlag, 1991.
21. Robin Milner. Communication and Concurrency. Prentice Hall, 1989.
22. Jean-Pierre Serre. Homologie singulière des espaces fibrés. PhD thesis, Ecole

Normale Supérieure, 1951.
23. Glynn Winskel and Mogens Nielsen. Models for concurrency. In Samson Abram-

sky, Dov M. Gabbay, and Thomas S.E. Maibaum, editors, Handbook of Logic in
Computer Science, volume 4, pages 1–148. Clarendon Press, Oxford, 1995.

24. Krzysztof Worytkiewicz. Synchronization from a categorical perspective. Preprint,
2004. http://arxiv.org/abs/cs.PL/0411001.

Third-Order Idealized Algol with Iteration
Is Decidable

Andrzej S. Murawski1,� and Igor Walukiewicz2,��

1 Oxford University Computing Laboratory, Parks Road,
Oxford OX1 3QD, UK

2 LaBRI, Université Bordeaux-1, 351, Cours de la Libération,
33 405, Talence, France

Abstract. The problems of contextual equivalence and approximation
are studied for the third-order fragment of Idealized Algol with iteration
(IA∗

3). They are approached via a combination of game semantics and
language theory. It is shown that for each IA∗

3-term one can construct
a pushdown automaton recognizing a representation of the strategy in-
duced by the term. The automata have some additional properties ensur-
ing that the associated equivalence and inclusion problems are solvable in
Ptime. This gives an Exptime decision procedure for contextual equiv-
alence and approximation for β-normal terms. Exptime-hardness is also
shown in this case, even in the absence of iteration.

1 Introduction

In recent years game semantics has provided a new methodology for constructing
fully abstract models of programming languages. By definition, such models
capture the notions of contextual equivalence and approximation and so offer
a semantic framework in which to study these two properties. In this paper
we focus on the game semantics of Idealized Algol, a language proposed by
Reynolds as a synthesis of functional and imperative programming [1]. It is
essentially the simply-typed λ-calculus extended with constants for modelling
arithmetic, assignable variables and recursion. This view naturally determines
fragments of the language when the typing framework is constrained not to
exceed a particular order. Many versions of Algol have been considered in the
literature. Typically, for decidability results, general recursion has to be left out
completely or restricted to iteration, e.g. in the form of while-loops as will be
the case in this paper. For similar reasons, base types are required to be finite.

In game models, terms of a programming language are modelled by strategies.
These in turn can sometimes be represented by formal languages, i.e. sets of finite
words, such that equivalence and approximation are established by verifying
respectively equality and inclusion of the induced languages. This approach to

� Supported by British EPSRC (GR/R88861) and St John’s College, Oxford.
�� Supported by the European Community Research Training Network Games.

V. Sassone (Ed.): FOSSACS 2005, LNCS 3441, pp. 202–218, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Third-Order Idealized Algol with Iteration Is Decidable 203

modelling semantics is interesting not only because it gives new insights into
the semantics but also because it opens up the possibility of applying existing
algorithms and techniques developed for dealing with various families of formal
languages [2]. Therefore, it is essential that the class of languages one uses is as
simple as possible – ideally its containment problem should be decidable and of
relatively low complexity.

In this paper we show how to model terms of third-order Idealized Algol
with iteration (IA∗

3) using variants of visibly pushdown automata [3]. One of
the advantages of taking such specialized automata is that the instances of the
containment problem relevant to us will be decidable in Ptime. Another is the
relative simplicity of the inductive constructions of automata for the constructs
of the language. We give the constructions only for terms in β-normal form
taking advantage of the fact that each term can be effectively normalized. The
automata constructed by our procedure have exponential size with respect to
the size of the term, which leads to an exponential-time procedure for checking
approximation and equivalence of such terms. We also provide the matching
lower bound by showing that equivalence of third-order terms, even without
iteration, is Exptime-hard.

Ghica and McCusker [4] were the first to show how certain strategies can
be modelled by languages. They have defined a procedure which constructs a
regular language for every term of second-order Idealized Algol with iteration.
Subsequently, Ong [5] has shown how to model third-order Idealized Algol with-
out iteration using deterministic pushdown automata. Our work can be seen as
an extension of his in two directions: a richer language is considered and a more
specialized class of automata is used (the latter is particularly important for
complexity issues). In contrast to the approach of [5], we work exclusively with
the standard game semantics and translate terms directly into automata, while
the translation in [5] relies on an auxiliary form of game semantics (with explicit
state) in which strategies are determined by view-functions. In the presence of
iteration these functions are no longer finite and the approach does not work
any more (in yet unpublished work Ong proposes to fix this deficiency by con-
sidering view-functions whose domains are regular sets and which act uniformly
with respect to the regular expressions representing these sets). It should also
be noted that our construction yields automata without pushdowns for terms of
order two, hence it also subsumes the construction by Ghica and McCusker.

Our results bring us closer to a complete classification of decidable instances
of Idealized Algol and their complexity. Since the fourth-order fragment without
iteration was shown undecidable in [6], the only unresolved cases seem to be those
of second- and third-order fragments with recursively defined terms of base types
(of which iteration is a special case). Recursive functions lead to undecidability
at order two as shown in [5].

The outline of the paper is as follows. We present Idealized Algol and its third-
order fragment IA∗

3 in Section 2. Then we recapitulate the game model of the
language. Next the class of simple terms is defined. These are terms that induce
plays in which pointers can be safely omitted which makes it possible to represent

204 A.S. Murawski and I. Walukiewicz

their game semantics via languages. In Section 4 we introduce our particular class
of automata and give an inductive construction of such an automaton for every
simple term in β-normal form. In Section 5 we show how to deal with terms
that are not simple. The last section concerns the Exptime lower bound for the
complexity of equivalence in IA∗

3.

2 Idealized Algol

We consider a finitary version IAf of Idealized Algol with active expressions [7]. It
can be viewed as a simply typed λ-calculus over the base types com, exp, var (of
commands, expressions and variables respectively) augmented with the constants

skip : com i : exp (0 ≤ i ≤ max) ΩB : B
succ : exp → exp pred : exp → exp ifzeroB : exp → B → B → B
seqB : com → B → B deref : var → exp assign : var → exp → com
cellB : (var → B) → B mkvar : (exp → com) → exp → var

where B ranges over base types and exp = { 0, · · · ,max }. Each of the constants
corresponds to a different programming feature. For instance, sequential compo-
sition of M and N is expressed as seqBMN , assignment of N to M is represented
by assignMN and cellB(λx.M) amounts to creating a local variable x visible
in M . Other features can be added in a similar way, e.g. while-loops will be
introduced via the constant while : exp → com → com. In order to gain control
over multiple occurrences of free identifiers during typing (cf. Definition 9) we
shall use a linear form of the application rule and the contraction rule:

Γ �M : T → T ′ Δ � N : T
Γ,Δ �MN : T ′

Γ, x1 : T, x2 : T �M : T ′

Γ, x : T �M [x/x1, x/x2] : T ′ .

The linear application simply corresponds to composition: in any cartesian-closed
category �Γ,Δ �MN : T ′� is equal (up to currying) to

�Δ � N : T � ; � � λxT .λΓ.Mx : T → (Γ → T ′)�
�Δ� ⇒ �T � �T �⇒ (�Γ �⇒ �T ′�).

Thanks to the applicative syntax and the above decomposition the process of
interpreting the language can be divided into simple stages: the modelling of
base constructs (free identifiers and constants), composition, contraction and
currying.

The operational semantics of IAf can be found in [7]; we will write M ⇓ if M
reduces to skip. We study the induced equivalence and approximation relations.

Definition 1. Two terms Γ � M1,M2 : T are equivalent (Γ � M1 ∼= M2) if
for any context C[−] such that C[M1], C[M2] are closed terms of type com, we
have C[M1] ⇓ if and only if C[M2] ⇓. Similarly, M1 approximates M2 (Γ �
M1 �∼M2) iff for all contexts satisfying the properties above whenever C[M1] ⇓
then C[M2] ⇓.

Third-Order Idealized Algol with Iteration Is Decidable 205

In general, equivalence of IAf terms is not decidable [6]. To obtain decidability
one has to restrict the order of types, which is defined by:

ord(B) = 0 and ord(T → T ′) = max(ord(T) + 1, ord(T ′)).

Definition 2. An IAf term Γ � M : T is an ith-order term provided its typing
derivation uses sequents in which the types of free identifiers are of order less
than i and the type of the term has order at most i. The collection of ith-order
IAf terms will be denoted by IAi.

To establish decidability of program approximation or equivalence of ith-order
terms it suffices to consider ith-order terms in β-normal form. To type such
terms, one only needs a restricted version of the application rule in which the
function term M is either a constant or a term of the form fM1 · · ·Mk, where
f : T is a free identifier (and so ord(T) < i).

In this paper we will be concerned with IA3 enriched with while, which we
denote by IA∗

3 for brevity.

3 Game Semantics

Here we recall the basic notions of game semantics and discuss how to code
strategies in terms of languages. To that end we investigate when it is not neces-
sary to represent pointers in plays and obtain the class of simple terms for which
pointers can be disregarded. We use the game semantics of Idealized Algol as
described in [7]. The games are defined over arenas which specify the available
moves and the relationship between them.

Definition 3. An arena A is a triple 〈MA, λA,�A 〉, where MA is the set of
moves, λA : MA → {O,P } × { q, a } indicates whether a move is an O-move or
a P-move and whether it is a question or an answer, and �A⊆ (MA+{ ! })×MA

is the enabling relation which must satisfy the following two conditions.

– For all m,n ∈ MA if m �A n then m and n belong to different players and
m is a question.

– If ! �A m then m is an O-question which is not enabled by any other move.
Such moves are called initial; the set containing them will be denoted by IA.

The permitted scenarios in a given arena are required to be legal justified se-
quences of moves. A justified sequence s over an arena A is a sequence of moves
from MA equipped with pointers so that every non-initial move n (in the sense
of Definition 3) in s has a pointer to an earlier move m in s with m �A n (m is
then called the justifier of n). Given a justified sequence s, its O-view 	s
 and
P-view �s� are defined as follows, where o and p stand for an O-move and a
P-move respectively:

	ε
 = ε 	so
 = 	s
o 	so t p
 = 	s
o p
�ε� = ε �so� = o (if o is initial) �sp� = �s�p �sp t o� = �s�p o.

206 A.S. Murawski and I. Walukiewicz

Definition 4. A justified sequence s is legal if it satisfies the following:

– players alternate (O begins),
– the visibility condition holds: in any prefix tm of s if m is a non-initial O-

move then its justifier occurs in 	t
 and if m is a P-move then its justifier
is in �t�,

– the bracketing condition holds: for any prefix tm of s if m is an answer then
its justifier must be the last unanswered question in t.

The set of legal sequences over arena A is denoted by LA.

Formally, a game will be an arena together with a subset of LA. This makes it
possible to define different games over the same arenas.

Definition 5. A game is a tuple 〈MA, λA,�A, PA 〉 such that 〈MA, λA,�A 〉 is
an arena and PA is a non-empty, prefix-closed subset of LA (called the set of
positions or plays in the game)1.

Games can be combined by a number of constructions, notably ×,⊗, !,�,⇒.
We describe them briefly below. In the first three cases the enabling relation
is simply inherited from the component games. As for plays, we have PA×B =
PA + PB in the first case. In contrast, each play in PA⊗B is an interleaving of a
play from A with a play from B (and only O can switch between them). Similarly,
positions in P!A are interleavings of a finite number of plays from PA (again only
O can jump between them). The � construction is more complicated: we have
MA�B = MA + MB but the ownership of A moves in MA�B is reversed. The
enabling relation is defined by �A�B=�A + �B +{ (b, a) | b ∈ IB ∧ a ∈ IA }
and plays of A � B are interleavings of single plays from A and B. This time,
however, each such play has to begin in B and only P can switch between the
interleaved plays. The game A⇒ B is defined as !A � B.

Example 1. The underlying arena of ((�com�⇒ �com�) ⇒ �com�)⇒ �com� has
the following shape:

d3

r3
d2

r2
d1

r1
d0

r0

Definition 6. In arenas corresponding to IAf types we can define the order of a
move inductively (we denote it by ordA(m)). The initial O-questions have order
0. For all other questions q we define ordA(q) to be ordA(q′) + 1 where q′ � q
(this definition is never ambiguous for the arenas in question). Answers inherit
their order from the questions that enable them. The order of an arena is the
maximal order of a question in it.

1 PA also has to satisfy a closure condition [7] which we omit here.

Third-Order Idealized Algol with Iteration Is Decidable 207

For instance, in the example above r3 is a third-order move. We will continue to
use subscripts to indicate the order of a move.

The next important definition is that of a strategy. Strategies determine
unique responses for P (if any) and do not restrict O-moves.

Definition 7. A strategy in a game A (written as σ : A) is a prefix-closed
subsets of plays in A such that: (i) whenever sp1, sp2 ∈ σ and p1, p2 are P-
moves then p1 = p2; (ii) whenever s ∈ σ and so ∈ PA for some O-move o then
so ∈ σ. We write comp(σ) for the set of non-empty complete plays in σ, i.e.
plays in which all questions have been answered.

An IAf term Γ � M : T , where Γ = x1 : T1, · · · , xn : Tn, is interpreted by a
strategy (denoted by �Γ �M : T �) for the game

�Γ � T � = �T1�× · · · × �Tn� ⇒ �T � =!(�T1�)⊗ · · ·⊗!(�Tn�) � �T �.

Remark 1. From the definitions of the ⊗ and � constructions we can deduce
the following switching properties. A play in �Γ � T � always starts with an initial
O-question in �T �. Subsequently, whenever P makes a move in �Ti� or �T �, O
must also follow with a move in �Ti� or �T � respectively. We also note that the
arenas used to interpret ith-order terms are of order i.

The interpretation of terms presented in [7] gives a fully abstract model in the
sense made precise below.

Theorem 1. Γ � M1 �∼M2 iff comp(�Γ � M1�) ⊆ comp(�Γ � M2�). Conse-
quently, Γ �M1 ∼= M2 iff comp(�Γ �M1�) = comp(�Γ �M2�).

In the sections to follow we will show how to represent strategies defined by
β-normal IA∗

3-terms via languages. The simplest, but not always faithful, repre-
sentation consists in taking the underlying set of moves.

Definition 8. Given P ⊆ PG we write L(P) for the language over the alphabet
MG consisting of the sequences of moves of the game G underlying positions in P .

While in L(P) we lose information about pointers, the structure of the alphabet
MG remains unchanged; in particular each letter has an order as it is a move
from MG.

Some β-normal IA∗
3 terms define strategies σ for which L(σ) constitutes a

faithful representation. This will be the case if pointers are uniquely recon-
structible. To identify such terms it is important to understand when pointers
can be ignored in positions over third-order arenas and when they have to be
represented explicitly in some way. Due to the well-bracketing condition, point-
ers from answer-moves always lead to the last unanswered question, hence they
are uniquely determined by the underlying sequence of moves. The case of ques-
tions is more complicated. Initial questions do not have pointers at all, however
all non-initial ones do, which is where ambiguities might arise. Nevertheless it
turns out that in the positions of interest pointers leading from first-order and

208 A.S. Murawski and I. Walukiewicz

second-order questions are determined uniquely, because only one unanswered
enabler will occur in the respective view. Third-order questions do need pointers
though, the standard example [8] being λf.f(λx.f(λy.x)) and λf.f(λx.f(λy.y)).
The terms define the following positions respectively:

q0 q1 q2 q1 q2 q3 q0 q1 q2 q1 q2 q3 .

Here pointers from third-order questions cannot be omitted, because several
potential justifiers occur in the P-view. To get around the difficulties we will
first focus on terms where the ambiguities for third-order questions cannot arise.

Definition 9. A β-normal IA∗
3-term will be called simple iff it can be typed

without applying the contraction rule to identifiers of second-order types.

Clearly, the two terms above are not simple.

Lemma 1. Suppose Γ � M : T is simple and sq3 ∈ �Γ � M : T �. Then �s�
contains exactly one unanswered occurrence of an enabler of q3.

Consequently, the justifiers of all third-order moves in positions generated by
simple terms are uniquely determined so, if σ denotes a simple term, L(σ)
uniquely determines σ. In the next section we focus on defining automata ac-
cepting L(comp(σ)).

4 Automata for Simple Terms

This section presents the construction of automata recognizing the languages
defined by simple terms. The construction proceeds by induction on the term
structure. The only difficult case is application. We have chosen to pass through
the intermediate step of linear composition to make the technical details more
transparent.

4.1 Automata Model

The pushdown automata we are going to use to capture simple terms are special-
ized deterministic visibly pushdown automata [3]. Their most important feature
is the dependence of stack actions on input letters. Another important point
in the following definitions is that the automata will use the stack only when
reading third-order moves.

Definition 10. A strategy automaton is a tuple

A = 〈Q,Mpush ,Mpop ,Mnoop , Γ, i, δpush , δpop , δnoop , F 〉

where Q is a finite set of states; (Mpush ,Mpop ,Mnoop) is the partition of the
input alphabet into push, pop and noop (no stack change) letters; Γ is the stack

Third-Order Idealized Algol with Iteration Is Decidable 209

alphabet; i is the initial state and F ⊆ Q is the set of final states. The transitions
are given by the partial functions:

δpush : Q×Mpush
·→ Q×Γ δpop : Q×Mpop×Γ ·→ Q δnoop : Q×Mnoop

·→ Q.

Observe that while doing a push or a noop move the automaton does not look
at the top symbol of the stack. We will sometimes use an arrow notation for

transitions: s
a/x−−→ s′ for δpush(s, a) = (s′, x), s

a,x−−→ s′ for δpop(s, a, x) = s′, and
s

a−→ s′ for δnoop(s, a) = s′.
The definitions of a configuration and a run of a strategy automaton are

standard. A configuration is a word from QΓ ∗. The initial configuration is i (the
initial state and the empty stack). The transition functions define transitions

between configurations, e.g. the transition s
a/x−−→ s′ of the automaton gives

transitions sv
a−→ s′xv for all v ∈ Γ ∗. A run on a word w = w1 . . . wn is a

sequence of configurations: c0
w1−−→ c1

w2−−→ . . .
wn−−→ cn where c0 = i is the initial

configuration. A run is accepting if the state in cn is from F . We write L(A) for
the set of words accepted by A.

Since we want to represent sequences that are not necessarily positions, no-
tably interaction sequences, we make the next definition general enough to ac-
count for both cases.

Definition 11. Let ρ be a prefix-closed subset of sequences over a set of moves
M , and let comp(ρ) be the subset of ρ consisting of non-empty sequences with an
equal number of question- and answer-moves2. We say that a strategy automaton
A is proper for ρ if the following conditions hold.

(A1) L(A) = comp(ρ).
(A2) Every run of A corresponds to a sequence from ρ (as A is deterministic

each run uniquely specifies the input sequence).
(A3) The alphabets Mpush and Mpop consist of third-order questions and

answers from M respectively.

A is almost proper for ρ if L(A) = { ε } ∪ comp(ρ) and (A2) is satisfied.

Remark 2. If A is proper or almost proper for ρ = L(σ) then thanks to (A2)
we can then make a number of useful assumptions about its structure.

1. If there is a transition on a P-move from a state, then it is either the unique
transition from this state or it is a pop transition and the other transitions
are pop transitions on different stack letters. This is because strategies are
deterministic and the push and noop moves do not look at the contents of
the stack.

2 Note that this coincides with the concept of a complete play when ρ = L(σ) for
some strategy σ.

210 A.S. Murawski and I. Walukiewicz

2. If the game in question is well-opened, i.e. none of its plays contains two
initial moves, then A will never return to the initial state. Otherwise σ would
contain just such a play. Hence, we can assume that the initial state does
not have any incoming transitions and that it does not have any outgoing
pop transitions.

Our first goal will be to model simple terms. The following remark summarizes
what needs to be done.

Remark 3. Recall the linear application rule from Section 2. Whenever it is
applied when typing β-normal IA∗

3 terms we have ord(T) ≤ 1 and if ord(T) = 1
then M is cellB, mkvar or a term of the shape fM1 · · ·Mk where the order of f ’s
type is at most 2. Consequently, the corresponding instances of composition are
restricted accordingly. To sum up, the following semantic elements are needed
to model β-normal simple IA∗

3-terms.

– A strategy for each of the constants.
– Identity strategies id�T � (ord(T) ≤ 2).
– Composition of σ : �T � ⇒ �T ′� and τ : �T ′� ⇒ �T ′′� where ord(T) ≤ 2,

ord(T ′) ≤ 1 and ord(T ′′) ≤ 3; moreover, if ord(T ′) = 1 then either τ =
�cellB�, or τ = �mkvar�, or τ = �λx.λΓ.fM1 · · ·Mkx�.

– A way of modelling contraction up to order 1.

We have not included (un)currying in the list because in the games setting they
amount to identities (up to the associativity of the disjoint sum).

The strategies for the constants and identities up to order 1 do not contain
third-order moves and it is easy to construct finite automata (without stack)
which are proper for each of them. The strategy automata for identity strategies
at order 2 can be constructed using the † construction (to be introduced shortly)
and the equality idA⇒B = id†A � idB . Contraction up to order 1 can be inter-
preted simply by relabelling, so in the remainder of this section we concentrate
on composition.

4.2 Composition

Let σ : A ⇒ B and τ : B ⇒ C. Recall that A ⇒ B =!A � B and B ⇒ C =
!B � C. In order to compose the strategies, one first defines σ† :!A �!B by

σ† = { s ∈ L!A�!B | for all initial m, s m ∈ σ },

where s m stands for the subsequence of s (pointers included) whose moves are
hereditarily justified by m. Then σ; τ : A⇒ C is taken to be σ†;lin τ , where ;lin
is discussed below.

The linear composition σ;lin τ : A � C of two strategies σ : A � B and τ :
B � C is defined in the following way. Let u be a sequence of moves from arenas
A,B and C with justification pointers from all moves except those initial in C.
The set of all such sequences will be denoted by int(A,B,C). Define u B,C

Third-Order Idealized Algol with Iteration Is Decidable 211

to be the subsequence of u consisting of all moves from B and C (pointers
between A-moves and B-moves are ignored). u A,B is defined analogously
(pointers between B and C are then ignored). Finally, define u A,C to be the
subsequence of u consisting of all moves from A and C, but where there was
a pointer from a move mA ∈ MA to an initial move mB ∈ MB extend the
pointer to the initial move in C which was pointed to from mB . Then given two
strategies σ : A � B and τ : B � C the composite strategy σ;lin τ : A � C is
defined in two steps:

σ||τ ={u ∈ int(A,B,C) | u A,B ∈ σ, u B,C ∈ τ },
σ;lin τ ={u A,C | u ∈ σ||τ }.

Thus in order to carry out the composition of two strategies we will study
separately: the dagger construction σ†, interaction sequences σ||τ , and finally
the hiding operation leading to σ;lin τ .

4.3 Dagger

Recall from Remark 3 that to model β-normal IA∗
3-terms we only need to ap-

ply † for B = �T � where ord(T) ≤ 1. It is possible to describe precisely what
this construction does in this case; we will write qi, ai to refer to any ith-order
question and answer from B (i = 0, 1). The definition of σ† describes it as an
interleaving of plays in σ but much more can be said about the way the copies of
σ are intertwined thanks to the switching conditions, cf. Remark 1, controlling
the play on !A �!B. For instance, only O will be able to switch between dif-
ferent copies of σ and this can only happen after P plays in B. Consequently, if
ord(T) = 0 (no q1, a1 is available then) a new copy of σ can be started only after
P plays a0, i.e. when the previous one is completed. Thus σ† in this case consists
of iterated copies of σ. If ord(T) = 1 then a new copy of σ can be started by
O each time P plays q1 or a0. An old copy of σ can be revisited with a1, which
will then answer some unanswered occurrence of q1. However, due to the brack-
eting condition, this will be possible only after all questions played after that
q1 have been answered, i.e. when all copies of σ opened after q1 are completed.
Thus, σ† contains “stacked” copies of σ. Thanks to this we can then characterize
K = { ε } ∪ comp(σ†) by the (infinite) recursive equation

K = {ε} ∪
⋃
{q0�q1Ka1� . . . q1Ka1�a0K : q0�q1a1� . . . q1a1�a0 ∈ comp(σ)},

where �’s stand for (possibly empty and possibly different) segments of moves
from A. Note that q1 is always followed by a1 in a position of σ due to switching
conditions and the fact that B represents a first-order type.

Lemma 2. Let T ′ = Bk → · · · → B1 → B0 be a type of order at most 1. If
there exists a proper automaton A for σ :!�T � � �T ′� then there exists an almost
proper automaton A† for σ†. In this automaton the questions and answers from
M�Bk�, · · · ,M�B1� become push and pop letters respectively.

212 A.S. Murawski and I. Walukiewicz

Proof. We will refer to the questions and answers of �B0� by q0, a0 respectively
and to those from �Bi� (i > 0) by q1 and a1. Let L = comp(σ) and K =
{ ε } ∪ comp(σ†). Recall that K satisfies the equation given above.

Let i and f be the initial and final states of A respectively. As A is proper
for σ, we can assume that there are no transitions to i (Remark 2(2.)). Because
A accepts only well-opened plays we can assume that all the transitions to f are
of the form s

a0−→ f and there are no transitions from f . In order to define A†

we first “merge” f with i or, more precisely, change each transition as above to
s

a0−→ i and make i the final state. This produces an automaton accepting L∗

(observe that L∗ ⊆ K). Then we make the following additional modifications:

replace s
q1−→ s′ by s

q1/s
′

−−−→ i and replace s′ a1−→ s′′ by i
a1,s

′
−−−→ s′′.

The intuition behind the construction of A† is quite simple. When A† reads q1
it goes to the initial state and stores the return state s′ on the stack (the return
state is the state A would go to after reading q1). After this A† is ready to
process a new copy of K. When finished with this copy it will end up in the
state i. From this state it can read a1 and at the same time the return state
from the stack which will let it continue the simulation of A. Consequently, it is
not difficult to see that A† satisfies (A2).

Next we argue that A† is deterministic. Because A was, the modifications
involving a0 could not introduce nondeterminism. Those using q1 and a1 might,
if A happened to have an outgoing noop transition from i on a1. However, since
!�T � � �T ′� is well-opened, by Remark 2 (2.) we can assume that this is not the
case.

Finally, observe that A† currently accepts a superset of K. To be precise, it
accepts a word from K iff both a final state is entered and the stack is empty.
Thus, in order to accept by final state only, we have to make the automaton aware
of whether the stack is empty. The solution is quite simple. The automaton
starts with the empty stack. When it wants to put the first symbol onto the
stack it actually puts this symbol with a special marker. Now, when popping,
the automaton can realize that there is a special marker on the symbol being
popped and learn this way that the stack becomes empty. This information will
then be recorded in the state. The solution thus requires doubling the number of
stack symbols (one normal copy and one marked copy) and doubling the number
of states (information whether stack is empty or not is kept in the state).

Note that by (A3) A does not change the stack when reading q1 and a1
(which are first-order moves). In A† these letters become push and pop letters
respectively. ��

4.4 Interaction Sequences: σ†||τ
The next challenge in modelling composition is to handle the interaction of two
strategies. Recall from Remark 3 that in all instances of composition that we
need to cover we have B = �T �, where either ord(T) = 0 or ord(T) = 1 and
τ = �cellB�, �mkvar�, �λx.λΓ.fM1 · · ·Mkx�.

Third-Order Idealized Algol with Iteration Is Decidable 213

Lemma 3. Suppose τ :!B � C is as above. Let q1, a1 denote any first-order
question and answer from B respectively (note that in !B � C they are second-
order moves). If τ = �cellB�, �mkvar� then, in positions from τ , q1 is always
followed by a1 and a1 is always preceded by q1. In the remaining case, q1 will be
followed by a third-order question from C and each third-order answer to that
question will be followed immediately by a1.

Lemma 4. Suppose there exist proper automata for σ :!A � B and τ :!B � C.
If τ is as before then there exists a proper automaton A|| for σ†||τ . Moreover, if
there is a transition on a B move from a state of A|| then it is a noop transition
and there is no other transition from that state.

Proof. Let A1 be the almost proper automaton for σ† :!A �!B constructed
in Lemma 2 and let A2 be proper for τ :!B � C. We use indices 1 and 2 to
distinguish between the components of A1 and A2. The set of states and the
stack alphabet of A|| will be given by

Q = (Q1 ×Q2) ∪ ({i1} ×Q1 ×Q2) and Γ = Γ1 ∪ Γ2 ∪ (Γ2 ×Q1).

i = (i1, i2) and F = F1 × F2 will be respectively the initial state and the set of
final states. The alphabet of A|| will be partitioned in the following way.

Mpush = (M1
push −MB) ∪M2

push Mpop = (M1
pop −MB) ∪M2

pop

Mnoop = M1
noop ∪M2

noop

The definitions are not symmetric because first-order moves from B are push
or pop letters for A1 and noop letters for A2. Note that moves from B are in
Mnoop . Finally, we define the transitions of A|| in several stages starting from
those on A- and C-moves:

(s1, s2)
m�−−→ (s′1, s2) if m ∈MA and s1

m�−−→ s′1,

(s1, s2)
m�−−→ (s1, s′2) if m ∈MC and s2

m�−−→ s′2 .

� denotes an arbitrary stack action (push, pop or noop). Intuitively, for the
letters considered above A|| just simulates the move of the appropriate compo-
nent.

Next we deal with moves from B. Moves of order 0 are noop letters both for
A1 and A2. So, we can simulate the transitions componentwise:

(s1, s2)
m−→ (s′1, s

′
2) if s1

m−→ s′1, s2
m−→ s′2, m ∈MB and ordB(m) = 0.

First-order moves from B are noop letters in A2 but push or pop letters in
A1. We want them to be noop letters in A||, so we memorize the push operation
in the state:

(s1, s2)
q1−→ (i1, s, s′2) if q1 ∈MB, ordB(q1) = 1, s1

q1/s−−−→ i1 and s2
q1−→ s′2,

(i1, s, s2)
a1−→ (s′1, s

′
2) if a1 ∈MB , ordB(a1) = 1, i1

a1,s−−→ s′1 and s2
a1−→ s′2.

214 A.S. Murawski and I. Walukiewicz

Observe that we know that the transition on q1 in A1 is a push transition
leading to the initial state i1, because A1 comes from Lemma 2. In order for the
construction to work the information recorded in the state has to be exploited
by the automaton in future steps. By Lemma 3, q1 is always followed either by
a1 or by a third-order question from C. The above transitions take care of the
first case. In the second case we will arrange for the symbol to be preserved on
the stack together with the symbol pushed by the third-order question. Dually,
when processing third-order answers we should be ready to process the combined
symbols and decompress the information back into the state to be used by the
following a1. Thus we add the following transitions

(i1, s, s2)
q3/(X,s)−−−−−→ (i1, s′2) if q3 ∈MC and s2

q3/X−−−→ s′2,

(i1, s2)
a3,(X,s)−−−−−→ (i1, s, s′2) if a3 ∈MC and s2

a3,X−−−→ s′2,

which complete the definition of A||. It is not difficult to verify that A|| is proper
for σ†||τ . Note that for each state (s1, s2) with an outgoing transition on a B-
move m there is no other transition, because m is always a P -move either for
A1 or for A2 and we can then appeal to Remark 2 for that automaton. ��

4.5 Rounding Up

We are now ready to interpret the linear application rule introduced in Section 2.
Assuming we have proper automata for σ = �Δ � N : T � : �Δ� ⇒ �T � and
τ = �λxT .λΓ.Mx� : �T � ⇒ (�Γ � ⇒ �T ′�) respectively, we would like to find
an automaton Alin which is proper for σ†;lin τ = �Γ,Δ � λΓ.MN : Γ → T ′�.
To that end it suffices to consider the automaton A|| from Lemma 4 and hide
the moves from �T �. Recall that by Lemma 4 if there exists a transition on a
move from �T � from a state of A|| then it is a noop transition and no other
transitions leave that state. Hence, the automaton for σ†;lin τ can be obtained
by “collapsing” the sequences of �T � transitions in A||. This can be done by first

replacing each transition s0
m�−−→ s1 by s0

m�−−→ sk+1 when there is a sequence of
transitions in A|| of the form:

s0
m�−−→ s1

m1−−→ s2
m2−−→ . . .

mk−−→ sk+1

where m is not from �T �, m1, . . . ,mk are from �T �, and sk+1 does not have an
outgoing transition on a move from �T � (note that k is bounded by the number
of states in A||). After this it is enough to remove all the transitions on letters
from �T �. It is easy to see that the resulting automaton Alin is proper for σ†;lin τ .

This completes the description of the construction of automata for simple
terms. It remains to calculate the size of the resulting automata. For us the
size of an automaton, denoted |A|, will be the sum of the number of states and
the number of stack symbols. We ignore the size of the alphabet because it is
determined by types present in a sequent and hence is always linear in the size

Third-Order Idealized Algol with Iteration Is Decidable 215

of the sequent. The number of transitions is always bounded by a polynomial in
the size of the automaton.

The strategy automata for simple terms have been constructed from au-
tomata for base strategies using composition and contraction (λ-abstraction be-
ing the identity operation). Contraction does not increase the size of the au-
tomaton so it remains to calculate the increase due to composition. Suppose we
have two automata Aσ and Aτ . Let Qσ, Γσ (Qτ , Γτ) stand for the sets of states
and stack symbols of Aσ (Aτ). Examining the dagger construction we have that
|Q†

σ| = 2|Qσ| and |Γ †
σ | = 2(|Γσ|+ |Qσ|). For A|| we have |Q||| = 2|Q†

σ ×Qτ | and
|Γ||| = |Γ †

σ |+ |Γτ |+ |Γτ ×Qσ|. Putting the two together and approximating both
the number of states and stack symbols with |Aσ| and |Aτ | we obtain: |Qlin| ≤
4|Aσ||Aτ | and |Γlin| ≤ 5|Aσ||Aτ |. Thus |Alin| ≤ 9|Aσ||Aτ | which gives us:

Lemma 5. For every simple term Γ � M : T there exists an automaton which
is proper for �Γ �M : T � and whose size is exponential in the size of Γ �M : T .

5 Beyond Simple Terms

In this section we address the gap between simple terms and other β-normal
IA∗

3-terms.

Lemma 6. Any IA∗
3-term Γ �M : T in β-normal form can be obtained from a

simple term Γ ′ �M ′ : T ′ by applications of the contraction rule for second-order
identifiers followed by λ-abstractions.

Hence, in order to account for all β-normal terms we only need to show how to
interpret contraction at second order, because λ-abstraction is easy to interpret
by renaming. As already noted at the end of Section 3, interpreting contrac-
tion will require an explicit representation scheme for pointers from third-order
moves. Given a position sq3 ending in a third-order move q3 let us write α(s)
(resp. α(s, q3)) for the number of open second- and third-order questions in s
(resp. between q3 and its justifier in s; if the justifier occurs immediately before
q3 then α(s, q3) = 0).

Definition 12. Suppose σ = �Γ � M : T �, where Γ � M : T is an IA∗
3-term.

The languages P(σ) and P ′(σ) over M�Γ�T �+{ check , hit } are defined as follows:

P(σ) = { s checkα(s,q3) hit checkα(s)−α(s,q3)−1 | sq3 ∈ L(σ) }
P ′(σ) = { s checkα(s,q3) hit checkα(s)−α(s,q3)−1 | ∃s′. sq3s′ ∈ L(comp(σ)) }.

Note that q3 is always a P-move, so s uniquely determines q3. Clearly, L(σ)∪P(σ)
represents σ faithfully in the sense that equality of representations coincides
with equality of strategies. The subtlety is that we should compare only com-
plete positions in strategies. This is why we introduce P ′(σ). Using the results
from the previous section, we first show how to construct automata recognizing
L(comp(σ))∪P(σ) and L(comp(σ))∪P ′(σ), where σ denotes a simple term. For

216 A.S. Murawski and I. Walukiewicz

this we will need to consider the nondeterministic version of strategy automata
defined in the obvious way by allowing transition relations in place of functions.

By Lemma 1, in any position from σ the pointer from a third-order move
q3 points to the unique unanswered enabler visible in the P-view and hence is
uniquely determined. Below we give a different characterization of the justifier
relative to the whole position rather than to its P-view.

Lemma 7. If sq3 ∈ �Γ � M : T �, where Γ � M : T is simple, and q3 is a
third-order question then q3’s justifier in sq3 is the last open enabler of q3 in s.

Lemma 8. For any simple term Γ � M : T let σ = �Γ � M : T �. Then there
exist a strategy automaton recognizing L(comp(σ))∪P(σ) and a nondeterministic
strategy automaton accepting L(comp(σ)) ∪ P ′(σ) such that the push and pop
letters are respectively questions and answers of order at least 2 and check , hit
are pop letters. Their sizes are exponential in the size of Γ �M : T .

Proof. By Lemma 5 there exists a proper automaton A for L(σ). First we mod-
ify A so that second-order questions are pushed on the stack when read and
taken off the stack when the corresponding second-order answers are processed.
Note that the resulting automaton, let us call it A′, still accepts L(comp(σ)),
because σ satisfies the bracketing condition. Due to the modification above, the
symbols present on the stack during a run of A′ will correspond exactly to the
unanswered second- and third-order questions in the sequence of moves read by
the automaton (of course in the case of second-order questions these symbols
are the questions themselves).

Next we modifyA′ to recognize L(comp(σ))∪P(σ). We add new transitions so
that when the new automaton sees a check letter while being in state s it enters
into a special mode. If A′ could not read a third-order question q3 from s, the
new automaton rejects immediately. Otherwise there is precisely one question
q3 that can be read from s (Remark 2 (1.)). By Lemma 7 it suffices to make the
new automaton read check letters and pop the stack as long as the stack symbol
is not an enabler of q3. When the first one comes, the automaton should read
hit and subsequently continue accepting check as long as the stack is not empty.

The construction of a nondeterministic automaton accepting L(comp(σ)) ∪
P ′(σ) is similar except that while reading check and hit the automaton will need
to guess how to extend sq3 to a complete position accepted by A. For this the
automaton uses a pre-calculated table of triples (s1, x, s2) such that there is a
computation of A from the state s1 with only x on the stack to the state s2
with the empty stack. The nondeterministic automaton uses this table during
the last phase to guess a possible extension of the computation of A.

As all these modifications increase the size of the automaton only by a linear
factor we obtain the complexity bound required by the lemma. ��

Lemma 8 can be extended to all IA∗
3-terms in β-normal form. By Lemma 6, it

suffices to be able to interpret λ-abstraction and contraction. Both can now be
done by a suitable relabelling. Note that by identifying moves originating from

Third-Order Idealized Algol with Iteration Is Decidable 217

the two distinguished copies of T in the contraction rule we do not lose infor-
mation about pointers any more, because these are now represented explicitly.

Theorem 2. For any IA∗
3-term Γ �M : T in β-normal form there exist a strat-

egy automaton accepting L(comp(σ)) ∪ P(σ) and a nondeterministic strategy
automaton accepting L(comp(σ)) ∪ P ′(σ), where σ = �Γ � M : T �. Their sizes
are exponential in the size of the term.

Suppose the strategies σ1, σ2 denote two β-normal IA∗
3-terms. Observe that

comp(σ1) ⊆ comp(σ2) is equivalent to L(comp(σ1)) ∪ P ′(σ1) ⊆ L(comp(σ2)) ∪
P(σ2). We can verify the containment in the same way as for deterministic fi-
nite automata using complementation and intersection. Because the strategy
automaton representing the rhs is deterministic, complementation does not in-
cur an exponential increase in size. For intersection we can construct a product
automaton in the obvious way because stack operations are determined by the
input and, for a given input letter, will be of the same kind in both automata.
From this observation and the above theorem we obtain our main result.

Corollary 1. The problems of contextual equivalence and approximation for IA∗
3

terms in β-normal form are in Exptime.

6 Lower Bound

We show Exptime-hardness of the equivalence problem for IA∗
3 terms in β-

normal form. This implies Exptime-hardness of the approximation problem.
We use a reduction of the equivalence problem of nondeterministic automata on
binary trees [9].

Labelled binary trees will be represented by positions of the game �exp →
((com → com) → com) → com�. The sequence of moves S(t) corresponding to
a given binary tree t is defined as follows

S(x) = r2 q x d2 S(y(t1, t2)) = r2 q y r3 S(t1) d3r3 S(t2) d3 d2

where x, y range over nullary and binary labels respectively. Observe that S(t)
corresponds to a left-to-right depth-first traversal of t. Note that the term
λf.f(λx.x;x) defines complete positions of the shape r0r1Ud1d0 where U ::=
ε | r2r3Ud3r3Ud3d2, i.e. λf.f(λx.x;x) generates all possible sequences of ri, di
(0 ≤ i ≤ 3) corresponding to trees. In order to represent a given tree automaton
we can decorate the term with code that asks for node labels and prevents the
positions incompatible with trees from developing into complete ones.

Lemma 9. For any tree automaton A there exists a β-normal IA3 term MA
such that comp(�MA�) = { r0 r1 S(t) d1 d0 | t ∈ T (A) }, where T (A) is the set of
trees accepted by A.

Corollary 2. The contextual equivalence and approximation problems for β-
normal IA3-terms are Exptime-hard. Thus the two problems for IA∗

3 terms in
β-normal form are Exptime-complete.

218 A.S. Murawski and I. Walukiewicz

References

1. Reynolds, J. C.: The essence of Algol. In: Algorithmic Languages. North Holland
(1981) 345–372

2. Abramsky, S., Ghica, D. R., Murawski, A. S., Ong, C.-H. L.: Applying game se-
mantics to compositional software modelling and verification. In Proc. of TACAS,
LNCS 2988 (2004) 421–435

3. Alur, R., Madhusudan, P.: Visibly pushdown languages. Proc. of STOC (2004)
202–211

4. Ghica, D. R., McCusker, G.: Reasoning about Idealized Algol using regular expres-
sions. Proc. of ICALP, LNCS 1853 (2000) 103–115

5. Ong, C.-H. L.: Observational equivalence of 3rd-order Idealized Algol is decidable.
Proc. of LICS (2002) 245–256

6. Murawski, A. S.: On program equivalence in languages with ground-type references.
In Proc. of LICS (2003) 108–117

7. Abramsky, S., McCusker, G.: Linearity, sharing and state: a fully abstract game
semantics for Idealized Algol with active expressions. In: Algol-like languages.
Birkhaüser (1997) 297–329

8. Hyland, J. M. E., Ong, C.-H. L.: On full abstraction for PCF. Information and
Computation 163(2) (2000) 285–408

9. Seidl, H.: Deciding equivalence of finite tree automata. SIAM J. Comput. 19(3)
(1990) 424–437

Fault Diagnosis Using Timed Automata

Patricia Bouyer1,�, Fabrice Chevalier1,�, and Deepak D’Souza2,��

1 LSV – CNRS UMR 8643 & ENS de Cachan
61, avenue du Président Wilson, 94230 Cachan, France
bouyer, chevalie@lsv.ens-cachan.fr

2 Dept. of Computer Science & Automation
Indian Institute of Science, Bangalore, India

deepakd@csa.iisc.ernet.in

Abstract. Fault diagnosis consists in observing behaviours of systems, and in
detecting online whether an error has occurred or not. In the context of discrete
event systems this problem has been well-studied, but much less work has been
done in the timed framework. In this paper, we consider the problem of diagnos-
ing faults in behaviours of timed plants. We focus on the problem of synthesizing
fault diagnosers which are realizable as deterministic timed automata, with the
motivation that such diagnosers would function as efficient online fault detectors.
We study two classes of such mechanisms, the class of deterministic timed au-
tomata (DTA) and the class of event-recording timed automata (ERA). We show
that the problem of synthesizing diagnosers in each of these classes is decidable,
provided we are given a bound on the resources available to the diagnoser. We
prove that under this assumption diagnosability is 2EXPTIME-complete in the
case of DTA’s whereas it becomes PSPACE-complete for ERA’s.

1 Introduction

The problem of fault diagnosis involves detecting whether a given system (which we
call a plant) has undergone a fault, based on a particular external observation of an exe-
cution of the plant [SSL+95, SSL+96]. More precisely we are given a detailed model of
the plant – say as a finite state machine – based on internal unobservable events as well
as externally observable events of the plant. Some of the internal actions correspond to
faults. A diagnoser for such a plant is a function which given a sequence of observable
events generated by the plant, tells us whether an internal fault happened or not. Not all
plants are diagnosable (in the sense that such a function may not exist) – for example
a plant which produces the two behaviours aub and afb, where u and f are internal
events with f being the faulty one, and a and b are observable events, is not diagnos-
able since from the observable sequence ab it is impossible to tell whether f happened
or not.

Our interest in this paper lies in the fault diagnosis problem for timed plants. Here
we are given a plant modelled as a timed automaton. The timed automata of Alur and

� Work partly supported by ACI Cortos, a program of the french ministry of research.
�� Part of this work was done during a visit to LSV, ENS Cachan.

V. Sassone (Ed.): FOSSACS 2005, LNCS 3441, pp. 219–233, 2005.
© Springer-Verlag Berlin Heidelberg 2005

220 P. Bouyer, F. Chevalier, and D. D’Souza

Dill [AD94] are a popular model for time-dependent systems that extend classical finite
state machines with real-time clocks. These clocks can record the passage of time in
states, and can be used to guard the occurrence of transitions. A timed automaton gen-
erates timed sequences of events – i.e. an alternating sequence of real-valued delays and
events. The fault diagnosis problem for timed plants is thus to detect faulty behaviours
from a given timed sequence of observable events of the plant.

This problem is considerably more difficult in the timed case than in the discrete
case. In the discrete case one deals with classical regular languages which have robust
closure properties and relatively efficient algorithms for determinization and checking
emptiness. Thus one can obtain a diagnoser by essentially determinizing the model
of the plant. In the timed setting the problem is compounded by the fact that timed
automata are a very expressive formalism. While their language emptiness problem is
decidable, they are not determinizable, nor closed under complementation [AD94].

The problem in the timed setting has been studied by Tripakis in [Tri02] where a
variety of results have been shown. In particular, it is shown to be decidable to check
whether a given timed plant is diagnosable or not, and a diagnoser can be constructed as
an online algorithm whenever the plant is indeed diagnosable. The diagnosis algorithm
in [Tri02] is based on state estimation; it is somewhat complex, since it involves keeping
track of several possible control states and zones that the clock values can be in, with
every observable action or time delay of the plant. A natural question that one may ask
here is: when is there a diagnoser which is realizable as a deterministic timed automaton
(DTA)? Such a DTA would lead to a more efficient online diagnosis algorithm, since
with each observable event or time delay there is a single deterministic move in the
DTA.

In this paper we consider two deterministic mechanisms namely general DTA’s and
Event Recording automata (ERA) [AFH94]. For general DTA’s we show that it is decid-
able to check whether a given timed plant has a diagnoser realizable as a DTA, provided
we are given a bound on the resources (i.e. the number of clocks and set of constants)
available to the diagnoser. Whenever such a diagnoser exists, we are able to synthesize
one. The technique used is to relate the existence of a DTA diagnoser to a winning
strategy for a player in a classical state-based two player game.

The decision procedure runs in 2EXPTIME in the size of the plant. We show that
this high complexity is unavoidable in that the problem is 2EXPTIME-complete. The
completeness argument is based on a reduction from the halting problem of an alternat-
ing Turing machine which uses exponential space.

We also look at the problem for a restricted class of DTA’s called Event Recording
Automata [AFH94]. These are a determinizable subclass of timed automata, in which
there is an implicit clock attached to each action. We show that the problem of deciding
whether there is a diagnoser realizable as an ERA – again given a bound on the resources
we allow for the diagnoser – is decidable in PSPACE. Once again the problem is shown
to be complete for PSPACE.

Other recent works show an increasing interest in partial observability (e.g. learn-
ing [GJL04]); this increases complexity of systems as several control problems become
undecidable under partial observability [DM02, BDMP03] . However it seems useful to
combine this issue with on-the-fly analysis (for example monitoring [KT04] or run-time

Fault Diagnosis Using Timed Automata 221

model-checking [KPA03]). This work puts together these two aspects: the framework
is fault diagnosis of partially observable systems and the deterministic mechanisms we
consider fit the online constraint.

The plan of the paper is as follows. After introducing notations and definitions in
section 2, we will present the problem of fault diagnosis (section 3), starting with results
from [Tri02] and going on to the problem we look at. We then present our result on
the class of deterministic timed automata (section 4) and then on the class of event-
recording automata (section 5). The paper contains only sketches of proof. Detailed
proofs can be found in [Che04] (written in french).

2 Preliminaries

For a set Γ , let Γ ∗ be the set of finite sequences of elements in Γ .

Timed Words. We consider a finite set of actions Σ and as time domain the set Q≥0 of
non-negative rationals. A timed word over Σ is a sequence in (Σ ∪ Q≥0)∗, i.e. a finite
sequence ρ = γ1, γ2, . . . where each γi is either an event in Σ or a delay in Q≥0.1

A set of timed words will be called a timed language. If ρ is a timed word, we define
time(ρ) to be the sum of all delays in ρ. If Σ′ ⊆ Σ and if ρ is a timed word, we denote
by πΣ′(ρ) its projection over the alphabet Σ′, which means that we erase actions not
in Σ′. For example, if Σ′ = {a, c} ⊆ {a, b, c} = Σ, then πΣ′(0.5, a, 0.7, b, 0.3, c) =
0.5, a, 0.7, 0.3, c which reduces naturally to the timed word 0.5, a, 1, c. This operation
extends in a natural way to timed languages.

Clocks, Operations on Clocks. We consider a finite set X of variables, called clocks.
A clock valuation over X is a mapping v : X → Q≥0 that assigns to each clock a time
value. We use 0 to denote the valuation which sets each clock x ∈ X to 0. If t ∈ Q≥0,
the valuation v + t is defined as (v + t)(x) = v(x) + t for all x ∈ X . If Y is a subset
of X , the valuation v[Y ← 0] is defined as: for each clock x, (v[Y ← 0])(x) = 0 if
x ∈ Y and is v(x) otherwise.

The set of constraints (or guards) over a set of clocks X , denoted G(X), is given
by the syntax “g ::= (x ∼ c) | (g ∧ g)” where x ∈ X , c ∈ Q≥0 and ∼ is one of <,
≤, =, ≥, or >. We write v |= g if the valuation v satisfies the clock constraint g, and is
given by v |= (x ∼ c) if v(x) ∼ c and v |= (g1 ∧ g2) if v |= g1 and v |= g2. The set
of valuations over X which satisfy a guard g ∈ G(X) is denoted by �g�X , or just �g�
when X is clear from the context.

Symbolic Alphabet and Timed Automata. Let Σ be an alphabet of actions, and X a
finite set of clocks. A symbolic alphabet Γ based on (Σ,X) is a finite subset of G(X)×
Σ × 2X . As used in the framework of timed automata [AD94], a symbolic word γ =
(gi, bi, Yi)1≤i≤k ∈ Γ ∗ gives rise to a set of timed words, denoted tw(γ). We interpret
the symbolic action (g, b, Y) to mean that action b can happen if the guard g is satisfied,

1 Following [Tri02], we use this definition of timed words, a more classical definition of timed
words as in [AD94] could be used as well.

222 P. Bouyer, F. Chevalier, and D. D’Souza

with the clocks in Y being reset after the action. Formally, let ρ = d0, a1, d1, a2, . . . be
a timed word. Then ρ ∈ tw(γ) if there exists a sequence v = (vi)i≥1 of valuations such
that for all i ≥ 1, ai = bi, vi−1 + di−1 |= gi and vi = (vi−1 + di−1)[Yi ← 0] (with the
convention v0 = 0).

A timed automaton (TA for short) is a tuple A = (Σ,X,Q, q0, F,−→, Inv) where
Σ is a finite alphabet of actions, X is a finite set of clocks, Q is a finite set of states,
q0 ∈ Q is the initial state, F ⊆ Q is the set of final states,−→⊆ Q×Γ×Q is a finite set
of transitions over some symbolic alphabet Γ based on (Σ,X), and Inv : Q → G(X)
is an invariant function. The timed automaton A is said to be deterministic if, for every
state, the set of symbolic actions enabled at that state is time-deterministic, i.e. do not
contain distinct symbolic actions (g, a, Y) and (g′, a, Y ′) with �g�∩�g′�
= ∅. The class
of deterministic timed automata is denoted DTA. An event-recording automaton (ERA
for short) [AFH94] is a timed automaton (Σ,X,Q, q0, F,−→, Inv) where X = {xa |
a ∈ Σ} and q

g,a,Y−−−→ q′ implies Y = {xa}. Informally the clock xa stores the time
elapsed since the last occurrence of action a. We extend the above definitions to allow
ε-transitions (or silent transitions) in our timed automata [BDGP98].

For convenience, we will assume that all guards in timed automata are compatible

with invariants in the following sense. If q
g,a,Y−−−→ q′ is a transition, we want that �g� be

included in �Inv(q)�, and [Y ← 0]�g� be included in �Inv(q′)�. If it is not the case, it is
easy to transform the timed automaton so that this condition holds.

A path in a TA A is a finite sequence of consecutive transitions:

q0
g1,a1,Y1−−−−−→ q1 . . . qk−1

gk,ak,Yk−−−−−→ qk, s.t ∀1 ≤ i ≤ k, (qi−1, gi, ai, Yi, qi) ∈−→

The path is said to be accepting in A if it ends in a final state qk ∈ F .
A timed automaton A can then be interpreted as a classical finite automaton on the

symbolic alphabet Γ . Viewed as such, A accepts (or generates) a language of symbolic
words, Lsym (A) ⊆ Γ ∗, constituted by the labels of the accepting paths in A. We will
be more interested in the timed language generated by A, denoted L(A), and defined
by L(A) = tw(Lsym (A)).

Synchronized Product. Let Ai = (Σi, Xi, Qi, q
i
0, Fi,−→i, Invi) be two timed au-

tomata. Without loss of generality we assume that X1 and X2 are disjoint. The syn-
chronized product of A1 and A2 is defined as the timed automaton A1 ‖ A2 =
(Σ,X,Q, q0, F,−→, Inv) where Σ = Σ1 ∪ Σ2, X = X1 ∪ X2, Q = Q1 × Q2,

q0 = (q0
1 , q

0
2), F = F1×F2 and (q1, q2)

g,a,Y−−−→ (q′1, q
′
2) whenever one of the following

conditions holds:

– a ∈ Σ1 ∩Σ2 and there exist q1
g1,a,Y1−−−−→1 q

′
1 and q2

g2,a,Y2−−−−→2 q
′
2 with g = g1 ∧ g2

and Y = Y1 ∪ Y2

– a ∈ Σi \Σj (with i
= j), there exists qi
g,a,Y−−−→i q

′
i and q′j = qj

Fault Diagnosis Using Timed Automata 223

This synchronized product is the classical composition where both components syn-
chronize on common actions.

Region Automata. Region automata have been proposed in [AD94] for abstracting
timed behaviours. Regions are classes of an equivalence relation over valuations which
satisfy the nice property that two equivalent valuations have equivalent (time and dis-
crete) successors. The region automaton construction is the core of the decidability
proof for checking emptiness of timed automata. We will make use of the region au-
tomaton in Lemma 2. In the following if A is a timed automaton, we will denote its
region automaton byR(A).

Granularity. In the following, we will consider models with bounded resources, for ex-
ample the subclass of DTA’s using 5 clocks and integer constants smaller than 7. Fixing
resources of models has been frequently done in the past in several contexts: satisfi-
ability of timed μ-calculus [LLW95], controller synthesis [DM02, BDMP03], testing
[KT04]. In all cases, fixing the resources helps in getting decidability results, and it is
quite natural when our aim is to synthesize a system (with given physical resources).

We formalize this notion by defining a measure of the clocks and constants used in a
set of constraints. A granularity is a tuple μ = (X,m,max) where X is a set of clocks,
m is a positive integer and max : X −→ Q≥0 a function which associates with each
clock of X a positive rational number. The granularity of a finite set of constraints is
the tuple (X,m,max) where X is the exact set of clocks mentioned in the constraints,
m is the least common multiple of the denominators of the constants mentioned in the
constraints, and max records for each x ∈ X the largest constant it is compared with. A
granularity ν = (X ′,m′,max ′) is said to be finer than a granularity μ = (X,m,max)
(or equivalently μ is said to be coarser than ν) if X ⊆ X ′, m divides m′ and for all
x ∈ X max ′(x) ≥ max (x). A constraint g is called μ-granular if it belongs to some set
of constraints of granularity μ (note that a μ-granular constraint is also ν-granular for
any granularity ν finer than μ). We denote the set of all μ-granular constraints by G(μ).
A constraint g ∈ G(μ) is called μ−atomic if for all g′ ∈ G(μ), either �g�X ⊆ �g′�X
or �g�X ∩ �g′�X = ∅. Let atomsμ denote this set of μ-atomic constraints. By the
granularity of a timed automaton, we will mean the granularity of the set of constraints
used in it. For such an automaton, the granularity μ represents its resources in terms
of clocks and constants. We denote by DTAμ (resp. ERAμ) the class of DTA’s (resp.
ERA’s) whose granularity is coarser than μ. Let μ = (X,m,max) be a granularity over
Σ, we denote by Γμ the symbolic alphabet over μ (i.e. the set atomsμ ×Σ × 2X) and
Uμ the universal single-state automaton over symbolic alphabet Γμ.

Let μ = (X,m,max) be a granularity over the alphabet Σ and ν = (X ′,m′,max ′)
be a granularity finer than μ over Σ′ ⊇ Σ. For (g′, a′, Y ′) ∈ atomsν × Σ′ × X ′ a
symbolic letter over ν, we define the projection (g′, a′, Y ′)μ as follows: let g be the
unique μ-atomic constraint such that �g′�X′ ⊆ �g�X′ , Y = Y ′∩X , then (g′, a′, Y ′)μ is
defined to be (g, a′, Y) if a′ ∈ Σ and ε (the empty word) if a′ /∈ Σ. If μ is a granularity
and A a TA whose granularity is finer than μ, we denote by Aμ the TA in which every
transition label is replaced by its projection on μ.

224 P. Bouyer, F. Chevalier, and D. D’Souza

3 The Fault Diagnosis Problem

In this section, we present the problem of fault diagnosis for timed systems. First we
recall basic definitions and existing work and then we present our approach which in-
volves fault diagnosis by timed automata.

3.1 Existing Work

In this section we present the basic notions and the main results from [Tri02].

For the rest of the paper, Σo denotes an alphabet of observable events while Σu

denotes an alphabet of unobservable events. We assume that Σo and Σu are disjoint.
Given a timed word ρ, its observation is its projection over Σo, i.e. πΣo

(ρ). In what
follows, we will simply write π instead of πΣo

. A run ρ = β1, β2, . . . , βp is called
faulty if there exists i ∈ N such that βi = f . It is called Δ-faulty if for one such i,
time(βi+1, . . . , βp) ≥ Δ.

A plant is a tuple P = (Σo, Σu, Q, q0,−→, X, Inv) where (Σo ∪Σu, X,Q, q0, Q,
−→, Inv) is a TA (thus a plant has all states final). A run of the plant is simply a timed
word generated by the plant. Given a plant P , we denote by LΔf (P) the set of Δ-faulty
runs of P and L¬f (P) the set of non-faulty runs of P . From now on, when there is no
ambiguity, LΔf (P) (resp. L¬f (P)) will be denoted LΔf (resp. L¬f).

Fault diagnosis aims at computing a function which, given an observation, decides
if a fault has occurred or not, and which always announces faults at most Δ time units
after it has occurred. Such a function should announce a fault on all Δ-faulty runs and
should not announce a fault on non-faulty runs; this is captured by the next definition,
which is an equivalent reformulation of Tripakis’ notion of diagnosability.

Definition 1. A plant P is called Δ-diagnosable if there exists a recursive language L
such that

π(LΔf) ⊆ L ⊆ π(L¬f)c .

This definition raises the following computational problem where Δ ∈ Q≥0:

Problem 1 (Δ-diagnosability) Given a plant P , decide whether P is Δ-diagnosable
or not.

This problem is solved in [Tri02]:

Theorem 1 ([Tri02]). Δ-diagnosability is PSPACE-complete.

3.2 Diagnosability by Automata

The problem solved in [Tri02] is very general: the diagnoser is only supposed to be
recursive, which, in practice, may be a complex algorithm. The algorithm proposed in
[Tri02] is based on state estimation in a TA with ε-transitions, its complexity to diagnose
faults from an observation is doubly exponential in the size of the plant and in the size
of the observation, though an algorithm based on regions (and no more on zones) with

Fault Diagnosis Using Timed Automata 225

a complexity exponential in both the size of the plant and of the observation could be
proposed as well.

This high complexity in the size of the observation is not satisfactory if we want to
perform “online diagnosis”, i.e. if we want the diagnoser to detect faults from real-time
observations of the system.

This has motivated the definition of diagnosability using timed automata: we are
no more looking for a diagnoser which may be a general algorithm but for a diagnoser
which will be a timed automaton. With such a diagnoser, the complexity of detecting
faults online will no more be (doubly) exponential in the length of the observation since
after each observable action the diagnoser has just to make a single deterministic move.
We formalize this notion of diagnosability using timed automata as follows.

Definition 2. Let C be a class of timed automata. Let P be a plant. We say that P is
Δ-C-diagnosable whenever there exists some θ ∈ C such that

π(LΔf) ⊆ L(θ) ⊆ π(L¬f)c .

We call such a θ a Δ-C-diagnoser for P .

The sets of diagnosers which will be of interest to us are deterministic mechanisms
like DTA’s and ERA’s. In the sequel we will study the following problem, where Δ ∈
Q≥0 and C is a class of automata:

Problem 2 (Δ-C-diagnosability) Given a plant P , decide whether P is Δ-C-diagno-
sable or not.

x = 1,
u,

x := 0
x = 0, f

x = 0, a

0 < x < 1, a

Fig. 1. Plant diagnosable but not DTA-diagnosable

We first notice that this problem is distinct from problem 1: every DTA-diagnosable
plant is diagnosable, but some diagnosable plants are not DTA-diagnosable as illus-
trated by the plant in Fig. 1. Indeed, a diagnoser will announce a fault if action a hap-
pens at an integer date (this can not be expressed by a DTA, as shown in [BDGP98]).

4 Diagnosability with Deterministic Timed Automata

We do not consider the general problem of Δ-DTA-diagnosability but we restrict our-
selves to the case when the resources of the diagnoser are fixed. We thus consider in this
section the Δ-DTAμ-diagnosability problem: we aim at constructing diagnosers which
are DTA’s with a fixed granularity μ over Σo. In this framework, our main theorem is
the following.

226 P. Bouyer, F. Chevalier, and D. D’Souza

Theorem 2. Let μ be a granularity over observable events and Δ ∈ Q≥0. The Δ-
DTAμ-diagnosability problem is 2EXPTIME-complete.

Before presenting the proof of this theorem, let us first state the two following useful
lemmas: the first lemma states that we can construct timed automata recognizing non-
faulty and Δ-faulty runs while the second one explains how behaviours of the plant can
be seen “through” the granularity μ.

Lemma 1. Let P be a plant and Δ ∈ Q≥0. We can construct in polynomial time timed
automata with ε-transitionsP¬f and PΔf such that L(P¬f) = π(L¬f) and L(PΔf) =
π(LΔf).

Proof (Sketch). P¬f is constructed from P as follows: erase transitions labelled by f
(to prevent P from making faults), replace all transitions labelled by u ∈ Σu by ε-
transitions and make all states final.
Before constructing PΔf , we modify the plant P , and con-
struct a new plant P ′, which has the same observations as
P , and in which information on whether the current run is
Δ-faulty or not is stored in the current state of P ′. P ′ is
constructed as three copies of P , say P1,P2 and P3: doing
a fault in P1 leads to P2; in P2 the automaton behaves like
P for Δ time units before switching to P3 by an unobserv-
able action u. This can easily be formalized using a fresh
clock z which is reset when a fault is done in P1 (leading
to plant P2), adding an invariant z ≤ Δ in all locations of
P2 and as soon as z = Δ, a transition labelled by u leads to
P3. In the following we will assume that the plant is already
given asP ′ and will call states ofP1 “non-faulty” and states
of P3 “Δ-faulty”.
To get PΔf , we just replace transitions labelled by u ∈ Σu

by ε-transitions in P ′ and mark all states of P3 as final.
It is not difficult to check that this automaton recognizes
π(LΔf).

f
z := 0

(z ≤ Δ)

z = Δ
u

P3

P2

P1

��

The following lemma is a consequence of the region automata construction:

Lemma 2. Let A be a timed automaton and μ a granularity. The region automaton
R(A ‖ Uμ)μ recognizes the set

Lsym (R(A ‖ Uμ)μ) = {γ ∈ Γ ∗
μ | ∃ρ ∈ L(A) s.t. π(ρ) ∈ tw(γ)}

4.1 Δ-DTAμ-Diagnosability is in 2EXPTIME

In [BDMP03], the control problem under partial observability is proved to be in 2EX-
PTIME using a timed game construction. A similar construction can be carried out, but
we present here a direct construction which gives more intuition.

Lemma 3. Δ-DTAμ-diagnosability is in 2EXPTIME.

Fault Diagnosis Using Timed Automata 227

Proof (Sketch). Let P = (Σo, Σu, Q, q0,−→, X, Inv) be a plant and μ = (Y,m,max)
a granularity over Σo. We will construct a classical (untimed) safety game GP,μ,Δ: it is
a two-player turn-based perfect information game over a finite graph where one player
wants to stay in the “safe” states, whereas the other player wants to enforce an “unsafe”
state. We refer to [GTW02] for basics results on games. In our case, the two players
are the “diagnoser” and the “environment”, and player “diagnoser” will have a winning
strategy in game GP,μ,Δ if and only if P is Δ-DTAμ-diagnosable.

The arena of the game is constructed as follows: we first compute the region au-
tomaton R of PΔf ‖ Uμ. Its granularity is finer than μ, because it takes into account
clocks and constraints from Uμ. To express that not everything can be observed, we
project this automaton over the granularity μ to getRμ (intuitively this represents how
runs can be seen “through” the granularity μ). This automaton (considered as a finite
automaton over the alphabet Γμ) is not deterministic and has ε-transitions, we thus de-
terminize it as a classical finite automaton by the usual subset construction and denote
K the result. A state of K is a set {(q1, R1), · · · , (qk, Rk)} where qi’s are states of P
and Ri’s regions; being in such a state means that according to the observation the plant
can be in a state (qi, vi) with vi ∈ Ri.

Finally GP,μ,Δ is obtained fromK by splitting every transition q
g,a,Y−−−→ q′ ofK into

two transitions q
g,a−−→ (q, g, a) and (q, g, a) Y−→ q′ where (q, g, a) is a new state. The

intuition behind this split is that player “environment” chooses which action is done and
at what time this action is done (state q will thus be an “environment” state) whereas
player “diagnoser” chooses which clocks are reset (the state (q, g, a) is a “diagnoser”
state). The forbidden states of this safety game are those states of K which contain both
“non-faulty” and “Δ-faulty” states ofRμ.

Using lemma 2, we can prove that player “diagnoser” has a winning strategy in the
game GP,μ,Δ to avoid the forbidden states if and only if P is Δ-DTAμ-diagnosable.
GP,μ,Δ is a simple untimed game with a safety objective, it is easy to synthesize po-
sitional winning strategies when some exist. Such a winning strategy can be obtained
from GP,μ,Δ by erasing some of the reset transitions (i.e. transitions labelled by some
subset Y). From this automaton, we can easily synthesize a diagnoser for P (by taking
as final those states where all regions are Δ-faulty and merging q

g,a−−→ (q, g, a) with

(q, g, a) Y−→ q′ into q
g,a,Y−−−→ q′).

The complexity of extracting winning strategies from safety (untimed) games is lin-
ear in the size of the arena, the complexity of deciding whether a Δ-DTAμ-diagnoser
exists (and constructing it) is thus doubly exponential because the size of R is expo-
nential in the size of P and μ (see [AD94]) and the size of K is exponential in the size
ofR thus doubly exponential in the size of P and μ. ��

Example 1. We illustrate the proof on a small example: consider the following plant,
the granularity μ = ({y}, 1, 0) and the delay Δ = 0.

q0 q1

f

¬f
a, x := 0

x > 0, f.a

x = 0, a

228 P. Bouyer, F. Chevalier, and D. D’Souza

The notation f.a is for an action f immediately followed by an a. This plant is Δ-
DTAμ-diagnosable: a diagnoser resetting his clock when reading the first a will be able
to diagnose P simply by checking the value of his clock when reading the second a.

The game constructed in the previous proof is depicted on the next picture:

GP,μ,Δ

q0
x=y =0

q1
x=y =0

q1
y >0=x

f
x >0=y

f
x, y >0

¬f
x=y =0

¬f f
x=y =0 x >0=y

¬f f
y >0=x x, y >0

y = 0, a

y > 0, a

y := 0

y := 0

y > 0, a

y = 0, a

y > 0, a

y := 0

y := 0

y := 0

The states that player diagnoser must avoid in the above game are the gray states
which contain both faulty and non-faulty regions (informally states in which the diag-
noser cannot know if the run of the plant is faulty or not). In the game, “circle”-states
belong to the “environment” player while “square”-states belong to the “diagnoser”
player. In the game-graph, it is easy to see that “diagnoser” has a winning strategy.
The problematic state is the bottom-left-most square-state: if “diagnoser” plays action
“y := 0”, he wins; if he chooses the other transition, player “environment” can win by
next playing “y > 0, a”. This confirms what we have noticed: if a diagnoser resets his
clock when reading the first a, he can diagnose correctly; but if he does not reset his
clock, he will be unable to diagnose the plant.

4.2 Δ-DTAμ-Diagnosability Is 2EXPTIME-Hard

The proof uses a reduction from the halting problem of alternating Turing machines
using exponential space. We only sketch the reduction, details can be found in [Che04].

Let M be an alternating Turing machine using exponential space and let w0 be an
input for M. We will construct a plant P such that there is a Δ-DTAμ-diagnoser for
P (with μ = ({t}, 2, 1) and Δ = 1) if and only if M accepts w0. We somehow want
to force a potential diagnoser θ for P to play the sequence of configurations which ac-
cepts w0. The role of the plant is to give inputs to the diagnoser so that it can verify
that the diagnoser really plays the accepting sequence of configurations. The diagnoser
will have to play a sequence of configurations C0#C1# . . .#Ck where each Ci is a
configuration of M, Ci+1 is the successor of Ci and C0 is the initial configuration en-
coding the input w0. The behaviour of P is depicted on Fig. 2. P produces a’s (on the
figure, one line of a’s corresponds to a configuration, i.e. to an exponential number of
a’s) and checks that the diagnoser plays the configurations ofM correctly by perform-
ing one test. As the decision to perform the test is done in a non-observable way (u
actions are non-observable), to be correct, a diagnoser cannot cheat and has to simu-
late M. #’s are observable and are indexed to represent alternation of M (in case of a

Fault Diagnosis Using Timed Automata 229

Check initial
configuration

Check succ.
relation

u

u

a a· · ·
#1, #2

a a· · ·
#1, #2

Fig. 2. Shape of the plant for the reduction

universal configuration ofM, the diagnoser has to know which transition rule the plant
wants to follow). As already said, a configuration needs an exponential number of a’s,
as the discrete structure of P cannot count, we use clocks for counting this exponential
number of a’s. We cannot give all details here and better refer the reader to [Che04].
Note that the two checks can be encoded by 3SAT-formulae (in conjunctive normal
form [Pap94]). We will now explain how such formulae can be encoded.

Given a 3SAT-formula ϕ we want to construct a a, x := 0 a, y := 0

Fig. 3. Choice of a variableplant P such that P is Δ-DTAμ-diagnosable if and
only if ϕ is satisfiable. We first explain how a diag-
noser θ will choose the truth of a propositional variable p. Consider the plant in Fig. 3.
When two a’s have been done, θ will know that the plant is in the black state but it
will know the value of at most one of the two clocks x and y because θ is supposed to
have only one clock t. The choice true for p will be encoded by the fact that the clock
t has the same value as the clock x (we will say in this case that θ has stored x). We
now show how we can force a diagnoser θ to set p to true, i.e. to store clock x. Fig. 4
illustrates the construction. The main idea is that if θ stores x, after three a’s, if the

a, x := 0 a, y := 0

3

2

1

a
x < 2 ∧ y > 1

x > 2 ∧ y < 1, a

x > 2 ∧ y > 1
a

3
?, z := 0 z = 0, f z = 0, a

2
OK, z := 0 z = 0, ¬f z = 0, a

1
?, z := 0 z = 0, ¬f z = 0, a

Fig. 4. Plant ensuring that p is set to true

constraint x < 2 holds he will know that P is in state 3 whereas if the constraint x > 2
holds he may not know if P is in state 1 or in state 2 . Similarly if θ stores y, he may
hesitate between state 1 and state 3 , but ifP is in state 2 , θ knows it. To force θ storing
x, P will give him one more information which will be an observable action “OK” or
“?” with which θ will break the uncertainty between state 1 and state 2 , but not the
uncertainty between state 1 and state 3 . Thus if θ stores x he will precisely know in
which black state P is after having done four actions and will thus be able to diagnose
P correctly, but if θ stores y he may be uncertain between states 1 and 3 . and will thus

230 P. Bouyer, F. Chevalier, and D. D’Souza

not be able to diagnose correctly P because the execution after state 1 is non-faulty
(¬f represents a non-observable non-faulty action) whereas the execution after state 3

is faulty. Of course a similar construction (breaking the uncertainty between 3 and 1)
can be done for proposition ¬p, thus enforcing clock y to be stored by a diagnoser. The
previous construction is extended to clauses of 3SAT by branching automata as the one
on Fig. 4. It’s better to explain the construction on an example. We choose the formula
p1∨¬p3 (thus ignoring p2). The left-most frame of Fig. 5 corresponds to the previously

Choice for p1 No choice needed for p2 Choice for p3 Breaking the
uncertainty

Fig. 5. Plant ensuring that p1 ∨ ¬p3 is true

described choice for p1, the second frame is for p2 (p2 is not used in the clause, thus no
branching is needed, but it may be used by other clauses), there is no constraint on the
choice for p2, the third frame is for the choice for p3. The last frame is for breaking the
uncertainty between conflicting runs (adding “OK” and “?” labels followed by either a
fault or no fault, as previously). It could be argued that there is no need of the frame for
p2 as p2 is not used in the clause. However, as we have a set of clauses to be satisfied,
we need to have this linear part for p2. Indeed, for a formula ϕ =

∧n
i=1 ψi with ψi

clause, the plant for ϕ will be as on Fig. 6. Non-observable action u’s role is to hide
what clause the plant is going to check. To be correct, θ must thus satisfy all clauses
(with a unique valuation for the propositional variables). This plant can be diagnosed if
and only if ϕ is satisfiable.

u

Constr. for ψ1

u Constr. for ψ2

u

Constr. for ψn

Fig. 6. Plant for a 3SAT-formula

This concludes the proof of 2EXPTIME-hardness of the Δ-DTAμ-diagnosability
problem. Note that a similar construction could be done when the diagnoser can use an
arbitrary (but fixed) number of clocks. ��

Fault Diagnosis Using Timed Automata 231

5 Diagnosability by Event-Recording Timed Automata

The class ERA [AFH94] appears as a natural class of automata for observing systems
because clocks and thus timing information are dependent on events (thus precisely
what is observed). The fundamental properties of ERA’s we will use are the following:

– ERA’s are determinizable [AFH94]
– ERA’s are “input-determined” [DT04]: after having read a timed word, the truth of

a guard is completely determined by the word itself. This implies in particular that
if w is a timed word and μ a granularity for the observable events, there exists a
unique symbolic word γ ∈ Γμ such that w ∈ tw(γ).

a

x ≥ 1, f, x := 0
x = 0, a

x < 1, a

Fig. 7. Plant DTA-diagnosable but not ERA-diagnosable

As previously we restrict to ERA’s with bounded resources and tackle the Δ-ERAμ-
diagnosability problem for a fixed granularity μ. It is worth noticing first that ERA-
diagnosability is less powerful than DTA-diagnosability as illustrated by the plant on
Fig. 7: a DTA-diagnoser with one clock for this plant does not reset its clock when the
first a occurs and checks the value of its clock when the second a occurs; it announces
a fault only if the value is greater than 1. There is no ERA-diagnoser for this plant.

Deciding diagnosability for ERA’s is much easier than for DTA’s, as stated by the
next theorem. Note that the PSPACE complexity is “optimal” for the diagnosability
problem in the sense that there is no hope for finding interesting classes of diagnosers
with a lower complexity.

Theorem 3. Let μ be a granularity over observable events and Δ ∈ Q≥0. The Δ-
ERAμ-diagnosability problem is PSPACE-complete.

Proof (Sketch). Let us first argue why Δ-ERAμ-diagnosability is PSPACE-hard. This
can easily be shown by reducing the reachability problem in a timed automaton to Δ-
ERAμ-diagnosability. Consider a timed automaton A over alphabet Σ and add two
fresh unobservable actions u and f (the fault) which are done immediately after having
reached some final state of A. The modified automaton is noted P . For every Δ > 0,
for every granularity μ, taking Σo = Σ and Σu = {u, f}, we get that a final state is
reachable inA if and only if there is no Δ-ERAμ-diagnoser for P (in case no final state
is reachable, the diagnoser is trivial as it needs not accept anything).

We will now sketch the proof of PSPACE-membership of the problem. Let P =
(Σo, Σu, Q, q0,−→, X, Inv) be a plant and μ = (Y,m,max) a granularity over Σo.

232 P. Bouyer, F. Chevalier, and D. D’Souza

Let SΔf = R(PΔf ‖ Uμ)μ and S¬f = R(P¬f ‖ Uμ)μ. Informally SΔf (resp. S¬f)
recognizes all observations that may come from Δ-faulty (resp. non-faulty) runs. The
result can finally be deduced from lemma 2 and from the following lemma:

Lemma 4. The following properties are equivalent:

(i) P is Δ-ERAμ-diagnosable,
(ii) {γ ∈ Γ ∗

μ | ∃ρ1 ∈ L¬f and ρ2 ∈ LΔf s.t. π(ρ1), π(ρ2) ∈ tw(γ)} is empty,
(iii) L(SΔf) ∩ L(S¬f) is empty.

��

Note that if P is Δ-ERAμ-diagnosable, the proof provides a diagnoser: one can
prove that π(LΔf) ⊆ L(SΔf) ⊆ L(S¬f)c ⊆ π(L¬f)c, SΔf is a Δ-ERAμ-diagnoser
for P . Moreover, SΔf is an optimal diagnoser in the sense that it is the smallest diag-
noser (for language inclusion). This property is specific to the model of ERA’s; such a
property does not hold for the class DTAμ.

6 Conclusion

We have shown that diagnosability using DTA’s and ERA’s is a decidable problem when
resources of the diagnoser are fixed. Moreover if a diagnoser exists, it is possible to
construct one: the size of such a diagnoser is doubly exponential in the granularity and
in the size of the plant. Thus if we assume that the diagnoser can be pre-computed,
diagnosing online becomes exponential in the granularity and in the plant, but only
linear in the length of the observation. The use of deterministic mechanisms thus allows
to construct diagnosers with short response time, which is crucial in fault detection.

We have also pointed out a significant complexity jump between two classes of po-
tential diagnosers: existence of diagnoser in the class DTA (with bounded resources) is
2EXPTIME-complete whereas it is PSPACE-complete for the class ERA (with bounded
resources). The class ERA thus appears as a natural and useful class of diagnosers.

This work is related to conformance testing where the aim is to generate testers for a
given specification. Such a problem has for example been considered in [KT04] where
an algorithm for building small testers (with fixed resources) is proposed. We think that
our approach (based on games) could be applied in such a framework as well.

As future work we aim at studying the diagnosability problem in the classes DTA
and ERA but without bounding the resources of the diagnoser. We also want to ex-
plore more precisely the links between control and diagnosability: even if we can re-
duce diagnosability to control, the result of [BDMP03] together with our 2EXPTIME-
completeness result show that diagnosability is as difficult as control for some classes
of diagnosers/controllers, which may appear intriguing.

Acknowledgment. We thank Thierry Cachat for his remarks on a draft of this paper.

Fault Diagnosis Using Timed Automata 233

References

[AD94] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science
(TCS), 126(2):183–235, 1994.

[AFH94] R. Alur, L. Fix, and T.A. Henzinger. A determinizable class of timed automata. In
Proc. 6th Int. Conf. on Computer Aided Verification (CAV’94), vol. 818 of LNCS, pp.
1–13. Springer, 1994.

[BDGP98] B. Bérard, V. Diekert, P. Gastin, and A. Petit. Characterization of the expressive
power of silent transitions in timed automata. Fundamenta Informaticae, 36(2–
3):145–182, 1998.

[BDMP03] P. Bouyer, D. D’Souza, P. Madhusudan, and A. Petit. Timed control with partial
observability. In Proc. 15th Int. Conf. Computer Aided Verification (CAV’2003), vol.
2725 of LNCS, pp. 180–192. Springer, 2003.

[Che04] F. Chevalier. Détection d’erreurs dans les systèmes temporisés. Master’s thesis,
DEA Algorithmique, Paris, 2004.

[DM02] D. D’Souza and P. Madhusudan. Timed control synthesis for external specifications.
In Proc. 19th Int. Symp. Theoretical Aspects of Computer Science (STACS’02), vol.
2285 of LNCS, pp. 571–582. Springer, 2002.

[DT04] D. D’Souza and N. Tabareau. On timed automata with input-determined guards.
In Proc. Joint Conf. Formal Modelling and Analysis of Timed Systems and Formal
Techniques in Real-Time and Fault Tolerant System (FORMATS+FTRTFT’04), vol.
3253 of LNCS, pp. 68–83. Springer, 2004.

[GJL04] O. Grinchtein, B. Jonsson, and M. Leucker. Learning of event-recording automata.
In Proc. Joint Conf. Formal Modelling and Analysis of Timed Systems and Formal
Techniques in Real-Time and Fault Tolerant System (FORMATS+FTRTFT’04), vol.
3253 of LNCS, pp. 379–395. Springer, 2004.

[GTW02] E. Grädel, W. Thomas, and T. Wilke, eds. Automata, Logics, and Infinite Games: A
Guide to Current Research, vol. 2500 of LNCS. Springer, 2002.

[KPA03] K.J. Kristoffersen, C. Pedersen, and H.R. Andersen. Runtime verification of timed
LTL using disjunctive normalized equation systems. In Proc. 3rd Int. Work. Runtime
Verification, Electronic Notes in Computer Science. Elsevier, 2003.

[KT04] M. Krichen and S. Tripakis. Real-time testing with timed automata testers and
coverage criteria. In Proc. Joint Conf. Formal Modelling and Analysis of Timed
Systems and Formal Techniques in Real-Time and Fault Tolerant System (FOR-
MATS+FTRTFT’04), vol. 3253 of LNCS, pp. 134–151. Springer, 2004.

[LLW95] F. Laroussinie, K.G. Larsen, and C. Weise. From timed automata to logic – and
back. In Proc. 20th Int. Symp. Mathematical Foundations of Computer Science
(MFCS’95), vol. 969 of LNCS, pp. 529–539. Springer, 1995.

[Pap94] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
[SSL+95] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. C. Teneketzis.

Diagnosability of discrete event systems. IEEE Transactions on Automatic Control,
40(9):1555–1575, 1995.

[SSL+96] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. C. Teneketzis.
Failure diagnosis using discrete event systems. IEEE Transactions on Control Sys-
tems Technology, 4(2):105–124, 1996.

[Tri02] S. Tripakis. Fault diagnosis for timed automata. In Proc. 7th Int. Symp. Formal
Techniques in Real-Time and Fault Tolerant Systems (FTRTFT’02), vol. 2469 of
LNCS, pp. 205–224. Springer, 2002.

[Tri03] S. Tripakis. Folk theorems on the determinization and minimization of timed au-
tomata. In Proc. 1st Int. Work. on Formal Modeling and Analysis of Timed Systems
(FORMATS’03), vol. 2791 of LNCS, pp. 182–188. Springer, 2003.

Optimal Conditional Reachability
for Multi-priced Timed Automata

Kim Guldstrand Larsen and Jacob Illum Rasmussen

Department of Computer Science, Aalborg University, Denmark
{kgl, illum}@cs.aau.dk

Abstract. In this paper, we prove decidability of the optimal condi-
tional reachability problem for multi-priced timed automata, an exten-
sion of timed automata with multiple cost variables evolving according
to given rates for each location. More precisely, we consider the problem
of determining the minimal cost of reaching a given target state, with
respect to some primary cost variable, while respecting upper bound
constraints on the remaining (secondary) cost variables. Decidability is
proven by constructing a zone-based algorithm that always terminates
while synthesizing the optimal cost with a single secondary cost variable.
The approach is then lifted to any number of secondary cost variables.

1 Introduction

Recently, research has been focused on extending the framework of timed au-
tomata (TA), [2], towards linear hybrid automata (LHA), [3], by allowing contin-
uous variables with non-uniform rates and maintaining a decidable reachability
problem.

One such class of models is that of priced (or weighted) timed automata
(PTA), [9, 4], which are timed automata augmented with a single cost variable.
For this class of timed automata, the minimum-cost reachability problem, i.e.
finding the minimum cost of reaching some goal location, is decidable. The re-
striction with respect to linear hybrid automata is that the cost variable cannot
be tested in guards and invariant, it cannot be reset1, and it grows monotonically.

Ignoring the variable c2, Figure 1 depicts a PTA for which the rate of c1 is,
respectively, 1 and 2 in locations l1 and l2. The type of reachability question we
can ask for this model is: What is cheapest way of reaching the “happy” location.
The answer, in this case, is 3 which is achieved by delaying for 1 time unit in l1,
taking the transition to l2 and delaying for 1 time unit before proceeding to l3.

A natural extension of PTA is to allow a secondary cost variable, thus arriv-
ing at dual-priced timed automata (DPTA), and pose reachability questions of
the type: What is the cheapest primary cost of reaching the “happy” location

1 Variables with these two properties are sometimes referred to as observers in the
literature.

V. Sassone (Ed.): FOSSACS 2005, LNCS 3441, pp. 234–249, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Optimal Conditional Reachability for Multi-priced Timed Automata 235

ċ1 = 1
ċ2 = 4

l1

y := 0
c2+= 1

x ≤ 2

ċ1 = 2
ċ2 = 1

l2

y := 0

x ≥ 2
y ≥ 1

x ≤ 3
y ≤ 2

l3

Fig. 1. Example dual-priced timed automata

under some upper bound constraint on the secondary cost? We term this opti-
mal conditional reachability. There are three cases to consider, if the secondary
cost is time, if the primary cost is time, and if neither the primary nor the
secondary cost is time. In the first case, we can augment a PTA with time in-
variants corresponding to the upper bound constraint on all locations and then
use minimum-cost reachability for PTA. In the second case, we can combine
finding fastest traces in TA with minimum-cost reachability for PTA. The third
case is the topic of this paper. Figure 1 provides a model with two cost variables
for which we can pose questions of the type: What is the minimum cost for c1
of reaching the “happy” location, while respecting c2 ≤ 4. The answer to this
question is 11

3 and is obtained by delaying for 1
3 time units in l2, then proceeding

to l2 and waiting 5
3 time units before proceeding to l3. This example illustrates

that unlike minimum-cost reachability for PTA, optimal conditional reachability
with two cost variables may have non-integral solutions2.

If we generalize DPTA to allow any finite number of cost variables, we arrive
at multi-priced timed automata (MPTA). Optimal conditional reachability for
MPTA concerns minimizing the first cost variable while respecting upper bound
constraints on the rest. The main contribution of this paper is the decidability
of optimal conditional reachability for MPTA.

Relevant work on MPTA include the model checking problem of MPTA with
respect to weighted CTL which has been studied by Brihaye et al., [6], and
proven undecidable, even with discrete time.

The discrete version of conditional reachability is called multi-constrained
routing and is well-known to be NP-complete, [7]. Recently, the problem has
been reconsidered by Puri and Tripakis in [11] where several algorithms are
proposed for solving the problem, both exactly and approximately.

For simplicity of the proofs, we prove decidability of optimal conditional
reachability for MPTA, by proving the decidability for the simpler DPTA model.
To show that the result can be lifted to from DPTA to MPTA, we provide,
throughout the paper, descriptions of how important aspects are extended from
pairs of costs to k-tuples of costs.

The rest of this paper is organized as follows. In Section 2, we give an abstract
framework for symbolic optimal conditional reachability in terms of dual-priced

2 The simple model in Figure 1 is acyclic, so optimal conditional reachability can be
reduced to linear programming.

236 K.G. Larsen and J.I. Rasmussen

transition systems, including a generic algorithm for conditional optimal reach-
ability. In Section 3, we introduce dual-priced timed automata as a syntactic
model for dual-priced transition systems. In section 4, we introduce dual-priced
zones as the main construct for dual-priced symbolic states. In Section 5, we
define a successor operator on the constructs of the previous section. In Sec-
tion 6, we discuss termination of our algorithm. Finally, we conclude the paper
in Section 7 and point out directions for future research.

2 Conditional Optimal Reachability

The notation defined in this section aims at being consistent with that of [11].
The partial order, �, over IR2

+ defined such that (a, b) � (c, d) iff a ≤ c and
b ≤ d is called a domination order. Given a set of points, A ⊆ IR2

+, an element,
(c, d) ∈ A, is said to be redundant if there exists another element (a, b) ∈ A such
that (a, b) � (c, d). We extend domination to sets, A, B ∈ 2IR2

+ such that A � B
iff every (a, b) ∈ B is redundant in A. Figure 2 depicts a set of points with black
and white bullets denoting, respectively, redundant and non-redundant nodes.

A

BC

D
E

Fig. 2. Domination in IR2
+

A dual-priced transition system is a structure
T = (S, s0, Σ,→) where S is a, possibly infinite,
set of states, s0 is the initial state, Σ is an alpha-
bet of labels, and → is partial function with sig-
nature S × Σ × S ↪→ IR2

+. For brevity, we will use
the notation s → s′ to denote that ∃c1, c2, a :→
(s, a, s′) = (c1, c2), we use s

a−−−→
c1,c2

whenever →

(s, a, s′) = (c1, c2), the notation s
c1,c2−−−→ s′ for

∃a ∈ Σ : s
a−−−→

c1,c2
s′, and the notation s

a−→ s′ for

∃c1, c2 : s
a−−−→

c1,c2
s′. The components of a cost pair

are denoted primary, respectively, secondary costs.
An execution ε of T is a sequence ε = s0

a1−−−→
c1
1,c1

2

s1
a2−−−→

c2
1,c2

2

· · · an−−−→
cn
1 ,cn

2

sn. The

cost, Cost(ε), of an execution ε is given as Cost(ε) = (Cost1(ε),Cost2(ε)), where
Costj(ε) =

∑n
i=1 ci

j for j ∈ {1, 2}.
The minimal primary cost of reaching a set of goal states, G ⊆ S, under an

upper bound, p, on the secondary cost is termed the conditional optimal cost
and given as:

mincost≤p(G) = inf{Cost1(ε) | ε = s0
c1
1,c1

2−−−→ · · · cn
1 ,cn

2−−−→ s ∈ G, Cost2(ε) ≤ p} (1)

In order to effectively analyze dual-priced transition systems we suggest dual-
priced symbolic states of the form (A, π) where A ⊆ S and π : A → 2IR2

+ .
Intuitively, reachability of the dual-priced symbolic state (A, π) has the inter-
pretation that all s of A are reachable with costs arbitrarily close to all π(s).

Optimal Conditional Reachability for Multi-priced Timed Automata 237

To express successors of dual-priced symbolic states we use the Post operator
Posta(A, π) = (B, η) where:

B = {s′ | ∃s ∈ A : s
a−→ s′}, and (2)

η(s) = {(c1 + c, c2 + c′) | ∃s′ ∈ A : s′ a−−−→
c1,c2

s and π(s′) = (c, c′)} (3)

A symbolic execution ξ of a dual-priced transition system is a sequence ξ =
(A0, π0), . . . , (An, πn), where A0 = {s0}, π(s0) = (0, 0) and for 1 ≤ i ≤ n we
have (Ai, πi) = Posta(Ai−1, πi−1), for some a ∈ Σ. The correspondence between
executions and symbolic executions is captured below:

– For each execution ε of T ending in s there is a symbolic execution ξ ending
in (A, π) such that s ∈ A and Cost(ε) ∈ π(s).

– Let ξ be a symbolic execution of T ending in (A, π), then for each s and
(c, c′) ∈ π(s) there is an execution ε ending in s such that Cost(ε) = (c, c′).

From the above it follows that symbolic states accurately capture conditional
optimal reachability in the sense that:

mincost≤p(G) = inf{minCost≤p(A ∩G, π) | (A, π) is reachable}, (4)

where minCost≤p(A, π) is defined as inf{c|∃s ∈ A : (c, c′) ∈ π(s) and c′ ≤ p}.
Furthermore, we define the relation 3 on dual-priced symbolic states such that
(B, η) 3 (A, π) iff A ⊆ B and η(s) � π(s) for all s ∈ A. In other words, B is
bigger than A and for each state, s, in A, π(s) is dominated by η(s).

Based on the above result, we provide an algorithm for computing the optimal
conditional reachability problem, mincost≤p(G), in Figure 3.

Cost := ∞
Passed := ∅
Waiting := {({s0}, π0)}
while Waiting �= ∅ do

select (A, π) ∈ Waiting
if A ∩ G �= ∅ then

if minCost≤p(A ∩ G, π) ≤ Cost then
Cost := minCost≤p(A ∩ G, π) fi

fi
if ∀(B, η) ∈ Passed : (B, η) �/ (A, π)then

Passed := Passed ∪ {(A, π)}
Waiting := Waiting ∪⋃a∈Σ Posta(A, π) fi

fi
od
return Cost

Fig. 3. General algorithm for computing the optimal conditional reachability cost,
mincost≤p(G)

238 K.G. Larsen and J.I. Rasmussen

The algorithm maintains two lists, a Passed and a Waiting list, that hold
the states already explored and the states waiting to be explored, respectively.
Initially, the Passed list is empty and the Waiting list contains only the initial
state. The algorithm iterates as long as the Waiting list in non-empty.

At each iteration the algorithm select a state, (A, π), from the Waiting list.
The set of states, A, is checked for intersection with the set of goal states. If the
intersection is non-empty, the minimum primary cost of any goal state satisfying
the constraint on the secondary cost is computed and compared to Cost, and
if the computed cost is the smaller of the two, Cost is updated appropriately.

Whether A intersects with the goal states or not, we go through the Passed
list and check whether it contains any (B, η) such that (B, η) 3 (A, π). If it does,
(A, π) is discarded as it is dominated by (B, η), otherwise we add all successors
of (A, π) to the Waiting list and add itself to the Passed list.

The algorithm terminates when the Waiting list is empty and at this point,
Cost holds mincost≤p(G). Termination of the algorithm is guaranteed if 3 is a
well-quasi ordering on dual-priced symbolic states.

For optimization of the algorithm, further pruning of elements in the Wait-
ing list can be performed simultaneously with the inclusion check,3, e.g. keeping
only elements where the set of states with primary cost smaller than Cost and
secondary cost smaller than p. This is correct since both primary and secondary
costs increase monotonically in any trace. Furthermore, for any encountered pair
(A, π) with s ∈ A we could prune π(s) for redundant elements.

Every aspect in this section about dual-priced transition systems, includ-
ing the generic algorithm, can be directly extended to multi-priced transition
systems with k-tuples of cost and optimal conditional reachability of the form
mincost≤p2,...pk

(G). That is, minimize the primary cost under individual upper
bound constraints on the k − 1 secondary costs.

The above framework may be instantiated by providing concrete syntax
for dual-priced transition systems and data structures for dual-priced symbolic
states that, first, allow effective computation of the Post operator and, second,
have a well-quasi ordered relation, 3. In the following sections, we provide such
an instantiation of the above framework.

3 Dual-Priced Timed Automata

In this section we define dual-priced timed automata which is a proper subset
of linear hybrid automata, [3], and a proper superset of priced timed automata,
[9], or weighted timed automata, [4], and in turn timed automata, [2]. DPTA
will serve as a concrete syntax for dual-priced transition systems. First however,
we recall some basic notation from the theory of timed automata.

We work with a finite set, C, of positive, real-valued variables called clocks.
B(C) is the set of formulae obtained as conjunctions of atomic constraints of the

Optimal Conditional Reachability for Multi-priced Timed Automata 239

form x �� n, where x ∈ C, n ∈ IN, and ��∈ {≤,=,≥}3. We refer to the elements
of B(C) as clock constraints. B(C)∗ is the set of clock constraints involving only
upper bounds, i.e. ≤.

Clock values are represented as functions from C to the set of non-negative
reals, IR+, called clock valuations and ranged over by u, u′ etc.

For a clock valuation, u ∈ (C → IR+), and a clock constraint, g ∈ B(C), we
write u ∈ g when u satisfies all the constraints of g. For t ∈ IR+, we define the
operation u + t to be the clock valuation that assigns u(x) + t to all clocks, and
for R ⊆ C the operation u[R → 0] to be the clock valuation that agrees with u
for all clocks in C\R and assigns zero to all clocks in R. u[x → 0] is shorthand
for u[{x}→ 0]. Furthermore, u0 is defined to be the clock valuation that assigns
zero to all clocks.

Definition 1 (Dual-Priced Timed Automata). A dual-priced timed au-
tomaton is a 6-tuple A = (L, l0,C, E, I,P) where P = {P1,P2}4, L is a fi-
nite set of locations, l0 is the initial location, C is a finite set of clocks, E ⊆
L × B(C) × 2C × (IN × IN) × L is the set of edges, I : L → B(C)∗ assigns
invariants to locations, and Pi : L → IN assigns prices to locations, i ∈ {1, 2}.

The concrete state semantics of a DPTA, A = (L, l0,C, E, I,P), is given in
terms of a dual-priced transition system with state set L × (C → IR+), initial
state (l0, u0), alphabet Σ = E ∪ {δ}, and the transition relation, →, defined as:

– (l, u) δ−−−−−−−−−→
t·P1(l),t·P2(l)

(l, u + t) if ∀ 0 ≤ t′ ≤ t : u + t′ ∈ I(l) and

– (l, u) e−−→
c,c′

(l′, u′) if e = (l, g, R, (c, c′), l′) ∈ E, u ∈ g, u′ = u[R → 0].

We will often write concrete states as (l, u, c1, c2) to denote the assumption
of some underlying execution, ε, ending in (l, u) with Cost(ε) = (c1, c2).

A concrete dual-priced state (l, u, c1, c2) is said to dominate another state
(l′, u′, c′1, c

′
2) iff l = l′, u = u′, and (c1, c2) � (c′1, c

′
2). In such case we write

(l, v, c1, c2) � (l′, v′, c′1, c
′
2).

For convenience reasons, we assume some restrictions on the structure of
the DPTA in the rest of the paper. First, any DPTA should be bounded, i.e.
all locations have upper bound invariants on all clocks. Second, at least one
clock is reset on every transition. Note that neither restriction compromises the
generality of our result, as it is well-known that any TA can be transformed
into a semantically equivalent bounded TA, and that result extends directly to
DPTA. Furthermore, the reset assumption can be guaranteed by introducing an
extra clock which is reset on every transition.

3 For simplification we do not include strict inequalities, note, however, that everything
covered in this paper extends directly to strict inequalities, which is why we compute
infimum costs as opposed to minimum costs.

4 If we let P = {P1, . . . ,Pk} we have MPTA with analogous semantics.

240 K.G. Larsen and J.I. Rasmussen

3.1 Relation to Linear Hybrid Automata

Any DPTA is a LHA where the value of the rate of each clock variable is one is
every location, and the rates of the primary and secondary costs are P1(l) and
P2(l), respectively, in location l.

Tools such as HyTech, [8], can perform forward symbolic reachability anal-
ysis on LHA over a set of variables x using symbolic state structures (l, A, b)
where l is a location and A · x ≤ b defines a convex polyhedra of valid variable
assignments. One of the main properties of this kind of reachability analysis is
that the Post operators defined for LHA maintains convexity of the state set.
However, the reachability problem for LHA is, in general, undecidable, so termi-
nation of the reachability algorithm is not guaranteed. However, a consequence
of our result is that for the class of DPTA, HyTech will terminate when per-
forming conditional reachability.

4 Dual-Priced Zones

Now, we propose dual-priced zones as a syntactic construct for providing a sym-
bolic semantics for the dual-priced transition system induced by DPTA.

The constructs of our proposal for dual-priced symbolic states are zones and
cost functions. Zones are well-known from the analysis of timed systems and
efficient implementations of zones as difference bound matrices are used in real-
time verification tools such as Kronos, [5], and Uppaal, [10]. Briefly, zones are
convex collections of clock valuations that can be described solely using difference
constraints of the form xi−xj ≤ m where m ∈ ZZ and xi, xj ∈ C∪{x0}, where,
x0, is a special clock whose value is fixed to zero. That way, constraints of the
form xi ≥ n can be written as x0 − xi ≤ −n, and similarly for other constraints
involving a single variable. Zones are ranged over by Z,Z1, Z

′, When a clock
valuation, u, satisfies the difference constraints of a zone, Z, we write u ∈ Z.

The second construct is a cost function, which is an affine function over C,
i.e. a cost function, d, is a function with signature (C → IR+) → IR+ that can
be written syntactically as a1 ·x1 + · · ·+an ·xn + b where xi ∈ C, 1 ≤ i ≤ n, and
ai, b ∈ ZZ. The cost of a clock valuation, u, in a cost function, d, is given by d(u) =
a1 · u(x1) + · · ·+ an · u(xn) + b. We range over cost function by d, e, d1, e1, d

′, e′

etc. For ease of notation we define a number of operations on cost functions.
Let m ∈ ZZ, p ∈ IN and xi, xj ∈ C, then the substitution operation d[xi/ϕ] for
ϕ ∈ {m, xj +m} is defined as d[xi/ϕ] = a1 ·x1+· · ·+ai ·ϕ+· · ·+an ·xn. The delay
operation d↑p,xi is defined as d↑p,xi = a1 ·x1+· · ·+(p−

∑
j �=i aj)·xi+· · ·+an ·xn,

meaning we want the sum of the coefficients to match p by assign the correct
coefficient to xi.

Let C be a set of pairs of cost functions, i.e. C = {(e1, d1), . . . , (ek, dk)} and
u a clock valuation, then C(u) = {(e1(u), d1(u)), . . . (ek(u), dk(u))} is a set of
points in IR2

+. We denote by λ(C(u)) the set of all convex combinations of C(u),
i.e. the convex hull.

For the construction of dual-priced symbolic states we propose dual-priced
zones as given in Definition 2 below.

Optimal Conditional Reachability for Multi-priced Timed Automata 241

Definition 2 (Dual-Priced Zone). A dual-priced zone is a pair, (Z,C), where
Z is a zone and C is a set of pairs of cost functions {(e1, d1), . . . , (ek, dk)}.

We construct dual-priced symbolic states as structures (l, Z, C) where l is a
location and (Z,C) is a dual-priced zone. A dual-priced symbolic state (l, Z, C)
contains all concrete states (l′, u, c1, c2) where l′ = l, u ∈ Z, and (c1, c2) ∈
λ(C(u)). Not that dual-priced zones extend directly to multi-priced zones with
k-tuples of cost functions and, in turn, multi-priced symbolic states.

In [9], efficient data structures for symbolic minimum-cost reachability for
priced timed automata (PTA) are provided. These are so-called priced zones
which effectively are zones, Z, with an associated cost function, e. For repre-
senting cost in the discrete case described in [11], subsets of IN× IN are used for
representing reachability costs.

The immediate combination of the two suggest the use of zones together with
sets of pairs of cost function. The following example illustrates why we also need
to consider convex combinations of the cost functions.

0 1 2 3
0

1

2

x

y
x = 2.5

Z

0 2 4
0

2

4

6

8

10

Primary Cost

Se
co

nd
ar

y
C

os
t

(e[y/2], d[y/2])

(e[y/1], d[y/1])

Fig. 4. The relationship between the zone, Z, defined by the constraints 2 ≤ x ≤ 3
and 1 ≤ y ≤ 2 with cost functions (e, d) with e = x + y and d = 4x − 3y + 1

Consider the zone of Figure 4 described by the constraints 2 ≤ x ≤ 3 and
1 ≤ y ≤ 2 with the pair of cost functions (e, d) where e = x+y and d = 4x−3y+1.
Now, if we need to compute the projection of the zone onto the first axis due
to a reset of y, what should the set of pairs of cost functions be to represent or
dominate the possible cost values? The suggestion following the lines of reasoning
from [9] would be to use the two pairs of cost functions (e[y/2], d[y/2]) and
(e[y/1], d[y/1]). This choice, however, has a loss of information if we do not allow
convex combinations. The point (x = 2.5, y = 0) is obtained from Z by projection
from any point satisfying (x = 2.5, 1 ≤ y ≤ 2) corresponding to costs given by
any convex combination between (3.5, 8) and (4.5, 5). However, maintaining only
the these two points is incorrect, as neither of the points dominate any point in
their convex combination.

242 K.G. Larsen and J.I. Rasmussen

5 Post Operator

The projection operation in the previous section serves as a first step towards a
Post operator. Consider, again, the zone in Figure 4 and assume it is, now, as-
sociated with two pairs of cost functions (e1, d1) and (e2, d2), between which we
allow arbitrary convex combinations. Now, if we perform a projection onto the
first axis we split each pair of cost functions in two, i.e. (eL

i , dL
i) and (eU

i , dU
i),

i ∈ {1, 2}, corresponding to the lines L : y = 1 and U : y = 2, respectively,
giving four cost functions. Originally, for any clock valuation, u, in the zone and
0 ≤ α ≤ 1, the convex combination between (e1(u), d1(u)) and (e2(u), d2(u)) wrt.
α is a valid cost pair. However, when we split the cost functions, the cost corre-
sponding to e.g. (e1(u), d1(u)) is given by some convex combination of (eL

1 , dL
1)

and (eU
1 , dU

1) for the clock valuation u[y → 0], and similarly for (e2(u), d2(u)) us-
ing the same convex combination. Contrary to the definition of dual-priced zones,
this suggests not to allow arbitrary convex combinations between (eL

1 , dL
1) and

(eU
1 , dU

1), (eL
2 , dL

2) and (eU
2 , dU

2), but rather “binary tree” convex combinations
of the form: Choose the same convex combination between (eL

1 , dL
1), (eU

1 , dU
1)

and (eL
2 , dL

2), (eU
2 , dU

2) and take any convex combination of the resulting pairs.
However, the following key lemma states that if this set is convex, it is identical
to the set of arbitrary convex combinations between the four.

Lemma 1. Assume a set of pairs of points in IR2
+

{(a1, b1), . . . , (an, bn)}, ai ∈ IR2
+, bi ∈ IR2

+, 1 ≤ i ≤ n

For 0 ≤ α ≤ 1, let:

Aα = {α · ai + (1− α) · bi|1 ≤ i ≤ n} and
B = {ai, bi|1 ≤ i ≤ n}.

Now, if
⋃

α λ(Aα) is convex (i.e.
⋃

α λ(Aα) = λ(
⋃

α λ(Aα))) then
⋃

α λ(Aα) =
λ(B).

Proof. We prove the lemma in two steps. First, we show that
⋃

α λ(Aα) ⊆ λ(B)
and, secondly, that λ(B) ⊆

⋃
α λ(Aα).

1. Let c be a convex combination of Aα for any 0 ≤ α ≤ 1, that is,

c = λ1(αa1 + (1− α)b1) + · · ·+ λn(αan + (1− α)bn) (5)
= λ1αa1 + λ1(1− α)b1 + · · ·+ λnαan + λn(1− α)bn, (6)

where 0 ≤ λi ≤ 1 and
∑

i λi = 1. Now, (6) is a convex combination of B, thus
c ∈ λ(B) and in turn

⋃
α λ(Aα) ⊆ λ(B).

2. Each point ai can be given as a convex combination of Aα where α = 1 using
λi = 1 and λj = 0 for j
= i. Simililarly for bi with α = 0. Now, since all ai, bi

are included in the convex set
⋃

α λ(Aα), we know that λ(B) ⊆ λ(
⋃

α λ(Aα)) =⋃
α λ(Aα). �

Optimal Conditional Reachability for Multi-priced Timed Automata 243

Note, that the proof makes no mention of IR2
+, thus the Lemma 1 is directly

extendible to pairs of points in IRk
+.

At first glance,
⋃

α λ(Aα) in Lemma 1 might seem universally convex, how-
ever, Figure 5 depicts the contrary where Lemma 1 does not hold. Let P =
{(A,B), (C, D)}, now,

⋃
α λ(Pα) (the gray area with the dashed line) is not con-

vex and not equal to λ({A,B,C,D}), particularly, all points on the line from A
to D are not included in the former.

Before defining the Post operator on dual-priced states of the form (l, Z, C),
we need to introduce a number of definitions and operations. Let Z be a zone,
then the delay operation Z↑ and the reset, {x}Z, with respect to a clock, x ∈ C,
are defined as Z↑ = {u + t|u ∈ Z and t ≥ 0} and {x}Z = {u[x → 0]|u ∈ Z}.
It is well-known from timed automata that both Z↑ and {x}Z are representable
as zones.

A

B

C

D

Fig. 5. Counter example

Given a zone, Z, if xi − xj ≤ m is a con-
straint in Z then (Z∧(xi−xj = m)) is a facet
of Z, a lower relative facet of xj , and an up-
per relative facet of xi. The set of lower (resp.
upper) relative facets of a clock, xi, in a zone,
Z, is denoted LFxi

(Z) (resp. UFxi
(Z)).

The following lemma for facets is proven
in [9].

Lemma 2. Let Z be a zone over a clock set, C, with x ∈ C, then:

1. Z↑ =
⋃

F∈UFx0 (Z) F ↑ = Z ∪
⋃

F∈LFx0 (Z) F ↑ and
2. {x}Z =

⋃
F∈LFx(Z){x}F =

⋃
F∈UFx(Z){x}F .

Lemma 2.1 is most intuitively understood knowing that x0 is fixed to zero,
that way UFx0 is the set of all lower bound constraints on clocks in C (i.e. x ≥ n)
and LFx0 is the set of all upper bound constraints on clocks in C (i.e. x ≤ n).

Definition 3. Given a zone, Z, and a clock, x, LUFx(Z) is the unique, smallest
collection of pairs {(L1,U1), . . . , (Ln,Un)}, such that for all 1 ≤ i, j ≤ n, i
= j
we have (i) Li∩Lj = Ui∩Uj = ∅, (ii) {x}Li = {x}Ui, and (iii) Li ⊆ F , Ui ⊆ F ′

for some F ∈ LFx(Z) and F ′ ∈ UFx(Z).

We call the elements of LUFx(Z) partial relative facets with regard to x.
Figure 6 illustrates the concept of partial relative facets.

Let d be a cost function and let F be a relative facet of a zone in the sense
that xi − xj = m (or xi = m) is a constraint in F , then we use the shorthand
notation dF for d[xi/xj + m] (or d[xi/m]).

Definition 4 (Post Operator). Let A = (L, l0,C, E, I,P) be a DPTA with
l ∈ L and e = (l, g, {x}, (c, c′), l′) ∈ E5, let Z be zone, let Z ′ be a zone where

5 For the general case with multiple resets, we consecutively split the pairs of cost
functions for each clock that is reset.

244 K.G. Larsen and J.I. Rasmussen

Z

x

y

x

y

L2

U1

L1

U2

x

y

L1 L2

L3

U1

U2 U3

Fig. 6. From left to right (i): a zone, Z, (ii): LFy(Z) = {L1, L2} and UFy(Z) =
{U1, U2} (iii): LUFy = {(L1, U1), (L2, U2), (L3, U3)}

x ∈ C is fixed at zero, and let C = {(e1, d1), . . . , (ek, dk)} be a set of pairs of cost
functions, then

Postδ(l, Z ′, C) =
{

(l, (Z ′ ∧ I(l))↑ ∧ I(l), {(e↑P1(l),x
i , d

↑P2(l),x
i)|1 ≤ i ≤ k})

}
Poste(l, Z, C) =

⋃
(L,U)∈LUFx(Z∧g)

{
(l′, {x}(U), C ′)

}

where C ′ = {(eL
i + c, dL

i + c′), (eU
i + c, dU

i + c′)|1 ≤ i ≤ k}.
The simplification of the Postδ operator is no restriction given the reset as-

sumption we made in Section 3, we simply just allow Postδ after a Poste, which
is, actually, how symbolic reachability is performed in tools such as Uppaal
and Kronos. The Post operator as given above extends directly to multi-priced
zones and the binary split in Poste remains binary.

As shorthand notation, we write (l, u, c1, c2) ∈ Poste(l, Z, C) to indicate that
(l, u, c1, c2) ∈ (l′, Z ′, C ′) for some (l′, Z ′, C ′) ∈ Poste(l, Z, C).

Before we prove the soundness and completeness of the Post operator, we
illustrate, in Figure 7, its behavior on the running example of Figure 1.

Lemma 3. Given dual-priced symbolic state (l, Z, C) where C = {(e1, d1), . . . ,
(ek, dk)} and a ∈ {e, δ} where e = (l, g, {x}, (c, c′), l′) we have

(l′, u′, c′1, c
′
2) ∈ Posta(l, Z, C) ⇐⇒

∃(l, u, c1, c2) ∈ (l, Z, C) : (l, u, c1, c2)
a−→ (l′, u′, c′1, c

′
2)

Proof. We choose only to prove the lemma for Poste as the analogous proof
for Postδ is straightforward since each concrete successor has a unique concrete
predecessor, given the requirement that Postδ is always applied after a clock
reset. We prove each direction of the bi-implication separately.
⇐= - Completeness: Let (l, u, c1, c2) ∈ (l, Z, C). The costs (c1, c2) are given as a
convex combination of C(u), i.e there are 0 ≤ λi ≤ 1 and

∑
i λi = 1 for 1 ≤ i ≤ k

such that:
(c1, c2) =

∑
i

λi · (ei(u), di(u)). (7)

Optimal Conditional Reachability for Multi-priced Timed Automata 245

x

y

Z1

0 2 4
0

2

4

6

8

10

Primary Cost

Se
co

nd
ar

y
C

os
t

C1 = {(x, 4x)}

(i)

x

y

Z2

0 2 4
0

2

4

6

8

10

Primary Cost

Se
co

nd
ar

y
C

os
t

C2 = {(x, 4x + 1)}

(ii)

x

y

Z3

0 2 4
0

2

4

6

8

10

Primary Cost

Se
co

nd
ar

y
C

os
t

C3 =

{(x + y, 4x − 3y + 1)}

(iii)

x

y

Z4

0 2 4
0

2

4

6

8

10

Primary Cost

Se
co

nd
ar

y
C

os
t

λ

(11
3 , 4)

C4 = {(x + 1, 4x − 2),

(x + 2, 4x − 5)}

(iv)

Fig. 7. Reachability analysis for mincost≤4({l3}) on the DPTA in Figure 1 starting
from the initial state (l1, Z0, C0). Areas inclosed by black lines in the cost part indicate
all cost pairs computable from the cost functions. (i) (l1, Z1, C1) = Postδ(l1, Z0, C0)
(ii) (l2, Z2, C2) = Poste(l1, Z1, C1) where e = (l1,−, {y}, (0, 1), l2) (iii) (l2, Z3, C3) =
Postδ(l2, Z2, C2). The dashed area indicates the subset of the zone satisfying the guard
of e′ = (l2, x ≥ 2 ∧ y ≥ 1, {y}, (0, 0), l3) (iv) (l3, Z4, C4) = Poste′(l2, Z3, C3). The gray
area in the cost part indicate the convex combinations between the lines describing the
two cost functions. The cost pairs below the dashed line are the ones satisfying the
constraint on the secondary cost. Note that mincost≤4({l3}) = 11

3

246 K.G. Larsen and J.I. Rasmussen

The discrete successor of (l, u, c1, c2) with respect to e is given as (l′, u[x →
0], c1 + c, c2 + c′), which we will now prove is contained in Poste(l, Z, C).
Let (L,U) ∈ LUFx(Z) such that u[x → 0] ∈ {x}L. Given the convexity of
zones there exist unique v ∈ L and w ∈ U where v(x) ≤ u(x) ≤ w(x) and
u(y) = v(y) = w(y) for y
= x, i.e. u(x) = α · v(x) + (1 − α) · w(x) for some
0 ≤ α ≤ 1. Furthermore, the affinity of cost functions provide us with

(ei(u), di(u)) = α · (ei(v), di(v)) + (1− α) · (ei(w), di(w)), (8)

for all 1 ≤ i ≤ k and the same α as above.
Now, choose (l′, u′, c′1, c

′
2) ∈ Poste(l, Z, C) where u′ = u[x → 0] and (c′1, c

′
2) is

given by (9), which we can rewrite as:∑
i

λi · (α · (eL
i (u′) + c, dL

i (u′) + c′) + (1− α) · (eU
i (u′) + c, dU

i (u′) + c′))(9)

= (c, c′) +
∑

i

λi · (α · (eL
i (u′), dL

i (u′)) + (1− α) · (eU
i (u′), dU

i (u′))) (10)

= (c, c′) +
∑

i

λi · (α · (ei(v), di(v)) + (1− α) · (ei(w), di(w))) (11)

= (c, c′) +
∑

i

λi · (ei(u), di(u)) = (c1 + c, c2 + c′) (12)

The step from (10) to (11) follows from the definition of eL
i , dL

i , eU
i , and dU

i , and
the step from (11) to (12) uses (8). Thus, the discrete successor of each concrete
state in (l, Z, C) is contained in Poste(l, Z, C).
=⇒ - Soundness: Let (l′, u′, c′1, c

′
2) ∈ Poste(l, Z, C) such that u′ ∈ {x}L for some

(L,U) ∈ LUFx(Z). Assume that:

(c′1, c
′
2) =

∑
i

λi·(α·(eL
i (u′)+c, dL

i (u′)+c′)+(1−α)·(eU
i (u′)+c, dU

i (u′)+c′)) (13)

for some 0 ≤ α, λi ≤ 1 and
∑

i λ = 1.
Let v ∈ L and w ∈ U be the unique clock valuations in Z where u′(y) =
v(y) = w(y) for y
= x. u ∈ Z is then the unique clock valuation with u(y) =
α · v(y) + (1 − α) · w(y) for all y with the same α as above. Choose the cost
pair (c1, c2) =

∑
i λi · (ei(u), di(u)). Now, (l, u, c1, c2) ∈ (l, Z, C) and the proof

of completeness gives us that (l, u, c1, c2)
e−→ (l′, u′, c′1, c

′
2).

Now, we have that all e-successors and only e-successors of concrete states in
(l, Z, C) are in the subset of Poste(l, Z, C) with costs that can be written ac-
cording to (13). Since DPTA are a subset of linear hybrid automata, we know
that e-successors maintain convexity. So, since (l, Z, C) is, by definition, convex
we know that the set of concrete states (l′, u′, c′1, c

′
2) ∈ Poste(l, Z, C) with costs

according to (13) is convex. Lemma 1 now states that this set is identical to all
concrete states in Poste(l, Z, C).�

If allowing k-tuples of costs as opposed to pairs, the proof of Lemma 3 is
analogous, whenever we choose concrete states using α and (1− α), we instead
use α1, . . .αk with

∑
i αi = 1.

Optimal Conditional Reachability for Multi-priced Timed Automata 247

Lemma 3 states that the properties of our proposed Post operator corresponds
to the requirements of Post defined in Section 2.

6 Termination

In this section, we first define the ordering 3 on the structure of locations with
dual-priced zones and then prove that it is a well-quasi order.

Note that given a zone, Z, with m corner points, any cost function, e, asso-
ciated with Z can be represented as an element of INm giving the cost at each of
corner points since any corner point of a zone have integral values. Thus, we can
view the set of cost function pairs, C, of a dual-priced symbolic state, (l, Z, C)
as a subset of 2INm×INm

if Z has m corner points, and whenever we refer to this
representation, we write CZ . Given a pair, (ē, d̄), of m-vectors in CZ , we write
ē ≤ d̄, if ē is component-wise less than or equal to d̄.

Definition 5 (3). Given two dual-priced symbolic states (l, Z, C), (l′, Z ′, C ′),
we write (l, Z, C) 3 (l′, Z ′, C ′) iff (i) l = l′ (ii) Z ′ ⊆ Z and (iii) for all (ē′, d̄′) ∈
C ′

Z , there exists a (ē, d̄) ∈ CZ∧Z′ such that ē ≤ ē′ and d̄ ≤ d̄′.

The order 3 on k-tuples of costs are defined analogously. Note that (l, Z, C) 3
(l′, Z ′, C ′) implies that for all u ∈ Z ′, λ(C(u)) � λ(C ′(u)), but not the reverse,
i.e. our 3 is stronger than domination, however, the above definition suffices to
guarantee termination.

Lemma 4. 3 is a well-quasi ordering.

The proof of Lemma 4 follows directly from the fact that (IN,≤) is a better-
quasi ordering, [1], and better-quasi orderings are closed under Cartesian product
and power sets, and, finally, better-quasi orderings imply well-quasi orderings.
For k-tuples of cost, the proof is identical as we consider k Cartesian products
on INm instead of pairs.

Now, we have fully instantiated the framework defined in Section 2 with
syntax, data structures, a Post operator, and a well-quasi order. Based on this,
we can conclude that, with this instantiation, the algorithm in Figure 3 computes
optimal conditional reachability for DPTA. The result is summarized in the
following theorem.

Theorem 1. Optimal conditional reachability for DPTA is decidable.

Along with the definitions of the framework of dual-priced transitions sys-
tems, DPTA, data structure for dual-priced symbolic states, the Post operator,
and 3 we have discussed the straightforward extension to k-tuples of cost, and
thus MPTA. Based on this we state the following corollary of Theorem 1.

Corollary 1. Optimal conditional reachability for MPTA is decidable.

248 K.G. Larsen and J.I. Rasmussen

7 Conclusion and Future Work

We have proven the decidability of optimal conditional reachability for multi-
priced timed automata. The results are obtained from a zone-based algorithm
for computing optimal conditional reachability which, in turn, might lead to an
efficient implementation.

The example of Figure 1 illustrates that integral solution are not guaranteed,
thus the immediate discrete time semantics for MPTA will not, in general, give
correct results. However, discrete analysis of MPTA can be applied, but a correct
time granularity must be chosen beforehand. In the case of Figure 1 a valid time
granularity is 1

3 . However, a valid choice of granularity is non-trivial.
Except implementation of conditional reachability in the tool Uppaal, future

research includes considering approximations along the lines of the ones proposed
by Puri and Tripakis in [11]. Also, the complexity and efficiency of the algorithm
in Figure 3 should be analyzed. Finally, related conditional reachability problems
such as minimization under lower bound constraints and maximization under
lower as well as upper bound constraints deserve investigation.

Acknowledgements. The authors would like to thank Stavros Tripakis for
introducing them to multi-constrained optimization problems.

References

1. Parosh Aziz Abdulla and Aletta Nylén. Better is better than well: On efficient
verification of infinite-state systems. In Proceedings of the 15th Annual IEEE
Symposium on Logic in Computer Science, page 132. IEEE Computer Society,
2000.

2. R. Alur and D. Dill. Automata for modelling real-time systems. In Proc. of Int.
Colloquium on Algorithms, Languages and Programming, number 443, pages 322–
335, July 1990.

3. Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and Pei-Hsin Ho. Hybrid
automata: An algorithmic approach to the specification and verification of hybrid
systems. In Hybrid Systems, pages 209–229, 1992.

4. Rajeev Alur, Salvatore La Torre, and George J. Pappas. Optimal paths in weighted
timed automata. Lecture Notes in Computer Science, 2034:pp. 49–??, 2001.

5. M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos: A
model-checking tool for real-time systems. In A. J. Hu and M. Y. Vardi, editors,
Proc. 10th International Conference on Computer Aided Verification, Vancouver,
Canada, volume 1427, pages 546–550. Springer-Verlag, 1998.

6. Thomas Brihaye, Véronique Bruyére, and Jean-François Raskin. Model-checking
weighted timed automata. In the proc. of FORMATS’04, Lecture Notes in Com-
puter Science. Springer-Verlag, 2004.

7. Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., 1990.

8. Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HYTECH: A model
checker for hybrid systems. International Journal on Software Tools for Technology
Transfer, 1(1–2):110–122, 1997.

Optimal Conditional Reachability for Multi-priced Timed Automata 249

9. Kim Larsen, Gerd Behrmann, Ed Brinksma, Ansgar Fehnker, Thomas Hune, Paul
Pettersson, and Judi Romijn. As cheap as possible: Efficient cost-optimal reach-
ability for priced timed automata. Lecture Notes in Computer Science, 2102:pp.
493+, 2001.

10. Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell.
Int. Journal on Software Tools for Technology Transfer, 1(1-2):134–152, 1997.

11. Anuj Puri and Stavros Tripakis. Algorithms for the multi-constrained routing
problem. In Proceedings of the 8th Scandinavian Workshop on Algorithm Theory,
pages 338–347. Springer-Verlag, 2002.

Alternating Timed Automata�

S�lawomir Lasota1,�� and Igor Walukiewicz2

1 Institute of Informatics, Warsaw University
Banacha 2, 02-097 Warszawa

2 LaBRI, Université Bordeaux-1
351, Cours de la Libération, F-33 405, Talence cedex, France

Abstract. A notion of alternating timed automata is proposed. It is
shown that such automata with only one clock have decidable emptiness
problem. This gives a new class of timed languages which is closed under
boolean operations and which has an effective presentation. We prove
that the complexity of the emptiness problem for alternating timed au-
tomata with one clock is non-primitive recursive. The proof gives also
the same lower bound for the universality problem for nondeterministic
timed automata with one clock thereby answering a question asked in a
recent paper by Ouaknine and Worrell.

1 Introduction

Timed automata is a widely studied model of real-time systems. It is obtained
from finite nondeterministic automata by adding clocks which can be reset and
whose values can be compared with constants. In this paper we consider alter-
nating version of timed automata obtained by introducing universal transitions
in the same way as it is done for standard nondeterministic automata. From
the results of Alur and Dill [2] it follows that such a model cannot have de-
cidable emptiness problem as the universality problem for timed automata is
not decidable. In the recent paper [16] Ouaknine and Worrell has shown that
the universality problem is decidable for nondeterministic automata with one
clock. Inspired by their construction, we show that the emptiness problem for
alternating timed automata with one clock is decidable as well. We also prove
not primitive recursive lower bound for the problem. The proof implies the same
bound for the universality problem for nondeterministic timed automata with
one clock. This answers the question posed by Ouaknine and Worrell [16]. To
complete the picture we also show that an extension of our model with epsilon-
transitions has undecidable emptiness problem.

� Work reported here has been partially supported by the European Community
Research Training Network Games.

�� Partially supported by the Polish Kbn grant No. 4 T11C 042 25. This work was
performed in part during the author’s stay at LaBRI, Université Bordeaux-1.

V. Sassone (Ed.): FOSSACS 2005, LNCS 3441, pp. 250–265, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Alternating Timed Automata 251

The crucial property of timed automata models is the decidability of the
emptiness problem. The drawback of the model is that the class of languages rec-
ognized by timed automata is not closed under complement and the universality
question is undecidable (Π1

1 -hard) [2]. One solution to this problem is to restrict
to deterministic timed automata. Another, is to restrict the reset operation; this
gives the event-clock automata model [4]. A different ad-hoc solution could be
to take the boolean closure of the languages recognized by timed automata. This
solution does not seem promising due to the complexity of the universality prob-
lem. This consideration leads to the idea of using automata with one clock for
which the universality problem is decidable. The obtained class of alternating
timed automata is by definition closed under boolean operations. Moreover, using
the method of Ouaknine and Worrell, we can show that the class has decidable
emptiness problem. As it can be expected, there are languages recognizable by
timed automata that are not recognizable by alternating timed automata with
one clock. More interestingly, the converse is also true: there are languages recog-
nizable by alternating timed automata with one clock that are not recognizable
by nondeterministic timed automata with any number of clocks.

Once the decidability of the emptiness problem for alternating timed au-
tomata with one clock is shown, the next natural question is the complexity
of the problem. We show a non-primitive recursive lower bound. For this we
give a reduction of the reachability problem for lossy channel systems [17].
The reduction shows that the lower bound holds also for purely universal al-
ternating timed automata. This implies non-primitive recursive lower bound for
the universality problem for nondeterministic timed automata with one clock.
We also point out that allowing epsilon transitions in our model permits to
code perfect channel systems and hence makes the emptiness problem
undecidable.

Related work. Our work is strongly inspired by the results of Ouaknine and Wor-
rell [16]. Except for [11], it seems that the notion of alternation in the context of
timed automata was not studied before. The reason was probably undecidabil-
ity of the universality problem. Some research (see [5, 10, 7, 3, 6] and references
within) was devoted to the control problem in the timed case. While in this case
one also needs to deal with some universal branching, these works do not seem
to have direct connection to our setting. Finally, let us mention that restrictions
to one clock have been already considered in the context of model-checking of
timed systems [12, 15].

Organization of the paper. In the next section we define alternating timed au-
tomata; we discuss their basic properties and relations with nondeterministic
timed automata. In Section 3 we show decidability of the emptiness problem for
alternating timed automata with one clock. In the following section we show a
non-primitive recursive lower bound for the problem. Next we show the unde-
cidability result for an extension of our model with epsilon-moves.

252 S. Lasota and I. Walukiewicz

2 Alternating Timed Automata

In this section we introduce the alternating timed automata model and study
its basic properties. The model is a quite straightforward extension of the non-
deterministic model. Nevertheless some care is needed to have the desirable
feature that complementation corresponds to exchanging existential and univer-
sal branchings (and final and non-final states). As can be expected, alternat-
ing timed automata can recognize more languages than their nondeterministic
counterparts. The price to pay for this is that the emptiness problem becomes
undecidable, in contrast to timed automata [2]. This motivates the restriction
to automata with one clock. With one clock alternating automata can still rec-
ognize languages not recognizable by nondeterministic automata and moreover,
as we show in the next section, they have decidable emptiness problem.

For a given finite set C of clock variables (or clocks in short), consider the set
Φ(C) of clock constraints σ defined by

σ ::= x < c | x ≤ c | σ1 ∧ σ2 | ¬σ,

where c stands for an arbitrary nonnegative integer constant, and x ∈ C. For
instance, note that tt (always true), or x = c, can be defined as abbreviations.
Each constraint σ denotes a subset [σ] of (R+)C , in a natural way, where R+
stands for the set of nonnegative reals.

Transition relation of a timed automaton [2] is usually defined by a finite set
of rules δ of the form

δ ⊆ Q×Σ × Φ(C)×Q× P(C),

where Q is a set of locations (control states) and Σ is an input alphabet. A rule
〈q, a, σ, q′, r〉 ∈ δ means, roughly, that when in a location q, if the next input
letter is a and the constraint σ is satisfied by the current valuation of clock
variables, the next location can be q′ and the clocks in r should be reset to 0.
Our definition below uses an easy observation, that the relation δ can be suitably
rearranged into a finite partial function

Q×Σ × Φ(C) ·→ P(Q× P(C)).

The definition below comes naturally when one thinks of an element of the
codomain as a disjunction of a finite number of pairs (q, r). Let B+(X) denote
the set of all positive boolean formulas over the set X of propositions, i.e., the
set generated by:

φ ::= X | φ1 ∧ φ2 | φ1 ∨ φ2.

Definition 1 (Alternating timed automaton). An alternating timed au-
tomaton is a tuple A = (Q, q0, Σ, C, F, δ) where: Q is a finite set of loca-
tions, Σ is a finite input alphabet, C is a finite set of clock variables, and
δ : Q×Σ×Φ(C) ·→ B+(Q×P(C)) is a finite partial function. Moreover q0 ∈ Q is
an initial state and F ⊆ Q is a set of accepting states. We also put an additional
restriction:

Alternating Timed Automata 253

(Partition). For every q and a, the set {[σ] : δ(q, a, σ) is defined} gives a (fi-
nite) partition of (R+)C.

The (Partition) condition does not limit the expressive power of automata. We
impose it because it permits to give a nice symmetric semantic for the automata.
We will often write rules of the automaton in a form: q, a, σ "→ b.

By a timed word over Σ we mean a finite sequence

w = (a1, t1)(a2, t2) . . . (an, tn) (1)

of pairs from Σ×R+. Each ti describes the amount of time that passed between
reading ai−1 and ai, i.e., a1 was read at time t1, a2 was read at time t1+t2,
and so on. In Sections 4 and 5 it will be more convenient to use an alternative
representation where ti denotes the time elapsed since the beginning of the word.

To define an execution of an automaton, we will need two operations on
valuations v ∈ (R+)C . A valuation v+t, for t ∈ R+, is obtained from v by
augmenting value of each clock by t. A valuation v[r := 0], for r ⊆ C, is obtained
by reseting values of all clocks in r to zero.

For an alternating timed automaton A and a timed word w as in (1), we
define the acceptance game GA,w between two players Adam and Eve. Intuitively,
the objective of Eve is to accept w, while the aim of Adam is the opposite.
A play starts at the initial configuration (q0,v0), where v0 : C → R+ is a
valuation assigning 0 to each clock variable. It consists of n phases. The (k+1)-
th phase starts in (qk,vk), ends in some configuration (qk+1,vk+1) and proceeds
as follows. Let v̄ := vk+tk+1. Let σ be the unique constraint such that v̄ satisfies
σ and δ(qk, ak+1, σ) is defined. Now the outcome of the phase is determined by
the formula b. There are three cases:

– b = b1 ∧ b2: Adam chooses one of subformulas b1, b2 and the play continues
with b replaced by the chosen subformula;

– b = b1 ∨ b2: dually, Eve chooses one of subformulas;
– b = (q, r) ∈ Q × P(C): the phase ends with the result (qk+1,vk+1) :=

(q, v̄[r := 0]). A new phase is starting from this configuration if k+1 < n.

The winner is Eve if qn is accepting (qn ∈ F), otherwise Adam wins.

Definition 2 (Acceptance). The automaton A accepts w iff Eve has a win-
ning strategy in the game GA,w. By L(A) we denote the language of all timed
words w accepted by A.

To show the power of alternation we give an example of an automaton for a
language not recognizable by standard (i.e. nondeterministic) timed automata
(cf. [2]).

Example 1. Consider a language consisting of timed words w over a singleton
alphabet {a} that contain no pair of letters such that one of them is precisely
one time unit later than the other. The alternating automaton for this language

254 S. Lasota and I. Walukiewicz

has three states q0, q1, q2. State q0 is initial. The automaton has a single clock x
and the following transition rules:

q0, a, tt "→ (q0, ∅) ∧ (q1, {x})
q1, a, x=1 "→ (q2, ∅)

q1, a, x
=1 "→ (q1, ∅)
q2, a, tt "→ (q2, ∅)

States q0 and q1 are accepting. Clearly, Adam has a strategy to reach q2 iff the
word is not in the language, i.e., some letter is one time unit after some other.

As one expects, we have the following:

Proposition 1. The class of languages accepted by alternating timed automata
is effectively closed under all boolean operations: union, intersection and com-
plementation. These operations to do not increase the number of clocks of the
automaton.

The closure under conjunction and disjunction is straightforward since we
permit positive boolean expressions as values of the transition function. Due
to the condition (Partition) the automaton for the complement is obtained by
exchanging conjunctions with disjunctions in all transitions and exchanging ac-
cepting states with non-accepting states.

Definition 3. An alternating timed automaton A is called purely universal if
the disjunction does not appear in the transition rules δ. Dually, A is purely
existential if no conjunction appears in δ.

It is obvious that every purely-existential automaton is a standard nondeter-
ministic timed automaton. The converse is not immediately true because of the
(Partition) condition. Nevertheless it is not difficult to show the following

Proposition 2. Every standard nondeterministic automaton is equivalent to a
purely-existential automaton.

In the following sections, we consider emptiness, universality and contain-
ment for different classes of alternating timed automata. For clarity, we recall
definitions here.

Definition 4. For a class C of automata we consider three problems:

– Emptiness: given A ∈ C is L(A) empty.
– Universality: given A ∈ C does L(A) contain all timed words.
– Containment: given A,B ∈ C does L(A) ⊆ L(B).

It is well known that the universality is undecidable for non-deterministic timed
automata [2] with at least two clocks. As a consequence, two other problems are
also undecidable for alternating timed automata with two clocks. This is why in
the rest of the paper we focus on automata with one clock only.

Proviso: In the following all automata have one clock.

Alternating Timed Automata 255

Remark: The automaton from Example 1 uses only one clock. This shows that
one clock alternating automata can recognize some languages not recognizable
by nondeterministic automata with many clocks [2]. The converse is also true.
It is enough to consider the language consisting of the words containing an
appearance of a letter a at times t1, t2, t1+1, t2+1, for some 0<t1<t2<1, and
such that there is a at no time between t1 and t2 while there is one at a time
between t1+1 and t2+1. We omit the proof.

3 Decidability

The main result of this section is that the emptiness problem for one-clock alter-
nating timed automata is decidable. Due to closure under boolean operations,
this implies the decidability of the universality and the containment problems.

Theorem 1. Emptiness is decidable for one-clock alternating timed automata.

Corollary 1. The containment problem is decidable for one-clock alternating
timed automata.

The rest of this section is devoted to the proof of Theorem 1. Essentially,
we have adapted the method of Ouaknine and Worrell [16] for our more general
setting. We point out the differences below.

Fix a one-clock alternating timed automaton A = (Q, q0, Σ, {x}, F, δ). For
readability, assume w.l.o.g. that the boolean conditions appearing in rules of
δ are all in disjunctive normal form. In terms of acceptance games this means
that each phase consists of a single move of Eve followed by a single move of
Adam. Consider a labeled transition system T whose states are finite sets of
configurations, i.e., finite sets of pairs (q,v), where q ∈ Q and v ∈ R+. The
initial position in T is P0 = {(q0, 0)} and there is a transition P

a,t−→ P ′ in T iff
P ′ can be obtained from P by the following nondeterministic process:

– First, for each (q,v) ∈ P , do the following:
• let v′ := v+t,
• let b = δ(q, a, σ) for the uniquely determined σ satisfied in v′,
• choose one of disjuncts of b, say

(q1, r1) ∧ . . . ∧ (qk, rk) (k > 0),

• let Next(q,v) = {(qi,v′[ri := 0]) : i = 1 . . . k}.
– Then, let P ′ :=

⋃
(q,v)∈P Next(q,v).

This construction is very similar to the translation from alternating to nonde-
terministic automata over (untimed) words: we just collect all universal choices
in one set. Compared to [16], the essential difference is that we have to deal with
both disjunction and conjunction, while in [16] only one of them appeared. We
treat conjunction similarly to determinization in [16]. On the other hand, we
leave the existential choice, i.e., nondeterminism, essentially unaffected in T .

256 S. Lasota and I. Walukiewicz

In what follows we will derive from T a finite-branching transition system
H, suitable for the decision procedure. Like in [16], the degree of the nodes of H
will not be bounded but nevertheless finite. This is sufficient for our purposes.

A state {(q1,v1), . . . , (qn,vn)} of T is called bad iff all control states qi are
accepting (qi ∈ F). The following proposition characterizes acceptance in A in
terms of reachability of bad states in T . As we consider finite words only, there
are no issues concerning the quality of a strategy in the acceptance game.

Lemma 1. A accepts a timed word w iff there is a path in T , labeled by w, from
P0 to a bad state.

Let T̂ be a labeled transition system obtained from T by erasing time informa-
tion from transition labels, i.e., there is a transition P

a−→ Q in T̂ iff there is
P

a,t−→ Q in T , for some t ∈ R+. Now we cannot talk about particular timed
words but still we have the following:

Lemma 2. L(A) is nonempty if and only if there is a path in T̂ from P0 to a
bad state.

Thus, the (non)emptiness problem for A is reduced to the reachability of a bad
state in T̂ . The last difficulty is that even if each state of T̂ is a finite set, there
are uncountably many states. The following definition allows to abstract from
the precise timing information in states. Let cmax denote the biggest constant
appearing in constraints in δ. Let set reg of regions be a partition of R+ into
2 · (cmax+1) sets as follows:

reg := {{0}, (0, 1), {1}, (1, 2), . . . , (cmax−1, cmax), {cmax}, (cmax,+∞)}.

For v ∈ R+, let reg(v) denote its region; and let fract(v) denote the fractional
part of v. Below we work with finite words over the alphabet Λ = P(Q × reg)
consisting of finite sets of pairs (q, r), where q ∈ Q is a control state and r ∈ reg
is a region.

Definition 5. For a state P of T̂ we define a word H(P) from Λ∗ as the one
obtained by the following procedure:

– replace each (q,v) ∈ P by a triple 〈q, reg(v), fract(v)〉 (this yields a finite
set of triples)

– sort all these triples w.r.t. fract(v) (this yields a finite sequence of triples)
– group together triples that have the same value of fract(v), ignoring multiple

occurrences (this yields a finite sequence of finite sets of triples)
– forget about fract(v), i.e., replace each triple 〈q, reg(v), fract(v)〉 by a pair

(q, reg(v)) (this yields a finite sequence of finite sets of pairs, a word in Λ∗).

Definition 6. Define an equivalence relation ∼ over states of T̂ as the kernel
of H, i.e., P∼P ′ iff H(P) = H(P ′).

Alternating Timed Automata 257

The following observations are straightforward:

Lemma 3. Relation ∼ is a bisimulation over transition system T̂ .

Lemma 4. If P is bad and P∼P ′ then P ′ is bad.

Let H denote the quotient of the transition system T̂ by ∼. To put it more
explicitly: states of H are all words H(P), for a state P of T̂ ; there is a transition
W1

a−→ W2 in H if there is a transition P1
a−→ P2 in T̂ with H(P1) = W1,

H(P2) = W2. Since ∼ is a bisimulation, the definition does not depend on a
particular choice of P1 (and P2). The initial state W0 in H is H(P0).

By Lemma 4 it is correct to call a state W in H bad if W = H(P) for a bad
state P . Because H is a quotient of T̂ by bisimulation, from Lemma 2 we derive:

Lemma 5. L(A) is nonempty iff a bad state is reachable in H from W0.

At this point, we have reduced emptiness of L(A) to the reachability of a bad
state in a countably infinite transition system H. The rest of the proof is quite
standard [1, 13] and exploits the fact that one can put an appropriate well-quasi-
order (wqo in short) on states of H. Unfortunately, we are obliged to redo the
proofs as we could not find a theorem that fits precisely our setting.

Definition 7. Let � denote the monotone domination ordering over Λ∗ induced
by the subset inclusion over Λ, defined as follows: a1 . . . an � b1 . . . bm iff there
exists a strictly increasing function f : {1, . . . , n} → {1, . . . ,m} such that for
each i ≤ n, ai ⊆ bf(i).

Lemma 6 ([14]). Relation � is a wqo, i.e., for arbitrary infinite sequence
W1,W2, . . . of words over Λ, there exist indexes i < j such that Wi �Wj.

The decision procedure for reachability of bad states will work by an exhaustive
search through a sufficiently large portion of the whole reachability tree. Thus
we need to know that an arbitrarily large part of that tree can be effectively
constructed. Roughly, all time delays of an action a from W can be captured by
a finite number of cyclic shifts of W with an appropriate change of region.

Lemma 7. For each state W in H, its set of successors {W ′ ∈ Λ∗ : W a−→
W ′ for some a} is finite and effectively computable.

The following observation is proved in the same way as Lemma 15 in [16].

Lemma 8. The inverse of � relation is a simulation: whenever W1 � W2 and
W2

a−→W ′
2, there is some W ′

1 such that W1
a−→W ′

1 and W ′
1 �W ′

2.

The next observation is more specific to our setting but fortunately very easy.

Lemma 9 (Downward closedness of badness). Whenever W � W ′ and
W ′ is bad then W is bad as well.

258 S. Lasota and I. Walukiewicz

Proof. Take a letter wi of W . We need to show that q ∈ F for every (q, r) ∈ wi.
By the definition of W �W ′ we have wi ⊆ w′

j for some letter w′
j of W ′. Hence,

(q, r) ∈ w′
j and q ∈ F as W ′ is bad.

Now we are ready to finally prove the following:

Lemma 10. It is decidable whether a bad state is reachable in H from W0.

Proof. The reachability tree is the unraveling of H from W0. The algorithm
constructs a portion t of the tree conforming to the following rule: do not add
a node W ′ to t in a situation when among its ancestors there is some W �W ′.
Now, Lemma 6 guarantees that each path in t is finite. Furthermore, since the
degree of each node is finite, t is a finite tree.

We need only to prove that if a bad state is reachable in H from W0 then t
contains at least one bad state. Let W be such a bad state reachable from W0
in H by a path π of the shortest length. Assume that W is not in t, i.e., there
are two other nodes in π, say W1 and W2 such that W1 is an ancestor of W2 in
reachability tree and W1 �W2 (i.e., W2 was not added into t). Since the inverse
of � is a simulation by Lemma 8, the sequence of transitions in π from W2 to W
can be imitated by the corresponding sequence of transitions from W1 to some
other W ′ � W . W ′ is bad as well by Lemma 9. Moreover, the path leading to
W ′ is strictly shorter than π, a contradiction. ��

Theorem 1 follows immediately from Lemma 10 and Lemma 5.

Remark: In fact, Ouaknine and Worrell showed decidability of ”L(A) ⊆ L(B)”
in a slightly more general case, namely when automaton A has an arbitrary
many clocks. Along the same lines one can adapt our proof for ”L(A) ⊆ L(B)”,
assumed that A is an arbitrary nondeterministic timed automaton and B is a
one-clock alternating timed automaton.

4 Lower Bound

In this section we prove the following lower bound result.

Theorem 2. The complexity of the emptiness problem for one-clock purely uni-
versal alternating timed automata is not bounded by a primitive recursive func-
tion.

Since emptiness and universality are dual in the setting of alternating automata,
as a direct conclusion we get the following:

Corollary 2. The complexity of the universality problem for one-clock purely
existential alternating (i.e., nondeterministic) timed automata is not bounded by
a primitive recursive function.

This answers the question posed by Ouaknine and Worrell [16].
The rest of this section contains the proof of Theorem 2. The proof is a

reduction of the reachability problem for lossy one-channel systems [17].

Alternating Timed Automata 259

Definition 8 (Channel system). A channel system is given by a tuple S =
(Q, q0, Σ,Δ), where Q is a finite set of control states, q0 ∈ Q is an initial state,
Σ is a finite channel alphabet and Δ ⊆ Q× ({!a : a∈Σ}∪ {?a : a∈Σ}∪ {ε})×Q
is a finite set of transition rules.

A configuration of S is a pair (q, w) of a control state q and a channel content
w ∈ Σ∗. Transition rules allow the system to pass from one configuration to
another. In particular, a rule 〈q, !a, q′〉 allows in a state q to write to the channel
and to pass to the new state q′. Similarly, 〈q, ?a, q′〉means reading from a channel
and is allowed in state q only when a is at the end of the channel. The channel
is a FIFO, and by convention S writes at the beginning and reads at the end.
Finally, a rule 〈q, ε, q′〉 allows for a silent change of control state, without reading
or writing.

Formally, there is a (perfect) transition (q, w)
γ−→ (q′, w′) if one of the fol-

lowing conditions is satisfied:

– γ = 〈q, ε, q′〉 and w = w′, or
– γ = 〈q, !a, q′〉 for some a∈Σ, and w′ = aw, or
– γ = 〈q, ?a, q′〉 for some a∈Σ, and w = w′a.

The initial configuration is (q0, ε), i.e., execution of S starts with the empty
channel. For technical convenience, we assume w.l.o.g. that there is no rule re-
turning back to the initial state: for each rule 〈q, x, q′〉 ∈ Δ, q′
= q0.

A lossy channel system differs from the perfect one in only one respect: during
the transition step, an arbitrary number of messages stored in the channel may
be lost. To define lossy transitions, we need the subsequence ordering on Σ∗,
denoted by 3 (e.g., tata 3 atlanta). We say that there is a lossy transition
from (q, w) to (q′, w′), denoted by (q, w)

γ
=⇒ (q′, w′), iff there exists u, u′ ∈ Σ∗

such that u 3 w, (q, u)
γ−→ (q′, u′) and w′ 3 u′.

By a lossy computation of a channel system S we mean a finite sequence:

(q0, ε)
γ1=⇒ (q1, w1)

γ2=⇒ (q2, w2) . . .
γn=⇒ (qn, wn). (2)

Definition 9. Lossy reachability problem for channel systems is: given a chan-
nel system S and a configuration (qf , wf), with qf
=q0, decide whether there is
a lossy computation of S ending in (qf , wf).

Theorem 3 ([17]). The lossy reachability problem for channel systems has non-
primitive recursive complexity.

The result of [17] was showed for a slightly different model. Namely, during a
single transition, a finite sequence of messages was allowed to be read or written
to the channel. Clearly, reachability problems in both models are polynomial-
time equivalent.

In the sequel we describe a reduction from the lossy reachability for chan-
nel systems to the emptiness problem for one-clock purely-universal alternating
timed automata. Given a channel system S = (Q, q0, Σ,Δ), and a configuration

260 S. Lasota and I. Walukiewicz

(qf , wf), we effectively construct a purely-universal automaton A with a single
clock x, and the input alphabet Σ = Q ∪ Σ ∪ Δ. The construction will assure
that A accepts precisely correct encodings of lossy computations of S ending in
(qf , wf). A computation as in (2) will be encoded as the following word over Σ:

qnγnwn qn−1γn−1wn−1 . . . q1γ1w1 q0, (3)

where qi ∈ Q, γi ∈ Δ, wi ∈ Σ∗. Let S be fixed in this section.
It will be convenient here to write timed words in a slightly different way than

before. From now on, whenever we write a word w = (a1, t1)(a2, t2) . . . (an, tn)
we mean that the letter ai appeared ti time units after the beginning of the
word. In particular, ai+1 appeared ti+1 − ti time units after ai. Clearly this is
correct only when ti+1 ≥ ti, for i = 1 . . . n−1.

Before the formal definition of encoding of a computation by a timed word
we outline shortly the underlying intuition. We will require that the letter qn
appears at time 0 and then that each letter qi appears at time n − i. Hence,
each configuration will be placed in a unit interval. To ensure consistency of
the channel contents at consecutive configurations we require that if a message
survived during a step i (it was neither read nor written nor lost) then the
distance in time between its appearances in the sequences wi and wi−1 should
be precisely 1.

We will need a new piece of notation : by (w + 1) we mean the word obtained
from w by increasing all ti by one time unit, i.e., (w + 1) = (a1, t1 + 1)(a2, t2 +
1) . . . (an, tn + 1).

Definition 10. By a lossy computation encoding ending in (qf , wf) we mean
any timed word over Σ of the form:

(qn, tn)(γn, t′n)vn (qn−1, tn−1)(γn−1, t
′
n−1)vn−1 . . . (q1, t1)(γ1, t

′
1)v1 (q0, t0),

where each vi = (a1
i , u

1
i) . . . (alii , u

li
i) is a timed word over Σ. Additionally we

require that for each i ≤ n and j = 1, . . . , li, the following conditions hold:

(P1) Structure:

qi ∈ Q, γi ∈ Δ, aji ∈ Σ, γi = 〈qi−1, x, qi〉, qn = qf and a1
n . . . a

ln
n = wf .

(P2) Distribution in time:

n−i = ti < t′i < u1
i < u2

i < . . . < uli
i < ti+1 = n−i+1.

(P3a) Epsilon move: if γi = 〈qi−1, ε, qi〉 then (vi + 1) 3 vi−1.
(P3b) Write move: if γi = 〈qi−1, !a, qi〉 then either a1

i = a and (a2
i . . . a

li
i + 1) 3

vi−1, or (vi + 1) 3 vi−1.
(P3c) Read move: if γi = 〈qi−1, ?a, qi〉 then vi−1 = v′(a, t)v′′ for some timed

words v′, v′′ and t ∈ R+, such that (vi + 1) 3 v′.

Alternating Timed Automata 261

Lemma 11. S has a computation of the form (2) ending in (qn, wn) = (qf , wf)
if and only if there exists a lossy computation encoding ending in (qf , wf) as in
Definition 10.

Our aim is:

Lemma 12. A purely universal automaton A can be effectively constructed such
that L(A) contains precisely all lossy computation encodings ending in (qf , wf).

The proof of this lemma will occupy the rest of this section. Automaton A
will be defined as a conjunction of four automata, each responsible for some of
the conditions from Definition 10:

A := Astruct ∧ Aunit ∧ Astrict ∧ Acheck.

All four automata will be purely universal and will use at most one clock. Au-
tomaton Astruct verifies condition (P1), automata Aunit and Astrict jointly check
condition (P2), and Acheck enforces the most involved conditions (P3a) – (P3c).

We omit an obvious definition of Astruct. We also omit the construction of
the automaton Aunit checking that letters from Q appear precisely at times
0, 1, . . . , n, and automaton Astrict that accepts a timed word iff the first letter is
at time 0 and no two consecutive letters appear at the same time.

Till now, all the automata were not only purely universal but also purely
existential, i.e., deterministic. The power of universal choice will be only used
in the last automaton Acheck, that checks for correctness of each transition step
of S. While analyzing definition of Acheck we will comfortably assume that an
input word meets all conditions verified by the other automata, otherwise the
word is anyway not accepted. For conciseness, We implicitly assume that the
automaton fails to accept if no rule is applicable. Moreover, when no clock is
reset, we will omit writing it explicitly.

The transition rules of Acheck from the initial state s0 are as follows:

s0, Σ ∪Δ, tt "→ s0 s0, q, tt "→ s0 ∧ (sstep, {x}), for q ∈ Q \ {q0}
s0, q0, tt "→ -.

Intuitively, at each q ∈ Q, except at q0, an extra automaton is run from the state
sstep, in order to check correctness of a single step. Symbol - on the right-hand
side stands for a distinguished state that accepts unconditionally.

Now the rules sstep, γ, . . . "→ . . . depend on γ = 〈q, x, q′〉. There are three
cases, corresponding to conditions (P3a), (P3b) and (P3c), respectively. Case
(P3b), not much different from (P3a), is omitted here.

I. Case γ = 〈q, ε, q′〉: sstep, 〈q, ε, q′〉, tt "→ schannel.

In state schannel, the automaton checks the condition (P3a), i.e., whether all
consecutive letters from Σ are copied one time unit later. This is done by:

schannel, Q, tt "→ - schannel, a, tt "→ schannel ∧ (s+1
a , {x}), for a ∈ Σ.

262 S. Lasota and I. Walukiewicz

Hence, the automaton starts a check from s+1
a at every letter read. Note that

this is precisely here where the universal branching is essential. The task of s+1
a

is to check that there is letter a one time unit later:

s+1
a , a, x = 1 "→ - s+1

a , Σ, x < 1 "→ s+1
a

II. Case γ = 〈q, ?a, q′〉: sstep, 〈q, ?a, q′〉, tt "→ s?a ∧ (stry?a, {x}).

The behaviour of s?a is very similar to schannel but additionally it will start
a new copy of the automaton in the state stry?a. The goal of stry?a is to check
for the letter a at the end of the present configuration.

s?a, Q, tt "→ - s?a, b, tt "→ s?a ∧ (s+1
b , {x}) ∧ (stry?a, {x}), for b ∈ Σ.

Note the clock reset when entering to stry?a. As we cannot know when the
configuration ends we start stry?a at each letter read. If we realize that this was
not the end (we see another channel letter) then the check just succeeds. If this
was the end (we see a state) then the true check starts from the state scheck?a:

stry?a, Σ, tt "→ - stry?a, Q, tt "→ scheck?a.

From scheck?a we look for some a that appears more than one time unit later:

scheck?a, Σ, x ≤ 1 "→ scheck?a

scheck?a, a, x > 1 "→ - scheck?a, b, x > 1 "→ scheck?a, for b ∈ Σ\{a}.

Automaton Acheck has no other accepting states but -.
By the very construction, A satisfies Lemma 12. By Lemma 11, S has a com-

putation (2) ending in (qf , wf) if and only if L(A) is nonempty. This completes
the proof of Theorem 2.

5 Undecidability

In this section we point out that the alternating timed automata model cannot
be extended with ε-transitions. It is known that ε-transitions extend the power of
nondeterministic timed automata [2, 9]. Here we show some evidence that every
extension of alternating timed automata with ε-transitions will have undecidable
emptiness problem.

It turns out that there are many possible ways of introducing ε-transitions
to alternating timed automata. To see the issues involved consider the question
of whether such an automaton should be allowed to start uncountably many
copies of itself or not. Facing these problems we have decided not to present any
precise definition but rather to show where the problem is. We will show that the
universality problem for purely existential automata with a very simple notion
of ε-transitions is undecidable.

Timed words are written here in the same convention as in previous section:
w = (a1, t1)(a2, t2) . . . (an, tn) means that the letter ai appeared at time ti.

Alternating Timed Automata 263

We consider purely existential (i.e. nondeterministic) automata with one
clock. We equip them now with additional ε-transitions of the form q, ε, σ "→ b.
The following trick is used to shorten formal definitions.

Definition 11. A nondeterministic timed automaton with ε-transitions over Σ
is a nondeterministic timed automaton over the alphabet Σε = Σ ∪ {ε}.

For convenience, we want to distinguish an automaton A with ε-transitions over
Σ from the corresponding automaton over Σε; the latter will be denoted Aε.
Given a timed word v over Σε, by |v|ε we mean the timed word over Σ obtained
from w by erasing all (timed) occurrences of ε.

Definition 12. A timed word over Σ is accepted by a timed automaton A with
ε-transitions if there is a timed word v over Σε accepted by Aε such that w = |v|ε.

Note that according to the definition, an accepting run is always finite. The main
result of this section is:

Theorem 4. The universality problem for one-clock nondeterministic timed au-
tomata with ε-transitions is undecidable.

The proof is by reduction of the reachability problem for perfect channel sys-
tems, defined similarly as lossy reachability in Definition 9, but w.r.t. perfect
computation of a channel systems. Not surprisingly, a perfect computation is
any finite sequence of (perfect) transitions:

(q0, ε)
γ1−→ (q1, w1)

γ2−→ (q2, w2) . . .
γn−→ (qn, wn),

Theorem 5 ([8]). The perfect reachability problem for channel systems is un-
decidable, assumed |Σ| ≥ 2.

Given a channel system S = (Q, q0, Σ,Δ) and a configuration (qf , wf), we effec-
tively construct a one-clock nondeterministic timed automaton with ε-transitions
A′ over Σ. Automaton A′ will accept precisely the complement of the set of all
perfect computations encodings ending in (qf , wf), defined by:

Definition 13. A perfect computation encoding ending in (qf , wf) is defined
as in Definition 10, but with the conditions (P3a) – (P3c) replaced by:

(P3a) if γi = 〈qi−1, ε, qi〉 then (vi + 1) = vi−1,
(P3b) if γi = 〈qi−1, !a, qi〉 then (vi + 1) = (a, t)vi−1, for some t ∈ R+.
(P3c) if γi = 〈qi−1, ?a, qi〉 then (vi(a, t) + 1) = vi−1, for some t ∈ R+.

Since each perfect computation encoding is a lossy one, A′ will be defined as a
disjunction, A′ := ¬A ∨ Â, of the complement of the automaton A from the
previous section and another automaton Â. As automaton ¬A takes care of all
timed words that are not lossy computation encodings, it is enough to have:

Lemma 13. Automaton Â accepts precisely these lossy computation encodings
ending in (qf , wf) that are not perfect computation encodings.

264 S. Lasota and I. Walukiewicz

This will be enough for correctness of our reduction: A′ will accept precisely the
complement of the set of all perfect computation encodings. The construction of
Â, omitted here, will be given in the full version of this paper.

6 Final Remarks

In this paper we have explored the possibilities opened by the observation that
the universality problem for nondeterministic timed automata is decidable. We
have extended this result to obtain a class of timed automata that is closed under
boolean operations and that has decidable emptiness problem. We have shown
that despite being decidable the problem has prohibitively high complexity. We
have also considered the extension of the model with epsilon transitions which
points out what makes the model decidable and what further extensions are not
possible. Maybe somewhat surprisingly universality for 1-clock nondeterministic
timed automata but over infinite words is undecidable. We plan to discuss this
issue in the full version of the paper.

We see several topics for further work: (1) Adding event-clocks to the model.
It seems that one would still obtain a decidable model. (2) Finding logical char-
acterizations of the languages accepted by alternating timed automata with one
clock. Since we have the closure under boolean operations, we may hope to find
one. (3) Finding a different syntax that will avoid the prohibitive complexity of
the emptiness problem. There may well be another way of presenting alternat-
ing timed automata that will give the same expressive power but for which the
emptiness test will be easier.

Acknowledgments. We thank anonymous referees for valuable remarks.

References

1. P. Abdulla, K. Čerāns, B. Jonsson, and Y. Tsay. General decidability theorems
for infinite state systems. In LICS’96, p. 313–323, 1996.

2. R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

3. R. Alur, M. Bernadsky, and P. Madhusudan. Optimal reachability for weighted
timed games. In ICALP’04, volume 3124 of LNCS, p. 122–133, 2004.

4. R. Alur, L. Fix, and T. Henzinger. Event-clock automata: A determinizable class
of timed automata. Theoretical Computer Science, 204:253-273, 1999.

5. E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed
automata. In Proc. IFAC Symp. System Structure and Control, p. 469–474, 1998.

6. P. Bouyer, F. Cassez, E. Fleury, and K. G. Larsen. Optimal strategies in priced
timed game automata. In FSTTCS’04, LNCS, 2004.

7. P. Bouyer, D. D’Souza, P. Madhusudan, and A. Petit. Timed control with partial
observability. In CAV’03, volume 2725 of LNCS, p. 180–192, 2003.

8. D. Brand and P. Zafiropulo. On communicating finite-state machines. J. ACM,
30(2):323–342, 1983.

Alternating Timed Automata 265

9. B. Bérard, V. Diekert, P. Gastin, and A. Petit. Characterization of the expres-
sive power of silent transitions in timed automata. Fundamenta Informaticae,
36(2):145–182, 1998.

10. F. Cassez, T. A. Henzinger, and J.-F. Raskin. A comparison of control prob-
lems for timed and hybrid systems. In Hybrid Systems Computation and Control
(HSCC’02), volume 2289 of LNCS, p. 134–148, 2002.

11. M. Dickhöfer, T. Wilke. Timed alternating tree automata: the automata-theoretic
solution to the TCTL model checking problem. In ICALP’99, volume 1644 of
LNCS, p. 281-290, 1999.

12. C. Dima. Real-time automata and the Kleene algebra of sets of real numbers. In
STACS’00, volume 1170 of LNCS, p. 279–289, 2000.

13. A. Finkel and Ph. Schnoebelen. Well structured transition systems everywhere!
Theoretical Computer Science, 256(1-2):63–92, 2001.

14. G. Higman. Ordering by divisibility in abstract algebras. Proc. London Math.
Soc., 2(7):326–336, 1952.

15. F. Laroussinie, N. Markey, and Ph. Schnoebelen. Model checking timed automata
with one or two clocks. In CONCUR’04, volume 3170 of LNCS, p. 387–401, 2004.

16. J. Ouaknine and J. Worrell. On the language inclusion problem for timed automata:
Closing a decidability gap. In LICS’04, p. 54–63, 2004.

17. Ph. Schnoebelen. Verifying lossy channel systems has nonprimitive recursive com-
plexity. Information Processing Letters, 83(5):251–261, 2002.

Full Abstraction for Polymorphic Pi-Calculus

Alan Jeffrey1,2,! and Julian Rathke3

1 Bell Labs, Lucent Technologies, Chicago, IL, USA
2 DePaul University, Chicago, IL, USA

3 University of Sussex, Brighton, UK

Abstract. The problem of finding a fully abstract model for the polymorphic
π-calculus was stated in Pierce and Sangiorgi’s work in 1997 and has remained
open since then. In this paper, we show that a slight variant of their language
has a direct fully abstract model, which does not depend on type unification or
logical relations. This is the first fully abstract model for a polymorphic concurrent
language. In addition, we discuss the relationship between our work and Pierce
and Sangiorgi’s, and show that their conjectured fully abstract model is, in fact,
sound but not complete.

1 Introduction

Finding sound and complete models for languages with polymorphic types is notori-
ously difficult. Consider the following implementation of a polymorphic ‘or’ function
in Java 5.0 [17]:

static<X> X or (X t, X a, X b) {
if (a == t) { return a; } else { return b; }

}

This implementation of or takes a type parameter X, which will be instantiated with
the representation chosen for the booleans, together with three parameters of type X:
a constant for ‘true’, and the values to be ‘or’ed. This function can be called in many
different ways, for example1:

or.<int> (1, 0, 1); or.<bool> (true, false, true);

In each case, there is no way for the callee to determine the exact type the caller instan-
tiated for X, and so no matter what implementation for or is used, there is no observable
difference between the above program and the following:

or.<int> (1, 0, 1); or.<string> ("true", "false", "true");

! This material is based upon work supported by the National Science Foundation under Grant
No. 0430175.

1 Java purists should note that this discussion assumes for simplicity that downcasting and
reflection are not being used, and a particular implementation of autoboxing, for example the
code or.<int> (1, 0, 1) is implemented as Integer x = new Integer(1); Integer
y = new Integer(0); or.<Integer> (x, y, x).

V. Sassone (Ed.): FOSSACS 2005, LNCS 3441, pp. 266–281, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Full Abstraction for Polymorphic Pi-Calculus 267

or the following:

or.<int> (1, 0, 1); or.<int> (2, 3, 2);

However, there is an observable difference between the above programs and:

or.<int> (1, 0, 1); or.<int> (1, 0, 1);

since we can use the following implementation of or to distinguish them:

static Object x=null;
static<X> X or (X t, X a, X b) {
if (a == x) { System.out.println ("hello"); } else { x=a; }
if (a == t) { return a; } else { return b; }

}

This example demonstrates some subtleties with polymorphic languages: the presence
of impure features (such as mutable fields in this case) and equality testing (such as
a == x in this case) can significantly impact the distinguishing power of tests. In the
case of pure languages such as System F [10], the technique of logical relations [27, 24]
can be used to establish equivalence of all of the above calls to or, which is evidently
broken by the addition of impurity and equality testing.

Much of the work in finding models of pure polymorphic languages comes in finding
appropriate techniques for modelling parametricity [26, 27] to show that programs are
completely independent of the instantiations for their type parameters. Such parametric-
ity results are surprisingly strong, and can be used to establish ‘theorems for free’ [31]
such as the functoriality of the list type constructor. The strength of the resulting theo-
rems, however, comes at a cost: the proof techniques required to establish them are quite
difficult. In particular, even proving the existence of logical relations is problematic in
the presence of recursive types [24].

In this paper, we show that providing models for impure polymorphic languages
with equality testing can be surprisingly straightforward. We believe that the techniques
discussed here will extend to the polymorphic features of languages such as Java 5.0 [17],
and C# 2.0 [7]: F-bounded polymorphism [5], subtyping, recursive types and object
features. In this paper, we will investigate a minimal impure polymorphic language with
equality testing, based on Pierce and Sangiorgi’s work [23] on a polymorphic extension
of Milner et al.’s [21, 20] π-calculus.

Pierce and Sangiorgi have established a sound model for a polymorphic π-calculus,
but they only conjectured completeness [23–Sec. 12.2]. In this paper, we develop a
sound and complete model for a polymorphic π-calculus: the resulting model and proof
techniques are remarkably straightforward. In particular, our model makes no use of
type unification, which is an important feature of Pierce and Sangiorgi’s model. We then
compare our model to theirs, and show that ours is strictly finer: hence we have resolved
their outstanding conjecture, by demonstrating their model to be sound but not complete.

This is the first sound and complete model for a polymorphic π-calculus: Pierce
and Sangiorgi [23] and Honda et al. [3] have established soundness results, but not
completeness.

268 A. Jeffrey and J. Rathke

a,b,c,d (Names)

x,y,z (Variables)

n,m ::= a | x (Values)

P,Q,R ::= n(#X ;#x : #T) .P | n〈#T ;#n〉 | 0 | P |Q (Processes)
| ν(a : T)P | !P | if n = mthenPelseQ

Fig. 1. Syntax

2 An Asynchronous Polymorphic Pi-Calculus

The language we investigate in this paper is an asynchronous variant of Pierce and
Sangiorgi’s polymorphic π-calculus. This is an extension of the π-calculus with type-
passing in addition to value-passing.

2.1 Syntax

The syntax of the asynchronous polymorphic π-calculus is given in Figure 1. The syntax
makes use of types (ranged over by T,U,V,W) and type variables (ranged over by
X ,Y,Z), which are defined in Section 2.3.

Definition 1 (Free identifiers). Write fn(P) for the free names of P, fn(n) for the free
names of n, fv(P) for the free variables of P, fv(n) for the free variables of n, ftv(P) for
the free type variables of P and ftv(T) for the free type variables of T .

Definition 2 (Substitution). Let σ be a substitution of the form (#V/#X ;#n/#x), and let
n[σ], T [σ] and P[σ] be defined to be the capture-free substitution of type variables #X by
types #V and variables#x by values#n, defined in the normal fashion. Let the domain of a
substitution dom(σ) be defined as dom(#V/#X ;#n/#x) = {#X ,#x}.

Definition 3 (Process contexts). A process context C [·] is a process containing one
occurrence of a ‘hole’ (·). Write C [P] for the process given by replacing the hole by P.

We present an example process, following [23], in the untyped π-calculus, in which
we implement a boolean abstract datatype as:

ν(t)ν(f)ν(test)(getBools〈t, f , test〉 | !t(x,y) . x〈〉 | ! f (x,y) . y〈〉 | !test(b,x,y) .b〈x,y〉)

This process generates new channels t, f and test, which it publishes on a public channel
getBools. It then waits for input on channel t: when it receives a pair (x,y) of channels,
it sends a signal on x. The same is true for channel f except that it sends the signal on y.
Finally, on a test channel we wait to be sent a boolean b (which should either be t or f)
together with a pair (x.y) of channels, and just forwards the pair on to b, which chooses
whether to signal x or signal y as appropriate. This can be typed as:

Full Abstraction for Polymorphic Pi-Calculus 269

B1
def= ν(t : Bool)ν(f : Bool)ν(test : Test(Bool))(

getBools〈Bool; t, f , test〉 |
!t(x : Signal,y : Signal) . x〈〉 |
! f (x : Signal,y : Signal) . y〈〉 |
!test(b : Bool,x : Signal,y : Signal) .b〈x,y〉

)

where we define:

Signal
def= 4[] Bool

def= 4[Signal,Signal] Test(T) def= 4[T,Signal,Signal]

The interesting typing is for the channel getBools where the implementation of booleans
is published:

getBools : 4[X ;X ,X ,Test(X)]

that is, the implementation type Bool is never published: instead we just publish an
abstract type X together with the values t : X , f : X and test : Test(X). Since the im-
plementing type is kept abstract, we should be entitled to change the implementation
without impact on the observable behaviour of the system, for example by uniformly
swapping the positions of x and y:

B2
def= ν(t : Bool)ν(f : Bool)ν(test : Test(Bool))(

getBools〈Bool; t, f , test〉 |
!t(x : Signal,y : Signal) . y〈〉 |
! f (x : Signal,y : Signal) . x〈〉 |
!test(b : Bool,x : Signal,y : Signal) .b〈y,x〉

)

As Pierce and Sangiorgi observe, as untyped processes B1 and B2 are easily distinguished,
for example by the testing context:

T
def= · |ν(a)ν(b)(getBools(t, f , test) . t〈a,b〉 |a() . c〈〉 |b() .d〈〉)

However, this process does not typecheck, since when we come to typecheck T , the
channel t has abstract type X , not the implementation type Bool. We expect any sound
and complete model to consider B1 and B2 equivalent.

An illustrative example of a contextual inequivalence is given below. For some gen-
erative type T consider the following processes:

L = ν(b : 4[T],c : 4[T],d : T)(a〈T,T ;b,b,c,d〉 | c(y : T) . fail〈〉)
L′ = ν(b : 4[T],c : 4[T],d : T)(a〈T,T ;b,b,c,d〉 | c(y : T) .0)

and a type environment Γ which contains only a : 4[X ,Y ;4[X],4[Y],4[Y],X] and a suitable
type for fail. Now it may at first appear that L and L′ should be considered equivalent
with respect to the type information in Γ as the private name d is only released along
channel a at some abstract type represented by X , say. And the private name c is only

270 A. Jeffrey and J. Rathke

μ ::= τ | c(#U ;#b) | ν(#a : #T)c〈#U ;#b〉 (Untyped Labels)

c(#X ;#x : #T) .P
c(#U ;#b)� P[#U/#X ;#b/#x]

(R-IN)
c〈#U ;#b〉 c〈#U ;#b〉� 0

(R-OUT)

P
μ� P′ bn(μ)∩ fn(Q) = /0

P |Q μ� P′ |Q
(R-PAR)

P
c(#U ;#b)� P′ Q

ν(#a:#T)c〈#U ;#b〉� Q′ {#a}∩ fn(P) = /0

P |Q τ� ν(#a : #T)(P′ |Q′)
(R-COM)

P
μ� P′ a
∈ fn(μ)∪bn(μ)

ν(a : T)P
μ� ν(a : T)P′

(R-NEW)
P

ν(#a:#T)c〈#U ;#b〉� P′ a ∈ {#b}\{c,#a}

ν(a : T)P
ν(#a:#T ,a:T)c〈#U ;#b〉� P′

(R-OPEN)

!P |P μ� P′

!P
μ� P′

(R-REPL)

P
μ� P′

if a = athenPelseQ
μ� P′

(R-TEST-T)
a
= b Q

μ� Q′

if a = bthenPelseQ
μ� Q′

(R-TEST-F)

Fig. 2. Untyped Labelled Transitions P
μ� P′ (eliding symmetric rules for P |Q)

released as a channel which carries values of abstract type Y , say. In order to distinguish
these processes a test term would need to obtain a value of type Y to send on c. However,
there is a testing context which allows the name d to be cast to type Y :

R = a(X ,Y ;z : 4[X],z′ : 4[Y],z′′ : 4[Y],x : X) . (z〈x〉 | z′(y : Y) . z′′〈y〉)

It is easy to check that this process is well-typed with respect to Γ. Here, when R
communicates with L and L′, the vector of fresh names is received along a and the
variables z and z′ are aliased so that a further internal communication within R sends d
as if it were of type X but receives it as if it were of type Y . It can then be sent along c
to interact with the remainder of L and L′ to distinguish them.

2.2 Dynamic Semantics

The untyped transition semantics for the asynchronous polymorphic π-calculus is given
in Figure 2, and is the same as Pierce and Sangiorgi’s. We define the free names of a
label fn(μ) as fn(τ) = /0, fn(c(#U ;#b)) = {c,#b} and fn(ν(#a : #T)c〈#U ;#b〉) = {c,#b} \ {#a}.
We also define the bound names of a label bn(μ) as bn(τ) = bn(c(#U ;#b)) = /0 and
bn(ν(#a : #T)c〈#U ;#b〉) = {#a}. The untyped semantics is useful for defining the run-time
behaviour of processes, but is not immediately appropriate for defining a notion of equiv-
alence, as it distinguishes terms such as B1 and B2 which cannot be distinguished by any

Full Abstraction for Polymorphic Pi-Calculus 271

X ,Y,Z (Type Variables)

T,U,V,W ::= X | 4[#X ;#T] (Types: X is non-generative, 4[#X ;#T] is generative)

Γ,Δ ::= #X ;#n : #T (Typing Contexts)

X ∈ Γ
Γ � X

(T-TVAR)
#X ,Γ � #T {#X}∩dom(Γ) = /0 #X disjoint

Γ � 4[#X ;#T]
(T-CHAN)

#X � #T
#X ;#n : #T � �

(T-ENV)
Γ � � (n : T) ∈ Γ

Γ � n : T
(T-VAL)

Γ � n : 4[#X ;#T] #X ,Γ,#x : #T � P {#X ,#x}∩dom(Γ) = /0 #x disjoint

Γ � n(#X ;#x : #T) .P
(T-IN)

Γ � n : 4[#X ;#U] Γ �#n : #U [#T/#X]
Γ � n〈#T ;#n〉

(T-OUT)

Γ � �
Γ � 0

(T-NIL)
Γ � P Γ � Q

Γ � P |Q (T-PAR)

Γ,a : T � P a
∈ dom(Γ) ftv(T)⊆ dom(Γ) T is generative
Γ � ν(a : T)P

(T-NEW)

Γ � P
Γ � !P

(T-REPL)
Γ � n : T Γ � m : U Γ � P Γ � Q

Γ � if n = mthenPelseQ
(T-TEST-W)

Fig. 3. Type System, with judgements Γ � T , Γ � �, Γ � n : T and Γ � P

well-typed environment:

B1
ν(t:Bool, f :Bool,test:Test(Bool))getBools〈Bool;t, f ,test〉� t(a,b)� a〈〉�

B2
ν(t:Bool, f :Bool,test:Test(Bool))getBools〈Bool;t, f ,test〉� t(a,b)� b〈〉�

These behaviours correspond to the untyped test T , but do not correspond to any well-
typed test, which only has access to the abstract type X and not to the concrete type

Bool. As a result, no well-typed test can cause the action
t(a,b)� to be performed. We

will come back to this point in Section 3.2.

2.3 Static Semantics

The static semantics for the asynchronous polymorphic π-calculus is given in Figure 3
where the domain of a typing context dom(Γ) is dom(#X ;#n : #T) = {#X ,#n}, the free
names of a typing context fn(Γ) are fn(#X ;#n : #T) = fn(#n), the free variables of a typ-
ing context fv(Γ) are fv(#X ;#n : #T) = fv(#n), and the free type variables of a typing context

272 A. Jeffrey and J. Rathke

ftv(Γ) are ftv(#X ;#n : #T) = {#X} ∪ ftv(#T). We say that a typing context Δ is closed if
fv(Δ) = ftv(Δ) = /0 and moreover for any a : T ∈ Δ and a : U ∈ Δ then T = U . We write
Γ[σ] as the typing context given by (#X ;#n : #T)[#W/#Y ;#m/#y] = (#X \#Y ;#n[#m/#y] : #T [#W/#Y]).

This is quite a simple type system, as it does not include subtyping, bounded poly-
morphism, or recursive types, although we expect that such features could be added with
little extra complexity.

In Section 4, we will discuss the relationship between this type system and that of
Pierce and Sangiorgi. For the moment, we will just highlight one crucial non-standard
point about our typing judgement: we are allowing identifiers to have more than one
type in a typing context. For example:

X ,Y ;a : 4[4[X],4[Y]],b : 4[X],b : 4[Y] � a〈b,b〉
To motivate the use of these mulitcontexts consider the processes

P
def= c(X ,Y ;x : 4[4[X],4[Y]]) . x(y : 4[X],z : 4[Y]) . x〈y,z〉

Q
def= ν(a : 4[4[int],4[int]])ν(b : 4[int])c〈int, int;a〉 |a〈b,b〉

which can interact as follows:

P |Q τ� ν(a : 4[4[int],4[int]])(a(y : 4[int],z : 4[int]) .a〈y,z〉 |ν(b : 4[int])(a〈b,b〉))
τ� ν(a : 4[4[int],4[int]])ν(b : 4[int])a〈b,b〉

This interaction comes about due to the following labelled transitions from P (with
appropriate matching transitions from Q):

P
c(int,int;a)� a(y : 4[int],z : 4[int]) .a〈y,z〉
a(b,b)� a〈b,b〉

Now, P typechecks as:
c : 4[X ,Y ;4[4[X],4[Y]]] � P

and we would like to find an appropriate typing for a〈b,b〉. The obvious typing would
be to use Q’s choice of concrete implementation of X and Y as int however in order
to reason about P independently of Q we must choose a typing which preserves type
abstraction and is independent of any choice provided by Q. To do this we use a typing
which more closely resembles P’s view of the interaction:

X ,Y ;c : 4[X ,Y ;4[4[X],4[Y]]],a : 4[4[X],4[Y]],b : 4[X],b : 4[Y] � a〈b,b〉
which makes a use of two different types for b in the type environment.

Pierce and Sangiorgi do not allow multiple typings for the same identifier: instead,
they use type unification for the same purpose. In their model, the types X and Y above
would be unified, and so b would just have one type b : 4[X]. This produces a model
which is sound, but not complete, as we discuss in Section 4.

An alternative strategy to either multiple typings for variables or type unification
would be subtyping with intersection types [6, 28], which ensure that meets exist in
the subtype relation. Subtyping with meets are used, for example, by Hennessy and
Riely [12] to ensure subject reduction. Intersection types would provide this language
with pleasant properties such as principal typing, which it currently lacks, but at the cost
of complexity.

Full Abstraction for Polymorphic Pi-Calculus 273

3 Equivalences for Asynchronous Polymorphic Pi-Calculus

Process equivalence has a long history, including Milner’s [19] bisimulation, Brookes,
Hoare and Roscoe’s [4] failures-divergences equivalence, and Hennessy’s [11] testing
equivalence. In this paper, we will follow Pierce and Sangiorgi [23] and investigate
contextual equivalence on processes [13, 22].

Contextual equivalence has a very natural definition: it is the most generous equiv-
alence satisfying three natural properties: reduction closure (that is, respecting the op-
erational semantics), contextuality (that is, respecting the syntax of the language), and
barb preservation (that is, respecting output on visible channels).

Unfortunately, although contextual equivalence has a very natural definition, it is
difficult to reason about directly, due to the requirement of contextuality. Since contex-
tuality requires processes to be equivalent in all contexts, to show contextual equivalence
of P and Q, we have to show contextual equivalence of C [P] and C [Q] for any appropri-
ately typed context C : moreover, attempts to show this by induction on C break down
due to reduction closure.

The problem of showing processes to be contextually equivalent is not restricted
to polymorphic π-calculi, for example this problem comes up in treatments of the λ-
calculus [2], monomorphic π-calculus [20] and object languages [1]. The standard so-
lution is to ask for a fully abstract model, which coincides with contextual equivalence,
but is hopefully more tractable.

The problem of finding fully abstract models of programming languages originates
with Milner [18], and was investigated in depth by Plotkin [25] for the functional lan-
guage PCF. For polymorphic languages, logical relations [27] allow for the construction
of fully abstract models [24] but require an induction on type, and so break down in
the presence of recursive types. Sumii and Pierce have recently shown that a hybrid
of context bisimulation and logical relations [30] yields a fully abstract model in the
presence of recursive types.

The monomorphic first order [20] and higher-order [29] π-calculus have quite simple
fully abstract models, but to date the only known models for polymorphic π-calculus
have been sound but not complete [23, 3]. We will now show that a very direct treatment
of type-respecting labelled transitions generates a fully abstract bisimulation equivalence
which makes no use of logical relations or type unification.

3.1 Contextual Equivalence

Process contexts are typed as follows: Δ � C [Γ] whenever ∀(Γ � P) .(Δ � C [P]). A typed
relation on closed processes R is a set of triples (Γ,P,Q) such that Γ � P and Γ � Q
such that Γ is closed. We will typically write Γ � P R Q whenever (Γ,P,Q) ∈ R . Given
any typed relation on closed processes R , we can define its open extension R◦ to be the
typed relation on processes given by Γ � P R◦ Q whenever Γ[σ],Δ � P[σ] R Q[σ] for
any closed typing environment of the form (Γ[σ],Δ).

Definition 4 (Reduction closure). A typed relation R on closed processes is reduction-

closed whenever Δ � P R Q and P
τ� P′ implies there exists some Q′ such that

Q ==⇒ Q′ and Δ � P′ R Q′.

274 A. Jeffrey and J. Rathke

α ::= τ | ν(#a : #T)c[#U ;#b] | ν(#a)c〈#X ;#b :#V 〉 (Typed Labels)

C ::= (Γ � [σ]P) (Configurations)

P
τ� P′

(Γ � [σ]P)
τ� (Γ � [σ]P′)

(TR-SILENT)

Γ,#a : #T � c〈#U ;#b〉 {#a}∩dom(Γ) = /0 #T are generative

(Γ � [σ]P)
ν(#a:#T)c[#U ;#b]� (Γ,#a : #T � [σ]P | (c〈#U ;#b〉[σ]))

(TR-RECEP)

P
ν(#a:#T)c〈#U ;#b〉� P′ Γ � c(#X ;#x :#V) .0 {#a,#X}∩dom(Γ) = /0

(Γ � [σ]P)
ν(#a)c〈#X ;#b:#V 〉� (#X ,Γ,#b :#V � [#U/#X ,σ]P′)

(TR-OUT-W)

Fig. 4. Typed Labelled Transitions C
α� C′

Definition 5 (Contextuality). A typed relation R on closed processes is contextual
whenever Γ � P R◦ Q and Δ � C [Γ] implies Δ � C [P] R◦ C [Q].

Definition 6 (Barb preservation). A typed relation R on closed processes is barb-

preserving whenever Δ � P R Q and P
a〈〉� implies Q ==

a〈〉
⇒ .

We can now define contextual equivalence ∼= as the open extension of the largest
symmetric typed relation on closed processes which is reduction-closed, contextual
and barb-preserving. The requirement of contextuality makes it very difficult to prove
properties about contextual equivalence, and so we investigate bisimulation as a more
tractable proof technique for establishing contextual equivalence.

3.2 Bisimulation

As a first attempt to find a more tractable presentation of contextual equivalence, we
could use bisimulation. Unfortunately, as we discussed in Section 2.2, our untyped
labelled transition system does not respect the type system, and so gives rise to too fine
an equivalence. We therefore investigate a restricted labelled transition system which
respects types: this is defined in Figure 4. The transition system is given by a relation:

(Γ � [σ]P)
α� (Γ′ � [σ′]P′)

between configurations of the form (Γ � [σ]P). These comprise three constituent parts:

– P is the process being observed: after the transition, it becomes process P′.
– Γ is the external view of the typing context P operates in. This external view may

not have complete information about the types, for example P may have exported
the concrete type int as an abstract type X . Only X will be recorded in the typing
context. As P exports more type information, Γ may grow to become Γ′. It is here
that we make use of the multiple entries in type environments.

Full Abstraction for Polymorphic Pi-Calculus 275

– σ is a type substitution, mapping the external view to the internal view. This mapping
provides complete information about the types exported by P, for example int/X
records that external type X is internal type int. Note that this substitution is not
applied to P, we represent that with the alternative notation P[σ].

There are three kinds of transitions:

– Silent transitions (Γ � [σ]P)
τ� (Γ � [σ]P′) which are inherited from the untyped

transition system.

– Receptivity transitions (Γ � [σ]P)
ν(#a:#T)c[#U ;#b]� (Γ,#a : #T � [σ]P | (c〈#U ;#b〉[σ])) which

allow the environment to send data to the process. We require the message to type-
check, and we allow the environment to generate new names, which are recorded
in the type environment. We are modelling an asynchronous language, and so pro-
cesses are always input-enabled. Note that the process is sending no information to
the environment, so the type substitution σ does not grow. Note also that the message
is typed using the external view Γ but must have the type mapping σ applied to it
for it to be mapped to the internal type consistent with P.

– Output transitions (Γ � [σ]P)
ν(#a)c〈#X ;#b:#V 〉� (#X ,Γ,#b :#V � [#U/#X ,σ]P′) which allow the

process to send data to the environment. The channel being used to communicate
with the environment must be typed 4[#X ;#V], so the typing context is extended with
abstract types #X and the new type information#b : #V . This may result in more than
one type being given to the same name, which is why we allow duplicate entries in
typing contexts. The process P must have provided concrete implementations #U of
the abstract types #X : these are recorded in the type substitution.

To demonstrate how our typed labelled transitions can be used we return to the
example above of processes L and L′ and type environment Γ. We show a sequence of
typed transitions from (Γ � []L) which cannot be matched by (Γ � []L′):

(Γ � []L)
ν(b,c,d)a〈X ,Y ;b:4[X],b:4[Y],c:4[Y],d:Y 〉� (Γ′ � [σ]c(y : 4[T]) . fail〈〉)

where σ is [T,T/X ,Y] and Γ′ is X ,Y,Γ,b : 4[X],b : 4[Y],c : 4[Y],d : X . At this point we
would like to use Rule TR-RECEP to provide a message on channel c to facilitate a
communication, however, there is no name of the appropriate type listed in Γ′ and the
restriction to generative types for the fresh names means that this cannot yet be done.
However, note the following transitions:

(Γ′ � [σ]c(y : 4[T]) . fail〈〉) b[d]� (Γ′ � [σ]c(y : 4[T]) . fail〈〉 |b〈d〉)
b〈d〉� (Γ′,d : Y � [σ]c(y : 4[T]) . fail〈〉)
c[d]� (Γ′,d : Y � [σ]c(y : 4[T]) . fail〈〉 | c〈d〉)

==
fail〈〉
⇒

in which the second type listed for b in Γ′ is used to justify the b〈d〉 transition. These
transitions serve to mimic the typecasting and subsequent use of the extruded name d
by a testing context which are crucial to distinguishing L and L′.

276 A. Jeffrey and J. Rathke

We now formalise our notion of bisimulation equivalence. A typed relation on closed
configurations R is a set of 5-tuples (Γ,σ,P,ρ,Q) such that Γ[σ] � P and Γ[ρ] � Q and
both Γ[σ] and Γ[ρ] are closed. For convenience we will write Γ � [σ]P R [ρ]Q whenever
(Γ,σ,P,ρ,Q) ∈ R .

Definition 7 (Bisimulation). A simulation R is a typed relation on closed configu-

rations such that if Γ � [σ]P R [ρ]Q and (Γ � [σ]P)
α� (Γ′ � [σ′]P′) then we can

show (Γ � [ρ]Q) ==̂
α
⇒ (Γ′ � [ρ′]Q′) for some Γ′ � [σ′]P′ R [ρ′]Q′. A bisimulation is a

simulation whose inverse is also a simulation. Let ≈ be the largest bisimulation.

We are now in position to show full abstraction of bisimulation for contextual equiv-
alence, and so provide a tractable model of polymorphic π-calculus.

3.3 Soundness of Bisimulation for Contextual Equivalence

The difficult property to show is that bisimulation is a congruence: from this it is routine
to establish that bisimulation implies contextual equivalence. Showing congruence for
bisimulation is a well-established problem for process languages, going back to Mil-
ner [19]. In the case of polymorphic π, the problem is in showing that bisimulation is
preserved by parallel composition. We do this by constructing a candidate bisimulation:

Γ � [σ]P |R[σ] R [ρ]Q |R[ρ] whenever Γ � [σ]P≈ [ρ]Q
and Γ � R
and σ and ρ are type substitutions

and then showing that this is a bisimulation (up to some technicalities which we shall
elide for the moment). This has a routine proof, except for one case, which is when
R[σ] � R′[σ]. It is straightforward to establish that type substitutions do not influ-
ence reduction, and so we have R[ρ] � R′[ρ], and all that remains is to show that
Γ � [σ]P |R′[σ] R [ρ]Q |R′[ρ]. Unfortunately, this is not directly possible, due to the
requirement that Γ � R′. If we had a subject reduction result for open processes, then
this would be routine, but this result is not true due to channels with multiple types:

a〈c〉 |a(x : Y) .b〈x〉 � 0 |b〈c〉
X ,Y ;a : 4[X],a : 4[Y],b : 4[Y],c : X � a〈c〉 |a(x : Y) .b〈x〉
X ,Y ;a : 4[X],a : 4[Y],b : 4[Y],c : X
� 0 |b〈c〉

Pierce and Sangiorgi’s technique for dealing with this problem is to introduce type uni-
fication to ensure that every channel has a unique type. Unfortunately, as we will discuss
in Section 4, the resulting semantics is incomplete. Instead of using such unifications,
we observe that in any case where subject reduction fails, it does so because of commu-
nication on a visible channel: if the channel was hidden by a ν-binder, then it would have
only one type, and so subject reduction holds. We therefore observe that in the cases
where subject reduction fails to hold, there must be a pair of matching visible reductions
which caused the communication.

Full Abstraction for Polymorphic Pi-Calculus 277

Proposition 1 (Open subject reduction). If Γ � P and P
τ� P′′ then either:

1. Γ � P′′, or

2. P
ν(#a:#T)c〈#U ;#b〉� c(#X ;#b)� P′ where P′′ ≡ (ν(#a : #T)P′)[#U/#X].

In the example (up to structural equivalence):

a〈c〉 |a(x : Y) .b〈x〉 a〈c〉� 0 |a(x : Y) .b〈x〉
a(c)� 0 |b〈c〉

X ,Y ;a : 4[X],a : 4[Y],b : 4[Y],c : X � a〈c〉 |a(x : Y) .b〈x〉
X ,Y ;a : 4[X],a : 4[Y],b : 4[Y],c : X ,c : Y � 0 |a(x : Y) .b〈x〉
X ,Y ;a : 4[X],a : 4[Y],b : 4[Y],c : X ,c : Y � 0 |b〈c〉

The crucial point is that these extra transitions by the testing context correspond to
complementary typed transitions by the process such that, after the visible a〈c〉 output
action, the typing context Γ is extended with c : Y . The problematic residual of the test
term R′ (0 |b〈c〉 in the example) can now be typed in this extended Γ and the bisimulation
argument can be completed.

Theorem 1 (Bisimulation is a congruence). If Γ � P≈◦ Q then Δ � C [P]≈◦ C [Q] for
any Δ � C [Γ].

Theorem 2 (Soundness of bisimulation for contextual equivalence). If Γ � P ≈◦ Q
then Γ � P∼= Q.

3.4 Completeness of Bisimulation for Contextual Equivalence

The proof of soundness for bisimulation required some non-standard techniques. In
comparison, the proof of completeness is quite straightforward, and follows the usual
definability argument [11, 9, 15] of showing that for every visible action α, we can find
a process R which exactly tests for the ability to perform α. Once we have established
definability, completeness follows in a straightforward fashion.

Theorem 3 (Completeness of bisimulation for contextual equivalence). If Γ � P∼= Q
then Γ � P≈◦ Q.

4 Comparison with Pierce and Sangiorgi

In this paper, we have shown that weak bisimulation is fully abstract for observational
equivalence for an asynchronous polymorphic π-calculus. This is almost enough to settle
the open problem set by Pierce and Sangiorgi [23] of finding a fully abstract semantics
for their polymorphic π-calculus. There are, however, some differences between their
setting and ours, most of which we believe to be routine, with one important exception:
the type rule for if-then-else.

278 A. Jeffrey and J. Rathke

4.1 Minor Differences

The minor differences between our polymorphic π-calculus and theirs are:

1. We are considering weak bisimulation rather than strong bisimulation.
2. Since we are considering weak bisimulation, we have not included P + Q in our

language of processes. We expect that this could be handled in the usual fashion, by
defining observational equivalence on processes in the style of Milner [19].

3. We have treated an asynchronous rather than a synchronous language, since the
soundness result follows more naturally for the resulting asynchronous transition
system. We expect that a fully abstract bisimulation for a synchronous language can
be given by adding transitions for synchronous input as well as receptivity:

P
c(#U ;#b)� P′ Γ,#a : #T � c〈#U ;#b〉

{#a}∩dom(Γ) = /0 #T are generative

(Γ � [σ]P)
ν(#a:#T)c(#U ;#b)� (Γ,#a : #T � [σ]P′)

(TR-IN)

Note that the label used here for synchronous input is distinct from the label used
for receptivity.

4. We have used a variable-name distinction, and so have used Honda and Yoshida’s
definition of observational equivalence [13]. See [8] for a discussion of this issue.

5. Our type system keeps track explicitly of free type variables, rather than treating
them implicitly: this makes some of the book-keeping easier, at the cost of some
additional syntactic overhead.

We do not believe that these differences are substantial.

4.2 Major Difference: Typing If-Then-Else

However, there is one important difference between our language and Pierce and San-
giorgi’s, even though it may appear at first sight to be a minor point: the type rule for
if-then-else. In their paper, a strong type rule is given:

Γ � n : T Γ � m : T
Γ � P Γ � Q

Γ � if n = m thenPelseQ
(T-TEST-S)

In our work, the weaker type rule T-TEST-W is used, which allows n and m to have dif-
ferent types. Note that in a language with subtyping and a top type, these rules are equiv-
alent, since we can always choose T to be the top type, and use subsumption to derive
T-TEST-W from T-TEST-S. In the absence of subtyping, however, the rule T-TEST-W
allows more processes to typecheck, so raises the expressive power of tests, and hence
makes observational equivalence finer. For example:

P
def= ν(b : 4[int])ν(c : 4[string])a〈int,string;b,c〉

Q
def= ν(b : 4[int])a〈int, int;b,b〉

Full Abstraction for Polymorphic Pi-Calculus 279

As long as a : 4[X ,Y ;4[X],4[Y]] these processes cannot be distinguished by any test
which uses the type rule T-TEST-S, but they can be distinguished by:

R
def= a(X ,Y ;x : 4[X],y : 4[Y]) . if x = y thend〈〉

which typechecks using type rule T-TEST-W. In fact, there is a third possible type rule
for if-then-else, which makes use of type unification:

Γ � n : T Γ � m : U
mgu(T,U) = σ⇒ Γ[σ] � P[σ] Γ � Q

Γ � if n = m thenPelseQ
(T-TEST-U)

where mgu(T,U) builds the most general type substitution σ such that T [σ] = U [σ].
This type rule is strictly weaker than T-TEST-W, and raises the expressive power of
tests even further, and hence makes observational equivalence even finer. For example:

P
def= ν(c : 4[int,string])ν(d : 4[int])a〈int,string;c,d〉 .b〈string;c〉 .d(x : int) . e〈x〉

Q
def= ν(c : 4[int,string])ν(d : 4[int])a〈int,string;c,d〉 .b〈string;c〉

As long as a : 4[X ,Y ;4[X ,Y],4[X]], b : 4[Z;4[int,Z]] and e : 4[int], these processes cannot
be distinguished by any test which uses T-TEST-W, but they can be distinguished by:

R
def= a(X ,Y ;x : 4[X ,Y],y : 4[X]) .b(Z;z : 4[int,Z]) . if x = z theny〈5〉

which typechecks using type rule T-TEST-U. We have that:

– The type rule T-TEST-W has a matching fully abstract bisimulation equivalence≈,
which for purpose of this discussion we shall refer to as ≈w.

– The type rule T-TEST-S has a matching fully abstract bisimulation equivalence ≈s.
– The type rule T-TEST-U has a matching fully abstract bisimulation equivalence≈u.

Moreover:

– We have inclusions on these equivalences: if Γ � P ≈w Q then Γ � P ≈s Q for any
Γ �s P and Γ �s Q (and similarly for ≈u and ≈w).

– The above examples show that the inclusions are strict: we have Γ � P
≈w Q and
Γ � P≈s Q for some Γ �s P and Γ �s Q (and similarly for ≈u and ≈w).

– The type rule for if-then-else used by Pierce and Sangiorgi is T-TEST-S.
– Pierce and Sangiorgi’s bisimulation is the strong, synchronous version of ≈u.

Hence, since synchrony and weak bisimulation play no role in the above examples, we
have a resolution of Pierce and Sangiorgi’s conjecture:

– Pierce and Sangiorgi’s polymorphic bisimulation is sound, but not complete, for
their polymorphic π-calculus.

These arguments are formalised in [16].

280 A. Jeffrey and J. Rathke

5 Conclusions

This paper gives the first fully abstract semantics for a polymorphic process language.
Moreover the semantics is extremely straightforward: the only nonstandard part of the
presentation is that names are given more than one type in a type environment. This
corresponds to the ability for a polymorphic program to be sent the same channel at
multiple different types. In contrast to polymorphic λ-calculi, polymorphic π-calculi
have the ability to compare names for syntactic equality, and so there is an internal test
which can detect when the same name has been given multiple different types.

We believe that the techniques given in this paper are quite robust (for example there
are no uses of type induction) and could be scaled with little difficulty to larger type
systems with features such as subtyping, F-bounded polymorphism, and recursive types.
Moreover, object languages such as the ς-calculus support object equality, and so we
believe that adapting our previous fully abstract semantics [14] for objects [1] to deal
with generic objects would also be possible.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.
2. H. P. Barendregt. The Lambda Calculus, Its Syntax and Semantics. North Holland, 1984.
3. M. Berger, K. Honda, and N. Yoshida. Genericity and the pi-calculus. In Proc. Int. Conf. Foun-

dations of Software Science and Computer Structures (FoSSaCs), Lecture Notes in Computer
Science. Springer-Verlag, 2003.

4. S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating sequential
processes. J. ACM, 31(3):560–599, 1984.

5. P. Canning, W. Cook, W. Hill, W. Olthoff, and J. C. Mitchell. F-bounded polymorphism for
object-oriented programming. In Proc. Int. Conf. Functional Programming Languages and
Computer Architecture (FPCA), pages 273–280. ACM Press, 1989.

6. M. Coppo and M. Dezani-Ciancaglini. A new type-assignment for λ-terms. Archiv Math.
Logik, 19:139–156, 1978.

7. Microsoft Corporation. ECMA and ISO/IEC c# and common language infrastructure stan-
dards, 2004. http://msdn.microsoft.com/net/ecma/.

8. C. Fournet and G. Gonthier. A hierarchy of equivalences for asynchronous calculi. In Proc.
Int. Conf. Automata, Languages and Programming (ICALP), volume 1443 of Lecture Notes
in Computer Science. Springer-Verlag, 1998.

9. C. Fournet, G. Gonthier, J-J. Levy, L. Maranget, and D. Remy. A calculus of mobile agents. In
Proc. Int. Conf. Concurrency Theory (CONCUR), volume 1119 of Lecture notes in computer
science. Springer-Verlag, 1996.

10. J-Y. Girard, P. Taylor, and Y. Lafont. Proofs and Types. Cambridge University Press, 1989.
11. M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.
12. M. Hennessy and J. Riely. Resource access control in systems of mobile agents. Information

and Computation, 173(1):82–120, 2002.
13. K. Honda and N. Yoshida. On reduction-based process semantics. Theoretical Computer

Science, 152(2):437–486, 1995.
14. A. S. A. Jeffrey and J. Rathke. A fully abstract may testing semantics for concurrent objects.

In Proc. IEEE Logic In Computer Science, pages 101–112. IEEE Press, 2002. Full version
to appear in Theoretical Computer Science.

Full Abstraction for Polymorphic Pi-Calculus 281

15. A. S. A. Jeffrey and J. Rathke. Contextual equivalence for higher-order pi-calculus revisited. In
Proc. Mathematical Foundations of Programming Semantics, Electronic Notes in Computer
Science. Elsevier, 2003.

16. A. S. A. Jeffrey and J. Rathke. Full abstraction for polymorphic pi-calculus. Online edition
with proofs, http://www.fabfac.org/, 2005.

17. Sun Microsystems. Release notes Java 2 platform standard edition development kit 5.0, 2004.
http://java.sun.com/j2se/1.5.0/relnotes.html.

18. R. Milner. Fully abstract models of typed lambda-calculi. Theoretical Computer Science,
4:1–22, 1977.

19. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
20. R. Milner. Communication and mobile systems: the π-calculus. Cambridge University Press,

1999.
21. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Part I + II. Information

and Computation, 100(1):1–77, 1992.
22. R. Milner and D. Sangiorgi. Barbed bisimulation. In Proc. Int. Conf. Automata, Languages

and Programming (ICALP), volume 623 of Lecture Notes in Computer Science. Springer-
Verlag, 1992.

23. B. C. Pierce and D. Sangiorgi. Behavioral equivalence in the polymorphic pi-calculus. J. ACM,
47(3):531–584, 2000.

24. A. M. Pitts. Parametric polymorphism and operational equivalence. Mathematical Structures
in Computer Science, 10:321–359, 2000.

25. G. D. Plotkin. LCF considered as a programming language. Theoretical Computer Science,
5:223–255, 1977.

26. J. C. Reynolds. Types, abstraction and parametric polymorphism. Information Processing,
83:513–523, 1983.

27. J. C. Reynolds. An introduction to logical relations and parametric polymorphism (abstract).
In Proc. ACM Symp. Principles of Programming Languages, pages 155–156. ACM Press,
1993.

28. J. C. Reynolds. Theories of Programming Languages. Cambridge University Press, 1998.
29. D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-Order

Paradigms. PhD thesis, University of Edinburgh, 1993.
30. E. Sumii and B. C. Pierce. A bisimulation for type abstraction and recursion. In Proc. ACM

Symp. Principles of Programming Languages, 2005. To appear.
31. P. Wadler. Theorems for free! In Proc. Int. Conf. Functional Programming Languages and

Computer Architecture (FPCA), pages 347–359. ACM Press, New York, 1989.

Foundations of Web Transactions

Cosimo Laneve and Gianluigi Zavattaro

Department of Computer Science,
University of Bologna, Italy

Abstract. A timed extension of π-calculus with a transaction construct
– the calculus Webπ – is studied. The underlying model of Webπ relies on
networks of processes; time proceeds asynchronously at the network level,
while it is constrained by the local urgency at the process level. Namely
process reductions cannot be delayed to favour idle steps. The exten-
sional model – the timed bisimilarity – copes with time and asynchrony
in a different way with respect to previous proposals. In particular,
the discriminating power of timed bisimilarity is weaker when local ur-
gency is dropped. A labelled characterization of timed bisimilarity is also
discussed.

1 Introduction

Web Services technologies intend to provide standard mechanisms for describing
the interface and the services available on the web, as well as protocols for lo-
cating such services and invoking them (see e.g. WSDL [9] and UDDI [16]). To
describe interfaces, services, and protocols new web programming languages, the
so-called orchestration and choreography languages, are currently investigated.
Examples of these languages are Microsoft XLANG [17] and its visual environ-
ment BizTalk, IBM WSFL [13], BPEL [2], WS-CDL [12], and WSCI [12].

Most of the web programming languages also include the notion of web trans-
action, as a unit of work involving activities that may last long periods of time.
These transactions, being orthogonal to administrative domains, have the typi-
cal atomicity and isolation properties relaxed, and instead of assuming a perfect
roll-back in case of failure, support the explicit programming of the compensa-
tion activity.

Despite of the great interest for web transactions, the Web Services com-
munity has not reached a common agreement on a unique notion of this form
of transaction. The paper [14] gives a valuable critical comparison among three
transaction protocols: BTP, WS-C/T, and WS-CAF. Other few papers (we are
aware of), that discuss the formal semantics of compensable activities in this
context, rely on specific proposals: the work [8] is mainly inspired by XLANG,
the calculus of Butler and Ferreira [7] is inspired by BPBeans, the πt-calculus [5]
considers BizTalk, the work [6] deals with short-lived transactions in BizTalk.

In this paper we follow a rather different and radical approach: we define a
calculus of web transactions – the calculus Webπ – that is independent of the
different proposals discussed above and that allows to grab (we hope) the key

V. Sassone (Ed.): FOSSACS 2005, LNCS 3441, pp. 282–298, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Foundations of Web Transactions 283

concepts. Three major aspects are considered in Webπ: interruptible processes,
failure handlers that are activated when the main process is interrupted, and
time. Time has been considered because it is fundamental for dealing with the
typical latency of web activities or with message losses. For instance, in ticketing
services of airplane companies, the services should cancel reservations that are
not confirmed within a certain period of time. Since Webπ is an extension of
π-calculus, and the latter is emerging as one of the referring models for Web
Services orchestration and choreography (it has inspired the design of languages
such as XLANG and WS-CDL), we trust that the mathematical underpinnings
of Webπ are digestible by the web service community.

The underlying model of Webπ includes machines and processes. The formers
define networks; the latters define the computational content of locations of the
networks. A location is a uniprocessor machine, written [P]x̃, with its own
clock that is not synchronized with the clock of other locations (time progresses
asynchronously between different locations). Namely, if M and N are locations,
then progress of the compound machine is defined by the rule

M → M′

M |N → M′ |N
(1)

Names x̃ in [P]x̃ indicate that the location is responsible for accepting messages
on such names (a name always indexes a unique location). We assume that,
within a location, operations cannot be delayed in favour of idle operations –
this property is called local urgency. For example, consider two processes running
on the same location: a printer process of a warning message with a timeout
and an idle process waiting for an external event. Local urgency means that,
if the external event doesn’t occur, then the printer process cannot be delayed.
Said otherwise, the time may elapse in a location either because the process
inside progresses or because no progress is possible. These two alternatives are
respectively defined by the rules

P → Q

[P]x̃ → [Q]x̃

P
→

[P]x̃ → [φ(P)]x̃

where φ is a function making the time elapse of one unit. In particular, the
rightmost rule permits the elapsing of one time unit only in the case when no
computational step is possible inside a machine.

Processes extend the asynchronous π-calculus with transactions 〈|P ; Q|〉nx ,
where P and Q are the body and the compensation, respectively, n indicates
the deadline, and x is the name of the transaction. The body of a transaction
executes either until termination or until the transaction fails. On failure, the
compensation is activated. A transaction may fail in two different ways, either
explicitly (when the abort message x is consumed, where x is the name of the
transaction to be aborted) or implicitly (when the deadline is reached). The
deadline may be reached either because of computational steps of the body or
because of computational steps of processes in parallel. Assuming that every
step costs one time slot, these two alternatives are defined by the rules

284 C. Laneve and G. Zavattaro

P → P ′

〈|P ; Q|〉n+1
x → 〈|P ′ ; Q|〉nx

P → P ′

P |Q→ P ′ |φ(Q)

Comparing the last rule and rule (1), we obtain a model for Webπ that is locally
synchronous and globally asynchronous.

Regarding time, we have been influenced by the work of Berger and Honda
about π-calculus with timers [4, 3]. A timer process timern(P,Q) behaves like
P , but triggers Q if P does not move within n time units. Transactions have
a rather different behaviour: in 〈|P ; Q|〉nx the process Q may be activated pro-
vided the execution of P is not terminated. Transactions have two interruption
mechanisms: one associated to timeouts (as for the timers); the other is explicit
– the abort message. Additionally, the model of time in [4, 3] is different from
the one considered here. Berger and Honda have a rule

P → φ(P)

that allows the time elapse even if P may progress. In Webπ this rule is restricted
to locations [P]x̃, where it is reasonable to verify P
→ since P collect all the
entities competing for the location processor.

The calculus Webπ is initially equipped with a reduction semantics, consist-
ing of a reduction relation and a barbed bisimulation. The reduction relation
defines reductions that take one unit of time. The barbed bisimulation, called
timed bisimilarity, is sensible to the number of internal moves (it is a strong
equivalence). Timed bisimilarity is also sensible to local urgency: its discrimi-
nating power of timed bisimilarity is weaker when local urgency is dropped.

In order to support direct proofs of equality, Webπ is also equipped with a
labelled semantics. In particular, we define a labelled transition system and con-
sider the standard notion of asynchronous bisimulation [1] that admits inputs
to be also mimicked by internal moves. It turns out that asynchronous bisimu-
lation is not a congruence because it is not substitution and time closed (this
is the same as in [3]) and it is not closed by a property checking whether a
process manifests an input that is not underneath a transaction. When asyn-
chronous bisimulation is appropriately closed, the resulting equivalence, called
labelled time bisimilarity, is equal to time bisimilarity when the discriminating
power of contexts is augmented with the match operator.

The paper is structured as follows. For the sake of presentation, we sepa-
rate processes and machines. The syntax and the reduction relation of Webπ
processes and machines are respectively defined in Sections 2 and 5. Section 3
introduces timed bisimilarity and demonstrates that the discriminating power of
timed bisimilarity is weaker when local urgency is dropped. Section 4 defines the
labelled semantics, the corresponding congruence relation, and its relationship
with timed bisimilarity. Section 6 draws some conclusive remarks.

Foundations of Web Transactions 285

2 The Calculus Webπ

The syntax relies on countable sets of names, ranged over by x, y, z, u, · · ·. Tuples
of names are written ũ. Natural numbers {0, 1, 2, 3, · · ·} or ∞ are ranged over by
n,m, · · ·. The syntax of Webπ defines processes P .

P ::= 0 | x ũ | x(ũ).P | (x)P | P |P | !x(ũ).P | 〈|P ; P |〉nx
A process can be the inert process 0, a message x ũ sent on a name x that
carries a tuple of names ũ, an input x(ũ).P that consumes a message x w̃ and
behaves like P{w̃/ũ}, a restriction (x)P that behaves as P except that inputs and
messages on x are prohibited, a parallel composition of processes, a replicated
input !x(ũ).P that consumes a message x w̃ and behaves like P{w̃/ũ} | !x(ũ).P ,
or a (web) transaction 〈|P ; Q|〉nx that behaves as the body P except that, if
the body does not terminate, the compensation Q is triggered after n steps or
because of a transaction abort message x . The label n, called the time stamp of
the transaction, is a natural number or ∞. The timeless transaction 〈|P ; Q|〉x
is an abbreviation for 〈|P ; Q|〉∞x , and we assume that ∞+ 1 = ∞. It is possible
to write out-of-time transactions 〈|P ; Q|〉0x: the semantics (in particular, the
structural congruence) will simplify these processes on-the-fly. It is worth to
notice that the syntax of Webπ processes extends the asynchronous π-calculus
with the transaction process.

The input x(ũ).P , restriction (x)P , and replicated input !x(ũ).P are binders
of names ũ, x, and ũ, respectively. The scope of these binders are the processes P .
We use the standard notions of α-equivalence, free and bound names of processes,
noted fn(P), bn(P), respectively. In particular,

– fn(〈|P ; Q|〉nx) = fn(P)∪fn(Q)∪{x} and α-equivalence equates (x)(〈|P ; Q|〉nx)
with (z)(〈|P{z/x} ; Q{z/x}|〉

n
z) provided z
∈ fn(〈|P ; Q|〉nx);

In the following we let
∏

i∈I Pi be the parallel composition of the processes
Pi. We also let τ.P be the process (z)(z | z().P) where z
∈ fn(P).

Remark 1. 1. The process 〈|P ; Q|〉nx is intended to define a “web” transaction
(the keyword “web” is always omitted in the following). It has not to be
confused with “database” transactions, which usually grant atomicity and
isolation properties. These two properties are usually not retained by trans-
actional activities over the web.

2. An high-level programming language using Webπ transactions should neglect
names marking transactions, such as x in 〈|P ; Q|〉nx . Our insight is that these
names are process identifiers of transactions, therefore they are dynamically
generated by the run-time support of the language. This design choice may
be easily implemented by using a distinguished name called this. Then pro-
grammers may write 〈|P ; Q|〉n, which means (this)(〈|P ; Q|〉nthis). A further
consequence of this insight is that two different transactions always bear dif-
ferent names marking them. Even if we conform with this intuition in every
example, we purposely do not enforce in Webπ a discipline for the use of
names marking transactions.

286 C. Laneve and G. Zavattaro

2.1 The Reduction Relation

Following the tradition of π-calculus [15], the reduction relation of Webπ is defined
by using a structural congruence that equates all agents one never wants to
distinguish.

Definition 1. The structural congruence ≡ is the least congruence closed with
respect to α-renaming, satisfying the abelian monoid laws for parallel (associa-
tivity, commutativity, and 0 as identity), and the following axioms:

1. the scope laws:

(u)0 ≡ 0, (u)(v)P ≡ (v)(u)P,
P | (u)Q ≡ (u)(P |Q) , if u
∈ fn(P)

〈|(z)P ; Q|〉nx ≡ (z)〈|P ; Q|〉nx , if z
∈ {x} ∪ fn(Q)
〈|P ; (z)Q|〉0x ≡ (z)〈|P ; Q|〉0x , if z
∈ {x} ∪ fn(P)

2. the repetition law:
!x(ũ).P ≡ x(ũ).P | !x(ũ).P

3. the transaction laws:

〈|0 ; Q|〉nx ≡ 0
〈|〈|P ; Q|〉ny |R ; R′|〉mx ≡ 〈|P ; Q|〉ny | 〈|R ; R′|〉mx

4. the floating laws:

〈|z ũ |P ; Q|〉nx ≡ z ũ | 〈|P ; Q|〉nx
〈|y(ṽ).P |P ′ ; z ũ |Q|〉0x ≡ z ũ | 〈|y(ṽ).P |P ′ ; Q|〉0x

The scope laws and the repetition law are standard; let us discuss the trans-
action and floating laws that are unusual. The law 〈|0 ; Q|〉nx ≡ 0 defines com-
mitted transactions, namely transactions with 0 as body. These transactions,
being committed, are equivalent to 0 and, therefore, cannot fail anymore. The
law 〈|〈|P ; Q|〉ny |R ; R′|〉mx ≡ 〈|P ; Q|〉ny | 〈|R ; R′|〉mx moves transactions outside
parent transactions, thus flattening the nesting of transactions. Notwithstand-
ing this flattening, parent transactions may still affect children transactions by
means of transaction names. The law 〈|z ũ |P ; R|〉nx ≡ z ũ | 〈|P ; R|〉nx floats mes-
sages outside transactions, thus modelling the fact that messages are particles
that independently move towards their inputs. The intended semantics is the
following. If a process emits a message, this message traverses the surround-
ing transaction boundaries, until it reaches the corresponding input. The law
〈|y(ṽ).P |P ′ ; z ũ |Q|〉0x ≡ z ũ | 〈|y(ṽ).P |P ′ ; Q|〉0x models floatings of messages
from compensations of out-of-time transactions whose bodies contain an input
guarded process (failed transactions, see below).

The dynamic behaviour of processes is defined by the reduction relation. The
main technical difficulty of this notion is time elapsing. In web models, time of
different machines does not progress synchronously. Therefore we assume that
each machine of the network has its own clock that is not synchronized with other

Foundations of Web Transactions 287

clocks. On the contrary, all the processes running in the same location, compete
for the same processor time. This competition is modelled in Webπ by assuming
that every reduction costs one time slot. Henceforth, when a subprocess performs
a reduction, the flow of time is communicated to all the competing processes.
This “flow of time” communication is a formal expedient for describing the
elapse of one time slot without defining any machine clock. Should we have used
a machine clock, as it happens in practice for running processes, then the time
stamps of transactions could have been replaced with an absolute clock time that
is compared with the machine clock when the transaction thread is executed.

The operation of decreasing by 1 the time stamps of active transactions on
the same machine is modelled by the time stepper function below, that adapts
the corresponding function in [4] to Webπ. The definitions of this function and
another auxiliary function are in order:

input predicate inp(P): this predicate verifies whether a process contains an
input that is not underneath a transaction. It is the least relations such that:

inp(x(ũ).P)
inp((x)P) if inp(P)
inp(P |Q) if inp(P) or inp(Q)
inp(!x(ũ).P)

time stepper function φ(P): this function decreases the time stamps by 1.
For the missing cases, φ(P) = P .

φ((x)P) = (x)φ(P)
φ(P |Q) = φ(P) |φ(Q)

φ(〈|P ; R|〉0x) =
{
〈|φ(P) ; φ(R)|〉0x if inp(P)
〈|φ(P) ; R|〉0x otherwise

φ(〈|P ; R|〉n+1
x) = 〈|φ(P) ; R|〉nx

The stepper function is defined by induction on the syntax. The critical processes
are the out-of-time transactions 〈|P ; R|〉0x. In this case, the input predicate
is used to verify whether (a) the body P contains input-guarded processes or
(b) not. In (a) the compensation is active, and the time must elapse for the
transactions therein (and for transactions inside the body). In (b), since inp(P)
is false, the time only elapses for the transactions inside the body. In fact, this
definition is sound provided the time stepper function does not modify the input
predicate and preserves structural congruence. For example, if inp(P) is false
then 〈|P ; R|〉0x ≡ P , and since φ(〈|P ; R|〉0x) = 〈|φ(P) ; R|〉0x, we must verify that
〈|φ(P) ; R|〉0x is structurally congruent to φ(P). This is actually the case, as a
consequence of the following proposition.

Proposition 1. 1. inp(P) if and only if inp(φ(P)).
2. P ≡ Q implies inp(P) = inp(Q) and φ(P) ≡ φ(Q).

The input predicate permits the formal definitions of failed and commited
transactions.

288 C. Laneve and G. Zavattaro

Definition 2. A transaction 〈|P ; Q|〉0x is failed if inp(P) is true; it is commit-
ted if inp(P) is false.

We observe that a failed transaction 〈|P ; Q|〉0x may be always rewritten into a
structurally congruent process (z̃)〈|y(ũ).P ′ |P ′′ ; Q|〉0x, for some z̃, y, ũ, P ′, and
P ′′. This “canonical form” has been used in the second floating law and is used
in the definition of the following reduction relation.

Definition 3. The reduction relation → is the least relation satisfying the re-
ductions:

(com)

x ṽ |x(ũ).P → P{ṽ/ũ}
(fail)

x | 〈|z(ũ).P |Q ; R|〉n+1
x → 〈|z(ũ).P |φ(Q) ; R|〉0x

and closed under ≡, (x)-, and the rules:

P → Q

P |R→ Q |φ(R)

P → Q

〈|P ; R|〉n+1
x → 〈|Q ; R|〉nx

P → Q

〈|y(ṽ).R |R′ ; P |〉0x
→ 〈|y(ṽ).R |φ(R′) ; Q|〉0x

Rule (com) is standard in process calculi and models the input-output inter-
action. Rule (fail) models transaction failures: when a transaction abort (a
message on a transaction name) is emitted, the corresponding transaction is ter-
minated by turning the time stamp to 0, thus activating the compensation (see
the last inference rule). On the contrary, aborts are not possible if the transac-
tion is already terminated, namely every input-guarded process in the body has
completed its own work (this is never the case if the body contains replicated
inputs). The inference rules lift reductions to parallel and transaction contexts,
updating them because a time slot is elapsed.

In order to clarify the semantics, the reductions of few sample processes are
reported. The process

z |x | 〈|x().0 ; y |〉nz
has the following two computations (n > 0):

z |x | 〈|x().0 ; y |〉nz ≡ x | z | 〈|x().0 ; y |〉nz
→ x | 〈|x().0 ; y |〉0z by (fail) and parallel closure
≡ x | y | 〈|x().0 ; 0|〉0z

z |x | 〈|x().0 ; y |〉nz → z | 〈|0 ; y |〉n−1
z by (com) and parallel closure

≡ z

In the first computation, the message x is not consumed because the body of the
transaction is cancelled on transaction failure. In the second one, the message y
cannot be produced because the compensation process is garbage collected on
transaction commit.

Foundations of Web Transactions 289

Consider now the process P = (z, z′)(x | 〈|x().0 ; y |〉1z | 〈|x().0 ; y |〉1z′). It
evolves as follows

P ≡ (z, z′) (〈|x |x().0 ; y |〉1z | 〈|x().0 ; y |〉1z′)
→ (z, z′)〈|x().0 ; y |〉0z′ by (comm), restriction and transaction closure

and in a similar way, but with z instead of z′. We remark that the process
Q = x | x().y has a similar behaviour. However the processes φ(P) and φ(Q)
have different behaviours. In particular φ(P) ≡ x | y | y , while φ(Q) = Q.

In Webπ it is easy to delay a process P of n steps. To this aim, let x
∈ fn(P)
then

(x)〈|x().0 ; P |〉nx
behaves like 0 for n time units, and evolves to P afterwards.

It is worth to notice that the reduction relation of processes does not define
the dynamics of temporarily blocked transactions as the one above. Indeed, by
definition (x)〈|x().0 ; P |〉nx
→ if n > 0. This sloppiness is due to the fact that
the process reduction is defined in a compositional way and therefore cannot
express the absence of a reduction, which is a global property of the processor
running the process. One solution to this problem is to introduce a rule like
P → φ(P) in [4]. However this solution is at odd with local urgency: it states
that a machine (processor) may idle, even if there are some actions that can
be performed. We prefer to keep the present reduction (intensional) semantics
and to stick to an extensional semantics that is a congruence, thus defining the
meaning of a process when it is plugged in any possible context.

3 Timed Bisimilarity

The extensional semantics of Webπ – the timed bisimilarity – relies on the notions
of barb and contexts. A process P has a barb x, and write P ↓ x, if P manifests
an output on the free name x. Formally:

x ũ ↓ x
(z)P ↓ x if P ↓ x and x
= z

(P |Q) ↓ x if P ↓ x or Q ↓ x
〈|P ; R|〉0z ↓ x if P ↓ x or (inp(P) and R ↓ x)
〈|P ; R|〉n+1

z ↓ x if P ↓ x

Therefore inputs (both simple and replicated) have no barb. This is standard in
asynchronous calculi: an observer has no direct way of knowing if the message
he has sent has been received.

Context processes, noted C[·], are defined by the following grammar:

C[·] ::= [·] | x(ũ).C[·] | (x)C[·] | C[·]|P | !x(ũ).C[·]
| 〈|C[·] ; P |〉nx | 〈|P ; C[·]|〉nx

290 C. Laneve and G. Zavattaro

Definition 4. A timed barbed bisimulation S is a symmetric relation between
processes such that P S Q implies

1. if P ↓ x then Q ↓ x;
2. if P → P ′ then Q→ Q′ and P ′ S Q′;

Timed bisimilarity, denoted with ∼t, is the largest timed barbed bisimulation that
is also a congruence.

As an illustration of timed bisimilar processes we discuss few examples. The
following identity adapts an equation of asynchronous bisimilarity [1] to Webπ,
thus suggesting that timed bisimilarity is asynchronous:

〈|x(u).x u | τ.0 ; P |〉1z ∼t 〈|τ.(v)v().0 ; P |〉1z

It is worth to notice that 0
∼t x(u).x u. For instance the context C[·] =
(z)([·] |xw | 〈|x(u).0 ; v |〉1z) separates the two processes. Due to local urgency,
the transaction z cannot fail in C[0] (thus the message v cannot be produced),
while it can fail in C[x(ũ).x ũ] (thus activating the compensation v).

Timed bisimilarity may be inferred by considering only a subset of contexts
and applying substitutions.

Lemma 1. (Context Lemma) Let timed-prime bisimilarity, in notation ∼′
t, be

the largest timed barbed bisimulation such that if P ∼′
t Q then, for every R, x,

n, S, w̃, z̃: 〈|P{w̃/z̃} ; R|〉nx |S ∼′
t 〈|Q{w̃/z̃} ; R|〉nx |S. Then ∼t=∼′

t.

It is worth to notice that the corresponding lemma about π-calculus reduces
contexts to those whose shape is [·]{ũ/ṽ} |R.

We conclude this section by demonstrating that the discriminating power of
∼t is weaker when local urgency is dropped. To this aim, we consider a new
reduction relation of processes denoted with →φ defined by augmenting Defini-
tion 3 (where →φ is substituted for →) with the idle rule:

(idle)

P →φ φ(P)

The (idle) rule allows time to pass asynchronously even when other reduc-
tions are possible. Let ∼idle

t be defined as ∼t considering the reduction rela-
tion →φ instead of →. Then (x)x().0 ∼idle

t (x)x().0 | z().z while (x)x().0
∼t

(x)x().0 | z().z . However a model of time similar to (idle) can be simulated
with the local urgency assumption. It sufficies to put in the context a process
always able to perform internal synchronizations; thus letting the time to pass.

Proposition 2. P ∼t Q implies P ∼idle
t Q.

Proof. (Sketch) Let τ∗ be the process (x)(x | !x().x). An easy check gives that,
for every P , P →φ Q if and only if τ∗ |P → τ∗ |Q. The proposition follows
directly by this property. ��

Foundations of Web Transactions 291

4 The Labelled Semantics

Even if the context lemma restricts the shape of contexts for inferring timed
bisimilarity, direct proofs remain particularly difficult. A standard device to
avoid such quantification consists of introducing a labelled operational model
and equipping it with an (asynchronous) bisimulation.

Let μ range over input labels

x(ũ) and

◦
x(ũ), bound output labels (z̃)x ũ

where z̃ ⊆ ũ, and

τ and

◦
τ . Let ! range over {�, ◦}; we define

◦
�
x(ũ) =

◦
x(ũ),

◦
(z̃)x ũ= (z̃)x ũ, and

◦
�
τ=

◦
τ . Let also fn(

�
τ) = ∅, fn(�x(ũ)) = {x}, fn(x ũ) = {x}∪ ũ,

and fn((z̃)x ũ) = {x}∪ũ\z̃. Finally, let bn(μ) be z̃ if μ = (z̃)x ũ, be ũ if μ =
�
x(ũ),

and be ∅, otherwise. We implicitly identify terms up to α-renaming ≡α: that is,
if P ≡α Q and Q

μ−→ P ′ then P
μ−→ P ′.

Definition 5. The transition relation of Webπ processes, noted
μ−→, is the least

relation satisfying the rules:

(in)

x(ũ).P
�
x(ũ)−→ P

(out)

x ũ
x ũ−→ 0

(res)

P
μ−→ Q x
∈ fn(μ)

(x)P
μ−→ (x)Q

(open)

P
(ṽ)x ũ−→ Q w
= x w ∈ ũ\ṽ

(w)P
(wṽ)x ũ−→ Q

(par)

P
μ−→ Q bn(μ) ∩ fn(R) = ∅

P |R μ−→ Q |φ(R)
(com)

P
(w̃)x ṽ−→ P ′ Q

�
x(ũ)−→ Q′ w̃ ∩ fn(Q) = ∅

P |Q
�
τ−→ (w̃)(P ′ |Q′{ṽ/ũ})

(repin)

!x(ũ).P
�
x(ũ)−→ P | !x(ũ).P

(abort)

〈|P ; R|〉n+1
x

◦
x()−→ 〈|P ; R|〉0x

(self)

P
x−→ Q

〈|P ; R|〉n+1
x

◦
τ−→ 〈|Q ; R|〉0x

(trans)

P
μ−→ Q

bn(μ) ∩ (fn(R) ∪ {x}) = ∅

〈|P ; R|〉n+1
x

◦
μ−→ 〈|Q ; R|〉nx

(trans-b)

P
◦
μ−→ Q

bn(
◦
μ) ∩ (fn(R) ∪ {x}) = ∅ inp(P)

〈|P ; R|〉0x
◦
μ−→ 〈|Q ; φ(R)|〉0x

(trans-c)

P
◦
μ−→ Q

bn(
◦
μ) ∩ (fn(R) ∪ {x}) = ∅ ¬inp(P)

〈|P ; R|〉0x
◦
μ−→ 〈|Q ; R|〉0x

(trans-f)

R
μ−→ R′ bn(μ) ∩ (fn(P) ∪ {x}) = ∅ inp(P)

〈|P ; R|〉0x
◦
μ−→ 〈|φ(P) ; R′|〉0x

The transitions of P |Q have mirror cases that have been omitted.

292 C. Laneve and G. Zavattaro

The first seven rules are almost standard in π-calculus. Exceptions are (repli-
cated) inputs whose transitions are labelled with

x(ũ), and rule (par) that uses

the time stepper function. The symbol � is used to mark input transitions that
are not underneath a transaction. These transitions must be blocked if they are
due to bodies of failed transactions. Transitions that are underneath transac-
tions are marked with a ◦ symbol: see rule (trans). These transitions are never
blocked: see rules (trans-b) and (trans-c). We discuss the other rules. Rule
(abort) models transaction termination due to an abort message. It amounts
to turning the time stamp to 0. We remark that abort is not possible if the time
stamp is already 0. The label is marked with ◦ because the transition is assumed
to be underneath a transaction. Rule (self) is similar to (abort), taking into
account the case when the abort message is raised by the body of the trans-
action. Rule (trans) lifts transitions to transaction contexts and decreases the
transaction time stamp because a transition of the body is going to occur. This
rule applies also to outputs transitions, thus looking at odd with the reduction
relation, where messages are moved outside transaction bodies by means of a
structural rule. Actually this is only apparent: in the reduction relation, the
decreasing of the time stamp is performed by the contextual rules for parallel
composition (by φ) or for transactions. Rules (trans-b) and (trans-c) lift tran-
sitions of bodies of transactions to out-of-time transaction contexts. According

to this rule output transitions are always enabled because
◦

(z̃)x ũ= (z̃)x ũ. On
the contrary, input and τ transitions are enabled provided they are underneath
not failed transaction contexts. The two rules separate the cases whether the
compensation is active or not. Rule (trans-f) lifts transitions of compensations
to failed transaction contexts. We observe that the transition in the conclusion
is labelled with a ◦. This means that the transition cannot be blocked by an
external failed transaction boundary.

The following statement guarantees that transitions in the bodies of failed
transactions preserve the input predicate. If this was not the case, a committed
transaction could become failed, thus enabling transitions of the compensation.

Proposition 3. If P
◦
μ−→ Q and inp(P) then inp(Q).

We are now in place for formalizing a correspondence result between the
labelled and the reduction semantics.

Proposition 4. Let P be a Webπ process. Then

1. P ↓ v if and only if P
(z̃)v ũ−→ , for some z̃ and ũ;

2. P
�
τ−→ Q implies P → Q;

3. P → Q implies there is R such that R ≡ Q and P
�
τ−→ R.

The labelled bisimulation that we consider recalls the asynchronous bisimu-
lation [1] for processes. In the following definition !, • range over {�, ◦}

Foundations of Web Transactions 293

Definition 6. An asynchronous bisimulation is a symmetric binary relation S
between processes such that PSQ implies

1. if P
�
τ−→ P ′ then Q

•
τ−→ Q′ and P ′SQ′,

2. if P
(ṽ)x ũ−→ P ′ and ṽ ∩ fn(Q) = ∅, then Q

(ṽ)x ũ−→ Q′ and P ′SQ′;

3. if P
�
x(ũ)−→ P ′ and ũ ∩ fn(Q) = ∅, then

(a) either Q
•
x(ũ)−→ Q′ and P ′SQ′,

(b) or Q
•
τ−→ Q′ and P ′S(Q′ |x ũ).

Asynchronous bisimilarity, in notation ∼a, is the largest asynchronous bisimu-
lation.

The item 3 of the definition of asynchronous bisimulation allows to match an
input transition with a τ transition. This item permits to equate the following
processes, that have been already discussed in the previous Section:

〈|x(u).x u | τ.0 ; P |〉1z ∼a 〈|τ.(v)v().0 ; P |〉1z

Remark 2. Our approach is different from [3]. Berger uses a standard bisimu-
lation definition on a transition system extended with the Honda-Tokoro rule

0
x(ũ)−→ x ũ [11]. On the contrary, we stick to the approach in [1], where a slightly

modified bisimulation (with the item 3.(b)) is applied to a standard transition
system.

Asynchronous bisimulation equates structurally congruent processes:

Proposition 5. P ≡ Q implies P ∼a Q.

In contrast with asynchronous π-calculus, ∼a is not a congruence for Webπ
because it is not closed with respect to input, parallel composition, and transac-
tion contexts. This may be remedied by appropriately closing the equivalence.
With respect to [3], where closures regarded substitutions and time, we also need
to close by the input predicate.

Definition 7. A binary relation R over processes is

– substitution-closed if P RQ implies, for every substitution σ, PσRQσ;
– time-closed if P RQ implies φ(P)Rφ(Q);
– input-predicate-closed if P RQ implies inp(P) = inp(Q).

These are counterexamples showing that the asynchronous bisimulation ∼a

is neither substitution-closed, nor time-closed, nor input-predicate-closed.

1. As regards substitution closure, we adapt a counterexample in [3]. Let

P
def
= (a)(x a | !y(u).u)

Q
def
= (a)(x a | !y(u).u | (z)〈|y(u).(u | a().b) ; 0|〉2z)

294 C. Laneve and G. Zavattaro

We have that P ∼a Q but P{y/x}
∼a Q{y/x} because Q{y/x} may produce
the message b while this is not the case for P{y/x}. The main difference
between this counterexample and the one reported in [3] is that we do not
exploit nesting of transactions. The equivalence result between P andQ relies
on the fact that, in general, !y(u).u | (z)〈|y(u).(u |x(ṽ).P) ; 0|〉1z) ∼a!y(u).u
and (a)(x a) ∼a (a)(x a | (z)〈|a().b ; 0|〉1z).

2. As regards time closure, we adapt another counterexample in [3]. Let

P
def
= (z)〈|τ.x ; 0|〉1z

Q
def
= (z)〈|τ.τ.0 ; x |〉1z

then P ∼a Q but φ(P)
∼a φ(Q) because φ(Q) x−→ and φ(P) cannot.
3. As regards input-predicate closure, let

P
def
= 0

Q
def
= (z)z()

then P ∼a Q and inp(P)
= inp(Q). Since inp(P) is different from inp(Q),
it is possible to separate P and Q by using contexts such as 〈|[·] ; y |〉0x.

Definition 8. Labelled timed bisimilarity, in notation �a, is the greatest asyn-
chronous bisimulation contained into ∼a that is also substitution-closed, time-
closed, and input-predicate closed.

Lemma 2. �a is a congruence.

We are now in place to report the correspondence result between the labelled
timed bisimilarity and the timed bisimulation congruence.

Proposition 6. P �a Q implies P ∼t Q.

Proof. By Proposition 4, �a is a timed barbed bisimulation, and by Lemma 2
it is also a congruence. The statement follows because ∼t is the largest one. ��

The converse implication of Proposition 6 also holds in the asynchronous
π-calculus (with strong semantics) [10]. The technique shows that if P ∼t Q
then the bisimulation game between P and Q of �a holds (the closures of the
definition of�a hold easily). This is obtained by means of small contexts checking
that bound outputs of P and Q are the same up-to alpha-equivalence. These
contexts disappear after few steps (namely, if P

μ−→ P ′ then C[P] τ−→ · · · τ−→
P ′). Unfortunately, this technique applies badly to Webπ because such “checking
steps” make the time elapse in P and Q. Namely, if P

μ−→ P ′ then C[P] τ−→
· · · τ−→ φn(P ′), for some n (rather than n = 0). Since we are missing a direct
proof (even if we conjecture the equality �a=∼t), we use an alternative, weaker
technique that has been proposed for the weak asynchronous bisimulation [1].

Foundations of Web Transactions 295

Let us extend the Webπ syntax with the rule:

P ::= · · · | [x = y]P

A match process [x = y]P executes P provided x is equal to y. Let [xi = yi]i∈IP
be the sequence of name matches [xi = yi] followed by the process P . The
semantics of name match is defined by the structural congruence rule

[x = x]P ≡ P .

Let also inp([x = x]P) = inp(P). Finally, let ∼t,M be the largest timed barbed
bisimulation that is a congruence with respect to contexts in Webπ extended with
the name match (namely C[·] ::= · · · | [x = y]C[·]). It is easy to demonstrate
that �a⊆∼t,M⊆∼t (the first containment is proved with arguments similar to
Proposition 6).

Lemma 3. If P ∼t,M Q then P �a Q.

Proof. It is easy to verify that ∼t,M is substitution-closed, timed-closed, and
input-predicate-closed. We demonstrate that, for any move P

μ−→ P ′, there

exist contexts C[·] such that C[P] ∼t,M C[Q] implies Q
μ′
−→ Q′ and one of the

items 1 – 3 of Definition 6 is satisfied. We report only the two most significant
cases. Let !, • ∈ {◦, �}.

P
�
x(ũ)−→ P ′. We consider the context C[·] = x ũ | [·]. Then C[P] → P ′. As P ∼t,M Q
then C[P] ∼t,M C[Q], and there is Q′ such that C[Q] → Q′ and P ′ ∼t,M Q′.

There are two cases, either Q
•
x(ũ)−→ Q′ (thus the item 3.(a) of the Definition 6

is satisfied) or Q
•
τ−→ Q′′ and P ′ ∼t,M Q′′ |x ũ (thus the item 3.(b) of the

Definition 6 is satisfied).

P
(ṽ)x ũ−→ P ′. Let ũ = u1 . . . un. Let also F = {i | ui /∈ ṽ}, B = {i | ui ∈ ṽ},
E = {(i, j) | i < j and ui = uj and ui, uj ∈ B}, D = {(i, j) | i < j and ui
=
uj and ui, uj ∈ B}. Consider the context

Cμ[·] = x(z1 . . . zn).(
∏

i∈F [zi = ui]ai |
∏

i∈B,u∈fn(P)∪fn(Q)[zi = u]bi,u
|
∏

(i,j)∈E [zi = zj]ci |
∏

(i,j)∈D[zi = zj]di) | [·]

where all the names ai, bi,u, ci, di are fresh and pairwise different. Then
Cμ[P] → P ′′ ∼t,M

∏
i∈H ei |P ′, where ei are a subset of labels of ai, bi,u, ci, di.

As P ∼t,M Q are timed bisimilar, then also Cμ[Q] → Q′′ where P ′′ ∼t,M

Q′′. By definition of C[·], it must be the case that Q′′ ∼t,M

∏
i∈fi ei |Q′,

for some Q′ and Q
(ṽ)x ũ−→ Q′. An easy reasoning permits to state that, if

d
∈ fn(R) ∪ fn(R′), then d |R ∼t,M d |R′ if and only if R ∼t,M R′. Ap-
plying this result we conclude that P ′ ∼t,M Q′ (thus the item 2. of the
Definition 6 is satisfied). ��

296 C. Laneve and G. Zavattaro

5 Machines

In this section we study the syntax and the reduction relation of Webπ machines.
The extensional semantics is omitted in this contribution: a thorough analysis of
the extensional semantics for machines (and the induced equality on processes)
will be addressed in the full paper.

The syntax of machines M is defined by the following rules.

M ::= 0 | [P]x̃ | (x)M | M |M

A machine may be empty; a location [P]x̃ running the process P and accepting
all messages on names in the set x̃; a machine (x)M with local name x; or a
network of locations. The symbols 0 and | are overloaded because they also
denote the empty and parallel processes, respectively; the actual meaning is
made clear from the context. The index x̃ in the location [P]x̃ indicates a set
x̃, even if it is denoted with the same notation of tuples.

We assume that a name may index at most one machine. Formally, let
ln(M) be defined as ln(0) = ∅, ln([P]x̃) = x̃, ln((x)M) = ln(M) \ {x},
and ln(M |N) = ln(M) ∪ ln(N). Networks M |N are constrained to satisfy the
property ln(M) ∩ ln(N) = ∅.

The structural congruence ≡ is the least congruence closed with respect to
α-renaming, satisfying the abelian monoid laws for parallel (associativity, com-
mutativity and 0 as identity), and the following axioms:

1. the scope laws:

(u)0 ≡ 0, (x)(z)M ≡ (z)(x)M,
M | (x)N ≡ (x)(M |N) , if x
∈ fn(M)
[(x)P]z̃ ≡ (x)[P]z̃x , if x /∈ z̃

2. the lifting law:
[P]x̃ ≡ [Q]x̃ , if P ≡ Q

The first three scope laws are standard. The last one is used to extrude a name
outside a machine; the effect is that the extruded name is added to the set of
the names on which the machine is the receptor. The lifting law lifts to machines
the structural congruence defined on processes.

The reduction relation for machines is the least relation closed under ≡, (x)-,
and parallel composition, and satisfying the reductions:

(intra)
P → Q

[P]x̃ → [Q]x̃

(time)
P
→

[P]x̃ → [φ(P)]x̃

(deliv)

[x ṽ |P]z̃ |[Q]ỹx

→ [P]z̃ |[x ṽ |Q]ỹx

As a consequence of the closure under parallel composition, time progress asyn-
chronously between machines. Namely, if M → M′ then also M |N → M′ |N. In
particular, the time of N does not elapse. Rule (intra) lifts the local reductions
to the machine. Rule (time) reflects our approach for modeling the time. In par-
ticular, as local computations are urgent, this rule permits the elapsing of one

Foundations of Web Transactions 297

time unit – the application of φ – only in the case when no internal computa-
tion is possible inside a machine. Rule (deliv) delivers a message to the unique
machine having x in the index. This rule does not consume time both in the
sender and in the receiver machines. This does not mean that communication
takes no time. Delays of deliveries follow from asynchrony between machines and
nondeterminism of reductions due to (deliv). Alternatively, one could extend
the syntax of machines by adding messages in parallel with machines and replac-
ing (deliv) with two rules: one putting a message outside the sender machine,
the other actually delivering the message to the receiver machine. The present
solution has been preferred for simplicity.

It is worth to notice that, in the present model, a message may be either
consumed in the same machine in which it has been produced (see rule (com)
in the reduction relation of processes) or delivered to another machine in the
network (the unique responsible for accepting that message). This appears a
bit counterintuitive: a machine that is not responsible to accept messages on a
given name may actually consume messages that have been produced locally.
In fact, in practice this scenario never occurs. If a machine defines a name x
and exports it to other machines, then the machines receiving x may use it
with output capability only. Since Webπ processes are unrestricted, the present
reduction relation of machines results a conservative extension of the practical
scenario.

6 Conclusions

We have studied Webπ, a process calculus extending the asynchronous π-calculus
with a timed transaction construct. The main theoretical contribution of this
paper is the investigation of the extensional semantics of Webπ, the timed bisim-
ilarity, and of its labelled counterpart.

A number of issues have been overlooked. We retain that the following twos
are particularly significant to judge the benefits of Webπ. First of all, Webπ has
been motivated by the need of assessing the proposals of web programming lan-
guages. It will be foundational if it is possible to translate these proposals in
Webπ, in particular the transactional protocols that are defined therein. The
techniques developed in this paper will be necessary for comparing the trans-
lations. The next step is therefore the translation in Webπ of some emerging
technology, such as BPEL.

The second issue has a theoretical flavour. The identity of ∼t and �a has
been only conjectured because we were not able to provide a direct proof. To
measure the discriminating power of �a, we have introduced an operator that
is able to perform several tests and emit a message in one step. This expedient
appears useless when machines are used because it is possible to delegate a
different location to perform the tests and emit the message (the time spent by
a location for a computation has no effect on the time of other locations). While
this remark does not help in solving our conjecture, it prompts the investigation
of the extensional semantics of machines.

298 C. Laneve and G. Zavattaro

References

1. R. M. Amadio, I. Castellani, and S. Sangiorgi. On bisimulations for the asyn-
chronous π-calculus. Theoretical Computer Science, 195(2):291–324, 1998.

2. T. Andrews and et.al. Business Process Execution Language for Web Services.
Version 1.1. Specification, BEA Systems, IBM Corp., Microsoft Corp., SAP AG,
Siebel Systems, 2003.

3. M. Berger. Basic theory of reduction congruence for two timed asynchronous
π-calculi. In CONCUR ’04: Proceedings of the 15th International Conference on
Concurrency Theory, volume 3170 of LNCS, pages 115–130. Springer-Verlag, 2004.

4. M. Berger and K. Honda. The two-phase commitment protocol in an extended
pi-calculus. In EXPRESS ’00: Proceedings of the 7th International Workshop on
Expressiveness in Concurrency, volume 39.1 of ENTCS. Elsevier Science Publish-
ers, 2000.

5. L. Bocchi, C. Laneve, and G. Zavattaro. A calculus for long running transactions.
In FMOODS’03, Proceedings of the 6th IFIP International Conference on Formal
Methods for Open Object-based Distributed Systems, volume 2884 of LNCS, pages
124–138. Springer-Verlag, 2003.

6. R. Bruni, C. Laneve, and U. Montanari. Orchestrating transactions in join cal-
culus. In CONCUR 2002: Proceedings of the 13th International Conference on
Concurrency Theory, volume 2421 of LNCS, pages 321–337. Springer Verlag, 2002.

7. M. Butler and C. Ferreira. An operational semantics for StAC, a language for
modelling long-running business transactions. In COORDINATION’04, Proceed-
ings of the 6th International Conference on Coordination Models and Languages,
volume 2949 of LNCS, pages 87–104. Springer-Verlag, 2004.

8. M. Butler, T. Hoare, and C. Ferreira. A trace semantics for long-running transac-
tions. In Proceedings of 25 Years of CSP, London, 2004.

9. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services
Description Language (WSDL 1.1). W3C Note, 2001.

10. C. Fournet and G. Gonthier. A hierarchy of equivalences for asynchronous calculi.
In ICALP ’98, Proceedings of the 25th International Colloquium on Automata,
Languages, and Programming, volume 1443 of LNCS, pages 844–855. Springer-
Verlag, 1998.

11. K. Honda and M. Tokoro. On asynchronous communication semantics. In Proceed-
ings of Object-Based Concurrent Computing (ECOOP ’91), volume 612 of LNCS,
pages 21–52. Springer Verlag, 1992.

12. N. Kavantzas, G. Olsson, J. Mischkinsky, and M. Chapman. Web Services Chore-
ography Description Languages. Oracle Corporation, 2003.

13. F. Leymann. Web Services Flow Language (wsfl 1.0). Technical report, IBM
Software Group, 2001.

14. M. Little. Web services transactions: Past, present and future. Proceedings of the
XML Conference and Exposition, Philadelphia, USA, 2003.

15. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Information
and Computation, 100(1):1–77, 1992.

16. OASIS. Introduction to UDDI: Important features and functional concepts. Or-
ganization for the Advancement of Structured Information Standards, 2004.

17. S. Thatte. XLANG: Web services for business process design. Microsoft Corpora-
tion, 2001.

Bridging Language-Based and Process Calculi Security�

Riccardo Focardi1, Sabina Rossi1, and Andrei Sabelfeld2

1 Dipartimento di Informatica, Università Ca’ Foscari di Venezia,
30172 Venezia, Italy

{focardi, srossi}@dsi.unive.it
2 Dept. of Computer Science, Chalmers University of Technology,

41296 Göteborg, Sweden
andrei@cs.chalmers.se

Abstract. Language-based and process calculi-based information security are
well developed fields of computer security. Although these fields have much in
common, it is somewhat surprising that the literature lacks a comprehensive ac-
count of a formal link between the two disciplines. This paper develops such a
link between a language-based specification of security and a process-algebraic
framework for security properties. Encoding imperative programs into a CCS-like
process calculus, we show that timing-sensitive security for these programs ex-
actly corresponds to the well understood process-algebraic security property of
persistent bisimulation-based nondeducibility on compositions (P BNDC). This
rigorous connection opens up possibilities for cross-fertilization, leading to both
flexible policies when specifying the security of heterogeneous systems and to a
synergy of techniques for enforcing security specifications.

1 Introduction

As computing systems are becoming increasingly complex, security challenges become
increasingly versatile. In the presence of such challenges, we believe that practical secu-
rity solutions are unlikely to emerge from a single theoretical framework, but rather need
to be based on a combination of different specialized approaches. The goal of this paper
is to develop a flexible way of specifying the security of heterogeneous systems—using a
combination of language-based definitions and process-algebraic ones. The intention is
to be able to specify security partly by language-based security models (e.g., for parts of
the system that are implemented by code with no communication) and partly by process-
algebraic models (e.g., communication-intensive parts of the system). This combined
approach empowers us with a synergy of techniques for enforcing security properties
(e.g., combining security type systems with process equivalence checking) to analyze
parts of the system separately and yet establish the security of the entire system.

Language-based information security [27] and process calculus-based information
security [7, 25] are well developed fields of computer security. Although process calculi
are programming languages, there are different motivations and traditions in address-
ing information security by the two communities. While the former is concerned with

� This work was supported by the EU-FET project MyThS (IST-2001-32617).

V. Sassone (Ed.): FOSSACS 2005, LNCS 3441, pp. 299–315, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

300 R. Focardi, S. Rossi, and A. Sabelfeld

preventing secret data from being leaked through the execution of programs, the latter
deals with preventing secret events from being revealed through the execution of com-
municating processes. Although these fields have much in common (e.g., both rely on
noninterference [12] as a baseline security policy stating that secrets do not interfere
with the attacker-observable behavior of the system), it is somewhat surprising that the
literature lacks a comprehensive account of a formal link between the two disciplines
(which in particular means that it has not been established whether the interpretations
of noninterference by the two disciplines are compatible).

This paper develops a rigorous link between a language-based specification of secu-
rity for imperative programs and a process-algebraic framework of security properties.
More specifically, we link two compositional security properties: a timing-sensitive se-
curity characterization for a simple imperative language and a persistent security char-
acterization for a CCS-like process calculus. We achieve this connection through the
following steps: (i) we uniform the semantics of the imperative language to the standard
Labelled Transition System semantics of process calculi, by making read/write memory
actions explicitly observable as labelled transitions; (ii) based on this semantics, we
formalize low level observations in the imperative language in terms of a bisimulation
relation; (iii) we encode the programming language into the process calculus, ensuring
a lock-step semantic relation between the source and target languages; we prove that the
new bisimulation notion for the imperative language is preserved by the encoding; (iv)
this tight relation reveals some unexpected uniformities allowing us to precisely iden-
tify what the program security characterization corresponds to in the process-calculus
world: it turns out to be the well understood property of persistent bisimulation-based
nondeducibility on compositions (or P BNDC).

Such a link opens up various possibilities for cross-fertilization, leading to flexible
policies when specifying the security of complex systems and to a rich combination of
techniques for enforcing security specifications. Finding exactly what property from the
family of process-algebraic properties [7, 9] corresponds to the language-based timing-
sensitive security sheds valuable light on the nature of the language-based property. As
a direct benefit, the results of this paper enable us to use security checkers based on
process-equivalence checking (such as CoSeC [6] and CoPS [23], with the latter one
based precisely on P BNDC) for certifying language-based security.

For clarity, this paper uses a simple sequential language. However, it is a distributed
setting that will enable us to fully capitalize on the formal connection. Indeed, the
security specifications for both the source (imperative) and target (process algebraic)
languages are compositional [28, 9]. Because the source-language security specification
is suitable for both multithreaded [28] and distributed [26, 21] settings, we are confident
that the formal link established in this paper can be generalized to a distributed scenario,
where different components can be analyzed with specialized techniques. For example,
communication-intensive parts of the system (where conservative language-based secu-
rity mechanisms for the source language such as type systems are too restrictive) can be
analyzed at the level of the target language, gaining on the precision of the analysis.

The paper is organized as follows. Section 2 presents the source imperative language
Imp and the target process-algebraic language VSPA. Section 3 develops an encoding
of the source language into the target language and demonstrates a semantic relation

Bridging Language-Based and Process Calculi Security 301

between Imp’s programs and their VSPA’s translations. Section 4 establishes a formal
connection between the security properties of the two languages. The paper closes by
discussing related work in Section 5 and conclusions and future work in Section 6.

The proofs of the results presented in this paper are reported in [10].

2 The Source Language and Target Calculus

In this section, we present Imp, the source imperative language, and VSPA, the target
process calculus, along with security definitions for the respective languages.

2.1 The Imp Programming Language

We consider a simple sequential programming language, Imp [30], described by the
following grammar:

B,Exp ::= F (Id , . . . , Id)
C ::= stop | skip | Id := Exp | C;C | if B then C else C | while B do C

LetC,D, . . . range over commands (programs), Id , Id1, . . . range over identifiers (vari-
ables), B,B1, . . . , Exp,Exp1, . . . range over boolean and arithmetic expressions, re-
spectively, F, F1, . . . range over function symbols, and, finally, v, v1, . . . range over the
set of basic values Val . For simplicity, but without loss of generality, we assume that
exactly one function symbol occurs in an expression.

A configuration is a pair 〈|C, s|〉 of a commandC and a state (memory) s. A state s is a
finite mapping from variables to values. The small-step semantics are given by transitions

〈|skip, s|〉 tick→ 〈|stop, s|〉
〈|Exp, s|〉 ↓ v

〈|Id := Exp, s|〉 tick→ 〈|stop, [Id �→ v]s|〉
〈|C1, s|〉 tick→ 〈|stop, s′|〉
〈|C1; C2, s|〉 tick→ 〈|C2, s′|〉

〈|C1, s|〉 tick→ 〈|C′
1, s

′|〉
〈|C1; C2, s|〉 tick→ 〈|C′

1; C2, s′|〉
〈|B, s|〉 ↓ True

〈|if B then C1 else C2, s|〉 tick→ 〈|C1, s|〉
〈|B, s|〉 ↓ False

〈|if B then C1 else C2, s|〉 tick→ 〈|C2, s|〉
〈|B, s|〉 ↓ True

〈|while B do C, s|〉 tick→ 〈|C; while B do C, s|〉
〈|B, s|〉 ↓ False

〈|while B do C, s|〉 tick→ 〈|stop, s|〉

Fig. 1. Small-step semantics of Imp commands

302 R. Focardi, S. Rossi, and A. Sabelfeld

between configurations, defined by standard transition rules (see Fig. 1). Arithmetic and

boolean expressions are executed atomically by ↓ transitions. The
tick→ transitions are

deterministic. The general form of a deterministic transition is 〈|C, s|〉 tick→ 〈|C ′, s′|〉. Here,
one step of computation starting with a commandC in a state s gives a new commandC ′

and a new state s′. There are no transitions from configurations that contain the terminal
program stop. We write [Id "→ v]s for the state obtained from s by setting the image of
Id to v. For example, the assignment rule describes one step of computation that leads
to termination with the state updated according to the value of the expression on the
right-hand side of the assignment.

Security Specification. We assume that the set of variables is partitioned into high and
low security classes corresponding to high and low confidentiality levels. Note that our
results are not specific to this security structure (which is adopted for simplicity)—a
generalization to an arbitrary security lattice is straightforward. Variables h and l will
denote typical high and low variables respectively. Two states s and t are low-equal
s =L t if the low components of s and t are the same.

Confidentiality is preserved by a computing system if low-level observations reveal
nothing about high-level data. The notion of noninterference [12] is widely used for
expressing such confidentiality policies. Intuitively, noninterference means that low-
observable behavior is unchanged as high inputs are varied. The indistinguishability of
behavior for the attacker can be represented naturally by the notion of bisimulation (e.g.,
[7, 28]). The following definition is recalled from [28]:

Definition 1. Strong low-bisimulation �L is the union of all symmetric relationsR such

that if C R D then for all states s and t such that s =L t whenever 〈|C, s|〉 tick→ 〈|C ′, s′|〉
then there exist D′ and t′ such that 〈|D, t|〉 tick→ 〈|D′, t′|〉, s′ =L t′, and C ′ R D′.

Intuitively, two programs C and D are strongly low-bisimilar if varying the high parts
of memories at any point of computation does not introduce any difference between
the low parts of the memories throughout the computation. Protecting variations at any
point of computation results in a rather restrictive security condition. However, this
restrictiveness is justified in a concurrent setting (which is the ultimate motivation of our
work) when threads may introduce secrets into high memory at any computation step.
Based on this notion of low-bisimulation, a definition of security is given in [28]:

Definition 2. A program C is secure if and only if C �L C.

Examples. Because the underlying low-bisimulation is strong, or lock-step, it captures
timing-sensitive security of programs. Below, we exemplify different kinds of informa-
tion flow handled by the security definition:

l := h This is an example of an explicit flow. To see that this program is insecure
according to Definition 2, take some s and t that are the same except s(h) = 0 and

t(h) = 1. Since 〈|l := h, s|〉 tick→ 〈|stop, [l "→ 0]s|〉 and 〈|l := h, t|〉 tick→ 〈|stop, [l "→
1]t|〉 hold, the resulting memories are not low-equal. Because these are the only
possible transitions for both configurations, we have l := h
�L l := h.

Bridging Language-Based and Process Calculi Security 303

if h > 0 then l := 1 else l := 0 This exemplifies an implicit flow [4] through branching
on a high condition. If the computation starts with low-equal memories s and t that
are the same except s(h) = 0 and t(h) = 1, then, after one step of computation
(the test of the condition), the memories are still low-equal. However, after another
computation step they become different in l (0 or 1, depending on the initial value
of h). Because these are the only possible transitions for configurations with both s
and t, the program is not self-low-similar and thus is insecure.

while h > 0 do h := h− 1 Assuming the worst-case scenario, an attacker may ob-
serve the timing of program execution. The attacker may learn the value of h
from the timing behavior of the program above. This is an instance of a timing
covert channel [19]. The program is rightfully rejected by Definition 2. Indeed,
take some s and t that are the same except s(h) = 1 and t(h) = 0. We have

〈|while h > 0 do h := h − 1, s|〉 tick→ 〈|h := h − 1; while h > 0 do h :=
h − 1, s|〉 tick→ 〈|while h > 0 do h := h − 1, [h "→ 0]s|〉 tick→ 〈|stop, [h "→ 0]s|〉
but 〈|while h > 0 do h := h − 1, t|〉 tick→ 〈|stop, t|〉
tick→ with no transition from the
latter configuration to match the transitions of the previous sequence.

The examples above are insecure. Here is an instance of a secure program:

if h = 1 then h := h+ 1 else skip Indeed, neither the low part of the memory nor the
timing behavior depends on the value of h. A suitable symmetric relation that makes
this program low-bisimilar to itself is, e.g., the relation {(if h = 1 then h :=
h+ 1 else skip, if h = 1 then h := h+ 1 else skip), (h := h+ 1, skip), (skip, h :=
h+ 1), (h := h+ 1, h := h+ 1), (skip, skip), (stop, stop)}.

2.2 The VSPA Calculus

The Value-passing Security Process Algebra (VSPA, for short) is a variation of Milner’s
value-passing CCS [22], where the set of visible actions is partitioned into high-level
actions and low-level ones in order to specify multilevel-security systems.

Let E,E1, E2, . . . range over processes, x, x1, x2, . . . range over variables, c, c1,
c2, . . . range over input channels, and c̄, c̄1, c̄2, . . . range over output channels. As
for Imp, let B,B1, . . . , Exp,Exp1, . . . range over boolean and arithmetic expressions,
respectively,F, F1, . . . range over function symbols, and, finally,v, v1, . . . range over the
set of basic values Val . (The set of basic values Val , and boolean/arithmetic expressions
are the same as in Imp.) The set of visible actions is L = {c(v) | v ∈ Val}∪{c(v) | v ∈
Val} where c(v) and c(v) represent the input and the output of value v over the channel
c, respectively. The syntax of VSPA processes is defined as follows:

E ::= 0 | c(x).E | c̄(Exp).E | τ.E | E1 + E2 | E1|E2 | E \R | E[g] |
A(Exp1, . . . ,Expn) | if B then E1 else E2

B,Exp ::= F (x1, . . . , xn)

Each constant A is associated with a definition A(x1, . . . , xn) def= E, where x1, . . . , xn

are distinct variables and E is a VSPA process whose only free variables are x1, . . . , xn.
R is a set of channels and g is a function relabeling channel names which preserves the

304 R. Focardi, S. Rossi, and A. Sabelfeld

c(x).E
c(v)−→ E[v/x] c(v).E

c(v)−→ E τ.E
τ−→ E

E1
a−→ E′

1

E1 + E2
a−→ E′

1

E2
a−→ E′

2

E1 + E2
a−→ E′

2

E1
a−→ E′

1

E1|E2
a−→ E′

1|E2

E2
a−→ E′

2

E1|E2
a−→ E1|E′

2

E1
c(v)−→ E′

1 E2
c(v)−→ E′

2

E1|E2
τ−→ E′

1|E′
2

E
a−→ E′

E[g]
g(a)−→ E′[g]

E
a−→ E′ a /∈ R

E \ R
a−→ E′ \ R

E[v1/x1, . . . , vn/xn] a−→ E′ A(x1, . . . , xn)
def
= E

A(v1, . . . , vn) a−→ E′

E1
a−→ E′

1

if True then E1 else E2
a−→ E′

1

E2
a−→ E′

2

if False then E1 else E2
a−→ E′

2

Fig. 2. VSPA operational semantics

complementation operator ·̄. Finally, the set of channels is partitioned into high-level
channels H and low-level ones L. By an abuse of notation, we write c(v), c(v) ∈ H
whenever c, c ∈ H , and similarly for L.

Intuitively, 0 is the empty process; c(x).E is a process that reads a value v ∈ Val
from channel c assigning it to variable x; c(Exp).E is a process that evaluates expression
Exp and sends the resulting value as output over c;E1 +E2 represents the nondetermin-
istic choice between the two processes E1 and E2; E1|E2 is the parallel composition of
E1 and E2, where executions are interleaved, possibly synchronized on complementary
input/output actions, producing an internal action τ ; E \ R is a process E prevented
from using channels in R; E[g] is the process E whose channels are renamed via the re-
labeling function g; A(Exp1, ...,Expn) behaves like the respective definition where the
variables x1, · · · , xn are substituted with the results of expressions Exp1, · · · ,Expn;
finally, if B then E1 else E2 behaves as E1 if B evaluates to True and as E2, otherwise.
We implicitly equate processes whose expressions are substituted by the corresponding
values, e.g., c(F (v1, . . . vn)).E is the same as c(v).E if F (v1, . . . vn) = v. This cor-
responds to the ↓ expression evaluation of Imp. The operational semantics of VSPA is
given in Fig. 2. We denote by E the set of all VSPA processes and by EH the set of all
high-level processes, i.e., using only channels in H .

The weak bisimulation relation [22] equates two processes if they are able to mutually
simulate each other step by step. Weak bisimulation does not care about internal τ

actions. We write E
a=⇒ E′ if E(τ→)∗ a→ (τ→)∗E′. Moreover, we let E

â=⇒ E′ stand
for E

a=⇒ E′ in case a
= τ , and for E(τ→)∗E′ in case a = τ .

Definition 3 (Weak bisimulation). A symmetric binary relation R ⊆ E × E over pro-
cesses is a weak bisimulation if whenever (E,F) ∈ R and E

a→ E′, then there exists

F ′ such that F
â=⇒ F ′ and (E′, F ′) ∈ R.

Bridging Language-Based and Process Calculi Security 305

Two processes E,F ∈ E are weakly bisimilar, denoted by E ≈ F , if there exists a
weak bisimulation R containing the pair (E,F). The relation ≈ is the largest weak
bisimulation and it is an equivalence relation [22].

Persistent BNDC Security. In [9] we give a notion of security for VSPA processes
called Persistent BNDC, where BNDC stands for Bisimulation-based Nondeducibility on
Compositions. BNDC [5] is a generalization to concurrent processes of noninterference
[12], consisting of checking a process E against all high-level processes Π .

Definition 4 (BNDC). Let E ∈ E . E ∈ BNDC iff ∀ Π ∈ EH , E \H ≈ (E|Π) \H .

Intuitively, BNDC requires that high-level processes Π have no effect at all on the
(low-level) execution of E.

To introduce Persistent BNDC (P BNDC) we define a new observation equivalence
where high-level actions may be ignored, i.e., they may be matched by zero or more τ
actions. An action a is high if a is either an input c(v) or an output c(v), over a high-level
channel c ∈ H . Otherwise, a is low. We write ã to denote â if a is low, and a or τ̂ if a
is high. We now define weak bisimulation up to high, by just using ã in place of â, thus
allowing high-level actions to be simulated by (possibly empty) sequences of τ ’s.

Definition 5 (Weak bisimulation up to high). A symmetric binary relation R ⊆ E ×E
over processes is a weak bisimulation up to high if whenever (E,F) ∈ R and E

a→ E′,
then there exists F ′ such that F

ã=⇒ F ′ and (E′, F ′) ∈ R.

We say that two processes E,F are weakly bisimilar up to high, written E ≈\H F , if
(E,F) ∈ R for some weak bisimulation up to high R.

Definition 6 (P BNDC). Let E ∈ E . E ∈ P BNDC iff E \H ≈\H E.

Intuitively, P BNDC requires that forbidding any high-level activity (by restriction) is

equivalent to ignoring it. For example, process E
def= h.l̄ + l̄ is P BNDC since the high

level input h is simulated, in E \H , by not moving. Indeed, the high level activity is not
visible to the low level users who can only observe the low level output l̄. Notice that
this secure process allows some low level actions to follow high actions.

It has been proved [9] that P BNDC corresponds to requiring BNDC over all the
possible reachable states. This is why we call it Persistent BNDC.

Proposition 1. E ∈ P BNDC iff ∀ E′ reachable from E,E′ ∈ BNDC .

Note that P BNDC is similarly spirited to Imp’s security definition. In particular, the
Π process in BNDC corresponds to the possibility for arbitrary changes in the high
part of state over the computation. Further, persistence in P BNDC corresponds to
requiring strong low-bisimulation on reachable Imp commands. There are also obvious
differences, highlighting the specifics of the application domains of the two security
specifications: P BNDC is concerned with protecting the occurrence of high events
whereas program security protects high memories.

P BNDC satisfies useful compositionality properties and is much easier to check
than BNDC, since no quantification over all possible high-level processes is required.

306 R. Focardi, S. Rossi, and A. Sabelfeld

s(Id) = v

〈|C, s|〉 egetId (v)→ 〈|C, s|〉
〈|C, s|〉 eputId (v)→ 〈|C, [Id �→ v]s|〉 〈|C, s|〉 a→ 〈|C′, s′|〉 a /∈ R

〈|C, s|〉 \ R
a→ 〈|C′, s′|〉 \ R

Fig. 3. Semantic rules for environment

Example. We give a very simple example of an insecure process. In particular, we show
an indirect flow due to the possibility for a high-level user to lock and unlock a process:

E
def= hlock.hunlock.l + l

where hlock and hunlock are high-level channels and l is a low-level one. (To simplify
we are not even sending values over channels.) At a first glance, process E seems to be
secure as it always performs l before terminating, thus low-level users should deduce
nothing of what is done at the high level. However, a high-level user might lock the
process through hlock and never unlock it, thus leading to an unexpected behavior
since l would be locked too. This ability for a high-level user to synchronize with a
low-level one constitutes an indirect information flow and is detected by P BNDC since

E
hlock→ hunlock.l cannot be simulated by E \H . In fact, E \H can execute neither

high-level actions nor τ ones, thus the only possibility it has to simulate hlock is not
moving. However, this simulation is fine as long as the reached states are bisimilar up
to high, i.e., hunlock.l ≈\H E \H , but this is not true.

3 Mapping Imp into VSPA

With the source and target languages in place, this section develops an encoding of the
former into the latter. The encoding is done in two steps: enriching Imp’s semantics with
process calculi-style environment interaction rules and encoding the extended version of
Imp into VSPA. A lock-step relation of Imp’s executions with their VSPA’s translations
guarantees that the encoding is semantically adequate.

3.1 Extending Imp Semantics

The original definition of strong low-bisimulation (Definition 1) implicitly takes into
account an environment that is capable of both reading from and writing to the state at
any point of computation. Alternatively, and rather naturally, we can represent this envi-
ronment explicitly, by the semantic rules for reading and modifying the state, depicted
in Fig. 3. Reading the value v of a variable Id is observable by an action egetId(v);
writing the value v to Id is observable by an action eputId(v). (We adopt the process
calculi convention of using ·̄ to denote output actions.)

Assume a ∈ {tick, eget·(·), eput·(·)}. Action a is high (a ∈ H) if for some
high variable Id we have either a = egetId(·) or a = eputId(·). Otherwise, a is
low (a ∈ L). High and low actions represent high and low environments, respectively.
Similarly to VSPA’s restriction, we define a restriction on actions in the semantics for

Bridging Language-Based and Process Calculi Security 307

Imp, also shown in Fig. 3. For a set of actionsR, anR-restricted configuration 〈|C, s|〉\R
behaves as 〈|C, s|〉 except that its communication on actions from R is prohibited. The
restriction is helpful for relating the extended semantics to Imp’s original semantics:
configuration 〈|C, s|〉 \ {egetId(v), eputId(v) | Id is a variable and v ∈ Val} behaves
under the extended semantics exactly as 〈|C, s|〉 under the original semantics.

These extended semantics of Imp are useful for different reasons: (i) They make
read/write actions on the state explicitly observable as labeled transitions in the style
of Labeled Transition System semantics for process calculi. This helps us proving a
semantic correspondence in Section 3.2. (ii) Further, the extended semantics allow
us to characterize the security of Imp programs using a notion of bisimulation up to
high, similar to the one defined for VSPA. As a matter of fact, in Section 4, we show
how security of Imp programs can be equivalently expressed in the style of P BNDC,
facilitating the proof that the security of Imp programs is the same as P BNDC security
of their translations into VSPA.

3.2 Translation

We translate Imp into VSPA following the translation described by Milner in [22], with
the following important modifications: (i) We make explicit the fact that the external
(possibly hostile) environment can manipulate the shared memory but cannot directly
interact with a program. This is achieved by equipping registers, i.e., processes imple-
menting Imp variables, with read/write channels accessible by the environment. All the
other channels are “internalized” through restriction operators. (ii) We use a lock to
guarantee the atomicity of expression evaluations. In fact, Imp expressions are evaluated
in one atomic step. Since expression evaluation is translated into a process which sequen-
tially accesses registers in order to read the actual variable values, to regain atomicity
we need to guarantee that variables are not modified during this reading phase.

The language we want to translate contains program variables, to which values may
be assigned, and the meaning of a program variable Id is a “storage location”. We
therefore begin by defining a storage register holding a value v as follows:

Reg(v) def= putx.Reg(x) + getv.Reg(v)
+lock.(eputx.unlock.Reg(x) + unlock.Reg(v))
+lock.(egetv.unlock.Reg(v) + unlock.Reg(v))

(We shall often write put(x) as putx etc.) Thus, via get the stored value v may be read
from the register, and via put a new value xmay be written to the register. Actions eget
and eput are intended to model the interactions of an external observer with the register.
Before and after such actions, lock and unlock are required to be executed in order
to guarantee mutual exclusion on the memory between expression evaluations and the
environment. This implements the atomic expression evaluation of Imp. We also have
an (abstract) time-out mechanism, that nondeterministically unlocks the registers. This
is necessary to avoid blocking the program by the environment via refusing to accept
eget or to execute eput after the lock has been grabbed. As a matter of fact, we want
the environment to interact with the registers without interfering in any way with the
program execution. The (global) lock is implemented by the process:

308 R. Focardi, S. Rossi, and A. Sabelfeld

Lock def= lock.unlock.Lock

For each program variable Id , we introduce a register RegId(y) def= Reg(y)[gId], where
gId is the relabeling function {putId/put, getId/get, eputId/eput, egetId/eget}.

This representation of registers—or program variables—as processes is fundamental
to our translation; it indicates that resources like variables, as well as the programs which
use them, can be thought of as processes, so that our calculus can get away with the single
notion of process to represent different kinds of entity.

There is no basic notion of sequential composition in our calculus, but we can define
it. To do this, we assume that processes may indicate their termination by a special
channel done. We say that a process is well-terminating if it cannot do any further move
after performing done; as we will see, the processes which arise from translating Imp
commands are all well-terminating, since they terminate with done.0 (written Done)
instead of just 0.

The combinator Before for sequential composition is as follows:

P Before Q def= (P [b/done]|b.Q) \ {b}

where b is a new name, so that no conflict arises with thedone action performed byQ. It is
easy to see that Before preserves well-termination, i.e., if P and Q are well-terminating
then so is P Before Q.

An expression of the language will “terminate” by yielding up its results via the
special channel res, not used by processes. If P represents such an expression, then we
may wish another process Q to refer to the result by using the value variable x. To this
end, we define another combinator, Into:

P Into(x) Q(x) def= (P |res(x).Q(x)) \ {res}

Q(x) is parametric on x and Into binds this variable to the result of the expression P .
Notice that we do not need to relabel res to a new channel, as we did with the special
channel done. Indeed, Q(x) is a process and not an expression, thus it does not use
channel res to communicate with sibling processes and no conflict is ever possible.
Note that Q(x) might use res into a nested Into combinator. In this case, however, res
would be inside the scope of a restriction thus not be visible at this external Into level.

The translation function T of Imp commands into VSPA processes is given in Fig. 4.
Each expression F (Id1, . . . Idn) is translated into a process which collects the values of
Id1, . . . Idn and returns F (x1, . . . , xn) over channel res. A state s associating variables
Id1, . . . , Idm to values s(Id1), . . . , s(Idm), respectively, is translated into the parallel
composition of the relative registers. The translation of commands is straightforward.
Note that before and after each expression evaluation we lock and release the global
lock so that the environment cannot interact with the memory while expressions are
evaluated. This achieves atomic expression evaluations as in Imp. Configurations 〈|C, s|〉
are translated as the parallel composition of the global Lock and the translations of
C and s. ACC s = {putId1

, getId1
, . . . , putIdm

, getIdm
, lock, unlock} is the set

of all channels used by commands to access registers, plus the lock commands. Thus,
the restriction over ACC s ∪ {done} aims both at internalizing all the communications

Bridging Language-Based and Process Calculi Security 309

T [[F (Id1, . . . Idn)]] = getId1
x1. · · · .getIdn

xn.res(F (x1, . . . , xn)).0
T [[s]] = RegId1

(s(Id1))| . . . |RegIdm
(s(Idm))

T [[stop]] = 0
T [[skip]] = lock.tick.unlock.Done

T [[Id := Exp]] = lock.T [[Exp]] Into(x) (putIdx.tick.unlock.Done)
T [[C1; C2]] = T [[C1]] Before T [[C2]]

T [[if B then C1 else C2]] = lock.T [[B]] Into(x) (if x then tick.unlock.T [[C1]]
else tick.unlock.T [[C2]])

T [[while B do C]] = Z where Z
def= lock.T [[B]] Into(x) (if x then tick.

unlock.T [[C]] Before Z else tick.unlock.Done)
T [[〈|C, s|〉]] = (T [[s]] | T [[C]] | Lock) \ACC s ∪ {done}

T [[〈|C, s|〉 \ R]] = T [[〈|C, s|〉]] \ R

Fig. 4. Translation of commands

between commands and registers and at removing the last done action. The environment
channels eputId and egetId are not restricted and, together with tick, they are the only
observable actions of T [[〈|C, s|〉]]: eputId and egetId are high if the corresponding Imp
variable Id is high; all the other observable actions, including tick, are low (the security
level of unobservable actions is irrelevant for the security definition).

Examples. Consider the program l := h where h is a high variable and l is a low one.
These variables are represented by processes Regh(s(h)) and Reg l(s(l)) for a state s.

T [[l := h]] =lock.T [[h]] Into(x) (putlx.tick.unlock.Done)
=(lock.gethx.resx.0 | res(x).(putlx.tick.unlock.done.0)) \ {res}

(Notice that expression h can be seen as ID(h) where ID is the identity function over
Val .) The execution of the translation in a state s is as follows where s′ = [l "→ s(h)]s:

T [[〈|l := h, s|〉]] = (T [[s]] | T [[l := h]] | Lock) \ACC s ∪ {done}
=(T [[s]] | (lock.gethx.resx.0 | res(x).(putlx.tick.unlock.done.0)) \ {res}
| Lock) \ACC s ∪ {done} (by definition of T [[l := h]])

τ→(T [[s]] | (gethx.resx.0 | res(x).(putlx.tick.unlock.done.0)) \ {res}
| unlock.Lock) \ACC s ∪ {done} (by synchronization on lock)

τ→(T [[s]] | (ress(h).0 | res(x).(putlx.tick.unlock.done.0)) \ {res}
| unlock.Lock) \ACC s ∪ {done} (fetching the value s(h) of h from Regh)

τ→(T [[s]] | (0 | (putls(h).tick.unlock.done.0)) \ {res}
| unlock.Lock) \ACC s ∪ {done} (passing s(h) on res)

τ→(T [[s′]] | (0 | (tick.unlock.done.0)) \ {res}
| unlock.Lock) \ACC s′ ∪ {done} (updating Reg l with s(h); new state is s′)

tick→ (T [[s′]] | (0 | unlock.done.0)) \ {res}
| unlock.Lock) \ACC s′ ∪ {done} (performing tick)

310 R. Focardi, S. Rossi, and A. Sabelfeld

τ→(T [[s′]] | (0 | done.0)) \ {res} | Lock) \ACC s′ ∪ {done} (unlocking)

≈(T [[s′]] | 0 | Lock) \ACC s′ ∪ {done} (bisimilarity)

=T [[〈|stop, s′|〉]] (definition of translation)

We have demonstrated that T [[〈|l := h, s|〉]] ˆtick=⇒ P for P such that P ≈ T [[〈|stop, s′|〉]].
As another example, the program if h > 0 then l := 1 else l := 0 is translated into:

T [[if h > 0 then l := 1 else l := 0]]

=lock.T [[h > 0]] Into(x)

(if x then tick.unlock.T [[l := 1]] else tick.unlock.T [[l := 0]])

=(lock.gethx.res(x > 0).0 | res(x).

(if x then tick.unlock.T [[l := 1]] else tick.unlock.T [[l := 0]])) \ {res}
=(lock.gethx.res(x > 0).0 | res(x).

(if x then tick.unlock.

(lock.res1.0 | res(x).(putlx.tick.unlock.done.0)) \ {res}
else tick.unlock.

(lock.res0.0 | res(x).(putlx.tick.unlock.done.0)) \ {res})) \ {res}

Semantic Correspondence. The propositions below state the semantic correspondence
between any R-restricted configuration 〈|C, s|〉 \R and its translation T [[〈|C, s|〉 \R]]. Let
Env = {eget·(·), eput·(·)} denote the set of all the possible environment actions.

Proposition 2. Given an R-restricted configuration cfg = 〈|C, s|〉 \ R, with R ⊆ Env ,

if cfg a→ cfg ′ then there exists a process P ′ such that T [[cfg]] â=⇒ P ′ and P ′ ≈ T [[cfg ′]].
Moreover, when a = tick we have that T [[cfg]] τ̂=⇒ P̃

tick−→ P ′ and P̃ ≈ tick.T [[cfg ′]].

Intuitively, every (possibly restricted) Imp configuration move is coherently simulated
by its VSPA translation, in a way that the reached process is weakly bisimilar to the
translation of the reached configuration. Moreover, for tick moves, the translation
T [[cfg]] always reaches a state equivalent to tick.T [[cfg ′]] before actually performing
the tick. Intuitively, this is due to the fact that the lock is released only after tick is
performed. Notice that if R = ∅ there is no restriction at all.

Next proposition is about the other way around: each process which is weakly bisim-
ilar to the translation of a (possibly restricted) Imp configuration cfg always moves to
processes weakly bisimilar to either T [[cfg ′]] or tick.T [[cfg ′′]], where cfg ′ and cfg ′′ are
reached from cfg by performing the expected corresponding actions. As for previous
proposition, tick.T [[cfg ′′]] represents an intermediate state reached before performing
the actual tick action.

Proposition 3. Given an R-restricted configuration cfg = 〈|C, s|〉 \ R, with R ⊆ Env ,
and a process P

– if P ≈ T [[cfg]] and P
τ→ P ′ then either P ′ ≈ P or P ′ ≈ tick.T [[cfg ′]] and

cfg tick→ cfg ′;
– if P ≈ T [[cfg]] and P

a→ P ′ with a
= τ, tick, then either P ′ ≈ T [[cfg ′]] and

cfg a→ cfg ′ or P ′ ≈ tick.T [[cfg ′′]] and cfg a→ cfg ′ tick→ cfg ′′.

Bridging Language-Based and Process Calculi Security 311

4 Security Correspondence

We study the relationship between the security of Imp programs and that of VSPA
processes. First, we give a notion of weak bisimulation up to high in the Imp setting,
which allows us to characterize the security of Imp programs in a P BNDC style. Then,
we show that this new characterization of Imp program security exactly corresponds to
requiring P BNDC of VSPA program translations. More specifically, we prove that a
program C is secure if and only if its translation T [[〈|C, s|〉]] is P BNDC for all states s.

P BNDC-Like Security Characterization for Imp. In order to define weak bisimula-
tion up to high, similarly to what we have done for VSPA, we define the operation ã to
be a in case a is low, and a or null (which means no action) in case a is high.

Definition 7. A symmetric binary relation R on (possibly restricted) configurations is
a bisimulation up to high if whenever cfg1 R cfg2 and cfg1

a→ cfg ′1, there exists cfg ′2
such that cfg2

ã→ cfg ′2 and cfg ′1 R cfg ′2.

We write �\H for the union of all bisimulations up to high. This definition brings us
close to the nature of the process-algebraic security specification from Section 2.2. Using
bisimulation up to high and restriction we can faithfully represent the original definition
of strong low-bisimulation. The following proposition states the correspondence between
strong low-bisimulation (defined on the tick actions of the original semantics) and
bisimulation up to high (defined on the extended semantics) with restriction:

Proposition 4. C �L D iff 〈|C, s|〉 �\H 〈|D, s|〉 \H and 〈|C, s|〉 \H �\H 〈|D, s|〉, ∀ s.

As a direct consequence, the security of Imp can be expressed in a “P BNDC style”:

Corollary 1. A program C is secure iff 〈|C, s|〉 �\H 〈|C, s|〉 \H for all s.

Program Security is P BNDC. The following theorem shows that weak bisimulation
up to high is preserved in the translation from Imp to VSPA.

Theorem 1. Let cfg1 = 〈|C, s|〉 \ R and cfg2 = 〈|D, t|〉 \ R′, with R,R′ ⊆ H , be two
configurations (possibly) restricted over high level actions. It holds that cfg1 �\H cfg2
iff T [[cfg1]] ≈\H T [[cfg2]].

This theorem has the flavor of a full-abstraction result (cf. [1]) for the indistinguishability
relation ≈\H . As a corollary of the theorem, we receive a direct link between program
security and P BNDC security:

Corollary 2. A program C is secure iff its translation T [[〈|C, s|〉]] is P BNDC ∀ s.

Examples. Recall from Section 2.1 that the program l := h is rejected by the security
definition for Imp. Recall from Section 3.2 that

T [[l := h]] = (lock.gethx.resx.0 | res(x).(putlx.tick.unlock.done.0)) \ {res}

To see that this translation is rejected by P BNDC, take a state s that, for example, maps
all its variables to 0. We demonstrate that T [[〈|l := h, s|〉]] \ H
≈\H T [[〈|l := h, s|〉]].

312 R. Focardi, S. Rossi, and A. Sabelfeld

Varying the high variable from 0 to 1 on the right-hand side can be done by the transition

T [[〈|l := h, s|〉]] eputh(1)→ F for some F . If the translation were secure then this transition
would have to be simulated up to H by T [[〈|l := h, s|〉]] \ H . Such a transition would
have to be a τ̂ transition because eputh(1) is a high transition, but T [[〈|l := h, s|〉]] \H
is restricted from high actions. Therefore, T [[〈|l := h, s|〉]] \ H would reduce to some
process E, whose register for h remains 0.

By the definition of weak bisimulation up to H , we would have E \ H ≈\H F .
Let subsequent actions correspond to traversing the two processes passing putl(0)
and putl(1), respectively, and reaching unlock. Note that actions on internal chan-
nels lock, geth, res, putl are hidden from the environment. However, as an effect of
the latter action, the register for l will store different values. Even though the tick ac-
tions can still be simulated, this breaks bisimulation because the externally visible action
getl(0) by the successor of E (after unlock) cannot be simulated by the successor of
F (after unlock).

Further, recall from Section 2.1 that the program if h > 0 then l := 1 else l := 0 is
rejected by Imp’s security definition. In Section 3.2 we saw that

T [[if h > 0 then l := 1 else l := 0]] =

(lock.gethx.res(x > 0).0 | res(x).

(if x then tick.unlock.

(lock.res1.0 | res(x).(putlx.tick.unlock.done.0)) \ {res}
else tick.unlock.

(lock.res0.0 | res(x).(putlx.tick.unlock.done.0)) \ {res})) \ {res}
The information flow fromh > 0 to l is evident in the translation. The result of inspecting
the expressionh > 0 is sent on the channel res. When this result is received and checked,
either it triggers the process that puts 1 in the register for l or a similar process that puts
0 to that register.

As above, the VSPA translation fails to satisfy P BNDC. Varying the high state by
a high environment action eputh(·) in the beginning leads to different values in the
register for l. This difference can be observed by low environment actions egetl(·).

5 Related Work

A large body of work on information-flow security has been developed in the area of
programming languages (see a recent survey [27]) and process calculus (e.g., [7, 25, 24,
13, 18]). While both language-based and process calculus-based security are relatively
established fields, only little has been done for understanding the connection between
the two.

A line of work initiated by Honda et al. [14] and pursued by Honda and Yoshida [15,
16] develops security type systems for the π-calculus. The use of linear and affine types
gives the power for these systems to soundly embed type systems for imperative multi-
threaded languages [29] into the typed π-calculus. This direction is appealing as it leads
to automatic security enforcement mechanisms by security type checking. Neverthe-
less, automatic enforcement comes at the price of lower precision. Our approach opens

Bridging Language-Based and Process Calculi Security 313

up possibilities for combining high-precision security verification (such as equivalence
checking in process calculi [23]) with type-based verification. Steps in this direction
have been made in, e.g., [17, 2, 31], however, not treating timing-sensitive security.

Giambiagi and Dam’s work on admissible flows [3, 11] illustrates a useful synergy
of an imperative language and a CCS-like process calculus. The assurance provided by
admissible flows is that a security protocol implementation (written in the imperative
language) leaks no more information than prescribed in the specification (written in the
process calculus).

Mantel and Sabelfeld [21] have suggested an embedding of a multithreaded and
distributed language into MAKS [20], an abstract framework for modeling the security
of event-based systems. The translation of a program is secure (as an event system)
if and only if the program itself is secure (in the sense that the program satisfies self-
low-similarity). While this work offers a useful connection between language-based
and event-based security, it is inherently restricted to expressing event systems as trace
models. In the present work, the security of both the source and target languages is defined
in terms of bisimulation. This enables us to capture additional information leaks, e.g.,
through deadlock behavior [7], which trace-based models generally fail to detect.

Our inspiration for handling timing-sensitive security stems from the work by Focardi
et al. [8], where explicit tick events are used to keep track of timing in a scenario of a
discrete-time process calculus.

6 Conclusion and Future Work

We have established a formal connection between a language-based and a process calcu-
lus security definition of information security. Concretely, we have shown that a timing-
sensitive security definition corresponds to P BNDC , persistent bisimulation-based
nondeducibility on compositions. Thereby, we have identified a point in the space of
process calculus-based definitions [7] that exactly corresponds to compositional timing-
sensitive language-based security.

Drawing on Milner’s work [22], we have developed a generally useful encoding of
an imperative language into a CCS-like calculus. We expect that this encoding will be
helpful for both future work on information security topics as well as other topics that
necessitate representation of programming languages in process calculus.

This paper sets solid ground for future work in the following directions:
Security policies: We have used as a starting point a timing-sensitive language-based

security specification. This choice has allowed us to establish a tight, timing-sensitive,
correspondence between computation steps in the imperative language and the actions
of processes. However, it is important to consider a full spectrum of attackers, including
the attacker that may not observe (non)termination. Future work includes weakening
security policies and investigating the relation between the two kinds of security for a
termination-insensitive attacker.

Concurrency and distribution: Concurrency and distribution are out of scope for this
paper for lack of space. However, the technical machinery is already in place to add
multithreading and distribution to the imperative language (for example, the program
security characterization is known to be compositional for Imp with dynamic thread

314 R. Focardi, S. Rossi, and A. Sabelfeld

creation [28]). We conjecture that in presence of concurrency, P BNDC will remain to
correspond to the language-based security definition. We expect parallel compositions of
Imp threads to be encoded by parallel compositions of VSPA processes. In this case, the
security correspondence result would be a consequence of the compositionality of the
two properties. We anticipate the security correspondence to hold without major changes
in the encoding. The effect of distribution features in both source and target languages is
certainly a worthwhile topic for future work. An extension of the source language with
channel-based communication [26] is a natural point for investigating the connection to
process calculi security. As a matter of fact, P BNDC has been specifically developed
for communicating processes, thus it should be applicable even when channels are used
both for communication and for manipulating memories.

Modular security: According to the vision we stated in the introduction, for the security
analysis of heterogeneous systems we need heterogeneous, scalable techniques. The key
to scalability is modular analysis that allows analyzing parts of a systems in isolation
and plug together secure components together. That the resulting system is secure is
guaranteed by compositionality results. While compositionality properties for Imp and
VSPA have been studied separately, we intend to explore the interplay between the two.
In particular, we expect to obtain stronger compositionality results for the image of
secure imperative programs in VSPA than for regular VSPA processes.

References

1. M. Abadi. Protection in programming-language translations. In Proc. International Collo-
quium on Automata, Languages, and Programming, volume 1443 of LNCS, pages 868–883.
Springer-Verlag, July 1998.

2. D. Clark, C. Hankin, and S. Hunt. Information flow for Algol-like languages. Journal of
Computer Languages, 28(1):3–28, April 2002.

3. M. Dam and P. Giambiagi. Confidentiality for mobile code: The case of a simple payment
protocol. In Proc. IEEE Computer Security Foundations Workshop, pages 233–244, July
2000.

4. D. E. Denning and P. J. Denning. Certification of programs for secure information flow.
Comm. of the ACM, 20(7):504–513, July 1977.

5. R. Focardi and R. Gorrieri. A Classification of Security Properties for Process Algebras.
Journal of Computer Security, 3(1):5–33, 1994/1995.

6. R. Focardi and R. Gorrieri. The Compositional Security Checker: A Tool for the Verifica-
tion of Information Flow Security Properties. IEEE Transactions on Software Engineering,
23(9):550–571, 1997.

7. R. Focardi and R. Gorrieri. Classification of Security Properties (Part I: Information Flow).
In R. Focardi and R. Gorrieri, editors, Foundations of Security Analysis and Design, volume
2171 of LNCS, pages 331–396. Springer-Verlag, 2001.

8. R. Focardi, R. Gorrieri, and F. Martinelli. Information flow analysis in a discrete-time process
algebra. In Proc. IEEE Computer Security Foundations Workshop, pages 170–184, July 2000.

9. R. Focardi and S. Rossi. Information Flow Security in Dynamic Contexts. In Proc. of the
IEEE Computer Security Foundations Workshop, pages 307–319. IEEE Computer Society
Press, 2002.

Bridging Language-Based and Process Calculi Security 315

10. R. Focardi, S. Rossi, and A. Sabelfeld. Bridging Language-Based and Process Calculi Secu-
rity. Technical Report CS-2004-14, Dipartimento di Informatica, Università Ca’ Foscari di
Venezia, Italy, 2004. http://www.dsi.unive.it/ricerca/TR/index.htm.

11. P. Giambiagi and M.Dam. On the secure implementation of security protocols. In Proc.
European Symp. on Programming, volume 2618 of LNCS, pages 144–158. Springer-Verlag,
April 2003.

12. J. A. Goguen and J. Meseguer. Security policies and security models. In Proc. IEEE Symp.
on Security and Privacy, pages 11–20, April 1982.

13. M. Hennessy and J. Riely. Information flow vs. resource access in the asynchronous pi-
calculus. ACM TOPLAS, 24(5):566–591, 2002.

14. K. Honda, V. Vasconcelos, and N. Yoshida. Secure information flow as typed process be-
haviour. In Proc. European Symp. on Programming, volume 1782 of LNCS, pages 180–199.
Springer-Verlag, 2000.

15. K. Honda and N. Yoshida. A uniform type structure for secure information flow. In Proc.
ACM Symp. on Principles of Programming Languages, pages 81–92, January 2002.

16. K. Honda and N. Yoshida. Noninterference through flow analysis. Journal of Functional
Programming, 2005. To appear.

17. R. Joshi and K. R. M. Leino. A semantic approach to secure information flow. Science of
Computer Programming, 37(1–3):113–138, 2000.

18. N. Kobayashi. Type-based information flow analysis for the pi-calculus. Technical Report
TR03-0007, Tokyo Institute of Technology, October 2003.

19. B. W. Lampson. A note on the confinement problem. Comm. of the ACM, 16(10):613–615,
October 1973.

20. H. Mantel. Possibilistic definitions of security – An assembly kit –. In Proc. IEEE Computer
Security Foundations Workshop, pages 185–199, July 2000.

21. H. Mantel and A. Sabelfeld. A unifying approach to the security of distributed and multi-
threaded programs. J. Computer Security, 11(4):615–676, September 2003.

22. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
23. C. Piazza, E. Pivato, and S. Rossi. CoPS - Checker of Persistent Security. In Proc. International

Conference on Tools and Algorithms for the Construction and Analysis of Systems, volume
2988 of LNCS, pages 144–152. Springer-Verlag, March 2004.

24. F. Pottier. A simple view of type-secure information flow in the pi-calculus. In Proc. IEEE
Computer Security Foundations Workshop, pages 320–330, June 2002.

25. P. Ryan. Mathematical models of computer security—tutorial lectures. In R. Focardi and
R. Gorrieri, editors, Foundations of Security Analysis and Design, volume 2171 of LNCS,
pages 1–62. Springer-Verlag, 2001.

26. A. Sabelfeld and H. Mantel. Static confidentiality enforcement for distributed programs.
In Proc. Symp. on Static Analysis, volume 2477 of LNCS, pages 376–394. Springer-Verlag,
September 2002.

27. A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE J. Selected
Areas in Communications, 21(1):5–19, January 2003.

28. A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-threaded programs. In
Proc. IEEE Computer Security Foundations Workshop, pages 200–214, July 2000.

29. G. Smith and D. Volpano. Secure information flow in a multi-threaded imperative language.
In Proc. ACM Symp. on Principles of Programming Languages, pages 355–364, January
1998.

30. G. Winskel. The Formal Semantics of Programming Languages: An Introduction. MIT Press,
Cambridge, MA, 1993.

31. N. Yoshida, K. Honda, and M. Berger. Linearity and bisimulation. In Proc. Foundations
of Software Science and Computation Structure, volume 2303 of LNCS, pages 417–433.
Springer-Verlag, April 2002.

History-Based Access Control with Local
Policies

Massimo Bartoletti, Pierpaolo Degano, and Gian Luigi Ferrari

Dipartimento di Informatica, Università di Pisa, Italy
{bartolet, degano, giangi}@di.unipi.it

Abstract. An extension of the λ-calculus is proposed, to study history-
based access control. It allows for security policies with a possibly nested,
local scope. We define a type and effect system that, given a program,
extracts a history expression, i.e. a correct approximation to the set of
histories obtainable at run-time. Validity of history expressions is non-
regular, because the scope of policies can be nested. Nevertheless, a trans-
formation of history expressions is presented, that makes verification pos-
sible through standard model checking techniques. A program will never
fail at run-time if its history expression, extracted at compile-time, is
valid.

1 Introduction

Models and techniques for language-based security are receiving increasing at-
tention [14, 16]. Among these, access control plays a relevant role [15]. Indeed,
features for defining and enforcing access control policies are a main concern
in the design of modern programming languages. Access control policies spec-
ify the rules by which principals are authorized to access protected objects
and resources; while mechanism will implement the controls imposed by the
given policy. For example, a policy may specify that a principal P can never
read a certain file F . This policy can be enforced by a trusted component of
the operating system, that intercepts any access to F and prevents P from
reading.

Several models for access control have been proposed, among which stack
inspection, adopted by Java and C'. In this model, a policy grants static access
rights to code, while actual run-time rights depend on the static rights of the code
frames on the call stack. As access controls only rely on the current call stack,
stack inspection may be insecure when trusted code depends on results supplied
by untrusted code [11]. In fact, access controls are insensitive to the frame of an
untrusted piece of code, when popped from the call stack. Additionally, some
standard code optimizations (e.g. method inlining) may break security in the
presence of stack inspection (however, it is sometimes possible to exploit static
techniques, e.g. those in [4], that allow for secure optimizations).

V. Sassone (Ed.): FOSSACS 2005, LNCS 3441, pp. 316–332, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

History-Based Access Control with Local Policies 317

The main weaknesses of stack inspection are caused by the fact that the
call stack only records a fragment of the whole execution. History-based access
control considers instead (a suitable abstraction of) the entire execution, and the
actual rights of the running code depend on the static rights of all the pieces of
code (possibly partially) executed so far. History-based access control has been
recently receiving major attention, at both levels of foundations [2, 10, 18] and
of language design and implementation [1, 8].

The typical run-time mechanisms for enforcing history-based policies are exe-
cution monitors, which observe computations and abort them whenever about to
violate the given policy. The observations are called events, and are an abstrac-
tion of security-relevant activities (e.g. opening a socket connection, reading and
writing a file). Sequences of events, possibly infinite, are called histories. Usually,
the security policy of the monitor is a global property: it is an invariant that
must hold at any point of the execution. Execution monitors have been proved
to enforce exactly the class of safety properties [17].

Checking each single event in a history may be inefficient. A different ap-
proach is to instrument the code with local checks (see e.g. Java and C'), each
enforcing its own local policy. Under certain circumstances, the two ways are
equivalent [6, 7, 22]. Recently, Skalka and Smith [18] have addressed the prob-
lem of history-based access control with local checks, combining a static tech-
nique with model checking. In their approach, local checks enforce regular prop-
erties of histories. These properties are written as μ-calculus logic formulae,
verified by Büchi automata. From a given program, their type and effect sys-
tem extracts a history expression, i.e. an over-approximate, finite representa-
tion of all the histories the program can generate. History expressions are then
model checked to (statically) guarantee that each local check will always suc-
ceed at run-time. If so, all the local checks can be safely removed from the
program.

Building upon [18], we propose here λ[], an extension of the λ-calculus that
allows for expressive and flexible history-based access control policies. The se-
curity properties imposed in our programs are regular properties of histories,
and have a possibly nested, local scope. A program e protected by a policy ϕ is
written ϕ[e], called policy framing. During the evaluation of e, the whole execu-
tion history (i.e. the past history followed by the events generated so far by e)
must respect the policy ϕ. This allows for safe composition of programs that
are protected by different policies. For example, suppose to have an expression
λx. ϕ[(x v) e] that takes as input a function for x, and applies it to the value v
while enforcing the policy ϕ. Then, supplying the function λy. ϕ′[e′], we have
the following computation:

(λx. ϕ[(x v) e]) (λy. ϕ′[e′]) → ϕ[(λy. ϕ′[e′]) v e] → ϕ[ϕ′[e′{v/y}] e]
→∗ ϕ[ϕ′[v′] e] → ϕ[v′ e]

Evaluating the application of e′ to v must respect, at each step, both policies
ϕ and ϕ′. As soon as a function v′ is obtained, the scope of ϕ′ is left, and the
application of v′ to e′ continues under the scope of ϕ. Note that the first step of

318 M. Bartoletti, P. Degano, and G.L. Ferrari

the computation above can be viewed as dynamically placing a program into a
sandbox enforcing the policy ϕ. This programming paradigm seems difficult to
express in a language with local checks or global policies, only.

Even though policies are regular properties, the nesting of policy framings
may give rise to non-regular properties: indeed, every history η must obey the
conjunction of all the policies within the scope of which the last event of η
occurs. Run-time mechanisms enforcing this kind of properties need to be at least
powerful as pushdown automata. Consequently, λ[] is strictly more expressive
than the sub-language that only admits policy framings with single events, i.e.
local checks (of course, the above holds under the assumption that the access
control mechanism is not encoded in λ-expressions themselves).

We define a type and effect system for λ[] . The types are standard, while the
effects are history expressions, a finite approximation of the infinitary language of
histories, together with explicit representation of the scope of policy framings. We
say that a history expression is valid if all its histories are such, i.e. they represent
safe executions. Considering finite histories only is sufficient, because the validity
of histories is a safety property. Recall that computations not enjoying a safety
property are rejected in a finite number of steps [17]. If the effect of a program
is valid, then the program will never throw any security exceptions.

Even though validity of histories is a non-regular property, we show that his-
tory expressions can be model checked with standard techniques. We define a
transformation that, given an history expression H, obtains an expression H ′

such that (i) the histories represented by H ′ are regular, and (ii) they respect ex-
actly the same policies (within their scopes) obeyed by the histories represented
by H. From the history expression H ′ we then extract a Basic Process Algebra
process p and a regular formula ϕ such that H ′ is valid if and only if p satisfies
ϕ. This satisfiability problem is known to be decidable by model checking [9].

2 The Language λ[]

To study access control in a pure framework, we consider λ[] , a call-by-value
λ-calculus enriched with access events and security policies. An access event
α ∈ Σ abstracts from a security-relevant operation; sequences η of access events
are called histories. Security policies ϕ ∈ Π are regular properties of histories. A
policy framing ϕ[e] localizes the scope of the policy ϕ to the expression e; fram-
ings can be nested. To enhance readability, our calculus comprises conditional
expressions and named abstractions (the variable z in e′ = λzx.e stands for e′ it-
self within e). The syntax of λ[] follows. We omit the definition of policies ϕ and
of guards b, as they are not relevant for the subsequent technical development.

Syntax of λ[] Expressions

e, e′ ::= x | α | if b then e else e′ | λzx. e | e e′ | ϕ[e]

History-Based Access Control with Local Policies 319

The values of λ[] are the variables and the abstractions. We write ∗ for a
fixed, closed, event-free value, and λ . e for λx. e, for x
∈ fv(e). The following
abbreviation is standard: e; e′ = (λ . e′)e.

We define the behaviour of λ[] expressions through the following SOS op-
erational semantics. The configurations are pairs η, e. A transition η, e → η′, e′

means that, starting from a history η, the expression e may evolve to e′, possibly
extending the history η. We write η |= ϕ when the history η obeys the policy ϕ.
We assume as given a total function B that evaluates the guards in conditionals.

Operational Semantics of λ[]

η, e1 → η′, e′1
η, e1e2 → η′, e′1e2

η, e2 → η′, e′2
η, ve2 → η′, ve′2 η, (λzx.e)v → η, e{v/x, λzx.e/z}

η, α→ ηα, ∗
η, e→ η′, e′ η, η′ |= ϕ

η, ϕ[e] → η′, ϕ[e′]

η |= ϕ

η, ϕ[v] → η, v

B(b) = true

η, if b then e0 else e1 → η, e0

B(b) = false

η, if b then e0 else e1 → η, e1

It is immediate to define a semantics of λ[] , equivalent to that given above,
that explicitly records entering and exiting a framing ϕ[· · ·], by enriching his-
tories with special events [ϕ and]ϕ. Each transition requires to verify that the
current history is valid, roughly it satisfies all the policies ϕ whose scope has
been entered but not exited yet, i.e. the number of [ϕ is greater then that of]ϕ.
Counting is not regular: therefore, validity is not a regular property.

To illustrate our approach, consider a simple web browser that displays
HTML pages and runs applets. Applets can be trusted (e.g. because signed,
or downloaded from a trusted site), or untrusted. The browser has a site policy
ϕ always applied to untrusted applets. The site policy says that an applet can-
not connect to the web after it has read from the local disk. After executing an
untrusted applet, the browser writes some logging information to the local disk.
Additionally, all applets must obey a user policy that is supplied to the browser.
We define the browser as a function that processes the URL u, be it an applet
or an HTML page, and the user policy ϕ′, rendered as a framing p = λx. ϕ′[x∗].

Browser = λu. λp. if html(u) then display(u) else
if trusted(u) then p u else ϕ[p u;Write ∗]

We consider three trusted applets: Read = λ . αr to read files, Write = λ . αw
to write files, and Connect = λ . αc to open web connections. Note that our
applets are overly simplified, because we are only interested in the events they

320 M. Bartoletti, P. Degano, and G.L. Ferrari

can generate, namely αr, αw, αc. We also have an untrusted applet, that tries to
spoof the browser by executing a supplied applet z with a void user policy.

Untrusted = λz . λ .Browser z (λy . y∗)

The behaviour of an untrusted write, executed with a user policy ϕ′ saying that
applets cannot write the local disk, is illustrated by the following trace:

ε, Browser (Untrusted Write) (λy .ϕ′[y∗])
→∗ ε, ϕ[(λy.ϕ′[y∗]) (λ .Browser Write (λy . y∗));Write∗]
→∗ ε, ϕ[ϕ′[Browser Write (λy . y∗)];Write∗]
→∗ ε, ϕ[ϕ′[(λy. y∗)Write];Write∗] →∗ ε, ϕ[ϕ′[αw];Write∗]

At this point, a security exception is thrown, because the history αw would not
satisfy the innermost policy ϕ′. Consider now an untrusted applet that reads the
local disk and then tries to connect.

ε, Browser (Untrusted (λ .Read∗;Connect∗)) (λy .ϕ′[y∗])
→∗ ε, ϕ[(λy.ϕ′[y∗]) (Untrusted (λ .Read∗;Connect∗));Write∗]
→∗ ε, ϕ[ϕ′[Browser (λ .Read∗;Connect∗) (λy . y∗)];Write∗]
→∗ ε, ϕ[ϕ′[Read∗;Connect∗];Write∗] →∗ αr , ϕ[ϕ′[Connect∗];Write∗]

Again, we have a security exception, because the history αrαc does not satisfy
the outermost policy ϕ. As a further example, consider an untrusted read:

ε, Browser (Untrusted Read) (λy .ϕ′[y∗])
→∗ ε, ϕ[(λy.ϕ′[y∗]) (Untrusted Read);Write∗]
→∗ ε, ϕ[ϕ′[Browser Read (λy . y∗)];Write∗] →∗ ε, ϕ[ϕ′[Read∗];Write∗]
→∗ αr, ϕ[ϕ′[∗];Write∗] →∗ αr , ϕ[Write∗] →∗ αrαw , ϕ[∗]

Unlike in the first computation, the write operation has been performed, because
the scope of the policy ϕ′ has been left upon termination of the untrusted applet.

3 A Type and Effect System for λ[]

To statically predict the histories generated by programs at run-time, we intro-
duce history expressions with the following abstract syntax.

History Expressions

H,H ′ ::= ε | h | α | H ·H ′ | H +H ′ | ϕ[H] | μh.H

History-Based Access Control with Local Policies 321

History expressions include the empty history ε, events α, sequencing H ·H ′,
non-deterministic choice H + H ′, policy framing ϕ[H], and recursion μh.H (μ
binds the occurrences of the variable h in H). Free variables and closed expres-
sions are defined as expected. We assume that the operator · has precedence over
+, that in turn has precedence over μ.

Hereafter, we extend histories with an explicit representation of policy fram-
ings. We use special symbols [ϕ and]ϕ to denote the opening and closing of the
scope of the policy ϕ. Formally, an enriched history η, or simply history when
unambiguous, is a (possibly infinite) sequence (β1, β2, . . .) where βi ∈ Σ ∪ ΣΠ ,
ΣΠ = { [ϕ,]ϕ | ϕ ∈ Π }, and Σ ∩ΣΠ = ∅.

Let H range over sets of histories. Then, HH′ denotes the set of histories
{ ηη′ | η ∈ H, η′ ∈ H′ }, and ϕ[H] is the set { [ϕ η]ϕ | η ∈ H}. Note that, if η is
infinite, then ηη′ = η, for each η′ (in particular, ϕ[η] = [ϕη]ϕ = [ϕη).

The denotational semantics of history expressions is defined over the complete
lattice (2(Σ∪ΣΠ)∗ ,⊆). The environment ρ used below maps variables to sets of
(finite) histories. We stipulate that concatenation and union of sets of histories
are defined only if both their operands are defined. Hereafter, we feel free to
omit curly braces, when unambiguous.

Denotational Semantics of History Expressions

�ε�ρ = ε �α�ρ = α �h�ρ = ρ(h) �ϕ[H]�ρ = ϕ[�H�ρ]

�H ·H ′�ρ = �H�ρ �H ′�ρ �H +H ′�ρ = �H�ρ ∪ �H ′�ρ

�μh.H�ρ =
⋃

n∈ω f
n(∅) where f(X) = �H�ρ{X/h}

As an example, consider H = μh. α+h ·h+ϕ[h]. The semantics of H consists
of all the histories having an arbitrary number of occurrences of α, and arbitrarily
nested framings of ϕ. For instance, αϕ[α], ϕ[α]ϕ[αϕ[α]] ∈ �H�∅.

We now introduce a type and effect system [19] for λ[] , extending [18]. Types
and type environments, ranged over by τ and Γ , are defined as follows.

Types and Type Environments

τ ::= unit | τ H−→ τ Γ ::= ∅ | Γ ;x : τ (x
∈ dom(Γ))

A typing judgment Γ,H � e : τ means that the expression e evaluates to a
value of type τ , and produces a history belonging to the effect H. The history
expression H in the functional type τ H−→ τ ′ describes the latent effect associated
with an abstraction, i.e. one of the histories in �H� is generated when a value is

322 M. Bartoletti, P. Degano, and G.L. Ferrari

applied to an abstraction with that type. The relation Γ,H � e : τ is defined as
the least relation closed under the following rules.

Type and Effect System for λ[]

Γ, ε � x : Γ (x) Γ, α � α : unit Γ, ε � ∗ : unit

Γ ;x : τ ; z : τ H−→ τ ′,H � e : τ ′

Γ, ε � λzx.e : τ H−→ τ ′
Γ,H � e : τ H′′

−−→ τ ′ Γ,H ′ � e′ : τ

Γ,H ·H ′ ·H ′′ � ee′ : τ ′

Γ,H � e : τ Γ,H � e′ : τ

Γ,H � if b then e else e′ : τ

Γ,H � e : τ

Γ, ϕ[H] � ϕ[e] : τ

Γ,H � e : τ

Γ,H +H ′ � e : τ

Typing judgments are standard. The last rule allows for weakening of effects.
The effects in the rule for application are concatenated according to the evalu-
ation order of the call-by-value semantics. The rule for abstraction constraints
the premise to equate the effect and the latent effect of functional type. Let η
be a history; let η be the subsequence of η containing only events in Σ; and
let ηπ be the set of all the prefixes of η. For example, if η = αϕ[α′ϕ′[α′′]], then
(η)π = {α, αα′, αα′α′′}. The next theorem ensures that our type and effect sys-
tem does approximate the actual run-time histories (its proof, as well as others,
and further technical details can be found in [3]).

Theorem 1. If Γ,H � e : τ and ε, e→∗ η, e′, then η ∈ (�H�
)π.

We now define when an access control history is valid. Intuitively, valid histories
represent viable computations, while invalid ones represent computations that
would have been stopped by the access control mechanism of λ[] . Let η =
β1 · · ·βn be a history. Let Φ(η) be the set of the policies ϕ such that the number of
[ϕ is greater than the number of]ϕ in η. We say that η is valid when (β1 · · ·βk) |=∧
Φ(β1 · · ·βk), for all k ∈ 1..n. A history expression H is valid when all the

histories in �H� are such.
For example, consider the history η0 = αrϕ[αc], where ϕ is the property

saying that no αc occurs after αr. Then, η0 is not valid, because (αr[ϕαc) = αrαc

does not satisfy
∧
Φ(αr[ϕαc) = ϕ. The history η1 = ϕ[αr]αc is valid, because

([ϕαr) = αr satisfies
∧
Φ([ϕαr) = ϕ, and

∧
Φ(η1) =

∧
∅ = true.

We now state the type safety property. We say that e goes wrong when
ε, e→∗ η′, e′, and e′ is not a value, and there is no η′′, e′′ such that η′, e′ → η′′, e′′.
For example, a computation goes wrong when attempting to execute an event
forbidden by a currently active policy framing.

History-Based Access Control with Local Policies 323

Theorem 2 (Type Safety). Let Γ,H � e : τ , for e closed. If H is valid, then
e does not go wrong.

Proof (Sketch). The proof is greatly simplified by defining a new transition sys-
tem with transition relation �, where the special framing events [ϕ and]ϕ replace
the policy framing ϕ[· · ·]. The original and the new transition systems do agree
step by step, up to obvious transformations on expressions (to convert policy
framings into framing events) and on histories (to insert framing events in his-
tories). Similarly, we introduce a type and effect system with relation Γ,H �!,
much in the style of � above. Indeed, if Γ,H � e : τ then Γ,H �! e : tau. Then,
we prove first a Subject Reduction lemma, ensuring that, if Γ,H0 �! e0 : τ and
η0, e0 � η1, e1, for e0 closed and well-formed, then there exists H1 such that
Γ,H1 �! e1 : τ and η1�H1� ⊆ η0�H0�. Secondly, we prove a Progress lemma,
stating that if Γ,H �! e : τ , for e closed, and let ηH is valid for some η, then,
either e is a value, or there exists a transition η, e � η′, e′.

Now type safety follows by contradiction. Assume that ε, e→∗ η, e0, and η, e0
is a stuck configuration, i.e. e0 is not a value, and there is no transition from
η, e0. By the Subject Reduction lemma, Γ,H ′ �! e0 : τ , for some H ′ such that
η�H ′� ⊆ �H�. Since H is valid by hypothesis, then η�H ′� is valid, as well as η,
because validity is a prefix-closed property. We assumed that η, e0 is stuck, then
by the Progress lemma, e0 must be a value: contradiction. ��

Example 1. Consider the following expression, where b and b′ are boolean guards:

e = λzx. if b then α else (if b′ then zzx else ϕ[zx])

Let Γ = {z : τ H−→ τ, x : τ}. Then, the following typing derivation is possible:

Γ, α � α : unit

Γ, ε � z : τ H−→ τ Γ, ε � x : τ
Γ,H � z x : τ

Γ,H ·H � z z x : τ

Γ,H ·H + ϕ[H] � z z x : τ

Γ, ϕ[H] � ϕ[z x] : τ

Γ,H ·H + ϕ[H] � ϕ[z x] : τ
Γ,H ·H + ϕ[H] � if b′ then z z x else ϕ[z x] : τ

Γ, α+H ·H + ϕ[H] � if b then α else (if b′ then z z x else ϕ[z x]) : τ

To apply the rule for abstraction, the constraint H = α+H ·H +ϕ[H] must be

solved. A solution is μh. α+ h · h+ϕ[h], thus ∅, ε � e : unit
μh. α+h·h+ϕ[h]−−−−−−−−−−→ unit.

Note in passing that a simple extension of the type inference algorithm of [18]
suffices for solving constraints as the one above.

4 Verification of History Expressions

We now introduce a procedure to verify the validity of history expressions.
Our technique is based on model checking Basic Process Algebras (BPAs) with

324 M. Bartoletti, P. Degano, and G.L. Ferrari

Büchi automata. The standard decision procedure for verifying that a BPA pro-
cess p satisfies a ω-regular property ϕ amounts to constructing the pushdown
automaton for p and the Büchi automaton for the negation of ϕ. Then, the
property holds if the (context-free) language accepted by the conjunction of
the above, which is still a pushdown automaton, is empty. This problem is
known to be decidable, and several algorithms and tools show this approach
feasible [9].

Recall that our notion of validity is non-regular, and that context-free lan-
guages are not closed under intersection, thus making the emptiness problem
undecidable. We then need to manipulate history expressions in order to make
validity a regular property. Indeed, the intersection of a context-free language
and a regular language is context-free, so emptiness is decidable.

4.1 Regularization of History Expressions

History expressions can generate histories with redundant framings, i.e. nestings
of the same policy framing. For example, the history η = ϕ[αϕ′[ϕ[α′]]] has
an inner redundant ϕ-framing around the event α′. Since α′ is already under
the scope of the outermost ϕ-framing, it happens that η is valid if and only
if ϕ[αϕ′[α′]] is valid. While removing inner redundant framings from a history
preserves its validity, one needs the expressive power of a pushdown automaton,
because open and closed framings are to be matched in pairs. Below, we introduce
a transformation that, given a history expression H, yields an H ′ such that (i)
H is valid if and only if H ′ is valid, and (ii) the histories generated by H ′ can
be verified by a finite state automaton.

Let h∗ ∈ fv(H) be a selected occurrence of h in H. We say that h∗ is
guarded by guard(h∗,H), defined as the smallest set satisfying the following
equations.

Guards

guard(h∗, h) = ∅
guard(h∗,H0 op H1) = guard(h∗,Hi) if h∗ ∈ Hi, op ∈ {·,+}

guard(h∗, ϕ[H]) = {ϕ} ∪ guard(h∗,H)
guard(h∗, μh′. H ′) = guard(h∗,H ′) if h′
= h

For example, in μh. ϕ[α · h · ϕ′[h]] · h, the first occurrence of h is guarded by
{ϕ}, the second one is guarded by {ϕ,ϕ′}, and the third one is unguarded.

Let H be a (possibly non-closed) history expression. Without loss of gener-
ality, assume that all the variables in H have distinct names. We define below
H ↓Φ,Γ , the expression produced by the regularization of H against a set of
policies Φ and a mapping Γ from variables to history expressions.

History-Based Access Control with Local Policies 325

Regularization of History Expressions

ε↓Φ,Γ = ε h↓Φ,Γ = h α↓Φ,Γ = α

(H ·H ′)↓Φ,Γ = H ↓Φ,Γ · H ′ ↓Φ,Γ (H +H ′)↓Φ,Γ = H ↓Φ,Γ + H ′ ↓Φ,Γ

ϕ[H]↓Φ,Γ =

{
H ↓Φ,Γ if ϕ ∈ Φ

ϕ[H ↓Φ∪{ϕ},Γ] otherwise

(μh.H)↓Φ,Γ = μh. (H ′σ′ ↓Φ,Γ{(μh.H)Γ/h} σ)

where H = H ′{h/hi}i, hi fresh, h
∈ fv(H ′), and

σ(hi) = (μh.H)Γ ↓Φ∪guard(hi,H′),Γ σ′(hi) =

{
h if guard(hi,H

′) ⊆ Φ

hi otherwise

Intuitively, H↓Φ,Γ results from H by eliminating all the redundant framings,
and all the framings in Φ. The environment Γ is needed to deal with free variables
in the case of nested μ-expressions, as shown by Example 3 below. We sometimes
omit to write the component Γ when unneeded, and, when H is closed, we
abbreviate H ↓∅,∅ with H ↓.

The last two regularization rules would benefit from some explanation. Con-
sider first a history expression of the form ϕ[H] to be regularized against a set
of policies Φ. To eliminate the redundant framings, we must ensure that H has
neither ϕ-framings, nor redundant framings itself. This is accomplished by reg-
ularizing H against Φ ∪ {ϕ}. Consider a history expression of the form μh.H.
Its regularization against Φ and Γ proceeds as follows. Each free occurrence of
h in H guarded by some Φ′
⊆ Φ is unfolded and regularized against Φ∪Φ′. The
substitution Γ is used to bind the free variables to closed history expressions.
Technically, the i-th free occurrence of h in H is picked up by the substitution
{h/hi}, for hi fresh. Note also that σ(hi) is computed only if σ′(hi) = hi.

As a matter of fact, regularization is a total function, and its definition can
be easily turned into a terminating rewriting system.

Example 2. Let H0 = μh.H, where H = α+h ·h+ϕ[h]. Then, H can be written
as H ′{h/hi}i∈0..2, where H ′ = α+h0 ·h1+ϕ[h2]. Since guard(h2,H

′) = {ϕ}
⊆ ∅:

H0 ↓∅ = μh.H ′{h/h0, h/h1}↓∅ {H0 ↓ϕ /h2} = μh. α+ h · h+ ϕ[H0 ↓ϕ]

To compute H0 ↓ϕ, note that no occurrence of h is guarded by Φ
⊆ {ϕ}. Then:

H0 ↓ϕ = μh. (α + h · h+ ϕ[h])↓ϕ = μh. α+ h · h+ h

Since �H0 ↓ϕ� = {α}ω has no ϕ-framings, we have that �H0 ↓�=
(
{ }α ω

ϕ [{ }α ω]
)ω

has no redundant framings.

326 M. Bartoletti, P. Degano, and G.L. Ferrari

Example 3. Let H0 = μh.H1, where H1 = μh′.H2, and H2 = α+h ·ϕ[h′]. Since
guard(h,H1) = ∅, we have that:

H0 ↓∅,∅ = μh. (H1 ↓∅,{H0/h})

Note that H2 can be written as H ′
2{h/h0}, where H ′

2 = α + h · ϕ[h0]. Since
guard(h0,H

′
2) = {ϕ}
⊆ ∅, it follows that:

H1 ↓∅,{H0/h} = μh′.H ′
2 ↓∅,{H0/h,H1{H0/h}/h′} {H1{H0/h}↓ϕ,{H0/h} /h0}

= μh′. α+ h · ϕ[h0] {(μh′. α+H0 · ϕ[h′])↓ϕ,{H0/h} /h0}
= μh′. α+ h · ϕ[H3 ↓ϕ,{H/h}] = α+ h · ϕ[H3 ↓ϕ,{H/h}]

where H3 = μh′. α + H0 · ϕ[h′], and the last simplification is possible because
the outermost μ binds no variable. Since guard(h′, α+H0 · ϕ[h′]) = {ϕ} ⊆ {ϕ}:

H3 ↓ϕ = μh′. (α +H0 · ϕ[h′])↓ϕ = μh′. α+H0 ↓ϕ ·h′

Since {ϕ} contains both guard(h,H1) = ∅, and guard(h′,H2) = {ϕ}, then:

H0 ↓ϕ = μh.(μh′.α+ h · ϕ[h′])↓ϕ= μh.μh′.(α+ h · ϕ[h′])↓ϕ= μh.μh′.α+ h · h′

Putting together the computations above, we have that:

H0 ↓∅ = μh. α+ h · ϕ[H3 ↓ϕ]

H3 ↓ϕ = μh′. α+
(
μh. μh′. α+ h · h′

)
· h′

We now establish the following basic property of regularization.

Theorem 3. H ↓ has no redundant framings.

Regularization preserves validity. To prove that, it is convenient to introduce
a normal form for histories. It permits to compare the histories produced by an
expression H with those of the regularization of H. Note that normalization (as
well as regularization) are non-regular transformations: constructing the normal
form of a history requires counting the framing openings and closings (see the
last equation below): a pushdown automaton is therefore needed.

Normalization of Histories

ε⇓Φ = ε (HH′)⇓Φ = H⇓Φ H′⇓Φ (H ∪H′)⇓Φ = H⇓Φ ∪ H′⇓Φ

α⇓Φ = (
∧
Φ) [α] ϕ[H]⇓Φ = H⇓Φ∪{ϕ}

Intuitively, normalization transforms histories with policy framings in histo-
ries with local checks. Indeed, η ⇓Φ is intended to record that each event in η
must obey all the policies in Φ. This is apparent in the second and in the last
equation above. We abbreviate H⇓∅ with H⇓. Note that H⇓∅ is defined if and
only if H has balanced framings.

History-Based Access Control with Local Policies 327

Example 4. Consider the history η = αϕ[α′ϕ′[α′′]]. Its normal form is:

η⇓ = α⇓ (ϕ[α′ϕ′[α′′]])⇓ = α (α′ϕ′[α′′])⇓ϕ = α (α′⇓ϕ) (ϕ′[α′′])⇓ϕ

= α ϕ[α′] (α′′⇓ϕ,ϕ′) = α ϕ[α′] (ϕ ∧ ϕ′)[α′′]

A history expression H and its regularization H ↓ have the same normal form.

Theorem 4. �H ↓�⇓ = �H�⇓.

The next theorem states that normalization preserves the validity of histories.
Summing up, a history expression H is valid iff its regularization H ↓ is valid.

Theorem 5. A history η is valid if and only if η⇓ is valid.

4.2 Basic Process Algebras

Basic Process Algebras [5] provide a natural characterization of (possibly infi-
nite) histories. A BPA process is given by the following abstract syntax:

p ::= ε | α | p · p′ | p+ p′ | X

where ε denotes the terminated process, α ∈ Σ, X is a variable, · denotes
sequential composition, + represents (nondeterministic) choice.

A BPA process p is guarded if each variable occurrence in p occurs in a
subexpression α · q of p. We assume a finite set Δ = {X def

= p} of guarded
definitions, such that, for each variable X, there exists a single, guarded p such
that {X def

= p} ∈ Δ. As usual, we consider the process ε ·p to be equivalent to p.
The operational semantics of BPAs is given by the following labelled transi-

tion system, in the SOS style.

Operational Semantics of BPA processes

α
α−→ ε

p
α−→ p′

p+ q
α−→ p′

q
α−→ q′

p+ q
α−→ q′

p
α−→ p′

p · q α−→ p′ · q

p
α−→ p′ X

def
= p ∈ Δ

X
α−→ p′

The set { (ai)i | p0
a1−→ · · · ai−→ pi } ∪ { (ai)i | p0 · · ·

ai−→ · · · } is denoted by
�p0,Δ�, where �p,Δ�

fin is the first set, containing the strings that label finite
computations. We omit the component Δ, when empty.

We now introduce a mapping from history expressions to BPAs, in the line
of [18]. Without loss of generality, we assume that all the variables in H have
distinct names. The mapping takes as input a history expression H and an
injective function Γ from history variables h to BPA variables X, and it outputs
a BPA process p and a finite set of definitions Δ. To avoid the problem of
unguarded BPA processes, we assume a standard preprocessing step, that inserts

328 M. Bartoletti, P. Degano, and G.L. Ferrari

a dummy event before each unguarded occurrence of a variable in a history
expression. Dummy events are eventually discarded before the verification phase.

The rules that transform history expressions into BPAs are rather standard.
History events, variables, concatenation and choice are mapped into the corre-
sponding BPA counterparts. A history expression μh.H is mapped to a fresh
BPA variable X, bound to the translation of H in the set of definitions Δ. An
expression ϕ[H] is mapped to the BPA for H, surrounded by the opening and
closing of the ϕ-framing.

Mapping History Expressions to BPAs

BPA(ε, Γ) = 〈ε, ∅〉
BPA(α, Γ) = 〈α, ∅〉
BPA(h, Γ) = 〈Γ (h), ∅〉

BPA(H0 ·H1, Γ) = 〈p0 · p1,Δ0 ∪Δ1〉, where BPA(Hi, Γ) = 〈pi,Δi〉
BPA(H0 +H1, Γ) = 〈p0 + p1,Δ0 ∪Δ1〉, where BPA(Hi, Γ) = 〈pi,Δi〉

BPA(μh.H, Γ) = 〈X,Δ ∪ {X def
= p}〉, where BPA(H,Γ{X/h}) = 〈p,Δ〉

BPA(ϕ[H], Γ) = 〈[ϕ · p ·]ϕ,Δ〉, where BPA(H,Γ) = 〈p,Δ〉

We now state the correspondence between history expressions and BPAs.
The prefixes of the histories generated by a history expression H (i.e. �H�

π)
are all and only the finite prefixes of the strings that label the computations of
BPA(H). Recall that this is enough, because validity is a safety property.

Lemma 1. �H�
π = �BPA(H)�fin .

4.3 Büchi Automata

Büchi automata are finite state automata whose acceptance condition roughly
says that a computation is accepted if some final state is visited infinitely often;
see [21] for details. Since we also need to establish the validity of finite histories,
we use the standard trick of padding a finite string with a special symbol $.
Then, each final state has a self-loop labelled with $. For brevity, we will omit
these transitions hereafter.

Given a policy ϕ, we are interested in defining a formula ϕ[] to be used
in verifying that a history η, with no redundant framings of ϕ, respects ϕ
within its scope. Let the formula ϕ be defined by the Büchi automaton Aϕ =
〈Σ,Q,Q0, ρ, F 〉, which we assume to have a non-final sink state. We define the
formula ϕ[] through the following Büchi automaton Aϕ[] .

History-Based Access Control with Local Policies 329

Büchi Automaton for ϕ[]

Aϕ[] = 〈Σ′, Q′, Q0, ρ
′, F ′〉

Σ′ = Σ ∪ { [ϕ,]ϕ | ϕ ∈ Π }
Q′ = F ′ = Q ∪ { q′ | q ∈ F }
ρ′ = ρ ∪ { 〈q, [ϕ, q′〉 | q ∈ F } ∪ {〈q′,]ϕ, q〉}

∪ { 〈q′0, α, q′1〉 | 〈q0, α, q1〉 ∈ ρ and q1 ∈ F }
∪ { 〈q, [ϕ′ , q〉 ∪ 〈q,]ϕ′ , q〉 | q ∈ Q′ and ϕ′
= ϕ }

Intuitively, Aϕ[] has two layers. The first is a copy of Aϕ, where all the states
are final. This models the fact that we are outside the scope of ϕ, i.e. the history
leading to any state in this layer has balanced framings of ϕ (or none). The
second layer is reachable from the first one when opening a framing for ϕ, while
closing a framing gets back. The transitions in the second layer are a copy of
those connecting final states in Aϕ. Consequently, the states in the second layer
are exactly the final states in Aϕ. Since Aϕ is only concerned with the verification
of ϕ, the transitions for opening and closing framings ϕ′
= ϕ are rendered as
self-loops.

Example 5. Let ϕ be the policy saying that no event αc can occur after an αr.
The Büchi automata for ϕ and for ϕ[] are in Figure 1. For example, the history
[ϕαr]ϕαc is accepted by Aϕ[] , while αr[ϕαc]ϕ is not (recall that we do not draw
the self-loops labelled by $).

q1
αrq0

αr

q1 q2

q′0 q′1

αrq0

[ϕ]ϕ[ϕ]ϕ

αr

αr

αr

q2

αc

αc

αr, αc

αc αr, αc

αc

αc

Fig. 1. Büchi automata for ϕ (left) and for ϕ[] (right)

We now relate validity of histories with the formulae ϕ[]. Since BPAs can
generate infinite histories, we extend by continuity our notion of validity, saying
that an infinite history is valid when all its finite prefixes are valid. Assuming
continuity is not a limitation, because validity is a safety property: nothing bad

330 M. Bartoletti, P. Degano, and G.L. Ferrari

can happen in any execution step [17]. The following lemma states that a history
η is valid if and only if it satisfies ϕ[] for all the policies ϕ spanning over η.

Lemma 2. Let η be a history with no redundant framings. Then, η is valid if
and only if η |= ϕ[], for all ϕ such that [ϕ∈ η.

Büchi automata are closed under intersection [21]: therefore, a valid history
η is accepted by the intersection of the automata Aϕ[] , for all ϕ occurring in η.

The main result of our paper follows. Validity of a history expressionH can be
decided by showing that the BPA generated by the regularization of H satisfies
a ω-regular formula. Together with Theorem 2, a λ[] expression never violates
security if its effect is checked valid.

Theorem 6. �H� is valid if and only if �BPA(H ↓)� |=
∧

ϕ∈H ϕ[].

Proof. By lemma 5, �H� is valid if and only if �H� ⇓ is valid. By theorem 4,
�H� ⇓= �H ↓� ⇓. By lemma 5, �H ↓� ⇓ is valid if and only if �H ↓� is valid. By
theorem 3, �H ↓� has no redundant framings. By definition, �H ↓� is valid if and
only if �H ↓�π is valid. By lemma 1, �H ↓�π = �BPA(H ↓)�fin . By continuity,
�BPA(H ↓)�fin is valid if and only if �BPA(H ↓)� is valid. Then, by lemma 2,
�BPA(H ↓)� is valid if and only if �BPA(H ↓)� |=

∧
ϕ∈H ϕ[].

5 Conclusions

We proposed a novel approach to history-based access control. To this aim, we
have introduced λ[], an extension of the λ-calculus that allows for security poli-
cies with a local scope. Along the lines of Skalka and Smith [18], we have used a
type and effect system to extract from a given program a history expression that
approximates its run-time behaviour. Verifying the validity of a history expres-
sion ensures that there will be no security violations at run-time. Our security
policies are regular properties of histories; however, the augmented flexibility
due to nesting of scopes makes validity a non-regular property, unlike [18]. So,
λ[] is expressive enough to describe and enforce security policies that cannot
be naturally dealt with local checks or global policies. Non-regularity seemed
to prevent us from verifying validity by standard model checking techniques,
but we have been able to transform history expressions so that model checking
is feasible.

Our model is less general than the resource access control framework of
Igarashi and Kobayashi [12], but we provide a static verification technique,
while [12] does not. We have no explicit notion of resource, as they have, but we
plan to introduce it in the future.

Compared to Skalka and Smith’s λhist, our λ[] features a different program-
ming construct for access control. The programming model and the type sys-
tem of [18] also allow for access events parametrized by constants, and for let-
polymorphism. Although omitted for simplicity, these features can be easily re-
covered by using the same techniques of [18]. As a matter of fact, λhist turns out

History-Based Access Control with Local Policies 331

to be the sub-calculus of λ[] where the scope of policies can only include single
events. Intuitively, a framing ϕ[∗] corresponds to a local check of the regular
policy ϕ on the current history. It is not always possible to transform a program
in λ[] into a program in λhist that obeys the same security properties, pro-
vided that the transformation is only allowed to substitute suitable local checks
for policy framings. Clearly, unrestricted transformations, (e.g. security-passing
style ones that record the set of active framings) can do the job, because λhist

is Turing complete.
Our policy framings roughly resemble the scoped methods of [20]. This con-

struct extends the Java source language by allowing programmers to limit the
sequence of methods that may be applied to an object. A scoped method is
annotated with a regular expression which describe the permitted sequences of
access events. Methods must explicitly declare the sequence of events they may
produce, while we infer them by a type and effect system.

Colcombet and Fradet [7] and Marriot, Stuckey and Sulzmann [13] mix static
and dynamic techniques to transform programs in order to make them obey a
given safety property. Compared to [7, 13], our programming model allows for
local policies, while the other only considers global ones. In future work, we aim
at investigating if a similar mixed approach is feasible in our programming model.
This might be non-trivial, because local policies seem to make the techniques
used in [7, 13] not directly exploitable.

Acknowledgments

We wish to thank the anonymous referees for their insightful comments and
suggestions. This work has been partially supported by EU project DEGAS
(IST-2001-32072) and FET project PROFUNDIS (IST-2001-33100).

References

1. M. Abadi and C. Fournet. Access control based on execution history. In Proc. 10th
Annual Network and Distributed System Security Symposium, 2003.

2. A. Banerjee and D. A. Naumann. History-based access control and secure in-
formation flow. In Workshop on Construction and Analysis of Safe, Secure and
Interoperable Smart Cards (CASSIS), 2004.

3. M. Bartoletti. PhD thesis, Università di Pisa, Submitted.
4. M. Bartoletti, P. Degano, and G. L. Ferrari. Method inlining in the presence of

stack inspection. In Workshop on Issues in the Theory of Security, 2004.
5. J. A. Bergstra and J. W. Klop. Algebra of communicating processes with abstrac-

tion. Theoretical Computer Science, 37:77–121, 1985.
6. F. Besson, T. Jensen, D. Le Métayer, and T. Thorn. Model checking security

properties of control flow graphs. Journal of Computer Security, 9:217–250, 2001.
7. T. Colcombet and P. Fradet. Enforcing trace properties by program transforma-

tion. In Proc. 27th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, 2000.

8. G. Edjlali, A. Acharya, and V. Chaudhary. History-based access control for mobile
code. In Secure Internet Programming, volume 1603 of LNCS, 1999.

332 M. Bartoletti, P. Degano, and G.L. Ferrari

9. J. Esparza. On the decidability of model checking for several μ-calculi and Petri
nets. In Proc. 19th Int. Colloquium on Trees in Algebra and Programming, 1994.

10. P. W. Fong. Access control by tracking shallow execution history. In IEEE Sym-
posium on Security and Privacy, 2004.

11. C. Fournet and A. D. Gordon. Stack inspection: theory and variants. ACM Trans-
actions on Programming Languages and Systems, 25(3):360–399, 2003.

12. A. Igarashi and N. Kobayashi. Resource usage analysis. In Proc. 29th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 2002.

13. K. Marriott, P. J. Stuckey, and M. Sulzmann. Resource usage verification. In Proc.
First Asian Programming Languages Symposium, 2003.

14. A. Sabelfeld and A. C. Myers. Language-based information flow security. IEEE
Journal on selected areas in communication, 21(1), 2003.

15. P. Samarati and S. de Capitani di Vimercati. Access control: Policies, models, and
mechanisms. In FOSAD Tutorial Lectures, volume 2171 of LNCS. Springer, 2001.

16. F. Schneider, G. Morrisett, and R. Harper. A language-based approach to security.
In Informatics: 10 Years Back, 10 Years Ahead. Springer, 2001.

17. F. B. Schneider. Enforceable security policies. ACM Transactions on Information
and System Security (TISSEC), 3(1):30–50, 2000.

18. C. Skalka and S. Smith. History effects and verification. In Asian Programming
Languages Symposium, 2004.

19. J.-P. Talpin and P. Jouvelot. The type and effect discipline. In Proc. 7th IEEE
Symposium on Logic in Computer Science, 1992.

20. G. Tan, X. Ou, and D. Walker. Resource usage analysis via scoped methods. In
Foundations of Object-Oriented Languages, 2003.

21. M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In Proc.
Banff Higher order workshop conference on Logics for concurrency, 1996.

22. D. Walker. A type system for expressive security policies. In Proc. 27th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 2000.

Composition and Decomposition in True-Concurrency

Sibylle Fröschle�

Institute of Informatics, University of Warsaw, Poland
sib@mimuw.edu.pl

Abstract. The idea of composition and decomposition to obtain computability
results is particularly relevant for true-concurrency. In contrast to the interleaving
world, where composition and decomposition must be considered with respect to
a process algebra operator, e.g. parallel composition, we can directly recognize
whether a truly-concurrent model such as a labelled asynchronous transition sys-
tem or a 1-safe Petri net can be dissected into independent ‘chunks of behaviour’. In
this paper we introduce the corresponding concept ‘decomposition into indepen-
dent components’, and investigate how it translates into truly-concurrent bisimu-
lation equivalences. We prove that, under a natural restriction, history preserving
(hp), hereditary hp (hhp), and coherent hhp (chhp) bisimilarity are decomposable
with respect to prime decompositions. Apart from giving a general proof tech-
nique our decomposition theory leads to several coincidence results. In particular,
we resolve that hp, hhp, and chhp bisimilarity coincide for ‘normal form’ basic
parallel processes.

1 Introduction

In the finite-state world truly-concurrent problems are typically harder than their inter-
leaving counterparts. This is demonstrated by the following examples. Model-checking
CTL is well-known to be polynomial-time but model-checking CTLP is NP-hard [1].
The problem of synthesizing controllers for discrete event systems is decidable in an in-
terleaving setting and can be computed in polynomial-time; in a truly-concurrent setting
the problem is undecidable [2]. Classical bisimilarity is polynomial-time decidable while
hereditary history preserving (hhp) bisimilarity has been proved undecidable [3]; plain
history preserving (hp) bisimilarity is decidable [4] but has been shown DEXPTIME-
complete [5, 6].

There is, however, a positive trend for true-concurrency in the infinite-state world.
The above effect seems reversed for basic parallel processes (BPP). Under interleaving
semantics a small fragment of a logic equivalent to CTL∗ is undecidable for very basic
BPP; under partial order interpretation the full logic is decidable for BPP [7]. Trace
equivalence on BPP is undecidable but pomset trace and location trace equivalence on
BPP are shown decidable in [8]. Classical bisimilarity on BPP is PSPACE-complete
[9, 10]; in contrast, for BPP, distributed bisimilarity, and with it hp bisimilarity, are
polynomial-time decidable [11]. The positive trend is further confirmed by results of

� This work was supported by the EPSRC Grants GR/M84763 and GR/R16891, and the European
Community Research Training Network ‘GAMES’.

V. Sassone (Ed.): FOSSACS 2005, LNCS 3441, pp. 333–347, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

334 S. Fröschle

[12, 13]: hhp bisimilarity on BPP is decidable and coincides with its strengthening to
coherent hhp bisimilarity.

We can explain this discrepancy as follows. Models such as labelled asynchronous
transition systems (lats’) [14] or labelled 1-safe Petri nets (net systems) faithfully cap-
ture how the transitions of a system are related concerning concurrency and conflict.
The way we allow concurrency and conflict to interact will directly impact on the com-
putational power of truly-concurrent equivalences and logics. The negative results of
[2] and [3] build on the insight that truly-concurrent models have the power to en-
code tiling systems. If the interplay between concurrency and conflict is restricted this
power can be lost [15], and a truly-concurrent concept may be particularly natural to
decide. BPP are infinite-state but, under truly-concurrent semantics, they have a simple
tree-like structure, which has turned out to be directly exploitable: e.g. the decidability
results of [8] follow by a reduction to the equivalence problem of recognizable tree
languages.

In this paper we advocate the following thesis. System classes with a restricted inter-
play between concurrency and conflict often have characteristic decomposition proper-
ties. These might translate into truly-concurrent equivalences or logics in a very concrete
way, and thereby allow us to decide the respective concept by a ‘divide and conquer’
approach.

The idea of decomposition provides one of the crucial techniques to establish de-
cidability and upper complexity bounds in infinite-state verification. For example, the
polynomial-time decision procedure for classical bisimilarity on normed BPP [16] is
based on the following insight:1 any normed BPP can be expressed uniquely, up to
bisimilarity, as a parallel composition of prime factors [18]. A process is prime if it
is not the nil process and it is irreducible with respect to parallel composition, up to
bisimilarity. Such a decomposition theory translates into cancellation properties of the
form “P ||Q ∼ R ||Q implies P ∼ R”, which provide the means to reduce pairs of
processes to compare into smaller pairs of processes to check. Questions about prime
decomposability were first addressed by Milner and Moller in [19].

In the interleaving world, decomposition must be considered with respect to a process
algebra operator, e.g. parallel composition, and the behavioural equivalence of choice:
can a process term P be expressed as a process term Q of particular form, a parallel
composition of prime processes, such that P and Q are bisimilar? In contrast, in true-
concurrency, decomposition can be considered at the level of the semantic model: we can
directly recognize whether a lats or net system can be dissected into independent ‘chunks
of behaviour’. Having fixed a specific decomposition view on the level of the model we
can then separately investigate whether this view translates into a given equivalence.
For example, we might suspect: if two parallel compositions of sequential systems, say
S and S′, are equivalent under a truly-concurrent bisimilarity then there is a one-to-
one correspondence between the components of S and those of S′ such that related
components are equivalent. For classical bisimilarity this decomposition property will
certainly not hold: a||b is bisimilar to a.b+ b.a.

1 Very recently this result has been improved to O(n3) by an algorithm that does not use decom-
position in this sense [17].

Composition and Decomposition in True-Concurrency 335

There are two axioms of independence: (1) If two independent transitions can occur
consecutively then they can also occur in the opposite order. (2) If two independent
transitions are enabled at the same state then they can also occur one after the other.
This indicates that decomposition is inherently connected to the shuffling of transitions:
the behaviour of a system corresponds to the shuffle product of the behaviour of its
independent components. Therefore, decomposition theorems provide an important tool
to establish coincidence between hp, hhp, and chhp bisimilarity: proving that the three
equivalences coincide amounts to proving that whenever two systems are hp bisimilar
there exists a hp bisimulation that satifies specific shuffle properties, the hereditary and
coherent condition.

The contribution of this paper is threefold: (1) We transfer the idea of prime decompo-
sition to the truly-concurrent world. (2) We analyse whether this concept translates into
truly-concurrent bisimulation equivalences. We show that, under a natural restriction,
hp, and also, hhp and chhp bisimilarity are indeed decomposable with respect to prime
decompositions. (3) We apply our decomposition theory to obtain coincidence results.
In particular, this gives us several positive results for hhp bisimilarity, a concept which
is renowned for being difficult to analyse. In more detail, after presenting the necessary
definitions in Section 2, we proceed as follows.

In Section 3 we introduce the notion ‘decomposition into independent components’
and a corresponding concept of prime component for the model of lats’; components are
defined as concrete sub-systems of the respective lats. We show that every non-empty
system uniquely decomposes into its set of prime components.

In Section 4 we show that hp, hhp, and chhp bisimilarity are composable with respect
to decompositions in the following sense: assume two systems S1, S2, each decomposed
into a set of independent components; whenever we can exhibit a one-to-one correspon-
dence between the components of S1 and those of S2 such that related components are
hp (hhp, chhp) bisimilar then S1 and S2 are hp (hhp, chhp) bisimilar. This is straight-
forward but guarantees the soundness of our decomposition approach. It is related to
congruence in the process algebra world: if P ∼ P ′ and Q ∼ Q′ then P ||Q ∼ P ′ ||Q′.

Section 5 is the core of the paper: we analyse whether hp, hhp, and chhp bisimilarity
are decomposable in the converse sense. We demonstrate that hp bisimilarity is not
decomposable with respect to prime decompositions. However, we identify a natural
restriction under which this is indeed given for hp, and also, hhp and chhp bisimilarity:
for systems whose prime components are, what we shall call, concurrent step connected
(csc). We obtain: whenever two csc-decomposable systems S1, S2 are hp (hhp, chhp)
bisimilar then there is a one-to-one correspondence between the prime components of
S1 and those of S2 such that related components are hp (hhp, chhp) bisimilar. The proof
of this statement is non-trivial. In particular, we require the combinatorial argument of
Hall’s Marriage Theorem.

In Section 6 we apply our (de)composition theory to prove several coincidence re-
sults. As an immediate consequence we obtain coincidence between hp, hhp, and chhp
bisimilarity for parallel compositions of sequential systems. Most interesting is, perhaps,
that this intuitive result has turned out non-trivial to prove, and that the key insight behind
it is of general significance. By employing our (de)composition theory in an inductive

336 S. Fröschle

argument we extend the coincidence result to the class concurrency-degree bounded
communication-free net systems.

Most importantly, we resolve that hp, hhp, and chhp bisimilarity coincide for the
simple basic parallel processes (SBPP) of [7]. SBPP correspond to BPP in normal form,
which in the interleaving world represent the entire BPP class; in true-concurrency they
form a strictly smaller class. The coincidence for SBPP complements the positive results
already achieved for (h)hp bisimilarity on BPP. Via [11] it follows that hhp bisimilarity
on SBPP is polynomial-time decidable. Since hp and hhp bisimilarity do not coincide
for BPP in general, the coincidence for SBPP underlines that SBPP and BPP do behave
differently in the truly-concurrent world.

In Section 7 we conclude the paper and point to future research. Most of the proofs
are kept informal in this extended abstract; a detailed account can be found in [20].
Our primary model is lats’, but we also informally employ net systems, which can be
understood as a class of lats’; for the definition of net systems we also refer to [20].

2 Preliminaries

Systems. A labelled (coherent) asynchronous transition system (for this paper simply
system) is defined as a structure S = (SS , s

i
S , TS ,→S , IS , lS), where SS is a set of

states with initial state siS ∈ SS , TS is the set of transitions2,→S⊆ SS×TS×SS is the
transition relation, IS ⊆ TS×TS , the independence relation, is an irreflexive, symmetric
relation, and lS : TS → Act is the labelling function, where Act = {a, b, . . .} is a set
of actions, such that

1. t ∈ TS =⇒ ∃s, s′ ∈ SS . s
t→S s′,

2. s
t→S s′ & s

t→S s′′ =⇒ s′ = s′′,
3. t1 IS t2 & s

t1→S s1 & s1
t2→S u =⇒ ∃s2. s

t2→S s2 & s2
t1→S u, and

4. t1 IS t2 & s
t1→S s1 & s

t2→S s2 =⇒ ∃u. s1
t2→S u & s2

t1→S u.

We lift →S to sequences of transitions in the usual way. We also lift IS to sequences
and sets of transitions, e.g. we write t1 . . . tn IS t′1 . . . t

′
m iff ti IS t′j for all i ∈ [1, n],

j ∈ [1,m]. In this paper we assume a further axiom:

5. s ∈ SS =⇒ ∃w ∈ T ∗
S . s

i
S

w→ s.

Axiom (1) says that every transition can occur from some state, and axiom (2) that
the occurrence of a transition at a state leads to a unique state. Axioms (3) and (4) express
the two axioms of independence mentioned in the introduction. Our additional axiom (5)
specifies that every state is reachable from the initial state. A system S is finite iff SS

and TS are finite sets. S is empty iff TS = ∅, and non-empty otherwise.
Let S be a system, and s ∈ SS . The transitions of Tc ⊆ TS are concurrently enabled

at s, Tc ∈ cenablS(s), iff ∀t ∈ Tc. ∃s′. s t→ s′ and ∀t, t′ ∈ Tc. t
= t′ ⇒ t IS t′.
We define the smallest upper bound on the number of transitions that are concurrently

2 in the sense of Petri net boxes.

Composition and Decomposition in True-Concurrency 337

enabled at s by cboundS(s) = min{κ | ∀Tc ∈ cenablS(s). |Tc| ≤ κ}.S is concurrency-
degree finite iff for each s ∈ SS , cboundS(s) ∈ IN0. E.g., finitely branching systems are
always concurrency-degree finite. We only consider systems that are concurrency-
degree finite.

Partial Order Runs. A pomset is a labelled partial order; specified via a labelled strict
order, it is a tuple p = (Ep, <p, lp), whereEp is a set of events,<p a strict order relation
on Ep, and lp a labelling function lp : Ep → Act . A function g is an isomorphism
between pomset p and pomset q iff g : Ep → Eq is a bijection such that (1) lp = lq ◦ g,
and (2) e <p e

′ iff g(e) <q g(e′) for all e, e′ ∈ Ep.
Assume a system S. Let r = t1t2 . . . tn ∈ T ∗

S be a sequence of transitions. We write
|r| for the length of r, that is |r| = n; for any i ∈ [1, |r|] we denote the ith transition
of r, ti, by r[i]. r is a run of S, r ∈ Runs(S), iff siS

r→ s for some state s ∈ SS . The
pomset of r, pom(r), has as events the integers from 1 to n, where the label of event
i is lS(ti), and the strict ordering is the transitive closure of the following “proximate
cause” relation: event i proximately causes event j, written i <prox

r j, iff i < j and ti
and tj are not independent in S. We denote this strict ordering on [1,n] by ‘<r’.

Hp, Hhp, and Chhp Bisimilarity. Hp bisimilarity relates two systems whose behaviour
can be bisimulated while preserving the labelling of transitions and the causal depen-
dencies between them. Technically, this can be realized by basing hp bisimulation on
pairs of synchronous runs [5]: intuitively, two runs are synchronous if their induced
pomsets are isomorphic, and both runs correspond to the same linearization of the asso-
ciated pomset isomorphism class. Formally, this amounts to: let S1, S2 be two systems;
r1 ∈ Runs(S1) and r2 ∈ Runs(S2) are synchronous, (r1, r2) ∈ SRuns(S1, S2), iff
the identity function on [1, |r1|] is an isomorphism between pom(r1) and pom(r2). A
set H ⊆ SRuns(S1, S2) is prefix-closed iff (r1t1, r2t2) ∈ H implies (r1, r2) ∈ H. As
noted in [21] it is safe to restrict our attention to prefix-closed hp bisimulations.

Hhp bisimilarity is obtained from hp bisimilarity by the addition of a backtracking
requirement, and chhp bisimilarity furthermore imposes a padding requirement. These
conditions reflect the first and, respectively, second axiom of independence.

Definition 1. Let S1 and S2 be two systems. A history preserving (hp) bisimulation
relating S1 and S2 is a prefix-closed relationH ⊆ SRuns(S1, S2) that satisfies:

1. (ε, ε) ∈ H.
2. If (r1, r2) ∈ H and r1t1 ∈ Runs(S1) for some t1 ∈ T1, then there is t2 ∈ T2 such

that (r1t1, r2t2) ∈ H.
3. Vice versa.

A hp bisimulationH is hereditary (h) when it further satisfies:

4. If (r1t1w1, r2t2w2) ∈ H for some w1 ∈ T ∗
1 , w2 ∈ T ∗

2 , t1 ∈ T1, and t2 ∈ T2 such
that |w1| = |w2|, t1 I1 w1 (or t2 I2 w2 equivalently), then (r1w1, r2w2) ∈ H.

A hhp bisimulationH is coherent (c) when it further satisfies:

5. If (r1w1, r2w2), (r1t1, r2t2) ∈ H for some w1 ∈ T ∗
1 , w2 ∈ T ∗

2 , t1 ∈ T1, and
t2 ∈ T2 such that |w1| = |w2|, t1 I1 w1, and t2 I2 w2, then (r1t1w1, r2t2w2) ∈ H.

338 S. Fröschle

S1 and S2 are ((c)h)hp bisimilar, written S1 ∼((c)h)hp S2, iff there exists a ((c)h)hp
bisimulation relating them. Given two systems S1 and S2, we also use ∼((c)h)hp to
denote the set

⋃
{H : H is a ((c)h)hp bisimulation relating S1 and S2}. (Note: chhp

bisimulations are not closed under union; so, ∼chhp is not necessarily the largest chhp
bisimulation.)

Further Concepts. Let A, B be alphabets. For r ∈ A∗, if B ⊆ A, let r↑B denote the
sequence obtained by erasing from r all occurrences of letters which are not in B. If
B = Tc for some system c we write r↑c short for r↑Tc.

The shuffle of n words u1, . . . , un ∈ A∗ is the set u1 ⊗ · · · ⊗ un of all words of
the form u1,1u2,1 · · ·un,1u1,2u2,2 · · ·un,2 · · ·u1,ku2,k · · ·un,k with k ≥ 0, ui,j ∈ A∗,
such that ui,1ui,2 · · ·ui,k = ui for 1 ≤ i ≤ n [22]. We carry this notation over to pairs
(u,w) ∈ A∗ ×B∗ satisfying |u| = |w|, considering that such entities can be viewed as
words in (A×B)∗.

3 Decomposed Systems

We now introduce our notion of ‘decomposition into independent components’. Com-
ponents are defined as concrete sub-systems of the respective system.

Let S be a system. A system c is a sub-system of S iff

1. Sc ⊆ SS ,
2. sic = siS ,

3. Tc ⊆ TS ,
4. →c =→S ∩ (Sc × Tc × Sc),

5. Ic = IS ∩ (Tc × Tc), and
6. lc = lS Tc

.

Let c1 and c2 be two sub-systems of S. We say c1 and c2 are independent (with respect
to S), written c1 IS c2, iff Tc1 IS Tc2 . The empty sub-system of S is defined by cSempty =
({siS}, siS , ∅, ∅, ∅, ∅).

Definition 2. A decomposition of a system S is a set D = {c1, . . . , cn}, n ∈ IN, of
sub-systems of S such that

1. ∀i, j ∈ [1, n]. (i
= j =⇒ ci IS cj), and
2. Runs(S) =

⋃
{r1 ⊗ · · · ⊗ rn | ri ∈ Runs(ci) for all i ∈ [1, n]}.

A decomposed system is a pair (S,D), where D is a decomposition of system S.

Every system S has at least one decomposition: the one consisting of S itself. A
system may well have many different decompositions: e.g., P = a.0 || b.0 || c.0 can be
decomposed into{(a.0 || b.0), c.0}, into{a.0, (b.0 || c.0)}, and into {a.0, b.0, c.0}. Every
non-empty system will, however, uniquely decompose into a set of prime components.

Definition 3. A sub-system c of a system S is a divisor of S iff there exists a decompo-
sition D of S such that c ∈ D. A system S is prime iff S is non-empty, and cSempty and
S are the only divisors of S.

Theorem 1. Each non-empty system S has a unique decomposition D such that for all
c ∈ D c is prime.

Composition and Decomposition in True-Concurrency 339

Proof (Sketch). This can be established following the standard proof of unique prime
factorization of natural numbers (see e.g. [23]). Instead of proceeding by induction on
IN, we proceed by induction on the smallest upper bound on the number of transitions
that can occur concurrently at the initial state. This is possible due to our restriction to
concurrency-degree finite systems.

Definition 4. We define the prime components of a system S, denoted by PComps(S),
as follows: if S is empty we set PComps(S) = ∅, otherwise we define PComps(S) to
be the decomposition associated with S by Theorem 1.

Theorem 2. Let S be a finite system. PComps(S) is computable.

Proof (Sketch). Let S be a non-empty finite system. We partition TS into non-empty
subsets such that each subset is a connected component with respect to the dependence
relation (the complement of IS). The sub-systems naturally induced by these sets of
transitions are prime and together they form a decomposition of S.

Convention 1. In the context of a decomposed system (S,D) we use the following
decomposition functions: K : TS → D, defined by K(t) = ci ⇐⇒ t ∈ Tci , and
Ks : T ∗

S → P(D), defined by Ks(w) = {K(t) | t ∈ w}. (K is a function by clause (1)
of the definition of decomposition, and the irreflexivity of independence.)
If it is clear from the context that a system S is non-empty and there is no other decom-
position specified, we understand S as the decomposed system S = (S,PComps(S)).

4 Composition

Hp, hhp, and chhp bisimilarity are composable with respect to decompositions in the
following sense: whenever we can exhibit a one-to-one correspondence between the
components of two decomposed systems such that related components are hp (hhp,
chhp) bisimilar then the two systems are hp (hhp, chhp) bisimilar.

Theorem 3. Let x ∈ {hp, hhp, chhp}; let (S1,D1) and (S2,D2) be two decomposed
systems. If there exists a bijection β : D1 → D2 such that c1 ∼x β(c1) for each c1 ∈ D1
then we have S1 ∼x S2.

Proof (Sketch). Let (S1,D1) and (S2,D2) be two decomposed systems. Assume we
are given a bijection β : D1 → D2, say β = {(c11, c12), . . . , (cn1 , cn2)}, and a family
{Hi}ni=1 such that for all i ∈ [1, n]Hi is a hp bisimulation relating ci1 and ci2. We define
H =

⋃
{r1 ⊗ · · · ⊗ rn | ri ∈ Hi for all i ∈ [1, n]}. It is straightforward to check that

H is a hp bisimulation relating S1 and S2. Furthermore, it is routine to establish: if for
all i ∈ [1, n] Hi is hereditary then H will also be hereditary; if for all i ∈ [1, n] Hi is
coherent thenH will also be coherent.

340 S. Fröschle

5 Decomposition

It is trivial that hp, hhp, and chhp bisimilarity are not decomposable in the converse
sense: as we saw P = a.0 || b.0 || c.0 can be decomposed into {(a.0 || b.0), c.0} and
also into {a.0, (b.0 || c.0)}; but certainly we cannot exhibit a bijection between the two
decompositions such that related components are bisimilar. The more natural question
to ask is whether a notion of equivalence is decomposable with respect to prime decom-
positions.

The example of Figure 1 demonstrates hp bisimilarity is not decomposable in this
sense, either. On the one hand, A and B are hp bisimilar. The additional transition b′3
in B can easily be hidden by adopting the following strategy: if b′3 occurs as the first
transition we will match it against b1. Then in both systems ‘parallel b’ is the only
remaining behaviour, and b′1 can safely be matched by b2. If we start out with b′1 we will
match it against b1. Then the a-transition is disabled in both systems, and this time it will
be safe to match b′3 by b2. On the other hand, a bijection between the prime components
of A and those of B can clearly not be found.

A1 A2

BA

b′1 b′3 b′2a′b1 b2a

Fig. 1. The transitions of A and B are labelled as their names suggest: e.g. l(b′1) = b. A consists
of two prime components: A1 and A2; B has only one prime component: B itself

A and B are not (c)hhp bisimilar: at (b1b2, b′1b
′
3) we can backtrack (b1, b′1); then

the a-transition becomes available in A but not in B. In Section 7 we will briefly
discuss whether (c)hhp bisimilarity may be decomposable with respect to prime de-
compositions. Here we want to analyse whether there are conditions under which we
do obtain decomposition for hp bisimilarity; this is important with respect to establish-
ing coincidence results. We will find that, on systems whose prime components are,
what we shall call, concurrent step connected (csc), hp, and also hhp and chhp, bisim-
ilarity are indeed decomposable with respect to prime decompositions: whenever two
csc-decomposable systems are hp (hhp, chhp) bisimilar then there is a one-to-one corre-
spondence between their prime components such that related components are hp (hhp,
chhp) bisimilar.

We start out by explaining two special types of runs, which will play a key role in
the proof. A run r is a concurrent step iff all the transitions on r occur independently of
each other. A run r is maximal with respect to initial concurrency iff whenever a further
transition t is executed at r, t will occur causally dependent on some transition on r.

Composition and Decomposition in True-Concurrency 341

Definition 5. Let S be a system, and r ∈ Runs(S).
r is a concurrent step of S, written r ∈ csteps(S), iff we have:
∀k, l ∈ [1, |r|]. (k
= l⇒ r[k] IS r[l]).

r is maximal with respect to initial concurrency, written r ∈ icmax (S), iff we have:
∀t ∈ TS . (rt ∈ Runs(S) ⇒ ∃i ∈ [1, |r|]. i <rt |rt|).

Clearly, in pairs of synchronous runs, and hence in hp bisimilarity, concurrent steps
are always matched against concurrent steps.

Fact 1. Let S1 and S2 be two systems. For all (r1, r2) ∈ SRuns(S1, S2) we have:
r1 ∈ csteps(S1) ⇐⇒ r2 ∈ csteps(S2).

With the concept ‘maximal with respect to initial concurrency’ it is easy to identify
a scenario which, given two decomposed systems (S1,D1), (S2,D2), allows us to infer
that two components c1 ∈ D1, c2 ∈ D2 are hp (hhp, chhp) bisimilar:

Lemma 1. Let x ∈ {hp, hhp, chhp}; let (S1,D1), (S2,D2) be two decomposed sys-
tems. For any pair c1 ∈ D1, c2 ∈ D2 we have: if there exists (r1, r2) ∈ ∼x such that for

i = 1, and 2
{
ci
∈ Ks(ri), and
∀c′i ∈ Di\ci. ri ↑c′i∈ icmax (c′i)

}
then c1 ∼x c2.

Proof (Sketch). Given entities as above, we can extract a hp (hhp, chhp) bisimulation
relating c1 and c2 from any hp (hhp, chhp) bisimulation containing (r1, r2). This is so
because: (1) the full behaviour of c1 and c2 has still to be matched at (r1, r2), and (2) the
causal dependencies will force that behaviour of c1 has to be matched against behaviour
of c2, and vice versa.

From the example of Figure 1 it is clear that, given two hp bisimilar systems, we
may never be in a position to apply this lemma. A and B are hp bisimilar but there
is no (r1, r2) ∈ ∼hp such that, via Lemma 1, we can deduce c1 ∼hp c2 for any
c1 ∈ PComps(A), c2 ∈ PComps(B): if B, the only prime component of B, is not
contained in Ks(r1) then (r1, r2) = (ε, ε); but we neither have ε ∈ icmax (A1) nor
ε ∈ icmax (A2).

The scenario of Lemma 1 will, however, certainly be available if for the system class
under study we can show: the matching in hp bisimilarity respects prime components
in that: let (r1, r2) ∈ ∼hp; if, in (r1, r2), a transition of prime component c1 is matched
to a transition of prime component c2, then, in (r1, r2), any other transition of c1 is
also matched to a transition of c2, and vice versa. Then, given (r1, r2) ∈ ∼hp, r1 is
‘maximal with respect to initial concurrency’ for all but one prime component c1 such
that c1
∈ Ks(r1) iff the analogue is true for r2. On second thought, to guarantee the
applicability of Lemma 1 it is sufficient to obtain that the matching of concurrent steps
(rather than the matching of all runs) respects prime components: concurrent steps can
be seen as the minimum to consider when we want to achieve maximality with respect
to initial concurrency.

We now identify a system class, as large as intuitively possible, which naturally
satisfies this criteria: csc-decomposable systems. They have the following characteristic:
each of their prime components is cstep connected (csc) in that: whenever we have
computed a concurrent step r and we compute one further concurrently enabled transition

342 S. Fröschle

t then there is the possibility of computing a sequence of transitions w such that the last
transition of w is causally dependent on t and some transition of r. In short we may say:
every concurrent step has a causal link with any further concurrently enabled transition.

Definition 6. Let S be a system.
Let r ∈ Runs(S), and k, l ∈ [1, |r|]. w ∈ T+

S is a causal link at r between the events k
and l, denoted by w ∈ clinksS(r, k, l), iff we have:

rw ∈ Runs(S) & k <rw |rw| & l <rw |rw|.
S is cstep connected (csc) iff for all r ∈ csteps(S) with |r| ≥ 1 we have:
∀t ∈ TS . (rt ∈ csteps(S) ⇒ ∃k ∈ [1, |r|]. ∃w ∈ T+

S . w ∈ clinksS(rt, k, |rt|)).
S is csc-decomposable iff every prime component of S is csc. (Note that non-empty csc
systems are always prime.)

Example 1. Consider Figure 1. B is not csc: we can do b′1, and then b′3, but there is no

causal link between b′1 and b′3. Sequential systems (¬(∃s, s′, t, t′. t IS t′ & s
tt′→S s′)),

such as A1 and A2, and initially sequential systems (∀r ∈ csteps(S). |r| ≤ 1) are
trivially csc.

Lemma 2. Let S1 and S2 be two csc-decomposable systems. For all (r1, r2) ∈ ∼hp

such that ri ∈ csteps(Si) for i = 1, or 2 equivalently (Fact 1), we have:
∀k, l ∈ [1, |r1|]. (K(r1[k]) = K(r1[l]) ⇐⇒ K(r2[k]) = K(r2[l])).

Proof (Sketch). We proceed by induction on the length of two related concurrent steps.
Let (r1, r2) be given as above. Assume, in (r1, r2), a transition of prime component
c1 is matched to a transition of prime component c2, and we want to match a further
concurrently enabled c1-transition, t1. There will be a causal link at r1t1 between event
|r1t1| and one of the previously matched c1-events. By induction hypothesis we can
assume these are all matched by c2-events. But then t1 has to be matched by a c2-
transition: otherwise the causal link could not be matched in a partial order preserving
fashion.

It is routine to derive the following corollaries:

Corollary 1. Let S1 and S2 be two csc-decomposable systems.

1. For all (r1, r2) ∈ ∼hp such that ri ∈ csteps(Si) for i = 1, or 2 equivalently
(Fact 1), we have: |Ks(r1)| = |Ks(r2)|.

2. If S1 ∼hp S2 then |PComps(S1)| = |PComps(S2)|.

Corollary 2. Let S1 and S2 be two csc-decomposable systems, and let (r1, r2) ∈ ∼hp

such that ri ∈ csteps(Si) for i = 1, or 2 equivalently (Fact 1). For any pair of compo-
nents c1 ∈ PComps(S1), c2 ∈ PComps(S2) such that K(r1[k]) = c1 and K(r2[k]) =
c2 for some k ∈ [1, |r1|] we have: r1 ↑c1∈ icmax (c1) ⇐⇒ r2 ↑c2∈ icmax (c2).

For hhp and chhp bisimilarity there is now a simple argument that proves, for csc-
decomposable systems, the two bisimilarities are indeed decomposable with respect to

Composition and Decomposition in True-Concurrency 343

prime decompositions (c.f. [20]). This argument relies on backtracking; considering hp
bisimilarity it is only obvious that, given two csc-decomposable systems S1, S2 with
S1 ∼hp S2, a bijection between PComps(S1) and PComps(S2) exists, and further, for
each c1 ∈ PComps(S1) there is c2 ∈ PComps(S2) such that c1 ∼hp c2, and vice versa.
To prove decomposition for hp bisimilarity we need something more sophisticated: the
combinatorial argument of Hall’s Marriage Theorem (e.g. see [24]).

Theorem 4. Let x ∈ {hp, hhp, chhp}; let S1, S2 be two csc-decomposable systems.
If S1 ∼x S2 then there exists a bijection β : PComps(S1) → PComps(S2) between
the prime components of S1 and those of S2 such that c1 ∼x β(c1) for each c1 ∈
PComps(S1).

Proof. Let x, S1, S2 be given as above, and assume S1 ∼x S2. We shall prove that
a bijection β exists as required. By Corollary 1(2) we have (A) |PComps(S1)| =
|PComps(S2)|, and it only remains to show that an injective map can be found. For
each c1 ∈ PComps(S1) let C2c1

be the set of prime components of S2 which are
x bisimilar to c1. By Hall’s Marriage Theorem the required injection exists if and only
if the following condition is fulfilled:

(∗) ∀C1 ⊆ PComps(S1). |
⋃

c1∈C1

C2c1
| ≥ |C1|.

Choose an arbitrary subset C1 of PComps(S1). Let C̄1 = PComps(S1)\C1, and
consider r1 ∈ csteps(S1) such that (B) Ks(r1) = C̄1, and ∀c1 ∈ C̄1. r1 ↑ c1 ∈
icmax (c1); this is clearly possible. There must be r2 such that (r1, r2) ∈ ∼x; set
C̄2 = Ks(r2), and C2 = PComps(S2)\C̄2. By Corollary 2 we obtain ∀c2 ∈ C̄2. r2 ↑
c2 ∈ icmax (c2). On the other hand, (B) and Corollary 1(1) give us |C̄1| = |C̄2|, and
considering (A) we gain (C) |C1| = |C2|. Next we show that for each remaining com-
ponent c2 ∈ C2 there is a component c1 ∈ C1 such that c1 ∼x c2. With (C) this will
immediately establish |

⋃
c1∈C1

C2c1
| ≥ |C1|, and thereby (∗).

Assume C2 is non-empty, and choose any c2 ∈ C2. Consider r′2 such that r2r′2 ∈
csteps(S2), Ks(r′2) = C2\c2, and ∀c′2 ∈ C2\c2. r′2 ↑ c′2 ∈ icmax (c′2); this is clearly
possible. Note that altogether we have (D) Ks(r2r′2) = PComps(S2)\c2, and ∀c′2 ∈
PComps(S2)\c2. r2r′2 ↑ c′2 ∈ icmax (c′2). There must be r′1 such that (r1r′1, r2r

′
2) ∈

∼x. Corollary 1(1) gives us |Ks(r1r′1)| = |Ks(r2r′2)|, and by (D), (A), and (B) this
implies Ks(r1r′1) = PComps(S1)\c1 for some c1 ∈ C1. By Corollary 2 we obtain
∀c′1 ∈ PComps(S1)\c1. r1r′1 ↑c′1∈ icmax (c′1). But altogether this means we can apply
Lemma 1 to infer c1 ∼x c2. Thus, c1 provides a component exactly as required.

6 Coincidence Results

We now apply our composition and decomposition theory to prove several coincidence
results on hp, hhp, and chhp bisimilarity. First of all, our theory gives us a general proof
technique: whenever we consider whether (any two of) the three equivalences coincide
for a class of csc-decomposable systems, we can restrict our attention to the respective
class of prime components. This is immediate by the following argument:

344 S. Fröschle

Argument 1. Assume two csc-decomposable systems S1 and S2 that are hp bisimilar.
By Theorem 4(hp) we obtain a bijection between the prime components of S1 and those
of S2 such that related components are hp bisimilar. Then, provided that hp, hhp, and
chhp bisimilarity coincide for the class of the prime components, by Theorem 3(chhp)
we can conclude that S1 and S2 are chhp (and thus also hhp) bisimilar.

It is folklore that for sequential systems hp, hhp, and chhp bisimilarity all coincide
with classical bisimilarity (e.g. see [13]). Furthermore, we have already mentioned that
sequential systems are csc. Then, with the previous argument we obtain:

Theorem 5. Hp, hhp, and chhp bisimilarity coincide for parallel compositions of se-
quential systems. (Formally, a parallel composition of sequential systems is a system
which can be decomposed into sequential components.)

Consider the following generalization of the class ‘parallel compositions of sequen-
tial systems’: each system S is a parallel composition of initially sequential components
such that each component may, by performing a transition, fork into a parallel compo-
sition of initially sequential sub-components, each of which may in turn evolve into a
parallel composition of initially sequential sub-components, and so on; this description
is complete in that we do not allow any communication between parallel threads. This
system class is best known as, and most conveniently captured by, communication-free
net systems3. (Formally, a net system N is communication-free iff ∀t ∈ TN . |•t| = 1.)

If a communication-free net system S is concurrency-degree bounded in that the
smallest upper bound on the number of transitions that can be concurrently enabled in S
with respect to any state, cbound(S), is given by a natural number, then, for each proper
component c of S, cbound(c) will be strictly smaller than cbound(S). With Argument 1
we then obtain coincidence for concurrency-degree bounded communication-free net
systems by induction on cbound(S).

Definition 7. Let S be a system. The smallest upper bound on the number of transitions
that can be concurrently enabled in S with respect to any state, cbound(S), is defined by
max{cboundS(s) | s ∈ SS}. S is councurrency-degree bounded iff cbound(S) ∈ IN0.

Theorem 6. Two councurrency-degree bounded communication-free net systems are hp
bisimilar iff they are hhp bisimilar iff they are chhp bisimilar.

By translating Argument 1 into a tableau system, we achieve coincidence for simple
basic parallel processes (SBPP). These can be interpreted as an orthogonal class of
communication-free net systems3: we lift the restriction to concurrency-degree bounded
systems, but require our systems to be finitely representable. Following [7], SBPP
are defined by process expressions of the grammar: E ::= S | E ||E, where ‘||’
is parallel composition and S is an initially sequential process expression given by:
S ::= 0 | a.E | S +S |X , where 0 is the empty process, a.E, where a ∈ Act , is action
prefix, ‘+’ is nondeterministic choice, andX is an ‘initially sequential process’variable.
Every SBPP can effectively be transformed into a chhp bisimilar SBPP in normal form.

3 As their unfoldings communication-free net systems also capture the class of communication-
free weighted Petri nets.

Composition and Decomposition in True-Concurrency 345

Definition 8. Let Vars = {X1, X2, . . .} be a set of process variables, and Vars⊗ =
{α, β, . . .} the set of finite multisets over Vars . We identify α = {X,X, Y } with the
parallel composition X ||X ||Y ; the empty multiset is recognized as the process 0.
A SBPP in normal form is a pair E = (E0, ΔE), where E0 ∈ Vars⊗, and ΔE is a
finite family of recursive equations {Xi := Ei | 1 ≤ i ≤ m}. The Xi are distinct, and
the Ei are of the form: a1.α1 + a2.α2 + . . . + an.αn, where n ≥ 1, and ∀i ∈ [1, n].
αi ∈ Vars⊗. Further, ∀i ∈ [0,m], Ei at most contains the variables {X1, . . . , Xm}.

Theorem 7. Two SBPP are hp bisimilar iff they are hhp bisimilar iff they are chhp
bisimilar.

Proof (Sketch). The tableau proof system of Figure 2 gives rise to a decision procedure
that decides whether two SBPP in normal form are hp bisimilar, and at the same time,
whether they are chhp bisimilar. Rule Match provides matching for initially sequential
processes; rule Decomp reflects our decomposition theory, and provides the means to
reduce pairs of processes to check into smaller pairs of processes to compare. Theo-
rem 4(hp) implies forward soundness of Decomp for hp bisimilarity, Theorem 3(chhp)
gives us backwards soundness of Decomp for chhp bisimilarity. Finiteness, complete-
ness for hp bisimilarity, and soundness for chhp bisimilarity of the tableau system can
then be proved by using the standard arguments.

Rec
X = Y

E = F
where (X := E) ∈ ΔE , (Y := F) ∈ ΔF

Match

∑n
i=1 ai.αi =

∑m
j=1 bj .βj

{αi = βf(i)}n
i=1 {αg(j) = βj}m

j=1

where f : [1, n] → [1, m], g : [1, m] → [1, n] are functions such that
∀i ∈ [1, n]. ai = bf(i), and similarly for g.

Decomp
α = β

{X = Y }(X,Y)∈b

where b : α → β is a bijection (relating variable instances).

A node n is a successful terminal iff A node n is an unsuccessful terminal iff

n: 0 = 0, or n: α = β, and a bijection b as required by rule
Decomp does not exist, or

n: X = Y , and there is a node na: X = Y
above n in the tableau.

n:
∑n

i=1 ai.αi =
∑m

j=1 bj .βj , and f and g as
required by rule Match do not exist.

Fig. 2. A tableau system with respect to two SBPP in normal form E and F

7 Conclusions

There are further applications of our decomposition theory. In analogy to Argument 1
decidability of hp (hhp, chhp) bisimilarity on a class of finite-state csc-decomposable
systems reduces to decidability on the respective class of prime components (recall The-

346 S. Fröschle

orem 2). Further, if a system is specified in terms of csc components, our decomposition
theory is profitable with respect to tackling the state explosion problem: we do not need
to check hp (hhp, chhp) bisimilarity on the global state space but we can proceed by
checking the respective equivalence on pairs of components.

One might speculate that (c)hhp bisimilarity is decomposable with respect to prime
decompositions for systems in general: with the help of backtracking one might be able
to prove a general version of Lemma 2; though this may be hard, or at least technically
tedious, to carry through. Furthermore, as pointed out to me by Lasota, in the formulation
of a general version of Lemma 2 and the decomposition theorem, one will have to address
the issue of (c)hhp bisimilar choices: let P = (P1 ||P2) + (P1 ||P2) and Q = P1 ||P2;
clearly P ∼(c)hhp Q but since P is prime there is no bijection between the prime
components of P and those of Q.

It is, of course, also possible to investigate whether a truly-concurrent equivalence
satisfies the unique decomposition property usually investigated in the interleaving set-
ting. (Given some class of process terms, is each of them uniquely, up to the equiv-
alence, represented as a parallel composition of primes?) Indeed, unique decompo-
sition with respect to distributed bisimilarity has been proved for BPP [25]. Note,
however, that decomposition in this sense is not sufficient to establish the results of
Section 6.

We hope this paper motivates the particular significance of composition and de-
composition for true-concurrency: decomposition characteristics of a system class may
translate into truly-concurrent equivalences or logics in a very concrete way, and thereby
lead us to decision procedures and/or coincidence results. In this spirit, the ideas of the
paper can be taken further: one could investigate whether a similar approach is possible
with respect to temporal logics, and, orthogonally, whether our decomposition theory
can be generalized by integrating a concept of synchronization. Indeed, the latter idea
stands behind the result that (c)hhp bisimilarity is decidable for a class of live free-
choice systems [13]. This is so far the only positive result on hhp bisimilarity for a
class that admits a flexible form of synchronization. ([26] presents that hhp bisimilar-
ity is decidable for trace-labelled systems but the proof turned out to be incomplete
[15].)

Acknowledgements. I would like to thank Walter Vogler: he has provided crucial help
by pointing out to me that Hall’s Marriage Theorem has to be applied in the proof of an
earlier version of Theorem 4. I thank Javier Esparza, Mogens Nielsen, Damian Niwinski,
and the anonymous referees for their valuable comments on this work. I thank Monika
Maidl, who has helped to clarify a question related to Theorem 2. Finally, I would like
to thank Slawomir Lasota for pointing out to me the issue of (c)hhp bisimilar choices.

References

1. Penczek, W., Kuiper, R.: Traces and logic. In: The Book of Traces. World Scientific (1995)
307–381

2. Madhusudan, P., Thiagarajan, P.S.: Controllers for discrete event systems via morphisms. In:
CONCUR’98. Volume 1466 of LNCS. (1998) 18–33

Composition and Decomposition in True-Concurrency 347

3. Jurdziński, M., Nielsen, M., Srba, J.: Domino hereditary history preserving bisimilarity is
undecidable. Inform. and Comput. 184 (2003) 343–368

4. Vogler, W.: Deciding history preserving bisimilarity. In: ICALP’91. Volume 510 of LNCS.
(1991) 495–505

5. Jategaonkar, L., Meyer, A.R.: Deciding true concurrency equivalences on safe, finite nets.
TCS 154 (1996) 107–143

6. Montanari, U., Pistore, M.: Minimal transition systems for history-preserving bisimulation.
In: STACS’97. Volume 1200 of LNCS. (1997) 413–425

7. Esparza, J., Kiehn, A.: On the model checking problem for branching time logics and basic
parallel processes. In: CAV’95. Volume 939 of LNCS. (1995) 353–366

8. Sunesen, K., Nielsen, M.: Behavioural equivalence for infinite systems—partially decidable!
In: ICATPN’96. Volume 1091 of LNCS. (1996) 460–479

9. Jančar, P.: Strong bisimilarity on basic parallel processes is PSPACE-complete. In: LICS’03,
IEEE (2003) 216–??.

10. Srba, J.: Strong bisimilarity and regularity of basic parallel processes is PSPACE-hard. In:
STACS’02. Volume 2285 of LNCS. (2002) 535–546

11. Lasota, S.: A polynomial-time algorithm for deciding true concurrency equivalences of basic
parallel processes. In: MFCS’03. Volume 2747 of LNCS. (2003) 521–530

12. Fröschle, S.: Decidability of plain and hereditary history-preserving bisimulation for BPP.
In: EXPRESS’99. Volume 27 of ENTCS. (1999)

13. Fröschle, S.: Decidability and Coincidence of Equivalences for Concurrency. PhD thesis,
University of Edinburgh (2004)

14. Winskel, G., Nielsen, M.: Models for concurrency. In: Handbook of logic in computer science,
Vol. 4. Oxford Univ. Press (1995) 1–148

15. Fröschle, S.: The decidability border of hereditary history preserving bisimilarity. Information
Processing Letters (to appear)

16. Hirshfeld, Y., Jerrum, M., Moller, F.: A polynomial-time algorithm for deciding bisimulation
equivalence of normed basic parallel processes. Mathematical Structures in Computer Science
6 (1996) 251–259

17. Jančar, P., Kot, M.: Bisimilarity on normed basic parallel processes can be decided in time
o(n3). In: AVIS’04. ENTCS (2004)

18. Christensen, S., Hirshfeld, Y., Moller, F.: Decomposability, decidability and axiomatisability
for bisimulation equivalence on basic parallel processes. In: LICS’93, IEEE (1993) 386–396

19. Milner, R., Moller, F.: Unique decomposition of processes. TCS 107 (1993) 357–363
20. Fröschle, S.: Composition and decomposition in true-concurrency. Technical Report 276,

Institute of Informatics, University of Warsaw (2004)
21. Fröschle, S., Hildebrandt, T.: On plain and hereditary history-preserving bisimulation. In:

MFCS’99. Volume 1672 of LNCS. (1999) 354–365
22. Pin, J.E.: Syntactic semigroups. In: Handbook of formal languages, Vol. 1. Springer (1997)

680–746
23. Norman, C.W.: Undergraduate Algebra. Oxford Science Publications (1986)
24. Truss, J.K.: Discrete Mathematics for Computer Scientists. Addison-Wesley (1991)
25. Christensen, S.: Decidability and Decomposition in Process Algebras. PhD thesis, University

of Edinburgh (1993)
26. Mukund, M.: Hereditary history preserving bisimulation is decidable for trace-labelled sys-

tems. In: FST TCS’02. Volume 2556 of LNCS. (2002) 289–300

Component Refinement and CSC Solving
for STG Decomposition�

Mark Schaefer and Walter Vogler

University of Augsburg, Germany
{schaefer, vogler}@informatik.uni-augsburg.de

Abstract. STGs (Signal Transition Graphs) give a formalism for the
description of asynchronous circuits based on Petri nets. To overcome
the state explosion problem one may encounter during circuit synthesis,
a nondeterministic algorithm for decomposing STGs was suggested by
Chu and improved by one of the present authors.

We study how CSC solving (which is essential for circuit synthesis)
can be combined with decomposition. For this purpose the correctness
definition for decomposition is enhanced with internal signals and it is
shown that speed-independent CSC solving preserves correctness. The
latter uses a more general result about correctness of top-down decom-
position. Furthermore, we apply our definition to give the first correctness
proof for the decomposition method of Carmona and Cortadella.

1 Introduction

Signal Transition Graphs (STG) are a formalism for the description of asyn-
chronous circuit behaviour. An STG is a labelled Petri net where the labels de-
note signal changes between logical high and logical low. The synthesis of circuits
from STGs is supported by several tools, e.g. Petrify [5], and it often involves
the generation of the reachability graph, which may have a size exponential in
the size of the STG (state explosion). To cope with this problem, Chu suggested
a nondeterministic method for decomposing an STG (without internal signals)
into several smaller ones [4], see also [10]. While there are strong restrictions
on the structure and labelling of STGs in [4], the improved decomposition algo-
rithm of Vogler, Wollowski and Kangsah [12, 11] works under – comparatively
moderate – restrictions on the labelling only.

Roughly, this decomposition algorithm works as follows. Initially, a partition
of the output signals has to be chosen, and for each set in this partition a
component producing the respective output signals will be constructed as follows.

For each component, our algorithm finds a set of signals that (at least ini-
tially) can be regarded as irrelevant for the output signals under consideration;

� This work was partially supported by the DFG-project ’STG-Dekomposition’
Vo615/7-1.

V. Sassone (Ed.): FOSSACS 2005, LNCS 3441, pp. 348–363, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Component Refinement and CSC Solving for STG Decomposition 349

then, it takes a copy of the original STG and turns each transition correspond-
ing to an irrelevant signal into a dummy (λ-labelled) transition; finally, it tries
to remove all dummy transitions by so-called secure transition contractions and
deletions of (structurally) redundant places or redundant transitions.

In general, our algorithm might find during this process that additional sig-
nals are relevant; then, it has to start anew from a suitably modified copy of the
original STG – which eventually gives a correct component as proven in [12, 11].

Complete state coding (CSC) is an important property for STGs and must
be achieved before an asynchronous circuit can be synthesized; e.g. Petrify
can solve CSC, i.e. modify an STG on the basis of its reachability graph such
that CSC holds. While some decomposition methods [2, 13] have to assume that
the original STG satisfies CSC, our decomposition algorithm is more general
since it does not presuppose this; on the other hand, the methods in [2, 13]
construct components with CSC, while our components might not have CSC.
For each such component one can solve CSC and synthesize a separate circuit
e.g. by using Petrify; compared to solving CSC for the original STG (with
its potentially huge reachability graph) and synthesizing one circuit, this can be
much faster, see experimental results in [12, 11].

One would expect that the components generated by our decomposition al-
gorithm are still correct when they have been modified to achieve CSC, and in
fact it would also be very interesting in what sense CSC-solving with Petrify
is correct – independently of the issue of decomposition; it seems that no cor-
rectness for this has been proven so far. For such correctness results, one needs
a correctness definition that takes internal signals into account.

The purpose of this paper is to enhance the correctness definition of [12] and
[11] appropriately, to study its properties and give applications in the area of
decomposition and CSC-solving.

As the main property of the new correctness notion, we show that it is pre-
served when decomposition is performed stepwise. While this correctness of top-
down decomposition is of interest in itself, it can in particular be used to improve
the efficiency of our decomposition algorithm. Then we prove that CSC-solving
for speed-independent circuits as performed by Petrify is correct in our sense.
With our result on the correctness of top-down decomposition, we then con-
clude that speed-independent CSC-solving can indeed be combined with the
decomposition algorithm of [12, 11]. As another contribution, we prove that the
decomposition method in [2] is correct in the sense of our enhanced correctness
definition; in [2] itself, no correctness proof is given.

The paper is organized as follows. In the next section, Petri Nets, STGs
and their basic notions are introduced. Furthermore the correctness definition
is enhanced with internal signals. In Section 3, we prove top-down decom-
position correct in terms of our enhanced correctness definition; the succeed-
ing section studies correctness of speed-independent CSC solving on its own
and in combination with decomposition. Section 5 shows the correctness for
the approach of [2]. We conclude with Section 6. Due to lack of space we
omit all proofs; they can be found at www.informatik.uni-augsburg.de/forschung
/techBerichte/reports/2004-13.html.

350 M. Schaefer and W. Vogler

2 Basic Definitions

This section provides the basic notions for Petri nets and STGs, for a more de-
tailed explanation cf. e.g. [6]. A Petri net is a 4-tuple N = (P, T,W,MN) where
P is a finite set of places and T a finite set of transitions with P ∩ T = ∅.
W : P × T ∪ T × P → N0 is the weight function and MN the initial marking,
where a marking is a function P → N0. A node is a place or a transition and
a Petri net can be considered as a bipartite graph with weighted and directed
edges between its nodes. A marking is a function which assigns a number of to-
kens to each place. Whenever a Petri net N,N ′, N1, etc. is introduced, the cor-
responding tuples (P, T,W,MN), (P ′, T ′,W ′,MN ′), (P1, T1,W1,MN1) etc. are
introduced implicitly and the same applies to STGs later on.

The preset of a node x is denoted as •x and defined by •x = {y ∈ P ∪
T | W (y, x) > 0}, the postset of a node x is denoted as x• and defined by
x• = {y ∈ P ∪ T | W (x, y) > 0}. We write •x• as shorthand for •x ∪ x•. All
these notions are extended to sets as usual. We say that there is an arc from
each y ∈ •x to x.

Given a sequence x ∈ X∗, and a set X ′ ⊆ X, x↓X′ denotes the projection of
x onto X ′ and is obtained from x by omitting all elements not in X ′. This is
extended to sets of sequences as usual, i.e. elementwise.

A transition t is enabled under a marking M if ∀p ∈ •t : M(p) ≥ W (p, t),
which is denoted by M [t〉. An enabled transition can fire or occur yielding a new
marking M ′, written as M [t〉M ′, if M [t〉 and M ′(p) = M(p)−W (p, t) +W (t, p)
for all p ∈ P .

A transition sequence v = t0t1 . . . tn is enabled under a marking M (yielding
M ′) if M [t0〉M0[t1〉M1 . . .Mn−1[tn〉Mn = M ′, and we write M [v〉, M [v〉M ′ resp.;
v is called firing sequence if MN [v〉. The empty transition sequence λ is enabled
under every marking.

M ′ is called reachable from M if a transition sequence v with M [v〉M ′ exists.
The set of all markings reachable from M is denoted by [M〉. [MN 〉 is the set of
reachable markings (of N), and we only deal with N where this set is finite (i.e.
N is bounded).

An STG is a tuple N = (P, T,W,MN , In,Out, Int, l) where (P, T,W,MN) is
a Petri net and In, Out and Int are disjoint sets of input, output and internal
signals. We define the set of all signals Sig := In ∪ Out ∪ Int, the set of locally
controlled or just local signals Loc := Out∪Int and the set of all external signals
Ext := In∪Out. l : T → Sig×{+,−} is the labelling function. In this paper we
do not have to consider λ-labelled dummy transitions, which play an important
role in the decomposition algorithm of [12, 11].

An STG can be taken as a formalism for asynchronous circuits. Such a circuit
has input signals, which are under the control of its environment, and local sig-
nals, whose values are changed by the circuit. The STG describes which output
and internal signals should be performed; at the same time, it describes assump-
tions about the environment, which should perform input signals only if this is
specified by the STG.

Component Refinement and CSC Solving for STG Decomposition 351

Sig×{+,−} or short Sig± is the set of signal changes or signal transitions;
its elements are denoted as a+, a− resp. instead of (a,+), (a,−) resp. A plus sign
denotes that a signal value changes from logical low (written as 0) to logical high
(written as 1), and a minus sign denotes the other direction. We write a± if it
is not important or unknown which direction takes place; if such a term appears
more than once in the same context, it always denotes the same direction.

Some of the results of this paper do not depend on the fact that transition
labels are of the form a+ or a−, i.e. they can be applied in any setting where
actions can be regarded as inputs, outputs or internal.

We lift the notion of enabledness to transition labels: We write M [a±〉〉M ′

if M [t〉M ′ and l(t) = a±. This is extended to sequences as usual. A sequence
v ∈ (Sig±)∗ is called a trace of a marking M if M [v〉〉, and a trace of N if
M = MN . The language of N is the set of all traces of N and denoted by L(N).

The reachability graph RGN of an STG N is an edge-labelled directed graph
on the reachable markings with MN as root; there is an edge from M to M ′

labelled s± ∈ Sig± whenever M [s±〉〉M ′. RGN can be seen as a finite automaton
(where all states are final), and L(N) is the language of this automaton. N is
deterministic if its reachability graph is a deterministic automaton, i.e. if for
each reachable marking M and each signal transition s± there is at most one
M ′ with M [s±〉〉M ′.

The identity of the transitions or places of an STG, as well as the names of
the internal signals are not relevant for us; hence, we regard STGs N and N ′

as equal if they are externally isomorphic, i.e. if they have the same input and
output signals, and we can rename the internal signals of N and then map the
transitions (places resp.) of the resulting STG bijectively onto the transitions
(places resp.) of N ′ such that the weight function, the marking and the labelling
are preserved. (Altogether, the external signals are preserved while the internal
signals might be renamed.)

For the modular construction of STGs, the operations hiding, relabelling and
parallel composition are of interest.

Given an STG N and a set H of signals with H ∩ In = ∅, the hiding of H
results in the STG N/H = (P, T,W,MN , In,Out \H, Int ∪H, l).

Given a bijection φ defined for all external signals of N , the relabelling of N
is φ(N) = (P, T,W,M0, φ(In), φ(Out), Int, φ ◦ l); this assumes that, if necessary,
the internal signals of N are renamed such that Int ∩ (φ(In) ∪ φ(Out)) = ∅ and
φ is extended to be the identity on the internal signals.

Observe that hiding and relabeling preserve determinism as defined above
and the same will apply for parallel composition. In particular hiding does not
change the identity of signals or removes them completely from the STG as it is
done in other settings.

In the following definition of parallel composition ‖, we will have to consider
the distinction between input, output and internal signals. The idea of parallel
composition is that the composed systems run in parallel synchronising on com-
mon signals. Since a system controls its outputs, we cannot allow a signal to be
an output of more than one component; input signals, on the other hand, can

352 M. Schaefer and W. Vogler

be shared. An output signal of one component can be an input of one or several
others, and in any case it is an output of the composition. Internal signals of one
component are not shared with other components (this can be achieved with a
suitable renaming) and they become internal signals of the composition.

A composition can also be ill-defined due to what e.g. Ebergen [8] calls com-
putation interference; this is a semantic problem, and we will not consider it
here, but later in the definition of correctness.

The parallel composition of STGs N1 and N2 is defined if Loc1 ∩ Loc2 = ∅
and Int1∩In2 = Int2∩In1 = ∅. Then, let A = Sig1∩Sig2 be the set of common
signals; observe that A contains no internal signals. If e.g. s is an output of N1
and an input of N2, then an occurrence of s in N1 is ‘seen’ by N2, i.e. it must be
accompanied by an occurrence of s in N2. Since we do not know a priori which
s±-labelled transition of N2 will occur together with some s±-labelled transition
of N1, we have to allow for each possible pairing. Thus, the parallel composition
N = N1 ‖ N2 is obtained from the disjoint union of N1 and N2 by combining
each s±-labelled transition t1 of N1 with each s±-labelled transition t2 from N2
if s ∈ A. In the formal definition of parallel composition, ∗ is used as a dummy
element, which is formally combined e.g. with those transitions that do not have
their label in the synchronisation set A. (We assume that ∗ is not a transition
or a place of any net.) Thus, N is defined by

P = P1 × {∗} ∪ {∗} × P2

T = {(t1, t2) | t1 ∈ T1, t2 ∈ T2, l1(t1) = l2(t2) ∈ A±}
∪ {(t1, ∗) | t1 ∈ T1, l1(t1) /∈ A±}
∪ {(∗, t2) | t2 ∈ T2, l2(t2) /∈ A±}

W ((p1, p2), (t1, t2)) =
{
W1(p1, t1) if p1 ∈ P1, t1 ∈ T1
W2(p2, t2) if p2 ∈ P2, t2 ∈ T2

W ((t1, t2), (p1, p2)) =
{
W1(t1, p1) if p1 ∈ P1, t1 ∈ T1
W2(t2, p2) if p2 ∈ P2, t2 ∈ T2

l((t1, t2)) =
{
l1(t1) if t1 ∈ T1
l2(t2) if t2 ∈ T2

MN = MN1∪̇MN2 , i.e.

MN ((p1, p2)) =
{
MN1(p1) if p1 ∈ P1
MN2(p2) if p2 ∈ P2

Int = Int1 ∪ Int2 Out = Out1 ∪Out2 In = (In1 ∪ In2)− (Out1 ∪Out2)

It is not hard to see that parallel composition is associative and commutative
up to external isomorphism and ||i∈INi is defined if each Ni||Nj is defined.
Furthermore, one can consider the place set of the composition as the disjoint
union of the place sets of the components; therefore, we can consider markings
of the composition (regarded as multisets) as the disjoint union of markings of
the components; the latter makes clear what we mean by the restriction M Pi

for a marking M of the composition.

Component Refinement and CSC Solving for STG Decomposition 353

STGs together with the three operations defined above form a circuit algebra
as defined in Dill’s PhD thesis [7], when regarding externally isomorphic STGs
as equal. For our further considerations we will use the properties

(C6) : (N/H1)/H2 = N/(H1 ∪H2) and

(C8) : N1/H1||N2/H2 = (N1||N2)/(H1 ∪H2) if Hi ∩ Sig3−i = ∅, i = 1, 2

satisfied by a circuit algebra.1

Let RG be the reachability graph of an STG N . A state vector is a function
sv : Sig → {0, 1} where ’0’ means logical low and ’1’ logical high. A state
assignment assigns a state vector to each marking M of RG denoted by svM .

A state assignment must satisfy for every signal x ∈ Sig and every pair of
markings M,M ′ ∈ [MN 〉:

M [x+〉〉M ′ implies svM (x) = 0, svM ′(x) = 1

M [x−〉〉M ′ implies svM (x) = 1, svM ′(x) = 0

M [y±〉〉M ′ for y
= x implies svM (x) = svM ′(x)

If such an assignment exists, it is uniquely defined by these properties,2 and
the reachability graph (and also the underlying STG) is called consistent. From
an inconsistent STG, one cannot synthesize a circuit.

Another necessary condition for synthesis is complete state coding (CSC). We
say that a consistent RG (and N) has CSC if:

∀x ∈ Loc, M,M ′ ∈ [MN 〉 : svM = svM ′ ⇒ (M [x±〉〉 ⇔ M ′[x±〉〉)

If RG violates CSC, no asynchronous circuit can be synthesized because a
circuit determines the next local signal changes only from the current state of its
signals (the state vector); hence, the circuit cannot distinguish the two markings
with the same state vector and the same local signals must be enabled. It is
possible that different input signals are enabled in M and M ′ because these are
not controlled by the circuit.

As mentioned in the introduction, Petrify can modify an STG such that
CSC is satisfied. If one is interested in speed-independent circuits, as we are
in this paper, one can require that Petrify preserves the following important
property.

1 There are 7 additional laws a circuit algebra must fulfil (in our setting): (C1)
(N1||N2)||N3 = N1||(N2||N3) = N1||N2||N3, (C2): N1||N2 = N2||N1; (C3):
φ2(φ1(N)) = (φ2 ◦ φ1)(N), (C4): φ(N1||N2) = φ(N1)||φ(N2), (C5): id(N) = N ,
(C7): N/∅ = N , (C9): φ(N/H) = φ′(N)/φ′(H). These properties are satisfied for
our definitions, where (C4) and (C9) only have to hold if both sides are defined.

2 At least for every signal s ∈ Sig which actually occurs, i.e. M [s±〉〉 for some reachable
marking M .

354 M. Schaefer and W. Vogler

Definition 1 (Input Properness). An STG is input proper if no input signal
becomes enabled by the occurrence of an internal signal, i.e. M1[t〉M2 with M1
a reachable marking, ¬M1[a〉〉 and M2[a〉〉, a ∈ In, implies l(t)
∈ Int±. ��

Recall that an STG also specifies which inputs the environment may perform;
if the environment performs an input that is not enabled in the current marking
of the STG, then such an unexpected input may lead to a malfunction of the
circuit. To meet this assumption, the environment must “know” whether an
input is expected or not. But if input properness is violated, the environment
cannot see whether the respective input is already allowed, since internal signal
transitions cannot be observed from the outside.

Actually, the implementation of non-input-proper STGs is still possible, but
one has to make timing assumptions about the relative order of signal transitions,
e.g. one might assume that an input is slower than an internal signal if both are
triggered by the same output. Such assumptions are not necessary for input
proper STGs, and speed-independent implementations are possible.

Now we give our improved correctness definition, which considers internal
signals; afterwards, we will explain its specific properties and why they are sound.

Definition 2 (Correct Decomposition). A collection of deterministic com-
ponents (Ci)i∈I is a correct decomposition of (or simply correct w.r.t.) a de-
terministic STG N – also called specification – when hiding H, if the parallel
composition C ′ = ||i∈ICi is defined, C = C ′/H, InC ⊆ InN , OutC ⊆ OutN and
there is an STG-bisimulation B between the markings of N and those of C with
the following properties:

1. (MN ,MC) ∈ B
2. For all (M,M ′) ∈ B, we have:
(N1) If a ∈ InN and M [a±〉〉M1, then either a ∈ InC , M ′[a±〉〉M ′

1 and
(M1,M

′
1) ∈ B for some M ′

1 or a
∈ InC and (M1,M
′) ∈ B.

(N2) If x ∈ OutN and M [x±〉〉M1, then M ′[vx±〉〉M ′
1 and (M1,M

′
1) ∈ B for

some M ′
1 with v ∈ (IntC±)∗ .

(N3) If u ∈ IntN and M [u±〉〉M1, then M ′[v〉〉M ′
1 and (M1,M

′
1) ∈ B for some

M ′
1 and v ∈ (IntC′±)∗.

(C1) If x ∈ OutC and M ′[x±〉〉M ′
1, then M [vx±〉〉M1 and (M1,M

′
1) ∈ B for

some M1 with v ∈ (IntN±)∗.
(C2) If x ∈ Outi for some i ∈ I and M ′

Pi
[x±〉〉, then M ′[x±〉〉. (no compu-

tation interference)
(C3) If u ∈ IntC and M ′[u±〉〉M ′

1, then M [v〉〉M1 and (M1,M
′
1) ∈ B for some

M1 and v ∈ (IntN±)∗.

Here, and whenever we have a collection (Ci)i∈I in the following, Pi stands
for PCi , Outi for OutCi etc.

In the most simple case, (Ci)i∈I consists of just one component C1 and H is
empty; in this case we say that C1 is a (correct) implementation of N, and (C2)
is always trivially true. ��

Component Refinement and CSC Solving for STG Decomposition 355

B describes how behaviour of N and C closely match each other, similar to
ordinary bisimulation. As in [12, 11], we allow OutC to be a proper subset of
OutN for the case that there are output signals, which are in fact never pro-
duced by the specification. Our decomposition algorithm actually only produces
components Ci where OutC = OutN ; in any case, if equality is desired, it can
be achieved by formally adding the missing output signals OutN \OutC to some
set Outi.

For a different reason we allow InC to be a proper subset of InN ; there are
cases where some inputs are just irrelevant for the behaviour of a circuit, but
they were possibly included by some design error. The decomposition algorithm
might detect such signals, since they are not needed for any component. Because
of this possibility, in (N1) an input signal transition of the specification does not
have to be matched by the implementation.

(C2) ensures that no computation interference (mentioned before the defi-
nition of parallel composition) occurs; i.e. if a component produces an output
(which is under the control of this component), then the other components ex-
pect this signal if it belongs to their inputs, and no malfunction of these other
components must be feared. (C2) is actually also satisfied for x ∈ Inti, since
internal signals of one component are by definition unknown to the other com-
ponents.

Remarkably, there is no condition that requires a matching for an input oc-
curring in the implementation. On the one hand, if also the specification allows
such an input in a matching marking, then the markings after the input must
match again by (N1) due to determinism. On the other hand, there are very
natural decompositions which allow additional inputs compared to the specifi-
cation, and it does no harm to include these decompositions in our definition:
since the specification also describes which inputs are or are not allowed for the
environment, the additional inputs will actually never occur if the decomposition
runs in an environment it is meant for. (The additional input leads to a marking
which in a way corresponds to a don’t-care entry in a Karnaugh-diagram.)

As a consequence, the components might have behaviour and markings that
never turn up if the components run in an appropriate environment; also, these
markings do not appear in B. A subtle property of our correctness definition is
that it allows e.g. computation interference for such markings, which is perfectly
reasonable since such an interference will not occur in practical use.

The features discussed so far are taken from [12], where some more expla-
nations can be found. The new features deal with internal signals; they extend
the definition of [12] conservatively: for STGs without internal signals, the two
correctness notions coincide. The consequence will be that the result about top-
down decomposition in the next section also applies in the setting of our decom-
position algorithm, where we have not considered internal signals so far.

First of all, we allow the hiding of some output signals in the parallel com-
position of the components; this concerns additional signals to enable commu-
nication between the components. It is no problem that we allow hiding at the
”top-level” only: by way of an example, assume that the components C1 and

356 M. Schaefer and W. Vogler

C2 communicate via a signal x which should not be visible to the other com-
ponents; this would be modelled by

(
((C1||C2)/{x}) || (||i∈I\{1,2}Ci)

)
/H. Now

this equals ||i∈ICi/(H ∪ {x}) by the properties (C8) and (C6) of a circuit al-
gebra, where (C8) is applicable since x is internal to (C1||C2)/{x} and hence
not a signal of ||i∈I\{1,2}Ci. We will use similar reasoning in Section 3 where a
component will be replaced by a decomposition of its own.

In (N2) and (C1) outputs do not have to be matched directly; (N2) allows the
components to prepare the production of this output by some internal signals,
e.g. to achieve CSC or to inform other components about this event; (C1) allows
the specification to perform superfluous internal signals. In any case, from an
external point of view each output is matched by the same output.

In contrast, input signals must be matched directly; if the implementation
could precede the input by some internal signals, the environment could produce
the input as specified in N at a stage where the implementation is not ready yet
to receive it, which could lead to malfunction as discussed above in connection
with input properness. As for computation interference, the absence of this mal-
function is only checked for markings appearing in B, since only for these the
problem is practically relevant.

In fact, the direct matching of inputs implies that the implementation is
in a sense input proper, at least in its “reachable behaviour”: assume that
M1[u±〉〉M2 with u ∈ IntC , M1 a reachable marking of C, and M2[a±〉〉 for
some a ∈ InC ; then either there is no pair (M,M1) in the STG-bisimulation
(hence, M1 will not be reached if C works in a proper environment) or ¬M [a〉〉
(a proper environment will not produce a) or M1[a〉〉 by (N1).

Finally, (N3) and (C3) prescribe the matching of an internal signal by a
sequence of internal signals – just as in ordinary weak bisimulation. Note that
we have several internal signals, since these have to be implemented physically;
but regarding external behaviour, the identity of an internal signal does not
matter. In principle, performing an internal signal could make a choice, e.g. by
disabling an output; according to these clauses, this choice has to be matched.

Translating the treatment of internal signals in the definition of the somewhat
related notion of I/O-compatibility [1] to our setting, one would require that e.g.
in (N3) (M1,M

′) ∈ B without involving any u – and analogously in (C3); the
idea is that internal signals cannot make decisions in digital circuits. There are
several reasons not to follow this idea. First of all, this concerns a property one
might like all STGs to have and it is not related to comparing STGs or to the
communication between circuits – in contrast to e.g. computation interference;
if one wants this property to ensure physical implementability, it has to hold
also for markings not appearing in B. Therefore, this property has no adequate
place in a correctness definition and should be required separately. Secondly,
one might want to use so-called ME-elements , which can make decisions; the
respective signals could be internal to the parallel composition. We see it as an
advantage that we can cover such cases. Finally, the alternative definition turned
out to be technically inconvenient.

Component Refinement and CSC Solving for STG Decomposition 357

Observe that the alternative definition coincides with ours if the specification
does not have internal signals; then, (N3) is never applicable, and in (C3) we
have v = λ and M = M1.

Another important comment: our correctness definition concerns the correct-
ness of a decomposition, but it also covers the question whether one STG is an
implementation of another. With this notion, we will prove below that speed-
independent CSC-solving with Petrify produces a correct implementation.

One would like this implementation relation to be a preorder. Reflexivity is
obvious (choose B as the identity), and transitivity will follow from our first main
result in the next section. One would also like it to be a precongruence for the
operations of interest. This is obvious for relabelling and easy for hiding (use the
same STG-bisimulation). The much more important case of parallel composition
will be discussed in the next section.

Also, a more general result for hiding follows easily: (∗) if (Ci)i∈I is correct
w.r.t. N when hiding H, then (Ci)i∈I is also correct w.r.t. N/H ′ when hiding
H ∪ H ′. As a consequence, we can apply our decomposition algorithm [12, 11]
also to an STG N1 with internal signals as follows. Since the algorithm can
only decompose STGs without internal signals, we change the internal signals
of N1 to outputs obtaining an STG N2 with N1 = N2/H for a suitable set
H. Then we decompose N2, obtaining a correct decomposition (Ci)i∈I of N2.
After that, the formerly internal signals are hidden in N2 and in ||i∈ICi and
from (∗) we get that (Ci)i∈I is a correct decomposition of N1 = N2/H when
hiding H.

3 Decomposition of Subcomponents

In this section we will show that correctness is preserved when we decompose a
component of an STG decomposition into subcomponents. This result makes it
possible to design and implement STGs in a top-down fashion.

In particular, such top-down decomposition can be useful for efficiency of our
decomposition algorithm. For example, consider a case where only one compo-
nent Ci of a decomposition needs a specific input signal a, which therefore will
be removed from every other one by the decomposition algorithm (cf. Section 1).
Alternatively, the algorithm could first construct a component Cj which gener-
ates every output signal that is not produced by Ci, and afterwards decompose
it into smaller components. This way, the signal a will only be removed from one
component (Cj), which can improve performance.

Stepwise decomposition is possible under two minor conditions stated in the
following theorem: the composition of the subcomponents must have all output
signals of the decomposed component and its internal signals must be unknown
to the other components. The first condition is often automatically true or can
be achieved easily as mentioned after the definition of correctness, the latter one
is an obvious restriction required by our definition of parallel composition and
can trivially be fulfilled renaming internal signals. The proof of this theorem
requires a careful and detailed case analysis.

358 M. Schaefer and W. Vogler

Theorem 3 (Correctness of Top-down Decomposition).

1. Let N be an STG and (Ci)i∈I a correct decomposition of N when hiding HC .
Furthermore let (Ck)k∈K be a correct decomposition of some Cj when hiding
HK (j ∈ I, I ∩ K = ∅). Then (Ci)i∈I′ with I ′ := I ∪ K \ {j} is a correct
decomposition of N when hiding HC ∪ HK if

⋃
k∈K OutCk

\ HK = OutCj

and (
⋃

k∈K IntCk
∪HK) ∩

⋃
i∈I\{j} SigCi

= ∅.
2. The implementation relation is a preorder.

Remark: One might expect that refining a component Cj of (||i∈ICi)/HC with
(||k∈KCk)/HK would give the STG

(
||i∈I\{j}Ci || (||k∈KCk/HK)

)
/HC , where

there is not just one hiding on the top-level as in the theorem. But with the same
reasoning already used in the discussion of Definition 2, we can derive from the
properties (C8) (use the second assumption on HK) and (C6) of a circuit algebra
that for H = HC ∪HK :(

||i∈I\{j}Ci || (||k∈KCk/HK)
)
/HC = ((||i∈I′Ci) /HK) /HC = ||i∈I′Ci/H

As explained after Definition 2, our correctness definition coincides with the
one of [12, 11] if we only consider STGs without internal signals; hence, Theorem
3 also holds in this setting (where of course no hiding is applied, i.e. the hiding
sets are taken to be empty). Therefore, the theorem can indeed be used to im-
prove the decomposition of [12, 11] as explained at the beginning of this section.
It is an open problem how to group the output signals for optimal efficiency.

Surprisingly, the theorem has also an impact on the question whether the
implementation relation between STGs is a precongruence for parallel composi-
tion, which we will now show under some mild restrictions. Recall that, for some
N1||N2 to be defined, we only had some syntactic requirements regarding the
signal sets; but the composition only makes sense in the area of circuits, if we
also ensure absence of computation interference; for the following definition cf.
the discussion on condition (C2) of Definition 2.

Definition 4 (Interference-free). A parallel composition N1||N2 is interfe-
rence-free if, for all its reachable markings M1

.
∪ M2, i ∈ {1, 2} and x ∈ Outi,

Mi[x±〉〉 implies M1
.
∪M2[x±〉〉. ��

Corollary 5. If N2 is a correct implementation of N1, N1 and N2 have the
same output signals, and N1||N is a well-defined and interference-free parallel
composition, then N2||N is a correct implementation of N1||N .

Note that each of our operations hiding, renaming and parallel composition
with another STG changes the set of output signals in the same way, such that
equality of these sets is preserved.

Corollary 6 (Implementation Relation as Precongruence). The imple-
mentation relation is a precongruence for hiding, relabelling and parallel compo-
sition when restricted to STGs with the same output signals.

We will see another application of the theorem in the next section.

Component Refinement and CSC Solving for STG Decomposition 359

4 CSC-Solving for Components of a Decomposition

In this section we will prove that CSC-solving fits into our correctness definition,
i.e. that it leads to a correct implementation. Theorem 3 then implies that CSC-
solving can be combined with our decomposition algorithm. The latter could be
shown directly without this theorem, but its use makes the following proof much
easier, because we have to consider only one component. First, we will introduce
an operation that the tool Petrify uses to achieve CSC.

Given an STG without CSC, Petrify can (in many cases) insert internal
signals into the STG such that their values distinguish between the markings
with equal state vectors and different outputs. This insertion takes place on
the level of reachability graphs (as most of our considerations in this paper
do). Petrify can also derive an STG for the modified reachability graph, and
although this is not important for the synthesis of a circuit, it fits our manner-
of-speaking well. We take Definition 7 of event insertion from [6]. Run with an
appropriate option, Petrify performs a number of input proper event insertions
arriving at an STG with CSC, and this we call speed-independent CSC-solving.3

Definition 7 (Event Insertion). Let N be a deterministic STG, u± a signal
transition not appearing in N for a (possibly new) internal signal u and R ⊆
[MN 〉. The event insertion of u± at region R into N modifies the reachability
graph RG (and results in a corresponding STG N ′) as follows (cf. e.g. Fig. 1):

1. For every marking M ∈ R add a duplicate M ′ and add the transition
M [u±〉〉M ′.

2. If M1,M2 ∈ R and M1[s±〉〉M2, add the transition M ′
1[s±〉〉M ′

2.
3. If M1 ∈ R, M2
∈ R and M1[s±〉〉M2, remove this transition and add

M ′
1[s±〉〉M2.

4. The initial marking of N ′ is the same as that of N . Add u to Int.

The insertion is called input proper, if there is no M1[a±〉〉M2 in RG with
a ∈ In, M1 ∈ R and M2
∈ R.

We define the marking relation M between the markings of N and of N ′

such that (M1,M2) ∈M if M2 = M1 or M2 = M ′
1. ��

It is not hard to see that N ′ as above is deterministic again. The next result
explains the definition of an input-proper event insertion and why we speak of
speed-independent CSC-solving; the main result of this section follows.

Proposition 8. Let N be an input proper STG and let N ′ be obtained by the
insertion of u± at R. Then N ′ is input proper if and only if the insertion is.

Theorem 9 (Correctness of CSC Solving). Let N be an STG and N ′ be
obtained from N by speed-independent CSC-solving; then N ′ is a correct imple-
mentation of N .

3 Other methods of CSC-solving rely on timing-assumptions and are not treated here.

360 M. Schaefer and W. Vogler

a

c

d

x

a a

c

c

c

1 2

3 4

5 6

x x

d

a

c

c

c

a a

u

u

1 2

3 4

5 6

2’

4’

x x

d

(a) (b) (c)

Fig. 1. Example for an event insertion. (a) A Petri net (to keep it small, tran-
sitions are labelled with signals) (b) Its reachability graph. The two marked
states are the region R where the new event written u will be inserted. (c)
The reachability graph with the inserted event u. The marking relation is M =
{(1, 1), (2, 2), (2, 2′), (3, 3), (4, 4), (4, 4′), . . .}

Now we can conclude that speed-independent CSC-solving can be combined
with decomposition. For this, we have to apply Theorems 3.1 and 9 to each
component; the crucial first condition on HK in 3.1 is satisfied since HK = ∅
and event insertion does not change the sets of output and of input signals.

Corollary 10. Let (Ci)i∈I be a correct decomposition of N when hiding H, and
let C ′

i be obtained from Ci by speed-independent CSC-solving for all i ∈ I. Then
(C ′

i)i∈I is a correct decomposition of N when hiding H.

5 Correctness of an ILP Approach to Decomposition

In this section we will show that the decomposition method of Carmona and
Cortadella [3, 2], which has not been proven correct so far, yields components
which are a correct decomposition according to our definition. For this method,
it is assumed that an STG with CSC is given, where CSC can also be achieved by
modifications on the STG-level, i.e. without considering the reachability graph.
(It can also be given due to a suitable translation from a description in a high-
level language to STGs as in [13]). As explained at the end of Section 2, we can
assume that there are no internal signals.

The method of [3, 2] works roughly as follows. Starting with a deterministic
STG N that already has CSC, for every output signal x a CSC support is
determined; this is a set of signals, which guarantees CSC for x. Here is the
formal definition:

Definition 11 (CSC Support). Let N be an STG and S ⊆ SigN .

1. Let v ∈ (SigN±)∗. code change(S, v) is defined as the vector over S, which
an s ∈ S to the difference between the numbers of s+ and of s− in v.

2. S is called CSC support for the output signal x if, for all reachable markings
M1, M2 with M1[v〉〉M2 and code change(S, v) = 0 for some v ∈ (SigN±)∗,
M1 enables x iff M2 does. ��

Component Refinement and CSC Solving for STG Decomposition 361

A sufficient condition for being a CSC support used in the algorithm is that
some integer linear programming (ILP) problem is infeasible. The algorithm
starts for every output x with the set including the so-called syntactical triggers
of x and x itself, and iteratively improves it – mostly by adding additional signals
– until it is a CSC support for x; since the original STG has CSC, this algorithm
is always successful.

After that, for every output signal the original STG is projected onto the
corresponding CSC support: the other signals are considered as dummies, and
these dummies and redundant places are removed as far as possible much as in
our decomposition algorithm. If the resulting component still contains dummies,
then [priv. comm.]: the reachability graph is generated and viewed as a finite
automaton with dummies regarded as the empty word. Now the automaton is
made deterministic with well-known methods, which in particular remove all λ-
labelled edges. Finally, we can regard this automaton as an STG again, which
e.g. has the edges of the automaton as transitions.

The projection part is similar to our algorithm, the difference is where back-
tracking is performed: the method of [3, 2] uses some form of backtracking when
determining the CSC support as described above — our algorithm uses back-
tracking when the contraction of a dummy signal is not possible.

An advantage of the method of [3, 2] is that the components have CSC. Actu-
ally, the defining condition for a CSC support is slightly too weak to guarantee
CSC in all cases,4 but in most practical cases CSC holds, the condition and the
corresponding ILP problem could easily be corrected, and most of all the given
condition is sufficient for the proof of Theorem 12.

The CSC-support algorithm produces components (Ci)i∈I with the following
properties which we need for the proof of Theorem 12.

1. Every component is deterministic.
2. The signals of every Ci are a CSC support of the only output signal.
3. ∀i ∈ I : L(Ci) = L(N)↓i

In the last item, L(N)↓i denotes the projection of L(N) onto the signals of
Ci. We can now prove that (Ci)i∈I is a correct decomposition by our definition.

Theorem 12 (Correctness of the CSC-support algorithm). Let N be an
STG and (Ci)i∈I be given as above. Then, (Ci)i∈I is correct w.r.t. N .

6 Conclusion

We have generalised the correctness definition for decompositions of [12, 11] to
STGs with internal signals and proven that speed-independent CSC-solving as
performed by Petrify is correct. We have shown that the new correctness is

4 The condition should consider all markings with the same state vector for signals in
S, and not only those where one is reachable from the other; this has already been
done e.g. in [9].

362 M. Schaefer and W. Vogler

preserved in a top-down decomposition, and this result has a number of con-
sequences: now we can use step-wise decomposition in the algorithm of [12, 11]
to improve efficiency, and we know that this algorithm in combination with
speed-independent CSC-solving gives correct results. Applying the correctness
definition to compare two STGs, we get an implementation relation, and conse-
quences of our result are that this is a preorder and, with a small restriction, a
precongruence for parallel composition, relabelling and hiding.

As another application of the correctness definition, we have shown that a
decomposition method based on integer linear programming [2] is correct. It
remains an open problem whether a related method in [13] is correct: while the
first method checks on the original STG to be decomposed whether a set of
signals is a CSC-support and in the positive case removes the other signals, the
related method removes some signals and checks CSC on the remaining STG;
this is in general not sufficient, but it might be sufficient under the specific
circumstances of the algorithm in [13].

For a further validation of our correctness definition, it would be interesting
to compare the resp. implementation relation with another one derived from the
notion of I/O-compatibility in [1]. We think that the derived implementation
relation holds whenever our implementation relation holds, but the reverse di-
rection can only be true under suitable restrictions; the latter still have to be
identified, but we expect that they will shed some light on the conceptual ideas
behind I/O-compatibility and our correctness.

References

1. J. Carmona and J. Cortadella. Input/output compatibility of reactive systems. In
Formal Methods in Computer-Aided Design, FMCAD 2002, Portland, USA, Lect.
Notes Comp. Sci. 2517, pages 360–377. Springer, 2002.

2. J. Carmona and J. Cortadella. ILP models for the synthesis of asynchronous control
circuits. In Proc. of the IEEE/ACM International Conference on Computer Aided
Design, pages 818–825, 2003.

3. Josep Carmona. Structural Methods for the Synthesis of Well-Formed Concurrent
Specifications. PhD thesis, Universitat Politècnica de Catalunya, 2003.

4. T.-A. Chu. Synthesis of Self-Timed VLSI Circuits from Graph-Theoretic Specifi-
cations. PhD thesis, MIT, 1987.

5. J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev.
Petrify: a tool for manipulating concurrent specifications and synthesis of asyn-
chronous controllers. IEICE Trans. Information and Systems, E80-D, 3:315–325,
1997.

6. J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. Logic
Synthesis of Asynchronous Controllers and Interfaces. Springer, 2002.

7. D. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-Independent
circuits. MIT Press, Cambridge, 1988.

8. J. Ebergen. Arbiters: an exercise in specifying and decomposing asynchronously
communicating components. Sci. of Computer Programming, 18:223–245, 1992.

9. F. Garćıa-Vallés and J.M. Colom. Structural analysis of signal transition graphs.
In Petri Nets in System Engineering, 1997.

Component Refinement and CSC Solving for STG Decomposition 363

10. A. Kondratyev, M. Kishinevsky, and A. Taubin. Synthesis method in self-timed
design. Decompositional approach. In IEEE Int. Conf. VLSI and CAD, pages
324–327, 1993.

11. W. Vogler and B. Kangsah. Improved decomposition of signal transition graphs.
Technical Report 2004-8, University of Augsburg, http://www.Informatik.Uni-
Augsburg.DE/skripts/techreports/, 2004.

12. W. Vogler and R. Wollowski. Decomposition in asynchronous circuit design. In
J. Cortadella et al., editors, Concurrency and Hardware Design, Lect. Notes Comp.
Sci. 2549, 152 – 190. Springer, 2002.

13. T. Yoneda, H. Onda, and C. Myers. Synthesis of speed independent circuits based
on decomposition. In ASYNC 2004, pages 135–145. IEEE, 2004.

The Complexity of Live Sequence Charts

Yves Bontemps� and Pierre-Yves Schobbens

Institut d’Informatique, University of Namur
rue Grandgagnage, 21

B5000 - Namur (Belgium)
{ybo, pys}@info.fundp.ac.be

Abstract. We are interested in implementing a fully automated soft-
ware development process starting from sequence charts, which have
proven their naturalness and usefulness in industry. We show in this
paper that even for the simplest variants of sequence charts, there are
strong impediments to the implementability of this dream. In the case of
a manual development, we have to check the final implementation (the
model). We show that centralized model-checking is co-NP-complete. Un-
fortunately, this problem is of little interest to industry. The real problem
is distributed model-checking, that we show PSPACE complete, as well as
several simple but interesting verification problems. The dream itself re-
lies on program synthesis, formally called realizability. We show that the
industrially relevant problem, distributed realizability, is undecidable.
The less interesting problems of centralized and constrained realizability
are exponential and doubly-exponential complete, respectively.

1 Introduction

Scenario-based approaches and their supporting languages, by which we mean
languages such as Message Sequence Charts (MSC) [1], UML Interaction Dia-
grams [2] or Live Sequence Charts (LSC) [3], have shown a clear advantage on
other languages, in practice [4, 5]. They are simple, with a concrete semantics,
and have some graphical appeal, which gives them a steep learning curve even for
non-expert users. They are specially useful for distributed reactive systems, our
focus here. Their apparent simplicity made most practitioners and theoreticians
believe that all problems associated to these languages would be easy. A first
blow to this commonly held belief was given by Muscholl et al. [6] who showed
that several simple problems on HMSC are undecidable.

Here, we show that many simple problems on (non-hierarchical) LSC have a
surprisingly high complexity, and especially that the main tenet of the dream,
the automated synthesis of a distributed algorithm, is undecidable. This may
seem to render our dream unachievable, but actually it is hardly surprising that
distributed software development, that requires the brains of millions of pro-
grammers worldwide and in which still today unexpected bugs are found, is

� FNRS Research Fellow

V. Sassone (Ed.): FOSSACS 2005, LNCS 3441, pp. 364–378, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Complexity of Live Sequence Charts 365

undecidable. This means that more knowledge has to be put in the synthesis
algorithms, e.g. as heuristics [7]. Thus although the dream will never be fully
achieved, we can try to come close enough to it to alleviate the work of program-
mers of distributed systems. Thus, one can hope that synthesis will be hard in
theory but usable in practice, as verification [8].

The paper is structured as follows. We present, in Sec. 2.1, the syntax and
semantics of Live Sequence Charts (LSC), which is used to specify the future
system behaviour. Design models of the system are given using an agent-oriented
state-based formalism, here input/output automata, encoding strategies, as pre-
sented in Section 2.2. This section concludes by defining when a design model
is a correct implementation of a scenario-based specification. In Sec. 3, verifica-
tion problems are considered. First, checking whether a design model is a correct
implementation (Sec. 3.1) and then, whether a specification refines another spec-
ification (Sec. 3.2). The question of whether a specification is implementable is
investigated in Sec. 4. Sec. 5 presents various constructs that can be added to
our version of LSCs, making the language more expressive, but preserving all
the results of this paper. Finally, in Sec. 6, we summarize the results and put
them in perspective.

2 Models

We assume that we are given a finite set of agents or processes Ag and of message
names M. An event is a triple from Ag ×M× Ag. The set of events is Σ. We
will denote events sent (resp. received) by some agent a with Σs

a (resp. Σr
a) and

let Σa = Σs
a ∪ Σr

a. An event of the form (a1,m, a2) represents the fact that a1
sends message m to a2. We assume here, for simplicity, that communication is
instantaneous. (In contrast, some undecidability proofs of [6] require the more
complex FIFO communication). From agents behaviour emerge observable se-
quences of events. We identify behaviour and sequences of events. Σ∗ represents
the set of all finite sequences of events, while Σω are all infinite sequences.

2.1 Live Sequence Charts

Live Sequence Charts (LSC) [3] is based on Message Sequence Charts (MSC)
[1]. LSCs present agents interactions. Every agent owns a “life-line”, labeled by
its name, e.g. “ui”, “cm”, “client1” in Fig. 1. Interactions take place through
events, that are shown as arrows. An occurrence of (a1, e, a2) is displayed as
an arrow labeled by m, from a1’s life-line to a2’s life-line. MSCs are unclear
with respect to the “status” of a scenario, i.e. whether a scenario represents all
possible behaviours or just some of them. They are also silent about the role
of messages that do not appear in a scenario, viz. whether they are forbidden
by their mere absence or whether they can appear at will. We call this feature
message abstraction. Furthermore, engineers informally assign different statuses
to messages: some of them trigger the described scenario, whereas other are
expected answers.

366 Y. Bontemps and P.-Y. Schobbens

LSC clarifies this [3]. Syntactic constructs are added to MSCs to state explic-
itly whether the diagram is a mere example (existential scenarios) or constrains
all behaviours of the future system (universal scenarios). The former are sim-
ply MSCs, surrounded by a dashed-line box. The latter are MSCs, divided in
two parts: an upper part, named prechart, that is graphically surrounded by an
hexagonal dashed-line box, and a lower-part, called main chart, surrounded by
a solid-line rectangle. The intuitive semantics is “whenever the agents behave as
in the prechart, they shall behave according to the main chart afterwards”. LSC
adds “message abstraction” by explicitly stating which events are restricted. All
events appearing in the LSC are automatically restricted. Additional events can
be restricted thanks to a “restricts” clause. This provides the scenario with a
scope (alphabet).

Like MSCs, their semantics is based on a partial order. To be fully rigorous,
the partial order is the equivalence class quotient of the preorder defined by rules
(1-3) below. The temporal ordering of events is deduced from three constraints
and their transitive closure: (1) life-lines induce a total ordering on their events,
from top to bottom, (2) agents synchronize on shared events, i.e. two locations
linked by an arrow are order-equivalent and (3) all locations in the prechart
appear before main chart locations. In MSC parlance, the prechart and main
chart are strongly sequenced. For example, combining the clauses, in Fig. 1, events
“getdata” and “updating” are unordered. Clause (1) can be relaxed thanks to
co-regions. A co-region is a sequence of locations, belonging to the same life-line,
along which a dashed line is drawn, see the two “getnew” events in Fig. 1.

ui cm client1

update

updating

getnew

db

getdata

client2

getdata

getnew

Fig. 1. Update Scenario

Live Sequence Charts have been used to model various real-life systems such
as the weather synchronization logic of NASA’s Center TRACON Automation
System (CTAS) [9], a radio-based train system [10], virtual wrappers for PCI
bus [11] and some part of the C elegans worm [12]. Examples displayed in Fig. 1
and 2(a) and (b) are based on the CTAS system. This system aims at synchro-
nizing various clients that make use of weather reports. When new forecasts are
available, a protocol is followed to update clients data. If some client fails to up-
date, they try to roll back to the previous consistent state. The rationale is that
all clients should always be using the same data. The following requirements are
described by LSCs.

The Complexity of Live Sequence Charts 367

1. When the user asks for an update, all clients are asked to fetch the new
weather reports. The user is notified of the updating process. See Fig. 1.

2. If some client fails to update its state, all clients are required to roll back to
the previous state, after the user has been notified that the updating process
is taking place. See Fig. 2(a).

3. Whenever the database refuses a download, the cm (communication man-
ager) is notified. See Fig. 2(b).

cm client1ui

update

getnew

failure
updating

failed

useold

client2

useold

cm client1 db

failure

getdata

nack

(a) (b)

Fig. 2. Failure scenarios

We now define formally the abstract syntax and the semantics of universal
LSCs. It is based on labeled partial orders.

Definition 1 (Labeled partial order (LPO)). Let V be a set of events. A
V -labeled partial order (V -LPO) is a tuple 〈L,≤, λ,Σ′〉, where

L is a set of locations. If L is finite, the LPO is called finite.
≤⊆ L× L is a partial order on L (a transitive, anti-symmetric and reflexive

relation).
λ : L→ V is a labeling function.

A linearization of a finite LPO is a word of w1 . . . wn ∈ Σ∗ such that the LPO
〈[n],≤, {(i, wi)|i ∈ [n]}〉, where [n] is a shortcut for the set {1, . . . , n}, is isomor-
phic to some linear (total) order 〈L,≤′, λ〉 with ≤⊆≤′.

A labeled partial order represents an MSC. As already stated above, LSC dis-
tinguishes between examples (existential LSC) and request-reply rules (universal
LSC), in which the activation part is singled out.

Definition 2 (LSC).

Universal LSC. A universal LSC is a tuple 〈L,≤, λ,ΣR, P 〉 such that
1. 〈L,≤, λ〉 is a finite ΣR-LPO. ΣR are called the restricted events of the

LSC;
2. P ⊆ L is called a prechart. Main chart locations are all larger than

prechart locations: P × (L \ P) ⊆≤.
Existential LSC. An existential LSC is a tuple 〈L,≤, λ,ΣR〉 such that

〈L,≤, λ〉 is a finite ΣR-LPO.

368 Y. Bontemps and P.-Y. Schobbens

We will be considering infinite words γ ∈ Σω. A word γ is a model of an LSC
if, at any point in γ, if the prechart is linearized, then the main chart is also
linearized afterwards.

Definition 3 (γ |= S). For every γ = e0e1 . . . ∈ Σω, γ |= S iff

S is a Universal LSC and ∀i ≥ 0 :

(∃j ≥ i : ei . . . ej |ΣR
linearizes P) ⇒ (∃k ≥ i : ei . . . ek|ΣR

linearizes L)

S is an Existential LSC and ∃i ≥ 0 : ∃j ≥ i : (ei . . . ej)|ΣR
linearizesL

The size of an LSC is its number of locations. An LSC specification is a set
of universal LSCs, the semantics of which is defined by conjunction; a run is a
model of an LSC specification iff it is a model of all its constituent scenarios.
The size of a specification is the sum of the size of the conjuncted LSCs. The
language defined by an LSC is its set of models: L(L) = {γ ∈ Σω|γ |= L}.

Every LSC specification is equivalent to the conjunction of liveness and safety
properties, one for every event in Σ [13]. A scenario S, with restricted events
ΣR, forbids e ∈ Σ after a finite run w ∈ Σ∗ iff some suffix of w|ΣR

, say w′,
linearizes an ideal I of the LSC, which includes P , but w′ · e does not linearize
any ideal in S. S requires e ∈ Σ iff some suffix w′ of w|ΣR

linearizes an ideal
I ⊇ P of S and w′ · e is a linearization of some ideal in S.

An infinite run γ ∈ Σω is e-safe iff for every prefix w of this run, if e is
forbidden by some scenario after w, w · e is not a prefix of γ. It is e-live iff for
every prefix w of γ, if some scenario requires e after w, then e eventually occurs
after w.

Theorem 1 (LSC = Live + Safe). An infinite run γ ∈ Σω satisfies an LSC
specification iff, for every e ∈ Σ, γ is both e-safe and e-live [13].

2.2 Strategies

Agents are partitioned into two teams: the environment and the system. For-
mally, Ag = Sys ∪̇ Env. System-controlled events are ΣSys = Sys ×M× Ag.
Engineers are not asked to construct programs for agents in Env, only agents
from Sys have to be implemented. Sys implementation will be deployed among
Env agents that provides thus the model-time context of the specification.

We will use Input/Output automata to describe the design-time model of
agents [14]. An input-output automaton for agent a ∈ Ag is a finite automaton
the alphabet of which is Σa. A distinction is made between input events (Σr

a)
and output events (Σs

a) Syntactically, an I/O automaton for agent a must be
input-enabled: for every input event e ∈ Σr

a, in every state q, there is an outgoing
transition labeled by e. In other words, a may never block incoming messages.

A run of an I/O automaton is an infinite path in the automaton, following
the transition relation and starting from the designated initial state. A fair run
is a run in which infinitely many transitions labeled by Σs

a events are taken. The
word generated by a run is the infinite sequence of events encountered along

The Complexity of Live Sequence Charts 369

the transitions of the run. The language of an I/O automaton A, denoted L(A),
is the set of words generated by A’s fair runs. The composition of two I/O
automata (A1 × A2) is defined as the synchronous product of A1 and A2, see
[14] for details.

A finite state I/O automaton represents a finite-memory strategy for agent a.
Formally, a (non-deterministic) strategy for agent a is a function f : Σ∗ → 2(Σs

a).
It is of finite memory if there is an equivalence relation � on Σ∗ such that
(1) � is of finite index and (2) ∀w � w′ : f(w) = f(w′). The size of the
memory is the index of the smallest such equivalence relation. Clearly, every
finite memory strategy can be translated to an I/O automaton. Conversely,
every I/O automaton can be turned into a strategy. The outcome of a strategy
f is the set of all runs in which Σs

a events appear only according to the strategy.
Out(f) = {u0e0u1e1 . . . |∀i ≥ 0 : ui ∈ (Σ\({a}×M×Ag))∗∧ei ∈ f(u0e0 . . . ui)}.

Definition 4 (Correct Implementation). A design model M , presented as a
list of strategies (fa)a∈Sys, is a correct implementation of an LSC specification
iff, for every outcome w ∈

⋂
a∈SysOut(fa),

– if w is ΣEnv-live, then w is ΣSys-live;
– and if w is ΣEnv-safe, then w is ΣSys-safe.

3 Verification

3.1 Model Checking

The first problem we consider is the verification that a closed and centralized
implementation is correct. This problem makes two assumptions: there are no
environment agents, thus all agents described in the LSC are system agents and
their behaviour is specified thanks to a single automaton.

Definition 5 (CCMC). Closed Centralized Model Checking (CCMC) is, given
an automaton A and an LSC specification {L1, . . . , Ln}, to decide whether
L(A) ⊆

⋂n
i=1 L(Li).

This problem is co-NP complete. A first extension is to consider that some
agents belong to the environment, while others are system agents. Then, we
are presented with an implementation of system agents only and the question
becomes: “whenever environment agents do behave correctly, does this imple-
mentation behave appropriately?”. The problem becomes PSPACE-complete.

Definition 6 (OCMC). Open Centralized Model Checking(OCMC) is, given
an automaton A, a partition of Ag into Sys and Env and an LSC specification
S, to decide whether A is a correct implementation of Sys with respect to S (see
def. 4).

The second restriction imposes that we consider monolithic systems only,
made of a single component. As it was clear from the introduction, we are mostly

370 Y. Bontemps and P.-Y. Schobbens

interested in distributed systems. The design-time specification of such systems
will typically be presented as a “network” of automata, one for each agent. Every
automaton prescribes how its owner shall behave, see Sec. 2.2.

Definition 7 (Closed Distributed Model Checking). Given an LSC L

and a list of automata (Ai)i=1,...,k, decide whether L(
∏k

i=1Ai) ⊆ L(L).

Unfortunately, as usual in verification [15], this makes model checking more
complex. The problem becomes PSPACE-complete instead of coNP-complete.
Combining distribution and openness does not increase the problem complexity;
it is still PSPACE-complete.

Theorem 2. CCMC is complete for coNP. CDMC, OCMC and ODMC are
PSPACE-complete.

Proof. CCMC coNP-hardness is shown by reducing the complement of the Trav-
eling Salesman Problem (coTSP) to CCMC. coTSP is to decide whether in a
given weighted directed graph, all circuits have a total weight of larger than a
given bound k. One can restrict to edge weights ≤ 2 [16]. The graph and the
cost are encoded in the automaton with a counter: (1) when an edge of weight
j is followed to a vertex v, the counter is incremented by j and an event v is
emitted. At any point, the counter can be down-counted: if the counter is at n,
n “billing” events are omitted and a final “zero” event follows. An LSC is added,
the prechart of which states that all vertices should be visited once, in any order,
and the main chart imposes that k “billing” events without any “stop”.

PSPACE-proofs of open systems use the same technique as LSC-Reach (see
below). PSPACE-proof of distributed variants rely on the fact that deadlock
detection in a network of processes is PSPACE-complete [16].

All membership proofs are standard: a violating simple path is guessed in the
automaton and it is checked that it actually violates the LSC. The complexity
of this procedure follows from an argument on the length of simple paths in LSC
tableau automata.

One can believe that this high complexity is due to the presence of automata
in the problems, as sketched by the proof of Th. 2. The next section presents
simple analysis problems, on LSCs only, that are also difficult. This is astonish-
ing, as one might think that these problems can be solved by easy computations
on the diagrammatic form of LSCs.

3.2 Reachability and Refinement Checking

The first problem we consider is whether an LSC specification allows some use
case.

Definition 8 (LSC-Reach). LSC Reachability (LSC-Reach) is, given an ex-
istential LSC LE and an LSC specification {LU

1 , . . . , L
U
n }, to decide whether

∃γ ∈
⋂n

i=1 L
u
i : γ |= LE.

The Complexity of Live Sequence Charts 371

LSC-Reach checks that a certain specification, together with assumptions
over the domain still makes it possible to achieve a certain behaviour. This
problem is PSPACE-complete.

Another natural problem on LSC only is verifying specification refinement
is al. Given a certain abstract specification S, a more precise specification S′ is
designed and we want to verify that every behaviour induced by S′ is a legal
behavior of S. Logically, this boils down to verifying the validity of S′ → S. This
problem is also PSPACE-complete.

Definition 9 (LSC-Impl). LSC Implication (LSC-Impl) is, given two LSC
specifications S and S ′, to decide whether L(S ′) ⊆ L(S).

Theorem 3. LSC-Reach and LSC-Impl are complete for PSPACE.

Proof. PSPACE-hardness is obtained from reducing the halting problem of a
PSPACE TM on the blank input to LSC-Reach. We sketch our encoding of
a DPSPACE TM configuration, with the additional assumptions that (1) the
halting configuration is never left and (2) when the halting configuration is
reached, the tape head is moved to the leftmost tape cell. A TM configuration
is of the form (γ, i, T) where γ ∈ Γ is a control state, 0 ≤ i ≤ n is the tape
head position (remark that at most n cells are used, this is known a priori)
and T [j] ∈ {0, 1} (0 ≤ j ≤ n) is the tape content. The vocabulary of our LSC
specification is (Γ ∪ {in, $} ∪ {0, 1}) × {0, . . . , n}. The symbol in is used to
initialize the TM simulation: when it occurs, an initial configuration is output
and $ is a technical marker, we skip its description here. A TM configuration is
encoded by a word w if

1. ∃v : w = v(γ, i)
2. ∀j : 1 ≤ j ≤ n : T [j] = a ⇒ ∃u, v : w = u(a, j)v and neither (0, j) nor (1, j)

appears in v.

We have to describe the encoding of the TM transition relation. Suppose, wlog,
that C = (T, γ, i), T [i] = 0 and C ′ = (T ′, γ′, i + 1), where T ′ is like T , except
that 1 has been written at the i-th position. Assume that C is encoded by some
word w. By definition of configuration encoding, w = v · (γ, i), and the last
occurrence of either {(0, i), (1, i)} is (0, i) in w. The transition will be encoded
as the following continuation:

w′ = v (γ, i)(0, i)($, i)(1, i)(γ′, i+ 1)︸ ︷︷ ︸
u

.

One can check that w′ is indeed an encoding of C ′, by noting that

1. it ends with (γ, i+ 1);
2. in u, no event of the form (0, j) or (1, j) (j
= i) has been added. Hence, the

tape content of the configuration encoded by w does not differ from that of
C on these cells.

372 Y. Bontemps and P.-Y. Schobbens

These rules can be described by universal LSCs and the existential LSC is simply
there to ensure that, in at least one run, in occurs and later on in the same run,
the halting location appears, too.

Harel and Marelly introduced an algorithm and an approach to the validation
of LSC-based specifications, called play-out [17]. The specification is immediately
executed, without generating any code from it, but using an animation engine
instead. This animation engine uses a superstep approach: when the environment
inputs some new event, by performing some action on the graphical user inter-
face, the engine performs all system-controlled events that become required, until
it reaches some stable status, in which no event is required anymore. The theo-
rems provided in this section can be adapted to show that computing whether a
finite super-step exists is PSPACE-complete. Smart play-out is a practically ef-
ficient technique that uses symbolic model checking of LTL formulae to discover
such a superstep [18].

4 Realizability

In this section, we turn to the most complex class of problems considered in
this paper. We want to determine automatically whether a specification is im-
plementable. Ideally, the proof of implementability should be constructive: some
state-based implementation of the specification must be built. Would this imple-
mentation be compact and readable, the burden of designing the system would
be taken away from engineers.

We are interested in implementing open reactive systems. As noted by [19]
and [20], realizability is not equivalent to satisfiability. Actually, the question
is more accurately posed as “is there an implementation of system agents such
that, no matter how environment agents behave, the specification will be re-
spected?”. We will first assume that system agents are built under the “perfect
information” hypothesis. This artificial hypothesis implies that system agents
may observe every event and that every system agent knows instantaneously in
what state other agents are. Then, we will see that dropping this hypothesis
implies undecidability of realizability.

Definition 10 (CR). Centralized Realizability (CR) is, given an LSC speci-
fication {L1, . . . , Lm} and a set of system agents Sys ⊆ Ag, to decide whether
there is a strategy f : Σ∗ → Σs

Sys, such that f is a correct implementation of
{L1, . . . , Lm}.

In [13], we have presented an exponential time algorithm solving this problem.
It constructs a two-player parity game graph, with three colors, in which player
0 has a winning strategy iff the specification is realizable. The game graph is
exponentially larger than the LSC specification.

This problem is EXPTIME-complete. This proves our claim that, because
LSCs are less expressive than LTL, some problems are easier on LSCs than on
LTL. Actually, centralized realizability is 2EXPTIME-complete for LTL [20].

The Complexity of Live Sequence Charts 373

The algorithm presented in [13] is computationally expensive, yet optimal.
However, it suffers from another problem: it yields design models, as automata,
that are exponentially larger than the specification. This is a hindrance for read-
ability. Nevertheless, we show below that strategies realizing LSC specifications
need memories that large. Therefore, our algorithm is optimal, in the sense that
every algorithm solving this problem will necessarily build exponentially large
implementations.

We exhibit in Fig. 3 a family of LSC specifications (φn)n>0the size of which
grows quadratically in n but any strategy for Sys realizing φn needs at least
2n log n memory states.

Env Sys

$

a1

an

b1

bn

..

.

..

.

Sys

$

Env

a i

ak

b i

bk

i �= k and i, k ∈ {1, . . . , n}.

Fig. 3. LSC specification φn

In this game, Env controls {a1, . . . , an} = Σs
Env = Σr

Sys and Sys controls
{$, b1, . . . , bn} = Σs

Sys = Σr
Env. Env first presents Sys with a sequence of n

symbols. Remark that Env chooses the order in which those events occur. When
the whole sequence has been presented, Sys must reply with the same sequence.
Hence, Sys’s strategy must have at least enough memory to remember the order
in which the n events have been presented, viz. nn states. The LSC specification
encoding this game is presented in Fig. 3. Along “Sys” and “Env” on the left-
hand side scenario, we drew two dashed lines. This defines a co-region, which
relaxes the ordering on the enclosed events. Therefore, a1 . . . an can occur in
any order, see Section 2.1. In comparison, on the right-hand side, ai and ak are
ordered. The right-hand side scenario obliges bi to follow bk if ak occurred after
ai.

Theorem 4 (Memory Lower-Bound). There is a family of LSCs specifica-
tion, namely (φn)n>0 such that any strategy realizing φn has a memory of size
2Ω(n log n).

Proof. First of all, for every n |φn| = 5n2 + 3n+ 1. Hence, the size of φn grows
only quadratically in n.

374 Y. Bontemps and P.-Y. Schobbens

Now, consider some strategy f : Σ∗ → Σs
Sys winning in this game. If f is a

correct implementation, it must have enough memory to remember the order in
which a1 . . . an occurred. Otherwise, there would exist two words w and w′ of
(Σs

Env)
∗ such that every symbol of Σs

Env occurs exactly once in both w and w′,
w
= w′, and f has not enough memory to distinguish w and w′, i.e. w � w′,
and thus f(w) = f(w′) (see Sec. 2.2). Therefore, w · f(w) = w · f(w′) and
consequently, f would not be winning, since the order of replies (b’s) does not
match the order of queries (a’s). Contradiction.

All permutations of a1 . . . an are possible, therefore there must be as many
memory states in f as there are permutations of n elements, i.e. 2Ω(n log n).

Remark 1 (Succinctness). Using the same family of LSC specifications and the
same proof, one can show that translating LSCs to some DBA involves an ex-
ponential blow-up. Actually, it is not even possible to translate LSCs to NBA
recognizing either the language of the specification or its complement without
this blow-up. It follows from this fact and from the theorems in [21] that turning
LSCs to equivalent ACTLdet formulae also involves an exponential blow-up. In-
deed, for every ACTLdet formula, there is a nondeterministic Büchi automaton
recognizing their complement, which is linear in their size.

The problem of centralized realizability is lacking some features, which lessens
its applicability

1. It would be interesting to come up with an implementation that satisfies
the specification and guarantees that additional requirements will be met as
well. This is especially interesting if the specification is too abstract or too
loosely defined to ensure the requirements, but the analyst thinks that it is
possible to refine it in a way that would fulfill the requirements. The problem
of deciding whether there is such a particular implementation, which we call
Constrained Realizability is 2EXPTIME-complete, when we consider LTL as
a language for expressing requirements.

2. It does not take the structural model into account, because it assumes that
the “perfect information” hypothesis holds. Hence, agents are not obliged
to consider only events occurring at their interfaces. It seems necessary to
extend the centralized version of the problem to take this into account. This
variant is called Distributed Realizability (DR). As for LTL, this problem
is undecidable [22]. The proof of this theorem, given in appendix, is similar
to the proof presented in [23], to show that the problem of decentralized
observation is undecidable.

The problem of distributed realizability is, intuitively, to determine whether
there is a network of implementations, in which every agent only senses events
at its interface but the composition of which implements the specification. Dis-
tributed realizability becomes undecidable,

Definition 11 (DR). Distributed Realizability (DR) is, given an LSC specifi-
cation {L1, . . . , Lm}, to decide whether there is a list of strategies (fa)a∈Sys one
for every system agent, such that

The Complexity of Live Sequence Charts 375

1. fa : Σ∗ → (Σs
a);

2. ∀w,w′ ∈ Σ∗ : w|Σa
= w′|Σa

⇒ f(w) = f(w′), i.e. if w and w′ are the same,
from a’s point of view, then a shall behave the same way after w or w′;

3.
⋂

a∈SysOut(fa) is a correct implementation of {L1, . . . , Lm}.

Theorem 5. CR is EXPTIME-complete and DR is undecidable.

Proof. EXPTIME-hardness of CR is obtained from the reduction of the halting
problem of an alternating PSPACE TM to CR. The reduction is similar to the
one provided in the proof of Th. 3. TM alternation is mapped on the statuses
(antagonist vs protagonist) of the environment and the system.

Post’s Correspondence Problem (PCP) can be reduced to DR, hence showing
that DR is undecidable. The proof is essentially the one proposed by Tripakis
[23]. Let us fix an arbitrary PCP instance (w1, u1) . . . (wn, un) over some alphabet
Θ. The alphabet of our LSC specification is Θ ∪ {k1, . . . , kn} ∪ {$} ∪ {0, 1} ∪
{A0, A1}, plus an arbitrary finite number of events which can be exchanged
between system agents, say {s0, . . . , sq}. The system is made of two agents: a1
and a2. The first agent may observe Θ ∪ {$}, whereas the second can observe
{k1, . . . , km, $}. All these events, but {A0, A1} and the additional system events
{s0, . . . sk} are controlled by the environment. A play proceeds as follows. First,
the environment picks either 0 or 1. The former means that the environment
chooses to read words in the first component of the pairs of words (viz. the wi’s),
the latter means that it will read ui’s. Then, the environment must stick to that
choice until the end of the play. Namely, the environment chooses a particular
word in the list (say, wi or ui, depending on the “column” chosen) and indicates
the index of this word to the system, by performing ki. The environment must
enumerate the letters in wi, which are published to agent a1. The game goes on
until the environment performs $. At this point, the system is required to output
A0 or A1, depending on what index (0 or 1) the environment had chosen in the
first place.

We claim that the PCP instance has a solution iff this specification is not
implementable. Assume that PCP has a solution i1 . . . im but there is a winning
strategy for the system. Then, upon 0i1w1 . . . imwm$, the system answers with
A0. The strategy of the system shall also answer A0 toA1i1ui1 . . . imum$, because
the projections of the two words on agent’s alphabets are the same. Therefore,
there is no winning strategy.

If the PCP instance has no solution, then, the two system agents can get
together and compare the submitted run. Agent a2 sends the sequence of indices
that it has been presented with to a1 (using some protocol on which they agreed,
based on {s0, . . . , sp}). This agent can then build wi1 . . . wim

and compare it with
the word that he has received from the environment. Since the PCP instance has
no solution, either they are the same and a1 shall answer A0 or the two words
differ and a1 replies with A1.

376 Y. Bontemps and P.-Y. Schobbens

5 Extensions

The language of LSC that we have used so far was pretty simple. In this section,
we present some possible extensions, that make it more expressive but does
not cause any changes in the complexity of the problems investigated in this
paper. Actually, all membership proofs can be simply adapted to deal with these
extensions. Hardness proofs are of course not affected by adding new constructs
to the language.

Alternatives: within a single LSC, one can describe several alternatives, as
is done with inline constructs of MSCs or Sequence Diagrams. We need
to introduce the concept of LPOs with choice, which is much heavier to
manipulate. This extension does not cause any other problem, as the tableau
automaton of the LSC remains simply exponential.

Conditions: it is possible to add conditions (i.e. boolean logic over some pre-
defined set of propositions), to the language. Together with alternatives, we
can embed if-then-else tests in the language. Using the concept of cold/hot
conditions, one can also describe some “preconditions” and assertions: a
hot condition describes a condition that must be true when it is evaluated,
whereas a cold condition represents a condition that, if evaluated to false,
finishes prematurely and successfully the scenario. Again, all the results of
this paper remain true if we consider this extension.

Hot/Cold Locations: a cold location is a location on which the execution
of the chart may stop. This provides us with a way to specify that some
linearizations of the LPO may stop before reaching its end.

Modes of Communication: In our model, we assumed that communication
was instantaneous. Nevertheless, we can represent other modes of commu-
nication, like asynchronous or synchronous communication in our model.
Asynchronous communication means that the receiver shall not be ready
for the sender to send its message. In the synchronous mode, there is a
transmission delay, too, but the sender must wait for the receiver to get the
message before proceeding. This represents procedure calls, in programming
languages.

Unbounded loop is the only extension for which we could not prove the
robustness of our constructions. With the Kleene star and alternatives, we can
encode every regular expression as a basic chart. We were not able to show that
the double blow up involved in the tableau method could be avoided, and we leave
that problem open. Remark that Kleene star makes the language incomparable
to LTL.

6 Summary and Discussion

There are two axes along which complexity increases. The distributed version of
the problems is always harder than the centralized one, as in [15], while synthesis

The Complexity of Live Sequence Charts 377

is also more complex than model checking, for it adds alternation to the problem
[24].

The most interesting part is to investigate what causes such a high complex-
ity. We identify two factors making LSCs complex.

1. LSC semantics relies on partial orders. We used this in the proof of co-
NP-completeness of CCMC (Th. 2) and the lower-bound on the size of
synthesized state machines (Th.4). With a chart of size n, we can thus encode
a set of runs of exponential size.

2. An LSC specification is unstructured. In the PSPACE-hardness proofs, we
used LSCs of constant size only and, actually, very short ones, in which
events were linearly ordered. The complexity of the specification comes from
the fact that many LSCs are active at the same time, describing concurrent
liveness properties.

The former cause of complexity is often avoided in practice, because real-
world specifications tend to consist of almost linearly ordered scenarios. The
latter cause is more difficult to deal with. One shall find ways to describe the
problem structure in these models and, more importantly, to rely on this addi-
tional information to get more efficient algorithms. This is all but an easy task,
as it contradicts one of the basic principles of scenario-based software engineer-
ing: requirements are partial, redundant, complementary and range over several
aspects of the system.

Undecidability of distributed synthesis means that we need to find other ways
to cope with that problem. In [7], we propose such an algorithm, which is sound
but not complete. It applies a predefined “implementation scheme” and then
checks whether the distributed implementation obtained is correct.

References

1. International Telecommunication Union (ITU) Geneva: MSC-2000: ITU-T Recom-
mendation Z.120 : Message Sequence Chart (MSC). (2000) http://www.itu.int/.

2. Object Management Group (UML Revision Task Force): OMG UML Specification
(2.0). (2003) http://www.omg.org/uml.

3. Damm, W., Harel, D.: LSCs: Breathing life into message sequence charts. Formal
Methods in System Design 19 (2001) 45–80

4. Weidenhaupt, K., Pohl, K., Jarke, M., Haumer, P.: Scenario Usage in System
Development: A Report on Current practice. IEEE Software 15 (1998) 34–45

5. Amyot, D., Eberlein, A.: An evaluation of scenarion notations for telecommu-
nication systems development. Telecommunications Systems Journal 24 (2003)
61–94

6. Muscholl, A., Peled, D., Su, Z.: Deciding Properties of Message Sequence Charts.
Foundations of Software Science and Computer Structures (1998)

7. Bontemps, Y., Heymans, P.: As fast as sound (lightweight formal scenario synthesis
and verification). In Giese, H., Krüger, I., eds.: Proc. of the 3rd Int. Workshop
on “Scenarios and State Machines: Models, Algorithms and Tools” (SCESM’04),
Edinburgh, IEE (2004) 27–34

378 Y. Bontemps and P.-Y. Schobbens

8. Harel, D.: From play-in scenarios to code : An achievable dream. IEEE Computer
34 (2001) 53–60 a previous version appeared in Proc. of FASE’00, LNCS(1783),
Springer-Verlag.

9. Bontemps, Y., Heymans, P., Kugler, H.: Applying LSCs to the specification of
an air traffic control system. In Uchitel, S., Bordeleau, F., eds.: Proc. of the 2nd
Int. Workshop on “Scenarios and State Machines: Models, Algorithms and Tools”
(SCESM’03), Portland, OR, USA, IEEE (2003)

10. Bohn, J., Damm, W., Klose, J., Moik, A., Wittke, H.: Modeling and validating train
system applications using statemate and live sequence charts. In Ehrig, H., Krämer,
B.J., Ertas, A., eds.: Proceedings of the Conference on Integrated Design and
Process Technology (IDPT2002), Society for Design and Process Science (2002)

11. Bunker, A., Gopalakrishnan, G.: Verifying a VCI Bus Interface Model Using an
LSC-based Specification. In Ehrig, H., Krämer, B.J., Ertas, A., eds.: Proceedings of
the Sixth Biennial World Conference on Integrated Design and Process Technology,
Society of Design and Process Science (2002) 48

12. Kam, N., Harel, D., Kugler, H., Marelly, R., Pnueli, A., Hubbard, J.A., Stern,
M.J.: Formal modelling of c. elegans development; a scenario-based approach. In
Ciobanu, G., Rozenberg, G., eds.: Modelling in Molecular Biology. Natural Com-
puting Series. Springer (2004) 151–173

13. Bontemps, Y., Schobbens, P.Y., Löding, C.: Synthesis of open reactive systems
from scenario-based specifications. Fundamenta Informaticae 62 (2004) 139–169

14. Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. CWI
Quarterly 2 (1989) 219–246

15. Harel, D., Vardi, M.Y., Kupferman, O.: On the complexity of verifying concurrent
transition systems. Information and Computation 173 (2002)

16. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)
17. Harel, D., Marelly, R.: Come, let’s play! Scenario-based programming using LSCs

and the Play-engine. Springer (2003) ISBN 3-540-00787-3.
18. Harel, D., Kugler, H., Marelly, R., Pnueli, A.: Smart Play-Out of Behavioral

Requirements. In: Proc. 4th Intl. Conference on Formal Methods in Computer-
Aided Design (FMCAD’02), Portland, Oregon. (2002)

19. Abadi, M., Lamport, L., Wolper, P.: Realizable and unrealizable specifications of
reactive systems. In Ausiello, G., Dezani-Ciancaglini, M., Rocca, S.R.D., eds.: Au-
tomata, Languages and Programming, 16th International Colloquium, ICALP89,
Stresa, Italy, July 11-15, 1989, Proceedings. Volume 372 of Lect. Notes in Comp.
Sci., Springer (1989)

20. Pnueli, A., Rosner, R.: On the Synthesis of a Reactive Module. In: Proceedings
of the sixteenth annual ACM symposium on Principles of programming languages.
(1989) 179–190

21. Maidl, M.: The common fragment of CTL and LTL. In: Proc. 41st Annual Sym-
posium on Foundations of Computer Science. (2000) 643–652

22. Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reactive module. In
Ausiello, G., Dezani-Ciancaglini, M., Rocca, S.R.D., eds.: Automata, Languages
and Programming, 16th International Colloquium (ICALP). Volume 372 of Lect.
Notes in Comp. Sci., Stresa, Italy, Springer-Verlag (1989) 652–671

23. Tripakis, J.: Undecidable problems of decentralized observation and control on
regular languages. Information Processing Letters 90 (2004)

24. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. Journal of the ACM
28 (1981) 114–133

A Simpler Proof Theory for Nominal Logic

James Cheney

University of Edinburgh
jcheney@inf.ed.ac.uk

Abstract. Nominal logic is a variant of first-order logic equipped with a “fresh-
name quantifier” Nand other features useful for reasoning about languages with
bound names. Its original presentation was as a Hilbert axiomatic theory, but sev-
eral attempts have been made to provide more convenient Gentzen-style sequent or
natural deduction calculi for nominal logic. Unfortunately, the rules for Nin these
calculi involve complicated side-conditions, so using and proving properties of
these calculi is difficult. This paper presents an improved sequent calculus NL⇒

for nominal logic. Basic results such as cut-elimination and conservativity with
respect to nominal logic are proved. Also, NL⇒ is used to solve an open prob-
lem, namely relating nominal logic’s N-quantifier and the self-dual ∇-quantifier
of Miller and Tiu’s FOλ∇.

1 Introduction

Gabbay and Pitts [8] have introduced a new way of reasoning about names and binding,
in which α-equivalence and capture-avoiding substitution can be defined in terms of the
basic concepts of swapping and freshness. This approach provides a cleaner treatment
of α-equivalence than the classical first-order approach in which α-equivalence and
capture-avoiding substitution are defined by mutual recursion. On the other hand, unlike
higher-order techniques for dealing with names and binding, the semantics of this model
of name-binding is relatively straightforward, so well-understood mathematical tools like
structural induction can be used to reason about syntax with bound names.

These ideas have been incorporated into a logic called nominal logic [12]. Nominal
logic is typed, first-order equational logic augmented with:

– name-types ν, ν′, . . . inhabited by countably many names a, b, . . .;
– a swapping operation (− −) ·− : ν → ν → τ → τ for each name-type ν and type
τ , which acts on values by exchanging occurrences of names;

– a freshness relation − # − : ν → τ → o1 for each name-type ν and type τ , that
holds between a name and a value independent of the name;

– an abstraction type constructor 〈−〉− and abstraction function symbol 〈−〉− : ν →
τ → 〈ν〉τ which constructs values equal up to consistent renaming, axiomatized as
follows:

∀a, b, x, y.〈a〉x = 〈b〉y ⇐⇒ (a = b ∧ x = y) ∨ (a # y ∧ x = (a b) · y) ;

1 o is the type of propositions.

V. Sassone (Ed.): FOSSACS 2005, LNCS 3441, pp. 379–394, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

380 J. Cheney

– a some/any fresh-name quantifier Nthat is self-dual (¬ Na.ϕ ⇐⇒ Na.¬ϕ);
– and freshness and equivariance principles which state that fresh names can always

be chosen and truth is preserved by name-swapping, respectively.

1.1 The Problem

This paper is concerned with developing simple rules for reasoning with the N-quantifier.
Pitts’ original formalization of nominal logic was a Hilbert-style collection of first-order
axioms (which we callNL). There were no new inference rules for N. Instead, Nwas de-
fined using the axiom scheme ∀x.(Na.ϕ ⇐⇒ ∃a.a # x∧ϕ), whereFV (ϕ) ⊆ {a, x}.
While admirable from a reductionist point of view, Hilbert systems have well-known
deficiencies for modeling actual reasoning. Instead, Gentzen-style natural deduction and
sequent systems provide a more intuitive approach to formal reasoning in which logical
connectives are explained as proof-search operations. Gentzen systems are especially
useful for computational applications, such as automated deduction and logic program-
ming. A sequent calculus formalization would also be convenient for relating nominal
logic with other logics by proof-theoretic translations.

Gentzen-style rules for Nhave been considered in previous work. Pitts [12] proposed
sequent and natural deduction rules for Nbased on the observation that

∀a.(a # x ⊃ ϕ(a, x)) ⊃ Na.ϕ(a, x) ⊃ ∃a.(a # x ∧ ϕ(a, x)) .

These rules (see Figure 1(NL)) are symmetric, emphasizing N’s self-duality. However,
they are not closed under substitution, which greatly complicates the the proof of cut-
elimination or proof-normalization properties.

Gabbay [6] introduced Fresh Logic (FL), an intuitionistic natural deduction calculus
for nominal logic, and studied semantic issues including soundness and completeness
as well as proving proof-normalization. Gabbay and Cheney [7] presented a similar
sequent calculus called FLSeq. In FL, Gabbay introduced a technical device called
slices for obtaining rules that are closed under substitution. Technically, a slice ϕ[a#u]
of a formula ϕ is a decomposition of the formula as ϕ(a, x)[u/x] for fresh variables x,
such that a does not appear in any of the u. Slices were also used in the FLSeq rules (see
Figure 1(FLSeq)). The slice-based rules shown in Figure 1(FLSeq) are closed under
substitution, so proving cut-elimination for these rules is relatively straightforward once
several technical lemmas involving slices have been proved. Noting that theFLSeq rules
are structurally similar to ∀L and ∃R, respectively, Gabbay and Cheney observed that
alternate rules in which NL was similar to ∃L and NR similar to ∀R were possible (see
Figure 1(FL′

Seq)). These rules seem simpler and more deterministic; however, they still
involve slices.

Gabbay and Cheney presented a proof-theoretic semantics for nominal logic pro-
gramming based on FLSeq. However, this analysis suggested an interpretation of N-
quantified formulas that was radically different from the approach used in the αProlog
nominal logic programming language [2]. The proof-search interpretation of Na.ϕ sug-
gested by FLSeq is “search for a slice ϕ[a#u] of ϕ and substitution t for a such that
t # u and solve ϕ(t, u)”, while in αProlog, the interpretation of Na.ϕ is “generate a
fresh name a′ and solve ϕ(a′)”. The approach motivated by the FLSeq proof-theoretic
semantics seems much more complicated than experience with αProlog suggests.

A Simpler Proof Theory for Nominal Logic 381

Γ, a # x ⇒ ϕ, Δ (†)
Γ ⇒ Na.ϕ, Δ

NR
Γ, a # x, ϕ ⇒ Δ (†)

Γ, Na.ϕ ⇒ Δ
NL (NL)

Γ � u # t Γ � ϕ[u/a] (∗)
Γ � Na.ϕ NI

Γ � Na.ϕ Γ � u # t
Γ, ϕ[u/a] � ψ (∗)

Γ ⇒ ψ
NE (FL)

Γ, u # t ⇒ ϕ[u/a] (∗)
Γ, u # t ⇒ Na.ϕ

NR
Γ, u # t, ϕ[u/a] ⇒ ψ (∗)

Γ, u # t, Na.ϕ ⇒ ψ
NL

(FLSeq)

Γ, a # t ⇒ ϕ (∗), (∗∗)
Γ ⇒ Na.ϕ

NR
Γ, a # t, ϕ ⇒ ψ (∗), (∗∗)

Γ, Na.ϕ ⇒ ψ
NL (FL′

Seq)
Σ#a : Γ ⇒ ϕ (a /∈ Σ)

Σ : Γ ⇒ Na.ϕ NR
Σ#a : Γ, ϕ ⇒ ψ (a /∈ Σ)

Σ : Γ, Na.ϕ ⇒ ψ
NL (NL⇒)

(†) x = FV (Γ, Na.ϕ, Δ) (∗) ϕ = ϕ[a#t] (∗∗) a �∈ FV (Γ, ψ)

Fig. 1. Evolution of rules for N

Gabbay and Cheney also gave a translation fromFOλ∇, a logic introduced by Miller
and Tiu that also includes a self-dual quantifier,∇ [9] into FLSeq. This translation was
sound (mapped derivable sequents to derivable sequents), but incomplete (mapped some
non-derivable sequents to derivable ones). Gabbay and Cheney conjectured that their
translation would be complete relative toFOλ∇ extended with weakening and exchange
for ∇.

In this paper we present a simplified sequent calculus for nominal logic, calledNL⇒,
in which slices are not needed in the rules for N(or anywhere else), and which seems
more compatible with the proof-search reading of Nin αProlog. Following Urban, Pitts,
and Gabbay [14, 6], we employ a new syntactic class of name-symbols a, b, Like
variables, such name-symbols may be bound (by N), but unlike variables, two distinct
name-symbols are always regarded as denoting distinct name values. In place of slices,
we introduce variable contexts that encode information about freshness. Specifically,
contexts Σ#a:ν may be formed by adjoining a fresh name-symbol a which is also
assumed to be semantically fresh for any value mentioned in Σ. Our rules for N(Fig-
ure 1(NL⇒)) are in the spirit of the original rules and are very simple.

Besides the sequent calculus itself, we present two applications. First, we verify that
NL⇒ and Pitts’ axiomatization NL are equivalent. Second, we present and prove the
soundness and completeness of a new translation from FOλ∇ to nominal logic, solving
a problem left unsolved by Gabbay and Cheney. We have also found that the original
translation is complete relative to FOλ∇ extended with∇-weakening and .

The structure of this paper is as follows: Section 2 presents the sequent calculus
NL⇒ along with proofs of structural properties and conservativity of NL⇒ relative to
NL. In Section 3, we present sound and complete translations from FOλ∇ (with and
without ∇-weakening and exchange) to NL⇒. Section 4 discusses additional related
and future work, and Section 5 concludes.

exchange

382 J. Cheney

2 Sequent Calculus

The sequent calculus in this section is a generalization of the one presented in Chapter 4
of the author’s dissertation [5]. Full proofs can be found there and in a companion
technical report [3].

2.1 Syntax and Well-Formedness

The types τ , terms t, and formulas ϕ of NL⇒ are generated by the following grammar:

τ ::= o | δ | ν | τ → τ ′ | 〈ν〉τ t, u ::= c | a | λx:τ.t | t u | x
ϕ, ψ ::= - | ⊥ | t | ϕ ∧ ψ | ϕ ∨ ψ | ϕ ⊃ ψ | ∀x:τ.ϕ | ∃x:τ.ϕ | Na:ν.ϕ

The base types are datatypes δ, name-types ν, and the type o of propositions; additional
types are formed using the function and abstraction type constructors. Variables x, y are
drawn from a countably infinite set V ; also, name-symbols a, b are drawn from a disjoint
countably infinite setA. The letters a, b are typically used for terms of some name-sort ν.
Note that λ-terms are included in this language and are handled in a traditional fashion.
In particular, terms are considered equal up to αβη-equivalence. Similarly, ∀,∃, and N-
quantified formulas are identified up to α-equivalence. We assume given a signature that
maps constant symbols c to types τ , and containing at least the following declarations:

eqτ : τ→τ→o freshντ : ν→τ→o swapντ : ν→ν→τ→τ absντ : ν→τ→〈ν〉τ

for all name-types ν and types τ . The notations t ≈ u, t # u, (t u) · v, and 〈t〉u are
syntactic sugar for eq t u, fresh t u, swap t u v, and abs t u, respectively.

The contexts used in NL⇒ are generated by the grammar:

Σ ::= · | Σ, x:τ | Σ#a:ν

We often abbreviate ·, x:τ and ·#a:ν to x:τ and a:ν respectively, and may omit type
declarations when no ambiguity ensues. We write ω for a term that may be either a
name-symbol a or a variable x. The functions FV (−), FN(−), FV N(−) calculate the
sets of free variables, name-symbols, or both variables and name-symbols of a term or
formula. Note that abstraction 〈−〉− is just a function symbol and does not bind its first
argument (which may be any term of type ν), and so FN(〈a〉t) = FN(a) ∪ FN(t),
whereas Na.ϕ does bind a, so FN(Na.ϕ) = FN(ϕ) − {a}. We write ω:τ ∈ Σ if the
binding ω:τ is present in Σ. We write Σ;Σ′ for the result of concatenating two contexts
such that FV N(Σ) ∩ FV N(Σ′) = ∅.

Remark 1. The inclusion ofλ-terms and identification of terms and formulas with bound
names up toα-equivalence may be objectionable because it appears that we are circularly
attempting to define binding in terms of binding. This is not the case. A key contribution
of Gabbay and Pitts’ approach is that it shows how one can formally justify a traditional,
informal approach to binding syntax by constructing syntax trees modulo α-equivalence
as simple mathematical objects in a particularly clever way [8][5–Ch. 3–4]. We assume
that this or some other standard technique for dealing with binding in nominal logic’s
terms and formulas is acting behind the scenes.

A Simpler Proof Theory for Nominal Logic 383

We write Σ � t : τ or Σ � ϕ : o to indicate that t is a well-formed term of type τ
or ϕ is a well-formed formula. From the point of view of typechecking, the freshness
information given by the context is irrelevant. There are only two nonstandard rules for
typechecking:

ω:τ ∈ Σ
Σ � ω : τ

Σ#a:ν � ϕ : o
Σ � Na:ν.ϕ : o

Terms viewed as formulas must, as usual, be of type o. Quantification using ∀ and
∃ is only allowed over types not mentioning o; N-quantification is only allowed over
name-types.

Let TmΣ = {t | Σ � t : τ} be the set of well-formed terms in context Σ. We
associate a set of freshness formulas |Σ| to each context Σ as follows:

| · | = ∅ |Σ, x : τ | = |Σ| |Σ#a : ν| = |Σ| ∪ {a # t | t ∈ TmΣ}

For example, a # x, b # a, and b # f x y ∈ |x:τ#a:ν, y:τ ′#b:ν′| (provided f :
τ → τ ′ → σ is a function symbol). We say that Σ is stronger than Σ′ (Σ′ ≤ Σ) if
TmΣ′ ⊆ TmΣ and |Σ′| ⊆ |Σ|. For example, a, x ≤ x#a, y.

Lemma 1 (Term Weakening). If Σ � t : τ and Σ ≤ Σ′ then Σ′ � t : τ .

Lemma 2 (Term Substitution). If Σ � t : τ and Σ, x : τ ;Σ′ � u : τ ′ then Σ;Σ′ �
u[t/x] : τ ′.

2.2 The Rules

Judgments are of the form Σ : Γ ⇒ Δ, where Σ is a context and Γ,Δ are multisets of
formulas. We define classical and intuitionistic versions of NL⇒. Classical NL⇒ is
based on the classical sequent calculus G3c [11] (see Figure 2), whereas Intuitionistic
NL⇒ (INL⇒) is based on the intuitionistic calculus G3im (in which⊃, ∀R, and ∃L-
rules are restricted to a single-conclusion form). Both versions include two additional
logical rules, NL and NR, shown in Figure 1(NL⇒). In addition,NL⇒ includes several
nonlogical rules (Figure 4) defining the properties of swapping, equality, freshness and
abstraction. Figure 5 lists some admissible rules.

Many of the nonlogical rules correspond to first-order universal axioms of nominal
logic (Figure 3), which may be incorporated into sequent systems in a uniform fashion
using the Ax rule without affecting cut-elimination [11]. The remaining nonlogical
rules are as follows. Rule A2 expresses an invertibility property for abstractions: two
abstractions are equal only if they are structurally equal or equal by virtue of A1. A3
says that all values of abstraction type are formed using the abstraction function symbol.
The F rule expresses the freshness principle: that a name fresh for a given context may
always be chosen. Finally, the Σ# rule allows freshness information to be extracted
from the context Σ. It states that in context Σ, any constraint in |Σ| is valid.

2.3 Structural Properties

We now list some routinely-verified properties of NL⇒ derivations. We write �n J to
indicate that judgment J has a derivation of height at most n.

384 J. Cheney

Σ : Γ, p t ⇒ p t, Δ
hyp

Σ : Γ ⇒ �, Δ
�R

Σ : Γ,⊥ ⇒ Δ
⊥L

Σ : Γ ⇒ ϕ, Δ Σ : Γ ⇒ ψ, Δ

Σ : Γ ⇒ ϕ ∧ ψ, Δ
∧R

Σ : Γ, ϕ1, ϕ2 ⇒ Δ

Σ : Γ, ϕ1 ∧ ϕ2 ⇒ Δ
∧L

Σ : Γ ⇒ ϕ1, ϕ2, Δ

Σ : Γ ⇒ ϕ1 ∨ ϕ2, Δ
∨R

Σ : Γ, ϕ ⇒ Δ Γ, ψ ⇒ Δ

Σ : Γ, ϕ ∨ ψ ⇒ Δ
∨L

Σ : Γ, ϕ ⇒ ψ, Δ

Σ : Γ ⇒ ϕ ⊃ ψ, Δ
⊃R

Σ : Γ ⇒ ϕ, Δ Σ : Γ, ψ ⇒ Δ

Σ : Γ, ϕ ⊃ ψ ⇒ Δ
⊃L

Σ, x : Γ ⇒ ϕ, Δ (x �∈ Σ)
Σ : Γ ⇒ ∀x.ϕ, Δ

∀R
Σ � t : σ Σ : Γ,∀x:τ.ϕ, ϕ[t/x] ⇒ Δ

Σ : Γ,∀x:τ.ϕ ⇒ Δ
∀L

Σ � t : σ Σ : Γ ⇒ ∃x:τ.ϕ, ϕ[t/x], Δ
Σ : Γ ⇒ ∃x:τ.ϕ, Δ

∃R
Σ, x : Γ, ϕ ⇒ Δ (x �∈ Σ)

Σ : Γ,∃x.ϕ ⇒ Δ
∃L

Σ : Γ, t ≈ t ⇒ Δ

Σ : Γ ⇒ Δ
≈R

Σ : Γ, t ≈ u, P (t), P (u) ⇒ Δ

Σ : Γ, t ≈ u, P (t) ⇒ Δ
≈S

Fig. 2. Classical typed first-order equational logic (G3c)

Lemma 3 (Weakening). If �n Σ : Γ ⇒ Δ is derivable then so is �n Σ : Γ, ϕ⇒ Δ.

Lemma 4 (Context Weakening). If�n Σ : Γ ⇒ Δ andΣ ≤ Σ′ then�n Σ′ : Γ ⇒ Δ

Lemma 5 (Substitution). If �n Σ � t : τ and Σ, x:τ ;Σ′ : Γ ⇒ Δ then �n Σ;Σ′ :
Γ [t/x] ⇒ Δ[t/x].

The remaining structural transformations do not preserve the height of derivations.
However, they do preserve the logical height of the derivation, which is defined as
follows.

Definition 1. The logical height of a derivation is the maximum number of logical rules
in any branch of the derivation. We write �l

n J to indicate that J has a derivation of
logical height ≤ n.

Lemma 6 (Admissibility of EV L, EV R). If �l
n Σ : Γ, (a b) · ϕ ⇒ Δ, then so is

�l
n Σ : Γ, ϕ ⇒ Δ. Similarly, if �l

n Σ : Γ ⇒ (a b) · ϕ,Δ is derivable, then so is
�l
n Σ : Γ ⇒ ϕ,Δ.

Lemma 7 (Admissibility ofhyp∗). The judgmentΣ : Γ, ϕ⇒ ϕ,Δ is derivable for any
ϕ.

Proof (Sketch). Induction on the construction of ϕ. The only new case is for ϕ =
Na.ψ(a, x). By induction we know that Σ#a#b : Γ, ψ(b, x) ⇒ ψ(b, x). Using equiv-

ariance we have Σ#a#b : Γ, (a b) · ψ(a, x) ⇒ ψ(b, x). Since x ⊂ FV (Σ), using

A Simpler Proof Theory for Nominal Logic 385

(S1) (a a) · x ≈ x
(S2) (a b) · (a b) · x ≈ x
(S3) (a b) · a ≈ b
(E1) (a b) · c ≈ c
(E2) (a b) · (t u) ≈ ((a b) · t) ((a b) · u)
(E3) p(x) ⊃ p((a b) · x)

(E4) (a b) · λx.e[x] ≈ λx.(a b) · e[(a b) · x]
(F1) a # x ∧ b # x ⊃ (a b) · x ≈ x
(F2) a # b (a : ν, b : ν′, ν �≡ ν′)
(F3) a # a ⊃ ⊥
(F4) a # b ∨ a ≈ b
(A1) a # y ∧ x ≈ (a b) · y ⊃ 〈a〉x ≈ 〈b〉y

Fig. 3. Equational and freshness axioms

Σ : Γ, P , Q1 ⇒ Δ · · · Σ : Γ, P , Qn ⇒ Δ

Σ : Γ, P ⇒ Δ
Ax

∧
P ⊃ ∨

Q an axiom instance

Σ : Γ, 〈a〉t ≈ 〈b〉u, a ≈ b, t ≈ u ⇒ Δ Σ : Γ, 〈a〉t ≈ 〈b〉u, a # u, t = (a b) · u ⇒ Δ

Σ : Γ, 〈a〉t ≈ 〈b〉u ⇒ Δ
A2

Σ � t : 〈ν〉σ Σ, a:ν, x:σ : Γ, t ≈ 〈a〉x ⇒ Δ (a, x /∈ Σ)
Σ : Γ ⇒ Δ

A3

Σ#a : Γ ⇒ Δ (a /∈ Σ)
Σ : Γ ⇒ Δ

F
Σ : Γ, t # u ⇒ Δ (t # u ∈ |Σ|)

Σ : Γ ⇒ Δ
Σ#

Fig. 4. Nonlogical rules

Σ : Γ ⇒ Δ
Σ : Γ, ϕ ⇒ Δ

W
Σ : Γ, ϕ ⇒ ϕ, Δ

hyp∗ Σ : Γ ⇒ ϕ, Δ Σ : Γ ′, ϕ ⇒ Δ′

Σ : Γ, Γ ′ ⇒ Δ, Δ′ cut

Σ : Γ, ϕ, ϕ ⇒ Δ

Σ : Γ, ϕ ⇒ Δ
C

Σ : Γ, (a b) · ϕ ⇒ Δ

Σ : Γ, ϕ ⇒ Δ
EV L

Σ : Γ ⇒ (a b) · ϕ, Δ

Σ : Γ ⇒ Δ, ϕ
EV R

Fig. 5. Some admissible rules of NL⇒

Σ# we know that a # x, b # x, hence (a b) · x ≈ x, so using equational rea-
soning we have (a b) · ψ(a, x) ≈ ψ(b, x). Then using NL and NR we can conclude
Σ : Γ, Na.ψ ⇒ Na.ψ,Δ. ��

Lemma 8 (Inversion). The ⊃L, ∃L, ∧L, and ∨L rules are invertible, in the sense of
lemma 2.3.5 and 4.2.8 of Negri and von Plato [11]. In addition, NL is invertible: if
�l
n Σ : Γ, Na.ϕ⇒ Δ is derivable then so is �l

n Σ#a : Γ, ϕ⇒ Δ for fresh a.

Lemma 9 (Contraction). If�l
n Σ : Γ, ϕ, ϕ⇒ Δ is derivable then so is�l

n Σ : Γ, ϕ⇒
Δ.

2.4 Cut-Elimination

Lemma 10 (Admissibility of Cut). If Σ : Γ ⇒ Δ,ϕ and Σ : Γ ′, ϕ ⇒ Δ′ have
cut-free derivations then so does Σ : Γ, Γ ′ ⇒ Δ,Δ′.

386 J. Cheney

Proof (Sketch). We show the most interesting case, that for principal cuts on N-quantified
formulas. In this case, the derivations are of the form

Π
Σ#a : Γ ⇒ ϕ,Δ

Σ : Γ ⇒ Na.ϕ,Δ NR

Π ′
Σ#a : Γ ′, ϕ⇒ Δ′

Σ : Γ ′, Na.ϕ⇒ Δ′ NL

where without loss of generality we assume that the same fresh name a
∈ Σ was used
in both sub-derivations. Since ϕ is smaller than Na.ϕ, we can obtain a derivation Π ′′ of
Σ#a : Γ, Γ ′ ⇒ Δ,Δ′ from Π and Π ′ by the induction hypothesis. Then

Π ′′
Σ#a : Γ, Γ ′ ⇒ Δ,Δ′

Σ : Γ, Γ ′ ⇒ Δ,Δ′ F

follows using rule F . ��

Theorem 1 (Cut-Elimination). If Σ : Γ ⇒ Δ has any derivation then it has a cut-free
derivation.

Corollary 1 (Consistency). There is no derivation of Σ : · ⇒ ⊥.

Corollary 2 (Orthognality). Suppose Σ : Γ ⇒ Δ and Γ,Δ have no subterms of the
form 〈a〉t (respectively, λx.t). Then there is a derivation of Σ : Γ ⇒ Δ that does not
use any nonlogical rules involving abstraction (respectively, λ).

2.5 Conservativity

In this section, we show that NL⇒ is conservative relative to Pitts’ original axiomatiza-
tion NL [12]. That is, every theorem of NL is provable in NL⇒, and no new theorems
become provable. For convenience, we assume that the same underlying first-order se-
quent calculus is used for NL and NL⇒.

Write �NL Σ : Γ ⇒ Δ if there is a first-order equational sequent proof of Σ :
Γ, Γ ′ ⇒ Δ. for some set of NL axioms Γ ′. Write �NL⇒ Σ : Γ ⇒ Δ if Σ : Γ ⇒ Δ is
derivable in NL⇒ without using any rules involving λ. Write �IX for the intuitionistic
version of provability in system X , that is, provability using only single-conclusion
sequents.

We translate NL formulas ϕ to NL⇒ formulas ϕ∗ by replacing all subformulas of
the form Na.ϕ(a) with Na.ϕ∗(a), for fresh name-symbols a. This translation is uniquely
defined up to α-equivalence. For example, (Na. Nb.p(a, b))∗ = Na. Nb.p(a, b).

To prove the reverse direction of conservativity, it is necessary to show that NL⇒

sequents involving fresh name-symbols and contexts Σ#a are equivalent to sequents
involving only variables.

Lemma 11 (Name-Elimination). Suppose Σ mentions only variables and �l
n Σ#a :

Γ [a] ⇒ Δ[a]. Then �l
n Σ, a : Γ [a], a # Σ ⇒ Δ[a], where a # Σ is an abbreviation

for {a # x | x ∈ Σ}.

A Simpler Proof Theory for Nominal Logic 387

Theorem 2 (Conservativity). �(I)NL Σ : Γ ⇒ Δ if and only if �(I)NL⇒ Σ : Γ ∗ ⇒
Δ∗

Remark 2 (Semantics). Conservativity justifiesNL⇒’s description as a sequent calculus
for nominal logic.Although this paper focuses exclusively on proof theory at the expense
of more traditional model theoretic semantics, conservativity guarantees that NL⇒

inherits Pitts’ nominal set semantics for nominal logic (as well as suffering from the
same completeness problem). Space constraints preclude further discussion; however,
these issues are considered in detail in Cheney’s dissertation and a paper in preparation.

3 A Sound and Complete Translation of FOλ∇

Miller and Tiu introduced a sequent calculus called FOλ∇, which abbreviates “First-
order Logic with λ-terms and the∇-quantifier” [9]. Like N, the∇ quantifier is self-dual.
However, Nand∇ have distinctly different properties. Nominal logic and FOλ∇ have
similar aims (reasoning about languages in which binding and fresh name-generation
play an important role), so it is of interest to determine the relationship between FOλ∇

and INL⇒. Also, FOλ∇ has only been studied using proof theory, but nominal logic
has a well-understood semantics [12], so relating the two systems may also elucidate
the semantics of FOλ∇.

In FOλ∇, formulas are generalized to formulas-in-context σ � ϕ, where σ is a
list of local parameters (variables introduced by ∇) and ϕ is a formula built out of
first-order connectives and quantifiers or ∇x.ψ. We abbreviate “formula-in-context”
to “c-formula”. Local parameter contexts are subject to α-renaming, so that a � p(a)
and b � p(b) are considered equal c-formulas. However, c-formulas are not considered
equivalent up to reordering or extension of the contexts. Thus, a, b � p(a), a � p(a), and
b, a � p(a) are all considered different c-formulas.

The sequent calculus rules dealing with ∇ are as follows:

Σ : Γ ⇒ (σ, x) � ϕ
Σ : Γ ⇒ σ �∇x.ϕ ∇R

Σ : Γ, (σ, x) � ϕ⇒ A
Σ : Γ, σ �∇x.ϕ⇒ A ∇L

where in either case x must not already appear in σ or Σ. However, x may appear in
some other local context.

Most of the other sequent rules of FOλ∇ are standard, except for the presence of
local contexts. For example,

Σ : Γ, σ � ϕ, σ � ψ ⇒ A
Σ : Γ, σ � ϕ ∧ ψ ⇒ A ∧L

Σ : Γ ⇒ σ � ϕ Σ : Γ ⇒ σ � ψ

Σ : Γ ⇒ σ � ϕ ∧ ψ ∧R

are the rules dealing with ∧. The only exceptions are the ∀ and ∃ rules. In ∀R and ∃L,
the bound variable is “lifted” to show its dependence on local parameters. Dually, in ∀L
and ∃R, the term substituted for the bound variable may depend on local parameters.
Here are the ∀-rules; the rules for ∃ are similar.

Σ, h:τσ → τ : Γ ⇒ σ � A[h σ/x]
Σ : Γ ⇒ σ � ∀τx.A ∀R

Σ, σ � t : τ Σ : Γ, σ � A[t/x] ⇒ C
Σ : Γ, σ � ∀τx.A⇒ C ∀L

388 J. Cheney

Although∇ and Nhave some properties in common and seem to have similar moti-
vations, the relation between them is not obvious. For example, INL⇒ includes name-
types, and Nmay only quantify over them; FOλ∇ has no name-types, and ∇ may
quantify over any simple type. In addition, Nadmits weakening (ϕ ⇐⇒ Na.ϕ where
a
∈ FN(ϕ)) and exchange (Na. Nb.ϕ ⇐⇒ Nb. Na.ϕ), and satisfies ∀x.ϕ(x) ⊃

Na.ϕ(a) ⊃ ∃x.ϕ(x). None of these inferences are derivable with ∇ substituted for N.
On the other hand, ∇ commutes with all propositional connectives, ∀, and ∃, while N
only commutes with propositional connectives.

Gabbay and Cheney studied the problem of embedding FOλ∇ into nominal logic.
They presented a translation (which we call TGC) from FOλ∇ to FLSeq satisfying
a soundness property: if J is derivable in FOλ∇ then its translation [[J]] is derivable
in FLSeq. However, their translation did not satisfy the corresponding completeness
property: some non-derivable judgments of FOλ∇ were translated to derivable FLSeq

judgments. In particular, the translation failed to reconcile the different behavior of N
and ∇ with respect to weakening and exchange principles.

In the rest of this section, we present a modified translation and prove its sound-
ness and completeness. We also sketch a proof that the original translation is complete
with respect to FOλ∇ with ∇-weakening and exchange. Full proofs will be given in a
companion technical report [4].

Our translation T departs from TGC in two ways. First, TGC translated c-formulas
such as x�ϕ∧ψ by first using N-quantifiers for the local context, then translating ϕ∧ψ,
and finally substituting n(a) for x, resulting in Na.[[ϕ]][n(a)/x] ∧ [[ψ]][n(a)/x]. In this
approach, the head symbol of a translated c-formula was hidden beneath a sequence
of N-quantifiers, which made TGC difficult to analyze. Instead, our translation delays

N-quantification as long as possible and preserves the head symbol for most formulas:
for example, the prior example translates to [[x � ϕ]] ∧ [[x � ψ]]. Any N-quantification is
delayed as long as possible, that is, until the base case for atomic formulas.

The second change is the translation of atomic formulas. As noted earlier, the validity
of c-formulas is sensitive to both the order and number of local parameters in context. To
deal with this, we relativize atomic formulas to their local contexts. This is accomplished
by adding an argument to each atomic formula symbol for a list of names representing
the local context. Let ν∗ be a type with constructors nil : ν∗ and cons : ν → ν∗ → ν∗,
that is, a type of lists of names. We use a conventional comma-separated list notation for
lists: [a, b, c] = cons(a, cons(b, cons(c, nil))). The translation of an atomic c-formula
σ � pt is Na.p∗ [a] t[nτ (a)/σ], where if p : τ → o then p∗ : ν∗ → τ → o.

Otherwise, T is similar to TGC . Ordinary ∀ and ∃-quantified values are lifted to
equivariant functions applied to lists of names. For example, σ � ∀x:τ ′.p(x) was trans-
lated to Na.∀h:τ1 → · · · τn → τ ′.ev(h) ⊃ p(h nτ (a)), where each ai is the name
representing xi, and ev(x) = ∀a : ν.a # x.

The new translation is shown in full in Figure 6. The function [[·]] translates judgments,
contexts, and c-formulas of FOλ∇ to judgments, formula multisets, and formulas of
INL⇒ respectively. Note that the contextΣ is translated to a set of hypotheses ev(x), one
for eachx ∈ Σ. Here are two examples of the new translation. The formula∇x.p ⇐⇒ p
is translated to Na.p∗ [a] ⇐⇒ p∗ []. Likewise, we translate ∇x, y.p x y ⇐⇒

A Simpler Proof Theory for Nominal Logic 389

[[σ � �]] = �
[[σ � ⊥]] = ⊥
[[σ � p t]] = Na.p∗ [a] (t[nτ (a)/σ])

[[σ � ϕ ∧ ψ]] = [[σ � ϕ]] ∧ [[σ � ψ]]

[[·]] = ·

[[σ � ϕ ∨ ψ]] = [[σ � ϕ]] ∨ [[σ � ψ]]
[[σ � ϕ ⊃ ψ]] = [[σ � ϕ]] ⊃ [[σ � ψ]]
[[σ � ∀x:τ.ϕ]] = ∀h:τσ→τ .ev(h) ⊃ [[σ � ϕ[hσ/x]]]
[[σ � ∃x:τ.ϕ]] = ∃h:τσ→τ .ev(h) ∧ [[σ � ϕ[hσ/x]]]
[[σ � ∇x:τ.ϕ]] = [[σ, x:τ � ϕ]]

[[Σ, x:τ]] = [[Σ]], ev(x) (ev(x) = ∀a:ν.a # x)

[[Σ : Γ ⇒ A]] = Σ : [[Σ]], [[Γ]] ⇒ [[A]]

Fig. 6. Translation T from FOλ∇ to INL⇒

∇y, x.p x y to Na, b.p∗ [a, b] (n(a))(n(b)) ⇐⇒ Nb, a.p∗ [b, a] (n(a)) (n(b)). Neither
of these translated formulas is derivable in nominal logic.

Lemma 12. If Σ �FOλ∇ t : τ then Σ �INL⇒ t : τ ; in addition, Σ : [[Σ]] ⇒ ev(t).
Also, if Σ : Γ ⇒ A is well-formed then so is [[Σ : Γ ⇒ A]].

Proposition 1 (Soundness). If Σ : Γ ⇒ A is derivable in FOλ∇ then [[Σ : Γ ⇒ A]]
is derivable in INL⇒.

Proof. Similar to, but simpler than, the proof for TGC . ��

Theorem 3 (Completeness). If [[Σ : Γ ⇒ A]] is derivable in INL⇒ then Σ : Γ ⇒ A
is derivable in FOλ∇.

Proof (Sketch). We break the proof into the following steps:

1. Identify two normal forms for INL⇒ proofs, and show that proofs of translated
sequents can be normalized.

2. Show that proofs of the first normal form are proofs of initial sequents.
3. Show that proofs of the second normal form correspond to applications of FOλ∇

rules.

In the analysis to follow, it simplifies matters to eliminate as many nonlogical rules as
possible from derivations. By the orthogonality property, we need not consider the rules
for abstraction in translated derivations, since abstractions are not used in the translation.
In addition, the nonlogical rulesF3 andF4 can also be eliminated, as we shall now show.

Lemma 13. Suppose Σ has no name-variables. If Σ � a : ν, then for some a ∈ Σ,
Σ : · ⇒ a ≈ a.

Proposition 2. If [[Σ : Γ ⇒ A]] is derivable then it has a derivation that does not use
F3 or F4.

390 J. Cheney

Proof. To show that F3 cannot be used in a derivation of a translated sequent, note that
[[Γ]] and [[A]] do not mention equality or freshness, and the formulas [[Σ]] = ∀a.a #
x1, . . . ,∀a.a # xn cannot be instantiated to xi # xi since the variables xi are not
of name-type. We can therefore show that no sequent occurring in the derivation of a
translated sequent can contain a # a using methods similar to those used for consistency
and orthogonality.

Consider a subderivation ending with F4, of the form

Σ : Γ, a # b⇒ ϕ Σ : Γ, a ≈ b⇒ ϕ

Σ : Γ ⇒ ϕ

Name-variables are never introduced in translated derivations, so by Lemma 13, we have
Σ ⇒ a ≈ a, Σ : · ⇒ b ≈ b for some a, b ∈ Σ. If a = b then clearly Σ : · ⇒ a ≈ b,
so we can use the second subderivation and cut to derive Σ : Γ ⇒ ϕ. On the other
hand, if a
= b then clearly Σ : · ⇒ a # b and also Σ : · ⇒ a # b. Using cut and the
subderivation Σ : Γ, a # b we can derive Σ : Γ ⇒ ϕ. ��

Definition 2. A derivation is in first normal form if it uses only the rules NL, NR, hyp,
and nonlogical rules.

A derivation beginning with a left- or right-rule is in second normal form provided
that if the toplevel rule is ∀L, ∀R, ∃L, or ∃R, then the next rule used is ⊃L, ⊃R, ∧L,
or ∧R, respectively.

Before proving that translated derivations always have normal forms, we need some
additional technical machinery. We write ϕ̂(t) for the formula ev(t) ⊃ ϕ(t); translations
of universal c-formulas are always of the form ∀x.ϕ̂(x). We write Γ̂ (t) for a set of
formulas ϕ̂1(tn), . . . , ϕ̂n(tn) such that ∀x.ϕ̂i(x) ∈ [[Γ]] for each i.

Lemma 14. If Σ is a FOλ∇ context, Σ#a � t : τ and Σ#a : [[Σ]] ⇒ ev(t) then
Σ � t : τ .

Lemma 15. If Σ is a FOλ∇ context, Σ#a : [[Σ]], [[Γ]], Γ̂ (t) ⇒ ev(t) then either
Σ : [[Γ]]⇒ ϕ has a normal derivation for any formula ϕ, or Σ#a : [[Σ]]⇒ ev(t).

Lemma 16. If Σ : Γ ⇒ ϕ has a derivation using only nonbranching nonlogical rules,
then it has either a first normal form derivation or one that starts with F or a logical
rule.

Proposition 3. If [[Σ : Γ ⇒ A]] is derivable, then it has a normal derivation.

Proof (Sketch). First, by Corollary 2 and Proposition 2, [[Σ : Γ ⇒ A]] must have a
derivation that does not use the rules A1, A2, A3, F3 or F4.

Because of subtleties involved in the interaction between the F and ∀L rule, we need
a stronger induction hypothesis. We prove that if Σ#a : [[Σ]], [[Γ]], Γ̂ (t) ⇒ [[A]] has a
derivation, then Σ : [[Σ]], [[Γ]]⇒ [[A]] has a normal derivation.

A Simpler Proof Theory for Nominal Logic 391

Using Lemma 16, the sequent either has a first normal form derivation (in which
case we are done) or begins with F or a logical rule. If it starts with a propositional rule
applied to an element of [[Γ]], then we are done. The induction steps for F and ∀L are
immediate. For ∃L,∀R, we can use the invertibility of∧L and⊃R respectively and then
use ∀L. This leaves the cases for ∃R and for ⊃L applied to an element of Γ̂ . For ⊃L
we must have subderivations of Σ#a � t : τ and Σ#a : [[Γ]], Γ̂ (t), ϕ(t) ⇒ [[A]]. Using
the lemmas we can show that the witnessing term t does not mention any names, and so
we can construct a derivation starting with ∀L and ⊃L. In the similar case of ∃R, we
also need the invertibility of ∧R. ��

We next show that if the derivation is in first normal form, then the FOλ∇ sequent
is derivable. We need two auxiliary facts.

Lemma 17. Suppose x#a � t : τ and π · [a] = [b]. Then x#a#b : · ⇒ π · t ≈
t[b1/a1, . . . , bn/an]

Lemma 18. Suppose that Σ has no name-variables and Γ consists of freshness and
equality formulas only. If Σ : Γ, p t⇒ p u then for some permutation π of names in Σ,
we have Σ : Γ ⇒ π · t ≈ u.

Proof. The proof is by induction on the structure of the derivation. Only the hypothesis
and nonbranching nonlogical rules can be involved, of these cases, only F poses a
challenge. In the case for F , the π obtained by induction may mention the fresh name a
introduced by F ; however, a cannot appear in t or u, so b = π−1(a) must not appear in
t, and so π′ = π ◦ (a b) also works since π′ · t = π · (a b) · t = π · t = u. ��

Proposition 4. Let [[Σ : Γ ⇒ A]] have a first-normal form derivation. ThenΣ : Γ ⇒ A
is derivable.

Proof. If [[Σ : Γ ⇒ A]] has a first normal form derivation, then A and some element B
of Γ must be of the form σ �∇x.p t. Without loss of generality, we consider the case
where no ∇-quantifiers appear. After stripping off the initial sequence of NL and NR
rules, there must be a subderivation of

Σ#a#b : [[Σ]], [[Γ]], p∗ [a] θ(t) ⇒ p∗ [b] θ′(u)

for some names a, b, where θ = [n(a)/σ] and θ′ = [n(b)/σ′]. Note that θ and θ′ are
one-to-one and so invertible on on their ranges, and that Σ#a � θ(t) : τ (that is, none
of the b appear in θ(t)).

By Lemma 18, there must be a ground permutationπ such thatΣ : · ⇒ π·([a] θ(t)) ≈
[b] θ′(u). Clearly, π · [a] = [b], so by Lemma 17 we have u[n(b)/σ′] = θ′(u) ≈
π · θ(t) ≈ θ(t)[b1/a1, . . . , bn/an] = t[n(b)/σ]. Since [n(b)/σ′] is invertible, we have
u ≈ t[n(b)/σ][σ′/n(b)] = t[σ′/σ], which implies σ � p t ≡α σ′ � p u. ��

Proof (Completeness Theorem). In FOλ∇,∇ commutes with all propositional connec-
tives, ∀, and ∃. Therefore, every judgment is equivalent to one in which ∇-quantifiers

392 J. Cheney

only occur around atomic formulas, that is, in subformulas of the form ∇x.p t. So it
suffices to consider only judgments of this form.

The proof is by induction on the complexity of the judgment Σ : Γ ⇒ A. If the
normalized derivation is of the first form, then by Proposition 4, the sequent is derivable.
If the normalized derivation is of the second form, there are many subcases, one for each
possible starting left- or right-rule. The cases for propositional rules are straightforward.
The remaining cases are those for ∀ and ∃. We will show that translated sequents derived
using ∀L/R, ∃L/R in INL⇒ can be derived using ∀L/R and ∃L/R in FOλ∇.

If the final step of the derivation is ∀R, then the derivation must be of the form

Σ, h : [[Σ]], ev(h), [[Γ]]⇒ [[σ � ϕ[hσ/x]]]
Σ, h : [[Σ]], [[Γ]]⇒ ev(h) ⊃ [[σ � ϕ[hσ/x]]]

⊃R

Σ : [[Σ]], [[Γ]]⇒ ∀h.ev(h) ⊃ [[σ � ϕ[hσ/x]]] ∀R

Note that [[Σ]], ev(h) = [[Σ, h]], so the topmost sequent is of the form [[Σ, h : Γ ⇒
σ � ϕ[hσ/x]]]. By induction, Σ, h : Γ ⇒ σ � ϕ[hσ/x] is derivable, and using ∀R, we
conclude Σ : Γ ⇒ σ � ∀x.ϕ. The ∃L case is similar.

If the final inference is ∀L, then the derivation must be of the form

Σ � t : τσ → τ

Σ : [[Σ]], [[Γ]]⇒ ev(t) Σ : [[Σ]], [[Γ]], [[σ � ϕ[hσ/x]]][t/h] ⇒ [[A]]
Σ : [[Σ]], [[Γ]], ev(t) ⊃ [[σ � ϕ[hσ/x]]]⇒ [[A]]

⊃L

Σ : [[Σ]], [[Γ]],∀h.ev(h) ⊃ [[σ � ϕ[hσ/x]]]⇒ [[A]] ∀L

Since Σ does not mention name-constants, we have Σ � t : τσ → τ and also Σ, σ �
t σ : τ in FOλ∇. Note that [[σ � ϕ[hσ/x]]][t/h] = [[σ � ϕ[t σ/x]]] so we also have
Σ : [[Σ]], [[Γ]], [[σ � ϕ[t σ/x]]]⇒ [[A]], which is the same as [[Σ : Γ, σ � ϕ[t σ/x] ⇒ A]].
By induction, Σ : Γ, σ � ϕ[t σ/x] ⇒ A is derivable, and since Σ, σ � t σ : τ , we can
use ∀L to conclude that Σ : Γ, σ � ∀x.ϕ⇒ A. The ∃R case is similar. ��

Remark 3. If we modify the translation step for atomic formulas by defining [[σ �p t]] =
Na.p t[n(a)/σ] then we obtain a translation TWX that is essentially the same as TGC ,

and is complete with respect to FOλ∇ with ∇-weakening and exchange principles.
We write θ : σ ↪→ σ′ to indicate that θ is a partial injective renaming mapping σ

to σ′. We say that c-formulas are WX-equivalent (σ � A ≡WX σ′ � B) if there is a
θ : σ ↪→ σ′ such that θ(A) = B. For example, x, y � p(x, y) ≡WX y, x, z � p(x, y).
Note that ≡WX subsumes α-equivalence. Let FOλ∇WX be FOλ∇ except that atomic
c-formulas are considered equal modulo ≡WX .

It is not difficult to show that the formulas ∇x.ϕ ⇐⇒ ϕ (where x
∈ FV (ϕ)) and
∇x.∇y.ϕ ⇐⇒ ∇y.∇x.ϕ are derivable in FOλ∇WX for any formula ϕ. In addition,
using the same techniques as above, we can show that the translation is sound and
complete relative to FOλ∇WX . The proof is the same as that for completeness relative
to FOλ∇, except that we need to show that Proposition 4 holds for atomic c-formulas
equal modulo ≡WX instead of α-equivalence.

A Simpler Proof Theory for Nominal Logic 393

4 Related and Future Work

Besides previous formalizations of nominal logic by Pitts, Gabbay, and Cheney (surveyed
in Section 1.1), several other logics and type systems have considered rules for N-
quantified formulas or types. Caires and Cardelli [1] investigated a logic incorporating
proof rules for N-quantified formulas based on maintaining a set of side-conditions
involving freshness constraints. However, the freshness constraints are not formulas of
their logic. These rules are similar in spirit to (and partly inspired) the slice-based rules
of FL and FLSeq. Another related system is the type system of Nanevski [10], which
includes rules similar to those of FL for N-quantified types. A third closely related
system is Schöpp and Stark’s dependent type theory for names and binding [13], in
which a bunched context is used to store freshness information. Our freshness contexts
and rules for Nare simpler special cases of the contexts and rules in their theory.

There are several directions for future work. NL⇒ may be useful for developing an
improved proof-theoretic semantics for nominal logic programming. Natural deduction
calculi or type theories for nominal logic based on our approach could be used as the
basis of proof checkers and interactive theorem provers for nominal logic. The existence
of translations from FOλ∇ to NL⇒ suggest that FOλ∇ can be interpreted using the
semantics of nominal logic. Moreover, a semantic approach may lead to a simpler proof
of the completeness of the translations.

5 Conclusions

This paper makes two contributions. First, we present a new sequent calculus for nominal
logic which avoids the slices used in the rules for Nin FL and FLSeq. Instead, our
calculus deals with Nusing freshness contexts that encode freshness information as
well as typing information. Although this is partly a matter of taste, we believe that
our approach is easier to use and analyze and provides a more transparent reading of N
as a proof search operation than any previous system. In particular, the proofs of cut-
elimination and conservativity relative to Pitts’ axiomatization seem simpler and require
fewer technical lemmas than previous attempts.

The second contribution of this paper is an improved translation from FOλ∇ to
intuitionistic nominal logic (INL⇒), which explains the behavior of the∇-quantifier in
terms of N. We show that FOλ∇ can be soundly and completely interpreted in INL⇒,
so any argument carried out in FOλ∇ can also safely be carried out in INL⇒. In
addition, we argued that the translation originally proposed by Gabbay and Cheney is
complete relative to FOλ∇ with weakening and exchange for ∇.

Acknowledgments. Discussions with Ian Stark and Uli Schöpp and the anonymous
reviewers’ comments were of great value in improving this paper.

394 J. Cheney

2. J. Cheney and C. Urban. Alpha-Prolog: A logic programming language with names, binding
and alpha-equivalence. In Proc. 20th Int. Conf. on Logic Programming (ICLP 2004), number
3132 in LNCS, pages 269–283, 2004.

3. James Cheney. A simpler proof theory for nominal logic. Technical Report EDI-INF-RR-
0237, LFCS, University of Edinburgh, November 2004.

4. James Cheney. A sound and complete translation of generic judgments into nominal logic.
Technical report, LFCS, University of Edinburgh, 2005. In preparation.

5. James R. Cheney. Nominal Logic Programming. PhD thesis, Cornell University, Ithaca, NY,
August 2004.

6. M. J. Gabbay. Fresh logic: A logic of FM, 2003. Submitted.
7. M. J. Gabbay and J. Cheney. A proof theory for nominal logic. In Proceedings of the 19th

Annual IEEE Symposium on Logic in Computer Science (LICS 2004), pages 139–148, Turku,
Finland, 2004.

8. M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable binding.
Formal Aspects of Computing, 13:341–363, 2002.

9. Dale Miller and Alwen Tiu. A proof theory for generic judgments: extended abstract. In Proc.
18th Symp. on Logic in Computer Science (LICS 2003), pages 118–127. IEEE Press, 2003.

10. Aleksandar Nanevski. Meta-programming with names and necessity. In Proc. 8th ACM
SIGPLAN Int. Conf. on Functional Programming, pages 206–217. ACM Press, 2002.

11. Sara Negri and Jan von Plato. Structural Proof Theory. Cambridge University Press, 2001.
12. A. M. Pitts. Nominal logic, a first order theory of names and binding. Information and

Computation, 183:165–193, 2003.
13. Ulrich Schöpp and Ian Stark. A dependent type theory with names and binding. In Proceedings

of the 2004 Computer Science Logic Conference, number 3210 in Lecture notes in Computer
Science, pages 235–249, Karpacz, Poland, 2004.

14. C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal unification. Theoretical Computer Science,
323(1–3):473–497, 2004.

References

1. Lu s Caires and Luca Cardelli. A spatial logic for concurrency–II. Theoretical Computer
Science, 322(3):517–565, September 2004.

í

From Separation Logic to First-Order Logic

Cristiano Calcagno, Philippa Gardner, and Matthew Hague

Department of Computing
Imperial College

University of London

Abstract. Separation logic is a spatial logic for reasoning locally about
heap structures. A decidable fragment of its assertion language was pre-
sented in [1], based on a bounded model property. We exploit this prop-
erty to give an encoding of this fragment into a first-order logic contain-
ing only the propositional connectives, quantification over the natural
numbers and equality. This result is the first translation from Separa-
tion Logic into a logic which does not depend on the heap, and provides
a direct decision procedure based on well-studied algorithms for first-
order logic. Moreover, our translation is compositional in the structure
of formulae, whilst previous results involved enumerating either heaps or
formulae arising from the bounded model property.

1 Introduction

Separation Logic [2] is a spatial logic for reasoning about mutable heap struc-
tures. It provides an elegant method for reasoning locally about separate areas
of memory, and combining the results in a modular way. Its primary application
is as the basis of a Hoare Logic for reasoning about memory update. An essential
task is therefore to study decision procedures for validity checking, as part of a
wider goal to develop verification tools for analysing C-programs.

The assertion language of Separation Logic is very expressive, due to the
presence of two connectives: the separating conjunction φ1 ∗φ2 which asserts the
existence of a split of the current heap into two disjoint sub-heaps that satisfy
φ1 and φ2 respectively; and its adjunct implication φ1 −∗ φ2 which asserts that,
whenever a fresh heap that satisfies φ1 is composed with the current heap, then
the result satisfies φ2. In particular, validity checking is internalizable, which
means that finding decision procedures is difficult.

Validity checking for the full Separation logic is undecidable [1]. Calcagno et
al. have therefore been studying decidable fragments of the logic [1, 3]. They have
shown that the Propositional Separation Logic (no quantifiers) is decidable [1],
based on a finite model property which bounds the number of heaps that need to
be checked. This is a surprising result since there is an implicit existential quan-
tification in ∗, and more significantly an implicit universal quantification over
fresh heaps in −∗. However, their result does not provide a pragmatic decision
procedure, since it relies on checking all the heaps of a certain size. In this paper
we study a new approach. We provide a translation of Propositional Separation

V. Sassone (Ed.): FOSSACS 2005, LNCS 3441, pp. 395–409, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

396 C. Calcagno, P. Gardner, and M. Hague

Logic into a decidable fragment of first-order logic, for which decision procedures
have been widely studied. We avoid the inefficient enumeration of the heaps by
using the universal quantification of first-order logic.

As well as the results in [1], we take inspiration from the work of Dal Zilio
et al. [4] which provides a novel decision procedure for the Static Ambient
Logic [5]. Calcagno et al. adapted the decidability result of Propositional Sepa-
ration Logic [1] to show decidability for the Static Ambient Logic, which relied
this time on a finite model property for trees. Dal Zilio spotted a more efficient
decision procedure for the Ambient Logic, that used a combination of Presburger
Arithmetic and automata which did not depend on tree enumeration.

We provide a translation from Propositional Separation Logic into first order
logic with only the propositional connectives, quantification over the natural
numbers and equality. Our results rely on the bounded model property of [1].
The main idea is that vectors of a fixed length are used to represent all the states
up to a given size. This means that we can represent sets of bounded states
directly as first-order formulae over a fixed number of variables. The crucial
cases in our translation are the connectives ∗ and −∗. Since the current heap is
decomposed by ∗ and extended by −∗, the vector representation must change
across subformulae. We define vector operations that represent decomposition
and composition of heaps, and show that they simulate ∗ and −∗. These results
are then used to give a simple proof of correctness of our translation.

The expressiveness of Separation Logic can thus be obtained in an ordinary
classical logic that is independent of heap structures. This is interesting because
the translation provides a more elegant decision procedure than the one in [1]
(which was based on enumerating all the heaps in a finite set arising from the
finite model property). Since our translation is polynomial in the length of for-
mula, we will be able to take advantage of the maturity of existing tools for
first-order logic to provide an efficient decision procedure for Propositional Sep-
aration Logic.

In [6, 7], Lozes shows a related result that the spatial connectives can be
eliminated from Propositional Separation Logic. His result is obtained by using
the finite model property to produce a formula that is a disjunction of (charac-
teristic formulae of) all heaps that satisfy the given formula. Their result differs
from ours in that their target logic is not independent of heap structures and
the method for translating the logic requires a decision procedure for a fragment
of Separation Logic. More importantly, our translation is compositional in the
structure of the formulae, and is not based on an enumeration of the exponential
number of satisfying heaps. An immediate consequence of our approach is that
a prover can use an existing axiomatization of first-order logic to output a direct
proof. A complete axiomatization for Propositional Separation Logic is still an
open problem.

The structure of the paper is the following. We begin in section 2 by in-
troducing Propositional Separation Logic and its bounded model properties. In
section 3 we present our vector representation of bounded heaps and the trans-
lation into first-order logic. In section 4 we discuss the conclusions of our work
and describe several avenues for further research.

From Separation Logic to First-Order Logic 397

2 Propositional Separation Logic

In this section we present Propositional Separation Logic. This fragment of Sepa-
ration Logic has the property that formulae can be assigned a size, which bounds
the size of the states that need to be considered to check validity.

We begin by defining the sets of stacks and heaps, for which we need some
notation.

Definition 1 (Notation). We use the following notation. A partial function
f : X ⇀fin Y is a finite map f from X to Y . We write f#g to indicate that
partial maps f and g have disjoint domains. The composition of two partial
functions f and g with disjoint domains is defined as (f ∗ g)(x) = y iff f(x) = y
or g(x) = y. The empty map is denoted []. We use the notation | | to indicate the
cardinality of sets (which will be overloaded to also represent the size of formulae
in Definition 3).

Values, stacks, heaps, and states are defined as follows:

v ∈ V al � Loc ∪ {0}
s ∈ Stack � V ar ⇀fin V al

h ∈ Heap � Loc ⇀fin V al × V al

(s, h) ∈ State � Stack ×Heap

where locations Loc are the natural numbers greater than zero. The value 0
represents the null location. A heap maps locations to binary heap cells and its
domain indicates which locations are currently allocated. A stack is a partial
function mapping program variables to values.

The syntax of Propositional Separation Logic is defined as follows

E ::= Expressions
x, y Variables
0 Nil

φ, ψ ::= Formulae
E = E Equality
false Falsity
φ⇒ ψ Implication
E "→ E1, E2 Binary heap cell
emp Empty heap
ψ ∗ ψ Composition
ψ −∗ ψ Composition adjunct

The binary cell formula E "→ E1, E2 asserts that the location denoted by the
expression E is the only allocated cell, and that it contains (E1, E2). The formula
emp asserts that the heap is empty, i.e. no location is allocated. Composition φ∗ψ
means that the current heap can be split into two disjoint sub-heaps satisfying
φ and ψ respectively. Its adjunct φ −∗ ψ asserts that all heaps disjoint from the
current heap and satisfying φ, when composed with the current heap satisfy ψ.
The semantics is given by the satisfaction relation between formulae and states

398 C. Calcagno, P. Gardner, and M. Hague

Table 1. Semantics of formulae given a stack s and a heap h

JxKs � s(x)
J0Ks � 0

(s, h) |= E1 = E2 iff JE1Ks = JE2Ks

(s, h) |= false never
(s, h) |= φ1 ⇒ φ2 iff s, h |= φ1 then s, h |= φ2

(s, h) |= (E �→ E1, E2) iff dom(h) = {JEKs} and h(JEKs) = (JE1Ks, JE2Ks)
(s, h) |= emp iff dom(h) = ∅
(s, h) |= φ1 ∗ φ2 iff there exists h1 and h2 such that

h1#h2; h1 ∗ h2 = h; s, h1 |= φ1 and s, h2 |= φ2

(s, h) |= φ1 −∗ φ2 iff for all h1 such that h#h1

and (s, h1 |= φ1), (s, h ∗ h1) |= φ2

defined in Table 1. Standard logical connectives are defined as derived operators,
such as ¬φ � (φ⇒ false).

Definition 2 (Validity). A formula φ is valid iff (s, h) |= φ holds for all states
(s, h).

Given a fixed stack, we can use −∗ to reduce satisfaction for all heaps to satis-
faction for the empty heap.

Lemma 1. Given a stack s and a formula φ,

(∀h. (s, h) |= φ) ⇐⇒ ((s, []) |= (¬φ) −∗ false)

Proof. Since h ∗ [] = h, the assertion (s, []) |= (¬φ) −∗ false states that any heap
that satisfies ¬φ must also satisfy false. That is, no heap satisfies ¬φ and so φ
holds for all heaps.

We now introduce the notion of size of formulae, as in [1].

Definition 3 (Size of Formulae). Given a formula φ, its size |φ| is defined
by

|E1 = E2| = 0 |false| = 0
|φ⇒ ψ| = max(|φ|, |ψ|) |(E "→ E1, E2)| = 1
|emp| = 1 |φ ∗ ψ| = |φ|+ |ψ|

|φ −∗ ψ| = |ψ|

The size of a formula is used to determine a bound to the size of the heaps
that need to be considered when checking validity, and to bound the size of new
heaps needed to check satisfaction for formulae of the form P −∗ Q. Technically,
one can define an equivalence relation ∼n on states, parameterized on the size

From Separation Logic to First-Order Logic 399

parameter n. The main property is that formulae of size n cannot distinguish
between ∼n-related states. For example, the size of (x "→ y, z) is one because,
in order to satisfy it or its negation, it is enough to consider heaps with at most
one allocated location. The size of φ ∗ ψ is the sum since ∗ combines subheaps
together. The size of φ −∗ ψ is |ψ| because ∼n is a congruence, and adding
identical heaps in parallel (the φ part) does not affect the distinguishing power
of formulae.

Because the semantics of −∗ quantifies over all heaps, algorithmically deter-
mining if (s, h) |= φ for any formula φ is not straightforward. The following
Proposition, which is an adaptation of an analogous one in [1], shows how to
bound the size of new heaps that need to be considered.

Proposition 1. For a given a state (s, h) and formulae φ1 and φ2, (s, h) |=
φ1 −∗ φ2 holds iff for all h1 such that,

– h#h1 and (s, h1) |= φ1, and
– |dom(h1)| ≤ max(|φ1|, |φ2|) + |FV (φ1) ∪ FV (φ2)|

we have that (s, h ∗ h1) |= φ2.

Proof. The proposition is a corollary of Proposition 1 given on page 7 of [1].

The above Proposition requires max(|φ1|, |φ2|) since the observations that
φ1 −∗ φ2 can make on the current heap depend on both φ1 and φ2. It is worth
noting that the set of heaps satisfying the properties in Proposition 1 is infinite
(the size of heaps is bounded but the values contained are arbitrary), whereas
the similar proposition in [1] explicitly defines a finite set of heaps. A finite set of
heaps was necessary in [1] to give a direct decision procedure enumerating those
heaps. However, our translation to first-order logic only depends on the size of
heaps, so we chose a more abstract property.

To conclude the section we define bounded states, and give a bounding prop-
erty for validity of formulae, which will be used in the translation presented in
the next section. Bounded stacks and heaps are defined as follows.

Definition 4 (SX). We write SX to denote the set of stacks such that s ∈ SX

iff dom(s) = X, where X ⊆ V ar.

Definition 5 (Hp). Given a size p ∈ N, we write Hp to denote the set of heaps
such that h ∈ Hp iff |dom(h)| ≤ p.

Proposition 2. Given a formula φ,

(∀(s, h). (s, h) |= φ) ⇐⇒
(
∀(s, h) ∈ SX ×Hp. (s, h) |= φ

)
where X = FV (φ) and p = |φ|+ |FV (φ)|.

Proof. The proposition follows immediately from Lemma 2 and Lemma 3 below.

400 C. Calcagno, P. Gardner, and M. Hague

Lemma 2. Given a stack s and a formula φ,

(∀h. (s, h) |= φ) ⇐⇒
(
∀h ∈ H|φ|+|FV (φ)|. (s, h) |= φ

)
Proof. By Lemma 1 we know that,

(∀h. (s, h) |= φ) ⇐⇒ ((s, []) |= (¬φ) −∗ false)

By proposition 1, it follows that (s, []) |= (¬φ) −∗ false iff for all h1 such that,

– []#h1 and (s, h1) |= ¬φ, and
– |dom(h1)| ≤ max(|¬φ|, |false|) + |FV (¬φ) ∪ FV (false)|

we have that (s, [] ∗ h1) |= false. Which is equivalent to,

∀h1 ∈ H|φ|+|FV (φ)|. (s, h) |= φ

since []#h1, h1 = [] ∗ h1 and max(|¬φ|, |false|) + |FV (¬φ) ∪ FV (false)| = |φ| +
|FV (φ)|. Therefore,

(∀h. (s, h) |= φ) ⇐⇒
(
∀h ∈ H|φ|+|FV (φ)|. (s, h) |= φ

)
as required.

Lemma 3. Given a formula φ,

(∀(s, h). (s, h) |= φ) ⇐⇒
(
∀s ∈ SFV (φ). ∀h. (s, h) |= φ

)
Proof. This is immediate from the semantics of Separation Logic since the values
of variables that are not in FV (φ) do not affect the truth of φ.

3 Translating Separation Logic to First-Order Logic

In this section we present a translation from Separation Logic to first-order logic.

3.1 Representing States as Vectors

We represent bounded stacks in SX and heaps in Hp as vectors of fixed length.
This will allow us to replace quantification over bounded states by ordinary
first-order quantification using a fixed number of variables.

Given a stack s ∈ SX, with {x1, . . . , xn} = X, we assume a fixed or-
dering on variables and define its representation vs(s) simply as the vector
(s(x1), . . . , s(xn)). Heaps in Hp are represented as vectors b of p triples of values.
The i-th triple (bi,1,bi,2,bi,3) potentially represents a heap cell. If bi,1 is a loca-
tion (not 0), then the cell is allocated and contains the pair of values (bi,2,bi,3).
If bi,1 = 0 then the i-th triple does not represent a heap cell. For example, H2

From Separation Logic to First-Order Logic 401

contains the singleton heap (1 "→ 2, 3), which can be represented by the vec-
tor ((1, 2, 3), (0, 6, 7)) or ((0, 8, 9), (1, 2, 3)). The values 6, 7, 8, 9 are unimportant
since they do not belong to an active cell.

Note that all heaps in Hp have several vector representations, because the
order of the heap cells, and the values of cells whose location is 0, are irrelevant.
Also, not all vectors represent a valid heap, since the same location could occur
more than once in the vector. We formalize the representation relation as a par-
tial function vhp from vectors to bounded heaps, defined in Table 2. A particular
vector b is in the domain of vhp iff it represents a well-formed heap.

Table 2. Definition of vhp(b)

vhp : (N × N × N)p ⇀ Hp

vhp(b) =
{

Undef if ∃i, j ∈ 1..p. i �= j ∧ bi,1 = bj,1 ∧ bi,1 �= 0 ∧ bj,1 �= 0
{(bi,1 �→ bi,2,bi,3)|bi,1 �= 0 ∧ i ∈ 1..p} otherwise

Lemma 4. For all p, vhp is surjective:

∀h ∈ Hp∃b. vhp(b) = h

3.2 Representing Heaps in First-Order Logic

In this section we show how to use first-order formulae to represent heaps, and
operations on heap representations corresponding to ∗ and −∗.

We have seen that heaps are represented as vectors of triples of values. We
now show how to represent assertions about heaps as first-order formulae from
the following grammar

A ::= E = E | false | A⇒ A | ∀x.A

with free variables drawn from a vector B of triples of variables. We write ∀B′. A
as an abbreviation for ∀B′

1,1∀B′
1,2 · · · ∀B′

p,3. A when B′ is a vector of p triples
of variables, and similarly for ∃B′. A. We use the standard notation

∧
i∈1..n . A

for A[1/i]∧ · · · ∧A[n/i], and similarly for
∨

i∈1..n . A. Given a vector of values b
and a formula A with free variables from a vector B, we write [B Z⇒ b] |= A
for the usual satisfaction relation of first-order logic, where [B Z⇒ b] is the
assignment of values to the variables.

We begin by defining the derived first-order formula heap(B) that imposes
restrictions on the values of the variables in B to ensure that they represent a
valid heap.

402 C. Calcagno, P. Gardner, and M. Hague

Definition 6. Given a vector of variables B,

heap(B) �
(∧

i∈1..|B|
j∈1..|B|

i �=j

(
Bi,1 = 0 ∨Bj,1 = 0 ∨Bi,1
= Bj,1

))

The following lemma states that heap(B) holds for a vector of values b exactly
when b represents a heap, that is b will be in the domain of vh|b|.

Lemma 5. Given vectors B, b such that |B| = |b|,

b ∈ dom(vh|B|) ⇐⇒ [B Z⇒ b] |= heap(B)

Proof. Immediate from the definitions of heap(B) and vh|B|.

We present two operators on vectors for constructing and deconstructing rep-
resentations of heaps. These distinct operators are required because the spatial
connectives ∗ and −∗ manipulate the heap in different ways. First consider the
composition connective ∗, which splits the current heap into two disjoint sub-
heaps whose size and contents are limited by the original heap. We use the
formula B = B′ � B′′, defined below, to capture this property where the vector
of variables B represents the current heap, and the variables B′,B′′ represent
the two subheaps. Because we do not know exactly how the heap will be split,
the size of vectors B′ and B′′ must each equal the size of B, as in the worst case
splitting the current heap will result in the current heap on one side and the
empty heap on the other.

Definition 7 (Decomposition). For vectors of variables B,B′,B′′ such that
|B| = |B′| = |B′′|, define

B = B′ � B′′ �
∧

i∈1..|B|

⎛
⎜⎜⎝
(

B′
i,1 = Bi,1 ∧B′′

i,1 = 0
∧B′

i,2 = Bi,2 ∧B′
i,3 = Bi,3)

)
∨
(

B′
i,1 = 0 ∧B′′

i,1 = Bi,1
∧B′′

i,2 = Bi,2 ∧B′′
i,3 = Bi,3

)
⎞
⎟⎟⎠

The extension to vectors of values is as follows

b = b′ � b′′ iff [B Z⇒ b,B′ Z⇒ b′,B′′ Z⇒ b′′] |= B = B′ � B′′

The following lemma shows that if heap(B) holds then so does its decomposition.

Lemma 6. For all vectors B, B′, B′′, the following is valid

(B = B′ � B′′ ∧ heap(B)) ⇒ (heap(B′) ∧ heap(B′′))

Lemma 7 and Lemma 8 show that a splitting of heaps can be simulated by a
corresponding splitting of representations, and vice versa.

Lemma 7. For all p, b and h, h1, h2 ∈ Hp,

h = h1 ∗ h2 ∧ vhp(b) = h⇒ ∃b′,b′′.
(

b = b′ � b′′∧
vhp(b′) = h1 ∧ vhp(b′′) = h2

)

From Separation Logic to First-Order Logic 403

Lemma 8. For all p, b,b′,b′′ and h ∈ Hp,

b = b′ � b′′ ∧ vhp(b) = h⇒ h = vhp(b1) ∗ vhp(b′′)

The composition adjunct −∗ requires the addition of fresh heap cells to the
current heap. The heap formed by the addition of these new cells may exceed
the size that can be expressed by the current set of variables, which means
that new variables need to be used to represent the new cells. We introduce the
derived ‘append’ connective • to capture the addition of new heap cells.

Definition 8 (B′ •B′′). Given vectors B′ and B′′ we define B′ •B′′ as vector
concatenation: |B′ •B′′| = |B′|+ |B′′| and for all i ∈ 1..|B′ •B′′|,

(B′ •B′′)i =
{

B′
i if i ∈ 1..|B′|

B′′
i if i ∈ (|B′|+ 1)..|B′ •B′′|

The following lemma shows that if the result of appending two vectors represents
a valid heap, then each vector represents a valid heap.

Lemma 9. For all vectors B, B′, B′′ such that B = B′ • B′′, the following is
valid

heap(B) ⇒ heap(B′) ∧ heap(B′′)

The following lemma captures the relationship between the composition of heaps
and the appending of vectors.

Lemma 10. For all, p1, p2, b′,b′′ and h ∈ Hp1+p2 such that |b′| = p1 and
|b′′| = p2,

vhp1+p2(b
′ • b′′) = h ⇐⇒ h = vhp1(b

′) ∗ vhp2(b
′′)

3.3 The Translation

We now have all the ingredients necessary to present the translation, which is
defined in Table 3.

The translation tran(φ,B) produces a first-order formula with free variables
in φ,B. For simplicity of notation we assume that the variables in φ and B are
always disjoint (formally, we could use two syntactic categories). The translation
begins with an implication, which effectively ignores all variable assignments that
do not represent a heap. The bulk of the translation lies in tran′(φ,B).

The translations of (E1 = E2), false, (φ1 ⇒ φ2) and emp are fairly straight-
forward, but the translations of (E "→ E1, E2), (φ1 ∗ φ2) and (φ1 −∗ φ2) may
benefit from an explanation.

The translation of the cell formula E "→ E1, E2 states that only one of the
location variables Bi,1 has a value that is non-zero — that is, the heap repre-
sented by the values of the variables has one cell only. Also, the values of the
variables (Bi,1,Bi,2,Bi,3) match the values of the expressions E,E1 and E2.

The Composition case tran(φ1 ∗φ2,B) requires that we can split the current
heap (the values of the variables in B) into two parts, using B = B′ � B′′, such
that the parts satisfy φ1 and φ2 respectively.

404 C. Calcagno, P. Gardner, and M. Hague

Table 3. Definition of tran(φ,B)

tran(φ,B) � heap(B) ⇒ tran′(φ,B)

tran′(E1 = E2,B) � E1 = E2

tran′(false,B) � false
tran′(φ1 ⇒ φ2,B) � tran′(φ1,B) ⇒ tran′(φ2,B)

tran′(E �→ E1, E2,B) � ∨
i∈1..|B|

⎛
⎜⎝

Bi,1 �= 0 ∧ ∧
j∈1..|B|

i�=j

[
Bj,1 = 0

]
∧ Bi,1 = E
∧ Bi,2 = E1 ∧Bi,3 = E2

⎞
⎟⎠

tran′(emp,B) � ∧
i∈1..|B| Bi,1 = 0

tran′(φ1 ∗ φ2,B) � ∃B′,B′′.

⎛
⎝B = B′ � B′′

∧ tran′(φ1,B′)
∧ tran′(φ2,B′′)

⎞
⎠

tran′(φ1 −∗ φ2,B) � ∀B′.

⎛
⎝ tran′(φ1,B′)
∧ heap(B •B′)
⇒ tran′(φ2,B •B′)

⎞
⎠

where
|B′| = max(|φ1|, |φ2|) + |FV (φ1) ∪ FV (φ2)|

Finally, the translation of φ1 −∗ φ2 quantifies over all heaps that satisfy φ1
by universally quantifying over a new collection of heap variables — enough
to represent all heaps up to the size required by Proposition 2. The formula
heap(B′ • B) ensures that the combination of the old and new vectors still
represent a heap, which implies that the new heap is disjoint from the current
heap. The translation asserts that if the new heap satisfies φ1 and it can be
composed with the current heap, then the composition of both heaps satisfies
φ2, as required by the semantics of −∗.

We now prove the correctness of the translation.
The free variables of the translated formula are the original stack variables

plus the variables used to represent the current heap.

Lemma 11. For any φ, B,

FV (tran(φ,B)) = FV (φ) ∪ FV (B)

We show that, on related states, satisfaction is preserved by the translation.

Theorem 1. For any φ, p, B, X, b where |B| = p, FV (φ) ⊆ X, (s, h) ∈
SX ×Hp and vhp(b) = h,

(s, h |= φ) ⇐⇒ [B Z⇒ b,X Z⇒ vs(s)] |= tran′(φ,B)

From Separation Logic to First-Order Logic 405

A consequence of the theorem above is that the formula resulting from the
translation cannot distinguish between two vectors representing the same heap.

Finally, we show that a formula is valid iff its translation is valid.

Theorem 2. For any φ, B, X such that |B| = |φ|+ |FV (φ)| and FV (φ) ⊆ X,

(∀(s, h). (s, h) |= φ) ⇐⇒ ∀(b,v) [B Z⇒ b,X Z⇒ v] |= tran(φ,B)

3.4 Decision Procedure and Complexity

Our decision procedure for Propositional Separation Logic simply consists of
applying the translation followed by one of the existing decision procedures for
first-order logic. The validity problem for first-order logic (on an empty signa-
ture) is a classical PSPACE-complete problem. In [1] it was proved that validity
of Propositional Separation Logic is also PSPACE-complete.

Our translation into first-order logic generates a formula whose length is
O(n5) where n denotes the length1 of the Separation Logic formula. This can be
seen because, for each connective, the length of the vector (initially O(n)) may
increase by O(n) in the worst case (the −∗ connective). Therefore, the length
of the vector is always O(n2). The translation of E "→ E1, E2 and heap(B) are
O(v2), where v is the length of the vector. So, these formulae are O(n4). In
the worst case O(n) of these cases will occur, and therefore, the result of the
translation will be O(n5) in length.

This shows that the translation produces a limited increase in the length
of formulae, therefore our decision procedure runs in polynomial space and has
optimal theoretical complexity.

4 Conclusions and Future Work

In this paper we provided a translation from Propositional Separation Logic into
first-order logic with only the propositional connectives, equality and quantifica-
tion over the natural numbers. The translation has two main properties: a state
satisfies a formula iff the state’s vector encoding satisfies the translation, and a
formula is valid iff its translation is valid. This translation shows that Separation
Logic can be expressed in a classical logic that has no notion of a heap or spatial
connectives. It also provides a new decision procedure that can utilise existing
tools for first-order logic.

A natural direction for future work is implementing and evaluating the new
decision procedure. In [8], we implemented the decision procedure for Tree
Logic which inspired the work presented here. Using several optimisations, we
found that the decision procedure was viable. We hope that, utilising possi-
ble optimisations, an implementation of this work may show similar results.

1 We use ‘length’ with the usual meaning: the number of connectives in the formula,
not the size of Definition 3.

406 C. Calcagno, P. Gardner, and M. Hague

For example, we may reduce the number of existentially quantified variables
when translating φ1 ∗ φ2 by only quantifying one set of variables (B′) and cal-
culating the second (B′′) in situ through the use of expressions rather than
variables.

We may also wish to consider different fragments of Separation Logic or ex-
tensions of the fragment studied in this paper. For example, if we change the
target logic of the translation to Presburger Arithmetic, we gain addition of
natural numbers. This would allow us to augment the quantifier-free fragment
of Separation Logic with arithmetic on stack variables. However, allowing arith-
metic on the heap may invalidate the size argument on which Proposition 1 and
Proposition 2 are based. Another extension is allowing quantification of variables
(∃x. φ). The presence of full existential quantifiers also invalidates the size ar-
gument of Proposition 1 and Proposition 2. However, it is likely that restricted
(e.g. guarded) forms of quantification admit a size argument. In those cases, the
translation can be extended by mapping existentials to existentials, since the
proofs extend trivially. We may also attempt to extend our results to the more
practically motivated fragment of Separation Logic in [3], which was designed
for reasoning about linked lists. That fragment presents a different technical
challenge to the one presented here: there is no −∗ but there is an inductive
definition for linked lists. We expect our techniques to prove useful also in that
setting.

A new related area of research into Spatial Logics [5, 9, 10, 11] is ‘trees with
pointers’, which add location identifiers and cross-references to Tree Logic [12].
A practical example of this model is XML cross-references. This model combines
Tree Logic and Separation Logic because the tree structures have locations on
nodes, and pointers as data. Preliminary work on decision procedures for this
model has identified several subtleties. First, a notion of size must be identified.
A likely candidate is the maximum number of locations required at any level of
the tree and the maximum depth of the tree. Secondly, a succinct method for
ensuring that all locations are unique is required. At a single level of the tree
this task is exactly the same as for Separation Logic. However, as the decision
procedure divides the tree into independent sub-trees, enforcing the uniqueness
of locations becomes a more difficult task.

Finally, we would like to study decidability properties of Context Logic [13].
This new logic uses contexts or ‘trees with holes’ to allow reasoning about smaller
sub-trees within larger arbitrary trees. Context logic has been used to provide
a Hoare logic for reasoning about tree updates, where the portion of tree left
untouched by the update has the shape of a tree context. A decision procedure for
this logic presents a further challenge to the ‘trees with pointers’ model because
it would require a different notion of size.

Acknowledgments. We would like to thank the anonymous referees for their
comments. This work was partially supported by EPSRC.

From Separation Logic to First-Order Logic 407

References

1. Calcagno, C., Yang, H., O’Hearn, P.: Computability and complexity results for a
spatial assertion language for data structures. In: Foundations of Software Tech-
nology and Theoretical Computer Science (FSTTCS’01), Springer (2001) 108–119
volume 2245 of Lecture Notes in Computer Science.

2. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
LICS, IEEE (2002) 55–74

3. Berdine, J., Calcagno, C., O’Hearn, P.: A decidable fragment of separation
logic. In: Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’04), Springer (2004) to appear.

4. Zilio, S.D., Lugiez, D., Meyssonnier, C.: A logic you can count on. In: Proceedings
of the 31st ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, ACM Press (2004) 135–146

5. Cardelli, L., Gordon, A.D.: Anytime, anywhere: Modal logics for mobile ambients.
In: 27th Symposium on Principles of Programming Languages (POPL’00), ACM
(2000) 365–377

6. Lozes, E.: Separation logic preserves the expressive power of classical logic. As
published at:
http://www.diku.dk/topps/space2004/space final/etienne.pdf (2004)

7. Lozes, E.: Elimination of spatial connectives in static spatial logics. To Appear in
TCS (2004)

8. Hague, M.: Static checkers for tree structures and heaps. Master’s
thesis, Imperial College London, Department of Computing (2004) http://
www.doc.ic.ac.uk/˜ajf/Teaching/Projects/Distinguished04/MatthewHague.pdf.

9. Cardelli, L., Caires, L.: A spatial logic for concurrency (part I). Journal of Infor-
mation and Computation 186(2) (2003)

10. Cardelli, L., Caires, L.: A spatial logic for concurrency (part II). To Appear in
Theoretical Computer Science (2004)

11. Cardelli, L., Gardner, P., Ghelli, G.: A spatial logic for querying graphs. Proceed-
ings of ICALP’02 (2002)

12. Cardelli, L., Gardner, P., Ghelli., G.: Querying trees with pointers. Unpublished
Notes, 2003; talk at APPSEM 2001 (2003)

13. Calcagno, C., Gardner, P., Zarfaty, U.: Context logic and tree update. To appear
in POPL (2005)

A Appendix: Selected Proofs

A.1 Proof of Theorem 1 from Section 3.3

Theorem 1 states that for any φ, p, B, X, b where |B| = p, FV (φ) ⊆ X,
(s, h) ∈ SX ×Hp and vhp(b) = h,

(s, h |= φ) ⇐⇒ [B Z⇒ b,X Z⇒ vs(s)] |= tran′(φ,B)

Proof. The proof is by induction over φ. We only consider some interesting cases.

408 C. Calcagno, P. Gardner, and M. Hague

Case φ = (φ1 ∗ φ2).
⇒: Assume (s, h) |= φ1 ∗ φ2. Therefore h = h1 ∗ h2 and (s, h1) |= φ1 and
(s, h2) |= φ2. Therefore, by Lemma 7 there exist b1,b2 such that,

b = b1 � b2 ∧ vhp(b1) = h1 ∧ vhp(b2) = h2

By induction and since vhp(b1) = h1 and vhp(b2) = h2,[
B Z⇒ b1,X Z⇒ vs(s)

]
|= tran′(φ1,B)

and [
B Z⇒ b2,X Z⇒ vs(s)

]
|= tran′(φ2,B)

Therefore,

[B Z⇒ b,X Z⇒ vs(s)] |= ∃B1,B2.

⎛
⎝B = B1 � B2

∧ tran′(φ1,B1)
∧ tran′(φ2,B2)

⎞
⎠

And so,
[B Z⇒ b,X Z⇒ vs(s)] |= tran′(φ,B)

⇐: Assume,

[B Z⇒ b,X Z⇒ vs(s)] |= ∃B1,B2.

⎛
⎝B = B1 � B2

∧ tran′(φ1,B1)
∧ tran′(φ2,B2)

⎞
⎠

Therefore, there exists b1,b2 such that b = b1 � b2,

[B Z⇒ b1,X Z⇒ vs(s)] |= tran′(φ1,B)

and
[B Z⇒ b2,X Z⇒ vs(s)] |= tran′(φ2,B)

By Lemma 8, letting h1 = vhp(b1) and h2 = vhp(b2), we know h = h1 ∗ h2
and by induction (s, h1) |= φ1 and (s, h2) |= φ2. Therefore (s, h) |= (φ1 ∗φ2),
that is, (s, h) |= φ.

Case φ = (φ1 −∗ φ2).
⇒: Assume (s, h) |= (φ1 −∗ φ2). Therefore, for all h1 such that (s, h1) |= φ1
and h#h1, (s, h ∗ h1) |= φ2.
We now assume b′ such that,

[B Z⇒ b,B′ Z⇒ b′,X Z⇒ vs(s)] |= tran′(φ1,B′) ∧ heap(B •B′)

By Lemma 9 we know [B′ Z⇒ b′] |= heap(B′) and so b′ ∈ dom(vh|B′|) by
Lemma 5. Let vh|B′|(b′) = h1, we know by induction that (s, h1) |= φ1. By
Lemma 5 vhp+|B′|(b•b′) is defined. Therefore by Lemma 10 h∗h1 = vhp(b)∗
vh|B′|(b′) = vhp+|B′|(b • b′). By assumption s, h ∗ h1 |= φ2. Consequently,
by induction we have,

[B Z⇒ b,B′ Z⇒ b,X Z⇒ vs(s)] |= tran′(φ2,B •B′)

From Separation Logic to First-Order Logic 409

Therefore,

[B Z⇒ b,X Z⇒ vs(s)] |= ∀B′.

⎛
⎝ tran′(φ1,B′)
∧ heap(B •B′)
⇒ tran′(φ2,B •B′)

⎞
⎠

and
[B Z⇒ b,X Z⇒ vs(s)] |= tran′(φ,B)

⇐: Assume,

[B Z⇒ b,X Z⇒ vs(s)] |= ∀B′.

⎛
⎝ tran′(φ1,B′)
∧ heap(B •B′)
⇒ tran′(φ2,B •B′)

⎞
⎠

where |B′| = max(|φ1|, |φ2|) + |FV (φ1) ∪ FV (φ2)|.
By Proposition 1 (s, h) |= (φ1 −∗ φ2) iff for all h1 ∈ Hq such that q =
max(|φ1|, |φ2|) + |FV (φ1) ∪ FV (φ2)|, h#h1 and (s, h1) |= φ1 we have s, h ∗
h1 |= φ2. So assume we have h1 ∈ Hq such that h#h1 and (s, h1) |= φ1.
By Lemma 4 there exists b′ such that vhq(b′) = h1. Since h#h1 we know
that h ∗ h1 ∈ Hp+q. By Lemma 10 we know h ∗ h1 = vhp(b) ∗ vhq(b′) =
vhp+q(b •b′), and so, by Lemma 5 [B Z⇒ b,B′ Z⇒ b′] |= heap(B •B′). By
induction we know

[B′ Z⇒ b′,X Z⇒ vs(s)] |= tran′(φ1,B′)

It follows then that

[B Z⇒ b,B′ Z⇒ b′,X Z⇒ vs(s)] |= tran′(φ2,B •B′)

And by induction (s, h ∗ h1) |= φ2 as required.

Justifying Algorithms for βη-Conversion

Healfdene Goguen

AT&T Labs, 180 Park Ave., Florham Park NJ 07932 USA
hhg@att.com.

Abstract. Deciding the typing judgement of type theories with depen-
dent types such as the Logical Framework relies on deciding the equality
judgement for the same theory. Implementing the conversion algorithm
for βη-equality and justifying this algorithm is therefore an important
problem for applications such as proof assistants and modules systems.
This article gives a proof of decidability, correctness and completeness
of the conversion algorithms for βη-equality defined by Coquand [3] and
Harper and Pfenning [8] for the Logical Framework, relying on estab-
lished metatheoretic results for the type theory. Proofs are also given of
the same properties for a typed algorithm for conversion for System F,
a new result.

1 Introduction

In this article we study the decidability of algorithms for βη-conversion for type
theories. We consider two algorithms for the Logical Framework not immediately
modeled by reduction to a common βη-normal form: Coquand’s untyped algo-
rithm relating syntactically distinct β-weak-head normal forms [3], and Harper
and Pfenning’s type-based algorithm [8]. We demonstrate that these algorithms
can be shown correct, complete and decidable based on standard metatheoretic
properties of type theory, such as strong normalization of βη-reduction, subject
reduction, injectivity of the type constructor Π, and so on. We then apply the
same technique to the polymorphic λ-calculus System F.

The focus of many existing developments of the metatheory of type theories
with βη-equality has been on decidability of typechecking, without concern for
algorithms for conversion. The fact that the standard metatheory is sufficient
to justify the decidability of algorithms has never been demonstrated as far
as we are aware, even for Coquand’s simple syntactic algorithm. With Harper
and Pfenning’s definition of a more complex algorithm for equality based on type
information, it has become more important to show that the traditional approach
to the metatheory of type theories, justifying termination and Church–Rosser
for the reduction relation, can be used to show decidability for algorithms that
are more complex than the simple comparison of normal forms.

We believe that it may be more efficient and uniform to justify algorithms for
βη-conversion through the traditional approach to metatheory than by study-
ing the algorithm directly. As an example, our proof of the termination of the
algorithm for the Logical Framework only requires a single logical relation, as

V. Sassone (Ed.): FOSSACS 2005, LNCS 3441, pp. 410–424, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Justifying Algorithms for βη-Conversion 411

opposed to the two logical relations used in [11]. Similarly, Harper and Pfen-
ning’s approach has not been extended to systems with polymorphism, whereas
we are able to adapt our proof straightforwardly to System F. Any approach to
the metatheory of type theory with βη-equality is sufficient, and several meth-
ods already exist. Geuvers [4], Goguen [6, 7] and Salvesen [9] all have different
approaches to the difficulties presented by η.

The key to all three proofs of decidability is a simple length measure |−|
on normal forms of terms, where the value of the measure for an abstraction
in normal form, |λx:A.M |, is greater than the value of the measure for an ap-
plication to a variable in normal form, |M(x)|. In Coquand’s algorithm, an ab-
straction λx:A.M and a weak-head normal term y(N1 . . . Nn) are related if M
and y(N1 . . . Nn, x) are related; by our measure, the combined length of the con-
clusion, |λx:A.M | + |y(N1 . . . Nn)|, is greater than the combined length of the
premisses, |M | + |y(N1 . . . Nn, x)|. This same idea can be translated to Harper
and Pfenning’s type-directed algorithm for conversion.

The remainder of this paper is structured as follows. Section 2 introduces the
syntax and standard metatheory for the Logical Framework. Section 3 justifies
Coquand’s algorithm using the standard metatheory. Section 4 justifies Harper
and Pfenning’s algorithm using a similar approach. Section 5 presents a type-
directed algorithm for conversion for System F and justifies this algorithm. We
draw conclusions and discuss future work in Section 6.

2 The Logical Framework

In this section we give our presentation of the Logical Framework. Although
our system includes dependent types, we do not refer to this as the Edinburgh
Logical Framework or the Martin-Löf Logical Framework, because for simplicity
our presentation does not include higher-order kinds and hence does not formally
correspond to either system. Otherwise, our system is largely similar to Harper
and Pfenning’s, but we use a term structure inspired by PTS-style presentations
of type theories [2] to take advantage of the similarity of rules in the algorithm.

2.1 Syntax

We assume an infinite collection of variables x, y, z ∈ V . The language of terms
and contexts is defined by the following grammar.

Γ ∈ C ::= () | Γ, x:A
s ∈ S ::= type | kind

M,N,P,A,B ∈ T ::= s | x | λx:A.M | M(N) | Πx:A.B

We say a term is basic if it is a variable x or a sort s, and a term is canonical
if it is of the form λx:A.M or Πx:A1.A2. Substitution, [N/x]M , is defined as
usual for terms, with the obvious extension to contexts. We identify terms and
contexts up to α-equivalence, and write FV(M) for the free variables in M . Let

412 H. Goguen

Γ = x1:A1, . . . , xn:An; then dom(Γ) ≡ {x1, . . . , xn}, and Γ (x) is the partial
function that returns Ai if x = xi for some 1 ≤ i ≤ n.

2.2 Judgements and Derivations

Our presentation of the Logical Framework has judgements Γ �M : A and
Γ �M = N : A. We write Γ � M,N : A for Γ � M : A and Γ � N : A,
and Γ � J to denote either judgement. The rules of inference for typing are
given in Figure 1; the rules of inference for the equality judgement are the evi-
dent typed compatible closure and least equivalence relation containing the rules
β and Ext.

(type) () � type : kind (Weak)
Γ � A : type

Γ, x:A � type : kind
(x:A �∈ Γ)

(Var)
Γ � type : kind

Γ � x : A
(x:A ∈ Γ)

(Π)
Γ � A1 : type Γ, x:A1 � A2 : s

Γ � Πx:A1.A2 : s
(s ∈ {type, kind})

(λ)
Γ, x:A1 � M : A2

Γ � λx:A1.M : Πx:A1.A2
(App)

Γ � M1 : Πx:A1.A2 Γ � M2 : A1

Γ � M1(M2) : [M2/x]A2

(Eq)
Γ � M : A Γ � A = B : s

Γ � M : B

Fig. 1. Typing for the Logical Framework

(β)
Γ � λx:A1.M : Πx:A1.A2 Γ �M2 : A1

Γ � (λx:A1.M)(M2) = [M2/x]M : [M2/x]A2

(Ext)
Γ, x:A1 �M(x) = N(x) : A2 Γ �M,N : Πx:A1.A2

Γ �M = N : Πx:A1.A2

2.3 Untyped Reduction

We define reduction M →βη N as the compatible closure of rules β and η:

(λx:A.M)(N) β [N/x]M
λx:A.(M(x)) η M (x
∈ FV(M))

Weak-head reduction →w is defined by the following rules:

(β) (λx:A.M)(N) →w [N/x]M (App)
M →w P

M(N) →w P (N)

Justifying Algorithms for βη-Conversion 413

Definition 1 (Normal Forms and Weak-Head Normal Forms). The β-
normal forms are defined inductively as follows: basic terms s and x are normal;
abstractions λx:A.M are normal if A and M are normal; products Πx:A1.A2
are normal if A1 and A2 are normal; and applications M1(M2) are normal if
M1 and M2 are normal and M1 is not an abstraction.

The weak-head normal forms are presented inductively as follows: basic terms
s and x are weak-head normal; canonical terms λx:A.M and Πx:A1.A2 are weak-
head normal; and applications M1(M2) are weak-head normal if M1 is weak-head
normal and not an abstraction.

We write Mnf for the β-normal form of M and Mwnf for the weak-head
normal form of M .

The following definitions apply to reduction relations →β , →βη and →w: we
write � for the reflexive, transitive closure of →, M��N if M � N and N is
normal, and M ↓ N if there is a P such that M � P and N � P .

Lemma 1.

– If M is normal then there is no N such that M →β N .
– If M is weak-head normal then there is no N such that M →w N .
– Any term M is either weak-head normal or there is an N such that M →w N .

2.4 Properties of the Logical Framework

We assume all of the standard properties of the Logical Framework: as we men-
tioned in the introduction, any approach to proving them is acceptable for the
purposes of this article. We state the properties needed here for reference.

Proposition 1 (Generation). Every derivation of a term is an application of
the unique rule of inference for that term followed by a sequence of uses of Eq.

For example, suppose Γ � λx:A1.M0 : A; then Γ, x:A1 � M0 : A2 and
Γ � Πx:A1.A2 = A : s for some A2 and s.

Proposition 2.

1. Free Variables. If Γ �M : A then FV(M) ∪ FV(A) ⊆ dom(Γ).
2. Context Validity. If Γ � J then Γ � type : kind.
3. Thinning. If Γ, Γ ′ � J , x
∈ dom(Γ, Γ ′) and Γ � A : type then Γ, x:A,Γ ′ � J .
4. Substitution. If Γ, x:A,Γ ′ � J and Γ � N : A then Γ, [N/x]Γ ′ � [N/x]J .
5. Type Correctness. If Γ �M : A then Γ � A : s for some s.
6. Splitting. If Γ �M = N : A then Γ �M,N : A.
7. Uniqueness of Types. If Γ � M : A and Γ � M : B then Γ � A = B : s or

A = s and B = s for some s.
8. Context Replacement. Γ, x:A,Γ ′ �J and Γ � A = B : s imply Γ, x:B,Γ ′ �J .
9. Church–Rosser. If Γ �M = N : A then M ↓βη N .

10. Injectivity of Π. If Γ � Πx:A.B = Πx:C.D : s then Γ � A = C : type and
Γ, x:A � B = D : s.

414 H. Goguen

11. Subject Reduction. If Γ �M : A and M →βη N then Γ �M = N : A.
12. Strong Normalization. Γ � M : A implies M is strongly normalizing under

→βη.
13. Strengthening. If Γ, x:A,Γ ′ � J and x
∈ FV(Γ ′) ∪ FV(J) then Γ, Γ ′ � J .

Lemma 2. If Γ �M : A, Γ � N : B and M ↓βη N then there is an s such that
Γ �M = N : A and Γ � A = B : s.

Proof. By Subject Reduction, Splitting, Uniqueness of Types and equational
reasoning.

We also observe without proof that Ext is equivalent to the following rule:

(η)
Γ �M : Πx:A1.A2

Γ � λx:A1.M(x) = M : Πx:A1.A2

3 Termination of Coquand’s Algorithm

In this section we study properties of Coquand’s algorithm, adapted to our
presentation of the Logical Framework. This algorithm is based only on the
syntax of the terms being compared, and contains no type information.

3.1 Definition

Coquand’s algorithm is defined inductively by the inference rules in Figure 2.
The algorithm M ⇐⇒ N simply reduces its arguments M and N to weak-head
normal form. The algorithm M ←→ N compares terms in weak-head normal
form: the interesting cases are the non-structural rules λ-Left and λ-Right, where

(WHRed)
P ←→ Q

M ⇐⇒ N
(M��wP and N��wQ)

(Var) x ←→ x (type) type ←→ type

(Π)
A1 ⇐⇒ B1 A2 ⇐⇒ B2

Πx:A1.A2 ←→ Πx:B1.B2

(App)
M1 ←→ N1 M2 ⇐⇒ N2

M1(M2) ←→ N1(N2)
(M1 and N1 weak-head normal and not canonical)

(λ)
M ⇐⇒ N

λx:A.M ←→ λx:B.N

(λ-Left)
M ⇐⇒ N(x)

λx:A.M ←→ N
(N weak-head normal and not canonical)

(λ-Right)
M(x) ⇐⇒ N

M ←→ λx:B.N
(M weak-head normal and not canonical)

Fig. 2. Untyped Algorithm for Conversion for the Logical Framework

Justifying Algorithms for βη-Conversion 415

the left- or right-hand side is an abstraction and two terms are equivalent after
an application of Ext.

We assume implicitly that an implementation of the algorithm will examine
combinations of terms and evaluate the premisses given by the inference rules
recursively. Axioms in the inference rules will return true, while combinations
that do not appear in the inference rules will return false. Hence, the inference
rules of the algorithm give us both an inductively defined relation and an algo-
rithm yielding either true or false; clearly, the algorithm yields true iff there is a
derivation using the inference rules.

Furthermore, observe that the inference rules are syntax-directed, meaning
that at most one rule will apply for any pair of terms. This fact is used implicitly
in the proofs below.

3.2 Termination and Completeness of Coquand’s Algorithm

We now show that Coquand’s algorithm terminates.
We begin by defining a measure where λ-abstractions λx:A.M are larger than

applications to a variable M(x). We use this measure as the base of the induction
to show termination of the algorithm.

Definition 2. Define the length of a normal term M recursively on its structure:

|s| ≡ 1 |Πx:A1.A2| ≡ |A1|+ |A2|+ 1 |M(N)| ≡ |M |+ |N |+ 1
|x| ≡ 1 |λx:A.M | ≡ |M |+ 3

Lemma 3 (Termination). If M and N are β-normalizing then M ⇐⇒ N
terminates.

Proof. By nested induction on the sum of |Mnf | and |Nnf | and the sum of the
lengths of the β-reduction sequences for M and N .

By Lemma 1 Case 1 M and N are weak-head normal or have weak-head
reducts. If M or N has a weak-head reduct, then by WHRed M ⇐⇒ N ter-
minates if Mwnf ←→ Nwnf terminates, where the latter follows by the induc-
tion hypothesis for reduction; M ⇐⇒ N terminates with the same result as
Mwnf ←→ Nwnf . Otherwise, M and N are in weak-head normal form. We
perform case analysis on M and N to show that M ←→ N terminates; then
M ⇐⇒ N terminates with the same result. We consider several cases:

– M is basic and N is an application. Then M ←→ N terminates in failure.
– M ≡ M1(M2) and N ≡ N1(N2). If M and N are weak-head normal then
M1 and N1 must be weak-head normal and not abstractions. If M1 or N1
is a product then it is canonical, so M1(M2) ←→ N1(N2) fails immedi-
ately. Otherwise, Mnf ≡Mnf

1 (Mnf
2) and Nnf ≡ Nnf

1 (Nnf
2), so by induction

hypothesis M1 ←→ N1 and M2 ⇐⇒ N2 terminate. If both succeed then
M ←→ N succeeds, and otherwise it fails.

416 H. Goguen

– M ≡ λx:A1.M0 and N is not canonical. Only rule λ-Left applies, and so
λx:A1.M0 ←→ N terminates if M0 ⇐⇒ N(x) terminates. Clearly Mnf ≡
λx:Anf

1 .Mnf
0 and (N(x))nf ≡ Nnf (x), and |λx:Anf

1 .Mnf
0 |+ |Nnf | = |Mnf

0 |+
3+|Nnf | > |Mnf

0 |+|Nnf |+2 = |Mnf
0 |+|Nnf (x)|, soM0 ⇐⇒ N(x) terminates

by induction hypothesis; if this succeeds then λx:A1.M0 ←→ N succeeds,
and otherwise it fails.

– M ≡ λx:A1.M0 and N ≡ Πy:B1.B2. Then M ←→ N fails immediately.

Lemma 4 (Completeness). If Γ �M = N : A then M ⇐⇒ N .

Proof. By Church–Rosser and Splitting it suffices to show that if M ↓βη N and
Γ � M : A and Γ � N : B then M ⇐⇒ N , which we show using the same
induction principle as for Lemma 3. As in that lemma, we can distinguish two
cases, depending on whether M and N are both weak-head normal. If either is
not, then by Church–Rosser if M ↓βη N then Mwnf ↓βη Nwnf , since M and N
are well-typed, and by Subject Reduction Γ � Mwnf : A and Γ � Nwnf : B.
Therefore Mwnf ⇐⇒ Nwnf follows by the induction hypothesis on reduction
sequences, so Mwnf ←→ Nwnf by inversion, and so M ⇐⇒ N by WHRed. We
now consider the cases where M and N are in weak-head normal form: we show
that if M ↓βη N then M ←→ N , from which M ⇐⇒ N . We consider several
cases where M and N are in weak-head normal form.

– M and N are basic. If x ↓βη y then x = y, so x ←→ y. type ←→ type.
– M is basic and N is an application. x ↓βη N1(N2) and type ↓βη N1(N2) are

impossible.
– M ≡ λx:A1.M0 and N not canonical. Let λx:A1.M0 ↓βη N , Γ � λx:A1.M0 :
A and Γ � N : B. Then M0��M ′

0(x) with x
∈ FV(M ′
0), and N��M ′

0;
hence M0 ↓βη N(x), since N is weak-head normal and not canonical. By
Generation Γ, x:A1 � M0 : A2 and Γ � Πx:A1.A2 = A : s; by Splitting
Γ � Πx:A1.A2 : s, and by Generation Γ � A1 : type. Then by Lemma 2
Γ � A = B : s, so Γ � N : Πx:A1.A2; by Thinning Γ, x:A1 � N : Πx :
A1.A2 and by App Γ, x:A1 � N(x) : A2. Therefore, by induction hypothesis
M0 ⇐⇒ N(x) implies λx:A1.M0 ←→ N .

– M ≡ λx:A1.M0 and N ≡ Πy:B1.B2. Suppose λx:A1.M0 ↓βη Πy:B1.B2,
Γ � λx:A1.M0 : A and Γ � Πy:B1.B2 : B. Then Γ � λx:A1.M0 : Πx:A1.A2
and Γ � Πy:B1.B2 : s by Generation. By Lemma 2 Γ � Πx:A1.A2 = s : s′,
and by Church–Rosser Πx:A1.A2 ↓βη s, which is impossible.

3.3 Correctness of the Algorithm

Our proof of correctness of Coquand’s algorithm is similar to his original proof,
but we restate the proof because we rely on the metatheory of βη-reduction
rather than his logical relation over the algorithm.

Lemma 5 (Correctness).

– If Γ �M,N : A and M ⇐⇒ N then Γ �M = N : A.

Justifying Algorithms for βη-Conversion 417

– If M ←→ N , Γ � M : A, Γ � N : B and M and N are not canonical then
Γ � M = N : A and Γ � A = B : s. If M ←→ N and Γ � M,N : A then
Γ �M = N : A.

Proof. By induction on the derivations of M ⇐⇒ N and M ←→ N . We consider
several cases:

– WHRed. By Subject Reduction Γ � M = P : A and Γ � N = Q : A, by
Splitting Γ � P,Q : A, and by induction hypothesis Γ � P = Q : A, so
Γ �M = N : A by Symmetry and Transitivity.

– Π. By Generation Γ � A1, B1 : type, Γ, x:A1 � A2 : s and Γ, x:B1 � B2 : s;
by induction hypothesis Γ � A1 = B1 : type, so by Context Replacement
Γ, x:A1 � B2 : s. By induction hypothesis again Γ, x:A1 � A2 = B2 : s.

– λ-Left. By assumption Γ � λx:A1.M0 : C, Γ � N : C and M0 ←→ N(x).
By Generation Γ, x:A1 � M0 : A2 and Γ � Πx:A1.A2 = C : s. Therefore
Γ � N : Πx:A1.A2 by Sym and Eq and Γ, x:A1 � N(x) : A2 by Weakening
and App, and so by induction hypothesis Γ, x:A1 �M0 = N(x) : A2. Hence
Γ � λx:A1.M0 = N : Πx:A1.A2 = C by Ext.

4 Termination of Harper and Pfenning’s Algorithm

Since it relies purely on the structure of terms, Coquand’s algorithm cannot be
used for type theories where equality may identify terms with different head
variables, such as the extensional equalities on the unit type or singleton types.
Such types can be important in applications, such as modules systems [1, 10],
and Harper and Pfenning introduce type information into their algorithm in
order to capture these types.

In this section we establish the decidability, completeness and correctness of
Harper and Pfenning’s algorithm for the Logical Framework.

4.1 Definition

We begin by defining a slight variant of Harper and Pfenning’s algorithm.
The algorithm relies on an erasure function from the dependent types and

kinds of the Logical Framework into simple types. We define our erasure into
simple types formed only with constructors o and τ1 → τ2, where Harper and
Pfenning distinguish between sorts and constants in the Logical Framework; our
approach should allow different judgements to be handled uniformly as in PTS.
We use a single base type because we have used the same syntactic category for
types and kinds, and it is more uniform not to distinguish between the two in
the algorithm.

Formally, we define the simple types and contexts with the following BNF
grammar:

σ, τ ∈ S ::= o | σ → τ
Δ ∈ X ::= () | Δ,x:σ

418 H. Goguen

The erasure is defined inductively on the structure of types and kinds in
weak-head normal form as follows:

type− ≡ o x− ≡ o (A(M))− ≡ o
kind− ≡ o (λx:A.M)− ≡ o (Πx:A1.A2)− ≡ A−

1 → A−
2

The definition extends in the obvious way to contexts. Erasure has the following
simple properties, shown by induction on derivations.

Lemma 6. If Γ � A : s then ([N/x]A)− = A−. If Γ � A = B : s then
A− = B−.

The algorithm is defined inductively by the inference rules in Figure 3. Like
Coquand’s algorithm, this algorithm has a judgement Δ � M ⇐⇒ N : τ com-
paring arbitrary terms and a judgement Δ �M ←→ N : τ comparing weak-head
normal forms, but unlike Coquand’s algorithm weak-head normalization in ⇐⇒
is only performed at the base type, and terms at higher type are applied to
variables and compared in the result type.

(Base)
Δ � P ←→ Q : o

Δ � M ⇐⇒ N : o
(M��wP and N��wQ)

(→)
Δ, x:τ1 � M(x) ⇐⇒ N(x) : τ2

Δ � M ⇐⇒ N : τ1 → τ2
(x �∈ dom(Δ))

(Var) Δ � x ←→ x : Δ(x) (type) Δ � type ←→ type : o

(Π)
Δ � A1 ⇐⇒ B1 : o Δ, x:A−

1 � A2 ⇐⇒ B2 : o

Δ � Πx:A1.A2 ←→ Πx:B1.B2 : o

(App)
Δ � M1 ←→ N1 : τ1 → τ2 Δ � M2 ⇐⇒ N2 : τ1

Δ � M1(M2) ←→ N1(N2) : τ2

Fig. 3. Typed Algorithm for Conversion for the Logical Framework

We observe that, like Coquand’s algorithm, this algorithm is syntax-directed:
for ⇐⇒ the context and type are part of the input and the algorithm returns
true or false, and for ←→ the context is an input and the type is an output.

4.2 Termination and Completeness of the Algorithm

In this section we show the termination and completeness of Harper and Pfen-
ning’s type-directed algorithm for the Logical Framework.

For the following lemma, it is convenient to reason over traces of the algorithm
itself, rather than the inference rules of those terms successfully related by the
algorithm: we capture both success and failure of the implementation of the
algorithm simultaneously. To this end, we shall write Δ;M ;N ; τ ⇒ b, for b ∈
{tt, ff}, to denote a trace of the algorithm for Δ � M ⇐⇒ N : τ yielding b
as its result. Similarly, we shall write Δ;M ;N → v, with v ∈ S ∪ {⊥}, where
Δ;M ;N → τ if Δ �M ←→ N : τ and Δ;M ;N → ⊥ if Δ �M ←→ N : τ fails.

Justifying Algorithms for βη-Conversion 419

Lemma 7.

– If Δ,Δ′;M ;N ; τ ⇒ b and x
∈ dom(Δ,Δ′) then Δ,x:σ,Δ′;M ;N ; τ ⇒ b.
– If Δ,Δ′;M ;N → v and x
∈ dom(Δ,Δ′) then Δ,x:σ,Δ′;M ;N → v.

The following lemmas are by induction on types.

Lemma 8. Let M and N be weak-head normal and not canonical. Then if
Δ;M ;N → τ then Δ;M ;N ; τ ⇒ tt; if Δ;M ;N → ⊥ then Δ;M ;N ; τ ⇒ ff
for any τ , and if Δ;M ;N → τ then Δ;M ;N ; τ ′ ⇒ b for any τ ′.

Lemma 9. If M →w P then Δ �M ⇐⇒ N : τ terminates iff Δ � P ⇐⇒ N : τ
terminates, and with the same result, and symmetrically.

We now prove the main results of this section.

Lemma 10 (Termination). Suppose that M and N are β-normalizing. Then
Δ �M ⇐⇒ N : τ is terminating for any Δ and τ , and if M and N are weak-
head normal and not canonical then Δ � M ←→ N : τ is terminating for any
Δ.

Proof. We prove this by nested induction on the sum of |Mnf | and |Nnf | and the
sum of the lengths of the β-reduction sequences of M and N . As for Coquand’s
algorithm, we use Lemma 1 Case 1 to perform case analysis on whether M and
N are weak-head normal or not.

We consider several cases where M and N are weak-head normal.

– M and N basic. If M = N = x and x:τ ∈ Δ then Δ � x ←→ x : τ
succeeds. If M = N = type then Δ � type ←→ type : o succeeds, and
Δ � type ←→ type : τ1 → τ2 fails. Similarly, if M
= N or M ≡ x
∈ dom(Δ)
then Δ �M ←→ N : τ fails. Each result lifts to ⇐⇒ by Lemma 8.

– M ≡ λx:A1.M0 and N is not canonical. Δ � M ⇐⇒ N : o fails because no
rules match Δ � λx:A1.M0 ←→ N : o. Δ � λx:A1.M0 ⇐⇒ N : τ1 → τ2
terminates by definition iff Δ,x:τ1 � (λx:A1.M0)(x) ⇐⇒ N(x) : τ2, which
by Lemma 9 terminates iff Δ,x:τ1 � M0 ⇐⇒ N(x) : τ2 terminates. But
Δ,x:τ1 � M0 ⇐⇒ N(x) : τ2 terminates by induction hypothesis, since
|λx:Anf

1 .Mnf
0 |+ |Nnf | = |Mnf

0 |+ 3 + |Nnf | > |Mnf
0 |+ |Nnf |+ 2 = |Mnf

0 |+
|Nnf (x)|.

Lemma 11 (Completeness). If Γ �M = N : A then Γ− �M ⇐⇒ N : A−.

Proof. By Church–Rosser and Splitting it suffices to show that if M ↓βη N and
Γ � M : A, Γ ′ � N : B, A− = B− and Γ− = Γ ′− then Γ− � M ⇐⇒ N : A−;
and if M ↓βη N with M and N weak-head normal and not canonical, and Γ �
M : A, Γ ′ � N : B and Γ− = Γ ′−, then A− = B− and Γ− � M ←→ N : A−.
We use the same induction principle as in Lemma 10; we consider several cases
where M and N are weak-head normal.

420 H. Goguen

– M and N basic. Clearly if M ↓βη N then M = N = x or M = N = type.
If M = x then Γ � x : A and Γ ′ � x : B imply Γ � Γ (x) = A : type,
Γ ′ � Γ ′(x) = B : type, and Γ−(x) ∈ Γ−, so Γ− � x ←→ x : Γ (x) and
Γ− � x ⇐⇒ x : Γ (x) as above. Also, Γ− = Γ ′− implies Γ (x)− = Γ ′(x)
implies A− = B− by Lemma 6. If M = type then Γ � type : A and
Γ ′ � type : B imply A = B = kind, and Γ− � type ←→ type : o and
Γ− � type ⇐⇒ type : o.

– M ≡ λx:A1.M0 and N not canonical. Let λx:A1.M0 ↓βη N , Γ � λx:A1.M0 :
A, Γ � N : B, and A− = B−. Then M0��M ′

0(x) with x
∈ FV(M ′
0), and

N��M ′
0, and by Generation Γ, x:A1 � M0 : A2, Γ � Πx:A1.A2 = A and

so B ≡ Πx:B1.B2 since (Πx:A1.A2)− = B−. Hence M0 ↓βη N(x), since
N is weak-head normal and not canonical, and Γ, x:B1 � N(x) : B2 by
Weakening and App, and A−

1 = B−
1 implies Γ−, x:A−

1 = Γ ′−, x:B−
1 , so

Γ−, x:A−
1 � M0 ⇐⇒ N(x) : A−

2 implies Γ−, x:A−
1 � (λx:A1.M0)(x) ⇐⇒

N(x) : A−
2 by induction hypothesis implies Γ− � λx:A1.M0 ⇐⇒ N : A−

1 →
A−

2 = (Πx:A1.A2)−.

4.3 Correctness of the Algorithm

The outline of our proof of the correctness of the algorithm follows Harper and
Pfenning’s proof. The primary difference is that because we rely on established
metatheoretic results, Subject Reduction also applies to β-reducts at the level
of types by assumption.

Lemma 12 (Correctness).

– If Γ− �M ⇐⇒ N : A− and Γ �M,N : A then Γ �M = N : A.
– If Γ− � M ←→ N : τ , Γ � M : A, Γ � N : B and M and N not canonical

then Γ � M = N : A and either Γ � A = B : s with A− = B− = τ
or A = B = kind. If Γ− � M ←→ N : A− and Γ � M,N : A then
Γ �M = N : A.

Proof. By induction on derivations. We consider several cases:

– Base. By Subject Reduction Γ � M = P : A and Γ � N = Q : A, and by
Splitting Γ � P,Q : A, so by induction hypothesis Γ � P = Q : A. Hence
Γ �M = N : A.

– Π. By assumption Γ � Πx:A1.A2, Πx:B1.B2 : C, so Γ � A1, B1 : type by
Generation, Γ, x:A1 � A2 : s and Γ, x:B1 � B2 : s′, with derivations of
Γ � C = type : kind or C = kind from each derivation. Therefore s = s′, and
so by induction hypothesis Γ � A1 = B1 : type and Γ, x:A1 � A2 = B2 : s,
so Γ � Πx:A1.A2 = Πx:B1.B2 : s.

5 System F

In this final technical section we show that our technique also works for a typed
conversion algorithm for System F, hence extending our results beyond that of
Harper and Pfenning.

Justifying Algorithms for βη-Conversion 421

5.1 Syntax

We begin by introducing the term syntax and inference rules for System F.
The following grammar presents the contexts, types, and terms of System F:

Γ ∈ C ::= () | Γ, x:A
A,B,C ∈ Y ::= X | A→ B | ∀X.A

M,N,P,Q ∈ T ::= x | λx:A.M | M(N) | ΛX.M | M(A)

Similar to the Logical Framework, we say that a term is canonical if it is of the
form λx:A.M or ΛX.M .

We use the same notations for reduction, substitution and so on as for the
Logical Framework. We say that a context Γ is valid if each x ∈ dom(Γ) occurs
exactly once in Γ . We write FTV(A) for the free type variables occurring in A,
and similarly for contexts.

Reduction is extended with β and η reductions for the type-level constructors:

(ΛX.M)(A) β [A/X]M
ΛX.(M(X)) η M (X
∈ FTV(M))

Weak-head reduction is similarly extended. The definitions of normal and weak-
head normal are also extended in the natural way; observe that (ΛX.M)(N) and
(λx:A.M)(B) are normal and weak-head normal. Finally, the results of Lemma 1
exetnd to System F.

Our presentation of System F has only two judgements, Γ � M : A and
Γ �M = N : A; the inference rules for Γ �M : A are as follows:

(Var)
Γ valid
Γ � x : A

(x:A ∈ Γ)

(λ)
Γ, x:A �M : B

Γ � λx:A.M : A→ B
(App)

Γ �M : A→ B Γ � N : A
Γ �M(N) : B

(Λ)
Γ �M : A

Γ � ΛX.M : ∀X.A (X
∈ FTV(Γ)) (TyApp)
Γ �M : ∀X.A

Γ �M(B) : [B/X]A
The equality judgement is the evident typed extension of rules β and Ext for
terms and types, as in Section 2.2.

System F enjoys a list of properties similar to those of Section 2.4, including
Subject Reduction, Church–Rosser, Splitting, Uniqueness of Types, and so on.
Due to a lack of space, we omit the full statement of these properties.

5.2 The Algorithm

The algorithm is defined by the inference rules in Figure 4.

5.3 Termination and Completeness of the Algorithm

The arguments for termination and completeness of the algorithm are very sim-
ilar to the arguments for the Logical Framework, although they are simpler due
to the lack of dependent types. We briefly outline the proofs here.

422 H. Goguen

(TyVar)
Γ � P ←→ Q : X

Γ � M ⇐⇒ N : X
(M��wP and N��wQ)

(→)
Γ, x:A � M(x) ⇐⇒ N(x) : B

Γ � M ⇐⇒ N : A → B
(x �∈ dom(Γ))

(∀)
Γ � M(X) ⇐⇒ N(X) : A

Γ � M ⇐⇒ N : ∀X.A
(X �∈ FTV(Γ) ∪ FTV(M) ∪ FTV(N))

(Var) Γ � x ←→ x : Γ (x)

(App)
Γ � M1 ←→ N1 : A → B Γ � M2 ⇐⇒ N2 : A

Γ � M1(M2) ←→ N1(N2) : B

(TyApp)
Γ � M ←→ N : ∀X.A

Γ � M(B) ←→ N(B) : [B/X]A

Fig. 4. Algorithm for Conversion for System F

We define the length function |M | in the obvious way for System F, and
Γ ;M ;N ;A⇒ b and Γ ;M ;N → v are also extended.

Lemma 13. Let M and N be weak-head normal and not canonical. Then if
Γ ;M ;N → A then Γ ;M ;N ;A ⇒ tt; if Γ ;M ;N → ⊥ then Γ ;M ;N ;A ⇒ ff for
any A, and if Γ ;M ;N → A then Γ ;M ;N ;B ⇒ b for any B.

Lemma 14. If M →w P then Γ �M ⇐⇒ N : A terminates iff Γ � P ⇐⇒ N :
A terminates, and with the same result, and symmetrically.

Lemma 15 (Termination). If M and N are β-normalizing then Γ �M ⇐⇒
N : A is terminating for any Γ and A; if M and N are weak-head normal and
not canonical then Γ �M ←→ N : A is terminating for any Γ .

Proof. By nested induction on the sum of |Mnf | and |Nnf | and the sum of the
lengths of β-reduction sequences for M and N . As in the previous sections, if M
and N are not weak-head normal then the result follows by the nested induction
hypothesis.

We consider several cases where M and N are weak-head normal.

– M ≡ ΛX.M0 and N not canonical. Γ � ΛX.M0 ⇐⇒ N : X fails immedi-
ately, and Γ � ΛX.M0 ⇐⇒ N : A→ B fails since Γ, x:A � (ΛX.M0)(x) ⇐⇒
N(x) : B fails by Lemma 13, since Γ, x:A � (ΛX.M0)(x) ←→ N(x) : B
fails. Suppose A ≡ ∀X.B; then Γ � M0 ⇐⇒ N(X) : B terminates by in-
duction hypothesis on the combined length of the normal forms of ΛX.M0
and N , Γ � (ΛX.M0)(X) ⇐⇒ N(X) : B terminates by Lemma 14, and so
Γ � ΛX.M0 ⇐⇒ N : ∀X.B terminates.

– M ≡M1(C) with M1 weak-head normal and not canonical, and N ≡ N1(D)
with N1 weak-head normal and not canonical. If C
= D then the algo-
rithm fails. Otherwise, Γ � M1 ←→ N1 : A terminates: if it fails or if
A
≡ ∀X.B then Γ �M1(C) ←→ N1(C) fails, and otherwise Γ �M1(C) ←→
N1(C) : [C/X]B succeeds. The results lift to Γ �M1(C) ⇐⇒ N1(C) : D by
Lemma 13.

Justifying Algorithms for βη-Conversion 423

Lemma 16 (Completeness). If Γ �M = N : A then Γ �M ⇐⇒ N : A.

Proof. By Church–Rosser and Splitting it suffices to show that if M ↓βη N and
Γ � M,N : A then Γ � M ⇐⇒ N : A, and if M and N are weak-head normal
and not canonical then Γ �M ←→ N : A. We show this by the same induction
used in Lemma 15; we consider several cases here.

– M ≡ ΛX.M0 and N not canonical. Suppose ΛX.M0 ↓βη N and Γ �
ΛX.M0, N : A. By inversion Γ � M0 : B and A ≡ ∀X.B, and so Γ �
(ΛX.M0)(X), N(X) : B by TyApp. Hence by induction hypothesis Γ �
M0 ⇐⇒ N(X) : B, so Γ � ΛX.M0 ⇐⇒ N : ∀X.B.

– M ≡M1(C) with M1 weak-head normal and not canonical, and N ≡ N1(D)
with N1 weak-head normal and not canonical. Suppose Γ �M1(C), N1(D) :
A. By inversion Γ � M1 : ∀X.E, [C/X]E = A, Γ � N1 : ∀X.F , and
[D/X]F = A. Furthermore, M1��wP1 and N1��wP1 and C = D, so by
Subject Reduction Γ � M1 = P1 : ∀X.E and Γ � N1 = P1 : ∀X.F , so
by Uniqueness of Types ∀X.E = ∀X.F . Therefore by induction hypothesis
Γ �M1 ←→ N1 : ∀X.E, so Γ �M1(C) ←→ N1(C) : [C/X]E.

5.4 Correctness of the Algorithm

We now show that the algorithm is correct for System F.

Lemma 17 (Correctness).

– If Γ �M ⇐⇒ N : A and Γ �M,N : A then Γ �M = N : A.
– If Γ � M ←→ N : A, Γ � M : B and Γ � N : C then Γ � M = N : A and
A = B = C.

Proof. By induction on derivations. We consider several cases:

– →. We have Γ �M,N : A→ B. By Weakening Γ, x:A �M,N : A→ B, and
so by Var and App Γ, x:A � M(x), N(x) : B, and by induction hypothesis
Γ, x:A �M(x) = N(x) : B. By λ and Ext Γ �M = N : A→ B.

– Var. By inversion Γ � x : B implies B = Γ (x), and Γ � x = x : Γ (x).
– TyApp. We have Γ �M(B) : C, Γ � N(B) : D, and Γ �M(B) ←→ N(B) :

[B/X]A. By inversion Γ � M : ∀X.E and Γ � N : ∀X.F . By induction
hypothesis Γ �M = N : ∀X.A with ∀X.A = ∀X.E = ∀X.F , so A = E = F
and [B/X]A = [B/X]E = [B/X]F . Hence Γ �M(B) = N(B) : [B/X]A.

6 Conclusions and Future Work

We have demonstrated that the standard metatheory for the Logical Framework
and System F for βη-equality is sufficient to justify algorithms for conversion
not immediately modeled by reduction. We used a simple inductive measure to
show the completeness and decidability of the algorithms.

424 H. Goguen

A natural extension of this work would be to study the algorithm for conver-
sion for the Calculus of Constructions with βη-equality. We have made substan-
tial progress towards this goal by showing how type dependency can be erased
and reconstructed for the Logical Framework, and how polymorphism can be jus-
tified. Existing developments using erasure to study metatheory of dependent
type theories [5] suggest that the type-directed algorithm for the non-dependent
version of a calculus could be used to typecheck the dependently typed version.

One of the primary motivations for Harper and Pfenning’s algorithm was
singleton types, where Coquand’s untyped algorithm may fail to identify equal
terms. It seems that it should be possible to extend our technique given the
metatheory for βη-equality, but one of the benefits of giving an algorithm di-
rectly is that it addresses problems with the reduction relation, such as failure
of confluence. This is an interesting area for further research.

Acknowledgments

I would like to thank Bob Harper for stimulating my renewed interest in this
topic, and the anonymous referees and Andreas Abel for helpful corrections and
comments. I would also like to thank my wife Adriana Compagnoni for her
encouragement and support as I was writing this article.

References

1. D. Aspinall. Subtyping with singleton types. In L. Pacholski and J. Tiuryn, editors,
Computer Science Logic, pages 1–15. Springer, Berlin, 1994.

2. H. Barendregt. Lambda calculi with types. In S. Abramsky, D. M. Gabbai, and
T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, volume 2.
Oxford University Press, 1991.

3. T. Coquand. An algorithm for testing conversion in type theory. In G. Huet and
G. Plotkin, editors, Logical Frameworks. Cambridge University Press, 1991.

4. H. Geuvers. Logics and Type Systems. PhD thesis, Katholieke Universiteit Nij-
megen, Sept. 1993.

5. H. Geuvers and M.-J. Nederhof. A modular proof of strong normalization for the
calculus of constructions. Journal of Functional Programming, 1(2):155–189, Apr.
1991.

6. H. Goguen. A Typed Operational Semantics for Type Theory. PhD thesis, Univer-
sity of Edinburgh, Aug. 1994.

7. H. Goguen. A syntactic approach to eta equality in type theory. In Symposium on
Principles of Programming Languages, Jan. 2005.

8. R. Harper and F. Pfenning. On equivalence and canonical forms in the LF type
theory. ACM Trans. on Computational Logic, 2004. To appear.

9. A. Salvesen. The Church-Rosser property for pure type systems with βη-reduction,
Nov. 1991. Unpublished manuscript.

10. C. A. Stone and R. Harper. Equivalence and singletons. ACM Transactions on
Programming Languages and Systems, 2004. Submitted.

11. J. Vanderwaart and K. Crary. A simplified account of the metatheory of linear LF.
Electronic Notes in Theoretical Computer Science, 70(2), 2002. Extended version
available as Technical Report CMU-CS-01-154.

On Decidability Within the Arithmetic
of Addition and Divisibility

Marius Bozga and Radu Iosif

Verimag/CNRS,
2 Avenue de Vignate,
38610 Gières, France

{bozga, iosif}@imag.fr

Abstract. The arithmetic of natural numbers with addition and divis-
ibility has been shown undecidable as a consequence of the fact that
multiplication of natural numbers can be interpreted into this theory,
as shown by J. Robinson [14]. The most important decidable subsets of
the arithmetic of addition and divisibility are the arithmetic of addition,
proved by M. Presburger [13], and the purely existential subset, proved
by L. Lipshitz [11]. In this paper we define a new decidable fragment
of the form QzQ1x1 . . . Qnxnϕ(x, z) where the only variable allowed to
occur to the left of the divisibility sign is z. For this form, called L(1)

| in
the paper, we show the existence of a quantifier elimination procedure
which always leads to formulas of Presburger arithmetic. We generalize
the L(1)

| form to ∃z1, . . . ∃zmQ1x1 . . . Qnxnϕ(x, z), where the only vari-
ables appearing on the left of divisibility are z1, . . . , zm. For this form,
called ∃L(∗)

| , we show decidability of the positive fragment, namely by
reduction to the existential theory of the arithmetic with addition and
divisibility. The L(1)

| , ∃L(∗)
| fragments were inspired by a real application

in the field of program verification. We considered the satisfiability prob-
lem for a program logic used for quantitative reasoning about memory
shapes, in the case where each record has at most one pointer field. The
reduction of this problem to the positive subset of ∃L(∗)

| is sketched in
the end of the paper.

1 Introduction

The undecidability of first-order arithmetic of natural numbers occurs as a con-
sequence of Gödel’s Incompleteness Theorem [10]. The basic result has been
discovered by A. Church [7], and the essential undecidability (undecidability of
its every consistent extension) by B. Rosser [15], both as early as 1936. Conse-
quences of this result are the undecidability of the theory of natural numbers
with multiplication and successor function and with divisibility and successor
function, both discovered by J. Robinson in [14]. To complete the picture, the ex-
istential fragment of the full arithmetic i.e., Hilbert’s Tenth Problem was proved
undecidable by Y. Matiyasevich [12]. The interested reader is further pointed to
[1] for an excellent survey of the (un)decidability results in arithmetic.

V. Sassone (Ed.): FOSSACS 2005, LNCS 3441, pp. 425–439, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

426 M. Bozga and R. Iosif

On the positive side, the decidability of the arithmetic of natural numbers
with addition and successor function has been shown by M. Presburger [13],
result which has found many applications in modern computer science, especially
in the field of automated reasoning. Another important result is the decidability
of the existential theory of addition and divisibility, proved independently by A.
P. Beltyukov [2] and L. Lipshitz [11]. Namely, it is shown that formulas of the
form ∃x1 . . . ∃xn

∧K
i=1 fi(x)|gi(x) are decidable, where fi, gi are linear functions

over x1, . . . , xn and the symbol | means that each fi is an integer divisor of gi

when both are interpreted over N
n. The decidability of formulas of the form

∃x1 . . . ∃xnϕ(x), where ϕ is an open formula in the language 〈+, |, 0, 1〉, is stated
as a corollary in [11].

Our main result is the decidability of formulas of the form QzQ1x1 . . .Qnxn

ϕ(x, z) where Q,Q1, . . . , Qn ∈ {∃,∀}, ϕ is quantifier-free, and all divisibility
propositions are of the form f(z)|g(x, z), with f, g linear functions. This form is
called L(1)

| , as there is only one variable that appears on the left of |. We show that
any formula in this fragment can be evaluated by applying quantifier elimination
to the open formula Q1x1 . . .Qnxnϕ(x, z), the result being a Presburger formula
in which z occurs free. This fact is somewhat surprising, since the L(1)

| fragment
allows to encode queries apparently beyond the scope of Presburger arithmetic
such as: given a Presburger formula ϕ with n free variables, is it true that all
values v1, . . . , vn which satisfy ϕ, are altogether relatively prime?

Second, a generalization is made by allowing multiple existentially quanti-
fied variables occur to the left of the divisibility sign that is, formulas of the
form ∃z1 . . . ∃znQ1x1 . . .Qmxmϕ(x,z), for quantifier-free ϕ, where the only di-
visibility propositions are of the form f(z)|g(x,z). Using essentially the same
method as in the case of n = 1, we show decidability of the positive form of
the ∃L(∗)

| subset i.e., in which no divisibility proposition occurs under negation.

However the result of quantifier elimination for the positive ∃L(∗)
| fragment can-

not be expressed in Presburger arithmetic, but in the existential fragment of
〈N,+, |, 0, 1〉. This result is also the best possible in the sense that, if negation
of divisibility propositions is allowed, the ∃L(∗)

| fragment is undecidable. The
worst-case complexity of the quantifier elimination method is non-elementary
and the decision complexity for the alternation-free fragments of L(1)

| , ∃L(∗)+
| are

bounded by a triple exponential.
We applied the decidability result for the positive ∃L(∗)

| fragment to a con-
crete problem in the field of program verification. More precisely, we consider a
specification logic used to reason about the shape of the recursive data structures
generated by imperative programs that handle pointers. This logic, called alias
logic with counters [5] is interpreted over deterministic labeled graphs. It allows
to express linear arithmetic relations between the lengths of certain paths within
a graph. The satisfiability problem has been shown undecidable over unrestricted
dag, and implicitly, graph models, but decidability can be shown over tree mod-
els. We complete the picture by showing decidability of this logic over structures
composed of an arbitrary finite number of lists. The difficulty w.r.t trees con-

On Decidability Within the Arithmetic of Addition and Divisibility 427

sists in the fact that lists may have loops, which introduce divisibility constraints.
However, as it is shown, the problem remains within the bounds of the positive
∃L(∗)

| fragment of 〈N,+, |, 0, 1〉. Despite its catastrophic complexity upper bound,
this result enables, in principle, the automatic verification of quantitative prop-
erties for an important class of programs that manipulate list structures only.

2 Preliminaries

In this paper we work with first-order logic over the language 〈+, |, 0, 1〉. A
formula in this language is interpreted over N in the standard way: + denotes
the addition of natural numbers, | is the divisibility relation, and 0, 1 are the
constants zero and one. In particular, we consider that 0|0, 0
 | n and n|0, for all
n ∈ N \ {0}. In the following we will intentionally use the same notation for a
mathematical constant symbol and its interpretation, as we believe, no confusion
will arise from that. For space reasons all proofs are included in [4] .

The results in this paper rely on two theorems from elementary number
theory. The first one is the well-known Chinese Remainder Theorem (CRT) [9]
and the second one is a (prized) conjecture proposed by P. Erdös in 1963 and
proved by R. Crittenden and C. Vanden Eynden in 1969 [6]. The CRT says that:
∃x
∧K

i=1 mi|(x − ri) ↔
∧

1≤i,j≤K(mi,mj)|(ri − rj), where mi ∈ N, ri ∈ Z and
(a, b) denotes the greatest common divisor of a and b 1. The CRT can be slightly
generalized as follows:

Corollary 1. For any integers mi ∈ N and ai ∈ Z \ {0}, ri ∈ Z with 1 ≤ i ≤ K
we have:

∃x
K∧

i=1

mi|(aix− ri) ↔
∧

1≤i,j≤K

(aimj , ajmi)|(airj − ajri) ∧
K∧

i=1

(ai, mi)|ri

Usually the CRT is used as a means of solving systems of linear congruences.
A linear congruence is an equation of the form ax ≡ b mod m, for some a, b ∈ Z

and m ∈ N \ {0}. Such an equation is solvable if and only if (a, m)|b. If the
equation admits one solution y, then the solutions are given by the arithmetic
progression {x ≡ y mod m

(a,m)}. The second Theorem, stated as a conjecture by
Erdös, is the following:

Theorem 1 ([6]). Let a1, . . . , an ∈ Z, b1, . . . , bn ∈ N \ {0}. Suppose there exists
an integer x0 satisfying none of the congruences: {x ≡ ai mod bi}n

i=1. Then
there is such an x0 among 1, 2, 3, . . . , 2n.

We shall use this theorem rather in its positive form i.e., n arithmetic progres-
sions {ai + biZ}n

i=1 cover Z if and only if they cover the set 1, 2, 3, . . . , 2n.

1 The second part of the Theorem, expressing the solutions x to the system of linear
congruences on the left hand of the equivalence is not used in this paper.

428 M. Bozga and R. Iosif

If we interpret a linear congruence over Z instead of N we obtain that the
solutions form a progression containing both infinitely many positive and neg-
ative numbers. In other words, ax ≡ b mod m has a solution in N if and only
if it has a solution in Z. The same reasoning applies to the CRT, since the so-
lution of a system of linear congruences is the intersection of a finite number of
progressions, hence a progression itself. As for Erdös’ Conjecture, we can prove
that it is true for positive integers only [4] . In conclusion, the above theorems
hold for Z as well as they do for N. In general, all results in this paper apply the
same to integer and natural numbers, therefore we will not make the distinction
unless necessary2.

3 Decidability of L(1)
|

In this section we show that the L(1)
| class can be effectively reduced to the

〈N,+, 0, 1〉 theory. Mostly for clarity, we will work first with a simplified form,
in which each divisibility atomic proposition is of the form z|f(x, z), and then
we generalize to propositions of the form h(z)|f(x, z), with f, h linear functions.
Hence we start explaining the reduction of formulas of the following simple form:

Q1x1 . . .Qnxn

N∨
i=1

(Mi∧
j=1

z|fij(x, z) ∧
Pi∧

j=1

z
 |gij(x, z) ∧ ϕi(x, z)
)

(1)

where fij and gij are linear functions with integer coefficients and ϕi, are Pres-
burger formulas with x and z free.

As Presburger arithmetic has quantifier elimination [13], we can assume
w.l.o.g. that ϕi(x, z) ≡

∨
k

∧
l ∃tkl tkl ≥ 0 ∧ hkl(x, z)+tkl = 0 ∧

∧
l ckl|h′kl(x, z),

with hkl, h
′
kl linear functions with integer coefficients, and ckl positive inte-

ger constants. Suppose now that xm, for some 1 ≤ m ≤ n, appears in some
hkl(x) = aklxm + bkl(x, z) with coefficient akl
= 0. We multiply through with
akl by replacing all formulas of the form h(x, z)+t = 0 with aklh(x, z)+aklt = 0,
c|h′(x, z) with aklc|aklh

′(x, z), and z|f(x, z) with aklz|aklf(x, z). Then we elim-
inate aklxm by substituting it with −bkl(x, z)− tkl, which does not contain xm.
We repeat the above steps until all x variables occurring within linear equations
have been eliminated3. The resulting formula is of the form:

Q1x1 . . .Qnxn

N∨
i=1

(Mi∧
j=1

zij |fij(x, z) ∧
Pi∧

j=1

zij
 |gij(x, z) ∧ ψi(z)
)

(2)

2 For instance, it is not clear whether one can define the order relation in the existen-
tial fragment of 〈Z, +, |, 0, 1〉, hence we will work with 〈Z, +, |,≤, 0, 1〉 instead of it,
whenever needed.

3 Notice that the constraint tkl ≥ 0 is trivially satisfied if we work with N, otherwise,
for Z, we can use the fact that the solutions to a linear congruence system form a
progression that contains infinitely many positive and negative numbers.

On Decidability Within the Arithmetic of Addition and Divisibility 429

where each zij is either aijz, aij ∈ N \ {0}, or a constant cij ∈ N and ψi(z)
are Presburger formulas in which z occurs free. In the rest of the section we
show how to reduce an arbitrary formula of the form (2) to an equivalent Pres-
burger formula in two phases: first, we successively eliminate the quantifiers
Qnxn, . . . , Q1x1 and second, we define the resulting solved form into Presburger
arithmetic.

Quantifier Elimination

We consider three cases, based on the type of the last quantifier Qn (∃,∀) and the
sign of the divisibility propositions occurring in the formula (positive, negative).
Namely, we treat the cases existential positive, universal positive and universal
mixed. The remaining case (existential mixed) can be dealt with by first negating
and then applying the universal mixed case.

The Existential Positive Case. In this case the formula (2) becomes:

N∨
i=1

∃xn

Mi∧
j=1

zij |fij(x, z) ∧ ψi(z) (3)

W.l.o.g. we can assume that Mi
= 0 for all 1 ≤ i ≤ N , and that fij(x, z) =
aijxn+gij(x′, z), where x′ = x\{xn}, and with all coefficients aij
= 0. Applying
Corollary 1 to the i-th disjunct, we obtain (the original i subscript has been
omitted):

∧
1≤k,l≤M (akzl, alzk)|(akgl− algk)∧

∧
1≤k≤M (ak, zk)|gk ∧ψ(z). In the

resulting formula we have three types of divisibility propositions, which we can
write equivalently as:

– (aia
′z, aja

′′z)|(aigj − ajgi) : (aia
′, aja

′′)z|(aigj − ajgi)
– (ai, az)|gi :

∨ai−1
r=0 (az ≡ r) mod ai ∧ (ai, r)|gi

– (aicj , ajci)|(aigj − ajgi) and (ai, ci)|gi are left untouched.

We have used the equivalence (az, c)|f ↔
∨c−1

r=0 az ≡ r mod c ∧ (r, c)|f . Now
az ≡ r mod c is a Presburger formula with z free. The formula can now be
easily written back in the form (3), with n − 1 variables of type xi, instead of
n. The size of the resulting formula (in DNF) is at most quadratic in the size of
the input.

The Universal Positive Case. It is now convenient to consider the matrix of
(2) in conjunctive normal form. In this case the formula (2) becomes:

P∧
i=1

∀xn

Qi∨
j=1

zij |fij(x, z) ∨ ψi(z) (4)

W.l.o.g. we can assume that fij(x, z) = aijxn + bij(x′, z), where x′ = x \ {xn},
and with all coefficients aij
= 0. In each i-conjunct, the union of Qi arithmetic
progressions {x | aijx ≡ −bij mod zij}Qi

j=1 covers N. By Theorem 1 it is sufficient

430 M. Bozga and R. Iosif

(and trivially necessary) to cover only the first 2Qi values. The equivalent form,
with xn eliminated, is the following:

∧P
i=1
∧2Qi

t=1
∨Qi

j=1 zij |aijt + bij ∨ ψi(z). The
size of the resulting formula (in CNF this time) is simply exponential in the size
of the input.

The Universal Mixed Case. Let us consider again the formula (2) with the
matrix written in conjunctive normal form:

P∧
i=1

∀xn

(Qi∨
j=1

zij |fij(x, z) ∨
Ri∨
j=1

zij
 |gij(x, z)
)
∨ ψi(z) (5)

Again, we can assume w.l.o.g. that xn occurs in each fij , gij with a non-zero coef-
ficient. Also Qi, Ri can be considered greater than zero for all 1 ≤ i ≤ n, the other
cases being treated in the previous. Each i-conjunct, omitting the i subscript,
is: ∀xn

(∧R
j=1 zj |gj(x, z) →

∨Q
j=1 zj |fj(x, z)

)
∨ψ(z). The parenthesized formula

can be understood as coverage of an arithmetic progression by a finite union of
arithmetic progressions. Assuming gj(x, z) = ajxn + bj(x, z) with aj
= 0, let
us compute the period of the set {x :

∧R
j=1 zj |gj(x, z)} =

⋂R
j=1{x : ajx ≡ bj

mod zj}. Each linear congruence ajx ≡ bj mod zj has a periodic solution with
period zj

(zj ,aj)
. The period of the intersection is the least common multiple of the

individual periods i.e.,
[{ zj

(zj ,aj)

}R

j=1

]
. Since all zj ’s are either a′jz, for a′j ∈ N\{0}

or some constants cj , we can simplify the expression of the period to the form
zkj

(z,lj)
for some (effectively computable) constant values kj , lj ∈ N \ {0}. Now we

can apply Theorem 1 and eliminate ∀xn from the i-th conjunct of the formula
(5). Supposing fj(x, z) = cjxn + dj(x, z) for some cj , dj ∈ Z, cj
= 0, the result

is: ¬∃y
∧R

j=1 zj |ajy + bj(x, z) ∨ ∃y
∧R

j=1 zj |ajy + bj(x, z) ∧
∧2Q

t=1
∨Q

j=1 zj |cj

(
y +

zkjt
(z,lj)

)
+ dj(x, z). The first disjunct is for the trivial case, in which the set

{x :
∧R

j=1 zj |gj(x, z)} is empty, while the second disjunct assumes the existence
of an element y of this set and encodes the equivalent condition of Theorem 1,
namely that the first 2Q elements of this set, starting with y, must be covered by
the union of Q progressions. Now y can be eliminated from the above formula
using CRT, as in the existential positive case, treated in the previous. Notice
that, in addition to the existential positive case, we have introduced a subterm
of the form zk

(z,l) within the functions fj . This is reflected in the definition of
the solved form, in the next paragraph. As in the previous case, the size of the
output formula is simply exponential in the size of the input formula.

The Solved Form. The three cases from the previous section can be succes-
sively applied to eliminate all quantified variables Q1x1, . . .Qnxn from (2). For
any formula of type (2), the result of this transformation belongs to the following
solved form:

N∨
i=1

Mi∧
j=1

aijz|fij(z) ∧
Pi∧

j=1

bijz
 |gij(z) ∧ ψi(z) (6)

On Decidability Within the Arithmetic of Addition and Divisibility 431

where aij and bij are positive integers, fij and gij are linear combinations of
terms of the form z

(z,k) with k ∈ N \ {0}4 and ψi are Presburger formulas in z.
We will consider the expressions az|f(z), where a is one of aij , bij and f is

one of fij , gij . Let f(z) = Σn
i=1

zci

(z,ki)
+ c0. We write az|f(z), equivalently as:∨

(d1,...,dn) ∈ div(k1)×...×div(kn)

∧n
i=1(z, ki) = di ∧ aDz|zΣn

i=1ciDi + c0D, where
D = Πn

i=1di, Di = D
di

and div(k) denotes the set of divisors of k. Notice that the
last conjunct of each clause implies that z|c0D, i.e., z ∈ div(c0D). The entire
formula is equivalent to:

∨
(d,d1,...,dn) ∈ div(c0D)×div(k1)×...×div(kn)

∧n
i=1(d, ki) =

di ∧ aDd|dΣn
i=1ciDi + c0D. Each divisibility proposition of the solved form can

thus be evaluated. The solved form is then either trivially false or equivalent to
a disjunction of the form ψi1 ∨ . . .∨ψin

, for some 1 ≤ i1, . . . , in ≤ N . The latter
is obviously a Presburger formula.

Block Elimination of Universal Quantifiers

This section presents results that are used in a generalization of the universal
positive and universal mixed cases, to perform the elimination of an entire block
of successive universal quantifiers with simple exponential complexity. A set of
vectors (x1, . . . , xn) ∈ Z

n satisfying the linear congruence a1x1+. . .+anxn+b ≡ 0
mod m is called a n-dimensional arithmetic progression. The block quantifier
elimination problem is equivalent to the coverage of an n-dimensional arithmetic
progression by a finite union of n-dimensional progressions. The latter can be
solved in simple exponential time, as shown by the following consequence of
Theorem 1:

Corollary 2. Let aij ∈ Z, bi ∈ Z,mi ∈ N, 1 ≤ i ≤ k, 1 ≤ j ≤ n. The set of
progressions {Σn

j=1aijxj + bi ≡ 0 mod mi}k
i=1 covers Z

n if and only if it covers
the set {1 . . . 2k}n.

This takes care of the universal positive case. In the universal mixed case we
need to effectively compute the period of the intersection of any given number of
n-dimensional progressions. Let LZ[z] denote the monoid of first degree (linear)
polynomials in z, with integer coefficients. Since our problem is parameterized by
z, we consider a system of progressions of the form

∧k
i=1 Σn

j=1aijxj ≡ 0 mod z,
with solutions from LZ[z]. We need to show that this set is a finitely generated
monoid, and moreover, that its base is effectively computable. The following
theorem gives the result:

Theorem 2. Let ai ∈ Z, 1 ≤ i ≤ n, n > 1.

1. The set of integer solutions to the equation Σn
i=1aixi = 0 is a finitely gener-

ated submonoid M of (Zn,+). It is moreover possible to construct a base of
M of size n− 1.

4 Notice that we can also write z as z
(z,1) .

432 M. Bozga and R. Iosif

2. The set of integer coefficient solutions to the congruence Σn
i=1aixi ≡ 0

mod z is a finitely generated submonoid M [z] of (LZ
n[z],+). It is moreover

possible to construct a base of M [z] of the form {v1, . . . , vn−1, zv1, . . . , zvn−1,
zvn}, with v1, . . . , vn ∈ Z

n.

Theorem 2 gives us the means to characterize the solution of a system of n-
dimensional progressions, parameterized by z. This is done inductively. Suppose
that we have already computed a base {v1, . . . , vn−1, zv1, . . . , zvn−1, zvn} for the
system

∧k−1
i=1 Σn

j=1aijxj ≡ 0 mod z, according to the second point of Theorem 2.
We are now looking after a base generating the solutions to

∧k
i=1 Σn

j=1aijxj ≡ 0
mod z. The solutions to the system are of the form x = Σn−1

j=1 αjvj + zΣn
j=1βjvj

with αj , βj ∈ Z. Introducing those values into Σn
i=1akixi ≡ 0 mod z, we ob-

tain that Σn
i=1aki

(
Σn−1

j=1 αjv
(i)
j + zΣn

j=1βjv
(i)
j

)
≡ 0 mod z must be the case,

where v(i) denotes the i-th component of a vector v. This is furthermore equiv-
alent to Σn

i=1akiΣ
n−1
j=1 αjv

(i)
j ≡ 0 mod z, or to the system with unknowns αj :

Σn−1
j=1

(
Σn

i=1akiv
(i)
j

)
αj ≡ 0 mod z. According to Theorem 2, the solutions of the

latter system are generated by a base {u1, . . . , un−2, zu1, . . . , zun−1}. Thus the
solutions of the original system

∧k
i=1 Σn

j=1aijxj ≡ 0 mod z are of the form

x = Σn−2
l=1 γlΣ

n−1
j=1 u

(j)
l vj + zΣn−1

l=1 δlΣ
n
j=1u

(j)
l vj , with γl, δl ∈ Z. The block quan-

tifier elimination can be now performed along the same lines of the universal
mixed case, discussed in the previous.

Extending to the entire L(1)
|

Let us now revisit the quantifier elimination procedure for the general case,
where the divisibility propositions are of the form f(z)|g(x, z), with f, g linear
functions. The only two differences w.r.t. the case f(z) = z are encountered
when applying the existential positive and the universal mixed cases.

In the existential positive case, subsequent to the application of the CRT,
we need to simplify formulas of the following two forms, where ai ∈ N and
fi(z), fj(z), hij(x, z), hi(x, z) are arbitrary linear functions:

1. (fi, fj)|hij . We distinguish two cases:
– if either fi divides fj or fj divides fi in terms of polynomial division,

then (fi, fj) = fi or (fi, fj) = fj , respectively. Let us consider the first
situation, the other one being symmetric. We obtain, equivalently, fi|r,
where r is the constant polynomial representing the remainder of hij

divided by fi. This can be expressed as a finite disjunction in Presburger
arithmetic.

– otherwise, (fi, fj) can be written equivalently as (gij , k) where gij is a
linear function in z and k ∈ Z, by applying Euclid’s g.c.d. algorithm in
the polynomial ring Z[z]. We have reduced the problem to case 2.

2. (fi, ai)|hi is equivalent to
∨

0≤r<ai
fi ≡ r mod ai ∧ (r, ai)|hi.

On Decidability Within the Arithmetic of Addition and Divisibility 433

In the universal mixed case, subsequent to the application of Erdös Con-
jecture, we obtain subterms of the form π =

[{ hj

(hj ,aj)

}R

j=1

]
occurring within

atomic propositions of the form hi|aiπ + gi. where hi(z), hj(z) and gi(x, z) are
linear functions. The first step is to substitute (hj , aj) for constants i.e. π =[{hj

dj

}R

j=1

]
, for some dj ∈ div(aj). The equivalent form is now π =

[
{Djhj}R

j=1

]
D =

ΠR
j=1Djhj

D
(
{Djhj}R

j=1

) , where D = ΠR
j=1dj and Dj = D

dj
. Now the denominator expres-

sion is the g.c.d. of a number of linear functions in z, and can be reduced either
to a linear function or to a constant, chosen from a set of divisors, like in the
existential positive case above. Hence π is a polynomial from Q[z], of degree at
most R. Every atomic proposition involving π can be put in the form h(z)|p(z),
where h, p ∈ Z[z] (just multiply both sides with the l.c.m of all denominators in
π). We consider the following two cases:

– if z occurs in h with a non-zero coefficient, let r be the remainder of p divided
by h, the degree of r being zero. Hence h(z)|r, which is written as a finite
disjunction in Presburger arithmetic.

– otherwise, h is a constant c ∈ Z. We have p(z) ≡ 0 mod c, which is further
equivalent to

∨
r∈{0,...,|c|−1} z ≡ r mod c ∧ p(r) ≡ 0 mod c

Example. It is time to illustrate our method by means of an example. Let us find
all positive integers z that satisfy the formula ∀x∀y z|12x + 4y → z|3x + 12y.
To eliminate y we apply the universal mixed case and obtain:

∀x
[
¬∃y z|12x + 4y ∨ ∃y z|12x + 4y ∧ z|3x + 12y ∧ z|3x + 12(y +

z

(z, 4)
)
]

By an application of the CRT, ∃y z|12x + 4y is equivalent to (z, 4)|12x which is
trivially true, since (z, 4)|4 and 4|12x. Moreover, if z|3x+12y, then z|3x+12y +
12 z

(z,4) is equivalent to z|12 z
(z,4) , which is also trivially true. Hence, the formula

can be simplified down to: ∀x∃y z|12x + 4y ∧ z|3x + 12y By an application
of the CRT we obtain: ∀x z|33x ∧ (z, 4)|12x ∧ (z, 12)|3x which, after trivial
simplifications, is equivalent to z|33 ∧ (z, 12)|3, leading to z ∈ {1, 3, 11, 33}. ��

Complexity Assessment. The quantifier elimination has non-elementary worst
case complexity. Let ϕ be any formula of L(1)

| . Since the elimination of an ex-
istential quantifier in the positive case can be done in time |ϕ|2, and the elimi-
nation of any block of n universal quantifiers in time 2n|ϕ|, the only reason for
non-elementary blow-up lies within the alternation of existential and universal
quantifiers. Even in the positive case, alternation of quantifiers causes a for-
mula to be translated from disjunctive to conjunctive normal form or viceversa,
this fact alone introducing an exponential blow-up. However it is clear that the
alternation-free subset of L(1)

| can be dealt with in at most simple exponential

time. the whole decision procedure takes at most 2m2···2
m|ϕ|
}

2d

time, where d
is the alternation depth of ϕ and m the maximum size of an alternation-free
quantifier block.

434 M. Bozga and R. Iosif

4 Decidability of ∃L(∗)+
|

After performing the preliminary substitution of variables xi that occur together
with some zj in a linear constraint, we reduce a formula of the ∃L(∗)

| class to the
following form:

∃z1 . . . ∃znQ1x1 . . .Qmxm

N∨
i=1

(Mi∧
j=1

fij(z)|gij(x,z)∧
Pi∧

j=1

f ′
ij(z)
 |g′ij(x,z)∧ϕi(z)

)

where fij , gij , f
′
ij , g

′
ij are all linear functions. In this section we reduce an arbi-

trary positive ∃L(∗)
| formula to an existentially quantified formula of 〈N,+, |, 0, 1〉.

In other words, we suppose that Pi = 0, for all 1 ≤ i ≤ n.
We are going to apply essentially the same quantifier elimination method

from Section 3 and analyze its outcome in case of multiple variables of type
zi. Let us have a look first at the existential case i.e., Qm ≡ ∃. Application
of the CRT to eliminate xm yields atomic propositions of the form (f1, f2)|g12,
where g12(x,z) is a linear function. On the other hand, in the universal case
(Qm ≡ ∀) we just substitute xm by a constant quantified over a finite range
{1, . . . , 2Mi} for some 1 ≤ i ≤ N . Since negation does not involve divisibility
propositions, the universal mixed case does not apply. The solved form is, in
this case:

∨N
i=1
∧Mi

j=1

(
{fk(z)}Pij

k=1

)
|hij(z) ∧ ψi(z), where fk and hij are linear

functions over z. Since the g.c.d. operator is left-right associative, we can ap-
ply CRT and write each divisibility proposition (f1, . . . , fP)|h in the equivalent
form: ∃y1 . . . ∃yP−1 f1|y1 − h ∧

∧P−1
i=2 fi|yi − yi−1 ∧ fP |yP−1. Since z1, . . . , zn

occur existentially quantified, we have obtained that ∃L(∗)+
| can be reduced to

〈N,+, |, 0, 1〉∃, hence it is decidable5. The worst-case complexity bound for the
quantifier elimination is, as in the case for L(1)

| , non-elementary. According to

[11], the decision complexity for the underlying theory is bounded by 2(N+1)8N3

,
where N is the maximum between |ϕ| and the maximum absolute value of the
coefficients in ϕ6.

To show the undecidability of the ∃L(∗)
| fragment with negation, we define

the existential subset of the 〈N,+, [], 0, 1〉 theory into it. This is done using the
classical definition of the l.c.m. relation [x, y] = z [14]: ∀t x|t∧y|t ↔ z|t. To show
undecidability of the latter, we use that, for x
= 0, x2 = y ↔ y + x = [x, x + 1]
to define the perfect square relation7, and (x + y)2 − (x − y)2 = 4xy to define
multiplication. The rest is an application of the undecidability of Hilbert’s Tenth
Problem [12].

5 When interpreting ∃L(∗)
| over Z we assume the ≤ relation, since the decidability proof

from [11] uses orderings of variables.
6 Actually this expression is the result of some simplifications, the original expression

being rather intricate.
7 If we interpret over Z, we use −y − x = [x, x + 1] for negative x.

On Decidability Within the Arithmetic of Addition and Divisibility 435

5 Application to the Verification of Programs with Lists

The results in this paper are used to solve a decision problem related to the
verification of programs that manipulate dynamic memory structures, specified
by recursive data types. Examples include lists, trees, and, in general, graphs.
We are interested in establishing shape invariants such as e.g. absence of cycles
and data sharing, but also by quantitative properties involving lengths of paths
within the heap of a program. For instance, consider a list reversal program that
works by keeping two disjoint lists and moving pointers successively from one
list to another. A shape invariant of this program is that, given a non-cyclic list
as input, the two lists are always disjoint. A quantitative invariant is that the
sum of their lengths must equal the length of the input list.

In order to express shape and quantitative properties of the dynamic mem-
ory of programs performing selector updating operations, we have defined a
specification logic called alias logic with counters [5]. Formulas in this logic are
interpreted over finite directed graphs with edges labeled with symbols from a
finite alphabet Σ. Formally such a graph is a triple G = 〈N, V, E〉, where N is
the set of nodes, E : N × Σ → N is the deterministic edge relation, V ⊆ N is
a designated set of nodes called variables on which the requirement is that for
no n ∈ N, σ ∈ Σ: E(n, σ) ∈ V . In other words, the graph is rooted on V . A
path in the graph is a finite sequence π = vσ1σ2 . . . ∈ V Σ∗. Since the graph is
deterministic, every path may lead to at most one node. Let π̂ denote this node,
if defined. We say that two paths π1 and π2 are aliased if π̂1, π̂2 are defined and
π̂1 = π̂2. A quantitative path is a sequence π(x) = vσf1

1 σf2
2 . . . , where x is a

finite set of variables, interpreted over N, and f1, f2, . . . are linear functions on
x. Given an interpretation of variables ι : x → N, the interpretation of a quanti-
tative path π, denoted as ι(π), is the result of evaluating the functions f1, f2, . . .
and replacing each occurrence of σk by the word σ . . .σ, repeated k times.

The logic of aliases with counters is the first-order additive arithmetic of
natural numbers, to which we add alias propositions of the form π1(x)�π2(x).
Given an interpretation of variables, an alias proposition π1�π2 holds in a graph
if the interpretations of the quantified paths involved are defined and they ”meet”
in the same node: ι̂(π1) = ι̂(π2). The satisfaction of a closed formula ϕ on a graph
G, denoted as G |= ϕ, is defined recursively on the syntax of ϕ, as usual.

We have studied the satisfiability problem for this logic and found that it
is undecidable on unrestricted graph and dag models, and decidable on tree
models. For details, the interested reader is pointed to [5]. The problem in case
of simply linked lists is surprisingly more difficult than for trees, due to the
presence of loops. However, we can show decidability now, with the aid of the
positive fragment of the theory ∃L(∗)

| .
Since all memory structures considered are lists, we can assume that they are

implemented using only one selector field. In other words, the label alphabet can
be assumed to be a singleton Σ = {σ}. Hence we can write each quantitative
path in the normal form vσf , with f a linear function over x. Consequently,
from now on we will only consider alias propositions of the form uσf�vσg.

436 M. Bozga and R. Iosif

To decide whether a closed formula ϕ in alias logic with counters has a model,
we use a notion of parametric graph G(z) over a set of variables z, which is an
abstraction of an infinite class of graphs. A formal definition of a parametric
graph is given in the next section. The important point is that, in the case
of lists with one selector, the total number of parametric graphs is finite. In
fact, this number depends only on the number of program variables. Hence, the
satisfiability problem is reduced to deciding whether there exists z1, . . . , zn such
that G(z) |= ϕ. To solve the latter problem, we shall derive an open formula
ΨG,ϕ(z) in the language of L(∗)

| , such that, for all interpretations ι : z → N,
ΨG,ϕ(ι(z)) holds if and only if G(ι(z)) |= ϕ. The formula ϕ is then satisfiable,
if and only if there exists a parametric graph G such that ∃z1, . . . ∃znΨG,ϕ is
satisfiable. Moreover, as it will be pointed out, ΨG,ϕ is positive and the only
variables occurring on the left of the divisibility are z. Hence the latter condition
is decidable. The following discussion is meant only as a proof of decidability for
alias logic with counters in the case Σ = {σ}, the algorithmic effectiveness of
the decision procedure being left out of the scope of this paper.

A Parametric Model Checking Problem

A parametric graph over a set of variables z is a graph G = 〈N, V, E〉, the only
difference w.r.t. the previous definition being the edge alphabet, which is taken
to be Σ×z, instead of Σ. In other words, each edge is of the form n

σ,z−→ m. We
assume that each edge is labeled with a different variable from z, and thus ||E|| =
||z||. Given an interpretation of variables ι : z → N, we define the interpretation
of an edge to be the sequence of edges n = n1

σ−→ n2
σ−→ . . .nk = m of length

k = ι(z), with no branching along the way. The interpretation of a graph is the
graph obtained by replacing each edge with its interpretation. As a convention,
the values of z are assumed to be strictly greater than one. The reason is that,
allowing zero length paths in the graph might contradict with the requirement
that the graph is deterministic. A parametric graph is said to be in normal form
if and only if:

– there are no two adjacent edges labeled with the same symbol e.g., m
σ,z1→

n
σ,z2→ p, such that either the indegree or the outdegree of their common node

(n) is greater than one.
– each node in the graph is reachable from a root node in V .

Notice that each parametric graph can be put in normal form by replacing any
pair of edges violating this condition by a single edge labeled with the same
symbol. The interested reader may also consult [3] for a notion very similar to
the parametric graph.

In the rest of this section we shall consider the case Σ = {σ}. For any given
set V of program variables, the number of parametric graphs 〈N, V, E〉 in normal
form, is finite. This fact occurs as consequence of the following lemma:

Lemma 1. Let G = 〈N, V, E〉 be a parametric graph over a singleton alphabet,
in normal form. Then ||N || ≤ 2||V ||.

On Decidability Within the Arithmetic of Addition and Divisibility 437

Given a parametric graph and a closed formula in alias logic, we are interested
in finding an open formula ΨG,ϕ(z) that encodes G(z) |= ϕ, for all possible
interpretations of z. We will define ΨG,ϕ inductively on the structure of ϕ, by
first defining characteristic formulas for the alias literals (alias propositions and
negations of alias propositions). Intuitively, π1�π2 holds on G(z) = 〈N, V, s〉 if
and only if the paths π1 and π2 meet either in an ”explicit” node n ∈ N or
in a node that does not occur in N but is ”abstracted” within a parametric
edge. For the latter case, we need some notation. Given an interpretation ι of
variables z ∪ {y}, let d(n, y) denote the node situated at distance ι(y) from n
in the (non-parametric) graph G(ι(z)). With this notation, Figure 1 defines the
characteristic formulas ΨG,l, for alias literals l.

G |= π1�π2 :
∨

n∈N

π̂1 = n ∧ π̂2 = n ∨ ∃y
∨

n
z→m

π̂1 = d(n, y) ∧ π̂2 = d(n, y) ∧ y < z

G �|= π1�π2 : ∃y1∃y2

∨
n1

z1→ m1

n2
z2→ m2

n1 �= n2

π̂1 = d(n1, y1) ∧ π̂2 = d(n2, y2) ∧ y1 < z1 ∧ y2 < z2

∨
∨

n
z→ m

π̂1 = d(n, y1) ∧ π̂2 = d(n, y2) ∧ y1 < z ∧ y2 < z ∧ y1 �= y2

Fig. 1

Since both positive and negative literals can be encoded as positive boolean
combinations of equalities of the form π̂ = d(n, y)8, it is sufficient to show how
such an equality can be defined as a positive formula of L(∗)

| with the only vari-
ables occurring on the left of divisibility being the ones in z. Let π = vσf(x) be
a quantitative path. There are three possibilities:

1. if there is no path in G from v to n, then π̂ = d(n, y) is false.
2. if there is an acyclic path v

z1→ n1
z2→ . . .nk−1

zk→ n in G, then π̂ = d(n, y) is
equivalent to f(x) = Σk

i=1zi + y.
3. otherwise, there is a cyclic path v

z1→ . . .nk−1
zk→ nk = n

zk+1→ nk+1 . . .nl−1
zl→

nl = n in G, and for all 1 ≤ i < l, i
= k we have ni
= n. Then π̂ = d(n, y) is

equivalent to f(x) ≥ Σk
i=1zi + y ∧Σl

i=k+1zi|f(x)−Σk
i=1zi − y, for the v

f→
path may iterate through the nk, nk+1, . . . , nl loop multiple times.

Example. The encoding of a query of the form G(z) |= π̂(x) = n as a formula of
L(∗)
| is better understood by means of an example. Figure 2 shows a parametric

graph and three sample queries with their equivalent encodings. ��

8 π̂ = n is π̂ = d(n, 0).

438 M. Bozga and R. Iosif

v1 v2

z4 z2

z5

z3

n1 n2

n3

z1

z6

v3

v̂1σx = n1 : x ≥ z1 ∧ z4 + z5 + z6|x − z1

v̂1σx = n2 : x ≥ z1 + z4 ∧ z4 + z5 + z6|x − z1 − z4

v̂1σx = n3 : x ≥ z1 + z4 + z5 ∧ z4 + z5 + z6|x − z1 − z4 − z5

Fig. 2

Theorem 3. If ||Σ|| = 1, then the satisfiability problem for the logic of aliases
with counters is decidable.

6 Conclusion

We studied the decision problem for fragments of the arithmetic of addition and
divisibility. It is known that the entire theory is undecidable [14], while its exis-
tential subset is decidable [11]. In defining our fragment we take in consideration
on which side of the divisibility sign | do variables occur. Our main result is the
decidability of the fragment of the form QzQ1x1 . . .Qnxnϕ where the only divis-
ibility propositions are of the form f(z)|g(x, z). For this fragment we show the
existence of a quantifier elimination procedure. We apply the same procedure
to formulas of the form ∃z1, . . . ,∃znQ1x1, . . . , Qmxmϕ where the only divisibil-
ity propositions are of the form f(z)|g(x,z). Here we show decidability of the
positive form i.e., in which no divisibility propositions occur negated. Moreover,
the full fragment of this form is shown to be undecidable. We have applied the
decidability results to a problem concerning the verification of programs with
mutable data structures. Having introduced a specification logic for expressing
shape and quantitative properties of recursive data structures, we show that
this logic is decidable on list models, by reduction to first-order formulas using
addition and divisibility.

Further directions of work concern, on one hand, algorithmic aspects of the
decision problem, and namely, efficient implementations of the method. On the
other hand, we are investigating the possibility of applying this theory to the
problem of computing loop invariants of integer counter automata. This problem
has been explored using Presburger arithmetic [8], and extending the results by
means of theories with divisibility seems to be a promising approach.

Acknowledgments. The authors are greatly indebted to their colleagues Yas-
sine Lakhnech, Laurent Mazaré and Romain Janvier for the interesting discus-
sions and enlightening suggestions concerning this paper.

On Decidability Within the Arithmetic of Addition and Divisibility 439

References

1. Alexis Bés. A survey of arithmetical definability. A Tribute to Maurice Boffa.
Bulletin de la Société Mathématique de Belgique, 1 - 54, 2002.

2. A. P. Beltyukov. Decidability of the universal theory of natural numbers with
addition and divisibility. Zapiski Nauch. Sem. Leningrad Otdeleniya Mathematical
Institute, 60:15 – 28, 1976.

3. S. Bardin, A. Finkel, and D. Nowak. Toward symbolic verification of programs han-
dling pointers. In Proc. 3rd Int. Workshop on Automated Verification of Infinite-
State Systems (AVIS 2004), Barcelona, Spain. Electronic Notes in Theoretical
Computer Science, 2004.

4. Marius Bozga and Radu Iosif. On Decidability within the Arithmetic of Addition
and Divisibility. Technical Report 18, Verimag, October 2004.

5. Marius Bozga, Radu Iosif, and Yassine Lakhnech. Counting aliases. Technical
Report 17, Verimag, October 2004.

6. R. B. Crittenden and C. L. Vanden Eynden. A proof of a conjecture of Erdös.
Bulletin of American Mathematical Society, (75):1326 – 1329, 1969.

7. Alonzo Church. An unsolvable problem of elementary number theory. American
Journal of Mathematics, 58:345 – 363, 1936.

8. Hubert Comon and Yan Jurski. Multiple Counters Automata, Safety Analysis
and Presburger Arithmetic. In Proceedings of the 10th International Conference
on Computer Aided Verification, volume 1427, pages 268 – 279. Lecture Notes in
Computer Science, 1998.

9. C. Ding, D. Pei, and A. Salomaa. Chinese Remainder Theorem: Applications in
Computing, Coding, Cryptography. World Scientific Publishing Company, 1999.

10. Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme I. Monatshefte für Mathematik und Physik, 38:173 – 198, 1931.

11. Leonard Lipshitz. The diophantine problem for addition and divisibility. Transac-
tion of the American Mathematical Society, 235:271 – 283, January 1976.

12. Yuri Matiyasevich. Enumerable sets are diophantine. Journal of Sovietic Mathe-
matics, (11):354 – 358, 1970.

13. Mojzesz Presburger. Über die Vollstandigkeit eines gewissen Systems der Arith-
metik. Comptes rendus du I Congrés des Pays Slaves, Warsaw 1929.

14. Julia Robinson. Definability and decision problems in arithmetic. The Journal of
Symbolic Logic, 14(2):98 – 114, June 1949.

15. B. Rosser. Extensions of some theorems of Gödel and Church. The Journal of
Symbolic Logic, 1:87 – 91, 1936.

Expressivity of Coalgebraic Modal Logic:
The Limits and Beyond

Lutz Schröder

BISS, Department of Computer Science, University of Bremen

Abstract. Modal logic has a good claim to being the logic of choice
for describing the reactive behaviour of systems modeled as coalgebras.
Logics with modal operators obtained from so-called predicate liftings
have been shown to be invariant under behavioral equivalence. Expres-
sivity results stating that, conversely, logically indistinguishable states
are behaviorally equivalent depend on the existence of separating sets of
predicate liftings for the signature functor at hand. Here, we provide a
classification result for predicate liftings which leads to an easy criterion
for the existence of such separating sets, and we give simple examples of
functors that fail to admit expressive normal or monotone modal logics,
respectively, or in fact an expressive (unary) modal logic at all. We then
move on to polyadic modal logic, where modal operators may take more
than one argument formula. We show that every accessible functor ad-
mits an expressive polyadic modal logic. Moreover, expressive polyadic
modal logics are, unlike unary modal logics, compositional.

1 Introduction

Coalgebra has in recent years emerged as an appropriate framework for the
treatment of reactive systems in a very general sense [24]; in particular, coalge-
bra provides a unifying perspective on notions such as coinduction, corecursion,
and bisimulation. It has turned out that modal logic is a good candidate for
being the basic logic of coalgebra in the same sense as equational logic is the
basic logic of algebra. E.g., classes of coalgebras defined by modal axioms can
be regarded as the dual of varieties [12, 14]. Moreover, coalgebraic modal logic
as considered in [9, 13, 18, 20, 19, 22] is invariant under behavioral equivalence.
Conversely, in [18, 20, 19], sufficient conditions are given for coalgebraic modal
logics to be expressive in the sense that logically indistinguishable states are be-
haviorally equivalent; this is a generalization of the classical result for Hennessy-
Milner logic [8]. These results depend on conditions imposed on the signature
functor, i.e. the data type in which collections of successor states are organized.

Indeed, coalgebraic logic as introduced by Moss [16], which may be regarded
as a somewhat extreme form of modal logic, is expressive for the (very large)
class of so-called set-based functors; however, from the point of view of practical
application in software specification, coalgebraic logic has the disadvantage of
being rather difficult to grasp, as the syntax and the semantics of its formu-
lae involve applications of the signature functor to the language itself and the

V. Sassone (Ed.): FOSSACS 2005, LNCS 3441, pp. 440–454, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Expressivity of Coalgebraic Modal Logic: The Limits and Beyond 441

satisfaction relation, respectively. By comparison, modal logic is rather intuitive
and thus well suited for specification purposes. E.g., modal logic is used in the
specification of object-oriented programs in the specification language CCSL [23]
and in [13] and forms a central feature of the algebraic-coalgebraic specification
language CoCasl [17].

Coalgebraic modal logic as developed in [18, 20] obtains its modal operators
from so-called predicate liftings, which transform predicates on X into predi-
cates on TX, where T is the signature functor. Predicate liftings generalize the
natural relations considered in [19], which may be regarded as constructions that
convert coalgebras into Kripke frames. It is shown in [18, 20] that the expres-
sivity problem for coalgebraic modal logic reduces to the existence of enough
predicate liftings for the given signature functor; no general answer is given to
the question of how to actually find such predicate liftings.

Here, we observe that predicate liftings are equivalent to a notion of modal-
ity used in [11]; this affords an immediate overview of all possible predicate
liftings of a given functor. Moreover, one obtains easy criteria which identify so-
called monotone and continuous predicate liftings, respectively. These properties
of predicate liftings correspond to the validity of natural axioms in the arising
modal logic; in particular, continuity corresponds to normality. It turns out that
continuous predicate liftings essentially coincide with natural relations. These
classification results are on the one hand helpful in designing good sets of modal
operators for expressive modal logics. On the other hand, they can be used to
show that certain signature functors fail to admit expressive monotone or nor-
mal modal logics, or indeed an expressive modal logic in the sense considered so
far at all. Examples of the latter type include certain composite functors, e.g.
the double finite powerset functor, but also single-layer datatypes such as non-
repetitive lists. Typical examples of coalgebras that require non-normal modal
logics are those involving some sort of weighting on the successor states, e.g.
multigraphs or probabilistic automata.

We then introduce an extension of coalgebraic modal logic in which modal
operators may be polyadic, i.e. apply to more than one formula. Both unary
and polyadic modal operators may be subsumed under the abstract notion of
syntax (or language) constructor [4, 5]. Polyadic modal logic, while hardly more
complicated than unary modal logic, turns out to be expressive for a large class of
functors, the so-called accessible functors. Furthermore, we show that polyadic
modal logic is compositional in the sense that expressive modal logics can be
combined along functor composition; differently put, polyadic modal logic is,
unlike unary modal logic, closed under the composition of syntax constructors.

The material is organized as follows. Section 2 gives an overview of coalgebra
and modal logic. Expressivity results for modal logic which assume the existence
of enough predicate liftings are discussed in Section 3; in particular, we improve
an expressivity result of [20] and give a simplified proof. We then proceed to
discuss the classification of predicate liftings in Section 4. Finally, polyadic modal
logic is treated in Section 5.

442 L. Schröder

2 Preliminaries: Coalgebra and Modal Logic

We now briefly recall the paradigm of modelling reactive systems by means of
coalgebras, limiting ourselves to the set-valued case, and the use of modal logic
to describe reactive behavior.

Definition 1. Let T : Set → Set be a functor (all functors will implicitly be
set functors from now on). A T -coalgebra A = (X, ξ) consists of a set X of
states and an evolution map ξ : X → TX. A morphism (X1, ξ1) → (X2, ξ2) of
T -coalgebras is a map f : X1 → X2 such that ξ2 ◦ f = Tf ◦ ξ1. A T -coalgebra C
is called final if there exists, for each T -coalgebra A, a unique morphism A→ C.
Two states x and y in T -coalgebras A and B are called behaviorally equivalent
if there exists a coalgebra C and homomorphisms f : A → C, g : B → C such
that f(x) = g(y).

The general intuition is that the behavior map describes the successor states
of a state, organized in a data structure given by T . The notion of behavioral
equivalence serves to encapsulate the state space: two states are behaviorally
equivalent if the observable aspects of the state evolution from the given states
are identical. Thus, the reactive behavior of a state is embodied in its behavioral
equivalence class. Final coalgebras are behaviorally abstract in the sense that
behaviorally equivalent states are equal; the carrier set of a final coalgebra may
be thought of as the set of all possible behaviors. By Lambek’s Lemma, the
evolution map of a final coalgebra is bijective.

Remark 2. Behavioral equivalence as just defined coincides in most cases with
bisimilarity, and appears to be the preferable notion in cases where this fails [12].
Coalgebraic modal logic as treated here captures precisely behavioral equiva-
lence.

Example 3. 1. Let Pω be the (covariant) finite powerset functor. Then Pω-
coalgebras are finitely branching graphs, thought of as (unlabeled) transition
systems or indeed Kripke frames.

2. Let T be given by TX = I → Pω(X) (equivalently TX = Pω(I×X)). Then
T -coalgebras are labelled transition systems with label set I.

3. Let T be given by TX = I → ((O × X) + E). Then T -coalgebras may be
thought of as modelling objects with state set X, method set I, output set
O, and exception set E [13]. Elements of the final T -coalgebra are finite or
infinite I-branching trees with O-labelled nodes and E-labelled leaves.

4. Let T = Pω ◦ Pω. Then T -coalgebras may be thought of as transition sys-
tems with two levels of non-determinism; i.e. in each step, a set of possible
successors is chosen non-deterministically.

5. The finite multiset (or bag) functor BN is given as follows. The set BN(X)
consists of the maps B : X → N with finite support, where B(x) = n is read
‘B contains the element x with multiplicity n’. We write elements of BNX
additively in the form

∑
nixi, thus denoting the multiset that contains x

with multiplicity
∑

xj=x nj . For f : X → Y , BN(f)(
∑

nixi) =
∑

nif(xi).

Expressivity of Coalgebraic Modal Logic: The Limits and Beyond 443

Coalgebras for BN are directed graphs with N-weighted edges, often referred
to as multigraphs [6].

6. A similar functor, denoted BZ, is given by a slight modification of the multiset
functor where we allow elements to have also negative multiplicities, i.e. BZX
consists of finite maps X → Z, called generalized multisets (this set is also
familiar as the free abelian group over X).

7. Another variation of the multiset functor is the finite distribution functor
Dω, where DωX is the set of probability distributions on X with finite sup-
port. Coalgebras for Dω are probabilistic transition systems (as yet without
inputs).

8. Examples 5–7 above may be extended by taking into account a notion of
input, with input alphabet I, as in Example 2: for T ∈ {BN,BZ, Dω}, one
has functors S and R given by SX = I → TX and RX = T (I × X).
These functors are isomorphic for T ∈ {BN,BZ} in case I is finite, but not
for T = Dω. In the latter case, S-coalgebras are reactive probabilistic au-
tomata, and R-coalgebras are generative probabilistic automata [2] (more
precisely, one would usually allow for terminal states by additionally in-
troducing the constant functor 1 as a summand), the difference being that
generative probabilistic automata assign probabilities also to inputs.

All of the above examples fall into the following class of functors:

Definition 4. A functor T is called κ-accessible, where κ is a regular cardinal,
if T preserves κ-directed colimits.

Accessible functors have final coalgebras [1, 21].

Example 5. Parametrized algebraic datatypes defined in terms of constructors
and equations (i.e. quotients of term algebra functors) are κ-accessible functors if
all constructors have arity less than κ. E.g., the multiset functors BN and BZ are
ω-accessible. The finite distribution functor Dω is ω-accessible. For each regular
cardinal κ, the functor Pκ given by Pκ(X) = {A ⊂ X | |A| < κ} is κ-accessible.
The class of κ-accessible functors is closed under composition; e.g. Pω ◦ Pω is
ω-accessible.

Remark 6. In all results presented below, κ-accessibility can in fact be replaced
by preservation of κ-directed unions. We have refrained from making this explicit
in all statements, in favor of using standard terminology.

In order to specify requirements on coalgebraic systems in a way that guarantees
invariance under behavioral equivalence, coalgebraic logic for so-called Kripke
polynomial functors has been introduced (with variations in the syntax) e.g.
in [9, 13, 22]. These results have been generalized in [18, 19, 20], where coalgebraic
modal logics are defined on the basis of given natural relations and predicate
liftings for the signature, respectively, as follows.

Definition 7. A predicate lifting for a functor T is a natural transformation

λ : 2 → 2T ,

444 L. Schröder

where 2 denotes the contravariant powerset functor Setop → Set, with 2f (A) =
f−1[A]. Explicitly, a predicate lifting assigns to each A ⊂ X a set λX(A) ⊂ TX
such that

Tf−1[λY (A)] = λX(f−1[A])

for all maps f : X → Y . A predicate lifting λ is called monotone if A ⊂ B ⊂ X
implies λX(A) ⊂ λX(B), and continuous if λX preserves intersections for each
set X, i.e. λX(

⋂
i∈I Ai) =

⋂
i∈I λX(Ai).

A predicate lifting λ is equivalently described by its transposite λ : T →
2(2), given by λ

X(t) = {A ⊂ X | t ∈ λX(A)}. A set Λ of predicate liftings for
T is called separating if for each set X, the source of maps

(λ
X : T → 2(2))λ∈Λ

is jointly injective, in other words: t ∈ TX is uniquely determined by the set
{(λ,A) ∈ Λ× 2X | t ∈ λX(A)}; this property is called separation at X.

We shall need the following fact proved in [20]:

Proposition 8. A set Λ of predicate liftings for a κ-accessible functor is sepa-
rating iff separation holds at all sets X such that |X| < κ.

Definition 9. Let T be a functor. A language for T -coalgebras is a set L of
formulae, equipped with a family of satisfaction relations |=(X,ξ) (or just |=)
between states of T -coalgebras (X, ξ) and formulae φ ∈ L; we define [[φ]](X,ξ) (or
just [[φ]]) as the set {x ∈ X | x |=(X,ξ) φ}.

States x and y in T -coalgebras A and B, respectively, are called logically
indistinguishable under L if

x |= φ iff y |= φ

for all φ ∈ L. The language L is called adequate if behaviorally equivalent states
are logically indistinguishable, equivalently: the satisfaction of formulae is in-
variant under T -coalgebra morphisms.

Remark 10. One can define a formula φ ∈ L to be valid in a coalgebra (X, ξ) if
x |= φ for all x ∈ X. This makes L into a logic for coalgebras as defined in [14]. If
T has a final coalgebra, then adequacy of L guarantees that classes of coalgebras
defined by axioms in L have final models [14].

Coalgebraic modal logic [18, 20] is a language Lκ(Λ) for T -coalgebras,
parametrized by a set Λ of predicate liftings for T and a regular cardinal κ
which serves as a bound for conjunctions: formulae φ ∈ Lκ(Λ) are defined by
the grammar

φ ::= [λ]φ (λ ∈ Λ)

|
∧
i∈I

φi (|I| < κ)

| ¬φ0.

Expressivity of Coalgebraic Modal Logic: The Limits and Beyond 445

Disjunctions
∨

i∈I φi for |I| < κ are then defined as usual. In the definition of
satisfaction, the clauses for conjunction and negation are as expected; the clause
for the modal operator [λ] is

x |=(X,ξ) [λ]φ ⇐⇒ ξ(x) ∈ λX [[φ]](X,ξ).

The naturality equation for predicate liftings is easily seen to be precisely the
condition that is needed in order to ensure adequacy of Lκ(Λ) [20]. The converse
of this statement, i.e. the question under which conditions Lκ(Λ) and related
logics are expressive, is the main subject of this paper.

The construction of Lκ(Λ) presupposes that a suitable set of predicate liftings
for T is already given. We will discuss in Section 4 how predicate liftings may
be obtained and classified in general.

Definition 11. A natural relation for T is a natural transformation μ : T → P.

Thus, for a natural relation μ, composition with μX converts T -coalgebras on
X into Kripke frames. A natural relation μ induces (transposites of) predicate
liftings by composing with transposites of predicate liftings for P:

T → P → 2(2).

In fact, it suffices to consider the composite (λ∀) ◦ μ, where λ∀X(A) = {B ∈
P(X) | B ⊂ A}; this will be treated in more detail in Section 4.

3 Expressivity of Coalgebraic Modal Logic

We now turn to the question of when coalgebraic modal logic is strong enough
to distinguish behaviorally inequivalent states.

Definition 12. A language L for T -coalgebras is called expressive if logical
indistinguishability under L implies behavioral equivalence.

It is shown in [18] that, for T κ-accessible and Λ separating, Lσ(Λ) is expressive
for ‘sufficiently large’ σ in the stronger sense that behavioral equivalence classes
are characterized by single formulae. Moreover, it is shown in [20] that under the
same assumptions, Lκ(Λ) is expressive in the sense defined above, provided that
either α < κ implies 2α < κ (i.e. κ = ω or κ strongly inaccessible) or the pred-
icate liftings in Λ are continuous. These restrictions are quite strong: even the
mere existence of strongly inaccessible cardinals is unprovable in ZFC, and the
next section will show that continuous predicate liftings are in fact just natural
relations. The proofs in [18, 20] are by terminal sequence induction. Note that
the subtle-appearing difference between the two expressiveness results is in fact
rather substantial. E.g. in the case of labelled transition systems (Example 3.2),
the first result concerns a modal logic with countably infinitary conjunction,
while the second result asserts the expressivity of standard Hennessy-Milner
logic with finitary conjunction.

We now give an improved version of the second result, in which the additional
assumptions on κ and Λ, respectively, are dropped.

446 L. Schröder

Theorem 13. Let T be κ-accessible and let Λ be a separating set of predicate
liftings. Then Lκ(Λ) is expressive.

Proof. (Sketch) One has to show that a given T -coalgebra (X, ξ) can be quo-
tiented by the logical indistinguishability relation R. This leads to a well-
definedness problem, which may be solved using separation under Λ and the
fact that on Z ⊂ X with |Z| < κ, sets that are closed under R can be described
by a Lκ(Λ)-formula.

The above expressivity result has a partial converse:

Theorem 14. If T is κ-accessible and the final T -coalgebra (Z, ζ) satisfies |Z| ≥
κ, then expressivity of Lσ(Λ) for some σ implies that Λ is separating.

Example 15. The assumption |Z| ≥ κ in the above theorem is essential. As a
simple example where |Z| < κ, consider the non-empty finite powerset functor
P∗

ω (i.e. P∗
ω(X) = {A ∈ Pω(X) | A
= ∅}). The final coalgebra for this functor

is a singleton. Thus, all states are behaviorally equivalent, so that any logic
is expressive for T , including e.g. Lω(∅); of course, the empty set of predicate
liftings is not separating. The same holds for the functor P∗

ω ◦ P∗
ω, which as we

shall see below does not admit a separating set of predicate liftings at all.

4 Classification of Predicate Liftings

As indicated above, no general method has been given so far to actually construct
predicate liftings for a given functor. The following simple fact (essentially just
the Yoneda Lemma for the functor 2T : Setop → Set) gives immediate access
to all predicate liftings that a functor admits.

Proposition 16. Predicate liftings for T are in one-to-one correspondence with
subsets of T2, where 2 = {-,⊥}. The correspondence takes a predicate lifting λ
to λ2({-}) ⊂ T2 and, conversely, C ⊂ T2 to the predicate lifting λC defined by

λC
X(A) = (TχA)−1[C]

for A ⊂ X, where χA : X → 2 is the characteristic function of A.

Remark 17. Subsets of T2, i.e. T -algebras on 2, have appeared as modalities
in [11]. Proposition 16 establishes that this notion of modality and the one
induced by predicate liftings are equivalent.

We shall thus freely apply terminology introduced so far for predicate liftings to
subsets of T2 as well. E.g. we say that a set of subsets of T2 is separating if the
associated set of predicate liftings is separating, etc. Proposition 16 leads to a
criterion for the existence of separating sets of predicate liftings, and hence of
expressive modal logics.

Expressivity of Coalgebraic Modal Logic: The Limits and Beyond 447

Corollary 18. A functor T has a separating set of predicate liftings iff the
source

SX = (Tf : TX → T2)f :X→2

is jointly injective at each set X. If T is κ-accessible, then joint injectivity of SX

for |X| < κ is sufficient.

Example 19. 1. The (finite) powerset functor has, by Proposition 16, pre-
cisely 16 predicate liftings, generated as boolean combinations of the pred-
icate liftings λ∀ and λ∃ corresponding to {∅, {-}}, {{-}, {-,⊥}} ⊂ P2,
respectively; i.e. λ∀(A) = {B | B ⊂ A} and λ∃(A) = {B | B ∩ A
= ∅}. The
predicate lifting λ∀ is continuous; the set {λ∀} is separating. The modalities
induced by λ∀ and λ∃ are the usual operators of modal logic.

2. A close relative of the functors Pω, BN, and the list functor list is the functor
T that takes a set X to the free idempotent monoid (or free band monoid)
over X. The set TX is obtained as the quotient of listX modulo idem-
potence, i.e. the equation xx = x. (Subsequent quotienting modulo com-
mutativity produces Pω.) By Corollary 18, T does not admit a separating
set of predicate liftings: the elements of T{a, b, c} represented by abaca and
abca, respectively, are distinct (see e.g. [25]), but identified under Tf for
all f : {a, b, c} → 2 (e.g. Tχ{b,c}(abaca) = ⊥-⊥-⊥ = ⊥-⊥ = ⊥--⊥ =
Tχ{b,c}(abca)).

3. Let T be the non-repetitive list functor; i.e. TX is the set of lists over X con-
taining every element of X at most once, and Tf(l) is obtained by removing
duplicates leftmost first in (list f)(l). By Corollary 18, T does not admit a
separating set of predicate liftings, since abc, bac ∈ T{a, b, c} are identified
under Tf for all f : {a, b, c} → 2.

4. The double finite powerset functor T = Pω ◦Pω does not admit a separating
set of predicate liftings. E.g., given a finite set X, the set {A ⊂ X | |A| ≤ 2}
is identified with Pω(X) under Tf for all f : X → 2. A similar argument
works for Pω ◦ list.

Provided the criterion of Corollary 18 is satisfied, the separation property for a
given set of predicate liftings can be checked at the level of subsets of T2:

Theorem 20. Let T admit a separating set of predicate liftings, and let C ⊂
P(T2). The following are equivalent:

(i) C is separating
(ii) cl(C) = {(Tf)−1[C] | C ∈ C, f : 2 → 2} is separating
(iii) t ∈ T2 is uniquely determined by the set {C ∈ cl(C) | t ∈ C}.

We have seen in Example 19 that accessible functors may fail to admit an
expressive (unary) modal logic. We now proceed to investigate the relationship
between typical modal axioms and properties of predicate liftings, with a view
to giving further separating examples.

Generally, a modal operator � is called monotone [3] if it satisfies the axiom
scheme �(φ∧ψ) =⇒ �φ, often referred to as axiomM . Moreover, � is α-normal

448 L. Schröder

for a regular cardinal α if it satisfies the axiom scheme
∧

i∈I �φi ⇐⇒ �
∧

i∈I φi

for |I| < α. Note that ω-normality is semantically equivalent to the usual notion
of normality for modal operators, i.e. the necessitation rule (‘conclude �φ from
φ’) and the K-axiom �(φ ⇒ ψ) ⇒ (�φ ⇒ �ψ) (equivalently: �φ ⇒ (�ψ ⇒
�(φ ∧ ψ))). In a nutshell, monotone predicate liftings correspond to monotone
modal logic, and continuous predicate liftings correspond to normal modal logic:

Theorem 21. Let T be a functor, and let λ be a predicate lifting for T . If λ
is monotone then [λ] is monotone. Conversely, if T is κ-accessible, T admits a
separating set of predicate liftings, the final T -coalgebra (Z, ζ) satisfies |Z| ≥ κ,
and [λ] is monotone, then λ is monotone.

Definition 22. For a regular cardinal β, we define β̄ to be the smallest cardinal
such that 2α < β̄ for all α < β.

E.g. ω̄ = ω, and β̄ = β for β strongly inaccessible. Under GCH, β̄ is either β or
2β .

Proposition 23. If T is κ-accessible, then a predicate lifting λ for T is contin-
uous iff λX preserves intersections for |X| < κ iff λX preserves intersections of
less than κ̄ sets.

Corollary 24. If T is ω-accessible, then a predicate lifting λ for T is continuous
iff λX(X) = TX for all X and λX(A ∩B) = λX(A) ∩ λX(B) for all A,B ⊂ X.

Theorem 25. Let T be a functor, and let λ be a predicate lifting for T . If λ is
continuous, then the modal operator [λ] is α-normal for all regular cardinals α.
Conversely, if T is κ-accessible, T admits a separating set of predicate liftings, the
final T -coalgebra (Z, ζ) has |Z| ≥ κ, and [λ] is κ̄-normal, then λ is continuous.

As announced above, continuous predicate liftings ‘are’ natural relations:

Theorem 26. A predicate lifting λ for T is continuous iff its transposite λ is
of the form (λ∀) ◦ μ (cf. Example 19) for some natural relation μ : T → P .

(A dual result holds for predicate liftings with transposites of the form (λ∃) ◦μ;
in pointwise form, this appears essentially already in [10].)

Corollary 27. A functor admits a separating set of natural relations iff it ad-
mits a separating set of continuous predicate liftings.

The slogan is thus that normal coalgebraic modal logic is the logic of natural
relations.

We now give criteria for the monotonicity and continuity of predicate liftings
at the level of subsets of T2. This will enable us to give examples separating
modal logic, monotone modal logic, and normal modal logic w.r.t. expressive
strength.

Expressivity of Coalgebraic Modal Logic: The Limits and Beyond 449

Proposition 28. Let 3 denote the set {⊥, ∗,-}. A subset C ⊂ T2 is monotone
iff for each t ∈ T3, Tχ{�}(t) ∈ C implies Tχ{∗,�}(t) ∈ C.

Remark 29. If T is a parametrized algebraic datatype (Example 5), then the
condition of the above proposition informally states that C, which then consists
of equivalence classes of terms in the variables - and ⊥, is closed under replacing
any number of occurrences of ⊥ in a term by -.

Proposition 30. Let T be ω-accessible. A monotone subset C ⊂ T2 is contin-
uous iff, for each t ∈ T{⊥, a, b,-}, Tχ{�}(t) ∈ C whenever Tχ{a,�}(t) ∈ C and
Tχ{b,�}(t) ∈ C.

Remark 31. If T is a parametrized algebraic datatype, then the condition of
the above proposition informally states that if two sets of occurrences of - in
a term representing an element of C ⊂ T2 may separately be replaced by ⊥,
resulting in terms that remain in C, then replacing all occurrences in the two
sets simultaneously also yields a term in C.

Example 32. 1. For the finite multiset functor BN (Example 3.5), BN2 consists
of elements of the form n- + m⊥. By Remark 29, a subset C of BN2 is
monotone iff n-+ (m+ k)⊥ ∈ C implies (n+ k)-+m⊥ ∈ C. A separating
set of monotone predicate liftings λk, k ∈ N, is induced by the subsets of
BN2 of the form Ck = {n-+m⊥ | m ≤ k}. The arising modal operators are
exactly the modalities [k] of graded modal logic (cf. e.g. [6]). Of course, [k]
fails to be normal unless k = 0.
The functor BN does not admit a separating set of continuous predicate
liftings, i.e. does not admit an expressive normal modal logic: using Propo-
sition 30, one can show that all continuous predicate liftings for BN besides
λ0 are induced by {n-+m⊥ | n+m ∈ A} for some A ⊂ N.

2. The generalized multiset functor BZ (Example 3.6) even fails to admit a sep-
arating set of monotone predicate liftings, i.e. does not admit an expressive
monotone modal logic: the description of monotone subsets C ⊂ BZ2 is as
for BN above, but with k ∈ Z, so that C = {n-+m⊥ | n+m ∈ A} for some
A ⊂ Z. A separating set of non-monotone predicate liftings λk, k ∈ Z, for
BZ is given by the subsets Ck = {n-+m⊥ | m ≤ k}.

3. The finite distribution functor Dω does not admit a separating set of continu-
ous predicate liftings; this is shown in the same way as for BN. A separating
set of monotone predicate liftings is given by the sets Cp = {P ∈ Dω2 |
P{-} ≥ p}. These predicate liftings give rise to probabilistic modal opera-
tors [p], where [p]φ reads ‘φ holds in the next step with probability at least
p’ (this modal operator appears in [4]; similar operators are used e.g. in [15]).

4. When the above examples are extended with inputs from a set I as laid out in
Example 3.8, one obtains essentially the same modalities as above, indexed
over a ∈ I in the form []a. In the case T = Dω, the meaning of [p]a φ in
reactive probabilistic automata is that on input a, φ holds in the next step
with probability at least p, and in generative probabilistic automata that
with probability at least p, the input is a and φ holds in the next step.

450 L. Schröder

There is a canonical way to produce predicate liftings which often leads to useful
modal operators: one can just apply T to subsets of 2. In particular, the predicate
lifting given by T{-} is often important; in fact, this is the principle which is
currently used for the definition of modal operators in CoCasl [17].

5 Polyadic Coalgebraic Modal Logic

Having seen in the preceding section that accessible functors may fail to ad-
mit separating sets of predicate liftings, we now proceed to develop a slightly
generalized framework that yields expressive logics for all accessible functors. Es-
sentially, all one has to do is to move on from unary modal operators to polyadic
modal operators. Polyadic modal operators for coalgebras rely on the following
notion of polyadic predicate lifting.

Definition 33. An α-ary predicate lifting for a functor T , where α is a cardinal,
is a natural transformation

λ : (2)α → 2T op

.

A set Λ of such polyadic predicate liftings is called κ-bounded if all predicate
lifings in Λ have arity properly smaller than κ (in particular Λ is ω-bounded if
all predicate liftings in Λ are finitary). Moreover, Λ is called separating if the
associated source of transposites

(λ : T → 2((2)α))λ∈Λ,

formed analogously to the unary case, is injective at each set X.

Explicitly, the naturality condition states that, for each map f : X → Y and
each family (Ai)i∈α of α subsets Ai ⊂ Y ,

Tf−1[λY (Ai)i∈α] = λX(f−1[Ai])i∈α.

The polyadic modal language is then defined as follows.

Definition 34. Let T be a functor, let Λ be a set of polyadic predicate liftings
for T , and let κ be a cardinal. The language Lκ(Λ) is defined as in the unary
case (cf. Section 2), except for application of modal operators: an α-ary predicate
lifting λ ∈ Λ gives rise to an α-ary modal operator [λ], i.e. we have formulae of
the form

[λ] (φi)i∈α

where (φi)i∈α is a family of formulae in Lκ(Λ).
The satisfaction relation over a T -coalgebra (X, ξ) is given by the generalized

clause
x |= [λ] (φi)i∈α iff ξ(x) ∈ λX([[φi]])i∈α.

Expressivity of Coalgebraic Modal Logic: The Limits and Beyond 451

It is easy to see that Lκ(Λ) is adequate. The expressivity results discussed in
Section 3 generalize in a straightforward manner (essentially by inspection of
the proofs given above and in [18]), i.e. if T is accessible, Λ is a separating
set of polyadic predicate liftings, and σ is ‘sufficiently large’, then Lσ(Λ) has
characterizing formulae for behavioral equivalence classes, and

Theorem 35. Let T be κ-accessible and let Λ be a separating set of polyadic
predicate liftings for T . Then Lκ(Λ) is expressive.

One has the same simple classification result as for unary predicate liftings:

Proposition 36. For α a cardinal, α-ary predicate liftings for T are in one-to-
one correspondence to subsets of T (2α). The correspondence works by taking a
predicate lifting λ to λ2α(π−1

i {-})i∈α ⊂ T (2α), where πi : 2α → 2 is the i-th
projection, and, conversely, C ⊂ T (2α) to the predicate lifting λC defined by

λC
X(Ai)i∈α = (T 〈χAi〉i∈α)−1[C]

for Ai ⊂ X (i ∈ α), where angle brackets are used to denote tupling of functions.

Corollary 37. The functor T admits a separating κ-bounded set of polyadic
predicate liftings iff the the source

SX = (Tf : TX → T (2α))α<κ,f :X→2α

is injective for each set X.

Unlike for unary predicate liftings, we now obtain that all accessible functors
admit expressive polyadic modal logics:

Corollary 38. If T is κ-accessible, then T admits a separating κ-bounded set
of polyadic predicate liftings.

A further issue in coalgebraic modal logic is the modular construction of log-
ics. It has been shown in [18] that separating sets of unary predicate liftings can
be propagated along small products of functors, subfunctors (hence along small
limits), and small coproducts; by Example 19, however, unary predicate liftings
can not be combined along functor composition. Modularity results for expres-
sive languages for accessible functors are proved at a more abstract level in [4, 5],
using notions of syntax (or language) constructor and one-step semantics. These
results include combinations of syntax constructors and their one-step semantics,
respectively, along functor composition.

We now show that separating sets of polyadic predicate liftings can be com-
bined along composition of κ-accessible functors for arbitrary κ (of course, the
existence of separating sets for such composites is clear by Corollary 38). The
arising modal logic can then be seen to be equivalent, via a simple syntactic
transformation, to a multi-sorted modal logic obtained by composing the as-
sociated syntax constructors and their one-step semantics according to [4, 5].

452 L. Schröder

Thus, polyadic modal logic is essentially closed under the composition operation
of [4, 5] — i.e. for purposes of the meta-theory, one never has to go beyond the
polyadic modal language defined above.

We begin by observing that predicate liftings can be composed:
Proposition and Definition 39. Let T and S be functors, let λ be an α-ary
predicate lifting for T , and let (νi)i∈α be a family of predicate liftings for S,
where νi has arity βi. Then

(λ� (νi)i∈α)X(Aij)i∈α,j∈βi = λSX(νi
X(Aij)j∈βi)i∈α

defines a
∑

i∈α βi-ary predicate lifting for T ◦ S.
Next we note that (possibly infinitary) boolean combinations of polyadic predi-
cate liftings are again predicate liftings:

Proposition and Definition 40. Let Λ be a set of polyadic predicate liftings.
Then each of the following equations defines a polyadic predicate lifting ν:
(i) νX(Ai)i∈β = λX(AΦ(j))j∈α, where β is a cardinal, λ ∈ Λ has arity α, and Φ

is a map α→ β;
(ii) νX(Ai)i∈α = TX − λX(Ai)i∈α, where λ ∈ Λ has arity α;
(iii) νX(Ai)i∈α =

⋂
j∈γ λ

j
X(Ai)i∈α, where γ is a cardinal and for each j, λj ∈ Λ

has arity α.

The closure of Λ under these constructions, with (i) and (iii) restricted to β < κ
and γ < κ, respectively, is called the κ-boolean closure of Λ, denoted bclκ(Λ).
The elements of this set are called κ-boolean combinations of Λ.

The announced compositionality result for separating sets of predicate liftings
is the following.
Theorem 41. Let S and T be functors, where T is κ-accessible for a regular
cardinal κ, and let ΛS and ΛT be κ-bounded separating sets of predicate liftings
for S and T , respectively. Then

ΛT �bclκ(ΛS) = {λ�(νi)i∈α | α cardinal, λ ∈ ΛT α-ary, νi ∈ bclκ(ΛS) for all i}
is a κ-bounded separating set of predicate liftings for T ◦ S.
If, in the notation of the above theorem, S is κ-accessible, then it follows from
Theorem 35 that Lκ(ΛT � bclκ(ΛS)) is an expressive logic for T ◦ S-coalgebras.
Such an expressive logic can also be obtained by the methods of [4, 5], i.e. by
composing the syntax constructors associated to ΛT and ΛS , along with their
one-step semantics. The result is a multi-sorted modal logic where ΛT -modalities
and ΛS-modalities appear in alternating layers, with ΛT -modalities in the outer-
most layer. This logic can easily be seen to be equivalent to Lκ(ΛT � bclκ(ΛS));
in the translation, boolean operators on formulae are turned into boolean opera-
tions on predicate liftings, and two layers of modal syntax in Lκ(ΛT) and Lκ(ΛS),
respectively, are combined into one layer of modal syntax in Lκ(ΛT �bclκ(ΛS)).
E.g., if λ ∈ ΛT is α-ary and νi ∈ ΛS for all i, then the multi-sorted formula
[λ][νi](φij) becomes the formula [λ � (νi)](φij) of Lκ(ΛT � bclκ(ΛS)). In other
words, composites of polyadic modal logics in the sense of [4, 5] can always be
flattened into a polyadic modal logic.

Expressivity of Coalgebraic Modal Logic: The Limits and Beyond 453

6 Conclusion

We have studied expressivity issues in the modal logic of coalgebras based on the
notion of predicate lifting, following [18, 20]. In [20], an expressivity result for
coalgebraic modal logic has been proved under the assumption that the signature
functor admits a separating set of predicate liftings. We have improved this result
by dropping restrictions on the accessibility degree of the signature functor.
Moreover, we have given a simple classification of predicate liftings which has
lead to a necessary and sufficient criterion for the existence of separating sets of
predicate liftings, and by means of this criterion we have identified examples of
functors that fail to admit an expressive unary modal logic.

We have also related monotonicity and continuity of predicate liftings to
monotonicity and normality, respectively, of the induced modal operators. The
above-mentioned classification of predicate liftings has then allowed us to give
examples separating the coalgebraic expressiveness of modal logic, monotone
modal logic, and normal modal logic. Furthermore, we have identified normal
modal logic as the modal logic of natural relations as introduced in [19]. Since
natural relations convert coalgebras into Kripke frames, the latter result lends
precision to the claim that normal modal logics describe exactly Kripke frames.
More generally, reversing the original viewpoint that modal logic serves as a
specification language for coalgebras, our results show that coalgebra constitutes
a good semantic framework also for non-normal and even non-monotone modal
systems (for non-normal systems cf. also [7]).

Finally, we have proposed to generalize coalgebraic modal logic to include
polyadic modal operators based on polyadic predicate liftings. We have shown
that all accessible functors admit an expressive polyadic modal logic. Moreover,
we have proved a compositionality result stating essentially that polyadic modal
logic is stable under the composition of languages described in [5].

Future work will include the exploitation of these results in the practical
specification of reactive systems. In particular, modal operators specified in terms
of our classification result will be integrated into the design of CoCasl.

Acknowledgements. The author wishes to thank Till Mossakowski, Markus
Roggenbach, and Horst Reichel for collaboration on CoCasl, and Alexander
Kurz, Bartek Klin, and the anonymous referees for useful suggestions for im-
provement.

References

[1] M. Barr, Terminal coalgebras in well-founded set theory, Theoret. Comput. Sci.
114 (1993), 299–315.

[2] F. Bartels, A. Sokolova, and E. de Vink, A hierarchy of probabilistic system types,
Coalgebraic Methods in Computer Science, ENTCS, vol. 82, Elsevier, 2003.

[3] B. Chellas, Modal logic, Cambridge, 1980.
[4] C. Cîrstea, A compositional approach to defining logics for coalgebras, Theoret.

Comput. Sci. 327 (2004), 45–69.

454 L. Schröder

[5] C. Cîrstea and D. Pattinson, Modular construction of modal logics, Concurrency
Theory, LNCS, vol. 3170, Springer, 2004, pp. 258–275.

[6] G. D’Agostino and A. Visser, Finality regained: A coalgebraic study of Scott-sets
and multisets, Arch. Math. Logic 41 (2002), 267–298.

[7] H. H. Hansen and C. Kupke, A coalgebraic perspective on monotone modal logic,
Coalgebraic Methods in Computer Science (J. Adámek and S. Milius, eds.),
ENTCS, vol. 106, Elsevier, 2004, pp. 121–143.

[8] M. Hennessy and R. Milner, Algebraic laws for non-determinism and concurrency,
J. ACM 32 (1985), 137–161.

[9] B. Jacobs, Towards a duality result in the modal logic of coalgebras, Coalgebraic
Methods in Computer Science, ENTCS, vol. 33, Elsevier, 2000.

[10] B. Jónnson and A. Tarski, Boolean algebras with operators I, Amer. J. Math. 73
(1951), 891–939.

[11] B. Klin, A coalgebraic approach to process equivalence and a coinduction principle
for traces, Coalgebraic Methods in Computer Science, ENTCS, vol. 106, Elsevier,
2004, pp. 201–218.

[12] A. Kurz, Logics for coalgebras and applications to computer science, Ph.D. thesis,
Universität München, 2000.

[13] , Specifying coalgebras with modal logic, Theoret. Comput. Sci. 260 (2001),
119–138.

[14] , Logics admitting final semantics, Foundations of Software Science and
Computation Structures, LNCS, vol. 2303, Springer, 2002, pp. 238–249.

[15] K. Larsen and A. Skou, Bisimulation through probabilistic testing, Inform. Com-
put. 94 (1991), 1–28.

[16] L. Moss, Coalgebraic logic, Ann. Pure Appl. Logic 96 (1999), 277–317.
[17] T. Mossakowski, L. Schröder, M. Roggenbach, and H. Reichel, Algebraic-co-

algebraic specification in CoCasl, J. Logic Algebraic Programming, to appear.
[18] D. Pattinson, Expressivity results in the modal logic of coalgebras, Ph.D. thesis,

Universität München, 2001.
[19] , Semantical principles in the modal logic of coalgebras, Symposium on The-

oretical Aspects of Computer Science, LNCS, vol. 2010, Springer, 2001, pp. 514–
526.

[20] , Expressive logics for coalgebras via terminal sequence induction, Notre
Dame J. Formal Logic 45 (2004), 19–33.

[21] J. Power and H. Watanabe, An axiomatics for categories of coalgebras, Coalgebraic
Methods in Computer Science, ENTCS, vol. 11, Elsevier, 2000.

[22] M. Rößiger, Coalgebras and modal logic, Coalgebraic Methods in Computer Sci-
ence, ENTCS, vol. 33, Elsevier, 2000.

[23] J. Rothe, H. Tews, and B. Jacobs, The Coalgebraic Class Specification Language
CCSL, J. Universal Comput. Sci. 7 (2001), 175–193.

[24] J. Rutten, Universal coalgebra: A theory of systems, Theoret. Comput. Sci. 249
(2000), 3–80.

[25] J. Siekmann and P. Szabo, A noetherian and confluent rewrite system for idem-
potent semigroups, Semigroup Forum 25 (1982), 83–110.

Duality for Logics of Transition Systems

Marcello M. Bonsangue1,� and Alexander Kurz2,��

1 LIACS, Leiden University, The Netherlands
2 Department of Computer Science, University of Leicester, UK

Abstract. We present a general framework for logics of transition systems based
on Stone duality. Transition systems are modelled as coalgebras for a functor T
on a category X . The propositional logic used to reason about state spaces from
X is modelled by the Stone dual A of X (e.g. if X is Stone spaces then A is
Boolean algebras and the propositional logic is the classical one). In order to
obtain a modal logic for transition systems (i.e. for T -coalgebras) we consider
the functor L on A that is dual to T . An adequate modal logic for T -coalgebras
is then obtained from the category of L-algebras which is, by construction, dual
to the category of T -coalgebras. The logical meaning of the duality is that the
logic is sound and complete and expressive (or fully abstract) in the sense that
non-bisimilar states are distinguished by some formula.
We apply the framework to Vietoris coalgebras on topological spaces, using the
duality between spaces and observation frames, to obtain adequate logics for tran-
sition systems on posets, sets, spectral spaces and Stone spaces.

Keywords: transition systems, coalgebras, Stone duality, topological dualities,
modal logic

1 Introduction

The framework presented in this paper aims at a general theory of logics for transition
systems built on Stone duality. The relationship between these notions can be displayed
as follows.

systems coalgebras

logics algebras

Stone duality

The upper row refers to the theory of coalgebras as laid out by Rutten [22] which pro-
poses coalgebras as a general framework allowing to treat a large variety of different
(transition) systems in a uniform way.

The lower row refers to the connection between logics and algebras as familiar
from propositional logic/Boolean algebras or intuitionistic logic/Heyting algebras. The

� The research of Dr. Bonsangue has been made possible by a fellowship of the Royal Nether-
lands Academy of Arts and Sciences

�� Partially supported by NWO/British Council.

V. Sassone (Ed.): FOSSACS 2005, LNCS 3441, pp. 455–469, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

456 M.M. Bonsangue and A. Kurz

modal logics that are the basis for most logics of transition systems have similar alge-
braic counterparts [3].

The connection between the two rows will be provided by Stone duality (John-
stone [13]). Stone duality provides set-theoretic representations of algebras, or, in other
words, provides a state-based semantics for the logics described as algebras. It has been
used, for example, in the ground breaking work of Jónnson and Tarski [15] and Gold-
blatt [11] in modal logic and Abramsky [1, 2] in domain theory.

Lifting a Stone Duality via Dual Functors. In this paper we show that there is a
simple general principle underlying all these works. It can be formalised in a framework
parametric in the basic duality and the type of the transition structure. The key role in
this framework will be provided by a suitable duality between a category X (e.g. Stone
spaces [13]) and a category of algebras A (e.g. Boolean algebras). This duality extends
to a duality between relational structures onX (e.g. descriptive general frames [11]) and
modal algebras on A whenever there are dual endofunctors T :X → X and L:A→ A.

XT
�� $$

A%% L
��

The relational semantics is given by T -coalgebras and the algebraic semantics is given
by L-algebras. The respective categories Coalg(T) and Alg(L) are dually equivalent
by construction. Informally speaking, T encodes the possible next-step transitions a
T -coalgebra may engage in; and L describes how to construct, up to logical equiva-
lence, modal formulae of depth 1 from propositional formulae. We show in Theorem 5
that under fairly general circumstances dual functors on dual categories automatically
give rise to a modal logic and an adequate relational semantics (i.e. the logic is sound,
complete, and expressive).

Instantiating the Framework with a Powerdomain for T0-Spaces. We instantiate
the above framework to show that a number of modal logics arise in a uniform way if
we take X above to be a suitable category of topological spaces and T to be a variant
of the powerset functor. In particular, we want to be able to characterise the relational
structure providing an adequate semantics to positive modal logic with infinite joins and
infinite meets. This builds on the work of [6] since such a characterisation will require
a duality between T0 topological spaces and so-called spatial observation frames. As a
novel result, we present a functor L defining the modal algebras dual to the relational
structures induced by T . It is a non-trivial extension of the Vietoris functor on locales
as defined in [14].

By considering suitable subcategories of topological spaces we obtain modal log-
ics with an adequate relational semantics on transition systems over posets, sets, spec-
tral spaces, and Stone spaces. The last two cases give us well known modal logics,
namely the positive and the classical ones, with Alg(L) being positive modal algebras
and Boolean algebras with operators, respectively, and Coalg(T) being the K+-spaces
of [8] and the descriptive general frames of [11], respectively. This unifies and extends
recent work [21, 17] showing that K+-spaces and descriptive general frames can be
described as Coalg(T) for an appropriate functor T . Compared to [21], which uses
Priestley spaces, our description of K+-spaces as coalgebras is simpler in that the def-

Duality for Logics of Transition Systems 457

inition of the Vietoris functor on spectral spaces avoids taking a quotient identifying
indistinguishable subsets.

Related Work. The idea of relating constructions on algebras and topological spaces
is extensively discussed in [23] and, for a specific class of topological spaces, in [1].
Our approach is more general since it also treats logics with infinitary conjunctions.
Moreover, the models we are interested in are not only the solutions of recursive do-
main equations (final coalgebras) but any coalgebras. On the other hand, we only deal
here with categories that do not accommodate the function spaces important in domain
theory.

Our algebraic description of the Vietoris construction is a generalisation of that pre-
sented in [13, 14], since it allows for equations involving infinite conjunctions. How-
ever, when these are not necessary, the two constructions coincide. The equations for
spectral spaces of Section 5, for example, are the same as those presented in [14].

Soundness and completeness of an infinitary modal logic for transition systems has
been proved in [7] using a topological duality. Completeness, however, is obtained by
significantly restricting the class of transition systems under consideration. For exam-
ple, they form a subclass of the descriptive general frames. Our result here incorporates
the above as a special case, obtained by considering a specific category of topological
spaces. Furthermore, by applying our framework to the category of posets, we obtain
completeness for a larger class of transition systems including the descriptive general
frames. To our knowledge, this is the first such result for a positive infinitary modal
logic.

Overview. We proceed as follows. The next section introduces some basic notions on
coalgebras, algebras and their presentation by generators and relations. In Section 3 we
describe the framework for the use of dualities for a coalgebraic semantics of modal
logic. In Section 4, we introduce a duality for topological spaces and set up, in Sec-
tion 5, the necessary ingredients for finally applying in Section 6 the above framework
to obtain sound, complete, and expressive modal logics for transition systems. We con-
clude with a discussion on possible future directions in Section 7.

2 Preliminaries

Although category theory does not play a major role in this paper, we will have to
assume some basic notions. As usual, Set denotes the category of sets and functions.

Algebras and Coalgebras for a Functor. Roughly speaking, coalgebras for a functor
generalise transition systems, whereas algebras for a functor generalise the ordinary al-
gebras for a signature where carriers are not sets but taken from some category. Further,
(co-)algebras for a functor give rise to the principle of (co-)induction [22].

Given a functor T :X → X on a category X , a T -coalgebra (X , ξ) consists of an
object X ∈ X and an arrow ξ:X → TX . A coalgebra morphism f :(X , ξ) → (X ′, ξ′)
is an arrow f :X → X ′ such that ξ′ ◦ f = Tf ◦ ξ. Dually, an L-algebra on a category A
is given by an arrow α:LA → A, and an algebra morphism f :(A, α) → (A′, α′) is an
arrow f :A → A′ such that α′ ◦ Lf = f ◦ α. The respective categories are denoted by
Coalg(T) and Alg(L).

458 M.M. Bonsangue and A. Kurz

If the category X has a forgetful (i.e. faithful) functor V :X → Set then we can
talk about the elements of a coalgebra. In particular, we have a canonical notion of be-
havioural equivalence (or bisimulation). Explicitly, given T -coalgebras (X , ξ), (X ′, ξ′)
and elements x ∈ VX , x ′ ∈ VX ′, we say that x and x ′ are behaviourally equivalent
or bisimilar, denoted x � x ′, if there is a coalgebra (Y , ν) and there are coalgebra
morphisms f :(X , ξ) → (Y , ν) and f ′:(X ′, ξ′) → (Y , ν) such that Vf (x) = Vf ′(x ′).

Example 1. If X is the category Set of sets and functions and T = P is the pow-
erset functor (mapping a set to its powerset and a function to the direct image func-
tion), then Coalg(T) is the category of Kripke frames with bounded morphisms (also
called p-morphisms [11]). Kripke models w.r.t. a given set Prop of atomic propositions
are (P(Prop) × P)-coalgebras. Behavioural equivalence yields the standard notion of
bisimulation in both cases.

The Final and Initial Sequences. The intuition that T describes the possible next-step
transitions can be made precise using the final (coalgebra) sequence. Moreover, in cases
were the final coalgebra does not exist, one can still work with the final sequence. We
just outline the basics, for further information see e.g. [25].

The final sequence (or terminal sequence) of T :X → X

T0 T1
p1
0�� . . .�� Tn Tn+1

pn+1
n�� . . .��

is an ordinal indexed sequence of objects Tn in X together with a family (pn
m)m≤n of

arrows pn
m :Tn → Tm for all ordinals m ≤ n such that

– Tn+1 = T (Tn) and pn+1
m+1 = T (pn

m) for all m ≤ n ,
– pn

n = idTn and pn
k = pm

k ◦ pn
m for k ≤ m ≤ n ,

– the cone (Tn , (pn
m))m<n is limiting whenever n is a limit ordinal.

Here we are assuming that X has the necessary limits (in particular, a final object T0).
The initial sequence of an endofunctor is defined dually.

Intuitively, Tn represents behaviours that can be observed in n steps. This can be
formalised by observing that, for every coalgebra (X , ξ), there are arrows

ξn :X → Tn

where ξn :X → Tn is T (ξm) ◦ ξ if n = m + 1 and ξn is the unique map satisfying
ξm = pn

m ◦ ξn for all m < n if n is a limit ordinal. If V :X → Set is the forgetful
functor we now consider V ξn as the map assigning to each state x its n-step behaviour,
that is, for (X , ξ), (X ′, ξ′) and x ∈ VX , x ′ ∈ VX ′ define x , x ′ to be n-step equivalent,
denoted by x �n x ′, if ξn(x) = ξ′n(x ′).

The final sequence is said to converge if there is an ordinal n for which pn+1
n is

iso. Then the inverse (pn+1
n)−1 is the final T -coalgebra. In this case, two states are

behaviourally equivalent if and only if they are identified by the (unique) morphisms
into the final coalgebra, that is, x �n x ′ for all ordinals n .

Duality for Logics of Transition Systems 459

Example 2. Let X = Set . If TX is the powerset PX of X , then n-step equivalence
coincides with the notion of bounded bisimulation as e.g. in [10]. The final coalgebra
does not exist (as an object in Coalg(T)) since its carrier is not a set but a proper class.

Presenting Algebras by Generators and Relations. A category A is algebraic when
it comes with a monadic functor U :A→ Set [18]. In this case, the functor U has a left
adjoint F :Set → A, mapping every set S to the free algebra FS . Furthermore, every
object of A can be presented by generators and relations, that is, for each A ∈ A we
can find a set S (the elements of which are called generators in this context) and a set
R ⊆ FS ×FS (the elements of which are called relations in this context) such that A is
the quotient FS/R. Algebraically speaking, objects ofA can be identified with algebras
of an (infinitary) algebraic theory1. Clearly, every presentation A〈S |R〉 by generators
S and relations R defines an algebra in A.

Example 3. A frame is a complete lattice L that satisfies the infinite distributive law
a ∧

∨
C =

∨
{a ∧ c | c ∈ C} for all a ∈ L and all subsets C ⊆ L. Frames with

functions preserving arbitrary joins and finite meets form a category called Frm. The
forgetful functor from Frm to Set mapping each frame to its underlying set is monadic.
Hence the infinitary algebra Frm〈S |R〉 presented by a set of generators S and a set
of relations R presents a frame and every frame can be presented by generators and
relations. In particular, the free frame over a set S can be presented as Frm〈S |∅〉.

A model of a presentation A〈S |R〉 is a pair 〈B , f :S → UB〉 such that B ∈ A and
f †(el) = f †(er), where (el , er) ∈ R and f †:FS → B is the unique extension of f
such that f †(η(s)) = f (s) for each s ∈ S , with η the unit of the adjunction between
F and U . It follows that presentations are canonical: if A〈S |R〉 is a presentation of
A ∈ A then it comes equipped with a function [[−]]A:S → UA such that for every other
model 〈B , f :S → UB〉 there exists a unique function f ‡:A → B with the property that
f ‡([[s]]A) = f (s) for each s ∈ S .

Example 4. A complete lattice L is a completely distributive lattice (cdl) if, for all sets
C of subsets of L, it holds that

∧
{
∨

C | C ∈ C} =
∨
{
∧

f (C) | f ∈ Φ(C)}, where f (C)
denotes the set {f (C) | C ∈ C} and Φ(C) is the set of all functions f : C →

⋃
C such

that f (C) ∈ C for all C ∈ C. Completely distributive lattices with functions preserving
both arbitrary meets and arbitrary joins form a category, denoted by CDL. Also the
forgetful functor from CDL to Set mapping each completely distributive lattice to its
underlying set is monadic.

Since every cdl is a frame we have that CDL〈S |R〉 together with the function [[−]]F
is a model of F = Frm〈S |R〉. Therefore, the identity function over a set S can be
uniquely extended to a frame morphism from Frm〈S |R〉 to CDL〈S |R〉 for each set of
frame relations R. In other words, CDL〈S |R〉 is the presentation of the free cdl over
the frame presented by Frm〈S |R〉.

1 The converse is, in general, false. For example, there is no free complete Boolean algebra over
a set of two generators.

460 M.M. Bonsangue and A. Kurz

3 The Framework: Dualities for Modal Logic

This section describes a general framework for the use of dualities in modal logic.
Consider the following situation

XT
�� O &&

V
��

A
Pt

%% L
��

U
''

Set Set

F

((

where O and Pt are a dual equivalence (or duality, for short) between the categories
X and A, i.e. O and Pt are contravariant functors and there are isomorphisms X →
PtOX , A → OPtA, for all X ∈ X ,A ∈ A. Further, V is a faithful functor from
X to Set , and L and T are dual functors in the sense that there is an isomorphism
PtL → T opPt . Clearly, Alg(L) and Coalg(T) are dual categories.

We assume thatA is a category of algebras over Set , that is, categorically speaking,
the functor U :A → Set is monadic. In particular, for any set Prop the free algebra
F (Prop) ∈ A exists. We call UF (Prop) the set of propositional formulae in variables
(or atomic propositions) Prop. Since algebras can be represented by generators and
relations we can find, for each algebra A, a set of generators GA and a surjective algebra
morphism τA:FGA → LA. We assume G to be a functor from A → Set and τA to be
natural in A.2

These ingredients allow us to define modal formulae and their algebraic semantics.
Consider the diagram

L′
0

��

q0

��

FGL′
0

q1

��

�� . . . FGL′
n

qn+1

��

�� . . .

L′
0

�� L′
1

�� . . . L′
n+1

�� . . .

where the lower row is the initial sequence (Section 2) of the functor L′ = L+F (Prop),
that is, L′

0 is the initial object inA, L′
n+1 = L(L′

n)+F (Prop). The elements of FGL′
n

are the modal formulae of depth n + 1. The horizontal arrows allow us to consider
a formula of depth n as a formula of depth m for any m ≥ n . The vertical arrows
qn assign to each formula of depth n its algebraic semantics (which is an equivalence
class of modal formulae) and are given by τL′

n
composed with the left injection into

L(L′
n) + F (Prop). By naturality of τ , the above diagram commutes. If the sequence

converges, the colimit of FGL′
n is the set of all modal formulas and the colimit of the L′

n
is the Lindenbaum-Tarski algebra of the logic. In many interesting cases, the sequence
will converge (even after ω steps), but since we also want to cover infinitary logics we
can not assume this.

2 For example, we can take G:A → Set to be the functor GA =
∐

B∈A ULFUB ×
A(FUB ,A) and τA(f , g) = ULg(f). But often, as in the case studied in this paper, a much
more economical presentation is possible.

Duality for Logics of Transition Systems 461

In this paper, the objects of A will always be (distributive) lattices, that is, although
all objects are equipped with a partial order ≤ they may lack implication. This means
that we cannot reduce consequence φ � ψ to theoremhood � φ → ψ. We define

φ � ψ ⇔ qn(φ) ≤ qn(ψ) for some ordinal n , n ≥ depth of φ, ψ

On the semantic side, in this paper, the objects of X will be T0-spaces and O maps
continuous functions to their inverse image functions. We can now describe the coal-
gebraic semantics for the logic. Let ξ:X → TX be a coalgebra and x in X . Due to
the duality, L′

n is dual to T ′
n where T ′ = T × Pt(F (Prop)), that is, there are isomor-

phisms jn :L′
n → O(T ′

n). Note that a T ′-coalgebra (X , 〈ξ, v〉) is a T -coalgebra (X , ξ)
together with a valuation v :X → Pt(F (Prop)). That is, for each T -coalgebra (X , ξ)
together with a valuation v :X → Pt(F (Prop)) there are arrows 〈ξ, v〉n :X → T ′

n (see
Section 2). The situation is summarised in

FGL′
n−1 qn

�� L′
n jn

�� O(T ′
n)

〈ξ,v〉−1
n

�� OX

We define the semantics � of � w.r.t. a coalgebra 〈ξ, v〉 as follows. φ �〈ξ,v〉 ψ if for
some ordinal n , n ≥ depth of φ, ψ,

〈ξ, v〉−1
n (jn(qn(φ))) ⊆ 〈ξ, v〉−1

n (jn(qn(ψ))) (1)

Intuitively, 〈ξ, v〉−1
n (jn(qn(φ))) is the set of elements of X that satisfy the formula

φ under valuation v . As usual, φ � ψ means φ �〈ξ,v〉 ψ for all coalgebras ξ and
valuations v . We can now prove soundness, completeness, invariance under bisimilarity
and expressiveness.

The theorem can be proved under two different assumptions. This paper employs
the theorem under the first assumption, the second assumption will be useful to treat
the non-compact powerspace.

Theorem 5. In the situation described above assume that either

1. the final T ′-coalgebra exists or
2. T ′ weakly preserves limits of n-chains for all limit ordinals n .

Then the modal logic is sound and complete w.r.t. its coalgebraic semantics, that is,
φ � ψ ⇔ φ � ψ. Moreover, formulae are invariant under behavioural equivalence and
the logic is expressive in the sense that any non-bisimilar points are separated by some
formula.

Proof. We first sketch the proof under Assumption 2 which means that all arrows in
the final sequence of T ′ are surjective (split epi). Soundness: Assume φ � ψ, i.e.
qn(φ) ≤ qn(ψ). Since 〈ξ, v〉−1

n ◦ jn is a morphism and therefore monotone it follows
φ � ψ. Completeness: Assume φ
� ψ, i.e. qn(φ)
≤ qn(ψ). Since jn :L′

n → O(T ′
n)

is an injective morphism, there is t ∈ jn(φ)) such that t /∈ jn(ψ). It follows from
assumption 2 that each arrow pn+1

n :T ′(T ′
n) → T ′

n in the final sequence has a right-
inverse ζ. ζ is a T ′-coalgebra for which φ
�ζ ψ, the (counter)example being t . In-
variance: It is immediate from the definition that formulae are invariant under �n .

462 M.M. Bonsangue and A. Kurz

Expressiveness: If 〈ξ, v〉, 〈ξ′, v ′〉 are two coalgebras and x , x ′ are two elements with
〈ξ, v〉n(x)
= 〈ξ′, v ′〉n(x ′) then, by surjectivity of jn (and the spaces being T0), there
must be some φ such that jn(qn(φ)) contains one of {x , x ′} but not the other. Hence φ
separates x and x ′.
Under Assumption 1, the proof is essentially the same. One replaces qn by the mor-
phism to the initial L′-algebra, 〈ξ, v〉n by the morphism to the final T ′-coalgebra and ζ
by the final coalgebra itself.

Remark 6. Expressiveness of the logic can also be considered as full abstractness of
the final semantics.

Example 7. We briefly illustrate the notions with a well-known example. Let A be the
category of Boolean algebras and X the category of Stone spaces. VPtA = A(A,2)
is the set of ultrafilters over A. (Similarly, writing 2X for the two-element Stone space,
we have that UOX = X (X , 2X) is the set of clopens of X .) If we take GA = A and
τA(a) = �a and LA to be the quotient of FGA defined by the equations expressing
that � preserves meets, then Alg(L) is the category of modal algebras (Boolean alge-
bras with operators). GL′

n = {�φ | φ ∈ L′
n} and FGL′

n is the closure of GL′
n under

propositional operations (modulo Boolean equations). The functor T dual to L is the
Vietoris functor and Coalg(T) is the category of descriptive general frames. The conti-
nuity of a valuation v :X → Pt(F (Prop)) ∼=

∏
Prop 2X means that the extension of a

propositional variable in Prop has to be a clopen set. See [17] for details.

4 Topological Duality

In this section we set up the necessary ingredients for applying the above framework.
In particular we will briefly introduce a duality for topological spaces, generalising the
Stone duality considered in the previous example.

Recall that a topological space is a set X together with a collection of subsets of X ,
called opens, closed under arbitrary unions and finite intersections. A function between
two sets X and Y is continuous if its inverse maps opens of Y to opens of X .

Each topological space X induces a closure operator mapping each subset S of X
to the least (w.r.t. subset inclusion) subset X such that X \X is open. Each topological
space induces also a pre-order on X defined by x ≤ y if and only if x ∈ o implies
y ∈ o for each open o of X . A space X is said to be T0 when the above pre-order
is a partial order. We denote by Top0 the category of all T0 topological spaces with
continuous functions as morphisms.

For the category of algebras we consider the category OFrm of observation frames,
a structure introduced in [6] for representing topological spaces abstractly. An observa-
tion frame is an order-reflecting frame morphisms α:F → L between a frame F and a
completely distributive lattice L such that

q =
∧
{o ∈ α(F) | q ≤ o}

for every element q of L. A morphism between two observation frames α:F → L
and β:G → H is a pair 〈f , g〉 consisting of a frame morphism f :F → G and a cdl-
morphism g :L → H such that g ◦ α = β ◦ f .

Duality for Logics of Transition Systems 463

Example 8. Each topological space X defines an observation frame OX as the inclu-
sion map between the frame O(X) of all open subsets of X and the cdl Q(X) of all
upclosed subsets of X . Furthermore, O can be extended to a functor by mapping a
continuous function f :X → Y to 〈f −1:O(Y) → O(X), f −1:Q(Y) → Q(X)〉.

The functor U :OFrm → Set mapping an observation frame α:F → L to α(F)
is monadic [5]. Therefore every observation frame α:F → L can be presented as
OFrm〈S |R〉 for some set S of generators and set R of relations el = er . Here el and er
are expressions formed by applying the infinite meet operator

∧
to expressions formed

from the generators in S by applying the infinite join operator
∨

and finite meet oper-
ator ∧. In particular, L is isomorphic in CDL to CDL〈S |R〉, whereas F is isomorphic
in Frm to Frm〈S |R−〉, where R− is the subset of R obtained by considering relations
involving only finite meet and infinite join operators. Since 〈L, [[−]]L〉 is a model for the
presentation of F , the frame morphism α:F → L is obtained as the canonical extension
of the identity on S . Similarly, every presentation OFrm〈S |R〉 presents an observation
frame.

Next we show that the functor O:Top0 → OFrmop has a right adjoint. Let 2 be the
two-element cdl with -2 as top element and ⊥2 as bottom one, and 2 be the identity
morphism on 2. For an observation frame α:F → L we denote by Pt(α) the topological
space given by the set OFrm(α,2) together with a topology with open sets defined, for
every x ∈ F , by7(x) = {〈f , g〉:α → 2 | f (x) = -2}.

Theorem 9 ([6]). For every observation frame α, the assignment α 	→ Pt(α) can be
extended to a functor from OFrmop to Top0 which is right adjoint of O.

For every T0 topological space X , the unit ηX :X → Pt(O(X)) of the above ad-
junction is an isomorphism, whereas for each observation frame α:F → L the counit
7(−):F → O(Pt(α)) is injective. We say that α is spatial when 7 is an isomor-
phism. The above adjunction thus restricts to an equivalence between Top0 and the full
subcategory SOFrm of spatial observation frames [6].

5 Two Vietoris Functors

In order to apply the duality framework introduced in Section 3 we define two endofunc-
tors Pc and V on Top0 and OFrm, respectively, and prove that they are dual functors
using the duality introduced in the previous section.

We call a subset c of a topological space X convex if c = c↑∩ c, where c↑ is the
upclosure of c w.r.t. the pre-order induced by X whereas c is its topological closure.

Definition 10. Given a space X , define the Vietoris hyperspace Pc(X) to be the set of
all convex compact subsets of X equipped with the topology generated by the sub-basic
sets

{c ∈ Pc(X) | c ⊆ o} and {c ∈ Pc(X) | c ∩ o
= ∅}

for each o ∈ O(X).

464 M.M. Bonsangue and A. Kurz

The restriction to convex subsets in the definition of Pc(X) guarantees that the hy-
perspace Pc(X) is T0 if X is a T0 space [19]. Pc extends to an endofunctor on Top0.

Example 11. If X is a set, i.e. a discrete topological space, then Pc(X) is the set of
all finite subsets of X taken with the discrete topology. Also, if X is an ω-algebraic
complete partial order equipped with the Scott topology, then Pc(X) coincides with the
Plotkin powerdomain.

For the definition of the endofunctor V on OFrm it is enough to define a presentation
of V(α) for each observation frame α. Its set of generators is

G(α) = {�a | a ∈ α(F)} ∪ {♦a | a ∈ α(F)}

and the relations are given by the following rule schemes

(�−
∧

)

∧
I ai ≤ b∧

I �ai ≤ �b
(♦−

∨
) ♦

∨
I ai =

∨
I ♦ai

(�− ∨) �(a ∨ b) ≤ �a ∨ ♦b (♦−
∧

)

∧
I ai ∧ b ≤ c∧

I �ai ∧ ♦b ≤ ♦c
(COM) �

∨
I ai =

∨
J∈Fin(I) �

∨
J ai ,

where Fin(I) is the set of all finite subsets of I . Rules (�−
∧

) and (♦−
∧

) generalise
corresponding rules for the Vietoris locale [14] basically by imposing the � operator
to distribute over all meets of F which are preserved by α as meet of L. The scheme
(COM) corresponds to restricting to compact subsets in the definition of Pc as in [14,
23] and states that � distributes over directed joins.

Theorem 12. For every T0 space X , PtVOX ∼= PcX .

If α is a spatial observation frame then α ∼= OPtα and it follows PtVα ∼= PcPtα.
Hence the functors Pc and V were dual if SOFrm was closed under V . This is not the
case in general [14], but we will see below that it is true for many important subcate-
gories of SOFrm to which we then apply the framework of Section 3.

Posets. The category PoSet of posets with monotone functions can be characterised as
the full subcategory of Top0 that has as objects those topological spaces where open
sets are closed under arbitrary intersections (the Alexandroff topology). The category
PoSet is closed under the Vietoris functor Pc . The adjunction in Theorem 9 restricts
to a duality between the category PoSet and AlgCDL, the category of algebraic cdl’s.
AlgCDL is equivalent to the full sub-category of OFrm whose objects are observation
frames α:F → L with α(F) = L and L algebraic [5]. The duality implies that these
observation frames are spatial.

The category AlgCDL is closed under the Vietoris functor V . To see this one can
first note that because α(F) = L the presentation of Vα can be simplified by replacing
the schemes (�−

∧
) and (♦−

∧
) with the following two:

(�−
∧′)

∧
I �ai = �

∧
I ai (♦− ∧) �a ∧ ♦b ≤ ♦(a ∧ b) .

That the cdl presented by Vα is algebraic (and hence spatial) follows from the following
lemma, similar to one in [2, 24].

Duality for Logics of Transition Systems 465

Lemma 13. Let α:F → L be an observation frame and X a subset of α(F). In the
observation frame Vα we have �

∨
I ai =

∨
J∈Fin(I)(�

∨
J ai ∧

∧
J ♦ai) .

Summarising, the categories PoSet and AlgCDL are dual and closed under the two
Vietoris functors Pc and V , respectively. Furthermore, the two functors are also dual,
and the category AlgCDL is algebraic.

Sets. The category Set of sets and functions is a full subcategory of PoSet . It can be
characterised as the full subcategory of Top0 with as objects the topological spaces
with open sets closed under arbitrary intersections and complement (the discrete topol-
ogy). We have already seen that Set is closed under the Vietoris functor Pc . The dual-
ity between the categories PoSet and AlgCDL restricts to a duality between Set and
CABool the full sub-category of AlgCDL with objects equivalent to observation frames
α:F → L with α(F) = L and L an algebraic boolean algebra. Note that algebraic com-
plete boolean algebras are just complete atomic boolean algebras.

If α:F → L is an observation frame as above then in the observation frame Vα it
holds

(�− ¬) �a ∨ ♦¬a = - and (♦− ¬) �a ∧ ♦¬a = ⊥ .

for each a ∈ α(F) with complement ¬a ∈ α(F). Hence ♦¬a is the complement of
�a . The presentation of Vα can thus be simplified by replacing the schemes (�−

∧
),

(�−∨) and (♦−
∧

) with (�−
∧′), (�−¬) and (♦−¬). By applying the framework

described in Section 3 we obtain an infinitary modal logic (with negation) that is sound
and complete w.r.t. its coalgebraic semantics.

Spectral Spaces. The category Spec of spectral spaces is a subcategory of Top0 with
as objects topological spaces with compact open sets closed under finite intersections
and forming a base for the topology. Morphisms in Spec are continuous functions with
inverse preserving compact opens. As for the other categories above, Spec is closed
under the Vietoris functor Pc [13, 23]. The adjunction in Theorem 9 restricts to a duality
between the category Spec and DLat , the category of distributive lattices, equivalent
to the full sub-category of OFrm whose objects are observation frames α:F → L
with F an algebraic arithmetic frame and L the free completely distributive lattice over
F . Equivalently, observation frames in DLat can be presented by relations using only
finite meet and finite join operators, because they are equivalent to distributive lattices.
It follows that observation frames in DLat are spatial.

The category DLat is closed under the Vietoris functor V , because if α:F → L is
an observation frame in DLat , then the presentation of Vα can be simplified by using
the following relations:

(�− ∧) �(a ∧ b) = �a ∧�b (�−-) �- = -
(♦− ∨) ♦(a ∨ b) = ♦a ∨ ♦b (♦−⊥) ♦⊥ = ⊥
(�− ∨) �(a ∨ b) ≤ �a ∨ ♦b (♦− ∧) �a ∧ ♦b ≤ ♦(a ∧ b) .

Note that these axioms are precisely those which have to be added to distributive lattices
to define positive modal algebras, see e.g. [8]. It follows that Alg(V), with V restricted
to DLat , is (isomorphic to) the category of positive modal algebras. From Section 3,
it follows that Coalg(Pc), with Pc restricted to spectral spaces, provides an adequate

466 M.M. Bonsangue and A. Kurz

relational semantics for positive modal logic. Compared to [21] this yields an alternative
description of K+-spaces ([8]) as coalgebras.

Stone Spaces. Stone spaces are spectral spaces with compact opens closed under com-
plement. Let Stone be the full subcategory of Spec with Stone spaces as objects. We
can restrict the duality between Spec and DLat to a duality between Stone and Bool ,
the full subcategory of DLat with as object boolean algebras. If α:F → L is an ob-
servation frame equivalent to a boolean algebra then in the observation frame Vα both
(� − ¬) and (♦ − ¬) hold. Hence the presentation of Vα for DLat can be simplified
by replacing the schemes (� − ∨) and (♦ − ∧) with (� − ¬) and (♦ − ¬). We can
further simplify by reducing the set of generators to G(α) = {�a | a ∈ α(F)} and the
relations to

(�− ∧) �(a ∧ b) = �a ∧�b (�−-) �- = -

Note that these axioms are precisely those which have to be added to Boolean algebras
to define modal algebras (Boolean algebras with operator). It follows that Alg(V), with
V restricted to Bool , is (isomorphic to) the category of modal algebras. The category
Coalg(Pc), with Pc restricted to Stone , is isomorphic to the category of descriptive
general frame and has also been described in [17].

6 Modal Logics for Transition Systems

In order to obtain sound, complete, and expressive modal logics, we now apply the
framework of Section 3 to the dualities obtained in the previous section. For all four
dualities

XPc

�� $$
A%% V

��

the final coalgebra of the functor Pc exists, so that we can apply Theorem 5. The corre-
sponding propositional logic is obtained in the following way.

For a description of A via signature Σ and equations E take the formulae to be the
terms built from the signature Σ plus the two unary operation symbols � and ♦. The
calculus is given by the calculus for equational logic plus the equations E plus the rules
describing the functor V (some of the rules have been given as inequations, but φ ≤ ψ
can be considered a shorthand for φ ∧ ψ = ψ).

As it is well-known, such an equational calculus can be translated into a proposi-
tional modal calculus. Since our algebras are lattices we can use inequations instead
of equations. We write φ � ψ for φ ≤ ψ. That is, φ � ψ corresponds to the equation
φ ∧ ψ = ψ and, conversely, an equation φ = ψ to inequations φ � ψ, ψ � φ.

As it is apparent from (1) in Section 3, the semantics of φ � ψ is the so-called
local consequence of modal logic. In classical modal logic, local consequence can be
formulated as theorem-hood because φ � ψ is equivalent to � φ → ψ. But as in e.g.
[1, 7, 8], not all our logics have ‘→’. We will detail below the modal calculi arising in
the way just described from the four dualities of the previous section.

Duality for Logics of Transition Systems 467

Posets and Spectral Spaces. The first is the infinitary version of the second. In both
cases, the modal operators will obey the rule schemes

φ � ψ

�φ � �ψ

φ � ψ

♦φ � ♦ψ
(2)

Posets The signature Σ is {
∨

,
∧
} and these operators are axiomatised according to

the laws of completely distributive lattices (i.e. , negation free infinitary propositional
logic).3 The axiom schemes for the modal operators are the following.∧

I �φi � �
∧

I �φi ♦
∨

I φi �
∨

I ♦φi

�(φ ∨ ψ) � �φ ∨ ♦ψ �φ ∧ ♦ψ � ♦(φ ∧ ψ)
�
∨

I φi �
∨

J∈Fin(I) �
∨

J φi

Spectral Spaces The signature Σ is {-,⊥,∨,∧} and these operators are axiomatised
according to the laws of distributive lattices (i.e. , negation free propositional logic).
The axiom schemes for the modal operators are the following.

�(a ∧ b) � �a ∧�b - � �-
♦a ∨ ♦b � ♦(a ∨ b) ♦⊥ � ⊥
�(a ∨ b) � �a ∨ ♦b �a ∧ ♦b � ♦(a ∧ b) .

In the previous section some of the inequalities above are presented as equalities. The
‘missing’ directions follow from the monotonicity rules (2).

Sets and Stone spaces. The first is the infinitary version of the second. Since we have
classical implication, we only need to axiomatise - � φ which we abbreviate by � φ.
Since we have negation, we need only one modal operator, say �.

Sets The signature Σ is {
∧

,¬} and these operators are axiomatised according to
the laws of completely distributive lattices with negation (i.e. , classical propositional
logic). In order to stay close to the equational axiomatisation it is convenient to choose
as a rule scheme

� φ ↔ ψ

� �φ ↔ �ψ
(3)

(which is the congruence rule of equational logic for �) and as axiom schemes

�
∧

�φi ↔ �
∧

φi � -↔ �-
� �

∨
I φi ↔

∨
J∈Fin(I) �

∨
J φi

Stone Spaces The signature Σ consists of the operators -,∨,¬ which are axiomatised
according to the laws of boolean algebra (i.e. classical propositional logic). In order

3 The category A of Section 3 is AlgCDL whereas the category described by the signature is
CDL. But since V preserves algebraic cdls, the initial sequence for V remains in AlgCDL.

468 M.M. Bonsangue and A. Kurz

to stay close to the standard calculus of modal logic, it is convenient to choose the
following rule and axiom scheme

� φ

� �φ
� �(φ → ψ) → (�φ → �ψ)

These schemes correspond to the equations from the previous section because they are
equivalent to the rule 3 together with � �(φ ∧ ψ) ↔ �φ ∧�ψ and � �-↔ -.

7 Conclusion and Further Work

We have presented a general framework relating modal logics and their relational (i.e.
coalgebraic) semantics. It can be read in two directions: describe a given logic as a
functor L and work out the adequate relational semantics by describing the dual functor
T ; or, for a given notion of transitions systems as T -coalgebras, work out the adequate
logic by describing the dual of T via generators and relations. To apply this idea and
equip the coalgebraic logic of Moss [20] with modal operators (given by the generators)
and a complete axiomatisation is one of many directions for future research.

Another one is to look at other functors T than the compact hyperspace. An obvious
candidate is the non-compact hyperspace which is expected to give interesting infinitary
logics for the categories of posets and sets (the infinitary counterparts of spectral and
Stone spaces, respectively). Further candidates are the Kripke-polynomial functors of
Jacobs [12].

Furthermore, it would be interesting to determine the range of the framework of
Section 3. Apart from generalising some of the specific assumptions, there is also the
question which logics can be described by categories of algebras that admit a duality,
leading to connections with algebraic logic [9].

References

1. S. Abramsky. Domain theory in logical form. Annals of Pure and Applied Logic, 5:1–77,
1991.

2. S. Abramsky. A domain equation for bisimulation. Inf. and Comp., 92, 1991.
3. J. van Benthem, J. van Eijck, and V. Stebletsova. Modal Logic, Transition Systems and

Processes. Journal of Logic and Computation, 4:811–855, 1994.
4. P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. CSLI, 2001.
5. M.M. Bonsangue. Topological Dualities in Semantics. Vol. 8 of ENTCS, Elsevier, 1996.
6. M.M. Bonsangue, B. Jacobs, and J.N. Kok. Duality beyond sober spaces: topological spaces

and observation frames. Theor. Comp. Sci. 15(1):79–124, 1995.
7. M.M. Bonsangue and J.N. Kok. Towards an infinitary logic of domains: Abramsky logic for

transition systems. Inf. and Comp. 155:170–201, 1999.
8. S. Celani and R. Jansana. Priestley duality, a Sahlqvist theorem and a Goldblatt-Thomason

theorem for positive modal logic. Logic Journ. of the IGPL, 7:683–715, 1999.
9. J.M. Font, R. Jansana, and D. Pigozzi. A Survey of Abstract Algebraic Logic. Studia Logica,

74:13–97, 2003.

Duality for Logics of Transition Systems 469

10. J. Gerbrandy. Bisimulations on Planet Kripke. PhD thesis, Univ. of Amsterdam, 1999.
11. R.I. Goldblatt. Metamathematics of modal logic I. Rep. on Math. Logic, 6, 1976.
12. B. Jacobs. Many-sorted coalgebraic modal logic: a model-theoretic study. Theoretical Infor-

matics and Applications, 35(1):31–59, 2001.
13. P.T. Johnstone. Stone Spaces. Cambridge University Press, 1982.
14. P.T. Johnstone. The Vietoris monad on the category of locales. In Continuous Lattices and

Related Topics, pp. 162–179, 1982.
15. B. Jónsson and A. Tarski, Boolean algebras with operators, part I. American Journal of

Mathematics, 73:891–939, 1951.
16. M. Kracht. Tools and Techniques in Modal Logic. Vol. 142 of Studies in Logic, Elsevier,

1999.
17. C. Kupke, A. Kurz, and Y. Venema. Stone coalgebras. Theoret. Comput. Sci., 327:109–134,

2004.
18. E.G. Manes. Algebraic Theories. Springer-Verlag, 1976.
19. E. Michael. Topologies on spaces of subsets. Trans. Amer. Math. Soc., 71, 1951
20. L. Moss. Coalgebraic logic. Annals of Pure and Applied Logic, 96:277–317, 1999.
21. A. Palmigiano. A coalgebraic semantics for positive modal logic. Theoret. Comput. Sci.,

327:175–195, 2004.
22. J.J.M.M. Rutten. Universal coalgebra: A theory of systems. Theoret. Comput. Sci., 249:3–80,

2000.
23. S. Vickers. Topology via Logic. Cambridge University Press, 1989.
24. S. Vickers. Information systems for continuous posets. Theoret. Comp. Sci., 114, 1993.
25. J. Worrell. Terminal sequences for accessible endofunctors. In Coalgebraic Methods in

Computer Science (CMCS’99), vol. 19 of ENTCS, Elsevier, 1999.

Confluence of Right Ground Term Rewriting
Systems Is Decidable

Lukasz Kaiser

Mathematische Grundlagen der Informatik, RWTH Aachen

Abstract. Term rewriting systems provide a versatile model of compu-
tation. An important property which allows to abstract from potential
nondeterminism of parallel execution of the modelled program is con-
fluence. In this paper we prove that confluence of a fairly large class of
systems, namely right ground term rewriting systems, is decidable. We
introduce a labelling of variables with colours and constrain substitutions
according to these colours. We show how right ground rewriting systems
can be reduced to simple systems with coloured variables. Such systems
can be analysed using reduction-automata techniques which leads to an
interesting decision procedure for confluence.

1 Introduction

Term rewriting systems (TRS) were developed from mathematical logic and
are used in many contexts in computer science. They serve as models for com-
puter programs, abstract mathematical structures and are used in equational
reasoning. Such systems consist of sets of rewriting rules that can be applied to
transform one term into another. There are many interesting properties of TRS
and algorithms working on them used in different fields including functional pro-
gramming languages, where properties like confluence and termination of TRS
are investigated.

Confluence, also called the Church-Rosser property, is a very important prop-
erty of TRS and programs that contain some kind of nondeterminism, for example
parallel or probabilistic programs. It states that after any possible rewritings of a
term or after a number of steps of program execution on different execution paths
there is always a way to rewrite to a common term or follow the program execution
to the same result, which can eliminate the problem of nondeterminism.

Confluence is known to be undecidable for general TRS. Oyamaguchi studied
confluence of a simple class of ground TRS already in 1987 and showed it to be
decidable [11]. Dauchet et. al. gave a decision procedure for the first order theory
of ground rewrite systems in 1990 [5] using methods related to tree automata
and tree transducers. In 2001, Comon, Godoy and Nieuwenhuis showed that
confluence of ground TRS can be decided in polynomial time [1] and they were
the first to use new methods like analysing top stable symbols to attack the
problem. This line of research was continued by Tiwari [13].

V. Sassone (Ed.): FOSSACS 2005, LNCS 3441, pp. 470–489, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Confluence of Right Ground Term Rewriting Systems Is Decidable 471

Ordered term rewriting systems were also analysed and Comon, Narendran,
Nieuwenhuis and Rusinowitch proved the decidability of confluence of such sys-
tems for wide classes of orderings [3, 4].

In recent years, there was an active development in the theory of wider classes
of TRS, right ground systems and linear shallow systems. Godoy, Tiwari, and
Verma showed that the confluence of linear shallow term rewrite systems can
be decided in polynomial time [7]. Their article not only extended the methods
of [1] but also simplified and clarified the proofs. Finally the proofs of [7] were
again redone and presented in a clarified form in [6].

When we go outside linear systems, things become undecidable quite fast.
Marcinkowski proved in 1997 that the first order theory of right ground rewriting
is undecidable even for one step rewriting [10]. Also in 2003 Jacquemard proved
that reachability and confluence are undecidable for general flat term rewriting
systems [8].

When we consider the natural syntactic division of rewriting systems based on
whether the rules are ground, linear of flat and we want to analyse reachability,
joinability, confluence and first order theory of such systems then the results
mentioned before, together with the reductions in [15] answer all decidability
questions except for the one we want to investigate here, the confluence of right
ground systems. This was a long standing open problem [16] solved in [9] and
also recently in an independent work by Tiwari, Godoy and Verma in [14], where
authors further developed stability and rewrite closure methods used in [1, 7].

We extend the right ground rewriting system to a system with constraints,
analyse the constrained system and look for constrained substitutions. This al-
lows us to see the methods used before in a different context and use reduction
automata techniques (see [2]) to complete the proof. Combining automata tech-
niques and analysis of rewriting properties has already proved successful many
times and goes back to [5, 11], conditional rewriting systems are also well known
and widely used. Moreover, methods using automata techniques and constrained
rewriting have often been used in different contexts, so we hope that the pre-
sented methods not only give the decision procedure for confluence but can also
be extended to other problems and used in program analysis.

The Organisation. of this article follows the outline of the proof that confluence
of RGTRS is decidable and the reductions done to the system. First we define the
basic notions and tools that will be used for right ground systems and reduce the
rewriting system by naming all ground terms in the rules by new constants and
then by taking a limited rewrite closure. This reduction has already become a
standard starting point when analysing right ground rewriting systems. Then we
prove a technical lemma and reduce the non-confluence problem to the problem
of deep non-joinability of constants and semi non-confluence, which is also a
variation of a well known method.

Later we introduce colour constraints and coloured substitutions and show
how standard unification can be extended to the coloured case. We analyse
stability of terms and reduce semi non-confluence to the existence of stable
terms fulfilling some constraints. We then show how to decide the existence of

472 L. Kaiser

such terms by reducing it to emptiness of reduction automata which is known
to be decidable. Also the deep joinability of constants is reduced to emptiness
of reduction automata, which completes the proof.

Acknowledgement. The result proved in the paper was first proved as a part of
the authors masters thesis [9] written under the direction of Leszek Pacholski. We
also want to thank Jerzy Marcinkowski for helpful comments and revision. Later
Dietmar Berwanger and Erich Grädel helped to prepare the current version.
We also want to thank Christof Löding for references about tree automata that
made it possible to clarify and simplify the proofs a lot.

2 Basic Notions

2.1 Terms and Positions in Terms

Let us assume that we are given a finite set of symbols Σ called the signature
and a function arity : Σ → N. Symbols with arity 0 will be called constants
(Γ = {c ∈ Σ : arity(c) = 0}) and denoted by letters a, b, c. The other symbols
will be called function symbols and denoted by letters f, g, h. We also assume
that there is an infinite set of variables V which will be denoted by letters x, y, z.
Throughout the paper the signature will be assumed to be constant, also in all
algorithmic problems the maximal arity of function symbols is assumed to be a
constant and not an input parameter.

Terms over Σ are defined inductively as the smallest set T such that:

– T ⊇ V ,
– if f ∈ Σ with arity n and t1, . . . , tn ∈ T then f(t1, . . . , tn) ∈ T .

The set Var(t) of variables occurring in a term t is also defined inductively by
Var(c) := ∅, Var(x) := {x} and Var(f(t1, . . . , tn)) = Var(t1) ∪ · · · ∪ Var(tn).
When Var(t) = ∅ then the term t is called ground.

The usual intuition behind terms is to view them as labelled trees, therefore
we introduce the notion of positions in terms. The set P of positions in terms is
the set of sequences of positive natural numbers. By λ ∈ P we will denote the
empty sequence or the top (root) position in the term.

For a given term t and position p we either say that p does not exist in t or
define the term at position p in t (denoted by t|p) in the following inductive way:

– λ exists in each term and t|λ = t,
– p = (n, q) exists in t = f(t1, . . . , tm) if m ≥ n and q exists in tn and in such

case t|p = tn|q.
A position p is above some position q if there exists a sequence r of numbers
such that q = (p, r). In this case we also say that q is below p. The height of a
position is its length. The height of a term is the maximal height of a position
existing in this term.

For example in the term f(a, f(b, c)) position 2, 1 exists and f(a, f(b, c))|2,1 =
b, but neither the position 3 nor the position 1, 2 exists. The height of f(a, f(b, c))
is 2, the height of f(b, c) is 1 and the height of a constant is 0.

Confluence of Right Ground Term Rewriting Systems Is Decidable 473

2.2 Substitutions and Rewritings

Substituting term s in term t at position p yields the term r = t[s]p such that
for all positions q not below p that exist in t, it holds that r|q = t|q and r|p = s.
Less formally r is just t with the subtree at position p replaced by s, for example
substituting f(a, b) at position 1 in f(a, f(b, c)) yields the term f(f(a, b), f(b, c)).

Substituting term s in term t for a variable x is defined as substituting s in
t at all positions p where t|p = x. A substitution (usually denoted with letters
σ, τ, ρ) is a set of pairs, each consisting of a variable and a term (such pairs are
denoted by x ← t). Applying a substitution σ = {x1 ← t1; . . . ;xn ← tn} to a
term t, we obtain a term r = tσ which is the result of substituting each xi by
ti in t. As an example, let us take the term t = f(x, y) and the substitution
σ = {x ← a, y ← f(b, c)}. Then tσ = f(x, y)σ = f(a, f(b, c)).

A rewriting rule is a pair of terms t and s denoted by t → s such that
Var(t) ⊇ Var(s). The rule is called ground if both t and s are ground and right
ground if s is ground.

A rewriting rule l→ r can be applied to a term t at position p, if there exists
a substitution σ of variables in l such that t|p = lσ. The result of applying the
rule is t[rσ]p - term t rewritten at position p. You should note that there is only
one possible result of applying a rule to a term at a given position and that since
Var(l) ⊇ Var(r), a ground term remains ground after applying a rule to it at
any position. For example we can apply a right ground rule f(x, x) → c to the
term f(c, f(a, a)) at position 2 and obtain the term f(c, c).

A term rewriting system (TRS) is a set of term rewriting rules and throughout
this article we consider only systems with finitely many rules. The system is
ground (GTRS) or right ground (RGTRS), if all rules in the system are ground
or respectively right ground. We say that a term t rewrites to a term r with
respect to a given TRS T , if there is a rule in T and a position p in t such that
r is the result of applying the rule to t at p and we denote it by t →T r. The
relation ∗→T is the transitive and reflexive closure of the relation →T , where
t ∗→T s means that t rewrites to s in a finite number of steps. We will often talk
about successive rewriting steps t →T t1 →T t2 →T . . . →T tn →T s forming a
rewriting path t ∗→ s. When the system is clear from the context we will omit
the index T .

Continuing our previous example, if we take a RGTRS with only one rule
T = {f(x, x) → c} then f(c, f(a, a)) →T f(c, c) and since f(c, c) →T c, we can
say that f(c, f(a, a)) ∗→T c on the rewriting path f(c, f(a, a)) → f(c, c) → c.

Given a term rewriting system T and two terms s and t we will say that s
is reachable from t if t ∗→T s and that s is joinable with t if there exists a term
u such that both s ∗→T u and t ∗→T u. Any such term u that both s ∗→T u
and t ∗→T u will be called a joinability witness for s and t. In our example
f(c, f(a, a)) and f(b, b) are joinable, since both can be rewritten to c, and c is
the only joinability witness of these two terms.

We say that t and s are deeply joinable, if all pairs of terms to which these two
respectively rewrite are joinable. More formally when t ∗→T t1 and s ∗→T s1 then
t1 and s1 have to be joinable. If the two terms are not deeply joinable then there

474 L. Kaiser

exist two non-joinable terms t1 and s1 such that t ∗→T t1 and s ∗→T s1 which will
be called witnesses of deep non-joinability. A term t is confluent with respect to
T , if it is deeply joinable with itself and the witnesses of deep non-joinability of t
with t will then be called the witnesses of non-confluence. A TRS T is confluent
if all terms are confluent with respect to T .

Example 1. Let us take a right ground rewriting system

R = {c→ f(c, c), c→ g(c, c), f(x, f(x, x)) → c}.

Let us now look at the term t = f(c, c). We can rewrite it at position 2 to
s = f(c, g(c, c)) and it is easy to see that s can not be rewritten to c, since the g
symbol at position 2 will not be reduced by any of the rewriting rules as it is too
near to the root position to be destroyed inside the variable in the third rule.

Also please note that t = f(c, c) can be rewritten also as position 2 but with
a different rewrite rule obtaining f(c, f(c, c)), which can be further reduced to
c. So t is not confluent with respect to R and one possible pair of witnesses of
non-confluence is f(c, g(c, c)) and c.

All mentioned properties (reachability, joinability, deep-joinability, confluence
of a term and of a TRS) can also be analysed as algorithmic decision problems:
given the TRS and possibly the terms as arguments, decide if the property holds
or not.

3 Basic Tools for Right Ground TRS

It is a well known (see [12]) fact that reachability and joinability are decidable
for right ground TRS.

Fact 1. Reachability and joinability problems are decidable for RGTRS.

3.1 Naming Ground Terms with Constants

We consider an arbitrary RGTRS

R = {l1 → r1, l2 → r2, . . . , ln → rn}.

Let us now take any ground term of height one f(c1, . . . , cn) appearing as a
sub-term of any right side ri and introduce a constant to name it. So for the
term f(c1, . . . , cn) we add a new constant cf(c1,...,cn) and two new rewrite rules

cf(c1,...,cn) → f(c1, . . . , cn),

f(c1, . . . , cn) → cf(c1,...,cn).

Then we replace each occurrence of f(c1, . . . , cn) in R with cf(c1,...,cn).
Let us notice that the new term rewriting system R1 obtained in this way

is confluent if, and only if, R is confluent, since the relations ∗→R and ∗→R1 are
identical on terms without the constant cf(c1,...,cn) and this constant can always
be replaced with f(c1, . . . , cn). Therefore we can repeat this procedure until the
resulting RGTRS R′ has only the following types of rules:

Confluence of Right Ground Term Rewriting Systems Is Decidable 475

>: rules in the form c→ f(c1, . . . , cn),
≤: rules t→ c, where t is any term.

Of course, here f stands for different function symbols and c for different con-
stants. Further, we will call the rules of type > increasing, those of type ≤
non-increasing, since the first ones increase the height of the term and the sec-
ond ones do not. This extension allows us to restrict our attention to RGTRS
that have only the two types of rules given above, and for a given RGTRS T
with such rules we will denote by T> the rules of the first kind in T and by T≤

the rules of the second kind. More detailed description of this method and the
proof that it preserves confluence can be found in [1].

Since we know that reachability for right ground systems is decidable, we can
extend R′ to a new system R′′ in the following way: for each constants c and c′

and each term f(c1, . . . , cn) of height one, we have

c→ c′ ∈ R′′ if c ∗→R′ c′,

c→ f(c1, . . . , cn) ∈ R′′ if c ∗→R′ f(c1, . . . , cn),

f(c1, . . . , cn) → c ∈ R′′ if f(c1, . . . , cn) ∗→R′ c.

Therefore, if a constant rewrites to a term of height one or a term of height
one rewrites to a constant, or constant rewrites to another constant, then the
rewriting can be done in one step. If RGTRS is in this form, we will call it
reduced.

The following simple lemma will be used very often.

Lemma 1. For ground terms t1, t2, . . . , tn, s and reduced RGTRS T we have

t := f(t1, . . . , tn) ∗→T s

if and only if one of the following conditions holds:

(1) s = f(s1, . . . , sn) and for each i we have ti
∗→T si,

(2) there is a constant c such that t ∗→T c and c ∗→T> s.

Proof. In any TRS, if any of these two conditions hold, then obviously t ∗→T s.
The converse is true in any reduced RGTRS since if there is a rewriting at the
root position in t somewhere on the path t ∗→T s, then it has to go through
a constant because all non-increasing rules rewrite to a constant. Also, when
rewriting from a constant we do not need to use the decreasing rules any more
since, if a constant rewrites to a term of height one, then the rewriting can be
done in one step without decreasing rules.

Definition 1. A ground term t is stable with respect to a rewriting system T if
no sub-term of t that is not a constant rewrites (is in ∗→T relation) to a constant.

Stability is a very important property in connection with Lemma 1, since
intuitively in stable terms the rewriting needs to be done only at leaf positions.
One can think of stability as a normal form with respect only to non-increasing
rules. Stability is also useful when analysing joinability, which is expressed by
the following lemma.

476 L. Kaiser

Lemma 2. A stable term f(t1, . . . , tn) is not joinable with a constant c with
respect to a reduced RGTRS T if and only if for any term f(c1, . . . , cn) such
that c ∗→T f(c1, . . . , cn) there is some sub-term ti not joinable with ci.

Proof. Indeed, the term f(t1, . . . , tn) is stable, so it does not rewrite to any
constant and it can be joined with c only if c ∗→T f(c1, . . . , cn) and f(c1, . . . , cn)
will be joined with f(t1, . . . , tn) without rewriting to a constant, so each constant
ci must be joined with the appropriate sub-term ti.

3.2 Reduction of the Confluence Problem

Let us now reduce the problem of confluence to a more tractable problem. First
we have to define when a RGTRS T is semi non-confluent.

Definition 2. Rewriting system T is semi non-confluent if there exists a term
s and a constant c such that s is an instance of the left hand side of some rule
l → c ∈ R and on the other hand s can be rewritten to a term r and r is not
joinable with c.

Please note that if T is semi non-confluent then it clearly is not confluent, but
there can also be other reasons for a system not to be confluent. The following
lemma reduces the general confluence case for reduced RGTRS to semi non-
confluence and the confluence of constants.

Lemma 3. If a reduced right ground term rewriting system T is not conflu-
ent then either there exists a constant that is not confluent or T is semi non-
confluent.

The prove this lemma, we look at the smallest term that is not confluent
with respect to T and analyse possible rewriting paths to the witnesses of non-
confluence relying on Lemma 1. The proof is given in detail in appendix A.

4 Coloured Terms

Let us now define a set of constraints that we will call colours and show some ba-
sic properties of coloured terms and coloured rewritings. This can be interpreted
as a simple form of conditional rewriting systems, but we will not introduce the
general definitions of conditional systems and only concentrate on our simple
case.

The colour constraints are defined in a very simple way, a colour K is a set
of constants K = {c1, . . . , cm}. We say that a ground term t has colour K with
respect to a TRS T if each ci

∗→T t. We will omit the TRS T if it is fixed in
the context. Please note that with this definition each term t has a number of
colours, actually one biggest colour

K(t) := {c : c ∗→T t}

and all its sub-colours. Each term has ∅ as its colour.

Confluence of Right Ground Term Rewriting Systems Is Decidable 477

Definition 3. A coloured term is a term t with each variable x ∈ Var(t) labelled
with a colour Cx. A correct ground substitution for a coloured term with respect
to a TRS T is a substitution σ such that only ground terms are substituted for
variables and a ground term s is substituted for a given variable x only if Cx is
a colour of s w.r.t T , i.e. Cx ⊆ K(s).

Definition 4. A coloured (right ground) rewrite rule is a pair consisting of a
coloured term and a constant. A coloured rewrite rule l → c can be applied to a
ground term t at position p if there exists a correct ground substitution σ for l
such that t|p = lσ.

We will now fix a reduced RGTRS with respect to which the colourings are
defined and extend it with a set of coloured rewrite rules so that on any rewriting
path of a ground term the increasing rewritings can take place only at the end.

Example 2. Let us continue our example for

R = {c→ f(c, c), c→ g(c, c), f(x, f(x, x)) → c}

and the colour K = {c}. Let us take any term t such that c ∗→ t and look at the
rewriting path

f(t, c) → f(t, f(c, c)) ∗→ f(t, f(t, t)) → c. (1)

Please note that using the second rewrite rule in the last step was possible
because c ∗→ t, e.g. for t = f(c, c). Also please note that such rewriting could be
done for each term t with colour K.

This suggests a new coloured rewriting rule

f(x : K, f(c, c)) → c,

where x : K denotes that the variable x is coloured with K. Looking at the
rewriting (1) it is also evident that the coloured rule

f(x : K, c) → c (2)

can also be added to the system without changing the semantics or rewriting.
What we will do next is to show how using coloured rules we can eliminate

the need to change increasing and non-increasing rules on a rewriting path with
respect to a reduced RGTRS.

Please look at the rewriting (1) and follow it again for t = f(c, c), so

f(f(c, c), c) ∗→R> f(f(c, c), f(f(c, c), f(c, c))) →R≤ c.

As you can see we have to interchange rewriting with R> and with R≤ to rewrite
the term to c. But if we add the rule (2) to the non-increasing rules (R≤) then
we do not have to use the increasing rules any more.

We will generalise this example to an arbitrary reduced RGTRS T by taking
all possible positions in the left sides of rewriting rules in T and substituting there

478 L. Kaiser

all possible constants and looking if appropriate colouring for the remaining
variables can be found. First let us introduce a notation and define what an
appropriate colouring is.

We will say that a term s grows from a term t if t ∗→T> s. Please note that in
such case all rewritings on the rewriting path take place in the leafs of the term
(viewed as a tree).

Let us now take a term l (possibly a left side of a rewriting rule) and a
sequence of different positions P = p1, . . . , pn existing in l and a sequence of
constants A = c1, . . . , cn. We will be interested in the term l with each constant
ci substituted at the corresponding position pi and we will use the notation

l(A,P) := (((l[c1]p1)[c2]p2) . . .)[cn]pn .

Definition 5. Given a term l a sequence P of positions in l and a sequence A
of constants with the same length as P we will say that a colouring

{x1 : K1, . . . , xn : Kn}

of variables in l is appropriate w.r.t. A and P if there exists a term s that fulfils
the following properties. The term s grows from l(A,P) and contains exactly the
same positions as l and at all positions where there is no variable in l it has
the same symbols as l. Then the colouring is appropriate if for each variable xi

the assigned colour Ki is equal to the set of constants that appear in s at the
positions at which xi appears in l.

Please note that in this definition we assume that the positions P are incompa-
rable with the prefix ordering of positions, so all constants can be put in parallel
and the order of positions in P does not matter.

Let us analyse this definition looking at the example presented before. We
can take the term l = f(x, f(x, x)) and choose to insert the constant c at position
2, so A = c and P = 2 and l(A,P) = f(x, c). Although f(x, c) can grow either to
f(x, g(c, c)) or to f(x, f(c, c)), according to the definition we will consider only
the second case, as the first one has g at position 1, which is different from f at
position 1 in l. We can see that x : {c} is the appropriate colouring in this case.

Let us now take all possible rules l → c ∈ T≤, all possible sequences of
different positions P in l and for each P take all sequences of constants A with
the same length.

Let us now colour each rewrite rule

l(A,P) → c.

Let us take all possible appropriate colourings of the variables from l with respect
to A and P . To obtain colourings of variables from l(A,P) we can just cast each
colouring of variables of l, but we will exclude some of them. Namely, if in a
colouring of variables of l there are coloured variables that does not appear in
l(A,P) and they are coloured with K1, . . . ,Km then we will allow the cast of
this colouring only if each colour Ki is satisfiable, i.e. there exists a term u such

Confluence of Right Ground Term Rewriting Systems Is Decidable 479

that all constants in Ki rewrite to u. Please note that it is decidable whether
a colour is satisfiable as it is a simple extension of joinability (see [12]) and we
will call u the satisfiability witness for Ki.

Let us denote the set of all coloured rewrite rules obtained in this way with
respect to T coloured with all allowed colourings by T c. Since we have defined
correct ground substitutions for coloured rewrite rules we define the relation→T c

and ∗→T c on ground terms in the same way as we did for uncoloured rewrite rules,
only using correct ground substitutions.

Lemma 4. For any reduced RGTRS T with T c defined as above and for any
two terms t and s if t ∗→T c s then also t ∗→T s.

The proof of this lemma follows the construction presented above and is given
in detail in appendix B. As we see from the above lemma the extension of T
with coloured rules is correct in the sense that it does not change the semantic
of rewriting. Moreover, we do not need any more to grow constants in order to
match a sub-term in a rewriting rule, since a coloured rule can be used instead,
as stated in the following lemma, which is proved in similar way in appendix B.

Definition 6. Term s grows from a term t in bounds of a term l with respect
to a reduced RGTRS T if t ∗→T> s and all rewritings either take place on the
positions that exist in l or at (new) positions that do not exist in t.

Lemma 5. Given a reduced RGTRS T let us take a rule l → c ∈ T and two
ground terms u and w such that w grows from u in bounds of l and w is an
instance of l. Then any rewriting path in T in the form

u ∗→T> w →{l→c} c

can be reduced to one step rewriting in the system T c defined above, so u→T c c.

The construction of such coloured closure of the rewriting system will be later
used to show that stability of a term with respect to a reduced RGTRS t can
be replaced by a property analogous to being a normal form with respect to T c

and therefore that stable terms can be recognised by a reduction automaton.
Before we proceed to analyse confluence we need one more tool to handle

unification in the coloured case. Let us assume that we are given a coloured
term t and a coloured rewrite rule l → c and we want to describe the set of
substitutions σ for variables of t such that tσ is an instance of l, i.e. there is a
correct substitution τ for l such that tσ = lτ .

If we forget about colours then we can take the most general unifier α of t and l
and denote u = tα = lα. As the colours are only constrains on the non-coloured
case then obviously all substitutions σ we are looking for will just constrain
the most general unifier α. It can also be noted that the right substitutions σ
impose exactly such constraints, that guarantee, that on positions where coloured
variables appeared in t and l, there will only appear ground terms with the right
colour in u. Unluckily, to propagate the constraints from positions in u where

480 L. Kaiser

there were coloured variables in t and l down to the variables in u we will have
to increase the number of unifiers with colour constraints. Let us fix a reduced
RGTRS T and state the following lemma.

Lemma 6. For two coloured terms t and s with disjoint variables there exists
a set u1, . . . , ul of terms such that for correct ground substitutions σ, ρ it holds
tσ = sρ if, and only if, there exists an i and a correct ground substitution τ for
which

tσ = uiτ = sρ.

Moreover, for each i there exists a coloured substitution μi (substituting coloured
terms for variables) such that ui = tμi = sμi. The set {μ1, . . . , μl} is called the
most general unifier of t and s and is computable.

Proof. Let α be the most general unifier of t and s forgetting about the colour
constraints and let u = tα = sα. It should be noted that there are correct ground
substitution σ and ρ such that tσ = sρ exactly then, when there is a ground
substitution β for variables in u for which

uβ = tσ = sρ

and if there was a variable coloured with colour K at position p in t or in s, then
the term substituted at this position has the colour K.

As we see we can describe all the substitutions we are looking for by giving
the term u and the set of constraints consisting of a position and a colour. Such
constraints can be propagated to lower positions and finally be checked for con-
stants and set as new colours for variables, but for the price of creating multiple
copies of u with different constraint sets. The details of how the constraints are
propagated are given in appendix B.

5 Stability of Coloured Terms

According to Lemma 3 we know that we only need to decide deep non-joinability
of constants and the semi non-confluence property. We will reduce semi non-
confluence to a set of instances of the coloured stability problem. We assume
that a reduced RGTRS T is fixed.

Definition 7. The coloured stability problem asks given a coloured term t and
a constant c to decide if there exists a correct substitution σ such that tσ is stable
and not joinable with c.

Lemma 7. The problem to decide for a given term s and a constant c if there
exists a substitution σ and a stable term t such that sσ ∗→ t and t is not joinable
with c, can be reduced to a finite set of instances of the coloured stability problem.

Please note that if there exists any such term t then there also exists a stable
one. Hence, we can assume that t is stable.

Confluence of Right Ground Term Rewriting Systems Is Decidable 481

Proof. Let us analyse the reduction path sσ ∗→ t. We can restrict our attention
to substitutions σ such that there are no rewritings in the substituted variables,
since if there is a need to rewrite, we could have substituted already the rewritten
form. Therefore we can also assume that the rewritings are done in the appro-
priate bounds and use Lemma 5 to describe the rewriting path. First let us
divide the rewritings on the path into segments of increasing and non-increasing
rewritings (the increasing segments may have length 0)

sσ = s1
∗→T> s′2 →T≤ s2

∗→T> s′3 →T≤ s3 . . .→T≤ sn
∗→T> s′n+1 = t.

Then using Lemma 5 we can describe this path with coloured rewritings in the
following way:

sσ = s1 →T c s2 →T c . . .→T c sn
∗→T> t.

Since s is given and the number of positions in s is bounded, we can enumerate
all positions in s at which these non-increasing rewritings take place together
with the rules applied there. Let us denote these positions by p1, . . . , pn and
the coloured rules used at these positions by l1 → c1, . . . , ln → cn. For given
positions and rules we will enumerate all coloured terms t1, . . . , tm such that if
there exists a ground substitution σ satisfying

sσ = s1 →{l1→c1} s2 →{l2→c2} . . .→{ln→cn} sn

then there exists a correct ground substitution ρ for some ti such that sn = tiρ.
If we find such terms ti then we can substitute for each constant a in ti a

new variable coloured with {a} obtaining a terms t′i and then we will know that
t = t′iρ for some correct ground substitution ρ and in this way the problem will
be reduced.

We will now show how to enumerate the requested coloured terms ti using
the unifiers we defined before. We will proceed inductively with respect to n
(the length of the rewriting path s1

∗→ sn) starting with s and we will show
how to proceed one step, generating for one coloured term the appropriate set
of coloured terms.

In an intermediate step let us consider the coloured term u such that si = uρ
for some correct ground substitution ρ and let si be rewritten to si+1 by the
coloured non-increasing rule li → ci used at position p in u. It is now enough to
enumerate the terms v1, . . . , vm such that if for some correct ground substitution
σ the term uσ can be rewritten with li → ci at position p, then v = vjρ for some
1 ≤ j ≤ m and some correct substitution ρ. In such case u|pσ = liτ for some
correct τ and from Lemma 6 we know that there exists the set

{μ1, . . . , μm} = mgu(u|p, li).

Then it is sufficient to take vi = uμi[ci]p to get the desired terms.

482 L. Kaiser

6 Reduction Automata

We have reduced the confluence problem to the coloured stability problem and
to the problem of confluence of constants. We will now show how to solve these
problems using reduction automata. The definitions, facts and theorems pre-
sented here can be found in [2] in the chapter about automata with equality and
disequality constraints. Since we are using exactly the same objects as presented
in that chapter, we do not present all the terminology with the same level of
detail as presented there.

Reduction automata are a special kind of automata with equality and dise-
quality constraints (AWEDC). An equality (disequality) constraint is an expres-
sion p1 = p2 (p1
= p2), where p1 and p2 are positions and is satisfied by a term t
if t|p1 = t|p2 (t|p1
= t|p2). An automaton with equality and disequality constraints
is a tuple

(Q,Σ,Qf , Δ),

where Σ is the signature, Q is a finite set of states, Qf ⊆ Q and Δ is a set of
rewrite rules in the form

f(q1, . . . , qn) →α q,

where q1, . . . , qn, q ∈ Q and α is a boolean combination of equality and disequal-
ity constraints.

The language accepted by an automaton and the run of an automaton on
a term is defined in an analogous way to the standard automata, only by each
application of a rule the corresponding constraint must hold. The automaton
is deterministic if for every term t there is at most one state q such that there
exists a run of the automaton on t ending in the state q, and it is complete if
there is at least one such state.

A reduction automata is a member of AWEDC such that there is a ordering
on Q such that for each rule f(q1, . . . , qn) →α q, where α is not trivial (empty)
the state q is strictly smaller than each state qi. The most important facts about
reduction automata (see [2]) that we will use are the following.

Fact 2. The class of reduction automata is closed under union and intersection.
There is a construction for the union that preserves determinism.

Fact 3. With each reduction automaton we can associate a complete reduction
automaton that accepts the same language. This construction preserves deter-
minism. The class of complete deterministic reduction automata is closed under
complement.

Fact 4. The emptiness of a language accepted by a reduction automata is de-
cidable.

Fact 5. It is possible to construct a deterministic complete reduction automaton
accepting the set of terms that are correct ground substitutions of a given term
with coloured variables. It is also possible to construct a deterministic complete
reduction automaton encompassing such correct ground substitutions.

Confluence of Right Ground Term Rewriting Systems Is Decidable 483

From these facts only Fact 5 is not a literal copy of facts from [2], since there
the construction is presented for uncoloured terms. But since colour constraints
can be expressed as tree automata, deterministic and without constraints, we
can use the same construction as presented in [2] for uncoloured terms only
adding the states of automata recognising coloured constraints and substituting
accepting states of these automata for q� used in the uncoloured construction
to denote all non-special terms.

Using these facts and the relation between stability with respect to T and
being a normal form with respect to T c that is proved in Lemma 5 we can prove
the following lemma (see appendix C for details).

Lemma 8. The coloured stability problem for a term t and constant c with re-
spect to a reduced RGTRS T is decidable.

The analysis of deep joinability of constants relies on a technical lemma
similar to Lemma 2 that concerns joinability. To use reduction automata for deep
joinability of constants we have to analyse pairs and construct the automaton
for terms with signature extended to cope with pairs. The technical details are
given in appendix C together with the proof of the following lemma.

Lemma 9. Deep joinability of constants with respect to a RGTRS is decidable.

From the results proved in lemmas 3, 7, and 8 and 9 follows our main theorem.

Theorem 1. Confluence of right ground term rewriting systems is decidable.

7 Conclusions and Remarks

We showed how to analyse confluence of right ground term rewriting systems.
Our results provide a method to reduce confluence to satisfiability of a con-
strained stability of terms. Although the presented techniques rely heavily on
the fact that the analysed TRS is right ground, it could be interesting to try to
extend them to other classes of TRS. The use of reduction automata for solving
constrained stability and its extension to deep joinability of constants might be
transferred to other cases. It might also be used to prove more refined results
concerning right ground or non-increasing systems.

These methods might also be used to analyse special classes of RGTRS in
order to get complexity results. Finding an optimised algorithm for coloured
stability for linear TRS would open the way to show that left linear right ground
TRS are in coNP. If there is no such algorithm then due to the tight integration
with automata methods there is a chance that the strict complexity bounds for
automata might be translated to show that this problem is not in coNP.

The presented technique of colouring variables with automatic constraints
and using more powerful automata to analyse the resulting constrained programs
can certainly be used also in other contexts for program analysis.

484 L. Kaiser

References

1. H. Comon, G. Godoy, R. Nieuwenhuis, The Confluence of Ground Term Rewrite
Systems is Decidable in Polynomial Time, 42nd Annual IEEE Symposium on
Foundations of Computer Science, Las Vegas, NV, USA, 2001.

2. H. Comon, F. Jacquemard, M. Dauchet, D. Lugiez, R. Gilleron, S. Tison, M.
Tomassi, Tree Automata Techniques and Applications, available on internet under
http://www.grappa.univ-lille3.fr/tata/

3. H. Comon, P. Narendran, R. Nieuwenhuis, M. Rusinowitch, Decision Problems in
Ordered Rewriting, IEEE Symposium on Logic in Computer Science, Indianapolis,
IN, USA, 1998.

4. H. Comon, P. Narendran, R. Nieuwenhuis, M. Rusinowitch, Deciding the Con-
fluence of Ordered Term Rewrite Systems, ACM Transactions on Computational
Logic 33 - 55, ACM Press, New York, NY, USA, 2003.

5. M. Dauchet, S. Tison, The Theory of Ground Rewrite Systems is Decidable, IEEE
Symposium on Logic in Computer Science, Philadelphia, PA, 1990.

6. G. Godoy, R. Nieuwenhuis, A. Tiwari, Classes of Term Rewrite Systems with
Polynomial Confluence Problems, ACM Transactions on Computational Logic
Vol. 5 No. 2, pp. 321-331, 2004.

7. G. Godoy, A. Tiwari, R. Verma, On the Confluence of Linear Shallow Term
Rewrite Systems, Symposium on Theoretical Aspects of Computer Science, Berlin,
Germany, 2003.

8. F. Jacquemard, Reachability and Confluence are Undecidable for Flat Term
Rewriting Systems, Information Processing Letters, 87 (5) pp.265-270, 2003.

9. L. Kaiser Confluence of Right Ground Term Rewriting Systems is Decidable, Mas-
ters Thesis, University of Wroclaw, June 2003.

10. J. Marcinkowski Undecidability of the First Order Theory of One-Step Right
Ground Rewriting, Intl. Conference on Rewriting Techniques and Applications,
Sitges, Spain, 1997.

11. M. Oyamaguchi, The Church-Rosser Property for Ground Term Rewriting Sys-
tems is Decidable, Theoretical Computer Science, 49 (1) pp.43-79, 1987.

12. M. Oyamaguchi, The Reachability and Joinability Problems for Right-Ground
Term-Rewriting Systems, Journal of Information Processing, 13 (3) pp.347-354,
1990.

13. A. Tiwari, Polynomial time Algorithms for Deciding Confluence of Certain Term
Rewrite Systems, IEEE Symposium on Logic in Computer Science, Copenhagen,
Denmark, 2002.

14. A. Tiwari, G. Godoy, R. Verma, Confluence Characterization Using Rewrite Clo-
sure with Application to Right Ground Systems, Applicable Algebra in Engeneer-
ing, Communication and Computing Vol. 15 No. 1, pp. 13-36, 2004.

15. R. Verma, M. Rusinowitch, D. Lugiez Algorithms and Reductions for Rewriting
Problems, Intl. Conference on Rewriting Techniques and Applications, Tsukuba,
Japan, 1998.

16. RTA list of open problems, available on internet under http://
www.lsv.ens-cachan.fr/~treinen/rtaloop/problems/

Confluence of Right Ground Term Rewriting Systems Is Decidable 485

A Proof of Reduction of Confluence

Lemma 10. If a right ground term rewriting system R is not confluent then
either there exists a constant that is not confluent or the following semi non-
confluence property is fulfilled. A RGTRS R is semi non-confluent if there exists
a term s and a constant c such that s is an instance of a left hand side of a rule
l → c ∈ R and on the other hand s can be rewritten to a term r and r is not
joinable with c.

Proof. Let us assume that R is not confluent, so there exists a lowest term t
that is not confluent. If there exist a few such lowest witnesses of non-confluence
with equal height, we can take any of them. If t is a constant then the proof is
complete. Assume t = f(t1, . . . , tn). Since t is not confluent, we know that there
exist witnesses u, v of non-confluence, so t ∗→ u, t ∗→ v and u and v are not
joinable. We can assume that u is the first term on the rewriting path t ∗→ u
that is not joinable with v and v is the first on the path t ∗→ v not joinable with
u, otherwise we could just take the terms appearing before on the paths.

Let us now show that there has to be a constant on the rewriting path t ∗→ u
or t ∗→ v. Indeed, if there was no constant on these paths then we know by
Lemma 1 that u = f(u1, . . . , un) and v = f(v1, . . . , vn) and for each i ti

∗→ ui

and ti
∗→ vi. But since u and v are not joinable so there exists an i such that ui

and vi are not joinable, and for this i the term ti would not be confluent itself,
which contradicts the assumption that t was the lowest not confluent term. We
can now assume without loss of generality, that there is a constant c on the
rewriting path t ∗→ u. Even more, we can assume that this is the first constant
on this path and that each term on the path before c is joinable with v, since
any term on the path before u was joinable with v.

We know that
t ∗→ s→ c ∗→ u

and that t ∗→ v and u is not joinable with v. Let us assume that v and c are
joinable and let v1 be a joinability witness for v and c. Then c ∗→ v1, c

∗→ u
and v1 is not joinable with u hence c is not confluent, which contradicts the
assumption that all constants are confluent. Therefore we know that not v is not
joinable with c. Also since s is on the rewriting path before c we know that s is
joinable with v and we can denote a witness of their joinability by r. Then we
have all the terms required in our assertion, since s ∗→ r and r is not joinable
with c because v is not joinable with c and v ∗→ r.

B Proofs of Properties of Coloured Closure

Lemma 11. For any reduced RGTRS T with T c defined before and for any two
terms t and s if t ∗→T c s then also t ∗→T s.

Proof. Let a rule l(A,P) → c ∈ T c be applied to some ground term w at position
p with w|p = u. So there is a correct substitution σ such that u = l(A,P)σ.

486 L. Kaiser

Since l(A,P) in the rule is appropriately coloured so there exists the term s that
witnesses that the colouring is appropriate and s grows with respect to T from
l(A,P) and differs from l only at positions with variables. We can rewrite u in
the same way as l(A,P) grows since u is an instance of l(A,P). Therefore we
obtain a term v such that u ∗→T> v and at all positions p in l where there are
no variables v|p = l|p.

Let us now take a variable x appearing in l and consider all terms appearing
in v at positions where x appears in l. At positions that also appear in l(A,P)
there is the term xσ and at the other we have some constants c1, c2, . . . , cn. But
since the colouring is appropriate, then x is coloured with K = {c1, . . . , cn} and
since σ is correct then for each ci we have ci ∗→T xσ. If we do this rewriting for
each variable in l, it becomes clear that v ∗→T lσ and therefore u ∗→T c. You
should note that if the variable x does not appear in l(A,P) then we have to
rewrite each ci to the satisfiability witness for K instead of rewriting to xσ.

Lemma 12. Given a reduced RGTRS T let us take a rule l → c ∈ T and two
ground terms u and w such that w grows from u in bounds of l and w is an
instance of l. Then any rewriting path in T in the form

u ∗→T> w →{l→c} c

can be reduced to one step rewriting in the system T c defined before, so u→T c c.

Proof. Since u grows to an instance of l, there is a sequence of positions in u
where there are constants and these positions can grow first to a term s that is
identical to l except for the positions where l has variables and later to w being
an instance of l. Let us denote the sequence of positions in u mentioned above
by P and the sequence constant appearing at respective positions in u by A.

Let us then consider the rule l(A,P) → c ∈ T c with the appropriate colouring
for variables of l that comes from s. Please note that since s grows to an instance
of l then in the appropriate colouring all colours of variables of l that are not
variables of l(A,P) must be satisfiable as the witnesses appear in w, so the
mentioned rule indeed is in T c with the casted colouring. Then it is clear that u
rewrites with this rule to c, since the colour constraints are fulfilled in u as they
were in w.

We will now repeat literally a part of the proof presented in the paper to be
sure that the notation is consistent.

Lemma 13. For two coloured terms t and s with disjoint variables there exists
a set u1, . . . , ul of terms such that for correct ground substitutions σ, ρ it holds
tσ = sρ if, and only if, there exists an i and a correct ground substitution τ for
which

tσ = uiτ = sρ.

Moreover, for each i there exists a coloured substitution μi (substituting coloured
terms for variables) such that ui = tμi = sμi. The set {μ1, . . . , μl} is called the
most general unifier of t and s and is computable.

Confluence of Right Ground Term Rewriting Systems Is Decidable 487

Proof. Let α be the most general unifier of t and s forgetting about the colour
constraints and let u = tα = sα. It should be noted that there are correct ground
substitution σ and ρ such that tσ = sρ exactly then, when there is a ground
substitution β for variables in u for which

uβ = tσ = sρ

and if there was a variable coloured with colour K at position p in t or in s, then
the term substituted at this position has the colour K.

As we see we can describe all the substitutions we are looking for by giving
the term u and the set of constraints consisting of a position and a colour. We
will now show how such constraint can be propagated to lower positions but for
the price of creating multiple copies of u with different constraint sets.

If we have a colour
K = {c1, . . . , cm}

at a position in u where the sub-term at this position is f(w1, . . . , wn) then the
constraint can be satisfied only if for each ci ∈ K there is at least one rule in
the form

ci → f(ai1, . . . , a
i
n) ∈ T.

Let us now take all possible ways to choose one such rule for each ci ∈ K. Then
for each wj we have a new colour constraint defined by

Kj = {a1
j , a

2
j , . . . , a

m
j }.

In this way we reduced a colour constraint to lower positions, but for each way
of choosing the rules from the system we had to create a separate instance of the
term u with coloured positions. Since for all constants we took into account all
possible ways to satisfy the colour constraint, all possible correct substitutions
will be taken into account.

If we repeat the above procedure then all colours will be propagated to con-
stants, where they can be checked for satisfiability and either accepted or re-
jected, and to variables. Taking into account only the cases where the colour
constraints were accepted at positions with constants we are left with a set of
coloured terms u1, . . . ul that we were looking for and since these are just differ-
ently coloured copies of u then we can define μi to be the most general unifier
β with the same colours as the variables in ui.

C Reduction Automata Constructions and Proofs

Let us first concentrate on the coloured stability problem and start with a simple
fact about possible automata construction.

Fact 6. There is a reduction automata accepting all the normal forms with re-
spect to a given set of coloured rewrite rules.

488 L. Kaiser

Proof. Construct the sum of the automata encompassing the coloured rewrite
rules which have a deterministic reduction automata by Fact 5. This construction
can be done so that the resulting automata is deterministic (see Fact 2 or [2]) and
according to Fact 3 it can also be made complete. Therefore we can construct
it’s complement using Fact 3.

Lemma 14. The coloured stability problem for a term t and constant c with
respect to a reduced RGTRS T is decidable.

Proof. According to Lemma 5 we can check the stability of a given term t by
creating a reduction automata accepting all normal forms with respect to the
coloured rewrite system T c. When we know that the term is stable we can use
Lemma 2 to construct a tree automaton without constraints that will accept
only terms that are not joinable with the constant c. This automata works in
the described way only on stable terms, but stability is assured by intersecting it
with the reduction automata recognising stable terms. Intersecting it again with
the automata that accepts only correct ground substitutions of t and checking
the emptiness yields a decision procedure according to Fact 4.

We will start analysing deep joinability of constants by exhaustively checking
if any two constants have deep non-joinability witnesses of depth zero (other
constants). For other cases we will observe the following lemma.

Lemma 15. Two constants a, b are deeply non-joinable if, and only if, they
have witnesses of deep non-joinability of height zero or one of the following
holds:

(1) There exists a term t for which b ∗→ t and t is not joinable with a or a
constant c such such that a→ c, or vice versa (swapping a and b).

(2) There exist terms of height one f(c1, . . . , cn) and g(d1, . . . , dm) with f
= g
for which a → f(c1, . . . , cn) and b → g(d1, . . . , dm). Moreover, there exist
stable terms f(u1, . . . , un) and g(v1, . . . , vm) with each ui having colour {ci}
and each vj having colour {dj}.

(3) There exist terms f(a1, . . . , an) and f(b1, . . . , bn for which a ∗→ f(a1, . . . , an)
and b ∗→ f(b1, . . . , bn). Moreover, stable terms u = f(u1, . . . , un) and v =
f(v1, . . . , vn) exist with each ui having colour {ci} and each vj having colour
{di} and for some 1 ≤ i ≤ n the terms ui and vi are witnesses of deep
non-joinability of the constants ai and bi.

Proof. It is evident that if any of these conditions holds then the constants are
deeply non-joinable.

For the converse we need to look at the paths from constants to the witnesses
of deep non-joinability of which at least one is of height at least one. If one of the
witnesses is of height one then it is covered by the first case taking into account
the the fact that the considered RGTRS is reduced

In the other case you note that there exist stable witnesses of deep non-
joinability. If these have different function symbols at the root position then
stability is enough for them to be witnesses of deep non-joinability. If they have
the same function symbol in the head then since they are stable and not joinable

Confluence of Right Ground Term Rewriting Systems Is Decidable 489

then according to lemma 2 they have to have some non-joinable children, which
are then witnesses of deep non-joinability for other constants.

Since we are now analysing pairs of terms let us extend our signature by new
function symbols P, Pl, Pr with arity two. We will later say that P (t, s) denotes
t and s, Pl(t, s) denotes the left term t and Pr(t, s) the right term s. Let us also
extend our set of coloured rewrite rules so that for each rule l → c and each
position p in l we add the rules

(1) l[P (l|p, x)]p → c,
(2) l[P (x, l|p]p → c,
(3) l[Pr(x, l|p)]p → c,
(4) l[Pl(l|p, x)]p → c,

where x is a new variable x
∈ Var(l). We repeat this process as long as possible
without having two P ′s one after another on any path in the term l considered
as a tree. Please note that a term t with a P symbol is stable with respect to
the new set of rules if all terms that it denotes are stable.

Fact 7. For each pair of constants a and b there exists a tree automaton A[a,b]
that accepts a stable term if it denotes the pair of witnesses of deep non-joinability
of a and b.

Proof. For constants a, b we will denote by qa the state for all terms with the
extended signature for which the denoted term is reachable from a, and by qa,b
the state when the denoted term is reachable from a and not joinable with b.

We will denote the state which is reached by a stable term if the term denotes
a pair of deep non-joinability witnesses of a and b by q[a,b] and we will also use
ql[a,b] and qr[a,b] for the left and right witness. This defines our set of states and
by Lemma 15 we can construct A[a,b] with the following rules:

(1) P (qa, qb,a) → q[a,b] and P (qa,b, qb) → q[a,b],
(2)

P (f(qa1 , . . . , qan), g(qb1 , . . . , qbm)) → q[a,b]

for each f(a1, . . . , an) ∗← a and g(b1, . . . , bm) ∗← b with f
= g,
(3)

P (f(qa1 , . . . , ql[aj ,bj], . . . , qan
), f(qb1 , . . . , qr[aj ,bj], . . . , qbn

)) → q[a,b]

for each f(a1, . . . , an) ∗← a and f(b1, . . . , bn) ∗← b,
(4) all above items repeated with Pl or Pr instead of the first P on the left side

and ql[] or qr[] on the right side accordingly,
(5) ε-transitions from qa,b to qa.

The correctness of the construction follows from Lemma 15.

Lemma 16. Deep joinability of constants with respect to a RGTRS is decidable.

Proof. We showed that we can construct an automaton accepting the witnesses
of deep non-joinability of two constants when the terms are stable and we showed
before that we can construct an reduction automaton accepting only stable terms
(only now we use an extended signature and other set of coloured rewrite rules).
Then we can use Fact 4 to decide the emptiness of intersection of these automata.

Safety Is ot a Restriction at Level 2
for String Languages�

K. Aehlig��, J.G. de Miranda, and C.-H.L. Ong

Oxford University Computing Laboratory

Abstract. Recent work by Knapik, Niwiński and Urzyczyn (in FOS-
SACS 2002) has revived interest in the connexions between higher-order
grammars and higher-order pushdown automata. Both devices can be
viewed as definitions for term trees as well as string languages. In the
latter setting we recall the extensive study by Damm (1982), and Damm
and Goerdt (1986). There it was shown that a language is accepted by a
level-n pushdown automaton if and only if the language is generated by
a safe level-n grammar. We show that at level 2 the safety assumption
may be removed. It follows that there are no inherently unsafe string
languages at level 2.

1 Introduction

Higher-order pushdown automata and higher-order grammars were originally in-
troduced as definitional devices for string languages by Maslov [10] and Damm
[4] respectively. Damm defined an infinite hierarchy of languages, the OI Hi-
erarchy, the nth level of which is generated by level-n grammars that satisfy
a syntactic constraint called safety1. Similarly, Maslov defined an infinite hier-
archy, the nth level of which is generated by level-n pushdown automata (or
nPDA). It was then shown [5] that the OI and Maslov hierarchies coincide: a
language is generated by a level-n safe grammar if and only if it is accepted by
a level-n pushdown automaton.

Recently, Knapik et al. [7, 8] have re-introduced higher-order grammars and
higher-order pushdown automata as definitional devices for term trees. Not sur-
prisingly, safety is, again, key to connecting the two. They show that a term tree
is generated by a safe level-n grammar if and only if it is accepted by a level-n
pushdown automaton. Furthermore, if a term tree is generated by a safe gram-
mar it enjoys a decidable monadic second order (MSO) theory. This latter result
has sparked much interest among communities interested in the verification of
infinite-state systems.

� This is an extended abstract of a longer paper [2] complete with proofs, which is
downloadable from the authors’ web pages.

�� On leave from Mathematisches Institut, Ludwig-Maximilians-Universität München.
Supported by a postdoctoral fellowship of the German Academic Exchange Organi-
sation (DAAD).

1 Formerly referred to as the restriction of “derived types”.

V. Sassone (Ed.): FOSSACS 2005, LNCS 3441, pp. 490–504, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

N

Safety Is ot a Restriction at Level 2 for String Languages 491

In light of Knapik et al.’s result, it seems important to investigate why safety
appears to be key to such good algorithmic behaviour and desirable proper-
ties. To date, no results concerning unsafe grammars (whether in the string-
language or term-tree setting) exist. We recall two questions raised by Knapik
et al. [8]. First, is safety required to guarantee MSO decidability of term trees?
Secondly, is safety required (whether in the string-language or term-tree setting)
for the equivalence between higher-order grammars and higher-order pushdown
automata?

In this paper we make a first attempt at tackling the second of the above
problems. We analyse the string-language case and show that at level 2 the
restriction is redundant. Precisely we show that every string language generated
by a level-2 unsafe grammar can be generated by a level-2 safe grammar. Hence
we arrive at the title of our paper. We conjecture that this is not the case for
the term-tree setting.

We briefly sketch a proof of our main result (Theorem 1). By examining why
Knapik et al.’s translation [8] of higher-order grammars to PDAs fails for unsafe
grammars, we discover an important relationship between items in the higher-
order store of the PDA in question. To formalise the idea, we introduce a new
kind of machine, called 2PDA with links (2PDAL for short), which is just a 2PDA
such that each 1-store that is pushed has a fresh link to the item below that has
“caused” the push2 action. When performing a pop2 subsequently, these links
serve as a means of determining the number of 1-stores to pop off. We show that
a 2PDAL can implement (i.e. accept the same language as that generated by) a
level-2 grammar, whether safe or not. Unfortunately there is no a priori bound
on the number of links required, so it is not obvious how a 2PDAL can be directly
translated to a 2PDA. However, by a careful analysis of the way links behave,
one can use a non-deterministic 2PDA to simulate a 2PDAL. Thus we have a
way of transforming a (possibly unsafe) level-2 grammar to an equivalent 2PDA.

Related Work. In [1] we address another question concerning safety: we show
that the MSO theory for all string and tree-languages defined by level-2 gram-
mars is decidable (previously this could only be asserted if the grammar was
safe). An independent proof of the same decidability result has also been given
by Knapik, Niwiński, Urzyczyn and Walukiewicz [9].

2 Definitions

In this section we introduce higher-order grammars and higher-order pushdown
automata as definitional devices for string languages. However, in Section 6 we
will relate our result to the term-tree setting [7, 8].

2.1 Higher-Order Grammars and Safety

Types and Terms. Simple types (ranged over by A, B, etc.) are defined by
the grammar: A ::= o | (A → B). Each type A can be uniquely written as

N

492 K. Aehlig, J.G. de Miranda and C. H.L. Ong

(A1, · · · , An, o) for some n ≥ 0, which is a shorthand for A1 → · · ·→ An → o (by
convention → associates to the right). We define the level of a type by level(o) = 0
and level(A → B) = max(level(A)+1, level(B)). We say that A = (A1, · · · , An, o)
is homogeneous just if level(A1) ≥ level(A2) ≥ · · · ≥ level(An), and each Ai is
homogeneous.

A typed alphabet is a set Δ of simply-typed symbols. We denote by ΔA the
subset of Δ containing precisely those elements of type A. The set of applicative
terms of type A over Δ, denoted by T A(Δ), is defined by induction over the
rules: (1) ΔA ⊆ T A(Δ); (2) if t ∈ T A→B(Δ) and s ∈ T A(Δ) then (ts) ∈ T B(Δ).
Finally, we write t : A to mean t ∈ T A and we define level(t) to be level(A).

Higher-Order Grammars and Safety. A higher-order grammar is a tuple
G = 〈N,V,Σ,R, S, e 〉 such that N is a finite set of homogeneously-typed non-
terminals, and S, the start symbol, is a distinguished element of N of type o; V
is a finite set of typed variables; Σ is a finite alphabet; R is a finite set of triples,
called rewrite rules (also referred to as production rules), of the form

Fx1 · · ·xm
α−→ E

where α ∈ (Σ ∪ { ε }), F : (A1, · · · , Am, o) ∈ N , each xi : Ai ∈ V , and E is
either a term in T o(N ∪ {x1, · · · , xm}) or is e : o. We say that F has formal
parameters x1, · · · , xm. In the case where the grammar has two or more rules
with the non-terminal F on the lefthand side, then we assume (w.l.o.g.) both
rules have the same formal parameters in the same order. Following Knapik et al.
[7] we assume that if F ∈ N has type (A1, · · · , Am, o) and m ≥ 1, then Am = o.
Thus, each non-terminal has at least one level-0 variable. Note that this is not
really a restriction – as this variable need not occur on the righthand side.

We say that G is a level-n grammar (n-grammar for short) just in case n
is the level of the non-terminal that has the highest level. We say that G is

deterministic just if whenever Fx1 · · ·xm
α−→ E and Fx1 · · ·xm

α′
−→ E′ are both

in R, then (1) if α = α′ then E = E′ and (2) if α = ε and E
= e then α′ = ε
and E = E′.

We extend R to a family of binary relations α−→ over T o(N) ∪ { e }, where
α ranges over Σ ∪ { ε }, by the rule: if Fx1 · · ·xm

α−→ E is a rule in R where
xi : Ai then for each Mi ∈ T Ai(N) we have FM1 · · ·Mm

α−→ E[Mi/xi].
A derivation of w ∈ Σ∗ is a sequence P1, P2, · · · , Pk of terms in T o(N), and

a corresponding sequence α1, · · · , αk of elements in Σ ∪ { ε } such that

S = P1
α1−→ P2

α2−→ P3
α3−→ · · · αk−1−→ Pk

αk−→ e

and w = α1 · · ·αk. The language generated by G, written L(G), is the set of
words over Σ that have derivations in G. We say that two grammars are equiv-
alent if they generate the same language.

A grammar is said to be unsafe if there exists a rewrite rule Fx1 · · ·xm
α−→ E

such that E contains a subterm t (say) in an operand position (i.e. (st) is a
subterm of E, for some s), and t contains an occurrence of xi for some 1 ≤ i ≤ n

-

493

such that level(t) > level(xi). Otherwise, the grammar is safe. It follows from the
definition that all grammars of levels 0 and 1 are safe. This definition of safety
follows the one presented by Knapik et al. [7, 8]. In our technical report [2] we
present an alternative definition of safety based on the safe λ-calculus. We make
no use of this alternative characterisation here, but offer it to the interested
reader as a natural way to understand the restriction and how it arises. For an
example of an unsafe grammar, see Example 1.

The OI Hierarchy. Damm [4] introduced the OI Hierarchy. The nth level of
the hierarchy is generated by level-n grammars (defined differently from our
grammars). Furthermore, each level is strictly contained in the one above it.
The first three levels correspond to the regular, the context-free, and the indexed
languages [3]. Damm’s grammars are rewrite relations over expressions that are
required to be objects of “derived types”. An analysis of his definition reveals
that the constraint of “derived types” is equivalent to the requirement that all
types be homogeneous and the grammar be safe, both in the sense of Knapik
et al. Assuming the grammar makes use of only homogeneous types (which all
definitions in the literature do), it follows that safety and derived types are
equivalent. In particular, it is routine to show that a level-n grammar using his
definition corresponds to a safe n-grammar in our definition (and the converse
holds too). For a comparison of the two (ours and Damm’s) we point the reader
to a note [6]. This note also motivates our preference for our definition.

Example 1. Consider the following deterministic and unsafe (because of the
underlined expressions) grammar, where Σ = {h1, h2, h3, f1, f2, g1, a, b }, with
typed non-terminals D : ((o, o), o, o, o), H : ((o, o), o, o), F : (o, o, o), G :
(o, o), A, B : o, variables ϕ, x, y and with rules:

S
ε−→ DGAB

Dϕxy
h1−→ D(Dϕx)y(ϕy)

Dϕxy
h2−→ H(Fy)x

Dϕxy
h3−→ ϕB

Hϕx
ε−→ ϕx

Gx
g1−→ x

Fxy
f1−→ x

Fxy
f2−→ y

A
a−→ e

B
b−→ e

As this grammar is deterministic [6] each word in the language has a unique
derivation. Hence, the reader can easily verify that the word h1h3h2f1b is in the
language, whereas h1h3h2f1a is not.

2.2 Higher-Order Pushdown Automata

Fix a finite set Γ of store symbols, including a distinguished bottom-of-store
symbol ⊥. A 1-store is a finite non-empty sequence [a1, · · · , am] of Γ -symbols
such that ai = ⊥ iff i = m. For n ≥ 1, an (n + 1)-store is a non-empty sequence
of n-stores. Inductively we define the empty (n+1)-store ⊥n+1 to be [⊥n] where
we set ⊥0 = ⊥. (Note that n-store is sometimes called n-stack in the literature.)
Recall the following standard operations on 1-stores:

Safety Is ot a Restriction at Level 2 for String LanguagesN

494

– push1(a) [a1, · · · , am] = [a, a1, · · · , am] for a ∈ Γ − {⊥}
– pop1 [a1, a2, · · · , am] = [a2, · · · , am]

For n ≥ 2, the following set Opn of level-n operations are defined over n-stores:

– pushn [s1, · · · , sl] = [s1, s1, · · · , sl]
– pushk [s1, · · · , sl] = [pushk s1, s2, · · · , sl], 2 ≤ k < n
– push1(a) [s1, · · · , sl] = [push1(a) s1, s2, · · · , sl] for a ∈ Γ − {⊥}
– popn [s1, · · · , sl] = [s2, · · · , sl]
– popk [s1, · · · , sl] = [popk s1, s2, · · · , sl], 1 ≤ k < n

In addition we define topn [s1, · · · , sl] = s1 and topk [s1, · · · , sl] = topk s1, 1 ≤
k < n. Note that popk s is undefined if the top k-store consists of only one
element.

A level-n pushdown automaton (nPDA for short) is a tuple 〈Q, Σ, Γ, δ, q0, F 〉
where Q is a finite set of states; q0 ∈ Q is the start state; F ⊆ Q is a set of
accepting states; Σ the finite input alphabet; Γ the finite store alphabet (which
is assumed to contain ⊥); and δ ⊆ Q×(Σ∪{ ε })×Γ×Q×Opn is the transition
relation.

A configuration of an nPDA is given by a triple (q, w, s) where q is the current
state, w ∈ Σ∗ is the remaining input, and s is an n-store over Γ .

Given a configuration (q, aw, s) (where a ∈ Σ or a = ε, and w ∈ Σ∗), we say
that (q, aw, s) → (p, w, s′) if (q, a, top1(s), p, θ) ∈ δ and s′ = θ(s). The transitive
closure of → is denoted by →+, whereas the reflexive and transitive closure is
denoted by →∗. We say that the input w is accepted by the above nPDA if
(q0, w,⊥n) →∗ (qf , ε, s) for some pushdown store s and some qf ∈ F .

3 Relating nPDAs and n-Grammars

3.1 The Main Result

Damm and Goerdt [5] showed that a string language is generated by a safe n-
grammar if and only if it is accepted by an nPDA. To our knowledge, no results
exist for unsafe n-grammars. In particular if G is an unsafe n-grammar, it is not
known whether L(G) is accepted by an nPDA, or perhaps a PDA of a higher
level. Our main result is a first step towards solving this problem.

Theorem 1. For any 2-grammar that is not assumed to be safe, there exists
a non-deterministic 2PDA the accepts the language generated by the grammar.
Moreover the conversion is effective.

Our proof is split into two parts. Given a 2-grammar we first show that it
can be implemented by a 2PDAL, where 2PDAL is a machine that has yet to
be introduced (Section 4); we then show that a 2PDAL can be simulated by
a non-deterministic 2PDA (Section 5). Combining our result with Damm and
Goerdt’s, we have:

Corollary 1. Every string language that is generated by an unsafe 2-grammar
can also be generated by some safe (non-deterministic) 2-grammar.

K. Aehlig, J.G. de Miranda and C. H.L. Ong-

495

3.2 An Example: Urzyczyn’s Language

Before we explain our result and sketch a proof, we present an example of a
deterministic but unsafe 2-grammar that generates a string language, which we
shall call Urzyczyn’s language, or simply U . We then show, via a “bespoke”
proof, that U can be accepted by a 2PDA. We shall have occasion to revisit U
later in Section 6 in the form of a conjecture.

The language U consists of words of the form w ∗n where w is a proper prefix
of a well-bracketed word such that no prefix of w is a well-bracketed expression;
each parenthesis in w is implicitly labelled with a number, and n is the label of
the last parenthesis. The two labelling rules are:

I. The label of the opening (is one; the label of any subsequent (is that of the
preceding (plus one.

II. The label of) is the label of the parenthesis that precedes the matching (.

For example, the following word is in U :

(((()) (() (())) (()) ∗ ∗
1 2 3 4 3 2 5 6 5 7 8 7 5 2 9 10 9 2

We shall first give an unsafe 2-grammar – call it GU – that generates the language
and then show that it is accepted by a 2PDA.

D ϕx y z
(
−→ D (D ϕx) z (F y) (F y)

D ϕx y z
)
−→ ϕy x

D ϕx y z
∗−→ z

S
(
−→ DGE E E

F x
∗−→ x

E
ε−→ e

Remark 1. The language U [12] was motivated by a term tree that is conjectured
in [8–p. 213] to be inherently unsafe.

Accepting U with a 2PDA. In order to show that U is accepted by a 2PDA
we make use of the following observation.

Proposition 1. Let y ∈ {(,), ∗}∗. Then y ∈ U if an only if it has a unique
decomposition into wx∗n where w is a proper prefix of a well-bracketed word
such that no prefix of it (including itself) is well-bracketed and w ends in (; x
is a (possibly empty) well-bracketed word; and n (the number of stars) is the
number of (’s in w.

In the preceding example, w = ((and x = (()) (() (())) (()).
Thanks to the decomposition in Proposition 1, the construction of a 2PDA

that accepts U is very simple. We guess the prefix of the input that constitutes
w and process w as though checking for a proper prefix of a well-bracketed
expression (using the power of a 1PDA). At the same time we perform a push2
for every (found. Thus, the number of 1-stores is equal to the number of (’s in
w. After reading w we check that x is well-bracketed. When we first meet a ∗, if
x was indeed well-bracketed, then we perform a pop2 for each ∗ found.

Safety Is ot a Restriction at Level 2 for String LanguagesN

496

(q0, a, Dt1 · · · tn) → (q0, push1(E)) if Dx1 · · ·xm
a−→ E and n ≤ m (R1)

(q0, ε, e) → accept (R2)

(q0, ε, xj) → (qj , pop1) if xj : o (R3)

(q0, ε, xjt1 · · · tn) → (qj , push2 ; pop1) if xj has level > 0 (R4)

1≤j≤n,(qj , ε, $t1 · · · tn) → (q0, pop1 ; push1(tj)) (R5)

j>n,(qj , ε, $t1 · · · tn) → (qj−n, pop2) (R6)

Fig. 1. Adapted transition rules from Knapik et al. [8]
Convention. In the Figure xj means the j-th formal parameter of the relevant non-
terminal. Furthermore, $ ∈ N ∪ V .

4 Simulating Higher-Order Grammars by 2PDALs

4.1 Understanding KNU’s Proof

Knapik et al. [8] have shown that a term tree generated by a safe n-grammar is
accepted by an nPDA. Their proof, based on a transformation of n-grammars to
their corresponding nPDAs, can easily be adapted to work in the string-language
setting.

Theorem 2. Let G be a safe 2-grammar that generates a string language. Then
L(G) is accepted by some 2PDA.

Proof. We use the same setup as Knapik et al. [8–Sect. 5.2], but now we incor-
porate an input string over the alphabet Σ. The transition function is given in
Fig. 1.

Let us examine why the construction fails if we attempt to apply it (blindly)
to an unsafe 2-grammar. As an example, we consider the grammar given in
Example 1. Recall that the word h1h3h2f1a is not in the language.

The automaton starts off in the configuration (q0, h1h3h2f1a, [[S]]), after a
few steps we reach the following configuration:

(q0, h2f1a, [[ϕB, D(Dϕx)y(ϕy), DGAB, S]])

As the topmost item, ϕB, is headed by a level-1 variable, we need to find out
what ϕ is in order to proceed. Note that ϕ is the 1st formal parameter of the
preceding item: D(Dϕx)y(ϕy), i.e., it refers to Dϕx. To this end, we perform
a push2 and then perform a pop1, and replace the topmost item with Dϕx. In
other words, we have applied rule R4 followed by R5 to arrive at:

(q0, h2f1a, [[(Dϕx)〈1−〉
, DGAB,S],

[ϕB〈1+〉, D(Dϕx)y(ϕy), DGAB, S]])

Here we have labelled two store items, one with a 1− and the other with a 1+.
These labels are not part of the store alphabet, they have been added so that
we may identify these two store items later on.

K. Aehlig, J.G. de Miranda and C. H.L. Ong-

497

The crux behind their construction is the following. Suppose we meet the
item Dϕx〈1−〉 later on in the computation, and suppose that we would like to
request its third argument, meaning we would be in state q3. Note, however,
that D in Dϕx〈1−〉 has only 2 arguments. The missing argument can be found
by visiting the item ϕB〈1+〉. Hence the labelling. We need to ensure that there
is a systematic way to get from Dϕx〈1−〉 to ϕB〈1+〉 whenever we are in a state
qj for j > 2 and we have Dϕx〈1−〉 as our topmost symbol. This systematic way
suggested by Knapik et al. is embodied by rule R6 of Fig. 1. It says that all
we need to do is perform a pop2, followed by a change in state to qj−2, and to
repeat if necessary.

After a few more steps of the 2PDA we will arrive at another configuration
where the topmost symbol is headed by a level-1 variable:

(q0, f1a, [[ϕx, H(Fy)x, (Dϕx)〈1−〉
, DGAB, S],

[ϕB〈1+〉, D(Dϕx)y(ϕy), DGAB, S]])

Therefore, we next get:

(q0, f1a, [[Fy〈2−〉, (Dϕx)〈1−〉
, DGAB, S],

[ϕx〈2+〉,H(Fy)x, (Dϕx)〈1−〉
, DGAB, S],

[ϕB〈1+〉, D(Dϕx)y(ϕy), DGAB, S]])

Again we have labelled a new pair of store items, so that the same principle
applies: if we want the missing argument of Fy〈2−〉, then we will be able to find
it at ϕx〈2+〉. After a few more steps we eventually reach the following crucial
configuration:

(q3, a, [[(Dϕx)〈1−〉
, DGAB,S],

[ϕx〈2+〉,H(Fy)x, (Dϕx)〈1−〉
, DGAB, S],

[ϕB〈1+〉, D(Dϕx)y(ϕy), DGAB, S]])

(1)

Intuitively, here we want the third argument of D in the expression Dϕx. By
rule R6 we arrive at: (in the following →n means n steps of →)

(q1, a, [[ϕx〈2+〉,H(Fy)x, (Dϕx)〈1−〉
, DGAB, S],

[ϕB〈1+〉, D(Dϕx)y(ϕy), DGAB, S]])

→2 (q2, a, [[H(Fy)x, (Dϕx)〈1−〉
, DGAB, S],

[ϕB〈1+〉, D(Dϕx)y(ϕy), DGAB, S]])

→2 (q2, a, [[(Dϕx)〈1−〉
, DGAB,S],

[ϕB〈1+〉, D(Dϕx)y(ϕy), DGAB, S]])
→2 (q2, a, [[DGAB,S],

[ϕB〈1+〉, D(Dϕx)y(ϕy), DGAB, S]])

Safety Is ot a Restriction at Level 2 for String LanguagesN

498

→2 (q0, ε, [[e,A, S],

[ϕB〈1+〉, D(Dϕx)y(ϕy), DGAB, S]])

Note that we have accepted h1h3h2f1a which is incorrect! The construction only
works under the assumption that the grammar is safe. However, the labels we
have used lead us to the construction of a new kind of machine which can remedy
this problem.

Provided that each time we create a new pair of labels (the + and − part), we
ensure they are unique, then these labels provide a way of always jumping to the
correct 1-store when we are looking for missing arguments. Why? Because each
time we want the missing argument of an item labelled with n−, we would simply
perform as many pop2’s as necessary until our topmost symbol was labelled
with the corresponding n+. To see how this would work, let us backtrack to
configuration (1) in the above example. Applying this idea of a parameterised
pop2, this brings us to:

(q1, a, [[ϕB〈1+〉, D(Dϕx)y(ϕy), DGAB, S]])

which is indeed what we wanted, and it is easy to see the word will be rejected.
This idea of using pairs of labels, which we call links is formalised in a new kind
of machine called level-2 pushdown automaton with links, or simply 2PDAL.

4.2 Formal Definition of 2PDAL

Formally, a 2PDAL is a 2PDA with the added feature that each item can be
decorated with labels from the set {n+ : n ≥ 1} ∪ {n− : n ≥ 1}. It is possible
for an item to have zero, one or two labels – no other possibilities exist. We
write labels as superscripts, as in a〈〉 (or simply a), a〈3+〉 and a〈3+,4−〉. These
superscripts are sets of at most two elements, ranged over by λ; thus we have
〈3+〉∪〈4−〉 = 〈3+, 4−〉 = 〈4−, 3+〉. In the case where an item has two labels, one
of these will always be a + and the other a −. These labels come in matching
pairs. Thus, if there exists an item in the store labelled by m− and another
labelled by m+, together they are said to form an instance of the link m. We
refer to the item that gains the − as the start point and that which gains the +,
the end point.

In addition to the usual operations of a 2PDA, a 2PDAL has an iterated
form of pop2, parameterised over links m, defined as follows: for s ranging over
2-stores

pop2(m) s =

{
s if top1(s) has label m+

pop2(m)(pop2(s)) otherwise

Given a 2-grammar G (not assumed to be safe) transitions of the correspond-
ing 2PDAL, written 2PDALG, are defined by induction over the set of rules in
Fig. 2. For convenience we have written repl1(a) as a shorthand for pop1;push1(a).
The store alphabet, Γ , is comprised of the start symbol S (as the bottom-of-
store symbol) and a subset of the (finite) set of all subexpressions of the right

K. Aehlig, J.G. de Miranda and C. H.L. Ong-

499

(q0, a, Dt1 · · · tn
λ) → (q0, push1(E)) if Dx1 · · ·xm

a−→ E and n ≤ m

(q0, ε, e) → accept

(q0, ε, xj) → (qj , pop1)

(q0, ε, ϕjt1 · · · tn
λ) → (q0, repl1(ϕjt1 · · · tn

λ∪〈 m+ 〉) ; push2 ; pop1 ; repl1(sj
〈m−〉))

where m is fresh and Ds1 · · · sn′λ′
precedes ϕjt1 · · · tn

λ.

1≤j≤n, (qj , ε, $t1 · · · tn
λ) → (q0, repl1(tj))

j>n, (qj , ε, $t1 · · · tn
λ) → (qj−n, pop2(m)) if m− ∈ λ

Fig. 2. Transition rules of the 2PDAL, 2PDALG

hand sides of the productions in G. We assume that each production rule of the
grammar assumes the following format:

Fϕ1 · · ·ϕmxm+1 · · ·xm+n
a−→ E (2)

where the ϕ’s are used for level-1 parameters, and the x’s are used for level-0
parameters. As in Knapik et al., the set of states includes {qi : 0 ≤ i ≤ M}, where
M is the maximum of the arities2 of any non-terminal or variable occurring in the
grammar. As can be seen from Fig. 2 the automaton works in phases beginning
and ending in distinguished states qi with some auxiliary states in between.

Proposition 2. The language of a (possibly unsafe) 2-grammar G is accepted
by 2PDALG.

Proof. (Sketch) Intuitively the correctness of this proposition should be clear.
For a formal proof we find it useful to appeal to a new model of computation for
higher-order grammars due to Stirling [11] called pointer machines. We show that
a pointer machine for a grammar G can be simulated by 2PDALG. Unfortunately,
owing to space constraints, we cannot give details of pointer machines here, but
we point the interested reader to the technical report [2].

Remark 2. In an e-mail [12], Urzyczyn sketches a model of computation for
evaluating (possibly unsafe) grammars called a “panic automaton”. We under-
stand that it can be shown that a level-2 panic automaton can be simulated by a
3PDA. However, only after our submission to FOSSACS’05 did a full account [9]
of this new automaton become available. A preliminary reading of this account
suggests that panic automata and PDALs are similar in many respects, but a
detailed analysis of their relationships awaits further investigation. It should be
mentioned that in [9] panic automata are used to give a proof of the MSO de-
cidability of all term trees generated by level-2 grammars (as was mentioned at
the end of Section 1).

2 A term of type A1 → · · · → An → o is said to have arity n.

Safety Is ot a Restriction at Level 2 for String LanguagesN

500

5 Simulating 2PDALs by Non-deterministic 2PDAs

The incorporation of labels (as names of links) into the store alphabet will, in
general, lead to an infinite alphabet. Here we show how these links and the way
in which they are manipulated can be simulated by a non-deterministic 2PDA.

5.1 Intuition

Note that in the running example of Section 4, only the link labelled by 1 was
“followed”, in the sense that we jumped from the 1− to the 1+. The link labelled
by 2, on the other hand, did not serve any purpose in this run.

The intuition behind simulating 2PDALG with a 2PDA relies on guessing
which links are “useful” and only labelling those. We will see that “useful” links
interact with one another in a very consistent and well-behaved way that will
allow us to label them anonymously. We formalise this here.

We say that a link m is queried if we are in a configuration (qi, w, s) where
i > 0 and top1(s) = $t1 · · · tnλ with m− ∈ λ. Intuitively, querying a link m
formalises the notion of “asking for a level-0 argument” from an item labelled
with m−. We say that a link m is followed if the link m is queried (as above)
and i > n. The following lemma is crucial:

Lemma 1. Given a link m, m is queried at most once during the run of a
2PDALG for a 2-grammar G.

The simulating non-deterministic 2PDA will follow the rules in Fig. 2 almost
exactly. The difference is that each time we are about to generate a link we guess
whether it will ever be followed in the future or not. We have the luxury of doing
this precisely because of Lemma 1. Thus, we label the start and end points of
the link if and only if we guess that it will be followed. Furthermore, instead
of a fresh label m, we simply mark the start point with a − and the end point
with a +. Our non-deterministic 2PDA will thus have a finite store alphabet:
Γ ∪ {a+ : a ∈ Γ} ∪ {a− : a ∈ Γ} ∪ {a+/− : a ∈ Γ} where Γ is the store alphabet
of the preceding section.

A Controlled Form of Guessing. Now this presents a problem of ambiguity.
Suppose we find ourselves in a configuration (q, w, s) where top1(s) is labelled by
−, how can we tell which of the store items labelled by a + is the true end point
of this link? (True in the sense that if we did have the ability to name our links
as with 2PDALG, the topmost item would have label m− for some m, and the
real end point would have label m+ for the same m.) The answer lies in the use
of a controlled form of guessing: when guessing whether a link will be followed
in the future we require the guess to be subject to some constraints. We shall
see that as a consequence the following invariant can be maintained:

Assume that the topmost 1-store has at least one item labelled by −. For
the leftmost (closest to the top) of these, the corresponding end point

K. Aehlig, J.G. de Miranda and C. H.L. Ong-

501

can always be found in the first 1-store beneath it whose topmost item is
marked with a +.3

Before formalising the controlled form of guessing, we introduce a definition.
Let (q0, w, s) be a reachable configuration of 2PDALG such that

top2(s) = [ϕj1t1 · · · tλn, A1, · · · , Ak, · · · , AN]

where N ≥ 2. We say that ϕj1 ultimately refers to Ak just if:

(i) For i = 1, · · · , k − 1, the jith argument of Ai (where Ai is of the form
Ds1 · · · sl for some D ∈ N and some l ≥ ji) is a variable ϕji+1 . We remind
the reader of the notational convention set out in (2).

(ii) The jkth argument of Ak is an application or a non-terminal.

Suppose that we are in a configuration (q0, w, s) of the non-deterministic
2PDA where top2(s) = [ϕt1 · · · t?n, A1, · · · , Ak, · · · , AN] where ? may either de-
note a − or no label at all. Furthermore, suppose that ϕ ultimately refers to Ak.
Two possibilities exist:

A. None of the store items ϕt1 · · · t?n, A1, · · · , Ak are labelled by a −; or
B. There exists a store item in ϕt1 · · · t?n, A1, · · · , Ak labelled by a −.

In the first case we leave it up to the 2PDA to guess whether this link will be
followed or not. In the second case, we force it to label ϕt1 · · · tn (with +) as
well as its matching partner (with −), thus committing it to following this link
in the future.

We illustrate why this maintains the above invariant with an example. Con-
sider: ⎡

⎢⎢⎣
[ϕx1x2, Dϕx−, F (Fϕx)y,Gϕx−, · · ·]
[A+, · · ·]
[B+, · · ·]

⎤
⎥⎥⎦

Note that the topmost store has two items labelled with a −, Dϕx and Gϕx.
By our invariant we know that Dϕx has end point A+. And let us suppose that
Gϕx points to B+. Suppose that the ϕ of the topmost item ultimately refers to
F (Fϕx)y. Furthermore, suppose we go against our controlled form of guessing
and allow the machine not to label ϕx1x2 and its matching partner. Thus we
arrive at ⎡

⎢⎢⎢⎢⎣
[ϕ, F (Fϕx)y,Gϕx−, · · ·]
[ϕx1x2, Dϕx−, F (Fϕx)y,Gϕx−, · · ·]
[A+, · · ·]
[B+, · · ·]

⎤
⎥⎥⎥⎥⎦

Now Gϕx is the leftmost item labelled with a −. Our invariant has been violated
as the real end point of Gϕx is not A+.

3 The invariant is actually stronger than this, but this is sufficient to ensure that the
simulation works correctly.

Safety Is ot a Restriction at Level 2 for String LanguagesN

502

(q0, a, Dt1 · · · tλ
n) → (q0, push1(E)) if Dx1 · · ·xm

a−→ E and n ≤ m

(q0, ε, e) → accept

(q0, ε, xj) → (qj , pop1)

(q0, ε, ϕjt1 · · · tn) →
{

(q0, repl1(ϕjt1 · · · tn
+) ; push2 ; pop1 ; repl1(sj

−))

(q0, push2 ; pop1 ; repl1(sj))

if Situation A holds and Ds1 · · · sn′λ′
precedes ϕjt1 · · · tn

(q0, ε, ϕjt1 · · · tn
λ) → (q0, repl1(ϕjt1 · · · tn

+∪λ) ; push2 ; pop1 ; repl1(sj
−))

if Situation B holds and Ds1 · · · sn′λ′
precedes ϕjt1 · · · tn

λ

1≤j≤n, (qj , ε, $t1 · · · tλ
n) →

{
(q0, repl1(tj)) if − �∈ λ

abort if − ∈ λ

j>n, (qj , ε, $t1 · · · tλ
n) →

{
abort if − �∈ λ

(qj−n, pop+
2) if − ∈ λ

Fig. 3. Transition rules of the non-deterministic 2PDA, 2PDAG

In the above, Situations A and B refer to the two possibilities outlined in the preceding
page regarding ultimate referral.

Penalty for Guessing Wrongly. The cost of using non-determinism is that
we commit ourselves to following our guesses. When we find out that we have
guessed wrongly, we shall have to abort the run. There are two cases. Suppose we
find ourselves in a configuration (qj , w, s) where top1(s) = $x1 · · ·xn

− and j ≤ n.
The fact that the topmost item is labelled by − means that we guessed that we
would follow this link. We have guessed wrongly and we abort. Symmetrically
if we reach (qj , w, s) where top1(s) = $x1 · · ·xn and j > n, then we also abort.
Why? The absence of a − label means that we guessed that we would not follow
this link, but we are now about to turn against our original guess.

5.2 Definition of the Non-deterministic 2PDA, 2PDAG

Let G be a (possibly unsafe) 2-grammar. The transition rules of the correspond-
ing non-deterministic 2PDA, 2PDAG, are given in Fig. 3.

Note that we assume that production rules of the grammar assume the format
given in rule (2). Let s range over 2-stores, we define pop+

2 (s) = p(pop2(s)) where

p(s) =

{
s if top1(s) has label +

p(pop2(s)) otherwise

Remark 3. In the definition of the transition rules (Fig. 3), in case the top1 item
of the 2-store is headed by a level-1 variable, the 2PDA has to work out whether
situation A or B holds. This can be achieved by a little scratch work on the side:
do a push2, inspect the topmost 1-store for as deep as necessary, followed by a

K. Aehlig, J.G. de Miranda and C. H.L. Ong-

503

pop2. Alternatively we could ask the oracle to tell us whether it is A or B, taking
care to ensure that a wrong pronouncement will lead to an abort.

Proposition 3. Given a 2-grammar G, 2PDALG can be simulated by 2PDAG.

Proof. (Sketch) It should be quite clear from Fig. 3 that 2PDAG behaves like
a “crippled” 2PDALG. Thus, we can expect that if w is accepted by 2PDAG,
then w is accepted by 2PDALG. To show the converse requires a more delicate
analysis of the behaviour of 2PDALs which we do not have space to contain
here. Roughly, we assume the existence of an all-knowing oracle that can tell us
whether or not a link will be followed in the future. All we then need to show
is that the controlled form of guessing does not restrict the choices of the oracle
– which it does not (i.e the controlled form of guessing is actually “sensible”).
Full proofs of both directions are given in the technical report [2].

6 Urzyczyn’s Language: A Conjecture About Term Trees

We have shown that the language U is accepted by a non-deterministic 2PDA.
Based on the grammar GU for Urzyczyn’s language, we can construct the follow-
ing term-tree generating grammar4 over signature Σ = {(: (o, o),) : (o, o), ∗ :
(o, o), 3 : (o, o, o, o), e : o, r : o} and with the following rewrite rules.

S → (DGEEE

Dϕxyz → 3((D(Dϕx)z(Fy)(Fy))()ϕyx)(∗z)

Fx → ∗x
E → e

G → r

Proposition 4. Suppose that the term tree generated by the above grammar can
be generated by a safe (term-tree generating-) 2-grammar. Then the language U
can be accepted by a deterministic 2PDA.

Conjecture 1. U cannot be accepted by a deterministic 2PDA.

Conjecture 1 is closely related to a conjecture of Knapik et al.; see Remark 1.
Thanks to Proposition 4, provided Conjecture 1 is true, we will have an example
of an inherently unsafe term tree i.e. an unsafe 2-grammar whose term tree
cannot be generated by a safe 2-grammar.

7 Further Directions

Let us recall our main result. We have shown that the string language of every
level-2 grammar (whether safe of unsafe) can be accepted by a 2PDA. Combining

4 See [7, 8] for the term-tree definitions of grammars and PDAs.

Safety Is ot a Restriction at Level 2 for String LanguagesN

504

this with earlier results [5] we have that there are no inherently unsafe string
languages at level 2. This was a first attempt at understanding safety. However,
our result leaves many questions unanswered:

– Does our result extend to levels 3 and beyond?
– What is the relationship between deterministic unsafe grammars and deter-

ministic safe grammars? In particular, Conjecture 1.
– Is safety a requirement for MSO decidability? (An easy corollary of the

result we have presented here is that LTL model-checking [13] is decidable
for term trees generated by level-2 unsafe grammars – see technical report
[2] for details. This has recently been superseded [1, 9].)

– It would be useful to have a “pumping lemma” for higher-order PDAs. We
understand that Blumensath has a promising argument involving intricate
surgeries on runs on an automaton; his ideas gives conditions under which
such runs can be “pumped”.

References

1. K. Aehlig, J. G. de Miranda, and C. H. L. Ong. The monadic second order theory
of trees given by arbitrary level-two recursion schemes is decidable. TLCA’05 (to
appear).

2. K. Aehlig, J. G. de Miranda, and C. H. L. Ong. Safety is not a restriction at level
2 for string languages. Technical Report PRG-RR-04-23, OUCL, 2004.

3. A. Aho. Indexed grammars - an extension of context-free grammars. J. ACM,
15:647–671, 1968.

4. W. Damm. The IO- and OI-hierarchy. TCS, 20:95–207, 1982.
5. W. Damm and A. Goerdt. An automata-theoretical characterization of the OI-

hierarchy. Information and Control, 71:1–32, 1986.
6. J. G. de Miranda and C. H. L. Ong. A note on deterministic pushdown languages.

Available at http://web.comlab.ox.ac.uk/oucl/work/jolie.de.miranda, 2004.
7. T. Knapik, D. Niwiński, and P. Urzyczyn. Deciding monadic theories of hyperal-

gebraic trees. In TLCA’01, pages 253–267. Springer, 2001. LNCS Vol. 2044.
8. T. Knapik, D. Niwiński, and P. Urzyczyn. Higher-order pushdown trees are easy.

In FOSSACS’02, pages 205–222. Springer, 2002. LNCS Vol. 2303.
9. T. Knapik, D. Niwiński, P. Urzyczyn, and I. Walukiewicz. Unsafe grammars, panic

automata, and decidability. 25 October, 2004.
10. A. N. Maslov. The hierarchy of indexed languages of an arbitrary level. Soviet

Math. Dokl., 15:1170–1174, 1974.
11. C. Stirling. Personal email communication. 15 October, 2002.
12. P. Urzyczyn. Personal email communication. 26 July, 2003.
13. M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In Banff

Higher Order Workshop, pages 238–266. Springer-Verlag, 1995.

K. Aehlig, J.G. de Miranda and C. H.L. Ong-

A Computational Model for Multi-variable
Differential Calculus

A. Edalat1, A. Lieutier2, and D. Pattinson1

1 Department of Computing, Imperial College London, UK
2 Dassault Systemes Provence, Aix-en-Provence, France

Abstract. We introduce a domain-theoretic computational model for multi-
variable differential calculus, which for the first time gives rise to data types for
differentiable functions. The model, a continuous Scott domain for differentiable
functions of n variables, is built as a sub-domain of the product of n + 1 copies
of the function space on the domain of intervals by tupling together consistent
information about locally Lipschitz (piecewise differentiable) functions and their
differential properties (partial derivatives). The main result of the paper is to show,
in two stages, that consistency is decidable on basis elements, which implies that
the domain can be given an effective structure. First, a domain-theoretic notion
of line integral is used to extend Green’s theorem to interval-valued vector fields
and show that integrability of the derivative information is decidable. Then, we
use techniques from the theory of minimal surfaces to construct the least and the
greatest piecewise linear functions that can be obtained from a tuple of n+1 ratio-
nal step functions, assuming the integrability of the n-tuple of the derivative part.
This provides an algorithm to check consistency on the rational basis elements of
the domain, giving an effective framework for multi-variable differential calculus.

1 Introduction

We introduce a domain-theoretic computational model for multi-variable differential
calculus, which for the first time gives rise to data types for differentiable functions.
The model is a continuous Scott domain for differentiable functions of n variables. It
allows us to deal with differentiable functions in a recursion theoretic setting, and is thus
fundamental for applications in computational geometry, geometric modelling, ordinary
and partial differential equations and other fields of computational mathematics. The
overall aim of the framework is to synthesize differential calculus and computer science,
which are two major pillars of modern science and technology.

The basic idea of the model is to collect together the local differential properties
of multi-variable functions by developing a generalization of the concept of a Lip
s

-
chitz constant to an interval vector Lipschitz constant. The collection of these local

differentiable properties are then used to define the domain-theoretic derivative of a
multi-variable function and the primitives of an interval-valued vector field, which leads
to a fundamental theorem of calculus for interval-valued functions, a theorem that has
no counterpart in classical analysis. This fundamental theorem is then used to construct
the domain of differentiable functions as a sub-domain of the product of n + 1 copies

V. Sassone (Ed.): FOSSACS 2005, LNCS 3441, pp. 505–519, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

506 A. Edalat, A. Lieutier, and D. Pattinson

of the function space on the domain of intervals by tupling together consistent infor-
mation about locally Lipschitz (piecewise differentiable) functions and their differential
properties (partial derivatives). The base of this domain is a finitary data type, given
by consistent tuples of n + 1 step functions, where consistency means that there exists
a piecewise differentiable function, equivalently a piecewise linear function, which is
approximated, together with its n partial derivatives where defined, by the n + 1 step
functions.

The geometric meaning of the finitary data type and consistency is as follows. Each
step function is represented by a finite set of n+1 dimensional rational hyper-rectangles
in, say, [0, 1]n × R such that any two hyper-rectangles have non-empty intersection
whenever the interior of their base in [0, 1]n have non-empty intersection. Such a set of
hyper-rectangle gives a finitary approximation to a real-valued function on the unit cube
[0, 1]n if in the interior of the base of each hyper-rectangle the graph of the function is
contained in that hyper-rectangle. A collection of n + 1 such sets of hyper-rectangles
could thus provide a finitary approximation to a function and its n partial derivatives.
Consistency of this collection means that there exists a piecewise differentiable function
which is approximated together with its partial derivatives, where defined, by the col-
lection. For a consistent tuple, there are a least and a greatest piecewise differentiable
function which satisfy the function and the partial derivative constraints. Figure 1 shows
two examples of consistent tuples for n = 2 and in each case the least and greatest
functions consistent with the derivative constraints are drawn. In the first case, on the
left, there is a single hyper-rectangle for function approximation and the derivative ap-
proximations in the x and y directions over the whole domain of the function are given
respectively by the constant intervals [n,N] and [m,M] with n,m > 0. In the second
case, on the right, there are two intersecting hyper-rectangles for the function approx-
imation and the derivative approximations are the constant intervals [0, 0] and [m,M]
with m > 0.

y

x

slope n

slope m slope m

slope M

Fig. 1. Two examples of consistent function and derivative approximations

The main question now is whether consistency of the n+1 step functions is actually
decidable. This problem is, as we have seen, very simple to state but it turns out to be
very hard to solve, as it requires developing some new mathematics. The main result of
the paper is to show, in two stages, that consistency is decidable on basis elements. As in
classical differential multi-variable calculus, an interval-valued function may fail to be
integrable. Thus, in the first stage, we introduce a domain-theoretic notion of line integral,
which we use to establish a necessary and sufficient condition for an interval-valued

A Computational Model for Multi-variable Differential Calculus 507

Scott continuous vector function to be integrable: zero must be contained in the line
integral of the interval-valued vector field with respect to any closed path. This extends
the classical Green’s Theorem for a vector field to be a gradient [9 pages 286-291] to
interval-valued vector fields. We thus obtain a main result of this paper: an algorithm
to check integrability for rational step functions, i.e., given n rational step functions, to
check if there exists a piecewise differentiable function whose partial derivatives, where
defined, are approximated by these step functions.

Finally, we use techniques from the theory of minimal surfaces to construct the least
and the greatest piecewise linear functions obtained from a tuple of n + 1 rational step
functions, in which the n-tuple of the derivative part is assumed to be integrable. These
surfaces are obtained by, respectively, maximalizing and minimalizing the lower and
the upper line integrals of the derivative information over piecewise linear paths. The
maximalization and minimization are achieved for a piecewise linear path which can all
be effectively constructed. The decidability of consistency is then reduced to checking
whether the minimal surface is below the maximal surface, a task that can be done in finite
time. This leads to an algorithm to check consistency of an n+ 1 tuple and to show that
consistency is decidable on the rational basis elements of the domain for locally Lipschitz
functions, giving an effective framework for multi-variable differential calculus.

In the last section, we mention two applications of our framework, each worked out
in detail in a follow-up paper. In the first, the domain for differential functions allows
us to develop a domain-theoretic version of the inverse and implicit function theorem,
which provides a robust technique for construction of curves and surfaces in geometric
modelling and CAD. Our second application is a domain-theoretic adaption of Euler’s
method for solving ordinary differential equations, where we use the differential prop-
erties of the vector field defining the equation to improve the quality of approximations
to the solution.

Due to the large number of new concepts in the paper and lack of space, nearly all
proofs had to be omitted.

1.1 Related Work

This work represents an extension of the domain-theoretic framework for differential
calculus of a function of one variable introduced in [6] and its applications in solving
initial value problems [5, 8]. The extension to higher dimension is however far more
involved than the extension of classical differential calculus to higher dimensions.

The domain-theoretic derivative is closely related to the so-called generalized (or
Clarke’s) gradient, which is a key tool in nonsmooth analysis, control theory and opti-
mization theory [3, 4]. For any locally Lipschitz function, the domain-theoretic derivative
at a point gives the smallest hyper-rectangle, with sides parallel to the coordinate planes,
which contains the Clarke’s gradient.

In computable analysis, Pour-El and Richards [11] relate the computability of a
function with the computability of its derivative. Weihrauch’s scheme [13] leads to
partially defined representations, but there is no general result on decidability. Interval
analysis [10] also provides a framework for verified numerical computation. There,
differentiation is performed by symbolic techniques [12] in contrast to our sequence of
approximations of the functions.

,

508 A. Edalat, A. Lieutier, and D. Pattinson

1.2 Notations and Terminology

We use the standard notions of domain theory as in [1]. Let D0[0, 1]n = [0, 1]n → IR
be the domain of all Scott continuous functions of type [0, 1]n → IR; we often write
D0 for D0[0, 1]n. A function f ∈ D0 is given by a pair of respectively lower and upper
semi-continuous functions f−, f+ : [0, 1]n → R with f(x) = [f−(x), f+(x)]. Given a
domain A, we denote by An

s the smash product, i.e., a ∈ An
s if a = (a1, · · · , an) ∈ An

with ai
= ⊥ for all i = 1, · · · , n or a = ⊥. Let (IR)m×n
s denote the set of all m × n

matrices with entries in IR, where for such a matrix either all components are non-bottom
or the matrix itself is bottom. We use standard operations of interval arithmetic on interval
matrices. By a = [a, a] ∈ (IR)m×n, where a, a ∈ R

m×n, we denote an interval matrix
with (i, j) entry given by the interval [aij , aij]. We identify the real number r ∈ R with
the singleton {r} ∈ IR. And similarly for interval vectors and functions. We will use the
sign function given by the multiplicative group homomorphism σ : R → {−, 0,+}. We
write ‖x‖ =

√∑n
i=1 x

2
i for the standard Euclidean norm of x = (x1, · · · , xn) ∈ R

n.
The classical derivative of a map f : [0, 1]n → R at y ∈ [0, 1], when it exists, is denoted
by f ′(y). We will reserve the notation df

dx exclusively in this paper for the domain-
theoretic derivative which will be introduced later. The interior of a set A ⊂ R

n is
denoted by A◦ and its closure by cl(A).

2 Ties of Functions of Several Variables

The local differential property of a function is formalized in our framework by the notion
of an interval Lipschitz constant.

Definition 1. The continuous function f : [0, 1]n → IR has an interval Lipschitz con-
stant b ∈ (IR)1×n

s in a ∈ (I[0, 1])n if for all x, y ∈ a◦ we have: b(x−y) 3 f(x)−f(y).
The single-step tie δ(a, b) ⊆ D0[0, 1] of a with b is the collection of all functions in
D0[0, 1] which have an interval derivative b in a.

For example, if n = 2, the information relation above reduces to b1(x1− y1)+ b2(x2−
y2) 3 f(x)−f(y). For a single-step tie δ(a, b), one can think of b as a Lipschitz interval
vector constant for the family of functions in δ(a, b). A classical Lipschitz would require
k = |bi| = |bi| ≥ 0 for all i = 1 · · ·n. By generalizing the concept of a Lipschitz
constant in this way, we are able to obtain essential information about the differential
properties of the function, which includes what the classical Lipschitz constants provide:

Proposition 1. If f ∈ δ(a, b) for a◦
= ∅ and b
= ⊥, then f(x) is maximal for each
x ∈ a◦ and the induced function f : a◦ → R is Lipschitz: for all u, v ∈ a◦ we have
|f(u)− f(v)| ≤ k‖u− v‖, where k = max1≤i≤n(|bi|, |bi|).

The following proposition justifies our definition of interval derivative.

Proposition 2. For f ∈ C1[0, 1]n, the following three conditions are equivalent:
(i) f ∈ δ(a, b), (ii) ∀z ∈ a◦. f ′(z) ∈ b and (iii) a↘ b 3 f ′.

When the components of a and b are rational intervals δ(a, b) is a family of functions
in D0 with a finitary differential property. For the rest of this section, we assume we are
in dimension n ≥ 2.

A Computational Model for Multi-variable Differential Calculus 509

Definition 2. A step tie of D0 is any finite intersection
⋂

1≤i≤n δ(ai, bi) ⊂ D0. A tie of
D0 is any intersection Δ =

⋂
i∈I δ(ai, bi) ⊂ D0. The domain of a non-empty tie Δ is

defined as dom(Δ) =
⋃

i∈I{a◦i | bi
= ⊥}.

A non-empty step tie with rational intervals gives us a family of functions with a finite
set of consistent differential properties, and a non-empty general tie gives a family of
functions with a consistent set of differential properties. The following result sums up
the main relation between step ties and step functions.

Proposition 3. For any indexing set I , the family of step functions (ai ↘ bi)i∈I is
consistent if

⋂
i∈I δ(ai, bi)
= ∅.

Let (T 1[0, 1],⊇) be the dcpo of ties of D0 ordered by reverse inclusion. We are
finally in a position to define the primitives of a Scott continuous function; in fact now
we can do more and define:

Definition 3. The primitive map
∫

: ([0, 1]n → (IR)1×n
s) → T 1 is defined by∫

(
⊔

i∈I ai ↘ bi) =
⋂

i∈I δ(ai, bi). We usually write
∫

(f) as
∫
f and call it the primi-

tives of f .

Proposition 4. The primitive map is well-defined and continuous.

For n ≥ 2, as we are assuming here, the primitive map will have the empty tie in
its range, a situation which does not occur for n = 1. Therefore, we have the following
important notion in dimensions n ≥ 2.

Definition 4. A map g ∈ [0, 1]n → (IR)1×n
s is said to be integrable if

∫
g
= ∅.

Example 1. Let g ∈ [0, 1]2 → (IR)1×2
s) be given by g = (g1, g2) =

(λx1.λx2.1, λx1.λx2.x1). Then ∂g1
∂x2

= 0
= 1 = ∂g2
∂x1

, and it will follow that
∫
g = ∅.

3 Domain-Theoretic Derivative

Given a Scott continuous function f : [0, 1]n → IR, the relation f ∈ δ(a, b), for
some intervals a and b, provides, as we have seen, finitary information about the local
differential properties of f . By collecting all such local information, we obtain the
complete differential properties of f , namely its derivative.

Definition 5. The derivative of a continuous function f : [0, 1]n → IR is the map

df

dx
=

⊔
f∈δ(a,b)

a↘ b : [0, 1]n → (IR)1×n
s .

Theorem 1. (i) df
dx is well-defined and Scott continuous.

(ii) If f ∈ C1[0, 1]n then df
dx = f ′.

(iii) f ∈ δ(a, b) iff a↘ b 3 df
dx .

510 A. Edalat, A. Lieutier, and D. Pattinson

We obtain the generalization of Theorem 1(iii) to ties, which provides a duality
between the domain-theoretic derivative and integral and can be considered as a variant
of the fundamental theorem of calculus.

Corollary 1. f ∈
∫
g iff g 3 df

dx .

The following proposition relates the domain theoretic derivative to its classical
counterpart.

Proposition 5. (i) Let f : [0, 1]n → IR be Scott continuous. Suppose for some z ∈
[0, 1]n, f(z) is not maximal, then df

dx (z) = ⊥.

(ii) If df
dx (y) = c ∈ (IR)1×n

s is maximal, then f sends elements to maximal elements
in a neighborhood U of y and the derivative of the induced restriction f : U → R

exists at y and f ′(y) = c.

In the full version of the paper, we formulate the relation between the domain-
theoretic derivative with two other notions of derivative, namely Dini’s derivative and
Clarke’s gradient. We express the domain-theoretic derivative in terms of lower and
upper limits of the Dini’s derivatives and we show that, for Lipschitz functions, the
domain-theoretic derivative gives the smallest hyper-rectangle containing the Clarke’s
gradient.

4 Domain for Lipschitz Functions

We will construct a domain for locally Lipschitz functions and for C1[0, 1]n. The idea is
to use D0 to represent the function and [0, 1]n → (IR)1×n

s to represent the differential
properties (partial derivatives) of the function. Note that the domain [0, 1]n → (IR)1×n

s

is isomorphic to the smash product (D0)ns ; we can write g ∈ [0, 1]n → (IR)1×n
s as

g = (g1, · · · , gn) ∈ (D0)ns with dom(g) = dom(gi) for all i = 1, · · · , n. Consider the
consistency relation

Cons ⊂ D0 × (D0)ns ,

defined by (f, g) ∈ Cons if ↑f ∩
∫
g
= ∅. For a consistent (f, g), we think of f as the

function part or the function approximation and g as the derivative part or the derivative
approximation. We will show that the consistency relation is Scott closed.

Proposition 6. Let g ∈ (D0)ns and (fi)i∈I be a non-empty family of functions fi :
dom(g) → R with fi ∈

∫
g for all i ∈ I . If h1 = infi∈I fi is real-valued then h1 ∈

∫
g.

Similarly, if h2 = supi∈I fi is real-valued, then h2 ∈
∫
g.

LetR[0, 1] be the set of partial maps of [0, 1] into the extended real line. Consider the
two dcpo’s (R[0, 1],≤) and (R[0, 1],≥). Define the maps s : D0 × (D0)ns → (R,≤)
and t : D0 × (D0)ns → (R,≥) by

s : (f, g) "→ inf{h : dom(g) → R |h ∈
∫

g & h ≥ f−}

A Computational Model for Multi-variable Differential Calculus 511

t : (f, g) "→ sup{h : dom(g) → R |h ∈
∫

g & h ≤ f+}.

We use the convention that the infimum and the supremum of the empty set are ∞
and −∞, respectively. Note that given a connected component A of dom(g) with A ∩
dom(f) = ∅, then s(f, g)(x) = −∞ and t(s, f)(x) = ∞ for x ∈ A. In words, s(f, g)
is the least primitive map of g that is greater than the lower part of f , whereas t(f, g) is
greatest primitive map of g less that the upper part of f .

Proposition 7. The following are equivalent:

(i) (f, g) ∈ Cons.
(ii) s(f, g) ≤ t(f, g).

(iii) There exists a continuous function h : dom(g) → R with g 3 dh
dx and f 3 h on

dom(g).

Moreover, s and t are well-behaved:

Proposition 8. The maps s and t are Scott continuous.

This enables us to deduce:

Corollary 2. The relation Cons is Scott closed.

We can now sum up the situation for a consistent pair of function and derivative infor-
mation.

Corollary 3. Let (f, g) ∈ Cons. Then in each connected component O of the domain
of definition of g which intersects the domain of definition of f , there exist two locally
Lipschitz functions s : O → R and t : O → R such that s, t ∈ ↑f ∩

∫
g and for each

u ∈ ↑f ∩
∫
g, we have with s(x) ≤ u(x) ≤ t(x) for all x ∈ O.

We now can define a central notion of this paper:

Definition 6. Define

D1 = {(f, g) ∈ D0 × (D0)ns : (f, g) ∈ Cons}.

From Corollary 2, we obtain our first major result:

Corollary 4. The posetD1 is a continuous Scott domain, i.e. a bounded complete count-
ably based continuous dcpo.

The collection of step functions of the form (f, g) ∈ D0 × (D0)ns , where f ∈ D0 and
g ∈ (D0)ns are step functions, forms a basis of D1. The rational basis of D1 is the
collection of all rational step functions (f, g), i.e., those whose domains and values are
defined over rational numbers. We will show in Section 6 that for rational step functions
f ∈ D0 and g ∈ (D0)ns , the maps s and twill be piecewise linear, and can be effectively
constructed to test the consistency of (f, g).

LetC0[0, 1]n andC1[0, 1]n be, respectively, the collection of real-valuedC0 andC1

functions. Let Γ : C0[0, 1]n → D1[0, 1]n be defined by Γ (f) = (f, df
dx) and let Γ 1 be

the restriction of Γ to C1[0, 1]n.

512 A. Edalat, A. Lieutier, and D. Pattinson

Theorem 2. The mapsΓ andΓ 1 are respectively embeddings ofC0[0, 1]n andC1[0, 1]n

into the set of maximal elements of D1.

Furthermore, Γ restricts to give an embedding for locally Lipschitz functions (where
df
dx
= ⊥ for all x) and it restricts to give an embedding for piecewise C1 functions
(where df

dx is maximal except for a finite set of points).

5 Integrability of Derivative Information

In this section, we will derive a necessary and sufficient condition for integrability and
show that on rational basis elements integrability is decidable.

Let g = (g1, . . . , gn) ∈ (D0)ns be a step function. Recall that a crescent is the
intersection of an open set and a closed set. The domain dom(g) of g is partitioned into a
finite set of disjoint crescents {Cj : j ∈ Ii}, in each of which the value of gi is constant,
where we assume that the indexing sets Ii are pairwise disjoint for i = 1, . . . , n. The
collection

{
⋂

1≤i≤n

Cki
: ki ∈ Ii, 1 ≤ i ≤ n}

of crescents partition dom(g) into regions in which the value of g is a constant interval
vector; they are called the associated crescents of g, which play a main part in deciding
integrability as we will see later in this section. Each associated crescent has boundaries
parallel to the coordinate planes and these boundaries intersect at points, which are
called the corners of the crescent. A point of the boundary of an associated crescent is
a coaxial point of a point in some associated crescent if the two points have precisely
n− 1 coordinates in common. Clearly, each point has a finite number of coaxial points.
In Figure 2, an example of a step function g is given with its associated crescents, the
interval in each crescent gives the value of g in that crescent. A solid line on the boundary
of a crescent indicates that the boundary is in the crescent, whereas a broken line indicates
that it is not. The coaxial points of the corners are illustrated on the picture on the right.

A path in a connected region R ⊂ R
n is a continuous map p : [0, 1] → R with

endpoints p(0) and p(1). If p is piecewiseC1, respectively piecewise linear, then the path

[−1, 1]

[−2, 2]

[−3, 3]

[−2, 2]

● ● ● ●

● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ●

● ● ● ●

●

●

●

●

●

●

Fig. 2. Crescents of a step function (left); the corners and their coaxial points (right)

A Computational Model for Multi-variable Differential Calculus 513

is called a piecewiseC1, respectively piecewise linear. The space P (R) of piecewiseC1

paths inR is equipped with theC1 norm.A path p is non-self-intersecting if p(r) = p(r′)
for r < r′ implies r = 0 and r′ = 1. We will be mainly concerned with piecewise linear
paths in this paper. For these paths, there exists a strictly increasing sequence of points
(ri)0≤i≤k for some k ∈ N with 0 = r0 < r1 < · · · rk−1 < rk = 1 such that p is linear
in [ri, ri+1] for 0 ≤ i ≤ k−1. The points p(ri) for i = 0, · · · , k, are said to be the nodes
of p; the nodes p(ri) for i = 1, · · · , k − 1 are called the inner nodes. The line segment
{p(r) : ri ≤ r ≤ ri+1} is denoted by p([ri, ri+1]). If p(0) = p(1), the path is said to be
closed.

A simple path in a regionR ⊂ R
n is a non-self-intersecting piecewise linear map. We

now consider simple paths in the closure cl(O) of a connected componentO ⊆ dom(g).
Recall that given a vector field F : R → R

n in a region R ⊂ Rn and a piecewise
C1 path p : [0, 1] → R, the line integral of F with respect to p from 0 to w ∈ [0, 1]
is defined as

∫ 1
0 F (p(r)) · p′(r) dr, when the integral exists. Here, u · v =

∑n
i=1 uivi

denotes the usual scalar product of two vectors u, v ∈ R
n.

We define a generalization of the notion of scalar product for vectors of type: u ∈
(IR)n and v ∈ R

n. For a = [a, a] ∈ (IR)ns , let a− = a, a+ = a and a0 = 1. We define
the direction dependent scalar product as the strict map

−9− : (IR)ns × R
n → R⊥

with u 9 v =
∑n

i=1 u
σ(vi)
i vi for u
= ⊥. The extension of the usual dot product to the

interval dot product i.e. u · v = {w · v | w ∈ u} then satisfies: (u · v)− = −u 9 (−v)
and (u · v)+ = u9 v. We can now define a notion of line integral of the interval-valued
vector function g = [g−, g+] ∈ (D0)ns with respect to any piecewise C1 path from y to
x in cl(O), where O is a connected component of dom(g). For each i = 1, · · ·n, the ith
component of g is given by gi = [g−i , g

+
i].

Definition 7. Given a step function g ∈ (D0)ns and a piecewiseC1 path p in the closure
of connected component O of the domain of g, the upper line integral of g over p from 0
to w ∈ [0, 1] is defined as:

U
∫
p[0,w]

g(r) dr =
∫ w

0
g(p(r))9 p′(r) dr.

The lower line integral of g over p from 0 to w ∈ [0, 1] is similarly defined as

L
∫
p[0,w]

g(r) dr = −
∫ w

0
g(p(r))9 (−p′(r)) dr.

Thus, if the jth component of the path, for some j with 1 ≤ j ≤ n, is increasing locally
at some r ∈ [0, 1], i.e. p′j > 0 in a neighborhood of r, then g

−σ(pj(r))
j = g−j will

contribute locally to the jth component of the sum in the lower integral, while if p′j < 0

in a neighborhood of r, then g−σ(pj(r))
j = g+

j will contribute. In case the path is locally
perpendicular to the jth axis at r, i.e. p′j(r) = 0 in a local neighborhood of r, then there
will be zero contribution for the jth component in the sum. For the upper integral the

514 A. Edalat, A. Lieutier, and D. Pattinson

contributions of g−i and g+
i are reversed. Note that for all w ∈ [0, 1] we have from the

definitions: L
∫
p[0,w] g(r) dr 3 U

∫
p[0,w] g(r) dr.

The geometric interpretation of the lower and upper line integrals is as follows. We
regard g ∈ (D0)ns as an interval-valued vector field in [0, 1]n. For any continuous vector
field F : dom(g) → R

n with F (x) ∈ g(x) for all x ∈ dom(g) and any piecewise C1

path p ∈ P (O) in a connected component O of dom(g), the classical line integral is
always bounded below and above by the lower and upper line integrals respectively.

We now introduce the domain-theoretic generalization of Green’s celebrated condi-
tion for the integrability of a vector field.

Definition 8. Given a step function g ∈ (D0)ns and a closed simple path p in the closure
of a connected component of dom(g), we say that g satisfies the zero-containment loop
condition for p if

0 ∈
∫
p[0,1]

g(r) dr.

We say that g ∈ (D0)ns satisfies the zero-containment loop condition if it satisfies the
zero-containment loop condition for any closed simple path p in the closure of any
connected component of dom(g).

For simplicity, we have only defined the zero-loop condition for step functions as required
in this paper. By using piecewise differentiable closed paths instead of closed simple
paths, the definition can be easily extended to any Scott continuous interval-valued vector
field. If g only takes point (maximal) values, then the zero-containment loop condition is
simply the standard condition for g to be a gradient i.e., that the line integral of g vanishes
on any closed path. Figure 3 gives an example of a step function g = (g1, g2), with
dom(g) = ((0, 3)×(0, 3))\([1, 2]× [1, 2]) which does not satisfy the zero-containment
loop condition. The values of g1 (left) and g2 (right) are given for each of the four single-
step functions. Denote the dashed path by p; it has nodes at p(0) = p(1) = (1/2, 1/2),
p(1/4) = (5/2, 0), p(1/2) = (5/2, 5/2) and p(3/4) = (1/2, 5/2). The lower line
integral of g over p gives a strictly positive value:

L
∫
p
g(r)dr =

∑3
i=0

∫ i+1
4

i
4

−g(p(r))9 (−p′(r))dr

= −
∫ 1

4
0 g(p(r))9 (−8, 0)dr −

∫ 1
2
1
4
g(p(r))9 (0,−8)dr

−
∫ 3

4
1
2
g(p(r))9 (8, 0)dr −

∫ 1
3
4
g(p(r))9 (0, 8)dr

= 1/4(8 · 1 + 8 · 1 + 8 · 1 + 8 · 1) = 8 > 0.

Recall that g ∈ (D0)ns is called integrable if
∫
g
= ∅. The following is an extension of

Green’s Theorem also called the Gradient Theorem in classical differential calculus [9].

Theorem 3. Suppose g ∈ (D0)ns is an integrable step function. Then g satisfies the
zero-containment loop condition.

We will now show that if a step function g ∈ (D0)ns satisfies the zero-containment
loop condition, then it is integrable. Let O be a connected component of dom(g). Note
that any step function g can be extended to the boundary of dom(g) by the lower and

A Computational Model for Multi-variable Differential Calculus 515

[−4, 4] [−4, 4]

[−2, −1]

[1, 2]

[−2, −1] [1, 2]

[−4, 4]

[−4, 4]

Fig. 3. Failure of zero-containment: g1 (left) and g2 (right)

upper semi continuity of g− and g+ respectively. We adopt the following convention.
If two crescents have a common boundary, we consider their common boundary as
infinitesimally separated so that they have distinct boundaries. This means that a line
segment of a simple path on a common boundary of two different crescents is always
regarded as the limit of a sequence of parallel segments contained on one side of this
boundary.

We are now ready to introduce a key concept of this paper. For x, y ∈ cl(O)), we put

Vg(x, y) = sup{L
∫
p[0,1]

g(r) dr : p a piecewise linear path in cl(O) from y to x},

Wg(x, y) = inf{U
∫
p[0,1]

g(r) dr : p a piecewise linear path in cl(O) from y to x}.

Proposition 9. Suppose g satisfies the zero-containment loop condition and x, y ∈
cl(O), then there are simple paths p and q from y to x such that:

Vg(x, y) = L
∫
p[0,1]

g(r) dr Wg(x, y) = U
∫
q[0,1]

g(r) dr.

Moreover, for each y ∈ cl(O), the two maps given by Vg(·, y),Wg(·, y) : cl(O) → R

are continuous, piecewise linear and satisfy Vg(y, y) = Wg(y, y) = 0,

g 3 dVg(·, y)
dx

and g 3 dWg(·, y)
dx

.

Thus, we obtain the following main result:

Theorem 4. A function g ∈ (D0)ns is integrable iff it satisfies the zero-containment loop
condition.

516 A. Edalat, A. Lieutier, and D. Pattinson

Proposition 10. For a rational step function g ∈ (D0)ns defined over rational numbers,
the zero-containment loop condition is decidable.

Proof. There are a finite number of connected components of dom(g). In each connected
component O of dom(g), the values of L

∫
p[0,1]g(r) dr and U

∫
p[0,1]g(r) dr, for a closed

simple path in cl(O) depend piecewise linearly on the coordinates of any given node of
the path. It follows that the maximum value of the lower integral and the minimum value
of the upper integral are reached for a path p with nodes at the corners of the crescents
of O and their coaxial points. Since the number of such closed simple paths is finite and
since for each such path L

∫
p[0,1]g(r) dr is a rational number, we can decide in finite

time if the zero-containment loop condition holds for g. �

For an associated crescent a of a step function g we write v(a) for the value of g on
a, i.e. v(a) = g(x) where x ∈ ao is some point in the interior of a. To check whether a
rational step function g is integrable, the proof of Proposition 10 shows that it suffices
to check that g satisfies the zero-containment loop condition on all paths with nodes in
the finite set of corners of the associated crescents and their coaxial points. This gives
rise to the following algorithm:

input: a rational step function g : [0, 1]n → IRn

output: true, if g is integrable and false otherwise
D := connected components of dom(g)
for each C ∈ D do

A := associated crescents of C
R := corners and coaxial points of A
/* P represents the closed paths */

P := all lists (p0
a0−→ . . .

ak−1−→ pk) where ai ∈ A, pi ∈ R, pi, pi+1 ∈ cl(ai)
and pi = pj =⇒ i = 0 and j = k

for each p = (p0
a0−→ . . .

ak−1−→ pk) ∈ P do
/* compute upper and lower line integral */

L :=
∑k−1

i=0 v(ai)9 (pi+1 − pi)
U :=

∑k−1
i=0 v(ai)9 (pi − pi+1)

if L > 0 or U < 0 then output false; end
enddo

enddo; output true

6 Consistency of Function and Derivative Information

We will now show that for a pair of rational step functions (f, g) ∈ D1, with g integrable,
the consistency relation (f, g) ∈ Cons is decidable. For this, we explicitly construct
s(f, g) and t(f, g), which will be piecewise linear functions that enable us to decide if
s(f, g) ≤ t(f, g). Let x and y be in the same connected component O of dom(g) with
O ∩ dom(f)
= ∅.

A Computational Model for Multi-variable Differential Calculus 517

Theorem 5. The maps Vg(·, y),Wg(·, y) : cl(O) → R are respectively the least and
the greatest continuous maps L,G : O → R with L(y) = 0 and G(y) = 0 such that
g 3 dL

dx and g 3 dG
dx .

Let S(f,g)(x, y) = Vg(x, y) + limf−(y).

Corollary 5. Let O be a connected component of dom(g) with non-empty intersection
with dom(f). For x ∈ O, we have:

s(f, g)(x) = sup
y∈O∩dom(f)

S(f,g)(x, y). (1)

Proposition 11. There exist a finite number of points y0, y1, . . . , yi ∈ cl(O ∩ dom(f))
with

s(f, g)(x) = max{S(f,g)(x, yj) : j = 0, 1, . . . , i}
for x ∈ O.

Proof. For fixed (f, g) and x, the value of S(f,g)(x, y) depends piecewise linearly on the
coordinates of y, and thus its maximum value is reached for a simple path with modes
at the corners of the crescents of O and x and their coaxial points. �

Results dual to those above are obtained for t(f, g) as follows. We put T(f,g)(x, y) =
Wg(x, y) + limf+(y). Then, we have

t(f, g)(x) = inf
y∈O∩dom(f)

T(f,g)(x, y),

and there exist y0, y1, . . . , yi ∈ cl(O ∩ dom(f)) with

t(f, g)(x) = min{T(f,g)(x, yj) : j = 0, 1, . . . , i},

for x ∈ O.

Corollary 6. The predicate Cons is decidable on basis elements (f, g) consisting of
rational step functions.

The algorithm for deciding consistency of a rational step function f : [0, 1]n → IR
and a rational step function g : [0, 1]n → (IR)ns works as follows: Recall that f and g
are consistent iff s(f, g) ≤ t(f, g). By the proof of Proposition 11, both functions can
be constructed by evaluating line integrals over simple paths with inner nodes in the set
of corners of the crescents of g, the endpoint of the line integrals and the coaxial points
of these. This is achieved by the following algorithm:

input: a rational step functions f : [0, 1]n → IR
an integrable rational step function g : [0, 1]n → (IR)ns

output: true, if f is consistent with g, false otherwise.
D := connected components of dom(g)
for each C ∈ D do

518 A. Edalat, A. Lieutier, and D. Pattinson

/* x = (x1, . . . , xn) represents the varying endpoint */
R(x) := K ∪ { coaxial points of K ∪ {x}}
/* P (x) represents the paths to x */

P := all lists (p0
a0−→ . . .

ak−1−→ pk) where pi ∈ R(x) are pairwise
distinct, pk = x and pi, pi+1 ∈ cl(ai) for all i = 1, . . . , k − 1.

for each p = (p0
a0−→ . . .

ak−1−→ pk), q = (q0
a0−→ . . .

al−1−→ ql) ∈ P (x) do
/* compute upper and lower line integral */

s(x) := limf−(p0) +
∑k−1

i=0 v(ai)9 (pi+1 − pi)
t(x) := limf+(q0) +

∑l−1
i=0 v(ai)9 (qi − qi+1)

if s(x) > t(x) for some x ∈ a then output false; end
enddo

enddo; output true

Note that s(x) and t(x) are piecewise linear functions in x with rational coefficients,
hence we can decide s(x) ≤ t(x) on cl(a) by first computing the rectangles on which
both s and t are linear and then checking for s ≤ t on the corners of those.

Theorem 6. The domain D1 can be given an effective structure using a standard enu-
meration of its rational basis.

7 Applications

The construction of an effective domain for differentiable functions paves the road for
applications of domain theory in a number of areas of numerical analysis and computa-
tional mathematics. Here, we make a start on this by mentioning two fields of applications
which have been worked out in detail in two follow-up papers.

7.1 Robust Construction of Curves and Surfaces

In geometric modelling, as in CAD, the standard method to construct curves and surfaces
is to use the implicit function theorem to define these geometric objects implicitly [2].
For example a C1 surface g : [0, 1]2 → R can be specified as the zero set {g(x, y) :
f(x, y, g(x, y)) = 0} where f : [0, 1]3 → R is a C1 function with ∂f

∂z
= 0. The
domain for differential functions allows us to develop a domain-theoretic version of the
implicit function theorem, in which the implicit function together with its derivative are
approximated by step functions. This means that from an increasing sequence of step
functions converging to f and its derivative in the domain of differentiable functions
we can effectively obtain an increasing sequence of step functions converging in this
domain to the desired surface g and its derivative. Combined with the domain-theoretic
model for computational geometry developed in [7], this provides a robust technique for
geometric modelling and CAD.

7.2 A Second Order Method for Solving Differential Equations

We consider the initial value problem given by the system of differential equations

y′ = v(y), y(0) = (0, . . . , 0)

A := associated crescents of C; K := corners of C

A Computational Model for Multi-variable Differential Calculus 519

where v ∈ C1([−K,K]n, [−M,M]n) is a differentiable function defined on a rectangle
containing the origin. A first-order method for solving this equation usually postulates
that the vector field v is Lipschitz, and uses the Lipschitz constant to conservatively
approximate a solution. Assuming that v is differentiable, we can locally replace the
Lipschitz constant by the derivative, giving rise to tighter approximations. Extending
the present framework to functions of interval variables, we can approximate vector
fields along with their derivatives by a pair of functions (v, v′) where v : IRn → IRn

approximates the vector field andv′ : IRn → IR(n×n) approximates the matrix of partial
derivatives. Compared to the approach of interval analysis [10], we are in particular able
to give guarantees on this improved speed of convergence, thus providing a sound and
complete framework for solving the initial value problem.

References

1. S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D. M. Gabbay, and T. S. E.
Maibaum, editors, Handbook of Logic in Computer Science, volume 3. Clarendon Press,
1994.

2. J. Bloomenthal, editor. Introduction to implicit surfaces. Morgan Kaufmann, 1997.
3. F. H. Clarke. Optimization and Nonsmooth Analysis. Wiley, 1983.
4. F. H. Clarke,Yu. S. Ledyaev, R. J. Stern, and P. R. Wolenski. Nonsmooth Analysis and Control

Theory. Springer, 1998.
5. A. Edalat, M. Krznarić, and A. Lieutier. Domain-theoretic solution of differential equations

(scalar fields). In Proceedings of MFPS XIX, volume 73 of Electronuc Notes in Theoretical
Computer Science, 2003. Full paper in www.doc.ic.ac.uk/ ae/papers/scalar.ps.

6. A. Edalat andA. Lieutier. Domain theory and differential calculus (Functions of one variable).
Mathematical Structures in Computer Science, 14(6):771–802, December 2004.

7. A. Edalat andA. Lieutier. Foundation of a computable solid modelling. Theoretical Computer
Science, 284(2):319–345, 2002.

8. A. Edalat and D. Pattinson. A domain-theoretic account of picard’s theorem. In Proceedings
of ICALP’04, 2004. Full paper in www.doc.ic.ac.uk/ ae/papers/picard.icalp.ps.

9. W. Kaplan. Advanced Calculus. Addison-Wesley, 1991.
10. R.E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, 1966.
11. M. B. Pour-El and J. I. Richards. Computability in Analysis and Physics. Springer-Verlag,

1988.
12. Louis B. Rall and George F. Corliss. Automatic differentiation: Point and interval AD. In

P. M. Pardalos and C. A. Floudas, editors, Encyclopedia of Optimization. Kluwer, 1999.
13. K. Weihrauch. Computable Analysis (An Introduction). Springer, 2000.

Author Index

Abbes, Samy 95
Aehlig, Klaus 490

Bartoletti, Massimo 316
Benveniste, Albert 95
Bonsangue, Marcello M. 455
Bontemps, Yves 364
Bouyer, Patricia 219
Bozga, Marius 425

Calcagno, Cristiano 395
Cattani, Stefano 125
Cheney, James 379
Chevalier, Fabrice 219

Degano, Pierpaolo 316
Deng, Yuxin 110
D’Souza, Deepak 219
de Miranda, Jolie G. 490

Edalat, Abbas 505

Fahrenberg, Ulrich 187
Ferrari, Gian Luigi 1, 316
Fiore, Marcelo P. 25
Focardi, Riccardo 299
Fröschle, Sibylle 333

Gardner, Philippa 395
Goguen, Healfdene 410

Hague, Matthew 395

Iosif, Radu 425

Jeffrey, Alan 266

Kaiser, Lukasz 470
Kurz, Alexander 455
Kwiatkowska, Marta 125

Lüttgen, Gerald 79

Laneve, Cosimo 282
Lanotte, Ruggero 63

Laroussinie, François 140
Larsen, Kim Guldstrand 234
Lasota, Sławomir 250
Lieutier, André 505

Miculan, Marino 170
Montanari, Ugo 1
Mousavi, MohammadReza 25
Murawski, Andrzej S. 202

Norman, Gethin 125

Ong, C.-H. Luke 490

Palamidessi, Catuscia 110
Pattinson, Dirk 505

Rasmussen, Jacob Illum 234
Rathke, Julian 266
Reniers, Michel A. 25
Rossi, Sabina 299

Sabelfeld, Andrei 299
Schaefer, Mark 348
Schobbens, Pierre-Yves 364
Schröder, Lutz 440
Segala, Roberto 125
Sproston, Jeremy 140
Stark, Ian 155

Tini, Simone 63
Tuosto, Emilio 1

Vogler, Walter 79, 348

Walukiewicz, Igor 202, 250

Yemane, Kidane 170

Zavattaro, Gianluigi 282

	Frontmatter
	Invited Talks
	Model Checking for Nominal Calculi
	Mathematical Models of Computational and Combinatorial Structures

	Rule Formats and Bisimulation
	Congruence for Structural Congruences
	Probabilistic Congruence for Semistochastic Generative Processes
	Bisimulation on Speed: A Unified Approach

	Probabilistic Models
	Branching Cells as Local States for Event Structures and Nets: Probabilistic Applications
	Axiomatizations for Probabilistic Finite-State Behaviors
	Stochastic Transition Systems for Continuous State Spaces and Non-determinism
	Model Checking Durational Probabilistic Systems

	Algebraic Models
	Free-Algebra Models for the π-Calculus
	A Unifying Model of Variables and Names
	A Category of Higher-Dimensional Automata

	Games and Automata
	Third-Order Idealized Algol with Iteration Is Decidable
	Fault Diagnosis Using Timed Automata
	Optimal Conditional Reachability for Multi-priced Timed Automata
	Alternating Timed Automata

	Language Analysis
	Full Abstraction for Polymorphic Pi-Calculus
	Foundations of Web Transactions
	Bridging Language-Based and Process Calculi Security
	History-Based Access Control with Local Policies

	Partial Order Models
	Composition and Decomposition in True-Concurrency
	Component Refinement and CSC Solving for STG Decomposition
	The Complexity of Live Sequence Charts

	Logics
	A Simpler Proof Theory for Nominal Logic
	From Separation Logic to First-Order Logic
	Justifying Algorithms for $\beta\eta$-Conversion
	On Decidability Within the Arithmetic of Addition and Divisibility

	Coalgebraic Modal Logics
	Expressivity of Coalgebraic Modal Logic: The Limits and Beyond
	Duality for Logics of Transition Systems

	Computational Models
	Confluence of Right Ground Term Rewriting Systems Is Decidable
	Safety Is not a Restriction at Level 2 for String Languages
	A Computational Model for Multi-variable Differential Calculus

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

