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Preface

Testing often accounts for more than 50% of the required effort during system
development. The challenge for research is to reduce these costs by providing new
methods for the specification and generation of high-quality tests. Experience
has shown that the use of formal methods in testing represents a very important
means for improving the testing process. Formal methods allow for the analysis
and interpretation of models in a rigorous and precise mathematical manner. The
use of formal methods is not restricted to system models only. Test models may
also be examined. Analyzing system models provides the possibility of generating
complete test suites in a systematic and possibly automated manner whereas
examining test models allows for the detection of design errors in test suites
and their optimization with respect to readability or compilation and execution
time. Due to the numerous possibilities for their application, formal methods
have become more and more popular in recent years.

The Formal Approaches in Software Testing (FATES) workshop series also
benefits from the growing popularity of formal methods. After the workshops in
Aalborg (Denmark, 2001), Brno (Czech Republic, 2002) and Montréal (Canada,
2003), FATES 2004 in Linz (Austria) was the fourth workshop of this series.
Similar to the workshop in 2003, FATES 2004 was organized in affiliation with
the IEEE/ACM Conference on Automated Software Engineering (ASE 2004).
FATES 2004 received 41 submissions. Each submission was reviewed by at least
three independent reviewers from the Program Committee with the help of some
additional reviewers. Based on their evaluations, 14 full papers and one work-
in-progress paper from 11 different countries were selected for presentation.

This volume contains revised versions of the presented papers. The revisions
reflect the lively discussions among the presenters and participants during the
FATES workshop. The papers use different formal methods and languages, e.g.,
automata, labelled transition systems, TTCN-3 or UPPAAL, and apply them to
symbolic test generation, the use of model-checking techniques in testing, the test
of nonfunctional properties, and test optimization. This diversity of formal meth-
ods and application domains in conjunction with the high number of submissions
to and participants of the FATES 2004 workshop emphasize the increased impor-
tance attributed to the research on formal approaches in software testing.

We would like to express our gratitude to all authors for their valuable contri-
butions and to the Workshop Organizing Committee of the ASE 2004 conference.
In addition, we would like to thank all members of the FATES Program Commit-
tee and the additional reviewers, who were given the essential task of reviewing
many papers in a short period of time. The individuals who contributed to this
effort are listed on the following pages.

December 2004 Jens Grabowski and Brian Nielsen
Goettingen and Aalborg Program Chairs

FATES 2004
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Test Generation Based on
Symbolic Specifications

Nijmegen Institute for Computing and Information Sciences (NIII)
Radboud University Nijmegen – The Netherlands

{lf,tretmans,timw}@cs.ru.nl

Abstract. Classical state-oriented testing approaches are based on sim-
ple machine models such as Labelled Transition Systems (LTSs), in which
data is represented by concrete values. To implement these theories, data
types which have infinite universes have to be cut down to finite vari-
ants, which are subsequently enumerated to fit in the model. This leads
to an explosion of the state space. Moreover, exploiting the syntactical
and/or semantical information of the involved data types is non-trivial
after enumeration. To overcome these problems, we lift the family of test-
ing relations iocoF to the level of Symbolic Transition Systems (STSs).
We present an algorithm based on STSs, which generates and executes
tests on-the-fly on a given system. It is sound and complete for the iocoF

testing relations.

1 Introduction

Testing is an important technique to assess the quality of systems. In testing, ex-
periments are conducted with a System Under Test (SUT) to determine whether
it behaves as expected. There are many different kinds of testing. We focus on
formal, specification based, black box, functionality testing. This basically means
that the SUT can only be observed (and controlled) via its external interfaces.
Moreover, a mathematical, unambiguous specification of the causal order be-
tween (appropriate) inputs and expected outputs of the SUT is the starting
point for the generation and the analysis of the test results.

Several (formal) test generation tools have been developed for specification
based, black box testing. Most of these tools use (variations of) state machines
or transition systems as the underlying model for test generation. We refer to
these types of tools as state oriented tools. For an overview of such tools see [2].
A problem, often encountered in such tools is the state space explosion, which is

� Lars Frantzen is supported by the Netherlands Organisation for Scientific Research
(NWO) under project: STRESS – Systematic Testing of Realtime Embedded Soft-
ware Systems.

�� Tim Willemse carried out this work as part of the TANGRAM project under the
responsibility of the Embedded Systems Institute. Tangram is partially supported
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due to the fact that they use an explicit internal representation for the states of
the specification. This is particularly true when the specification uses complex
data structures with large or infinite data domains, because each value in the
data domain potentially leads to another state. Consequently, many tools can
only cope with very restricted data structures with finite domains.

Opposed to state oriented tools are data type oriented tools, which are tools
tailored to deal with test generation for complicated data structures, such as
QuickCheck [3] and Gast [5]. These tools employ the structure of data types
to generate test data. However, they lack a built-in concept of state, which makes
them less suited to test, e.g., concurrent systems. The way to handle state in
such tools is to explicitly define a data structure that represents a state space,
but this is not always satisfactory.

The combination of the state oriented and the data type oriented approaches
looks promising, and it is exactly this what we investigate in this paper. As our
basis we take a state oriented approach to testing, viz. the ioco test theory [8].
To the underlying model of Labelled Transition Systems, we add the concept
of location variables, and the concept of data, which can be communicated over
gates. Both influence the flow of control, thereby allowing us to specify data-
dependent behaviour. We refer to these augmented Labelled Transition Systems
as Symbolic Transition Systems (STSs). We subsequently lift the ioco test theory
to STSs. As a result, we obtain a sound and complete test derivation algorithm
from specifications expressed as STSs.

The test derivation algorithm for STSs allows to treat data symbolically.
Rather than elaborating our approach for a specific data formalism, data types
are treated as sets of values (algebras) and first order formulas are used to specify
values or predicates. This allows to combine STSs with any formalism of choice
(with corresponding test tools) for the specification and manipulation of data.
This is further elaborated into a tractable algorithm.

From a theoretical point of view, it is also interesting to give an algorithm
which generates symbolic test cases (STCs). This requires a purely symbolic
version of the iocoF relations. This is depicted in Fig. 1. The front triangle
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Fig. 1. Classical ioco test theory and symbolic ioco test theory
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represents the classical ioco test theory, as presented in [8]. Test cases (TC) are
generated out of a specification LTS, and subsequently executed (||) on an SUT,
assumed to be modelled by an IOTS. The rear triangle consists of a purely sym-
bolic test theory. In this paper, we concentrate on the relation between STSs,
LTSs and IOTSs, and on the generation and execution of test cases, i.e. the
relation between STSs and TCs. Elaborating on the dashed lines and the corre-
sponding models is another line of research we are pursuing.

Related Work The idea of combining data type oriented and state oriented ap-
proaches is not entirely new in testing. We mention a few noteworthy approaches.

The approach which comes closest to ours is the one described in [7]. There,
Input-Output Symbolic Transition Systems (IOSTSs) are used, which are very
similar to our STSs. The conformance relation they use corresponds to ioconf =
iocotraces(L), but they do not deal with quiescence. In [7] test purposes are
chosen as a way to tackle the state space explosion problem. These are used
to compute a subgraph of the IOSTS representing a specific issue of interest.
Such test purposes are again (special) IOSTSs. The result is a test case which
is still symbolic in the sense that it is a deterministic IOSTS with special states
Pass, Fail and Inconclusive. The verdict Inconclusive is necessary to judge a
behaviour which conforms to a given specification, but does not satisfy the given
test purpose. Our approach does not rely on test purposes, even though the set
F which identifies the relation iocoF can be seen as some form of test purpose.

The data-type oriented Gast tool [5] was recently extended in [6] to deal
with specifications given as (possibly nondeterministic) Extended Finite State
Machines (EFSMs). Such EFSMs are also symbolic specifications, but in some
senses more restrictive than STSs or IOSTSs. Gast basically implements a
generic algorithm to enumerate the elements of an arbitrary algebraic data type.
Such a type can be an input value, but also a whole path through the EFSM.
Since the list of all elements of a recursive type is infinitely long, lazy evaluation
is employed to generate only the fraction of this list that is actually needed.
The elements are generated in increasing size, both the executed paths and the
input values. Gast can be used to execute the generated tests on an SUT in an
on-the-fly manner.

Overview This paper is structured as follows. In Sect. 2 we briefly repeat notions
from first order logic. The ioco test theory is summarised in Sect. 3. The frame-
work of Symbolic Transition Systems is introduced in Sect. 4. We present an
on-the-fly implementation for generating and executing test cases for Symbolic
Transition Systems in Sect. 5. We finish with conclusions and future extensions
in Sect. 6.

2 First Order Logic

We use basic concepts from first order logic as our framework for dealing with
data. For a general introduction into logic we refer to [4]. From hereon we assume
a first order structure as given, i.e.:

Test Generation Based on Symbolic Specifications 3
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– A logical signature S = (F, P ) with
• F is a set of function symbols. Each f∈F has a corresponding arity n∈N.

If n = 0 we call f a constant.
• P is a set of predicate symbols. Each p∈P has a corresponding arity n>0.

– A model M = (U, (fM)f∈F , (pM)p∈P ) with
• U being a nonempty set called universe.
• For all f∈F with arity n, fM is a function of type Un→U.
• For every p∈P with arity n we have pM ⊆ Un.

For simplicity, and without loss of generality we restrict to one-sorted signatures.
Let X be a set of variables. Terms over X , denoted T(X), are built from function
symbols F and variables X ⊆ X. We write var(t) to denote the set of variables
appearing in a term t. Terms t∈T(∅) are called ground terms.

Example 1. Assume we have X = {x, y}. Let S = (F, P ) be given by F =
{zero, succ, add} (with arities 0, 1 and 2, resp.), and P = {leq} (with arity 2).
An obvious model for this signature is the natural numbers with 0, successor,
addition and the less-or-equal predicate; any other model that sticks to the given
arities is fine too. Terms are, e.g. x, succ(x) and add(succ(x), y). Ground terms
are, e.g. zero and add(zero, succ(zero)). �

A term-mapping is a function σ:X → T(X). The term-mapping id, referred to as
the identity mapping, is defined as id(x) = x for all x∈X. We use the following
notation. For sets X, Y with X ∪ Y ⊆ X, we write T(Y )X for the set of term-
mappings that assign to each variable x∈X a term t∈T(Y ), and to each variable
x /∈ X the term x. Given a term-mapping σ∈T(Y )X we overload the var-notation
as follows: var(σ) =def

⋃
x∈X var(σ(x)).

The set of free variables of a first order formula ϕ is denoted free(ϕ); the
set of bound variables is denoted bound(ϕ). The set of first order formulas ϕ
over X ⊆ X is denoted F(X); we have free(ϕ) ∪ bound(ϕ) ⊆ X . A tautology is
represented by �. The existential closure of a formula ϕ, denoted ∃ϕ, is defined
as ∃ϕ =def ∃x1∃x2 . . .∃xn : ϕ with {x1, . . . , xn} = free(ϕ).

Given a term-mappingσ anda formulaϕ, the substitution of σ(x) for x∈free(ϕ)
in ϕ is denoted ϕ[σ]. Substitutions are side-effect free, i.e. they do not add bound
variables. This is achieved using α-renaming. The substitution of terms σ(x) for
variables x∈ var(t), in a term t using a term-mapping σ, is denoted t[σ].

Example 2. An example of a term mapping for X = {x, y} is σ = {x 	→
succ(y), y 	→ zero}∈T(X)X , with var(σ) = {y}. The existential closure of
the formula ϕ = ∀y : leq(x, y) with bound(ϕ) = {y} and free(ϕ) = {x} is
∃ϕ = ∃x∀y : leq(x, y). The substitution of σ in ϕ is not side-effect free, but can
be achieved by renaming variable y to z, i.e. ϕ[σ] = ∀z : leq(succ(y), z). �

A valuation ϑ is a function ϑ:X → U. We denote the set of all valuations as
UX =def {ϑ:X → U | ϑ is a valuation of X}. For a given X ⊆ X we write ϑ∈UX

when only the values of the variables in X are of interest. For all the other
variables y∈X \ X we set ϑ(y) = ∗, where ∗ is an arbitrary element of set U.

4 L. Frantzen, J. Tretmans, and T.A.C. Willemse



Having two valuations ϑ∈UX and ς∈UY with X ∩ Y = ∅, their union is defined
as:

(ϑ ∪ ς)(x) =def

⎧⎨
⎩

ϑ(x) if x∈X
ς(x) if x∈Y
∗ otherwise

The satisfaction of a formula ϕ w.r.t. a given valuation ϑ is denoted ϑ |= ϕ.
When free(ϕ) = ∅ we write M |= ψ because the satisfaction is independent of a
concrete valuation.

The extension to evaluate whole terms based on a valuation ϑ is called a
term-evaluation and denoted ϑeval:T(X) → U. The evaluation of ground terms is
denoted eval:T(∅) → U.

To ease notation, we often treat a tuple 〈x1, . . . , xn〉∈A1 × · · · × An as the
set {x1, . . . , xn}. We denote the composition of functions f :B→C and g:A→B
as f ◦ g.

Example 3. Assuming the standard model for natural numbers as given in ex-
ample 1, an example valuation is ϑ = {x 	→ 24, y 	→ 7}∈U{x,y}. For the formula
ϕ of example 2, the valuation ϑ and the standard model for natural numbers we
find ϑ �|= ϕ and M |= ∃ϕ and we get ϑeval(add(x, succ(y))) = 32. �

Our example of a logical structure for natural numbers shows that many, even
infinite ground terms may evaluate to the same value, e.g. the ground terms zero
and add(zero, zero) both evaluate to 0. We assume we have a unique ground
term representative for every value to facilitate the bidirectional translation.

3 Testing Labelled Transition Systems

We briefly review the iocoF test theory on which this paper is based. For a
more detailed overview, we refer to [8]. The semantical model we use to model
reactive systems is based on Labelled Transition Systems (LTSs).

Definition 1. A Labelled Transition System is a tuple L = 〈S, s0, Σ,→〉, where

– S is a (possibly infinite) set of states.
– s0∈S is the initial state.
– Σ is a (possibly infinite) set of action labels. The special action label τ /∈ Σ

denotes an unobservable action. In contrast, all other actions are observable.
We write Στ to denote the set Σ ∪ {τ}.

– → ⊆ S×Στ×S is the transition relation. When (s, μ, s′)∈→ we write s
μ
−→ s′.

We often identify an LTS L with its initial state s0.

Unobservable actions can be used to model events that cannot be seen by an
observer of a system. The generalised transition relation =⇒⊆ S × Σ∗ × S
captures this phenomenon: it abstracts from τ actions preceding, in-between
and following a (possibly empty) sequence of observable actions. Given an LTS

Test Generation Based on Symbolic Specifications 5



Table 1. Deduction rules for generalised transitions

s
ε=⇒ s

s
σ=⇒ s′′ s′′

τ
−→ s′

s
σ=⇒ s′

s
σ=⇒ s′′ s′′

μ
−→ s′ μ �= τ

s
σμ
=⇒ s′

L = 〈S, s0, Σ,→〉, this relation is defined by the deduction rules of Table 1. We
define two operations on LTSs. Given an LTS L = 〈S, s0, Σ,→〉 and a (possibly
new) action μ. The action prefix μ;L is defined as

μ;L =def 〈S ∪ {s}, s, Σ ∪ {μ},→∪ {s
μ
−→ s0}〉 (1)

with s /∈ S being a fresh state. For a set of LTSs L = {L1, . . . ,Ln} with n ≥ 0 of
the form Li = 〈Si, s0i, Σi,→i〉, we define the alternative composition of all LTSs
Li, denoted

∑
(L), as follows:

∑
(L) =def 〈

⋃
i≤n

Si ∪ {s}, s,
⋃
i≤n

Σi,
⋃
i≤n

(→i ∪ {s
μ
−→ s′ | s0i

μ
−→ s′})〉 (2)

with s /∈
⋃

i≤n Si being a fresh state. The operator
∑

is associative and com-
mutative. We sometimes write L1 + L2 instead of

∑
{L1,L2}.

3.1 The Test Relation iocoF

We introduce the following shorthand notation. For a μ∈Στ we write s
μ
−→ when

there is a state s′ such that s
μ
−→ s′, and, likewise, given a σ∈Σ∗ we write s

σ=⇒
when there is a state s′ such that s

σ=⇒ s′.

Definition 2. Let L = 〈S, s0, Σ,→〉 be an LTS and let s∈S.

1. init(s) =def { μ∈Στ | s
μ
−→ }.

2. traces(s) =def { σ∈Σ∗ | s
σ=⇒ }.

3. L has finite behaviour if all σ∈traces(s0) satisfy |σ| < n for some n∈N.

4. L is deterministic if for all σ∈Σ∗, |{s′ | s0
σ=⇒ s′}| ≤ 1.

We assume that implementations of a reactive system can be given as an input-
output transition system (IOTSs). An IOTS is an LTS in which the set of action
labels Σ is partitioned in a set of input actions ΣI and a set of output actions
ΣU , and for which it is assumed that all input actions are enabled in all states.

Definition 3. Let L = 〈S, s0, ΣI ∪ΣU ,→〉 be an LTS. A state s∈S is quiescent,
denoted by δ(s), if ∀μ∈ΣU ∪ {τ} : s �

μ
−→.

Let δ be a special action label, not part of any action label set. For a given set
of action labels Σ, we abbreviate Σ ∪ {δ} with Σδ. The suspension transitions
=⇒δ⊆ S × Σ∗

δ × S are given by the deduction rules of Table 2. The set of all
suspension traces of L is denoted Straces(L) = {σ∈Σ∗

δ | L
σ=⇒δ}.
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Table 2. Deduction rules for suspension transitions

s
σ=⇒ s′

s
σ=⇒δ s′

δ(s)

s
δ=⇒δ s

s
σ=⇒δ s′′ s′′

υ=⇒δ s′

s
συ=⇒δ s′

Definition 4. Let L = 〈S, s0, Σ,→〉 be an LTS, let s∈S be a state and let σ∈Σ∗
δ

be a suspension trace. We define s after σ =def { s′ | s
σ=⇒δ s′ }. We overload

this notation as follows: C after σ =def

⋃
s∈C

s after σ, where C ⊆ S.

The set of observations that can be made in a specific state s is given by the set
of all output actions that are possible from that state. When no output action
is possible the only observation that can be made is quiescence.

Definition 5. Let L = 〈S, s0, ΣI ∪ ΣU ,→〉 be an LTS and let s∈S be a state.

We define out(s) =def {δ} if δ(s) and otherwise out(s) =def {μ∈ΣU | s
μ
−→}.

We overload this notation as follows: out(C) =def

⋃
s∈C

out(s), where C ⊆ S.

Next, we define the conformance relation iocoF .

Definition 6. Let F ⊆ Straces(L) be a subset of suspension traces of a speci-
fication L. When a (physical) implementation (given as an IOTS) P is iocoF -
conform to L we write P iocoF L, where:

P iocoF L iff ∀σ∈F : out(P after σ ) ⊆ out(L after σ ) (3)

3.2 Testing for iocoF

A test case is a special LTS, which is executed on a given SUT. It has a tree-like
structure with leaves pass and fail. To formally differentiate between observed
quiescence and specified quiescence, we use θ instead of δ in the test cases,
representing observed quiescence.

Definition 7. A test case is an LTS t = 〈S, s0, ΣI ∪ ΣU ∪ {θ},→〉, satisfying:

– t is deterministic and has finite behaviour.
– {pass, fail} ⊆ S are terminal states satisfying init(pass) = init(fail) = ∅.
– for any state s∈S\{pass, fail} either init(s) = {μ} for some input μ∈ΣI or

init(s) = ΣU ∪ {θ}.

Test cases are executed simultaneously with implementations. While their inputs
and outputs must be executed synchronously, quiescence is synchronised with the
θ action of a test case and internal actions of the implementation are executed
autonomously. Let P = 〈S, s0, ΣI ∪ ΣU ,→P 〉 be an IOTS and t = 〈T, t0, ΣI ∪
ΣU ∪ {θ},→t〉 a test case. The simultaneous execution of t and P is defined by
the LTS t�| P = {T × S, (t0, s0), ΣI ∪ ΣU ∪ {θ},→〉, where → is defined by the
rules of Table 3. We say that an implementation P passes a test suite T (i.e. a
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Table 3. Deduction rules for synchronous execution

P
τ
−→P P ′

t�| P
τ
−→ t�|P ′

t
μ
−→t t′ P

μ
−→P P ′ μ∈ΣI ∪ ΣU

t�| P
μ
−→ t′�| P ′

t
θ
−→t t′ δ(P)

t�| P
θ
−→ t′�| P

P passes T iff ∀t∈T : ∀σ∈(ΣI ∪ ΣU ∪ {θ})∗ : ∀P ′ : t�| P �
σ=⇒ fail�| P ′ (4)

In [8] an algorithm is presented which, given a specification LTS L and a set
F ⊆ Straces(L), produces test cases for iocoF . We recapitulate the algorithm,
expressed in a slightly simpler way.

Definition 8. Let L = 〈S, s0, ΣI ∪ ΣU ,→〉 be an LTS and let F ⊆ Straces(L).
Let C ⊆ S be a non-empty set of states, initially C = {s0}. We use two special
LTSs which contain the terminal states pass and fail:

pass =def 〈{pass},pass, ∅, ∅〉

fail =def 〈{fail}, fail, ∅, ∅〉

A test case t is obtained from C by a finite number of recursive applications of
one of the following three nondeterministic choices:

– t := pass
The single-state test case pass is always a sound test case. It stops the
recursion and terminates the test case.

– t := μ ; t′

where μ∈ΣI and C afterμ �= ∅. We obtain t′ by recursively applying the
algorithm for C ′ = C afterμ and F ′ = {σ∈Σ∗

δ | μ · σ∈F}.

– t :=
∑

{μ; fail | ε∈F and ((μ∈ΣU , μ /∈ out(C)) or (μ = θ, δ /∈ out(C)))}

+
∑

{μ;pass | ε /∈ F and ((μ∈ΣU , μ /∈ out(C)) or (μ = θ, δ /∈ out(C)))}

+
∑

{μ; tμ | μ∈ΣU , μ∈out(C)}

+
∑

{θ; tθ | δ∈out(C)}

where tμ and tθ areobtained by recursively applying the algorithm for C afterμ
with F ′ = {σ∈Σ∗

δ | μ · σ∈F}, and C after δ with F ′ = {σ∈Σ∗
δ | δ ·σ∈F}, re-

spectively.

It is imperative that such an algorithm only produces test cases which are sound
w.r.t. iocoF and a given specification, i.e. an implementation which is iocoF -
correct passes every test case generated by the algorithm. Furthermore we want
completeness, i.e. for every implementation which is not iocoF -correct, the algo-
rithm can in principle generate a test case which detects such a non-conformance.
The following definition formalises these properties based on a given test suite:
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Definition 9. Let L be a specification LTS and let T be a test suite, then for
an implementation relation iocoF :

T is sound and complete =def ∀P : P iocoF L ⇔ P passes T
T is sound =def ∀P : P iocoF L ⇒ P passes T
T is complete =def ∀P : P iocoF L ⇐ P passes T

Theorem 1 (Tretmans [8]). Let L be an LTS and let F ⊆ Straces(L).

1. A test case obtained with the algorithm given in Def. 8 from L and F is
sound for L w.r.t. iocoF .

2. The set of all possible test cases that can be obtained with the algorithm in
Def. 8 is complete.

Remark that test cases obtained with the algorithm given in Def. 8 have finite
behaviour. Nevertheless, this does not imply that they are finitely branching, i.e.
a test case can specify for a possibly infinite set of outputs how to proceed next;
this problem can be seen as a state space explosion. This makes the algorithm
in general only feasible for LTSs with finite action alphabets at best.

4 Symbolic Transition Systems

While conceptually LTSs are nice, they lack the required level of abstraction for
modelling complex systems. We next define the model of Symbolic Transition
Systems (STSs). STSs extend on LTSs by incorporating an explicit notion of
data and data-dependent control flow (such as guarded transitions), founded on
first order logic. The STS model clearly reflects the LTS model, which is done to
smoothly transfer LTS-based test theory concepts to an STS-based test theory.
The model is kept as simple as possible to avoid unnecessary case distinctions
in subsequent definitions and theorems.

Definition 10. A Symbolic Transition System is a tuple 〈L, l0,V , ι, I, Λ,→〉:

– L is a countable set of locations and l0∈L is the initial location.
– V is a countable set of location variables.
– ι ∈ T(∅)V is an initialisation of the location variables.
– I is a set of interaction variables, disjoint from V.
– Λ is a finite set of gates. The unobservable gate is denoted τ (τ /∈ Λ);

we write Λτ for Λ ∪ {τ}. The arity of a gate λ∈Λτ , denoted arity(λ), is a
natural number. The type of a gate λ∈Λτ , denoted type(λ), is a tuple of
length arity(λ) of distinct interaction variables. We fix arity(τ) = 0, i.e. the
unobservable gate has no interaction variables.

– → ⊆ L × Λτ × F(V ∪ I) × T(V ∪ I)V × L is the switch relation. We write

l
λ,ϕ,ρ
−−−→ l′ instead of (l, λ, ϕ, ρ, l′)∈→, where ϕ is referred to as the switch

restriction (acting as a guard) and ρ as the update mapping. We require
free(ϕ) ∪ var(ρ) ⊆ V ∪ type(λ)1.

1 Note that, here, we treat a tuple of variables as a set of variables.
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In line with LTSs and IOTSs, we partition a set of gates Λ in input gates ΛI and
output gates ΛU . Moreover, for the remainder of the paper, we consider STSs to
which the following restrictions apply:

1. All sequences of τ -switches have finite length. Thus, we also do not allow for
(syntactic) τ -loops.

2. For each location l∈L, the set of outgoing switches {(l, λ, ϕ, ρ, l′) | l
λ,ϕ,ρ
−−−→ l′}

is finite, i.e. we restrict to finitely symbolic branching STSs.

Example 4. The STS 〈{l0, l1, l2, l3}, l0, {v}, {v 	→ 0}, {i}, {coin, tray},→〉, is de-
picted in Fig. 2, where → is given by the directed edges linking the locations.
It models a simple slot-machine, in which a player can insert a coin, and (non-
deterministically) win the jackpot (modelled by passing v coins over interaction
variable i of output gate tray) or lose his coin. After that, the slot machine be-
haves as initially, but with a different amount of coins in the jackpot. �

l0

l1 l3l2
τ τ

tray i:N.[i = 0] v := v + 1 tray i:N.[i = v] v := 1

v = 0

coin

Fig. 2. An STS representing a simple slot-machine

We define the semantics of an STS by associating it to an LTS.

Definition 11. Let S = 〈L, l0,V , ι, I, Λ,→〉 be an STS. The interpretation of
S is given by the LTS [[S]] = 〈S, s0, Σ,→〉, where

– S = L × UV is the set of states.
– s0 = (l0, eval ◦ ι)∈S is the initial state.
– Σ =

⋃
λ∈Λτ

({λ} × Uarity(λ)), is the set of actions.
ΣI =

⋃
λ∈ΛI

({λ}×Uarity(λ)), and, analogously, ΣU =
⋃

λ∈ΛU
({λ}×Uarity(λ)).

– → ⊆ S × Σ × S is the transition relation, defined by the rule of Table 4.

In Sect. 3.1, the iocoF relation was defined as a relation between an implemen-
tation, modelled as an IOTS, and a specification, given as an LTS. We lift this
definition to the level of STSs by appealing to their semantics.

Definition 12. Let S be an STS and P a physical system, modelled as an IOTS.
Then P iocoF S iff P iocoF [[S]].
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Table 4. Deduction rule for transitions

l
λ,ϕ,ρ
−−−→ l′ type(λ) = 〈ν1, . . . , νn〉 ς∈Utype(λ) ϑ ∪ ς |= ϕ ϑ′ = (ϑ ∪ ς)eval ◦ ρ

(l, ϑ)
(λ, 〈ς(ν1),...,ς(νn)〉)
−−−−−−−−−−−−−→ (l′, ϑ′)

5 On- he-Fly Testing

Lifting the iocoF test theory to STSs by appealing to their semantics, as we did
in the previous section, puts us in a position to reuse the standard algorithm
of Sect. 3.2 for STSs. However, as we already remarked in that section, that
algorithm suffers from a state space explosion. Note that also the computation
of the LTS that is associated to an STS in general is of infinite size.

5.1 Symbolic Ingredients

Given an STS with a switch relation →. We define a generalised switch relation
=⇒⊆ L×Λτ ×F(V∪I)×T(V∪I)V ×L (see the deduction rules of Table 5). The
intuition behind this relation is that it abstracts from the unobservable events
that possibly precede and follow an observable event. It is subsequently used in
the definition of a symbolic counterpart of the after relation of Sect. 3.1.

Table 5. Deduction rules for generalised switches

l
τ,�,id

====⇒ l
l

τ,ϕ,ρ===⇒ l′′′ l′′′
λ,ψ,π
−−−→ l′′ l′′

τ,χ,ζ===⇒ l′ λ∈Λτ

l
λ, ϕ∧ψ[ρ]∧(χ[π])[ρ], [ρ]◦[π]◦ζ

===================⇒ l′

Definition 13. Let 〈L, l0,V , ι, I, Λ,→〉 be an STS.

– An instantiated location is a pair (l, �), where l∈L is a location and � is a
mapping of the set of location variables to ground terms, i.e. �∈T(∅)V .

– A stimulus (resp. reaction) is a pair (λ, η), where λ∈ΛI is an input gate
(resp. λ∈ΛU is an output gate) and η∈T(∅)type(λ) is a mapping of the inter-
action variables of λ to ground terms.

Input constraints represent the conditions for the input gates under which an
instantiated location is specified to proceed.

Definition 14. Let (l, �) be an instantiated location. The input constraints for
(l, �), denoted Ω(l, �), are defined as

Ω(l, �) =
⋃

λ∈ΛI

{(λ,
∨

{ψ[�] | l
λ,ψ,ρ
−−−→ l′})}

We generalise this to Ω(C) =
⋃

(l,�)∈C

Ω(l, �).

Test Generation Based on Symbolic Specifications 11
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The concept of quiescence (cf. Sect. 3.1) is lifted to the level of STSs.

Definition 15. An instantiated location (l, �) is quiescent, denoted δ(l, �), iff:

∀λ∈ΛU ∪ {τ} : ¬
(
∃l′ : l

λ,ϕ,ρ
−−−→ l′ with M |= ∃(ϕ[�])

)
(5)

By observing a reaction or providing a stimulus (λ, η) at an instantiated location
(l, �), location l is left and some location of a set of new locations (with updated
location variables) can be reached. This set is given by the operator afters:

(l, �)afters(λ, η) = {(l′, [η] ◦ [�] ◦ π) | l
λ,ψ,π

=====⇒ l′ and M |= (ψ[�])[η]} (6)

For the special case where quiescence is observed, we define:

(l, �)afters δ = {(l′, [�] ◦ π) | l
τ,ψ,π

=====⇒ l′, M |= ψ[�] and δ(l′, [�] ◦ π)} (7)

We overload the operator afters to yield the set of instantiated locations that
are reached when the stimulus or reaction is made from a given set of instan-
tiated locations. Let C ⊆ L × T(∅)V and x be a stimulus or reaction, including
quiescence. Then C afters x =

⋃
(l,�)∈C(l, �)afters x.

5.2 Algorithm

To avoid the state space explosion problem, we combine test generation from
STSs with an on-the-fly execution of the test cases. This means that the gener-
ation of the test case proceeds in lock-step with its execution, see also [1]. This
has the advantage, that only the part of the state space is generated, which
corresponds to the observations made while testing.

To implement the test generation for the iocoF relation we assume that there
is a function InF:Σ∗

δ→boolean to decide whether the currently executed (sus-
pension) trace is an element of F , i.e. InF(σ) = true ⇔ σ∈F . The algorithm
keeps track of the executed trace σ and checks if InF(σ) holds before giving ver-
dicts. In the case of iocoStraces(L) (which is implemented in the test tool TorX
[9]), InF(σ) = true for all σ, and can therefore be omitted in the algorithm.

The algorithm we present next follows the same structure as the one in
Sect. 3.2. It maintains a set of instantiated locations C which symbolically rep-
resents the set of states in which the SUT may currently be. This is in general
not a singleton (due to possible non-determinism in system specifications), but
it is always finite. This is because we restrict to STSs which are finitely branch-
ing, and which do not allow for infinite sequences of τ -switches. Furthermore,
all these locations in C are instantiated due to an on-the-fly execution, i.e. the
algorithm knows for every location the actual values of the location variables.
We first present the algorithm, and subsequently discuss it.

Definition 16. Given an STS S = 〈L, l0,V , ι, I, Λ,→〉 and an SUT. Let C be
a non-empty set of instantiated locations and let σ be a suspension trace of [[S]].
Initially, we use C = {(l, ρ[ι]) | l0

τ,ϕ,ρ
=====⇒ l, with M |= ϕ[ι]} and σ = ε. The

algorithm executes a finite number of applications of the following three non-
deterministic choices:
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(1) Stop testing
01. Give the verdict pass.

(2) Give input to the SUT
02. Compute Ω(C).
03. Choose (λ, ψ)∈Ω(C) and a stimulus (λ, η), such that M |= ψ[η].
04. Send w=〈eval(η(ν1)), . . . , eval(η(νn))〉 over λ, where 〈ν1, . . . , νn〉=type(λ).
05. Compute C ′ = C afters(λ, η).
06. Repeat the algorithm with the set C ′ and trace σ′ = σ · (λ, w).

(3) Observe output of the SUT
07. If quiescence is observed then
08. Compute C ′ = C afters δ.
09. If C′ �= ∅ then
10. Repeat the algorithm with set C ′ and trace σ′ = σ · δ.
11. else
12. Give verdict fail when InF(σ), and pass otherwise.
13. else
14. Receive w = 〈w1, . . . , wn〉 over λ.
15. Compute η, satisfying eval(η(νi)) = wi for all νi∈type(λ).
16. Compute C ′ = C afters(λ, η).
17. If C′ �= ∅ then
18. Repeat the algorithm with set C ′ and trace σ′ = σ · (λ, w).
19. else
20. Give verdict fail when InF(σ), and pass otherwise.

The above algorithm shares the base case (1) with the algorithm of Def. 8: it
can terminate at any moment and give the verdict pass.

Differently from the algorithm of Def. 8, before sending an input to the SUT
(in case (2)), first a set of input constraints for C is computed (line 02). This is a
set of first order formulas specifying under which conditions certain data can be
sent over one of the input gates. The input constraints in fact represent a subset
of the possibly infinite set of inputs. The input constraint and the stimulus that
are subsequently chosen in line 03 serve to identify an appropriate input w, which
is sent over gate λ in line 04. The algorithm then proceeds with the calculation
of a new set of instantiated locations (line 05), sets the new suspension trace,
and continues with these new parameters, line 06.

When observing quiescence of the SUT (case (3), line 07), we first check
whether this is actually specified behaviour (lines 08 – 10) or not (lines 11 –
12). In the first case, the algorithm continues with the newly obtained set of
instantiated locations and suspension trace. In the latter case, we assign the
verdict fail when the executed trace was an element of F , and pass otherwise.

If the SUT actually produces an output (case (3), line 14), we receive a data
value w over an output gate λ. To facilitate reasoning about this data value,
we first find a corresponding mapping to ground terms η (line 15). Note that
this η represents the actual, concrete values that are passed over the gate λ.
Next, in line 16, the new set of instantiated locations found after observing
reaction (λ, η), is computed. Note that since η represents the concrete values
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for the interaction variables, and due to the restrictions we pose on STSs, this
new set of instantiated locations is finite. In line 17, it is tested whether the
observed output was allowed, and if so, testing is continued with the new set in
line 18. When the observed output is not allowed (line 19), we assign the verdict
fail or pass, dependent on whether the trace we executed thus far was part of
F . Note that the meaning of pass in lines 12 and 20 corresponds more to an
inconclusive verdict (see also [7]). However, this verdict is currently not part
of our test case definition.

Next we state the correctness and completeness of the algorithm above. That
means that we have not lost any detection power compared to the (infeasible)
algorithm of Sect. 3.2.

Theorem 2. Let S be an STS and let F ⊆ Straces([[S]]). Given an SUT assumed
to behave like an IOTS P we have:

1. P iocoF S ⇒ every application of the algorithm given in Def. 16 on S,F
and the SUT results in pass.

2. ¬(P iocoF S) ⇒ there exists an application of the algorithm given in Def. 16
on S,F and the SUT which potentially results in fail.

The potentially in 2. is because the SUT can behave non-deterministically: if
the SUT chooses (non-deterministically) a non-erroneous path, the algorithm
cannot observe the fault, of course.

5.3 Discussion

The decidability (and computability) of the first order formulas occurring in
STSs is an issue of utmost importance when considering a computer implemen-
tation of the algorithm of Def. 16. Two entities, viz. the set of input constraints
Ω(C) and partly the new sets of instantiated locations C afters(λ, η) can be com-
puted purely on the basis of syntax. At some point, though, it is necessary to
decide whether a (possibly existentially closed) formula has a solution. In gen-
eral, this may not even be computable. While we did not address this issue in this
paper, as it is orthogonal to the general idea behind the algorithm we presented,
we did identify where decidability and computability are of concern. A way to
proceed here is to use feasible subsets of first order logic, possibly assisted by
(dedicated) theorem provers.

A second point of attention is the selection of appropriate stimuli to be passed
on to the SUT (case (2) of the algorithm). While the question of decidability
and computability is certainly important here, the strategy of filtering interesting
stimuli out of a huge set of mainly uninteresting input stimuli satisfying some
constraint in the set Ω(C) is equally challenging. This is where tools such as
Gast may come into play. Such tools can automatically generate such stimuli
based on given strategies. For instance, Gast uses generics to represent a data
type; using a strategy which is similar to unfolding and traversing a tree-like
structure, values of the data type are obtained. Other strategies are to employ
the syntactical structure of a data type, or to use some uniformity hypothesis
for generating and selecting interesting data values.
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6 Conclusions

We have tackled the state space explosion problem that is often encountered in
state-based test tools. This is achieved by lifting a test theory for Labelled Tran-
sition Systems (LTSs), called iocoF , to Symbolic Transition Systems (STSs).
Unlike in LTSs, data is treated symbolically in an STS. As a side-effect, system
descriptions given as an STS are at a natural level of abstraction and in general
more concise than their LTS counterparts. In fact, the semantics of STSs (which
is given by a translation to LTSs) can yield LTSs of infinite size.

Due to this LTS semantics of the STS, the original iocoF test relation could
be reused in our symbolic setting, including the classical test case generation
algorithm for iocoF . While in theory, this algorithm generates test cases that
can be infinitely branching, in practice, this is effectively solved by an on-the-fly
implementation of the algorithm working directly on STSs. This solution is only
apparent on account of the orthogonal treatment of data and control in STSs.

Several issues remain open, such as the identification of feasible subsets of
first order formulas and a running implementation of our algorithm.
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We present a method for the automatic generation of test
cases for HOL formulae containing primitive recursive predicates. These
test cases can be used for the animation of specifications as well as for
black-box testing of external programs.
Our method is two-staged: first, the original formula is partitioned into
test cases by transformation into a Horn-clause normal form (HCNF).
Second, the test cases are analyzed for instances with constant terms
satisfying the premises of the clauses. Particular emphasis is put on the
control of test hypotheses and test hierarchies to avoid intractability.

We applied our method to several examples, including AVL-trees and
the red-black tree implementation in the standard library from SML/NJ.

Keywords: symbolic test case generations, black box testing, theorem
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1 Introduction

Today, essentially two software validation techniques are used: software verifi-
cation and software testing. Whereas verification is rarely used in “large-scale”
software development, testing is widely used, but normally in an ad-hoc manner.
Therefore, the attitude towards testing has been predominantly negative in the
formal methods community, following what we call Dijkstra’s verdict [11, p.6]:

“Program testing can be used to show the presence of bugs, but never
to show their absence!”

More recently, three research areas, albeit driven by different motivations, con-
verge and result in a renewed interest in testing techniques:

– Abstraction Techniques: model-checking raised interest in techniques to ab-
stract infinite models to finite ones. Provided that the abstraction has been
proven sound, testing may be sufficient for establishing correctness [5, 9].

– Systematic Testing: the discussion over test adequacy criteria [21], i.e., cri-
teria answering the question “when did we test enough to meet a given test
hypothesis”, led to more systematic approaches for partitioning the space of
possible test data and the choice of representatives. New systematic testing
methods and abstraction techniques can be found in [12, 13].

J. Grabowski and B. Nielsen (Eds.): FATES 2004, LNCS 3395, pp. 16–3 , 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Abstract.

.

2



– Specification Animation: constructing counter-examples has raised interest
also in the theorem proving community, when combined with animations of
evaluations, they may help to find modeling errors early and to increase the
overall productivity [14].

The first two areas are motivated by the question “are we building the pro-
gram right?”, the latter is focused on the question “are we specifying the right
program?”. While the first area shows that Dijkstra’s Verdict is no longer true
under all circumstances, the latter area shows that it simply does not apply to
important situations in practice. In particular, if a formal model of the environ-
ment of a software system (e.g., based on, amongst other things, the operating
system, middleware or external libraries) must be reverse-engineered, testing —
in the sense of “experimenting” — is without alternative (see [7]).

Following standard terminology [21], our approach is a specification-based
unit test. A test procedure for such an approach can be divided into:

– Test Case Generation: for each operation, the pre/post-condition relation is
divided into sub-relations. It assumes that all members of a sub-relation lead
to a similar behavior of the implementation.

– Test Data Selection: for each test case (at least) one representative is chosen
so that coverage of all test cases is achieved. From the resulting test data,
test input data processable by the implementation is extracted.

– Test Execution: the implementation is run with the selected test input data
in order to determine the test output data.

– Test Result Verification: the pair of input/output data is checked against
the specification of the test case.

As an example for a specification-based unit-test approach, QuickCheck [8] has
attracted interest in various research communities. QuickCheck performs ran-
dom tests, potentially improved by hand-programmed test data generators, and
provides a simple test execution and test result verification environment for pro-
grams written in Haskell.

However, it is well-known that random test can be ineffective in many cases;1

in particular, if complex preconditions of programs like “the input tree must be
balanced” or “the input must be a well-formed abstract syntax tree” rule out
most of randomly generated data. In our approach, we will exploit the speci-
fication of pre- and postconditions of a program — the test specification — in
a preprocessing step, the test case generation. Our implementation TestGen of
a test case generator is built on top of the theorem prover Isabelle/HOL [17].
Isabelle is programmed to execute the underlying symbolic computations in an
automatic, but logically safe way. Based on the resulting test cases, a random
test based data selection procedure can be controlled in a problem-oriented way
and achieve a significantly better test coverage. As a particular feature, the au-
tomated deduction-based process can log the test hypothesis underlying the test.

1 Consider abs(x-2) >= 0 where abs from the Haskell Integer library computes the
absolute value. Here it is very unlikely that QuickCheck finds the problem. . .
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Provided that the test hypotheses are valid for the program and provided the
program passes the test successfully, the program must guarantee correctness
with respect to the test specification.

We proceed as follows: we will introduce our implementation built on top of
the theorem prover Isabelle by a tiny, but classical example [12] (Sec. 2). This
demonstration serves as a means to motivate concepts like test specification,
testing normal form, test cases, test statements. In Sec. 3, we will discuss the
test case generation in more detail. In Sec. 4, we will discuss a technique for
controlling the state explosion by generating abstract test cases. Finally, we apply
our technique to a number of non-trivial examples (Sec. 5) involving recursive
data types and recursive predicates and functions over them.

2 Symbolic Test Case Generation: A Guided Tour

Our test case generator TestGen is integrated into the specification and theo-
rem proving environment Isabelle/HOL. As a specification language, HOL offers
data types, recursive function definitions and fairly rich libraries with theories
of, e.g., arithmetics; it is often viewed as a “functional programming language
with logical quantifiers”. As a theorem proving environment, Isabelle is based
on a relatively small proof engine (based on higher-order resolution) providing a
proof state that can be transformed via elementary tactics into logically equiv-
alent ones, until a final proof state is reached where a derived formula has the
appropriate form.

Our running example for automatic test case generation is described as fol-
lows: given three integers representing the lengths of the sides of a triangle, a
small algorithm has to check, whether these integers describe an equilateral,
isosceles, scalene triangle, or no triangle at all. First we define an abstract data
type describing the possible results in Isabelle/HOL:

datatype Triangles := equilateral | scalene | isosceles | error

For clarity (and as an example for specification modularization) we define an
auxiliary predicate deciding if the three lengths are describing a triangle:

constdefs triangle :: [nat, nat, nat] → bool
triangle x y z ≡ (0 < x) ∧ (0 < y) ∧ (0 < z) ∧ (z < x + y)

∧(x < y + z) ∧ (y < x + z)

Now we define the behavior of the triangle program by initializing the internal
Isabelle proof state with the test specification TS :

prog(x, y, z) = if triangle x y z then
if x = y then

if y = z then equilateral else isosceles
else if y = z then isosceles

else if x = z then isosceles else scalene
else error
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Note that the variable prog is used to label an arbitrary implementation as the
current program under test that should fulfill the test specification.

In the following we show how our test package TestGen can be applied to the
automatic test data generation problem for the triangle problem. Our method
proceeds in the following steps:

1. By applying gen_test_case_tac we bring the proof state into testing normal
form (TNF). In this example, we decided to generate symbolic test cases
up to depth 0 (discussed later) and to unfold the triangle predicate by its
definition before the process. This leads to a formula with 26 clauses, among
them:

[[0 < z; z < z + z]] =⇒ prog(z, z, z) = equilateral[[
x �= z; 0 < x; 0 < z;
z < x + z; x < z + z

]]
=⇒ prog(x, z, z) = isosceles

[[y �= z; z �= y;¬z < z + y]] =⇒ prog(z, y, z) = error

We call each Horn-clause of the proof state a symbolic test case. As a result of
gen_test_case_tac, we can extract the current proof state and get the test
theorem which has the form [[A1; . . . ; A26]] =⇒ TS where the Ai abbreviate
the above test cases.

2. We compute the concrete test statements by instantiating variables by con-
stant terms in the symbolic test cases for “prog” via a random test procedure
(genadd_test_data). The latter operation selects the test cases from the test
theorem and produces the test statements (excerpt):

prog(3, 3, 3) = equilateral prog(4, 6, 0) = error

A test statement can be compiled into a test program by simply mapping all
operators to external code (where prog is the code for calling the program under
test). This can be automated with Isabelle’s code-generator. If such a compilation
is possible for a formula A, i.e., if A only consists of constant symbols for which
this map is defined, we call A executable. This definition essentially rules out
unbounded logical quantifiers and more arcane HOL constructs like the Hilbert-
operator.

In our triangle example, standard simplification was able to eliminate the
assumptions of the (instantiated) test cases automatically. In general, assump-
tions in test statements (also called constraints) may remain. Provided that
all test statements are executable, clauses with constraints can nevertheless be
interpreted as an abstract test program. For its result, three cases may be distin-
guished: (i) if one of the clauses evaluates to false, the test is invalid, otherwise
valid. A valid test may be (ii) a successful test if and only if the evaluation of all
conclusions (including the call of prog) also evaluates to true; (iii) otherwise the
test contains at least one test failure. Rephrased in this terminology, the ultimate
goal of the test data selection is to construct successful tests, which means that

Symbolic Test Case Generation for Primitive Recursive Functions 19



ground substitutions (i.e. instantiations of variables with constant terms) must
be found that make the remaining constraints valid.

Coming back to our example, there is a viable alternative for the process
above: instead of unfolding triangle and trying to generate ground substitutions
satisfying the constraints, one may keep triangle in the test theorem, treating
it as a building block for new constraints. It turns out that a special test theo-
rem and test data (like “triangle(3, 4, 5) = True”) can be generated “once and
for all” and inserted before the test data selection phase producing a “partial”
grounding. It will turn out that the main state explosion is shifted from the
test case generation to the test data selection phase, possibly at the cost of test
adequacy. This technique to modularize test data generation will be discussed
in Sec. 4 in more detail.

3 Concepts of Test Case Generation

As input of the test case generation phase, the test specification, one might
expect a special format like pre(x) → post x (prog(x)). However, this rules out
trivial instances such as 3 < prog(x) or just prog(x) (meaning that prog must
evaluate to True for x). Therefore, we do not impose any other restriction on
a specification other than the final test statements being executable, i.e., the
result of the process can be compiled into a test program.

Processing this test specification, our method gen_test_case_tac can be
separated into the following conceptual phases (in reality, these phases were
performed in an interleaved way):

– Tableaux Normal Form Computation: via a tableaux calculus (see Tab. 1),
the specification is transformed into Horn-clause normal form (HCNF).

– Rewriting Normal Form Computation: via the standard rewrite rules the
current specification is simplified.

– Testing Normal Form Computation: by re-ordering of the clauses, the calls
of the program under test are rearranged such that they only occur in the
conclusion, where they must occur at least once.

– Testing Normal Form Minimization: redundancies, e.g., clauses subsumed by
others, are eliminated.

– Exploiting Regularity Hypothesis: for free variables occurring in recurring
argument positions of primitive recursive predicates, a suitable data separa-
tion lemma is generated and applied (leading to a test hypothesis THYP).

– Exploiting Uniformity Hypothesis: for all Horn-clauses not representing a
test hypothesis, a uniformity hypothesis is generated and exploited.

After a brief introduction of concepts and use of Isabelle in our setting, we will
follow the sequence of these phases and describe them in more detail in the
subsequent sections. We will conclude with a discussion of coverage criteria.
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3.1 Concepts and Use of Isabelle/HOL

Isabelle [17] is a generic theorem prover of the LCF prover family; as such, we use
the possibility to build programs performing symbolic computations over formu-
lae in a logically safe (conservative) way on top of the logical core engine: this is
what TestGen technically is. Throughout this paper, we will use Isabelle/HOL,
the instance for Church’s higher-order logic. Isabelle/HOL offers support for data
types, primitive and well-founded recursion, and powerful generic proof engines
based on rewriting and tableaux provers.

Isabelle’s proof engine is geared towards Horn-clauses (called “subgoals”):
A1 =⇒ . . . =⇒ An =⇒ An+1, written [[A1; . . . ; An]] =⇒ An+1, is viewed as a rule
of the form “from assumptions A1 to An, infer conclusion An+1”. A proof state
in Isabelle contains an implicitly conjoint sequence of Horn-clauses φ1,. . . ,φn

and a goal φ. Since a Horn-clause

[[A1; . . . ; An]] =⇒ An+1

is logically equivalent to

¬A1 ∨ · · · ∨ ¬An ∨ An+1,

a Horn-clause normal form (HCNF) can be viewed as a conjunctive normal form
(CNF). Note, that in order to cope with quantifiers naturally occurring in speci-
fications, we generalize the idea of a Horn-clause to Isabelle’s format of a subgoal,
where variables may be bound by a built-in meta-quantifier:∧

x1, . . . , xm. [[A1; . . . ; An]] =⇒ An+1

Subgoals and goals may be extracted from the proof state into theorems of the
form [[φ1; . . . ; φn]] =⇒ φ; this mechanism is used to generate test theorems. The
meta-quantifier

∧
is used to capture the usual side-constraints “x must not occur

free in the assumptions” for quantifier rules; meta-quantified variables can be
considered as free variables. Further, Isabelle supports meta-variables (written
?x, ?y, . . .), which can be seen as “holes in a term” that can still be substituted.
Meta-variables are instantiated by Isabelle’s built-in higher-order unification.

3.2 Normal Form Computations

In this section, we describe the tableaux, rewriting and testing normal form
computations in more detail. In Isabelle/HOL, the automated proof procedures
for HOL formulae depend heavily on tableaux calculi [10] presented as (derived)
natural deduction rules. The core tableaux calculus is shown in Tab. 1 in the
Appendix. Note, that with the notable exception of the elimination rule for
the universal quantifier (see Tab. 1(c)), any rule application leads to a logically
equivalent proof state: therefore, all rules (except ∀ elimination) are called safe.
When applied bottom up in backwards reasoning (which may introduce meta-
variables explicitly marked in Tab. 1), the technique leads in a deterministic
manner to a HCNF.
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Horn-clauses can be normalized by a number of elementary logical rules (e.g.,
False =⇒ P = True), the usual injectivity and distinctness rules for constructors
implied by data types and computation rules resulting from recursive definitions.
Both processes together bring an original specification into Rewriting HCNF.

However, these forms do not exclude clauses of the form:

[[¬(prog x = c);¬(prog x = d)]] =⇒ An+1

where prog is the program under test. Equivalently, this clause can be trans-
formed into

[[¬(An+1)]] =⇒ prog x = c ∨ prog x = d

We call this form of Horn-clauses testing normal form (TNF). More formally, a
Horn-clause is in TNF for program under test F if and only if

– F does not occur in the constraints, and
– F does occur in the conclusion.

Note that not all specifications can be converted to TNF. For example, if the
specification does not make a suitably strong constraint over program F , in par-
ticular if F does not occur in the specification. In such cases, gen_test_case_tac
stops with an exception.

3.3 Minimizing TNF

A TNF computation as described so far may result in a proof state with redun-
dancies. Redundancies in a proof state may result in superfluous test data and
should therefore be eliminated. A proof state may have:

1. several occurrences of identical clauses
2. several occurrences of clauses with subsuming assumption lists; this can be

eliminated by the transformation

[[P ; R]] =⇒ A; [[P ; Q; R]] =⇒ A;
==========================

[[P ; R]] =⇒ A;

3. and in particular, clauses that subsume each other after distribution of ∨;
this can be eliminated by the transformation

[[P ; R]] =⇒ A; [[¬P ; Q]] =⇒ B; [[R; Q]] =⇒ A ∨ B;
=========================================

[[P ; R]] =⇒ A; [[¬P ; Q]] =⇒ B;

The notation above refers to logical transformations on a subset of clauses within
a proof state and not, as usual, on formulae within a clause. Since in backward
proofs the proof state below is a refinement of the proof state above, the logical
implication goes from bottom to top.
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3.4 Exploiting Regularity Hypothesis for Recursive Predicates

In the following, we address the key problem of test case generation in our
setting, i.e.; recursive predicates occurring in preconditions of a program. As an
introductory example, we consider the membership predicate of an element in a
list:

primrec x mem [ ] = False
x mem (y#ys) = if y = x thenTrue elsex mem ys (1)

which occurs as precondition in an (abstract) program specification:

x mem S → prog x S

For the testing of recursive data structure, Gaudel suggested in [13] the intro-
duction of a regularity hypothesis as one possible form of a test hypothesis, a
kind of weak induction rule:

[|x| < k]··
P x

P x

This rule formalizes the hypothesis that provided a predicate P is true for all
data x whose size, denoted by |x|, is less than a given depth k, it is always true.
The original rule can be viewed as a meta-notation: In a rule for a concrete data-
type, the premises |x| < k can be expanded to a number of premises enumerating
constructor terms.

For all variables in clauses that occur as (recurring) arguments of primitive
recursive functions, we will use a testing hypothesis of this kind — called data
separation lemma — in an exercise in poly-typic theorem proving [19] described
in the following.

The Isabelle/HOL data type package generates definitions of poly-typic func-
tions (like case-match and recursors) from data type definitions and derives a
number of theorems over them (like induction, distinctness of constructors, etc.).
In particular, for any data type, we can assume the size function and reduction
rules allowing to compute

∣∣[a, b, c]
∣∣ = 3, for example. Moreover, there is a stan-

dard exhaustion-theorem, which for lists has the form[[
y = [ ] =⇒ P ;

∧
x xs. y = x#xs =⇒ P

]]
=⇒ P

Now, since we can separate any data x belonging to a data type τ into:

x ∈
{
z :: τ. |z| < d

}
∨ x ∈

{
z :: τ. d ≤ |z|

}
(2)

i.e., x is either in the set of data smaller d or in the remaining set. Note that both
sets are infinite in general; the bound for the size produces “data test cases” and
not just finite sets of data. Consequently, we can derive for each given type τ
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and each d a destruction rule that enumerates the data of size 0, 1, . . . , k − 1.
For lists x and d = 2, 3, it has the form:

x ∈ {z :: α list. |z| < 2} →
(
x = [ ]

)
∨

(
∃a. x = [a]

)
x ∈ {z :: α list. |z| < 3} →

(
x = [ ]

)
∨

(
∃a. x = [a]

)
∨

(
∃ab. x = [a, b]

)
(3)

Putting equation (2) together with the destruction rule (3), instead of the unsafe
regularity hypothesis in the sense of Gaudel we automatically construct the safe
data separation lemma, i.e. an exhaustion theorem of the form:[

x = [ ]
]

··
P (x)

∧
a.

[
x = [a]

]
··

P (x)
∧

a b.

[
x = [a, b]

]
··

P (x) THYP
(
3 ≤ |x| → P (x)

)
P (x)

The purpose of this rule in backward proof is to split a statement over a program
into several cases, each with an additional assumption that allows to “rewrite-
away” the x appropriately. Here, the constant THYP :: bool → bool (defined as
the identity function) is used to label the test hypothesis in the proof state. Since
we do not unfold it, formulae labeled by THYP are protected from decomposition
by the tableaux rules shown in Tab. 1.

The equalities introduced by this rule of depth d = 3 allow for the simplifi-
cation of the primitive recursive predicate mem which leads to further decom-
positions during the TNF computation. Thus, for our test specification:

x mem S → prog x S

executing gen test case tac results in the following TNF:

1. prog x [x]

2.
∧

b. prog x [x, b]

3.
∧

a. a �= x → prog x [a, x]

4. THYP(3 ≤ |S| → x mem S → prog x S)

The simplification of the mem predicate along its defining rules (1) leads to
nested “if then else” constructs. Their decomposition during HCNF computa-
tion results in the constraint that the lists fulfilling the precondition must have
a particular structure. Even the simplest “generate-and-test”-method for test
data selection will now produce adequate test statements, while it would have
produced mostly test failures when applied directly to the original specification.

The handling of quantifiers ranging over data types can be done analogously:
since ∀x. P (x) is equivalent to ∀x : UNIV . P (x) and since the universal set
UNIV = {z :: τ. |z| < d} ∪ {z :: τ. d ≤ |z|}, the universal quantifier can be
decomposed into a finite conjunction for the test cases smaller than d and a test
hypothesis THYP for the rest.

From the above example it follows that the general form of a test theorem
is [[A1; . . . ; An; THYP(H1); . . . ; THYP(Hm)]] =⇒ TS . Here the Ai represent the
test cases, the Hi the test hypothesis, and TS the testing specification.
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3.5 Exploiting Uniformity Hypothesis

After introducing the uniformity hypothesis and computing a TNF (except for
clauses containing THYPs), we use the clauses to construct another form of
testing hypothesis, namely the uniformity hypothesis [13] (sometimes also called
partitioning hypothesis) for each test case. This kind of hypothesis has the form:

THYP(∃x1, . . . , xn. P x1, . . . , xn → ∀x1, . . . , xn. P x1, . . . , xn)

This means that whenever there is a successful test for a test case, it is assumed
that the program will behave correctly for all data of this test case.

Using a uniformity hypothesis for each (non-THYP) clause allows for the
replacement of free variables by meta-variables; e.g., for the case of two free
variables, we have the following transformation on proof states:

[[A1 x y; . . . ; An x y]] =⇒ An+1 x y
==============================================================
[[A1 ?x ?y; . . . ;An ?x ?y]] =⇒ An+1?x ?y; THYP((∃xy. P x y) → (∀xy. P x y));

where P x y ≡ A1 x y∧ . . .∧An x y → An+1 x y. This transformation is logically
sound. Moreover, the construction introduces individual meta-variables into each
clause for the ground instances to be substituted in the test data selection; this
representation allows for partial instantiation of variable with constant terms
and is also a prerequisite for structured test data selection as discussed in Sec.4.

3.6 Coverage Criteria: A Discussion

In their seminal work, Dick and Faivre [12] propose to transform the original
specification into disjunctive normal form (DNF), followed by a case splitting
phase converting the disjunctions A∨B into A∧B, ¬A∧B and A∧¬B and further
(logical and arithmetic) simplifications and minimizations on the disjunctions.
The resulting cases are also called the partitions of the specification or the (DNF)
test cases. The method suggests the following test adequacy criterion: a set of
test data is partition complete if and only if for any test case there is a test data.
Consequently, a program P is tested adequately to partition completeness with
respect to a specification S if it passes a partition complete test data set.

Our notion of a successful test, see Sec. 2, is a HCNF based adequacy criterion.
DNF and HCNF based adequacy result in the same partitioning in many practical
cases, as in the triangle example, while having no clear-cut advantage in others.
Since the DNF technique has the disadvantage of producing a double exponential
blow-up (the case splitting phase alone can produce an exponential blow-up)
while HCNF computation is simply exponential, and since HCNF-computation
can be more directly and efficiently implemented in the Isabelle proof engine,
we chose the latter.

HCNF adequacy subsumes another interesting adequacy criterion under cer-
tain conditions, namely branch coverage with respect to the specification. Branch
coverage means that in any (mutual) recursive system of functions, all reachable
branches, e.g., of the if P then A else B statements, were activated at least
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once. For a mutual recursive system consisting only of primitive recursive func-
tions, (i.e., with each call the size of data will decrease exactly by one), it can
be concluded that if the testing depth d is chosen larger than the size of the
maximal strong component of the call graph of the recursive system, each func-
tion is unfolded at least once. Since the unfold results in conditionals that were
translated to (P → A) ∧ (¬P → B), any branch will lead to a test case.

Thus, while gen_test_case_tac often produces reasonable results for arbi-
trarily recursive functions, we can assure only for primitive recursions that the
underlying HCNF adequacy of our method subsumes branch coverage.

4 Structured Test Data Selection

The motivations to separate test data selection from test case generation are
both conceptual and technical. Conceptually, test data selection is a process
where we would also like to admit more heuristic techniques like random data
generation or generate-and-test with the constraints; since test data selection
yields sequences of ground theorems (no meta-variables, no type variables), this
paves the way for highly efficient evaluation by compiled code more capable to
cope with the unavoidable state explosion in the late stages. A purely technical
motivation for this separation is Isabelle-related: within a test theorem, it is
not possible to instantiate polymorphic type variables α in different ways when
generating test statements, however, this flexibility may be desirable.

The generation of a multitude of ground test statements from one test the-
orem containing the test cases and the test hypothesis is essentially based on a
random-procedure followed by a test of the satisfaction of the constraints (simi-
lar to QuickCheck). For each type, this default procedure may be overwritten in
TestGen-specific generators that may be user defined; thus, the usual heuristics
like trying [0, 1, 2, maxint , maxint +1] can be easily implemented, or the counter-
example generation integrated in Isabelle’s arithmetic procedure can be plugged
in (which, in our experience, is difficult to control in larger examples).

Now we will discuss the issue of structured test data generation. Similar to
theorem proving, the question of “how many definitions should be unfolded” is
crucial; exploiting suitable abstractions is the major weapon against complexity.
In our first attempt to generate a test theorem for the triangle example (see
Sec. 2), the auxiliary predicate triangle is unfolded in the test specification. This
resulted in the aforementioned 26 cases. If we do not unfold it, the resulting test
theorem has only 10 test cases, but contains “abstract constraints” such as:

[[triangle z z z]] =⇒ prog(z, z, z) = equilateral
[[¬triangle z z z]] =⇒ prog(z, z, z) = error

[[y �= z; z �= y; triangle z y z]] =⇒ prog(z, y, z) = isosceles

Thus, a substantial part of the proof state explosion can be postponed by treating
triangle as a building block in the constraints or, in other words, by generating
more abstract test cases.
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Now, if we could generate an local test theorem for triangle as such, generate
the local test data separately and resolve the resulting test statements for it into
the test theorem for the global computation, the state explosion could be shifted
to the test data selection. The trick can be done as follows: we define a trivially
true proof goal for:

prog(x, y, z) = triangle x y z =⇒ prog(x, y, z) = triangle x y z

unfold triangle and compute TNF(prog). When folding back triangle via the
assumption we get the following local test cases:

¬triangle 0 y z ¬z < x + y =⇒ ¬triangle x y z
¬triangle x 0 z ¬x < y + z =⇒ ¬triangle x y z
¬triangle x y 0 ¬y < x + z =⇒ ¬triangle x y z[[

0 < x; 0 < y; 0 < z;
z < x + y; x < y + z; y < x + z

]]
=⇒ triangle x y z

which can easily be converted into abstract test statements such as triangle 1 1 1.
When resolving the latter in all combinations into the abstract global test theo-
rem, instances for variables with randomly generated constants were made super-
fluous. Thus, the test statements of previously developed theories can be reused
when building up larger units. Of course, when building up test data in a mod-
ular way, this comes at a price: since the local test statements do not have the
same logical information available as their application context in a more global
test theorem, the instantiation may result in unsatisfiable constraints. Neverthe-
less, since the criterion for success of a decomposition is clear — at the very end
we want constraint-free test statements achieving a full coverage of the TNF—
the implementor of a test has more flexibility here helping to deal with larger
problems. In our example, there is no loss at all: test data for the local predicate
is valid for the global goal, and by construction, the set of test statements is still
complete for HCNF coverage.

5 Applications

We applied our method to specifications of two widely used variants of balanced
binary search trees: AVL trees and red-black trees. These case studies were per-
formed using Isabelle 2003 compiled with SML of New Jersey running on Linux
with 512 MBytes of RAM, and an Intel 1.6 GHz P4 processor.

5.1 AVL Trees

In 1962 Adel’son-Vel’skĭı and Landis [3] introduced a class of balanced binary
search trees (called AVL trees) that guarantee that a tree with n internal nodes
has height O(log n). Based on an AVL-theory from the Isabelle library we gen-
erated test cases for the following invariant: if an element y is in the tree after
insertion of x in the tree t then either x = y holds or y was already stored in t.
Based on the depth 3, this test specification leads to an amazing 236 test cases
which were computed in less than 30 seconds.
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5.2 Red-Black Trees

A widely used variant of balanced search trees was presented by Bayer [4]. In
this data structure, the balancing information is stored in one additional bit
per node. This is called “color of a node” (which can either be red or black),
hence the name red-black trees. A valid (balanced) red-black tree must fulfill the
following two invariants:

– Red Invariant: each red node has a black parent.
– Black Invariant: each path from the root to an empty node has the same

number of black nodes.

We aimed for testing a “real-world” implementation of red-black trees and de-
cided to test the red-black trees provided in the standard library of SML of New
Jersey (SML/NJ) [2]. There, red-black trees are used for implementing finite sets
and maps which are intensively used throughout the SML/NJ compiler itself.

Our specification is based on the formalization [16] of the SML/NJ red-black
trees (based on version 110.44 of SML/NJ). The specification starts with the
basic data type declaration for binary trees:

datatype color = R | B
α tree = E | T color (α tree) (α item) (α tree)

In this example we have chosen not only to check if keys are stored or deleted
correctly in the trees but also to check if the trees fulfill the balancing invariants.
Therefore our specification has to formalize the red and black invariants. This
is done by the following recursive predicates:

consts
redinv :: (α item) tree ⇒ bool
blackinv :: (α item) tree ⇒ bool

recdef redinv“measure (λt. (size t))”
“redinv E = True”
“redinv (T B a y b) = (redinv a ∧ redinv b)”
“redinv (T R (T R a x b) y c)= False”
“redinv (T R a x (T R b y c))= False”
“redinv (T R a x b) = (redinv a ∧ redinv b)”

recdef blackinv“measure (λt. (size t))”
“blackinvE = True”
“blackinv(T color a y b) = ((blackinv a) ∧ (blackinv b)

∧((max B height a) = (max B height b)))”

We use the following test specification for checking if the delete operation fulfills
these invariants:

(redinv t ∧ blackinv t) → (redinv (delete x t) ∧ blackinv (delete x t))
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In other words, for all trees the deletion operation maintains the red and black
invariant. For testing purposes, we instantiated item with Integers. The test case
generation takes less than two minutes and results in 348 test cases. Among them

delete 8 (T B (T B (T R E 2 E) 5 E) 6 (T B E 8 E))
= (T B (T B E 2 E) 5 (T B E 6 E))

which describes that the deletion of the node 8 in the tree shown in Fig. 1(a)
must result in the tree shown in Fig. 1(b). This test case revealed a major error
in the standard library of SML/NJ. Using a simple SML test script one observes:

val input = T (B,T (B,T (R,E,2,E),5,E),6,T (B,E,8,E))

- val output = delete(input ,8);

val output = T (B,E,2,T (B,T (R,E,5,E),6,E))

Obviously, the black invariant does not hold for output (see Fig. 1(c)).

2

5

6

8

(a) pre-state

6

5

2

(b) correct result

5

2

6

(c) result of SML/NJ

Test Data for Deleting a Node in a Red-Black Tree

This example shows that specification based testing can find efficiency bugs:
combinations of insert and delete operations of the SML/NJ implementation
easily lead to trees that degenerate to sorted lists. In our case, the revealed flaw
has not been detected in the last 12 years, although red-black trees are widely
used within the SML/NJ compiler itself. Fixing this bug will presumably lead to
a perceptible performance gain of the SML/NJ compiler.

Based on our definitions, the bug could be reproduced by QCheck/SML [1], a
QuickCheck-like random testing tool. Although this particular bug can even be
found without using a hand-programmed test data generator, the QuickCheck
method imposes to write one in general. Moreover, our method allows to con-
clude that certain coverage criteria are fulfilled and makes all underlying test
hypotheses explicit. Further, our approach can profit from the underlying theo-
ries for data-types offering the potential for problem-specific case splits.2

2 . . . such as [[P (minBound :: Int); a �= minBound =⇒ P (−a)]] =⇒ P (−a) which also
produces the critical test case x = minBound + 2 for the mentioned problem
abs(x-2)>=0 after unfolding abs to if x >= 0 then x else -x.

Fig. 1.
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6 Conclusion

We have presented the theory and implementation of a test case generator for
unit tests. In contrast to [20] (which also provides a recent survey), which at-
tempts to analyze imperative programs with non-trivial data-structures, our
approach is focused on functional programs. Since imperative programs can be
provided with a functional interface (by compiling a functional call to a state-
ment sequence consisting of (i) initialization, (ii) executing constructors repre-
senting data types, (iii) calling the program under test, and (iv) checking the
result), this is not a real limitation of our approach except if complex reference
structures have to be analyzed. We demonstrated the practical feasibility of our
approach by testing functions from the SML/NJ library, which revealed a major
bug leading to inefficiency in basic data structures of the SML/NJ compiler.

In our opinion, test data generation is an activity that clearly needs some
user interaction: as in model-checking, one has to experiment with the form
of the specifications and basic parameters (depth of data separation, the level
of abstraction, the decision which definitions should be unfold, etc.) in order
to get a feasible test data set for the test of a “real program”. Therefore, we
believe such an activity is best supported by an integration into an interactive
theorem proving environment such as Isabelle. Since TestGen is ca. 400 lines
of SML code that is loaded into Isabelle, we still consider our approach fairly
“lightweight”. Nevertheless, TestGen is at present the only implementation of
a test case generator that combines state-of-the-art deduction technology based
on derived rules (formally proven inside Isabelle) with a powerful logic.

We believe that there is another line of criticism against Dijkstra’s verdict. A
successful test together with explicitly stated test hypotheses is not fundamen-
tally different from program verification: all sorts of modeling assumptions were
made, adding test hypothesis is just one more of them. The nature and trust-
worthiness of these assumptions may be different, but a clear-cut line between
testing and verification does not exist.

6.1 Future Work

We see the following lines of extension of our work:

1. Investigating the test hypothesis: a new test hypothesis (like congruence hy-
pothesis on data, for example) may dramatically improve the viability of the
approach. Furthermore, it should be explored if the verification of the test
hypothesis for a given abstract program offers new lines of automation.

2. Better control of the process: at the moment, our implementation can only
be controlled by very globally applied parameters such as depth. The ap-
proach could be improved by generating the test hypothesis and the test
data depending on the local context within the test theorems.

3. Integration tests: integrating/combining our framework into behavioral mod-
eling leads to the generation of test sequences as in [15, 18].

4. Generating test data for many-valued logics such as HOL-OCL [6] should make
our approach applicable to formal methods more accepted in industry.
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A Appendix

P ?x

∃x. P x

^
x. P x

∀x. P x

(a) Quantifier Introduction Rules

t = t True

P Q

P ∧ Q

[¬Q]··
P

P ∨ Q

[P ]··
Q

P → Q

[P ]··
False

¬P

[P ]··
Q

[Q]··
P

P = Q

(b) Safe Introduction Rules

∀x. P x

[P ?x]··
R

R

∀x. P x

[∀x. P x; P ?x]··
R

R

(c) Unsafe Elimination Rules

False

P

P ∧ Q

[P Q]··
R

R

P ∨ Q

[P ]··
R

[Q]··
R

R

P → Q

[¬P ]··
R

[Q]··
R

R

∃x. P x
^

x.

[P x]··
Q

Q

P = Q

[P Q]··
R

[¬P ¬Q]··
R

R

(d) Safe Elimination Rules

if P then A else B = (P → A) ∧ (¬P → B)

(e) Rewrites

Table 1. The Standard Tableaux Calculus for HOL
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Abstract. This paper addresses the study of bisimulation based confor-
mance relations in which input and output actions not presented in the
specification are added to the implementation. A new definition, that we
called soft conformance, is given. Then, we concentrate on the study of
the conditions under which a context preserves the soft conformance rela-
tion of two agents. These conditions depend both on the specification and
the implementation in the conformance relation and also on the context.
Since the addition of extraneous actions to the implementation allows to
define malicious contexts that would not preserve the conformance re-
lation, such a characterisation of the family of contexts preserving each
individual pair (implementation and specification) in the conformance
relation is the best result that can be expected in this direction.

1 Introduction

Conformance relations have been introduced and studied since late eighties, pro-
viding a testing methodology for communicating systems. Conformance relations
look for the adequate way to check when a concrete system should be considered
a correct implementation of a given specification. The most popular conformance
relations are based on traces and refusals [Hoa85], and probably that called conf
[BSS86, Bri88] is the most widely spread and accepted.

First definitions on the subject were quite informal and tried to capture by
means of some simple, but sometimes vague, conditions those reasonable require-
ments to get a correct implementation of a given specification. Fortunately, it was
not too difficult to obtain formal definitions which captured the intuitive ideas
supporting the original proposals, as the relation conf cited above.

The bad news were that although these formal definitions where rather simple
and elegant they did not satisfy some also simple and clearly desirable properties,
such as transitivity and substitutivity, and therefore they were far from being
precongruencies.

In [Led91, Led92] an extensive and careful study of the subject can be found.
There the relation conf-eq is introduced and proved to be the biggest equivalence
relation contained in the nucleus conf∩conf−1 of the conformance relation, while
conf∗ = conf ◦ conf is proved to be its transitive closure.
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Since traces and failures are strongly related with the semantic information
given by testing formalisms [Hen88], several works have studied this relation. For
instance, in [dFLN97] it was proved that conf∗ can be characterised by means
of an special kind of testing mechanisms, the so called friendly testing, which is
thoroughly studied in [dFLN98].

Together with the testing school, there are other approaches to define the
equivalence between concurrent processes in process algebras. Equivalences based
on bisimulation [Mil80, Mil89] are also widely used. It is well known that bisim-
ulation equivalences are stronger than testing equivalences, but also much easier
to decide, which seem to be two important reasons to prefer them to the others.
Clearly, if it is possible to prove bisimilarity of two processes, then they would be
also testing equivalent. But this strong power of bisimulation can also became a
weakness, since there are not clear reasons to consider that two processes which
are testing equivalent, but not bisimilar, should not be considered to be equiva-
lent. Besides, weak bisimulation is not a congruence for languages such as CSP
[Hoa85], where there exists an external choice operator (see [dFLN99]).

In [Ste94] a bisimulation based conformance, called logical conformance, is pre-
sented where classical bisimulation rules are relaxed and asymmetrical conditions
related to the specification and the implementation are introduced. In [BS02] a
new version of this conformance relation is given. In this relation it is allowed for
the process describing the implementation system to execute both input and out-
put new actions. Similar ideas have also been followed, in conformance relations
defined by testing semantics, for instance [Bri88, dFLN97].

As it happens in the conformance relation based on testing semantics, the
addition in [BS02] of new input and output actions to the implementation yields
to a conformance relation that it is neither transitive nor preserved by most
of the algebraic operators in CCS. To overcome these problems was the main
goal of [BS02], and their authors concluded the paper by asserting that they
have defined the congruent weak conformance induced by their weak conformance
relation. Unfortunately, even if in that paper there are several interesting ideas,
and some useful partial results, we have to present here some criticisms because
there are several technical mistakes in that work, as we will show by means of
some counterexamples later.

However, our main intended goal in this paper it is mainly to continue the
research in conformance relations in which input and output actions not presented
in the specification are added to the implementation, looking for the adequate
way to get preservation results in order to make the conformance relation useful.

To be more concrete, what indeed is done in [BS02] is to find a collection of
properties which have to be satisfied in order to preserve the presented confor-
mance relation. Most of these conditions would restrict the containing context
and not the relationship between the given implementation and the correspond-
ing specification. Therefore, it is not possible to use those conditions to try to
define a precongruence which would preserve the conformation relation.

Instead, what we propose is to characterise which are the contexts that would
preserve each particular pair in the conformation relation. In fact, these con-
texts would be different for each pair in the relation, and therefore, out of some
trivial cases, we cannot look for a family of contexts totally preserving the con-
formance relation. As a consequence, the weaker precongruence relation stronger
than the conformance relation would be just the weak bisimulation equivalence,
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where we have no possibility to add any new action when implementing a given
specification.

We address this goal in the next sections organised as follows: in Section 2
classic definition of agents and previously bisimulation based conformance rela-
tions are introduced, besides, definition of weak conformance [BS02] is discussed
and some flaws of that relation are shown; in Section 3 we present our own def-
inition of bisimulation like conformance relation, that we call soft conformance;
Section 4 presents the results of the paper: we prove that the soft conformance
relation can be preserved by contexts under some conditions related to a given
pair of specification and implementation agents; finally, in Section 5 we present
our conclusions.

2 Basic Definitions and Bisimulation Based Conformances

In this paper we will mainly use the operators from CCS [Mil80, Mil89], whose
syntax and semantics we will briefly recall below.

We have a set of action names, called A, from which we obtain the set of
barred actions, A = {a | a ∈ A}. Following [BS02], we will assume that plain
names represent input actions, while barred names would correspond to output
actions. Finally, we have an internal action τ �∈ A∪A, and we define the alphabet
Act = A ∪A ∪ {τ}.
Definition 1 ([Mil89]). Given a set of actions Act, as described above, the set
of CCS agents is defined by the following BNF-expression:

E ::= 0 | α.E | E + E | E|E | E[f ] | E\L

where α ∈ Act, L denotes a finite subset of A and f : A −→ A denotes a
relabelling function.

The inactive agent, represented by 0, is not capable of executing any action;
prefix operator defines the execution of sequential actions; choice operator in-
troduces into the language a choice between two alternative behaviours; parallel
operator represents the parallel execution of two independent agents, but allow-
ing the synchronisation between them by the execution of a pair of conjugated
actions, a and a, thus producing the internal action denoted by τ ; relabelling
operator, by means of a function f : A −→ A, produces a change in the name of
the executed actions, by executing f(a) instead of a and f(a) instead of a; and
finally the restriction of the actions in a set L would disallow the execution of
actions in L ∪ L.

The operational semantics of CCS formalise the ideas above and can be found
in [Mil80, Mil89]. From the operational semantics of processes we can construct
the bisimulations and the definition of bisimulation equivalences. Semantic equiv-
alences, and in particular weak bisimulation equivalence [Mil89], have been pro-
posed as a way to formalise the implementation relations, but it seems too strong
to use an equivalence relation to accomplish such a task, even if we can abstract
away from internal details of the implementation, as allowed by the weak char-
acter of that equivalence relation. Instead, conformance relations allow the intro-
duction of new actions in the implementation, when they do not interfere with
the rest of the behaviour of the system. This idea has been developed in [Ste94],
where the author proposed his logic conformance (see definition 2 below).
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The classical notation on computation of agents is used: The ability of an agent
P to perform some action α ∈ Act and to evolve into an agent Q is denoted by
P

α−→ Q. Similarly, P
α=⇒ Q is used to denote the ability of P to evolve into Q

through the execution of α and any number of additional τ actions. Considering
sequences of actions, s ∈ Act∗, the transition relations are naturally extended
to get s−→ and s=⇒, which describe the evolution of an agent when executing
a sequence of actions. For the empty sequence we have only the second of this
transitions which in this case it is just denoted by =⇒. The hat operator over
a sequence of actions, ŝ, denotes its projection over the set of visible (input and
output) actions, so that we have ŝ ∈ (A ∪A)∗.

Definition 2 ([Ste94]: Definition 30). Implementation I logically conforms
to specification S, written I �l S, iff ∀α ∈ Act,∀β ∈ A ∪ {τ} and ∀γ ∈ A:

(1) Whenever S
α−→ S′ then ∃I ′ : I

α̂=⇒ I ′ and I ′ �l S′.

(2) Whenever I
β−→ I ′ then ∃S′ : S

β̂
=⇒ S′ and I ′ �l S′.

(3) Whenever I
γ−→ I ′ and S

γ
=⇒ then ∃S′ such that S

γ
=⇒ S′ and I ′ �l S′.

If we compare this definition with that of plain weak bisimulation we find that
the difference comes only from the third clause that allow the implementation to
accept additional input actions which are not imposed by the specification.

In [BS02] this definition is considered too strong, and two reasons are argued:
(1) an implementation must implement every specified output action, even when
there is output concurrency, that is, when multiple output events are produced
without interleaving with any input action, and the order of output events is
unimportant; (2) it is not possible for the implementation to generate output
signals not in the specification.

Then, in order to allow even more flexible implementations a new relation
called weak conformance is introduced. To define it, they first introduce the weak
conformation relations defined as follows:

Definition 3 ([BS02]: Definition 7). A binary process relation W is a weak
conformation if ∀α ∈ A(S) ∪ {τ}, ∀β ∈ A(I) ∪ {τ}, ∀γ ∈ A(S) : I W S implies
the following four laws:

Law of Specified Input or Tau (LSIT). If S
α−→ S′ then ∃t ∈ (A(S) ∪

Extr(I, S))∗ such that
(1) I

t=⇒ I ′ (2) t ⇁A(S) = α̂ (3) I ′ W S′
Law of Specified Output (LSO). Let X be a maxoctset of S. ∃s ∈ X and

∃t ∈ A(I)+ such that
(1) S

s=⇒ S′ (2) I
t=⇒ I ′ (3) t ⇁A(S) = s (4) I ′ W S′

Law of Implemented Input (LII). Whenever I
γ−→ I ′ and S

γ
=⇒ then

(1) S
γ

=⇒ S′ (2) I ′ W S′

Law of Implemented Output or Tau (LIOT). If I
β−→ I ′ and δ ≡ β ⇁A(S)

then
(1) S

δ=⇒ S′ (2) I ′ W S′

Where A(P ) and A(P ) define the input and output sorts of an agent P , re-
spectively; the binary operator ⇁ applies to a sequence s of actions and a set of



Preserving Contexts for Soft Conformance Relation 37

actions A, s ⇁A, projecting the actions in s over the set A. Besides, Extr(I, S) =
A(I)−A(S) is called the extraneous input sort and Extr(I, S) = A(I)−A(S) is
called the extraneous output sort.

Definition 4 ([BS02]: Definition 9). The weak conformance relation, written
�w, is the union of all the weak conformations.

To formally define the condition capturing their intention of getting a more
flexible implementation of output concurrency, a rather complex concept of max-
octset (maximal output confluent transition set) is defined in [BS02] and used in
LSO rule. The concept of maxoctset tried to capture those maximal partial be-
haviours of a system which correspond to the parallel execution of several output
actions.

But to reduce the output concurrency in the implementation is not compati-
ble with the goal of getting a precongruence from the conformance relation. Let
us consider the specification S = a.(b|c). To Reduce the output concurrency im-
plies not to force any implementation of S to implement all the specified output
sequences, but just some of them. So, I = a.b.c would be an adequate imple-
mentation of S. But then, we cannot expect this conformance relation to be a
precongruence: if we take the agent C = c.b and put it in parallel with the specifi-
cation S and the implementation I, then we have that the agent S|C can execute
the trace t = abb, because after executing a action in S, C and S can synchronise
and arrive to a state in which they can interleave the actions b and b. On the
contrary, I|C cannot execute such a trace. All this is illustrated in figure 1.

I

a

b

c

S

a

b c

c b

C

c

b

I 	w S but surprisingly C|I �	w C|S

Fig. 1. Not implementation of output concurrency do not allow 	w to be a congruence

But even if we would not mind this lack of substitutivity, using the definition of
maxoctset in [BS02] in order to allow the reduction of output concurrency yields
to undesirable implementations. Maxoctsets are maximal traces which correspond
to a locally confluent behaviour. A trace t corresponds to a locally confluent
behaviour if P

t=⇒ and for each s that is a permutation of t with P
s=⇒, if we

have P
t=⇒ P ′ and P

s=⇒ P ′′, P ′ and P ′′ are weak bisimulation equivalent. The
authors of [BS02] where too generous allowing that not any permutation of s
would be a trace of P . Let us consider the agents in figure 2. If we take S = a.b.c,
we have that the trace abc would be a maxoctset of S. But this would be also the
case for a specification such as S′ = a.b.c+a.b.d+b.a.e that has added behaviour.
It is clear that the trace ab is not a locally confluent behaviour of S′, but under
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S
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b

c

S′

a

b

c

a

b

d

b

a

e

I

a

b

c

I 	w S but surprisingly also I 	w S′

Fig. 2. Maxoctset definition yields to improper implementations

the definition in [BS02] the trace abc would still be a locally confluent behaviour
of S′ and then a maxoctset of it. As a consequence the behaviours of S′ after
the execution of the traces ab and ba would not be considered when checking the
weak conformance of any implementation. Then, I = a.b.c, where neither d nor
e can be executed, would be considered to be an admissible implementation of
S′, which does not seem reasonable at all.

Finally, to conclude with the comments on [BS02], we show one more flaw
on the definition of the weak conformance relation arising from the way rule LII
is asserted (definition 3). Transitivity of �w is not guaranteed just by imposing
that an implementation would not execute any extraneous output action in the
beginning.

Let us consider the agents in figure 3: Q = a.v.b.c is an implementation of
R = a.b.c, because rule LSIT allows the introduction of output actions, provided
that they do not appear in the specification. Rule LII also allows to introduce
new input actions into the implementation, but it is too generous since it is
just imposed that these actions could not be executed by the initial state of the
specification. So, agent P = a.(v.b.c + b) is an implementation of Q. But the
added choice executing the action b makes P not to be an implementation of R,
thus spoiling transitivity of the conformance relation.

P

a

v b

b

c

Q

a

v

b

c

R

a

b

c

P 	w Q and Q 	w R but surprisingly P �	w R

Fig. 3. 	w relation is not transitive

3 Soft Conformance Relation

In this section we present a new variant of conformation relations, that we call
soft conformations. The union of all soft conformation relations define the soft
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conformance, denoted by �s. This new notion gathers the desired conditions
discussed above, namely the capability of the implementation to introduce new
input and output actions in its behaviour.

In order to give the definition of soft conformations some new notation has to
be introduced. As usual −→ and =⇒ relations denote the capability of an agent to
evolve through a single action or an action preceded and followed by any number
of τ actions, respectively. Besides, we introduce the new transition relation �=⇒
that gathers the idea that once a specification is fixed, the extraneous output
actions in the implementations play the same role as τ actions. That is, given the
specification S and the implementation I, I

α
�=⇒ SI

′ indicates that I evolves to I ′
after executing the action α preceded and followed by any number of transitions
executing either τ actions or output actions b ∈ Extr(I, S). For the sake of
simplicity, if S is clear from the context where the �=⇒ relation is used, we will
avoid the subscript S, writing just I

α
�=⇒ I ′.

In order to define soft conformations relations, the sort of an agent, that is,
the set of actions that it could possibly execute, has to be introduced:
Definition 5. The set of executable actions of an agent E, denoted by Exec(E),
is inductively defined as follows:
– Exec(0) = ∅
– Exec(α.E) = {α} ∪ Exec(E)
– Exec(E1 + E2) = Exec(E1|E2) = Exec(E1) ∪ Exec(E2)
– Exec(E[f ]) = f(Exec(E))
– Exec(E\L) = Exec(E) − L

Definition 6. Binary process relation V is a soft conformation if ∀α ∈ Act, ∀a ∈
A(S), ∀β ∈ A(I) ∪ {τ} : I V S implies that Exec(S) ⊆ Exec(I) and the following
laws are satisfied:
Law of Specified Behaviour (LSB)

If S
α−→ S′ then ∃I ′ : I

α̂
�=⇒ I ′ and I ′ V S′.

Law of Implemented Input (LII)
If I

a−→ I ′ and a ∈ Exec(S) then ∃S′ : S
a=⇒ S′ and I ′ V S′.

Law of Implemented Output or Tau (LIOT)

If I
β−→ I ′ and β ∈ Exec(S) then ∃S′ : S

β
=⇒ S′ and I ′ V S′.

If I
β−→ I ′ and β �∈ Exec(S) then ∃S′ : S =⇒ S′ and I ′ V S′.

Therefore the differences between our soft conformations and the weak con-
formations in definition 3 are that we have drop out the considerations about
output concurrency and then the two laws of specified input and output have
became a single law; besides in LII rule we only allow the additional execution
by the implementation of extraneous input actions.

Proposition 1. Let V and V ′ be soft conformation relations, then
(1) The identity relation is a soft conformation relation.
(2) The composition V V ′ is a soft conformation relation.
(3) The union V ∪ V ′ is a soft conformation relation.

Definition 7. The implementation I is said to softly conform to the specification
S, denoted by I �s S, if there exists some soft conformation relation V with
I V S. That is, the soft conformance relation, denoted by �s, is the union of all
the soft conformation relations.
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4 Contexts That Preserve Soft Conformance

In this section we address the main goal of our paper: given a specification S and
an a soft conformance implementation of it, I �s S, to determine the properties
that a context C(X) should verify in order to get C(I) �s C(S). We will start
by formalising the concept of context. In order to get a simpler presentation, we
will first just consider contexts with a single hole.

Definition 8. Given a set of actions Act, the set of contexts is defined by the
following BNF-expression:

C ::= 0 | X | α.C | E + C | C + E | E|C | C|E | C[f ] | C\L

where X represents a single (hole) variable, E represents CCS agents (defini-
tion 1), α ∈ Act, L denotes a finite subset of A and f : A −→ A denotes a
relabelling function.

The operational semantics of contexts is defined in the same way as agents,
since there is no rule for the hole X.

To define the conditions that contexts have to satisfy in order to preserve
the soft conformance relation we need to use a collection of auxiliary functions
and predicates that we will define below. All of them are defined by structural
induction.

Definition 9. The following functions are defined over both contexts and agents:

Exec() computes the set of executable actions of a context.

Exec(X) = Exec(0) = ∅
Exec(α.C) = {α} ∪ Exec(C)

Exec(E + C) = Exec(C + E)=Exec(E|C)=Exec(C|E)=Exec(C) ∪ Exec(E)
Exec(C[f ]) = f(Exec(C))
Exec(C\L) = Exec(C) − L

Init() computes the set of initials actions that a context can execute.

Init(X) = Init(0) = ∅
Init(α.C) = {α}

Init(E + C) = Init(C + E) = Init(C) ∪ Init(E)
Init(E|C) = Init(C|E) = Init(C)∪Init(E)∪{τ | if ∃α∈Init(E),α∈Init(C)}
Init(C[f ]) = f(Init(C))
Init(C\L) = Init(C) − L

Guar() defines a boolean function that indicates whether a context has its hole
guarded by an action.

Guar(X) = false
Guar(0) = true

Guar(α.C) = true
Guar(E + C) = Guar(C + E) = Guar(E|C) = Guar(C|E) =

Guar(C[f ]) = Guar(C\L) = Guar(C)
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Choice-app() defines a boolean function that indicates if a choice operator ap-
plies directly on the hole of a context.

Choice-app(X) = Choice-app(0) = false
Choice-app(α.C) = Choice-app(C)

Choice-app(E + C) = Choice-app(C + E) = Choice-app(C) ∨ ¬Guar(C)
Choice-app(E|C) = Choice-app(C|E) = Choice-app(C[f ]) =

Choice-app(C\L) = Choice-app(C)

Exec-par() defines the set of actions that can be executed in parallel with the
hole and the context.

Exec-par(X) = Exec-par(0) = ∅
Exec-par(α.C) = Exec-par(C)

Exec-par(E + C) = Exec-par(C + E) = Exec-par(C) ∪ Exec-par(E)
Exec-par(E|C) = Exec-par(C|E) = Init(C|E)
Exec-par(C[f ]) = f(Exec-par(C))
Exec-par(C\L) = Exec-par(C) − L

Rest() defines the set of restricted actions over the hole in the context.

Rest(X) = Rest(0) = ∅
Rest(α.C) = Rest(C)

Rest(E + C) = Rest(C + E) = Rest(E|C) = Rest(C|E) = Rest(C)
Rest(C[f ]) = f(Rest(C))
Rest(C\L) = Rest(C) ∪ L

Renamed() defines the set of actions that are either renamed or renamed to
over the hole in the context.

Renamed(X) = Renamed(0) = ∅
Renamed(α.C) = Renamed(C)

Renamed(E + C) = Renamed(C + E) = Renamed(E|C) =
Renamed(C|E) = Renamed(C)

Renamed(C[f ]) = Renamed(C) ∪ {a | f(a) �= a ∨ ∃b �= a : f(b) = a}
Renamed(C\L) = Renamed(C) − L

From the previous functions, we define the following ones:

Init() defines the initial output or τ actions that a context can execute.

Init(C) = Init(C) ∩ (A ∪ {τ})

Init-extr() defines the initial output extraneous actions of I with respect to S.

Init-extr(I, S) = Init(I) ∩ (Extr(I, S) ∪ {τ})

.
IOExtr(, ) defines the union of extraneous input and output actions.

IOExtr(I, S) = Extr(I, S) ∪ Extr(I, S)
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Exec-par() defines the complementary set of actions with respect to the set
Exec-par().

Exec-par(C) = {α | α ∈ Exec-par(C)}
where α = α and τ = τ .

The following proposition explains which is the relation between the syntacti-
cally defined functions and predicates introduced in definition 9 and the semantic
behaviour of the involved elements.

Proposition 2. The functions declared in definition 9 verify the following char-
acteristic properties:

1. For any action α in any trace s such that C
s=⇒ it holds that α ∈ Exec(C).

2. For any action β ∈ Extr(I, S)∪{τ} such that C
β−→ then β ∈ Init-extr(I, S).

3. If there exists some computation C(X) s=⇒ C ′(X) such that C ′(ω.ω′) ω−→
C ′′(ω′) with C ′ �= C ′′ then Choice-app(C) is true.

4. If there exists some computation C(X) s=⇒ C ′(X) such that C ′(X) α−→
C ′′(X) and C ′(α.ω) τ−→ C ′′(ω), by the synchronisation of the first transition
with the execution of action α in the hole, then α ∈ Exec-par(C).

5. If there exists some computation C(X) s=⇒ C ′(X) such that C ′(ω.ω′) ω−→
C ′′(ω′) but C ′(α.ω′) α−→/ , then α ∈ Rest(C).

6. If a �∈ Renamed(C(X)) ∧ a �∈ Renamed(C(X)) and there exists some compu-
tation C(X) s=⇒ C ′(X) such that C ′(a.ω′) α−→ C ′′(ω′) then a = α.

Where ω and ω′ denote fresh actions that are not in Exec(C) ∪ Exec(I).

We can now give the conditions that determine when a context preserve the
soft conformance relation that holds between two agents.

Definition 10. Given two agents I and S, I �s S, and a context C, it is said
that C is a preserving context with respect to the pair (I, S) if the following five
conditions are fulfilled:

i. IOExtr(I, S) ∩ Exec(C) = ∅
ii. ¬Choice-app(C) ∨ (Init-extr(I, S) = ∅)

iii. IOExtr(I, S) ∩ Exec-par(C) = ∅
iv. Extr(I, S) ∩ Rest(C) = ∅
v. Renamed(C) ∩ IOExtr(I, S) = ∅

Next proposition tie together some properties that will be useful when proving
the main result of our paper: the preservation theorem.

Proposition 3. If C is a preserving context with respect to the pair (I, S), where
the X appears, then the following properties are satisfied:

1. IOExtr(C(I),C(S)) = IOExtr(I, S)
2. If C(X) α=⇒ C ′(X), then C ′ is also a preserving context with respect to the

pair (I, S).
3. If C(ω.ω′) ω−→ C ′(ω′) then for any P

s=⇒ P ′ with s = α1 . . .αn, and ∀i αi �∈
Renamed(C) and αi �∈ Rest(C) we have also C(P ) s=⇒ C ′(P ′).
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4. If I
α̂

�=⇒ I ′ and C(ω.ω′) ω−→ C ′(ω′) and C(S) α−→ C ′(S′) then C(I) α̂
�=⇒ C ′(I ′)

and C ′ is a preserving context with respect to (I ′, S′).

5. If S
β−→ S′ and C(X)

β−→ C ′(X) and it is possible to get a synchronisation
step C(S) τ−→ C ′(S′), then C(I) τ−→ C ′(I ′) and C ′ is a preserving context
with respect to (I ′, S′).

Proof. Let us prove the previous statements:

1. By a simple structural induction over the form of the contexts.
2. If C ′ is such a derived context from C then:

Exec(C ′) ⊆ Exec(C)
Choice-app(C ′) ⇒ Choice-app(C)

Exec-par(C ′) ⊆ Exec-par(C)
Rest(C ′) = Rest(C)

Renamed(C ′) = Renamed(C)

and therefore C ′ verify the conditions (i). . . (v) with respect to (I, S).
3. By structured induction over the form of C:

– C = a.C ′′. This cannot be the case, since then C(ω.ω′) ω−→/.
– C = Q + C ′′. If C(ω.ω′) ω−→ C ′(ω′) then we should have C ′′(ω.ω′) ω−→

C ′(ω′), and by induction hypothesis C ′′(P ) s=⇒ C ′(P ′) and therefore
C(P ) s=⇒ C ′(P ′).

– C = Q|C ′′. If C(ω.ω′) ω−→ C ′(ω′) we have C ′ = Q|C ′′′ with C ′′(ω.ω′) ω−→
C ′′′(ω′). Then we have C ′′(P ) s=⇒ C ′′′(P ′) and C(P ) s=⇒ Q|C ′′′(P ′) =
C ′(P ′).

– C = C ′′[f ]. If C(ω.ω′) ω−→ C ′(ω′) we have also C ′′(ω.ω′) ω−→ C ′′′(ω′)
with C ′ = C ′′′[f ]. Then we have C ′′(P ) s=⇒ C ′′′(P ′) and since f does not
rename any action in s we have also C(P ) s=⇒ C ′(P ′).

– C = C ′′\L. If C(ω.ω′) ω−→ C ′(ω′) we have also C ′′(ω.ω′) ω−→ C ′′′(ω′)
with C ′ = C ′′′\L. Then we have C ′′(P ) s=⇒ C ′′′(P ′) and since the actions
in s are not in Rest(C) in particular the are not in L, and therefore
C(P ) s=⇒ C ′(P ′).

4. Let us consider the sequence of visible actions s which corresponds to the

computation I
α̂

�=⇒
′
I, then since C(S) α−→ C ′(S′) and the rest of the actions

in s are also in IOExtr(I, S), by proposition 3(1), C(I) α̂
�=⇒ C ′(I ′).

The proof that C ′ is a preserving context with respect to (I ′, S′) is similar to
that of proposition 3(2) considering that Choice-app(C ′) is always false. This
statement can be proved by structural induction as before.

5. Similar to the previous one.
��

Theorem 1 (Preservation theorem). If I �s S and C is a preserving context
of the pair (I, S) then C(I) �s C(S).
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Proof. We have to prove that there exists a soft conformation relation V con-
taining the pair 〈C(I),C(S)〉. We define

V = {〈C(I),C(S)〉 | I �s S and C is a preserving context w.r.t. (I, S)}

and we will check that V verifies the laws in definition 6.

LSB. Let us suppose that C(S) α−→ T . There are three different possibilities:
1. T = C ′(S) and C(X) α−→ C ′(X), then C(I) α−→ C ′(I) and, by propo-

sition 3, C ′ is a preserving context with respect to (I, S) and therefore
C ′(I) and C ′(S) are in the conformation relation V .

2. S
α−→ S′ and C(S) α−→ C ′(S′), where the context C ′ is derived from C by

means of the execution of an action of its hole. From I �s S we know that
I

α̂
�=⇒ SI

′ and I ′ �s S′ and then, by proposition 3(4) C(I) α̂
�=⇒ C(I ′) and

C ′ is a preserving context with respect to (I ′, S′) and therefore
C ′(I ′) V C ′(S′).

3. Finally, if α = τ and there exists some β such that S
β−→ S′, and

C(X)
β−→ C ′(X) and there is a synchronisation step of these two com-

plementary actions which produces C(S) τ−→ C ′(S′). Then, I
β

=⇒ I ′ and
I ′ �s S′, considering proposition 3(5), we have C(I) τ−→ C ′(I ′), and
combining the arguments in the two previous cases we get that C ′ is a
preserving context with respect to (I ′, S′), and therefore C ′(I ′) V C ′(S′).

LII. Let us suppose that C(I) a−→ T and a ∈ Exec(C(S)), then two cases should
be considered:
1. C(X) a−→ C ′(X) and T = C ′(I) then, by proposition 3(2), C ′ is a pre-

serving context with respect to (I, S) and therefore C ′(I) V C ′(S).

2. I
a′
−→ I ′ and C(I) a−→ C ′(I ′) where the context C ′ is derived from C by

means of the execution of an action of its hole, and a ∈ Renamed(C).
By definition 10(i), a′ ∈ Exec(S), by proposition 2(1), a′ ∈ Exec(I) and
if it were the case that a′ �∈ Exec(S) then a′ ∈ Extr(I, S) and by using
conditions (i), (iv) and (v) of definition 10, we would conclude that a ∈
Extr(C(I),C(S)) and then a �∈ Exec(C(S)) against the hypothesis.

Then, since I �s S we have that S
a′

=⇒ S′ with I ′ �s S′ and, reasoning
as in LSB rule, we get that C(S) a=⇒ C ′(S′) with C ′ a preserving context
with respect to (I ′, S′), so that C ′(I ′) V C ′(S′).

LIOT. We consider two cases:
1. C(I) a−→ T with a ∈ Exec(C(S)). Once again we consider two cases:

(a) C(X) a−→ C ′(X) and T = C ′(I), then by proposition 3(2), C ′ is a
preserving context with respect to (I, S) and therefore C ′(I) V C ′(S).

(b) I
a′
−→ I ′ and C(I) a−→ C ′(I ′) for C ′ derived from C by means of the

execution of an action in its hole, and a ∈ Renamed(C). Then, we

have that S
a′

=⇒ S′ with I ′ �s S′ and therefore, as in the previous
case, we conclude that C ′(I ′) V C ′(S′).

2. C(I)
β−→ T were β = τ or β = a �∈ Exec(C(I)). Now there are three

possible cases:
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(a) C(X)
β−→ C ′(X) and T = C ′(I), as in the corresponding case above,

C ′ is a preserving context with respect to (I, S) and as a consequence
C ′(I) V C ′(S).

(b) I
β′
−→ I ′ and C(I)

β−→ C ′(I ′) with β ∈ Renamed(C). Due to condition
(ii) in definition 10 this case is only possible if C ′ = C. Then, by
proposition 2(2), the hole X in C cannot be under a choice operator

and so S
β′

=⇒ S′ and C(S)
β

=⇒ C(S′), with C preserving (I ′, S′), and
therefore C(I ′) V C(S′).

(c) β = τ and there exists some γ′ such that I
γ−→ I ′, and C(X)

γ−→
C ′(X) after a renaming of γ′ into γ and there is a synchronisation
step of these two actions which produces C(I) τ−→ C ′(I). Then γ′ ∈
Exec(S) because C verifies condition (iii) in definition 10, and we
can proceed either as in the previous case (1) of the LIOT rule, or

as for the law LII to conclude that S
γ′

=⇒ S′ and C(S)
γ

=⇒ C ′(S′)
where C ′ is a preserving context with respect to the pair (I ′, S′), thus
concluding that C ′(I ′) V C ′(S′).

��

In definition 8, contexts with a single hole were defined and the preservation
theorem proves that preserving contexts (definition 10) allow the substitutivity
of agents that are in soft conformation getting a new pair of agents in soft confor-
mation. We next generalised the results to contexts with a finite set of variable
names.

Definition 11. Let us consider a (finite) set of hole variables X = {X1, . . . ,Xk}.
We define generalised contexts exactly as simple contexts (definition 8) but chang-
ing the unique symbol X by a representative element of the set X , and replacing
all the metavariables C in that definition by that corresponding to a generalised
context C.

We do not want to have contexts with repeated appearances of the same
hole, therefore, we forbid such possibility and concentrate on what we call valid
generalised contexts.

Definition 12. The following function and predicate are defined over generalised
contexts:

Holes() computes the set of hole variables of a generalised context.

Holes(Xi) = {Xi}
Holes(α.C) = Holes(C[f ]) = Holes(C\L) = Holes(C)

Holes(C1 + C2) = Holes(C1|C2) = Holes(C1) ∪ Holes(C2)

Valid() indicates if a generalised context has no hole names repeated.

Valid(Xi) = true
Valid(α.C) = Valid(C[f ]) = Valid(C\L) = Valid(C)

Valid(C1 + C2) = Valid(C1|C2) =
Valid(C1) ∧ Valid(C2) ∧ (Holes(C1) ∩ Holes(C2) = ∅)
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Par-holes() a binary function that applies on valid generalised contexts, that is
Valid(C) = true and Xi ∈ X , and computes the set of hole names that are in
the context C in parallel with the given hole name Xi.

Par-holes(Xj ,Xi) = ∅
Par-holes(α.C,Xi) = Par-holes(C[f ],Xi) = Par-holes(C\L,Xi) =

Par-holes(C,Xi)
Par-holes(C1 + C2,Xi) = Par-holes(C1,Xi) ∪ Par-holes(C2,Xi)

Par-holes(C1|C2,Xi) =

{Par-holes(C1,Xi) ∪ Holes(C2) if Xi ∈ Holes(C1)
Par-holes(C2,Xi) ∪ Holes(C1) if Xi ∈ Holes(C2)
∅ if Xj �∈ Holes(C1) ∪ Holes(C2)

Definition 13. Given a set of hole variables X = {X1, . . . ,Xk} and a family
of pairs of agents F = {(Ii, Si)}i∈1..k and a valid generalised context C, we say
that it is a preserving generalised context with respect to the family F if, besides
the conditions in definition 10, for each pair (Ii, Si) with Xi ∈ Holes(C) we have
also

vi. For each i, j with Xi ∈ Holes(C)

IOExtr(Ii, Si) ∩ Exec(Sj) = ∅

vii. For each Xi ∈ Holes(C) and Xj ∈ Par-holes(C,Xi)

IOExtr(Ii, Si) ∩ Exec(Ij) = ∅

Theorem 2. If C is a preserving generalised context with respect to a family
F = {(Ii, Si)}i∈1..k and for each i ∈ 1..k we have that Ii �s Si then C(I) �s C(S)
where, as usual, C(E) denotes the substitution of the hole variables Xi in C by
the corresponding agent Ei.

5 Conclusions and Future Work

Conformance relations define when a communicating system should be consid-
ered a correct implementation of a given specification. In this paper we have
studied the conditions under which a context preserves a bisimulation based con-
formance. It is clear that as soon as we allow extraneous actions in an admissible
implementation then there exists a malicious context that would not preserve
that conformance relation, and then the only preorder stronger than it being a
precongruence would be weak bisimulation, that does not allow the introduction
of any extraneous actions with respect to the given specification.

Therefore such a characterisation of the family of contexts preserving each
individual pair in the conformance relation is the best result that we can expect
in this direction.

In order to get a clearer exposition, and simpler proofs, we have not considered
either recursive agents or contexts containing recursive components (without hole
variables involved), but it would not be difficult to extend our results to cover
also these recursive sceneries. Instead, we think it would be more complicated
to extend the results to cover the case in which it is the recursive construction
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itself that we want to preserve the conformance relation. In such a case, it is
necessary to decide how the conformance relation should be extended to the case
in which we have higher order agents where the free variables are introduced to
be instantiated by first order agents. This question is far from being simple, as
studied in detail in [Ren00].

In [BdFMM00] it is shown that tile bisimulation, where weak bisimulation
is extended to contextualized processes in a very algebraic way, is not always a
congruence, and it is also discussed under which conditions it is possible to get
the preservation of that relation. We are interested on a more thorough study of
the relations between our paper and this mentioned work.

Besides, [dFLN99] studied several notions of global bisimulation, where weak
bisimulation is relaxed by allowing more flexible moves when playing the bisim-
ulation game. Again, there were problems when trying to get a congruence, and
therefore it would be also interesting to compare that work with the results and
ideas in the current paper.

Also into the testing based conformances, the problem of getting precongru-
ences should be more intensively studied, as appointed in [Led91, dFLN97]. The
relations between testing based and bisimulation based conformances deserves,
in our opinion, a deeper study, not only in the [Abr87] style, where the testing
semantics is presented as a bisimulation semantics, but also on the opposite way,
as in [dFLN99], where bisimulation semantics are presented as testing semantics.
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Dept. Sistemas Informáticos y Programación,
Facultad de Informática,
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Abstract. In this paper we consider the testing of systems where prob-
abilistic information is not given by means of fixed values but as sets
of probabilities. We will use an extension of finite state machine where
choices among transitions labeled by the same input are probabilistically
resolved. We will introduce our notion of test and we will define how tests
are applied to the implementation under test (IUT). We will also present
an implementation relation to assess the conformance, up to a level of
confidence, of an implementation to a specification. In order to define
this relation we will take finite samples of executions of the implemen-
tation and compare them with the probabilistic constraints imposed by
the specification. Finally, we will give an algorithm for deriving sound
and complete test suites with respect to this implementation relation.

1 Introduction

Formal methods try to keep a balanced trade-off between expressivity of the con-
sidered language and complexity of the underlying semantic framework. In the
beginning they mainly concentrated on the functional behavior of systems, that
is, on what a system could/should do. In this regard, and considering specifica-
tion formalism, we may mention the (original) notions of process algebras, Petri
nets, and Moore/Mealy machines among others. Once the roots were well consol-
idated other considerations were taken into account. The next step was to deal
with quantitative information such as the time underlying the performance of the
system or the probabilities resolving the choices that a system may undertake.
These characteristics gave raise to new models where time and/or probabilities
were included (for example, [20, 16, 12, 10, 1, 4, 13] among many others).

Usually, probabilistic extensions incorporate probabilistic information by us-
ing fixed values, that is, we may have conditions such as “the probability of
such an event to happen is 1

3 .” In this paper we will consider the testing of
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systems presenting a more relaxed kind of probabilistic constraints. For exam-
ple, we may deal with expressions such as “the probability of such an event to
happen belongs to the interval [13 , 2

3 ).” In fact, there are situations where it is
rather difficult to be precise when specifying a probability. A very good example
is the specification of faulty channels (e.g. the classical ABP [2]). Usually, these
protocols contain information such as “the probability of losing the message is
equal to 0.05.” However, in most situations it would be more appropriate to say
“the probability of losing the message is smaller that 0.05.”

In order to specify probabilistic systems dealing with this kind of proba-
bilities, that we call symbolic probabilities, we will consider the probabilistic
extension of finite state machines recently introduced in [14]. Our probabilistic

systems will be defined by using transitions such as s
i/o−−−−→ p̄ s′. Intuitively, such

a transition indicates that if the machine is in a state s and receives an input i
then it will produce an output o and it will change its state to s′. Besides, the
probability with which the previous sequence of events is performed belongs to
the range given by p̄. Let us remark that probabilistic information will not be
the same for specifications and implementations. In the former case we might al-
low the specifier to use symbolic probabilities. In contrast, implementations will
have fixed probabilities governing their behavior. For example, we may specify
a not-very-unfair coin as a coin such that the probability of obtaining tails be-
longs to the interval [0.4, 0.6] (and the same for faces). Given a real coin (i.e. an
implementation) the probability pt of obtaining tails (resp. pf for faces) will be
a fixed number (possibly unknown, but fixed). If pt, pf ∈ [0.4, 0.6] then we will
consider that the implementation conforms to the specification.

An important issue when dealing with probabilities consists in fixing how
different actions/transitions are related according to the probabilistic informa-
tion. In this paper we consider a variant of the reactive interpretation of prob-
abilities (see for example [12]). Intuitively, a reactive interpretation imposes a
probabilistic relation among transitions labeled by the same action, but without
quantifying choices between different actions. Our probabilistic finite state ma-
chines express probabilistic relations between transitions outgoing from a given
state and having the same input action (while the output action may vary). For
example, let us suppose that the unique transitions from a state s are

t1 = s
i1/o1−−−−−→ p̄1 s1 t2 = s

i1/o2−−−−−→ p̄2 s2 t3 = s
i1/o3−−−−−→ p̄3 s2

t4 = s
i2/o1−−−−−→ p̄4 s3 t5 = s

i2/o3−−−−−→ p̄5 s1

If the environment (in our case, if the test) offers the input action i1 then the
choice between t1, t2, and t3 will be resolved according to some probabilities
fulfilling the conditions p̄1, p̄2, and p̄3. All we know about these values is that
they fulfill the imposed restrictions, that they are non-negative, and that the
sum of them equals 1. Something similar happens for the transitions t4 and
t5. However, there does not exist any probabilistic relation between transitions
labeled with different input actions (e.g. t1 and t4).

We follow a black-box testing approach (see e.g. [15, 3]), that is, if we apply
an input to an IUT then we will observe an output and we may continue the
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testing procedure according to this result. However, we will not be able to see
the probabilities that the IUT has assigned to each of the choices. Thus, even
though implementations will behave according to fixed probabilities we will not
be able to read their values. In order to compute the probabilities associated with
each choice of the implementation we will apply the same test several times and
analyze the obtained responses. The set of tests used to check the suitability of an
implementation will be constructed from the given specification. By collecting
the observations and comparing them with the symbolic probabilities of the
specification, we will be able to assess the validity of the IUT. This comparison
will be performed by using hypothesis contrasts. Hypothesis contrasts allow to
(probabilistically) decide whether an observed sample follows the pattern given
by a random variable. For example, even if we do not know the exact probabilities
governing a coin under test, if we toss the coin 1000 times and we get 502 faces
and 498 tails then we can infer, with a big probability, that the coin conforms
with the specification of not-very-unfair coin.

There is already significant work on testing preorders and equivalences for
probabilistic processes [6, 26, 18, 22, 7, 5, 17]. However, most of these proposals
follow the de Nicola and Hennessy’s style [9, 11], that is, the interaction between
tests and processes is given by their concurrent execution, synchronizing on a set
of actions. For example, we may say that two processes are equivalent if for any
test T , out of a set of tests T , the application of T to each of the processes returns
an equivalent result. These frameworks are not very related to ours since our main
task is to determine whether an implementation conforms to a specification. Even
though some of the aforementioned preorders can be used for this purpose, our
approach is more based on pushing buttons: The test applies an input to the
IUT and we check whether the returned output is expected by the specification.
Moreover, none of these papers use the kind of statistical testing that we use:
Apply the same test several times and extract conclusions about the probabilities
governing the implementation. In this sense, the work closest to this paper is
reported in [23, 19]. In fact, we take the statistical machinery from [19], where
a testing framework to deal with systems presenting time information given by
stochastic time is introduced. In [23] the authors present a testing scenario for
a notion of probabilistic automata. In order to replicate the same experiment
several times they introduce a reset button. Since this button is the only way to
influence the behavior of the IUT, they can capture only trace-like semantics.
Actually, their equivalence coincides with a certain notion of trace distribution
equivalence. Finally, it is worth to mention that all of the previous approaches
use fixed probabilities. In contrast, our testing framework is developed on top of
the symbolic probabilities framework introduced in [14].

The rest of the paper is organized as follows. In Section 2 we review our notion
of probabilistic finite state machine. In Section 3 we present the notion of test
and define how they are applied to implementations. In Section 4 we introduce
an implementation relation based on samples. Hypothesis contrasts are used to
assess whether the behavior of an implementation corresponds, up to a certain
confidence, to the probabilistic behavior defined in the specification. In Section 5
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we present an algorithm to derive sound and complete test suites. In Section 6
we present our conclusions and lines for future work. In the appendix we give
some basic statistical concepts that are (abstractly) used along the paper.

2 Probabilistic Finite State Machines

As we have mentioned, probabilistic information is included in our probabilistic
state machines by using certain constraints on the considered probabilities. By
taking into account the inherent nature of probabilities, we consider that a sym-
bolic probability is any non-empty (open or closed) interval contained in (0, 1].

Definition 1. We define the set of symbolic probabilities, denoted by simbP, as
the following set of intervals

simbP =
{

$p1, p2&
∣∣∣∣p1, p2 ∈ [0, 1] ∧ p1 ≤ p2 ∧ $ ∈ { (, [ } ∧ & ∈ { ), ] } ∧
0 /∈ $p1, p2& ∧ $p1, p2& �= ∅

}
If we have a symbolic probability as [p, p], with 0 < p ≤ 1, we simply write p.

Let p1, . . . , pn ∈ simbP be symbolic probabilities such that for any 1 ≤ i ≤ n
we have p̄i = $ipi, qi&i, with $i ∈ { (, [ } and &i ∈ { ), ] }. We define the product
of p1, . . . , pn, denoted by

∏
pi, (respectively the addition of p1, . . . , pn, denoted

by
∑

pi) as the symbolic probability $
∏

pi,
∏

qi& (respectively $
∑

pi,
∑

qi&).
The limits of the interval are defined in both cases as:

$ =
{

( if ∃1 ≤ i ≤ n : $i = (
[ otherwise & =

{
) if ∃1 ≤ i ≤ n : &i =)
] otherwise

��

We do not allow transitions with probability 0 because, in addition to prob-
abilities, we would have to deal with priorities. This fact strongly complicates
the model (in [8] different approaches for introducing priorities are reviewed).

Definition 2. A Probabilistic Finite State Machine, in short PFSM, is a tuple
M = (S, I, O, δ, s0) where S is the set of states, I and O denote the sets of
input and output actions, respectively, δ ⊆ S × I × O × simbP× S is the set of
transitions, and s0 is the initial state. Each transition belonging to δ is a tuple
(s, i, o, p, s′) where s, s′ ∈ S are the initial and final states, i ∈ I is an input
action, o ∈ O is an output action, and p ∈ simbP is the symbolic probability
associated with the transition. We will usually denote transitions as (s, i, o, p, s′)

by s
i/o−−−−→ p s′. Besides, we consider that for any s ∈ S, i ∈ I, and the set

αs,i = {t | ∃ o ∈ O, p ∈ simbP, s′ ∈ S : t = (s, i, o, p, s′) ∈ δ} the following two
conditions hold:

– If | αs,i | > 1 then for any s
i/o−−−−→p s′ ∈ αs,i we have that 1 �∈ p.

– 1 ∈
∑

{p | ∃ o ∈ O, s′ ∈ S : s
i/o−−−−→p s′ ∈ αs,i}.

��
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Let us comment the restrictions introduced at the end of the previous defini-
tion. The first constraint indicates that a symbolic probability such as p = $p, 1]

can appear in a transition s
i/o−−−−→ p s′ ∈ δ only if it is the unique transi-

tion for s and i. Let us note that if there would exist two different transitions
s

i/o−−−−→p s′, s
i/o′

−−−−→p′ s′′ ∈ δ and the probability of one of them (say p) included
1, then the probability associated to the other transition (p′) could be 0, which is
forbidden. Regarding the second condition, since the real probabilities for each
state s ∈ S and for each input i ∈ I should add up to 1, we require that 1 is
within the lower and upper bounds of the associated symbolic probabilities.

Next we define some additional conditions that we will sometimes impose on
our finite state machines.

Definition 3. Let M = (S, I, O, δ, s0) be a PFSM. We say that M is input-
enabled if for any s ∈ S and i ∈ I there exist s′ ∈ S, o ∈ O, and p ∈ simbP
such that (s, i, o, p, s′) ∈ δ. We say that M is deterministically observable if
for any s ∈ S, i ∈ I, and o ∈ O there do not exist two different transitions
(s, i, o, p1, s1), (s, i, o, p2, s2) ∈ δ. ��

The notion of deterministically observable is different from the more re-
stricted notion of deterministic finite state machine. In particular, we allow
transitions from the same state labeled by the same input action, as long as the
outputs are different. During the rest of the paper we will consider that speci-
fications and implementations are given by deterministically observable PFSMs.
Moreover, we will assume that PFSMs representing implementations are input-
enabled. The idea is that an implementation should not be able to refuse an
input provided by a test.

In the next definition we introduce the notion of (probabilistic) trace. The
probability of a trace will be obtained by multiplying the probabilities of all
transitions involved in the trace.

Definition 4. Let M = (S, I, O, δ, s0) be a PFSM. We write the generalized tran-

sition s
(i1/o1,...,in/on)

===========⇒ p s′ if there exist s1, . . . , sn−1 ∈ S, p1, . . . , pn ∈ simbP

such that s
i1/o1−−−−−→p1

s1
i2/o2−−−−−→p2

s2 · · · sn−1
in/on−−−−−→pn

s′ and p =
∏

pi.
We say that ρ = (i1/o1, . . . , in/on) is a non-probabilistic trace, or simply a

trace, of M if there exist s′ ∈ S and p ∈ simbP such that s0
ρ

==⇒p s′.
Let ρ = (i1/o1, . . . , in/on) and p ∈ simbP. We say that ρ = (ρ, p) is a proba-

bilistic trace of M if there exists s′ ∈ S such that s0
ρ

==⇒p s′.
We denote by Traces(M) and pTraces(M) the sets of non-probabilistic and

probabilistic traces of M , respectively. ��

We conclude this section by introducing notations related to hypothesis con-
trasts (an operational definition of these concepts will be given in the appendix
of this paper). We call event any reaction we can detect from a system or en-
vironment. A sample contains information about the number of times we have
detected each event along a set of observations. Besides, we associate a random
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variable with each set of events. Its purpose is to provide the theoretical (a priori)
probability of each event in the set. In our framework, these random variables
will be inferred from the PFSMs denoting the (ideal) probabilistic behavior of sys-
tems, while the samples will be collected by interacting with the implementation
under test. We will consider a variant of random variables allowing to deal with
symbolic probabilities, as our PFSMs do.

Definition 5. Let A = {a1, . . . , an} be a set of events. A sample of A is a set
J = {(a1, m1), . . . , (an, mn)} where for any 1 ≤ i ≤ n we have that mi represents
the number of times that we have observed the event αi.

We say that a function ξ : A → simbP is a symbolic random variable for
the set of events A if 1 ∈

∑
a∈A ξ(a). We denote the set of symbolic random

variables for the set of events A by RV(A). We denote the set of symbolic random
variables for any set of events by RV.

Given the symbolic random variable ξ and the sample J we denote the con-
fidence of ξ on J by γ(ξ, J). ��

We assume that γ(ξ, J) takes values in the interval [0, 1]. Intuitively, bigger
values of γ(ξ, J) denote that the observed sample J is more likely to be produced
by the symbolic random variable ξ. There exist several hypothesis contrasts to
compute these confidence levels. In the appendix of this paper we show one of
them to indicate how the notion of confidence may be formally defined.

In the next definition we particularize the previous notions in the context
of our framework. Given a sequence of inputs we consider the sequence of in-
put/outputs that the system can return. Hence, the set of events are those se-
quences of outputs that could be produced in response. The random variable to
denote the theoretical probability of each event is computed by considering the
symbolic probability of the corresponding trace in the specification.

Definition 6. Let M = (S, I, O, δ, s0) be a PFSM and π = (i1, . . . , in) be a
sequence of inputs. The set of trace events associated to M with respect to π,
denoted by TraceEvents(M, π), is defined as

TraceEvents(M, π) =
{
(o1, . . . , on)

∣∣ (i1/o1, . . . , in/on) ∈ Traces(M)
}

The symbolic random variable associated to the sequence π, denoted by ξπ
M , is

defined in such a way that for any (o1, . . . , on) ∈ TraceEvents(M, π) we have
ξπ
M (o1, . . . , on) = p, being ((i1/o1, . . . , in/on), p) ∈ pTraces(M). ��

3 Testing Probabilistic Systems

In this section we introduce the notion of test and we present how they are
applied to implementations. In our context, to test an IUT consists in applying
a sequence of inputs to the IUT. Once an output is received we check whether
it is an expected one or not. In the former case, either a pass signal is emitted
(indicating successful termination) or the testing process continues by applying
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another input. In the latter case, a fail signal is produced, the testing process
stops, and we conclude that the implementation does not conform to the specifi-
cation. The methodology to guess the probabilities associated with each bundle
associated with an input action in the implementation consists in applying sev-
eral times the same test.

If we are testing an IUT with input and output sets I and O, respectively,
tests are deterministic acyclic I/O labeled transition systems (i.e. trees) with a
strict alternation between an input action and the whole set of output actions. A
branch labeled by an output action can be followed by a leaf or by another input
action. Moreover, leaves of the tree represent either successful or failure states. In
addition, successful states will have a symbolic random variable associated with
them. This random variable will denote the probabilistic constraint imposed in
the test for the trace leading to that state. Basically, a hypothesis contrast will
compare the samples collected for that event with the probabilistic constraint
imposed by the test.

Definition 7. A test is a tuple T = (S, I, O, δ, s0, SI , SO, SF , SP , ζ) where S is
the set of states, I and O, with I ∩ O = ∅, are the sets of input and output
actions, respectively, δ ⊆ S × I ∪ O × S is the transition relation, s0 ∈ S is the
initial state, and the sets SI , SO, SF , SP ⊆ S are a partition of S. The transition
relation and the sets of states fulfill the following conditions:

– SI is the set of input states. We have that s0 ∈ SI . For any input state s ∈ SI

there exists a unique outgoing transition (s, i, s′) ∈ δ. For this transition we
have that i ∈ I and s′ ∈ SO.

– SO is the set of output states. For any output state s ∈ SO we have that
for any o ∈ O there exists a unique state s′ ∈ S such that (s, o, s′) ∈ δ; in
each case, s′ /∈ SO. Moreover, there do not exist i ∈ I and s′ ∈ S such that
(s, i, s′) ∈ δ.

– SF and SP are the sets of fail and pass states, respectively. We say that these
states are terminal. That is, for any state s ∈ SF ∪ SP we have that there
do not exist a ∈ I ∪ O and s′ ∈ S such that (s, a, s′) ∈ δ.

Finally, ζ : SP −→ RV is a function associating passing states with (sym-
bolic) random variables.

We say that the test T is valid if the graph induced by T is a tree with root
at its initial state s0. ��

Next we define the set of traces that a test can perform. These traces are
sequences of input/output actions reaching terminal states. Depending on the
final state we will classify them as either successful or failure traces.

Definition 8. Let ρ = (i1/o1, . . . , ir/or) be a sequence of input/output actions,
T = (S, I, O, δ, s0, SI , SO, SF , SP , ζ) be a test, and s ∈ S. We say that ρ is a
trace of T reaching s, denoted by T

ρ
==⇒ s, if s ∈ SF ∪SP and there exist states

s12, s21, s22, . . . sr1, sr2 ∈ S such that {(s0, i1, s12), (sr2, or, s)} ⊆ δ, and for any
2 ≤ j ≤ r we have (sj1, ij , sj2) ∈ δ and (s(j−1)2, oj−1, sj1) ∈ δ. ��
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The next definition presents some auxiliary predicates that we will use during
the rest of the paper. While the first two notions are easy to understand, the
last one needs some additional explanation. Given a trace ρ and a set H of pairs
(trace, natural number), IPrefix(H, ρ) is another set of pairs including all traces
such that its sequence of input actions matches that of ρ. The number attached
to each trace corresponds with the number of traces belonging to H beginning
with that trace. Given a sample of executions from an implementation, we will
use this function to compute the number of times that the implementation has
performed each sequence of outputs in response to some sequence of inputs. Let
us note that if we observe that the sequence of outputs (o1, . . . , on) has been
produced in response to the sequence of inputs (i1, . . . , in) then, for any j ≤ n,
we know that the sequence of outputs (o1, . . . , oj) has been produced in response
to (i1, . . . , ij). Hence, the observation of a trace is useful to compute the number
of instances of its prefixes.

Definition 9. Let σ = (u1, . . . , un) and σ′ = (u′
1, . . . , u

′
m) be two sequences.

We say that σ is a prefix of σ′, denoted by Prefix(σ, σ′), if n < m and for any
1 ≤ i ≤ n we have ui = u′

i.
Let ρ = (i1/o1, . . . , im/om) be a sequence of input/output actions. We define

the input actions of the sequence ρ, denoted by inputs(ρ), as the sequence
(i1, . . . , im), and the output actions of the sequence ρ, denoted by outputs(ρ),
as the sequence (o1, . . . , om).

Let H = {(ρ1, r1), . . . , (ρm, rm)} be a set of pairs (trace, natural number) and
ρ = (i1/o1, . . . , in/on) be a trace. The set of input prefixes of ρ in H, denoted
by IPrefix(H, ρ), is defined as

IPrefix(H, ρ) =
{

(ρ′, r′)
∣∣∣∣inputs(ρ) = inputs(ρ′) ∧ r′ > 0 ∧
r′ =

∑
{|r′′ | (ρ′′, r′′) ∈ H ∧ Prefix(ρ′, ρ′′)|}

}
��

In the previous definition the delimiters {| and |} are used to denote multisets.
Next we present the notions that we will use to denote that a given event has
been detected in an IUT. We will also compute the sequences of actions that the
implementation performs when a test is applied.

Definition 10. Let I = (S, I, O, δ, s0) be a PFSM representing an IUT. We say
that (i1/o1, . . . , in/on) is an execution of I if the sequence (i1/o1, . . . , in/on) can
be performed by I.

Let ρ1, . . . , ρn be executions of I and r1, . . . , rn ∈ IN. We say that the set
H = {(ρ1, r1), . . . , (ρn, rn)} is an execution sample of I.

Let T = (S′, I, O, δ′, s′
0, SI , SO, SF , SP , ζ) be a valid test. We say that H =

{(ρ1, r1), . . . , (ρn, rn)} is an execution sample of I under a test T if H is an
execution sample and for any (ρ, r) ∈ H we have that T

ρ
=⇒ s, with s ∈ S′.

Let Ω = {T1, . . . , Tn} be a test suite and H1, . . . , Hn be execution samples of
I under Ti. We say that H = {(ρ1, r1), . . . , (ρn, rn)} is an execution sample of I
under Ω if for any (ρ, r) ∈ H we have r =

∑
{|r′ | 1 ≤ i ≤ n ∧ (ρ, r′) ∈ Hi|}. ��
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In the definition of execution sample under a test we have that each number r,
with (ρ, r) ∈ H, denotes the number of times we have observed the execution ρ
in I under the (repeated) application of T .

Now we present the conditions required to pass a test. Passing a test con-
sists in fulfilling two different constraints. First, we require that the test never
reaches a failure state as a result of its interaction with the implementation. This
condition concerns what is possible. Second, we require that the random vari-
ables attached to successful states conform to the samples collected during the
(repeated) application of the test to the IUT. This condition concerns what is
probable. We will consider that the set of executions analyzed to pass a test does
not only include those executions obtained by applying that test, but also the
executions obtained by applying other tests. Let us remark that the very same
traces that are available in a test could be part of other tests as well. Let us
also note that the validity of any hypothesis contrast improves with the number
of samples. Hence, it would not be efficient to apply each hypothesis contrast
to the limited collection of samples obtained by a single test. On the contrary,
samples collected by different tests will be shared so that our statistical infor-
mation grows and the hypothesis contrast procedure improves. Let us note that
this testing methodology is opposite to usual techniques where the application
of each test is independent from other tests.

Definition 11. Let H = {(ρ1, r1), . . . , (ρn, rn)} be an execution sample of I
under the test suite Ω = {T1, . . . , Tn} and let 0 ≤ α ≤ 1. Let us consider
T ∈ Ω. We say that the implementation I (α, H)−passes the test T if for any
trace ρ ∈ Traces(I), with T

ρ
=⇒ s, we have that s �∈ SF and if s ∈ SP then

γ(ζ(s), R) > α, where

R = {(outputs(ρ′), r) | (ρ′, r) ∈ IPrefix(H, ρ)}

We say that I (α, H)−passes the test suite Ω if I (α, H)−passes Ti, for any
1 ≤ i ≤ n. ��

4 Implementation Relation Based on Samples

In this section we introduce an implementation relation that take into account
the practical limitations to collect probabilistic information from an implemen-
tation. This relation allows us to claim the accurateness of the probabilistic
behavior of an implementation with respect to a specification up to a given
confidence level. Given a set of execution samples, we will apply a hypothesis
contrast to check whether the probabilistic choices taken by the implementation
follow the patterns given by the specification.

Our implementation relation follows the classical pattern of formal confor-
mance relations defined in systems distinguishing between inputs and outputs
(see e.g. [24, 25]). That is, an IUT conforms to a specification S if for any possi-
ble evolution of S the outputs that the IUT may perform after a given input are
a subset of those for the specification. Let us remark that this constraint could
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be rewritten in probabilistic terms: The confidence we have on the fact that the
implementation will not perform forbidden behaviors is 1 (i.e. complete). How-
ever, since no hypothesis contrast can provide full confidence, it is preferable
to keep the constraints over actions separated from the probabilistic constraints
and deal with them in the classic way, that is, an implementation is incorrect
with respect to forbidden behavior if such a behavior is detected. Let us remind
that the reverse is not true: We cannot claim that the implementation is correct
even if no forbidden behavior is detected after a finite number of interactions
with it.

Definition 12. Let S and I be PFSMs. We say that I non-probabilistically con-
forms to S, denoted by I conf S, if for any ρ = (i1/o1, . . . , in/on) ∈ Traces(S),
with n ≥ 1, we have

ρ′ = (i1/o1, . . . , in−1/on−1, in/o′
n) ∈ Traces(I) implies ρ′ ∈ Traces(S)

��

Let us note that the relation conf does not coincide with trace inclusion. For
example, an implementation may be able to perform a trace (i1/o1, . . . , in/on)
that the specification is not as long as the corresponding (sub-)sequence of inputs
(i1, . . . , in) cannot be performed by the specification. Regarding probabilistic
constraints, we put together all the observations of the implementation. Then,
the set of samples corresponding to each trace of the specification will be com-
posed by taking all the observations such that the trace is a prefix of them. By
doing so we will be able to compare the number of times the implementation
has performed the chosen trace with the number of times the implementation
has performed any other behavior. We will use hypothesis contrasts to decide
whether the probabilistic choices of the implementation conform to the proba-
bilistic constraints imposed by the specification. In particular, a hypothesis con-
trast will be applied to each sequence of inputs considered by the specification.
This contrast will check whether the different sequences of outputs associated
with these inputs are distributed according to the probability distribution of the
random variable associated with that sequence of inputs in the specification.

Definition 13. Let S be a specification and I be an IUT. Let H be an execution
sample and let 0 ≤ α ≤ 1. We say that I (α, H)−probabilistically conforms to
S, denoted by I confp(α,H) S, if I conf S and for any ρ ∈ Traces(S) we have
γ(ξπ

S , R) > α, where π = inputs(ρ) and

R = {(outputs(ρ′), r) | (ρ′, r) ∈ IPrefix(H, ρ)}

��

In the previous relation ξπ
S denotes the symbolic random variable associated

with the sequence of input actions π for the PFSM S (see Definition 6). Besides,
each trace observed in the implementation will add one instance to the account-
ing of its prefixes. We could consider an alternative procedure where traces are
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independently accounted and each observed trace does not affect the number of
instances of other traces being prefix of it. However, as we already pointed out,
this method would lose valuable information that might negatively affect the
quality of the hypothesis contrasts.

5 Test Derivation

In this section we provide an algorithm to derive tests from specifications. In
addition, we will show that the derived test suite is complete up to a given con-
fidence α with respect to the conformance relation presented in Definition 13.
As usually, the idea consists in traversing the specification to get all the possible
traces in the adequate way. Thus, each test is generated so that it focuses on
chasing a concrete trace of the specification. Besides, test cases contain proba-
bilistic constraints so that they can detect faulty probabilistic behaviors in the
IUT. First, we give some auxiliary functions.

Definition 14. Let M = (S, I, O, δ, s0) be a PFSM. We define the set of possible
outputs in state s after input i as out(s, i) = {o | ∃s′ : (s, i, o, p, s′) ∈ δ}. For any
transition (s, i, o, p, s′) ∈ δ we write after(s, i, o) = s′. ��

Let us remark that, due to the assumption that PFSMs are deterministically
observable, after(s, i, o) is uniquely determined.

Our derivation algorithm is presented in Figure 1. By considering the possible
choices we get a set of tests extracted from the specification M . We denote this
set of tests by tests(M). In this algorithm, the set of pending states Saux

keeps track of the states of the test whose definition has not been finished yet.
A tuple (sM , sT , π) ∈ Saux indicates that the current state in the traversal of
the specification is sM , that the description of the state sT of the test is not
concluded yet, and that the sequence of inputs traversed from s0 to sT is π. The
set Saux initially contains a tuple with the initial states (of both specification
and test) and an empty sequence. For each tuple in Saux we may choose one
possibility. It is important to remark that the second possibility is applied at
most to one of the possible tuples (see side condition imposing that Saux is a
singleton). Thus, our derived tests are valid as introduced in Definition 7.

The first possibility simply indicates that the state of the test becomes a
successful state. In this case, we attach a symbolic random variable to this state.
This random variable must encode the probability distribution, according to the
specification, for all possible traces having the sequence of inputs π.

The second possibility takes an input and generates a transition in the test
labeled by this input. Then, the whole sets of outputs is considered. If the output
is not expected by the specification then a transition leading to a failure state is
created (see 2.(e) in Figure 1). This could be simulated by a single branch in the
test, labeled by else, leading to a failure state (in the algorithm we suppose that
all the possible outputs appear in the test). For the rest of outputs we create a
transition with the corresponding output and add the appropriate tuple to the
set Saux (see 2.(f) in Figure 1).
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Input: M = (S, I, O, δ, s0).
Output: T = (S′, I, O, δ′, s′

0, SI , SO, SF , SP , ζ).

Initialization:

– S′ := {s′
0}, δ′ := SI := SO := SF := SP := ∅.

– Saux := {(s0, s
′
0, ( ))}.

Inductive Cases: Apply one of the following two possibilities until Saux = ∅.
1. If (sM , sT , π) ∈ Saux then perform the following steps:

(a) Saux := Saux − {(sM , sT , π)}.
(b) SP := SP ∪ {sT }.
(c) ζ(sT ) := ξπ

M .
2. If Saux = {(sM , sT , π)} is a singleton and there exists i ∈ I such that

out(sM , i) �= ∅ then perform the following steps:
(a) Saux := ∅.
(b) Choose i such that out(sM , i) �= ∅.
(c) Create a fresh state s′ /∈ S′ and perform S′ := S′ ∪ {s′}.
(d) SI := SI ∪ {sT }; SO := SO ∪ {s′}; δ′ := δ′ ∪ {(sT , i, s′)}.
(e) For each o /∈ out(sM , i) do

– Create a fresh state s′′ /∈ S′ and perform S′ := S′ ∪ {s′′}.
– SF := SF ∪ {s′′}; δ′ := δ′ ∪ {(s′, o, s′′)}.

(f) For each o ∈ out(sM , i) do
– Create a fresh state s′′ /∈ S′ and perform S′ := S′ ∪ {s′′}.
– δ′ := δ′ ∪ {(s′, o, s′′)}.
– sM

1 := after(sM , i, o).
– Let (sM , i, o, p, sM

1 ) ∈ δ. Saux := Saux ∪ {(sM
1 , s′′, π ◦ i)}.

Fig. 1. Test Derivation Algorithm

Let us remark that our derivation algorithm returns only finite test cases.
We consider that tests are constructed by running the algorithm a finite number
of times. Thus, the definition of a test finishes by considering a step where the
second inductive case is not applied.

The next results states that for a specification S, the test suite tests(S) can
be used to distinguish those (and only those) implementations conforming with
respect to confp. We cannot properly say that the test suite is complete since
both passing tests and the considered implementation relation have a proba-
bilistic component. So, we may say completeness up to a certain confidence
level. The proof of the non-probabilistic part of the result is strongly based on
that for ioco [24]. The proof of the probabilistic component follows the scheme
introduced for the relation confs [19] (a complete proof can be found in [21]).

Proposition 1. Let I and S be PFSMs. For any 0 ≤ α ≤ 1 and execution sample
H we have I confp(α,H) S iff I (α, H)−passes tests(S). ��
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6 Conclusions and Future Work

We have presented a testing methodology to check whether an implementation
properly follows the behavior described by a given specification. The particu-
larity of our framework is that specifications can explicitly express the desired
propensity of each option in each non-deterministic choice of the system. This
propensity is denoted in terms of probabilities. Moreover, in order to improve
the expressivity of specifications, symbolic probabilities are introduced. These
features increase the complexity of the testing methodology, as it is impossible
to infer the actual probabilities associated with implementations from a set of
interaction samples. In order to cope with this problem, hypothesis contrasts are
used.

Even though we have used a specific model to represent systems, we think
that our ideas and methodology can be applied to other formalisms. For example,
it would be rather easy to introduce our symbolic probabilities in a framework
of probabilistic automata as the ones used in [22, 23]. We also plan to study
the integration of our framework within that presented in [19], where a testing
methodology for stochastic timed processes is introduced. In this line we are
already implementing a tool to apply both the testing framework presented in
this paper and the one given in [19].

Acknowledgments. We would like to thank the anonymous reviewers of this paper
for the careful reading and interesting suggestions.
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Appendix. Statistics Background: Hypothesis Contrasts

In this appendix we introduce one of the standard ways to measure the confidence
that a random variable has on a sample. In order to do so we will present
a methodology to perform hypothesis contrasts. Intuitively, a sample will be
rejected if the probability of observing that sample from a given random variable
is low. We will present Pearson’s χ2 contrast. This contrast can be applied both
to continuous and discrete random variables. The mechanism is the following.
Once we have collected a sample of size n we perform the following steps:

– We split the sample into k classes covering all the possible range of values.
We denote by Oi the observed frequency in class i (i.e. the number of elements
belonging to the class i).
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– We calculate, according to the proposed random variable, the probability pi

of each class i. We denote by Ei the expected frequency of class i, that is,
Ei = n · pi.

– We calculate the discrepancy between observed and expected frequencies
as X2 =

∑n
i=1

(Oi−Ei)2

Ei
. When the model is correct, this discrepancy is

approximately distributed as a random variable χ2.
– The number of freedom degrees of χ2 is k − 1.
– We will accept that the sample follows the proposed random variable if the

probability to obtain a discrepancy greater than or equal to the detected
discrepancy is high enough, that is, if X2 < χ2

α(k−1) for some α high enough.
Actually, as such margin to accept the sample decreases as α increases, we
can obtain a measure of the validity of the sample as max{α|X2 ≤ χ2

α(k−1)}.

According to the previous steps, we can now give an operative definition of
the function γ which has been presented before in Definition 5. Since we will use
hypothesis contrasts to compare samples with symbolic random variables but
the previous procedure refers to standard random variables, we must be carefull
when applying the previous ideas in our framework. Let us note that symbolic
random variables encapsulate a set of standard random variables. For instance,
let us consider the set of events A = {a, b} and the symbolic random variable
ξ : A → simbP with ξ(a) = ξ(b) = (1

4 , 3
4 ). Then, a possible standard random

variable fitting into ξ is ξ′ : A → (0, 1] with ξ′(a) = 1
3 and ξ′(b) = 2

3 . Another
possibility is ξ′′ : A → (0, 1] with ξ′′(a) = ξ′′(b) = 1

2 . Since ξ embraces both
possibilities, assessing the confidence of ξ on a sample should consider both of
them. Actually, we will consider that the sample is adequate for ξ if it would be
so for some standard random variable fitting into ξ. In this line, an instance of a
symbolic random variable is a (standard) random variable where each probability
fits into the margins of the symbolic random variable for the corresponding class.
Besides, these probabilities must add up to 1. In order to compute the confidence
of a symbolic random variable on a sample we consider the instance of it that
returns the highest confidence on that sample.

Definition 15. Let A = {a1, . . . , ak} be a set of events, ξ : A → simbP be a
symbolic random variable, ξ′ : A → (0, 1] be a random variable, and J be a
sample of A. We say that the random variable ξ′ is an instance of ξ, denoted by
Instance(ξ′, ξ), if for any a ∈ A we have ξ′(a) ∈ ξ(a) and

∑
a∈A ξ′(a) = 1.

For any random variable ξ′ : A → (0, 1] let X2 denote the discrepancy level
of J on ξ′ calculated as explained above by splitting the sampling space into
the set of events A. Let ξ : A → simbP denote a symbolic random variable. We
define the confidence of ξ on J , denoted by γ(ξ, J), as follows:

γ(ξ, J) = max
{

α

∣∣∣∣∃ ξ′ : Instance(ξ′, ξ) ∧
α = max{α′ | X2 ≤ χ2

α′(k − 1)}

}
��
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Abstract. We present an extension of Tretmans’ theory and algorithm
for test generation for input-output transition systems to real-time sys-
tems. Our treatment is based on an operational interpretation of the
notion of quiescence in the context of real-time behaviour. This gives
rise to a family of implementation relations parameterized by observa-
tion durations for quiescence. We define a nondeterministic (parameter-
ized) test generation algorithm that generates test cases that are sound
with respect to the corresponding implementation relation. Also, the test
generation is exhaustive in the sense that for each non-conforming imple-
mentation a test case can be generated that detects the non-conformance.

1 Introduction

Although testing has always been the most important technique for the valida-
tion of software systems it has only become a topic of serious academic research
in the past decade or so. In this period research on the use of formal methods
for model-driven test generation and execution of functional test cases has led
to a number of promising methods and tools for systematic black-box testing of
systems, e.g. [1, 13, 9, 10]. Most of these approaches are limited to the qualitative
behaviour of systems, and exclude quantitative aspects such as real-time prop-
erties. The explosive growth of embedded software, however, has also caused a
growing need to extend existing testing theories to the testing of real-time reac-
tive systems. In this paper we present an extension of Tretmans’ ioco theory for
test generation [12] for input-output transition systems that includes real-time
behaviour.

A central concept in the non-timed theory is the notion of quiescence, which
characterizes systems states that will not produce any output response without
the provision of a new input stimulus. By treating quiescence as a special sort
of system output the notion of behavioural trace can be generalized to include
observations of quiescence. In turn, this leads to an implementation relation that
defines unambiguously if implemented behaviour conforms to a given specifica-
tion model, viz. if after all specified generalized traces of the implementation
all possible generalized outputs are allowed according to the specification. Or,

J. Grabowski and B. Nielsen (Eds.): FATES 2004, LNCS 3395, pp. 64–78, 2005.
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more informally, if all outputs and quiescence are correctly predicted by the
specification.

In practice, the above implementation criterion means that implementations
can be more deterministic than their specifications. Although it is good engineer-
ing practice to not introduce unnecessary nondeterminism in reactive systems,
it is often unavoidable in the context of testing, and it should therefore be part
of a sensible testing theory. The reason for this is twofold:
• although the implementation under test may be deterministic, it can often

only be tested through a testing environment that includes operating system
features, communication media, etc. that typically introduce nondetermin-
ism into the observed behaviour;

• an implementation under test often consists of concurrent components in
an asynchronous parallel composition. The loss of information about the
relative progress of components results in nondeterministic properties of their
integrated behaviour.

Our proposed extension of the ioco theory to real-time systems is based on an
operational interpretation of the notion of quiescence. This gives rise to a family
of implementation relations parameterized by observation durations for quies-
cence. We define a nondeterministic (parameterized) test generation algorithm
that generates test cases that are sound with respect to the corresponding im-
plementation relation. This means that if an implementation fails any of the
generated tests, it must be non-conforming. The algorithm is also exhaustive
in the sense that for every non-conforming implementation a test case can be
generated that will detect its non-conformance.

The rest of this paper is organized as follows. Section 2 introduces the model
of timed input-output transition systems and our conformance relation. Section
3 presents the real-time test generation algorithm. Section 4 illustrates the the-
ory with an example in the setting of timed automata. Section 5 compares our
achievements to related work. Finally, section 6 presents the conclusions and
future work.

2 Implementation Relations for Real-Time quiescence

2.1 Timed Input-Output Transition Systems

In this section we introduce the concept of Timed Labelled Transition Systems,
their properties and notation, and then specialize them to obtain the model of
Timed Input-Output Transition Systems. After that, we proceed to obtain a
conformance relation between a specification and an implementation, defined as
timed input-output transition systems, analogous to the ioco relation for the
untimed case.

For details of the underlying theory (the implementation relation ioco) we
refer to [12]. To save space we omitted the proof of lemmas and theorems in this
paper, but they can be found in the full version [15].

We distinguish three types of actions: time-passage actions, visible labelled
actions and the special internal action τ . All except the time-passage actions
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are thought of as occurring instantaneously, i.e. without consuming time. To
specify time, a dense time domain is used, viz. the nonnegative reals (IR+); no
lower a priori bounds are imposed on the delays between events.

Definition 1. A timed labelled transition system (TLTS) is a 4-tuple
〈S, s0, Actτε,→〉, where

• S is a non-empty set of states
• s0 ∈ S is the initial state

• Actτε
def
= Act ∪ {τ} ∪ D are the actions Act including the internal action τ

and time-passage actions; where D is {ε(d) | d ∈ IR+}
• → ⊆ (S×Actτε ×S) is the transition relation with the following consistency

constraints:
− Time Determinism whenever s

ε(d)−→ s′ and s
ε(d)−→ s′′ then s′ = s′′

− Time Additivity ∀ s, s′′ ∈ S ∧ ∀ d1, d2 ≥ 0 : (∃ s′ ∈ S : s
ε(d1)−→ s′ ε(d2)−→ s′′) iff

s
ε(d1+d2)−→ s′′

− Null Delay ∀ s, s′ ∈ S : s
ε(0)−→ s′ iff s = s′.

The labels in Actε (Actε
def
= Act ∪ D) represent the observable actions of a

system, i.e. labelled actions and passage of time; the special label τ represents
an unobservable internal action. A transition (s,μ, s′) ∈ → is denoted as s

μ→ s′.
A computation is a finite or infinite sequence of transitions:

s0
μ1→ s1

μ2→ s2
μ3→ · · · μn−1→ sn−1

μn→ sn(→ . . . )
A timed trace captures the observable aspects of a computation; it is the sequence
of observable actions. The set of all finite sequences of actions over Actε is
denoted by Act∗ε, while ε denotes the empty sequence. If σ1,σ2 ∈ Act∗ε then
σ1 ·σ2 is the concatenation of σ1 and σ2.

We denote the class of all timed labelled transition systems over Act by
TLTS(Act). Some additional notations and properties are introduced in the next
definitions.

Definition 2. Let p = 〈S, s0, Actτε,→〉 be a TLTS(Act) with s, s′, si ∈ S; d, d′,
e ∈ IR+;μi ∈ Actτε;β ∈ Act;αi ∈ Actε;α ∈ Act∗ε, then

s
μ1...μn−→ s′ def

= ∃ s0, . . . , sn : s = s0
μ1→ s1

μ2→ · · · μn→ sn = s′

s
μ1...μn−→ def

= ∃ s′ : s
μ1...μn−→ s′ s

μ1...μn
�−→ def

= � s′ : s
μ1...μn−→ s′

s
ε⇒ s′ def

= s = s′ or s
τ...τ−→ s′ s

β⇒ s′ def
= ∃ s1, s2 : s

ε⇒ s1
β→ s2

ε⇒ s′

s
ε(d)⇒ s′ def

= (∃ s1, s2 : s
ε⇒ s1

ε(d)→ s2
ε⇒ s′) or s

α1...αn=⇒ s′ def
= ∃ s0 . . . sn

(∃ s1, d′, e : d′ + e = d : s
ε(d′)⇒ s1

ε(e)⇒ s′) : s = s0
α1⇒ s1

α2⇒ · · · αn⇒ sn = s′

s
α⇒ def

= ∃ s′ : s
α⇒ s′ s

α
�⇒ def

= � s′ : s
α⇒ s′.

We do not always distinguish between a timed labelled transition system and
its initial state: if p = 〈S, s0, Actτε,→〉 we will often identify the process p with
its initial state s0, e.g. we write p

α⇒ instead of s0
α⇒.

Definition 3.

• ttraces(p)
def
= {σ ∈ Act∗ε | p

σ⇒ }
• init(p)

def
= {μ ∈ Actτε | p

μ→ }
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• der(p)
def
= {p′ | ∃ σ ∈ Act∗ε : p

σ⇒ p′}
• p after σ

def
= {p′ | p

σ⇒ p′}
• P after σ

def
=

⋃
p∈P

(p after σ), where P is a set of states

• p is deterministic if ∀ σ ∈ Act∗ε : (p after σ) has at most one element.
If σ ∈ ttraces(p), then (p after σ) is overloaded to denote this element.

In the context of timed systems there are some further important properties.

Definition 4. Let p = 〈S, s0, Actτε,→〉 be a TLTS(Act), then
p is time divergent: if for all s ∈ S there exists an infinite computation σ from
s with infinite cumulative delay:

∀ s ∈ S : ∃ σ ∈ Actωτε : σ = μ1 ·μ2 ·μ3 · · · : s
σ→ ∧ Σ{di | μi = ε(di)} = ∞

p has Zeno behaviour: if there exists a state s ∈ S and an infinite computation
from s with infinitely many non-delay actions and finite cumulative delay:

∃ s ∈ S : ∃ σ ∈ Actωτε : σ = μ1 ·μ2 ·μ3 · · · : s
σ→ ∧ | {i | μi �= ε(di)} |= ∞

∧ Σ{di | μi = ε(di)} < ∞.

We assume that for all p ∈ TLTS we are working with, p is time divergent,
and does not have Zeno behaviour.

We now introduce timed input-output transition systems (TIOTS) to model
timed systems for which the set of actions can be partitioned into output actions
and input actions. To do this properly, we formalize the notion of input enabling:
if an input action is initiated by the environment, the system is always prepared
to participate in such an interaction: all the inputs can always be accepted
without letting time pass. Also, we want to exclude the possibility that the flow
of time in a system can be blocked because the environment does not provide
certain input actions, i.e. there must be no forced inputs.

Definition 5. A timed input-output transition system (TIOTS) is a timed la-
belled transition system 〈S, s0, Actτε,→〉 with Act partitioned into input actions,
ActI , and output actions, ActU , (ActI ∪ActU = Act,ActI ∩ActU = ∅), that has
the properties of
weak input enabling: ∀ s ∈ S : ∀ μ ∈ ActI : s

μ⇒
no forced inputs: iff for all s ∈ S there exists an infinite computation σ from s
containing no input actions and with infinite cumulative delay: ∀ s ∈ S : ∃ σ ∈
(ActU ∪ {τ} ∪ D)ω : σ = μ1 ·μ2· · · : s

σ→ ∧ Σ{di | μi = ε(di)} = ∞
The class of timed input-output transition systems with input actions in ActI

and output actions in ActU is denoted by TIOTS(ActI , ActU ) ⊆ TLTS(ActI ∪
ActU ).

We follow the convention that input actions are identified by names followed
by a ?-symbol, and output actions by names followed by a !-symbol.

A timed trace σ is a sequence of actions and delays, e.g. σ = a?·ε(d1)·ε(d2)·b!.
Obviously, it would be more natural to avoid consecutive delays, as in σ =
a? · ε(d1 + d2) · b!. Such traces could alternatively be written as sequences of
actions with relative time stamps, viz. σ = a?(0)·b!(d1 +d2). This idea motivates
the definition of normalized timed traces.



68

Definition 6. Let σ ∈ Act∗ε, then

• σ is a normalized timed trace iff σ ∈ (D·Act)∗

• nttraces(p) = {σ ∈ (D·Act)∗ | p
σ⇒}

• for normalized timed traces σ = ε(d0)·a0 ·ε(d1)·a1 · · · ε(dn)·an we also write
σ̂ = a0(d0)·a1(d1) · · · an(dn).

If a timed trace begins with an action it can always be converted to a normal-
ized timed trace by combining delays, or adding zero delays ε(0) in the appropri-
ate places. But if a timed trace ends with a delay, such as σ = ε(d0)·a?·ε(d1)·b!·ε(d2)
then is not possible to interpret it as a normalized timed trace. The next lemma
shows, however, that in the presence of input enabledness normalized timed traces
preserve the information of timed traces.

Lemma 7. Let p1, p2 ∈ TIOTS(ActI , ActU ), then
ttraces(p1) ⊆ ttraces(p2) iff nttraces(p1) ⊆ nttraces(p2).

From now on we will not distinguish between a timed trace σ and its nor-
malization σ̂ if it exist.

Similarly to Tretmans’ work, we proceed to introduce the notion of quiescence
in the timed setting. In the presence of time we define a quiescent state as one
where the system is unable to produce an output immediately or in the future
without receiving further input stimuli.

Definition 8. Let p ∈ TIOTS(ActI , ActU ). A state s of p is quiescent, denoted

by δ(s), iff ∀ μ ∈ ActU : ∀ d ∈ IR+ : s
μ(d)
�⇒ .

As before in the untimed case, we can start out by representing quiescence as
a special action δ (δ �∈ Act ∪ {τ})1, and extending the timed transition relation
of a TIOTS p to include self-loop transitions s

δ→ s iff s is a quiescent state.
Moreover, let Δ(p) denote the extended timed transition system of p that is
obtained in this way.

2.2 Timed mplementation elations

The extension of the timed transition relation allows us to define the following
relation over TIOTS.

Definition 9. Let p and q ∈ TIOTS(ActI , ActU ), then
q �tiorf p iff nttraces(Δ(q)) ⊆ nttraces(Δ(p)).

For specifications p ∈ TIOTS the quiescent states can, in principle, be iden-
tified by analyzing the timed transition system, i.e. we can assume that Δ(p) is

1 In [12] the action symbol θ is used for the observation of quiescence. We prefer to use
δ for both quiescence and its observation, in line with the philosophy that identical
actions synchronize.
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at our disposal. For implementations q, however, we only can detect quiescence
by waiting for outputs. But we cannot wait forever, and therefore need to choose
a maximal duration M . This motivates the following parameterized version of
�tiorf, where σ can only appear after M time-units.

Definition 10. Let p and q ∈ TIOTS, then q �M
tiorf p iff ΔM (q) ⊆ ΔM (p)

where ΔM (r)
def
= nttraces(Δ(r)) ∩ (D·Act ∪ ε(M)·δ)∗.

The above definition takes only into account observations of quiescence that
are made after a minimal delay of M time units. Naturally this definition implies
a pre-order.

Lemma 11. If M1 < M2, then if q �M1

tiorf p then q �M2

tiorf p.

This is not without consequences: in contrast to the untimed case, time delays
can change the system state, which has interesting consequences, as shown in
the quirky coffee machine of Figure 1, inspired by [21].

Example 12. Figure 1 shows two quirky coffee machines with time. Suppose both
graphs are saturated with input action transitions in each state by adding self-
loops for all input transitions that are not explicitly given. For simplicity, in
the figure, we use m? for money, b? for bang, c?, c! for coffee, and t?, t! for tea.
We suppose that each action resets the clock x and that k < M (we used the
representation of timed automata). Here after introducing money? we can switch
between the coffee and tea modes. If we order coffee? and bang? fast enough we
always will have coffee in the right-hand machine and some times in the left-hand
machine, but if we bang? after waiting for the quiescence we will not notice the
difference between machines. It follows from the one that cannot switch modes.
This is a consequence of the fact that observing quiescence takes time.

m? m?

t? c? t? c?

x ≤ k x ≤ k

t!
x=k

c!
x=k

m? m?

t? c? t? c?

x ≤ k x ≤ k

t!
x=k

b?
x ≥ M b?

x<M

b?
x<M b?

x ≥ M
c!
x=k

x ≤ k x ≤ k

c!
x=k

t!
x=k
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Fig. 1. The quirky coffee machine with time, a modified version of [21]
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The output set of a given state of a system in TIOTS(ActI , ActU ) consists of
the time stamped output actions that are allowed from that state (abstracting
from τ -actions), including δ-actions after a delay of M time-units.

Definition 13. Let p be a state of an (extended) timed transition system in
TIOTS(ActI , ActU ),

then outM (p) = {μ(d) | μ ∈ ActU ∧ p
μ(d)⇒ } ∪ {δ(M)| p

δ(M)⇒ }
and for P a set of states, then outM (P ) = ∪

p∈P
outM (p).

Lemma 14. Let p and q ∈ TIOTS(ActI , ActU ), then

q �M
tiorf p iff

∀ σ ∈ (D·Act ∪ ε(M)·δ)∗ : outM (Δ(q) after σ) ⊆ outM (Δ(p) after σ).

Finally, we are in position to define the relation we use to test real time systems:
tiocoM . For p and q ∈ TIOTS(ActI , ActU ), q will be tiocoM to p if the set
of outputs of q after every normalized timed trace σ of p including observations
δ(M), is a subset of the outputs of p after the same timed trace σ.

Definition 15. Let p and q ∈ TIOTS(ActI , ActU ), then

q �M
tioco p iff ∀ σ ∈ ΔM (p) : outM (Δ(q) after σ) ⊆ outM (Δ(p) after σ)

we also write �M
tioco as tiocoM .

2.3 An perational odel

To obtain an effective theory of quiescence in a timed setting we need more than
stipulating that observing quiescence takes time. Since with physical implemen-
tations we can only observe absence of outputs over finite time intervals we must
stipulate when such observations will be interpreted as quiescence.

Definition 16. Let q be a TIOTS and M ∈ IR+, then

• a state s of q is M-quiescent iff ∀ s′ ∈ (s after ε(M)) : s′ is quiescent
• q is M-quiescent iff all states s of q are M-quiescent.

In line with the above development we now want to formalize how normalized
timed traces of TIOTSs may be enriched directly with δ-actions. Whenever the
normalized timed trace allows an action with a delay of more than M time-
units this creates a possibility to observe quiescence. For example, if M = 4
and σ = a?(2)·b?(5)·c!(3) is an observed timed trace then it is also possible to
observe σ′ = a?(2)·δ(4)·b?(1)·c!(3). We formalize the addition of δ-observations to
normalized timed traces as a formal relation δM between (extended) normalized
timed traces.

Definition 17. Let σ,σ′ be normal form of σ,σ′ ∈ (D·(Act ∪ δ))∗, then

• σ δM σ′ iff ∃ σ1,σ2 : ∃ μ : ∃ d ≥ M : σ = σ1·μ(d)·σ2∧σ′ = σ1·δ(M)·μ(d−M)·σ2

O M
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• letΣ be a set of normalized timed traces,then δM (Σ)=pref ( ∪
σ∈Σ

{σ′| σ δ∗
M σ′})

where pref(S) is interpreted as the prefix-closure of a set of traces S and δ∗
M

is the reflexive transitive closure of the relation δM .

If δ-actions are introduced in normalized timed traces on the basis observa-
tions of delays of (at least) M time units, we must check for consistency, i.e. we
must have the property expressed in the following lemma.

Lemma 18. Let q ∈ TIOTS(ActI , ActU ) be M-quiescent, then
� σ ∈ δM (nttraces(q)) : ∃ μ ∈ ActU : σ = σ′ ·δ(M)·μ(d).

Corollary 19. Let q ∈ TIOTS be M-quiescent, then δM (nttraces(q)) = ΔM (q).

This corollary means that if an implementation q can be assumed to be M -
quiescent we may use the set of enriched observations δM (nttraces(q)) to obtain
ΔM (q), whose definition is based on the unobservable timed transition system
Δ(q). This will be the basis for our test derivation algorithm.

3 A Real-Time Test Generation Framework

In this section we define the concept of real-time test cases, the nature of their
execution, and the evaluation of their success or failure.

Definition 20. • A test case t is a TLTS 〈S, s0, Actε ∪ {δ},→〉 such that
− t is deterministic and has bounded behaviour, i.e. ∃ N > 0 : ∀ σ :

σ = μ1.μ2.μ3 . . . : |{i | μi �= ε(di)}| < ∞ and Σ{di | μi = ε(di)} < N
− S contains the terminal states pass and fail, with init(pass) =

init(fail) = ∅
− for any state t′ ∈ S of the test case with t′ �= pass, fail, ∃ d > 0 with

init(t′ after ε(d′)) = ActU ∪ {ε(e) | e = d − d′} for all d′ < d,
init(t′ after ε(d)) = μ with μ ∈ ActI or μ = δ

− t does not have τ -transitions
The class of test cases over ActI and ActU is denoted as T T EST (ActI , ActU )
but we represent it similarly as a timed automata, only for simplifying the
notation

• A test suite T is a set of test cases: T ⊆ T T EST (ActI , ActU ).

A test run of an implementation with a test case is modelled by the syn-
chronous parallel execution of the test case with the implementation under test.
This run continues until no more interactions are possible, i.e. until a deadlock
occurs.

Definition 21. Let t ∈ T T EST (ActI , ActU ) and imp ∈ TIOTS(ActI , ActU )
M-quiescent, then
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• Running a test case t with an implementation imp is modelled by the parallel
operator || :T T EST (ActI , ActU )×TIOTS(ActI , ActU) →TIOTS(ActI ,ActU )
which is defined by the following inference rules:

imp
τ→ imp′ � t||imp

τ−→ t||imp′

t
δ→ t′ � t||imp

δ−→ t′||imp

t
μ−→ t′, imp

μ−→ imp′,μ ∈ Act � t||imp
μ−→ t′||imp′

t
ε(d)−→ t′, imp

ε(d)−→ imp′ � t||imp
ε(d)−→ t′||imp′

• A test run of t with imp, is a σ ∈ ΔM of t||imp leading to a terminal state
of t : σ is a test run of t and

imp
def
= ∃ imp′ : (t||imp

σ⇒ pass||imp′) or (t||imp
σ⇒ fail||imp′)

• An implementation imp passes test case t, if all their test runs lead to the
pass state of t:

imp passes t
def
= ∀ σ ∈ ΔM : ∀ imp′ : t||imp

σ

�⇒ fail||imp′

• An implementation imp passes a test suite T, if it passes all test cases in T:

imp passes T
def
= ∀ t ∈ T : imp passes t

If imp does not pass the test suite, it fails if:

imp fails T
def
= ∃ t ∈ T : imp pa�sses t.

Since an implementation can behave nondeterministically, different test runs
of the same test case with the same implementation may lead to different ter-
minal states and hence to different verdicts. An implementation passes a test
case if an only if all possible test runs lead to the verdict pass.

3.1 Nondeterministic est ase onstruction

For the description of test cases we use, as we already did before, a process-
algebraic behaviour notation with a syntax inspired by LOTOS [8]:

B
def
= a;B | B + B | Σ B

where a ∈ Actε, B is a countable set of behaviour expressions, and the axioms
and the inference rules are:

a ∈ Act � a;B a→ B′

a = ε(d), d′ < d � a;B
ε(d′)−→ ε(d − d′);B′

a = ε(d) � a;B
ε(d)−→ B′

B1
μ→ B′

1, μ ∈ Actε � B1 + B2
μ→ B′

1

B2
μ→ B′

2, μ ∈ Actε � B1 + B2
μ→ B′

2

B
μ→ B′, B ∈ B,μ ∈ Actε � Σ B μ→ B′

Moreover, we use μ(d) as syntactic sugar for ε(d);μ.

Test case generation procedure We define a procedure to generate test cases
from a given specification timed transition system. Similar to [12] test cases result
from the nondeterministic, recursive application of three test generation steps,

T C C
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corresponding to: (1) termination, (2) generation of an input, and (3) observa-
tion of output (including quiescence). It should be noted that the construction
steps involve (negations of) predicates of the form o(d) ∈ outM (S), which on
the general level of timed input-output transition systems are undecidable. The
procedure given here, therefore, should be seen as a meta-algorithm that can
be used to generate tests effectively for subclasses of TIOTS for which these
predicates are decidable, such as timed automata [16, 14].

1.
���� pass

3. ���x := 0
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2. choose k ∈ [0,M)
and μ ∈ ActI
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1. termination
t := pass
The single state test case pass is always a sound test case. It stops the
recursion in the algorithm, and thus terminates the test case.

2. inputs
t := Σ{oi(di); ti | oi ∈ ActU ∧ oi(di) ∈ outM (S)}

+ μ(k); tμ
+ Σ{oj(dj); fail | oj ∈ ActU ∧ oj(dj) /∈ outM (S)}

where x is a clock, k is a timed variable and ti and tμ are obtained by
recursively applying the algorithm for (S after oi(di)) and (S after μ(k)),
respectively.
Test case t is waiting for k time-units an treating to make and input (μ).
If an output arrives from the implementation it checks; if it is an invalid
response, i.e. oj(dj) /∈ outM (S) then the test case terminates in fail; if it is a
valid response after the timed pass then the test case continues recursively.
If the time pass then the test makes the input (μ) and continues recursively.

3. waiting for outputs
t := Σ{oi(di); ti | oi ∈ ActU ∧ oi(di) ∈ outM (S)}

+ Σ{δ(M); tδ | δ ∈ outM (S after ε(M))}
+ Σ{δ(M); fail | δ /∈ outM (S after ε(M))}
+ Σ{oj(dj); fail | oj ∈ ActU ∧ oj(dj) /∈ outM (S)}

where x is a clock and ti and tδ are obtained by recursively applying the
algorithm for (S after oi(di)) and (S after ε(M)), respectively.
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Test case t is waiting for M time-units if an output arrive from the imple-
mentation it checks; if it is an invalid response, i.e. oj(dj) /∈ outM (S) then
the test case terminates in fail; if it is a valid response after the timed pass
then the test case continues recursively. The observation of quiescence δ is
treated separately, using the constant M given by the M -quiescent property.

Soundness The test generation procedure presented is sound with respect to
the tiocoM relation. This property is shown in the following theorem.

Theorem 22. Let spec ∈ TIOTS, then for all M -quiescent imp ∈ TIOTS and
all test cases t obtained from spec by the above procedure:

imp tiocoM spec ⇒ imp passes t.

Exhaustiveness The test generation procedure is also exhaustive in the sense
that for each non-conforming implementation a test case can be generated that
detects the non-conformance.
Definition 23. Let p ∈ TIOTS, then

σ ∈ ΔM (p) is δ(M)-saturated iff for all σ′ with σ δM σ′ we have σ = σ′.

Theorem 24. Let spec ∈ TIOTS, then for all M -quiescent imp ∈ TIOTS with
imp ti �ocoM spec, there exists a test case t generated from spec by the procedure
such that: imp pa�sses t.

The exhaustiveness of our test generation procedure as proven in [15] is less
useful than the corresponding result in the untimed case. There, it implies that
the test generation algorithm, if repeatedly executed in a fair non-terminating
manner, will generate all test cases in the limit, and therefore, in the limit,
achieve full coverage with respect to ioco and the given specification spec.

Here, the number of potential test cases is uncountable because of the under-
lying continuous model of time, and no countable repetition of test generations
suffices. It is possible, however, to obtain a version of the stronger form of exhaus-
tiveness for real-time test generation as well by considering equivalence classes
of (minimal) error traces. It can be shown that reasonable assumptions of our
test generation procedure will hit each such equivalence class in the limit. This
result will be reported in detail in a forthcoming publication.

4 Example

In the setting of timed automata, deciding the predicate oi(di) ∈ outM (S)
amounts to reachability analysis. For the simpler version of tioco based on timed
trace inclusion (i.e. excluding quiescence) this has already been implemented in
the tool environment IF [16], the Uppaal-based testing tool Tuppaal, and a
real-time extension of TorX. We present an example of our test case generation
based on a timed automaton model of a coffee machine, similar to the previous
one, but with infinite behaviour due to cycles.

Example 25. Figure 2 shows two quirky coffee machines with time. The first
one is a specification and the second one is a wrong implementation. To the

.
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spec:
δ

m? m?

t! c? δ δ t? c!

t? b? b? c?

δ δ

c? c! t! t?

imp:

m? m?

t! c? t? c!

t? b? b? c?

t? t! c! c?

x<k x<k

x<k x<k

test:

x :=0

x ≤1

c! t!m?
x=1
x :=0

fail fail
x ≤1

c! t!c?
x=1
x :=0

fail fail
x ≤M

c! t!
δ
x=M
x :=0

pass fail
x ≤1

c! t!b?
x=1
x :=0

fail fail
x ≤1

c! t!c?
x=1
x :=0

fail fail
x ≤M

c! t!
δ
x=M

pass fail
fail
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Fig. 2. A specification of a quirky coffee machine with time, an implementation with
M = k, and a test case derived from the specification

right, there is a test case derived by the algorithm that can detect the error
in the implementation. We suppose both machines are saturated with all input
actions in each state. In the specification we show the δ-transitions, while in the
implementation we detect them using M = k. We assume that k > 1.
The problem appears because:

out(spec after m?(1)·c?(1)·δ(k)·b?(1)·c?(1))= {c![0,∞)}
and out(imp after m?(1)·c?(1)·δ(k)·b?(1)·c?(1))= {δ(k)}

where we use the notation c![0,∞) to denote that the output c! can be at any
time between 0 and ∞.

5 Related Work

As already indicated before this work is closely related to work carried out
by Krichen et al. in [16], and closely related work by Larsen et al. [14], who
deal with a quiescence-free interpretation of timed ioco based on timed trace
inclusion for timed automata. Our work shows how such results may be extended
to deal with quiescence, and provides a general framework at the level of timed
transition systems.
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Previous attempts of extending testing with time include older work by
Nielsen et al. in [2], for testing a subclass of timed automata called event-
recording automata (ERA). The technique is based on the symbolic analysis
of timed automata inspired by the Uppaal model-checker, but lacks a suitable
notion of implementation relation. Springintveld et al. in [11] present an exhaus-
tive testing method for deterministic timed automata with dense time, using
the notion of a grid automaton that represents each clock region with a finite
set of clock valuations. Although being exact, the grid method is impractical
because it generates “an astronomically large number of test sequences” [11].
Cardell-Oliver presents a method for networks of deterministic timed automata
extended with integer data variables [17], where only a part of the system is
visibly using test views, so that a test is never exhaustive.

Several authors have tried to obtain good specification coverage for their test
methods by adapting transition-tour methods from classical FSM-based testing
[7, 22].

Clarke and Lee [3] use the algebra of communicating shared resources (ACSR)
on a discrete time base. ACSR allows non-deterministic specifications, the use
of internal events and priorities. For testing, only boundary points of the time
domain are selected. Cleaveland et al. propose a testing method for probabilistic
processes on a discrete model of time [18] that bears a close resemblance to
the classical testing theory of Hennessy and De Nicola [19]. Mandrioli et al. use
temporal logic with arithmetic on a discrete time base [5].

6 Conclusion and Future Work

In this paper we have presented an extension of Tretmans’ ioco theory and
algorithm for test generation for input-output transition systems to real-time
systems. Our treatment is based on an operational interpretation of the notion of
quiescence that gives rise to a family of implementation relations parameterized
by observation durations M for quiescence. These relations detect differences in
behaviour after the execution of suspension traces provided that the observations
of quiescence all take longer than the stipulated duration M , but may not detect
differences in refusal behaviour that require shorter observations of quiescence.

It is shown how this theory may be used to test real-time implementations
under the assumption that the absence of system interaction with its environ-
ment for M time units implies quiescence. We have defined a nondeterministic
(M -parameterized) test generation framework that generates test cases that are
sound with respect to the corresponding implementation relation tiocoM . The
test generation is also exhaustive in the sense that for each non-conforming im-
plementation a test case can be generated that can detect the non-conformance.

The framework can be effectively instantiated for subclasses of timed input-
output transition systems for which outM (Δ(spec) after σ) is computable, as is
the case for timed automata. Using standard symbolic state space representation
in the form of difference bounded matrices [4], a real-time version of TorX for
timed automata models is being implemented.
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The work presented here can be extended in a number of ways. As already indi-
cated, it is possible to show a stronger exhaustiveness result for the test generation
procedure based on an appropriate notion of equivalence of error traces. The gen-
eration procedure will hit each such class in the limit, provided that the error class
in not negligible, i.e. it must have positive measure in some appropriate sense.

Another extension is to relax the requirement that there must be a uniform
observation deadline M for quiescence. Obvious alternatives that we are studying
are:
• the observation parameter M(σ) is a function of the behaviour (trace) σ ob-

served so far. This would allows us to model sequential phases of quiescence,
i.e. slow vs. quick response times;

• the observation parameter M(Ci) is a function of the communication channel
Ci on which output is being observed. This would allows us to model different
kinds of response times for different communication channels with the system
under test, and would correspond to a real-time extension of the mioco
implementation relation of [6].
Our real-time theory inherits its focus on control aspects of system behaviour

from the existing ioco theory. Ultimately, it will be important to combine this
testing theory with methods for testing the static data aspects of systems. It will
be interesting to see to what extent the symbolic representation of data types
can be combined with symbolic representations of time.

In a more general vein, one can say that the development of a real-time
testing theory forces us to confront modelling issues with respect to physical
aspects of time and implementation. From a physical point of view, for example,
it is questionable whether negligible behaviour can be implemented. This has
also implications for specification formalisms that can be used to specify such
behaviour, e.g. timed automata can define negligible behaviour by using guards
that force behaviour to go through specific points in time, such as x = 3. It
would seem that realistic specifications and/or implementation relations allow
for tolerances in the evaluation of clock conditions. This would then introduce
a third source of non-determinism in the testing theory of real-time systems.
At any rate, a more systematic study of the formal aspects of tolerance and
robustness is definitely needed.
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Abstract. We present T-UPPAAL — a new tool for online black-box testing of
real-time embedded systems from non-deterministic timed automata specifica-
tions. We describe a sound and complete randomized online testing algorithm
and how to implement it using symbolic state representation and manipulation
techniques. We propose the notion of relativized timed input/output conformance
as the formal implementation relation. A novelty of this relation and our test-
ing algorithm is that they explicitly take environment assumptions into account,
generate, execute and verify the result online using the UPPAAL on-the-fly model-
checking tool engine. A medium size case study shows promising results in terms
of error detection capability and computation performance.

1 Introduction

The goal of testing is to gain confidence in a physical computer based system by means
of executing it. More than one third of typical project resources is spent on testing
embedded and real-time systems, but still it remains ad-hoc, based on heuristics, and
error-prone. Therefore systematic, theoretically well-founded and effective automated
real-time testing techniques is of great practical value.

Model Based Testing. Testing conceptually consists of three activities: test case gener-
ation, test case execution and verdict assignment. Using model based testing, a behav-
ioral model can be interpreted as a specification that defines the required and allowed
observable (real-time) behavior of the implementation. It can therefore be used for gen-
eration of sound and (theoretically) complete test suites.

An embedded system interacts closely with its environment which typically consists
of the controlled physical equipment (the plant) accessible via sensors and actuators,
other computer based systems or digital devices accessible via communication networks
using dedicated protocols, and human users. A major development task is to ensure
that an embedded system works correctly in its real operating environment. Due to
lack of resources it is not feasible to validate the system for all possible environments.
Also it is not necessary if the environments are known to a large extent. However, the
requirements and the assumptions of the environment should be clear and explicit.

We denote the system being developed IUT, and its real operating environment
RealENV. These communicate by exchanging input and output signals (seen from
the perspective of IUT). Using a model-based development approach, the environment
assumptions and system requirements are captured through abstract behavioral models
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denoted E and S respectively, communicating on abstract signals i ∈ Ain and o ∈ Aout

corresponding (via a suitable abstraction) to the real input and output , see Fig. 1(a).
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Fig. 1. Embedded system and example models

Modeling the environment explicitly and separately and taking this into account
during test generation has several advantages: 1) the test generation tool can synthesize
only relevant and realistic scenarios for the given type of environment, which in turn
reduces the number of required tests and improves the quality of the test suite; 2) the
engineer can guide the test generator to specific situations of interest; 3) a separate en-
vironment model eases the system testing under different assumptions and use patterns.

The goal of relativized conformance testing is to check whether the behavior of the
IUT is correct (conforming) to its specification S when operating under assumptions
E about the environment. We propose relativized timed input/output conformance re-
lation between model and IUT which coincides with timed trace inclusion taking the
environment behavior into account.

Online Testing. Test cases can be generated from the model offline where the complete
test scenarios and verdicts are computed apriori and before execution. Another approach
is online (on-the-fly) testing that combines test generation and execution: only a single
test primitive is generated from the model at a time which is then immediately executed
on the IUT. Then the produced output by the IUT as well as its time of occurrence are
checked against the specification, a new test primitive is produced and so forth until it is
decided to end the test, or an error is detected. An observed test run is a trace consisting
of an alternating sequence of (input or output) actions and time delays.

There are several advantages of online testing: 1) testing may potentially continue
for a long time (hours or even days), and therefore long, intricate, and stressful test cases
may be executed; 2) the state-space-explosion problem experienced by many offline
test generation tools is reduced because only a limited part of the state-space needs to
be stored at any point in time; 3) online test generators often allow more expressive
specification languages, especially wrt. allowed non-determinism in real-time models.

Related Work. Model based test generation for real-time specifications has been in-
vestigated by others (see e.g., [6,9,11,13,14,18,20,21,25,26,28]), but remain relatively
immature.
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A solid and widespread implementation relation used in model based conformance
testing of untimed systems is the input/output conformance relation by Tretmans [30].
Informally, input/output conformance requires for all specification traces that the imple-
mentation never produces an output not allowed by the specification, and that it never
refuses to produce an output (stays quiescent) when the specification requires one.

As also noted in [18,20] a timed input/output conformance relation can be obtained
(assuming input enabledness) as timed trace inclusion between the implementation and
its specification. Our work further extends this to a relativized conformance relation
taking environment assumptions explicitly into account. In [30] the specification is per-
mitted to be non-input enabled (thus making the conformance relation non-transitive in
general) in order to capture environmental constraints. However, this requires explicit
rewriting of the specification when different environments are to be used. Following
the seminal work [19] our approach is based on an separate model of the environment.
In particular, once conformance has been established under a particular environment,
we can automatically conclude conformance under more restricted environments. Also,
when the IUT is to be used in different environments, it suffices to test it under the most
liberal environment assumptions. Furthermore, relativized conformance is transitive.

Model based offline testing is often based on a model coverage criterion like in [13,
15], on a test purpose as e.g. [17, 18], or a fault-model as [11, 14]. When specifications
allow non-determinism, the generated test cases cannot be a sequence, but take the form
of behavior trees adaptive to implementation controlled actions, e.g different outputs
or timing. Therefore, most offline algorithms explicitly determinize the specification
[10, 17, 25]. However, for expressive formalisms like timed automata this approach is
infeasible because in general they cannot be determinized [2] and their unobservable
actions cannot always (and when they can it may be very costly) be removed [32]. Much
work on timed test generation from timed automata therefore restrict the amount and
type of allowed non-determinism: [11, 13, 28] completely disallow non-determinism,
[18, 25] restrict the use of clocks, guards or clock resets. However, in many cases it is
important to allow non-determinism, because 1) specifications often contain a parallel
composition of component-models, 2) it allows the implementor some freedom, and 3)
the tester is usually concerned with abstract requirements rather than concrete details.
In particular for real-time systems it may be crucial to specify timing uncertainty, e.g.
an output is expected between 2 and 5 time units from now, but not exactly when. Timed
automata model this by a non-determinism between delay and output transition.

In contrast, online testing is automatically adaptive and only implicitly determinizes
the specification, and only partially up to the concrete trace observed so far. The (un-
timed) online testing algorithm proposed by Tretmans et. al. in [4,34] continually com-
putes the set of states that the specification can possibly occupy after the observations
made so far. Online testing from Promela [34] and LOTOS specifications for untimed
systems have been implemented in the TORX [33] tool, and practical application to
real case studies show promising results [4, 31, 33]. However, TORX provides no sup-
port for real-time. Our work generalizes the TORX approach to timed systems and to
the handling of the explicit environment assumptions. We allow a quite generous (non-
deterministic) timed automata language. In addition, we compute the state-set symbol-
ically to track the (potentially dense) timed state space.
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Online testing from unrestricted non-deterministic timed automata using symbolic
state-set computation [27] was first published by Krichen and Tripakis [20]. We imple-
ment a similar approach by extending the UPPAAL model-checker resulting in an inte-
grated and mature testing and verification tool. Our work (originating from [7, 22, 24];
an abstract appeared in [23]) is different from [20] in that 1) the exact timed automata
language variant is different and includes separable environment models, 2) we propose
a relativized version of timed input/output conformance, 3) our algorithm (presented in
much greater detail) generates tests relevant only for the specified environment, and 4)
is shown to be sound and complete under certain assumptions, and finally 5) we provide
experimental evidence of the feasibility of the technique.

Contributions. In this paper we describe a tool for online testing of real-time systems.
Our main contributions are the notion of relativized timed input/output conformance
and an implementation based on UPPAAL of a symbolic algorithm that performs online
testing based on a (possibly densely timed and potentially non-deterministic) timed
automata model of the IUT and its assumed environment. We prove under a certain
testing hypothesis that our algorithm is sound and (in a precise probabilistic sense)
complete. Furthermore, we apply T-UPPAAL to a medium sized case that demonstrates
good error detection potential and very encouraging performance.

2 Test Specification

This section formally presents our semantic framework, and introduces TIOTS, timed
automata, and our relativized input/output conformance relation.

2.1 Timed I/O Transition Systems

We assume a given set of actions A partitioned into two disjoint sets of output actions
Aout and input actions Ain . In addition we assume that there is a distinguished unob-
servable action τ �∈ A. We denote by Aτ the set A ∪ {τ}.

Definition 1. A timed I/O transition system (TIOTS) S is a tuple (S, so, Ain , Aout ,−→),
where S is a set of states, s0 ∈ S, and −→⊆ S × (Aτ ∪ R≥0) × S is a transition

relation satisfying the usual constraints of time determinism (if s
d
−→ s′ and s

d
−→ s′′

then s′ = s′′) and time additivity (if s
d1−→ s′ and s′

d2−→ s′′ then s
d1+d2−−−−→ s′′),

d ∈ R≥0, where R≥0 denotes non-negative real numbers.

Notation for TIOTS. Let a, a1...n ∈ A, α ∈ Aτ ∪R≥0, and d, d1...n ∈ R≥0. We write
s

α
−→ iff s

α
−→ s′ for some s′. We use ⇒ to denote the τ -abstracted transition relation

such that s
a
⇒ s′ iff s

τ
−→

∗ a
−→

τ
−→

∗
s′, and s

d
⇒ s′ iff s

τ
−→

∗ d1−→
τ
−→

∗ d2−→
τ
−→

∗
· · ·

τ
−→

∗ dn−→
τ
−→

∗

s′ where d = d1 + d2 + · · · dn. We extend ⇒ to sequences in the usual manner.
We assume that the TIOTS S is strongly input enabled and non-blocking. S is

strongly input enabled iff s
i
−→ for all states s and for all input actions i. S is non-

blocking iff for any state s and any t ∈ R≥0 there is a timed output trace σ =
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d1o1 . . . ondn+1 such that s
σ
⇒ and

∑
i di ≥ t. Thus S will not block time in any

input enabled environment.
To model potential implementations it is usefull to define the properties of isolated

outputs and determinism. We say that S has isolated outputs if whenever s
o
−→ for some

output action o, then s �
τ
−→ and s �

d
−→ for all d > 0 and whenever s

o′

−→ then o′ = o.
Finally, S is deterministic if for all delays or actions α and all states s, whenever s

α
−→ s′

and s
α
−→ s′′ then s′ = s′′.

An observable timed trace σ ∈ (A ∪ R≥0)∗ is of the form σ = d1a1d2 . . . akdk+1.
We define the observable timed traces TTr(s) of a state s as:

TTr(s) = {σ ∈ (A ∪ R≥0)∗ | s
σ
⇒} (1)

For a state s (and subset S′ ⊆ S) and a timed trace σ, s After σ is the set of states
that can be reached after σ:

s After σ = { s′ | s
σ
⇒ s′ }, S′ After σ =

⋃
s∈S′

s After σ (2)

The set Out
(
s
)

of observable outputs or delays from states s ∈ S′ ⊆ S is defined as:

Out
(
s
)

= { a ∈ Aout ∪ R≥0 | s
a
⇒}, Out

(
S′

)
=

⋃
s∈S′

Out
(
s
)
, (3)

Timed automata [2] is an expressive and popular formalism for modelling real-time
systems. Let X be a set of R≥0-valued variables called clocks. Let G(X) denote the
set of guards on clocks being conjunctions of constraints of the form x �� c, and let
U(X) denote the set of updates of clocks corresponding to sequences of statements of
the form x := c, where x ∈ X , c ∈ N, and �� ∈ {≤, <, =, >,≥}. A timed automaton
over (A, X) is a tuple (L, �0, I, E), where L is a set of locations, �0 ∈ L is an initial
location, I : L → G(X) assigns invariants to locations, and E is a set of edges such
that E ⊆ L × G(X) × Aτ × U(X) × L. We write �

g,α,u
−−−−→ �′ iff (�, g, α, u, �′) ∈ E.

The semantics of a timed automaton is defined in terms of a TIOTS over states of
the form s = (�, v̄), where � is a location and v̄ ∈ R

X
≥0 is a clock valuation satisfying

the invariant of �. Intuitively, there are two kinds of transitions: discrete and delaying.

In delaying transitions, (�, v̄) d
−→ (�, v̄ + d), the values of all clocks of the automaton

are incremented by the amount of the delay, d. Discrete transitions (�, v̄) α
−→ (�′, v̄′)

correspond to execution of edges (�, g, α, u, �′) for which the guard g is satisfied by v̄.
The target state’s v̄′ is obtained by applying updates u and the invariants on �′ on v̄.

Figure 1(b) shows a timed automaton specifying the requirements to a coffee ma-
chine. It has a facility that allows the user, after paying, to indicate his eagerness to get
coffee by pushing a request button on the machine forcing it to output coffee. However,
allowing insufficient brewing time results in a weak coffee. Waiting less than 30 time
units definitely results in weak coffee, and waiting more than 50 definitely in strong
coffee. Between 30 and 50 time units the choice is non-deterministic, meaning that the
IUT/implementor may decide what to produce. After the request, it takes the machine
an additional (non-deterministic) 10 to 30 (30 to 50) time units to produce weak cof-
fee (strong coffee). The timed automaton in Fig. 1(c) models a potential (nice) user of
the machine that pays before requesting coffee and wants strong coffee thus requesting
only after 60 time units.
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TIOTS Composition. Let S = (S, s0, Ain , Aout ,−→) be an input enabled, non-blocking
TIOTS. An environment E for S is itself an input enabled, non-blocking, TIOTS E =
(E, eo, Aout , Ain ,−→). Here E is the set of environment states and the set of input (out-
put) actions of E is identical to the output (input) actions of S. The parallel composition
of S and E forms a closed system S ‖ E whose observable behavior is defined by the
TIOTS (S × E, (s0, e0), Ain , Aout ,−→ ) where −→ is defined as

s
a
−→ s′ e

a
−→ e′

(s, e) a
−→ (s′, e′)

s
τ
−→ s′

(s, e) τ
−→ (s′, e)

e
τ
−→ e′

(s, e) τ
−→ (s, e′)

s
d
−→ s′ e

d
−→ e′

(s, e) d
−→ (s′, e′)

(4)

The timed automataSc and Ec respectively shown in Fig. 1(b) and 1(c) can be composed
in parallel on actions Ain = {req, coin} and Aout = {weakCoffee, strongCoffee} form-
ing a closed network (to avoid cluttering the figures we have not made them explicitly
input enabled; for the unspecified inputs there is an undrawn self looping edge that
merely consumes the input without changing the location).

2.2 Relativized Timed Conformance

In this section we define our notion of conformance between TIOTSs. Our notion
derives from the input/output conformance relation (ioco) of Tretmans and de Vries
[30,34] by taking time and environment constraints into account. Under assumptions of
input enabledness our relativized timed conformance relation coincides with relativized
timed trace inclusion. Like ioco, this relation ensures that the implementation has only
the behavior allowed by the specification. In particular, 1) it is not allowed to produce
an output at a time when one is not allowed by the specification, 2) it is not allowed to
omit producing an output when one is required by the specification. Thus, timed trace
inclusion offers the notion of time-bounded quiescence [8] that—i n contrast to ioco’s
conceptual eternal quiescence—c an be observed in a real-time system.

Definition 2. Given an environment e ∈ E the e-relativized timed input/output confor-
mance relation rtiocoe between system states s, t ∈ S is defined as:

s rtiocoe t iff ∀σ ∈ TTr(e). Out
(
(s, e) After σ

)
⊆ Out

(
(t, e) After σ

)
Whenever s rtiocoe t we will say that s is a correct implementation (or refinement) of the
specification t under the environmental constraints expressed by e. Under the assump-
tion of input-enabledness of both S and E we may characterize relativized conformance
in terms of trace-inclusion as follows:

Lemma 1. Let S and E be input-enabled with states s, t ∈ S and e ∈ E resp., then

s rtiocoe t iff TTr(s) ∩ TTr(e) ⊆ TTr(t) ∩ TTr(e)

Thus if s rtiocoe t does not hold then there exists a trace σ of e such that s
σ
⇒ but

t �
σ
⇒. Given the notion of relativized conformance it is natural to consider the preorder

on environments based on their discriminating power, i.e. for environments e and f :

e 
 f iff rtiocof ⊆ rtiocoe (5)

(to be read f is more discriminating than e). It follows from the definition of rtioco
that e 
 f iff TTr(e) ⊆ TTr(f). In particular there is a most (least) discriminat-
ing input enabled and non-blocking environment U (O) given by TTr(U) = (A ∪
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Fig. 2. Implementation of coffee machine

Examples. The specification machine Sc and environment Ec were described in Sec-
tion 2.1. The (deterministic) implementation I(DS , DW ) in Fig. 2(c) produces weak
coffee (strong coffee) after less than 40 time units (more than 41 time units) and an
additional brewing time of DS (resp. DW ) time units. Observe that any trace of the im-
plementation I(40, 20) (in any environment) can be matched by the specification; hence
I(40, 20) rtiocoEU

S. Thus also I(40, 20) rtiocoEc
Sc. In contrast I(70, 5) rt�iocoEU

Sc,
but I(40, 5) rtiocoEc

Sc because Ec never requests weak coffee.

3 Test Generation and Execution

We present the main algorithm, its soundness, completeness and implementation.

tween system states. Figures 2(a) and 2(b) show the most-discriminating and the least-
discriminating environments.
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The tester can perform three basic actions: either send an input (enabled environ-
ment output) to the IUT, wait for an output for some time, or reset the IUT and restart. If
the tester observes an output or a time delay it checks whether this is legal according to
the state set. The state set is updated whenever an input is offered, an output or a delay

is observed β ∈ A ∪ R≥0: Z After β = {(s′, e′) | (s, e) ∈ Z.(s, e)
β
⇒ (s′, e′)}. Illegal

occurrence or absence of an output is detected if the state set becomes empty which is
the result if the observed trace is not in the specification. The functions used in Alg. 1
are defined as: EnvOutput(Z) = {a ∈ Ain | ∃(s, e) ∈ Z.e

a
−→}, ImpOutput(Z) =

{a ∈ Aout | ∃(s, e) ∈ Z.s
a
−→}, and Delays(Z) = {d | ∃(s, e) ∈ Z.e

d
⇒}. Note

that EnvOutput is empty if the environment has no outputs to offer. Similarly, Delays

cannot pick at random from the entire domain of real-numbers if the environment must

can possibly occupy after the timed trace observed so far. Knowing this, state estimate
allows it to choose appropriate test primitives and to validate IUT outputs.

3.1 The Main Algorithm

The input to Alg. 1 is two TIOTSs S ‖ E respectively modelling the IUT and environ-
ment. It maintains the current reachable state set Z ⊆ S × E that the test specification

(rtiocoO) specializes to simple timed trace inclusion (timed output trace inclusion) be-
R≥0)

∗ (
TTr(O) = (Aout ∪ R≥0)

∗)
. The corresponding conformance relation rtiocoU



produce an input to the IUT model before a certain moment in time. We use the efficient
reachability algorithm implementation [3] to compute the operator After. It operates on
bounded symbolic states, checks for inclusions and thus always terminates even if the
model contains τ action loops.

3.2 Soundness and Completeness

Alg. 1 constitutes a randomized algorithm for providing stimuli to (in terms of input and
delays) and observing resulting reactions from (in terms of output) a given IUT. Assum-
ing the behavior of the IUT is a non-blocking, input enabled, deterministic TIOTS with
isolated outputs the reaction to any given timed input trace σ = d1i1 . . . dkikdi+1 is
completely deterministic. More precisely, given the stimuli σ there is a unique ρ ∈
TTr(IUT) such that ρ ↑ Ain = σ, where ρ ↑ Ain is the natural projection of the timed
trace ρ to the set of input actions.

Under a certain (theoretically necessary) testing hypothesis about the behavior of
IUT and given that the TIOTSs S and E satisfy certain assumptions, the randomization
used in Alg. 1 may be chosen such that the algorithm is both complete and sound in
the sense that it (eventually with probability one) gives the verdict “fail” in all cases of
non-conformance and the verdict “pass” in cases of conformance. The hypothesis and
assumptions are based on the results on digitization techniques in [29]1 which allow the
dense-time trace inclusion problem between two sets of timed traces to be reduced to
discrete time. In particular it suffices to choose unit delays in Alg. 1 (assuming that the
models and IUT share the same magnitude of a time unit).

Theorem 1. Assume that the behavior of IUT may be modelled2 as an input enabled,
non-blocking, deterministic TIOTS with isolated outputs, TTr(IUT) and TTr(E) are
1 We refer the reader to [29] for the precise definition of digitization and inverse digitization.
2 The assumption that the IUT can be modelled by a formal object in a given class is commonly

referred to as the test hypothesis. Only its existence is assumed, not a known instance.

86 K.G. Larsen, M. Mikucionis, and B. Nielsen

Alg. 1 Test generation and execution: TestGenExe(S, E , IUT, T ). Z := {(s0, e0)}.

while Z �= ∅ ∧ 
iterations ≤ T do switch(action, delay, restart) randomly:
action: // offer an input

if EnvOutput(Z) �= ∅
randomly choose i ∈ EnvOutput(Z)
send i to IUT, Z := Z After i

delay: // wait for an output
randomly choose d ∈ Delays(Z)
sleep for d time units or wake up on output o at d′ ≤ d
if o occurs then

Z := Z After d′

if o /∈ ImpOutput(Z) then return fail
else Z := Z After o

else Z := Z After d // no output within d delay
restart: Z := {(s0, e0)}, reset IUT //reset and restart

if Z = ∅ then return fail else return pass



Proof. (Sketch) Soundness follows from an easy induction on |ρ| that when starting
each iteration of the while-loop the timed trace ρ observed since the last restart satisfies
ρ ∈ TTr(IUT), ρ ∈ TTr(E) and ρ ∈ TTr(S) and that any chosen extension ρα still lies
in TTr(IUT) ∩ TTr(E).

As for completeness assume that the IUT does not conform to S relative to E . Then
TTr(IUT)∩TTr(E) �⊆ TTr(S). However due to the assumed properties of closure with
respect to digitization respectively inverse digitization this failing timed trace inclusion
is equivalent to the existence of a timed trace ρ = d1a1d2a2 . . . dkakdk+1 with all
delays being integral such that ρ ∈ TTr(IUT) ∩ TTr(E) but ρ �∈ TTr(S). Now let
σ = ρ ↑ Ain ; that is σ is the input-delay stimuli allowed by E which when given to IUT

will result in the timed trace ρ. Now assume that the random choice of input action, unit
delay and restart is made using a fixed discrete and finite probability distribution (with
p being the smallest probability used) it is clear that:

Prob(σ is generated between two given consecutive restarts ) ≥ pK+D

where K respectively D is the number of input actions respectively accumulated delay
in σ. Now let ε = pK+D it follows that

Prob(σ is generated before k’th restart ) ≥ 1 − (1 − ε)k−1

Obviously there will in general be several input stimuli that will reveal the lack of con-
formance. Hence the above probability just provides a lower bound for Alg. 1 yielding
the verdict “fail” before the k’th restart. Obviously, as T → ∞ also the number of
restarts diverges and hence we see that Prob(σ is generated) = 1. ��

From [16, 29] it follows that the closure properties required in Theorem 1 are sat-
isfied if the behavior of IUT and E are TIOTSs induced by closed timed automata (i.e.
where all guards and invariants are non-strict) and S is a TIOTS induced by an open
timed automaton (i.e. with guards and invariants being strict). In practice these require-
ments are not restrictive, e.g. for strict guards one can always scale the clock constants
to obtain arbitrary high precision.

3.3 Symbolic State- et Computation

We now discuss the concrete realization of Alg. 1. We use (well established) symbolic
constraint solving techniques to represent sets of clock valuations compactly. A zone
over a set of clocks X is a conjunction of clock in-equations of the form xi −xj ≺ ci,j ,
xi ≺ ciu, and cil ≺ xi, where ≺∈ {<, ≤}, ci,j , cil, ciu are integer constants including
±∞, and xi, xj ∈ X . A symbolic state is a pair 〈�̄, Z〉 consisting of a vector �̄ of loca-
tions for each parallel automaton and the zone Z . Z denotes a set of clock valuations,
i.e., a symbolic state represents a set of concrete states: 〈�̄, Z〉 = {(�̄, v̄) | v̄ ∈ Z}.

1. Whenever TestGenExe(S, E , IUT, T ) = fail then IUT rt�iocoE S.

2. Whenever IUT rt�iocoE S then Prob
(
TestGenExe(S, E , IUT, T ) = fail

) T→∞
−−−−→ 1

where T is the maximum number of iterations of the while-loop before exiting.

closed under digitization and that TTr(S) is closed under inverse digitization. Then
Alg. 1 with only unit delays is sound and complete in the following senses:
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states denotes the possibility of taking a transition from a (concrete) state in the source
symbolic state to one in the destination. It is computed as follows:

〈�̄, Z〉
γ
� 〈�̄′, (Z ∧ g)r ∧ I(�̄′)〉 if �̄

g,γ,r
−−−→ �̄′ where γ ∈ Aτ (6)

The required symbolic algorithms are similar to those used for model checking [1,3]
except that only states up to a certain time limit need to be computed. This is most
easily accomplished by introducing an auxiliary clock t that is set to zero whenever an
observable action occurs.

Alg. 2 computes Closureδτ (Z, d) that collects the reachable symbolic states within

a delay of d: Closureδτ (Z, d) =
⋃

0≤δ≤d{〈�̄
′, Z ′〉 | 〈�̄, Z〉 ∈ Z, 〈�̄, Z〉

δ
⇒ 〈�̄′, Z ′〉}.

The predicate Contains(Z, 〈�̄, Z〉) tests whether a symbolic state is covered by some
symbolic state in Z .

Alg. 2 Closureδτ (Z, d). passed := ∅, waits := Z

while waits �= ∅ do
waits := waits\{〈�̄, Z〉} // pick a symbolic state
Z := Z↑ ∧ (t ≤ d) ∧ I(�̄) // limited delay
passed := passed ∪ {〈�̄, Z〉}

for each symbolic transition 〈�̄, Z〉
τ
� 〈�̄′, Z ′〉

if not Contains(passed , 〈�̄′, Z ′〉) then waits := waits ∪ {〈�̄′, Z ′〉}
return passed .

The function Closureτ (Z) = Closureδτ (Z, 0) collects the reachable symbolic state
set after all possible internal transitions in zero delay can be computed similarly. Given
these functions, the algorithms for computing Z After d and Z After a become trivial:

Z After a = Closureτ

({
〈�̄′, Z ′〉

∣∣ 〈�̄, Z〉 ∈ Closureτ (Z), 〈�̄, Z〉
a

� 〈�̄′, Z ′〉
})

(7)

Z After d =
{
〈�̄, Z ′〉

∣∣ 〈l̄, Z〉 ∈ Closureδτ (Z, d), Z ′ =
(
Z ∧ (t == d)

)
t:=0

}
(8)

3.4 Choice of Delays

The environment model restricts the possible actions that can be chosen by the tester.
It bounds the delays before an input must be given or output expected, and limits the
possible inputs. In particular it is important to choose delays not exceeding the time
bound within which the environment is required to offer an input (invariant conditions
may force inputs). Thus Delays(Z) must not contain delays exceeding forced inputs.

the (successive) assignment of all clock assignments in r, containment check Z ⊆ Z ,
and check for emptiness Z = ∅. The symbolic transition relation � between symbolic

We use the following operations on zones: conjunction Z ∧ Z ′, future Z↑ = {v̄ +
d | v̄ ∈ Z, d ∈ R≥0}, clock x assignment to c value Zx:=c = {v̄[c/x] | v̄ ∈ Z}, Zr

′

Henceforth Z = {〈�̄1, Z1〉 . . . 〈�̄n, Zn〉} denotes the set of concrete states represented
by the union of the symbolic states of Z .
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Furthermore, it is desirable to compute time intervals where inputs are enabled for
two reasons: 1) to optimize the algorithm avoiding too many superfluous attempts to
offer inputs (condition EnvOutput(Z) �= ∅ in Alg. 1), and 2) to guide the algorithm to
cover the structure (transitions and locations) of the specification [25]. This optimiza-
tion can be performed using the presented techniques, but we omit the details due to
space limitations.

4 Experiments

We implemented our algorithm by extending the mature UPPAAL model-checker tool
to the testing tool T-UPPAAL. Besides a graphical timed automata editor, UPPAAL pro-
vides an efficient implementation of the basic symbolic operations. Unlike UPPAAL,
T-UPPAAL does not store the reached state space, but only the current symbolic state set.
We allow the full UPPAAL timed automata language, including non-deterministic (ac-
tion and timing) specifications and discrete variables.The IUT isconnected to T-UPPAAL

via an adapter component translating abstract I/O actions into their real representation,
and sends (receives) them to (from) the IUT.

This section presents the results of the first set of experiments using our implementa-
tion. The purpose is to indicate the feasibility of our technique in terms of applicability,
error detection, and performance in terms of state-set size and computation time.

4.1 Test Specification

We slightly changedandadopteda simple railway control system specification from [35].
A rail-road intersection controller monitors trains on a set of tracks with a shared seg-
ment, e.g. a train-station. Its main objective is to ensure that only one train occupies the
shared segment at a time, and to grant access in arrival order. We assume 4 tracks, and
for simplicity 1 train per track at a time. Trains on track i signal the controller when
they approach and leave the station using signals appri and leavei respectively. When
train i approaches an occupied segment the controller is required to issue a stopi within
5mtu (model time units), and issue goi within 5mtu after the segment becomes free.

The environment assumption model consists of 4 concurrent timed automata each
modeling the assumed behavior of a train. The model for train 1 is shown in Fig. 3(a);
the remaining trains are identical except for the train-id. The model of the IUT require-
ments consists of 4 concurrent train control automata (Fig. 3(b)) tracking the position
of each potential train, and one queue automaton tracking their arrival order (Fig. 3(c):

iteration of the algorithm. Computing the exact delays is possible but would involve
computing the more expensive Closureδτ (Z,∞).

conjuncted invariant I may force an internal transition rather than an observable input).
When the chosen delay has been performed, the state-set will be updated for the next

tracts the maximum value of the auxiliary clock t in Z . Note that this will not compute
the exact longest possible delay because it does not follow internal transitions (i.e the

To cheaply compute a safe delay given a symbolic state-set Z we propose the fol-
lowing technique: pick a random symbolic state 〈�̄, Z〉 ∈ Z , compute its timed future
as Z ′ = (Zt:=0)↑ ∧ I(�̄), and pick randomly d ∈ [0, maxt(Z ′)), where maxt(Z) ex-
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Fig. 3. Test specification for train controller: (a) as environment, (b) and (c) as implementation

4.2 Implementation Under Test

The IUT is implemented as an approximately 100 line C++ program following the basic
structure of the specification. It uses POSIX Threads, locks and condition variables
for multi-threading and synchronization. It consists of one thread per train, and queue
data structure whose access is guarded by mutual exclusion and condition variables.
In the experiment, the IUT runs in the same address space as the T-UPPAAL tool, and
input/output actions are communicated to and from the driver/adapter via two single
place bounded buffers. In addition we have created a number of erroneous mutations
based on the assumed correct implementation (M0):

M1: The stop3 signal is issued 1mtu too late.
M2: The controller issues stop1 instead of stop3.
M3: The controller never issues stop3.
M4: The controller uses a bounded queue up to 3 trains, where the 4th train overwrites the 3rd.
M5: The controller uses LIFO queue instead of FIFO.
M6: The controller ignores appr3, if a train arrives before 2mtu after entering the location Free.

4.3 Error Detection Capability

The experiments are run on an 8-processor workstation: T-UPPAAL runs on one CPU
whereas the IUT may run on one or more of the remaining. T-UPPAAL itself does not

The complete test specification is a reasonably large and nontrivial first experiment:
it consists of 9 concurrent timed automata, 8 clocks, and a FIFO queue data structure.

as the next transition taken by the system. Finally, bold-faced clock conditions placed
under locations are location invariants.

ternal τ -action is indicated by an absent action label. Committed locations are indicated
by a location with an encircled “C”. A committed location must be left immediately

list is an array of integers, and i is an index into the array). We use UPPAAL syntax to
illustrate timed automata. Initial locations are marked using a double circle. Edges are
by convention labeled by the triple: guard, action, and assignment in that order. The in-
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Table . Error detection and performance measures

Error detection capability State-set size Execution time, μs

Mu- Input actions Duration, mtu After(delay) After(action) After(delay) After(action)
tant Min Avg Max Min Avg Max Avg Max Avg Max Avg Max Avg Max
M1 2 4.8 16 0 68.8 318 2.3 18 2.7 28 1113 3128 141 787
M2 2 4.6 13 1 66.4 389 2.3 22 2.8 30 1118 3311 147 791
M3 2 4.7 14 0 66.4 398 2.2 22 2.7 30 1112 3392 141 834
M4 6 8.5 18 28 165.0 532 2.8 24 3.1 48 1113 3469 125 936
M5 4 5.6 12 14 89.8 364 2.8 24 3.3 48 1131 3222 146 919
M6 2 14.1 92 0 299.6 2077 2.7 27 2.9 36 1098 3531 110 861
M0 3565 3751.4 3966 105 105 105 2.7 31 2.9 46 1085 3591 101 950

4.4 Performance

Based on the same setup from Section 4.3 we instrumented T-UPPAAL to record the
number of symbolic states, and the amount of CPU time used to compute the next state-
set after a delay and an observable action. The right side of Table summarizes the
results. The state-set size is only 2-3 in average, but it varies a lot, up to 48 states. In
average, the state-set sizes reached after performing a delay appear larger than after an
action. In average it costs only 1.1ms to compute the successor state-set after a delay,
and less than 0.2ms after an action. Thus it seems feasible to generate tests from much
larger specifications, obviously depending on the scale of time units.

In conclusion, the performance of our technique looks very promising and appears
to be fast enough for many real-time systems. Obviously, more experiments on varying
size and complexity models are needed to find the firm limitations of the technique.

5 Conclusions and Future Work

We have presented the T-UPPAAL tool and approach to testing of embedded systems
using real-time online testing from non-deterministic timed automata specifications.

survived for more than 300 times longer than other mutants in average. In conclusion,
the results indicate that online real-time testing may be a highly effective technique.

The results show that all erroneous mutants are killed surprisingly quickly using
less than 100 input actions and less than 2100mtu. In contrast the assumed correct im-
plementation M0 was not killed and was subjected to at least 3500 inputs stimuli and

with timeout for testing. The minimum, maximum, and average running time and num-
ber of used input actions are summarized on the left side of Table .

To allow for faster and more experiments and reduce potential problems with real-
time clock synchronization, we used a simulated clock progressing when both T-UPPAAL

and the IUT need to let time pass. Each mutant is tested 1100 times each with an upper
time limit of 100000mtu. All runs of M1-6 mutants failed and all runs of M0 passed

require these extreme amount of resources, and it runs well on a standard PC, but a
multiprocessor allows T-UPPAAL and the IUT to run in parallel as they would normally
do in a black-box system level test.
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594, Lübeck, Germany, February 1997. LNCS, Vol. 1200, Springer.

29. T.A. Henzinger and Z. Manna and A. Pnueli. What good are digital clocks? In Werner Kuich,
editor, Automata, Languages and Programming, 19th International Colloquium, ICALP92,
Vienna, Austria, volume 623 of LNCS, pages 545–558. Springer, july 1992.

94 K.G. Larsen, M. Mikucionis, and B. Nielsen



Testing Deadlock-Freeness in Real-Time Systems:
A Formal Approach

Behzad Bordbar1 and Kozo Okano2

1 University of Birmingham
B.Bordbar@cs.bham.ac.uk

2 Osaka University
okano@ist.osaka-u.ac.jp

Abstract. ATimeAction Lock is a state of a Real-time system at which neither time
can progress nor an action can occur. Time Action Locks are often seen as signs of
errors in the model or inconsistencies in the specification. As a result, finding out
and resolving Time Action Locks is a major task for the designers of Real-time
systems. Verification is one of the methods of discovering deadlocks. However,
due to state explosion, the verification of deadlock freeness is computationally
expensive. The aim of this paper is to present a computationally cheap testing
method for Timed Automata models and pointing out any source of possible Time
Action Locks to the designer.

We have implemented the approach presented in the paper, which is based on
the geometry of Timed Automata, via a Testing Tool called TALC (Time Action
Lock Checker). TALC, which is used in the conjunction with the model checker
UPPAAL, tests the UPPAAL model and provides feedback to the designer.We have
illustrated our method by applying TALC to a model of a simple communication
protocol.

Keywords: Testing, Real-time System, Deadlock, Timed Automata, Rational
Presburger Sentences, Communication Protocol.

1 Introduction

In a general term, a deadlock is a state at which a system is unable to progress any
further. Various types of deadlock in Real-time systems are studied in the literature
[16, 8, 7, 27, 28]. In particular, a Time Lock [27] is a state at which time is prevented
from passing beyond a certain point, and Time Action Lock [8] is a Time Lock state at
which no action can occur. As a result, a Time Action Lock, is a state at which neither
time can progress nor an action can occur.

In this paper, we shall deal with Real-time systems, which are modelled via Timed
Automata [1]. Such systems can be verified with the help of model checkers such as
UPPAAL [2, 6], which uses a variant of Timed Automata model of [1]. UPPAAL has
been successfully applied to the verification of Real-time systems [5, 15, 20, 9, 2].

The process of verification of a property σ starts by creating a UPPAAL Timed
Automata model of the Real-time system. Before conducting the verification of the
property σ, we often check the model for the existence of deadlocks. This is to ensure the
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designer

Model Checker

Testing Tool

Input model

Checks

Feedback

Fig. 1. Combining Testing tool and Model Checker

integrity of the design; as the existence of a deadlock is often interpreted as either an error
in the model or a sign of inconsistencies in the specification. As a result, when a model
checker informs us of the existence of a deadlock, we scrutinise the model to discover
the cause of the deadlock. However, due to state explosion, the verification of deadlock
freeness is computationally expensive. The aim of this paper is to present a method of
testing of the Timed Automata models to point out any source of possible Time Action
Locks to the designer. This is to help avoiding the verification of the model for deadlock-
freeness, which is computationally expensive. Our approach can be implemented via a
Testing Tool, which works in parallel with a model checker as depicted in Fig. 1. The
designer creates a model of the system in the Model Checker. The Testing Tool checks
the model for Time Action Locks and provides feedback to the designer. The feedback
provided to the designer is either, "the system is deadlock free" or "there is a possibility
of deadlocks." In the case that the system is declared deadlock free by the Testing Tool,
there is no need to use the Model Checker to ensure the system is deadlock free, and
the designer can focus on the verification of σ. If the Testing tool declares that there
is a possibility of deadlocks, sources of the deadlock are pointed out, which can help
the designer in scrutinising the model for finding any possible flaw in the model or
inconsistencies in the specification.

The approach presented in this paper is based on the geometry of the TimedAutomata.
In a Timed Automaton, the progress of time is subject to a set of constraints, which form
convex regions [27] in the n-dimensional Eucleadian space R

n. As a result, for every
location of a TimedAutomaton, various types of constraint such as invariants and guards
correspond to regions in R

n. The idea behind our approach is to identify subsets of such
regions that might cause a Time Action Lock and test them.

Based on our approach, we have developed a Testing Tool called Time Action Lock
Checker (TALC). TALC, which works in conjunction with UPPAAL, tests the Timed
Automata via Rational Presburger Sentences and is available for download at http://
www.cs.bham.ac.uk/˜bxb/TALC.html.

The paper is organised as follows. We shall start by a brief introduction on the
Timed Automata. Section 3 follows with a brief review of the background material on
Presburger Arithmetic. Section 4 reviews definitions of various types of Time Lock.
Section 5 sketches our geometric approach for detecting Time Action Lock. Results
related to the implementation via Rational Presburger Sentences are discussed in section
6. Section 7 explains the Testing Tool TALC and applies the method to the testing of
a simple communication protocol for the existence of a Time Action Lock. The paper
finishes with a conclusion section.
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2 Timed Automata

In this section, we shall review a variation of Timed Automata model proposed by Alur
and Dill [1], which is used in UPPAAL [2, 6, 21], a tool for the verification of behavioural
properties of Real-time systems.

Consider X = {x1, . . . , xn} a set of clock variables with values in R+, the set of
non-negative real numbers. Suppose that c1(X ) is the set of all constraints created from
conjunctions of atomic formals of the form xi ∼ q, where xi ∈ X , ∼∈ {≤,≥, <, >,=}
and q ∈ Q+, the set of non-negative Rational numbers. Also, assume that c2(X ) is the
set of all constraints created from the conjunction of atomic formula’s of the form xi ∼ q
and xi − xj ∼ q, where xi, c and ∼ are as above and for i �= j, xj ∈ X . The set of all
possible constraints is defined by c(X ) = c1(X )∪ c2(X ). We shall refer to xi ∼ q and
xi − xj ∼ q, as atomic constraints.1

A valuation (variable assignment) is a map v : X → R+, which assigns to each
clock a non-negative Real-number. For a valuation v, a delay d ∈ R+, which is denoted
by v + d, is defined as (v + d)(x) = v(x) + d, if x ∈ X . In other words, all clocks
operate with the same speed. Let V(A) denote the set of all valuations.

The value of clock can be reset.A reset statement is of the form x := e, where x ∈ X .
In the current version of UPPAAL, e must be an integer.A set of reset statements is called
a reset-set or reset if each variable is assigned at most once. The result of applying a
reset r to a valuation v is denoted by the valuation r(v). If a variable x is such that no
assignment of r changes its value then v(x) = r(v)(x). Let R denotes the set of all
resets.

A Timed Automaton A is a 6-tuple (L, l0, T, I,X , init, A) such that

– L = {l0, . . . , lN} is a finite set of locations and l0 ∈ L is a designated location
called the initial location.Assume that init(l0) ∈ c(X ) assigns to the initial location
an initial region.

– X and A are finite sets of clock variables and actions, respectively.
– T ⊂ L×A×c(X )×R×L is the set of transition relation. An element of T is of the

form of (li, a, g, r, lj), where li, lj ∈ L and a ∈ A is an action, g ∈ c(X ) is called a

guard, and r ∈ R is a set of reset statements. We sometimes write li
a,g,r−→ lj to depict

that A evolves from a location li to a new location lj , if the guard g is evaluated
true, the action a is performed and clocks and data variables are reset according to
r. In this case, we shall refer to e = (a, g, r) as the edge connecting li and lj . We
shall also write Action(e), guard(e) and reset(e) to denote a, g, and r, respectively.

– I : L → c(X ) is a function that assigns to each location an invariant. Intuitively, a
Timed Automata can stay in a location while its invariants are satisfied. The default
invariant for a location is true (x ≥ 0).

Notation 1. For a location l ∈ L, we shall write ◦l to denote the set of all edges
e = (a, g, r) ending in l. Similarly, l◦ denotes the set of all edges starting from l.

1 The Timed Automata model of UPPAAL contains both clock variables, as defined above, and
data variables, which have integer values. In order to simplify our model, we shall only be
dealing with clock variables. Also, the current version of TALC only implements the clock
variables.
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The semantics of Timed Automata can be interpreted over transition systems, i.e.
triple (S, s0,⇒), where

– S ⊂ L × V is the set of states, i.e. each state is a pair (l, v), where l is a location
and v is a valuation

– s0 ∈ S is an initial state, and
– ⇒⊂ S × (A ∪ R+) × S is a transition relation, where A is the set of all actions.

A transitions can be either a discrete transitions, e.g. (s1, a, s2), where a ∈ A or a
time transitions, e.g. (s1, d, s2), where d ∈ R+ and denotes the passage of d time units.

Transitions are written: s1
e⇒ s2 and s1

d⇒ s2, respectively, and are defined according
of the following inference rules:

l1
a,g,r−→ l2, g(v)

(l1, v) e⇒ (l2, r(v))

∀d′ ≤ d I(l)(v + d′)

(l, v) d⇒ (l, v + d)

To model concurrency and synchronisation between Timed Automaton, CCS [22]
style parallel composition operators are introduced, which synchronise over half actions.
We refer the interested reader to [2] for further details of the UPPAAL model of Timed
Automata.

Assume that A is a Timed Automaton. A run σ of A is a finite/infinite sequence of

transitions of the form s0
λ1⇒ s1

λ2⇒ s2 · · · where s0 is the initial state and λi ∈ A∪R+,
where A is the set of actions. For further information on network of Timed Automata
and UPPAAL see [6, 21].

3 Rational Presburger Sentences

Assume that F denotes the set of all linear inequalities on integer variables and integer
constants. A Presburger Sentence is a closed first-order logical statements on F. The
phrase closed means that, there is no free variable in a Presburger Sentence. For example,
∀x∃y(3x+7 ≤ y∨y ≥ 0) is a Presburger Sentence. Satisfiability of Presburger Sentence
is decidable [19].

A Rational Presburger Sentence (RPS) is similar to the conventional Presburger
Sentences, except that constants are rational numbers and variables range over rational
(or real) numbers. As a result, the syntax of RPS is as follow:

fact ::=x | ax | b, where x is a rational-valued variable and a and b are integer (or
rational) constants
exp ::= fact | fact + exp | fact − exp

lterm :: = exp = exp | exp > exp | exp < exp

lexp ::= lterm | ¬lexp | lexp ∧ lterm

RPS ::=∀x lexp, where x is any free variable in lexp.

Note that, for RPSF andG,∃xF can be defined as¬∀x¬F andF∨G as¬(¬F∧¬G).
Also f ≥ g and f ≤ g are defined f > g ∨ f = g and f < g ∨ f = g, respectively.
The decision problem for RPS is decidable [13, 24]. Moreover, the computational times
for deciding the satisfiability for RPS is less than that of Presburger Sentences. RPS and
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original Presburger Sentences have been successfully applied to the verification of logical
designs and network design protocols [10, 14, 3, 25, 4]. Tools [23, 24] are available for
the verification of RPS and Presburger sentences.

4 Deadlock in Timed Automata

Deadlocks, which have often been seen as error situations in concurrent and distributed
systems, are classically interpreted as states at which the system will never be able to
perform an action. In a Timed Automaton, a deadlock can also be created by preventing
the passing of timed beyond a certain point, i.e. the elapse of time causes a violation
of at least one of the constraints of the system. This situation, which is referred to as a
Timelock, is often created as a result of fault in the specification of guards or invariant
in the model. Finding out and resolving Timelocks is a major problem for the analysis
and design of time critical systems.

Various interpretations of deadlock are extensively studied in the literature [8, 7, 27,
16, 28]. There are two different forms of Timelock [8], Zeno Timelock and Time Action
Lock. Zeno Timelock is the case that infinite number of actions are performed in a finite
period of time. This paper is about Time Action Lock, which is defined as follows in [8].
Time-Action-Lock A Time-Action-Lock (TAL) is a state at which time can only progress
for a finite amount 0 < d < ∞ of time but no action can occur.

A special case of the above definition is the situation at which, there is a reachable
state at which neither time can progress nor an action can occur [8].

Example 1. Fig. 2 depicts two Timed Automata with TAL at the location l0. The Left
Hand Side Timed Automata has a TAL at the state (l0, 10), as neither time can progress,
because of the violation of the invariant x ≤ 10, nor an action can occur, because of the
violation of the guard 8 ≤ x < 9. In both Timed Automata the reachable state (l0, 9) is
also a TAL, as time can pass d = 1 unit and no action can occur. However, (l0, 10) is
not a TAL state of the Right Hand Side Timed Automaton, as it is not a reachable state.

on, on,off off

x := 0
x := 0

l0, x ≤ 10

8 ≤ x < 9

l1

l0, x < 10

8 ≤ x < 9

l1

Fig. 2. Timed Automata with Time-Action-Lock

5 A Geometric Approach to the Detection of Time-Action-Locks

A valuation is a function assigning real values to clocks X = {x1, . . . , xn}. As a result,
we can identify a valuation v : X → R+ as a vector α = (α1, . . . , αn), where for each
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1 ≤ i ≤ n, αi = v(xi). Hence, for each constraint c ∈ c(X ) there is a subset of R
n
+ of

all points that satisfy c. We shall refer to such subset of R
n
+ as the corresponding region

of c and denote it with c. For the rest of this section assume that c ∈ c(X ) and c denotes
the corresponding region.

Definition 1. Assume that n ≥ 1. For x ∈ R
n
+, we shall write Γ (x, c) = sup{t ≥ 0 |

x + t× 1 ∈ c},2 where 1 = (1, . . . , 1) ∈ R
n
+. If there is a t such that x + t× 1 ∈ c and

Γ (x, c) < ∞, we shall write Fringe (x, c) = x + Γ (x, c) × 1 and call it the Fringe of
x with respect to c. If Γ (x, c) = ∞, we shall write Fringe(x, c) = {∞}. If there is no t
such that x + t × 1 ∈ c, then Γ (x, c) = −∞, and Fringe (x, c) = {−∞}.

Example 2. Suppose that n = 2. Assume that a region c is specified by the conjunction
of x1 ≤ 1, x2 ≤ 2, x1 ≥ 0 and x2 ≥ 0.5. Let x = (0.5, 1), it can be seen in Fig. 3 that
Γ (x, c) = 0.5 and Fringe(x, c) = (1, 1.5).

2

0.5

1 x1

x2

x = (0.5, 1)

(1, 1.5)

Fringe(x, C)

Region C

Fig. 3. Example 2

If we assume that the region c denotes the invariant of a location l of a TimedAutomata
A. For a reachable state (l, x), we have x ∈ c, where c = g(l), where c denotes the
corresponding region. In this case, Γ (x, c) is the maximum amount of time that can
expire while the location remains in l.

Definition 2. If c1, c2 ∈ c(X ) and c1 ⊂ c2, then define Fringe(c1, c2) = ∪x∈c1

Fringe(x, c2).

Assume that c ∈ c(X ), then c ⊂ R
n
+ denotes the corresponding region. Assume

that c denotes the Topological Closure of c [11]. The reader, who is not familiar with
the notion of Topological Closure, can use the following instead of the definition of the
Topological Closure.

2 sup stands for Supremum. For each A ⊂ R, sup A is the least upper bound of A. For example,
sup[0, 1] = sup[0, 1) = 1. Each nonempty bounded subset of R has a supremum and the
supremum of a nonempty unbounded subset of R is ∞. The supremum of empty set is defined
as −∞.
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Lemma 1. Suppose that c1 ∈ C(X ) and c2 is created from c1 by replacing all < (>)
with ≤ (≥), respectively. Then c2 is the Topological Closure of c1, i.e. c2 = (c1) = c1 .

Proof. By induction on the number of atomic constraints in c1 and considering that the
Topological Closure of the union of finite sets is the union of the Topological Closure.

The next theorem, in a layman language, states that a Timed Automaton is Time-
Action-Lock free, if the fringe of the invariants of each location with respect to the
guards of incoming transitions are covered by the Topological Closure of the guard of
the outgoing transitions.

Theorem 1. Assume that A is a Timed Automaton. A is Time-Action-Lock free if for
each location l of A,

Fringe(Al, Bl) ⊂ Cl, (1)

where

– Al = init(l), if l is the initial location;

– if l is not an initial location or l is the initial 3 location with ◦l �= ∅, then Al =⋃
e∈◦l Al,e, in which Al,e = guard(e)∩ inv(l)∩ reset(e), where reset(e) is the area

of R
n
+ corresponding the reset set of e, i.e. {x ∈ R

n
+ | xi = 0 for xi ∈ reset(e)};

– Bl = inv(l) is the region corresponding to the invariant of l;
– Cl =

⋃
e∈l◦ Cl,e, where Cl,e = guard(e) ∩ inv(l);

– Cl denotes the Topological Closure of Cl.

Proof. Assume that for all locations l the equation 1 is satisfied, but A has a Time-
Action-Lock. As a result, there is Time-Action-Lock state (l, x). We shall prove that
the above assumption results in a contradiction. Without any loss of generality, we can
assume that x ∈ Al. This is because, there is a reachable state (l, z), where z ∈ Al, such
that by elapse of 0 < d < ∞ unit of time ends in (l, x) and we can state the proof for

(l, z). [To see this, assume that σ = s0
λ1⇒ · · · λn⇒ sn = (l, x) is a run of A starting at an

initial state and ending in (l, x). Suppose that there exists an action transition in the set
{λ1, . . . , λn}, and assume that si is the last state before sn at which an action transition
occurs. Then, there is an edge e ∈ ◦l such that λi is the action of e.After λi+1 + . . .+λn

unit of time, the state (l, x) is reached. If there is no action transition in {λ1, . . . , λn},
simply let (l, z) to be the initial state s0 and the time elapse of d =

∑
λi ends in the

state (l, x). So let us assume that x ∈ Al.]
By the definition of Time-Action-Lock at the state (l, x) time can elapse only 0 ≤

d < ∞ units and no action can occur. As a result γ = sup{t | x + t × 1 ∈ Bl} < ∞
exists. Let y = x + γ × 1 =Fringe(x, Bl). By equation (1) y ∈ Cl. As a result, there
are two cases; either y is and interior point or a boundary point. case 1: y ∈ Cl, By the
definition of Cl, there exists e ∈ l◦ such that y ∈ guard(e)∩ inv(l). Hence at state (l, x)
time can elapse γ units to the new state (l, y) and then e can occur. This contradicts

3 If ◦l �= ∅ the initial location is studied twice, once with Al = init(l) and the second time like
any other location.
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with (l, x) is a Time-Action-Lock state. case 2: y ∈ Cl\Cl, i.e., y is in the Topological
boundary of Cl. By the definition of the Topological boundary, each neighbourhood of
y contains a point of Cl. Consider a point which also belongs to the line joining x to
y. Then there is 0 < t < γ such that x + t × 1 ∈ Cl. Hence, there is e ∈ l◦ such that
x+ t×1 ∈ guard(e)∩ inv(l). This is a contradiction with (l, x) is a Time-Action-Lock
as at state (l, x), time can pass t units to the new state (l, x + t × 1) and then e occurs.
As a result, in both cases, assuming that A has a TAL, results in a contradiction. ///

Notice that the condition presented in the lemma is a necessary condition. In other
words, if Equation (1) satisfies the Timed Automaton has no Time-Action-Lock. We
argue that violation of equation 1, which may result in a Time-Action-Lock, is a sign of
bad design. Based on this idea, we have developed a tool that carries a static analysis of
the Timed Automata and points out to the designer any potential Time-Action-Lock. We
shall explain our approach with the help of an example.

Example 3. Consider the Timed Automaton of Fig. 4, which models a switch on/off
system. Fig. 5 depicts Al1 = guard(e1)∩ inv(l1)∩ reset(e1) = {x ∈ R

2
+ | x2 = 0, 0 ≤

x1 ≤ 2}, Bl1 = inv(l1) = {x ∈ R
2
+ | x2 ≤ 1} and Cl1 = guard(e2) ∩ inv(l1) = {x ∈

R
2
+ | x2 ≤ 1 and 2 ≤ x1}.

l0 l1

e1=( On, x1 ≤ 2, {x2})

e2= (Off, 2 ≤ x1, {x1, x2})

0 ≤ x1 ≤ 2

x2 ≤ 1

Fig. 4. A Timed Automata with Time Action Lock

1 2 3

1

uncoverd 
part of frignge

x1

x2

x2

Fringe(Al1 , Bl1)

Al1

Bl1

Cl

x

y

Fig. 5. Part of the Fringe is not covered

The next section presents a method of calculating the Fringe. Here, as depicted in
Fig. 5, a direct use of the definition 1 shows that Fringe (Al1 , Bl1) = {x ∈ R

2
+ | x2 =

1, 2 ≤ x1 ≤ 3}. It can clearly be seen that the part of Fringe (Al1, Bl1) lying on x2 = 1
with x1 < 2 is not covered. The Fig. 5 demonstrates the idea behind the above Theorem.
Clearly, at any state (l1, x), where x = (x1, x2) and 0 ≤ x1 ≤ 1 and x2 = 0, if the time
elapses by 1 unit, the state (l, y) is reached. At this point neither time can pass, since
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inv(l1) gets violated, nor an action can occur, since no guard of an outgoing transition
is satisfied. We can argue that the case presented in the above examples a clear case of
wrong specification. In other words, there is a clear inconsistence in the specification
that must be corrected. The contrary position, as explained in [8], is that such “error
situations in behavioural techniques should have a behavioural/operational intuition that
is justifiable in term of real world behaviour.” This paper does not address the above hotly
debated views. Our aim is to present a computationally cheap method of discovering
such situations and pointing them to the designer.

Remark: The method presented in this paper deals only with a single Timed Automa-
ton. As Bowman [8] points out, a Time Action Lock can also be created from unsuitable
parallel composition. We are currently working on extending our method to cover net-
works of Timed Automata, i.e. parallel composition of Timed Automata. The current
implementation of TALC, checks a network of Timed Automata only by studying each
individual Timed Automaton component.

6 Applying Rational Presburger Sentences to Detect TAL

In this section, we shall present a method of detecting potential Time-Action-Lock (TAL)
using Theorem 1. Considering equation 1 of Theorem 1, the aim is to present a technique
to verify statements of the form Fringe(c1, c2) ⊂ c3, where c1, c2 and c3 ∈ c(X ) and
c1 ⊂ c2. We shall verify such statements via Presburger sentences. However, first we
shall present a set of results which facilitate the translation to suitable Rational Presburger
Sentences, with minimal amount of computation.

Proposition 1. For each c ∈ c(X ) the corresponding c region is a convex set. Moreover,
if c ∈ c1(X ), then c is a rectangular region, i.e. a Cartesian product of intervals.

Proof. The convexity of the region is proved in [27]. The second part is by induction on
the number of atomic formulas in c.

Notation 2. Assume that c is a rectangular region of the form I1 × · · · × In, where
each Ii is a (non-negative) real line interval. Then by Top Corner, we mean the point
(α1, . . . , αn), where each αi is the end point of Ii. Notice, in case of an unbounded
interval, αi = ∞. Also, define the Bottom Corner to be the point (β1, . . . , βn), where
each βi is the starting point of the interval Ii.

Calculating the Fringe for a rectangular region is straight forward.

Lemma 2. If c ∈ c1(X ), i.e. c is a rectangular region, and (α1, . . . , αn) denotes the
Top Corner point of the rectangular region c, then for each point x = (x1, . . . , xn) ∈ c,

– Γ (x, c) = min{αi − xi | 1 ≤ i ≤ n} and
– Fringe(x, c) = x + min{αi − xi | 1 ≤ i ≤ n} × 1.

Proof. If for each i, αi = +∞, then Γ (x, c) = ∞ and there is nothing to prove.
Assume that for at least one co-ordinate t, αt < ∞. Since αi is the end point of the
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interval coordinate of c, x+ t×1 ∈ c, if and only if for each coordinate i, xi + t ∼ αi,
where ∼∈ {≤, <}. As a result, Γ (x, c) = sup{t | t ∼ αi − xi for 1 ≤ i ≤ n}, which
is the same as min{αi − xi | 1 ≤ i ≤ n}.

It might seem that, the above lemma, which provide an elegant way of computing the
Fringe is only applicable to the rectangular regions. However, the following lemma shows
that to calculate the Fringe, we only need to discard conditions of the form xi − xj ∼ q
and focus on the rectangular regions.

Lemma 3. If c is a non-empty region created from a constraint in c ∈ c2(X ). Let c′ ∈
c(X ) is a constraint created from modifying c by cancelling all atomic formulas of the
form xi −xj ∼ q. Also, assume that c′ is the region (rectangular region) corresponding
to c′. Then, c ⊂ c′ and for x ∈ c Fringe(x, c) =Fringe(x, c′).

Proof. Since c′ is created from the relaxing conditions of c, we have c ⊂ c′. For each
x ∈ c, we shall prove that sup{t | x + t × 1 ∈ c} = sup{t | x + t × 1 ∈ c′}. To see
this, let LS denotes the left hand side supremum and RS denotes the right hand side
supremum. Since c ⊂ c′, we get LS ≤ RS. If the two are not equal by the definition of
the supremum, there is a t such that x + t × 1 /∈ c and x + t × 1 ∈ c′. This can only
happen because there is a condition of the form of xi −xj ∼ q that the vector x+ t×1,
does not satisfy i.e. the inequality (xi − t) − (xj − t) ∼ q is not satisfied. But, this is
impossible, as (xi − t) − (xj − t) = xi − xj and xi − xj ∼ q.

In other words, to calculate the Fringe, we can ignore constraints of the form of
xi − xj ∼ q and focus on the rectangular regions. The following result identifies a less
complex set that embodies the Fringe of a point.

Lemma 4. If c is a non-empty region created from a constraint in c ∈ c1(X ) and
α = (α1, . . . , αn) is the Top Corner of c. For x ∈ c, Fringe(x, c) ⊂ F(c), where if
α = (∞, . . . ,∞) then F(c) = {∞}, otherwise, F(c) = ∪αi �=∞{x ∈ R

n
+|xi = αi}.

Proof. Fringe(x, c) = x + min{αi − xi | 1 ≤ i ≤ n} × 1. Assume that min{αi − xi |
1 ≤ i ≤ n} = αj − xj . If αj − xj = ∞, then for each i, αi = ∞. As a result,
Fringe(x, c) = {∞}. If αj − xj < ∞, then xj , the j-th coordinate of the Fringe(x, c),
is αj = xj + (αj − xj). ///

Assume that c ∈ c(X ) and x ∈ c. In a layman language, Fringe (x, c) is the final point
that an imaginary person can arrive at, if he/she starts from the point x and moves on a
line in the direction of the vector 1 = (1, . . . , 1), while his/her trajectory of movement
avoids violating c. In a similar way, moving in the direction of (−1, . . . ,−1) can be
considered.

Definition 3. Assume that c ∈ c(X ) and x ∈ c, we shall write 4 Δ(x, c) = sup{t ≥
0 | x − t × 1 ∈ c, where 1 = (1, . . . , 1). Let us write AntiFringe(x, c) = x −
Δ(x, c) × 1. Moreover, if c1 ∈ c(X ) and c1 ⊂ c then define AntiFringe(c1, c) =
∪x∈c1AntiFringe(x, c).

The following result, which is also depicted in Fig. 6 explains that to calculate the
Fringe, we can use the AntiFringe.

4 Notice, the supremum always exists.
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x1

x2

C1

C2

AntiFringe(C1, C2)

AntiFringe(C1, C1)

Fringe(C1, C2)

Fig. 6. Fringe(C1, C2) = Fringe(AntiFringe(C1, C2), C2)

Lemma 5. Assume that c1 ⊂ c2 are both in c(X ) then

Fringe(c1, c2) = Fringe(AntiFringe(c1, c1), c2).

Proof. The proof is straight forward and omitted.

The following lemma is the equivalent of Lemma 4 for AntiFringe.

Lemma 6. Assume that c ∈ c(X ) and β = (β1, . . . , βn) is the Bottom corner point
of the region created by discarding all atomic formulae of the from xi − xj ∼ q. Then
AntiFringe(c, c) =

⋃n
i=1 Pi(c) where for 1 ≤ i ≤ n, Pi(c) is created from c by

1. replacing xi > q or xi ≥ q with xi = βi, and
2. for j �= i replacing any xj > q with xj ≥ q.

Proof. Assume that z ∈ AntiFringe (c, c), then there is y ∈ c such that z = y −
Δ(y, c) × 1. Using a similar discussion to Lemma 2, we can prove that AntiFringe
(y, c) = y−min{yi −βi | 1 ≤ i ≤ n}. Hence, if min{yi −βi | 1 ≤ i ≤ n} = yr −βr,
we show that z ∈ Pr(c). There are four types of atomic formulae in Pr(c).

1. Atomic formulae of c of the form xi > q or xi ≥ q, which are replaced with xi = βi.
2. For j �= i, atomic formulae of the form xj > q, which are replaced with xj ≥ q.
3. For 1 ≤ j ≤ n, atomic formulae of c of the form xj < q or xj ≤ q.
4. For 1 ≤ j, i ≤ n and i �= j, atomic formulae of c of the form xj − xi ∼ q.

We shall prove that z satisfies formulas which are created from the above atomic
formulas. Clearly, z satisfies formulae of type 1 above, since zr = yr − Δ(y, c) =
yr − (yr + βr) = βr.

By the definition of Δ(y, c) there is an increasing sequence {tk} such that limk tk =
Δ(y, c). Hence zk = y−tk×1 → y−Δ(y, c) = z and for each k, y−tk×1 ∈ c. Using
this sequence, we can show that z satisfies atomic formulae of type 2–4. For example,
if c has an atomic formula of the form xj ≥ q for j �= i then since y − tk × 1 ∈ c,
yi − tk > q. As a result zi ≥ q.
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The other two conditions can be proved similarly. Conversely, assume that z ∈ Pr(c).
There are two cases.
Case 1: z ∈ c. In this case, we claim Δ(z, c) = sup{t ≥ 0 | z − t1 ∈ c} = 0.
Otherwise Δ(z, c) > 0. Then ∃t > 0, z − t1 ∈ c. As a result, zr − t = βr. Since z ∈ c,
zr = βr. Hence, t = 0, which is a contradiction. Consequently, z =AntiFringe(z, c) ∈
AntiFringe(c, c).
Case 2: z �∈ c. In this case, since z ∈ (c), the topological closure. Notice, Topological
closure, by Lemma 1 is created by replacing all >, < with ≥,≤, respectively. Now,
using the definition of closure, there is a point y on the half line {y + t × 1 | t > 0}
which also belongs to c, then z =AntiFringe(y, c). ///

The next result presents a method of detecting the TAL via Presburger Sentences.

Theorem 2. Assume that c1, c2 ∈ c(X ) and c1 ⊂ c2. Let c3 denote disjunction of finite
number of elements of c(X ). Then the following is valid.

Fringe(c1, c2) ⊂ c3. (2)

if and only if for each 1 ≤ i ≤ n

∀x ∈ Pi(c1)((∃t ≥ 0 x + t1 ∈ F(c′
2)) ⇒ x + t1 ∈ c3.) (3)

where Pi(c1) is defined in the Lemma 6, c′
2 is the rectangular region created from c by

cancelling atomic formulae of the form xi − xj ∼ q and F(c′
2) is defined in Lemma 4.

Proof. Direct result of applying Lemma 2, 3, 4 and Lemma 6.

The equation (3) above is an RPS. Pi(c1),F(c′
2)) and c3 are first order logic formulae

on the atomic formulae xi ∼ q and xi −yi ∼ q, where q is a rational number. Moreover,
the formula is closed, as variables x1, . . . , xn and t are in the scope of ∀x and ∃t.

7 Time Action Lock Checker (TALC)

We have developed a tool called Time Action Lock Checker (TALC), which works in
conjunction with UPPAAL version 3.2.X and runs under Linux. Fig. 7 depicts the ar-
chitecture of TALC, which consists of the following five components [26]:

– Model Checker UPPAAL, which saves network of Timed Automata models as eX-
tensible Markup Language (XML)[12] files.

UPPAAL
JAKARTA
digester

XML file Core of
TALC

JAVA objects

RPS Engine

query
Result

GUI

Fig. 7. The Architecture of TALC
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– Jakarta Digester [18] transfers XML files to Java objects which captures the in-
formation regarding the network of Timed Automata in Java.

– Core of TALC implements the theory described in previous section and uses Java
objects created by the above component to create a set of Rational Presburger Sen-
tences, which are used to evaluate Time Action Lock freeness of the system, see
Theorem 2.

– RPS Engine is a component software based on [24] that evaluates Rational Pres-
burger Sentences. It can be invoked by the Core of TALC and receives Ratio-
nal Presburger Sentences create by Core of TALC in form of queries, evaluates
the correctness of the Rational Presburger Sentences and returns the results of the
evaluation.

– TALC includes a user interface component (GUI) which enables the user to interact
with the system.

The next example applies the TALC to the verification of a simplified media Syn-
chronisation Protocol motivated by an example studied in [17].

x <= M y <= d0+e0 z <= d1+e1

Ps?

x := 0

x>= m, x<= M

Pr?

y := 0

y >= d0, x < theta0

Fs!

z := 0

z >=  d1, z <= d1+e1

Fe!

y >= theta0, x < theta1

Fs !
z := theta0-m-d0

x >= theta1, y <= d0+e0

Fs!
z := theta1-m-d0

Fig. 8. Synchronised Protocol Module

Example: Fig. 8 depicts a Timed Automata model of Synchronisation Protocol Module
(SPM), used in a video streaming system for reducing the jitter caused by the network
delay. The Timed Automaton includes signals Ps and Pr, corresponding to sending and
receiving of packets, respectively. The outputs of SPM are signals Fs and Fe, which
mark starting and ending of the frame display, respectively.

There is a clock x, which resets when a packet is sent i.e., Ps?. For the signal Pr to
receive, there is a delay with a value in [m, M ], where m and M are constant rational
numbers. On the arrival of Pr another clock y resets. At this stage packets are decoded
into frames. Decoding requires a delay in [d0, d0 + e0], where d0 and e0 are constant
rational numbers. According to the time of the sending of a packet, measured by x, and
the time of arrival of that packet, measured by y, there are three possible scenarios. Each
scenario compares the value of x and y with constants θ0 and θ1 and assigns the value
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of a new clock z, which will be used to determine the time of termination of the display
of frames marked by the output signal Fe. Using TALC, we can test the above Timed
Automaton and infer that the system is deadlock free.

8 Conclusion

This paper presents a geometric method for the detection of Time Action Lock in Timed
Automata, the paper makes use of the geometry of R

n to identify the part of the specifi-
cation that may result in Time Action Lock. The emphasis is on testing and identifying
possible sources of defects in the design by studying various regions representing guards
and invariants of the Timed Automata. In particular, the method is based on the study of
subsets of such regions known as Fringes. Evaluating various first order closed formulae
are carried out via a Real Presburger Sentences solver. The method is implemented in a
tool called TALC and is successfully applied to the verification of a simple communi-
cation protocol.
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20. H. Lönn and P. Pettersson: Formal Verification of a TDMA Protocol Start-Up Mechanism, In

Proceedings of 1997 IEEE Pacific Rim International Symposium on Fault-Tolerant Systems,
pp.235–242, 1997.

21. K. G. Larsen, Paul Pettersson and W. Yi: UPPAAL in a Nutshell, In Springer International
Journal of Software Tools for Technology Transfer 1(1+2) 1997.

22. R. Milner, Communication and concurrency, Prentice Hall, Upper Saddle River, NJ, 1989.
23. The Omega Project, http://www.cs.umd.edu/projects/omega/
24. N. Shibata, K. Okano, T. Higashino and K. Taniguchi: A decision algorithm for prenex normal

form rational Presburger sentences based on combinatorial geometry, Proceedings of the 2nd
International Conf. on Discrete Mathematics and Theoretical Computer Science and the 5th
Australasian Theory Symposium (DMTCS’99+CATS’99), pp.344–359 1999.

25. T. R. Shiple, J. H. Kukula, and R. K. Ranjan: A Comparison of Presburger Engines for EFSM
Reachability, LNCS 1427, p.280, 1998.

26. D. Gruntz, S. Murer and C. Szyperski Component Software - Beyond Object-Oriented Pro-
gramming, Second Edition, Addison-Wesley, 2002

27. S. Tripakis, Verifying Progress in Timed Systems, In ARTS’99,Formal Method for Real-Time
and Probabilistic Systems Bamberg, LNCS 1601, 1999.

28. F. Wang, G. Hwang and F.Yu TCTL Inevitability Analysis of Dense-Time Systems LNCS 2759,
pp. 176–187, 2003.



Using Model Checking for Reducing the Cost of
Test Generation

Hyoung Seok Hong1 and Hasan Ural2

1 Concordia Institute for Information Systems Engineering,
Concordia University

hshong@ciise.concordia.ca
2 School of Information Technology and Engineering,

University of Ottawa
ural@site.uottawa.ca

Abstract. This paper presents a method for reducing the cost of test
generation. A spanning set for a coverage criterion is a set of entities such
that exercising every entity in the spanning set guarantees exercising
every entity defined by the coverage criterion. The central notion used in
constructing a minimum spanning set is subsumption relation. An entity
subsumes another entity if exercising the former guarantees exercising
the latter. We develop a method for finding subsumption relations which
can be uniformly applied to a family of control flow and data flow oriented
coverage criteria by reducing the problem of determining whether an
entity subsumes another entity to the model checking problem of the
linear temporal logic LTL.

1 Introduction

In structural testing, we are given a coverage criterion defining a set of entities
in the structure of a program and we generate a test suite satisfying the coverage
criterion. A test suite is a set of test sequences and is said to satisfy a coverage
criterion if for every entity defined by the coverage criterion, there is a test
sequence in the test suite exercising the entity. There are a number of coverage
criteria for structural testing and most of them are based on the information
of control flow and data flow. We refer the interested readers to [20, 7, 17] for
surveys of coverage criteria in software testing, protocol conformance testing,
and hardware testing, respectively. Control flow oriented coverage criteria call
for exercising single entities such as statements and branches. Data flow oriented
coverage criteria call for exercising associations between definitions and uses of
variables such as definition-use pairs[16], definition-use chains of fixed length[15],
definition-use chains between inputs and outputs[18, 19], and ordered definition
contexts[11].

For a program and a coverage criterion, the optimal test generation problem
consists of generating a test suite satisfying the coverage criterion with a mini-
mum number of test sequences. In [9, 10], the authors show that the complexity
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of this problem is NP-hard. Hence approaches for reducing the cost of test gen-
eration should be heuristic. In the software testing literature, several approaches
have been proposed[1, 3, 4, 5, 6, 8, 13, 14]. The main idea of these approaches is to
construct a subset of entities for a coverage criterion such that exercising every
entity in the subset guarantees exercising every entity defined by the coverage
criterion. That is, if a test suite covers every entity in the subset, the test suite
satisfies the coverage criterion. Following the terminology of [13, 14], we call the
subset a spanning set for the coverage criterion. A minimum spanning set al-
lows one to significantly reduce the cost of test generation by focusing only the
entities in the spanning set. For example, experiments in [1] show that for all-
statements and all-branches coverage criteria, the entities of minimum spanning
sets are around 30% of the original entities.

The central notion used in constructing a minimum spanning set is sub-
sumption relation. An entity subsumes another entity if exercising the former
guarantees exercising the latter. Once we have a test sequence exercising an en-
tity, all the entities subsumed by the entity can be safely ignored. In [1, 3, 4, 5,
6, 8, 13, 14], a number of methods have been proposed for finding subsumption
relations. All of them, however, investigate only simple coverage criteria such
as all-statements and all-branches coverage criteria [1, 3, 4, 5, 6, 14] and all-uses
coverage criterion[8, 13, 14] and cannot be generalized to more complicated data
flow oriented coverage criteria.

In this paper, we develop a method for finding subsumption relations which
can be uniformly applied to various coverage criteria ranging from all-statements
and all-branches coverage criteria to data flow oriented coverage criteria pro-
posed by Rapps and Weyuker[16], Ntafos[15], Ural et al.[18, 19], and Laski and
Korel[11]. For each coverage criterion, we reduce the problem of determining
whether an entity subsumes another entity to the model checking problem of
the linear temporal logic LTL[12] in a succinct and rigorous way. We associate
an LTL formula with every entity defined by a coverage criterion. Each formula
has the following property: a path is a test sequence exercising the entity if and
only if the path satisfies the formula. As a direct consequence of this property,
we have that an entity e subsumes another entity e′ if and only if every path
satisfies ψ → ψ′, where ψ and ψ′ are the LTL formulas associated with e and e′,
respectively.

In addition to being applicable to various coverage criteria, our method has
two other distinguishing features. First, the method is language independent
in that the temporal logic formulas employed in the method can be applied
to various kinds of programming languages and requirements specification lan-
guages. Since all the details about algorithms and implementations for finding
subsumption relations are hidden in model checkers, it is not necessary to build
a dedicated tool for each language. Second, the method enables one to reduce
the cost of test generation for large and complex software whose size is limited
by the capabilities of current model checkers. More importantly, we can enjoy
the continuing and rapid advances in the model checking literature.
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The remainder of the paper is organized as follows. Section 2 recalls the basics
of LTL and flow graph, which are the logic and model employed in our method,
respectively. Section 3 defines spanning sets and describes how to construct a
minimum spanning set. Section 4 reduces the problem of finding subsumption
relations to the problem of LTL model checking, which is the main result of the
paper. Finally, Section 5 concludes the paper with a discussion of future work.

2 Preliminaries

Formulas of LTL are built from a set AP of atomic propositions, the standard
boolean operators, and the temporal operators X (next time) and U (until)
according to the following grammar: ψ := p | ¬ψ | ψ ∧ ψ | Xψ | ψUψ where
p ∈ AP . We also use the temporal operators F (eventually) and G (always)
defined by Fψ ≡ trueUψ and Gψ ≡ ¬F¬ψ.

A Kripke structure is a tuple M = (Q, qinit, L, R) where Q is a finite set of
states, qinit ∈ Q is the initial state, L: Q → 2AP is the function that labels each
state with atomic propositions, and R ⊆ Q × Q is the transition relation which
is total, i.e., for every state q, there exists a state q′ such that (q, q′) ∈ R. A path
of a Kripke structure is an infinite sequence π = q0q1... of states such that for
every i ≥ 0, (qi, qi+1) ∈ R. For a position i, π(i) is the i-th element of a path π
and πi is the suffix qiqi+1... of π.

For a path π and an LTL formula ψ, we write π |= ψ to denote that π satisfies
ψ. The satisfaction relation |= is defined inductively as follows:

– π |= p iff p ∈ L(π(0)).
– π |= ¬ψ iff π �|= ψ.
– π |= ψ1 ∧ ψ2 iff π |= ψ1 and π |= ψ2.
– π |= Xψ iff π1 |= ψ.
– π |= ψ1Uψ2 iff there exists i ≥ 0 such that πi |= ψ2 and πj |= ψ1 for every

0 ≤ j < i.

For a Kripke structure M and an LTL formula ψ, we write M |= ψ if for
every path π such that π(0) = qinit, π |= ψ. The model checking problem of LTL
is to decide if for given M and ψ, it holds that M |= ψ.

A flow graph of a program module is a directed graph G = (V, vs, vf , A)
where V is a finite set of vertices, vs ∈ V is the start vertex, vf ∈ V is the
final vertex, and A ⊆ V × V is a finite set of arcs. The start vertex vs and final
vertex vf represent the single entry and single exit point of a program module,
respectively. A vertex represents a simple statement (such as assignment, input,
and output) or the condition of a conditional or repetitive statement. An arc
represents possible flow of control between statements. A finite path v1...vn of a
flow graph is complete if v1 = vs and vn = vf . A test sequence is a complete path
and a test suite is a finite set of test sequences. Figure 1 shows a flow graph where
v1 is the start vertex and v6 is the final vertex. There are two test sequences
v1v2v3v4v5v6 and v1v2v3v5v6 in Figure 1.

Each variable occurrence in a program module is classified as a definition
or use. A variable x is defined at a vertex v, denoted by d(x, v), if v represents
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v1: input(x, y, z);
v2: max := x;
v3: if (y > x)
v4: then max := y;
v5: max := z ∗ max;
v6: output(max);

��
��
v6 u(max, v6)
�

��
��
v5 d(max, v5), u(z, v5), u(max, v5)

��
��
��
v4d(max, v4), u(y, v4)

��
��
v3

��
u(x, v3, v4), u(y, v3, v4)

�

u(x, v3, v5), u(y, v3, v5)

��
��
v2 d(max, v2), u(x, v2)

�

��
��
v1 d(x, v1), d(y, v1), d(z, v1)

�

Fig. 1. An example of flow graphs

a statement assigning a value to x. A variable x is computation-used (c-used)
at a vertex v, denoted by u(x, v), if v represents a statement referencing x. A
variable x is predicate-used (p-used) at an arc (v, v′), denoted by u(x, v, v′), if v
represents the condition of a conditional or repetitive statement referencing x.
A use is either a c-use or p-use.

We view a flow graph as a Kripke structure. The Kripke structure corre-
sponding to a flow graph G = (V, vs, vf , A) is (V , vs, L, A ∪ {(vf , vf )}) where
L(v) = {v} for every vertex v ∈ V . The tuple (vf ,vf ) is necessary to guarantee
that the transition relation be total. We will not distinguish between flow graphs
and their Kripke structures because of their simple correspondence. In addition,
we will identify a test sequence vs...vf with the infinite path vs...vfvfvf ....

3 Spanning Sets

We adopt the following terminology introduced in [13, 14]. For a flow graph G
and a coverage criterion C, E(G, C) is the set of entities of G required to be
exercised by C. A subset of E(G, C) is a spanning set if exercising every entity in
the subset guarantees exercising every entity in E(G, C). A minimum spanning
set is a spanning set S such that |S| ≤ |S′| for every spanning set S′. It is easy
to see that a test suite exercises every entity in a spanning set if and only if the
test suite satisfies the coverage criterion. For example, for the flow graph shown
in Figure 1 and all-statements coverage criterion, we observe that E(G, C) is
{v1, v2, v3, v4, v5, v6} and {v4} is a spanning set for E(G, C). Indeed, {v4} is a
minimum spanning set. Consider a test suite {v1v2v3v4v5v6}. Since the test suite
exercises v4, it also exercises all the statements v1, v2, v3, v4, v5, v6.
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The central notion used in constructing a minimum spanning set is subsump-
tion relation. An entity subsumes another entity if a test sequence exercising the
former also exercises the latter. Once we have a test sequence exercising an en-
tity, we do not need to generate test sequences exercising the entities subsumed
by the entity. In addition, if an entity is not subsumed by any other entities, a
test sequence exercising the entity should be generated. In the next section, we
will show how to find subsumption relations for various coverage criteria.

We construct a minimum spanning set using two graphs called subsumption
graph and reduced subsumption graph[13, 14]. For a flow graph G and a coverage
criterion C, the subsumption graph is (E(G, C), SR) where SR is the subsump-
tion relation between the entities in E(G, C). Note that the subsumption relation
SR is not a partial order and hence subsumption graphs may have strongly con-
nected components. A reduced subsumption graph is a directed acyclic graph
obtained by collapsing each strongly connected component of a subsumption
graph into one vertex. Let v1, ..., vn be the vertices of the reduced subsumption
graph that have no incoming arcs, that is, the vertices that are not subsumed by
any other vertices. Let V1, ..., Vn be the strongly connected components corre-
sponding to v1, ..., vn, respectively. A minimum spanning set is {v′

1, ..., v
′
n} such

that v′
i ∈ Vi for every 1 ≤ i ≤ n.

4 Subsumption Relations

This section addresses the problem of finding subsumption relations. Figure 2
shows an algorithm for finding subsumption graph in a generic fashion without
being specific about any coverage criteria. For a flow graph G and a coverage
criterion C, we first construct the set E(G, C) of entities (Line 2) and in turn the
set PE of pairs of entities (Line 3). For every pair (e, e′) in PE, we determine
whether e subsumes e′ by model-checking the LTL formula ltl(e) → ltl(e′)
against the flow graph G, where ltl(e) and ltl(e′) are the LTL formulas associated
with e and e′, respectively (Line 5). Theorem 1 proves the correctness of the
algorithm.

Input: a flow graph G and a coverage criteron C
Output: the subsumption graph (E(G, C), SR)

1: SR := ∅;
2: construct the set E(G, C) of entities of G required by C;
3: PE := {(e, e′) | e, e′ ∈ E(G, C), e �= e′};
4: for every pair (e, e′) in PE do
5: model check ltl(e) → ltl(e′) against G;
6: if G |= ltl(e) → ltl(e′) then SR := SR ∪ {(e, e′)};
7: return (E(G, C), SR);

Fig. 2. An algorithm for finding a subsumption graph
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Theorem 1. Assume that the LTL formula ltl(e) has the the following prop-
erty: a path π is a test sequence exercising e if and only if π |= ltl(e). Then we
have that e subsumes e′ if and only if G |= ltl(e) → ltl(e′).

Proof. e subsumes e′ if and only if for every path π, π is a test sequence exercising
e implies π is a test sequence exercising e′ if and only if for every path π,
π |= ltl(e) → π |= ltl(e′) if and only if for every path π, π |= ltl(e) → ltl(e′) if
and only if G |= ltl(e) → ltl(e′).

In the above algorithm, the total number of model checking performed is
O(|E(G, C)|2) both in the best case and worst case. Note that the subsumption
graph (E(G, C), SR) is used to identify all possible minimum spanning sets. If
we are only interested in one minimum spanning set rather than all possible ones,
we can significantly reduce the total number of model checking to O(|E(G, C)|)
in the best case using the new algorithm shown in Figure 3. It is not hard to
see that the result of the new algorithm is a spanning forest of the subsumption
graph (E(G, C), SR). Moreover, the root nodes of the spanning forest comprise
a minimum spanning set.

Input: a flow graph G and a coverage criteron C
Output: a spanning forest (E(G, C), SF ) for the subsumption graph (E(G, C), SR)

1: SF := ∅;
2: construct the set E(G, C); let E(G, C) = {e1, ..., en};
3: for i := 1 to n do L[i] := ei; marked[i] := false;
4: for i := 1 to n do
5: if marked[i] = false then
6: for j := 1 to n, j �= i do
7: if marked[j] = false then
8: model check ltl(L[i]) → ltl(L[j]) against G;
9: if G |= ltl(L[i]) → ltl(L[j]) then
10: SF := SF ∪ {(L[i], L[j])};
11: marked[j] := true;
12: return (E(G, C), SF );

Fig. 3. An algorithm for finding a spanning forest of the subsumption graph

In the following sections, for each coverage criterion, for each entity e in
E(G, C), we will define the LTL formula ltl(e) and show its property that a
path π is a test sequence exercising e if and only if π |= ltl(e).

4.1 Statements and Branches

All-Statements Coverage Criterion. We say that a test sequence π exercises
a vertex v if there is i ≥ 0 such that π(i) = v. A test suite Π satisfies all-
statements coverage criterion if every vertex of a flow graph is exercised by a
test sequence in Π. For a vertex v, we associate an LTL formula defined by
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v1: F(v1 ∧ Fv6)
v2: F(v2 ∧ Fv6)
v3: F(v3 ∧ Fv6)
v4: F(v4 ∧ Fv6)
v5: F(v5 ∧ Fv6)
v6: F(v6 ∧ Fv6)
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(a) LTL formulas (b) subsumption graph (c) reduced subsumption graph

Fig. 4. All-statements coverage criterion for Figure 1

ltl(v) = F(v ∧ Fvf )

with the property that a path π is a test sequence exercising a vertex v if and
only if there are 0 ≤ i ≤ j such that π(i) |= v and π(j) |= vf if and only if
π |= F(v ∧Fvf ). Figure 4.(a) shows the vertices and their LTL formulas for the
flow graph in Figure 1. By model-checking the formula ltl(v) → ltl(v′) for every
pair (v, v′) of vertices, we obtain the subsumption graph shown in Figure 4.(b).
We then collapse the strongly connected component {v1, v2, v3, v5, v6} into one
vertex and obtain the reduced subsumption graph shown in Figure 4.(c). Finally
we find a minimum spanning set {v4}.

All-Branches Coverage Criterion. We say that a test sequence π exercises
an arc (v, v′) if there is i ≥ 0 such that π(i) = v and π(i+1) = v′. A test suite Π
satisfies all-branches coverage criterion if every arc of a flow graph is exercised
by a test sequence in Π. For an arc (v, v′), we associate an LTL formula defined
by

ltl(v, v′) = F(v ∧ X(v′ ∧ Fvf ))

with the property that a path π is a test sequence exercising an arc (v, v′) if and
only if there are 0 ≤ i < j such that π(i) |= v, π(i + 1) |= v′, π(j) |= vf if and
only if π |= F(v ∧ X(v′ ∧ Fvf )). Figure 5 shows the arcs, their LTL formulas,
and reduced subsumption graph for the flow graph in Figure 1. We have two
minimum spanning sets {(v3, v4), (v3, v5)} and {(v4, v5), (v3, v5)}.

4.2 Definition-Use Pairs

Rapps and Weyuker[16] propose a family of data flow oriented coverage criteria
that require certain pairs between definitions and uses of the same variable be
exercised. Let x be a variable, v be a vertex, and w be a vertex v′ or arc (v′, v′′).

– A finite path v, v1, ..., vn, w is a definition-clear path from v to w with respect
to x if x is not defined at vi for every 1 ≤ i ≤ n.
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(v1, v2): F(v1 ∧ X(v2 ∧ Fv6))
(v2, v3): F(v2 ∧ X(v3 ∧ Fv6))
(v3, v4): F(v3 ∧ X(v4 ∧ Fv6))
(v3, v5): F(v3 ∧ X(v5 ∧ Fv6))
(v4, v5): F(v4 ∧ X(v5 ∧ Fv6))
(v5, v6): F(v5 ∧ X(v6 ∧ Fv6))

�
�

�
�(v1, v2), (v2, v3), (v5, v6)

�
�

�
�(v3, v4), (v4, v5)

�

�
�

�
�(v3, v5)

�

Fig. 5. All-branches coverage criterion for Figure 1

– For a definition d(x, v) and use u(x, w) of the same variable x, d(x, v) reaches
u(x, w) if there is a definition-clear path from v to w with respect to x. If w
is a vertex, the pair (d(x, v), u(x, w)) is called definition-cuse pair (dcu-pair).
Otherwise, the pair is called definition-puse pair (dpu-pair).

– A definition-use pair (du-pair) is either a dcu-pair or dpu-pair.

In Figure 1, we observe that (d(max, v2), u(max, v5)) is a du-pair whose
definition-clear path is v2v3v5, while (d(max, v2), u(max, v6)) is not because
there is no definition-clear path from v2 to v6 with respect to max.

Identifying du-Pairs. We note that the set of du-pairs of a flow graph can be
identified using the conventional data flow analysis algorithm for the reaching-
definition problem[2]. Recently, in [9, 10], the authors show that the set of du-
pairs can also be identified using CTL model checking.

All-Uses Coverage Criterion. We say that a test sequence π exercises a du-
pair (d(x, v), u(x, w)) if π is of the form π1 ·π2 ·π3, where π2 is a definition-clear
path from v to w with respect to x. A test suite Π satisfies all-uses coverage
criterion if every du-pair (d(x, v), u(x, w)) of a flow graph is exercised by a test
sequence in Π. Let def(x) be the disjunction of all vertices at which x is defined.
For example, in Figure 1, def(x) ::= v1, def(y) ::= v1, def(z) ::= v1, def(max)
::= v2 ∨ v4 ∨ v5. For a du-pair (d(x, v), u(x, w)), we associate an LTL formula
defined by

– if the pair is a dcu-pair, i.e., w is a vertex v′,
ltl(d(x, v), u(x, v′)) = F(v ∧ X[¬def(x)U(v′ ∧ Fvf )])

– if the pair is a dpu-pair, i.e., w is an arc (v′, v′′),
ltl(d(x, v), u(x, v′, v′′)) = F(v ∧ X[¬def(x)U(v′ ∧ X(v′′ ∧ Fvf ))])

with the property that a path π is a test sequence exercising a dcu-pair (d(x, v),
u(x, v′)) if and only if there are 0 ≤ i < j ≤ k such that π(i) |= v, π(l) |= ¬def(x)
for i < l < j, π(j) |= v′, and π(k) |= vf if and only if π |= F(v∧X[¬def(x)U(v′∧
Fvf )]). The same property also holds for dpu-pairs. Figure 6 shows the du-pairs,
their LTL formulas, and the reduced subsumption graph for the flow graph in
Figure 1.

All-Defs Coverage Criterion. For a definition d(x, v), define DUPAIR
(d(x, v)) as the set of du-pairs whose definition is d(x, v). We say that a test se-
quence π exercises a definition d(x, v) if π exercises a du-pair in DUPAIR(d(x, v)).
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(d(x, v1), u(x, v2)): F(v1 ∧ X[¬def(x)U(v2 ∧ Fv6)])
(d(x, v1), u(x, v3, v4)): F(v1 ∧ X[¬def(x)U(v3 ∧ X(v4 ∧ Fv6))])
(d(x, v1), u(x, v3, v5))): F(v1 ∧ X[¬def(x)U(v3 ∧ X(v5 ∧ Fv6))])
(d(y, v1), u(y, v4)): F(v1 ∧ X[¬def(y)U(v4 ∧ Fv6)])
(d(y, v1), u(y, v3, v4)): F(v1 ∧ X[¬def(y)U(v3 ∧ X(v4 ∧ Fv6))])
(d(y, v1), u(y, v3, v5)): F(v1 ∧ X[¬def(y)U(v3 ∧ X(v5 ∧ Fv6))])
(d(z, v1), u(z, v5)): F(v1 ∧ X[¬def(z)U(v5 ∧ Fv6)])
(d(max, v2), u(max, v5)): F(v2 ∧ X[¬def(max)U(v5 ∧ Fv6)])
(d(max, v4), u(max, v5)): F(v4 ∧ X[¬def(max)U(v5 ∧ Fv6)])
(d(max, v5), u(max, v6)): F(v5 ∧ X[¬def(max)U(v6 ∧ Fv6)])
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�(d(x, v1), u(x, v2)), (d(z, v1), u(z, v5)), (d(max, v5), u(max, v6))

�

�

�
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(d(max, v4), u(max, v5))

�

�

�

�

	
(d(x, v1), u(x, v3, v5)),
(d(y, v1), u(z, v3, v5)),

(d(max, v2), u(max, v5))
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Fig. 6. All-uses coverage criterion for Figure 1

A test suite Π satisfies all-defs coverage criterion if every definition d(x, v) of
a flow graph is exercised by a test sequence in Π. For a definition d(x, v), we
associate an LTL formula defined by

ltl(d(x, v)) =
∨

(d(x,v),u(x,w))∈DUPAIR(d(x,v))

ltl(d(x, v), u(x, w))

with the property that a path π is a test sequence exercising d(x, v) if and only if
π exercises a du-pair in DUPAIR(d(x, v)) if and only if π |= ltl(d(x, v)). Figure 7
shows the definitions, their LTL formulas, and the reduced subsumption graph
for the flow graph in Figure 1.

4.3 Required k-Tuples

Ntafos[15] emphasizes interactions between different variables. Such interactions
are captured in terms of sequences of du-pairs.

– A sequence [d(x1, v1), u(x1, w1), ... d(xn, vn), u(xn, wn)] of du-pairs is a data
flow chain (df-chain)[18] if for every 1 ≤ i < n, wi = vi+1, that is, u(xi, wi)
and d(xi, vi+1) occur at the same vertex and hence the definition d(xi, vi+1)
is given in terms of u(xi, wi). Note that u(xi, wi), 1 ≤ i < n, is a c-use and
the final use u(xn, wn) may be either a c-use or p-use.

– A df-chain consisting of k − 1 du-pairs, k ≥ 2, is a k-definition/reference
interaction (k-dr interaction) in the terminology of [15].
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d(x, v1): ltl(d(x, v1), u(x, v2)) ∨ ltl(d(x, v1), u(x, v3, v4)) ∨ ltl(d(x, v1), u(x, v3, v5))
d(y, v1): ltl(d(y, v1), u(y, v4)) ∨ ltl(d(y, v1), u(y, v3, v4)) ∨ ltl(d(y, v1), u(y, v3, v5))
d(z, v1): ltl(d(z, v1), u(z, v5))
d(max, v2): ltl(d(max, v2), u(max, v5))
d(max, v4): ltl(d(max, v4), u(max, v5))
d(max, v5): ltl(d(max, v5), u(max, v6))
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Fig. 7. All-defs coverage criterion for Figure 1

– A path v1π1w1...vnπnwn is an interaction path of a df-chain if for every
1 ≤ i ≤ n, viπiwi is a definition-clear path from vi to wi with respect to xi.

In Figure 1, we observe that [d(x, v1), u(x, v2)] is a 2-dr interaction that has
v1v2 as its interaction path and [d(x, v1), u(x, v2), d(max, v2), u(max, v5)] is a
3-dr interaction that has v1v2v3v5 as its interaction path.

Identifying k-dr Interactions. Let κ = [d(x1, v1), u(x1, w1), ... d(xk−1, vk−1),
u(xk−1, wk−1)]. By definition, κ is a k-dr interaction if and only if (d(x1, v1),
u(x1, w1)) is a du-pair, w1 = v2, and [d(x2, v2), u(x2, w2), ... d(xk−1, vk−1),
u(xk−1, wk−1)] is a (k−1)-dr interaction. This leads to a recursive algorithm for
identifying the set of k-dr interactions.

Required k-Tuples Coverage Criterion. We say that a test sequence π
exercises a k-dr interaction κ if π is of the form π1 · π2 · π3, where π2 is an
interaction path of κ. A test suite Π satisfies required k-tuples coverage criterion
if every k-dr interaction of a flow graph is exercised by a test sequence in Π. For
a k-dr interaction κ, k ≥ 2, we associate an LTL formula inductively defined by

– ltl(κ) = Fltl(κ),
– if κ is [d(x, v), u(x, v′)] · κ′, then ltl(κ) = (v ∧ X[¬def (x)Ultl(κ′)]),
– if κ is [d(x, v), u(x, v′)], then ltl(κ) = (v ∧ X[¬def (x)U(v′ ∧ Fvf )]),
– if κ is [d(x, v), u(x, v′, v′′)], then ltl(κ) = (v∧X[¬def (x)U(v′∧X(v′′∧Fvf ))]).

By induction on the number of du-pairs in κ, it can be shown that a path π is
a test sequence exercising a k-dr interaction κ if and only if π |= ltl(κ). Figure 8
shows the 3-dr interactions, their LTL formulas, and the reduced subsumption
graph for the flow graph in Figure 1.

4.4 IO-df-Chains

Ural et al.[18, 19] also emphasize interactions between different variables. While
required k-tuples coverage criterion considers df-chains consisting of a fixed num-
ber of du-pairs, all-IO-df-chains coverage criterion in [18, 19] considers df-chains
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[d(x, v1), u(x, v2), d(max, v2), u(max, v5)]:
F(v1 ∧ X[¬def(x)U(v2 ∧ X[¬def(max)U(v5 ∧ Fv6)])])

[d(y, v1), u(y, v4), d(max, v4), u(max, v5)]:
F(v1 ∧ X[¬def(y)U(v4 ∧ X[¬def(max)U(v5 ∧ Fv6)])])

[d(z, v1), u(z, v5), d(max, v5), u(max, v6)]:
F(v1 ∧ X[¬def(z)U(v5 ∧ X[¬def(max)U(v6 ∧ Fv6)])])

[d(max, v2), u(max, v5), d(max, v5), u(max, v6)]:
F(v2 ∧ X[¬def(max)U(v5 ∧ X[¬def(max)U(v6 ∧ Fv6)])])

[d(max, v4), u(max, v5), d(max, v5), u(max, v6)]:
F(v4 ∧ X[¬def(max)U(v5 ∧ X[¬def(max)U(v6 ∧ Fv6)])])
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[d(y, v1), u(y, v4), d(max, v4), u(max, v5)],
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Fig. 8. 3-dr interaction coverage criterion for Figure 1

consisting of an arbitrary (but finite) number of du-pairs which start with inputs
and end with outputs. In this paper, we define an input as a definition occurring
at an input statement and output as a use occurring at an output statement.
The rationale here is to capture the functionality of a module in terms of the
interactions with its environment by identifying the effects of inputs accepted
from the environment on outputs offered to the environment. Let d(x, v) be a
definition and u(x′, w) be a use.

– d(x, v) affects u(x′, w) if either x = x′ and (d(x, v), u(x′, w)) is a du-pair or
there is a use u(x, v′) such that (d(x, v), u(x, v′)) is a du-pair and there is a
definition d(x′′, v′), given in terms of u(x, v′), that affects u(x′, w).

– (d(x, v), u(x′, w)) is an affect-pair if d(x, v) affects u(x′, w). By definition,
(d(x, v), u(x′, w)) is an affect-pair if and only if there is a df-chain [d(x1, v1),
u(x1, w1), ... d(xn, vn), u(xn, wn)] such that d(x1, v1) = d(x, v) and u(xn, wn)
= u(x′, w).

Among the particular affect-pairs of interest are those starting with inputs
and ending with outputs, which we call io-pairs. In Figure 1, there are three
inputs d(x, v1), d(y, v1), d(z, v1) and one output u(max, v6). Consider the in-
put d(x, v1) and output u(max, v6). We observe that d(x, v1) affects u(max, v6)
through the df-chain [d(x, v1), u(x, v2), d(max, v2), u(max, v5), d(max, v5),
u(max, v6)].

Identifying Simple df-Chains. For a definition d(x, v) and use u(x′, w), we
use CHAIN (d(x, v), u(x′, w)) to denote the set of df-chains κ = [d(x1, v1),
u(x1, w1), ... d(xn, vn), u(xn, wn)] such that d(x1, v1) = d(x, v) and u(xn, wn) =
u(x′, w). In general, there may be multiple occurrences of the same du-pair in
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κ thereby causing the possibility of an infinite number of df-chains in CHAIN
(d(x, v), u(x′, w)). In order to put an upper bound on the size of CHAIN (d(x, v),
u(x′, w)), we consider its subset SCHAIN (d(x, v), u(x′, w)) consisting of simple
df-chains that are allowed to have at most one occurrence of each du-pair. By
definition, κ is a simple df-chain in SCHAIN (d(x, v), u(x′, w)) if and only if
d(x1, v1) = d(x, v), u(xn, wn) = u(x′, w), (d(x1, v1), u(x1, w1)) is a du-pair, and
[d(x2, v2), u(x2, w2), ... d(xn, vn), u(xn, wn)] is a simple df-chain that does not
contain the first du-pair (d(x1, v1), u(x1, w1)). This leads to a recursive algo-
rithm for identifying the set of simple df-chains.

All-IO-df-Chains Coverage Criterion. A test suite Π satisfies all-IO-df-
chains coverage criterion if for every io-pair (i, o), every simple df-chain in
SCHAIN (i, o) is covered by a test sequence in Π. For a simple df-chain κ
in SCHAIN (i, o), we associate the LTL formula ltl(κ). For example, in Fig-
ure 1, there are three io-pairs (d(x, v1), u(max, v6)), (d(y, v1), u(max, v6)), and
(d(z, v1), u(max, v6)). Figure 9 shows the simple chains for the io-pairs, their
LTL formulas, and the reduced subsumption graph.

[d(x, v1), u(x, v2), d(max, v2), u(max, v5), d(max, v5), u(max, v6)]:
F(v1 ∧ X[¬def(x)U(v2 ∧ X[¬def(max)U(v5 ∧ X[¬def(max)U(v6 ∧ Fv6)])])])

[d(y, v1), u(y, v4), d(max, v4), u(max, v5), d(max, v5), u(max, v6)]:
F(v1 ∧ X[¬def(y)U(v4 ∧ X[¬def(max)U(v5 ∧ X[¬def(max)U(v6 ∧ Fv6)])])])

[d(z, v1), u(z, v5), d(max, v5), u(max, v6)]:
F(v1 ∧ X[¬def(z)U(v5 ∧ X[¬def(max)U(v6 ∧ Fv6)])])

�
�

�
�[d(z, v1), u(z, v5), d(max, v5), u(max, v6)]

�

�

�

	
[d(x, v1), u(x, v2),

d(max, v2), u(max, v5),
d(max, v5), u(max, v6)]

�

�

�

�

	
[d(y, v1), u(y, v4),

d(max, v4), u(max, v5),
d(max, v5), u(max, v6)]

�

Fig. 9. All-IO-df-chains coverage criterion for Figure 1

4.5 Ordered Definition Contexts

Laski and Korel[11] emphasize that a vertex or arc may contain uses of several
different variables, where each use may be reached by several different definitions.
Let w be a vertex or arc and u(x1, w), ..., u(xn, w) be the uses occurring at w.

– For a set X of variables, we use d(X, v) to denote the set {d(x, v) | x ∈ X}
of definitions.

– An ordered definition context of w is a sequence [d(X1, v1), ..., d(Xm, vm)]
of sets of definitions such that X1 ∪ ... ∪ Xm = X and there is a path
v1π1...vmπmw, called ordered context path, satisfying the following property:
for every 1 ≤ i ≤ m, viπi...vmπmw is a definition-clear path from vi to w
with respect to every variable x in Xi.
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[d({x}, v1)] of v2: F(v1 ∧ X[¬def(x)U(v2 ∧ Fv6)])
[d({x, y}, v1)] of (v3, v4): F(v1 ∧ X[(¬def(x) ∧ ¬def(y))U(v3 ∧ X(v4 ∧ Fv6))])
[d({x, y}, v1)] of (v3, v5): F(v1 ∧ X[(¬def(x) ∧ ¬def(y))U(v3 ∧ X(v5 ∧ Fv6))])
[d({x}, v1)] of v4: F(v1 ∧ X[¬def(x)U(v4 ∧ Fv6)])
[d({z}, v1), d({max}, v2)] of v5:

F(v1 ∧ X[¬def(z)U(¬def(z) ∧ v2 ∧ X[(¬def(z) ∧ ¬def(max))U(v5 ∧ Fv6)])])
[d({z}, v1), d({max}, v4)] of v5:

F(v1 ∧ X[¬def(z)U(¬def(z) ∧ v4 ∧ X[(¬def(z) ∧ ¬def(max))U(v5 ∧ Fv6)])])
[d({max}, v5)] of v6: F(v5 ∧ X[¬def(max)U(v6 ∧ Fv6)])

�
�

�
�[d({x}, v1)] of v2, [d({max}, v5)] of v6

�

�

�

	
[d({x, y}, v1)] of (v3, v4),

[d({x}, v1)] of v4,
[d({z}, v1), d({max}, v4)] of v5

�



�

�



[d({x, y}, v1)] of (v3, v5),
[d({z}, v1), d({max}, v2)] of v5

�

Fig. 10. Ordered contexts coverage criterion for Figure 1

In Figure 1, consider the vertex v5 that has two uses u(z, v5) and u(max, v5).
We observe that [d({z}, v1), d({max}, v2)] and [d({z}, v1), d({max}, v4)] are or-
dered definition contexts of v5 which have v1v2v3v5 and v1v2v3v4v5 as their or-
dered context path, respectively. For another example, consider the edge (v3, v4)
that has two uses u(x, v3, v4) and u(y, v3, v4). [d({x, y}, v1)] is an ordered defini-
tion context of the edge.

Identifying Ordered Definition Contexts. Let λ=[d(X1, v1), ..., d(Xm, vm)].
By definition, λ is an ordered definition context of w if and only if for every
1 ≤ i ≤ m,

– for every variable x ∈ X1 ∪ ... ∪ Xi−1, x is not defined at vi,
– for every variable x ∈ X1 ∪ ... ∪ Xi, there is a definition-clear path from vi

to vi+1 with respect to x.

This leads to a recursive algorithm for identifying the set of ordered definition
contexts.

Ordered Contexts Coverage Criterion. We say that a test sequence π ex-
ercises an ordered definition context λ if π is of the form π1 · π2 · π3, where π2 is
an ordered context path of λ. A test suite Π satisfies ordered contexts coverage
criterion if for every vertex or arc w of a flow graph, every ordered definition
context of w is exercised by a test sequence in Π. For an ordered definition
context λ of w, we associate an LTL formula inductively defined by

– ltl(λ) = Fltl(λ,true),
– if λ is [d(X, v)]·λ′, then ltl(λ, nodef ) = (nodef ∧v∧X[nodef ′Ultl(λ′, nodef ′)]),

where nodef ′ = nodef ∧
∧

x∈X ¬def (x),
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– if λ is empty and w = v′, then ltl(λ, nodef ) = (v′ ∧ Fvf ),
– if λ is empty and w = (v′, v′′), then ltl(λ, nodef ) = (v′ ∧ X(v′′ ∧ Fvf )).

By induction on the number of definitions in λ, it can be shown that a test
sequence π exercises λ if and only if π |= ltl(λ). Figure 10 shows the ordered
definition contexts, their LTL formulas, and the reduced subsumption graph for
the flow graph in Figure 1.

5 Conclusions and Future Work

We have presented a method for reducing the cost of test generation for structural
testing. We investigated a family of control flow and data flow oriented coverage
criteria and reduced the problem of finding subsumption relations to the problem
of LTL model checking. We illustrated the method using the flow graph model
of a simple program module.

Our method can be applied to more accurate models of programs. Tradition-
ally, test generation has been performed upon flow graphs. Since a flow graph
preserves only the control flow and ignores the values of data variables, it is often
the case that the size of state space is not a concern. However, test generation
is increasingly performed upon more accurate models that respect the values of
data variables such as reachability graphs and abstract state graphs obtained
by abstract interpretation. In this case, the size of state space is the primary
concern and model checking has been proven to be effective for controlling the
state explosion problem. We plan to conduct case studies to see how large and
complex programs can be handled by our method when reachability graphs or
abstract state graphs are used.

Our method can also be applied to requirements specifications written in
state-based specification languages such as extended finite state machines, stat-
echarts, and SDL. Optimal test generation from such specifications is more com-
plicated than that from program modules because it is necessary to cope with
a rich set of language constructs for modeling hierarchy, concurrency, and com-
munications. Our method is language-independent in that the temporal logic
formulas employed in the method can be immediately used for various specifica-
tion languages. In fact, differences between specification languages (for example,
synchronous computational model in statecharts versus asynchronous computa-
tional model in SDL and communications through event broadcasting in stat-
echarts versus communications through unbounded queues in SDL) only affect
the rules for translating them into input to model checkers.
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Abstract. We present a technique for specifying coverage criteria and
a method for generating test suites for systems whose behaviours can be
described as extended finite state machines (EFSM). To specify coverage
criteria we use observer automata with parameters, which monitor and
accept traces that cover a given test criterion of an EFSM. The flexibility
of the technique is demonstrated by specifying a number of well-known
coverage criteria based on control- and data-flow information using ob-
server automata with parameters. We also develop a method for generat-
ing test cases from coverage criteria specified as observers. It is based on
transforming a given observer automata into a bitvector analysis prob-
lem that can be efficiently implemented as an extension to an existing
state-space exploration such as, e.g. SPIN or Uppaal.

1 Introduction

Model based test case generation has in recent years been developed as a promi-
nent technique in testing of reactive software systems. A model serves both the
purpose of specifying how the system should respond to inputs from its envi-
ronment, and of guiding the selection of test cases, e.g., using suitable coverage
criteria. Typical notations for such models are state machines in some form,
often extended with data variables. Test cases can be selected as individual “ex-
ecutions” of the model, checking that the outputs from the system under test
(SUT) conform to those specified by the model.

There is a large literature and several tools (e.g., [4, 17, 24, 18, 3]) for gen-
eration of test cases from extended state machine models (EFSMs). In typical
approaches, the selection of test cases follows some particular coverage criterion,
such as coverage of control states, edges, etc., or using an explicitly given set of
test purposes [5, 23]. When the model contains data variables, constraint solving
techniques can be used to find actual values of input parameters that drive the
execution in a desired direction [17, 21, 19].

Since different coverage criteria are suitable in different situations, and satisfy
different constraints on fault detection capability, cost, information about where
potential faults may be located, etc., it is highly desirable that a test generation
tool is able to generate test suites in a flexible manner, for a wide variety of
different coverage criteria. In other words, a test generation tool should accept

J. Grabowski and B. Nielsen (Eds.): FATES 2004, LNCS 3395, pp. 125–139, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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a simple specification of a coverage criterion, given in a language that can eas-
ily specify a large set of coverage criteria, and be able to generate test suites
accordingly.

In this paper, we present a technique for specifying coverage criteria in a
simple and flexible manner, and a method for generating test cases according
to such coverage criteria. The technique fits well as an extension of a state-
space exploration tool, such as, e.g., SPIN [11] or Uppaal [16], which performs
enumerative or symbolic state-space exploration. It can also be used to generate
monitors that measure the coverage of a specific test suite by monitoring the
test execution.

In our technique, a coverage criterion is given as a set of coverage items, each
of which represents an interesting structural property of the EFSM which should
be examined by a test suite. A coverage item can state that a particular state,
edge, or similar, should be visited, it can be an explicit test purpose, etc. Each
coverage item is specified by an observer, which observes the execution of a test
case, and reports acceptance when the test case has covered the coverage item
that it specifies. For instance, a coverage item stating that a control state l of
an EFSM model should be visited simply observes how the EFSM executes and
reports acceptance when it enters l.

A typical coverage criterion is given as a (often rather large) set of cover-
age items. An important mechanism to facilitate specification of many coverage
criteria is to allow parameterization of observers. In this way, one can specify
a set of coverage items parameterized over, e.g., control states, data variables,
edges, etc. of the EFSM model. Using this simple and general mechanism, we
can specify most of the coverage criteria that have been used in the literature,
and also tailor coverage to specific features of a particular SUT. For instance,
if a particular interface is very error prone, we can specify a coverage criterion
which requires all possible interleavings of interactions on that interface to be
exhibited in a test suite.

A specification of a coverage criterion can be used for test suite generation
using a state-space exploration tool. First, we superpose the coverage observers
onto the EFSM, then we search for a test sequence or set of test sequences
in which as many observers as possible report acceptance. For parameterized
observers, we can record the achieved coverage by a (typically small) set of
bitvectors, indexed by parameter values, which concisely represent the states
of a large set of parameterized observers, in analogy with bitvector analysis in
data-flow analysis, e.g., [20]. The same machinery can also be used to monitor
the achieved coverage of a certain test suite.

The remainder of the paper is structured as follows. We present EFSMs in
the next section, and observers in Section 3. In Section 4, we show how our
definitions of coverage can be used for test case generation, and report on a
partial implementation of the technique. Section 5 concludes the paper.

Related Work. Most related work on test case generation from models of reactive
systems employ some rather specific selection of coverage criteria. Explicitly
given test purposes have been considered, both enumerative [5] and symbolic [23].
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Test purposes in these works can in some sense be regarded as coverage observers,
but are not used to specify more generic coverage criteria and do not make us of
parameterization, as in our work. For finite-state machines and EFSMs, several
approaches focus on particular coverage criteria, e.g., Bouquet and Legeard [1]
synthesize test cases corresponding to combinations of choices of control flow
and boundary values of state variables, Nielsen and Skou [21] generate test cases
that cover reachable symbolic states. These coverage criteria can be specified as
observers in our framework.

Some approaches present more flexible techniques for specifying a variety of
coverage criteria. Hong et al [13, 12] describe how flow-based coverage criteria
can be expressed in temporal logic. A particular coverage item is expressed in
CTL, and a model checker generates a trace which covers the coverage item. In
our approach, we use observers instead of temporal logic, which avoids some of
the limitations of temporal logic [26]. Friedman et al [6] specifies coverage by
giving a set of projections of the state space (e.g., on individual state variables,
components of control flow) that should be covered, possibly under some restric-
tions. Our approach generalizes this one, by allowing to define observers. Also,
we can let one pass of a state-space exploration tool generate a test suite that
covers a large set of coverage items, whereas the above approaches invoke a run
of a model checker for each coverage item.

Constraint Logic Programming for model based test case generation has
been used, e.g., by Marre and Arnould [18], by Meudec [19], by Pretschner et
al. [22]. These approaches typically compile the specification into a constraint
logic programming language, in which test cases can be extracted using symbolic
execution.

2 Extended Finite State Machines

We assume that the specification of a module to be tested is given as an extended
finite state machine in some syntax. In this section, we present a generic way to
describe EFSMs, but our work can be adapted to more specific EFSM notations
such as, e.g., UML Statecharts [7] or SDL [14].

We assume that a System Under Test (SUT) interacts with its environment
through events. Whenever the SUT receives an input event, it responds by per-
forming some local computation and emitting an output event. To a given SUT,
we associate a set A of event types, each with a fixed arity. An event is a term
of form a(d1, . . . , dk) where a is an event type of arity k and d1, . . . , dk are the
parameters of the event. The set A of event types is partitioned into input event
types and output event types. A trace is a finite sequence

a1(d1)/b1(d
′
1) a2(d2)/b2(d

′
2) · · · an(dn)/bn(d

′
n)

of input/output event pairs. Intuitively, the trace represents a behavior where
the SUT, starting from its initial state, receives the input event, a1(d1) and
responds with the output event b1(d

′
1). Thereafter, it receives the input event

a2(d2) and so on. An input sequence is a finite sequence of input events.
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Assume a set AI of input event types, and a set AO of output event types.
An Extended Finite State Machine (EFSM) over (AI , AO) is a tuple 〈L, l0, v, E〉
where

– L is a finite set of locations (aka control states).
– l0 ∈ L is the initial location.
– v is a finite set of state variables.
– E is a finite set of edges, each of which is of form

e : l l′�a(w), g → u := expr/b(expr ′)

where
• e is the name of the edge,
• l is the source location, and l′ is the target location,
• a ∈ AI is an input event type, and w is a tuple of formal parameters of

a,
• g is a guard,
• u := expr is an assignment of new values to a subset u ⊆ v of the state

variables, and
• b(expr ′) is an expression which evaluates to an output event.

g, expr, and expr′ may depend on the formal parameters w of the input
event and the state variables v.

Intuitively, an edge of the above form denotes that whenever the EFSM is in
location l and receives an event of form a(w), then, provided that the guard
g is satisfied, it can perform a computation step in which it updates its state
variables by u := expr, emits the output event b(expr ′) and moves to location l′.
We require the EFSM to be deterministic, i.e., that for any two edges with the
same source location l and parameterized input event a(w), the corresponding
guards are inconsistent.

A system state is a tuple 〈l, σ〉 where l is a location, and σ is a mapping from
v to values. We can extend σ to a partial mapping from expressions over v in
the standard way. The initial system state is the tuple 〈l0, σ0〉 where l0 is the
initial location, and σ0 gives a default value to each state variable. A computation

step is of the form 〈l, σ〉 a(d)/b(d′)−→ 〈l′, σ′〉 consisting of system states 〈l, σ〉 and
〈l′, σ′〉, an input event a(d), and an output event b(d

′
), such that there is an

edge of the (above) form l
a(w),g→u:=expr/b(expr ′)� l′, for which σ(g[d/w]) is true,

σ′ = σ[u �→ σ(expr[d/w])], and d
′
= σ(expr′[d/w]). A run of the EFSM over a

trace a1(d1)/b1(d
′
1) · · · an(dn)/bn(d

′
n) is a sequence of computation steps

〈l0, σ0〉
a1(d1)/b1(d

′
1)−→ 〈l1, σ1〉

a2(d2)/b2(d
′
2)−→ · · · an(dn)/bn(d′

n)−→ 〈ln, σn〉

labelled by the input-output event pairs of the trace.
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U
S
E
R

(ii)

coffee()

display()

make()

done()

insert(x)

show(m)

BrewerController

(i)

e5:display()→show(m)

e3:done()→
BUSYIDLE

e4:display()→show(m)

e2:coffee(),m>0→ make(),
m := m − 1

e1:insert(x), x+m≤5 → m := m + x

Fig. 1. An EFSM specifying the controller of a simple coffee machine

Example 1. In Fig. 1 an EFSM (from [13]) specifying the behavior of the con-
troller of a simple coffee machine which interacts with a user and a brewer unit
is shown. The controller has L = {IDLE , BUSY }, l0 = IDLE , v = {m}, AI =
{insert , coffee, display , done}, AO = {show , make}, and E = {e1, e2, e3, e4, e5}.
The parameter x and the variable m take values that are integers in the range
[0 . . . 5].

An EFSM can be used to check that a trace of a SUT conforms to its speci-
fication, by checking that each output event produced by the SUT conforms to
the corresponding output event prescribed in the EFSM. For test generation,
the output events will not be significant, and we will therefore omit them in the

rest of the paper, thus writing an edge of an EFSM as l
a(w),g→u:=expr� l′. We can

also consider specifications that are parallel compositions of EFSMs, but omit
such a treatment in this version of the paper.

3 Observers

In this section, we present how to use observers to specify coverage criteria
for test generation or test monitoring. A coverage criterion typically consists of
a (long) list of items that should be “covered” or “visited”. For instance, the
criterion of “full location coverage” stipulates that a test suite should visit all
locations of a given EFSM. We will use the term coverage item for an item
that should be “covered” or “visited”. Letting a test sequence be represented
as a trace, we can use standard techniques from model-checking and run-time
verification [25, 8] to represent a coverage item by an observer, which monitors a
trace and “accepts” whenever the coverage item has been covered. An observer
observes how an EFSM executes a run over a trace, and “remembers” some
chosen aspects of the EFSM execution. The observer can observe the events of
the trace, as well as syntactical components of edges that the EFSM traverses in
response to observed events, but should not interfere with the execution of the
system.

Typical coverage criteria consist not only of a single coverage item, but of
a large set of coverage items. We therefore extend the notion of observers by a
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parameterization mechanism so that they can specify a set of coverage items.
Parameterized observers are simply observers, in which locations and edges may
be parameterized by parameters that range over given domains. Each choice of
parameter values gives a certain observer location or edge. For each specified
coverage item, the observer has an accepting (possibly parameterized) location
which (for convenience) we give the name of the corresponding coverage item.
When the accepting location is entered, the trace has covered the corresponding
coverage item.

As a very simple example, the coverage item “visit location l of the EFSM”
can be represented by an observer with one initial state, and one accepting
location, named loc(l), which is entered when the EFSM enters location l. The
coverage criterion “visit all locations of the EFSM” can be represented by a
parameterized observer with one initial state, and one parameterized accepting
location, named loc(L), where L is a parameter that ranges over locations in the
EFSM. For each value l of L, the location loc(l) is entered when the EFSM enters
location l.

Formally, an observer is a tuple (Q, q0, Qf , B) where

– Q is a finite set of observer locations
– q0 is the initial observer location.
– Qf ⊆ Q is a set of accepting observer locations, whose names are the corre-

sponding coverage items.
– B is a set of edges, each of form

q q′�b

where b is a predicate that can depend on the input event received by the
SUT, the mapping from state variables of EFSM to their values after per-
forming the current computation step, and the edge in the EFSM that is
executed in response to the current input event.

Intuitively, at any specific instant during test execution the observer is in one
of its locations, q say. At each occurrence of an event, the observer traverses
an outgoing edge from q, whose predicate is satisfied for this event, and the
corresponding transition performed by the EFSM. Note that, in contrast to
EFSMs, observers may be non-deterministic, since a coverage item in general
can be covered in several ways.

In many cases, the initial location q0 has an edge to itself with the predicate
true. We use the symbol • to represent q0 together with such a self-loop. Simi-
larly, we assume that each qf ∈ Qf has an edge to itself with the predicate true.
We use the symbol � to represent accepting locations. In section 3.2, we discuss
the effect of these self-loops in more detail. Intuitively, the one in q0 is often used
to allow the observer to non-deterministically start monitoring at any point of
an EFSM run. The loop in each qf is used to allow an observer to stay in an
accepting location.
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In order for observers to specify coverage criteria consisting of several cover-
age items, we allow locations and edges to be parameterized. Each parameter has
a finite domain, which could be the set of EFSM locations, edges, state variables,
or similar. We use uppercase letters in typewriter font for parameters. A param-
eterized location represents the collection of locations obtained by instantiating
its parameters, and similarly for edges.

3.1 Observer Predicates

In the following we introduce a more specific syntax for the predicates b occurring
on observer edges. The predicates will use a set of predefined match variables
that are given values at the occurrence of

– an event a(d),

– an edge e : l
a(w),g→u:=expr� l′ of the EFSM, traversed in response to a(d),

– the computation step 〈l, σ〉 a(d)−→ 〈l′, σ′〉 generated in response to a(d).

For a traversed EFSM edge we use the following match variables (with associated
meaning):

event type is the event type a of the occurring event
event-pars is the list d of parameters of the event
edge is the name e
target loc is the target location l′

guard is the guard expression g
assignments is the set u := expr of assignments
target val is the function from EFSM state variables to values, s.t. val(u)

is the value σ′(u) of variable u just after the computation step.

Similarly, we also define source loc for the source location and source val for the
value σ(u) of variable u just before the computation step. To be able to express
more interesting properties we also introduce a set of operations that can be
used together with the match variables:

– lhs is a function to get the left hand side expression of an assignment. A left
hand side expressions is always assumed to be a variable.

– rhs is a function to get the right hand side expressions of an assignment.
The right hand side expression, expr, uses the vocabulary defined for the
EFSM specification.

– vars is a function such that vars(Exp) returns a set with all variables found
in Exp. Exp is a set that contains the result of applying rhs to each assign-
ment in assignments, or a guard expression.

– affect is a function such that affect(A, V ar1, V ar2) returns the assignment
it is being applied to, A, if V ar1 ∈ vars(rhs(A))∧ V ar2 = lhs(A) otherwise
the empty set is returned.

– map is a function such that map(Fun, Set) applies the function, Fun on
each element in the set Set and returns the set of the results.
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(i) (ii) (iii)

l0

l1

l2

c(),x=tt ∧ y=tt →

a()→ x:=tt

e0:

e2:

e1:
b(),y=ff → y:=tt

def(Z) ∧ edge = E

¬ def(Z)

use(Z) ∧ edge = E′

du(Z, E, E′)

q0

q1(Z, E)¬ def(x)

q0

q1(x , e1 )

du(x , e1 , e2 )

def(x) ∧ edge = e1

use(x) ∧ edge = e2

Fig. 2. Examples of (i) observer monitoring definition (on edge e1) and use (on edge
e2) of variable x, (ii) a parameterized observer, and (iii) a simple EFSM

With the match variables and operations above we define new functions that
can be used as tests in the observer. In this paper, we shall make use of:

– def (v), which is true iff the variable v is defined by the transition in the
EFSM. This can be expressed as:

v ∈ map(lhs, assignments)

– use(v), which is true iff the variable v is used (in a guard or assignment) by
the transition in the EFSM. This can be expressed as:

v ∈ vars(map(rhs, assignments)) ∨ v ∈ vars(guard)

– da(v1, v2), which is true iff the variable v1 is on the right hand side and
variable v2 is on the left hand side of the same assignment in the EFSM
specification. The function can intuitively be understood to be true if v1
directly affects v2. This can be expressed as:

map(affect(v1, v2), assignments) �= ∅

Example 2. The (non-parameterized) observer in Fig. 2(i) specifies definition-
use pair coverage for a specific variable m, and specific edges e1 and e2 . Fig. 2(ii)
shows a corresponding (parameterized) observer that specifies definition-use pair
coverage for any EFSM variable Z, and EFSM edges E and E′. This is done by
parameterizing the location q1 with any variable and any edge, and the accepting
location du with any variable and any two edges. The edges are parameterized
in a similar way. For example, there is one observer edge from location q1(z, e)
to location du(z, e, e′) for each EFSM variable z, and each pair e, e′ of EFSM
edges.
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3.2 How Observers Monitor Coverage Criteria

In test case generation or when monitoring test execution of a SUT, an observer
observes the events of the SUT, and the computation steps of the EFSM. Reached
accepting locations correspond to covered coverage items. We formally define the
execution of an observer in terms of a composition between an EFSM and an
observer, which has the form of a superposition of the observer onto the EFSM.
Each state of this superposition consists of a state of the EFSM, together with
a set of currently occupied observer locations.

Say that a predicate b on an observer edge is satisfied by a computation

step 〈l, σ〉 a(d)−→ 〈l′, σ′〉 of an EFSM, denoted 〈l, σ〉 a(d)−→ 〈l′, σ′〉 |= b if b holds

for the event a(d), the computation step 〈l, σ〉 a(d)−→ 〈l′, σ′〉, and the edge e :

l
a(w),g→u:=expr� l′ from which the computation step is derived.

Formally, the superposition of an observer (Q, q0, Qf , B) onto an EFSM
〈L, l0, v, E〉 is defined as follows.

– States are of the form 〈〈l, σ〉 ‖ Q〉, where 〈l, σ〉 is a state of the EFSM, and
Q is a set of locations of the observer.

– The initial state is the tuple 〈〈l0, σ0〉 ‖ {q0}〉, where 〈l0, σ0〉 is the initial
state of the EFSM, and q0 is the initial location of the observer.

– A computation step is a triple 〈〈l, σ〉 ‖ Q〉 a(d)
� 〈〈l′, σ′〉 ‖ Q′〉 such that

〈l, σ〉 a(d)−→ 〈l′, σ′〉 and

Q′ =
{

q′ | q
b−→ q′ and q ∈ Q and 〈l, σ〉 a(d)−→ 〈l′, σ′〉 |= b

}
– A state 〈〈l, σ〉 ‖ Q〉 of the superposition covers the coverage item represented

by the location qf ∈ Qf if qf ∈ Q.

Note that the way the set Q is updated essentially results in an (on-the-fly)
subset construction of the parameterised observer. Initially, Q contains only the
initial observer location q0. In the subsequent computation steps, Q contains the
set of all occupied observer locations, representing already covered and partially
covered coverage items. In each computation step, the set of occupied observer
locations Q′ is obtained by generating all possible successors to the locations in
Q, i.e. all q′ such that there exists a q ∈ Q and an edge q

b−→ q′ ∈ B with b
satisfied by the computation step of the EFSM.

Recall that both the initial and all accepting observer locations have implicit
self-loops with predicate true. This means that in the superposition of the ob-
server onto an EFSM, the initial observer location q0 is always occupied and all
reached accepting observer locations (representing covered coverage items) are
guaranteed to remain in Q. The fact that q0 is always occupied can be intuitively
understood as allowing for the observer to non-deterministically start monitor-
ing an EFSM (or a SUT) at any computation step of an run (or at any point
during test execution).
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target loc=L

(iv)

(i)

loc(L)

q0

q1(X, E)

def (X) ∧ edge=E

¬def (X)

use(X)

all def (E)

(ii)

du(X, E, E′)

affect pair(X, E, Z, E′)

q0

edge cov(E)

edge=E

q1(X, E)

use(X) ∧ edge=E′

q0

¬def (X)

(iii)

def (X) ∧ edge=E

(v)

q0

q1(X, Y, E)

da(X, Y) ∧ edge=E

da(Y, Z) ∧ edge=E′

q0

q0

(vii)

¬def (Y)

q0

loc var(L, V)

(vi)

event var(V)

target loc=L∧ event=insert(V)
target val(m)=V

Fig. 3. Seven examples of coverage criteria expressed as observers

Example 3. If the observer in Fig. 2(ii) is superposed onto the EFSM in Fig. 2(iii),

the following computation steps can be taken 〈〈l0, {x = ff, y = ff}〉 ‖ {q0}〉
a()
�

〈〈l1, {x=tt, y=ff}〉 ‖ {q0, q1(x , e0 )}〉 b()
� 〈〈l0, {x=tt, y=tt}〉 ‖ {q0, q1(x , e0 ), q1(y , e1 )}〉

a()
� 〈〈l1, {x = tt, y = tt}〉 ‖ {q0, q1(x , e0 ), q1(y , e1 )}〉 c()

� 〈〈l2, {x = tt, y = tt}〉 ‖
{q0, q1(x , e0 ), q1(y , e1 ), du(x , e0 , e2 ), du(y , e1 , e2 )}〉. Thus, the two possible def-
inition-use pairs are covered.

3.3 Examples of Observers

Fig. 3 shows observers specifying a number of coverage criteria described in the
literature [2].

The all-locations coverage criteria is specified by the observer shown in
Fig. 3(i), where the parameter L is any location in an EFSM. If the observer
is superposed onto the EFSM of Fig. 1, we have that L = {IDLE , BUSY } and
the edge of the parameterized observer represents two edges, one guarded by
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target loc = IDLE with target location loc(IDLE ) target loc(BUSY ), and the
other guarded by target loc = BUSY with target location loc(BUSY ). The set
of possible coverage items is thus {loc(IDLE ), loc(BUSY )}.

The all-edges coverage observer in Fig. 3(ii) is similar to the all-location
coverage observer. The edges of the EFSM in Fig. 1 is E={e1 , . . . , e5}, and thus
the set of possible coverage items when the observer is superposed onto the
EFSM is {edge cov(ei) | ei ∈ E }.

The all-definition use-pairs (all-uses [2]) coverage observer in Fig. 3(iii) has
an accepting location du(X, E, E′), where X is a variable name, E is an edge on
which X is defined, and E′ an edge on which X is used. Variable X may not
be redefined in the trace between E and E′. If the observer is superposed onto
the EFSM the complete set of coverage items is {du(m, e1 , e1 ), du(m, e1 , e2 ),
du(m, e1 , e4 ), du(m, e2 , e1 ), du(m, e2 , e2 ), du(m, e2 , e4 ), du(m, e2 , e5 )}. The
definition-use pair du(m, e1 , e5 ) can not be covered since m is always redefined
on edge e2 in between e1 and e5 .

The all-definitions coverage observer of Fig. 3(iv) is similar to the all-definition
use-pairs coverage except that only the defining edges are required to be covered.
When the observer is superposed with the EFSM in Fig. 1 the set of accepting
locations is {all def (e1 ), all def (e2 )}.

The all affect-pairs (Nafos’ required k-Tuples [2]) coverage observer shown in
Fig. 3(v) accepts whenever a variable x affects a variable z via another variable
y . In this case we require that x directly affects y which, without redefinition,
directly affects z . No such affect pairs are possible in the EFSM of Fig. 1.

The context coverage criteria observer in Fig. 3(vi) covers all values of a given
variable m. We use target val(m), to denote the value of m at the target EFSM-
state. The observer has an accepting location loc var(L, V), where V is the value
domain of variable m. E.g. loc var(IDLE , 0) and loc var(BUSY , 1) are accepting
locations. The observer in Fig. 3(vii) is similar, but covers the possible values
the event parameter at transitions labelled with the event insert(x ).

4 Test Case Generation

4.1 Algorithms

At test case generation, we use the superposition of an observer onto an EFSM,
and views the test case generation problem as a search exploration problem. To
cover a coverage item qf is then the problem of finding a trace

tr = 〈〈l0, σ0〉 ‖ {q0}〉
a(d)
� . . .

a′(d′)
� 〈〈l, σ〉 ‖ Q〉 such that qf ∈ Q

We will use ω(tr) = a(d) . . . a′(d
′
) to denote the word of the trace tr, or just ω

whenever tr is clear from the context. In general, a single trace tr may cover
several accepting locations of the observer. We say that the trace tr covers n
accepting observer states if there are n accepting states in Q, and we use |Qf ∩Q|
to denote the number of accepting states in Q.



136 J. Blom et al.

Pass:= ∅, Max := 0, ωmax := ω0
Wait:= {〈〈s0 ‖ {q0}〉, ω0〉}
while Wait �= ∅ do

select 〈〈s ‖ Q〉, ω〉 from Wait
if |Qf ∩Q| > Max then

ωmax := ω, Max := |Qf ∩Q|
if for all 〈s ‖ Q′〉 in Pass: Q �⊆ Q′ then

add 〈s ‖ Q〉 to Pass
for all 〈s′′ ‖ Q′′〉

such that 〈s ‖ Q〉 a
� 〈s′′ ‖ Q′′〉:

add 〈〈s′′ ‖ Q′′〉, ωa 〉 to Wait
return ωmax and Max

Fig. 4. An abstract breadth-first search explo-
ration algorithm for test case generation

We are now ready to present
the test case generation algo-
rithm. We shall limit the pre-
sentation to an algorithm gener-
ating a single trace. The same
technique can be used to produce
sets of traces to cover many cov-
erage items. Alternatively, the
EFSM model can be annotated
with edges that reset the EFSM
to its initial state. A generated
trace can then be interpreted as
a set of test cases separated by
the reset edges [9].

An abstract algorithm to
compute test case is shown in
Fig. 4. To improve the presenta-
tion, we use s to denote a system of the form 〈l, σ〉, s0 to denote the initial system
state 〈l0, σ0〉, and a to denote an input action a(d). The algorithm computes the
maximum number of coverage items that can be visited (Max), and returns a
trace with maximum coverage (ωmax). The two main data structures Wait and
Pass are used to keep track of the states waiting to be explored, and the states
already explored, respectively.

Initially, the set of already explored states is empty and the only state waiting
to be explored is the extended state 〈〈s0 ‖ {q0}〉, ω0〉, where ω0 is the empty
trace. The algorithm then repeatedly examines extended states from Wait. If
a state 〈s ‖ Q〉 found in Wait is included in a state 〈s ‖ Q′〉 in Pass, then
obviously 〈s ‖ Q〉 does not need to be further examined. If not, all successor
states reachable from 〈s ‖ Q〉 in one computation step are put on Wait, with
their traces extended with the input action of the computation step from which
they are generated. The state 〈s ‖ Q〉 is saved in Pass. The algorithm terminates
when Wait is empty

The variables ωmax and Max are initially set to the empty trace and 0,
respectively. They are updated whenever an extended state is found in Wait
which covers a higher number of coverage items than the current value of Max.
Throughout the execution of the algorithm, the value of Max is the maximum
number of coverage items that have been covered by a single trace, and ωmax is
one such trace. When the algorithm terminates, the two values Max and ωmax

are returned.

4.2 Bitvector Implementation

In order to efficiently represent and manipulate the set Q of observer locations
we shall use bitvector analysis [15]. Let the set Q be represented by a bitvector
where each bit represents an observer location q′. Then each bit is updated by
the following function
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fq′(q′) =
∨

〈b,q〉∈ in(q′)

q ∧ b

where in(q′) = { 〈b, q〉 | q
b−→ q′ ∈ B } is the set of pairs of predicates b and

source locations q of the edges ingoing to the location q′. That is, given a state

of the superposition 〈〈l, σ〉 ‖ Q〉 and an EFSM-transition 〈l, σ〉 a(d)−→ 〈l′, σ′〉 the
bit representing q′ is set to 1 if there is an observer edge q

b−→ q′ ∈ B, such

that q ∈ Q and 〈l, σ〉 a(d)−→ 〈l′, σ′〉 |= b. Otherwise the bit representing q′ is set
to 0. It should be obvious that this corresponds precisely to the semantics of an
observer superposed onto an EFSM, described in Section 3.2.

Example 4. When the observer in Fig. 2(ii) is superposed onto the EFSM in
Fig. 2(iii), we have E = E′ = E = {e0 , e1 , e2} and Z = v = {x , y}. Thus, we
have that

Q =
{

q0
}
∪

{
q1(z, ea) | z∈ v ∧ ea∈E

}
∪

{
du(z, ea, eb) | z∈ v ∧ ea, eb ∈ E

}
Any enumeration of the set can be used as index in the bitvector. As the observer
has three locations with parameters we get three types of bitvector functions:

fq0(q0) = q0 ∧ tt (1)
fq1(vi ,ej )(q1(vi , ej )) = ( q0 ∧ def (vi) ∧ (edge = ej ) ) ∨

( q1(vi , ej ) ∧ ¬def (vi) ) (2)
fdu(vi ,ej ,ek )(du(vi , ej , ek )) = ( q1(vi , ej ) ∧ use(vi) ∧ (edge = ek ) ) ∨

( du(vi , ej , ek ) ∧ tt ) (3)

There is one function of type (1), six of type (2), and 18 of type (3). Note that
(1) is always true and that (3) will remain true once it becomes true, due to
implicit self-loops in these locations.

4.3 Implementation Efforts

Some of the techniques presented in this paper have been implemented in a pro-
totype version of the model-checking tool Uppaal [16], extended for test case
generation [10]. The current implementation uses the bitvector implementation
described above, but is limited to a number of predefined coverage criteria. For
a given coverage criteria (a set of) test cases can be generated from system spec-
ifications described as DIEOU-timed automata [9]. We are currently in progress
with a larger case-study in collaboration with Ericsson where this tool will be
applied.

We are also developing a tool operating on a subset of the functional language
Erlang, also using the techniques presented in this paper. The tool will be applied
in a case-study in collaboration with Mobile Arts.
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5 Conclusions

We have presented a technique for specifying coverage criteria in a simple and
flexible manner using observer automata with parameters. Observers have shown
to be a flexible tool in model checking and run-time monitoring, and by this pa-
per we have shown that they are a versatile tool for specifying coverage criteria
for test case generation and test monitoring. In particular the parameteriza-
tion mechanism, as used in this paper, allows a succinct specification of sev-
eral standard generic coverage criteria. In this way, test case generation can be
transformed into a reachability problem, which can be attacked by a standard
state-space reachability tool.

In previous works, we have implemented special cases of this test case gen-
eration technique, using Uppaal, indicating that the approach is practical. We
are currently working on a general implementation of the observer concept, and
plan to apply it in a larger case study.
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Abstract. We present a semi-formal analysis method for fault-tolerant
distributed algorithms written in the distributed functional programming
language Erlang. In this setting, standard model checking techniques are
often too expensive or too limiting, whereas testing techniques often do
not cover enough of the state space.

Our idea is to first run instances of the algorithm on generated stimuli,
thereby creating traces of events and states. Then, using an abstraction
function specified by the user, our tool generates from these traces an
abstract state transition diagram of the system, which can be nicely vi-
sualized and thus greatly helps in debugging the system. Lastly, formal
requirements of the system specified in temporal logic can be checked
automatically to hold for the generated abstract state transition dia-
gram. Because the state transition diagram is abstract, we know that
the checked requirements hold for a lot more traces than just the traces
we actually ran.

We have applied our method to a commonly used open-source fault-
tolerant leader election algorithm, and discovered two serious bugs. We
have also implemented a new algorithm that does not have these bugs.

1 Introduction

The company Ericsson has developed a telecommunication switch called the
AXD 301 [7]. The control software of this switch is written in the distributed
functional programming language Erlang [2]. A major challenge in the devel-
opment of the switching software is to get the almost one million lines of code
tested in the relatively short time between releases of the product. A typical
time consuming and difficult activity is testing fault-tolerance properties. The
particular fault-tolerance we investigate here is the effect of taking down parts
of a switch (because of maintenance or hardware problems) and restart them
later in time.

We report on our case study to take away part of the testing load by analyzing
a critical part of the code by semi-formal methods. The part we looked at is
a leader election protocol. In the AXD 301, a module of about 2000 lines of
code implements both a leader election protocol and a resource manager. In
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order to be able to deal with the complexity of this module, Ericsson’s engineers
rewrote the module in two parts, separating the resource manager and the leader
election protocol. The simplified resource manager has been formally verified in
earlier work by using a model checking approach [3]. The slightly generalized
and cleaned up leader election protocol contains about 800 lines of code and is
available as open source [21].

The leader election problem is a well-known and extensively studied problem.
The objective of the protocol is for the processes among themselves to establish
a designated process, called the leader. Leader election protocols have been de-
signed for many different settings. In our case, we are interested in a solution
that is fault-tolerant. Fault-tolerance is based on communication links break-
ing or on processes that may die or revive again at any point in time. If the
currently elected leader dies or is disconnected, the surviving processes need to
elect a new leader amongst them. However, during the election process, other
processes may cease to work. We consider asynchronous communication with
buffered messages. Among the many articles published on the leader election
protocol [9, 6, 16, 17, 1], we know of only few that address all these problems. It
was actually hard to find a paper describing exactly the setting that Erlang uses:
asynchronous message passing, reliable communication channels between every
pair of processes, possible failure and/or revival of a process at any point in time
and a reliable notification mechanism of when processes die.

The algorithm used in the leader election protocol implementation we an-
alyzed was an adaptation of a previously published algorithm [16]. There is a
fixed set of processes that can die arbitrarily, and they have to negotiate a leader
among them. The first process that comes up has priority to become leader, in
order to have a selected leader as soon as possible. Only when the current leader
dies, a new leader should be elected.

There are two basic properties that the leader election implementation needs
to obey: (1) Safety — it is never the case that there are two or more leaders at
the same time; (2) Liveness — in a stable situation (i.e. processes stop dying
for a while), a leader will eventually be elected.

We have considered using model checking techniques to formally verify these
properties. However, we found that dealing with the fault-tolerance lead to state-
space explosion in the used model checkers, which severely limited the number
of processes we could deal with. More informal methods based on testing seemed
to be necessary.

The Erlang runtime system has built-in support for generating traces of the
events occurring during execution. With simple means, one can specify what one
considers an event (sending a message, receiving a message, a process dying, a
function call, etc.). Tracing can be switched on and off on demand. Studying
the traces reveals not only that an error occurred, but can also demonstrate the
chain of events that lead to the error.

We have developed a methodology for semi-formal analysis of such traces of
distributed systems (c.f. [5]). The idea is to first produce traces of the system by
generating stimuli, as in testing. Then, we build abstractions of the traces with
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the help of an abstraction function specified by the user. An abstraction func-
tion basically maps data structures in the events and states to different (simpler)
representations. An abstraction reduces the number of states, by mapping the
actual concrete states onto a set of abstract states. This also allows us to detect
cyclic behaviour in the trace, since different concrete states can be mapped to the
same abstract state. The accompanying abstract state transition diagram con-
cisely indicates the different abstract states visited during an execution, together
with the messages sent and received during the transitions. A path through such
a state diagram represents a trace, but it is not necessarily the case that the
trace is a possible trace for the system since the diagram is really a diagram for
an abstracted model of the system.

We propose to generate traces of simple instances of the software first, such
as a reduced number of processes or executing only one possible scenario. For
these traces it is easy to define abstraction functions. The same functions can
be used for more complicated instances of the software.

The generated abstractions are used in two ways: (1) They increase under-
standing of the system, and can help to more easily spot the causes of bugs (as
explained in Section 2.4); (2) We can formally verify properties of the abstrac-
tion, thus ensuring that the desired properties actually hold for all paths through
the abstract state diagram (as explained in Section 2.7).

When we applied our methodology on the implementation of the leader elec-
tion algorithm, we discovered two serious bugs. Failing to correct the bugs in
an efficient way, we also tried to implement a different algorithm for leader elec-
tion. This implementation is based on [17] and was tested with the methodology
described in this paper without finding any errors.

2 Methodology

In this section, we describe our methodology in more detail. We do this by
concretely following the analysis of a leader election algorithm in chronological
order. We start by describing the original algorithm, how we generate stimuli
to obtain system traces, and how we use abstractions to find bugs. Then, we
describe our own implementation of leader election, where all of our analyses
failed to find any errors, and discuss coverage issues related to our method.

2.1 Fault-Tolerant Leader Election Version 1

The Erlang code for the algorithm we started with is publicly available on the
web [21]. However, for simplification purposes we actually analyze a cut-down
version of this code here. All code we used in this case study is available on the
web [18].

The implementation is loosely based on a fault-tolerant leader election algo-
rithm described in [16], but with an adaptation in order to deal with faults being
dying processes instead of failing communication links.

The participating processes behave as follows. When the protocol is started
each process is given a list of all the participation processes; the position in this
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list is also the priority order for the processes. A process always plays one of the
following four roles: candidate, captured, surrendered or elected. When a process
is started it is always a candidate to become a leader. The first thing it does is
to try to capture all the other processes, by broadcasting a ‘capture’-message.
If another candidate-process receives a ‘capture’-message, the receiving process
will take action based on the priority; it will ignore messages from processes
with lower priority, and accept messages from processes with higher priority
by sending an ‘accept’-message. After accepting, the process changes its role to
being captured. A captured process will ignore ‘capture’-messages and forward
‘accept’-messages to the process that has captured it. Whenever a candidate has
captured more than half of the participating living processes, it will announce
itself as the leader by broadcasting an ‘elect’-message. If a process receives an
‘elect’-message it will immediately surrender.

Whenever the leader dies (processes discover this since the Erlang runtime
system will send a ‘DOWN’ message to all interested processes), a new election
round is started. Whenever a process revives, this process will be notified of the
(possible) presence of a leader via an ‘elect’-message as a reply from the leader
to the ‘capture’-message sent when the process revived.

When we got the algorithm, it was said that it would always eventually choose
a leader if more than 50% of the processes are alive and if the system is stable for
long enough. (It is though possible that a leader is elected with fewer processes
alive.) The algorithm is not supposed to elect a new leader unless the leader dies.

2.2 Generating Stimuli and Tracing

The Erlang Runtime System (ERTS) has built in functionality for tracing run-
ning processes. The tracing can be switched on or off at any given time, without
interfering with the execution. It is possible to trace sent and received messages,
function calls, process related events, process scheduling and garbage collection.
In a distributed environment there exists functionality for redirecting trace mes-
sages to a central collection process, in order to collect all trace data into the
same log file.
Stimuli for Leader Election Implementation. In order to generate traces
of the leader election protocol, a set of nodes is started, and a leader election
process is started on each node. The stimuli for a leader election system is killing
and reviving processes. A simulation process then randomly selects which process
to kill/revive by sending messages to the control processes. How many processes
can be dead at the same time is configured in the simulator process.

In order to further test the robustness of the leader election protocol, we
implemented a variant where we also delay messages between nodes in a random
way. The idea is that this simulates slow and/or overloaded connections. Note
that this is not tested in a standard setting where one runs all nodes on the same
hardware, since communication delays will be rather static in such a setting.
Tracing the Implementation. We first collected trace data for the simplified
version of the leader election protocol, without using message delays. When
running a leader election system with three processes, everything worked fine,
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state0
{}

state1
{candidate}

n1 init: init
n1 sent: capture*

n1 got: ’DOWN’ n1 got: capture

state2
{elected}

n1 got: accept
n1 sent: elect*

n1 got: ’DOWN’
n1 sent: elect*

state4
{surrendered}

n1 got: elect

n1 got: ’DOWN’n1 got: capture
n1 sent: elect

state3
{down}

n1 sent: DOWN

n1 init: init
n1 sent: capture*

n1 got: ’DOWN’
n1 sent: capture*

n1 sent: DOWN

n1 got: ’DOWN’ n1 got: capture

Fig. 1. Abstract trace for one process in a three node setting

but when running with five processes something was obviously wrong; there were
two processes simultaneously announcing themselves as leader! In the search for
this error, we focused on the trace data for one of the nodes which was elected as
leader. The raw trace data contained roughly 120 states and 200 message events,
a bit too many for easy overview. The problem here is that it is easy to spot
where in the trace the fault happened (two leaders are elected), but not where
in the trace the event happened that triggered the fault (the first illegal state).

2.3 Abstractions

It is clear that in order to understand larger traces of systems, one has to reduce
the information in the trace to a relevant subset of all information. One way
of doing this is by using an abstraction (c.f. [5]). Abstractions are made by
applying an abstraction function that converts each concrete state in the trace
to an abstract state, which contains less information. Several different concrete
states from the trace might actually be mapped to the same abstract state.
Thus, we can redisplay the trace by means of a state transition diagram, where
each abstract state occurs only once, and transitions occur between two abstract
states if there exists a transition in the trace between two corresponding concrete
states. However, by doing this we also lose some context, for example a state
visited exactly N times in the actual trace is represented by a loop, and thus
potentially infinitely visits, in the abstract trace. Moreover, we can also make
the sent and received messages more abstract by applying a message abstraction
function.

An example of an abstract state transition diagram of the leader election
protocol is displayed in Fig. 1. Our tool automatically generates this diagram,
given an abstraction function specified by the user. The original trace used for
this diagram is a trace of a correct execution with three leader election processes.
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Here, the abstraction function on states is tracking the state of only one process,
abstracting away the states of the other processes. Moreover, it has removed all
other information in the concrete state, but for the role a process is playing. This
diagram shows that with help of an abstraction, one can get an understanding
for the basic parts of the algorithm, since it is easy to follow how the process
moves between the different roles. We call the transition diagram generated from
a trace and an abstraction function an abstract trace.

Common Abstraction Function Building Blocks. We have implemented
a library of common abstraction function building blocks. Commonly used func-
tions are: removing parts of state data, replacing a list by its length, focusing
on the state of one process, merging states of two processes into one state, etc.
This library makes it easy to quickly define new abstraction functions.

2.4 Abstractions for Bug Finding

The idea is now to find an abstraction function which clearly helps us to establish
where in the code the bug is located. It is hard to give a general approach on how
to come up with an appropriate abstraction. Most of the time, the programmer
has some sort of intuition about what parts of the states and which events
influence a particular bug.

In the case of our bug, we have applied the following principles. Some of
the state data, such as the list of participating nodes, is the same in all states,
and such data can often be abstracted from. In the state data there are also
two lists, containing the references to monitored nodes and the nodes which are
down. The contents of these lists are not really useful, it is enough to know how
many elements there are in the lists. So, we abstract away from these lists by
remembering their length, but not their content. Concerning the events, most of
the message data can be abstracted away, only keeping the type of a message.

The above abstraction reduces the state space from 120 to 23 states, which
is small enough to overview. It is now possible to spot the bug by just looking
at the abstract trace (Fig. 2). The state where the process is elected as leader
is dark shaded in the figure (it is in the lower left half). This state is part of a
long almost non-forking path, and it is likely that the first illegal state is to find
at the top of this path. This is indeed the case and if we zoom in on two lightly
shaded states in the upper left part of Fig. 2 the result can be seen in Fig. 3.

Let us examine closer what happens in the bug-containing trace. The state
data contains three fields: the role, the number of nodes that are down, and the
number of monitored nodes. In the state labeled ’state9’ we can see that the
list of dead processes contain one process, and the list of monitored processes
contain four processes. Since processes should not monitor themselves, this is
clearly one process too many.

This bug turned out to be a mistake we made ourselves, when implementing
the cut-down version of the algorithm. We had been uncareful in the imple-
mentation and mixed up variable names. It shows, however, the usefulness and
simplicity of the approach.
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state0
{}

state1
{candidate,L0,L4}

n4 init: init
n4 sent: capture***

state2
{candidate,L1,L3}

n4 got: ’DOWN’

state4
{surrendered,L0,L4}

n4 got: elect

state5
{captured,L0,L4}

n4 got: capture
n4 sent: accept

state3
{surrendered,L1,L3}

n4 got: electstate7
{captured,L1,L3}

n4 got: capture
n4 sent: accept

state22
{candidate,L2,L2}

n4 got: ’DOWN’

n4 got: capture

state6
{down}

n4 sent: DOWN

state8
{surrendered,L2,L2}

n4 got: ’DOWN’

state9
{candidate,L1,L4}

n4 got: ’DOWN’
n4 sent: capture***

n4 got: ’DOWN’
n4 sent: capture***

n4 got: ’DOWN’

n4 got: capture

n4 sent: DOWN
n4 got: ’DOWN’

n4 sent: capture***
n4 sent: DOWN

n4 got: elect

n4 got: capture

n4 got: ’DOWN’

n4 init: init
n4 sent: capture***

n4 got: elect

n4 got: capture

state23
{captured,L2,L2}

n4 got: ’DOWN’

n4 got: capture

state10
{candidate,L2,L3}

n4 got: ’DOWN’

state11
{candidate,L3,L2}

n4 got: ’DOWN’

state12
{captured,L3,L2}

n4 got: capture
n4 sent: accept

n4 got: capture

state13
{surrendered,L3,L2}

n4 got: elect

n4 got: elect

state14
{surrendered,L2,L3}

n4 got: capture n4 got: ’DOWN’

state15
{surrendered,L1,L4}

n4 got: capture

state16
{candidate,L2,L4}

n4 got: ’DOWN’
n4 sent: capture***

n4 sent: DOWN

n4 got: ’DOWN’

state17
{candidate,L3,L3}

n4 got: ’DOWN’

state18
{elected,L4,L2}

n4 got: ’DOWN’
n4 sent: elect***

n4 got: capture
n4 sent: elect

state19
{surrendered,L4,L2}

n4 got: elect

n4 got: elect

state20
{surrendered,L3,L3}

n4 got: capture

state21
{surrendered,L2,L4}

n4 got: capture

n4 got: ’DOWN’
n4 sent: DOWN

n4 got: capture
n4 sent: accept

n4 got: elect

n4 got: capture

Fig. 2. Abstract trace containing bug

state3
{surrendered,L1,L3}

state8
{surrendered,L2,L2}

state9
{candidate,L1,L4}

n4 got: ’DOWN’
n4 sent: capture***

n4 got: capture

Fig. 3. Faulty part of abstract trace

state0
:{}

state1
n4:{candidate,L0,L4}

n4 init: init
n4 sent: capture***

n4 got: capture n4 got: accept

state2
n4:{candidate,L1,L3}

n4 got: ’DOWN’

state4
n4:{surrendered,L0,L4}

n4 got: elect

state5
n4:{down}

n4 sent: DOWN

state9
n4:{captured,L0,L4}

n4 got: capture
n4 sent: accept

state3
n4:{surrendered,L1,L3}

n4 got: elect

n4 sent: DOWN

state7
n4:{candidate,L2,L2}

n4 got: ’DOWN’

n4 got: capture
n4 sent: accept

n4 got: capture

n4 sent: DOWNstate6
n4:{surrendered,L2,L2}

n4 got: ’DOWN’

n4 got: ’DOWN’
n4 sent: capture***

n4 got: ’DOWN’

n4 got: capture n4 got: elect

n4 sent: DOWN

n4 init: init
n4 sent: capture***

n4 got: capture

n4 got: capture

state8
n4:{captured,L1,L3}

n4 got: capture
n4 sent: accept

n4 got: elect

n4 got: accept
n4 sent: accept

n4 got: capture

state10
n4:{captured,L2,L2}

n4 got: ’DOWN’

n4 got: elect

n4 sent: DOWN

n4 got: ’DOWN’

n4 got: capture

n4 got: capture

Fig. 4. Bug-free abstract trace

If we compare the abstract trace in Fig. 2 where the bug is present with an
abstraction made from a trace where the bug is fixed in Fig. 4, one can clearly
see from the graph structure that the erroneous behaviour is gone.

The First Serious Bug. After correcting this bug, we collected a new set of
traces. This time we initially observed no obvious faulty behaviour, we therefore
activated the random delaying of messages in the generation of stimuli. Now
we could observe a faulty behaviour, this time in a leader election system with
only three nodes, and again it was a violation of the safety property: Two nodes
simultaneously announced themselves as leaders. Again we turned to abstract
traces in the search for an explanation. In this case we found the error to be
present in situations where many nodes failed simultaneously.

A

B

C
capture

capture

capture
capture

accept

Fig. 5. Deadlock situation in leader election protocol
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Consider the situation in Fig. 5, where initially only process A is alive and
the priority of the processes is A > B > C. If then B and C revive more or less
simultaneously and the present leader (A) is suffering from slow connections,
it is possible that the newly revived processes will agree on a leader before the
present leader is able to announce its presence.

This is indeed a serious bug, and this bug is present also in the original Erlang
code. But it is also the case that this situation will not occur if the system is
simulated in such a way as to always have more than half of the processes alive.
So, we continued the analysis of the protocol with less aggressive stimuli.

2.5 Sanity Checks on Abstractions

We call an abstract trace sufficient if all real traces of the system are embedded
in it. Note that by construction, it is guaranteed that at least the original trace is
embedded in the abstract trace. If all possible traces of the system are embedded,
we cover all possible executions of the system. If an abstract trace is sufficient
and a property holds for this abstract trace, then it also holds for all real traces.
However, in general we do not know whether an abstract trace is sufficient. This
is related to coverage and is discussed in Sect. 2.8.

No Quiescent States. There are other problematic states where the system
can get stuck. Remember that we stimulate the system by taking down and re-
viving processes arbitrarily during tracing. If there exist a state in an abstract
trace that has only one outgoing arc labeled with a ‘DOWN’-message of a pro-
cess, something is wrong as well. This means that the system is in a state where
the only way to get out is for a process to die. Since there are no guarantee that
processes eventually will die, the system is stuck in that state.

There might be two reasons for this. One is that the abstract trace is insuffi-
cient (which means that we should have chosen a different abstraction function,
or collected more trace data). The other is that the system has a deadlock in
that state (which could indicate an error). Our tool automatically reports such
quiescent states.

The Second Serious Bug. When we investigate quiescent states for our leader
election algorithm, there is a warning for some potential deadlock nodes. Most
of those can immediately be discarded, since these are states in which there is a
leader elected and hence are not problematic states.

But there is indeed a quiescent state which indicates a real deadlock! In some
cases when the leader process dies, the remaining processes end up in a state
where a process is waiting for a message that is not going to be sent. Consider
the situation in Fig. 6, where all the processes are initially alive, A is the leader
and the priority of the processes is A > B > C. Then if A is killed, B and C are
notified of this and each receive a ‘DOWN’-message. Now, if the message to B is
faster than the message to C, it is possible for B to start a new election round and
send a ‘capture’-message to C before C receives the original ‘DOWN’-message. In
that case C will simply ignore the ‘capture’-message, since C (falsely) thinks that
A is alive and will answer the ‘capture’-message on behalf of C. When C finally
gets the ‘DOWN’-message, and starts its new election round B will ignore the
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A

B

C

capture

capture

capture

DOWN capture

DOWN

Fig. 6. Deadlock situation in leader election protocol

‘capture’-message from C with the motivation that B is higher prioritized than
C, which means that C should reply to B’s ‘capture’-message instead. Therefore
we end up in a situation where B is waiting for a message that C is not going to
send. This deadlock situation is not broken until another node dies or revives.

Thus we have discovered yet another bug in the leader election algorithm,
this bug is also present in the original, non-simplified, implementation! The error
would probably never occur when all nodes run on similar hardware, however,
our addition of delays in messages reveals a very tricky error that may show up
in very rare circumstances or when the protocol is used with nodes on different
hardware.

2.6 Fault-Tolerant Leader Election Version 2

At this point, we had discovered two serious bugs in the original leader election
implementation. We were unable to repair the implementation. So, we decided
to try to implement and analyze another algorithm for leader election. Our new
algorithm is based on ‘The Bully Algorithm for Synchronous Systems’ in [17],
but again we were forced to make some modifications in order to adapt the
algorithm to our setting.

The algorithm is quite simple and it is easy to understand how it works.
When a process comes up, it first checks whether any process of higher priority
is alive. If there is, it waits for one of these processes to become leader. If not,
the process itself decides to try to become leader. It then checks that all other
processes of lower priority either are aware of its existence, or are dead. If so, it
announces itself as leader.

The main change we made to the algorithm in the paper was to avoid restart-
ing the election process each time a process revives. This is inefficient and not
applicable to the situation where our leader election protocol is supposed to be
used. We made the change in two steps, first we changed the algorithm such
that no new election would be started if a process with lower priority than the
leader revived and later we took care of the situation where a process with higher
priority than the leader revived. This second change was surprisingly complex.
We also made some changes that did not affect the functionality, but which re-
duced the number of messages sent by the system. The code is available on the
web [18].
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After making the changes, we collected a new set of traces. We created some
different abstractions, under which the system seems to be working correctly.

2.7 Abstractions for Verification

So far, we have been able to spot errors exhibited by our abstractions either
visually or by means of simple sanity checks. However, when the abstractions
or desired properties get more complicated, to be sure that an abstract trace
obeys a given property, an automated technique is needed. Our idea is to simply
formally check properties of the abstract traces using a model checker.

LTL Properties. We formulate the properties that we want to verify in linear
time logic (LTL). In the introduction we mentioned two basic properties for a
leader election protocol: (1) There are never two elected leaders at the same
time; (2) If the system is stable, eventually a leader will be chosen. For a leader
election situation with 3 nodes, the first property can be expressed in LTL as
follows:

�(¬((l1 ∧ l2) ∨ (l1 ∧ l3) ∨ (l2 ∧ l3))). (1)

Here, li is defined to be true exactly when the leader election process running
on node i is the elected leader. So, the property can be read as: ”It is never the
case that node 1 and 2 are leader at the same time, or node 1 and 3, or node 2
and 3.”

The second property can be expressed as follows:

�(�(¬l1 ∧ ¬l2 ∧ ¬l3) ⇒ ��(d1 ∨ d2 ∨ d3)). (2)

Here, li is defined as above, and di is true exactly when node i dies. This
property can be read as: ”The only traces where no leader is chosen are those
traces where process die infinitely often.”

Checking if the above properties hold for a given abstract trace is done using
standard LTL model checking techniques [10].

Improper Cycles. Since we are modeling asynchronous message passing using
transition systems, the information needed to represent the real state of our
system consists of more than simply the state of the transition diagram. We
also need to know what messages have been sent that have not arrived yet. This
problem is illustrated by some counter examples we get of our properties. A
cycle in a counter example that contains a message M that is being received by
a transition on the cycle, but not sent by a transition of the cycle can of course
never represent a real run of the system. We call such a cycle an improper cycle.

An example is displayed in Fig. 7, which displays a situation that can not cor-
respond to an actual trace, since such a trace only consumes ‘accept’-messages.
This could not be an infinite chain of events, since that would mean that an
infinite number of ‘accept’-messages has to be produced. So, when we search for
counter examples in the LTL model checking algorithm, we also have to check
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node 14

n2@eniac:(candidate,L1,L1)
n1@eniac:(down)

n3@eniac:(surrendered,L1,L1)

n2 got accept

Fig. 7. Loop which is not a possible trace

that found cycles contain the production of all messages that are consumed. Our
property checker automatically rejects runs that contain such improper cycles.
Results. We have checked that both properties 1 and 2 hold for abstract
traces of our new implementation of the leader election algorithm, for up to N
processes. We have done most of the testing with N = 3 and N = 5, but has also
used larger N (N = 7 and N = 10). Note that this does not mean that we have
formally verified the above properties for the system; only that all generated
abstract traces satisfied the properties.

2.8 Coverage

When discussing test-based methods, the issue of coverage is central. Coverage
methods should provide some sort of measure of how much of the system one
has exercised, and this is important for evaluating the result of the testing. In
general, coverage methods can warn of potential situations where we have not
tested enough; very seldom we can know that we have indeed tested enough.
Therefore, it is good practice to apply as many different coverage measures as
possible.
Code Coverage. Erlang has a built-in module, cover, for various basic kinds of
coverage analysis. It is a very standardized set of tools, which basically provides
information of how many times each executable line of code has been accessed.
The limitations of point-coverage are well-known. For our new leader election
algorithm, we have traced the system such that we exercised all lines of the code
that were supposed to be run.
Abstract Trace Coverage. Instead of looking at how the actual generated
traces have exercised the different parts of the system, we can investigate cover-
age properties of the abstract traces.

A simple way of doing this is to specify quantitative properties of expected
events in the abstract traces. For example, for each node, how many states exist
where that node has been elected as leader? For each state and each process,
how often is it possible to reach a state where that process is dead? How much
of the theoretically reachable state space is actually reached?

For our new leader election algorithm, coverage results are of course affected
by how much tracing is done, and how the stimuli are chosen. It is interesting to
study what will happen with coverage numbers for different amount of tracing.
The measures that we considered here are the percentage of reached states and
the percentage of the states which could be left via a ‘DOWN’-transition. The
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results are not very surprising, the number of reached states as well as the
number of nodes with an outgoing ‘DOWN’-transition increased with the length
of the traces. The numbers are quickly rising for small amounts of tracing, but
levels out after further tracing. In the longest traces we reached 87% of the states
in the complete state space (it is not entirely clear that all of the states could
indeed be reached). About 30% of states had an outgoing ’DOWN’-transition,
a somewhat low number. This could be explained by the fact that the stimuli
system was not fast enough, so in many situations a killing could not happen
with our simulation technique. It is possible that this can be improved with
better stimuli generation.

3 Related Work

The leader election protocol has been extensively studied. There are many vari-
ations of this algorithm with different assumptions about the network topology
and other constraints. Published leader election algorithms are often proved
correct on paper, but implementations tend to divert a bit from the actual al-
gorithm, after which correctness is no longer guaranteed. This happened for
example with both implementations we studied, which were based on published
algorithms [16, 17].

Formal verification and formal testing are supplementary techniques. We deal
with real code, whereas there have been other approaches to deal with models of
leader election algorithms. For example, the formal verification of the IEEE 1394
leader election protocol [14] has results that cannot directly be applied to our
leader election protocol, since different assumptions are made on the network
topology and detection of faults.

The two other model checking approaches that we are aware of [11, 12] deal
with algorithms that have constraints that differ from our case. Model checking
is possible because the algorithms that are verified are essentially less complex
than the one we consider.

Different from formal testing, we do not have a formal model of the software
to generate test cases (e.g. [8, 19, 20]). We more or less construct an incomplete
model from the real traces. This model is on one hand shown to the engineers for
visual verification and on the other hand input to our model checking approach.
Given that we call all our traced events observable, we obtain an abstraction
in which all real traces are observable in the abstract trace, however, not vice
versa. We use executions of the software to obtain a model for the software with
a good coverage and apply model checking techniques on the model to test the
software.

Compared to the initial work on trace analysis for Erlang [5], we went further
than visualizing the traces as graphs, but we actually performed model checking
on those graphs. We improved the trace collection mechanism to simulate delays
in communication and to be able to handle events that occur quickly after that
tracing starts (events that we missed in the earlier setting). The latter was
necessary to be able to deal with re-starting processes.
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Another project working with trace analysis is the Java PathExplorer [13].
With this tool it is possible to specify properties for Java programs in tem-
poral logic. The program is instrumented to emit events when executed. The
properties are then checked for the event stream. The related tool Java Multi-
PathExplorer [15] takes the concept a bit further by also being able to generate
more possible traces from a single observed trace. This is done by reordering of
unrelated events. This technique could be complementary to our method that
uses abstractions to generate more possible traces.

4 Conclusions and Future Work

In this paper we describe a case-study in which we use abstraction of traces to
analyze a complex software component. By using this technique, we were able
to identify two errors in the code. We re-designed the code and verified it by the
same technique of trace abstraction, not finding any errors this time.

The described methodology of analysis and abstraction of traces is gener-
ally applicable to Erlang programs, in particular to the kind of software that
is written in industrial projects. The primitives necessary to create a trace are
part of the standard Erlang runtime system. Generating traces is rather com-
mon testing technology for engineers working with Erlang software. However, so
far, engineers look at the output traces as a textual long list of events. By the
possibility of visual verification, i.e. inspection of the graphs obtained from an
abstracted trace, motivation is created to write those abstraction functions [5].
Compared to writing extra code for testing Erlang code, writing the abstraction
functions really is a minor job, since they only address data conversion of state
and messages.

The first thing we achieve by using abstracted traces instead of analyzing the
real traces, is that there is less ‘noise’ in the output. With manual inspection
of a trace, it makes a difference whether one looks at 2000 long events or a few
dozens of short events. The second advantage is that the abstraction allows us
to detect cyclic behaviour, which need not necessarily be cyclic behaviour in the
original trace. For example, if one abstracts from a time stamp, one would be
able to see a certain message repetitively been sent from a certain state, whereas
with the time stamp, it occurs as non-cyclic in the trace. The additional cycles
not only make the trace shorter, but they also give extra insight in the behaviour
of the software. Third, one can prove properties over the abstract traces, which
then hold for many more than just the original trace. A property proved for an
abstract trace holds for all traces that result in the same abstraction. In that
way, we achieve a larger coverage by only looking at a few traces.

Since the methodology of generating traces in general cannot guarantee full
coverage, we use it for identifying errors instead of proving correctness. By prov-
ing properties that should hold, we know that something is wrong if we get
a counter example. If we cannot exhibit the found error in the actual trace,
we might have used an inadequate abstraction. For example, the abstract state
space may contain cycles that do not correspond to a cycle in the real code.
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Thus, we can detect errors in the code, but we pay the price of possibly seeing
some false negatives. However, these false negatives can also result in a better
understanding of the system.

As mentioned in the introduction, part of the AXD 301 software was verified
by using a model checking approach. Is the same approach applicable here? First
of all, the tool to generate the state space of an Erlang program [4] could not be
directly applied to the code. The tool abstracts away from process failures, thus
we could only verify all runs in which none of the processes died. Here we could
confirm that indeed a leader was selected on all branches.

It is ongoing work to add process failure and recovery to the tool. We added
it by hand to the model we obtained from the tool, immediately spotting two
major problems. First, there is the obvious state space explosion problem, re-
sulting from the explosion in possible events that can happen in different orders.
Second, the way message passing is modeled by the tool is too restrictive and
excludes particular orders of events that could happen in reality. Thus, with the
present available technology, it is a real challenge to verify the properties we
are interested in with a model checker. Therefore we think that one should first
apply the much cheaper tracing technology to find errors in the code. In case
one cannot find any error, it might be beneficial to generate the whole state
space and use the same abstraction functions to reduce the model and prove the
properties of interest.

Future Work. Possible future work includes automating the creation of the
used abstraction functions. We have also considered developing a design docu-
ment that helps software engineers to quickly create useful abstraction functions.

We would also like to see if it is possible to integrate our abstraction func-
tions with standard model checking techniques based on abstraction. In order
to increase the capacity (e.g. number of participating processes) of model check-
ing techniques even more, we probably even need to use symmetry reduction or
symbolic model checking.
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Abstract. This paper introduces a new approach for the verification of systems
with unspecified components. In our approach, some model-checking problems
concerning a component-based system are first reduced to the emptiness problem
of an oracle finite automaton, which is then solved by testing the unspecified com-
ponents on-the-fly with test-cases generated automatically from the oracle finite
automaton. The generated test-cases are of bounded length, and with a properly
chosen bound, a complete and sound solution is immediate. Particularly, the whole
verification process can be carried out in an automatic way. In the paper, a sym-
bolic algorithm is given for generating test-cases and performing the testings, and
an example is drawn from an TinyOS application to illustrate our approach.

1 Introduction

In recent years, component-based software development [20, 6] has gained enormous
popularity where large systems are built by assembling software components previ-
ously developed by the same organization, customized by third-party software ven-
dors, or even purchased as commercial-off-the-shelf (COTS) products. This develop-
ment method, however, has also posed one serious challenge to the quality assurance
issue of component-based software—externally obtained components could be a new
source of system failures. And the response to this challenge is greatly complicated by
some intrinsic characteristics of component-based software: 1) for copyright or patent
reasons, source codes or design details of externally obtained software components are
usually not available to system developers; 2) software components are generally built
with multiple sets of functionality [15] and with huge state space in their interfaces; 3) in
many applications, software components are used for dynamic upgrading or extending
running systems [30] that are too expensive or not supposed to be stopped at all. For
instance, in practice, testing is almost the most natural resort to solve the problem; and
when integrating a component into a system, developers may choose to either extensively
test the component in isolation or hook the component with the system and conduct in-
tegration testing. The problem with the first choice, however, is that it is usually difficult
to know when the testing over the component is adequate, and indiscriminately testing
all the functionality of a software component is not only expensive but sometimes also
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infeasible due to the second characteristic. The second choice is not always applicable
due to the third characteristic. On the other hand, for safety-critical and mission-critical
systems, formal verification techniques, like model-checking [9], are usually desired
over the testing techniques to establish the solid confidence for a reliable component.
Yet, existing formal verification techniques are not always applicable either, due to the
first characteristic.

Clearly, this problem plagues both component-based software systems and modular-
ized hardware systems that contain externally obtained components. Generally, we call
such systems as systems with unspecified components (in spite of the fact that in many
cases, the components are partially specified, our approach still applies). In this paper, we
study some model-checking problems, i.e., reachability, safety, and LTL Model-checking
problems, for systems with unspecified components.

Most of the current work addresses this problem from the viewpoint of compo-
nent developers, i.e., how to ensure the quality of components before they are released
[33, 29, 24, 34]. This view, however, is fundamentally insufficient: an extensively tested
component (by the vendor) may still not perform as expected in a specific deploy-
ment environment, since the deployment environments of a component could be quite
different and diverse such that they may not be thoroughly tried by the vendor. We
approach this problem from system developers’ point of view: how to ensure that a
component functions correctly in a host system where the component is deployed. The
idea of our approach is simple: with respect to certain requirements about a system,
derive and test the expected behaviors for the unspecified components. Specifically, we
first reduce the model-checking problems concerning systems with unspecified compo-
nents to the emptiness problem of oracle finite automata [35], which are finite automata
augmented with query tapes and the ability of querying some external oracles during
its computation. This is similar to the conventional automata-theoretic approaches for
model-checking [32]. The difference, however, is that decision problems in conventional
automata-theoretic model-checking approaches generally have analytic solutions, while
the emptiness problem of an oracle finite automaton can only be resolved by querying the
oracles with query strings of length bounded by some B. Since each query in the oracle
automaton is equivalent to running a test-case corresponding to the query string over an
unspecified component, so essentially the solution to solve the emptiness problem is a
testing process. But the key point is the generation of test-cases. In this paper, we give
an efficient testing algorithm that only generates test-cases that are useful to solve the
problem, and performs testing on the fly. Moreover, with an appropriately chosen bound
B, our approach is both sound and complete.

2 Preliminaries

2.1 The System Model

In this paper, we consider systems consisting of a host system and a collection of com-
ponents whose design details are not given. Such a system is denoted by

Sys = 〈M, X1, ..., Xk〉 (1)



An Automata-Theoretic Approach for Model-Checking Systems 157

for some k ≥ 1, where M is the host system and each Xi, 1 ≤ i ≤ k, is an unspecified
component. Both the host system M and all the unspecified components Xi’s are finite-
state transition systems and they communicate synchronously via a finite set of input
and output symbols.

Formally, a component Xi can be viewed as a quintuple

〈Si, s
i
init, Σi,∇i, Ri〉, (2)

where Si is a finite set of states, si
init ∈ Si is the initial state, Σi is a finite set of input

symbols, ∇i is a finite set of output symbols, and Ri ⊆ Si × (Σi ∪ ∇i) × Si is the
transition relation. Transitions in Si × Σi × Si are called input transitions, while those
in Si × ∇i × Si are called output transitions. Since Xi is unspecified, its states set
Si and transition relation Ri are not supposed to be given. But we can assume that its
sets of input and outputs symbols, Σi and ∇i as well as an upper bound mi for Xi’s
number of states |Si| are always given, we also assume that a special input symbol
(not in Σi) “reset” always makes Xi return to its initial state si

init regardless of its
current state. Furthermore, for each unspecified component Xi, we assume that it is
input-deterministic, i.e., for any α ∈ Σi, if (s, α, t) ∈ Ri and (s, α, t′) ∈ Ri then t = t′;
we also assume that Xi is output-deterministic, i.e., for any β ∈ ∇i and β′ ∈ Σi∪∇i, if
(s, β, t) ∈ Ri and (s, β′, t′) ∈ Ri then β = β′ and t = t′. These two latter assumptions
ensure that black-box testing can be efficiently performed on Xi. A behavior of Xi is a
sequence of symbols in Σi ∪ ∇i: c0c1..., such that there is a sequence of states s0s1...
with s0 = si

init and (sj , cj , sj+1) ∈ Ri for each j ≥ 0.
The host system M , formally, is also defined as a tuple 〈S, Γ, Renv, Rcomm, sinit〉,

where

– S is a finite set of states;
– Γ is a finite set of event symbols;
– Renv ⊆ S × Γ × S defines a set of environment transitions, where each transition

(s, a, s′) ∈ Renv makes M move from state s to state s′ upon receiving an event
(symbol) a ∈ Γ from the outside environment1;

– Rcomm ⊆ S×
⋃

1≤i≤k

(Σi∪∇i)×S defines a set of communication transitions, where

each transition (s, α, s′) ∈ Rcomm with α ∈ Σi (called an output transition) makes
M move from state s to state s′ as well as send α to the unspecified component Xi,
while each transition (s, β, s′) ∈ Rcomm with β ∈ ∇i (called an input transition)
makes M move from state s to state s′ upon receiving β from Xi; and,

– sinit ∈ S is M ’s initial state.

For the Sys defined above, we assume that the set Γ , all Σi’s and ∇i’s are pairwise
disjoint. This assumption excludes broadcasting communications in our system model.
For simplicity’s sake, we also require that each unspecified component Xi is closed2 in

1 We assume that Γ always includes a special symbol ε such that (s, ε, s′) makes M move from
state s to state s′ without receiving any event symbol.

2 Note that this assumption does not limit the expressiveness of our model, since two communi-
cating components can be regarded as one component.
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the sense that it communicates only with the host system M ; i.e., Xi only receives input
symbols sent by M and sends output symbols only to M . Finally, it is worthwhile to
notice that the system model defined here covers both systems that are sequential com-
positions of components and systems that are just collections of concurrently running
components. This model is also flexible enough to characterize the two-way communi-
cations between the host system and a component in the form of function calls or in the
form of synchronized events.

A behavior of the system Sys is a sequence τ of symbols in Γ ∪
⋃

1≤i≤k

(Σi ∪ ∇i):

c0c1. . . such that: 1) there exists a sequence θ of states s0s1. . ., where s0 = sinit and
(sj , cj , sj+1) ∈ Renv (resp.(sj , cj , sj+1) ∈ Rcomm ) if cj ∈ Γ (resp. cj ∈ Σi ∪ ∇i

for some 1 ≤ i ≤ k); 2) for each 1 ≤ i ≤ k, let τi denote the subsequence of τ
consisting of symbols only in Σi and ∇i, then τi is a behavior of Xi. The combination
of the behavior τ and the state sequence θ is also a sequence: s0c0s1c1s2. . ., called a
computation of Sys. For any given state s ∈ S, we say that the system Sys can reach s
iff Sys has a computation on which s appears (i.e., s0c0s1c1. . .s). Note that, in the case
when Xi is fully specified, the system can be regarded as an I/O automaton [23]. As

Fig. 1. A simple communication system

an illustrating example, we consider a simple system Sys = 〈M, X〉 that has only one
unspecified component X . In this system, M keeps receiving messages from the outside
environment and then transmits the message through X . The unspecified component
X accepts only one input symbol send, but has three output symbols yes, no and ack.
The transition graph of M is depicted in Figure 1, where a suffix ? denotes an input
transition (e.g., ack?), a suffix ! denotes an output transition (e.g. send!), and an infix /
is an abbreviation (to save space) for a pair of consecutive output/input transitions (e.g.,
send!/yes?), while a symbol without any suffix denotes an event transition (e.g. msg).

2.2 Black-Box Testing

Black-box testing is a technique to test a system without knowing its internal structure.
The system is regarded as a “black-box” in the sense that its behavior can only be deter-
mined by observing (i.e., testing) its input/out sequences. Each unspecified component
Xi defined in the previous subsection can be regarded as a “black-box”. But, our defini-
tion of an unspecified component in (2) is not the Mealy machine as used in traditional
black-box testing. So, for the purpose of testing over Xi, we assume that whenever Xi
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is sent an input symbol in Σi, it immediately outputs a special output symbol (not in ∇i)
“yes” or “no” to indicate whether the input symbol is accepted or not. Also we assume
that Xi has a special input symbol (not in Σi) “probe” that always makes Mi execute an
output transition (s, β, s′) ∈ Ri if s is its current state, or just output the special symbol
“no” if there are no such transitions. Let πj denote the j-th element of a string π, then
the following algorithm BlkBoxTest(Xi, π) is used in this paper to test whether π is an
behavior of Xi:

Algorithm 1 BlkBoxTest(Xi, π)
1: send “reset” to Xi;
2: for(j := 0, j < |π|, j + +)
3: if πj is an input symbol α ∈ Σi

4: if send(Xi, α)=”No”
5: return “No”;
6: else if πj is an input symbol β ∈ ∇i

7: if send(Xi, “probe”) �= β
8: return “no”;
9: return “yes”;

3 Oracle Finite Automata

In a recent paper [35], we studied oracle finite automata that are finite automata aug-
mented with queries to some oracles. In that paper, we show that, in many cases, the
emptiness problems (whether an oracle finite automaton accepts an empty language)
are bounded testable; i.e., one can calculate a number B (called query bound) such
that querying the oracles with query strings not longer than B is sufficient to solve
the emptiness problems. We have obtained computable query bounds B for various
classes of oracles for various restricted forms of oracle finite automata (e.g., regular
oracles, context-free oracles, commutative semilinear oracles, etc.). However, efficient
algorithms for solving the problem were not given in [35]. In this section, after we recall
some basic definitions on oracle finite automata,we given an efficient dynamic testing
algorithm to solve the emptiness problem of oracle automata, which in turn will be used
to solve the model-checking problems concerning systems with unspecified components
in the next section.

3.1 Definitions

An oracle automaton is a finite automaton augmented with a finite number of query tapes
(that are initially empty) and the power of querying some oracles during its computation.
Let O be a class of languages over alphabet Σ. An oracle O is a language in O whose
definition is unknown, but querying the oracle with a word w on Σ (i.e., w ∈ Σ∗) always
gives a definite "yes" or "no" answer (depending on whether w is a word of O). Formally,
an oracle finite automaton (OFA) with k oracles drawn from O (written as MO), is a
tuple

〈S, Σ, R, sinit, F, k〉, (3)
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where Σ is the given alphabet, S is a finite set of states with sinit being the initial state
and F ⊆ S being a set of accepting states. R is a (finite) set of transitions, each of which
is one of the following:

– a input transition, s
a→ s′, which makes M move from state s to state s′ after reading

an input symbol a;

– a write transition, s
write(i,a)→ s′, which makes M move from state s to state s′ after

appending a symbol a to the end of the i-th query tape;

– a positive-query transition, s
query(i)→ s′, which makes M move from state s to state

s′ when querying the i-th oracle (with the i-th query tape content as the query string)
returns a “yes" answer;

– a negative query transition, s
¬query(i)→ s′, which makes M move from state s to

state s′ when query(i) returns a “no" answer;

– or a reset transition, s
reset(i)→ s′, which makes M move from state s to state s′ and

resets the i-th query tape content to be empty,

where s, s′ ∈ S, a ∈ Σ, and 1 ≤ i ≤ k. Note that the syntactical definition of
MO does not include any definition of its oracles, except that they should be drawn
from O. So MO actually defines a collection of OFAs, and in the following, we shall
use MO(O1, . . ., Ok) to denote the specific OFA associated with k oracles O1, . . ., Ok

drawn from O.
The semantics of an oracle finite automaton MO(O1, . . ., Ok) can be defined as

usual. A word w is accepted by M(O1, . . ., Ok) if there is an accepting run over w. The
language accepted by MO(O1, . . ., Ok), L(MO(O1, . . ., Ok)), is the set of all words
accepted by MO(O1, . . ., Ok).

Syntactically, an oracle Buchi automaton (ω-OFA) MO
ω is an oracle finite automaton

MO in (3). But they are semantically different. An ω-word wω ∈ Σω is accepted
by MO

ω (O1, . . ., Ok) if there is an ω-run on wω such that some accepting state in F
appears infinitely often. The ω-language Lω(MO

ω (O1, . . ., Ot)) is still the set of ω-words
accepted by the ω-OFAMO

ω (O1, . . ., Ot).

3.2 Testability of the Emptiness Problem

For the OFAs and ω-OFAs defined in the previous subsection, various decision problems
can be considered. In this paper, we study the emptiness problem, which is to decide
whether an OFA MO(O1, . . ., Ok) accepts an empty language. In the next section, we
will show that this emptiness problem is closely related with some model-checking
problems for systems with unspecified components. Obviously, since the behavior of
an OFA depends on the query results with its oracles and the definitions of the oracles
are unknown, we can not analytically solve the problem only from the definition of M
itself.

Recall that an oracle O is a language drawn from some class of languagesO. Suppose
that O is the class of languages accepted by deterministic finite automata (DFA) with at
most m states. Then a finite automaton (without oracles) T can be constructed to solve
the emptiness problem of the OFA MO(O1, . . ., Ok) as follows:
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1. for each oracle Oi, T constructs a DFA Ai that accepts exactly the language Oi by
querying Oi with all words on Σ with length less than 2m− 1 [31], and saves each
Ai on its working tape;

2. T starts to faithfully simulate M except that when M queries an oracle Oi with a
query string w, T runs the DFA Ai on its working tape (whose length is bounded by
2m − 1) with w as Ai’s input, and the query is considered successful if Ai accepts
w, or vice versa.

Obviously, MO(O1, . . ., Ok) accepts an empty language iff T accepts an empty
language. Since the emptiness problem ofT can be analytically solved (afterT constructs
all the Ai’s.), so does the the emptiness problem of MO(O1, . . ., Ok). Additionally,
because the above construction involves pre-querying all oracles with query strings not
longer than 2m − 1, which can be viewed as a testing process, we also say that the
emptiness problem of MO(O1, . . ., Ok) is (2m − 1)-testable.

Let OFADFA(m) denote the OFAs whose oracles are drawn from the class of lan-
guages accepted by deterministic finite automata (DFA) with at most m states. Then we
have the following conclusion:

Theorem 1. The emptiness problem for OFADFA(m) is (2m − 1)-testable.

Similarly, let OFADFA(m)
ω denote a oracle Buchi automata whose oracles are drawn

from the class of languages accepted by deterministic finite automata (DFA) with at
most m states. Then we have the following conclusion:

Theorem 2. The emptiness problem for OFADFA(m)
ω is (2m − 1)-testable.

Clearly, not every OFA’s emptiness problem can be solved in this way; i.e., not every
OFA’s emptiness problem is testable. For instance, OFAs associated with oracles from
context-free languages are proved to be not testable (for a detailed exposition about the
testability of oracle automata, see [35]).

3.3 A Dynamic Testing Algorithm

The solution to the emptiness problem for OFADFA(m) and OFADFA(m)
ω in the pre-

vious subsection involves pre-querying the oracles indiscriminately with all possible
strings with length shorter than 2m− 1. This would be extremely inefficient in practice,
considering the fact that there are an exponential number (|Σ|2m−1) of such strings.

In this subsection, we introduce a more efficient algorithm to solve the emptiness
problem for OFADFA(m) and OFADFA(m)

ω . The new algorithm only queries the oracles
with query strings that could be “generated" by the OFAs. Since each query to an oracle
can also be viewed as a test over the oracle where the query string is a test-case, this
algorithm can also be viewed as a dynamic testing process where test-cases are generated
on-the-fly.

Suppose that MDFA(m) is an OFA as defined in (3). Without loss of generality,
we assume that M is associated with only one oracle (i.e., k = 1); generalization to
multiple oracles is straightforward. Consequently, there will be only one query tape
in M . Then we write instructions reset(i), write(i, a), query(i), and ¬query(i) as
reset, write(a), query, and¬query, respectively. A transition relation r is a subset of
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S×S, where S is the state set of M . We use r1 ◦ r2 to denote the relation obtained from
composing relation r1 with relation r2 , Intersect to denote the intersection operator,
and TransClosure(r) to denote the transitive closure of a relation r, respectively. We
also use Empty(r) to test whether a relation r is empty. Then, from the definition of M ,
we define the following transition relations:

rinput = {〈s, s′〉 : ∃a, s
a→ s′ ∈ R},

rreset = {〈s, s′〉 : s
reset→ s′ ∈ R},

rwrite(a) = {〈s, s′〉 : s
write(a)→ s′ ∈ R},

rquery = {〈s, s′〉 : s
query→ s′ ∈ R},

r¬query = {〈s, s′〉 : s
¬query→ s′ ∈ R}.

We first present the algorithm, TestEmptiness(B), for testing the emptiness of
MDFA(m), where the query strings are not longer than B. Later, we will describe an
algorithm for testing the emptiness of M

DFA(m)
ω .

Algorithm 2 TestEmptiness(B)
1: l := 0;
2: Θ := {({〈s, s〉 : s ∈ S}, Λ)};
3: E = {〈sinit, sinit〉};
4: Θ′ := Θ;
5: for each (r, w) in Θ with |w| = l
6: r′ := r ◦ TransClosure(rinput);
7: if ¬Empty(r′ ◦ rquery) or ¬Empty(r′ ◦ r¬query)
8: query the oracle with query string w;
9: if the query returns yes
10: r′ := r ◦ TransClosure(rinput ∪ rquery);
11: if the query returns no
12: r′ := r ◦ TransClosure(rinput ∪ r¬query);
13: replace the entry (r, w) in Θ with (r′, w);
14: r′′ := r′ ◦ rreset;
15: if ¬Empty(r′′)
16: E := TransClosure(E ∪ r′′ ∪ rinput);
17: for each a ∈ Σ
18: r′′ := r′ ◦ rwrite(a);
19: if ¬Empty(r′′)
20: add (r′′, wa) to Θ;
21: l := l + 1;
22: for each (r, w) in Θ
23: r′ := Intersect(E ◦ r, {sinit} × F );
24: if ¬Empty(r′)
25: return “unsuccessful";
26: if Θ′ and Θ are equal or l > B
27: return “successful";
28: goto 4;
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The TestEmptiness algorithm works as follows. We maintain a finite set Θ of pairs
of a relation r and a word w. For two states s and s′, 〈s, s′〉 is in r iff, starting from state
s and with empty query tape, there is some input word such that state s′ is reached (after
running M on the input) with the query tape content w, during which no reset occurs.
The algorithm also maintains a relation E: for two states s and s′, 〈s, s′〉 is in E iff,
starting from state s and with empty query tape, there is a run of M that brings to state s′

and also with empty query tape. After initializing Θ and E, the entire algorithm works as
a loop from statement 4 to statement 28 and back. In the l-th round (l starts with 0), the
algorithm updates an element (r, w) in Θ with |w| = l, realized by changing w into wa
(i.e., write(a) on the query tape). However, transitions like reading input symbols and
querying the oracle can happen before this write, and obviously, the query result matters.
This is shown in statements 6–13 where an updated version (r′, w) of (r, w) is replaced
in Θ (i.e., statement 13). Notice that, a query is performed when necessary shown in
statement 8. Then, write(a) is implemented in statements 17–20 to add longer query
strings wa into Θ. Clearly, w can also be changed into an empty string through a reset,
which causes an update on E (recalling the meaning of E mentioned earlier) shown in
statements 14–16. Finally in the round, statements 22–27 are used to check whether M
accepts an empty language. Clearly, according to the semantics of Θ, if it has a (r, w)
where r contains the pair of the initial state and an accepting state, then obviously M
accepts a nonempty language — an “unsuccessful" is returned as the result of statements
23–25. If the set Θ does not change in the round (so further rounds are not necessarily)
or the level l is higher than the given bound B, then M must accept an empty language
(i.e., returns “successful" as in statement 27).

It’s not hard to show that the above algorithm is both sound and complete, if one
chooses a boundB ≥ m·|M |. It shall also be noted that the algorithm can be implemented
symbolically. This is because a relation can be represented symbolically as a Boolean
formula whose satisfying assignments can be further encoded with a BDD [7]. Operations
like TransClosure, Intersect, ◦, Empty are all standard operations in existing BDD
libraries [28].

We can construct another algorithm ω-TestEmptiness for testing the emptiness prob-
lem of M

DFA(m)
ω , using TestEmptiness. This algorithm works as follows. It first con-

structs an OFA M ′ from the ω-OFA M that works as follows. M ′ first guesses an
accepting state in F (the set of accepting states in the ω-OFA M ) and faithfully simu-
lates M . M ′ accepts an input word if M enters the guessed accepting state for m times.
Clearly, M ′ is an OFA (instead of an ω-OFA), and it is not hard to show that M ′ ac-
cepts an empty language iff the ω-OFA M does. Then ω-TestEmptiness calls algorithm
TestEmptiness(B) running on M ′ with B ≥ |F | · |M | ·m2. One can also show that the
algorithm ω-TestEmptiness is both sound and complete.

4 The Model-Checking Problems

As mentioned in Section 1, this paper studies some model-checking problems, i.e., the
reachability, safety, and LTL model-checking problems for systems with unspecified
components. In this section, we show that these model-checking problems can be first
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reduced to the emptiness problem of oracle finite automata, and then be solved by testing
the unspecified components with the algorithms defined in the previous section.

Suppose that Sys = 〈M, X1, ..., Xk〉 is defined in (1). Let m = max1≤i≤k mi

(recall that mi is an upper bound for the number of states in Xi). The reachability
problem is to decide: starting from its initial state, whether Sys can reach some state in
a given set Bad of states; i.e., whether Bad is reachable in Sys (in practice, Bad may
specify some “bad" states that are not supposed to be reached).

To solve this problem, we first construct an OFA, MDFA(m)
OFA (O1, . . ., Ok) in (3) from

the definition of Sys as follows:

1. for each 1 ≤ i ≤ k, let oracle Oi denote the set of behaviors of the unspecified
component Xi (remember that an oracle is a language without detailed definition);

2. let MOFA have the same set of states and same initial state as M ;
3. let MOFA’s Σ be the union of Γ and all Σi’s and ∇i’s in Sys;
4. let Bad be MOFA’s accepting states;
5. for each transition (s, a, s′) in M with a ∈ Γ , add a transition (s a→ s′) to MOFA;
6. for each transition (s, α, s′) in M with α ∈ Σi for some 1 ≤ i ≤ k, add a transition

(s
write(α,i)→ s′) to MOFA;

7. for each transition (s, β, s′) in M with β ∈ ∇i for some 1 ≤ i ≤ k, add a new state

s′′, as well as two transitions (s
write(β,i)→ s′′) and (s′′ query(i)→ s′) to MOFA.

For instance, from the system depicted in Figure 1, we can construct an OFA as shown
in Figure 2 (since this OFA has only one query tape, in Figure 2, we write instructions
write(i, a) and query(i) as write(a) and query respectively).

Fig. 2. An oracle finite automaton

Now it is easy to see that Bad is not reachable in the system Sys iff the constructed
MOFA accepts a nonempty language. Then we have,

Theorem 3. The reachability problem for the system Sys is testable.

The safety problem is to decide whether every behavior of the system Sys is contained
in a given regular language R. Assume that the complement of R can be accepted by a
finite automaton MR and let M̄ be the Cartesian product of MR and M . Notice that each
state in M̄ is a pair of states in MR and M respectively and M̄ totally has |MR| · |M |
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number of states; i.e. |M̄ | = |MR| · |M |. Let F denote the set of states in M̄ , each
of which contains a final state of MR. Similar to the construction in the reachability
problem (except that F would be the OFA’s accepting states), we can construct an
OFA, M̄

DFA(m)
OFA (O1, . . ., Ok) from this M̄ as well as the unspecified components Xi,

1 ≤ i ≤ k. Then it shall be noticed that the safety problem is true iff the constructed
M̄OFA accepts an empty language. Hence we have,

Theorem 4. The safety problem for the system Sys is testable.

Next, we consider the model-checking problems concerning ω-behaviors of the sys-
tem Sys; i.e., the LTL model-checking problem.

The linear-time temporal logic (LTL) views the behaviors of a finite-state system
as a set of paths, i.e., infinite words on an alphabet Σ. And LTL formulas, which are
interpreted over paths, are defined as follows:

φ ::= a | ¬φ | φ ∧ φ | Xφ | φUφ,

where a ∈ Σ is an atomic proposition. X is the next operator, and U is the until
operator. We interpret each atomic proposition a as the singleton set {a}. Intuitively, a
path σ satisfies an atomic proposition a if the first symbol of σ is symbol a. A path σ
satisfies Xφ if σ1 (by deleting the first symbol in σ) satisfies φ. σ satisfies φUψ if there
is a suffix σi (by deleting the first i symbols) of σ such that (1). the suffix satisfies ψ
and (2). φ is consistently satisfied on each σj with 0 ≤ j < i. Notice that our treatment
of atomic propositions here is essentially equivalent to a standard LTL definition [10]
(though the appearance of ours is a little different). LTL is capable of expressing many
interesting properties of a reactive system. For instance, the property “the pump is on
for infinitely many times" can be expressed as ��pumpOn (where �φ (eventually φ)
is an abbreviation for true U φ, and �φ (always φ) stands for ¬�¬φ.). We use [f ] to
denote the set of ω-words that satisfy f . It is known that [f ] can be accepted by a Buchi
automaton (an ω-OFA without the query tapes) with O(2|f |) number of states, where
|f | is the length of f ).

The LTL model-checking problem is to decide whether every ω-behavior of the
system Sys satisfies a given LTL formula f . Similar to the standard LTL model-checking
approach [32], we define M̄ to be the Cartesian product of M and the Buchi automaton
that accepts [¬f ]. Similar as before, we construct an ω-OFA, M̄

DFA(m)
ω (O1, . . ., Ok)

from this M̄ as well as the unspecified components Xi s. Observe that the LTL model-
checking problem is equivalent to checking the emptiness of M̄

DFA(m)
ω (O1, . . ., Ot).

Hence, we have the following result:

Theorem 5. The LTL model-checking problem for the system Sys is testable.

Note that in the above constructions, the oracles actually characterize the behaviors
of the unspecified components. Therefore, when we apply the TestEmptiness algorithm
to the constructed OFAs (OFAωs), line 8 of TestEmptiness, i.e., “query the oracle with
string w” should be replaced with BlkBoxTest(X, w). That is, the model-checking prob-
lems for the systems Sys are finally reduced to testings over the unspecified components
in Sys.
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Remark. As we have seen from the above reductions from the model-checking prob-
lems on Sys to the emptiness problems for the constructed MOFAs, there are no reset
and negative query transitions in MOFA. This implies that the reduction and the algo-
rithms still work when we understand each mi, instead of being the number of states in
component Xi, to be the number of states in a nondeterministic finite automaton that
accepts the behaviors of Xi. This will greatly bring down the bound B for query strings
for the algorithms TestEmptiness and ω-TestEmptiness. Also, the above argument still
applies, if we further allow “reset” to be an ordinary input symbol of Xi, i.e., “reset”
can appear on a transition in Sys. Clearly, the transition containing a “reset” in sys
corresponds to a reset transition in the OFA to which Sys is reduced.

5 Applications

In this section, we consider a TinyOS application. TinyOS is a lightweight operating
system for networked sensors [18]. It is designed with a highly modularized architecture
such that a specific application can be easily built by assembling just the software compo-
nents required to synthesize the application from the hardware components. In a TinyOS
application, components are glued together through interfaces. An interface consists of
a set of commands and a set of events, and each component declares the interfaces it
provides to other components and the interfaces it shall use from other components. The
provider of an interface must implement a command handler for each command in the
interface; and the user of an interface must implement an event handler for each event
in the interface. The command handlers return a boolean value indicating a success or
failure. A TinyOS application is event-driven; i.e., it executes by synchronizing events
and commands between its components.

For instance, consider a data acquirement application which periodically transmits
the reading of a photo sensor via some underlying communication network. This appli-
cation consists of a host system and three components: timer, photo and comm whose

Fig. 3. A data acquirement system
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functionality are as implied by their names. All three components respond to three stan-
dard commands: init, start, and stop. Particularly, the timer component also signals an
event fired when the time interval set runs out. The photo component always responds
to a command getdata, but it signals an event dataready only when the sensor’s reading
is ready. The comm component always responds to a command send, but it signals an
event done only when the data is successfully sent.

Suppose the internal specifications of the three components are not available, but
we know they are all finite state transition systems. Then each of them can be treated
as an unspecified component in (2), and the system can be viewed as a system in (1).
The transition graph of the host system is depicted in Figure 3, where s0 is the initial
state, suffix “?” is used to denote an event coming from a component, suffix “!” is used
to denote a command sent to a component, infix “/” is used as an abbreviation (to save
space) for a pair of consecutive command and event, symbols without any suffix denote
commands from the outside world, and ε denotes an empty symbol. Notice that, in
Figure 3, we use two additional events “yes” and “no” to indicate the return value of a
command handler (i.e., the success or failure of a command), and we also used “all” as
an abbreviation for all of the three components. 3

Then we can consider the following LTL model-checking problem for the system
Sys (which can be expressed in the LTL formalism defined earlier):

– Sys, s0 |= AG(s6 → X((¬s6) U s7)), i.e., on all computations of Sys, no two
photo.dataready outputs can be sent without receiving a photo.getdata message.

From the results presented in this paper, this LTL model-checking problems can
be reduced to the emptiness problem of an ω-OFA constructed from the system. And
the emptiness problem of the ω-OFA can be solved by querying (testing) the oracles
(unspecified components) with strings of bounded length.

6 Related Work

In the formal verification area, there has been a long history of research on verifica-
tion of systems with modular structure (called modular verification [27]). A key idea
[21, 17] in modular verification is called the assume-guarantee paradigm: A module
should guarantee to have the desired behavior once the environment with which the
module is interacting has the assumed behavior. There have been a variety of imple-
mentations for this idea (see, e.g., [1]). However, the assume-guarantee idea does not fit
with our problem setup since it requires users to have clear assumptions about a mod-
ule’s environment. Although Giannakopoulou et. al.[14] introduced a novel approach to
generate assumptions that characterize exactly the environment in which a component
satisfies its property. Their donot generalize to systems with unspecified components
where a purely formal method is not applicable.

In the past decade, there also has been some research on combining model-checking
and testing techniques for system verification, which can be classified into a broader class

3 This example comes from the TinyOS distribution [4], and we abstracted its original nesC
source code into this automaton form.
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of techniques called specification-based testing. But most of the work [8, 19, 11, 13, 3, 5,
2] just utilizes model-checkers’ ability of producing counter-examples from a system’s
specification to generate test-cases against an implementation. In spirit, our work is
closely related with the series of work by Peled et. al. [26, 16, 25] where they studied the
issue of checking a black-box against a temporal property (called black-box checking).
But our problem setup is on the verification of component-based systems, and we focus
on how to derive test-cases for unspecified components from the host system. Their
approach requires a clearly-defined property (LTL formula) about the black-box, which is
not always possible in component-based systems. Fisler et. al. [12, 22] introduced an idea
of deducing a model-checking condition for extension features from the base feature to
study model-checking feature-oriented software designs. Unfortunately, their approach
relies totally on model-checking techniques; their algorithms have false negatives and
do not handle LTL formulas.

References

1. Rajeev Alur, Thomas A. Henzinger, Freddy Y. C. Mang, Shaz Qadeer, Sriram K. Rajamani,
and Serdar Tasiran. MOCHA: Modularity in model checking. In CAV’98, volume 1427 of
LNCS, pages 521–525. Springer, 1998.

2. Paul Ammann, Paul E. Black, and Wei Ding. Model checkers in software testing. NIST-IR
6777, National Institute of Standards and Technology, 2002.

3. Paul Ammann, Paul E. Black, and William Majurski. Using model checking to generate tests
from specifications. In ICFEM’98, page 46, 1998.

4. UC Berkeley. Tinyos 1.1.0, Sep. 2003. http://webs.cs.berkeley.edu/tos/download.html.
5. Paul E. Black, Vadim Okun, and Yaacov Yesha. Mutation operators for specifications. In

ASE’00, page 81, 2000.
6. A.W. Brown and K.C. Wallnau. The current state of CBSE. IEEE Software, 15(5):37–46,

Sep/Oct 1998.
7. Randal E. Bryant. Symbolic Boolean manipulation with ordered binary-decision diagrams.

ACM Computing Surveys, 24(3):293–318, 1992.
8. J. Callahan, F. Schneider, and S. Easterbrook. Automated software testing using model

checking. In Proceedings 1996 SPIN Workshop, 1996.
9. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using

branching time temporal logic. In Workshop of Logic of Programs, volume 131 of LNCS.
Springer, 1981.

10. E.A. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer Science,
pages 997–1072. Elsevier, 1990.

11. A. Engels, L.M.G. Feijs, and S. Mauw. Test generation for intelligent networks using model
checking. In TACAS’97, volume 1217 of LNCS, pages 384–398. Springer, 1997.

12. Kathi Fisler and Shriram Krishnamurthi. Modular verification of collaboration-based software
designs. In ESEC/FSE’01, pages 152–163. ACM Press, 2001.

13. Angelo Gargantini and Constance Heitmeyer. Using model checking to generate tests from re-
quirements specifications. In ESEC/FSE’99, volume 1687 of LNCS, pages 146–163. Springer,
1999.

14. Dimitra Giannakopoulou, Corina S. P¿s¿reanu, and Howard Barringer. Assumption gen-
eration for software component verification. In ASE’02, page 3. IEEE Computer Society,
2002.



An Automata-Theoretic Approach for Model-Checking Systems 169

15. Ian Gorton and Anna Liu. Software component quality assessment in practice: successes and
practical impediments. In ICSE’02, pages 555–558. ACM Press, 2002.

16. Alex Groce, Doron Peled, and Mihalis Yannakakis. Amc: An adaptive model checker. In
CAV’02, volume 2404 of LNCS, pages 521–525. Springer, 2002.

17. Thomas A. Henzinger, Shaz Qadeer, and Sriram K. Rajamani. You assume, we guarantee:
Methodology and case studies. In CAV’98, volume 1427 of LNCS, pages 440–451. Springer,
1998.

18. Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David E. Culler, and Kristofer S. J.
Pister. System architecture directions for networked sensors. In Architectural Support for
Programming Languages and Operating Systems, pages 93–104, 2000.

19. G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering,
23(5):279–295, May 1997. Special Issue: Formal Methods in Software Practice.

20. W. Kozaczynski and G. Booch. Component-based software engineering. IEEE Software,
15(5):34–36, Sep/Oct 1998.

21. Leslie Lamport. Specifying concurrent program modules. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 5(2):190–222, 1983.

22. Harry Li, Shriram Krishnamurthi, and Kathi Fisler. Verifying cross-cutting features as open
systems. ACM SIGSOFT Software Engineering Notes, 27(6):89–98, 2002.

23. N. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed algorithms. Proc. 6th
ACM Symp. on Principles of Distributed Computing, pp. 137–151, 1987.

24. A. Orso, M. J. Harrold, and D. Rosenblum. Component metadata for software engineering
tasks. LNCS, 1999:129–144, 2001.

25. Doron Peled. Algorithmic testing methods. In CAV’03, volume 2725 of LNCS. Springer-
Velag, july 2003.

26. Doron Peled, Moshe Y. Vardi, and Mihalis Yannakakis. Black box checking. In Jianping
Wu, Samuel T. Chanson, and Qiang Gao, editors, FORTE/PSTV’99, pages 225–240. Kluwer,
1999.

27. A. Pnueli. In transition from global to modular temporal reasoning about programs, 1985.
In K.R. Apt, editor, Logics and Models of Concurrent Systems, sub-series F: Computer and
System Science.

28. F. Somenzi. Cudd: Cu decision diagram package release, 1998.
29. J. Stafford and A. Wolf. Annotating components to support component-based static analyses

of software systems, September 2000. In Grace Hopper Celebration of Women in Computing,
Hyannis, Massachusetts.

30. C. Szyperski. Component technology: what, where, and how? In ICSE’03, pages 684–693.
IEEE Computer Society Press, 2003.

31. B. A. Trakhtenbrot and Ya. M. Barzdin. Finite automata; behavior and synthesis. North-
Holland Pub. Co., 1973.

32. M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification
(preliminary report). In LICS’86, pages 332–344. IEEE Computer Society Press, 1986.

33. J. Voas. Developing a usage-based software certification process. IEEE Computer, 33(8):32–
37, August 2000.

34. J. Whaley, M. C. Martin, and M. S. Lam. Automatic extraction of object-oriented component
interfaces. In ISSTA’02, July 2002.

35. Gaoyan Xie, Cheng Li, and Zhe Dang. Testability of oracle automata, 2004. To Appear in
the Proceedings of CIAA’04.



 

J. Grabowski and B. Nielsen (Eds.): FATES 2004, LNCS 3395, pp. 170 – 179, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Test Patterns with TTCN-3 

Alain Vouffo-Feudjio and Ina Schieferdecker 

Fraunhofer FOKUS, Berlin, Germany 
{vouffo, schieferdecker}@fokus.fraunhofer.de 

Abstract. Patterns are used in various engineering disciplines to represent 
common aspects of a set of solutions to a (set of) common problem(s). This 
paper discusses main concepts of test patterns, provides a characterization of 
test patterns and describes the use of test patterns in the test development 
process. Test patterns can be used to support the vertical reuse between 
different testing phases and testing kinds, horizontal reuse between different 
product version and historical reuse between different product versions. 
Specification means for test patterns will be analysed and compared with the 
language features of the Testing and Test Control Notation (TTCN-3) [8]. 

1   Introduction 

Test patterns represent a form of reuse in test development in which the essences of 
solutions and experiences gathered in testing are extracted and documented so as to 
enable their application in similar contexts that might arise in the future. Test patterns 
aim at capturing test design knowledge from past projects in a canonical form, so that 
future projects would benefit from it. In this paper we will describe different views on 
the concept of test patterns and discuss methodological aspects such as notation, test 
pattern mining and test pattern application. The concept of patterns as it is currently 
known in the software development community originates from the works of 
Alexander [1], a building architect who had the basic idea of recording design 
wisdom in a canonical form. He defines a pattern as “both a description of a thing 
which is alive, and a description of the process which will generate that thing”. It soon 
became obvious that the concept of patterns introduced by Alexander for the 
buildings architecture domain could also apply to nearly any design and engineering 
field. As [2] pointed out: “A pattern is the result of abstracting from a given (set of) 
problem-solution pair(s) and distilling common factors, which can be reused to solve 
other problems”.  

In analogy to the patterns for urban architecture, software designers acknowledged 
the existence of patterns in software architecture and the need for identifying and 
describing them in such a way that they would possibly be reused wherever the 
context might require it. Therefore, [3] defines a software architecture pattern as both 
a part of a software system and a description of how to build that part. The purpose of 
software architecture patterns is to identify and specify abstractions above level of 
single instances or components in a software system, as well as to document existing 
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well proven design experiences, software architectures and guidelines. Also software 
patterns provide a common vocabulary and understanding for design principles and 
well-proven experiences.  

 

Fig. 1. Pattern Extraction and Reuse: The process of extracting the essence of a set of problem-
solution-benefit combinations is displayed in the left hand part of the figure, whereas on the 
right-hand side, the reverse process of producing a solution for a similar problem-benefit pair 
by applying the previously identified pattern is illustrated 

However some severe debates also emerged around patterns and how they relate to 
existing software methodologies. As described in [2], emphasis must be put on the 
fact that patterns can and should not be viewed as solution for all possible software 
engineering problems and one should not attempt to force patterns reuse in situations 
where they simply would not fit. Patterns should rather be viewed as a 
complementary approach to existing methodologies. Also patterns should harmonize 
with the fundamental principles of software construction commonly known as 
“enabling techniques”, which are independent of a specific software development 
method such as Abstraction, Encapsulation, Information Hiding, Modularization, 
Separation of Concerns, Coupling and Cohesion, Sufficiency, Completeness and 
Primitiveness, Separation of Policy and Implementation, Separation of Interface and 
Implementation, Single Point of Reference, and Divide-and-conquer.  

While some patterns address some of those concepts explicitly, it is important to 
make sure that patterns do not affect those principles. This also applies for the usual 
non-functional requirements on software systems, i.e. changeability, interoperability, 
efficiency, reliability, testability and reusability. It should be kept in mind, that while 
some patterns will aim at enhancing some of those requirements and help in achieving 
them, it is also possible that a given pattern affect some of the non-functional 
requirements negatively. For example, the broker pattern, which is the base of many 
middleware architectures such as CORBA, eases testing of individual client or server 
components in a distributed system. However it decreases the testability of client-
server systems by introducing additional elements between the client and the server. 
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Test systems and more specifically TTCN-3 test systems are a special type of 
software systems and with their growing complexity, the need for cataloguing good 
practices with regard to design, architecture, implementation and execution is 
becoming more and more urgent. Just as for “normal” software, well-proven 
experiences gathered while developing TTCN-3 based test systems need to be 
documented to ease their reuse. Therefore we define a test pattern as a software 
pattern that applies specifically to the testing domain. Similarly to general software 
system engineering, the benefits expected from patterns in testing are a reduction of 
time-to-market and costs through reuse of existing test artefacts. It should be pointed 
out here, that the term “test artefacts” in this context is not limited to actual (TTCN-3) 
code but also include concepts and principles at a higher level of abstraction.  

Reuse of tests can be compared with reuse of software. Test suites and their 
constituents (like test cases or test data) may be reused as is or may need adaptations 
before they can be reused. E.g. it is possible to develop parameterized test cases, 
which enables their adaptation to different testing contexts. Mainly, three different 
approaches are important for test reuse: the vertical, horizontal and historic reuse. 
Vertical reuse is on the reuse possibilities between different testing phases such as 
requirements testing, prototype testing, module testing, integration testing, system 
testing, and acceptance testing. Another approach is between different types of 
testing, e.g. tests developed for functional testing could be reused for performance or 
scalability testing [5]. The horizontal reuse addresses the reuse of tests between 
various products and within product families. The historical reuse addresses test reuse 
between product generations. Historical and horizontal reuses are similar as “different 
products” in horizontal reuse could be considered as “different product versions” in 
historical reuse. The differences in products/product families and product versions 
will show in different testing parts being reused for testing. 

2   Categories of Test Patterns 

The issue of patterns in general and specifically that of test patterns has very often 
been a source of some misunderstanding among experts. This stems from the 
generality of the concept and the fact that depending on the aspect of test engineering 
on which focus is laid, apparently different definitions and classifications might 
emerge. In our current work we’ve identified the following views on test patterns: 

• The scope-based view: The nature of the test development process may vary a 
lot, depending on the scope or target of those tests. It is obvious, that the 
techniques for generating, specifying, executing and evaluating the tests can be 
totally different, whether unit testing, integration testing or system testing is 
being performed. Examples of patterns for unit testing have been provided by 
[11] , whereas some others for component testing of object oriented software as 
described in [12] and in [7].  

• The management-based view: In some cases such as [13], the issues of patterns 
in test development is discussed at a higher level of abstraction, which involves 
aspects such as the management of test projects and test organizations, the 
strategies for achieving higher efficiency in testing etc.  
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We chose to adopt a scope-based approach and focus on the process of developp- 
ing a test system based on a formal notation such as TTCN-3 or the UML 2.0 test 
profile (U2TP). Therefore in the coming section we will go through the different 
phases of developing a TTCN-3 based test system and discuss which type of test 
patterns could be identified and possibly reused to ease or improve that phase of the 
process. 

 

Fig. 2. Above illustrates the process of TTCN-3 based test development, going from a 
specification of the system under test (SUT) to an executable test suite which can be run to 
provide the required test results. To obtain a complete executable test suite (ETS), elements 
related to the SUT and the test platform, such as the encoder/decoder (CODEC) and the system 
adapter (SA) must be developed and combined to the TTCN-3 test executable (TE) generated 
automatically from the abstract test suite (ATS) through compilation 

2.1   Patterns in the Test Definition Phase 

Test definition is the first phase in building a TTCN-3 based test system. It consists of 
extracting test purposes from the SUT’s specification, depending on what the test 
goals are. Further analysis is required to try to identify possible patterns in this 
process, for example along certain families of SUTs. Questions are e.g. 

• Do generic patterns exist for extracting test purposes from SUT specification? 
• Which test purposes are more prone to detect failures in a given SUT domain 

such as a telecommunication protocol and should therefore always be present in 
test suites for that domain? 

• For SUTs specified in a formal language, could generic patterns for extracting 
test purposes for such systems be identified and made available for reuse? 
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With the process of deriving TTCN-3 test cases from test purposes being quite 
costly and error-prone, the need for formalizing how test purposes are described has 
arisen. In the Pattern for Test Development (PTD) group setup by the European 
Telecommunications Standards Institute (ETSI) some patterns have been proposed for 
that purpose [4]. One long term goal is to enable automatic derivation of test cases 
from such formalized and machine processable test purposes. One of the purposes of 
our work will be to analyze, how that approach fits in the current picture of test 
purpose specification notations and how suitable it would be for automatic generation 
of test suites (or skeletons). 

2.2   Patterns in the Test Specification Phase 

The test specification phase deals with the abstract definition of test data and test 
procedures in TTCN-3 yielding an ATS (abstract test suite). Using some concepts of 
the TTCN-3 language such as the import mechanism, value parameterization and 
modifiable templates enables the test developer some support for code reusability. 
The main elements of an abstract test suite can be separated in a static part and a 
dynamic part: 

• The static part is also referred to as test structure or test model and describes a 
model of the test suite containing 

 A specification of the types of components to be involved in the test suite 
and the ports they provide. 

 A specification of the data needed for communication between the 
components and with the system under test (SUT). 

• The dynamic part specifies 
 how test components of the types specified in the static part are created 

and connected with each other or the SUT to build a test configuration or a 
test architecture, and 

 the message flow between the elements of the test architecture and the 
mechanisms for verdict assignment for each test case. 

Following the path above, TTCN-3 test patterns can be classified in 4 basic 
categories depending on their application area: 

• Architectural patterns 
Architectural patterns address solutions as to how test systems could be 
configured to solve or avoid specific recurring problems and to ensure that the 
fundamental principles mentioned in the introduction to this document are not 
jeopardized. This also includes patterns for the coordination and 
synchronization of test components in a test system. 

• Behavioural patterns 
Behavioural patterns provide ways for defining the behaviour of elements in a 
test suite. Behaviour patterns might apply for single elements of that test 
suite, as well as for the interaction of test components with each other or with 
a given SUT. 
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• Data patterns  
Data patterns are test patterns describing reusable concepts and approaches for 
specifying and generating test data. 

• Test reuse patterns 
Test reuse patterns describe strategies for reusing existing TTCN-3 tests 

 for evaluating different aspects of the SUT. E.g. proven approaches for 
using tests originally defined for conformance or functional testing to test 
the SUT with regard to load management (scalability) or performance, or 

 along the SUT’s product lifecycle, i.e. how to ensure that major 
modifications on the test suite would not be required as new versions of 
the SUT are developed. 

2.3   Patterns in the Test Adaptation Phase 

After completing the abstract specification of the test suite, the test adaptation phase 
of the test development process starts. In this phase, the ATS is extended with the test 
runtime interface (TRI) [9] and test communication interfaces (TCI) [10] adaptors to 
build the fully executable test suite (ETS) which can actually be run to assess the 
SUT’s correctness. Typically, the system adaptor (SA), the platform adaptor (PA) and 
the codec (CD) are to be modified. Some of the questions which need to be answered 
in that phase are: 

• What are the patterns for encoders/decoders for TTCN-3 test systems? 
• What are the patterns to test encoders/decoders on proper functioning? 
• What are the Do’s and Don’ts to be followed when writing a TTCN-3 system 

adapter? 
• Which well proven techniques and experiences can one rely on in that process? 

2.4   Patterns in Test Execution 

In the test execution phase, two key aspects are to be considered for possible patterns. 
Test management  patterns cover solutions for ensuring that test suites are executed in 
a way that their results are relevant for the SUT in that they enable error detection on 
the system and provide the person executing the tests with means for identifying 
which parts of the system does not function as required. This includes tracing and 
logging approaches during test execution, avoiding memory leaks during test 
execution etc. Test execution automation patterns focus on methods for effectively 
automating the test execution process, independently of the scale of the test suite. 

3   Methodological Aspect of Test Patterns 

A methodology for test patterns should not only address the various kinds of test 
patterns for the different approaches of test reuse, but also define how a test pattern is 
to be defined, identified, selected and applied. In the following we shortly discuss a 
test pattern template for the definition of test patterns, aspects of test patterns mining 
and of the application of test patterns. 
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3.1   Test Pattern Template 

To unify the pattern definition process and to avoid misunderstandings between 
developers discussing patterns, a template providing a guideline is needed. Taking the 
test pattern template provided by [7] as basis, we propose a more refined test pattern 
template adapted to the TTCN-3 testing domain. Further analysis will be made, to 
assess how appropriate that template would also be for other test approaches based on 
formal notation. 

3.2   Test Pattern Mining 

Test pattern mining is the process of abstracting from existing problem-solution-
benefit triples in the test developing process, to obtain patterns suitable for reuse in 
future contexts. Although the process of going through existing test artefacts and 
trying to identify patterns for later reuse might appear costly and unrewarding at the 
first sight, we believe in long term it could effectively help in shortening the test 
development lifecycle and hence reduce costs. 

 

Fig. 3. Elements of Test Patterns can be provided from several activities in and around the Test 
Developing Process 

3.3   Test Pattern Reuse 

Reuse of test patterns should basically be independent of the implementation language 
used for specifying the ATS or for implementing the adaptation to the system and 
platform environment. However, in a TTCN-3 based test development process the 
definition of test patterns in TTCN-3 (and extensions thereof) provides several 
benefits. TTCN-3 test patterns 

- Are expressed formally 
- Provide means for patterns in the three phase of test system development and 

for the different approaches of test reuse 
- Are defined already in the language of the target test system specification 
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TTCN-3 provides some concepts for test patterns such as the import mechanism, 
value parameterization and modifiable templates. Object-based concepts providing 
further means for the specification and application of test patterns do not exist, but are 
currently discussed as whether and how they could be included into TTCN-3. Then, 
better test pattern definitions would be possible. In the meantime we are using 
specific annotations to TTCN-3 so as to differentiate the generic parts and specific 
parts of a test pattern. The generic parts are annotated with <> and are to be replaced 
when applying the test pattern. The specific parts are not annotated. They constitute 
the essence of that test pattern and should remain untouched when applying that 
pattern). These annotations are used in the following example. 

4   An Example TTCN-3 Test Pattern 

To illustrate the ideas presented in the sections above, this section presents an 
example of a TTCN-3 test pattern. It is a behavioral test pattern for a watch dog on 
SUT responses. 

Name Timer on transmission 
Class Behaviour 
Testing phases Specification 
Testing goals All 
Application 
domain 

Any 

Intend Avoid deadlock situation when transmitting data from test component 
Context For the testing of reactive systems tested typically via interfaces 
Parameter Timer duration 
Roles test component, source port, destination port 
Detailed 
description 

After calling a method from a test component or sending a message on a 
given port, a timer should be started to avoid deadlock in case the SUT 
does not reply to the function call or to the transmitted message 

Example function timedSend (template <outMessageType> <outMsg>, 
<OutPortType> <outPort>, timer <t>, template 
<inMessageType> <inMsg>, <InPortType> <inPort>)  
returns verdicttype 
{ 
 <outPort>.send (<outMsg>); <t>.start; 
alt { 
    []<inPort>.receive (<inMsg>) { 
    <t>.stop; return pass;} 
    []<t>.timeout{return fail;}}} 

Consequences None 
Related 
patterns 

Default pattern 

Known uses Protocol testing 

5   Conclusions 

This paper discusses that developing reusable tests is similar to developing reusable 
software components and therefore the same techniques and methods can be 
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applied. Requirements for reusable tests were presented on a general level based on 
past studies as well as new requirements were identified and illustrated using 
TTCN-3 language. 

In addition to the three dimensions of software reuse (granularity, scope and target) 
presented in [6], test reuse addresses three approaches for reuse. Additionally to 
domain analysis traditionally required in software reuse, vertical, horizontal or 
historical reuse is to be considered. Vertical reuse should be considered when the test 
reuse is applied on an individual product or software component and the interfaces are 
likely to remain intact. However, if this product is a part of product family or is likely 
to be a basis for future updates (interfaces are likely to change), horizontal and 
historical reuse will provide bigger savings in the long run. 

The discussed aspects of test patterns can be used as guidelines when designing 
and implementing reusable tests. Applying these guidelines into practice demands 
careful consideration to identify the best possible way to utilize and combine them. 
However, one should notice that striving for the best reusability by combining as 
many guidelines as possible, will not always produce the best results in terms of 
usefulness and functionality. Finding the balance between reusability and usability 
requires consideration. Nevertheless, one of the major strengths of test reuse is that 
it provides high quality and maintainable tests that are sometimes hard to come up 
with otherwise. Therefore, test reusability should be an obvious issue when 
developing tests.  

In the ongoing work we will continue to develop test patterns and to apply/propose 
language extensions for TTCN-3 in order to enable the specification of test pattern. 
Tool support for these language extensions is also considered. 
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Abstract. TTCN-3 (Testing and Test Control Notation 3) [1, 2, 3] test suites de-
veloped for testing complicated systems contain a large number of test data def-
initions. These definitions are often redundant and lengthy, which leads to com-
pilation and run-time inefficiencies. Our intention is to provide remedy for this
problem, by proposing a method that restructures the test data definitions of an
already existing TTCN-3 module. In this paper we introduce a model for TTCN-3
test data and a method for its optimization. The results of an empirical study using
our approach is presented as well.

1 Introduction

Telecommunication software provides the foundation of the communication infrastruc-
ture. These systems must be reliable, efficient and compatible with systems from different
vendors. Consequently, their development must be accompanied by quality assurance
activities, thus testing plays a vital role during the development process of each telecom-
munication system. The purpose of testing is to find all errors and shortcomings of the
system. This is a very resource-demanding and time-consuming task, because it requires
the manual effort of many well-trained developers. Therefore, its support is an important
challenge.

TTCN-3 (Testing and Test Control Notation 3) is the new industry-standard test
specification language that was developed and standardized by the European Telecom-
munication Standards Institute (ETSI). It is a very powerful language that has been tried
out on different application areas of testing. It can be applied for all kinds of black-box
testing for reactive and distributed systems and it is suitable to test virtually any system
including telecommunication and mobile systems, Internet and CORBA based proto-
cols. The general testing process with TTCN-3 includes the following main steps: the
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developed test suite is compiled and extended with an adaptor that provides the connec-
tion between the tested system and the executable test suite. Then, the executable test
suite is executed against the system under test. Finally, the results are evaluated.

TTCN-3 has a special language element – the template – that provides sophisticated
means for describing test data. In order to test complicated systems, the TTCN-3 tem-
plates can be created either in a manual or in an automatic way, but in neither case is the
result optimal, since developers cannot cope with the enormous number of huge data
structures, and automatic methods focus primarily on the generation problem. Accord-
ing to our empirical experiences test data definition occupies at least 60-70 percent of a
complete test specification, and they are highly redundant. Consequently, these modules
are unnecessarily large that leads to several problems. In case of very large TTCN-3
modules the compilation time can be surprisingly long, which sets back the develop-
ment process. It is not uncommon, that the compilation of the test specification takes
more than an hour on an average computer, and complicated test suites consist of sev-
eral different modules. Besides, executable test suites derived from large modules have
performance drawbacks, that makes it harder to develop performance or scalability test
suites, where performance is a critical issue. Furthermore, we must take into account,
that the development process of a test suite is cyclic, therefore these problems appear
repeatedly.

By eliminating the redundant and unused data structures, the quality of the generated
implementation code can be significantly improved, but the compilers available on the
market do not address the problem of test data optimization. In our paper, we introduce
a re-engineering method that can be applied without human intervention to test data
templates defined in TTCN-3. The approach analyzes and restructures [4, 5] an already
existing TTCN-3 template specification, so that it becomes more compact, redundancy-
free and the compilation time is reduced. Naturally, the alterations retain semantical
correctness, only syntactical changes are introduced. The reason for operating at the
formal description level is that we want our method to be compiler independent, but our
approach can be utilized to implement an optimizer in a compiler.

The paper is organized as follows. In Section 2 we define the TTCN-3 template
model, Section 3 proposes an edit distance function for templates. Section 4 introduces
our method and an execution example. In Section 5, we present the results and findings
of the empirical analysis of the presented method, and finally we summarize our work
in Section 6.

2 TTCN-3 Template Model

The main idea of our approach is to detect similarities among the different test data
structures, because the description of the similar structures can be abbreviated by using
inheritance, parameterization and references. To be able to compare the data structures,
a graph-based model was defined for TTCN-3 templates.

2.1 Template Trees

In TTCN-3, templates are used either to transmit a set of distinct values or to test whether
a set of received values matches the template specification.
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Formally, a TTCN-3 template can be modeled as a directed, multi-labeled tree
T = (V, E), where each node n ∈ V corresponds to a field in the template and each di-
rected edge e ∈ E represents an aggregation relationship of two nodes.1 The parent node
of an edge symbolizes a complex data structure that carries a field, which is modeled by
the connected child node. The nodes are labeled with several attributes:

– f(n): Name of the field.
– v(n): The field can carry values, ranges and matching attributes, which is modeled

by this function. In case of parameterized templates, the function can denote that
the node is a parameter.

– t(n): The type of the field.
– s(n): The edges can be ordered and unordered. Each node contains complementary

information about how its children behave:

• record: Fixed ordering of children is expressed using the record construct.
• set: Arbitrary ordering of children can be expressed with the set construct.
• union: Unions express a choice of alternative types.
• simple: If the node doesn’t have any children.

– o(n): denotes whether the field is mandatory or optional.

Type definitions provide the rules that determines the structure of the templates.
Therefore, the tree for a template is built according to the template definition and the
corresponding type definition. The references to other templates and entities are resolved,
so that every leaf node in the tree is entirely specified.

Example 1 (Template Model). In the following simple example we show how the tem-
plates are mapped to the tree model:

type record ConferenceType { | template DateType today := {
charstring location, | 9, 22
DateType begin, | };
DateType end |

}; | template ConferenceType conf:=
type record DateType { | { begin := today,

integer month, | end := tomorrow,
integer day | location := "Linz"

}; | };

template DateType tomorrow modifies today:= {
day := 23

};

Figure 1 depicts the template trees produced from the TTCN-3 code fragment shown
above. Every box represents a node with its most important attributes. The field name
is in the top left corner, the name of the corresponding type is placed in the middle.
In the bottom right corner the value can be found. The references to the ”today” and
”tomorrow” templates are extracted.

1 In the definitions and function descriptions we let T denote a template tree as well as the root
node of a template tree T for simplification purposes.
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Fig. 1. Example for the template tree model

2.2 Template Relationships

TTCN-3 templates provide the following possibilities to organize and re-use test data:

– already defined structures can be included in a new template via references
– Simple form of inheritance is present using modified templates
– Parameterization of templates is allowed using template and value formal parame-

ters

The template model must be extended to cope with these concepts as well. Since
they can be modeled as relationships of two template (sub-)trees, new edge sets were
defined for each.

Template References. Templates can contain references to other templates. Although,
we showed in our previous example (Fig. 1) that these references are resolved in the
template tree, we must be able to track the inclusion relationship of the entities. For
this purpose we defined a set of directed edges, where the edges act as a pointer. The
originating point is always a tree of a template, while the arrow-head of the edge points
to the node, where the tree is included.

An example is shown in Fig. 1, where the "today" and "tomorrow" templates are
referenced from "conf". As a graphical notation we use arrows with dotted line.

Modified Templates. Templates provide a simple form of inheritance. This enables
the adaptation of templates to different testing situation and avoids the duplication of
similar test data. Normally, a template specifies a set of values or matching symbols for
each and every field defined in the appropriate definition. New templates can be derived
from previously defined templates, rather than having to be defined from scratch. A
modified template describes modifications to particular fields of the original template,
either directly or indirectly. If a template field and its corresponding value or matching
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symbol is specified in the modified template, then the specified value or matching symbol
replaces the one specified in the parent template. If a template field and its corresponding
value or matching symbol is not specified in the modified template, then the value or
matching symbol in the parent template shall be used.

Template modification can be resembled with the inheritance concept of object-
orientation. Between the root nodes we keep track of the inheritance hierarchy with the
help of the directed edge set defined exactly for this purpose.As a notation we use dashed
arrows. Figure 1 provides an example of the notation for the "today" and "tomorrow"
templates given in the code fragment of the previous example.

Parameterized Templates. Templates for both sending and receiving operations can be
parameterized. The formal parameters of a template may include templates, functions
and special matching symbols. In our model parameterization is handled by the v()
function of the nodes in the template trees. It is set to parameter, if the actual field is
declared as a parameter.

Inline Templates. Inline (and inline modified) templates are treated as ordinary tem-
plates in our approach. The only difference is that, they are created in the dynamic part
of the TTCN-3 module and they have no explicit names.

Definition 1 (Template Model). The template model is a 3-tuple: M = (S, R, I) where
S,R and I are the finite set of template trees, directed reference edges and directed
inheritance edges respectively.

3 Edit Distance

Since our algorithm seeks for similar test data structures, a measure is needed that makes
it possible to compare two templates to each other, and provides an objective number
that describes how strongly they are related. That is why our method is established on a
distance definition for TTCN-3 test data.

In order to compute the distance of two templates, first the specific test data struc-
tures are mapped to trees, then these trees are compared to each other. The distance is
proportional to the difficulty of transforming the trees into each another by using edit
operations. The general approach to edit distance problems has been to define a sequence
of primitive operations that can be applied to one object to produce another, and to de-
fine the distance between two objects as a function computed on a sequence of such
operations. Each operation is assigned a cost that represents the difficulty of making that
change to the object. When the edit distance is calculated the cost of the operations is
considered, and the lowest cost sequence that provides a solution is chosen.

There is considerable related work in the field of edit distance algorithms for trees
[6, 7, 8].

3.1 Operators

A necessary precondition for defining an edit distance is to clearly specify its basis,
i.e. which edit operations are available and to formally define them. We defined several
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operators and the corresponding cost functions, so that the distance of two templates
is equal to the number of required value assignments in the modified template if one
is derived from the other. TTCN-3 offers several ways to produce a derived template
from an other, the set of operations must reflect to these possibilities. Each tree operation
defined here models modifications permitted in TTCN-3. We provide their mathematical
definition, and the corresponding cost function as well.

Definition 2. φ(T ) is equal to the number of nodes residing in the T tree.

Definition 3. γ() is the cost function.

Operator 1 (Node Relabeling). If two trees differ only in some carried values and
both trees have the same structure, then this operator should be used to determine the
number of necessary changes. Each time the operator is applied the value of a node can
be changed to a new one.

– Relabel(T, n, lnew) is a relabel operator applied to the root node n ∈ T , where T
is a template tree. The operation yields T ′, where v(n) = lnew.

– Cost: γ(Relabel(T, n, lnew)) = 1.

Operator 2 (Choice). This operator chooses a different alternative union branch from
the one that already exists. This involves deleting the old sub-tree, and creating a new
one according to the type definition.

– Choice(T, n, Tnew) is a choice operator applied to the node n ∈ T , s(n) = union,
where T is a template tree. The operation yields T ′, where Tnew is the new sub-tree
connected to n.

– Cost: γ(Choice(T, n, Tnew)) = φ(Tnew).

Operator 3 (Sub-tree Insertion). This operator inserts a new sub-tree (or a single
node) to a node. For example a new sub-tree element can be introduced at an optional
node that was omitted earlier, or at nodes that model "set of" and "record of" TTCN-3
constructs.

– Addtree(T, n, Tnew) is the tree insertion operator applied to the node n ∈ T . The
operator yields T ′, where Tnew is a new sub-tree inserted as a child of n.

– Cost: γ(Addtree(T, n, Tnew)) = φ(Tnew).

Operator 4 (Sub-tree Deletion). At optional elements a whole sub-structure can be
omitted from the actual template.

– Deltree(T, n) is the tree deletion operator applied to the node n ∈ T . The operator
yields T ′, without the node n and its sub-tree.

– γ(Deltree(T, n)) = 1.
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type union number {

};

integer whole,
complex comp

type record complex {

};

integer real,
integer imag

type record pair {

};

integer num,
complex comp optional

1

number

whole

1

number

whole

cost=1

Relabel

cost=3

Choice
comp

number

1 2

template number second
modifies first := {

comp :={ real:=1, imag:=2}
};

modifies first := {
whole :=2

};

template number secondnumber

whole
2

whole := 1
};

template number first :={

whole := 1
};

template number first :={

pair

compnum
1 omit

1 2

compnum
1

pair template pair second
modifies first :={

comp := { real:=1, imag:=2 }
};

template pair first :={
num:=1, comp:=omit

};

pair

compnum
1 omit

template pair second
modifies first := {

comp:=omit
};

template pair first := {
num:=1,
comp := { real:=1, imag:=2 }

};

1 2

compnum
1

pair

type definitions

cost=3

Sub−tree insertion

Sub−tree deletion

cost=1

original specification original tree operator modified specificationtarget tree

Fig. 2. Example for the application of the edit operators

Example 2 (Applying operators). Figure 2 demonstrates some examples of the appli-
cation of the operators. The first column contains the necessary type definitions for the
sample templates. Each line of the remaining columns is dedicated to one of the four op-
erators. Next to the original specifications the corresponding trees are shown. The trees
of the target templates are hold in the target tree column. The operator column describes
the required operator and the cost of the transformation that converts the original to the
target tree. The modified specification that produces the target template from the original
is given in the last column.

3.2 Computing Edit Distance

Our proposed algorithm for determining the minimum edit distance of two template
trees is recursive. The first invocation of the algorithm is given the root nodes of two
trees, the original and the target trees; it then invokes the algorithm on each child of the
first root paired with each child of the other root.

The method can be divided to three main if-else branches. The first examines, whether
the types of the two nodes are equal. If it is not the case, it is no worth continuing the
comparison because there is no valid operator sequence that transforms a template to a
template of another type. The second branch is for the leaf nodes, where the degree2 of
the node is zero. Here, the two label functions for the values are compared. If a change
is detected, the function returns with the cost of the relabel operator, or with zero if the
values are equal. The third branch is for nodes that can be regarded as roots of sub-
trees. First of all, the optionality of the nodes is checked. Whether a part of the data
structure is omitted in the template, the Addtree, Deltree operator pair should be applied.
Otherwise, the distance of two nodes is calculated by invoking the EditDistance function
for their children. The CorrespondingNode function is used to locate the corresponding

2 The degree of a node is equal to the number of its child nodes.
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children for the ith child node of nA among the child nodes of nB . We could not avoid
this function, because sometimes the edges are not ordered. The corresponding nodes,
where the field function and the type function are equal, always must be present. There
is one exception however: the union construct expresses a choice of alternative types.
To address this problem we added the lines where the Choice operator is applied when
two union nodes can be found.

Function 1 (Pseudo-code for computing edit distance).

EditDistance(nA, nB)
//Branch for type checking:
if t(nA) �= t(nB)
return ∞

//Branch for leaf nodes:
if Degree(nA)=Degree(nB)=0

if v(nA) �= v(nB)
return γ(Relabel(nA, v(nB)))

else
return 0;

//Branch for sub-tree nodes:
else
if nA and nB are optional
if nB is omitted
return γ(Deltree(TnA

, nA))
if nA is omitted
return γ(Addtree(TnA

, nA, nB)
distance ⇐ 0;
for i ⇐ 1 to Degree(nA)
if ∃CorrespondingNode(nA[i])

distance ⇐ distance +
EditDistance(nA[i],CorrespondingNode(nA[i]))

else
if nA and nB are unions
return γ(Choice(TnA

, nA, nB)
else

return ∞
return distance;

4 Proposed Method

We have defined a method that alters the template description part of an already existing
TTCN-3 module, so that it becomes more compact and redundancy-free.

4.1 The Scenario

Figure 3 shows the scheme of our method. The input is an already existing TTCN-3 mod-
ule, which is processed by the Filter component. This component extracts the test data

Code
Generator

Filter

Template
Model

TTCN−3

Distance
Computer

Optimizer

Distance
Matrices

Fig. 3. The scenario of the method
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definitions and projects them to trees, thus the Template Model is produced. This pro-
jection converts the wildcards of receive templates and the range definitions to character
strings. Henceforth, they appear as simple string values. Next, the distance computer
compares each tree to the others, and the acquired distances are stored in matrices. The
optimizer introduces compressing alterations to the tree model: based on the distance
matrices new inheritance hierarchies are created and the data patterns that appear in a
repeated fashion are extracted and referenced. Finally, the TTCN-3 description of the
tree models is generated according to the implemented mappings and is woven back into
the original test suite.

4.2 Estimation of the Specification’s Size

The method utilizes a measurement that estimates the size of the resulting template
description.The basis of this measurement is the number of field assignments residing in a
TTCN-3 template specification. This can be computed using the template model, because
an unambiguous projection can be defined between the model and the corresponding
TTCN-3 template specification.

Definition 4 (Size function for the template model). The size of the template model M
is the summary of the sizes of the contained template trees: Fsize(M) =

∑
∀Ti

size(Ti).

Function 2 (Pseudo-code for calculating Fsize()).
Size(T)
if T is derived from Tbase

MarkCommonNodes(T,Tbase)
for all Tref, where Tref is referenced from nx ∈ T
MarkCommonNodes(nx,Tref)

return the number of not marked nodes in T

MarkCommonNodes(nA, nB)
if v(nA) = v(nB)
Mark nA

for i ⇐ 1 to Degree(nA)
if ∃CorrespondingNode(nA[i])
MarkCommonNodes(nA[i],CorrespondingNode(nA[i]))

By default, the size of the template is equal to the number of nodes in the template
tree. If the template inherits some fields from an other, that is, there is an edge in the set of
modify edges I , whose target hyper-node is the actual template tree T , then it is clear that
we do not need to count the inherited nodes, therefore we mark them by the help of the
MarkCommonNodes function. If some parts of the template tree are referenced, the cost
must be decreased by the size of the referenced part, again by marking the referenced
parts. Finally, the required number of assignments can be calculated by summarizing
the nodes that were not marked.

4.3 Optimizer Algorithms

After the cost function Fsize() was defined, we can outline the algorithm of the optimizer
component that tries to minimize this function by introducing changes to the template
model. These changes, as we stated before, must not alter the behavior of the TTCN-3
module. The algorithm can be summarized in the following steps:
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Algorithm 1. Optimizer Algorithm

1. A template model M and the distance matrices are the input of the algorithm.
2. Based on the distances:

(a) A new inheritance hierarchy is generated for the model. (Algorithm 2)
(b) The model is made more compact by using references for the repeated data

structures. (Algorithm 3)

The generation of a new inheritance hierarchy and the introduction of references are
described in the following algorithms:

Algorithm 2 (Inheritance hierarchy). This algorithm determines the minimal cost in-
heritance structure of the template model.

00 Input: Template model M = (S, R, I)
01 The template trees Ti are grouped by the type function

of the root node t(Ti) into distinct sets Sk ∈ S.
02 for all Sk
03 for all (i, j)
04 Dk(i, j) ⇐ EditDistance(Ti ∈ Sk, Tj ∈ Sk)
05 for all Dk
06 A weighted and directed edge set Ea is created

from the distances of the Dk matrix3.
07 i ⇐ 1; Es

0 ⇐ {}; kcost ⇐ Fsize(M(Sk, R, Es
0))

08 Select an edge ei ∈ Ea of minimum value not in Es
i−1

such that Gi ⇐<Sk, Es
i−1

⋃{ei}> is acyclic.
09 if ei exists
10 Es

i ⇐ Es
i−1

⋃{ei}
11 Ea ⇐ Ea \ ei

12 else goto 20.
13 if Fsize(M(Sk, R, Es

i )) < kcost
14 kcost ⇐ Fsize(M)
15 Every edge, whose target node is equal to the

target node of ei is dropped from Ea.
/* Because it is no worth producing the same *
* template again from another. For similar reasons: */

16 Delete the reverse pair of the edge e.
17 else
18 Es

i ⇐ Es
i−1

19 i ⇐ i + 1; goto 8.
20 I ⇐ I

⋃
Es

i−1

The input of the algorithm is a template model M = (S, R, I). The template trees
of the model are organized in distinct Sk sets according to their type function. In steps
2-4, with the help of Func. 2, that computes the edit distance between two templates,
a distance matrix Dk is produced for each set: every template tree is compared to one
another and the acquired distances are stored in a matrix. In step 5, a new inheritance
hierarchy is created for each Sk. The template trees are regarded as hyper-nodes and a
weighted edge set is created based on the corresponding Dk distance matrix (step 6).
With the help of the Kruskal algorithm [9], we produce a minimum spanning tree that
will substitute the old set of inheritance edges (steps 7-19). In each iteration a new edge
is selected from the edge set and the new value of the cost function Fsize(M) is compared
to the old. The selected edge is put into the I set only if the new size of the model is
smaller than the old one.

3 The indices in Ea and Es stand for "available" and "selected", respectively.
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Algorithm 3 (Reference Introduction). This algorithm seeks for data structure frag-
ments that occur in the template model in a repeated fashion.

00 Input: Template model M = (S, R, I)
01 for all Ti ∈ S
02 All possible sub-tree T sub

i,j ∈ Ti is produced.

03 The sub-trees are grouped into distinct sets Ssub
l

by the type of their root node.
04 The sets are ordered according to the level of the

contained sub-trees.
/* The level of a sub-tree is equal to the number of edges that *
* must be traversed in order to get from the root node of the *
* original tree to the root node of the extracted sub-tree */

05 kcost ⇐ Fsize(M)
06 for all Ssub

l

07 Compute the distance matrix Dsub
l .

08 A weighted and directed edge set Ea is created
from the distances of the Dsub

l matrix.
09 According to the Kruskal algorithm, select an

edge < Ti, Tj >∈ Ea of minimal value.
10 if < Ti, Tj > exits
11 S ⇐ S

⋃{Ti, Tj}
12 I ⇐ I

⋃
< Ti, Tj >

13 eref1 ⇐< Ti, Parent(Ti) >
14 eref2 ⇐< Tj , Parent(Tj) >
15 R ⇐ R

⋃{eref1, eref2}
16 else stop
17 if Fsize(M(S, R, I)) < kcost
18 kcost ⇐ Fsize(M(S, R, I))
19 else
20 S ⇐ S \ {Ti, Tj}
21 I ⇐ I\ < Ti, Tj >
22 R ⇐ R \ {eref1, eref2}
23 goto 9.

The input of Alg. 3 is the template model. In the first step, all possible sub-tree
T sub

i,j ∈ Ti is produced from the template trees of the model, where Ti ∈ S, ∀i. The j
index runs from zero to the number of the nodes in tree Ti, whose degree is larger than
zero. Then, in step 3, the sub-trees are organized into distinct sets Ssub

k by the type of
their root nodes, and the sets are ordered according to the level of the contained sub-trees.
Thus, a set consisting of first level sub-trees will lead the list of the sets. The rationale of
this ordering is that, it is more profitable to extract and to reference a few large structures
than many smaller ones. The sub-trees, whose original trees are described as a modified
template according to the model are dropped from the sets, because extracting parts of
those trees is not prosperous.

The remaining part of the procedure (from step 6) is based on the Kruskal algorithm.
First, a directed and weighted edge set is created from the distances and the edges of a
minimum spanning tree are selected one by one (step 9). After the next edge e of the
spanning tree is determined, we put the two nodes of the edge into the set of template
trees of the model (step 10). Then the edge is inserted into the inheritance edge set
I ∈ M . Furthermore, two reference edges are created in the reference edge set R ∈ M
between the nodes of e and their parent trees, where they are referenced from. Next, in
step 17, the size of the model is checked using the Fsize(M) function. If it is less than
it was, the alterations made to the model M are valid. Otherwise, we undo the previous
changes to the model.
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It is important to note that we do not deal with generating parameterized templates.
Although their introduction would not reduce the required number of assignments in
the template description, the total number of templates could be reduced remarkably.
Therefore, the application of parameterized templates is inevitable and in our future
work we intend to extend our procedure.

Besides, we have to mention, that deep inheritance hierarchies spoil readability be-
cause of multiple inheritances. This side effect can be avoided if the depth of the inher-
itance hierarchies generated by Alg. 2 is limited.

4.4 Execution Example

On behalf of promoting deeper understanding about how the method works, we include
a simple execution example in this section.

We have three template messages, two connection requests, and a data indication:

type union PDU { | template PDU connect1 := {
ConnectReq conreq, | conreq := {
DataInd datind | addr := {

}; | subsystem := 1,
| pointcode := 2 },

type record ConnectReq { | connectid := 0 }
Address addr, | };
integer connectid | template PDU connect2 := {

}; | conreq := {
| addr := {

type record DataInd { | subsystem := 1,
Address addr, | pointcode := 3 },
charstring data | connectid := 0 }

}; | };
| template PDU data := {

type record Address { | datind := {
integer subsystem, | addr := {
integer pointcode | subsystem := 1,

}; | pointcode := 2 },
| data := "Hello" }
| };

The template trees generated from the TTCN-3 template specification part can be
seen in Fig. 4. These trees constitute the first and only template tree set S1 ={connect1,
connect2, data}. The inheritance and reference sets are initially empty: I = {}, R = {}.
The distance matrix D1 is generated for the set and the initial size of the template model
is computed: Fsize(M) = 6 + 6 + 6 = 18.

The next step produces a new inheritance hierarchy. The Kruskal algorithm is applied
to generate the minimum spanning tree for the hyper-nodes, the steps are depicted in
Fig. 5.

The smallest element in the distance matrix is one, and the first occurrence of this
value is located at D1(0, 1). Therefore, the first step of the Kruskal algorithm selects
the edge <connect1, connect2> with weight one. This edge is than inserted into the
inheritance set I , thus, the connect2 template is derived from the connect1 base template.
According to the altered model the new cost is calculated: Fsize(M) = 14.

Before the second step, the reverse of the previously chosen edge (D1(1, 0)) and
the edges that would produce an other derived template of connect2: (D1(0..2, 1)) are
dropped from the available edge set. Naturally, the already chosen D1(0, 1) element
cannot be selected again. This leads the algorithm to select the edge <connect1, data>,
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Fig. 4. Template trees

which is put into the set I . The size of the new model will be Fsize(M) = 14, which
is not smaller than the value we got from the previous step, therefore this iteration is
canceled, and the Kruskal algorithm stops.
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The next task of the method is to extract data structures that appear repeatedly in the
template model. For this purpose every possible sub-tree is produced from the template
trees of the S1 set except the tree of connect2, because it is a modified template. The
resulting trees are grouped together by the type of their root node, consequently the fol-
lowing sets are created: Ssub

1 = {Tconreq part of connect1}, Ssub
2 = {Tdatind part of data},

Ssub
3 = {Taddr of connect1, Taddr of data}. Since in Ssub

1 , Ssub
2 there is only one element,

they are not taken into consideration. For Ssub
3 the distance matrix Dsub

3 is computed as
it is shown in Fig. 5.
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With the help of the Kruskal algorithm the edge <connect1_addr,data_addr> is
selected and put into the inheritance edge set I . It is worth mentioning, that the two nodes
can be contracted because the distance between them is zero, that is, the two sub-trees
are exactly the same. Additionally, the two extracted nodes are referenced from their
parents, therefore the edges <connect1, connect1_addr> and <data, data_addr> are
inserted into the set of reference edges R. The final size of the model is Fsize(M) = 12.

According to the template model, the following TTCN-3 template definitions can be
generated:

template PDU connect1 := { | template Address connect1_addr:={
conreq:= { | subsystem :=1,
addr:= connect1_addr, | pointcode:=2
connectid:=0 | };

} |
}; | template PDU data := {
template PDU connect2 | datind:= {

modifies connect1 := { | addr:= connect1_addr,
conreq:={ | data:="Hello"

addr:={pointcode:=3} | }
} | };

}; |

5 Empirical Experiences

To implement our method we developed a software system [10, 11] that performs a high
level restructuring that operates on the formal description of a TTCN-3 test suite. We
used a sample TTCN-3 test module to investigate the presented method. The test module
contained templates for RANAP [12] messages. RANAP is a core building block at the
heart of every 3G network that provides all the necessary signaling control for network
access and channels communications between mobile terminal entities (handsets, PDAs
etc) and the 3G network.

Table 1. Data from the case study

Template# Assignments# Generated C++ Code Compile Time Object Code Size

Original 37 160 59Kbyte 7155ms 403Kbyte
Restructured 26 85 33Kbyte 3902ms 219Kbyte

The original template description consisted of 26 simple, 11 parameterized templates
and a supporting function. In aggregate the description embodied 160 assignments. To
generate the template model we extracted the sent and received top level messages
according to the dynamic description of the TTCN-3 module. This way we acquired 12
large template definitions with 138 assignments. The algorithm was able to reduce the
number of the assignments to 85, which is only 53% of the extracted data. As the data
shows (Table 1) the size of the generated C++ code, the compile time, and the object
code size changed according to the assignment ratio4. Only a small fluctuation could be
noticed.

4 The experiment was done on a PC equipped with Intel PIII-450 processor and 256M of RAM.
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6 Conclusion

Testing is a vital part of the software development process and TTCN-3 is a powerful and
wide-spread formal language for describing complex test scenarios. In the practice the
test data definition part of the TTCN-3 modules are usually redundant, which leads to
compile-time and run-time inefficiencies. In this paper we presented a method and a tool
focusing on the problem of TTCN-3 template restructuring. By means of the proposed
method, it is possible to compress TTCN-3 template descriptions, which has a beneficial
influence on the executable test suite.

We elaborated an edit distance and introduced a model for describing TTCN-3 tem-
plates. For the edit distance problem we used a special set of operators considering the
specialties of the TTCN-3 language. An algorithm was defined for making the template
specifications more compact. Based on the method a tool was developed, and was used
for a simple case study.

Our future work includes case studies on real world test suites and the extension of
the approach, so it will be able to generate parameterized templates.

References

1. ISO 9646-3: Information Technology - Conformance Testing Methodology and Framework;
Part 3: The Tree and Tabular Combined Notation (TTCN).

2. ETSI ES 201 873-1 V2.2.1 (2002-08): Methods for Testing and Specification (MTS); The
Testing and Test Control Notation Version 3; Part1: TTCN-3 Core Language.

3. J. Grabowski, D. Hogrefe, Gy. Rethy, I. Schieferdecker,A.Wiles, C.Willcock:An introduction
to the testing and test control notation (TTCN-3) Comput. NetworksVol. 42(3):375-403, 2003.

4. E.J. Chikofsky, J.H. Cross: Reverse Engineering and Design Recovery: A Taxonomy. IEEE
Software, Vol 7(1):13-17, 1990.

5. T. Mens, T. Tourwe: Survey of Software Refactoring. IEEE Trans. on Software Engineering,
Vol. 30(2):126-139, 2004.

6. R.A. Wagner, M.J.Fisher: The String-to-string Correction Problem. Journal of the ACM, Vol.
21:168-173, 1974.

7. D. Barnard, G. Clarke, N. Duncan: Tree-to-tree Correction for Document Trees. Technical
Report 95-375, Queen’s University, January 1995.

8. A. Nierman, H. V. Jagadish: Evaluating Structural Similarity in XML Documents. Proc. of the
Fifth International Workshop on the Web and Databases. WebDB ’02, Madison, Wisconsin,
USA, 2002.

9. T. Cormen, C. Leiserson, R. Rivest: Introduction to Algorithms. The MIT Press, 2001.
10. A. Wu-Hen-Chang, D. Le Viet, R. Gecse and Gy. Csopaki: Representing and Processing

Formally Defined Data Structures. Proc. of Eunice ’03, 2003.
11. R. Gecse, S. Dibuz: An Intuitive TTCN-3 Data Presentation Format. Testcom, 2003.
12. 3GPP TS 25.413 V6.1.0: UTRAN Iu interface Radio Access Network Application Part

(RANAP). 2004.



Ordering Mutants to Minimise Test Effort in
Mutation Testing

Kalpesh Kapoor1,� and Jonathan P. Bowen2

1 Dhirubhai Ambani Institute of Information and Communication Technology,
Near Indroda Circle, Gandhinagar (Gujarat) 382 007, India

kalpesh kapoor@da-iict.org
2 Centre for Applied Formal Methods,

London South Bank University,
103 Borough Road, London. SE1 0AA. UK

bowenjp@lsbu.ac.uk

Abstract. Mutation testing is a fault-based testing approach based on
the competent programmer, and coupling effect hypotheses. One of the
main difficulties faced in practice is due to the large number of mu-
tants that can be generated for a given implementation. Earlier research
to solve this problem has suggested variants of mutation testing, and
finding an effective set of mutation operators. This paper presents an
alternative approach for reducing the cost of testing by the identification
of hierarchies among first-order mutants. The theory described here is
also applicable to the quantitative assessment of testing effort and can
be used to guide successive testing steps in fault-based testing.

1 Introduction

Fault-based testing [12] is a sound methodology to assess the quality of a test set.
It helps in evaluating their ability to reveal hypothesised faults that can occur
in an implementation. A fault in a program is a defect that can result in an
observable failure on execution of the program. Unlike other testing approaches
that attempt to only discover faults by test runs, fault-based testing also aims
to show the absence of faults on successful execution of the program.

Mutation testing [1, 3] is a powerful fault-based unit and component testing
technique based on the competent programmer hypothesis. For a given pro-
gram, P , to be tested, mutation testing requires the consideration of all possible
‘nearby’ programs that differ from P in a well-specified way. The nearby pro-
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grams, called first-order mutants, are generated from the implemented program
by applying mutation operators that cause a single syntactic change in P .

Given a test set, its effectiveness is measured by computing the ratio of first-
order mutants that it can identify to be different from P and the total number of
mutants. A mutant is said to be killed by a test set if it can distinguish the mutant
to be different from the implemented program. Since some of the mutants could
be functionally equivalent to P , they have to be identified manually or by other
methods [13] and their number is reduced from the total number of mutants
before computing the effectiveness.

The second hypothesis that is assumed to hold in mutation testing is the
coupling effect [3], according to which the higher order mutants (i.e., programs)
that can be obtained by applying more than one application of mutation oper-
ators, need not be considered. This is because it is expected that if a test set
can kill all (non-equivalent) first-order mutants, it is also likely to kill the higher
order mutants.

A test set, T , is said to be mutation-adequate if for each first-order mutant,
P ′, that is not functionally equivalent to the program under test, P , there is at
least one test case in T for which execution of P and P ′ results in different be-
haviour. Then if P is correct on a test set T having this property, it is concluded
that P is correct with respect to faults represented by the mutation operators.
Thus a mutation-adequate test set is good at distinguishing a program from its
mutants and, if the program is faulty, the test set is also likely to be good at
distinguishing the program from a correct program [7].

Thus, mutation testing provides a practical and effective means of evaluating
a test criteria and test sets. However, with the increase in size of implementation,
it is computationally expensive or infeasible to consider all possible mutants that
can be hypothesised [26,24,11,14,15].

The number of possible mutants is proportional to the product of the number
of data references and the number of data objects [23, 14]. Offutt and Pan [13]
have given statistics such as the number of statements and mutants for various
programs; the statistics include a program ‘Cal’ with 29 statements for which
3,010 mutants were considered. A consequence of the generation of a large num-
ber of possible mutant programs is that they need to be executed in each step
of the testing phase till an adequate test set is obtained.

To overcome this problem, a number of approaches have been suggested,
such as finding an effective set of mutation operators [14] and variants of muta-
tion testing [8, 11, 25]. A short survey is presented in [15]. The original idea, as
described above, is referred to as strong mutation testing.

This paper presents an alternative method to improve mutation testing by
identifying fault and mutant hierarchies in order to reduce the test effort. For
example, let P be an implemented program, and P ′ and P ′′ be two first-order
mutants of P . It is possible to reduce test effort by considering only P ′ if it
can be deduced that any test set which can distinguish P from P ′ is also be
guaranteed to distinguish P to be different from P ′′.
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1.1 Related Work

A similar approach, but complementary to that presented in this paper, has
been suggested in [26,17,5], involving the determination of an optimal ordering
for the relational operators. The key idea can be stated as follows. Let P be a
given program and P ′ and P ′′ be two mutants that are obtained by replacing
a relational operator, say RO, in P by other relational operators, RO1 and
RO2 respectively, where RO1 is higher in the optimal ordering relation than
RO2 [26]. Then, for a given input, if P ′ remains live then P ′′ will also remain live.
Thus, when attempting to kill mutants, P ′ should be tried before P ′′. However,
Woodward in [24] has shown a fallacy in the above argument by providing a
counter example.

The rest of the paper is organised as follows. The next section presents the
theoretical foundation for the work. Section 3 discusses the properties and con-
ditions for ordering mutants. The implementation aspects and applicability of
existing infrastructure is presented in section 4. Finally, conclusions are presented
in section 5.

2 Theoretical Underpinning

Let P be an implemented program that represents a function, p : D �→ R, where
‘p’ is the semantic (possibly partial) function represented by the program P . The
domain and range (D and R, respectively) could be finite or infinite sets.

A state is a function from a set of variables to their (assignable) values. Two
states are equal if they represent the same function. A state may also associate an
(abstract) failure attribute, represented by ⊥, to one or more variables. Consider
for example, an assignment statement, x := y + z. If the addition of the current
values of variables y and z results in an overflow then an (incorrect) value will
be assigned to the variable x and a ⊥ attribute will be associated with x.

Any operation that involves variables with the ⊥ attribute might not prop-
agate ⊥ and may also result in correct output at the termination of program
execution. This is because internal failures may get masked during successive
steps of the execution [12]. Note that the ⊥ attribute is also considered while
checking the equality of two states. A program is said to fail externally if the
final state includes one or more variables with the ⊥ attribute.

A test case is an input state. For convenience, a test case will be considered
as an element of the input domain of a given program. Therefore, the notation
t ∈ D, where D is some input domain, would actually mean that the test case
is obtained by assigning values to variables by choosing an element from D. A
test set is a set of test cases.

Let P be a program that is being tested. A mutation operator can be defined
to be a rule for generating mutants by making a single syntactic change in P for
example, changing operator ‘+’ to ‘−’ (see [9] for a list of mutation operators). A
mutant that can be obtained by a single application of mutation operator on P
is referred to as first-order mutant. Unless otherwise stated, first-order mutants
will be simply referred to as mutants in the rest of the paper.
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Definition 1 (Distinguishing Test Case). A test case, t, is said to distin-
guish1 a program P from its mutant P ′ if P (t) �= P ′(t), where P (t) and P ′(t)
are final states obtained on executing P and P ′, respectively, with input t.

Thus, a distinguishing test case identifies that the program and its mutant
represent two distinct functions. It may happen that one of the programs fails
while the other does not, in which case they are obviously distinguishable (as per
the definition of state equality given earlier). The problem of automatic compu-
tation of a distinguishing test case is undecidable, in general, for an arbitrary
pair of programs. However, in practice it is often possible to find such test cases
using approximation techniques.

In strong mutation testing, the programs are distinguished by considering
the final states, whereas other variants, weak [8] and firm [25] mutation test-
ing, allow to distinguish two programs by observing their internal states. The
analysis stated in this paper also holds if Definition 1 is modified to allow the
distinction of programs on the basis of internal states as in weak or firm muta-
tion testing. However, there are limitations of such an approach (see Theorem 1
for an explanation).

A partial order between mutant programs can be defined using the following
relation.

Definition 2 (Relation Between Mutants). Let P ′ and P ′′ be two mutants
of P then P ′ is said to be stronger than P ′′ denoted by P � P ′ ≥m P ′′ if

∀t ∈ D · t distinguishes P, P ′ ⇒ t distinguishes P, P ′′

where t is a test case and D is the input domain of P .

The above relationships can also be stated in terms of test sets i.e. for all test
sets the above property must hold. The ≥m relationship among mutants can be
used to minimise the test effort by identifying strong mutants in a set of possible
mutant programs.

Again in common with a number of program analysis problems, identifying
every possible ≥m relation is undecidable in general. Nevertheless, in the re-
stricted setup of mutation testing it may be possible to find the relationship
between some, if not all, mutant programs. The consequence of any technique
being inherently incomplete is that it may not always be able to deduce the ≥m

relation between two given mutants. However, this is not harmful except that
both mutants need to be considered during testing.

The notation �m will be used to indicate that either ≥m relationship is not
known or it does not exist between a given pair of programs. For a pair of
mutants, P ′ and P ′′, of P if both P � P ′

�m P ′′ and P � P ′′
�m P ′ hold

then both P ′ and P ′′ must be considered during mutation testing. The notation
P = P ′ will be used to signify that P is semantically equivalent to P ′.

The programs under consideration in this paper are assumed to be written
in a typical imperative programming language whose semantics is available and

1 This is the same as killing a mutant.
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which provides constructs such as branch and loop. A countable set of variables,
numerals and labels is assumed. The labels (also referred to as locations) are
used to uniquely identify the program segments in order to facilitate the analysis.
Figure 1 shows the abstract syntax of the programming language and the rules
for labelling the statements. The entities with superscripts L are given a unique
label.

stmt ::= [ var := expr ]L

| if [ bool ]L then stmt else stmt end
| while [ bool ]L do stmt end
| stmt ; stmt | [skip]L

bool ::= true | false | bool logicOperator bool
| ¬ bool | relationalExpression | ( bool )

Fig. 1. Partial abstract syntax for the programming language

The Boolean conditions (i.e., bool) are used solely for deciding the branch
to be followed in the next step of the execution and therefore are assumed not
to modify the state of the program. A label when given to a Boolean condition
is said to be a p-location, otherwise it is said to be a c-location. Note that a
condition in an if or while statement is given a unique label (i.e., different from
the labels that are given to statements that appear inside the then-else or body
of a while statement, respectively).

An operational view of a program execution will give a sequence of states,
called a trace, representing the execution sequence of the program’s statements.
Since some statements (e.g. skip) may not change the state, the trace may have
repeating consecutive entries. A trace is generated as follows: the start state is
the input state and is given the index 0; for every labelled statement that the
execution passes through, the state after that label is added to the trace. The
final state corresponds to the end of program execution.

Let ↓ be an infix operator that gives the ith element of a given trace. Let
Labs be a function that takes a statement, S, (i.e., stmt above) and returns the
set of labels that appear in S. Further, let L be a function that takes a trace, tr,
of length n and an integer i (1 ≤ i ≤ n), and returns the label of the statement
that resulted in the state tr ↓ i; formally: L : Trace × Integer → Label.

To analyse a given program, we will also use the concept of symbolic execution
which has been used in a wide variety of problems, such as, test data generation
[4] and detecting equivalent mutants [13]. In symbolic execution, a program is
executed with the symbolic values representing arbitrary values, instead of actual
input values. Such an execution results in a tree in which every node consists of
symbolic values of the variables and the path constraint that must be true to
reach that node.
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3 Ordering Mutants

Let P be an implemented program and P ′ be a first order mutant that differs
from P at location l. A test case, t, can distinguish P from P ′ provided the
following necessary and sufficient conditions hold on executing P and P ′ with
starting state t [11,21,16,13]:

a. the execution must reach location l (reachability);
b. the evaluation of expressions at location l in P and P ′ must result in different

values at least once (infection);
c. the final states on termination of execution of P and P ′ must be different

(propagation).

Condition (b) (i.e., infection) has been referred to as necessity in [13], and
the original state failure condition in [16] consisting of an origination condition
and computational transfer conditions. The above conditions (a) and (b) can be
stated formally as follows.

Proposition 1. Let P ′ be a mutant of a program P which is obtained by ap-
plying mutation operator at location l. Further, let tr and tr′ be the traces that
are obtained by executing P and P ′ with a test case t, respectively. Then the
following properties holds:

a. The reachability condition holds iff
∃i L(tr, i) = L(tr′, i) = l;

b. If l is a c-location then the infection condition holds iff
∃i · (L(tr, i) = l ∧ L(tr′, i) = l ∧ tr ↓ i �= tr′ ↓ i

∧ (∀j · j < i ⇒ tr ↓ j = tr′ ↓ j))
c. If l is a p-location that refers to a condition in an if statement as shown in

Figure 2(a) then the infection condition holds iff
∃ i · (L(tr, i) = l ∧ L(tr′, i) = l ∧

(L(tr, i + 1) ∈ Labs(St) ∧ L(tr′, i + 1) ∈ Labs(Se))
∨ (L(tr, i + 1) ∈ Labs(Se) ∧ L(tr′, i + 1) ∈ Labs(St)))

d. If l is a p-location that refers to a condition in a while statement as shown
in Figure 2(b) then the infection condition holds iff
∃ i · (L(tr, i) = l ∧ L(tr′, i) = l ∧
(L(tr, i + 1) ∈ Labs(Sw) ∧ L(tr′, i + 1) /∈ Labs(Sw) ∨
L(tr, i + 1) /∈ Labs(Sw) ∧ L(tr′, i + 1) ∈ Labs(Sw)))

Proof. Properties (a) and (b) follow by observing that the location must be
reached and in the case of a c-location the two executions must result in two
different states if they are to be distinguished.

Other than reachability, the main condition in (c) and (d) is that at some
point during the execution of programs the paths followed after reaching location
l must be different. This is because if two conditional expressions at location l
always evaluate to the same value in P and P ′, the resultant end states will also
remain the same.
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l: if (cond) then
St

else
Se

end
(a)

l: while (cond) do
Sw

end

(b)

Fig. 2. Structures for proposition 1(c) & (d)

In the case of an if statement, the different evaluation of conditions will
result in the execution of then and else branches; whereas in the case of while
statement it will result in unequal number of executions of the while loop. ��

Let D be the input domain of program P , and P ′ be a mutant of P obtained
by applying a mutation operator at location l. Using the terminology of [13], let
subdomain Dl,P ′

r ⊆ D be the set of inputs which reaches location l; similarly,
Dl,P ′

n ⊆ D be the set of inputs that can cause the original and mutated expression
to result in different values and Dl,P ′

s ⊆ D be the set that causes P and P ′ to
result in different final outcomes.

Fact 1. A test case, t, will distinguish P from P ′ iff t ∈ Dl,P ′
s which implies

t ∈ Dl,P ′
r ∩ Dl,P ′

n and Dl,P ′
s ⊆ Dl,P ′

r ∩ Dl,P ′
n [13].

Note that there may be test cases in Dl,P ′
n that does not satisfy the reach-

ability condition. The computation of both Dl,P ′
r and Dl,P ′

n is undecidable, in
general. However, in practice it is easier to compute the set Dl,P ′

n as it only
requires analysis of the expressions at location l which are often simple. On the
other hand, computation of Dl,P ′

r is more expensive and complex as it requires
analysis of the paths that can reach location l.

Proposition 2. P � P ′ ≥m P ′′ ⇔ Dl′,P ′
s ⊆ Dl′′,P ′′

s , where P ′ and P ′′ are
mutants obtained by applying mutation operators at location l′ and l′′ in P ,
respectively.

Proof. The proof follows from the definitions. ��

A straightforward method to identify ≥m relation is by checking if Dl′,P ′
s ⊆

Dl′′,P ′′
s . It is also possible to restrict the test cases to be from the set S =

Dl′,P ′
s ∩Dl′′,P ′′

s , provided that the set S is not empty, in which case distinguishing
P ′ will also guarantee the same for P ′′.

The sets Dl′,P ′
s and Dl′′,P ′′

s can be computed by using symbolic execution
techniques, which give a constraint on inputs that must be satisfied by a dis-
tinguishing test case. Such an approach of computing the detection conditions
for hypothesised faults has been extensively studied, for example, in constraint-
based testing [4] and computation of failure conditions in [12, 16]. Let Cs

1 and
Cs

2 be two constraints that correspond to the subdomains Dl′,P ′
s and Dl′′,P ′′

s

respectively. Then, Cs
1 ⇒ Cs

2 will also guarantee that P � P ′ ≥m P ′′.
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Remark 1. The benefit obtained in using the above procedure may be compara-
bly less as it still requires complete symbolic analysis of all the mutants, which
may be expensive for complex programs.

The objective of this paper is not only to reduce the storage space for mutants
but also to reduce the number of executions of implemented program and its
mutants. Therefore, if possible, the ≥m relation between mutants should be
established during their generation itself, thereby only producing the strongest
mutants. This approach is an improvement over the method where mutants are
first generated explicitly and then an attempt to establish a partial order among
them is made.

However, generating the set of strongest mutants may lead to problems due
to the presence of equivalent mutants already in the set. Note that the property
P � P ′ ≥m P ′′ holds trivially for any P ′′ if P is equivalent to P ′ (i.e., when
Dl,P ′

s = ∅). The statistics, as reported in [13], indicate that the number of
equivalent mutants is typically in the range of 7 to 12% of the total number of
mutants and the automatic detection rate using symbolic execution varies from
12 to 84% of the total number of equivalent mutants.

Thus, although explicit generation of all mutants may not be required, the
information regarding them must still be maintained. This information about
P � P ′ ≥m P ′′ will be required whenever it is deduced or suspected that P = P ′,
for example when a significant amount of effort is spent in killing P ′ without
success (such as, large size of the test set and large number of times reachability
and infection conditions are met). The required information about all mutants
can effectively be stored using the schemata approach described in [20]. However,
the instantiation order for mutants will be guided by the hierarchies among them.

Let l′ and l′′ be two locations in P that are mutated to obtain mutants P ′

and P ′′ respectively. These mutants will be known as intra-location mutants of
P if l′ = l′′, otherwise they will be referred to as inter-location mutants.

3.1 Intra-location Mutants

Let P be an implemented program and P ′ and P ′′ be two intra-location mu-
tants of P that are obtained by applying mutation operator at location l in P .
Let C1 and C2 be the predicates that correspond to the sets Dl,P ′

n and Dl,P ′′
n ,

respectively.
Now consider the example program shown in Figure 3(a). The mutants fun′

and fun′′ are shown in boxes and are obtained by applying mutation operator
at location L2, where <=, < and > are relational operators. The conditions2

C1and C2, in this case, are x = 4 and true respectively. In other words, C1 and
C2 are necessary (but not sufficient), at location L2, to distinguish P from P ′

and P ′′ respectively. Note that C1 implies C2. In [16], it is concluded that in
such cases it is sufficient to consider only C1 (see page 543 and Table X in [16]).

2 Obtained by taking exclusive-or of two expressions, e.g., C1 ≡ x <= 4 ⊕ x < 4,
where ⊕ is exclusive-or operator.
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int fun(int x, int i) begin
L1: while (i <= 2) do fun′ fun′′

L2: if (x <= 4) if (x < 4) if (x > 4)
L3: x := x + 1;
L4: else
L5: x := x + 2;
L6: end
L7: i := i + 1;
L8: end
L9: return x;

end

(a)

Input Output
x i fun fun′ fun′′

3 1 5 6 6
4 1 7 8 7

(b)

Fig. 3. (a) A counter example for mutations of an if statement. (b) Input and output
for the program

However, in general, this argument is neither valid for a p-location nor a c-
location. Figure 3(b) gives the output of two test cases for the program and its
two mutants that are shown in Figure 3(a). The first row shows that the mutants
are not equivalent to the original program, whereas the second row shows that
the above conjecture is not true. The following theorem gives formal reasoning
for the above observation.

Theorem 1. Let P be a program and P ′ and P ′′ be its two intra-location mu-
tants obtained by mutating a statement at location l then, Dl,P ′

n ⊆ Dl,P ′′
n does

not guarantee P � P ′ ≥m P ′′.

Proof.
Dl,P ′

s ⊆ Dl,P ′
r ∩ Dl,P ′

n (fact 1)
Dl,P ′′

s ⊆ Dl,P ′′
r ∩ Dl,P ′′

n (fact 1)
Dl,P ′

r = Dl,P ′′
r (intra-location mutants)

Dl,P ′
n ⊆ Dl,P ′′

n (given)

The most favourable conclusion that can be drawn from the above statements
is that both Dl,P ′

s and Dl,P ′′
s are subsets of Dl,P ′

r ∩ Dl,P ′
n . But this does not

guarantee Dl′,P ′
s ⊆ Dl′′,P ′′

s (as required by Proposition 2). ��

Example. Figure 4(a) shows a concrete example that illustrates the above the-
orem for a c-location.

Consider the two mutants, Comp′ and Comp′′, obtained by applying muta-
tion operator at location L1 in Comp (see Figure 4(a)). The Dn sets for both
mutants is the whole input domain D since the mutated statements would re-
sult in different values for any integer input. In other words, the conditions C1
and C2 are true. However, input x = 8 will distinguish only Comp from Comp′;
whereas input x = 3 will distinguish Comp from Comp′′ (see Figure 4(b)). Thus,
mutants Comp′ and Comp′′ are not related under ≥m.
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int Comp(int x) { Comp′ Comp′′

L1: x := x + 1; x := x - 1; x := x + 2;
L2: if (x = 5 ∨ x = 7)

x := 9;
else

x := 6;
return x;

}
(a)

Input Output
(x) Comp Comp′ Comp′′

8 6 9 6
3 6 6 9

Comp′ Comp′′

Dn D D
Ds {4, 8} {3, 4, 5, 6}

(b)

Fig. 4. (a) An example program for Theorem 1. (b) Input, output and subdomains for
the program

Corollary 1. Let P , P ′, P ′′ and l be the entities as stated in Theorem 1. Then,

Dl,P ′
n ∩ Dl,P ′′

n = ∅ ⇒ (P = P ′ ∨ P � P ′
�m P ′′)

Proof. The first three conditions are identical with the proof for Theorem 1.
Dl,P ′

n ∩ Dl,P ′′
n = ∅ (given)

⇒ Dl,P ′
s ∩ Dl,P ′′

s = ∅ (set theory)
⇒ Dl,P ′

s = ∅ ∨ Dl,P ′
s � Dl,P ′′

s (set theory)
⇔ P = P ′ ∨ P � P ′

�m P ′′ (fact 1 and Proposition 2)
��

Note that the above corollary also holds for the implication P = P ′′ ∨ P �
P ′′

�m P ′ and confirms that the hierarchy does not hold if the set Dl,P ′
n ∩Dl,P ′′

n

is empty. This is particularly helpful in isolating those mutants that definitely
need to be considered during testing.

However, a hierarchy can be established between mutants under certain con-
ditions. These conditions are discussed below.

Theorem 2. Let P be a given program and l be a p-location that corresponds
to a condition, c. Further, let c be mutated to c′ and c′′ giving mutants P ′ and
P ′′, respectively. Then, (c′ ⇔ c′′) ⇒ P � P ′ ≥m P ′′.

Proof. As per Proposition 1 (c) and (d), P and P ′ (P ′′) must follow different
paths after reaching location l (sometime during an execution) in order to be
distinguished.

The condition (c′ ⇔ c′′) ensures that condition c′ and c′′ always evaluate
to the same Boolean value. Thus, for a given test case, the path followed by
P ′ and P ′′ will always be the same, ensuring that whenever the infection and
propagation conditions hold for P ′, they will hold for P ′′ as well. ��

The above condition in Theorem 2 is a very strong requirement and at first
sight it may appear to be less useful. However, the following section will illustrate
that such a property can be helpful in reducing the test effort.
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Remark 2. Why do we need such a strong condition to hold in general? To
answer this question, let us consider the two mutants P ′ and P ′′, obtained by
mutating a condition for a while loop of P . For a given test case, let ip, ip′

and ip′′ be the number of times the while loop is executed in P , P ′ and P ′′,
respectively. Thus, the necessary conditions for killing P ′ and P ′′ are ip �= ip′

and ip �= ip′′ respectively. To establish P � P ′ ≥m P ′′, one of the following
properties must hold:

a. ip′ = ip′′ or
b. the resulting states must be the same after executing the body of while loop

ip′ and ip′′ times.

The condition in Theorem 2 is equivalent to (a) above. However, the condi-
tion (b) is equally acceptable, but requires analysis of the program segment to
guarantee that it holds for any test case that distinguishes P from P ′; this may
be difficult to establish. It is also possible to weaken the requirement in Theorem
2 under certain conditions as described by the following theorem.

Theorem 3. Let P be a given program and l be a p-location that corresponds to
a condition, c, in an if statement in P . Further, let c be mutated by two operators
to c′ and c′′ giving mutations P ′ and P ′′, respectively. Then, a test case t will
guarantee P � P ′ ≥m P ′′ provided the following conditions hold:

a. there exists a unique i such that L(tr, i) = L(tr′, i) = l, where tr and tr′ are
the traces obtained on executing P and P ′ respectively, with test case t.

b. (c ⊕ c′) ⇒ (c ⊕ c′′), where ⊕ is exclusive-or operator;

Proof. As per Proposition 1 (c) and (d), P and P ′ (P ′′) must follow different
paths after reaching location l (sometime during an execution) in order to be
distinguished.

The condition (a) ensures that the if statement is executed exactly once,
whereas condition (b) guarantees that P ′′ will follow the same path as P ′ after
executing l, if P ′ execution differs from that of P . This is achieved by the con-
dition (c ⊕ c′) ⇒ (c ⊕ c′′) which ensures that if condition c and c′ are different
then c and c′′ will also be different.

The necessity for the condition (a) can be explained as follows. Assume that
the if statement is executed twice and c′ differs from c in second execution.
However, it is possible that only c′′ may differ from c in the first initial execution
(as it is allowed by the condition (b)), in which case it is not guaranteed that
killing P ′ will also ensure the same for P ′′. ��

Thus, Theorem 2, Remark 2 and Theorem 3 give three different possibilities
and also present the reasoning for the conditional requirements associated with
them.

Note that in Theorem 3, c and c′′ may differ, but c and c′ may evaluate to the
same values, in which case P ′′ may be detected but P ′ will not. Thus P ′′ could
be detected by more test cases than P ′. This can also be observed by noting that



206 K. Kapoor and J.P. Bowen

c ⊕ c′ defines the subdomain Dl,P ′
n and considering the implication as a subset

relation.
Some programming languages also allow variables of type Boolean that can

appear in assignment statements such as a := b ∨ c where a, b and c are of type
Boolean. For the special case of Boolean variables Theorem 1 can be refined as
follows:

Corollary 2. Let l correspond to a computation statement of the form var := c,
where var and c are of type Boolean. If c is mutated to c′ and c′′ then P � P ′ ≥m

P ′′ holds, provided the conditions specified in Theorem 3 hold.

Proof. The proof is similar to that for Theorem 3 with the observation that var
can take only two values. ��

3.2 Inter-location Mutants

Let P ′ and P ′′ be two inter-location first order mutants of a program P that
are obtained by mutating location l′ and l′′ respectively. Consider the set R =
Dl′,P ′

r ∩ Dl′′,P ′′
r .

If R = ∅, there is no relationship between P ′ and P ′′ and both of them must
be considered during mutation testing. The checking of condition R = ∅ does
not necessarily require explicit computation of the reachability sets. In fact,
various control-flow, data-flow and other analysis techniques used in program
optimisation, etc., can also be applied to discover if R = ∅ holds. An example
where the condition R = ∅ holds is when l′ and l′′ appear in then and else
branches of an if statement.

Consider the other case when R �= ∅; i.e., there may be an execution that
passes through both l′ and l′′. In this case in order to find if the two mutants
are related, it is necessary to evaluate the impact of mutation at l′ at location
l′′ (or vice versa). If this analysis succeeds then the process of identifying the
hierarchy between inter-location mutants is identical to that for intra-location
mutants.

Such an analysis, in which the effect of a fault is propagated, is extensively
studied in the literature in terms of propagation conditions. For example, the
local propagation of origination conditions is referred to as transfer conditions
in [16].

The following section will further illustrate the approach suggested in this
section.

4 Theory to Practice

The analysis required to check the conditions discussed in the previous section
can be undertaken using existing program analysis tools. In particular, we will
use symbolic evaluation and assume that the symbolic execution of the program
under test is done once to obtain the symbolic execution tree. This requirement
may be relaxed if program transformation techniques such as those mentioned
in [6] are applied to make the program more testable.
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Remark 3. Let C be a first-order quantifier-free logical formula that we want
to test to determine if it holds at location l in program P . There are three
possibilities for the property to hold: (a) C holds in general; (b) C is not valid;
(c) C is not valid in general but it holds in the restricted context of P .

In the case (c) above, if the simplified formula is not false, it can give a hint
for generating test data for a conditional hierarchy. This is particularly helpful
in the context of Theorem 1, which implies that mutations of c-locations are not
directly comparable. However, it is still possible to analyse intra or inter-location
mutants by propagating the mutation at a c-location to a p-location and then
checking for the hierarchy.

Consider, for example, the program shown in Figure 4(a) earlier. Observe that
x is defined before and after L2; therefore it is safe to propagate the mutations
of L1 to location L2 and then attempt to check the properties using Theorem
3. Let x1 be the value of x before executing the statement at location L1. After
execution of the statement at location L1, the value of variable x will be x1 + 1,
x1−1 and x1+2 for the programs Comp, Comp′ and Comp′′, respectively. Thus,
in this case c, c′ and c′′ are as follows:

c ≡ x1 + 1 = 5 ∨ x1 + 1 = 7 ⇔ x1 = 4 ∨ x1 = 6
c′ ≡ x1 − 1 = 5 ∨ x1 − 1 = 7 ⇔ x1 = 6 ∨ x1 = 8
c′′ ≡ x1 + 2 = 5 ∨ x1 + 2 = 7 ⇔ x1 = 3 ∨ x1 = 5

Also,
c ⊕ c′ ≡ x1 = 4 ∨ x1 = 8
c ⊕ c′′ ≡ 3 ≤ x1 ≤ 6

Therefore, if mutant Comp′ can be killed using a test case such that the value
of the variable x before executed L1 is 4 then it is guaranteed that it will also
kill Comp′′. This shows that by doing local analysis it is also possible to identify
a potential test case that can kill two mutants.

The deductions mentioned in Remark 3 can be done automatically using ex-
isting tools such as the Cooperating Validity Checker (CVC) [2], which can check
the validity of quantifier-free first-order formulas over several interpreted theories
including real linear arithmetic, arrays, uninterpreted functions and constants,
abstract data types, etc.

x, y, z : REAL;

f : [REAL -> REAL];

QUERY (f(x + y) <= z XOR f(x - y) <= z)

=> (f(x + y) <= z XOR f(x + y) > z);

Fig. 5. CVC input

Consider, for example, a condition c ≡ f(x + y) <= z that appears in an if
statement of a program, where f is a function from real → real. Let c′ and c′′ be
the two mutants of c obtained by mutating + to − and <= to >, respectively.
Assume that a test case executes the if statement only once (such statistics can
be collected during the execution of the program). Then CVC can be used to



208 K. Kapoor and J.P. Bowen

check if c ⊕ c′ ⇒ c ⊕ c′′ (see Theorem 3) by giving the input shown in Figure 5.
In this case CVC returns the result to be valid for any f .

The analysis of Boolean expressions has been extensively studied in the lit-
erature; see for example [18, 22]. In [10, 19], a hierarchy between different types
of faults that can arise in Boolean specifications is analysed. These results are
applicable in the context of Theorem 3. Similarly, Corollary 1 and R = ∅ (section
3.2) can be used to identify those mutants that are guaranteed to have the �m

relationship.

5 Conclusions and Future Work

Mutation testing is a powerful testing approach that can not only ensure the
checking of hypothesised faults but also the generation of test data satisfying
common structural coverage criteria. The main difficulty faced in mutation test-
ing is due to the large number of mutant programs that can be generated for a
given implemented program. We have given a strategy that suggests the order-
ing of the mutants such that if a mutant is stronger than another, then killing
the stronger will automatically kill the weaker. This approach can significantly
reduce the cost of mutation testing.

We have presented various conditions to identify the relationship between
mutants that can be analysed locally and thus can be evaluated in a effective
way.

As the kind of analysis required to establish hierarchies is already part of
various program analysis and transformation tools, and also tools like CVC [2]
are already available, the given approach should be practical. However, an ex-
tensive empirical study, ideally on industrial-scale examples, is required to verify
that this is indeed the case. We hope and believe that this theoretical paper will
provide a good basis for such a study.
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Abstract. CBSD needs to customize and compose components. Customization 
and composition can cause faults which are hard to detect by existing testing 
techniques, since components have different structures from traditional programs. 
This paper proposes a testing technique for customization and composition, and 
then it tailors the technique to COM component architecture. Since CBSD aims to 
reduce development cost, testing should consider the cost of testing. Effective test 
data will help reduce testing cost. Therefore, an empirical study shows that the 
technique proposed in this paper selects effective test data. 

1   Introduction 

The issues in CBSD are seen from two perspectives: that of the component provider 
and that of the component user.  One key factor that distinguishes the two 
perspectives is the availability of the component source code; the component 
providers have access to the source code, whereas the component users typically do 
not [1].  The lack of the source code limits the testing that the component user can 
perform [2], and a new component testing technique is needed that takes the view of 
the component user. 

CBSD has two main activities from the standpoint of the component user; one is 
‘Customization,’ [3] and the other is ‘Composition.’ Customization is for tailoring 
pre-built components to the current development domain, and composition is for 
merging the customized components to component-based software. Testing should be 
performed just after the customization and the composition, in order to keep 
components error-free in the current system.  

Souza defined component customization [4].  Specifically, the component hides its 
internal behavior, yet provides an interface whereby the component user can change 
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the component’s behavior or its methods.  Component customization includes every 
activity to modify the existing component for reuse. It includes adding new domain-
specific functions as well as simple modifications to attributes. 

Component customization testing tests the faults occurring through component 
customization. Customization could cause faults through modifying the interface of a 
component. The faults exist in the interface, but the faults are executed through the 
interaction between the interface and the core part of a component. Thus, the faults 
from the customization can be detected by the integration testing, not by the unit 
testing of the interface. The two parts of the integration testing have different 
characteristics; the interface is a white-box, and the core part is a black-box. The 
integration testing of both a white-box and a black-box requires a new technique, 
since most of the existing integration testing techniques consider either white-box 
programs or black-box programs. This paper proposes an integration testing technique 
of these two parts as the customization faults.  

The components are composed in an application, and the process composing 
components is called “Composition.” Composition can be performed by various 
operators depending on component architecture. For example, EJB composes 
components by calling methods in the other component.  

The composition could cause faults through linking two components. The 
components composed are pre-built components or domain components. Even if the 
pre-built components work perfectly in a certain system, they could work incorrectly 
in another system. An example is the Ariane 5’s lesson [5]. A component that worked 
well in Ariane 4 causes faults in Arian 5, and thus Ariane 5 was derailed. 

We have proposed a technique for detecting faults that occur through customization 
and composition demonstrated in our earlier papers [6]. The testing technique was 
based on the general characteristics of the components, and thus we have tailored the 
technique to EJB component architecture [6]. Now, this paper customizes the 
technique to the Component Object Model (COM) that is one of the most popular 
component architectures. With the COM-based testing technique, an empirical study 
shows the effectiveness of the test data selected by this technique. The effectiveness 
of test data is a particularly important issue, since the purpose of CBSD is to reduce 
the cost of development.  Testing with effective test cases will save testing cost. 

The remainder of the paper is organized as follows. In Section 2, a customization 
testing technique and a composition testing technique are described, and then they are 
tailored to COM in Section 3. Section 4 analyzes the effectiveness of the proposed 
technique through an empirical study. Section 5 presents some concluding remarks. 

2   Technique for Customization Testing and Composition Testing 

2.1   A Customization Testing Technique 

The component customization testing is a form of integration testing of the two parts 
of a component, and the two parts were defined as a Black-box class and a White-box 
class [7].  The customization testing defined which part of a component could be a 
Black-box class and which part of a component could be a White-box class, and then 
selected some specific parts where faults were injected. With the specific parts, it used 
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fault-injected versions of a customized component in order to select test cases that 
differentiate fault-injected versions from a customized version.  The following terms 
[7] were defined to describe the customization testing technique. 

Definition 1.  Black-box class ( B ) 
The black-box class is a part of the component where the source code is not disclosed 
and therefore cannot be modified for customization.  This is denoted as B. The 
component provider creates B, and B has the execution code of a component. 

Definition 2.  White-box class ( W ) 
The white-box class is a part of the component where the source code is open to the 
component user and can be modified for the customization.  The white-box class is 
denoted as W. Usually the component provider creates W, and the component user 
modifies W for customization.  The customized interface is denoted as cW and the 
fault-injected into cW is denoted as fW.  

Definition 3.  Component ( BW ) 
The component is a combination of B and W, and so is denoted as BW.  BW with the 
customized W is denoted as cBW and the fault injected into BW is denoted as fBW. 

Definition 4.  Fault Injection Target (FIT) 
This is the specific part into which a fault is injected.  More effective test data can be 
selected by injecting a fault only into the FIT. 

Definition 5.  Fault Injection Operator (FIO) 
FIO is an operator that defines how to inject a fault without causing syntax errors.  

A FIT is a constituent unit of cW, for instance, a single XML element for EJB.  The 
cBW executes the behavior customized to current domain requirements by referring to 
the elements in cW.  This does not mean that B directly refers to all elements of cW.  
B refers to a specific element in cW, say x, and then indirectly refers to another 
element, say y, by directly referring to x related to y.  

Definition 6.  Directly Referred Element (DRE) 
DRE is an element of the interface that B refers to directly.   

Definition 7.  Indirectly Referred Element (IRE) 
IRE is an element of the interface that a DRE refers to and B refers to indirectly 
through the DRE.  The set of indirect reference elements related to DRE, say d, is 
denoted as an IRE(d).   

When there are faults in IRE of cBW from customization, these faults influence B 
through DRE.  Therefore, the test cases must detect the faults both in DRE and in the 
relevant IRE. Identifying DRE as the FIT is under the assumption that “the test cases 
selected by injecting a fault into DRE can detect the faults in DRE and in relevant IRE.”[6]  

For testing the customized component cBW in Figure 1 (a), the technique creates a 
fBW by injecting a fault into the FIT of cW as shown in Figure 1 (b).  The fault 
injection operator is called FIO. FITs are selected in consideration of the interaction 
between B and cW as described above, so it is the FIT that enhances the effectiveness 
of test cases in this paper.  

Once fBW is generated, the technique selects test data by following Definition 8.  
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Fig. 1. Component customization and fault injection 

Definition 8.  Test data selection for component customization: 
A test data for component customization is a sequence of method calls that 
differentiate fBW from cBW.  TC is a set of these test cases. 

TC = { x | cBW(x) fBW(x), where x is a method sequence.} 

Definition 8 looks similar to the mutation test case selection technique [8], but it 
does not select the test cases with the mutants made by mutating all the elements of 
cBW as mutation testing does.  It uses the mutants made by mutating only the FIT, 
based on the interaction between B and cW. 

2.2   A Composition Testing Technique 

All of the components of an application in CBSD are not pre-built components. Some 
components of an application should be developed since they can not be found in 
component repositories or anywhere else. Therefore, an application developed in 
CBSD consists of reused-components and in-house-components that are developed 
for the application itself. The composition should consider these two different types of 
components. These are defined as follows in this paper. 

Definition 9. Black box component (B) 
Black box component means a component that was developed by another component 
developer or in another system and that is reused in the current system. The 
component users do not know the source codes of the black box component. The 
black box component is described simply as B. 

Definition 10. White box component (W) 
White box component means a component that is newly developed in the current 
application. Therefore, the developer can control the contents of the white box 
component. The white box component is expressed simply as W.  

Definition 11. Composition Unit (CU) 
Composition Unit means a unit generated by composing two components, B or W.  
We call the Composition Unit as CU simply. WB, WW, BB, and BW are CUs.  When 
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W calls a method of B, this composition unit is expressed as WB. Also, WW stands for 
the composition that W calls a method of another W.  In WW, W calling another W is 
expressed as W s and W  called by another W is expressed as W d. When B calls a 
method of B , this composition is expressed as B B . Also, B W  stands for the 
composition that B calls a method of another W.  Moreover, fWW means fault injected 
WW and fWB means fault injected WB. Both of fWW and  fWB are fault injected CUs, 
so fWW and fWB are fCU. 

To define what in W will be FIT, following definitions are needed. 

Definition 12. P 
Components are composed by calling method, so there must be a statement calling 
methods in W of WB or Ws of WW.  P identifies parameters in that calling sentence.  

Definition 13. R 
There must be calling sentences in Ws of WW and methods called by them in Wd of W
W when the composition is through calling methods.  R refers to a return variable in a 
called method of Wd. 

Definition 14. ref(x) 
ref(x) means statements that make a change in a value of x.  ref(P) and P are located 
in the same Ws.  ref(R) and R are located in same Wd. 

Components are composed to CU, and the kind of components that are in a CU 
depends on the composition pattern, as shown in Figure 2 (a). Figure 2 (b) shows this 
fault injection process.  FITs are selected in consideration of the interaction between 
components of CU, and it is the FIT that enhances the effectiveness of test cases in 
this technique.  

Fig. 2. Component composition and fault injection 

There are several patterns in building CU through component composition as 
shown in Figure 2 (a), and the locations and the operations of injecting a fault into CU 
depend on these patterns.  After creating fCU by injecting a fault into the FIT with the 
FIO, the test data are selected as described in Definition 15.   

Definition 15.  Test data for the component composition 
A test data for component customization is a sequence of method calls that 
differentiate fCU from CU.  TD is a set of these test data. 

TD = { x | CU(x) fCU(x), where x is a method sequence.} 
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3   Testing Technique for COM Components 

The technique in Section 2 has a similar structure of a component, which consists of 
W and B. W and B of the technique are illustrated in Figure 3.  

 
Fig. 3. Structure of the testing technique 

As a component, the technique can be customized by specifying W, in which 
Patterns, FITs, and FIOs are.   In this section, the technique is customized to COM by 
specifying the patterns, FIT, and FIO.  

3.1   Customization Testing in COM 

COM Customization Patterns. A COM component consists of an object and its 
interfaces.  An object consists of classes that constitute the main functions of a 
component.  It could be B since it doesn’t open its source code and it has the main 
code of its functions.  An interface of a COM component is accessible from outside, 
so it is W in COM.  Customization patterns of COM should be defined first before 
selecting FIT and FIO in COM. Table 1 shows the COM customization patterns. 

Table 1. Customization Patterns in COM 

Pattern Definition 

Pattern 1 A pattern which sets the values of properties by changing the interface 
Pattern 2 A pattern which sets the values of properties by making a new interface. 
Pattern 3 A pattern which adds new functions by changing the interface 
Pattern 4 A pattern which adds new functions by making a new interface 
Pattern 5 A pattern which modifies functions by inserting a new sequence to an interface 

Pattern 6 
A pattern which modifies functions by making a new interface and by inserting a 
new sequence into the new interface 

FITs and FIOs of Customized COM. Once the customization patterns in COM are 
categorized, FIT and FIO in every pattern should be defined according to Definition 4 
and Definition 5.  FIT is a specific part of W which communicates with B directly.  
It’s not a modified part through customization. In order to select FIT of COM 
component, many practical COM components should be considered, and COM 
components coded with VB are analyzed in this paper.  FITs in every pattern are 
selected by analyzing VB COM components as shown in Table 2. 

Making Fault-injected version Test Data selection 

Patterns FIT FIO
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Table 2. FITs and FIOs in VB COM  

Patterns FITs FIOs 
Dim : A property declared with 
Dim 

MDim : Modify the value of the property 
declared with “Dim” Pattern 1 

Form : A property declared with 
Form 

MForm : Modify the value of the property of a 
“Form” 

DimN :  A property declared with 
Dim in a new Interface 

MDimN : Modify the value of the property 
declared with “Dim” in a new Interface 

Pattern 2 
FormN : A property declared with 
Form in a new Inteface 

MFormN : Modify the value of the property of a 
“Form” in a new Interface 
RSub: Replace a function with a new component PublicSub : A function declared 

with Public Sub CSub: Create a new function 
RFnt: Replace a function with a new component Pattern 3 

PublicFunction : A function 
declared with Public Function. MPrm: Modify the value of the parameter of a 

new function 
RSubN: Replace a function with a new 
component in a new Interface 

PublicSubN : A function declared 
with Public Sub in a new 
Interface CSubN: Create a new function in a new Interface 

RFntN: Replace a function with a new 
component in a new Interface 

Pattern 4 
PublicFunctionN : A function 
declared with Public Function in 
a new Interface MPrmN: Modify the value of the parameter of a 

new Function in a new Interface 
PublicSub : A function declared 
with Public Sub 

CSubS: Create a new function including a new 
sequence 

Pattern 5 
PublicFunction : A function 
declared with Public Function. 

MPrmS: Modify the value of the parameter of a 
new function including a new sequence 

PublicSubN : A function declared 
with Public Sub in a new 
Interface 

CSubSN: Create a new function including a new 
sequence in a new Interface 

Pattern 6 
PublicFunctionN : A function 
declared with Public Function in 
a new Interface 

MPrmSN: Modify the value of the parameter of a 
new Function including a new sequence in a new 
Interface 

3.2   Composition Testing in COM 

COM Composition Patterns. Software that is developed in EJB or COM consists of 
Bs and Ws. Components of COM are composed by calling methods.  Hence, the 
composition patterns with B and W are in Table 3.   

Table 3. Composition patterns 

Patterns Definitions 

BB A pattern in which B calls a method of B 

BW A pattern in which B calls a method of W 

WB A pattern in which W calls a method of B 

WW A pattern in which W calls a method of W 

The composition of BB pattern was already built by a component provider since the 
component users cannot access B in the composition testing. This composition cannot 
and need not be considered because it is presumed to be error-free in CBSD.  The 
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composition of BW pattern is also built by the component provider of B because the 
component users cannot access the composition code in B as it is not open to him 
according to Definition 9.  Therefore, the composition testing needs to handle WB 
pattern and WW  pattern. FITs and FIOs for WB  pattern and WW  pattern will be 
defined for the composition testing. 

FITs and FIOs of Composed COM. In WB pattern of COM, there might be errors in 
W because B cannot be modified by a current developer for a composition.  Thus, a 
fault will be injected in W.  However, we inject a fault not into entire W but only FIT 
of W which could lead to the selection of more highly effective test data.  Since a 
composition is made by method calling in COM, we can first consider ref(P) as FIT.  
Nevertheless, we select only P, which is smaller than ref(P), as FIT.  This is under an 
assumption that “Test cases selected by injecting a fault only to P can detect the errors 
that exist not only in P but also in the ref(P) in W”[6].  To delete or to add as the FIO 
is impossible, because P needs to keep a signature of the called method.  According to 
Definition 4, fWB  also needs to be executable. Therefore, only an operator that 
replaces P with another variable or constant is possible to be FIO.  We call this FIO 
as Replace(P). 

In WW pattern of COM, there might be errors in Ws and Wd.  In COM, we select P 
of Ws and R of Wd as FIT with the assumptions that “Test cases selected by injecting a 
fault only to P can detect the errors that exist not only in P but also in the ref(P) in W” 
and “Test cases selected by injecting a fault only to R can detect the errors that exist 
not only in R but also in the ref(R) in Wd”[6].  To delete and to add are impossible to 
be FIO because P and R need to keep a signature of the called method.  From 
Definition 4, fWW also need to be executable, so only an operator that replaces P or R 
to another variable or constant is possible to be FIO.  We call each FIO as Replace(P) 
and Replace(R) respectively. 

Table 4 shows FITs and FIOs for each composition pattern in COM. 

Table 4. FITs and FIOs of COM 

Patterns FIT FIO Description 

WB P Replace(P) to replace P of W to another variable or constant 

P Replcae(P) to replace P of Ws to another variable or constant 
WW 

R Replcae(R) to replace R of Wd to another variable or constant 

4   An Empirical Study 

The empirical study shows that the test data has sufficient effectiveness to detect the 
faults through customization and composition. A set of test data with high 
effectiveness with a small number of mutants or fBWs could reduce the testing cost by 
reducing the testing time, and thus it coincides with the purpose of CBSD, the 
reduction of development cost.  This section evaluates the effectiveness of test cases 
in terms of two criteria; Eff1 and Eff2. 
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Eff1 = (The number of faults detected by the set of test cases / The total number of faults) * 100 
Eff2 = (The number of test cases with fault detection / The total number of test cases) * 100.   

Eff1 measures how many faults are detected for the set of test data [9].  Eff2 
measures how many test cases detect faults out of the selected test cases [10].  This 
section evaluates Eff1 and Eff2 through an empirical study.  The results of four 
domains will be analyzed to demonstrate the merit of the technique by evaluating the 
following items: Eff1, Eff2, the number of fBWs, and Eff2 per one fBW.  

4.1   Comparisons 

The empirical study compares the testing technique of this paper with three existing 
testing techniques. They are the interface mutation, the mutation testing, and the data 
flow testing. The technique of this paper is named FIT/FIO for the convenience of 
description in the empirical study. 

Interface Mutation. The interface mutation was proposed by Delamaro [11] as a 
integration testing technique of modules of a structural program. It mutates only the 
interface of the modules instead of the entire program code. The idea of the interface 
mutation was applied to a distributed component system [12]. The approach applied 
the interface mutation only to the interface part of a distributed component system, 
and made the mutation operator for CORBA IDL.  This empirical study uses the 
mutation operators for COBRA IDL except Replace[12], which is an operator for 
replacing an occurrence of one of “in”, “out” and “inout” with another in the list. 

The interface mutation and FIT/FIO test components through only the interface.  In 
addition, test data of the technique generated in our technique and the interface 
mutation is a form of method-calls implemented in a server. The difference lies in 
which part of the interface is mutated for testing.  FIT/FIO mutates the FITs defined 
by the patterns, while the interface mutation mutates the entire interface. In case of 
CORBA, it applies the mutation operators to the entire IDL file.  In the empirical 
study, the interface mutation is called IM for short. 

Mutation Testing. Mutation testing is an error-based testing adequacy criterion 
proposed by DeMillo et al. [8], initially with the name “Mutation Analysis.” In 
practice, the criterion is applied by creating the set of alternative programs called 
mutants of a program P. The mutants differ from P only on simple syntactic changes 
determined by a set of mutant operators. To assess the adequacy of a test set T, each 
mutant, as well as the program P, has to be executed against the test cases in T. 
According to the concept of mutation testing, the empirical study mutates components 
that are built with Visual Basic by modifying all the variables and the operators one 
by one. 

FIT/FIO mutates only FIT of the interface of a component, while the mutation 
testing mutates the entire component. Mutation testing may generate too many test 
data compared to FIT/FIO. The size of the test data of the mutation testing is not 
appropriate to the testing of CBSD, since CBSD aims to reduce development cost, 
including testing cost. This bottleneck problem of mutation testing is reflected in Eff2 
through the empirical study.  In the empirical study, the original mutation testing is 
called OM for short. 
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White-Box Testing : Dataflow. There exist various techniques for white-box testing. 
Most of them perform tests based on program codes, but the white-box part of a 
component is different from ordinary program codes and the white-box part alone 
doesn’t work. The white-box part of a component is made with a special language 
such as IDL or XML. Therefore, it is not reasonable to apply the existing code-based 
white-box testing techniques to components. Data flow testing technique which is 
neither the mutation-based technique nor the code-based technique is compared with 
the component testing techniques in the empirical study. Of the criteria defined in the 
data flow technique, all-defs is similar to the process by which the FIT is defined.  In 
the empirical study, the data flow testing with all-defs criteria is called DataFlow for 
the convenience of description. 

4.2   The Empirical Study on the Customization Testing Under COM 

Customized COM Applications. The five COM components of Table 5 have been 
used for this empirical study. AppStack was selected from the sample codes of [9].  
AppZipcode and AppVoting came from [10]. The others were developed in Visual 
Basic 6.0.  They each have their own customized versions.  FIT/FIO, IM, OM, and 
DataFlow are applied to the customized versions to test them.  For evaluating their 
effectiveness, it is assumed that the customized versions of Table 5 have faults 
through the customization. 

Table 5. COM applications used in the empirical study of COM customization testing 

COM  
applications 

Sizes Patterns 
Description 

AppStack 95 lines Pattern 4 It pushes and pops data that a user inputs 

AppOperator 88 lines Pattern 1 
It calculates two values with an operator. The user inputs 
two values and an operator. 

AppBooking 103 lines Pattern 6 
It shows tables in a restaurant, and the user picks one. It 
generates a reservation number, and saves it on DB. 

AppZipcode 54 lines Pattern 3 It searches a zip code with an address the user inputs. 

AppVoting 97 lines Pattern 5 
The user selects an example of a question. It shows how 
many users selected the item so far.  

Customization Faults Inside the COM Applications. The empirical study inserts 
the customization faults into the customization code for the customization patterns. 
The customization code is the interface W, and W of VB COM components is the 
class module. Therefore, the customization code exists in the class module. The COM 
customization pattern 1, 3, and 5 add the customization code to the interface. The 
COM customization pattern 2, 4, and 6 add the customization code to a new interface.  

The interface of COM defines the abstract functions of the classes. W calls the 
classes defined in B through the interaction between B and W. Therefore, the 
customization code can be tested by the integration testing of W and B. The faults 
included in the COM applications of the empirical study exist in the customization 
code, thus the faults should be tested by integration testing, which is the 
customization testing technique developed in this paper. Another significant point is 
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that the customization faults of the empirical study are not related to FIT at all.  They 
are the result of the customization itself. 

Result. The results of the empirical study are in Table 6. An analysis will be made 
describing  Eff1, Eff2, the number of fBWs or mutants, and Eff2 per one fBW or mutant.  

Table 6. The values from the empirical study of COM customization testing 

 App 
Stack 

App 
Operator 

App 
Booking 

App 
Zipcode 

App 
Voting 

Average 

FIT/FIO 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
IM 50.00% 50.00% 33.33% 66.67% 66.67% 53.33% 
OM 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

Eff1 

DataFlow 100.00% 50.00% 33.33% 100.00% 33.33% 63.33% 
FIT/FIO 85.00% 100.00% 100.00% 80.00% 100.00% 93.00% 
IM 50.00% 50.00% 35.00% 30.00% 90.00% 51.00% 
OM 75.00% 100.00% 55.00% 75.00% 100.00% 81.00% 

Eff2 

DataFlow 75.00% 100.00% 55.00% 55.00% 50.00% 67.00% 
FIT/FIO 2 1 2 1 2 1.60  
IM 1 4 2 2 2 2.20  

fBWs or 
mutatns 

OM 16 24 22 22 26 22.00  
FIT/FIO 42.50% 100.00% 50.00% 80.00% 50.00% 64.50% 
IM 50.00% 12.50% 17.50% 15.00% 45.00% 28.00% 

Eff2 per 
one fBW 
or mutant OM 4.69% 4.17% 2.50% 3.41% 3.85% 3.72% 

Analysis. Eff1 is measured by the formula, Eff1 = (The number of faults detected by 
the set of test cases / The total number of faults) * 100. Eff1 of FIT/FIO and OM is 
100%. That is because FIT/FIO is based on FITs defined to be sensitive to the 
customization faults, and OM selects the test data as many as it generates the mutants 
of the entire COM application, rather then the specific part of a component. FIT/FIO 
generates fewer fBWs during testing. 

The empirical study has measured Eff2 by the formula, Eff2 = (The number of test 
cases with fault detection / The total number of test cases) * 100. Eff2 of  FIT/FIO is 
93% in average for the five customized COM applications.  The average Eff2 of OM 
is 81% and the average Eff2 of FIT/FIO is 93%. Eff2 of OM is smaller than that of 
FIT/FIO, while Eff1 of OM is the same as that of FIT/FIO.  It means that the test data 
of FIT/FIO is more sensitive to the customization faults than the test data of OM. 
Although the mutation operators of IM and FIT/FIO are developed under the same 
interface concept, they have varying degrees of effectiveness, depending on whether it 
focuses on the component system or the distributed system. 

The large number of mutants or fBWs creates a higher testing cost due to the cost of 
managing and handling the fBWs during testing. OM generates an average of 22 
mutants. It is excessively larger than FIT/FIO’s 1.60 or IM’s 2.20. That is because 
OM doesn’t define the restrictions to generating mutants. It mutates the entire COM 
applications not like FIT/FIO and IM. Considering the testing cost, OM is not proper 
to CBSD testing because it must handle too many mutants and test data. 

The difference between FIT/FIO and OM is bigger in Eff2 per one fBW or mutant 
than in Eff2. This means that FIT/FIO generates more effective test data with fewer 
faults compared to the others. This is because it generates fewer fBWs due to 
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identifying the customization patterns, and also because it selects the test data that is 
sensitive to the customization faults due to defining FITs based on the interaction 
between B and W. 

4.3   The Empirical Study on the Composition Testing Under COM 

Composition Units of COM Applications. Table 7 shows the COM applications 
including the composition units tested in this empirical study.  It is assumed that the 
composition units of the COM applications have faults through the composition.  The 
composition testing technique that was tailored to COM in Section 3 tests the 
composition units to detect their faults. 

Table 7. COM applications used in the empirical study of COM composition testing 

Applicati

ons 

Components of CUs Sizes Patterns 
Description of Composition 

App 

Stack 

(W)COM_Stack 

(W)COM_Pop  
102 WW 

COM_Stack calls the method, pop() of 

COM_Pop 

App 

Operator 

(W)COM_Operator  

(B)COM_Operation  
96 WB 

COM_Operator calls the methods, 

OperSum(), OperSub(), 

OperDiv(),OperMult() of COM_Operation. 

App 

Booking 

(W)COM_Booking  

(B)COM_MkReg  
110 WB 

COM_Booking calls the method, 

MakeRegNum() of COM_MkReg 

App 

Zipcode 

(W)COM_SearchZip  

(W)COM_AddZip  
62 WW 

COM_SearchZip calls the method, 

AddZip() of COM_AddZip 

App 

Voting 

(W)COM_Voting  

(B)COM_ProcessVoting 
114 WB 

COM_Voting calls the method, calResult() 

of COM_ProcessVoting 

Composition Faults Inside the COM Applications. The faults caused by the 
composition are exposed through the interaction between two components of CU. If a 
fault can be detected by testing only the unit, W or B, it can not be said to be a 
composition fault. Therefore, the empirical study should require that the COM 
applications include faults that can not be exposed by unit testing but exposed by 
integration testing. The composition testing of this paper is an integraion testing of 
two components of CU.  

The fauls in the composition code of Ws of WW pattern or W of WB pattern can be 
detected only by the integration testing. However, the faults existing in the 
composition code of Wd of WW pattern can be tested by the unit testing of Wd. The 
composition code existing in Wd is related to the return variables, and it resides inside 
Wd not with Ws.  Consequently, the faults existing in Ws of WW pattern or W of WB 
pattern should be tested only by integration testing, which is the composition testing 
technique of this paper, and thus the empirical study inserts the composition faults in 
Ws of WW pattern and W of WB pattern. Another point is that the composition faults of 
the emprical study are not related to FIT at all. They are caused by the composition itself. 
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Result. Table 8 was calculated with the values that the testing techniques have 
generated in this empirical study. They are Eff1, Eff2, the number of fBWs or mutants, 
and Eff2 per one fCU or mutant.  

Table 8. The values from the empirical study of COM composition testing 

 App 
Stack 

App 
Operator 

App 
Booking 

App 
Zipcode 

App 
Voting 

Average 

FIT/FIO 100.00% 100.00% 66.67% 100.00% 100.00% 93.33% 

IM 100.00% 100.00% 66.67% 33.33% 66.67% 73.33% 

OM 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% Eff1 

DataFlow 100.00% 100.00% 33.33% 66.67% 66.67% 73.33% 

FIT/FIO 90.00% 85.00% 100.00% 100.00% 85.00% 92.00% 

IM 50.00% 85.00% 95.00% 90.00% 100.00% 84.00% 

OM 48.89% 62.50% 40.00% 44.44% 25.00% 44.17% Eff2 

DataFlow 80.00% 75.00% 25.00% 65.00% 60.00% 61.00% 

FIT/FIO 2 1 1 2 1 1.40  

IM 1 4 2 4 2 2.60  fCUs or 

mutatns 
OM 30 32 40 24 24 30.00  

FIT/FIO 45.00% 85.00% 100.00% 50.00% 85.00% 73.00% 

IM 50.00% 21.25% 47.50% 22.50% 50.00% 38.25% 
Eff2 per 

one fCU 

or mutant OM 1.63% 1.95% 1.00% 1.85% 1.04% 1.49% 

Analysis. Eff1 measures how many faults are detected for the set of the test data. 
FIT/FIO and OM have the great Eff1s. OM has 100% Eff1 for every application. This 
is because OM select lots of test data through mutating the entire component, and thus 
the test data are enough to detect the faults included in the COM applications. Eff1 
does not care how many test data are generated. That is why the empirical study 
measures Eff2 as well as Eff1. 

Eff2 measures how many test data detect faults out of the total test data. It focuses 
on the number of the test data generated by a testing technique. Since the testing cost 
is important in CBSD, the number of the test data a tester should handle is also 
important. Eff2 is calculated with the number of test data that detected faults. Eff2   
The difference between FIT/FIO and OM gets bigger in ‘Eff2’ than in ‘Eff1.’ The 
average of FIT/FIO is 92%. It is larger than Eff2 of OM while Eff1 of FIT/FIO is 
smaller than Eff1 of OM.  The difference between FIT/FIO and OM in Eff1 is 6.67% 
and the difference in Eff2 is 29.16% in average. FIT/FIO select the test data that is 
sensitive to the composition faults since it uses FIT that is based on the interaction 
between B and W, and the composition faults occur in the interaction, not in the unit. 

OM also has a large number of mutants, which are 30 mutants in average, 
compared to the others because OM mutates the entire W of CU. Not like OM, 
FIT/FIO and IM have their own method for injecting faults to generate mutants or 
fCUs. 
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The difference between FIT/FIO and IM is bigger in “Eff2 per one fBW or mutant” 
than in “Eff2.”  It means that FIT/FIO generates more effective test data with fewer 
fBWs compared to the others, since it generates fewer fCUs due to identifying the 
composition patterns. It also selects the test data that is sensitive to the composition 
faults due to defining FITs based on the interaction between two components of CU. 

5   Concluding Remarks 

The lack of the source code of components makes it difficult for component users to 
test components. This paper has tailored the component customization testing 
technique [7] to COM components.  It has also evaluated the effectiveness of the test 
cases with COM components.  This paper has the following three advantages:  

First, it enables the component user to test faults occurring in interactions between 
the implementation part, which is closed, and the interface part, which is available to 
the component user, although the component user can access only the source code of 
the interface of the components.  

Second, it is applicable to ‘real’ component architectures. The specific FITs and 
FIOs were developed for COM in Section 3.  It is possible to apply the technique of 
this paper to various component architectures, because the definitions of the B, W, 
FIT, and FIO came from the component’s general characteristics and can be tailored 
to any specific component architecture as shown on COM in this paper and EJB[16]. 

Third, it selects effective test cases.  The empirical study evaluated effectiveness 
with the two definitions of effectiveness: Eff1 and Eff2.  The results and the analysis of 
the empirical study were showed in Section 4.  The effectiveness is one of the 
important requirements in CBSD. The effective test cases can save testing time, 
consistent with the purpose of component-based software, namely, a major reduction 
in the cost of software development.  The empirical study showed that the FIT 
generates a reasonable number of fBWs, selecting effective test cases, which leads to 
increased effectiveness.  

The technique of this paper can be applied to other component architectures by 
customizing the patterns, FIT, and FIO, since the technique consists of B and W like a 
component as shown in Figure 3.  We have already done an empirical study on EJB 
component in an earlier paper [6]. It showed that this technique applied to EJB 
components produces more effective test data, as measured by Eff1 and Eff2.  

Finally, this paper has customized the testing technique to COM components, and 
the empirical study of Section 4 showed that this technique applied to COM 
components also contributes to greater effectiveness.  The testing techniques of this 
paper will match the component-based development as shown in the empirical study 
of COM and EJB.  

A tool has been built for EJB components. It tests EJB components automatically 
using the technique tailored to EJB, and it was used in the empirical study with EJB 
[6].  A tool for COM components can be built now.  Moreover, the approach in this 
paper will be applied to test web-based software engineering, which seems to be very 
popular these days. 
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